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Preface

This book, like many other books, was delivered under tremendous inspiration
and encouragement from my teachers, research collaborators, and students.
My interest in longitudinal data analysis began with a short course taught
jointly by K.Y. Liang and S.L. Zeger at the Statistical Society of Canada
Conference in Acadia University, Nova Scotia, in the spring of 1993. At that
time, I was a first-year PhD student in the Department of Statistics at the
University of British Columbia, and was eagerly seeking potential topics for
my PhD dissertation. It was my curiosity (driven largely by my terrible con-
fusion) with the generalized estimating equations (GEEs) introduced in the
short course that attracted me to the field of correlated data analysis. I hope
that my experience in learning about it has enabled me to make this book
an enjoyable intellectual journey for new researchers entering the field. Thus,
the book aims at graduate students and methodology researchers in statis-
tics or biostatistics who are interested in learning the theory and methods of
correlated data analysis.

I have attempted to give a systematic account of regression models and
their applications to the modeling and analysis of correlated data. Longitudi-
nal data, as an important type of correlated data, has been used as a main
venue for motivation, methodological development, and illustration through-
out the book. Given the many applied books on longitudinal data analysis al-
ready available, this book is inclined more towards technical details regarding
the underlying theory and methodology used in software-based applications.
I hope the book will serve as a useful reference for those who want theoretical
explanations to puzzles arising from data analyses or deeper understanding
of underlying theory related to analyses. This book has evolved from lecture
notes on longitudinal data analysis, and may be considered suitable as a text-
book for a graduate course on correlated data analysis.

This book emphasizes some recent developments in correlated data anal-
ysis.

First, it takes the perspective of Jørgensen’s theory of dispersion mod-
els for the discussion of generalized linear models (GLMs) in Chapter 2. It
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is known that the class of generalized linear models plays a central role in
the regression analysis of nonnormal data. In the context of correlated data
analysis, these models constitute marginal components in a joint model formu-
lation. One benefit from such a treatment is that it enables this book to cover
a broader range of data types than the traditional GLMs. Two types that are
of particular interest and discussed in detail in the book are compositional (or
continuous proportional) data and directional (or circular) data.

Second, it gives a systematic treatment for the theory of inference functions
(or estimating functions) in Chapter 3. The popular GEE methods presented
in Chapter 5 are then easily introduced and studied as a special class of
inference functions. Building upon Chapter 3, some alternative estimating
function methods can be readily discussed. Recent work on quadratic inference
functions (QIF) is an example that benefits from Chapter 3.

Third, it presents a joint modeling approach to regression analysis of cor-
related data via the technique of parametric copulas. Copulas are becoming
increasingly popular in the analysis of correlated data, and Chapter 6 focuses
on Gaussian copulas, for which both theory and numerical examples are illus-
trated.

Fourth, it deals with state space models for longitudinal data from long
time series. In contrast to longitudinal data from short time series, modeling
stochastic patterns or transitional behaviors becomes a primary task. In such
a setting, asymptotics may be established by letting the length of the time
series tend to ∞, as opposed to letting the number of subjects tend to ∞, as
in the case of data consisting of many short time series. Chapters 10, 11, and
12 are devoted to this topic.

Fifth, this book covers two kinds of statistical inferences in generalized lin-
ear mixed effects models (GLMMs): maximum likelihood inference in Chapter
7 and Bayesian inference based on Markov Chain Monte Carlo (MCMC) in
Chapter 8. In Chapter 8, the analysis of multi-level data is also discussed in
the framework of hierarchical models. Inference can be dealt with easily by the
MCMC method, as an extension from the GLMMs with little extra technical
difficulty.

The book contains some other topics that are highly relevant to the anal-
ysis of correlated data. For example, Chapter 13 concerns missing data prob-
lems arising particularly from longitudinal data.

The presentation of some material in the book is a little technical in order
to achieve rigor of exposition. Readers’ backgrounds should include mathe-
matical statistics, generalized linear models, and some knowledge of statisti-
cal computing, such as represented R and SAS software. The following chart
displays the relationship among the thirteen chapters, and readers can follow
a particular path to reach a topic of interest.
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A webpage has been created to provide some supplementary material for
the book. The URL address is

http://www.stats.uwaterloo.ca/~song/BOOKLDA.html

All data sets used in the book are available. A SAS Macro QIF is available
for a secured download; that is, an interested user needs to submit an online
request for permission in order to download this software package. In addition,
some figures that are printed in reduced size in the book are supplied in their
full sizes. Exercise problems for some of the thirteen chapters are posted,
which may be useful when the book is used as a text for a course.

I would like to acknowledge my debt to many people who have helped
me to prepare the book. I was fortunate to begin my research in this field
under the supervision of Bent Jørgensen, who taught me his beautiful theory
of dispersion models. At UBC, I learned the theory of copulas from Harry
Joe. This book has benefited from some of the PhD theses that I supervised
in the past ten years or so, including Zhenguo (Winston) Qiu, Dingan Feng,
Baifang Xing, and Peng Zhang, as well as from a few data analysis projects
that graduate students did in my longitudinal data analysis course; thanks go
to Eric Bingshu Chen, Wenyu Jiang, David Tolusso, and Wanhua Su. Many
graduate students in my course pointed out errors in an early draft of the
book. Qian Zhou helped me to draw some figures in the book, and Zichang
Jiang worked with me to develop SAS MACRO QIF, which is a software
package to fit marginal models for correlated data.

I am very grateful to my research collaborators for their constant inspi-
ration and valuable discussions on almost every topic presented in the book.
My great appreciation goes to Annie Qu, Jack Kalbfleisch, Ming Tan, Claudia
Czado, Søren Lundbye-Christensen, Jianguo (Tony) Sun, and Mingyao Li. I
would also like to express my sincere gratitude to people who generously pro-
vided and allowed me to analyze their datasets in the book, including John
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Petkau and Angela D’Elia. Zhenguo Qiu, Grace Yi, and Jerry Lawless pro-
vided with me their valuable comments on drafts of the book. My research in
the field of correlated data analysis has been constantly supported by grants
from the Natural Sciences and Engineering Research Council of Canada. I
thank John Kimmel and Frank Ganz from Springer for their patience and
editorial assistance.

I take full responsibility for all errors and omissions in the book. Finally, I
would like to say that given the vast amount of published material in the field
of correlated data analysis, the criterion that I adopted for the selection of
topics for the book was really my own familiarity. Because of this and space
limitations, some worthwhile topics have no doubt been excluded. Research in
this field remains very active with many new developments. I would be grateful
to readers for their critical comments and suggestions for improvement, as well
as corrections.

Waterloo, Ontario, Canada P.X.-K. Song
December 2006
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1

Introduction and Examples

1.1 Correlated Data

Regression analysis of correlated data is undertaken in many practical areas.
In this book, correlated data refers to a collection of multi-dimensional mea-
surements with correlated response variables. Depending on the setting from
which the data is collected, the nature of correlation among multiple outcomes
can differ from one case to another. Thus, in the literature correlated data are
classified into different types, such as longitudinal data, clustered data, spatial
data, and multi-level data. In spite of certain specific features attached with
each data type, in general correlated data share many commonalities, which
is the rationale that it is possible to develop statistical modeling and infer-
ence within one framework. This book will utilize longitudinal data as a main
venue to illustrate the theory and methods in the analysis of correlated data,
with supplementary discussions about analyzing other data types whenever
applicable.

Longitudinal data is a data type frequently encountered in many subject-
matter areas such as biology, medical and public health sciences, and social
sciences. Sequentially observed over time, longitudinal data may be collected
either from an observational study or a designed experiment, in which response
variables pertain to a sequence of events or outcomes recorded at certain time
points during a study period. In essence, longitudinal data may be regarded
as a collection of many time series, each for one subject.

Clustered data refers to a set of measurements collected from subjects
that are structured in clusters, where a group of related subjects constitutes
a cluster, such as a group of genetically related members from a familial
pedigree. Obviously, settings where clustered data arise can be independent of
time. It is interesting to note that sometimes longitudinal data may be thought
of as a special kind of clustered data by treating a subject as a cluster, so each
subject’s time series forms a set of correlated observations. This perspective
is mainly for technical convenience, because, technically, similar tools can be
applied to analyze longitudinal data or clustered data with, however, possibly
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different modeling of dependence structures. In longitudinal data analysis,
serial correlation is commonly assumed, while in clustered data analysis equal
pairwise within-cluster correlation is popular. On this line, when clusters are
represented by spatial groups, such as geographic regions, spatial data may
also be treated as a special case of clustered data. Consequently, in such a
case modeling spatial correlation becomes an essential task.

In many biomedical studies, design or sampling protocols play crucial roles
in the data collection. As far as design or sampling protocol concerns, longi-
tudinal and clustered data collection procedures are fundamentally different,
and therefore it is important to distinguish whether data are collected from a
longitudinal study or from a clustered study. Factors that are administrated
and investigated in a longitudinal study design can be very different from
those considered in a clustered design. In contrast, because of the similar-
ity in the methodological development, it seems convenient to include the two
study designs in one framework. Given this circumstance, the term of repeated
measurements becomes useful to denote either longitudinal data or clustered
data. A study protocol that combines both clustered and time-course features
(e.g., familial data measured over time) gives rise to a more complex data
structure. Data collected from such multi-dimensional hierarchies are referred
to as multi-level data. An interesting type of multi-level data is spatio-temporal
data that comprise of repeated measurements recorded jointly over time and
across spatial locations.

Data with multiple outcomes or simply vector data refers to a dataset in
that a vector of response variables is measured for each of many subjects.
Comparing to longitudinal or clustered data, vector data is constrained with
the equal dimension of the response vector, but it is more flexible to allow the
components of the response vector to follow different marginal distributions.
Examples of vector data include clustered data with an equal cluster size,
longitudinal data of time series of equal length, and spatial data collected
from an equal number of spatial locations. Moreover, multi-dimensional data
of mixed types is another example of the vector data.

1.2 Longitudinal Data Analysis

The primary interest of longitudinal data analysis lies in the mechanism of
change over time, including growth, aging, time profiles or effects of covariates.
Some main advantages of a longitudinal study are listed as follows.

(1) It allows researchers to investigate how the variability of the response varies
in time with covariates. For the instance of a clinical trial that presumably
aims to investigate the effectiveness of a new drug treating a disease, it is
often of interest to examine the pharmacokinetic behavior of the drug when
it is applied to experimental animals or patients. Most drugs do not have
constant efficacy over time, possibly due to drug resistance. Such time-
varying treatment effectiveness can be examined through a longitudinal
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study in which responses to the drug treatment are monitored over time.
Obviously, it is hard or impossible to study such a time-dependent behavior
via a cross-sectional study.
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Fig. 1.1. Scatterplots of hypothetical data for reading ability and age.

(2) It enables researchers to separate the so-called cohort and age (or time)
effects; Diggle et al. (2002) presents a hypothetical example of reading
ability versus age, which clearly illustrates this point. Figure 1.1 displays
two scatterplots of hypothetical measurements of reading ability against
age. Panel (a) considers a cross-sectional analysis where all data points are
treated as drawn independently by different individuals. It is easy to see
from this plot a trend of deterioration of reading ability in age. In contrast,
when a pair of reading ability measurements from each individual is linked
by a line (namely, the data being plotted in the form of time series) in order
to reflect the longitudinal nature, panel (b) tells an opposite story to that
of the cross-sectional study. That is, each individual improves his reading
ability when he grows older. From this example, we learn that: (a) this
contrary indicates the importance of analyzing longitudinal data based
on individual time series trajectories, and it could produce misleading
results if longitudinal data were modeled and analyzed as of cross-sectional
data; (b) a longitudinal study can characterize changes over time within
individuals (e.g., age effect) from differences among people in the reference
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to their baseline status (or cohort effects), but a cross-sectional study
cannot.

(3) It helps the recruitment of subjects–collecting repeated outcomes from one
subject may help to reduce the burden of recruiting a sizable number of
subjects required for a cross-sectional study. This is sometimes prohibited.
For instance, in studies of rare diseases, the number of available patients
in the population is typically insufficient for simple randomized trials. One
solution to this difficulty is the so-called cross-over clinical trial where sub-
jects serve as their own controls. In effect, a cross-over trial administrates
each patient with active drug and placebo at two separate time periods.

On the other hand, comparing to cross-sectional studies, some challenges
of a longitudinal study include:

(1) Analyzing longitudinal data becomes technically more demanding, due to
the complexity of underlying probability mechanisms of data generation.
In most cases, the maximum likelihood inference is either unavailable or
numerically too intricate to be implemented. One of the popular com-
promises towards this difficulty is the generalized estimating equations
(GEE) approach proposed by Liang and Zeger (1986), which does not re-
quire to specify a complete probability model for data analysis. In fact,
GEE method is a quasi-likelihood inference, which only requires to cor-
rectly specify the first two moments of the underlying distribution of data
and treats the correlation as nuisance parameters (not modeled) in the
data analysis.

(2) It is more difficult to deal with missing data in longitudinal studies. This is
because missing data patterns appear much more sophisticated than those
in cross-sectional studies. For instance, in cross-sectional studies, each in-
dividual contributes one data point, and when a data point is missing the
corresponding individual might be deleted from the analysis. This is not
the case in longitudinal studies; a data point missing at a time point does
not imply that the corresponding individual is completely noninformative,
because it possibly has measurements recorded at some other time points.
It is not a trivial issue to properly analyze repeated measurements in the
presence of missing values, with the constraint of preserving the same cor-
relation structure as that being completely observed.

(3) When the length of time series is not short, modeling stochastic patterns
or transitional behaviors of longitudinal data becomes a primary task. In
this case, the development of statistical inference is more challenging since
the correlation structure is no longer a nuisance.

To facilitate further discussions, let us first introduce some necessary no-
tations. Denote a longitudinal data by

(yij ,xij , tij), j = 1, . . . , ni, i = 1, . . . ,K,

where the response variable yij is observed at time tij . When data are observed
at equally spaced time points, tij may be simplified as t. This book always
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assumes that time series across different subjects are statistically independent;
that is, vectors of repeated outcomes

yi = (yi1, . . . , yini)
T , i = 1, . . . ,K

are independent. However, individual measurements, yi1, . . . , yini , from the
same subject are not independent.

In particular, when ni ≡ 1, i = 1, . . . ,K, i.e., only one observation recorded
for each subject, longitudinal data reduces to a cross-sectional data which is
the data type considered in the theory of generalized linear models.

Associated with time series (yij , tij) are p-element vectors of covariates (or
explanatory variables) xij , either time-dependent (e.g., age and blood pressure
reading) or time-independent (e.g., sex and ethnicity) during a study period.

Some main features of longitudinal data are given as follows:

(1) The presence of repeated measurements for each subject implies that the
observations from the same subject are autocorrelated or serially correlated.
This requires us to develop statistical methodology that takes the serial
correlation into account.

(2) Longitudinal data can be roughly divided into two categories in terms of
the length of time series: longitudinal data from short time series (ni is
small) or from long time series (ni is large). For the case of short time se-
ries, the primary interest is to model a population-averaged pattern, and
the dynamic or stochastic pattern is not of interest because of little in-
formation available over time. In contrast, longitudinal data of long time
series provide a wealth of information over time, which enables investiga-
tors to make statistical inference over time. In this case, an objective would
be the modeling of dynamic evolution or transitional behavior among the
states of response variables.
Although the cutoff for the length of time series is somewhat subjective,
it is important to make such a distinction in light of the primary interests
of modeling and inference. Moreover, this distinction is closely related
to model formulation for longitudinal data, in which different strategies
would be invoked to handle serial correlation. As a matter of fact, in the
case of many short time series, modeling will focus on the cause-and-effect
relationship between the response and covariates at the mean level (i.e., the
first moment), where the correlation is treated as a nuisance, as opposed
to the case of long time series in that the correlation will be modeled
explicitly via a certain stochastic process.

(3) Many longitudinal datasets used in this book are from biomedical studies,
where the response variables are often in categorical scales. Hence, this
book is devoted largely to the regression analysis of correlated nonnormal
data. Borrowing the strength from the theory of generalized linear models
is crucial to build up marginal components for a joint model formulation
in the analysis of correlated nonnormal data.
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(4) It is often true in practice that at a given time tij , a multi-dimensional
measurement is recorded, giving rise to data of repeated response vectors.
The complication associated with such data arises from the fact that there
exist two levels of correlation to be accounted for, namely the serial corre-
lation and the correlation across the components of the response vector.

(5) Most longitudinal data from practical studies contain missing data. Deal-
ing with missing data, when the missing data mechanism is informative, is
generally nontrivial. To make a proper statistical inference, one has to rely
on the information that is supposed to be, but actually not, observed. The
degree of complication depends on the amount and patterns of missingness.
The most difficult case is the non-ignorable missing pattern or informative
missingness, which refers to a missing data process under which the prob-
ability of missingness is related to unobserved outcomes of the response
variable. The other two types of missing patterns are missing completely
at random (MCAR) and missing at random (MAR). See more discussions
in Chapter 13.

1.3 Data Examples

To motivate both theoretical and methodological developments given in the
subsequent chapters, a few real world datasets will be used for illustration
throughout the book. Also, these examples help readers to grasp the data
features discussed in the previous section. It begins with examples of short
time series, and then examples of long time series.

1.3.1 Indonesian Children’s Health Study

Table 1.1. A summary of the data involving 275 subjects.

Age
Xerophthalmia RI 1 2 3 4 5 6 7

No No 90 236 330 176 143 65 5
Yes 8 36 39 9 7 1 0

Yes No 0 2 18 15 8 4 1
Yes 0 0 7 0 0 0 0

The description of the data is adapted from Diggle et al. (2002). Sommer
et al. (1984) reported a study in West Java, Indonesia to determine the causes
and effects of vitamin A deficiency in preschool children. Over 3000 children
were medically examined quarterly for up to six visits to assess whether they
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suffered from respiratory or diarrheal infection (RI) and xerophthalmia, an
ocular manifestation of vitamin A deficiency. Weight and height variables
were also measured. Table 1.1 contains statistics on only 275 children whose
measurements are summarized by a three-way table.

This longitudinal data is recorded at equally spaced time points and can
be denoted by

(yit,xit, t), t = 1, . . . , ni, i = 1, . . . , 275,

where binary response variable yij = 1 if child i had RI at visit t and 0, oth-
erwise. A key covariate of interest is xerophthalmia, which is an indicator of
xerophthalmia symptom (1 for the presence and 0 for the absence of xeroph-
thalmia), as well as other baseline covariates such as age, weight, and height.
Here, the visit time is equally spaced at tij = t = 1, 2, 3, 4, 5, 6, set apart by
a three-month intervals. The length of time series is ni ≤ 6, and the total
number of subjects is K = 275.

The primary objective of this study was to assess the increase in risk of
RI for kids who were vitamin A deficient, which was measured indirectly via
xerophthalmia. It was also of interest to evaluate the degree of heterogeneity
in the risk of disease among the kids.

In summary, this longitudinal data is a collection of many quarterly binary
short time series. Since the data contains a large number of subjects (K =
275) in comparison to the length of time series, ni ≤ 6, it seems natural to
draw statistical inference by gathering rich information across subjects. This
means that, technically, one should derive asymptotics by letting the number
of subjects K → ∞, rather than letting the length ni → ∞.

This longitudinal data has been analyzed in many published books and
articles; for example, see Diggle et al. (2002). However, in this book it is
treated as an exercise dataset, and interested readers are encouraged to apply
models and inferential methods learned from the book to their analyses of the
data. Of course, solutions can be easily found in published works.

1.3.2 Epileptic Seizures Data

Reported by Thall and Vail (1990), Table 1.2 comprises data from a clinical
trial of 59 epileptics, which aimed to examine the effectiveness of the drug pro-
gabide in treating epileptic seizures. For each patient, the number of epileptic
seizures was recorded during a baseline period of eight weeks. Patients were
then randomized to two treatment arms, one with the anti-epileptic drug (i.e.,
progabide) and the other with a placebo, in addition to a standard chemother-
apy. The number of seizures was recorded in four consecutive two-week pe-
riods after the randomization. The scientific question was whether the drug
progabide helps to reduce the rate of epileptic seizures. Given that there are a
few outliers in the data, e.g., ID 207, Table 1.3 lists the sample medians and
IQRs (interquartile ranges) at the baseline period and each of two-week time
intervals across the two treatment arms.
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Table 1.2. Bi-weekly epileptic seizure counts and covariates over eight weeks of 59
patients.

ID Y1 Y2 Y3 Y4 Trt. Base Age ID Y1 Y2 Y3 Y4 Trt. Base Age

104 5 3 3 3 0 11 31 103 0 4 3 0 1 19 20
106 3 5 3 3 0 11 30 108 3 6 1 3 1 10 30
107 2 4 0 5 0 6 25 110 2 6 7 4 1 19 18
114 4 4 1 4 0 8 36 111 4 3 1 3 1 24 24
116 7 18 9 21 0 66 22 112 22 17 19 16 1 31 30
118 5 2 8 7 0 27 29 113 5 4 7 4 1 14 35
123 6 4 0 2 0 12 31 117 2 4 0 4 1 11 27
126 40 20 23 12 0 52 42 121 3 7 7 7 1 67 20
130 5 6 6 5 0 23 37 122 4 18 2 5 1 41 22
135 14 13 6 0 0 10 28 124 2 1 1 0 1 7 28
141 26 12 6 22 0 52 36 128 0 2 4 0 1 22 23
145 12 6 8 4 0 33 24 129 5 4 0 3 1 13 40
201 4 4 6 2 0 18 23 137 11 14 25 15 1 46 33
202 7 9 12 14 0 42 36 139 10 5 3 8 1 36 21
205 16 24 10 9 0 87 26 143 19 7 6 7 1 38 35
206 11 0 0 5 0 50 26 147 1 1 2 3 1 7 25
210 0 0 3 3 0 18 28 203 6 10 8 8 1 36 26
213 37 29 28 29 0 111 31 204 2 1 0 0 1 11 25
215 3 5 2 5 0 18 32 207 102 65 72 63 1 151 22
217 3 0 6 7 0 20 21 208 4 3 2 4 1 22 32
219 3 4 3 4 0 12 29 209 8 6 5 7 1 41 25
220 3 4 3 4 0 9 21 211 1 3 1 5 1 32 35
222 2 3 3 5 0 17 32 214 18 11 28 13 1 56 21
226 8 12 2 8 0 28 25 218 6 3 4 0 1 24 41
227 18 24 76 25 0 55 30 221 3 5 4 3 1 16 32
230 2 1 2 1 0 9 40 225 1 25 19 8 1 22 26
234 3 1 4 2 0 10 19 228 2 3 0 1 1 25 21
238 13 15 13 12 0 47 22 232 0 0 0 0 1 13 36
101 11 14 9 8 1 76 18 236 1 4 3 2 1 12 37
102 8 7 9 4 1 38 32

Table 1.3 indicates that over time, the bi-weekly median count appears to
slightly decrease for the progabide group, whereas the median count remains
nearly constant for the placebo group. In contrast to the steady pattern of the
medians, the IQR appears to vary largely over time and across the treatment
groups. A regression model invoked to analyze this data needs to address such
strong variation.

To echo the notation introduced earlier in this chapter, let yit be the bi-
weekly number of seizures for patient i at equally spaced time t = 1, 2, 3, 4, and
let xit be the vector of covariates, including baseline seizure count, treatment,
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Table 1.3. Sample medians and interquartile ranges of raw seizure counts per two
weeks at the baseline and four successive two-week intervals.

Progabide Placebo

Stats Base T1 T2 T3 T4 Base T1 T2 T3 T4

Median 6.00 4.00 5.00 4.00 4.00 4.75 5.00 4.50 5.00 5.00
IQR 4.53 6.58 5.48 7.13 4.21 4.95 6.36 5.29 6.04 4.96

age, and possibly the interaction between treatment and age. It is interesting
to note that all the covariates in this study are time independent, i.e., xit = xi.

In summary, this data is a collection of K = 59 bi-weekly short series of
seizure counts, each having the same length of ni = 4, with time-independent
covariates and with no missing data.

1.3.3 Retinal Surgery Data

Meyers et al. (1992) reported the data from a prospective study in ophthal-
mology where intraocular gas was used in complex retinal surgeries to provide
internal tamponade of retinal breaks in the eye. Three gas concentration levels
were randomly administrated to 31 patients, who were then visited three to
fifteen times over a three-month period after gas injection. The volume of the
gas in their eyes at each follow-up was recorded as a percentage to the initial
gas volume. Figure 1.2 displays a longitudinal (or spaghetti) plot of the data,
where each trajectory represents a time series of a patient. Overall, a clear
decreasing trend in time is shown in the plot. The primary objective of this
study was to estimate the kinetics such as the decay rate of gas disappearance
across three gas concentration levels.

Let yij be the percentage of gas volume for patient i at time tij , which
is measured as a ratio of the gas volume Vij at time tij over the initial gas
volume Vi0, namely,

yij =
Vij
Vi0
, j = 1, . . . , ni, i = 1, . . . , 31,

where both Vij and Vi0 were not recorded in the study. Also, the visits for
each patient did not take place regularly, so that the repeated measurements
were collected at unequally spaced time points. Obviously, the response yij is
confined in the unitary interval (0, 1), with zero probability of taking a value
beyond this interval. According to Song and Tan (2000), the data appears
to be highly overdispersed and marginally skewed to the left. Based on these
features, a regression analysis using a normal distribution is doubtful. This
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Fig. 1.2. Longitudinal plot of ophthalmological surgery data.

book will demonstrate the utility of the simplex distribution to carry out data
analysis.

In summary, the data is a collection of K = 31 unequally spaced short
time series with responses of continuous proportions confined between 0 and
1. The covariate vector xij consists of time after surgery (in days) and gas
concentration level, possibly as well as their interaction.

1.3.4 Orientation of Sandhoppers

Borgioli et al. (1999) reported a longitudinal study to understand the mech-
anism regarding the orientation of sandhoppers (talitrus saltators) escaping
towards the sea in oder to avoid the risk of high dehydration. It is believed
that sandhoppers will take a course perpendicular to the shoreline, known
as the theoretical escape direction (TED), which was 201o at the site of Cas-
tiglione della Pescaia beach in Italy, where the experiment was performed.
Sixty-five (K) sandhoppers were sequentially released five times, and their
escape direction was recorded after each release, along with measurements of
covariates including wind speed, sun azimuth, and eye asymmetry. The pri-
mary objective was to examine which covariates would significantly affect the
escape direction of sandhoppers.

As shown in Figure 1.3, this dataset contains a collection of 65 short time
series with angular responses, each having the same length of n = 5 repeated
measurements. In this longitudinal plot, 0o is set for the north.
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Fig. 1.3. Longitudinal plot of escape orientations for sandhoppers over five releases.

1.3.5 Schizophrenia Clinical Trial

Now let us look at a dataset with missing values. The schizophrenia data
is collected from a double-blind randomized clinical trial on patients with
schizophrenia. In the study, the patients were scheduled to be examined six
times during the six-week period of the study. The response variable is the
Brief Psychiatric Rating Scale (BPRS) of the patients, ranging from 0 to 108
with higher scores indicating more severe symptoms, which was scheduled
to be measured at each examination time and used to assess schizophrenia
status. The main objective of the trial was to evaluate a new treatment (NT)
against a standard treatment (ST) (anti-psychotic medication), of which three
doses (low, medium, and high) were administered in the trial. Figure 1.4
displays individual BPRS trajectories over six visits across two treatment
arms, respectively. It is easy to see in the figure that many patients did not
complete the six visits and dropped out of the study. For more details about
the trial, refer to Shih and Quan (1997) or Hogan and Laird (1997).

Dropouts frequently occurred in this type of clinical trial due to the nature
of the disease. From Table 1.4, it is seen that about 35% of patients in NT
cohort and approximately 50% patients in ST cohort dropped out from the
trial. In fact, a large proportion of patients dropped out of the study before
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Fig. 1.4. Longitudinal plot of individual BPRS trajectories across the new and
standard treatment arms.

Table 1.4. A summary of withdrawal patters by treatment group.

Treatment Completers Withdrawals by reason

Adverse experience Lack of efficacy Other reason Total

New 40 (65.6%) 1 (1.6%) 7 (11.5%) 13 (21.3%) 61
Standard 34 (53.9%) 12 (19.1%) 11 (17.5%) 6 (9.5%) 63

week six for various reasons, which have been documented by the clinician of
the trial. Essentially, there were three reasons leading to patients’ dropouts:
lack of treatment effect, adverse experience, and other reasons. These docu-
mented reasons of withdrawal from the trial provide additional information
for understanding and modeling missing data mechanisms. This information
would be particularly valuable in the situation where missing values are not
missing at random. More discussions are available in Chapter 13.
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1.3.6 Multiple Sclerosis Trial

Two examples of multi-level longitudinal data will be presented in this and
the next sections, respectively. The first example concerns a longitudinal clin-
ical trial to assess the effects of neutralizing antibodies on interferon beta-
1b (IFNB) in relapsing-remitting multiple sclerosis (MS), in which multi-
dimensional time series was recorded for each patient (Petkau et al. (2004);
Petkau and White (2003)).

Multiple sclerosis is a disease that destroys the myelin sheath that sur-
rounds the nerves. The data are from six-weekly frequent Magnetic Resonance
Imaging (MRI) sub-study of the Betaseron clinical trial conducted at Univer-
sity of British Columbia in relapsing-remitting multiple sclerosis involving 52
patients. At each of 17 scheduled visits, three response variables measured
on each patient include active scan, a binary response recorded for each scan
subsequent to the baseline scan; exacerbation, a binary response recorded at
the time of each scan according to whether an exacerbation began since the
previous scan; and burden of disease, a positive continuous response recorded
as the total area (in units of mm2) of MS lesions on all slices of each scan.
The objective of this trial was to examine the effects of the drug treatment in
reducing the disease symptoms.

The patients were randomized into three treatment groups, with the allo-
cation of 17 patients being treated by placebo, 17 by low dose, and 16 by high
dose. Baseline covariates include age, duration of disease (in years), gender,
and initial EDSS (Expanded Disability Status Scale) scores.

In summary, the data is a collection of 52 equally spaced short multi-
dimensional time series of mixed types, where the response vector comprises
of two binary and one positive continuous variables.

1.3.7 Tretinoin Emollient Cream Trial

Y. Qu and M. Tan (1998) reports a multi-level longitudinal dataset that was
collected from a controlled clinical trial that was conducted to assess the
effectiveness of tretinoin emollient cream (TEC) in treating photo-aged skin.
A total of 32 patients were randomly assigned to the TEC group and a placebo
cream group for facial application of TEC over a period of 24 weeks. In the
meantime, one arm of each patient was randomly selected to receive TEC
and the other arm to receive placebo for a longer period of 48 weeks. At
both the 24th and 48th weeks, each patient was examined for the patient’s
overall improvement in photoaging, which was measured by a score variable
yit ∈ {1, 2, 3, 4}, with 1 suggesting no change or worsening from baseline, 2
suggesting slight improvement, 3 suggesting improvement, and 4 suggesting
great improvement. Thus, for each patient five repeated ordinal outcomes were
recorded, four of which were taken on the two arms at the 24th and 48th weeks
and the fifth one was recorded from the face at the 24th week. Since for each
subject measurements were recorded in time and across multiple locations (or
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a cluster), two-level correlation, namely the serial correlation and the within-
cluster correlation, has to be accounted for in the data analysis.

1.3.8 Polio Incidences in USA

Now let us turn to longitudinal data of long time series. The first example
is based on a dataset from Zeger (1988) that reports a single time series of
monthly polio incidences in the USA from 1970 to 1983. The data is plotted
in Figure 1.5. The primary objective is to assess whether the data provide
evidence of a decreasing trend in the rate of US polio infections over time,
after the country implemented a nationwide anti-polio vaccination policy in
early 1970s. According to this plot, the time series seems to display certain
seasonal patterns in addition to a decreasing trend over time. This suggests
that the data is clearly a non-stationary time series. Also, because of low
counts, the data cannot be properly analyzed by using the conventional Box
and Jenkins (1976) ARIMA models with normally distributed errors.
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Fig. 1.5. Monthly counts of polio incidences.

Denote the data by

(yt,xt), t = 1, . . . , 168,

where yt is the count of polio cases in a given month, and covariates include
time t and seasonality patterns described in the forms of sin and cos functions
with bi-yearly or quarterly periods; that is,
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xt = [1, t, cos(2πt/6), sin(2πt/6), cos(2πt/12), sin(2πt/12)].

When a regression model is invoked to analyze this data, the related statistical
inference has to take the serial correlation into account. In addition, in such
a case, the theory of asymptotics in statistical inference has to be established
on the basis of the series length n tending to ∞.

1.3.9 Tokyo Rainfall Data

The rainfall data, reported in Kitagawa (1987), consists of daily numbers
of occurrences of rainfall in Tokyo area during years 1983 and 1984. Figure
1.6 plots the aggregated series over the two years, so at a given day t, it is
possible to have two, one or zero occurrence of rainfall. Let yt be the number of
occurrences of rainfall at calendar day t of a year. Then yt follows marginally a
binomial distribution Binomial(2, pt), except for February 29 that only exists
in 1984, where pt is the probability of rainfall. Therefore, the data forms a
single time series of binomial observations, and the objective is to estimate
the probability of rainfall, pt, over the period of a year, so different seasons
such as dry or wet periods in Tokyo can be identified through the series of
estimated probabilities.
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Fig. 1.6. Time series plot of the aggregated daily occurrences of rainfall during
1983-1984 in Tokyo area.

Estimating the rainfall probabilities is challenging, as the number of such
probabilities is equal to the length of the time series. In other words, one faces
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a problem involving a considerably large number of parameters. One way to
reduce the dimensionality is to utilize the serial correlation by assuming that
observations at past times may predict the state of rainfall at the current day.
For example, one may consider the state of rainfall is mostly driven by an
underlying meteorological variable, say moisture, θt, which is a latent variable
determining the rainfall probability through, say, a logistic model,

pt =
eθt

1 + eθt
. (1.1)

To address the serial correlation of the moisture process, one may consider
a Markov model for the underlying latent continuum θt; for instance, an au-
toregressive model of order 1, θt = αθt−1 + εt. Under this setup, one needs to
estimate the latent process θt in order to estimate pt and other model parame-
ters such as the autocorrelation parameter α and the variance parameter σ2

ε of
the white noise εt. Kalman filter and smoothing techniques can be developed
in this context to carry out the estimation. See more details in Chapter 11.

1.3.10 Prince George Air Pollution Study

Assessing the impact of air pollution on the public health is of great impor-
tance in health sciences. The monitoring of air pollution in Prince George,
British Columbia, Canada (e.g., Lambert et al. 1987) shows that there are
frequent excursions above the provincial air quality standards, and there has
long been public concern in Prince George that the air quality in the city may
be adversely affecting the health of the residents.

This data was collected from Prince George, consisting of daily counts
of emergency room (ER) visits for respiratory diseases, classified into four
categories (asthma, bronchitis, ear infections, and others) for the period of
1984 to 1986, along with daily measurements of air pollution and meteoro-
logical variables. Figure 1.7 displays four time series of daily ER visits, each
for one disease category. The air pollution variables were sulphur (total re-
duced sulphur compounds) and particulates (total suspended particulates),
and the meteorological variables include average daily temperature and daily
minimum and maximum humidity readings, all of which are plotted in Figure
1.8. Refer to Jørgensen et al. (1996b) for more details of the data description.

The main objective of the investigation was to examine the relationship
between air pollution and respiratory morbidity. Essentially, the data are a
collection of a four-dimensional time series of daily RE visits over a period of
730 days. Denote the data by

(yt,xt), t = 1, . . . , 730

where yt = (y1t, y2t, y3t, y4t)T with
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Fig. 1.7. Time series plots of daily emergency room visits during April, 1984 and
March, 1986 in Prince George, British Columbia, Canada.

y1t = the daily number of ER visits due to asthma,
y2t = the daily number of ER visits due to bronchitis,
y3t = the daily number of ER visits due to ear infections,
y4t = the daily number of ER visits due to other symptoms,

and xt = (x1t, x2t, x3t, x4t)T with daily average (or maximum) measure-
ments of covariates, x1t = temperature, x2t = humidity, x3t = sulphur, x4t =
particulates.

Two main features of the data need to be addressed in the data analysis.
First, it is necessary to account for both serial correlation and rich information
over time in the development of a statistical model for the data. Second,
the modeling needs to distinguish the different ways that the meteorological
variables and the air pollution variables affect the respiratory morbidity. The
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Fig. 1.8. Time series plots of daily air pollution and meteorological readings during
April, 1984 and March, 1986 in Prince George, British Columbia, Canada.

effect of the meteorological variables on respiratory morbidity tends to be more
acute than that of the air pollution variables, which usually appears lagged
in time. For example, a comparison between Figures 1.7 and 1.8 unveils that
the sulphur level was high in November, 1985, which seems responsible for
the peaks that occurred in December of 1985 for the number of ER visits by
patients of bronchitis, ear infections, and others. This indicates a delayed effect
of sulphur by one month or so. Similarly, another occurrence of high sulphur
level in January, 1986 could be linked with the increasing number of ER visits
due to ear infections and others in March, 1986. This case gives a lagged
effect of sulphur by approximately two months. Models used to analyze the
data should have the flexibility in addressing these observed features learned
from the preliminary analysis of the data.
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1.4 Remarks

In Section 1.3, we have seen various types of correlated data arising in practice.
Some are collections of many short time series and others are collections of
several long time series. It is necessary to make such a distinction because
statistical inference will be established differently, either by letting the number
of subjects tend to infinity or by letting the length of time series go to infinity.

Since many books (e.g., Diggle et al. 2002; Fitzmaurice et al. 2004; Mc-
Culloch and Searle 2001; Lindsey 1999; Davis 2002) have extensively covered
the analysis of longitudinal data with normal responses, this book is inclined
to focus more on nonnormal longitudinal data. This is why Section 1.3 did
not illustrate examples of normal longitudinal data.

For the regression analysis of univariate nonnormal data, the class of gen-
eralized linear models has been widely used. In particular, Chapter 2 of this
book will present generalized linear models from the perspective of Jørgensen’s
(1997) theory of dispersion models. An advantage of this perspective is that a
broader class of regression models can be covered under a unified framework,
including regression models for both compositional (or continuous propor-
tional) data and directional (or circular or angular) data. These two data
types are not treated in the classical theory of generalized linear models pre-
sented by, for example, by McCullagh and Nelder (1989).

To deal with multi-level data, a joint modeling approach may be taken
to carry out a simultaneous statistical inference. In the case of the multi-
ple sclerosis data in section 1.3.6, statistical inference needs to take two-level
correlation into account. One is the serial correlation and the other is the cor-
relation across the components of multiple outcomes at a given time. Another
complicating factor in this data is the mixed types of responses, where the
components follow different marginal distributions.

When faced with long time series where modeling the stochastic pattern
becomes essential, one has to assume either stationarity or non-stationarity
in a certain aspect of a model, such as the θt in the model of Tokyo rain-
fall probability (1.1) where θt is assumed to be a stationary AR(1) process.
However, this process may be assumed to be nonstationary, such as a random
walk process. The assumption of stationarity or non-stationarity, if relevant
in the modeling, represents a fundamentally different stochastic mechanism
governing the structure and behavior of transition over time.

Missing data, especially those of informative or non-ignorable type, presents
great difficulty to the development of proper statistical inference. This is the
difficulty that one is not willing to, but must, face in data analysis. This dif-
ficulty may be alleviated, to some extent, if additional information such as
reasons leading to missing values is documented in a study.

Tools of analyzing correlated data are largely data-driven not only by
specific features associated with the data, but also by particular scientific
questions in data analysis. Correlated data could be very complex in practical
studies. A strategy would be dividing a large study into a few manageable
sub-studies, each answering one specific question. Also, it is always recom-
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mended to try different models in the data analysis, so the robustness of
results may be evaluated.

1.5 Outline of Subsequent Chapters

This book is roughly partitioned into three parts: the first part (Chapters
2–3) introduces the dispersion models and inference functions, which are the
basis of the theory and methods developed in the subsequent chapters; the
second part (Chapters 4–8) discusses the analysis of many short time series;
and the third part (Chapters 9–12) concerns the analysis of long time series.
Topics of missing data are treated in Chapter 13. The chart below displays
the roadmap of all thirteen chapters, and readers can take a path to reach a
topic of interest.

Chapter 2 gives an introduction to Jørgensen’s theory of dispersion models,
which presents a flexible class of parametric distributions, including those
considered in the theory of generalized linear models (McCullagh and Nelder,
1989). In particular, two new regression models will be discussed. One is the
model for compositional or continuous proportional data based on the simplex
distribution, and the other is the model for directional (or circular or angular)
data based on the von Mises distribution.

Chapter 3 focuses on the theory of inference functions, which is essen-
tial for many quasi-likelihood inference discussed in the book, including the
approach of generalized estimating equations, the approach of quadratic in-
ference functions, and the approach of Kalman estimating functions.

Chapter 4 outlines various strategies and approaches to the modeling of
correlated data, especially longitudinal data from many short time series.
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Marginal generalized linear models in Chapter 5 are an important class of
regression models for correlated data, which attempts to model the population-
average pattern of the data. These models only specify the first two moments
of data distributions, rather than the joint probability distribution of the data,
and consequently the correlation is treated as a nuisance in the analysis. Quasi-
likelihood inference approaches derived from the inference functions will be
discussed in detail, including generalized estimating equations and quadratic
inference functions.

Chapter 6 discusses a class of joint generalized linear models based on
full probability models for multi-dimensional outcomes. This joint modeling
approach is applicable to analyze longitudinal, clustered, and spatial data with
an equal number of repeated outcomes. The theory of simultaneous maximum
likelihood inference is discussed to yield an efficient inference for the model
parameters. Gaussian copulas are utilized to illustrate the procedure of joint
modeling.

Chapters 7 and 8 are devoted to the theory of generalized linear mixed
models in that random effects are used to address overdispersion, subject-
specific heterogeneity, and within-cluster correlation. Chapter 7 mainly con-
cerns likelihood-based inferences, including direct MLE, EM algorithm, and
penalized quasi-likelihood and restricted maximum likelihood. Chapter 8 fo-
cuses on Bayesian inference based on Markov chain Monte Carlo (MCMC),
in which analyzing multi-level correlated data is discussed. The Windows ver-
sion of the BUGS (Bayesian Analysis Using Gibbs Sampling) software, in
short WinBUGS, will be illustrated to implement the MCMC approach.

Chapter 9 is devoted to the theory of linear predictor, which provides the
means of estimating random effects as well as the Kalman filter and smoothing.
This serves as a preparation for the development of statistical inference in state
space models considered in Chapters 11 and 12.

Chapter 10 gives an introduction to generalized state space models for
long time series data. It reviews briefly the classical state space models for
continuous-valued time series and some extensions.

Chapters 11 and 12 are devoted to modeling of discrete-valued time series.
Chapter 11 concerns generalized state space models for time series of binomial
observations, while Chapter 12 studies generalized state space models for time
series of counts. Monte Carlo Kalman filter and smoother, Kalman estimating
equations based on EM-algorithm, and Markov chain Monte Carlo algorithm
will be discussed in the theory of parameter estimation.

Chapter 13 concentrates on the topic of missing data in the connection
to the setting of many short time series. Topics include testing for missing
data types, strategies of handling missing data processes of MAR type by
multiple imputations and EM algorithm, and strategies of handling missing
data processes of type NMAR.
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Dispersion Models

2.1 Introduction

In the analysis of correlated data, it is relatively easy to recognize one-
dimensional marginal distribution for each of the response vectors. In the
example of Indonesian children’s health study in Section 1.3.1, the univariate
response at a given visit is the infection status, which takes two values with 1
representing the presence of infection and 0 otherwise. Obviously, the marginal
distribution of such a binary response variable is Bernoulli or binomial with
the size parameter equal to one. In some cases where marginal distributions
are subtle to determine, one may apply some model diagnostic tools to check
the assumption of marginal distributions. For example, univariate histograms,
quantile-quantile plots, and some residual-based model diagnostics in univari-
ate regression analysis, whichever is suitable, could be applied to draw some
preliminary understanding of marginal distributions. In the GLMs, the diag-
nostic analysis of distributional assumptions is carried out through primarily
validating the so-called mean and variance relationship. As far as a corre-
lated data analysis concerns, the knowledge of marginal distributions is not
yet developed enough to specify a full joint probability model for the data,
and a proper statistical inference has to address the correlation among the
components of the response vector. Failing to incorporate the correlation in
the data analysis will, in general, result in a certain loss of efficiency in the
estimation for the model parameters, which may cause misleading conclusions
on statistical significance for some covariates.

There are two essential approaches to handling the correlation. One is
to construct a full probability model that integrates the marginal distribu-
tions and the correlation coherently; within such a framework, the maximum
likelihood estimation and inference can be then established. When the joint
model is adequately specified, this approach is preferable, because the maxi-
mum likelihood method provides a fully efficient inference. Such an approach
has been extensively investigated in the class of multivariate normal distribu-
tions. However, for many nonnormal data types, constructing a suitable joint
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probability distribution is not trivial, and relatively less effort on this mat-
ter has been made in the literature in comparison to other areas of research
in statistics. In particular, the construction of multivariate discrete distribu-
tions, such as multivariate binomial distributions and multivariate Poisson
distributions, is still under debate, particularly as to which of many versions
of their multivariate extensions is desirable relative to the others. More details
concerning this approach will be presented in Chapters 6 and 7. Two major
classes of joint probability models are specified via, respectively, Gaussian
copulas and random effects.

To avoid the difficulty of specifying a full probability model, the second
approach takes a compromise; that is, it only specifies the first two moments
of the data distribution. This approach constitutes the minimal requirements
for a quasi-likelihood inference procedure. Although the resulting estimation
is less efficient than the MLE, it enjoys the robustness against model mis-
specifications on higher moments. This quasi-likelihood inference would be
the choice when robustness appears to be more appealing than efficiency in
a given data analysis. A kind of such a quasi-likelihood approach, known as
generalized estimating equations (GEE), will be discussed in Chapter 5.

To proceed, it is needed to first outline the marginal parametric distribu-
tions that will be used to develop either the full probability model approach or
the quasi-likelihood approach. Marginal distributions are the essential pieces
to formulate both inference approaches in correlated data analysis. To some
extent, the breadth of marginal distributions determines the variety of data
types that the proposed inference can handle. This means if one only con-
siders marginal normal distributions, the resulting inference would be merely
restricted to continuous data type.

This chapter is devoted to a review of the theory of dispersion models
based primarily on Jørgensen’s (1997) book, The theory of dispersion models.
The dispersion models provide a rich class of one-dimensional parametric dis-
tributions for various data types, including those commonly considered in the
GLM analysis. In effect, error distributions in the GLMs form a special sub-
class of the dispersion models, which are the exponential dispersion models.
This means that the GLMs considered in this chapter, as well as in the entire
book, encompass a wider scope of GLMs than those outlined in McCullagh
and Nelder’s (1989) book. Two special examples are the von Mises distribu-
tion for directional (circular or angular) data and the simplex distribution for
compositional (or proportional) data, both of which are the dispersion models
but not the exponential dispersion models.

According to McCullagh and Nelder (1989), the random component of a
GLM is specified by an exponential dispersion (ED) family density of the
following form:

p(y; θ, φ) = exp
[{yθ − κ(θ)}

a(φ)
+ C(y, φ)

]
, y ∈ C, (2.1)
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with parameters θ ∈ Θ and φ > 0, where κ(·) is the cumulant generating
function and C is the support of the density. It is known that the first derivative
of the cumulant function κ(·) gives the expectation of the distribution, namely
μ = E(Y ) = κ̇(θ). Table 2.1 lists some ED distributions.

Table 2.1. Some commonly used exponential dispersion GLMs.

Distribution Domain Data type Canonical link Model

Normal (−∞,∞) Continuous Identity Linear model

Binomial {0, 1, . . . , n} Binary or counts Logit Logistic model

Poisson {0, 1, . . . , } Counts Log Loglinear model

Gamma (0,∞) Positive continuous Reciprocal Reciprocal model

The systematic component of a GLM is then assumed to take the form:

g(μ) = xTβ = β0 + β1x1 + · · · + βpxp (2.2)

where g is the link function, x = (1, x1, . . . , xp)T is a (p + 1)-dimensional
vector of covariates, and β = (β0, . . . , βp)T is a (p+ 1)-dimensional vector of
regression coefficients. The canonical link function g(·) is such that g(μ) = θ,
the canonical parameter.

The primary statistical tasks include estimation and inference for β.
Checking model assumptions is also an important task of regression analy-
sis, which, however, is not the main focus of the book.

2.2 Dispersion Models

The normal distribution N(μ, σ2) plays the central role in the classical linear
regression regression. The density of N(μ, σ2) is

p(y;μ, σ2) =
1√
2πσ

exp
{
− 1

2σ2
(y − μ)2

}
, y ∈ R,

where (y − μ)2 can be regarded as an Euclidean distance that measures the
discrepancy between the observed y and the expected μ. And this discrepancy
measure is used to develop many regression analysis methods, such as the F -
statistic for the assessment of goodness-of-fit for nested models.
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Mimicking the normal density, Jørgensen (1987) defines a dispersion mod-
els (DM) by extending the Euclidean distance (y−μ)2 to a general discrepancy
function d(y;μ). It is found that many commonly used parametric distribu-
tions, such as those in Table 2.1, are included as special cases of this extension.
Moreover, each of such distributions will be determined uniquely by the dis-
crepancy function d, and the resulting distribution is fully parameterized by
two parameters μ and σ2.

2.2.1 Definitions

A (reproductive) dispersion model DM(μ, σ2) with location parameter μ and
dispersion parameter σ2 is a family of distributions whose probability density
functions take the following form:

p(y;μ, σ2) = a(y;σ2) exp
{
− 1

2σ2
d(y;μ)

}
, y ∈ C (2.3)

where μ ∈ Ω, σ2 > 0, and a ≥ 0 is a suitable normalizing term that is
independent of the μ. Usually, Ω ⊆ C ⊆ R. The fact that the normalizing
term a does not involve μ will allow to estimate μ (or β in the GLM setting)
separately from estimating σ2, which gives rise to great ease in the parameter
estimation. Such a nice property, known as the likelihood orthogonality, holds
in the normal distribution, and it will remain in the dispersion models.

A bivariate function d(·; ·) is called the unit deviance defined on (y, μ) ∈
C ×Ω if it satisfies the following two properties:

i) It is zero when the observed y and the expected μ are equal, namely

d(y; y) = 0, ∀y ∈ Ω;

ii) It is positive when the observed y and the expected μ are different, namely

d(y;μ) > 0, ∀y �= μ.
Furthermore, a unit deviance is called regular if function d(y;μ) is twice

continuously differentiable with respect to (y, μ) on Ω ×Ω and satisfies

∂2d

∂μ2
(y; y) =

∂2d

∂μ2
(y;μ)

∣∣∣∣
μ=y

> 0, ∀y ∈ Ω.

For a regular unit deviance, the variance function is defined as follows.
The unit variance function V : Ω → (0,∞) is

V (μ) =
2

∂2d
∂μ2 (y;μ)|y=μ

, μ ∈ Ω. (2.4)

Some popular dispersion models are given in Table 2.2, in which the unit
deviance d and variance function V can be found in a similar fashion to that
presented in the following two examples.
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Table 2.2. Unit deviance and variance functions of some dispersion models.

Distribution Deviance d C Ω V (μ)

Normal (y − μ)2 (−∞,∞) (−∞,∞) 1

Poisson 2(y log y
μ
− y + μ) {0, 1, . . .} (0,∞) μ

Binomial 2
{

y log y
μ

+ (n − y) log n−y
n−μ

}
{0, 1, . . . , n} (0, 1) μ(1 − μ)

Negative binomial 2
{

y log y
μ

+ (1 − y) log 1−y
1−μ

}
{0, 1, . . .} (0,∞) μ(1 + μ)

Gamma 2
(

y
μ
− log y

μ
− 1
)

(0,∞) (0,∞) μ2

Inverse Gaussian (y−μ)2

yμ2 (0,∞) (0,∞) μ3

von Mises 2{1 − cos(y − μ)} (0, 2π) (0, 2π) 1

Simplex (y−μ)2

y(1−y)μ2(1−μ)2
(0, 1) (0, 1) μ3(1 − μ)3

Example 2.1 (Normal Distribution). In the normal distribution N(μ, σ2), first
the unit deviance function d(y;μ) = (y−μ)2, y ∈ C = R, and μ ∈ Ω = R. It is
easy to see that this d function is non-negative and has the unique minimum
0 when y = μ. This unit deviance is regular because it is twice continuously
differentiable. Moreover, the first and second order derivatives of the d function
w.r.t. μ are, respectively,

∂d

∂μ
= −2(y − μ), and

∂2d

∂μ2
= 2.

It follows that the unit variance function is V (μ) = 2
2 = 1.

Example 2.2 (Poisson Distribution). To verify the results of the Poisson dis-
tribution given in Table 2.2, express the Poisson density with mean parameter
μ as follows:

p(y;μ) =
μy

y!
e−μ, y ∈ {0, 1, . . .}; μ ∈ Ω = (0,∞),

or equivalently

p(y;μ) =
1
y!

exp{y logμ− μ}.
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Note that the exponent {y logμ − μ} is not a deviance function because it
does not equal to zero when y = μ. To yield a deviance function, a new term
{y log y − y} is added into the exponent, which results in

p(y;μ) =
{

1
y!

exp(y log y − y)
}

exp
{
−1

2
2(y log y + y − y logμ+ μ)

}
.

Comparing to the DM density in (2.3), one can identify the d function, the
normalizing term, and the dispersion parameter, respectively,

d(y;μ) = 2(y log
y

μ
− y + μ),

a(y) =
1
y!

exp{y log y − y},
σ2 = 1.

To show this d function is a regular deviance function, it is sufficient to
show it is convex with a unique minimum of zero. First, note that at a given
mean value μ, the first and second order derivatives of the d w.r.t. y are

∂d

∂y
= 2(log y − logμ), and

∂2d

∂y2
=

2
y
.

Clearly, the first order derivative is negative when y < μ and positive when
y > μ, implying that the d is a convex function with a unique minimum 0
at y = μ. Thus, the d function is a regular unit deviance for the Poisson
distribution.

To find the unit variance function, note that the second order derivative
∂2d
∂μ2 = 2 y

μ2 , which immediately leads to V (μ) = μ by the definition (2.4).

2.2.2 Properties

This section lists some useful properties of the dispersion models.

Proposition 2.3. If a unit deviance d is regular, then

∂2d

∂y2
(y; y) =

∂2d

∂μ2
(y; y) = − ∂2d

∂μ∂y
(y; y), ∀y ∈ Ω. (2.5)

Proof. By the definition of a unit deviance,

d(y; y) = d(μ;μ) = 0 and d(y;μ) ≥ 0, ∀y, μ ∈ Ω,
implying that d(y; ·) has a unique minimum at y and similarly d(·;μ) has a
unique minimum at μ. Therefore,

∂d

∂μ
(y; y) =

∂d

∂y
(y; y) = 0. (2.6)

The result of (2.5) holds by simply differentiating both equations in (2.6)
w.r.t. y.
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Proposition 2.4. Taylor expansion of a regular unit deviance d near its min-
imum (μ0, μ0) is given by

d(μ0 + xδ;μ0 +mδ) =
δ2

V (μ0)
(x −m)2 + o(δ2),

where V (·) is the unit variance function.

Proof. It follows from equation (2.6) that

d(μ0 + xδ;μ0 +mδ) = d(μ0, μ0) +
∂d

∂μ
(μ0, μ0)(xδ) +

∂d

∂y
(μ0, μ0)(mδ)

1
2
∂d2

∂μ2
(μ0, μ0)(δ2x2) +

1
2
2
∂d2

∂μ∂y
(μ0, μ0)(δm)

+
1
2
∂d2

∂y2
(μ0, μ0)(δ2m2) + o(δ2)

=
δ2

V (μ0)
x2 − δ2

V (μ0)
2xm+

δ2

V (μ0)
m2 + o(δ2)

=
δ2

V (μ0)
(x−m)2 + o(δ2).

In some cases, the normalizing term a(·) has no closed form expression,
which gives rise to the difficulty of estimating the dispersion parameter σ2.
The following proposition presents an approximation to the normalizing term
a(·), resulting from the saddlepoint approximation of the density for small
dispersion. Notation a � b exclusively stands for an approximation of a to b
when the dispersion σ2 → 0, useful for small-dispersion asymptotics.

Proposition 2.5 (Saddlepoint approximation). As the dispersion σ2 →
0, the density of a regular DM model can be approximated to be:

p(y;μ, σ2) � {2πσ2V (y)}− 1
2 exp

{
− 1

2σ2
d(y;μ)

}
,

which equivalently says that as σ2 → 0, the normalizing term has a small
dispersion approximation,

a(y;σ2) � {2πσ2V (y)}−1/2, (2.7)

with the unit variance function V (·).
The proof of this proposition is basically an application of the Laplace

approximation given in, for example, Barndorff-Nielsen and Cox (1989, p.60).
Also see Jørgensen (1997, p.28).

It follows from Propositions 2.4 and 2.5 that the small dispersion asymp-
totic normality holds, as stated in the following:
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Proposition 2.6 (Asymptotic Normality). : Let Y ∼ DM(μ0 + σμ, σ2)
be a dispersion model with uniformly convergent saddlepoint approximation,
namely convergence in (2.7) is uniformly in y. Then

Y − μ0

σ

d→ N(μ, V (μ0)) as σ2 → 0.

In other words, DM(μ0 +σμ, σ2)
d� N(μ0 +σμ, σ2V (μ0)) for small dispersion

σ2.
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Fig. 2.1. Simplex density functions with mean μ = (0.1, 0.5, 0.7) from left to right
and dispersion parameter σ2 = (42, 22, 1) from top to bottom. The solid lines repre-
sent the simplex densities with the histograms as the background. These histograms
are based on 500 simulated data from respective densities.

To illustrate this small-dispersion asymptotic normality, Figure 2.1 dis-
plays the simplex distributions with different mean μ and dispersion σ2 pa-
rameters. See the detail of a simplex distribution in Table 2.2. This figure
clearly indicates that the smaller the dispersion is, the less deviation the sim-
plex distribution is from the normality.

2.3 Exponential Dispersion Models

The class of dispersion models contains two important subclasses, namely the
exponential dispersion (ED) models and the proper dispersion (PD) models.
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The PD models are mostly of theoretical interest, so they are not discussed
in this book. Readers may refer to the book of Jørgensen (1997) for relevant
details.

This section focuses on the ED models, which have already been intro-
duced in Section 2.1 as a family of GLMs’ error distributions. The family of
ED models includes continuous distributions such as normal, gamma, and in-
verse Gaussian, and discrete distributions such as Poisson, binomial, negative
binomial, among others. To establish the connection of the ED model repre-
sentation (2.1) to the DM, it is sufficient to show that expression (2.1) is a
special form of (2.3). An advantage with the DM type of parametrization for
the ED models is that both mean μ and dispersion parameters σ2 are explic-
itly present in the density, whereas expression (2.1) hides the mean μ in the
first order derivative μ = κ̇(θ). In addition, having a density form similar to
the normal enables us to easily borrow the classical normal regression theory
to the development of regression analysis for nonnormal data. One example
is the analogue of the likelihood ratio test in the GLMs to the F-test for
goodness-of-fit in the normal regression model.

To show an ED model, denoted by ED(μ, σ2), as a special case of the DM,
it suffices to find a unit deviance function d such that the density of the ED
model can be expressed in the form of (2.3). First, denote λ = 1/a(φ). Then,
the density in (2.1) can be rewritten as of the form:

p(y; θ, λ) = c(y;λ) exp[λ{θy − κ(θ)}], y ∈ C (2.8)

where c(·) is a suitable normalizing term. Parameter λ = 1/σ2 ∈ Λ ⊂ (0,∞)
is called the index parameter and Λ is called the index set. To reparametrize
this density (2.1) by the mean μ and dispersion σ2, define the mean value
mapping: τ : intΘ→ Ω,

τ(θ) = κ̇(θ) ≡ μ,
where int(Θ) is the interior of the parameter space Θ.

Proposition 2.7. The mean mapping function τ(θ) is strictly increasing.

Proof. The property of the natural exponential family distribution leads to

Var(Y ) = λκ̈(θ) > 0, θ ∈ intΘ.

In the mean time, because τ̇(θ) = κ̈(θ), τ̇ (·) is positive. This implies that τ(θ)
is a strictly increasing function in θ.

It follows that the inverse of the mean mapping function τ(·) exists, de-
noted by θ = τ−1(μ), μ ∈ Ω. Hence, the density in (2.8) can be reparametrized
as follows,

p(y;μ, σ2) = c(y;σ−2) exp
[

1
σ2

{yτ−1(μ) − κ(τ−1(μ))}
]
. (2.9)
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Proposition 2.8. The first order derivative of τ−1(μ) with respect to μ is
1/V ∗(μ), where V ∗(μ) = τ̇ (τ−1(μ)).

Proof. Differentiating both sides of equation μ = τ(θ) gives

dμ = τ̇ (θ)dθ = τ̇(τ−1(μ))dθ = V ∗(μ)dθ,

with V ∗(μ) = τ̇ (τ−1(μ)). This implies immediately that

dτ−1(μ)
dμ

=
dθ

dμ
=

1
V ∗(μ)

.

Moreover, Proposition 2.9 below shows that the V ∗(μ) is indeed the same
as the unit variance function V (μ) given by the definition (2.4). The proof of
this result will be given after the unit deviance function of the ED model is
derived.

To derive the unit deviance function of the ED model, let

f(y;μ) = yτ−1(μ) − κ(τ−1(μ)) = yθ − κ(θ).

Obviously, this f is not the unit deviance function since it does not equal to
zero when μ = y. One way to resolve this problem is to add a new term so
that the resulting function is positive and equal to zero uniquely at μ = y.
Such a valley point corresponds effectively to the maximum of the density
p(y;μ, σ2).

Differentiating f with respect to μ and using Propositions 2.8 and 2.9, one
can obtain

ḟ(y, μ) =
y − μ
V (μ)

, (2.10)

which is positive for y > μ and negative for y < μ. This means that the f has
a unique maximum, or equivalently, the −f has a unique minimum at μ = y.
Therefore, it seems natural to define

d(y;μ) = 2
[
sup
μ
{f(y;μ)} − f(y;μ)

]

= 2
[
sup
θ∈Θ

{θy − κ(θ)} − yτ−1(μ) + κ(τ−1(μ))
]
. (2.11)

Clearly, this d function satisfies (i) d(y;μ) ≥ 0 for all y ∈ C and μ ∈ Ω, and
(ii) d(y;μ) attains the minimum at μ = y because the supermum term is in-
dependent of μ. Thus, (2.11) gives a proper unit deviance function. Moreover,
since it is continuously twice differentiable, it is also regular. As a result, the
density of an ED model can be expressed as of the DM form:

p(y;μ, σ2) = a(y;σ2) exp
{
− 1

2σ2
d(y;μ)

}
,
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with the unit deviance function d given in (2.11) and the normalizing term
given by

a(y;σ2) = c(y;σ−2) exp
[
σ−2 sup

θ∈Θ
{yθ − κ(θ)}

]
.

Proposition 2.9. For the unit deviance function (2.11), the corresponding
unit variance function V (μ) given in (2.4) is V ∗(μ) = τ̇(τ−1(μ)); that is,
V (μ) = V ∗(μ).

Proof. It follows from equations (2.10) and (2.11) that

∂d

∂μ
= −2

∂f

∂μ
= −2

y − μ
V ∗(μ)

,

where V ∗(μ) = τ̇ (τ−1(μ)). Then, according to Proposition 2.3,

∂2d

∂μ2
= − ∂2d

∂y∂μ
=

2
V ∗(μ)

.

Plugging this into the definition of the unit variance function (2.4) leads to

V (μ) =
2

∂2d
∂μ2 (y;μ)|y=μ

= V ∗(μ).

Here are a few remarks for the ED models:

(1) Parameter μ is the mean of the distribution, namely E(Y ) = μ.
(2) Variance of the distribution is

Var(Y ) = σ2V (μ). (2.12)

This mean-variance relationship is one of the key properties for the ED
models, which will play an important role in the development of quasi-
likelihood inference.

(3) An important variant of the reproductive ED model representation is
the so-called additive exponential dispersion model, denoted by ED∗(θ, λ),
whose density takes the form

p∗(z; θ, λ) = c∗(z;λ) exp{θz − λκ(θ)}, z ∈ C. (2.13)

Essentially the ED and ED∗ representations are equivalent under the du-
ality transformation that converts one form to the other.
Suppose Z ∼ ED∗(θ, λ) and Y ∼ ED(μ, σ2). Then, the duality transfor-
mation performs

Z ∼ ED∗(θ, λ) ⇒ Y = Z/λ ∼ ED(μ, σ2), with μ = τ(θ), σ2 = 1/λ;
Y ∼ ED(μ, σ2) ⇒ Z = Y/σ2 ∼ ED∗(θ, λ), with θ = τ−1(μ), λ = 1/σ2.

Consequently, the mean and variance of ED∗(θ, λ) are, respectively,
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μ∗ = E(Z) = λτ(θ), Var(Z) = λV (μ∗/λ).

Moreover, the normalizing term in the DM density (2.3) is

a∗(z;σ2) = c∗(z;σ−2) exp
[
σ−2 sup

θ∈Θ
{zθ − κ(θ)}

]
.

An important property for the ED models is the closure under convolution
operation.

Proposition 2.10 (Convolution for the ED∗ models). Assume Z1, . . . , Zn
are independent and Zi ∼ ED∗(θ, λi), i = 1, . . . , n. Then the sum follows still
an ED∗ model:

Z+ = Z1 + · · · + Zn ∼ ED∗(θ, λ1 + · · · + λn).

For example, consider two independent and identically distributed (i.i.d.)
Poisson random variables Zi ∼ ED∗(logμ, 1), i = 1, 2, where μ is the mean
parameter and the canonical parameter θ = log(μ). Then, Proposition 2.10
implies that the sum Z+ = Z1 + Z2 ∼ ED∗(logμ, 2).

Proposition 2.11 (Convolution for the ED models). Assume Y1, . . . , Yn
are independent and

Yi ∼ ED(μ,
σ2

wi
), i = 1, . . . , n,

where wis are certain positive weights. Let w+ = w1 + · · · + wn. Then the
weighted average follows still an ED model; that is,

1
w+

n∑
i=1

wiYi ∼ ED(μ,
σ2

w+
).

In particular, with wi = 1, i = 1, . . . , n the sample average

1
n

n∑
i=1

Yi ∼ ED(μ,
σ2

n
).

For the example of two i.i.d. Poisson random variables with Yi ∼ ED(μ, 1),
i = 1, 2, their average (Y1 + Y2)/2 ∼ ED(μ, 1

2 ). Note that the resulting
ED(μ, 1

2 ) is no longer a Poisson distribution but it is still an ED distribu-
tion.

It is noticeable that although the class of the ED models is closed under the
convolution operation, it is in general not closed under scale transformation.
That is, cY may not follow an ED model even if Y ∼ ED(μ, σ2), for a constant
c. However, a subclass of the ED models, termed as the Tweedie class, is closed
under this type of scale transformation. The Tweedie models will be discussed
in Section 2.5.

Finally, the following property concerns sufficient and necessary conditions
for the de-convolution for the ED models.



2.4 Residuals 35

Definition 2.12 (Infinite Divisibility). X is said to be infinitely divisible,
if for any integer n ∈ {1, 2, . . .}, there exist i.i.d. random variables X1, . . . , Xn

such that X d= X1+· · ·+Xn. Notation U d= V means that two random variables
U and V are identically distributed.

Proposition 2.13 (Deconvolution for the ED∗). Suppose Z ∼ ED∗(θ, λ).
Then, Z is infinitely divisible if and only if the index parameter set Λ = (0,∞).

This result holds simply because by Proposition 2.10 there exist Xi ∼
ED∗(θ, λ/n), i = 1, . . . , n such that

ED∗(θ, λ) = ED∗(θ, λ/n) + · · · + ED∗(θ, λ/n).

It is easy to see that gamma models are infinitely divisible, but binomial
models are not infinitely divisible.

2.4 Residuals

Residual analysis is an important part of regression analysis. In the context
of the dispersion models where the unit deviance functions d are highly non-
linear in comparison to the square normal deviance (y − μ)2 of the normal
model, there are several other types of residuals besides the traditional Pear-
son residual (y − μ). Table 2.3 lists some proposed residuals in the GLMs.
Among them, the Pearson and deviance residuals are most commonly used in
practice, which are in fact implemented in statistical softwares such as SAS.
For example, SAS PROC GENMOD uses the deviance residual in the analysis
of outliers and influential data cases.

Table 2.3. Some types of residuals in the GLMs.

Type Notation Definition

Pearson residual rp
y−μ

V 1/2(μ)

Score residual rs − ∂d
2∂μ

V 1/2(μ)

Dual score residual rd
∂d
2∂y

V 1/2(μ)

Deviance residual r ±d1/2(y; μ)

Modified deviance residual r∗ r
σ

+ σ
r

log rd
r
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Besides the residual analysis for model diagnosis, another important ap-
plication of residuals is in the approximation of tail area probabilities with
small dispersion. Calculating tail probabilities is often encountered, such as in
the calculation of p-values. Most of cumulative distribution functions (CDFs)
of the ED models have no closed form expressions, so a certain approximation
to their CDF is useful.

Let F (y;μ, σ2) be the CDF of an ED(μ, σ2). By Proposition 2.6, the small
dispersion asymptotic normality gives

F (y;μ, σ2) � Φ(rp/σ) for σ2 small,

where Φ is the CDF of the standard normal N(0, 1). This result is based on
the Pearson residual rp. Because it is a first-order linear approximation, this
approximation may not be satisfactorily accurate when the unit deviance d is
highly nonlinear.

Two formulas based on the so-called third-order approximation provide
much more accurate approximations for the CDF of the DM model. One is
Barndorff-Nielsen’s formula given by,

F (y;μ, σ2) = Φ(r∗){1 +O(σ3)},
where r∗ is the modified deviance residual given in Table 2.3. The other is
Lugannani-Rice’s formula

F (y;μ, σ2) = Φ∗(y;μ, σ2){1 +O(σ3)},
where

Φ∗(y;μ, σ2) = Φ(
r

σ
) + σφ(

r

σ
)(

1
r
− 1
rd

),

where r is the deviance residual and φ is the density of the standard normal
N(0, 1).

2.5 Tweedie Class

Tweedie class is an important subclass of the ED models, which is closed
under the scale transformation. Tweedie models are characterized by the unit
variance functions in the form of the power function:

Vp(μ) = μp, μ ∈ Ωp, (2.14)

where p ∈ R is a shape parameter.
It is shown that the ED model with the power unit variance function

(2.14) always exists except 0 < p < 1. A Tweedie model is denoted by Y ∼
Twp(μ, σ2) with mean μ and variance

Var(Y ) = σ2μp.

The following proposition gives the characterization of the Tweedie models.



2.6 Maximum Likelihood Estimation 37

Proposition 2.14 (Tweedie Characterization). Let ED(μ, σ2) be a re-
productive ED model satisfying V (1) = 1 and 1 ∈ Ω. If the model is
closed with respect to scale transformation, such that there exists a function
f : R+ × Λ−1 → Λ−1 for which

cED(μ, σ2) ∼ ED[cμ, f(c, σ2)], ∀c > 0,

then

(a) ED(μ, σ2) is a Tweedie model for some p ∈ R\(0, 1);
(b) f(c, σ2) = c2−pσ2;
(c) the main domain Ω = R for p = 0 and Ω = (0,∞) for p �= 0;
(d) the model is infinitely divisible.

It follows immediately from Proposition 2.14 that

cTwp(μ, σ2) = Twp(cμ, c2−pσ2).

The importance of the Tweedie class is that it serves as a class of limiting
distributions of the ED models, as described in the following proposition.

Definition 2.15. The unit variance function V is said to be regular of order
p at 0 (or at ∞), if V (μ) ∼ c0μp as μ→ 0(or μ→ ∞) for certain p ∈ R and
c0 > 0.

Proposition 2.16. Suppose the unit variance function V is regular of order
p at 0 or at ∞, with p /∈ (0, 1). For any μ > 0 and σ2 > 0,

c−1ED(cμ, c2−pσ2) d→ TWp(μ, c0σ2), as c→ 0 or ∞,

where the convergence is through values of c such that cμ ∈ Ω and cp−2/σ2 ∈
Λ.

Refer to Jørgensen et al. (1994) for the proof of this result.

2.6 Maximum Likelihood Estimation

This section is devoted to maximum likelihood estimation in the GLMs based
on the dispersion models. Therefore, the MLE theory given in, for example,
McCullagh and Nelder (1989) are the special cases, because the ED family is
a subclass of the DM family.
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2.6.1 General Theory

Consider a cross-sectional dataset, (yi,xi), i = 1, . . . ,K, where the yi’s are
i.i.d. realizations of Yi’s according to DM(μi, σ2) and g(μi) = xTi β. Let y =
(y1, . . . , yK)T and μ = (μ1, . . . , μK)T . The likelihood for the parameter vector
θ = (β, σ2) is given by

L(θ;y) =
K∏
i=1

a(yi;σ2) exp
{
− 1

2σ2
d(yi;μi)

}
, β ∈ Rp+1, σ2 > 0.

The log-likelihood is then

�(θ;y) =
K∑
i=1

log a(yi;σ2) − 1
2σ2

K∑
i=1

d(yi;μi)

=
K∑
i=1

log a(yi;σ2) − 1
2σ2

D(y;μ), (2.15)

where μi = μi(β) is a nonlinear function in β and D(y;μ) =
∑K

i=1 d(yi;μi)
is the sum of deviances depending on β only. This D is analogous to the sum
of squared residuals in the linear regression model.

The score function for the regression coefficient β is

s(y;β) =
∂�(θ)
∂β

= − 1
2σ2

K∑
i=1

∂d(yi;μi)
∂μi

∂μi
∂β
.

Denote the i-th linear predictor by ηi = xTi β, and denote the deviance scores
by

δ(yi;μi) = −1
2
∂d(yi;μi)
∂μi

, i = 1, . . . ,K. (2.16)

Note that
∂μi
∂β

=
∂μi
∂ηi

∂ηi
∂β

= {ġ(μi)}−1xi,

where ġ(μ) is the first order derivative of link function g w.r.t μ. Table 2.4
lists some commonly used link functions and their derivatives.

Then the score function for β takes the form

s(y;β) =
1
σ2

K∑
i=1

xi
1

ġ(μi)
δ(yi;μi). (2.17)

Moreover, the score equation leading to the maximum likelihood estimate of
the β is

K∑
i=1

xi
1

ġ(μi)
δ(yi;μi) = 0. (2.18)
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Table 2.4. Some common link functions and derivatives. NB and IG stand for
Negative binomial and Inverse Gaussian, respectively.

Model Link Derivative Domain
g ġ Ω

Binomial or simplex log
(

μ
1−μ

)
1

μ(1−μ)
μ ∈ (0, 1)

Poisson, NB, gamma, or IG log(μ) 1
μ

μ ∈ (0,∞)

Gamma 1
μ

− 1
μ2 μ ∈ (0,∞)

von Mises tan(μ/2) 1
2
sec2(μ/2) μ ∈ [−π, π)

Note that this equation does not involve the dispersion parameter σ2. Under
some mild regularity conditions, the resulting ML estimator β̂K , which is the
solution to the score equation (2.18), is consistent

β̂K
p→ β as K → ∞,

and asymptotically normal with mean 0 and covariance matrix i−1(θ). Here
i(θ) is the Fisher information matrix given by

i(θ) = −E{ṡ(Y;β)}

=
1
σ2

K∑
i=1

xi
1

{ġ(μi)}2
E{−δ̇(Yi;μi)}xTi

=
1
σ2

K∑
i=1

xiu−1
i xTi

= XTU−1X/σ2, (2.19)

where X is a K × (p + 1) matrix with the i-th row being the xTi , and U is a
diagonal matrix with the i-th diagonal element ui given by

ui =
{ġ(μi)}2

E{−δ̇(Yi;μi)}
, i = 1, . . . ,K. (2.20)

When the dispersion parameter σ2 is present in the model, the ML estima-
tion for the dispersion parameter σ2 can be derived similarly, if the normalizing
term a(y;σ2) is simple enough to allow such a derivation, such as the case of
the normal distribution. However, in many cases, the term a(·) has no closed
form expression and its derivative w.r.t. σ2 may appear too complicated to
be numerically solvable. In this case, two methods have been suggested to ac-
quire the estimation for σ2. The first method is to invoke the small dispersion
asymptotic normality (Proposition 2.5), where subject to a constant,
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log a(y;σ2) � −1
2

log σ2.

Applying this approximation in the log-likelihood (2.15) and differentiating
the resulting approximate log-likelihood w.r.t. σ2, one can obtain an equation
as follows,

− K

2σ2
+

1
2σ4

D(y;μ) = 0.

Solution to this equation gives an estimator of the dispersion parameter σ2,

σ̂2 =
1
K
D(y; μ̂) =

1
K

K∑
i=1

d(yi; μ̂i). (2.21)

This book refers this estimator to as the Jørgensen estimator of the dispersion
parameter, which in fact is an average of the estimated unit deviances.

However, the Jørgensen estimator is not, in general, unbiased even if the
adjustment on the degrees of freedom, K − (p + 1) is made to replace K.
Moreover, this formula is recommended when the dispersion parameter σ2 is
small, say less than 5.

To obtain an unbiased estimator of the dispersion parameter σ2, the second
method utilizes a moment property given in the following proposition.

Proposition 2.17. Let Y ∼ DM(μ, σ2) with a regular unit deviance d(y;μ).
Then,

E{δ(Y ;μ)} = 0,
Var{δ(Y ;μ)} = σ2E{−δ̇(Y ;μ)},

where δ̇ is the first order derivative of the deviance score given in (2.16) w.r.t.
μ.

Proof. Differentiating both sides of equation
∫
p(y;μ, σ2)dy = 1 w.r.t. μ gives

− 1
2σ2

∫
ḋ(y;μ)p(y;μ, σ2)dy = 0,

or E{ḋ(Y ;μ)} = 0. Differentiating the above equation again w.r.t. μ, we obtain

− 1
2σ2

∫
{ḋ(y;μ)}2p(y;μ, σ2)dy +

∫
d̈(y;μ)p(y;μ, σ2)dy = 0,

or equivalently

E{d̈(Y ;μ)} =
1

2σ2
E{ḋ(Y ;μ)}2 =

1
2σ2

Var{ḋ(Y ;μ)}.

According to (2.16), this relation can be rewritten as follows,

Var{δ(Y ;μ)} = σ2E{−δ̇(Y ;μ)}.
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Based on this result, one can consistently estimate the dispersion param-
eter σ2 by the method of moments:

σ̂2 =
∑K
i=1(δi − δ̄)2∑K
i=1(−δ̇i)

, (2.22)

where δi = δ(yi; μ̂i), δ̇i = δ̇(yi; μ̂i) and δ̄ = 1
K

∑
i δi.

2.6.2 MLE in the ED Models

Now return to the special case of the GLMs based on the ED models. For the
unit deviance of the ED model given in (2.11), it is easy to see

δ(y;μ) =
y − μ
V (μ)

. (2.23)

It follows that the score equation (2.18) becomes

K∑
i=1

xi
1

ġ(μi)V (μi)
(yi − μi) = 0.

Let wi = ġ(μi)V (μi). Then the score equation can be re-expressed as of the
form

K∑
i=1

xiw−1
i (yi − μi) = 0,

or in the matrix notation,

XTW−1(y − μ) = 0,

where W = diag(w1, . . . , wK). The following result is useful to calculate the
Fisher information.

Proposition 2.18. Suppose Y ∼ ED(μ, σ2). Then,

E{−δ̇(Y ;μ)} =
1

V (μ)
,

where δ̇(y;μ) is the first order derivative of the deviance score δ(y;μ) w.r.t.
μ.

Proof. Differentiating δ in (2.16) w.r.t. μ gives

−δ̇(y;μ) =
1

V (μ)
+

(y − μ)V̇ (μ)
V 2(μ)

,

which leads to
E{−δ̇(Y ;μ)} =

1
V (μ)

,

because E(Y ) = μ in the ED model.
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In the Fisher information matrix i(θ) of (2.19), i(θ) = XTU−1X/σ2, U is
a diagonal matrix whose i-th diagonal element can be simplified as

ui = {ġ(μi)}2V (μi).

Furthermore, if the canonical link function g = τ−1(·) is chosen, then a further
simplification leads to wi = 1 and ui = 1/V (μi) because in this case, ġ(μi) =
1/V (μi). So, the matrix W becomes the identity matrix and the matrix U is
determined by the reciprocals of the variance functions.

It is interesting to note that the choice of the canonical link simplifies both
score function and Fisher information. In summary, under the canonical link
function, the score equation of an ED GLM is

K∑
i=1

xi(yi − μi) = 0, or XT (y − μ) = 0,

and the Fisher information takes the form

i(θ) = XTU−1X/σ2

where U = diag(u1, . . . , uK), a diagonal matrix with variance function V (μi)
as the i-th diagonal element.

Each ED model holds the so-called mean-variance relation, i.e. Var(Y ) =
σ2V (μ), which may be used to obtain a consistent estimator of the dispersion
parameter σ2 given as follows:

σ̂2 =
1

K − p− 1

K∑
i=1

r̂2p,i =
1

K − p− 1

K∑
i=1

{
yi − μ̂i√
V (μ̂i)

}2

,

where r̂p is the Pearson residual listed in Table 2.3. This estimator is referred
to as the Pearson estimator of the dispersion parameter σ2. In fact, the relation
given in Proposition 2.17 is equivalent to this mean-variance relation for the
ED models, simply because of Proposition 2.18.

2.6.3 MLE in the Simplex GLM

The GLM for binary data or logistic regression model, the GLM for count data
or log-linear regression model, and the GLM for positive continuous data or
gamma regression model have been extensively illustrated in the literature.
Interested readers can find examples of these ED GLMs easily in many ref-
erences such as McCullagh and Nelder’s (1989). This section supplies two
non-ED GLMs based, respectively, on the simplex distribution and the von
Mises distribution. Both are not available in the classical theory of GLMs.

In the ED GLMs, both score equation and Fisher information can be
treated as a special case of weighted least squares estimation, due to the fact
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that its first order derivative of the unit deviance is (y − μ)/V (μ), which is
linear in y. However, this linearity no longer holds for a DM GLM outside the
class of the ED GLMs. The simplex distribution is one of such examples. A
simplex model S−(μ;σ2) has the density given by

p(y;μ, σ2) = [2πσ2{y(1− y)}3]−1/2 exp
{
− 1

2σ2
d(y;μ)

}
, y ∈ (0, 1), μ ∈ (0, 1),

with the unit deviance function

d(y;μ) =
(y − μ)2

y(1 − y)μ2(1 − μ)2 , y ∈ (0, 1), μ ∈ (0, 1),

where μ = E(Y ) is the mean. The unit variance function is V (μ) = μ3(1−μ)3,
obtained from (2.4).

For a non-ED GLM, the canonical link function no longer helps to sim-
plify the weights ui or the wi, because the density does not explicitly involve
the cumulant generating function κ(·) as in the ED GLM. For the simplex
distribution, since μ ∈ (0, 1), one may take the logit as the link function to
formulate the systematic component:

log
μ

1 − μ = xTβ.

According to Table 2.4, ġ(μ) = {μ(1 − μ)}−1. It follows from (2.18) that the
score equation for the regression parameter β is

K∑
i=1

xi{μi(1 − μi)}δ(yi;μi) = 0, (2.24)

where the deviance score is

δ(y;μ) = −1
2
ḋ(y;μ)

=
y − μ
μ(1 − μ)

{
d(y;μ) +

1
μ2(1 − μ)2

}
. (2.25)

It is clear that this δ function is nonlinear in both y and μ. Solving nonlinear
equation (2.24) can be done iteratively by the Newton-Raphson algorithm or
quasi-Newton algorithm. The calculation of the Fisher information requires
the knowledge of E{−δ̇(Yi;μi)}. It is equivalent to deriving 1

2Ed̈(Yi;μi).
Differentiating ḋ w.r.t. μ gives

1
2
d̈(y;μ) =

1
μ(1 − μ)d(y;μ) +

1 − 2μ
μ2(1 − μ)2 (y − μ)d(y;μ)

+
1

μ3(1 − μ)3 +
1 − 2μ

μ4(1 − μ)4 (y − μ)

− 1
μ(1 − μ) (y − μ)ḋ(y;μ) − 2(2μ− 1)

μ4(1 − μ)4 (y − μ). (2.26)
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Hence,

1
2
E{d̈(Y ;μ)} =

1
μ(1 − μ)

[
E{d(Y ;μ)} − E{(Y − μ)ḋ(Y ;μ)}

]

+
1 − 2μ

μ2(1 − μ)2 E{(Y − μ)d(Y ;μ)} +
1

μ3(1 − μ)3

=
3σ2

μ(1 − μ) +
1

μ3(1 − μ)3 , (2.27)

where the last equation holds by applying part (e) of Proposition 2.19 below.
Therefore, the Fisher information is

i(β) =
1
σ2

K∑
i=1

xiu−1
i xTi ,

where

ui =
μi(1 − μi)

1 + 3σ2{μi(1 − μi)}2
, i = 1, . . . ,K.

As seen in (2.26), the first order derivative of the deviance score δ̇ appears
tedious, but its expectation in (2.27) is much simplified. Therefore, it is appeal-
ing to implement the Fisher-scoring algorithm in the search for the solution
to the score equation (2.24). One complication in the application of Fisher-
scoring algorithm is the involvement of the dispersion parameter σ2. This can
be resolved by replacing σ2 with a

√
K-consistent estimate, σ̂2. A consistent

estimate of such a type can be obtained by the method of moments. For ex-
ample, the property (a) in Proposition 2.19 is useful to establish an estimate
of σ2 as follows:

σ̂2 =
1

K − (p+ 1)

K∑
i=1

d(yi; μ̂i). (2.28)

Proposition 2.19. Suppose Y ∼ S−(μ;σ2) with mean μ and dispersion σ2.
Then,

(a) E{d(Y ;μ)} = σ2;
(b) E{(Y − μ)ḋ(Y ;μ)} = −2σ2;
(c) E{(Y − μ)d(Y ;μ)} = 0;
(d) E{ḋ(Y ;μ)} = 0;
(e) 1

2E{d̈(Y ;μ)} = 3σ2

μ(1−μ) + 1
μ3(1−μ)3 ;

(f) Var{d(Y ;μ)} = 2
(
σ2
)2 ;

(g) Var{δ(Y ;μ)} = 3σ4

μ(1−μ) + σ2

μ3(1−μ)3 .

The following lemma is needed in order to prove Proposition 2.19.
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Lemma 2.20 (Jørgensen, 1997, P.191). Consider a dispersion model
DM(μ, σ2) whose density takes the form:

f(y;μ, λ) = cα(μ, λ)yα−1 exp
{
−λ(y − μ)

2

2yμ1−2α

}
,

where λ = 1/σ2 and the normalization constant is defined by

1
cα(μ, λ)

= 2Kα(λμ2α)eλμ
2α

μα.

Then the asymptotic expansion of 1/cα(μ, λ) is given by, for large λ,

{
2π
λ

} 1
2
{

1 +
4α2 − 1
8λμ2α

+
(4α2 − 1)(4α2 − 9)

2!(8λμ2α)2

+
(4α2 − 1)(4α2 − 9)(4α2 − 25)

3!(8λμ2α)3
+ · · ·

}
.

The proof of Proposition 2.19 is given as follows.

Proof. First prove part (b). Note that

0 = E[(Y − μ)] =
∫ 1

0

(y − μ)p(y;μ, σ2)dy,

and differentiating both sides of the equation with respect to μ gives

0 = −1 − 1
2σ2

E[(Y − μ)ḋ(Y ;μ)],

and hence E[(Y − μ)ḋ(Y ;μ)] = −2σ2.
To prove part (a) and part (c), take the following transformations for both

y and μ,
x =

y

1 − y , ξ =
μ

1 − μ
and rewrite the two expectations in the following forms:

E[d(Y ;μ)] =
∫ 1

0

d(y;μ)p(y;μ, σ2)dy

=

√
λ

2π
(1 + ξ)2

ξ2

∫ ∞

0

{
x

1
2 + (1 − 2ξ)x−

1
2

+ξ(ξ − 2)x−
3
2 + ξ2x−

5
2

}
f(x; ξ, λ)dx,

and
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E[(Y − μ)d(Y ;μ)] =
∫ 1

0

(y − μ)d(y;μ)p(y;μ, σ2)dy

=

√
λ

2π
1 + ξ
ξ2

∫ ∞

0

{
x

1
2 − 3ξx−

1
2

+3ξ2x−
3
2 − ξ3x− 5

2

}
f(x; ξ, λ)dx,

where λ = 1/σ2 and

f(x; ξ, λ) = exp
{
−λ

2
(1 + ξ)2

ξ2
(x− ξ)2
x

}
.

Applying Lemma 2.20 leads to

∫ ∞

0

x
1
2 f(x; ξ, λ)dx =

(
2π
λ

) 1
2 ξ3 + λξ2(1 + ξ)2

λ(1 + ξ)3
,

∫ ∞

0

x−
1
2 f(x; ξ, λ)dx =

(
2π
λ

) 1
2 ξ

1 + ξ
,

∫ ∞

0

x−
3
2 f(x; ξ, λ)dx =

(
2π
λ

) 1
2 1

1 + ξ
,

and ∫ ∞

0

x−
5
2 f(x; ξ, λ)dx =

(
2π
λ

) 1
2 ξ + λ(1 + ξ)2

λξ(1 + ξ)3
.

Plugging these results into the expressions above leads to

E{d(Y ;μ)} = 1/λ = σ2 and E{(Y − μ)d(Y ;μ)} = 0.

Part (d) is given by applying part (c) to (2.25) and then taking expectation.
Also, part (e) is proved by applying parts (a), (b), and (c) to (2.27).

By part (a), to prove part (f), it is sufficient to show that

E{d2(Y ;μ)} = 3
(
σ2
)2
.

Simple algebra leads to

E{d2(Y ;μ)} =
∫ 1

0

d2(y;μ)p(y;μ, σ2)dy

=

√
λ

2π
(1 + ξ)4

ξ4

∫ ∞

0

{x 3
2 + (1 − 4ξ)x

1
2

+2ξ(3ξ − 2)x−
1
2 + 2ξ2(3 − 2ξ)x−

3
2

+ξ3(ξ − 4)x−
5
2 + ξ4x−

7
2 }f(x; ξ, λ)dx. (2.29)
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An application of Lemma 2.20 again results in

∫ ∞

0

x
3
2 f(x; ξ, λ)dx =

(
2π
λ

) 1
2 λ2ξ3(1 + ξ)4 + 3λξ4(1 + ξ)2 + 3ξ5

λ2(1 + ξ)5

and
∫ ∞

0

x−
7
2 f(x; ξ, λ)dx =

(
2π
λ

) 1
2 λ2(1 + ξ)4 + 3λξ(1 + ξ)2 + 3ξ2

λ2ξ2(1 + ξ)5
.

Based on these results, the integration (2.29) can be simplified as

E{d2(Y ;μ)} = 3
(
σ2
)2
.

Part (g) can be proved by applying part (e) in the relation between ḋ and
δ from Proposition 2.17.

In the application of the simplex GLM, one issue that deserves some atten-
tion is whether there is much difference between the normal linear model based
on logit-transformed data, log{yi/(1−yi)}, and the direct simplex GLM. The
difference between the two models is the former models E[log{Yi/(1 − Yi)}]
as a linear function of covariates, and the latter models μi = E(Yi) via
log{μi/(1−μi)} as a linear function of covariates. Apparently the direct GLM
approach gives rise to much ease in interpretation.

The following simulation study suggests that when the dispersion param-
eter σ2 is large, the performance of the logit-transformed analysis may be
questionable, if the data are really from a simplex distributed population.

The simulation study assumes the proportional data are generated inde-
pendently from the following simplex distribution,

Yi ∼ S−(μi, σ2), i = 1, . . . , 150,

where the mean follows a GLM of the following form:

logit(μi) = β0 + β1Ti + β2Si.

Covariates T and S are presumably drug dosage levels indicated by {−1, 0, 1}
for each 50 subjects and illness severity score ranged in {0, 1, 2, 3, 4, 5, 6} that
is randomly assumed to each subject by a binomial distribution B(7, 0.5). The
true values of regression coefficients are set as β0 = 0.5, β1 = −0.5, β2 = 0.5,
and the dispersion parameter σ2 = 0.5, 50, 200, 400.

For each combination of parameters, the same simulated data was fit by the
simplex GLM for the original responses and the normal linear model for logit-
transformed responses. Two hundred replications were done for each case.
Results are summarized in Table 2.5, including the averaged estimates, stan-
dard deviations of 200 replicated estimates, and standard errors of estimates
calculated from the Fisher information.
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Table 2.5. Summary of the simulation results for the comparison between the direct
simplex GLM analysis and logit-transformed linear model analysis.

Parameter Simplex GLM Logit-Trans LM

True Mean Std Dev Std Err Mean Std Dev Std Err

σ2 = 0.5

β0(0.5) .4996 .0280 .0254 .5089 .0288 .0263
β1(−0.5) −.5023 .0330 .0308 −.5110 .0345 .0322
β2(0.5) .5015 .0195 .0205 .5101 .0199 .0222

σ2 = 50

β0(0.5) .5062 .0983 .0960 .8057 .1769 .1752
β1(−0.5) −.5068 .1141 .1185 −.7998 .2065 .2148
β2(0.5) .5170 .0860 .0835 .8153 .1366 .1483

σ2 = 200

β0(0.5) .5060 .1145 .1021 1.0162 .2741 .2541
β1(−0.5) −.5262 .1346 .1263 −1.0479 .3218 .3114
β2(0.5) .5238 .0971 .0899 1.0430 .1919 .2150

σ2 = 400

β0(0.5) .5253 .0963 .1032 1.2306 .2767 .2980
β1(−0.5) −.5001 .1486 .1275 −1.1336 .3888 .3652
β2(0.5) .5165 .1000 .0909 1.1686 .2286 .2521

This simulation study indicates that (i) when the dispersion parameter
σ2 is small, the logit-transformed analysis appears fine, with little bias and
little loss of efficiency, because of small-dispersion asymptotic normality; (ii)
when the dispersion parameter is large, the estimation based on the logit-
transformed analysis is unacceptable, in which bias increases and efficiency
drops when the σ2 increases.

One may try to make a similar comparison by simulating data from the
normal distribution as well as from the beta distribution. Our simulation
study suggested that in the case of normal data, the direct simplex GLM
performed nearly as well as the normal model, with only a marginal loss of
efficiency; in the case of beta data, the simplex GLM clearly outperformed the
normal linear model. Interested readers can verify the findings through their
own simulation studies.
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Example 2.21 (Body Fat Index).
Penrose et al. (1985) reports a dataset consisting of 19 variables, includ-

ing percentage of body fat, age, weight, height, and ten body circumfer-
ence measurements (e.g., abdomen) for 252 men. This dataset is available
at http://www.amstat.org/publications/jse/jse data archive.html. Body fat,
a measure of health, is estimated through an underwater weighing technique.
Percentage of body fat may be then calculated by either Brozek’s equation
or Siri’s equation. Fitting body fat to the other measurements using GLM
provides a convenient way of estimating body fat for men using only a scale
and a measuring tape.

In this example, the simplex GLM is illustrated simply by fitting the the
body fat index as a function of covariate age. Suppose the percentage of body
fat Yi ∼ S−(μi, σ2), where

log
μi

1 − μi = β0 + β1 age.

The Fisher-scoring algorithm was applied to obtain the estimates of the re-
gression coefficients and the standard errors were calculated from the Fisher
information. The results were summarized in Table 2.6, in which the disper-
sion parameter is estimated by the method of moments in (2.28). Clearly, from
the results given in Table 2.6, age is an important predictor to the percentage
of body fat in both Brozek’s and Siri’s equations. The dispersion σ2 is found
not small in this study, so it might be worrisome for the appropriateness of
either a direct linear model analysis (with no transformation on the response)
or logit-transformed linear model analysis. Some further investigations are
needed to elucidate the choice of modeling approach in this data analysis.

Table 2.6. Results in the regression analysis of body fat percentage using the
simplex GLM.

Parameter

Body-fat measure Intercept (Std Err) Age (Std Err) σ2

Brozek’s −2.7929(0.3304) 0.0193(0.0070) 55.9759

Siri’s −2.8258(0.3309) 0.0202(0.0070) 57.0353

2.6.4 MLE in the von Mises GLM

Angular data are a special case of circular data. Mardia (1972) has presented
a general framework of estimation and inference in the models for circular
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data. Fisher (1993) gave an overview of the state-of-art of research in this
field. Although the analysis of circular data is an old topic, there have been
recent developments in applied areas, such as multi-dimensional circular data
(Fisher, 1993; Rivest, 1997; Breckling, 1989), time series of circular observa-
tions (Accardi et al. 1987; Fisher and Lee 1994; Coles 1998), and longitudinal
circular data (Artes et al. 2000; D’Elia et al. 2001).

The von Mises distribution is another example of the DM model but not
of an ED model. The density of a von Mises distribution takes the form

p(y;μ, σ2) =
1

2πI0(λ)
exp{λ cos(y − μ)}, y ∈ [−π, π), (2.30)

where μ ∈ [−π, π) is the mean, λ = 1/σ2 > 0 is the index parameter, and
I0(λ) is the modified Bessel function of the first kind of order 0, given by

I0(λ) =
1
2π

∫ π

−π
exp{λ cos(y)}dy.

It is easy to rewrite the von Mises density in the form of DM model with the
unit deviance function given by

d(y;μ) = 2{1 − cos(y − μ)}, y, μ ∈ [−π, π),

whose first and second order derivatives w.r.t. μ are, respectively,

ḋ = −2 sin(y − μ), d̈ = 2 cos(y − μ).

It follows that the unit variance function is V (μ) = 1 for μ ∈ [−π, π) and the
deviance score δ(y;μ) = sin(y − μ).

Now consider a GLM for directional (circular or angular) data, where
Yi ∼ vM(μi, σ2), associated with p-element vector of covariates xi. According
to Fisher and Lee (1992) or Fisher (1993, Section 6.4), a GLM for the mean
direction μi = E(Yi|xi) may be formulated as follows:

μi = μ0 + 2arctan(xi1β1 + · · · + xipβp), (2.31)

where μ0 is an offset mean parameter representing the origin. If Y ∗
i = Yi−μ0

is taken as a surrogate response, then the corresponding mean direction is
μ∗i = μi − μ0 = 2arctan(ηi) with the origin of 0o. This implies

tan(μ∗i /2) = ηi = xTi β,

where the intercept term is not included, because of the 0o origin. Clearly,
in this GLM, the link function g(z) = tan(z/2) and ġ(z) = 1

2 sec2(z/2), as
shown in Table 2.4. To estimate the regression parameter β, formula (2.18) is
applied here to yield the following score equation:
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s(y;β) = λ
K∑
i=1

xi
1

ġ(μ∗i )
δ(y∗i ;μ

∗
i )

= 2λ
K∑
i=1

xi

(
1

1 + η2i

)
sin(y∗i − μ∗i )

= 2λ
K∑
i=1

xi

(
1

1 + η2i

)
sin(yi − μ0 − 2arctan(xTi β)),

where the identity of sec2(arctan(a)) = 1 + a2 is used. The MLE of β is the
solution to the score equation

s(y;β) = 0. (2.32)

To find the Fisher Information for β̂, first note that the surrogate response
Y ∗
i ∼ vM(μ∗i , σ

2), and then

E{−δ̇(Y ∗
i ;μ∗i )} = E{cos(Y ∗

i − μ∗i )} =
I1(λ)
I0(λ)

,

where I1(λ) is the first order modified Bessel function of the first kind given
by

I1(λ) =
1
2π

∫ π

−π
cos(y) exp{λ cos(y)}dy.

Denote the mean resultant length by A1(σ2) = I1(σ−2)/I0(σ−2). Then the
weights ui in (2.20) are found as

ui =
(1 + η2i )

2

4A1(σ2)
, i = 1, . . . ,K.

Moreover, the Fisher Information for the β̂ is i(β) = XTU−1X/σ2, with
U = diag(u1, . . . , uK).

To estimate the parameter μ0 and the dispersion parameter σ2, the MLE
may be also employed. The log likelihood is proportional to

�(θ) ∝ −K log I0(λ) + λ
K∑
i=1

cos(yi − μ0 − 2arctan(ηi)),

and the scores for μ0 and λ are, respectively,

s(y;μ0) = λ
K∑
i=1

sin(yi − μ0 − 2arctan(ηi)),

s(y;λ) = −K İ0(λ)
I0(λ)

+
K∑
i=1

cos(yi − μ0 − 2arctan(ηi)).
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Also,

−E{ṡμ0(y;μ0)} = KλA1(λ),

−E{ṡβ(y;μ0)} = 4λA1(λ)
K∑
i=1

xi
1

(1 + η2i )2
,

−E{ṡλ(y;λ)} = K

{
İ1(λ)
I0(λ)

−A2
1(λ)

}
,

−E{ṡβ(y;λ)} = 0.

It is easy to show that İ0(λ) = I1(λ) and İ1(λ) = 1
2{I1(λ) + I0(λ)}. Let μ̂0

and λ̂ be the MLE. Then (μ̂0, β̂, λ̂) will be the solution to the following joint
score equations:
⎛
⎝ s(y;μ0)
s(y;β)
s(y;λ)

⎞
⎠ =

(
λ
∑K

i=1 diag[1,xi][1, 2(1 + η2i )
−1]T sin(yi − μ0 − 2arctan(ηi))

−KA1(λ) +
∑K

i=1 cos(yi − μ0 − 2arctan(ηi))

)

= 0. (2.33)

The corresponding Fisher information matrix is

i(μ0,β, λ) =(
λ
∑K

i=1 diag[1,xi][1, u−1
i ]T [1, u−1

i ]diagT [1,xi] 0
0 K

{
1
2 (A1(λ) + 1) −A2

1(λ)
}
)
.

One may use the iterative Fisher-scoring algorithm to solve jointly the
score equation (2.33) for the MLE, which involves inverting the above Fisher
information matrix at current values of the parameters. Alternatively, one
may solve equations (2.32), and the following (2.34) and (2.35) in cycle,

μ̂0 = arctan
(
S̄/C̄

)
(2.34)

λ̂ = A−1
1

{
1
K

K∑
i=1

cos(yi − μ0 − 2arctan(ηi))

}
, (2.35)

where A−1
1 {·} is the inverse function of A1, and

S̄ =
1
K

K∑
i=1

sin(yi − 2arctan(ηi)),

C̄ =
1
K

K∑
i=1

cos(yi − 2arctan(ηi)).

It is known in the literature that when the sample size K is small, the
MLE of σ2 or λ appears to have some noticeable bias. Alternatively, one may
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use the moment property, Var(Y ) = 1−A1(λ), to obtain a consistent moment
estimator,

λ̂mom = A−1
1

{
1 − 1

K − p− 1

K∑
i=1

(yi − μ̂i)2
}
. (2.36)

An R package CircStats provides functions to plot circular data (e.g.,
function circ.plot) and compute many quantities given above, such as I0(λ),
I1(λ), and even Ip(λ) for any integer p. In this package, another useful function
is circ.kappa, which provides a bias correction for the MLE estimation for
the index parameter λ = 1/σ2. Interested readers can follow Problem 2.5
in Problem Set 2 (available at the book webpage) to gain some numerical
experience with the analysis of circular data.



3

Inference Functions

3.1 Introduction

The theory of inference functions or estimating functions may be viewed as a
generalization of the maximum likelihood theory. In a usual estimation prob-
lem, an estimate (for example, the MLE) is obtained as a solution to an
equation of the form

Ψ(data; θ) = 0,

where θ is the set of parameters of interest. This equation may be derived
from a fully specified parametric model, say a logistic regression model with
Ψ being the score function and θ being the regression coefficient β. As far as
estimation concerns, the key device needed is a sort of equation from which
an estimate of the parameter can be found. In other words, if one is able to
directly come up with a “sensible” function Ψ without using any specific un-
derlying probability distribution, an estimation procedure can proceed based
only on this given function Ψ . This approach has been seen in several settings,
including the least squares estimation for a linear regression model in which
only moments are assumed for error terms, and M -estimation in the robust
statistics literature. Another important application of this approach is the
so-called quasi-likelihood estimation for regression coefficients in the context
of GLMs, when the distribution assumption is violated due, for instance, to
overdispersion. The next section will present a detailed discussion about the
quasi-likelihood inference in GLMs.

The term equation of estimation was first used in Fisher (1935). Kimball
(1946) presented a non-trivial example of inference function, where estimating
equations are proposed to construct confidence regions for the parameters in
Gumbel distributions. Later, McLeish and Small (1988) generalized Kimball’s
idea of stable estimating equations to establish the theory of sufficiency and
ancillarity for inference functions.

The theory of optimal inference functions was first studied by Godambe
(1960). In the same year Durbin (1960) introduced the notion of unbiased
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linear inference function in the time series analysis. Since then, inference func-
tions have been drawing much attention to researchers in different areas, such
as robust statistics, GLMs, and econometrics. This chapter will focus on a few
elements of the inference function theory, in order to prepare the introduction
to Liang and Zeger’s generalized estimating equations (GEE) approach and
quadratic inference functions (QIF) in the correlated data analysis. Readers
can find more details of the inference functions from Godambe (1991), Heyde
(1997), Hardin and Hilbe (2003), and Hall (2005), among others.

3.2 Quasi-Likelihood Inference in GLMs

It is not rare that practitioners encounter situations where the probability
mechanism (e.g., density functions) by which the data are generated cannot
be fully specified due to reasons such as the fact that the underlying biological
theory is not yet fully understood or no substantial experience of analyzing
similar data from previous studies is available. As a consequence, investiga-
tors were only able to impose assumptions on some aspects of the probability
mechanism such as moments, but not on the full parametric distributions.
Another scenario is that investigators knew from some preliminary analyses
that certain aspects of the parametric model they intended to use for the data
analysis were violated. One example is overdispersion in the GLM analysis.
Overdispersion basically violates the mean-variance relation induced from a
proper probability model, which prohibits investigators from using a specific
parametric distribution for the data. Overdispersion may emerge from differ-
ent data collection procedures, one of which is that the response variable is
recorded as an aggregation of dependent variables.

To elucidate, let us consider a Poisson log-linear regression model for count
data. In a standard GLM analysis, count responses are typically assumed to
follow a Poisson distribution with mean μ, which is further assumed to take
a log-linear form as follows,

log(μ) = xTβ.

The assumption of a Poisson distribution for the data implies the mean-
variance relation of the following form

Var(Y ) = μ,

since the dispersion parameter σ2 = 1 and the unit variance function is V (μ) =
μ. This relation says that the variation of the assumed Poisson counts should
take the same magnitude of its mean. In many practical cases, the variance of
data appears to be substantially larger (or smaller) than its mean, referred to
as overdispersion (or underdispersion); hence, the mean-variance relation is
no longer valid. One way to deal with overdispersed count data is to introduce
a dispersion parameter σ2 that inflates the Poisson variance as given by
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Var(Y ) = σ2μ, σ2 > 1.

Obviously, this response variable Y satisfying such a new mean-variance rela-
tion is no longer Poisson distributed.

In the cases discussed above, the maximum likelihood estimation approach
may not be applicable due to the unavailability of full density functions. Wed-
derburn (1974) proposed an idea of quasi-likelihood estimation for regression
coefficients in the setting of GLMs. Also see McCullagh (1983). Suppose that
part of the objective in data analysis can be addressed by the following re-
gression model, specified only by the first two moments:

g(μ) = xTβ and Var(Y ) = σ2V (μ).

Similar model specifications have been considered in the least squares theory
of classical linear regression models, where the first two moments of error terms
are assumed. The least squares estimation for the regression coefficients can
be carried out without a fully specified distribution for error terms.

In the context of GLMs, the ordinary least squares approach generally
does not provide a consistent estimator for the coefficient β. Instead, it is
suggested to directly solve the equation that is originally derived from the
MLE setting,

Ψ(y;β) =
K∑
i=1

∂μi(β)T

∂β
Σ−1
i (yi − μi(β)) = 0,

where Σi = σ2V (μi) is the variance of Yi. Note that the utility of this es-
timating equation for β̂ only requires the assumptions about the first two
moments; namely, models for μi = E(Yi) and Σi = Var(Yi). This inference
function Ψ(y;β) is referred to as a quasi-score function. It is also worth noting
that this estimating equation Ψ(y;β) = 0 does not estimate the dispersion
parameter σ2, because this parameter is factorized out of the expression and
cancelled. Therefore, in the variance Σi what really matters is the variance
function V (·), rather than the variance itself.

Why does this idea work for the estimation in the GLMs? It works because
this quasi-score function preserves the two key properties that the real score
function has:

(a) The quasi-score function is unbiased, namely E{Ψ(β)} = 0. This unbi-
asedness ensures the consistency of the resulting estimator β̂.

(b)The following identity holds,

E
{
−∂Ψ(Y;β)

∂β

}
= Var{Ψ(Y;β)}.

This equality ensures that the resulting estimator β̂ will have the asymp-
totic covariance matrix equal to that of the MLE or the inverse of Fisher
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information matrix. In other words, the estimator produced from this esti-
mating equation, although no explicit parametric models are assumed, will
achieve the same estimation efficiency as that of the MLE that is known to
be fully efficient. This optimality property presents a remarkable attraction
to illustrate the usefulness of the theory of inference functions.

More discussions will be given in the subsequent sections of this chapter under
a general framework of inference functions. Without assuming a true underly-
ing parametric model, likelihood function is unavailable. However, it is possible
to yield a function similar to the likelihood, called quasi-likelihood, that cor-
responds to the given quasi-score function Ψ(·) by simply taking integration
w.r.t. μ; that is,

lq(y;μ) =
K∑
i=1

∫ μi

yi

yi − t
V (t)

dt,

where V (·) is the unit variance function. Apparently, the quasi-score function
Ψ(y; ·) can be retrieved by

Ψ(y;β) =
∂lq(y;μ(β))

∂β

=
K∑
i=1

μ̇i(β)TV −1(μi)(yi − μi(β)).

In the application of inference functions, two central technical questions
are:

(i) which function Ψ(·) is sensible for parameter estimation among many can-
didate functions, and

(ii) under which criteria the optimality of a chosen inference function can be
reasonably assessed.

Answers to these questions will be provided in the rest of this chapter.

3.3 Preliminaries

Consider a family of parametric statistical models

P = {pθ : θ ∈ Θ}, Θ ⊆ Rp.

Let X be the sample space, defined as the collection of all possible samples.

Definition 3.1. A function Ψ : X × Θ → Rp is called an inference function
or estimating function if Ψ(·;θ) is measurable for any θ ∈ Θ and Ψ(x; ·) is
continuous in a compact subspace of Θ containing the true parameter θ0 for
any sample x ∈ X .



3.3 Preliminaries 59

Let Ψ be an Rp-valued vector function with components (ψ1, . . . , ψp)T ,
where p is equal to the dimension of the parameter space Θ, or equal to the
number of parameters to be estimated. Obviously, in order to estimate the p-
dimensional parameter vector θ, it is necessary to have an inference function
that contains at least p components of linearly independent inference functions
ψjs. When the number of inference function components is larger than the
dimension of the parameter vector, according to Hansen (1982), the parameter
vector θ is said to be over-identified. Let us first consider the regular case of
non-over-identification, and then deal with the case of over-identification in
Section 3.5.

With a given inference function, Ψ , and a sample x ∈ X , one can establish
an estimating equation given by

Ψ(x;θ) = 0, (3.1)

and as a result, an estimate θ̂ = θ̂(x) of parameter θ is obtained as an solution
to this equation (3.1).

Definition 3.2. Two inference functions Ψ and ϕ are said to be equivalent,
denoted by Ψ ∼ ϕ, if they give the same estimate of θ for any given sample
x ∈ X .

For example, one may use a given inference function Ψ to construct a new one
of the following form:

ϕ0(x;θ) = C(θ)Ψ(x;θ), x ∈ X ,θ ∈ Θ
where C(θ) is a p×pmatrix of full rank and independent of sample x. Clearly,
ϕ0 ∼ Ψ .

Definition 3.3. An inference function Ψ is said to be unbiased if it has mean
zero,

Eθ{Ψ(X;θ)} = 0, ∀ θ ∈ Θ.
In the rest of this chapter, suppose that sample x = (x1, . . . , xK)T con-

stitutes i.i.d. observations drawn from a parametric p(x;θ). Note that obser-
vation xi may be a vector of, for example, correlated measurements from i
subject. For this data structure, we consider an additive inference function
given by

ΨK(x;θ) =
K∑
i=1

Ψ(xi;θ), (3.2)

where Ψ(·) is called the kernel inference function. Then, an estimate of θ,
θ̂K = θ̂K(x) is defined as an solution to the equation ΨK(x;θ) = 0; that is,

K∑
i=1

Ψ(xi; θ̂K) = ΨK(x; θ̂K) = 0.
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It is easy to see that in the case of the additive inference function, the un-
biasedness of the ΨK is guaranteed by the unbiasedness of the kernel Ψ ,
Eθ{Ψ(Xi;θ)} = 0, ∀ θ ∈ Θ.

Let θ0 ∈ Θ be the true parameter value, and let

λ(θ) = Eθ0
Ψ(X ;θ) =

∫
Ψ(x;θ)p(x;θ0)dx.

Thus, the unbiasedness of Ψ at the true value θ0 holds if and only if λ(θ0) = 0.

Theorem 3.4 (Consistency). Suppose an additive inference function ΨK is
unbiased at the θ0. If λ(θ) has a unique zero at θ0, then there exists a sequence
of roots to equation ΨK(x;θ) = 0, {θ̂K}, such that

θ̂K
p→ θ0, under Pθ0

.

Readers who are interested in the rigorous proof may refer to van der Vaart
and Wellner (1996, Section 3) and Godambe (1991).

To appreciate the importance of the unbiasedness condition to estab-
lish consistency, a heuristic proof of this result is outlined below for the 1-
dimensional case, i.e., p = 1.

Proof. Since function λ(θ) is continuous in a compact set containing θ0, there
must exist a (small) δ0 > 0, such that

λ(θ) > 0, θ ∈ (θ0 − δ0, θ0), and λ(θ) < 0, θ ∈ (θ0, θ0 + δ0),

or
λ(θ) < 0, θ ∈ (θ0 − δ0, θ0), and λ(θ) > 0, θ ∈ (θ0, θ0 + δ0).

Note that the conditions of λ(θ0) = 0 and the uniqueness at θ0 essentially rule
out the possibility that the λ(θ) is either always positive (concave) or always
negative (convex) for all θ ∈ (θ0 − δ0, θ0 + δ0) except at θ = θ0.

Let us consider the first scenario, and the second case can be argued in a
similar fashion. The law of large numbers says

1
K
ΨK(x; θ) a.s.→ λ(θ) under Pθ0 ,

which implies that for large K and for any 0 < δ < δ0,

ΨK(x; θ0 − δ) > 0, and ΨK(x; θ0 + δ) < 0.

Here a.s.→ stands for almost sure convergence. By the continuity of probability
measure, a root θ̂K(δ) in the interval (θ0 − δ, θ0 + δ) will have

Pθ0

{
|θ̂K(δ) − θ0| < δ

}
→ 1, as K → ∞,

which leads to
Pθ0

{
|θ̂K − θ0| < δ

}
→ 1, as K → ∞,

where θ̂K is the root closest to the true value θ0.
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It is worth commenting that the existence of a solution to estimating
equation ΨK(x; θ) = 0 can be relaxed to the existence of the minimum for
generalized method of moments (GMM)

Q(x;θ) = ΨTK(x;θ)C−1
Ψ ΨK(x;θ),

where CΨ = Varθ0
{ΨTK(X;θ)}; that is,

θ̃K = arg min
θ∈Θ

Q(x;θ),

which always exists if the parameter space Θ is compact. It is easy to prove
that the minimizer θ̃K and the root θ̂K are stochastically equivalent, namely
θ̃K = θ̂K + op(1) as K → ∞.

3.4 Optimal Inference Functions

Now consider a class of inference functions, denoted by G, within which the
resultant estimators are consistent and asymptotically normally distributed.
Among the inference functions in class G, define an optimal inference function
as the one that leads to an estimator with the smallest asymptotic covari-
ance and hence has the highest asymptotic efficiency. In the case that class
G includes the score function, the optimal inference function is apparently
the score function that gives the MLE. The objective is then whether there
are any other inference functions in the G that produce estimators of equal
efficiency to that of the MLE.

One relevant question is what are the conditions under which optimal
inference functions exist. This question is answered in Godambe’s series of
seminal papers (Godambe 1960 and 1976; Godambe and Thompson, 1974
and 1978).

To begin, let us first consider a simple case where the parameter θ is
one-dimensional (p = 1).

Definition 3.5. An inference function Ψ is said to be regular, if it satisfies
the following conditions:

(a) EθΨ(X ; θ) = 0, ∀θ ∈ Θ;
(b) ∂Ψ(x;θ)

∂θ exists, ∀x ∈ X ;
(c) The order of integration and differentiation may be interchangeable

∂

∂θ

∫
X
f(x)Ψ(x; θ)p(x; θ)dx =

∫
X
f(x)

∂

∂θ
{Ψ(x; θ)p(x; θ)} dx

for any bounded function f(x) that is independent of θ;
(d) 0 < Eθ

{
Ψ2(X ; θ)

}
<∞;

(e) 0 <
{
Eθ
∣∣∣∂Ψ(X;θ)

∂θ

∣∣∣}2

<∞.
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For now on, let G be the class of all regular inference functions.

Definition 3.6. A statistical model is said to be regular if its score function
u(x; θ) = ∂ log p(x;θ)

∂θ is a regular inference function; that is, u(x; θ) ∈ G, θ ∈ Θ
an open interval.

Under a regular model, the Fisher information for a single observation is
defined by

i(θ) = −Eθ

{
∂2 log p(X ; θ)

∂θ2

}
= −Eθ

{
∂u(X ; θ)
∂θ

}
.

It is known that Fisher information i(θ) holds the following identity relation:

i(θ) = −Eθ

{
∂u(X ; θ)
∂θ

}
= E{u(X ; θ)}2.

Thus, function i : Θ → (0,∞) excludes 0.
Let the first and second order derivatives of inference function Ψ w.r.t. θ

be

Ψ̇(θ) =
∂Ψ(x; θ)
∂θ

, and Ψ̈(θ) =
∂Ψ2(x; θ)
∂θ2

.

For a regular function Ψ(x; θ), the variability, VΨ , of Ψ is defined as

VΨ = Eθ
{
Ψ2(X ; θ)

}
= Var {Ψ(X ; θ)} ,

and the sensitivity, SΨ , of Ψ is defined as

SΨ (θ) = Eθ

{
∂Ψ(X ; θ)
∂θ

}
= Eθ

{
Ψ̇(X ; θ)

}
.

An inference function Ψ is said to be θ-sensitive if the sensitivity SΨ (θ) > 0.
In the presence of a nuisance parameter τ , say, an inference function Ψ is
said to be τ -insensitive if EΨ̇τ (X ; θ, τ) = 0. See, for example, Jørgensen and
Knudsen (2004).

Definition 3.7. For a regular inference function Ψ ∈ G, the Godambe infor-
mation is defined by

jΨ (θ) =
S2
Ψ (θ)
VΨ (θ)

, θ ∈ Θ. (3.3)

The larger the Godambe information is, the more efficient an estimator is. In
other words, an inference function with small variability but large sensitivity
is desirable. Note that comparison of inference functions based only on the
variability or only on the sensitivity will be misleading. This is because equiv-
alent inference functions can have rather different variabilities or sensitivities.
The Godambe information takes the form of a ratio and therefore overcomes
such a problem. As a result, Godambe information is unique among equivalent
inference functions.
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Theorem 3.8 (Asymptotic Normality). Consider a regular statistical model.
Let Ψ be a regular inference function, and let {θ̂K} be a sequence of roots to
the additive estimating equation:

K∑
i=1

Ψ(xi; θ̂K) = 0, K ≥ 1.

Suppose that

(i) {θ̂K} is consistent, i.e. θ̂K
Pθ0→ θ0; and

(ii)the second order derivative w.r.t. θ is bounded, namely

|Ψ̈(x; θ)| < M(x), for θ ∈ (θ0 − c, θ0 + c)

for a certain constant c and a Pθ-measurable function M(x) such that
Eθ{M(X)} <∞.

Then, √
K(θ̂K − θ0) d→ N(0, j−1(θ0)), under Pθ0 . (3.4)

A sketch of the proof of this theorem is given as follows.

Proof. Given that θ̂K is consistent to the true value θ0, a linear Taylor ex-
pansion of Ψ(xi; θ̂k) at the θ0 leads to

√
K(θ̂K − θ0) ≈

1√
K

∑K
i=1 Ψ(xi; θ0)

− 1
K

∑K
i=1 Ψ̇(xi; θ0)

d→ N(0, VΨ (θ0))
−SΨ (θ0)

, as K → ∞.

The higher-order terms than the linear in the Taylor expansion can be con-
trolled at the rate of op(K−1/2). This is because for large K,

1√
K

K∑
i=1

|Ψ̈(xi; ξK)(θ̂K − θ0)2| ≤ 1√
K

K∑
i=1

M(xi)(θ̂K − θ0)2

= Op(1)op(1)
= op(1),

where ξK is a value between θ̂K and θ0. By Slutsky’s theorem (Arnold, 1990),
the asymptotic normality holds and the asymptotic variance of θ̂K is the
inverse of the Godambe information, S2

Ψ (θ0)/VΨ (θ0).

It follows immediately from the result (3.4) that the asymptotic variance
of the estimator θ̂K is the same as the variance of the normalized inference
function, Ψ̄(θ) = Ψ(θ)/{−SΨ (θ)}; that is, VΨ̄ (θ0).
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Theorem 3.9 (Godambe Inequality). Assume an inference function Ψ ∈
G. Then

jΨ (θ) ≤ i(θ), ∀ θ ∈ Θ,
where the equality holds if and only if Ψ ∼ u, namely Ψ is equivalent to the
score function.

Proof. Since Ψ is unbiased,
∫
X
Ψ(x; θ)p(x; θ)dx = 0, ∀θ ∈ Θ.

Differentiating the two sides of the above equation w.r.t. θ, and interchanging
the order of integration and differentiation, one can obtain

0 =
∫
X
Ψ̇(x; θ)p(x; θ)dx +

∫
X
Ψ(x; θ)ṗ(x; θ)dx

= EθΨ̇(X ; θ) + Eθ {Ψ(X ; θ)u(X ; θ)} , (3.5)

because ∂ log p(x; θ)/∂θ = ṗ(x; θ)/p(x; θ). It follows from the Cauchy-Schwartz
inequality that
{

EθΨ̇(X ; θ)
}2

= [Eθ {Ψ(X ; θ)u(X ; θ)}]2 ≤ EθΨ2(X ; θ)Eθu2(X ; θ), ∀θ.

Therefore, {
EθΨ̇(X ; θ)

}2

EθΨ2(X ; θ)
≤ Eθu2(X ; θ), ∀θ

or equivalently,
jΨ (θ) ≤ i(θ), ∀θ.

In the meanwhile, the equality holds if and only if there exist two non-random
coefficients such that

Ψ(x; θ) = a(θ) + b(θ)u(x; θ),

but a(θ) = 0 due to the unbiasedness. Thus, Ψ ∼ u.
Due to the fact that inference functions are similar to the score function,

many results established in the likelihood inference may be transplanted to
inference functions.

Now consider a special subclass, Gc, of regular inference functions defined
as

Ψc(θ) =
K∑
i=1

ci(θ)Ψi(xi; θ), θ ∈ Θ ⊂ R, (3.6)

where Ψi ∈ G and ci(θ) is a non-random function of θ such that the sequence
of roots, {θ̂K ,K ≥ 1}, to the estimating equation Ψc(θ) = 0 is consistent.
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The collection Gc ⊂ G is referred to as the Crowder class of regular inference
functions.

The following optimality theorem attributed to Crowder (1987) gives the
optimal linear inference function in class Gc.
Theorem 3.10 (Crowder Optimality). Consider a regular inference func-
tion Ψc(θ) ∈ Gc. Then, the optimal inference function in the class Gc, which
has the largest Godambe information, is the one with the ci(·) function taking
a ratio of the sensitivity over the variability, namely

ci(θ) =
Eθ{Ψ̇i(θ)}

Varθ{Ψi(θ)} =
SΨi(θ)
VΨi(θ)

, θ ∈ Θ. (3.7)

Proof. For an inference function in the Crowder class Gc, it is easy to show
that the Godambe information is

jc(θ) =

{∑K
i=1 ci(θ)Eθ(Ψ̇i)

}2

∑K
i=1 c

2
i (θ)Varθ(Ψi)

.

In particular, when the ci(·) takes the form of (3.7), the resulting Godambe
information becomes

j∗c(θ) =
K∑
i=1

E2
θ(Ψ̇i)

Varθ(Ψi)
.

To show the optimality, it suffices to prove that j∗c (θ) − jc(θ) ≥ 0, for any
non-random functions ci. This is equivalent to proving that

K∑
i=1

E2
θ(Ψ̇i)

Varθ(Ψi)

K∑
i=1

c2i (θ)Varθ(Ψi) ≥
{

K∑
i=1

ci(θ)Eθ(Ψ̇i)

}2

,

which always holds according to the Cauchy-Schwartz inequality.

3.5 Multi-Dimensional Inference Functions

Consider a p-element additive inference function ΨK =
∑K
i=1 Ψ(xi;θ), where

θ = (θ1, . . . , θp)T ∈ Rp and Ψ(xi;θ) = (ψ1(xi;θ), . . . , ψp(xi;θ))T , xi ∈ X .
Similar to univariate inference functions, a regular multi-dimensional inference
function is defined as follows. A p-element inference function Ψ(x;θ) is said
to be regular if it satisfies:

(a) EθΨ(X;θ) = 0, ∀ θ ∈ Θ.

(b) ∂Ψ(x;θ)
∂θj

exists, ∀ x ∈ X , j = 1, . . . , p.
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(c) The order of integration and differentiation may be interchangeable

∂

∂θj

∫
X
f(x)Ψ(x;θ)p(x;θ)dx =

∫
X
f(x)

∂

∂θj
{Ψ(x;θ)p(x;θ)} dx,

for j = 1, . . . , p and for any bounded function f(x) that is independent of
θ.

(d) Eθ {ψj(X;θ)ψk(X;θ)} exists, and a p× p matrix

VΨ (θ) = Eθ
{
Ψ(X;θ)ΨT (X;θ)

}

is positive-definite. VΨ (θ) is called the variability matrix.
(e) A p× p matrix

SΨ (θ) = Eθ
{∇θΨ(X;θ)

}
is non-singular. SΨ (θ) is referred as the sensitivity matrix.

Here the ∇θ denotes the gradient operator on function f with respect to θ,
defined by

∇θf(θ) =
(
∂f(θ)
∂θ1

, · · · , ∂f(θ)
∂θp

)T
.

This implies that the (j, k)-th element of matrix SΨ (θ) is ∂ψj(θ)
∂θk

, j, k =
1, . . . , p. Let G be the class of all p-dimensional regular inference functions.
Similarly, denote the score function by

u(x;θ) = ∇θ log p(x;θ).

If u ∈ G, then the Fisher information matrix for a single observation is

i(θ) = −Eθ
{∇θu(X;θ)

}
= Eθ

{
u(X;θ)uT (X;θ)

}
.

Also, for a given regular inference function Ψ ∈ G, the Godambe information
matrix takes the form

jΨ (θ) = STΨ (θ)V−1
Ψ (θ)SΨ (θ). (3.8)

Let {θ̂K ,K ≥ 1} be a sequence of roots to the estimating equations

ΨK(θ) =
K∑
i=1

Ψ(xi;θ) = 0, K ≥ 1

where Ψ ∈ G.
Similar to the univariate case, under the condition that the Ψ is unbiased,

one can establish the consistency θ̂K
p→ θ0 under Pθ0

as K → ∞, and the
asymptotic normality as described in the following theorem.
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Theorem 3.11 (Multivariate Asymptotic Normality). If θ̂K is consis-
tent, and in a small neighborhood, N (θ0), centered at the true value θ0,

||Ψ̈(x;θ)|| < M(x), θ ∈ N (θ0),

with a Pθ-measurable function M(x) such that Eθ0
{M(X)} <∞, then

√
K(θ̂K − θ0)

d→ MVNp(0, j−1
Ψ (θ0)), under Pθ0

,

where jΨ (θ) is the Godambe information given by (3.8).

Theorem 3.12 (Multivariate Godambe Inequality). Consider a regular
inference function Ψ ∈ G. Then

jΨ (θ) � i(θ), ∀ θ ∈ Θ,

and the equality holds if and only if Ψ ∼ u, the score function.

Here the inequality symbol “�” means the Löwner’s partial ordering in
the space of non-negative definite matrices. That is, for two matrices A and
B,

A � B if and only if B −A is non-negative definite.

Proof. A similar derivation to equation (3.5) w.r.t. vector θ leads to

0 = SΨ (θ) + cov[Ψ(X;θ),u(X;θ)]. (3.9)

Note that the normalized inference function and the normalized score function
are given by, respectively,

Ψ̄(X;θ) = {−S−1
Ψ (θ)}Ψ(X;θ),

ū(X;θ) = {i−1(θ)}Ψ(X;θ).

Thus, the identity relation (3.9) can be rewritten as follows:

i−1(θ) = cov[Ψ̄(X;θ), ū(X;θ)].

This implies the following results:

(a) ū(X;θ) and Ψ̄(X;θ) − ū(X;θ) are uncorrelated;
(b) their information matrices satisfy jΨ (θ) � i(θ); and
(c) the score function ū(X;θ) contains more information about the param-

eter θ than the inference function Ψ̄(X;θ) in any linear subspace of the
inference functions, in the sense that

Var−1{aT ū(X;θ)} ≥ Var−1{aT Ψ̄(X;θ)}, for any a ∈ Rp.
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Part (a) holds because

cov(ū, Ψ̄ − ū) = cov(ū, Ψ̄) − cov(ū, ū)
= i−1(θ) − i−1(θ)
= 0.

Part (b) holds because Var{Ψ̄(X;θ) − ū(X;θ)} � 0 (i.e., it is a non-negative
definite matrix) and

cov(Ψ̄ − ū, Ψ̄ − ū) = cov(Ψ̄ , Ψ̄ − ū) − cov(ū, Ψ̄ − ū)
= j−1

Ψ (θ) − i−1(θ).

Thus, j−1
Ψ (θ) − i−1(θ) � 0 leads to jΨ (θ) � i(θ).

Part (c) is true because letting Ψ̄ = ū + (Ψ̄ − ū), we obtain the variance

Var(aT Ψ̄) = Var(aT ū) + Var{aT (Ψ̄ − ū)}
= Var(aT ū) + aTVar(Ψ̄ − ū)a
≥ Var(aT ū),

which holds for all a ∈ Rp.

Theorem 3.13 (Multivariate Crowder Optimality). Consider a regular
inference function ΨK(θ) ∈ Gc defined by

Ψc(x;θ) =
K∑
i=1

Ci(θ)ψi(xi;θ), θ ∈ Θ ⊆ Rp

where Ci(θ) is a non-random matrix of θ such that the sequence of roots
to equation Ψc(x;θ) = 0, K ≥ 1, is consistent. Then, the optimal inference
function in the Crowder class Gc is the one with the matrix Ci(·) given by

Ci(θ) = Eθ{Ψ̇i(Xi;θ)}TVar−1

θ
{Ψi(Xi;θ)}.

Proof. Since the proof is similar to the one given in Theorem 3.12, only an
outline is given. Let Ψc ∈ Gc be a general inference function, and let Ψo be the
inference function with the given Cis. First, show that cov(Ψ̄c, Ψ̄o) = −S−1

Ψo
,

where Ψ̄c and Ψ̄o are the corresponding normalized inference functions, and
SΨo is the sensitivity matrix of the Ψo. Then, Part (b) in the proof of Theorem
3.12 can be similarly established here, which leads to the Crowder optimality.

3.6 Generalized Method of Moments

Now let us consider the case of over-identification, in which a q-element
ΨK(x;θ) contains more components of inference functions than the number
of parameters in θ ∈ Rp; that is, q > p.
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Hansen (1982) introduced the generalized method of moments (GMM),
which may be regarded as a class of inference functions constructed through
the moments of the underlying statistical models. In particular, the number
of moment conditions (preferably orthogonal) used in the construction of an
inference function is usually greater than the number of parameters to be
estimated. If each moment condition forms one component of the inference
function, then the resulting inference function will have more equations than
the unknowns, and hence the parameter vector θ is said to be over-identified.
Obviously, it can not simply set

Ψ(x;θ) = 0,

as this equation has no non-trivial solution. To elucidate, let us consider a
simple example as follows: Let X1, . . . , XK be a random sample from Poisson
distribution with mean μ. Two moment conditions are given by

E(Xi) = μ,
E(X2

i ) = μ(1 + μ).

Using these moment conditions, one may construct two unbiased inference
functions for parameter μ,

ψ1(μ) =
K∑
i=1

(Xi − μ),

ψ2(μ) =
K∑
i=1

{X2
i − μ(1 + μ)}.

Joining two functions sets up an estimating equation,

ΨK(μ) =
1
K

[
ψ1(μ)
ψ2(μ)

]
= 0.

Clearly, this equation has no root, because the solution to ψ1(μ) is uniquely
the sample mean X̄ and the solution to ψ2(μ) is uniquely the sample variance
S2, and the probability that the sample mean and variance are the same is
zero. However, there is a consistent solution to an equation in a form of, say
linear combination of the two functions, ψ3(μ) = a(x)ψ1(μ) + b(x)ψ2(μ) = 0,
because ψ3(μ) is unbiased.

Taking a slightly different approach, Hansen (1982) suggested to find the
estimator of the θ by minimizing a quadratic objective function as follows,

θ̂
(w)

K = argmin
θ
ΨTK(x;θ)W−1(θ)ΨK(x;θ), (3.10)

whereW (θ) is a certain suitable q×q weighting matrix. Under some regularity

conditions such as unbiasedness, this estimator θ̂
(w)

K is consistent (Lee, 1996,
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P. 26). Obviously, estimator θ̂
(w)

K depends on the choice of weighting matrix
W .

Moreover, Hansen (1982) proved that the optimal weighting matrixWopt,

in the sense that the resulting estimator, θ̂opt,K of (3.10) has the smallest

asymptotic covariance among all estimators θ̂
(w)

K for allW , is effectively equal
to the variance of the inference function Ψ ; that is, Wopt = Var{ΨK(X;θ)}
leads to the optimal estimator of θ (Chamberlain, 1987). In other words,

θ̂opt,K = argmin
θ
ΨTK(x;θ)W−1

optΨK(x;θ).

This θ̂opt,K is the most efficient among all estimators of the form (3.10).
In addition, according to Hansen (1982), under some regularity condi-

tions, this estimator is not only consistent but also asymptotically normally
distributed with mean zero and asymptotic covariance given by the inverse of
the Godambe information; that is,

√
K(θ̂opt,K − θ) d→ MVNp(0, j−1(θ)),

where j(θ) is the Godambe information of ΨK . Therefore, the optimal objec-
tive function,

Q(x;θ) = ΨTK(x;θ)W−1
opt(θ)ΨK(x;θ). (3.11)

To apply this method, one has to plug in a consistent estimate of the
covariance matrix Wopt in the function (3.11).

Theorem 3.14 (Hansen, 1982). Suppose Ŵopt,K is a
√
K-consistent esti-

mate of Wopt, and {θ̂K} is a GMM estimator such that

θ̂K = argmin
θ
ΨTK(x;θ)Ŵ−1

opt,KΨK(x;θ).

Then, under some mild regularity conditions and q > p, the estimated
quadratic function

Q̂(x; θ̂) = ΨTK(x; θ̂)Ŵ−1
opt,KΨK(x; θ̂) d→ χ2(q − p), as K → ∞.

This theorem provides a Rao’s score-type test in the context of inference
functions for the goodness-of-fit. Note that this test is only valid if q > p;
otherwise, the limiting χ2 distribution does not hold. Refer to Lindsay and
Qu (2003) and Qu et al. (2000) for more discussions on quadratic inference
function based test and related issues.

According to Newey and McFadden (1994), the GMM estimators are pre-
ferred to MLE estimators in the aspects of robustness, analytic tractability,
and numerical stability, despite the fact that MLE is asymptotically more
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efficient when the model is correctly specified. GMM estimators are robust
because they are based on a limited set of moment conditions without as-
suming parametric distributions. For GMM consistency, only these moment
conditions need to be correctly specified, unlike MLEs that require correct
specification of every conceivable moment condition, i.e., GMM estimators
are robust with respect to distributional misspecification.

However, the price for the gain of robustness is the loss in efficiency with
respect to MLE estimators. Furthermore, in some cases, the MLE estimators
may not be available due to inability to deduce the likelihood function. The
GMM estimators may still be feasible even in situations where the MLE is
not possible.



4

Modeling Correlated Data

4.1 Introduction

The first part of this chapter is devoted to a general discussion about strategies
of modeling correlated data, and the second part introduces several methods to
simulate correlated data that are essential in simulation studies. As shown in
Chapter 1, a set of correlated data comprises a collection of repeated triplets,
(yij ,xij , tij), j = 1, . . . , ni and i = 1, . . . ,K, where xij = (1, xij1, . . . , xijp)T

is a (p+ 1)-element vector of covariates. Here variable tij may index time for
longitudinal data, or index spatial location for spatial data, or index other fea-
tures of a sampling protocol from which correlated observations are collected.
To express the data in matrix notation, (yi,Xi, ti), i = 1, . . . ,K, let

yi = (yi1, . . . , yini)
T , Xi = (xi1, . . . ,xini), ti = (ti1, . . . , tini)

T .

A parametric modeling framework assumes that yi is a realization of Yi

drawn from a certain population of the form,

Yi|(Xi, ti)
ind.∼ p(y|X = Xi, t = ti;θ), i = 1, . . . ,K,

where θ is the parameter of interest. The primary objective is to estimate and
infer the model parameter θ. In the regression analysis of correlated data, the
parameter θ typically consists of two subsets, β and Γ , where β is the param-
eter vector involved in a regression model for the mean of the population, and
Γ represents the other model parameters needed for the specification of a full
parametric distribution p(·|·), including those in the correlation structure.

Explicitly specifying such a parametric distribution for nonnormal data
is not trivial. In spite of the fact that the multivariate normal distribution
has been widely used in the analysis of continuous vector outcomes, it cannot
model some data types, such as correlated discrete and categorical data. As far
as regression analysis concerns, in order to handle correlated data, inevitably
there is a need for the extension of the univariate GLM theory to be multi-
dimensional, in which one can utilize rich 1-dimensional marginal distributions
of the GLM to accommodate various data types.
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In the construction of a multivariate distribution for correlated data,
marginal densities are assumed as

Yij |xij , tij ∼ DM(μij , σ2
ij),

where a regression analysis further specifies the location parameter μij to
follow a GLM,

g(μij) = η(xij , tij ;β), j = 1, . . . , ni. (4.1)

In general, the dispersion parameter is also indexed by (i, j), as it may be also
dependent on covariates and modeled by, for example,

log(σ2
ij) = ζ(xij , tij ; ς).

Depending on how the marginal GLM is specified, the parameter β may
appear in different forms. Several commonly used marginal models are pro-
posed in the literature. For the convenience of exposition, discussions will be
restricted to longitudinal data, where tij represents a time index. Also, time tij
may be included as a covariate in the covariate xij , if time plays a particular
role in the model specification.

(a) (Marginal GLM Model) When model (4.1) takes the form

η(xij , tij ;β) = xTijβ,

parameter β is the vector of regression coefficients. Here parameter β is
interpreted as the population-average effect, since it is constant over time
as well as across subjects.

(b) (Marginal Generalized Additive Model) When model (4.1) takes an addi-
tive form as follows,

η(xij , tij ;β) = θ0 + θ1(xij1) + · · · + θp(xijp),
β denotes the set of nonparametric regression functions θ0, θ1(·), . . . , θp(·).
In this formulation, when one covariate is time tij , the resulting model
characterizes a nonlinear time-varying profile of the data, which is partic-
ularly desirable in longitudinal data analysis.

(c) (Semi-Parametric Marginal Model) When model (4.1) includes both para-
metric and nonparametric predictors, for example,

η(xij , tij ;β) = θ0(tij) + xTijΥ,

the parameter β contains both the nonparametric function θ0(·) and the
regression coefficients Υ . In this model, the population-average effect of a
covariate is adjusted by a nonlinear time-varying baseline effect.

(d) (Time-Varying Coefficient Marginal Model) When model (4.1) follows a
GLM with time-varying coefficients,

η(xij , tij ;β) = xTijβ(tij),
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parameter β = β(t) represents a vector of regression coefficient functions
in time. This model characterizes time-varying effects of covariates, which
is useful in longitudinal data analysis. This is because in longitudinal stud-
ies, time-varying effects of covariates, rather than population-average con-
stant effects, are often of interest.

(e) (Single-Index Marginal Model) When model (4.1) is specified as follows,

η(xij , tij ;β) = θ0(tij) + θ1
(
xTijΥ

)
,

the parameter β includes the nonparametric functions θ0(·) and θ1(·) and
the vector of coefficients Υ . This model is particularly useful for dimension
reduction in the presence of a large number of covariates.

(f) A certain combination of models (a)-(e).

All these models essentially specify the first moment of the joint distribu-
tion p(·|·); that is, the mean vector E(Yi|xi) = (μi1, . . . , μini)T is modeled
by assuming each μij follow one of the above marginal models. Which model
form to choose depends mainly on objectives of data analysis and features of
the data.

A much harder task here is to specify higher moments of the joint distribu-
tion p(·) or even the joint distribution itself. This is the key to join marginal
models under a certain suitable association structure in correlated data anal-
ysis. Note that the multivariate normal is the distribution that can be fully
determined when mean μ (the first moment) and covariance matrix Σ (the
second moment) are given. In nonnormal distributions, it is generally diffi-
cult to determine a joint distribution based only on few low-order moments.
Three approaches have been suggested in the literature to develop statistical
inference procedures under different strategies of modeling association. They
are the quasi-likelihood (QL) modeling approach, the conditional modeling
approach, and the joint modeling approach.

(b)
(c)(a)

Fig. 4.1. Diagrams for three types of association models.

Essentially, the three approaches assume the same marginal model for the
first moments, but differ according to the modeling of correlation. Figure 4.1
shows these three scenarios, each representing one model of association. In
these panels, a solid dot represents a observation and a circle represents a la-
tent variable. A solid line represents a legitimate association and a dashed line
represents a working (hypothetical) association. By a legitimate association,
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it means an association induced in a proper multivariate distribution, and it
is referred, otherwise, to as working correlation. Panel (a) indicates that the
association of two observations is modeled by a working correlation, which is
assumed in the QL inference. Panel (b) indicates that the association of two
observations arises from their sharing of a common latent variable, which is
the assumption made in the conditional modeling approach. Panel (c) indi-
cates that the association of two observations is directly modeled by a joint
probability model, which is the approach of joint modeling.

4.2 Quasi-Likelihood Approach

The quasi-likelihood (QL) approach does not rely on the specification of a
full density function p(·), but just requires the availability of the first two
moments, namely the mean and covariance matrix of the data. The covariance
matrix is necessary in order to incorporate correlation of correlated outcomes
in inference for the improvement of efficiency with regard to parameters in
the first moment model. The mean and covariance constitute the minimal
requirements for a QL modeling approach.

A QL approach requires an explicit formulation of covariance Σi =
cov(Yi|Xi, ti). It is known that a covariance matrix may be written in the
form:

Σi = diag
[√

Var(Yi1), . . . ,
√

Var(Yini)
]
Γ diag

[√
Var(Yi1), . . . ,

√
Var(Yini)

]
,

(4.2)
where Γ = (γts) is the correlation matrix of Yi. Note that γts is the Pear-
son correlation coefficient between Yit and Yis. A relevant question is whether
the covariance matrix, in which γts primarily measures pairwise linear depen-
dence, is suitable to characterize the strength and nature of association for
correlated nonnormal data. The Pearson correlation is commonly known as
a linear dependence measure for normally distributed variates. To measure
dependence between nonnormal variates, there are some better tools than
Pearson correlation. For example, odds ratio (OR) is a measure of association
for categorical variates. For a pair of correlated binary variables (Yit, Yis), the
OR is given by

OR =
P (Yit = 1, Yis = 1)P (Yit = 0, Yis = 0)
P (Yit = 1, Yis = 0)P (Yit = 0, Yis = 1)

.

The odds ratio provides a better interpretation for the association because
it essentially contrasts probabilities of concordance to probabilities of discor-
dance. On the other hand, the Pearson correlation of (Yit, Yis) is

corr(Yit, Yis) =
P (Yit = 1, Yis = 1) − μitμis
{μit(1 − μit)μis(1 − μis)}1/2

,
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where μit and μis are the probabilities of success, respectively. To ensure the
condition |corr(Yit, Yis)| < 1, it immediately follows that

max(0, μit + μis − 1) < P (Yit = 1, Yis = 1) < min(μit, μis),

where the two limits are effectively the Fréchet lower and upper bounds (Joe,
1997), respectively. An obvious disadvantage of the Pearson correlation is that
it depends on the means μit and μis, which hence depends on the regression
coefficient parameter β, when these marginal means are modeled in regression
analysis. This often leads to restriction on the parameter space of β and
inconvenience in modeling correlated data. In contrast, the odds ratio between
the two variables is

OR(Yit, Yis) =
E(YitYis)E{(1 − Yit)(1 − Yis)}
E{Yit(1 − Yis)}E{(1 − Yit)Yis} , (4.3)

which can vary in (0,∞) and hence is no longer constrained by their means.
Some nonlinear dependence measures, such as Spearman’s ρ and Kendall’s

τ , may also be considered, as long as related interpretations are meaningful.
The use of covariance matrix (or Pearson correlation) is mostly for con-

venience, because it is mathematically well defined for all distributions with
finite second moments. This generality allows researchers to develop QL in-
ference in a unified fashion. In addition, incorporating the covariance matrix
in QL inference is closely related to the weighted least squares method, which
has been extensively studied in the literature.

On the line of Pearson correlation to characterize pairwise linear depen-
dence, an alternative measure is defined as follows. For a given pair of vari-
ables Yit and Yis, with respective continuous cumulative distribution functions
(CDF) Git and Gis. Consider a normal-score transformation of these variables
as follows:

Zij = Φ−1{Gij(Yij)}, j = t, s

where Φ−1 is the inverse of the standard normal CDF. Clearly, both trans-
formed variables Zit and Zis are normally distributed. Then, one may com-
pute the Pearson linear dependence for the Zit and Zis, and the resulting
dependence measure is denoted by ν,

ν(Yit, Yis) = corr(Zit, Zis) = corr[Φ−1{Git(Yit)}, Φ−1{Gis(Yis)}]. (4.4)

We have a few remarks:

(a) Φ−1{G(·)} is the so-called normal-score transformation. Note that when
the Yit and Yis are normally distributed, the measure ν will give the Pear-
son correlation.

(b)This transformation is monotonic, which implies that although ν(Yit, Yis)
and corr(Yit, Yis) may have different magnitudes, the directions of both
correlations are the same. That is, if corr(Yit, Yis) is positive (negative),
then ν(Yit, Yis) will be positive (negative), and vice versa. In addition, if
corr(Yit, Yis) > corr(Y ′

it, Y
′
is), then corr(Yit, Yis) > corr(Y ′

it, Y
′
is).
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(c) When the CDF G is discrete, the transformed variables Zit and Zis will not
be normally distributed. However, the definition of the ν-measure remains
mathematically valid provided that the second moment exists. In other
words, the ν-measure still provides a dependence measure for the normal
scores.

QL inference focuses on the marginal modeling of the first moments and
treats the second moments such as covariance matrix Σi as nuisance param-
eters (with no modeling). An important advantage of QL inference is that
misspecification of Σi will not affect the consistency of the estimator of β, as
long as the proposed QL inference function is unbiased. To implement a QL
approach, an estimate of the covariance matrix Σi, which will be plugged in
the QL inference function, has to be positive definite and consistent. Some ex-
amples that QL fails to produce reasonable estimates of β have been discussed
in the literature; e.g., Crowder (1986), Sutradhar and Das (1999), Wang and
Carey (2003), and Chaganty and Joe (2004).

Fitzmaurice et al. (1993) points out that to improve the efficiency of QL
inference, the covariance matrix Σi needs to be specified as close to the true
structure as possible, especially when covariates vary over different occasions
during data collection. The unstructured correlation is not always the best.
According to Liang and Zeger (1986), some common types of correlation struc-
tures used in the building of the covariance matrix Σi are as follows.

(1) (Independence) The independence correlation structure assumes that all
pairwise correlation coefficients are zero:

corr(Yit, Yis) = 0, t �= s, or ν(Yit, Yis) = 0, t �= s.

(2) (Unstructured) An unstructured correlation structure assumes that all
pairwise correlation coefficients are different parameters:

corr(Yit, Yis) = γts = γst, t �= s, or ν(Yit, Yis) = γts = γst, t �= s.

(3) (Interchangeability) Called also compound symmetry, the interchangeabil-
ity correlation structure assumes that all pairwise correlation coefficients
are equal and hence the components in the response vector Y are ex-
changeable (not ordered),

corr(Yit, Yis) = γ, t �= s, or ν(Yit, Yis) = γ, t �= s.

(4) (AR-1) The autoregressive correlation structure of order 1 assumes that
the correlation coefficients decay exponentially over time, and the re-
sponses are ordered in time and more correlated if they are closer to each
other in time than if they are more distant,

corr(Yit, Yis) = γ|t−s|, t �= s, or ν(Yit, Yis) = γ|t−s|, t �= s.
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(5) (m-dependence) This correlation structure is generated by a moving-
average process of order m, in which it assumes that the responses are
uncorrelated if they are apart more than m units in time, or |t− s| > m,

corr(Yit, Yis) = γts, for |t− s| ≤ m, or ν(Yit, Yis) = γts, for |t− s| ≤ m.

To determine which correlation structure among those listed above would
be suitable for a given correlated data, a preliminary residual analysis may be
invoked, which may be proceeded in the following steps:

Step I: Fit correlate data by a marginal GLM (4.1) under the independence
correlation structure, and outpout fitted values μ̂it.

Step II: Calculate the following Pearson-type residuals, which presumably
carry over the information of correlation that was originally ignored in
Step I:

rit =
yit − μ̂it√
V (μ̂it)

, t = 1, . . . , ni, i = 1, . . . ,K,

where V (·) is the unit variance function chosen according to the marginal
model.

Step III: Compute the pairwise Pearson correlations γ̂ts using residuals avail-
able in Step II for each pair of fixed indices (t, s), which produces a sample
correlation matrix R = (γ̂ts).

Step IV: Examine matrix R to see if there is any pattern in the sample corre-
lation coefficients over time that matches with one of those listed above.

The above preliminary examination of correlation structure is limited
mostly to equally spaced repeated observations. When data are collected
at unequally space occasions, the means of auto-correlation function is no
longer useful. The variogram proposed by Diggle (1990) provides an alter-
native function to depict the association among irregularly spaced repeated
measurements. For a time series Y (t), say, the variogram is defined by

ζ̂(u) =
1
2
E{Y (t) − Y (t− u)}2, u ≥ 0. (4.5)

To acquire the sample variogram of the residuals rit, first calculate pairs of
(vijk, uijk), where vijk is the half squared difference

vijk =
1
2
(rij − rik)2

and uijk is the corresponding time difference between the two residuals used
in the calculation of the vijk; that is,

uijk = tij − tik.
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When times tij are highly regular, the sample variogram is just given by the
average of all of the vijk, corresponding to a fixed u. Otherwise, the sample
variogram is estimated from the data (vijk , uijk) by a nonparametric smooth-
ing technique, such as kernel smoothing or spline smoothing.

The variogram function is not ideal to explore the association of categorical
repeated measurements directly. The lorelogram proposed by Heagerty and
Zeger (1998) is useful to describe the association among categorical responses
based on log-odds ratios. The lorelogram is defined as the function

LOR(tj , tk) = log OR(Yj , Yk),

where the OR between Yj and Yk is given in equation (4.3). The sample
lorelogram is estimated in a similar way to that in the sample variogram;
that is, use the sample proportions across subjects to replace the theoretical
probabilities (or expectations) in the definition of the OR. Figure 5.3 shows a
sample lorelogram in the analysis of multiple sclerosis trial data in Chapter 5.

Another issue related to the determination of a correlation structure is
the trade-off between the number of nuisance parameters and the closeness to
the true underlying structure. The question is which one–simpler correlation
structure with, say, one nuisance parameter, or closer to the true structure
with many nuisance parameters–would give better efficiency? Some simula-
tion studies (e.g., Fitzmaurice et al. 1993) have unveiled that the latter case,
choosing a correlation structure close to the true one, seems preferred, es-
pecially when covariates are time-varying in the longitudinal data analysis.
Modeling covariance or correlation structure of correlated data has drawn
much attention in the recent literature.

As usual, a residual analysis based decision of the correlation structure
is preliminary and subjective. A more rigorous approach to making decision
would be based on a certain model selection criterion, such as Akaike informa-
tion criterion (AIC), if available. In Chapter 5, a model selection procedure is
derived using QIF in the framework of QL inference.

4.3 Conditional Modeling Approaches

Two kinds of conditional modeling approaches will be discussed in this section.
The first kind is a latent variable based conditional modeling approach, and
the other kind is a transitional model based conditional approach.

4.3.1 Latent Variable Based Approach

One way to overcome the difficulty of directly specifying the joint distribution
is to consider conditional distributions, which are essentially one dimensional
(Laird and Ware, 1982). Suppose there exists a latent variable b, indicated
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as the circle in Panel (b) of Figure 4.1, such that conditional on the b, the
components in Y = (Y1, . . . , Yn)T are independent, namely

Y = (Y1, . . . , Yn)T |b ∼ p(y1|b) · · · p(yn|b). (4.6)

Then, the joint distribution p(·) will be obtained by integrating out the latent
variable b as follows:

p(y|X, t) =
∫
B
p(y,b|X, t)db

=
∫
B
p(y|b,X, t)p(b|X, t)db

=
∫
B

n∏
i=1

p(yi|b,X, t)p(X, t)db, (4.7)

where the joint density p(y|b,X, t) is fully specified by the one-dimensional
conditional distributions p(yi|b,X, t) under the assumption of conditional in-
dependence.

In this modeling approach, the latent variable b plays a critical role. The
following example presents one scenario in which the latent variables are in-
volved in the construction of a bivariate Poisson distribution.

Example 4.1 (Bivariate Poisson Distribution). To illustrate the conditional
approach, let Y1 and Y2 be two correlated Poisson variates that are defined as
follows,

Y1 = Z1 + Z12, Y2 = Z2 + Z12,

where Z1, Z2, Z12 are independent latent variables following Poisson distri-
butions with mean μ1, μ2 and μ12, respectively. Then, given Z12, Y1 and Y2

are conditionally independent. Note that by convolution, marginally Y1 ∼
Po(μ1 + μ12) and Y2 ∼ Po(μ2 + μ12). The covariance of (Y1, Y2) is

cov(Y1, Y2) = cov(E(Y1|Z12), E(Y2|Z12))
= cov(Z12, Z12)
= μ12 > 0,

where Ecov(Y1, Y2 | Z12) = 0. As a result, this latent variable approach gen-
erates a positively correlated bivariate Poisson vector. The joint probability
mass function is

P (Y1 = k1, Y2 = k2) =
∞∑
k3=0

P (Y1 = k1, Y2 = k2|Z12 = k3)P (Z12 = k3)

=

(
μk11

k1!
e−μ1

)(
μk22

k2!
e−μ2

)
×

min{k1,k2}∑
k3=0

k1!k2!
(k1 − k3)!(k2 − k3)!k3!

(
μ12

μ1μ2

)k3
e−μ12 .
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In general, in order to apply this conditional modeling approach, one
needs to specify two model components: 1-dimensional conditional distribu-
tions p(yij |bi), j = 1, . . . , ni and the distribution of the latent variables, p(bi).
Here the conditional density p(yij |bi) may be specified by a dispersion model
DM(μbij , σ

b
ij) (see Stiratelli et al. 1984). The latent variables bis are referred

to as random effects, which will be studied in detail in Chapters 7 and 8. With
the availability of the joint distribution in (4.7), the full maximum likelihood
estimation and inference can be developed. Albert (1999) points out that this
modeling approach is particularly useful for analyzing longitudinal data in
which there is a sizable number of missing observations either due to missed
visits, loss to follow-up, or death: missing at random (MAR) and/or missing
not at random (MNAR).

Some challenges associated with the conditional modeling approach are:

(a) If the dimension of the latent variable bi is high, say larger than 5, numer-
ical evaluation of the integral (4.7) in the calculation of the joint density
p(y|X, t) can be intricate. Some computationally intensive methods such
as Monte Carlo EM algorithm and Markov Chain Monte Carlo (MCMC)
algorithm may be invoked to overcome this difficulty.

(b) Specification of the distribution, p(b), of the latent variable b will affect
the form of the joint distribution p(y|X, t) and hence affect the resulting
MLE. Some studies (e.g., Butler and Louis, 1992; Verbeke and Lesaffre,
1997) have shown that the random-effects distribution has little effect on
fixed-effects estimation, due largely to the fact that the random effects con-
tribute only to the second moments, not to the first moments. Neverthe-
less, the asymptotic Fisher information matrix would become problematic
if the distribution of random effects is misspecified. More importantly, the
predictive distribution, p(b|y,x, t), of random effects is strongly depen-
dent on the assumed distribution of random effects. See more discussions
in Zhang (2006) for details.

(c) This conditional approach relies on the conditional independence assump-
tion (4.6), which needs to be validated. A simple question is how many
latent variables, one or ten, say, and in which form, would be appropriate
to approve the conditional independence. Little study has been done in
the literature for answers to this question.

4.3.2 Transitional Model Based Approach

Another conditional modeling approach makes a detour of the latent variable
b and directly specifies the conditional distribution of one response on others,
resulting the so-called transition models. This class of models is analogous to
the time-series autoregressive model, which allows practitioners to examine
the effect of covariates on the transitional patterns across the expectations of
the responses over time. See Cox (1970), Muenz and Rubinstein (1985), and
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Zeger and Qaqish (1988). Transition models are primarily useful to analyze se-
rially correlated longitudinal data. That is, given a collection of equally spaced
longitudinal observations, (yit,xit), one may assume that the conditional (or
transitional) density f(yit|yit−1, . . . , yit−q) follows an exponential dispersion
model where the mean may take an autoregressive model. More specifically,
let us consider the case of binary longitudinal responses. A logistic transi-
tion model of order q assumes that conditional on yit−1, yit−2, . . . , yit−q, the
current response Yit follows a Bernoulli distribution with the probability of
success given as follows:

logitP [Yit = 1|yit−1, yit−2, . . . , yit−q] = xTitβ +
q∑
j=1

θjyit−j (4.8)

where xitl are subject-specific and time-dependent covariates, and q is the
order of Markov dependence. The regression coefficients from models given
by (4.8) can be interpreted as the effects of covariates on the probability of a
binary event adjusting for the past history of the process.

Diggle et al. (2002) and Fahrmeir and Kaufmann (1987) extended these
models to ordinal and repeated categorical data, respectively. In both cases,
they considered models in discrete time with observations at regularly spaced
intervals. Kalbfleisch and Lawless (1985) and Kosorok and Chao (1996) fur-
ther considered the design and analysis of continuous-time transitional pro-
cesses from such data observed in discrete time. These approaches allow for
transitional inferences from highly irregularly-spaced observations by making
modeling assumptions that flexibly relate instantaneous probabilities of state
transitions to discrete-time transition probabilities.

The above specification for transition models as given by equation (4.8)
can be generalized to include a broader class of models in which the observed
response at time t, Yit, is modeled conditionally as an explicit function of its
history (past responses) Hit = (Yi1, . . . , Yit−1) and covariates xit. Cook and
Ng (1997) and Albert and Waclawiw (1998) developed two approaches that
allow for the transition probabilities in binary processes to follow a random-
effects distribution.

In fitting transitional models for a weak stationary Gaussian process, the
marginal distribution of Yit can be fully determined from the conditional
model without additional unknown parameters. However, when the marginal
distribution of Yit is not fully specified by the conditional model, one can es-
timate β and θjs by maximizing the conditional log-likelihood � =

∑
i logLi,

whose i-th piece for one subject is given by

Li(β,θ) = f(Yiq+1, . . . , Yini |Yi1, . . . , Yiq;β,θ)

=
ni∏

t=q+1

f(Yit|Yit−1, . . . , Yit−q;β,θ).
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The conditional score equation is then given by equating the first-order
derivatives of the conditional log-likelihood function to zero, i.e., �̇ = 0. Albert
and Waclawiw (1998) demonstrated that this approach is robust against
misspecified transition, a property also shared with the GEE-based marginal
models. However, they warn that if q is large relative to ni, then the use of
transitional models with the above conditional likelihood could be inefficient
and if the conditional mean is correctly specified but the conditional variance
is not, then they recommend use of the empirical sample variance estimates
in order to obtain a consistent inference about the model parameters.

This book focuses only on the latent variable based conditional approach.
This choice is based on the fact that there are no good software packages
currently available for transition models.

4.4 Joint Modeling Approach

The joint modeling approach attempts to directly construct the joint distribu-
tion p(·). In the 1-dimensional case, the DM family or the ED family presents
a rich class of parametric distributions for different data types under a unified
framework. To develop a multivariate analysis of correlated data similar to the
univariate GLM theory, multi-dimensional DM or ED families are inevitable.
In the literature, some ad hoc solutions have proposed to construct various
multivariate distributions, such as Bahadur’s representation for multivariate
binomial distributions, the stochastic representations for multivariate Pois-
son distributions (e.g., Example 4.1), and multivariate gamma distributions.
Unfortunately, none of these existing methods can be readily extended for a
unified construction of multivariate DM models.

Directly constructing multivariate DM models is of both theoretical and
practical interest. A unified framework for the multivariate DM models will
lead to an extension of the univariate GLM theory to the multivariate GLM.
With applications of the extended theory, correlated data can be modeled and
analyzed under a proper probability model, in which MLE can be developed
in a unified fashion.

Song (2000a) studied a unified DM framework generated by Gaussian cop-
ulas, where the proposed multivariate DM families satisfy the following prop-
erties, some of which are similar to those of the multivariate normal.

(a) The proposed family of multivariate DMs is only parametrized by the loca-
tion (or mean) μ and a dependence structure Γ , similar to the multivariate
normal. The dependence parameters in the distribution can be interpreted
in light of the ν-measure given in (4.4).

(b)The proposed multivariate DM is reproducible or marginally closed. That
is, its marginal distributions have the same distribution type as that of
the joint distribution.

(c) Parameters in the dependence matrix Γ can characterize both positive
and negative associations. The bivariate Poisson distribution given by the
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stochastic representation in Example 4.1 can only allow positive associa-
tion. This imposes limitation for the modeling of dependence structure.

(d)The proposed family of multivariate DMs includes the multivariate normal
as a special case, similar to the 1-dimension DM family.

Although this book focuses only on the development of the joint modeling
approach based on Gaussian copulas, other types of parametric copulas such as
Archimedean copulas may be applied in a similar way to carry out the analysis
of correlated data. With the availability of the multivariate DM families, one
can analyze correlated data in a fashion similar to what has been developed
in setting of the multivariate normal distribution. Details are supplied later
in Chapter 6.



5

Marginal Generalized Linear Models

For the ease of exposition, the presentation of this chapter is based on longi-
tudinal data, and transplanting the core material to analyzing other types of
correlated data can be done with little effort.

Marginal generalized linear models (MGLMs) are useful to conduct re-
gression analysis of longitudinal data in the form of many short time series
(i.e., small ni large K). They arise from the formulation of quasi-likelihood
modeling approach. This chapter focus on two quasi-likelihood inferences on
regression coefficients, namely Liang and Zeger’s (1986) generalized estimating
equations (GEE) and Qu et al.’s (2000) quadratic inference function (QIF).
As discussed in Chapter 4, MGLMs are used to study the population-average
pattern or trend over time for longitudinal data, where the serial correlation
is treated as a nuisance.

An underlying assumption for the use of MGLMs is that the subjects/
clusters from which the data are collected are relatively homogeneous, in the
sense that the variation in the response is mostly due to different levels of
covariates. This may be true when subjects/clusters are sampled under a well
designed and controlled study protocol. If subjects/clusters were sampled from
a population that contains variation beyond what available covariates can
explain, then the use of MGLMs should be cautious. Instead, the conditional
modeling approach may be appealing.

It is still under debate whether a correctly (or nearly correctly) speci-
fied correlation structure is necessary for the application of quasi-likelihood
inference in MGLMs. This debate has a lot to do with the efficiency of quasi-
likelihood inference. Nevertheless, quasi-likelihood inference is advantageous
for its robustness against the model misspecification on the correlation struc-
ture, and enjoys its simplicity, as it requires only correctly specifying the first
two moments of the underlying probability distribution of the data.

The theory of inference functions in Chapter 3 provides the theoretical
basis to establish Liang and Zeger’s GEE, Prentice’s (1988) GEE2, and Qu
et al.’s QIF. All of them may be regarded as special cases in a general frame-
work of inference functions.
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5.1 Model Formulation

An MGLM comprises three model components, as follows:

(a) (Marginal Random Component) Assume that response Yij marginally fol-
low a one-dimensional dispersion model:

Yij |(xij , tij) ∼ DM(μij , σ2
ij) (5.1)

where μij and σ2
ij are respectively the location and dispersion parameters,

possibly depending on covariates xij or/and time tij .
(b) (Marginal Systematic Component) Let μij = E(Yij |xij , tij) be the marginal

expectation. Assume that both μij and σ2
ij follow, respectively, GLMs

given by,

g(μij) = xTijβ, (5.2)

log(σ2
ij) = zTijα (5.3)

where zij may be a subset of xij , and the log link function on the second
model is to ensure the positivity for the dispersion parameter. This book
only discusses the marginal GLM (5.2)-(5.3), and for the other types of
marginal models, refer to Davidian and Giltinan (1995) and Wu and Zhang
(2006), and relevant references therein. For convenience, in the following
the covariate vector xij contains time covariate tij or a function of tij
whenever such a covariate is present in the model.

Fig. 5.1. A diagram of population-average summarization at each time point, while
the other covariates are withheld. The dotted line represents the summary curve
and each solid line represents an individual trajectory of observed time series.

The marginal model (5.2) may be essentially interpreted as an average
summary over the responses in the subgroup of subjects that share com-
mon values of covariates x, say the covariate of time, while the other co-
variates are withheld. Figure 5.1 presents a diagram, in which the dotted
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line presents a summary curve of many individual time-series trajectories,
each observed for one subject.

(c) (Correlation Structure Component) The Pearson correlation between Yij
and Yik is a function of both tij and μij , parametrized by a parameter
vector γ,

corr(Yij , Yik) = ρ(tij , tik, μij , μik;γ) (5.4)

where ρ(·) is a known function. Five common types of function ρ(·) have
been given in Section 4.2. They are independence, unstructured, inter-
changeability (compound symmetry), AR-1, and m-dependence.

Because the MGLM model features the average summary of the data, it
is also called the population-average model in the literature. The set of model
parameters is θ = (β,α,γ), which is unknown and needs to be estimated. In
this chapter, the estimation will be given via quasi-likelihood approaches.

In the MGLM formulation, because of the lack of a joint probability model,
it separately specifies marginal location, marginal dispersion, and correlation
structure. For normal longitudinal data, these three model components are
enough to build a multivariate normal distribution, but for nonnormal longi-
tudinal data, in general they are insufficient to fully determine a multivariate
dispersion model. For example, some higher-order associations than the pair-
wise correlation may be needed.

With regard to choosing a proper function ρ(·) in the correlation structure
component (5.4), a preliminary residual analysis may be conducted to find
some useful clues. Refer to Section 4.1 for relevant discussions. In equation
(5.4), the Pearson correlation is used as the dependence measure, which is
desirable for the normal data. However, for nonnormal data, other types of
association measures such as ν-measure may better describe the association
in the data. The use of Pearson correlation brings technical ease to the devel-
opment of a quasi-likelihood inference similar to the weighted least squares
estimation approach, which has been well studied in the statistical literature.

5.2 GEE: Generalized Estimating Equations

Theory of inference functions in Chapter 3 is now applied to develop general-
ized estimating equations (GEE), a quasi-likelihood estimation for parameter
θ. First consider the case where the dispersion parameter is constant, σ2

ij = σ2.
Let G be the collection of all regular inference functions, which contains the
score function of the underlying joint model for the data. According to Chap-
ter 3, the score function is the optimal inference function in the class G, in
which the optimality effectively corresponds to a full likelihood-based infer-
ence. However, this full likelihood inference is not permissible, given that only
the first two moments of the MGLM are specified. Thus, two key steps are
needed to establish quasi-likelihood inference:
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(a) identify a suitable subclass G∗ ⊂ G, which possibly does not contain the
score function, and then

(b) find the optimal inference function within this subclass G∗.

To identify G∗, it is helpful to first observe the estimating function derived
from a naive analysis under the independence correlation structure. Using
this naive estimating function as a reference, one can propose a subclass G∗ of
inference functions that contains such a naive estimating function. This will
result in the optimal inference function that exceeds the performance of the
naive estimation method.

5.2.1 General Theory

Under the assumption that all Yij are independent and Yij ∼ DM(μij , σ2), the
data can be thought essentially of as a cross-sectional dataset with sample size∑K
i=1 ni. A similar derivation to equation (2.18) leads to a quasi-score function

w.r.t. parameter β given by

s(Y;β) =
1
σ2

K∑
i=1

(
∂μi
∂β

)T
δi(yi;μi),

where μi = (μi1, . . . , μini)T , δi = (δi1, . . . , δini)T , with δij = − 1
2 ḋ(yij ;μij),

and

DT
i =

(
∂μi
∂β

)T
= Xi [diag{ġ(μi1), . . . , ġ(μini )}]−1

. (5.5)

It follows from Proposition 2.13 that E(δij) = 0, for all i, j, so E{s(Y;β)} = 0.
This implies that inference function s(Y;β) is unbiased. According to Theo-
rem 3.1, under some mild regularity conditions the solution, β̃, to the following
equation

Ψ0(Y;β) =
K∑
i=1

(
∂μi
∂β

)T
δi(yi;μi) = 0, (5.6)

will be a consistent estimator, even though the independence assumption does
not hold in the longitudinal data.

Next, to specify class G∗, which contains the Ψ0(·) as an element, one may
consider a class of linear unbiased inference functions based on the deviance
score vector δi = (yi;μi) of the form:

Ψ(Y;β) =
K∑
i=1

Ci(θ)δi(yi;μi),

where Ci is an arbitrary p × ni nonstochastic weighting matrix that may
depend on parameters other than the β. Denote this class by Gδ = {Ψ(Y;β)}.
Clearly, the Ψ0 belongs to the class Gδ with Ci =

(
∂μi

∂β

)T
. The Crowder
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optimality theory (Theorem 3.10) implies that the optimal inference function
in class Gδ is the one with the following weighting matrix

Ci(β) = E

{
∂δi(Yi;μi)

∂β

}T
[Var{δi(Yi;μi)}]−1

= −DT
i diag[E{−δ̇(Yi1; μi1)}, . . . , E{−δ̇(Yini

; μini
)}] [Var{δi(Yi;μi)}]−1 ,

where Di is defined in (5.5).
Let ri = (ri1, . . . , rini )T be a vector of the modified score residuals (see

Table 2.3) with the jth element being rij =
√
V (μij)rs,ij = V (μij)δij . Then,

ri = diag {V (μi1), · · · , V (μini )} δi(yi;μi). Thus, the optimal inference func-
tion can be expressed as

Ψop(Y;β) =
K∑
i=1

DT
i Ai [Var(ri)]

−1 ri, (5.7)

where

Ai = diag[E{−δ̇(Yi1;μi1)}, . . . ,E{−δ̇(Yini ;μini)}]diag {V (μi1), · · · , V (μini)}
= σ−2diag {Var(δi1)V (μi1), · · · ,Var(δini)V (μini)} .

The last equality holds because of Proposition 2.17. It is easy to see that the
optimal inference function Ψop is unbiased since E(ri) = 0.

The difficulty with the utility of the optimal inference function Ψop is that
the variance-covariance matrix Var(ri) is unknown. To overcome this, Liang
and Zeger (1986) suggested replacing the Var(ri) by a working covariance
matrix defined as follows,

Σi = G1/2
i R(γ)G1/2

i ,

where Gi = diag {Var(ri1), · · · ,Var(rini )}, and R(γ) is an ni×ni correlation
matrix that is fully characterized by a q-dimensional vector of parameters γ.
This R(γ) is referred to as a working correlation matrix. Clearly, when R(γ)
is the true correlation matrix of ri, the resulting inference function is the
optimal Ψop, and when R(γ) is the independence correlation matrix (i.e., the
indentity matrix), the inference function reduces to the naive Ψ0. In addition,
Proposition 2.17 gives the variance of a modified score residual rij as follows:

Var(rij) = V 2(μij)Var{δij(Yij ;μij)} = σ2V 2(μij)E
{
−δ̇(Yij ;μij)

}
. (5.8)

As a result, an estimating equation is given by

Ψ(Y;β) =
K∑
i=1

DT
i AiΣ

−1
i ri(yi;μi) = 0, (5.9)
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which is termed as the generalized estimating equation (GEE) by Liang and
Zeger (1986). Consequently, the estimate, β̂, of parameter β is defined as the
solution to the GEE (5.9).

This inference function Ψ(y;β) may be viewed as a multivariate extension
of the quasi-score function first proposed by Wedderburn (1974). The compli-
cation in such an extension is rooted in the fact that this function depends not
only on the parameter β of interest, but also on some nuisance parameters γ
and σ2. It is suggested in the literature that the dependence on (γ, σ2) can be
resolved by replacing these nuisance parameters in the Σi with, respectively,
their K1/2-consistent estimators, γ̂ and σ̂2. It is shown in Liang and Zeger
(1986) that, under some mild conditions, the resulting estimator β̂(γ̂, σ̂2) is
asymptotically equally efficient to the estimator β̂(γ, σ2) with the true values
of the parameters γ and σ2. Note that in some distributions, such as binomial
and Poisson, dealing with the nuisance parameters becomes slightly simpler
because the dispersion parameter σ2 is known.

In the following presentation of asymptotics, both γ and σ2 are assumed
to be known. So, denote β̂ = β̂(γ, σ2). Note that the GEE inference function
Ψ is unbiased. Under some mild regularity conditions, the estimator β̂ is
consistent, and K1/2(β̂ − β) is asymptotically multivariate Gaussian with
zero mean and covariance matrix of the form limK Kj−1(β), where j(β) is the
Godambe information matrix (also called the sandwich covariance estimator)
given by

j(β) = S(β)TV(β)−1S(β).
The sensitivity matrix S(β) is given by

S(β) = E{∇βΨ(Y;β)} =
K∑
i=1

DT
i AiΣ

−1
i E

{
∇βri(Yi;β)

}

= −
K∑
i=1

DT
i AiΣ

−1
i AiDi. (5.10)

And the variability matrix is given by

V(β) = E
{
Ψ(Y;β)ΨT (Y;β)

}
=

K∑
i=1

DT
i AiΣ

−1
i Var(ri)Σ−1

i AiDi, (5.11)

where Var(ri) is related to Var(δi) via the following form

Var(ri) = diag {V (μi1), · · · , V (μini)}Var(δi)diag {V (μi1), · · · , V (μini)} .
Here the variance matrix of δi, Var(δi), may be estimated by δiδTi .

It is worth pointing out that the insensitivity of the GEE (5.9) to the
nuisance parameters γ and σ2 ensures that the Godambe information j(β)
above is only marginally affected by the efficiency of the nuisance param-
eter estimators, γ̂ and σ̂2. This insensitivity is seen by the fact that both
E{∇γΨ(Y;β)} = 0 and E{∇σ2Ψ(Y;β)} = 0. This is because these nuisance
parameters involve only in terms Ai and Σi, and E{ri(Yi;μi)} = 0.
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5.2.2 Some Special Cases

This section presents three examples of the GEE with, respectively, the ex-
ponential dispersion (ED) distribution, the simplex distribution, and the von
Mises distribution.

Example 5.1 (ED GEE).

Liang and Zeger’s GEE (1986) becomes a special case of the estimating
equations (5.9) when the marginal distribution is an ED(μij , σ2). In this case,
the modified score residual rij = yij − μij , the regular raw residual, which
implies that Var(ri) = Var(Yi). Thus, the working covariance matrix is

Σi = diag1/2 {Var(Yi1), · · · ,Var(Yini)}R(γ)diag1/2 {Var(Yi1), · · · ,Var(Yini )}
= G1/2

i R(γ)G1/2
i ,

with
Gi = σ2diag {V (μi1), · · · , V (μini)} .

It is easy to show that for the ED model matrix Ai reduces to the identity
matrix. As a result, the optimal estimating equation becomes

Ψop(Y;β) =
K∑
i=1

DT
i Var(Yi)−1(yi − μi) = 0,

which is of the same form as the optimal weighted least squares estimating
function. The corresponding GEE then takes the form

Ψ(Y;β) =
K∑
i=1

DT
i Σ

−1
i (yi − μi) = 0, (5.12)

where only the nuisance parameter γ is involved, as the dispersion parameter
σ2 is factorized out of the equation.

The sensitivity and variability matrices can be simplified, respectively, as

S(β) = −
K∑
i=1

DT
i Σ

−1
i Di

and

V(β) =
K∑
i=1

DT
i Σ

−1
i Var(yi)Σ−1

i Di.

Hence, the Godambe information matrix is

j(β) =

{
K∑
i=1

DT
i Σ

−1
i Di

}{
K∑
i=1

DT
i Σ

−1
i Var(Yi)Σ−1

i Di

}−1{ K∑
i=1

DT
i Σ

−1
i Di

}
,

(5.13)
where the variance matrix Var(Yi) is estimated by (yi − μi)(yi − μi)T .



94 5 Marginal Generalized Linear Models

Example 5.2 (Simplex GEE).

Song and Tan (2000) studied a GEE with the simplex distribution mar-
gin, which also produces a special case of (5.9). Suppose marginally Yij ∼
S−(μij , σ2), where the marginal mean follows a GLM with the logit link; that
is, log μij

1−μij
= xTijβ.

From equation (2.25), the modified score residual of the simplex distribu-
tion is

rij = μ3
ij(1 − μij)3δ(yij ;μij)

= (yij − μij)
{
d(yij ;μij)μ2

ij(1 − μij)2 + 1
}
.

The working covariance matrix takes the form

Σi = G1/2
i R(γ)G1/2

i ,

where by Proposition 2.19, the j-th main diagonal element of Gi is

Var(rij) = σ2μ3
ij(1 − μij)3

{
3σ2μ2

ij(1 − μij)2 + 1
}
.

Similarly,

Ai = diag
{
3σ2μ2

i1(1 − μi1)2 + 1, · · · , 3σ2μ2
ini

(1 − μini)
2 + 1

}
,

DT
i = Xidiag{μi1(1 − μi1), · · · , μini(1 − μini)}.

Note that in this case, the dispersion parameter σ2 fully involves in the
GEE and cannot be factorized out of the equation. This complicates not only
the search for the root of the GEE, but also the performance of the GEE
estimator itself. Therefore, the dispersion parameter σ2 appears much more
substantially influential in the simplex GEE than in other GEE cases.

Example 5.3 (von Mises GEE).

Suppose marginally an angular response Yij ∼ vM(μij , σ2), where similar
to equation (2.31) the marginal mean direction follows the model of the form:
μij = μ0 + 2arctan(xTijβ), and β∗ = (μ0,β).

From Section 2.6.4, the unit variance function of the von Mises distribution
is V (μij) = 1, so the modified score residual is the same as the deviance score:

rij = δ(yij ;μij) = sin(yij − μ0 − 2arctan(xTijβ)).

By Proposition 2.17, it is easy to obtain the j-th main diagonal element of Gi

as
Var(rij) = Var{δ(yij ;μij)} = A1(λ)/λ,
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where A1(λ) = I1(λ)
I0(λ) is the mean resultant length and the same for all j, with

λ = 1/σ2, and I0(λ) and I1(λ) being the modified Bessel function of the first
kind given in Section 2.6.4. It is interesting to note that because this term is
constant, it can be factorized out the estimating equation with no effect on
the estimation of β. The components in GEE (5.9) are given by

DT
i =

[
1
Xi

] [
diag{1, 1 + η2i1, . . . , 1 + η2ini

}]−1

Ai = λdiag {Var(δij), . . . ,Var(δinii)} = A1(λ)Ini

where ηij = xTijβ, j = 1, . . . , ni.

5.2.3 Wald Test for Nested Models

Assume the nuisance parameters γ and σ2 are fixed. Suppose the full MGLM
(5.2) can be decomposed into two parts,

g(μij) = xTijβ = xT1ijβ1 + xT2ijβ2

where β1 ∈ Rp1 and β2 ∈ Rp2 , p1 + p2 = p. The hypothesis of interest is
H0 : β2 = 0. Under the null hypothesis, the model reduces to

g(μij) = xT1ijβ1,

nested to the full model. It follows from the asymptotic normality for the
full model that β̂2 is asymptotically multivariate normal with mean β2 and
covariance matrix [j−1]22, the submatrix of the inverse of Godambe matrix
j−1 corresponding to subvector β2 of β. Let j22 = [j−1]22. The Wald statistic

is then W 2 = β̂
T

2

(
j22
)−1

β̂2, which asmptotically follows χ2
p2 distribution.

Some other approaches have been proposed for testing complex hypotheses
in the mean and/or the association structure in marginal models for longitu-
dinal data. See, for example, Rotnitzky and Jewell (1990), Liang and Self
(1996), and Zeigler et al. (1998).

5.3 GEE2

A crucial step in the application of GEE is to plug in a
√
K-consistent estima-

tor of the correlation parameter γ, as well as a
√
K-consistent estimator of the

dispersion parameter σ2 if relevant. This section introduces two approaches
to handling these nuisance parameters: one is the so-called GEE2 that adds
additional unbiased estimating equations to estimate the nuisance parameters
to guarantee the required consistency, and the other is the quadratic inference
function that avoids estimating the nuisance parameters but just uses some
basis matrices from a given working correlation structure. One drawback of
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GEE2 is that, unlike GEE1, it is not robust to misspecification of the as-
sociation structure. Chan et al. (1998) moreover showed that GEE2 may be
computationally intensive, as it involves the inversion of matrices of dimension
O(n2

i ) ×O(n2
i ).

In the ED GEE or von Mises GEE, the dispersion parameter σ2 is not
involved in the GEE Ψ(Y;β) = 0, and hence can be separately estimated. In
contrast, the simplex GEE involves the σ2 deeply, which has to be estimated
simultaneously with the β. Note that in some distributions, such as binomial
and Poisson, the σ2 is known, unless over- or under-dispersion needs to be
accounted for in the modeling.

5.3.1 Constant Dispersion Parameter

First consider the case where σ2 is not involved in the GEE. Prentice (1988)
suggested to use an unbiased inference function to estimate γ, so the con-
sistency for both estimators β̂ and γ̂ can be guaranteed. That is, one may
include a second estimating equation, say, Ψ∗(Y;β,γ) = 0, based on certain
moment properties of residuals. Therefore, estimates of β and γ can be found
by simultaneously solving the joint estimating equation (GEE2):

Ψ(Y;β,γ) =
[
Ψ(Y;β,γ)
Ψ∗(Y;β,γ)

]
= 0.

To proceed, define residuals as follows:

eij =
δij√

E{−δ̇(Yij ;μij)}
, j = 1, . . . , ni, i = 1, . . . ,K, (5.14)

which may be regarded as an extended version of the Pearson residual in the
classical GLM theory with the ED model margins. This is because, by Propo-
sition 2.18, when the marginal distribution is an ED model, E{−δ̇(Yij ;μij)} =
1/V (μij), and thus δij = (yij − μij)/V (μij). This leads to eij = (yij −
μij)/

√
V (μij), which is the Pearson residual given in Table 2.3.

Moreover, by Proposition 2.17, it is easy to see that E(eij) = 0, Var(eij) =
σ2 and

E(eijeij′) = σ2corr(δij , δij′ ) = σ2corr(rij , rij′ ), j �= j′.
Thus, the second estimating equation may be formulated as follows,

Ψ∗(Y;β,γ) =
K∑
i=1

(
∂ξi
∂γ

)T
H−1
i (ei − ξi) (5.15)

where ei is a vector that contains all possible distinct pairwise cross-products
of the residuals, namely,

ei = (ei1ei2, ei1ei3, . . . , eini−1eini)
T .
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Hi is a working covariance matrix and ξi = E(ei). Clearly, inference function
Ψ∗ attains the Crowder optimality (Theorem 3.10), when Hi = Var(ei). How-
ever, it is consistency that is more crucial than efficiency in the estimation of
correlation parameter γ.

Example 5.4 (Interchangeable Structure). The interchangeable or compound
symmetry structure is a working correlation that defines corr(rij , rij′ ) = γ for
all i and all j �= j′. In such a case,

∂ξi
∂γ

= 1T ,

where 1 is an ni(ni− 1)/2 dimensional vector with all elements being 1. If Hi

is taken to be the identity matrix, then

Ψ∗(Y;β, γ) =
K∑
i=1

1T (ei − σ2γ1) =
K∑
i=1

1Tei − σ2γ
K∑
i=1

1
2
ni(ni − 1).

It follows immediately that the solution to this equation is

σ−2
K∑
i=1

∑
j>j′

eijeij′ /

{
K∑
i=1

1
2
ni(ni − 1)

}
.

When the β̂ is plugged in the calculation of the residuals, with the degrees of
freedom being adjusted, the resulting estimator of γ is given by

γ̂ = σ−2
K∑
i=1

∑
j>j′

êij êij′ /

{
K∑
i=1

1
2
ni(ni − 1) − (p+ 1)

}
,

which is identical to the the method of moments estimate for γ.

Example 5.5 (AR-1 Structure). The AR-1 correlation structure is useful to
incorporate the serial correlation,

corr(rij , rij′ ) = γ|tij−tij′ |, |γ| < 1.

To relax the constraint of the γ parameter, namely |γ| < 1, the exponential
correlation (EC) structure is used,

corr(zij , zij′) = exp(−γ̃|tij − tij′ |), γ̃ > 0,

which however only suits for positive serial correlation. The EC structure
appears more stable numerically.

Take the EC structure for illustration. When the matrix Hi is set to be
the identity matrix, the resulting estimating equation for parameter γ̃ is given
by



98 5 Marginal Generalized Linear Models

Ψ∗(Y;β, γ) =
K∑
i=1

cTi {ei − ξi} = 0, (5.16)

with

ci = [|ti1 − ti2| exp(−γ̃|ti1 − ti2|), . . . , |tini−1 − tini | exp(−γ̃|tini−1 − tini |)]T .

The solution of this equation does not have a closed form expression, and a
numerical algorithm is required to solve this equation jointly with the other
estimating equations with respect to the parameter β.

Note that in the two examples above, for simplicity, matrix Hi has been
taken to be the identity matrix, which will lead to a potential loss of efficiency
in estimation for γ. However, as pointed out by Diggle et al. (2002), this loss
of efficiency does not affect the β estimation much.

In summary, the GEE2 for parameter θ = (β,γ) takes a form of

Ψ(Y;θ) =
[
Ψ(Y;β,γ)
Ψ∗(Y;β,γ)

]

=

⎡
⎣ DT

i 0(
∂ξi

∂β

)T (
∂ξi

∂γ

)T
⎤
⎦
[
Ai 0
0 Iq

] [
Σi 0
0 Hi

]−1 [
ri

ei − ξi

]
= 0.

Again, the joint inference function Ψ(Y;θ) is unbiased as E{Ψ(Y;θ)} = 0.
The asymptotic results in Section 3.5 suggest that the estimator θ̂ = (β̂, γ̂) is
consistent. Moreover, under some mild regularity conditions, K1/2(θ̂ − θ) is
asymptotically multivariate normal with zero mean and covariance matrix of
the form limK Kj−1(θ) where j(θ) is the Godambe information matrix given
by

j(θ) = ST (θ)V−1(θ)S(θ).

The sensitivity matrix S and variability matrix V are given as follows. First,
S appears to be a block diagonal matrix, diag{S1(θ),S2(θ)}, where S1(θ) is
given in equation (5.10) and

S2(θ) = E∇γΨ∗(Y;θ) = −
K∑
i=1

(
∂ξi
∂γ

)T
H−1
i

(
∂ξi
∂γ

)
. (5.17)

The variability matrix can be written as a 2 × 2 block matrix as follows,

V(θ) = E{Ψ(Y;θ)ΨT (Y;θ)} =
(

V11(θ) V12(θ)
V21(θ) V22(θ)

)
,

where V11(θ) is given by equation (5.11), and the other three terms are
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V22(θ) =
K∑
i=1

(
∂ξi
∂γ

)T
H−1
i Var(ei)H−1

i

(
∂ξi
∂γ

)
,

V12(θ) =
K∑
i=1

DT
i AiΣ

−1
i cov(ri, ei)H−1

i

(
∂ξi
∂γ

)
,

V21(θ) = VT
12.

In the above, the dispersion parameter σ2 is assumed known (e.g., binomial
and Poisson); otherwise, it would be replaced by a

√
K-consistent estimator

σ̂2. Similarly, Var(ei) and cov(ri, ei) may replaced, respectively, by eieTi in
V22 and diag{V (μi1), · · · , V (μini )}δieTi in V12.

Several versions of the method of moments estimation for σ2 are presented
below. The first is to utilize the fact, Var(eij) = σ2, which turns out to be the
the mean-variance relation in the case of the ED GEE. This estimate take the
form

σ̂2 =
1∑K

i=1 ni − (p+ 1)

K∑
i=1

ni∑
j=1

ê2ij (5.18)

ED=
1∑K

i=1 ni − (p+ 1)

K∑
i=1

ni∑
j=1

(yij − μ̂ij)2
V (μ̂ij)

,

where the last equality holds for the family of ED marginal models.
The second one is the Jørgensen estimator derived from the application of

the small-dispersion asymptotics. Similar to equation (2.21),

σ̂2 =
1∑K

i=1 ni − (p+ 1)

K∑
i=1

ni∑
j=1

d(yij ; μ̂ij), (5.19)

which is the average of the marginal squared deviance residuals.
The third one uses the moment property given by Proposition 2.17 and

similar to equation (2.22),

σ̂2 =

∑K
i=1

∑ni

j=1(δ̂ij − ¯̂
δ)2∑K

i=1

∑ni

j=1(−ˆ̇
δij)

, (5.20)

where δ̂ij = δij(yij ; μ̂ij),
ˆ̇δij = δ̇ij(yij ; μ̂ij) and ¯̂

δ = 1∑
i ni

∑
i,j δ̂ij .

Our own experience suggests that the first one (5.18) usually works well
for the MGLM with any DM margin. Although the second one (5.19) is suit-
able for the MGLM with any DM margin, it is only recommended when the
dispersion parameter is not large, say σ2 ≤ 5. The third one (5.20) is an
alternative to the first one.
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5.3.2 Varying Dispersion Parameter

Consider the MGLM in that the dispersion parameter σ2 requires special
attention. The dispersion parameter σ2 describes the distributional shape,
which is beyond what the location or mean parameter alone can describe.
A few studies have investigated the impact of the dispersion parameter on
the GEE approach, when it is incorrectly modeled and estimated. See, for
example, Paik (1992) and Song et al. (2004). A technical advantage by set-
ting a constant dispersion parameter is that the regression coefficients can be
separately estimated from the dispersion parameter.

However, in practice the assumption of a constant dispersion may be ques-
tionable. For example, the magnitude of dispersion may vary across drug
treatment cohorts due to different rates of disease progression or over differ-
ent follow-up times due to different environmental exposures. It is clear that
the marginal pattern of a population depends not only on its averaged trend
but also on its dispersion characteristics, as described by the dispersion mod-
els. Therefore, incorporating varying dispersion in the modeling process allows
one to assess the heterogeneity of dispersion and to develop a simultaneous
inference for the entire marginal models concerning both trend and disper-
sion components. Such an access to the profile of the dispersion parameter
is important, and mistakenly assuming a varying dispersion to be constant
in the application of the GEE method could cause some serious problems in
statistical inference. For example, the asymptotic normality theory for the
estimators may no longer be valid, and this theory is crucial to test for statis-
tical significance for the effects of some covariates of interest. In addition, a
proper estimation for the dispersion parameter is appealing, for example, in
residual analysis, where a standardization for residuals is usually taken to sta-
blize their variances. The computation of standardized residuals always asks
for an appropriate estimate of the dispersion parameter.

Model log(σ2
ij) = zTijα given in (5.3) may be assumed to study the profile

of the dispersion in data analysis. When the covariate vector zij contains only
the intercept, this model reduces to the constant dispersion case. In other
words, this dispersion model allows us to perform a formal statistical test to
determine whether the constant dispersion assumption is appropriate. Given
an appropriate moment property, one may set up a third unbiased inference
function, Ψ∗∗(Y;θ), and then the GEE2 for parameter θ = (β,γ,α) becomes

Ψ(Y;θ) =

⎡
⎣ Ψ(Y;θ)
Ψ∗(Y;θ)
Ψ∗∗(Y;θ)

⎤
⎦ = 0. (5.21)

An version of inference function Ψ∗∗(Y;θ) may be formed on the basis of the
the moment property, Var(eij) = σ2

ij , where eij is defined in (5.14). That is,

Ψ∗∗(Y;θ) =
K∑
i=1

(
∂σ2

ij

∂α

)T
M−1

i (e2
i − σ2

i (α)) = 0,
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where e2
i = (e2i1, · · · , e2ini

)T , σ2
i (α) = E(e2

i ), and Mi is a certain weighting
matrix. Note that the eij reduces to the Pearson residual when the response yij
follows an ED model, and hence this moment property is effectively equivalent
to the mean-variance relation, Var(Yij) = σ2

ijV (μij). For non-ED models,
other kinds of moment properties can be also considered. For instance, in the
simplex GEE for continuous proportional tdata, Song et al. (2004) suggested
using a special moment property, Ed(Yij ;μij) = σ2

ij to construct the Ψ∗∗.
Since the joint inference function Ψ(Y;θ) preserves the unbiasedness, sim-

ilar asymptotics, including the Godambe information matrix, hold in this case.

5.4 Residual Analysis

This section concerns residual-based model diagnostics. As a semi-parametric
modeling approach, the MGLM is dependent on the appropriateness of some
parametric model assumptions. Three key parametric assumptions are: the
assumption for marginal distribution, the assumption for link function, and
the assumption for working correlation structure. Like every residual analysis,
the proposed diagnostic tools are only able to provide a graphic check, which
can only detect strong signals of model assumption violation. It is worth
pointing out that the GEE method cannot provide a rigorous goodness-of-fit
test for the first moment assumption, i.e., E{δ(Yij ;μij)} = 0 or the condition
E(Yij − μij) = 0 in the ED GEE. This is the most crucial assumption for a
valid MGLM analysis in order to obtain consistent estimation. Most of the
existing solutions are ad hoc, including Barnhart and Williamson (1998) and
Pan (2001; 2002). This weakness of the GEE can be overcome by the QIF
approach discussed in Section 5.5.

After an MGLM is fitted, the residuals can be calculated according to

eij
DM=

δij√
E{−δ̇(Yij ;μij)}

ED=
yij − μij√
V (μij)

, j = 1, . . . , ni; i = 1, . . . ,K.

It is known that E(eij) = 0 and Var(eij) = σ2. The standardized residuals are
ēij = eij/σ, which consequently have mean zero and variance (or standard
deviation) 1. It is also known that

corr(ēij , ēij′) = corr(δij , δij′ ).

The sample counterpart of ēij is

̂̄eij DM=
δ̂ij

σ̂

√
Ê{−δ̇(Yij ; μ̂ij)}

ED=
yij − μ̂ij
σ̂
√
V (μ̂ij)

.
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5.4.1 Checking Distributional Assumption

Take a representative moment property as the target for diagnosis. One pro-
posal is to check the property Var(eij) = σ2, which is equivalent to checking
the mean-variance relation, Var(yij) = σ2V (μij) in the case of the ED mar-
gin. If this relation is true, then the variance of the Pearson-type residual is
Var(ēij) = 1 and independent of mean μij . Therefore the plot of ̂̄eij against
μ̂ij may be invoked for checking the mean-variance relation, and hence the
assumption of marginal distribution. The ideal appearance of the plot would
be that all points randomly scatter around the horizontal line at zero, with ap-
proximately 95% points in the band (−2, 2). Any departure from this suggests
that the assumed distribution may not be appropriate for the data.

5.4.2 Checking Constant Dispersion Assumption

The plot of ̂̄eij against μ̂ij can also be used to check if the dispersion parameter
is constant over the mean value of the response, if the residuals are calculated
from the GEE under the assumption of a constant dispersion. In the mean
time, plots of ̂̄eij against individual covariates xijl , l = 1, . . . , p, can indicate
whether the dispersion parameter depends any specific covariates, such as the
covariate of time.

5.4.3 Checking Link Functions

An informal check for the link function assumption could be done by following
the McCullagh and Nelder (1989) plot of the adjusted dependent variable w
against the linear predictor η̂. In our setting, define

wij = g(μij) + ġ(μij)(yij − μij), j = 1, . . . , ni; j = 1, . . . ,K.

Clearly E(wij) = g(μij) since μij = E(yij). If the link function is appropriate,
the plot of ŵij = g(μ̂ij) + ġ(μ̂ij)(yij − μ̂ij) against η̂ij = xTijβ̂ should show a
straight line. Practically, drawing a least-squares fitted line of ŵij on η̂ij helps
in visualizing possible deviations in the diagnosis.

5.4.4 Checking Working Correlation

Although it is difficult to model the true correlation structure of correlated
data, approximate correlation structures would be appealing to achieve high
efficiency of estimation for regression coefficients. It is important to assess the
appropriateness of working correlation used in GEE via residual analysis. The
idea behind is that the resulting residuals should not show strong and sys-
tematic patterns in the serial correlation if the working correlation structure
is a good approximation to the true one. Note that



5.5 Quadratic Inference Functions 103

corr(ēij , ēij′ ) = corr(rij , rij′ ),

which means that the true correlation of variable zij is equal to that of the
standardized residuals ēij . Now form cross-sectionally a vector of residuals at
the jth time, denoted by

ej = (ē1j , . . . , ēKj)T , j = 1, . . . , n∗ = max(n1, . . . , nK).

In general, the dimension of the residual vector is variable over time. Then,
calculate the n∗×n∗ sample correlation matrix based on these cross-sectional
residual vectors ej ’s. All off-diagonal values should be modest (less than 0.4,
say) if the working correlation is appropriate. Alternatively, one may construct
a scatterplot matrix for all possible pairs of ej ’s, and if the working correlation
is an appropriate approximation to the true one, all plots should show no
strong dependence and patterns over time.

5.5 Quadratic Inference Functions

Quadratic inference functions (QIF) provide another quasi-likelihood inference
in the MGLM. In comparison to the GEE approach, QIF has the following
advantages:

(a) The application of QIF does not require more model assumptions than the
GEE.

(b) It constructs more estimating functions than the number of parameters,
so extra degrees of freedom are available to perform the goodness-of-fit
test. Moreover, some model selection criteria such as AIC and BIC can be
established in QIF. Note that such types of procedures are unavailable in
the GEE.

(c) Qu et al. (2000) showed that the QIF estimator of β in the MGLM is
more efficient than the GEE estimator, when the working correlation is
misspecified, but equally efficient when the working correlation is correctly
specified. This efficiency gain is due to the fact that QIF does not need to
estimate the parameters in a given correlation structure.

(d)The QIF estimators are robust with a bounded influence function against
unduly large outliers or contaminated data points, whereas the GEE is not
robust and very sensitive to influential data cases. The current effort in the
literature is on the detection and removal of outliers (Preisser and Qaqish,
1996), rather than dealing with outliers via robust estimating functions.
Refer to Qu and Song (2004) for more details.

The formulation of QIF is rooted in the availability that the inverse of the
working correlation R(γ) can be expressed by a linear combination of basis
matrices; that is,

R−1(γ) =
m∑
l=1

γlMl, (5.22)
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where M1, . . . ,Mm are known matrices and γ1, . . . , γm are unknown coeffi-
cients.

Example 5.6 (Interchangeable Structure). The interchangeable (or compound
symmetry) working correlation matrix R gives rise to R−1(γ) = γ1M1+γ2M2,
where γl, l = 1, 2 are both functions of the equi-correlation parameter γ. The
two basis matrices areM1 = Ini , the ni-dimensional identity matrix, andM2,
a matrix with 0 on the diagonal and 1 off the diagonal.

Example 5.7 (AR-1 Structure). The inverse of the AR-1 working correlation
R can be written as R−1(γ) = γ1M1 + γ2M2 + γ3M3, where γj , j = 1, 2, 3
are functions of the auto-correlation parameter γ. These three basis matrices
can be found as M1 = Ini , M2 with 1 on the two main off-diagonals and 0
elsewhere, and M3 with 1 on the corners (1, 1) and (ni, ni), and 0 elsewhere.

Note that this decomposition (5.22) is in general not unique, and the basis
matrices given in the above examples are suggested in Qu et al. (2000). What
really matters in (5.22) is that it gives rise to different moment conditions,
which is essential to employ the generalized method of moments (GMM) in-
troduced in Section 3.6.

Plugging the form (5.22) into the GEE (5.9) results in

K∑
i=1

DT
i AiG

−1/2
i (γ1M1 + . . .+ γmMm)G−1/2

i ri = 0. (5.23)

This is in fact a linear combination of elements of the following inference
function vector, each being related to one basis matrix,

ϕ(Y;β) =
1
K

K∑
i=1

ϕi(Yi;β)

=
1
K

⎡
⎢⎢⎣
∑K

i=1 DT
i AiG

−1/2
i M1G

−1/2
i ri

...∑K
i=1 DT

i AiG
−1/2
i MmG−1/2

i ri

⎤
⎥⎥⎦ , (5.24)

where the coefficients γl’s are not involved. If an independence working cor-
relation is assumed, the ϕ reduces to the GEE, with m = 1 and M1 = Ini .

Since the number of components in inference function ϕ is greater than
the dimension of β, it is impossible to directly solve ϕ(β) = 0 for β. This is
because the β is overidentified. Following the GMM in Section 3.6, one may
utilize the optimal quadratic distance function of the ϕ

Q(β) = ϕT (Y;β)C(β)−1ϕ(Y;β), (5.25)

and take its minimizer as the estimator of β,
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β̂ = argmin
β
Q(β).

Here matrix C(β) = (1/K2)
∑K

i=1ϕi(β)ϕi(β)T is a consistent estimate of the
variance of ϕ(Y;β). Under some mild regularity conditions, this minimizer
is unique. This objective function Q is referred to as the quadratic inference
function (QIF).

Qu et al. (2000) showed that the QIF estimator β̂ is consistent and asymp-
totically normal, and that the asymptotic variance is equal to the inverse of the
Godambe information matrix, j(β)−1, where j(β) = STϕ(β)Vϕ(β)−1Sϕ(β).
Also, the Godambe information matrix may be consistently estimated by

ĵ(β̂) = ϕ̇(β̂)TC(β̂)−1ϕ̇(β̂).

An important contribution of the QIF is that it provides a goodness-of-fit
test for the first moment assumption of the MGLM, i.e., E{δij(Yij ;μij)} = 0
or E(yij − μij) = 0 under ED margins. This test not only closely mimics
an extension of the minimum χ2 method of generating the best asymptoti-
cally normal estimates as originally introduced by Neyman (1949) and later
expanded by Ferguson (1958), but is also analogous to the likelihood ratio
test in the framework of likelihood-based inferences. Theorem 3.14 implies
that under the null hypothesis of the first moment assumption being valid,
the asymptotic distribution of Q(β̂) is χ2 with degrees of freedom equal to
{dim(ϕ)−dim(β)}. In the QIF (5.25), where each component is p-dimensional,
it is easy to see that df = mp− p = (m − 1)p, where p = dim(β). Therefore,
the null will be rejected if the corresponding p-value of the observed statistic
is smaller than 0.05, say. Note that this test holds whether or not the working
correlation is correctly specified.

Example 5.8 (Unstructured Correlation).
The construction of QIF for the case of unstructured correlation is done

in a very different fashion. Qu and Lindsay (2003) found that an approx-
imately optimal inference function can be obtained through a sequence of
basis matrices I, V, V 2, . . . , where V = Var(Y). Therefore, they suggested us-
ing M1 = I,M2 = V, . . . ,Mm = V m to form the QIF. In most applications,
m = 2 or m = 3 would give a satisfactory efficiency gain, and adding more
basis matrices will not generally improve the efficiency much but, on the other
hand, make related numerical computations much more difficult.

This variance matrix can be estimated simply by the sample covariance
matrix (y−μ)(y−μ)T , where μ = μ(β) will be updated along the updating
of regression coefficient β in the iterative algorithm. An advantage of this
method is that it avoids the need of inverting the correlation matrix, which
may be difficult in some model settings.

Finally, the objective function Q can be used to define certain model selec-
tion criteria such as Akaike’s information criterion (AIC) and the traditional
Bayes information criterion (BIC), respectively, as follows,
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AIC = Q(β̂) + 2(m− 1)p,

BIC = Q(β̂) + {(m− 1)p} ln(K).

Similar to Section 5.2.3, a score-type test for a nested model can be derived.
Suppose the hypothesis of interest is H0 : β2 = 0, under a partition of β =
(β1,β2) in the full model,

g(μij) = xTijβ = xT1ijβ1 + xT2ijβ2.

Here dim(β1) = p1, dim(β2) = p2, and p1 + p2 = p. Then under the H0, the
difference of QIF,

DQIF = Q(β̂1) −Q(β̂)
asy.∼ χ2

p1 .

Thus, reject H0 when the p-value of the observed DQIF is smaller than 0.05,
say.

5.6 Implementation and Softwares

5.6.1 Newton-Scoring Algorithm

The Newton-scoring algorithm is the key numerical recipe in the search for
the root of a system of nonlinear equations. Take the GEE2 with a known
dispersion parameter as an example for illustration, and the implementation
in the other versions of the GEEs can be done similarly.

The numerical task is to solve the following GEE2 for β̂ and γ̂, with given
σ2,

Ψ(Y;θ) =
[
Ψ(Y;β,γ)
Ψ∗(Y;β,γ)

]
= 0. (5.26)

Because the sensitivity matrix S of the Ψ is block-diagonal, diag(S1,S2), solv-
ing Ψ(Y;θ) = 0 can be done iteratively between the following two Newton-
scoring updates:

β(l+1) = β(l) − S−1
11

(
θ(l)
)
Ψ
(
θ(l)
)
,

γ(l+1) = γ(l) − S−1
2

(
θ(l)
)
Ψ∗
(
θ(l)
)
,

where S1 and S2 are two sensitivity matrices given respectively by (5.10) and
(5.17) .

It is worth pointing out that at each iteration, the Newton-scoring update
for the β effectively performs a weighted least squares calculation. Rewrite
the iterative step as

β(l+1) =

{
K∑
i=1

XiW−1
i

(
θ(l)
)

XT
i

}−1 K∑
i=1

XiW−1
i

(
θ(l)
)
r̃i
(
θ(l)
)
, (5.27)
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where, suppressing the θ(l)

Wi = diag{ġ(μi1), . . . , ġ(μini )}A−1
i ΣiA

−1
i diag{ġ(μi1), . . . , ġ(μini)}

r̃i = XT
i β

(l) + diag{ġ(μi1), . . . , ġ(μini)}A−1
i ri.

The formula (5.27) is exactly the same as the weighted least squares estimation
of β in a linear regression model

r̃i = XT
i β + ε̃i, ε̃i ∼ MVNni(0,Wi).

The inverse matrix in (5.27) may be obtained by using a generalized inverse.
A generalized inverse of a matrix A is any matrix G such that AGA = A.

5.6.2 SAS PROC GENMOD

SAS PROC GENMOD currently performs the GEE (not GEE2), in which
parameters γ and σ2 are separately estimated from the estimation of β via
(5.12). It is noted that this SAS PROC is only applicable for the MGLM with
the ED margins, including normal, binomial, Poisson, and gamma, and it does
not work for the simplex or von Mises marginal margins.

Take the multiple sclerosis data of Section 1.3.6 as an example, in which
the response Yij is binary variable with Yij = 1 indicating the presence of
exacerbation and 0 otherwise. The covariates includes trti for the admin-
istrated dose level for subject i (independent of time index j), duri for the
baseline duration of disease since the diagnosis, and two time variables tj and
t2
j , which are independent of subject index i because of the same scheduled

visit times during the trial. The marginal logistic marginal model is

log
πij

1 − πij = β0 + β1trti + β2tj + β3t2j + β4duri,

where πij = prob(Yij = 1|xij) is the probability of exacerbation. SAS PROC
GENMOD allows several working correlation structures in the GEE estima-
tion of the regression coefficients. The following SAS codes are based on un-
structured, interchangeable, and AR-1, respectively.

title "UNSTRUCTURED CORRELATION";
:::::::(DATA IMPORT)::::::::::::
proc genmod data=exacerb;
class id;
model rel= trt t1 t2 dur / dist=bin link=logit;
repeated subject=id / type=un corrw covb modelse;
run;

title "INTERCHANGEABLE CORRELATION (type=cs)";
:::::::(DATA IMPORT)::::::::::::
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proc genmod data=exacerb;
class id;
model rel= dose t1 t2 dur / dist=bin link=logit;
repeated subject=id / type=exch corrw covb modelse;
run;
/*cs stands for compound symmetry*/

title "AR-1 CORRELATION";
:::::::(DATA IMPORT)::::::::::::
proc genmod data=exacerb;
class id;
model rel= dose t1 t2 dur / dist=bin link=logit;
repeated subject=id / type=ar corrw covb modelse;
run;

The data imported to SAS has to be formatted in the following panel form:

1 x x x x
1 x x x x
1 x x x x
2 x x x x
2 x x x x
2 x x x x
2 x x x x
... ...

where subject 1 has three repeated measurements and subject 2 has four
repeated measurements, and so on, listed vertically in columns.

5.6.3 SAS MACRO QIF

An α-test version of a SAS MARCO QIF is available for a secured download at
the webpage www.stats.uwaterloo.ca/~song/BOOKLDA.html. Outpouts of
this macro include estimates of the model parameters, asymptotic covariance
matrix, standard errors, χ2 statistic for goodness-of-fit tests, and two model
selection criteria AIC and BIC. It is applicable to the following marginal
distributions:

Distribution Canonical link function
Normal Identity g(μ) = μ
Poisson Log g(μ) = log(μ)
Binary Logit g(μ) = log{μ/(1 − μ)}
Gamma Reciprocal g(μ) = 1/μ

In addition, this macro accommodates the following working correlation
structures: independent, unstructured, AR-1, and interchangeable. Users can
choose from these available options in their data analysis.
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This QIF macro works when the sizes of repeated measurement are dif-
ferent for clusters (except for the unstructure correlation case), where the
dimension of the individual inference function ϕi in (5.24) is modified accord-
ingly. It implements a Newton-scoring algorithm with the starting values being
assigned as the estimates from PROC GENMOD under the same correlation
structure.

Additional features of macro QIF are:

(a) The format of dataset for the macro is the same as that for PROC GEN-
MOD.

(b)The α-test version implements only the listwise deletion method for han-
dling missing values. That is, it assumes the mechanism of missingness
to be missing completely at random (MCAR). However, this macro does
include an argument of weight, with the default set at 1, which provides
flexibility in possibly incorporating suitable values of weights such as those
determined by the inverse probability weighting scheme, in order to handle
the missing at random (MAR) situation.

(c) For binary data, this macro specifies the default probability of “outcome
being 1” to be modeled.

(d)This macro is developed under SAS version 9.1.3.
(e) The main program is coded in PROC IML.

Macro QIF first validates input arguments before the numerical computa-
tion begins. All outputs are formatted in the standard SAS module, which is
easy to read and edit. The input arguments include dataset, response, covari-
ates, cluster identification, type of marginal distribution, type of correlation
structure, and flag of displaying results. Outputs include parameter estimates,
asymptotic covariance matrix, fitted values and pearson/deviance residuals,
goodness-of-fit test statistic, and AIC/BIC. All of these are stored as SAS
datasets located in SAS Work library.

Based on the same data example as in the illustration of PROC GENMOD,
the macro code is

\%qif(data=exacerb, yvar=rel, xvar=dose dur t1 t2, id=id,
dist=bin, corr=exch, print=Y, outpar=par2, outqif=qif2,
outcov=cov2,outres=binres);

run;

5.7 Examples

This section presents three data examples. The first is the analysis of the
multiple sclerosis data introduced in Section 1.3.6, where a binary response,
exacerbation, is of interest. The second example is the analysis of the epilep-
tic seizures data discussed in Section 1.3.2, in which the response of interest is
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the number of seizures observed during a period of two weeks. The third one
is the analysis of the retinal surgery data described in Section 1.3.3, where
the response is a percentage of gas absorption confined between 0 and 1.

Each example emphasizes different aspects of the quasi-likelihood methods
discussed in this chapter, including estimation, residual analysis, goodness-of-
fit, model selection, and robustness.

5.7.1 Longitudinal Binary Data

Refer to Section 1.3.6 for a detailed data description. Both the GEE and QIF
are applied to fit the data, and the QIF is applied to perform a goodness-of-fit
test and to select the correlation structures. Among the three response vari-
ables, only one binary response, exacerbation, is analyzed in this example,
which refers to whether an exacerbation began since the previous MRI scan,
and 1 for yes and 0 for no.
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Fig. 5.2. Empirical percentage and smoothed empirical percentage of exacerbations
over 17 weeks across three treatment arms.
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Figure 5.2 displays the empirical percentage of exacerbations (on the left
panel) over the study period of 17 weeks across three treatment arms (placebo,
low dose, and high dose). To better visualize patterns regarding the changes on
the percentage of exacerbations over time, the right panel shows a smoothed
version of the left panel using a local smoothing technique, LOWESS. This fig-
ure clearly unveils that the time effect is not linear, so a quadratic polynomial
in time is imposed in the fit. The central objective is to examine whether the
drug helps to reduce the risk of exacerbation for multiple sclerosis patients.

Several baseline covariates are included in the model. They are, treatment
(trt), time (t) in weeks, and squared time (t2), and duration of disease
(dur) in years. Here trt is treated as an ordinal covariate with scales 0, 1, 2
representing zero (placebo), low, and high dosage of the drug treatment. This
leads to the marginal logistic model for the data:

logit(μij) = β0 + β1 trti + β2 tj + β3 t2j + β4 duri, (5.28)

where μij is the probability of exacerbation at visit j for subject i.
Three correlation structures (independence, interchangeable, and AR-1)

are considered in both GEE and QIF analyses. Since under the independence
structure both methods give the same results, it is excluded in the comparison.
The estimates produced from PROC GENMOD and macro QIF are listed in
Table 5.1.

Table 5.1. GEE estimates (standard errors) from PROC GENMOD and MACRO
QIF.

AR-1 Interchangeable

GEE QIF GEE QIF

Par. Est(Std Err) Est(Std Err) Est(Std Err) Est(Std Err)

intcpt −0.6793(0.3490) −0.4955(0.3443) −0.6847(0.3502) −0.5419(0.3169)
trt −0.0151(0.1501) −0.0222(0.1491) −0.0175(0.1497) −0.0650(0.1448)
time −0.0259(0.0128) −0.0269(0.0128) −0.0251(0.0129) −0.0267(0.0127)
time2 0.0002(0.0001) 0.0002(0.0001) 0.0002(0.0001) 0.0002(0.0001)
dur −0.0449(0.0229) −0.0715(0.0242) −0.0458(0.0228) −0.0586(0.0236)

This analysis did not find strong evidence that the population average ef-
fect of the drug treatment is significant in reducing the risk of exacerbation.
The baseline disease severity measured as the duration of disease before the
trial is an important explanatory variable associated with the risk of exacer-
bation. For the time-course effect, both linear and quadratic time covariates
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are significant. This is due partly to the fact that periodic recurrences of the
disease behave in a more complicated fashion than a linear function. To better
understand the treatment effect along with the cycle of disease recurrences, it
may be appealing to invoke a varying coefficient model in that the treatment
effectiveness would be modeled as a time-dependent function. Interested read-
ers may refer to Wu and Zhang (2006) for fitting a time-varying coefficient
model.

Table 5.2. The goodness-of-fit test statistic Q and AIC/BIC model selection criteria
given by macro QIF.

Statistic AR-1 Interchangeable

Q 4.3 2.5
df 5.0 5.0
AIC 14.3 12.5
BIC 23.3 21.5

Macro QIF also reports the goodness-of-fit test statistic Q and AIC/BIC
model selection criteria, which are listed in Table 5.2. According to the χ2

distribution with 5 degrees of freedom, the p-value of the goodness-of-fit test
statistic is 0.507 under AR-1 structure and 0.776 under interchangeable struc-
ture, both suggesting that the specification of the first moment structure,
namely model (5.28), is appropriate. The comparison of AIC/BIC implies that
the interchangeable structure is slightly better than the AR-1 structure. The
lorelograms of the observed exacerbation incidences across the three groups,
shown in Figure 5.3, confirms the result of model selection, because there are
no obvious patterns suggested in these lorelograms.

Since both correlation structures give the same conclusions regarding the
statistical significance for the covariates as well as the goodness-of-fit, it is not
very crucial to determine which structure to be used in the analysis.

5.7.2 Longitudinal Count Data

This section presents an analysis of the epileptics data introduced in Section
1.3.2 using both GEE and QIF methods. The emphasis of this analysis is
on the robustness of QIF. As pointed in Section 1.3.2, patient ID 207 is a
noticeable outlier. To assess how outlier patient 207 influences the performance
of GEE or QIF, the same analysis is done twice, once for the full data including
patient 207 and then for the subset of the data excluding this patient. Then
the amount of change occurred in the estimation between the two settings is
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Fig. 5.3. Lorelograms of repeated exacerbation incidences over 17 weeks across
three treatment arms.

measured by the well-known criterion DFBETAS. That is, for each parameter,
a ratio of relative change is defined as:

RC(θj) =
|θwithj,gee − θwithoutj,gee |
s.e.(θwithoutj,gee )

/
|θwithj,qif − θwithoutj,qif |
s.e.(θwithoutj,qif )

.

If RC is larger than 1, then the outlier affects the GEE more severely than
the QIF. The larger the RC is, the more robust the QIF method is relative to
the GEE.

The response variable is the number of seizures in a two-week period, and
covariates include a logarithm of a quarter of baseline seizure counts (bsln),
logarithm of age (logage), treatment (trt, 1 for progabide and 0 for placebo),
and visit (vst = 1, 2, 3, 4). The marginal log-linear model takes the form

log(μij) = β0 + β1 bslni + β2 trti + β3 logagei + β4 vstj , (5.29)

where μij is the expected number of seizures during the two-week period j
for subject i. Since the GEE and QIF give the same estimates and standard
errors under the independence correlation structure, the comparison for the
two methods is conducted for the AR-1 and interchangeable structures.

Table 5.3 lists all the estimates and standard errors, with or without pa-
tient 207, under AR-1 correlation structure.

For this analysis, the mean zero assumption for the first moment (i.e.,
the log-linear model specification) in model (5.29) is confirmed, since the
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Table 5.3. GEE and QIF estimates and standard errors with AR-1 correlation
structure for the complete data and the data without patient 207.

Complete data Without 207

Estimate Std Err Estimate Std Err

Par GEE QIF GEE QIF GEE QIF GEE QIF

intcpt −2.522 −2.233 1.034 1.006 −2.380 −2.017 0.863 0.892
bsln 1.247 1.193 0.163 0.099 0.987 0.960 0.080 0.066
trt −0.020 −0.046 0.190 0.141 −0.255 −0.281 0.152 0.146
logage 0.653 0.581 0.287 0.270 0.783 0.680 0.247 0.261
vst −0.064 −0.052 0.034 0.026 −0.045 −0.047 0.035 0.031

Q-stat – 3.7 – – – 5.9 – –
AIC – 13.7 – – – 16.9 – –
BIC – 24.1 – – – 26.2 – –

p-value is 0.5934 based on the χ2 distribution with 5 degrees of freedom for
the complete data, and the p-value is 0.3161, based on the same distribution
for the data without patient 207. Under the AR-1 correlation structure, the
RC values are given in Table 5.4.

Table 5.4. Relative changes of estimates with respect to data point of patient 207
between GEE and QIF under AR-1 correlation.

Parameter

Covariates intcpt bsln trt logage vst
RC 0.68 0.92 0.96 1.39 3.37

Table 5.4 indicates that the performances of GEE and QIF are close, and
the only noticeable difference is at the covariate of visit, where the GEE is
about three times more unstable than the QIF caused by patient 207.

Table 5.5 reports all the estimates and standard errors, with or without
patient 207, under interchangeable correlation structure.

By comparison, the model selection criteria (both AIC and BIC) suggest
that the interchangeable correlation is preferred over the AR-1 correlation.
The p-values for the goodness-of-fit test, with and without patient 207, are
0.8628 and 0.7308 based on the χ2 distribution with 5 degrees of freedom,
respectively. Both imply that the mean model given in (5.29) is appropri-
ate. Based on Table 5.6, both basline seizure and logage are statistically
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Table 5.5. GEE and QIF estimates and standard errors with interchangeable cor-
relation structure for the complete data and the data without patient 207.

Complete data Without 207

Estimate Std Err Estimate Std Err

Par GEE QIF GEE QIF GEE QIF GEE QIF

intcpt −2.323 −1.870 1.045 0.991 −2.176 −1.793 0.888 0.963
bsln 1.227 1.181 0.156 0.115 0.986 0.961 0.084 0.082
trt −0.010 −0.003 0.190 0.140 −0.223 −0.157 0.160 0.152
logage 0.604 0.497 0.288 0.277 0.721 0.592 0.250 0.269
vst −0.059 −0.070 0.035 0.024 −0.043 −0.046 0.038 0.026

Q-stat – 1.9 – – – 2.8 – –
AIC – 11.9 – – – 12.8 – –
BIC – 22.3 – – – 23.1 – –

significant. This analysis does not find evidence that the treatment is helping
to lessen the disease symptom.

To see the influence of patient 207 on the GEE and QIF, Table 5.6 gives
the RC values. This table indicates that the performances of GEE and QIF
are close, and the QIF is always slightly better except for the covariate of
visit. As a result of the robust analysis, patient 207 is not very influential
and does not cause much difference between the GEE and QIF analyses in
terms of the influence measure DFBETAS. If a yardstick of ±2 is used as a
cutoff, patient ID 207 affects the GEE’s estimation on the effect of vst in the
AR-1 case and on the effect of intercept in the interchangeable case, more
than it does for QIF. In addition, the robustness behavior may vary from one
working correlation structure to another, due to different basis matrices used
in the formulation of QIF.

Table 5.6. Relative changes of estimates with respect to data point of patient 207
between GEE and QIF under interchangeable correlation.

Parameter

Covariates intcpt bsln trt logage vst
RC 2.07 1.07 1.31 1.33 0.64
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5.7.3 Longitudinal Proportional Data

This section presents an analysis of the eye surgery data discussed previously
in Section 1.2.3, using the GEE2 method. Let Yij be the j-th gas (C3F8)
volume for the i-th individual at day tij . Recall they are all percentages and
thus are assumed to follow marginally the simplex distribution S−(μij , σ2).
It begins with the case of a constant dispersion, and this assumption will be
confirmed later via residual analysis. Figure 1.2 shows the longitudinal plot of
observed yij versus tij for all 31 subjects. The LOWESS curve of the data with
the fraction parameter set to 1/3 was plotted in Figure 5.4, which indicates
that the volume (in percent) of the intraocular expansile gas decreases slowly
in the first few days after maximal expansion, and then it decreases more
rapidly and finally, more slowly.
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Fig. 5.4. Scatterplots of the smooth LOWESS curve for the raw eye surgery data.

The marginal model for the mean gas volume takes the form of

logit(μij) = β0 + β1 log(timeij) + β2 log2(timeij) + β3gasi, (5.30)

where the covariate of gas concentration level is defined as

gasi =
gasi − 20

5
=

⎧⎨
⎩

−1, gas concentration level is 15
0, gas concentration level is 20
1, gas concentration level is 25.
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The GEE2 (5.26) is invoked to fit the model with three different correlation
structures: independence, interchangeability, and AR-1. The Newton-scoring
algorithm is used to solve the equation, where the dispersion parameter σ2 is
estimated by using the Jørgensen estimator:

σ̂2 =
1∑

i ni − 4

∑
i

∑
j

d(yij ; μ̂ij).

Table 5.7. Results of the ophthalmology study under homogeneous dispersion.

Independence Interchangeability AR-1

Variable Estimate Std Err Estimate Std Err Estimate Std Err

Intercept 2.6850 0.3002 2.6534 0.2958 2.7330 0.2729
Log.time 0.0648 0.2491 0.1604 0.1991 0.0962 0.1991
Log.time2 −0.3354 0.0662 −0.3790 0.0493 −0.3496 0.0470
Gas 0.3250 0.1945 0.2496 0.1778 0.3034 0.1716
ρ = exp(−γ) – – 0.2515 0.0388 0.4877 0.1418

Table 5.7 summarizes the results obtained from the GEE2 with a constant
dispersion. The estimate of dispersion parameter σ2 is equal to 201.64, al-
most identical in the three models, indicating that the data are very strongly
dispersed. Hence it is not reasonable to assume the data are from a normal
distribution that corresponds to the case of dispersion close to 0. Thus, treat-
ing the response as to be normally distributed is worrisome. To confirm the
appropriateness of the constant dispersion assumption, Figure 5.5 shows the
residual plot, where panel (a) plots the standardized residuals ̂̄eij versus co-
variate log.time and panel (b) plots the same residuals against covariate gas
concentration level. Both plots indicate that the variation in the residuals
varies in time and in the gas level. In fact, the residuals appears substantially
volatile at the beginning of the observation period but gets stablized in later
time. Similarly, the low concentration levels seem to be associated with bigger
variability in the residuals. This requires investigation to see if the modeling
of the dispersion parameter would lead to better behavior of the residuals.

Therefore, a model that can address the varying dispersion in two covari-
ates of time and gas concentration level is proposed:

log
(
σ2
ij

)
= α0 + α1 log(timeij) + α2gasi. (5.31)
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Fig. 5.5. Plots of the standardized residuals against two covariates, respectively,
the log-time in panel (a) and the concentration level in panel (b).

The third estimating equation of the GEE2 (5.21) is formed on the basis of unit
deviance dij(yij ;μij) since for the simplex distribution E{d(Yij ;μij)} = σ2

ij ,
by Proposition 2.19 (a). The estimating equation takes the form

Ψ∗∗(β,α,γ) =
K∑
i=1

(
∂σ2

i

∂α

)T
M−1

i (di − σ2
i ) = 0, (5.32)

where di = (d(yi1;μi1), . . . , d(yini ;μini))T , Mi = diag{Var(di1), . . . ,Var(dini)}
is a working covariance matrix with the independence correlation structure,
and σ2

i = E(di) = (σ2
i1, . . . , σ

2
ini

)T . The first component Ψ in the GEE2 (5.21)
uses AR-1 working correlation structure. Estimates and standard errors are
listed in Table 5.8.

Clearly, both covariates of time and treatment are significant factors at-
tributed to the varying dispersion in model (5.31). Figure 5.6 displays the
fitted curves for the pattern of dispersion profile over time across three differ-
ent gas concentration levels.

Based on the model with the varying dispersion, the findings for the other
parameters are very similar to those given in Table 5.7. The squared log-time
term is found significant, the linear log-time term is found not significant,
and the gas concentration covariate is found marginally insignificant, at the
significance level 0.05. Also, the estimated lag-1 autocorrelation ρ̂ = e−γ̂ =
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Table 5.8. Estimates, standard errors, and robust z-statistics from the heteroge-
neous dispersion model for the eye surgery data.

Parameter β0 β1 β2 β3 α0 α1 α2 γ
(Int.) (Log.T) (Log2.T) (Gas) (Int.) (Log.T) (Gas) (− log(ρ))

Estimate 2.7445 −0.0223 −0.3144 0.4114 6.1551 −0.4583 −0.4938 1.8484
Std Err 0.2107 0.3367 0.0855 0.2122 0.1988 0.0803 0.1427 0.3881
Z 13.0256 −0.0663 −3.6771 1.9393 30.9613 −5.7073 −3.4604 4.7627
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Fig. 5.6. Fitted curves for the pattern of heterogeneous dispersion over time across
three treatment levels.

0.1575(0.0611) and its Z-statistic is 2.5769, suggesting that ρ is significantly
different from zero.

A further residual analysis for the above model is given as follows. The
left panel in Figure 5.7 shows the scatterplot of the estimated standardized
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Pearson residuals ̂̄eij against the fitted mean values μ̂ij , to check the distri-
butional assumption. The dashed lines at 2 and −2 represent the asymptotic
95% upper and lower limits, respectively. The residuals seem to behave rea-
sonably well as expected, with only three of them lying outside of the region.
The plot seems to be in agreement with the simplex marginal distribution.

The right panel in Figure 5.7 provides a rough check of the logit link
function used in the proposed model, showing the scatterplot of the estimated
adjusted dependent variables ŵij against the estimated logit linear predictor
η̂ij . The two solid lines stand for the asymptotic 95% confident bands within
which almost 96% points are contained. This clearly supports the logit link
function assumption.
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Fig. 5.7. Diagnostic plots in the eye surgery data analysis. Panel A checks the
distribution assumption, and panel B checks the link function.

Checking the working correlation based on the regular autocorrelation
matrix seems to be hard in this data analysis, since the data are measured at
irregular time points and the residuals available at a given time are sparse. In
this particular application, since the correlation is low, it is hard to observe
any clear patterns for correlations over time, and moreover it does not appear
very crucial to specify a “right” correlation matrix. Alternatively, readers
may consider applying Diggle’s variogram plot (Diggle, 1990) to reach an
appropriate conclusion.
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Vector Generalized Linear Models

6.1 Introduction

This chapter is devoted to the development of multi-dimensional generalized
linear models (GLMs) that are useful to analyze correlated data of equal size.
The GEE or QIF method has enjoyed its robustness against the misspecifi-
cation on the correlation structure and its simplicity in modeling where only
the first two moments need to be specified. However, these quasi-likelihood
methods may suffer from the loss of estimation efficiency and the lack of pro-
cedures for model assessment and selection. In some situations where a good
deal of information regarding the study design and data collection has been
made available, it is of interest to make the best use of data and undertake
a powerful statistical inference. This requires a fully parametric model that
allows us to execute the maximum likelihood inference in regression analysis.

The key ingredient required for the extension of the univariate GLM to a
general multivariate framework for vector outcomes is the multivariate ana-
logue of the dispersion model (DM) family distributions in (2.3). Suppose that
for each subject an n-element response vector Y = (Y1, . . . , Yn)T and an asso-
ciated p-element covariate vector x are observed. For example, the vector Y
is comprised of measurements from multiple response variables, such as blood
pressure, heart-rate, weight, and temperature for a subject. Other examples of
such data include clustered data with an equal cluster size, longitudinal data
with a fixed number of repeated measurements, and spatial data collected
from a fixed number of spatial locations. To analyze such data by the GLM
approach, vector GLMs (VGLM) can be formulated as a model for which the
conditional distribution of Y given x is of the form

f(y|x;μ,σ2, Γ ) = F(y, η1, . . . , ηn;σ2, Γ ), (6.1)

where β = (βT1 , . . . ,β
T
m)T are the regression coefficients, the j-th linear

predictor is ηj = ηj(x) = xTβj , and F(·;σ2, Γ ) is a certain joint den-
sity function that is parametrized by the vector of dispersion parameters
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σ2 = (σ2
1 , . . . , σ

2
n)T and the association matrix Γ . Here Γ = (γij) charac-

terizes the dependence among the components of Y. Note that m may not be
equal to n, the dimension of Y.

To complete the specification of a VGLM in (6.1), it is necessary to specify
the F(·) function and the parameter set Γ . In the literature, many proposals
have been made for the F(·), some of which will be introduced in this chap-
ter. A desired density function F(·;Γ ) should satisfy the following two basic
properties:

(i) The VGLM resulting from a chosen F(·) should be reproducible or
marginally closed, namely the lower-dimensional regression models should
have the same error distribution type as the joint model. This is because
in most practical problems, the data types for the individual components
of Y are relatively easy to recognize, so that the corresponding marginal
error distributions can be readily assumed, as is the practice for univariate
GLMs. In addition, this marginal closure allows the development of statis-
tical inferences based on lower-dimensional margins, such as the composite
likelihood method (Lindsay, 1988).

(ii) The association parameters in Γ are able to characterize both positive and
negative associations for vector Y. In practice, positive association is often
seen in biomedical studies, while negative association is frequently present
in economic or financial data. For example, in the analysis of insurance
data, the amount of claims and the number of claims over a given period
of time are usually negatively correlated. A model that allows a full range
of association certainly provides flexibility to the analysis of a broad range
of data types.

Section 6.2 presents the log-linear model representation (Bishop et al.,
1975) or Bahadur’s representation (1961), a multivariate distribution for cor-
related binary data. This distribution has been employed by several authors
(e.g., Zhao and Prentice, 1990; Fitzmaurice et al., 1993) to specify the F(·)
for the analysis of binary longitudinal data, where the common regression pa-
rameter (i.e., βj = β) is used. The conditional modeling approach discussed
in Section 4.3 is another way of specifying the F(·), resulting in generalized
linear mixed models (see Chapter 7). This chapter will focus on the joint mod-
eling approach. The emphasis will be given to the VGLMs based on Gaussian
copulas, a general and unified framework suitable for the regression analysis
of a broad range of multi-dimensional data types.

6.2 Log-Linear Model for Correlated Binary Data

Let us begin with the binary random variable, namely where a random vari-
able takes only two values, either 1 (success) or 0 (failure). A widely used
probability model for multi-dimensional binary data is the log-linear model
(Bishop et al., 1975) whose probability mass function is defined by
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p(y) = c(θ) exp

⎧⎨
⎩

n∑
j=1

θjyj +
∑
j1<j2

θj1j2yj1yj2 + · · · + θ1···ny1 · · · yn

⎫⎬
⎭

(6.2)

where θ = (θ1, . . . , θn, θ12, . . . , θn−1,n, . . . , θ1···n)T is a (2n− 1)-element vector
of canonical parameters, and c(θ) is the normalizing term. The representation
(6.2) actually gives a saturated model in which there is only one constraint
on the 2n cell probabilities,

∑
y p(y) = 1.

These θ parameters describe the association among the components of y.
Consider a special log-linear model with the third and higher order terms equal
to 0, which is also known as the quadratic exponential model (QEM) considered
in Zhao and Prentice (1990). The resulting probability mass function takes
the form:

p(y) = c(θ) exp

⎧⎨
⎩

n∑
j=1

θjyj +
∑
j<k

θjkyjyk

⎫⎬
⎭

= c(θ1,θ2) exp
{
yTθ1 + wTθ2

}
(6.3)

where
θ1 = (θ1, . . . , θn)T , θ2 = (θ12, . . . , θn−1,n)T ,

and
y = (y1, . . . , yn)T , w = (y1y2, . . . , yn−1yn)T .

Denote the model by y ∼ QEM(θ). For model (6.3), it can be shown that

log
{

P(Yj = 1|Yk = 0, k �= j)
P(Yj = 0|Yk = 0, k �= j)

}
= θj .

This implies that the θj is equal to the log odds for Yj = 1 given that the
remaining responses Yk, k �= j are all zero. Similarly,

log
{

P(Yj = 1, Yk = 1|Yl = yl, l �= j, k)P(Yj = 0, Yk = 0|Yl = yl, l �= j, k)
P(Yj = 1, Yk = 0|Yl = yl, l �= j, k)P(Yj = 0, Yk = 1|Yl = yl, l �= j, k)

}
= θjk;

that is, the θjk is again equal to a log odds ratio, which describes the associa-
tion between Yj and Yk, conditional on all the other responses being withheld.
The interpretation of θ2 as a conditional odds ratio is restrictive, because it
depends upon the number of other responses in a cluster. Hence, this joint
distribution is most useful when the clusters are of the same size (ni = n).

The above models can be applied to specify the F(·) function to form
VGLMs for correlated binary data. Take the instance of the QEM (6.3). To
formulate a VGLM, first define marginal expectations

μj = P(Yj = 1), j = 1, . . . , n,
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which are the parameters of interest because they relate to covariates via the
logit model. So, from the interpretation point of view, it is more appealing to
reparametrize model (6.3) on the basis of parameters (μ,θ2). Note that under
(6.3),

μ = (μ1, . . . , μn)T = (μ1(θ1,θ2), . . . , μn(θ1,θ2))T ,

with dim(μ) = dim(θ1). With θ2 remaining the same, there exists a one-to-
one correspondence between the canonical parameter (θ1,θ2) and (μ,θ2).

Second, the marginal mean parameters are modeled with a common β as
follows:

logit(μj) = xTj β, j = 1, . . . , n.

Given data Yi|Xi
ind.∼ QEM(θi), i = 1, . . . ,K, with θi = (β,θi2), the

resulting score equation for β under the above reparameterization is given by

K∑
i=1

(
∂μTi
∂β

)
Var−1(Yi)(yi − μi) = 0,

which is exactly of the same form as the optimal GEE Ψop in (5.7). Note that
the variance matrix of Yi is a function of both β and θ2i. This indicates the
solution of the optimal GEE is identical to the MLE under the QEM when the
covariance (equivalently, the correlation structure) is specified by the model
(6.3). One aspect appearing more complicated than the GEE is the need of
estimating θi2 together with β, rather than treating it as a nuisance param-
eter, similar to the GEE setting where correlation parameters are estimated
separately.

An alternative parameterization of the log-linear model that directly uses
marginal means was proposed by Bahadur (1961), known as the so-called
Bahadur’s representation. Let

Rj =
Yj − μj

{μj(1 − μj)}1/2
,

ρjk = corr(Yj , Yk) = E(RjRk), ρjkl = E(RjRkRl),

and so on, up to
ρ1...n = E(R1 · · ·Rn).

The probability mass function of y can be rewritten as follows,

p(y) =
n∏
j=1

μ
yj

j (1 − μj)1−yj ×
⎛
⎝1 +

∑
j<k

ρjkrjrk +
∑
j<k<l

ρjklrjrkrl + · · · + ρ1...nr1r2 · · · rn
⎞
⎠ .

(6.4)
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Therefore, the joint distribution is now expressed in terms of the marginal
means, pairwise Pearson correlations, and higher order moments of the stan-
dardized residuals Rj ’s.

The merit of the Bahadur’s representation is that this model uses marginal
probabilities and Pearson correlations, which apparently gives a more direct
interpretation of association than (6.2). However, this representation has two
serious drawbacks. One is that correlations are constrained in a complicated
fashion with the marginal means (Carey et al., 1993). The constraint usually
causes a substantial shrinkage on the range of correlation. Hence, if μj is
modeled on xj via a logit model, it may be inappropriate to assume that
the correlation and higher order moments are independent of xj , as would be
convenient. The other drawback, as pointed by Fitzmaurice et al. (1993), is
that the log-linear model representation is not reproducible, which makes the
interpretation of model fitting results difficult. In addition, the above model
formulation is ad hoc, in the sense that it cannot be extended to establish a
general VGLM framework for other types of correlated outcomes.

Alternatively, this chapter presents a new class of F(·) functions based on
the multivariate distributions generated by parametric copulas (see Joe, 1997,
chapter 5). In Section 6.3, the class of multivariate exponential dispersion
(MED) distributions generated by Gaussian copulas (Song, 2000a) will be
discussed in detail. Consequently, this class of multivariate distributions is
applied to establish a unified framework of VGLMs for correlated continuous
outcomes, correlated discrete outcomes, and correlated mixed outcomes. The
rest of this chapter focuses on a joint modeling approach to correlated data
analysis based on Gaussian copulas.

6.3 Multivariate ED Family Distributions

This section is devoted to the class of multivariate exponential dispersion dis-
tributions generated from Gaussian copulas. It provides a class of multivariate
error distributions useful for the development of a general and unified VGLM
framework. Among many parametric copulas available in the literature, Gaus-
sian copula is of particular interest owing to its advantages described as
follows:

(a) The utility of Gaussian copulas is little affected by the dimension of vec-
tor outcomes. That is, either theoretical or numerical complexity of related
regression models remains nearly the same in terms of the dimension of
outcomes. This, however, is not the case for many other parametric cop-
ulas, such as Frank copula, Clayton copula, and Gumbel copula. These
parametric copulas are relatively simple when the dimension is low (say,
two), and become analytically a lot more complicated as the dimension
increases.
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(b)The association measure resulted from Gaussian copulas inherits good
properties of the correlation in the multivariate normal distribution. For
example, the components of a vector response are independent if and only
if the association matrix is the identity matrix. Therefore, similarly in the
multivariate normal analysis, a residual analysis may be used to infer a
certain structure about the association matrix. The freedom of manipu-
lating different candidate structures for the association matrix, as done in
the multivariate normal, is very desirable in many practical studies. At the
end, the selected parsimonious specification of the dependence structure
is beneficial to gain better power in inference and better interpretation in
data analysis.

(c) When all margins follow the normal linear regression model, the Gaussian
copula based VGLM will reduce to the classical multivariate normal linear
model. However, the VGLMs based on other parametric copulas do not
have this property.

6.3.1 Copulas

Let u−S be a subvector of u = (u1, . . . , un)T with those components indicated
by the set S being omitted, where S is a subset of the indices {1, . . . , n}.
According to Sklar (1959), a mapping C : (0, 1)n −→ (0, 1) is called a copula
if

(1) it is a continuous distribution function; and
(2) each margin is a univariate uniform distribution, namely

lim
u−i→1

C(u) = ui, ui ∈ (0, 1)

where the limit is taken under uj → 1, ∀j �= i.
Clearly, limuj→0 C(u) = 0, for any j = 1, . . . , n. It is easy to prove that for

any subset S, the marginal obtained by limu−S→1 C(u) is a copula. Copulas
are easy to construct from a given multivariate distribution.

If X = (X1, . . . , Xn)T ∼ G where G is an n-dimensional distribution
function with margins G1, . . . , Gn, then the copula is of the form

CG(u1, . . . , un) = G
{
G−1

1 (u1), . . . , G−1
n (un)

}
, ui ∈ (0, 1), i = 1, . . . , n,

provided that the marginal inverse distribution functions G−1
i of Gi exist.

Gaussian copula is an important special case, which is obtained when X ∼
MVNn(0, Γ ) with standardized margins and Gi ≡ Φ. Here Φ denotes the
cumulative distribution function (CDF) of the standard normal N(0, 1). The
n-dimensional Gaussian copula is denoted by CΦ(u|Γ ), and its density is given
by

cΦ(u|Γ ) = |Γ |−1/2 exp
{

1
2
qT (In − Γ−1)q

}
(6.5)
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where q = (q1, . . . , qn)T with normal scores qi = Φ−1(ui), i = 1, . . . , n, and
In is the n-dimensional identity matrix. Matrix Γ is called the association
matrix.
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Fig. 6.1. Four bivariate Gaussian copula distributions with different association
parameters.

Figure 6.1 displays four bivariate densities of Gaussian copula with differ-
ent values of the association parameter γ. Clearly, this copula accommodates
both positive and negative dependence, indicated by the opposite directions
of concentration in the densities. The degree of concentration representing the
variation of the distribution increases as the γ parameter tends to ±1.

It is shown in Joe (1997, Section 5.1) that the bivariate Gaussian copula
attains the lower Fréchet bound max{0, u1 + u2 − 1}, independence, or the
upper Fréchet bound min{u1, u2}, according to the values of the corresponding
association parameter γ equal to −1, 0, or 1.

6.3.2 Construction

By complementing the copula CG with given margins, say F1, . . . , Fn, a new
multivariate distribution can be obtained by
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F (y) = CG {F1(y1), . . . , Fn(yn)} . (6.6)

One important property is that the i-th margin of F gives the original Fi,
namely, the distribution is marginally closed.

A class of n-variate multivariate dispersion models is obtained by (6.6)
when copula CG ≡ CΦ(·|Γ ) and margins Fi’s are dispersion models. The mul-
tivariate dispersion models, denoted by MDMn(μ,σ2, Γ ), are parametrized by
three sets of parameters, μ = (μ1, . . . , μn)T , the vector of position parameters,
σ2 = (σ2

1 , . . . , σ
2
n)T , the vector of dispersion parameters, and Γ , the associ-

ation matrix. Refer to Chapter 2 for details of marginal DM distributions,
DM(μj , σ2

j ).
Consequently, the multivariate exponential dispersion model is produced

by this Gaussian copula construction, denoted by MEDn(μ,σ2, Γ ), when the
corresponding margins ED(μj , σ2

j ) are used in construction. Here μ is the
vector of the marginal mean parameters.

When marginal models are continuous, a multivariate dispersion model
can be equivalently defined by the density of the following form:

f(y;μ,σ2, Γ ) = cΦ {F1(y1), . . . , Fn(yn)|Γ}
n∏
j=1

f(yj;μj , σ2
j ). (6.7)

Consequently (6.6) gives rise to a large class of continuous multivariate
models including multivariate gamma, multivariate inverse Gaussian, multi-
variate von Mises, and multivariate simplex distribution.

When marginal models are discrete, a multivariate probability mass func-
tion is obtained by taking Radon-Nikodym derivative for F (y) in (6.6) with
respect to the counting measure,

f(y) = P(Y1 = y1, . . . , Yn = yn)

=
2∑

j1=1

· · ·
2∑

jn=1

(−1)j1+...+jnCΦ(u1j1 , . . . , unjn |Γ ), (6.8)

where uj1 = Fj(yj) and uj2 = Fj(yj−). Here Fj(yj−) is the left-hand limit
of Fj at yj, which is equal to Fj(yj − 1) when the support of Fj is an integer
set such as the case of Poisson or binomial margins. See more discussions in
Examples 6.5 and 6.6 later in Section 6.3.3.

When the n margins appear to be mixed outcomes, say, the first n1

margins being continuous and the rest n2 = n − n1 margins being dis-
crete, the joint density function is given as follows. Let u = (uT1 ,u

T
2 )T , with

u1 = (u1, . . . , un1)T and u2 = (un1+1, . . . , un)T . The same partition and no-
tation are applied for vectors x and q. Let
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Cn1
1 (u1,u2|Γ ) =

∂n1

∂u1 · · · ∂un1

C(u1, . . . , un|Γ )

= (2π)−
n2
2 |Γ |− 1

2 ×∫ Φ−1(un1+1)

−∞
· · ·
∫ Φ−1(un)

−∞
exp

{
−1

2
(qT1 ,x

T
2 )Γ−1(qT1 ,x

T
2 )T +

1
2
qT1 q1

}
dx2.

Then, the joint density is given by

f(y) =
n1∏
j=1

fj(yj)
2∑

jn1+1=1

· · ·
2∑

jn=1

(−1)jn1+1+...+jn ×

Cn1
1 (F1(y1), . . . , Fn1(yn1), un1+1,jn1+1 , . . . , un,jn |Γ ), (6.9)

where ut,jt ’s are the same as defined in (6.8).

6.3.3 Interpretation of Association Parameter

An important issue in this copula construction is how to interpret the elements
of the matrix Γ in the Gaussian copula (6.5).

First, note from the copula construction that the components Y1, . . . , Yn
are mutually independent if matrix Γ is the identity matrix In in all these
cases, (6.7)–(6.9). In the presence of dependence, three types of dependence
measures are employed to explain γij , described as follows.

Definition 6.1. (Kendall’s τ)
Let F (x1, x2) be a continuous bivariate distribution function. Then Kendall’s
dependence measure τ for any independent pairs (X1, X2) and (X ′

1, X
′
2) with

distribution F is defined by,

τ(X1, X2) = P {(X1 −X ′
1)(X2 −X ′

2) > 0} − P {(X1 −X ′
1)(X2 −X ′

2) < 0}
= 4

∫ ∫
F (x1, x2)dF (x1, x2) − 1.

From the definition, it is clear that Kendall’s τ is a bivariate measure of
monotone dependence for continuous variables and gauges the difference of
the probability of two random concordant pairs and the probability of two
random discordant pairs.

Definition 6.2. (Spearman’s ρ)
Let F (x1, x2) be a continuous bivariate distribution function with marginal

distributions F1(x1) and F2(x2). Then Spearman’s dependence measure ρ
is defined as the Pearson correlation of F1(X1) and F2(X2) for any pair
(X1, X2) ∼ F . Therefore,

ρ(X1, X2) = corr {F1(X1), F2(X2)} = 12
∫ ∫

F1(x1)F2(x2)dF (x1, x2) − 3.
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Spearman’s ρ is also a bivariate measure of monotone dependence for con-
tinuous variables, and it reflects the association between two (monotonely
increasing) transformed random variables that are non-informative with re-
spect to their original variables. See, for example, Kendall and Gibbons (1990)
for more details regarding ρ and τ .

Since Pearson’s correlation measures the dependence between two normal
random variables, it is natural to compute the Pearson correlation for two non-
normal variables under their respective normal scores. This leads to another
dependence measure, defined as follows.

Definition 6.3. (Normal scoring ν)
Let F (x1, x2) be a continuous bivariate distribution function with marginal

distributions F1(x1) and F2(x2). Then the normal scoring dependence measure
ν is defined as the Pearson correlation between q1(X1) and q2(X2) for any pair
(X1, X2) ∼ F , namely

ν(X1, X2) = corr {q1(X1), q2(X2)} ,
where qi(·) are two transformations such that qi(Xi), i = 1, 2, follow normal
distributions.

Note that the normality transformation q(·) always exists for a continuous
random variable.

Proposition 6.4. Let X be a continuous random variable distributed by F (x).
Define

q(x) = Φ−1 {F (x)} .
Then q(X) follows a normal distribution. The function q(x) is called the nor-
mal scoring function and the values of q(x) are called normal scores.

Proof. Let Y = q(X) where a one-to-one function q(·) is such that

Φ(y) = P (Y ≤ y) = F
{
q−1(y)

}
,

which leads to q(x) = Φ−1 {F (x)} .
Now we apply the three dependence measures above to interpret the matrix

Γ that parametrizes the normal copula given in (6.5). Consider the bivariate
marginal normal copula with components (Ui, Uj) obtained from (6.5),

cΦij (ui, uj|γij) = |Γij |−1/2 exp
{

1
2
(xi, xj)

(
I2 − Γ−1

ij

)( xi
xj

)}

= (1 − γ2
ij)

−1/2 exp

{
−1

2
x2
i + x2

j − 2γijxixj
1 − γ2

ij

+
1
2
(x2
i + x2

j )

}

where Γij , as a 2 × 2 symmetric submatrix of Γ , has all diagonal elements 1
and all off-diagonal elements γij and I2 is the bivariate identity matrix.
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It is easy to see that if marginal distributions Fj are continuous, then
[
Φ−1{F1(Y1)}, . . . , Φ−1{Fn(Yn)}

] ∼ MVNn(0, Γ ).

It follows obviously that

γij = corr
[
Φ−1{Fi(Yi)}, Φ−1{Fj(Yj)}

]
= ν(Yi, Yj),

where γij is the Pearson correlation between two normal scores, measuring the
association between Yi and Yj based on a monotonic nonlinear transformation.
This nonlinear transformation is necessary to bring two random variables from
two separate probability spaces into a common probability space, in which
their association can be properly measured.

Spearman’s ρ of (Ui, Uj) is

ρij = ρ(Ui, Uj) = 12
∫ ∫

(0,1)2
cΦij (ui, uj|γij)duiduj − 3.

Note that both Φ(Xi) and Φ(Xj) are uniformly distributed as Unif(0, 1) so it
is not hard to prove that

ρij = 12E{Φ(Xi)Φ(Xj)} − 3 = 12cov{Φ(Xi), Φ(Xj)}
where the expectation is taken under bivariate normal (Xi, Xj) ∼ MVN2(0, Γij).

Kendall’s τ is given by

τij = τ(Ui, Uj) = 4
∫ ∫

(0,1)2
CΦij (ui, uj|γij)dCΦij (ui, uj|γij) − 1.

Or equivalently,
τij = 4E{Φij(Xi, Xj|γij)} − 1,

where the expectation is taken under the bivariate normal distribution (Xi, Xj)
∼ MVN2(0, Γij).

Clearly, both ρ and τ measures are nonlinear functions in γij , the (i, j)-th
entry of the association matrix Γ . To visualize their relationships, for each
fixed γij , the Monte Carlo method is employed to compute ρij and τij nu-
merically. Figure 6.2 displays the relationships between the τ versus ν and
ρ versus ν, respectively, where Monte Carlo simulation size is chosen to be
M = 5000. It is found that in the Gaussian copula setting (6.5) ν and ρ are
effectively very close to each other, and ν and τ are positively “correlated” in
the sense that increasing the value of ν measure results in a similar increase
for the value of τ measure, and vice versa.

Note that the normal scoring ν measure may also be used for the associ-
ation of discrete random variables, although the above interpretation is not
applicable in the discrete distribution case. Some supportive evidence for this
extension can be drawn from Examples 6.5 and 6.6 where the bivariate bino-
mial and Poisson are studied in detail. Hence, in the following development
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Fig. 6.2. Spearman’s ρ versus normal scoring ν (top panel) and Kendall’s τ versus
normal scoring ν (bottom panel).

of VGLMs, the measure ν is assumed well-defined in both the continuous and
discrete cases.

We now give three examples, two of which are discrete models.

Example 6.5 (Multivariate Binary Model).
Let Yj , j = 1, . . . , n be n binary random variables with the probability of

success πj . The CDF of Yj is

Fj(yj) =

⎧⎨
⎩

0, yj < 0
1 − πj , 0 ≤ yj < 1
1, yj ≥ 1.

The n-variate probability mass function is given by (6.8), which defines the cell
probabilities uniquely as long as the Gaussian copula CΦ and the association
matrix Γ are given. In particular, when n = 2, the bivariate probability mass
function is of the form

P(Y1 = y1, Y2 = y2) = Cγ(u1, u2) − Cγ(u1, v2) − Cγ(v1, u2) + Cγ(v1, v2),
(6.10)
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where uj = Fj(yj) and vj = Fj(yj − 1). Here Cγ is the bivariate Gaussian
copula which is parametrized by a single association parameter γ ∈ (−1, 1).
It follows that the four cell probabilities are given by

P (Y1 = y1, Y2 = y2) =

⎧⎪⎪⎨
⎪⎪⎩

Cγ(1 − π1, 1 − π2), if y1 = 0, y2 = 0
1 − π1 − Cγ(1 − π1, 1 − π2), if y1 = 0, y2 = 1
1 − π2 − Cγ(1 − π1, 1 − π2), if y1 = 1, y2 = 0
π1 + π2 + Cγ(1 − π1, 1 − π2) − 1, if y1 = 1, y2 = 1.

(6.11)
To make the use of this model to the regression analysis of correlated bi-

nary data, marginal expectations are specified via the logit model, logit(πj) =
ηj or the probit model, Φ−1(πj) = ηj , where ηj = xTj β is the linear predictor
and xj is a vector of covariates. This leads to a bivariate logistic model or a
multivariate probit model, respectively. In particular, the probit link results
in 1−πj = Φ(−ηj), and therefore Cγ(1−π1, 1−π2) = Φ2(−η1,−η2|γ), where
Φ2 denotes the CDF of bivariate normal with the standard normal marginals
and correlation coefficient γ.

In effect, the bivariate probit model can be interpreted as a probit model
with the latent variable representation. Let (Z1, Z2) be the latent normal
vector satisfying Zj = xTj β+ εj , j = 1, 2, where (ε1, ε2) ∼ MVN2(0, 0, 1, 1, γ),
and define Yi = 0, if Zi ≤ 0; 1, otherwise. Then the point probability P (Y1 =
0, Y2 = 0) = Φ2(−xT1 β,−xT2 β|γ), identical to the first expression of (6.11). It
is easy to prove that the other three point probabilities are the same as the
rest in (6.11). In this case, the correlation parameter γ in (6.10) is identical
to that from the latent bivariate normal distribution via dichotomization.
This implies that the association parameter γij (6.8) can be interpreted as
the tetrachoric correlation (Drasgow, 1988; Harris, 1988) or more generally as
polychoric correlation given by Olsson (1979) and Anderson and Pemberton
(1985). This argument can be extended to a general multivariate probit model,
because each γij in the matrix Γ is in fact a pairwise association measuring
the dependence between two components only.

For the bivariate binary model, the lower and upper Fréchet bounds are
given, respectively, in the first and second lines of the following two-way array,

0 ≤ y1 < 1 y1 ≥ 1
0 ≤ y2 < 1 max{0, 1 − π1 − π2} 1 − π2

1 − max{π1, π2} 1 − π2

y2 ≥ 1 1 − π1 1
1 − π1 1

and the bounds otherwise equal zero. It is easy to show that the bivariate
binary model attains these two bounds when γ equals −1 and 1, respectively.

Example 6.6 (Multivariate Poisson Model).
Let Yj , j = 1, . . . , n be n Poisson random variables with marginal mean pa-

rameter μj . Similarly, the joint probability mass function of Y = (Y1, . . . , Yn)T
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is given by (6.8). To link this model to a set of covariates xj in the context of
VGLMs, a log-linear model is assumed for each of marginal expectations μj
via log(μj) = xTj β.

It is known that the stochastic representation is another approach in the
literature (e.g., Joe, 1997, Section 7.2) to constructing a multivariate Pois-
son distribution. As seen in Example 4.1, this method constructs a bivariate
Poisson random vector as (Y1, Y2) = (Z1 + Z12, Z2 + Z12) where Z1, Z2, Z12

are independent Poisson with parameters λ1, λ2, λ12. Although this construc-
tion seems much simpler, it can only allow positive dependence, whereas the
copula-based distribution (6.8) can accommodate both positive and negative
association.

A simple comparison of the two constructions is considered on the basis
of conditional expectations as follows. It is easy to prove that

E(Z1 + Z12|Z2 + Z12 = y2) = λ1 +
λ12

λ2 + λ12
y2

= μ1 + r
√
μ1

μ2
(y2 − μ2), (6.12)

as a linear function in y2, where r is the Pearson correlation coefficient
of (Y1, Y2) equal to λ12/

√
λ1 + λ12

√
λ2 + λ12 and μj = λj + λ12 are given

marginal means. For the copula-based construction, the conditional mean is

E(Y1|Y2 = y2) =
∞∑
y1=0

y1P (Y1 = y1, Y2 = y2)/P (Y2 = y2), (6.13)

where the joint probability mass function P (Y1 = y1, Y2 = y2) is given by
(6.10). It is relatively easy to compute this function numerically, although its
closed form expression is unavailable. A comparison between the two condi-
tional expectations are illustrated in Figure 6.3, where the two margins are
set to be the same.

To better understand this comparison, in Figure 6.3, a linear approxima-
tion to the conditional expectation (6.13) is derived as follows. This approxi-
mation takes a form similar to (6.12), given by

E(Y1|Y2 = y2) ≈ μ1 + γK(μ1)ψ(y2, μ2), (6.14)

where K(μ1) =
∑∞
y1=0 φ{q1(y1)} and

ψ(y2, μ2) =
φ{q2(y2 − 1)} − φ{q2(y2)}
F2(y2) − F2(y2 − 1)

,

where φ is the standard normal density. The approximation (6.14) is obtained
simply by the Taylor expansion of (6.13) around γ = 0. This expansion is, for
uj = Fj(yj), j = 1, 2,

Cγ(u1, u2) = F1(y1)F2(y2) + φ(q1)φ(q2)γ +O(γ2).
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Fig. 6.3. Two exact conditional means and a linear approximation represented,
respectively, by solid line, dashed line, and dotted line.

In the comparison between (6.14) and (6.12), their difference is governed by
a leading term,

√
μ−K(μ), which is positive at μ = 1, 2, . . . , and monotone

decreasing to zero as μ goes to the infinity. For example, it equals 0.0225,
0.0127, 0.0099 when μ = 10, 30, 50, respectively.

Figure 6.3 contains nine plots with all possible combinations of (r, γ, μ) for
r = γ = 0.3, 0.6, 0.9 and μ = 5, 20, 40, and each graph consists of three lines
corresponding to the linear conditional mean (6.12), the conditional mean
(6.13), and the approximation (6.14), respectively, represented by solid line
(—), dashed line (- - -), and dotted line (· · · ·). Clearly, when marginal means
are not small, say 20 or bigger as seen in the figure, the two exact conditional
means are almost identical within fairly reasonably large ranges of y2 around
the means, and the approximation is also shown fairly close to the two exact
cases, although near the tails there are some small departures.

For small marginal means (equal to 5 in the figure), the two exact con-
ditional means are still close enough to each other, and the approximation
appears to almost overlap with the two exact cases at low y values but start
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to go away from them when y is far from the mean μ (in this figure, the
going-away begins approximately at 2μ).

This comparison sheds light on the interpretation of the correlation pa-
rameter γ in the copula-based construction. At least numerically there exits
the closeness between the association parameter γ and the Pearson correlation
r in the stochastic representation.

Example 6.7 (Multivariate Gamma Model).
Let Yj , j = 1, . . . , n be n gamma random variables, and Yj ∼ Ga(μj , σ2

j )
where μj and σ2

j are the mean and dispersion parameters, respectively. Clearly,
the n-variate joint density of Y = (Y1, . . . , Yn)T is given by (6.7). With con-
nection to VGLMs, we assume g(μj) = xTj β for each marginal expectation
and a constant dispersion σ2

j = σ2, j = 1, . . . , n, where g is the link function
which may be chosen to be either the reciprocal link or the log link in the
context of gamma regression. Note that when σ2 = 1, a family of multivariate
exponential distributions is produced by the copula method. In Section 6.5.1,
an example of 5-variate exponential distributions is shown.

6.4 Simultaneous Maximum Likelihood Inference

6.4.1 General Theory

Suppose data (Y1, X1), . . . , (YK , XK) are independently sampled from an n-
variate MED distribution,

Yi|Xi = (xi1, . . . ,xin) ∼ MEDn(μi,σ
2
i , Γ ), i = 1, . . . ,K

where response vector Yi = (Yi1, . . . , Yin)T has the mean vector μi =
(μi1(xi1) . . . , μin(xin))T and the dispersion vector σ2

i = (σ2
i1, . . . , σ

2
in)T , in

which the j-th component σ2
ij = σ2

j /wij with a known positive weight wij
and dispersion σ2

j , j = 1, . . . , n. Here xij is a p-element vector of covariates
associated with subject i for component j, and Xi = (xi1, . . . ,xin) is a p× n
matrix of covariates. Moreover, the marginal mean μij follows a marginal
GLM, gj(μij) = ηj(xij) with linear predictor ηij = xTijβj and link function
gj, j = 1, . . . , n. The primary task is to establish a simultaneous maximum
likelihood inference for all model parameters θ = (β,σ2, Γ ).

In many cases, the above general model formulation may become more spe-
cific. For example, one may assume a VGLM (6.1) takes a common regression
parameter vector β, namely βj = β for all j, in the situation of longitudinal or
clustered data analysis, where the population-average effects of covariates are
of interest. In addition, the association matrix Γ may be further parametrized
by a parameter vector α, denoted by Γ (α), following the structure of inter-
changeable, AR-1, or 1-dependence. In this case, all model parameters are
denoted by θ = (β,σ2,α). Moreover, for convenience, all weights are set to
be wij = 1 in the rest of the chapter.
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Let the log-likelihood function of the given model be

�(θ;Y) =
K∑
i=1

�i(θ;yi). (6.15)

Then, the MLE of θ is
θ̂ = argmaxθ�(θ;Y).

The biggest challenge for the application of the MLE in VGLMs arises
from the numerical complexity and difficulty associated with the procedure
of searching for the MLE θ̂. First of all, in most of situations, analytically
deriving the second order derivatives of the log-likelihood (6.15) with regard
to the model parameters is very tedious, so the related numerical solution of
this optimization problem has to be made with the utility of the first order
derivatives of �(θ;Y), i.e., the scores �̇(θ;Y). Therefore, the popular Newton-
Raphson or the Fisher scoring algorithm becomes unavailable, and alternative
algorithms are called for help. Among many available algorithms, this book
suggests two highly competent algorithms to overcome this numerical hurdle.
The first algorithm is the so-called Maximization By Parts (MBP) (Song
et al., 2005), which is recommended to deal with VGLMs with continuous
vector outcomes. The second algorithm is a Gauss-Newton type algorithm
(Ruppert, 2005) that works well for VGLMs with discrete outcomes or mixed
outcomes. Both algorithms will be introduced in Section 6.5 in detail.

Under some mild regularity conditions, the standard MLE theory ensures
that the MLE θ̂ is consistent and asymptotically normal. When the second
order derivatives of the log-likelihood are not available, the observed Fisher
information is estimated by using the following sandwich form:

î =
[
H(θ̂)B−1(θ̂)H(θ̂)

]−1

= H−1(θ̂)B(θ̂)H−1(θ̂), (6.16)

where H(θ) is the numerical Hessian derived from numerical differentiation
via differencing, which approximates the observed Fisher information, and
B(θ) = 1

K

∑K
i=1 �̇i(θ;yi)�̇i(θ;yi)

T , which is a sample variance estimate of the
variance of the score vector. This (6.16) consistently estimates the asymptotic
covariance matrix.

In the application of VGLMs for correlated discrete outcomes or corre-
lated mixed outcomes, numerically evaluating multivariate normal CDFs is
required. Genz’s (1992) algorithm available in the R software package mvtnorm
is able to compute the normal CDF of 100 dimensions or lower.

6.4.2 VGLMs for Correlated Continuous Outcomes

When the margins are all continuous, the log-likelihood function for parameter
θ = (β,σ2,α) takes the form
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�(θ;Y) = −K
2

ln |Γ | +
K∑
i=1

n∑
j=1

log f(yij ;β, σ2
j )

+
1
2

K∑
i=1

qTi (yi;β,σ2)
(
In − Γ−1

)
qi(yi;β,σ2)

where qi(yi;β,σ2) = (qi1, . . . , qin)T with components qij = Φ−1(Fij(yij))
and Fij is the marginal CDF of ED

(
μij , σ

2
j

)
. The scores for β and σ2

j are
given by, respectively,

�̇β =
K∑
i=1

DTi diag−1[σ2
1V (μi1), . . . , σ2

nV (μin)](yi − μi)

+
n∑
i=1

QT
i,β(In − Γ−1)qi,

�̇σ2 =
K∑
i=1

n∑
j=1

ḟσ2(yij ;β, σ2
j )

f(yij ;β, σ2
j )

+
K∑
i=1

QTi,σ2(In − Γ−1)qi, j = 1, . . . , n,

where DTi = ∂μTi /∂β, QT
i,β = ∂qTi /∂β, and QTi,σ2 = ∂qTi /∂σ

2. Finally, the

score for α is �̇α = Kẇα(α|A), where

w(α|A) = −1
2

ln |Γ (α)| − 1
2
tr
{
Γ (α)−1A

}
(6.17)

with A = 1
K

∑K
i=1 qiqTi . Section 6.4.4 gives the details for derivative ẇα(α|A).

It is worth noting that the expression of score vector �̇β differs from that
of the ED GEE (5.12). On the basis of the above score equation, the GEE is
proposed by absorbing the second term into the diagonal matrix of the first
term. Song (2000a) showed that this absorption is valid only approximately
for small dispersion parameters, i.e., maxj σ2

j → 0.

6.4.3 VGLMs for Correlated Discrete Outcomes

When the margins are all discrete, the log-likelihood is

�(θ;Y) =
K∑
i=1

ln f(θ;yi),

where f(·) is specified by (6.8) and parameter θ = (β,σ2,α) . Note that in
some cases such as for the binomial and Poisson distributions, the dispersion
parameter σ2 is known, so θ = (β,α). Then, the score with respect to θl is
given by
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�̇θl
(θ) =

K∑
i=1

ḟθl
(θ;yi)

f(θ;yi)
.

With θl = β, the numerator is

ḟβ(β;yi) =
2∑

j1=1

· · ·
2∑

jn=1

(−1)j1+...+jn

n∑
t=1

∂C(ui,1,j1 , . . . , ui,n,jn |Γ (α))
∂ui,t,jt

∂ui,t,jt
∂β

,

=
2∑

j1=1

· · ·
2∑

jn=1

(−1)j1+...+jn

n∑
t=1

Φ̇n,t,jt
(
Φ−1(ui,1,j1), . . . , Φ−1(ui,n,jn)

)
φ (Φ−1(ui,t,jt))

×∂ui,t,jt
∂β

,

where Φ̇n,t,jt(u) is the first order derivative of n-variate normal CDF Φn(y)
with respect to yt. Suppressing subscript i,

∂ut,jt
∂β

=
∂Ft(y;μt)
∂β

=
∂Ft(y;μt)
∂μt

∂μt
∂β

=
∂Ft(y;μt)
∂μt

{ġ(μt)}−1xt,

with y = yt − 1 if jt = 1 and y = yt if jt = 2, t = 1, . . . , n.
When θl = α, the numerator is

ḟα(β;yi) =
2∑

j1=1

· · ·
2∑

jn=1

(−1)j1+...+jn
∂C(ui,1,j1 , . . . , ui,n,jn |Γ (α))

∂α
,

with

∂C(ui,1,j1 , . . . , ui,n,jn |Γ (α))
∂α

=
∫ Φ−1(ui,1,j1 )

−∞
· · ·
∫ Φ−1(ui,n,jn )

−∞

∂ lnφn(x;α)
∂α

×
φn(x;α)dx

where φn(x;α) = φn(x1, . . . , xn;α) is the density of MVNn(0, Γ (α)). Note
that

∂ lnφn(x1, . . . , xn;α)
∂α

=
∂w(α|A)
∂α

where w(α|A) is given in (6.17) with matrix A = (x1, . . . , xn)T (x1, . . . , xn).
The derivative of w(α|A) with respect to α with various association structures
is given in the next Section 6.4.4.

6.4.4 Scores for Association Parameters

The scores for the association parameter α are derived for either an unstruc-
tured or a structured Γ matrix. With a given matrix A, let ai be vectors that
satisfy A =

∑K
i=1 aiaTi .
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Example 6.8 (Unstructured Correlation).
When Γ = (γjl) is fully unspecified, α contains n(n − 1)/2 distinct un-

known parameters. Then, the derivatives are given by

∂

∂γjl
w(α|A) = −1

2
trΓ−1

(
∂Γ

∂γjl

)
+

1
2
trΓ−1

(
∂Γ

∂γjl

)
Γ−1A

= −1
2
tr
(
∂Γ

∂γjl

)(
Γ−1 − Γ−1AΓ−1

)
= −djl

where the matrix D = (djl) = Γ−1−Γ−1AΓ−1, and ∂Γ/∂γjl is a matrix with
all elements zero except the (j, l)-th and (l, j)-th, which are one.

Example 6.9 (Interchangeable Structure).
The interchangeable structure gives Γ = Γ (α) = α11T + (1 − α)In for

α ∈ (− 1
(n−1) , 1), where 1 is an n-dimensional column vector of ones. It follows

from Olkin and Pratt (1958) that

Γ−1(α) =
1

1 − αIn − α

(1 − α){1 + (n− 1)α}11T ,

and

w(α|A) = −1
2

log |Γ (α)| − 1
2(1 − α)

K∑
i=1

n∑
j=1

a2ij +

α

2(1 − α){1 + (n− 1)α}
K∑
i=1

⎛
⎝ n∑
j=1

aj

⎞
⎠

2

.

Note that

∂

∂α
log |Γ (α)| = tr

{
Γ−1(α)

∂Γ (α)
∂α

}
= − n(n− 1)α

(1 − α) {1 + (n− 1)α)} .

Thus, the derivative with respect to α is given by

ẇα(α|A) = − 1
2(1 − α)

[∑K
i=1

∑n
j=1 a

2
ij

1 − α −

1 + (n− 1)α2

(1 − α)(1 + (n− 1)α)2

K∑
i=1

⎛
⎝ n∑
j=1

aj

⎞
⎠

2

− n(n− 1)α
1 + (n− 1)α

⎤
⎥⎦ .
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Example 6.10 (AR-1 Structure).
For the AR-1 structure, the (i, j)-th element of Γ (α) is α|i−j|, α ∈ (−1, 1).

The inverse matrix takes the form (e.g. Chaganty, 1997)

Γ−1(α) =
1

1 − α2
(In + α2M2 − αM1)

where M2 = diag(0, 1, . . . , 1, 0) and M1 is a tridiagonal matrix with 0 on the
main diagonal and 1 on the upper and lower diagonals. It is easy to show that

tr
{
∂Γ (α)
∂α

}
= 0, tr

{
M1
∂Γ (α)
∂α

}
= 2(n− 1), tr

{
M2
∂Γ (α)
∂α

}
= 0.

Thus the derivative with respect to α is

ẇα(α|A) = − 1
2(1 − α2)2

{−2(n− 1)α(1 − α2) +

2α
K∑
i=1

aTi (In +M2)ai − (1 + α2)
K∑
i=1

aTi M1ai}.

Example 6.11 (1-Dependence Structure).
1-dependence correlation structure corresponds to a matrix Γ (α) that is

tridiagonal with 1 on the main diagonal and α on the upper and lower diago-
nals. It is well known that the eigenvalues and eigenvectors of the matrix are,
respectively (e.g. Chaganty, 1997),

rj(α) = 1 + 2α cos
{

j

n+ 1
π

}
, j = 1, . . . , n

and
aj = [sin{jπ/(n+ 1)}, . . . , sin{jnπ/(n+ 1)}]T , j = 1, . . . , n.

Using Gram-Schmidt orthogonalization procedure for the aj ’s, one can con-
struct an orthonormal matrix P , and define bj = PTaj = (bi1, . . . , bin)T .
Note that matrix Γ may be decomposed as Γ = Pdiag(r1, . . . , rn)PT . So,
log |Γ (α)| =

∑n
j=1 log rj(α). It follows that the score function for α is given

by

ẇα(α|A) = −1
2

K∑
i=1

n∑
j=1

(
1
n
− b2ij

)
rj(α) − 1
αr2j (α)

.

6.5 Algorithms

This section introduces two useful algorithms to search for the MLE θ̂ in
VGLMs. Both algorithms do not require the second order derivatives of the
log-likelihood function, which are hard to derive analytically.
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6.5.1 Algorithm I: Maximization by Parts

Maximization by parts (MBP) algorithm is an iterative numerical procedure
that searches for the solution to a system of nonlinear score equations, without
using the second order derivatives of the log-linear likelihood function. This
algorithm starts with a selected additive partition of a complex log-likelihood
function,

�(θ) = �w(θ) + �e(θ),

with the corresponding score function given by

�̇(θ) = �̇w(θ) + �̇e(θ),

where �̇w(θ) is called the working log-likelihood (or the log-likelihood of a
working model), and �̇e(θ) is termed as the remainder log-likelihood. Usually,
the piece of �w(θ) is so chosen that (a) the resulting �̇w(θ) is an unbiased
inference function, and (b) the second order derivative �̈w(θ) is easy to handle.

Take the example of the copula generated joint distribution (6.7), in which
the likelihood function is formed as

L(θ) =
K∏
i=1

⎧⎨
⎩c(F1(yi1;μ1), . . . , Fn(yin;μn)|Γ )

n∏
j=1

fj(yij ;μj)

⎫⎬
⎭ .

Naturally, its log-likelihood function can be written in the additive form with

�w(θ) =
K∑
i=1

n∑
j=1

ln fj(yij ;μj)

�e(θ) = −K
2

ln |Γ | + 1
2

K∑
i=1

qi(θ)T (In − Γ−1)qi(θ). (6.18)

Note that �w(θ) is the likelihood function under the independence correlation
structure (Γ = In) and only involves the marginal parameters μj or β in the
regression setting, and �e(θ) contains all parameters.

Direct maximization of �(θ) is tedious and numerically unstable, because
marginal parameters μ1, . . . , μn appear in �e(θ) through complicated normal
scores qi(θ). It is obviously straightforward to handle �w by computing its first
and second order derivatives, but hard to derive the second order derivatives
of �e. Despite being consistent, the estimator θ1, as the solution to �̇w(θ) = 0,
can have low efficiency since only part of the full log-likelihood function is
used. To increase the efficiency, it is necessary to utilize the information in
the second piece �e.

The MBP algorithm requires that the evaluation of the first order deriva-
tive �̇e is available, which is certainly the case for the VGLMs, with all scores
listed in Section 6.4.2. Then, the MBP algorithm proceeds as follows:
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STEP 1: Solve �̇w(θ) = 0 for θ1.
STEP k: Solve �̇w(θ) = −�̇e(θk−1) to produce estimate θk, k = 2, 3, . . . . Liao

and Qaqish (2005) suggested a one-step Newton-Raphson update at this
iteration:

θk = θk−1 − {�̈w(θk−1)}−1�̇(θk−1),

where �̈w(θk−1) is the Hessian matrix of the working model evaluated at
the previous update θk−1. When this Hessian matrix is replaced by the
corresponding E{�̈w}, this one-step formula becomes a one-step Fisher-
scoring update.

Song et al. (2005) proved that under the condition of information domi-
nance this sequence of updates {θk} will converge to the MLE, namely the
solution to the score equation �̇(θ) = 0. The information dominance condition
is a requirement as to how the likelihood function �(θ) can be partitioned. In
effect, this condition requires that the �w piece should contain more informa-
tion about the parameter θ than the other piece �e does. Technically speaking,
that is ||i−1

w ie|| < 1, where iw = −K−1E�̈w(θ0) and ie = −K−1E�̈e(θ0).
To better appreciate the MBP algorithm, let us study an example below.

Example 6.12 (Bivariate Exponential Model). Consider exponential margins
with densities fj(yj ;λj) = λj exp(−λjyj), λj > 0, j = 1, 2, where λj are
the rate parameters and μj = 1/λj are the means. Here θ = (θ1, θ2) with
θ1 = (λ1, λ2) and θ2 = ρ, the association parameter in the bivariate Gaussian
copula. The likelihood function for the independence model is

�w(θ1) = [K lnλ1 − λ1

K∑
i=1

yi1] + [K lnλ2 − λ2

K∑
i=1

yi2].

Let ȳj = K−1
∑K

i=1 yij , j = 1, 2 and at iteration k let Δ̄k = (Δ̄k1 , Δ̄
k
2)T , where

Δ̄k = Δ(θk)/K, in which Δ(θ) is given by

Δ(θ) ≡ ∂�e(θ1, ρ)
∂θ1

= − ρ

1 − ρ2
{
ρ
∂A(θ1)
∂θ1

− 2
∂B(θ1)
∂θ1

}

∂�e(θ1, ρ)
∂ρ

=
Kρ

1 − ρ2 − 1
(1 − ρ2)2 {ρA(θ1) − (1 + ρ2)B(θ1)}.

Here A(θ1) =
∑K

i=1[qi1(λ1)2 + qi2(λ2)2], and B(θ1) =
∑K

i=1 qi1(λ1)qi2(λ2).
Then, updates are given by

θ1
1 = {ȳ−1

1 , ȳ
−1
2 }

θk1 = {(ȳ1 + Δ̄k−1
1 )−1, (ȳ2 + Δ̄k−1

2 )−1}, for k ≥ 2. (6.19)

To update ρ, it only requires solving a third order polynomial equation.
However, when ρ is high, say equal to 0.9 or larger, the MBP algorithm

based on the partition (6.18) using the independence model for the �w fails
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to produce convergent updates. This failure is due wholly to an inappropriate
selection of �w that does not satisfy the information dominance condition.
A better working model should incorporate a certain correlation among the
components. Song et al. (2005) suggested a new partition given as follows:

�w(θ) = −1
2

K∑
i=1

(yi − μ)TΓ−1
0 (yi − μ) +

K∑
i=1

n∑
j=1

ln fj(yij ;λj)

�e(θ) = −K
2

ln |Γ | + 1
2

K∑
i=1

qTi (In − Γ−1)qi +
1
2

K∑
i=1

(yi − μ)TΓ−1
0 (yi − μ),

where Γ0 is a known association matrix, and μ = (1/λ1, . . . , 1/λn)T is the vec-
tor of marginal means. With regard to the choice of Γ0, one might obtain some
useful clues from the one-step estimate Γ 1 using λ̂j from the independence
working model.

Given (μ1, ρ1), the update for μ is

μ2 = ȳ−K−1{In+GΓ−1
0 }−1

K∑
i=1

Qi{In−Γ (ρ1)−1}qi−{Γ0G
−1+In}−1(ȳ−μ1),

(6.20)
where Qi = Qi(μ1) is an n-dimensional diagonal matrix with the jth diag-
onal element ∂qij/∂λj = yije

−λ1
jyij/φ(qij(λ1

j )), and G = G(α1) is another
n-dimensional diagonal matrix with the jth diagonal element (λ1

j )
−2. As in

the case of independence working model, the update for the association pa-
rameter ρ is the real root of the following third order polynomial,

ρ3 + a2ρ2 + a1ρ+ a0 = 0,

where

a2 =
s2
n

− s1
n(n− 1)

− n− 2
n− 1

a1 =
2s2

n(n− 1)
− 1
n− 1

a0 =
s2 − s1
n(n− 1)2

,

with s1 = 1
K

∑K
i=1{1Tqi(μ1)}2 and s2 = 1

K

∑K
i=1 qi(μ1)Tqi(μ1).

The result of one simulation study is presented here to demonstrate the
MBP algorithm. Refer to Song et al. (2005) for more simulation studies. This
simulation aims not only to assess the performance of the MBP algorithm
itself, but also to compare with the second algorithm, a Gauss-Newton (G-N)
type algorithm introduced in the next Section 6.5.2. For the marginal expec-
tations, a simple log-linear model is used, λj = eθj , j = 1, . . . , n. And for
the association parameter, a logit model is specified, ρ = 2H(θn+1) − 1, with
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H(x) = ex/(1+ ex). The true parameters are set K = 10, n = 5, μj = αj = 1,
j = 1, . . . , n, so that θj = 0, j = 1, . . . , n. In addition, the interchangeable
correlation structure was assumed for the true Γ .

In the simulation study, Γ0 is specified as an interchangeable structure
with a pre-specified ρ0 = 0.95, while the true association matrix Γ is inter-
changeable with the true ρ = 0.9. The structure of Γ0 may be specified in
other types, such as AR-1, and the ρ0 can be set at a different value, say
0.5. However, the closer the pre-fixed Γ0 to the true Γ , the faster the MBP
algorithm converges.
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Fig. 6.4. Side-by-side boxplots comparing MBP and G-N over 500 replicates, with
ρ = 0.9 and K = 10. The working correlation is interchangeable with ρ0 = 0.95.

To compare the variation of the two methods, Figure 6.4 gives side-by-
side boxplots for each model parameter based on 500 replications. Note that
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the plots are based on the transformed θj parameters. Both methods give
the medians very close to the true values (θj = 0.0, j = 1, . . . , 5 and ρ =
0.9), but the G-N algorithm appears to be more variable with noticeably
many outliers. This simulation actually considers a tough setup, in which 6
parameters are estimated by 10 data points. Clearly, the MBP handles this
estimation remarkably well.

Song et al. (2005) concluded that (a) when the sample size is small and/or
the dimension of the parameters is large, the MBP is an appealing algorithm
to search for the MLE in VGLMs with continuous outcomes; (b) the G-N
algorithm performs well when the sample size, K, is large; and (c) when good
starting values are assigned to begin the G-N algorithm, its search is usually
efficient and stable.

6.5.2 Algorithm II: Gauss-Newton Type

A Gauss-Newton type algorithm is suggested to search for the MLE θ̂ in the
VGLMs for discrete outcomes or mixed outcomes. This optimization proce-
dure uses only the first order derivatives of the log-likelihood functions. This
algorithm works well when the sample sizeK is relatively large and reasonable
starting values are used.

The key step of this algorithm is to take step-halving, which guarantees
a steady increase in the likelihood from the previous iteration. Precisely, the
(k + 1)th iteration proceeds as

θk+1 = θk + δ{B(θk)}−1�̇(θk),

where B(θ) = 1
K

∑K
i=1 �̇i(θ;yi)�̇i(θ;yi)

T , and δ is the step-halving term that
is chosen as follows: starting at 1 (or 1/4, say, whichever is appropriate), it
halves each time until �(θk+1) > �(θk) holds in one iteration. Finally, the
algorithm stops when the increase in the likelihood is no longer possible or
the difference between two consecutive updates is smaller than a pre-specified
precision level.

6.6 An Illustration: VGLMs for Trivariate Discrete Data

This section exemplifies two VGLMs for discrete outcomes, one for trivariate
binary outcomes and the other for trivariate count outcomes. In both cases, the
asymptotic relative efficiency is compared with the popular quasi-likelihood
GEE method. Note that the GEE is quasi-likelihood approach, which claims
to improve the estimation efficiency from the independent data analysis. How-
ever, the theory of GEE has not indicated if the gained efficiency improvement
is satisfactory, which requires a comparison of the GEE’s efficiency to a cer-
tain upper bound, if available. It is known that the upper bound is set by
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the MLE. With the availability of the copula-based VGLMs, it is possible to
obtain such an upper bound and hence to assess the GEE’s improvement in
the efficiency gain. In the analysis of correlated binary data, there are two
multivariate parametric models, the binary VGLM and the QEM representa-
tion. It is of interest to know which one gives better estimation efficiency, if
the marginal logistic models are specified the same.

6.6.1 Trivariate VGLMs

For simplicity, consider the interchangeable correlation structure. The trivari-
ate probability mass function f is obtained from (6.8) as

f(Yi;θ) = P (Yi1 = yi1, Yi2 = yi2, Yi3 = yi3)

=
2∑

j1=1

2∑
j2=1

2∑
j3=1

(−1)j1+j2+j3C(ui,1,j1 , ui,2,j2 , ui,3,j3 |α).

The parameter vector is then θ = (β, α) as all dispersion parameters σ2
ij = 1.

Let ui,j1,j2,j3 = (ui,1,j1 , ui,2,j2 , ui,3,j3), and let ḟθl
(·) be the first order

derivative of density f with respect to θl. Then, the scores are

�̇θl
(θ) =

K∑
i=1

ḟθl
(yi;θ)/f(yi;θ)

=
K∑
i=1

2∑
j1=1

2∑
j2=1

2∑
j3=1

{
(−1)j1+j2+j3Ċθl

(ui,j1,j2,j3 |α)
}
/f(yi;θ).

Moreover, by the chain rule, the scores with respect to θl = βj are given
by

∂C(ui,j1,j2,j3 |α)
∂βj

=
3∑
t=1

∂C(ui,j1,j2,j3 |α)
∂ui,t,jt

∂ui,t,jt
∂βj

,

where the first factor on the right-hand side takes the following forms:

∂C(ui,j1,j2,j3 |α)
∂ui,1,j1

= Φ2

{
Δα(ui,2,j2 , ui,1,j1), Δα(ui,3,j3 , ui,1,j1);α

}
,

∂C(ui,j1,j2,j3 |α)
∂ui,2,j2

= Φ2

{
Δα(ui,1,j1 , ui,2,j2), Δα(ui,3,j3 , ui,2,j2);α

}
,

∂C(ui,j1,j2,j3 |α)
∂ui,3,j3

= Φ2

{
Δα(ui,1,j1 , ui,3,j3), Δα(ui,2,j2 , ui,3,j3);α

}

with Δα(ui,t,jt , ui,s,js) = Φ−1(ui,t,jt )−αΦ−1(ui,s,js )√
1−α2 . On the other hand, the sec-

ond factor is given by
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∂ui,t,jt
∂βj

=
∂ui,t,jt
∂μit

xitj
ġt(μit)

.

Note that derivatives ∂ui,j,jt/∂μit can have closed form expressions when
certain marginal distributions are assumed. For example, the Bernoulli margin
for binary data leads to

∂ui,t,1
∂μit

= −1[yit = 0],
∂ui,t,2
∂μit

= −1[yit = 1],

where 1[A] denotes the indicator function on set A. And the Poisson margin
for count data gives

∂ui,t,1
∂μit

= Fit(yit − 1) − Fit(yit), ∂ui,t,2
∂μit

= Fit(yit − 2) − Fit(yit − 1),

where Fit(·) is the Poisson CDF with mean μit.
Similarly, for the association parameter α,

C(ui,j1,j2,j3 |α)
∂α

=
∫ Φ−1(ui,1,j1 )

−∞

∫ Φ−1(ui,2,j2 )

−∞

∫ Φ−1(ui,3,j3 )

−∞

∂

∂α

{
lnφ3(z1, z2, z3|α)

}
×φ3(z1, z2, z3|α)dz1dz2dz3 (6.21)

with

∂

∂α

{
lnφ3(z1, z2, z3|α)

}
= − 1

2(1 − α)

[
z21 + z22 + z23

1 − α
− 1 + 2α2

(1 − α)(1 + 2α)2
(z1 + z2 + z3)2 − 6α

1 + 2α

]
.

The integral in (6.21) will be evaluated using the Gaussian-Hermite quadra-
ture method discussed in Section 7.4.

Note that even for the 3-dimensional model, analytic derivation of the sec-
ond order derivatives of the log-likelihood appears already very cumbersome,
so the Gauss-Newton type algorithm introduced in Section 6.5.2 is adopted
to search for the MLE in the discrete VGLMs.

6.6.2 Comparison of Asymptotic Efficiency

Now a comparison of the asymptotic relative efficiency between the VGLMs
and the GEEs is conducted for trivariate binary data and trivariate count
data, respectively. The focus is only on the regression parameters β, since
the association parameter α is usually treated as a nuisance parameter in the
GEEs. The asymptotic relative efficiency (ARE) takes the form

ARE(β) = diag{Varvglm}[diag{Vargee}]−1, (6.22)

where Vargee is the Godambe information matrix of the GEE estimator β̂gee,
and Varvglm is the asymptotic covariance of the ML estimator βvglm from the
VGLM.
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Example 6.13 (Trivariate Logit Model). The first comparison is based on cor-
related binary data generated by a hypothetical clinical trial in which a
binary response is repeatedly measured over three time periods. Following
Fitzmaurice et al. (1993), at each trial period, placebo (xt = 0) or an active
drug (xt = 1) is assumed to be randomly assigned amongst the subjects,
and all the eight possible covariate configurations have equal probability of
occurrence. A logistic model for the marginal expectation is specified as

logit(μit) = β0 + β1xit + β2(t− 2), t = 1, 2, 3,

where β0 = 0, and β1 = β2 = 0.5. For such a simple model, fortunately the
closed form expressions of Vargee and Varvglm can be analytically derived,
respectively. Hence, the ARE comparison in this case does not rely on any
simulated data or parameter estimates, but does depend only on the design
of the experiment.
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Fig. 6.5. Asymptotic efficiencies of the VGLM estimator of the slope parameter β1

relative to the estimators, respectively, from the GEE and from the log-linear model
representation under the trivariate logistic model.

The left panel of Figure 6.5 displays the ARE for the estimator of treat-
ment effect β1 as a function of the association parameter α ∈ [0, 1), with
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the interchangeable structure for the VGLM. For the GEEs, both the inter-
changeable and independence structures are considered in the comparison,
respectively. Evidently, the estimator from the VGLM is more efficient than
the GEE estimator, especially when the association is high. It is worth men-
tioning that under the logit link, the resulting GEEs are indeed coincident
with the score equations derived from the QEM representation (6.3). The
right panel of Figure 6.5 shows the ARE of the Varvglm versus the model-
based asymptotic covariance matrix (namely the Fisher information matrix
given by the QEM), indicating similar efficiency gain when the VGLM is used
to fit the data from this designed experiment. The amount of ARE between
the VGLM and the QEM can vary from one experiment to another.

Example 6.14 (Trivariate Log-linear Poisson Model). The second comparison
takes place between a trivariate Poisson VGLM and the corresponding GEEs,
under the interchangeable structure for the VGLM and the interchangeable
and independence structures for the GEEs, respectively. Unlike the first com-
parison, here the Varvglm has no closed form expression, which therefore has
to be estimated from simulated data. In order to minimize the effect of sim-
ulation variation and achieve high precision for the calculation of Varvglm, a
large sample size K = 500 is chosen. Data were generated from the 3-variate
Poisson VGLM with the following marginal log-linear model:

log(μij) = β0 + β1xij , j = 1, 2, 3, i = 1, . . . ,K, (6.23)

where the true values were β0 = β1 = 0.5, and the values of covariate xi1 were
generated randomly according to uniform U(0, 1).

The average ARE over 500 simulations for β1 is plotted in Figure 6.6 at
each of 20 grid points with 0.05 apart in [0, 1). Figure 6.6 clearly indicates that
high association leads to low ARE. This implies that when correlated count
data are sampled from a 3-dimensional copula Poisson model, the estimator
of β1 from the GEEs does not make satisfactory efficiency gain, even if the in-
terchangeable correlation has been incorporated into the inference procedure,
especially when the association parameter α is bigger than 0.5.

6.7 Data Examples

This section presents three data examples that further demonstrate the use-
fulness of the VGLMs. The first is a bivariate logit regression model for a
two-period cross-over trial data, the second is a 4-variate log-linear model
for seasonal hospital visits, and the last one is a bivariate VGLM for mixed
outcomes of binary and normal responses.

6.7.1 Analysis of Two-Period Cross-Over Trial Data

Data arising from cross-over clinical trials can be analyzed by the proposed
VGLMs. A typical two-period cross-over clinical trial aims to compare two
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Fig. 6.6. Average asymptotic efficiency of the VGLM estimator relative to the
estimator from the GEE under the trivariate Poisson model over 500 replications,
in which each cluster contains 500 trios.

drugs, say A and B, in which each patient serves as his or her own control.
Drugs are administrated over two periods with A/B or B/A sequence combi-
nations. Thus, the two measurements from each patient collected at the two
periods form a bivariate dataset.

This example re-analyzes the data of Example 8.1 from Diggle et al. (2002).
The data, originally reported by Jones and Kenward (1989), contains results
from a 2 × 2 cross-over trial on cerebrovascular deficiency in which an active
drug (A) and a placebo (B) were compared. Sixty-seven individuals were in-
volved in the trial. See more details of the data description in Diggle et al.
(2002). A key empirical finding in the data was that both the drug group
and placebo group show strong within-subject association. The data were an-
alyzed previously by Diggle et al. (2002) using the QEM approach, in which
a marginal insignificance of the treatment effect was found. Here the VGLM
is applied to fit the data in the hope to improve the efficiency. For individual
i at drug administration period j, let Yij be the response variable with 1 in-
dicating a normal electrocardiogram reading and 0 otherwise. The marginal
expectations were specified as follows:

logit(μij) = β0 + β1xij1 + β2xij2 + β3xij1xij2, j = 1, 2, i = 1, . . . , 67,
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where μij = P (Yij = 1), and two covariates, treatment (x1) and period (x2),
are defined as xij1 = 1 for active drug (A) and 0 otherwise, and xij2 = 1 for
period 2 and 0 otherwise.

Table 6.1. Estimated regression coefficients (standard errors) and Z-statistics from
the VGLM and GEE.

VGLM GEE

Variable β̂ (Std Err) Z β̂(Std Err) Z

Intercept .43 (.36) 1.20 .43 (.36) 1.21
Treatment (x1) 1.17 (.59) 1.98 1.11 (.57) 1.93
Period (x2) .17 (.51) .32 .18 (.51) .35
Interaction (x1x2) −1.09 (.98) −1.11 −1.20 (.98) −1.04

The results of both VGLM and GEEs are reported in Table 6.1. The
estimate of the association parameter by the VGLM was 0.89. Based on the
ARE study in Section 6.6.2, such a high association will lead to some efficiency
gain by the VGLM over the GEEs. As a result, the VGLM detected stronger
evidence (Z = 1.98) for the effect of the active drug than the GEEs (Z = 1.93).
In general, the efficiency gain will be elevated as the dimension of the outcomes
increases.

6.7.2 Analysis of Hospital Visit Data

This example illustrates a 4-variate Poisson VGLM for a longitudinal data
provided by Karim and Zeger (1988). Also see Table 9.22 in Davis (2002).
The response vector y consists of quarterly numbers of hospital visits over a
one year period for a child age at four or younger, and three baseline covariates
are age (x1 in months), sex (x2 = 1 for girl and 0 for boy), and maternal
smoking status (x3 = 1 for yes and 0 for no). The data are reported from 73
children. The central task of this analysis is to investigate the relationship of
the expected quarterly number of hospital visits as a function of these baseline
covariates and hence identify which factors are statistically significant for the
frequency of hospital visit.

The box-plots (not shown) of the response outcomes over the four seasons
clearly suggest that the average number of visits in the first season (January
to March) appears to be different from that in the other seasons. Therefore,
an additional covariate x4 is added to indicated the first season (x4 = 1) and
0 for the rest of seasons. The four marginal means, μij = E(Yij), j = 1, . . . , 4,
used in both VGLM and GEEs, are specified as follows:

log(μij) = β0 + β1x1ij + β2x2ij + β3x3ij + β4x4ij , j = 1, . . . , 4.
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A preliminary exploration on correlation structure indicates that interchange-
able structure seems reasonable and hence is used in both VGLM and GEEs.
The results are given in Table 6.2, where the 4-dimensional normal CDF was
evaluated by using Joe’s (1995) numerical recipe.

Table 6.2. Results from the analysis of hospital visit data using the VGLM and
GEE

VGLM GEE

Variable β̂ (Std Err) Z β̂(Std Err) Z

Intercept −.46 (.10) −4.39 -.43 (.42) −1.03
Age(x1) .03 (.04) 1.13 .003 (.007) .39
Smoking(x3) .15 (.10) 1.50 .15 (.27) .56
Season(x4) .61 (.10) 5.90 .56 (.16) 3.48

The results given by the two methods are similar. The two methods found
that the seasonal effect is significant, namely children less than 4 years old tend
to visit hospital more frequently during the winter period (January to March)
than during the rest of a year. Also, both methods are in agreement that the
effects of both sex and maternal smoking covariates are not significant for the
average frequency of child’s hospital visits. This example indicates that when
the statistical significance (or p-value) is not around the boundary, the GEE
and the VGLM would be very likely to provide a similar conclusion about the
effect of a covariate.

6.7.3 Analysis of Burn Injury Data

To demonstrate the flexibility of the VGLMs, a VGLM is employed to analyze
the burn injury data that involve two response variables of mixed types. Re-
ported in Fan and Gijbels (1996), the data contain 981 cases of burn injuries,
and two response variables, the disposition of death, and the total burn area,
and are modeled jointly as a function of patients’ age. The severity of burn
injury is measured by Y1 = log(burn area+1), which is a continuous response
variable. The disposition Y2 is a binary response with 1 for death from burn
injury and 0 for survival. It is of interest to investigate how age (x) affects the
severity of burn injury and the probability of death. To do this, two marginal
mean models are specified as follows:

μi1 = β01 + β11xi = xT1 β1

logit(μi2) = β02 + β12xi = xT2 β2,
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where μi1 = E(Yi1|xi) is the expected log-burn area, and μi2 = P (Yi2 = 1|xi)
is the probability of death from burn injury for patient i, given the age of
the patient. Note that this is not a longitudinal data but a correlated data
with different marginal response variables. In this case, it imposes the two
regression models having different regression coefficients (β1 and β2), and
different link functions (the identity and the logit).

Suppressing the subject index, it follows from (6.9) that the joint density
of Y = (Y1, Y2) is given as follows:

f(y1, y2) =
{
φ(y1;μ1, σ

2
1){1 −Δα(μ2, z1)}, if y2 = 0,

φ(y1;μ1, σ
2
1)Δα(μ2, z1), if y2 = 1, (6.24)

where φ(·;μ1, σ
2
1) is the density ofN(μ1, σ

2
1), z1 = (y1−μ1)/σ1, andΔα(a, b) =

Φ
(
Φ−1(a)−αb√

1−α2

)
. An advantage of this joint copula modeling is that it avoids the

artificial bimodal mixture of two normal margins, which is usually incurred
by a conditional modeling approach, such as Fitzmaurice and Laird’s (1995).
That is, suppose that conditionally on a binary response Y2,

Y1 | Y2 = l ∼ N(μl, σ2
l ), l = 0, 1.

Then it is easy to show that the marginal density of Y1 takes a mixture of two
normals,

f(y1) = P (Y2 = 0)Φ(y1;μ0, σ
2
0) + P (Y2 = 1)Φ(y1;μ1, σ

2
1).

For the burn injury data {yi, (xi1,xi2)}, i = 1, . . . ,K, the log-likelihood
for θ = (β1,β2, σ

2
1 , α) is given by

�(θ) =
∑
i∈S0

ln[φ(yi1;μi1, σ2
1){1 −Δα(μi2, zi1)}] +

∑
i∈S̄0

ln[φ(yi1;μi1, σ2
1)Δα(μi2, zi1)]

=
K∑
i=1

lnφ(yi1;μi1, σ2
1) +

∑
i∈S0

ln{1 −Δα(μi2, zi1)} +
∑
i∈S̄0

lnΔα(μi2, zi1),

where S0 = {i : yi2 = 0} and S̄0 = {i : yi2 = 1} are subsets of indices for
survived and dead subjects, respectively.

Both joint model and individual univariate models are applied to fit the
data, in which the Gauss-Newton type algorithm is implemented for the
VGLM. The results are summarized in Table 6.3.

The estimated association parameter α by the VGLM was 0.80, which
indicates strong association between these two responses. Overall, the point
estimates obtained by the VGLM and the separate univariate models are very
similar to each other. However, the VGLM appears to gain much efficiency
in comparison to the separate univariate analysis. More specifically, the effect
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Table 6.3. The estimates and standard errors obtained from the analysis of the burn
injury data, where both joint model and separate univariate models are applied.

VGLM Univariate Models

Model β β̂ Std Err Z β̂ Std Err Z

Linear Intercept 6.6980 .0479 139.73 6.7118 .0690 97.24
(log(burn area+1)) Age .0039 .0012 3.16 .0035 .0018 1.97

Logit Intercept −4.0521 .1658 −24.44 −3.6891 .2342 −17.78
(death) Age .0527 .0028 19.13 .0509 .0046 11.07

of age on the burn severity is found to be statistically significant (p-value
= 0.0016) by the VGLM but only marginally significant (p-value = 0.0488)
by the univariate linear regression model. So, ignoring a strong association
between the response variables will greatly reduce the power of the statistical
inference. In conclusion, the joint modeling approach is clearly preferred, and
the copula method provides a reasonable means of such joint modeling.



7

Mixed-Effects Models: Likelihood-Based
Inference

7.1 Introduction

Mixed effects models (MEMs) provide another class of models for the analy-
sis of correlated data. It is a conditional modeling approach that essentially
specifies a fully parametric probability model, in which maximum likelihood
estimation and inference can be established. Comparing to the marginal mod-
eling approach, the availability of the MLE in the MEMs arguably makes such
a modeling approach favorable. In the meantime, because it is a fully para-
metric approach, checking model assumptions is essential. Weiss and Lazaro
(1992), among others, has investigated model diagnostics in linear mixed-
effects models, but there has been not much progress so far in the literature
for the development of model diagnostics in generalized linear mixed-effects
models.

As a conditional modeling approach, the MEMs use latent variables to
characterize subject-specific heterogeneity and to introduce correlation among
correlated outcomes, such as within-cluster correlation for clustered data or
serial correlation for longitudinal data.

Figure 7.1 gives a graphic representation of the conditional model for clus-
ter i; that is, given a latent variable (or vector) bi, the outcomes Yi1, . . . , Yini

of cluster i are conditionally independent and distributed according to a para-
metric model, such as a dispersion model. It is worth pointing out that such a
specification of the conditional modeling is just one way to introduce correla-
tion. For example, the copula-based modeling approach in Chapter 6 provides
another way to incorporate correlation in a joint parametric model. Moreover,
with the involvement of latent variables in MEMs, model interpretation is not
as straightforward as that in marginal GLMs in Chapter 5 or vector GLMs
in Chapter 6. The following terms involved in MEMs need to be properly
interpreted:

(a) the meaning of latent variables b1, . . . ,bK ;
(b) the form of induced correlation structure by the included latent variables;



158 7 Mixed-Effects Models: Likelihood-Based Inference

� � �

�
�

�
�

�
�

��� �

�
�
�
�
�
���

· · ·

bi ∼ f(b; D)

Yi1 Yi2 Yini

Fig. 7.1. Graphic representation of conditional modeling for cluster/subject i.

(c) the meaning of the regression coefficient β present in the conditional dis-
tribution of Yij |bi.
Another important issue pertains to the relation between MEMs and

marginal GLMs or vector GLMs, which requires us to clarify the differences
or similarities among these three types of modeling approached on model-
ing and interpretation. That is, with a given correlated data, which modeling
approach should one take to analyze the data?

What are the latent variables b1, . . . ,bK? To answer, let us consider a
simple example that concerns the estimation of mortality rate based on a
sample of 12 hospitals that performed cardiac surgeries on babies. The data
are reported in Table 7.1.

Table 7.1. Cardiac surgeries on babies performed in 12 hospitals.

Hospital

A B C D E F G H I J K L

ni 47 148 119 810 211 196 148 215 207 97 256 360

yi 0 18 8 46 8 13 9 31 14 8 29 24

yi
ni

0 0.12 0.07 0.06 0.04 0.07 0.06 0.14 0.07 0.08 0.11 0.07

Here, ni denotes the number of operations performed at hospital i, and
yi is a realization regarding the number of deaths out of ni surgeries. Let
Yi =

∑ni

j=1 Yij , where Yij is the binary indicator of death (1) or survival (0),
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with πi being the probability of death at hospital i. Because surgeries were
very likely operated by the same group of surgeons in a hospital, outcomes of
patients’ survival status were inevitably clustered with hospitals, which can
lead to overdispersion, i.e., Var(yi) > πi(1 − πi)/mi, and other complications
violating the standard assumption of i.i.d. observations. A simple population-
average model (a marginal GLM) for the data takes the form of

logit(πij) = β0, i = 1, . . . , 12

where β0 represents the population-average log-odds of death due to opera-
tion failure in the study population of all hospitals. Obviously, the estimated
probability is

π̂0 =
∑

i yi∑
i ni

= 0.074,

which means that the population average probability of operation failure for
cardiac surgery is 7.4%. This result may be of interest for general citizens, but
it is certainly not of interest to parents who are in a position to decide to which
hospital to send their child for surgical operation. Parents are apparently more
interested in the hospital-specific failure rate, so they are able to compare and
choose the one with the lowest risk. Decisions may be made based directly
on the observed percentages in Table 7.1. But, such empirical evidence is
masked by sampling errors; that is, that hospitals C, F, I, and L all had a
7% failure rate could due to the sampling chance, or that hospital D (having
a 6% failure rate) was better than hospital C (having a 7% failure rate) due
to chance, and perhaps the true failure rates are no difference between the
two hospitals. Proper statistical models can help to deal with this difficulty.
In addition, it is easy to observe that the empirical failure rates in Table
7.1 vary substantially over the 12 hospitals, and such heterogeneity pertains
to the hospital-specific performance of cardiac surgeons and other factors of
individual hospitals.

In effect, the analysis using the marginal model is unable to provide the
assessment of surgical performance differentiation specific for each of the hos-
pitals, apart from the average performance of the all hospitals. As a result, it
is useful to develop a model addressing the heterogeneity across the hospitals.
A model that fulfills such a need may be written as

logit(πij) = β0 + bi, i = 1, . . . , 12,

where β0 represents the population-average failure rate, and b1, . . . , b12 are
regarded as of a random sample drawn from the study population of all hos-
pitals, representing hospital-specific effects. In general, they are referred to
the subject-specific effects or random effects.

An implicit assumption in such a model specification is that given random
effect bi, Yi1, . . . , Yini are conditionally independent, as illustrated by Figure
7.1. More precisely, the model may be expressed in a hierarchical form:
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Yij |bi ind.∼ Bi(1, πbij), j = 1, . . . , ni,

bi
iid∼ f(b;D), i = 1, . . . , 12,

with
logit(πbij) = β0 + bi, i = 1, . . . , 12,

where πbi = P (failure of surgery j at hospital i), and f(·;D) is a density
function for the study population of hospitals, with mean 0 and a certain
parameter D.

Treating parameters as random variates is not new to most of statisticians,
as this is the essence of Bayesian inference. So, in this setting of mixed effects
models, the random effects bi can be treated as parameters with a prior f(·;D),
should the Bayesian inference be adopted. Consequently, the intercept β0 will
also have to be treated as a random variable with a certain (preferably a non-
informative) prior. In contrast, the frequentist inference would view the bi as
non-stochastic parameters representing realizations of a random sample from
a study population. This treatment is also familiar to most of statisticians,
as it resembles the practice of prediction. The difference in interpreting the
random effects needs to be made clear, because it determines which type of
inferential method is used in data analysis. This chapter focuses on frequentist
methods and the next chapter discusses Bayesian inference based on Markov
chain Monte Carlo (MCMC).

To generalize the above discussion to the correlated data setting where
multiple outcomes are measured from one subject, first note that in the
marginal GLM, the regression model is specified as g(μij) = xTijβ, where
the regression parameter β holds fixed over all subjects, leading to a popula-
tion average interpretation. This modeling structure has to be relaxed in order
to incorporate heterogeneity across subjects, and then naturally the regres-
sion parameter demands to vary from one cluster/subject to another. There-
fore, the resulting cluster/subject-dependent regression coefficients would give
rise to a subject-specific interpretation. As a result, a regression model with
subject-specific coefficients takes the form

g {μij |bi)} = xTijβi, (7.1)

where βi depends on subject i.
For an example of longitudinal data, to study infant growth, the weight

of baby i at age tj is recorded as Yij , associated with some covariates
xij1, . . . , xijp. A simple linear mixed model with only random intercepts may
be expressed as

E(Yij) = βi0 + xij1β1 + . . .+ xijpβp

where only intercepts are subject-dependent in the form of βi0 = β0 + bi. The
random effects, b1, . . . , bK , may be essentially thought of as a random sample
from a distribution of infant weight at birth.
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7.2 Model Specification

Let us first consider linear mixed effects models (or linear random effects mod-
els) for normal correlated responses Yij . For the ease of exposition, imagine a
longitudinal dataset collected from a clinical trial that aims to make a compar-
ison between a new treatment to a standard treatment. A linear mixed-effects
model (LMM) may be specified in a hierarchical form as follows:

Stage I : the response variable Yij is expressed as a linear model with subject-
specific regression coefficients:

Yij = βi0 + βi1tj + εij , j = 0, 1, . . . , ni; i = 1, . . . ,K,

where t0 is the baseline visit time (prior to randomization), and εij
iid∼

N(0, σ2). Note that here βi0 represents the average effect for cluster i,
and βi1 represents the average rate of change in time for cluster i.

Stage II : the subject-specific regression coefficients are specified as follows:

βi0 = α0 +αT1 xi + bi0,
βi1 = γ0 + γ1zi + bi1

where zi = 1 denotes the new treatment and 0 the standard treatment,
and xi denotes a set of baseline covariates such as age and baseline disease
severity as well as possibly zi. In addition,

(
bi0
bi1

)
iid∼ MVN2

((
0
0

)
, D =

(
D11 D12

D21 D22

))
, i = 1, . . . ,K,

where D12 = D21. In this model, γ0 represents the average rate of change
in the standard treatment group (zi = 0), while (γ0 + γ1) indicates the
average rate of change in the new treatment group (zi = 1). Moreover,
parameter α characterizes the relation of the response on the baseline
covariates.

Combining the two hierarchies together leads to one equation given by

Yij = α0 +αT1 xi + γ0tj + γ1(zitj) + bi0 + bi1tj + εij ,

which consists of three primary components:

Modeling component Expression

Component of fixed effects α0 +αT1 xi + γ0tj + γ1(zitj)
Component of random effects bi0 + bi1tj
Component of measurement noise εij
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Here, (bi0, bi1) varies across subjects, characterizing heterogeneity due to
unmeasured factors in the trial. Such heterogeneity across subjects gives rise
to a certain within-cluster dependence.

It is easy to show that the first two moments of the model are

E(Yij) = α0 +αT1 xi + γ0tj + γ1(zitj)
Var(Yij) = D11 + 2tjD12 + t2jD22 + σ2

cov(Yij , Yij′ ) = D11 + (tj + tj′)D12 + tjtj′D22.

If the model contains only the random intercept bi0, then D12 = D21 = D22 =
0, and hence the covariance is cov(Yij , Yij′ ) = D11, which is the same for
all pairs of (j, j′). This implies the interchangeable (or compound symmetry)
correlation structure. If the random effect b1i is present, then the covariance is
time-dependent. However, the form of the time dependence is different from
the standard AR-1 structure. Therefore, the induced correlation structure
from the LMM seems somewhat awkward.

Also, the marginal mean (or the first moment) is

E(Yij) = α0 +αT1 xi + γ0tj + γ1(zitj),

which suggests that the regression coefficients in the component of the fixed
effects have a marginal (population-average) interpretation. Unfortunately,
this property does not retain in the generalized linear mixed models for non-
normal responses. To see this, let us consider a simple Poisson random effects
model with only the random intercept and one covariate zi of treatment:
Yij |b0i ind.∼ Po(μbij), where the mean μbij follows a GLM of the form

log(μbij) = β∗0 + β∗1zi + b0i,

and b0i
iid∼ N(0, σ2

b ), i = 1, . . . ,K. Then, the marginal mean is

μij = E{E(Yij |b0i)} = eβ
∗
0+β∗

1zieσ
2
b/2,

which leads to the following marginal log-linear model:

log(μij) =
(
σ2
b

2
+ β∗0

)
+ β∗1zi.

Clearly, the intercept in the marginal model is different from the intercept in
the conditional model. This means that β∗0 has no marginal (or population-
average) interpretation. Although β∗1 appears to be the same in both models,
when an additional random effect b1izi is added in the model, β∗1 will lose the
marginal interpretation due to the similar argument.

In the logistic mixed effects model with only the random effect b0i, the
marginal mean has no closed form expression. That is,
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μij =
∫

exp(β∗0 + β∗1zi + bi0)
1 + exp(β∗0 + β∗1zi + bi0)

φ(bi0;σ2
b )dbi0

�= exp(β∗0 + β∗1zi)
1 + exp(β∗0 + β∗1zi)

.

The situation of shifting by a constant in the Poisson mixed-effects model
does not repeat in this logistic model case. Neuhaus et al. (1991) showed that
if the variance of the random effects D = Var(bi) is positive definite, then
the fixed effects β∗l in an MEM and regression coefficients βl in the marginal
model counterpart satisfy the following relation:

(a) |βl| ≤ |β∗l |, l = 1, . . . , p;
(b) the equality holds if and only if β∗l = 0; and
(c) the discrepancy between βl and β∗l increases as D = Var(bi) (or the main

diagonal elements) increases.

In the logistic mixed effects model with single random intercepts, Zeger et
al. (1988) obtained a more accurate assessment of the relationship. That is,
the marginal log-odds can be approximated by

logit(μi) ≈ (1 + c2D11)−1/2τ i

where c = 16
√

3
15π and τ i the vector of the marginal linear predictors. Thus, an

approximate relation is given by

βl ≈ β∗l√
1 + 0.346D11

, l = 1, . . . , p.

Because of this discrepancy, it is necessary to distinguish the regression co-
efficients β∗l in the mixed effects model from those βl in the marginal GLM.
Equivalently, the ratio of estimates obtained from the mixed effects models
and from the marginal model is approximately

β∗l
βl

≈
√

1 + 0.346D11, (7.2)

which is bigger than 1, unless D11 = 0 or little heterogeneity across subjects
is present in the population.

As a matter of fact, in most of generalized linear mixed models, the re-
gression coefficients β∗l , l = 1, . . . , p have only the conditional interpretation.

Now a formal introduction to the generalized linear mixed effects model
(GLMM) is given as follows:

(i) Given random effects bi, the responses Yi1, . . . , Yini are mutually indepen-
dent, and

Yij |bi ∼ DM(μbij , σ
2)

where the conditional location parameter μij is assumed to follow a gen-
eralized linear model given by
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ηbij = g(μbij) = xTijβ + zTijbi, (7.3)

where g is the link function, where β is a p-dimensional vector of fixed
effects, and zij is a q-dimensional subvector of xij .

(ii) The random effects, b1, . . . ,bK , are i.i.d. according to a multivariate den-
sity f(b;D).

Following the literature, this chapter assumes density f is MVNq(0, D), where
D = D(τ ) is a positive-definite covariance matrix, which may be further
parametrized by a parameter vector τ of variance components. The set of
parameters to be estimated is θ = (β, τ , σ2).

The linear mixed-effects model is a special case of the GLMM with the
identity link function, g(μ) = μ, for the normal response. The model takes
the form

Yij = xTijβ + zTijbi + εij
where εij are i.i.d. N(0, σ2). The model can also be expressed in matrix no-
tation as follows:

Yi = Xiβ + Zibi + εi,

where Yi = (Yi1, . . . , Yini)T , XT
i = (xi1, . . . ,xini ), ZTi = (zi1, . . . , zini), and

εi = (εi1, . . . , εini)T . It follows that

E(yi) = Xiβ
Var(yi) = ZiDZTi + σ2Ini .

In the current literature, the distribution of random effects is routinely
assumed to be normal, mainly for mathematical convenience (Neuhaus et al.,
1992; Neuhaus and Kalbfleisch, 1998). In recent years, violation of such nor-
mality has been reported in many data analyses. For examples, Pinherio et al.
(2001) pointed out that the distribution of random effects appeared to have
heavier tails than the normal in their orthodontic data analysis, Zhang and Da-
vidian (2001) found that the random intercepts followed a positively skewed
distribution in their model for Framingham cholesterol data, and Ishwaran
and Takahara (2002) indicated that the distribution of random effects devi-
ated from normality due to negative skewness and positive kurtosis in their
analysis of chronic renal disease data. The widespread use of the mixed effects
models with normal random effects is, in part, motivated by the fact that un-
der general regularity conditions, estimates of the fixed effects and variance
components obtained under the normally distributed random effects remain
consistent and asymptotically normal, even if the assumption of normality is
violated (Beal and Sheiner, 1988; Verbeke and Lesaffre, 1997). However, de-
viations from normality can adversely affect the efficiency of estimates of the
fixed effects, and may also adversely affect the estimation of subject-specific
random effects. Although some works have tried to fix some problems due to
the violation of the normality assumption, such as Song et al. (2007), con-
sidering robust mixed effects models with t-distributed random effects, some
further investigations are worth being explored in this area.
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7.3 Estimation

One of statistical tasks in the GLMMs is to estimate the parameters θ, as
well as the random effects bi when the subject-specific effects are of interest.
Because the GLMM is a fully parametric model, the MLE would naturally be
the choice of estimation.

Roughly speaking, the development of MLE is driven by whether the ran-
dom effects are of interest and need to be explicitly estimated. When bi are not
of central focus, one may take an approach that treats these random effects
as nuisance parameters and integrates them out. As a result, the resulting
estimation procedure is effectively based on the marginal likelihood, in which
the estimation of fixed effects β can be carried out with no need of estimating
bi. For instance, the MLE based on the quadrature numerical method and
the MLE based on Monte Carlo EM (MCEM) are of this kind.

In a similar spirit, the conditional MLE proceeds by conditioning the ran-
dom effects out of the problem based on relevant sufficient statistics. For
example, consider the random intercept model

g(μbij) = b0i + β0 + β1(age at entry)i + β2(follow-up time)j ,

where only β2 is of interest and interpretable since the unknown b0i make the
comparison of across-subject effects (i.e., β1) impossible, unless individual b0i
is known a priori.

Another type of approach assumes that the subject-specific coefficients are
themselves of interest, in which both bi and β (fixed effects) are estimated
simultaneously. Given the nature of random effects as being realizations of
random variables, it is sensible to invoke “posterior” density f(bi|data) for
the estimation of bi, and consequently either the mean or the mode of the
posterior can be used as the point estimation for the bi. Methods of this
kind include Breslow and Clayton’s (1993) approximate inference based on
penalized quasi-likelihood (PQL) and Bayesian approach based on Markov
chain Monte Carlo (MCMC) algorithm.

Besides those mentioned above, there are other types of methods such as
the simulated MLE (McCulloch and Searle, 2001) and the hierarchical likeli-
hood estimation (Lee and Nelder, 1996 and 2004) developed in the literature.
Also see Vonesh and Carter (1987), Schall (1999), and McGilchrist (1994) for
some ad hoc estimation procedures. MLE in the GLMMs is still currently an
active research area in the field of longitudinal or clustered data analysis.

To begin the discussion of MLE, let us first write down the likelihood
function of the GLMM. Clearly, the i-th piece likelihood for subject/cluster i
is

Li(θ) =
∫
Rq

f(yi|bi)φ(bi;D)dbi

=
∫
Rq

ni∏
j=1

f(yij |bi)φ(bi;D)dbi, (7.4)

and the log-likelihood for the full data is
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�(θ) = logL(θ) =
K∑
i=1

logLi(θ). (7.5)

Then, without estimating bi, the MLE of θ can be obtained by directly max-
imizing the log-likelihood �(θ) with respect to θ, namely

θ̂ = argmax
θ
�(θ).

In the LMM that assumes Yij |bi ∼ N(μbij , σ
2), with

μbij = xTijβ + zTijbi,

the integral in (7.4) has a closed form expression. This is because it takes
effectively a normal-normal convolution, so the marginal distribution must
remain normal. That is, marginally Yi ∼ MVNni(Xiβ, ZiDZTi +σ2Ini). Fur-
thermore, the MLE of the fixed effects β can be obtained by the iterative
weighted least squares, and the variance component parameters can be es-
timated by either MLE or the restricted MLE (Harville, 1977). SAS PROC
MIXED provides a comprehensive numerical package to fit correlated normal
data by the linear mixed-effects model. Interested readers may refer to Mc-
Culloch and Searle (2001) for more technical details regarding inference in the
linear mixed-effects models.

However, when data are not normal, the ML inference becomes more com-
plicated. For the instance of binary regression model,

logit(πbij) = xTijβ + zTijbi,

the likelihood L(θ) is proportional to

K∏
i=1

∫
Rq

ni∏
j=1

{
πbij(β)

}yij
{
1 − πbij(β)

}1−yij |D|−q/2 exp
(
−1

2
bTi D

−1bi

)
dbi,

where the integral does not have a closed form expression.
Because of the involvement of unobserved random effects, the resulting

likelihood of the GLMM usually appears intricate, so the related numerical
implementation in the search of MLE θ̂, as well as in the estimation of random
effects if relevant, could be challenging. The challenge arises mainly from three
aspects:

• Optimization or maximization is not trivial, when the score �̇(θ) is high-
dimensional. In the GLMMs, the second order derivatives �̈(θ) may be hard
to derive analytically or even if available appear very complicated, so the
application of Newton-Raphson or Fisher-scoring algorithm is generally
not feasible. Instead, searching for MLE may have to be done by algorithms
relying only on its scores or numerical second derivatives. For example, the
current SAS PROC NLMIXED adopts a dual quasi-Newton algorithm to
search for the solution to the score equations.
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• Evaluation of the q-dimensional integral is troublesome, especially when
the dimension q is high. The available numerical evaluation methods like
the quadrature method can only handle low dimensional (q ≤ 3, say) inte-
gral effectively. When the q is high, the number of quadratures required in
the evaluation can increase astronomically, which hampers the use of any
quadrature method literally. In this situation, Markov chain Monte Carlo
(MCMC) algorithm is suggested to deal with the integration evaluation.
Note that MCMC implementation requires specifying prior distributions
for all model parameters, which results in a Bayesian inference in nature.
In the aspect of model specification, some additional assumptions on pri-
ors, besides those already made for the GLMM, are imposed, which will
have to be checked thoroughly by sensitivity analysis. Unfortunately, sensi-
tivity analysis can appear to be somewhat subjective and computationally
intensive, and it can easily add extra complexity upon model fitting. This
extra difficulty might be even greater than the original one.

• For any algorithm proposed to search for MLE, its computational efficiency
and numerical stability needs to be seriously examined, especially when
some approximations are invoked in the development of that algorithm.

This chapter is devoted to an introduction to a few popular inference
methods in the GLMMs, where the integration in the evaluation of likelihood
functions as well as their derivatives has no closed form expressions. Some
methods have been implemented in various software packages and hence are
ready to be used for data analysis.

Finally, it is worth noting that as a fully parametric modeling approach,
assumptions made on the MEMs have to be validated via, say, residual anal-
ysis. In the current literature, systematic model diagnostics in the MEMs are
largely absent, although some efforts have been made.

7.4 MLE Based on Numerical Integration

When the dimension of the random effects bi is low, say q ≤ 5, one may
directly apply a quadrature numerical integration method to evaluate the in-
tegration in the likelihood function (7.4). Among several quadrature methods,
the Gauss-Hermite quadrature method is illustrated in this section. In essence,
quadrature methods differ by how and how many quadrature points are cho-
sen in the evaluation of integration. SAS PROC NLMIXED uses the adaptive
Gaussian quadrature method (Lange, 1999) to select quadrature points.

Let us begin by considering one-dimensional random effects, namely q = 1
corresponding to the GLMM with only random intercepts. The GLMM can
be expressed in a hierarchical form as follows:

Yij |bi ind.∼ MD(μbij , σ
2)

bi
i.i.d.∼ N(0, τ)
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with
g(μbij) = xTijβ + bi.

Let θ = (β, τ, σ2). The resulting likelihood function is then

L(θ) =
K∏
i=1

∫
R

ni∏
j=1

f(yij |bi)f(bi)dbi

=
K∏
i=1

⎧⎨
⎩

ni∏
j=1

c(yij ;σ2)

⎫⎬
⎭
∫
R

exp

⎧⎨
⎩− 1

2σ2

ni∑
j=1

d(yij ;μbij)

⎫⎬
⎭
e−b

2
i/(2τ)√
2πτ

dbi.

Clearly, suppressing index i, the following form of the integral needs to be
evaluated

∫
R
h(b)

e−b
2/(2τ)

√
2πτ

db =
∫
R
h(
√

2τv)
e−v

2

√
π
dv

=
∫
R
h∗(v)e−v

2
dv,

where

h∗(v) = h(
√

2τv)/
√
π, with

h(v) = exp

⎧⎨
⎩− 1

2σ2

ni∑
j=1

d(yij ;μbij)

⎫⎬
⎭ .

This standardization is necessary in order to apply standardized quadrature
points and weights that are generated from Hermite orthogonal polynomials.
The Gauss-Hermite quadrature evaluation of the integral takes the form

∫
R
h∗(v)e−v

2
dv ≈

M∑
k=1

h∗(vk)wk, (7.6)

where vk are the quadrature points and wk are weights, as illustrated in Figure
7.2. Basically, the sum of areas of many vertical retangles approximates the
area under the curve h∗(·).

Relevant questions raised here are which quadrature points vk and weights
wk should be chosen and how many. The number of quadrature points, M ,
is pre-specified, which determines the precision (or order) of this approxima-
tion. Practical experience suggests that in the context of the GLMM, such
an approximation is usually unsatisfactory when M ≤ 10 and is good enough
when M ≥ 20. The adaptive Gaussian quadrature method builds in an iter-
ative procedure that automatically selects a number of quadrature points to
achieve a pre-specified precision. In contrast, the Gauss-Hermite quadrature
method has to fix the M beforehand. See more details in Lange (1999).
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Fig. 7.2. Diagram for Gauss-Hermite quadrature evaluation of integration.

The values of vk and wk are determined such that the approximation∑M
k=1 h

∗(vk)wk will give the exact answer to the integral when the integrand
h∗(·) are all orthogonal polynomials up to degrees (2M−1). This implies that

vk = kth zero (root) of Hermite polynomial Hm(v)

wk =
2−1m!

√
π

m2{Hm−1(vk)}2
,

where Hm(·) is the Hermite orthogonal polynomial of order m.
Abramowitz and Stegun’s (1970) Handbook of Mathematical Functions

lists the values of vk and wk for M ≤ 25, and a large M , MATLAB software
package can generate desirable quadrature points and weights easily. For ex-
ample, Table 7.2 lists these values for the case of M = 3, 4, 5, respectively.

To see how this method works, take an example of an integral with the
integrand being a polynomial of order 2,∫ ∞

−∞
(1 + v2)e−v

2
dv =

3
2
√
π = 2.65868.

The Gauss-Hermite quadrature method with M = 3 gives∫ ∞

−∞
(1 + v2)e−v

2
dv = {1 + (−1.22474487)2}(0.29540898)

+(1 + 02)(1.18163590)
+(1 + 1.224744872)(0.29540898)

= 2.65868,

as expected. Consider an intergrand of a sixth order polynomial,∫ ∞

−∞
(1 + v6)e−v

2
dv =

23
8
√
π = 5.0958.

The same 3-point quadrature formula gives a result of 3.76645, a very poor ap-
proximation. However, the 4-point quadrature formula gives an almost exact
answer. Interested readers can try this calculation themselves.
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Table 7.2. Gauss-Hermite quadrature points and weights.

M vk wk

3 −1.22474487 0.29540898
0.0 1.18163590

1.22474487 0.29540898

4 −1.65068012 0.08131284
−0.52464762 0.80491409

0.52464762 0.80491409
1.65068012 0.08131284

5 −2.02018287 0.01995324
−0.95857246 0.39361932

0.0 0.94530872
0.95857246 0.39361932
2.02018287 0.01995324

When the quadrature formula is used to evaluate the likelihood (7.4), the
approximation takes the form

K∏
i=1

⎧⎨
⎩

ni∏
j=1

c(yij ;σ2)

⎫⎬
⎭

M∑
k=1

1√
π

exp

⎧⎨
⎩− 1

2σ2

ni∑
j=1

d(yij ;μ
√

2τvk
ij )

⎫⎬
⎭wk.

The logarithm of the approximate likelihood becomes

�gq(θ) =
K∑
i=1

ni∑
j=1

log c(yij ;σ2)

+
K∑
i=1

log
M∑
k=1

1√
π
wk exp

⎧⎨
⎩− 1

2σ2

ni∑
j=1

d(yij ;μ
√

2τvk
ij )

⎫⎬
⎭ .

Therefore, the estimator of θ is given by

θ̂gq = argmax
θ
�gq(θ).

Various optimization procedures are possibly applied to search for the
maximizer of the �gq(θ). For example, Newton-Raphson algorithm may be
implemented in some simple cases. SAS PROC NLMIXED uses a dual quasi-
Newton algorithm to carry out the maximization. Alternatively, one may use
a Gauss-Newton type algorithm introduced in Section 6.5.2. As pointed out
before, the advantage of this Gauss-Newton type algorithm is that it does not
require the second order derivatives of �gq.
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The quadrature numerical method is in principle applicable to an integra-
tion of any dimension. However, the related computational burden increases
dramatically as the dimension increases. Essentially, the multi-dimensional
quadrature formula is based on Cartesian product Gaussian-Hermite quadra-
ture rules (Davis and Rabinowitz, 1984), which carries out 1-dimensional
Gauss-Hermite allocation. With the loss of generality, we assume matrix D
is diagonal, or the components of bi are independent; otherwise, the mul-
tivariate normal may be reparametrized as a product of conditional nor-
mals through Cholesky decomposition of the variance-covariance matrix. Let
mj = wjeb

2
j
√

2Djj , j = 1, . . . , q. Then the q-dimensional integral can be ap-
proximated by
∫
Rq

h(b)db1 · · · dbq ≈
∑
iq

m
(q)
iq

· · ·
∑
i2

m
(2)
i2

∑
i1

m
(1)
i1
h(
√

2D11b1, · · · ,
√

2Dqqbq).

There are some caveats for the application of Gauss-Hermite quadrature
formula:

(a) the integrand h∗(·) has to be “centered”. For example,
∫
e2va−a

2
e−v

2
dv =

√
π, for all a.

If one uses the 5-point quadrature to evaluate this un-centered integrand,
the errors are reported in Table 7.3. It is noted that this uncentral param-
eter a affects the precision of the evaluation substantially.

Table 7.3. Errors in the 5-point quadrature evaluation.

a Error

a = 0 0.0
a = 1 0.001
a = 2 0.240

a → ±∞ √
π

(b) Integrand h∗(·) should be kind of smooth function. The approximation
can be very poor if the integrand has jumps. This is because the under-
lying theory is based on a polynomial-based approximation to an analytic
function.

Example 7.1 (Analysis of Multiple Sclerosis Data).
This example illustrates the use of SAS PROC NLMIXED to analyze the

multiple sclerosis data, which was introduced in Section 1.3.6. In Section 5.6.2,
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a marginal model was applied to assess the population-average treatment
effect, adjusted by baseline disease duration and a second-order polynomial of
time. The conclusion was that the test drug does not help to reduce the risk
of exacerbation of the disease.

Now the GLMM is applied to fit the data, in order to examine patient-
specific treatment effects on the risk of exacerbation. Besides treatment,
duration of disease, time, and squared time, this GLMM includes an ad-
ditional baseline covariate initial EDSS (Expanded Disability Status Scale)
scores, which is regarded as another potential covariate of interest. In this
analysis, instead of treating the three dosage levels (placebo, low, and high)
as one ordinal covariate, two dummy variables for the treatment are set as
follows, with the reference to high dose:

Ptrt =
{

1, Placebo
0, Otherwise, Ltrt =

{
1, Low Dose
0, Otherwise.

In order to specify the mixed effects model, in particular the structure of
random effects, a preliminary analysis was conducted, in which individual
logistic regression was run for each subject and produced 52 sets of estimates
of the regression coefficients. After an exhaustive screening, covariate EDSSwas
the only one significant covariate in all individual analyses, suggesting that a
good attention should be paid to this variable. Figure 7.3 shows the histograms
of estimated intercepts (in the top panel) and of estimated coefficients of EDSS
(in the bottom panel).

Both histograms appear to be unimodal, and the distribution of intercepts
is slightly left skewed while the distribution of EDSS’ slopes is a little right
skewed. Thus, the distributions of random effects related to these two terms
may be assumed to be approximately normal. Moreover, the GLMM may take
the form

logitπij = β0 + β1tj + β2t2j + β3EDSSi + β4Ptrti + β5Ltrti + β6duri
+bi0 + EDSSibi1, j = 1, . . . , 17, i = 1, . . . , 52,

where πij = prob(Yij = 1|xij) is the probability of exacerbation at the j-th
visit for patient i. Three scenarios concerning the structure of the random
effects were considered:

(a) only the random intercepts bi0 ∼ N(0, D11) is included;
(b) both random effects bi0 and bi1 are included, but assumed to be indepen-

dent, namely

(bi0, bi1) ∼ MVN2

(
0,
(
D11 0
0 D22

))
;

(c) the general case,

(bi0, bi1) ∼ MVN2

(
0,
(
D11 D12

D21 D22

))
.
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Fig. 7.3. Histograms of estimated intercepts (the top panel) and slopes for covariates
EDSS (the bottom panel) obtained in individual logistic regression, each for one
subject.

SAS PROC NLMIXED was employed to fit the three models and the results
were summarized in Table 7.4. For the purpose of comparison, a marginal
GLM was also fit using SAS PROC GENMOD with interchangeable working
correlation structure.

As indicated in Table 7.4, three covariates, time2, EDSS, and duration
of disease, are statistical significant; covariate time is marginally significant.
However, treatment is not significant, although the positive sign of the esti-
mates suggests a potential suppression of high dose against the risk of ex-
acerbation. Based on Model (c), one unit increase in EDSS will result in an
increase in the odds of exacerbation by exp(0.3069) = 1.36. Also, given the
other covariates withheld, the odds ratio of exacerbation between a patient
who had a disease history of (T + 1) years and a patient who had a disease
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Table 7.4. Estimates and standard errors from the GLMM and the marginal GLM
for the multiple sclerosis trial data, using SAS PROC NLMIXED and SAS PROC
GENMOD with interchangeable structure.

Parameter Model(a) Model(b) Model(c) MGLM

intercept −1.6300(.5177) −1.6348(.5241) −1.6499(.5337) −1.5691(.4834)
time −0.0307(.0151) −0.0306(.0151) −0.0296(.0152) −0.0302(.0133)
time2 0.0002(.0001) 0.0002(.0001) 0.0002(.0001) 0.0002(.0001)
EDSS 0.2933(.0850) 0.2935(.0854) 0.3069(.0983) 0.2885(.0891)
Ptrt 0.2488(.3159) 0.2536(.3295) 0.2397(.3210) 0.2442(.2982)
Ltrt 0.4564(.3040) 0.4620(.3248) 0.4503(.3103) 0.4332(.3071)
dur −0.0435(.0213) −0.0433(.0215) −0.0459(.0208) −0.0446(.0219)
D11 0.1381(.1531) 0.1306(.2148) 0.7943(1.042) –
D12 – – −0.2230(.3347) –
D22 – 0.0007(.0143) 0.0653(.1007) –

history of T years is exp(−0.0459) = 0.955. In other words, patients who have
longer disease history are more likely to suffer from exacerbation.

For all of the three mixed effects models, the variance components are not
statistically significant. This means that the patients recruited in this clinical
trial did not express any significant heterogeneity, or the intercepts β1 + bi0
and the slope of EDSS β3 + bi1 were sampled from a highly homogeneous
population. In this case, the marginal analysis based on the MGLM would give
almost the same results as those from the mixed effects models, and moreover,
the estimates given in the mixed effects models have marginal interpretation.

Precisely, ratios of the estimates from Model (a) and the estimates from
the MGLM are ranged from 0.98 to 1.04, compared to the ratio 1.02 given by
equation (7.2). One may test the null hypothesis of the ratio equal to 1. The
application of the δ-method for the function given in equation (7.2) leads to
the asymptotic standard error

se(D11) × 0.173√
0.346σ̂2 + 1

= 0.0259.

The resulting Z-statistic is 0.91, which does not show any evidence that this
ratio would be different from 1.

7.5 Simulated MLE

Recall the likelihood function of a GLMM is L(θ) =
∏K
i=1 Li(θ) where the

i-th piece of likelihood function is
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Li(θ) =
∫
Rq

ni∏
j=1

f(yij |bi)f(bi;D)dbi.

Geyer and Thompson (1992) suggested a direct Monte Carlo approximation of
the integral by the method of importance sampling. The importance sampling
scheme requires us to choose a proposal distribution, say h(·), of the random
effects from which one is able to draw random samples. Denote a random
sample of M realizations by

b(1)
i , . . . ,b

(M)
i

i.i.d.∼ h(bi).

Then the integral can be approximated as follows,

Li(θ) =
∫
Rq

ni∏
j=1

f(yij |bi)f(bi;D)
h(bi)

h(bi)dbi

= Eh

⎧⎨
⎩

ni∏
j=1

f(yij |bi)f(bi;D)
h(bi)

⎫⎬
⎭

≈
M∑
k=1

ni∏
j=1

f(yij |b(k)
i )
f(b(k)

i ;D)

h(b(k)
i )

.

Then, the Monte Carlo version of the approximate likelihood is given by

Lmc(θ) =
K∏
i=1

M∑
l=1

ni∏
j=1

f(yij |b(l)
i )
f(b(l)

i ;D)

h(b(l)
i )

.

Moreover, an estimator of θ is obtained as

θ̂mc = argmax
θ

logLmc(θ).

An important property of this method is that the estimator θ̂mc is always
consistent regardless of the choice of the importance sampling distribution
h(bi). However, the Monte Carlo approximation of the integral is sensitive to
the choice of the h(bi), which affects the precision of the asymptotic standard
errors for the resulting estimates. Results can be highly variable for choice far
from the optimal choice h(bi) = fbi|Y(bi|Y), the conditional density of the
random effects given the data (or the posterior). This optimal proposal density
effectively gives a zero variance estimator of the Monte Carlo approximation
of the form:

M∑
k=1

ni∏
j=1

f(yij |b(k)
i )
f(b(k)

i ;D)

h(b(k)
i )

.

In addition, the Monte Carlo simulation brings extra variation/noise into the
procedure of MLE, so the resulting standard errors (or asymptotic covariance
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matrix) of the estimates can be inflated. Booth and Hobert (1999) considered a
logistic random effects model, in which they compared the simulated MLE and
Monte Carlo EM algorithm. It is found that the Monte Carlo EM algorithm
that will be presented in Section 7.7 performs better than the simulated MLE
method.

7.6 Conditional Likelihood Estimation

Now consider the conditional likelihood approach (McCullagh and Nelder,
1989). The basic idea is to treat bi as nuisance parameters, and to construct
the so-called conditional likelihood, conditioning on the sufficient statistics for
the bi. For the ease of exposition, this section concerns only a special subclass
of discrete ED models with the dispersion parameter σ2 = 1. It includes
Poisson and Bernoulli distributions.

Treat b = (bT1 , . . . ,b
T
K)T as fixed parameters. The likelihood function for

parameters θ = (β,b) is

L(θ) =
K∏
i=1

ni∏
j=1

f(yij |β,bi) ∝
K∏
i=1

ni∏
j=1

exp {θijyij − κ(θij)}

where under the canonical link function g, the canonical parameter is given
by

θij = τ−1(μij) = τ−1 ◦ g−1(xTijβ + zTijbi)

= xTijβ + zTijbi.

So, the likelihood is proportional to

L(θ) ∝ exp

⎧⎨
⎩βT

∑
ij

xijyij +
∑
i

bTi
∑
j

zijyij −
∑
ij

κ(θij)

⎫⎬
⎭ .

It follows immediately that the sufficient statistics for β and bi are
∑

ij xijyij
and

∑
j zijyij , respectively.

In the context of discrete ED models, given data yi, denote ai =
∑
j xijyij

and ui =
∑

j zijyij . Then, for subject i the conditional probability mass
function is
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f(yi|
∑
j

zijYij = ui,β) =
P(Yi = yi,

∑
j zijYij = ui;β,bi)

P(
∑

j zijYij = ui;β,bi)

=
P(
∑

j xijYij = ai,
∑

j zijYij = ui;β,bi)
P(
∑

j zijYij = ui;β,bi)

=

∑
Ri1

exp(βTai + bTi ui)∑
Ri2

exp(βT
∑
j xijyij + bTi ui)

=

∑
Ri1

exp(βTai)∑
Ri2

exp(βT
∑
j xijyij)

where Ri1 and Ri2 are two sub-sample spaces defined by

Ri1 =

⎧⎨
⎩yi |

∑
j

xijyij = ai,
∑
j

zijyij = bi

⎫⎬
⎭ ,

Ri2 =

⎧⎨
⎩yi |

∑
j

zijyij = ui

⎫⎬
⎭ .

This implies that the conditional likelihood for β

L(β|
∑
j

zijYij = ui) =
K∏
i=1

∑
Ri1

exp(βTai)∑
Ri2

exp(βT
∑

j xijyij)
.

The MLE of β is given by

β̂ = argmax
β

logL(β|
∑
j

zijYij = ui).

Example 7.2 (Logistic Mixed Effects Model).
Consider a logistic GLMM with only the random intercepts given as fol-

lows:
logit(πbij) = β0 + bi + xTijβ,

where Yij |bi ∼ B(1, πbij) for a binary correlated data. Let γi = β0 + bi. Then
the likelihood function can be expressed

L(θ) =
∏
i

exp

⎡
⎣γi∑

j

yij +

⎛
⎝∑

j

yijxTij

⎞
⎠β −

∑
j

log
{
1 + exp(γi + xTijβ)

}⎤⎦ .

Let yoi be the vector of observed outcomes of Yi for subject i. Accordingly,
let aoi =

∑
j xijy

o
ij and yoi+ =

∑
j y

o
ij . Note that in this simple model, zij = 1

for all (i, j), which implies that
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Ri2 =

⎧⎨
⎩yi |

∑
j

yij = yoi+

⎫⎬
⎭ .

Clearly, th subspace Ri2 contains
(
ni
yoi+

)
many elements, each satisfying∑

j yij = yoi+, because yij is binary of either 0 or 1. Likewise, the other sub-
space is

Ri1 =

⎧⎨
⎩yi |

∑
j

xijyij = aoi ,
∑
j

yij = yoi+

⎫⎬
⎭ .

It is easy to see that in Ri1 there exists a unique configuration that satis-
fies the two conditions, provided that xij are time-dependent covariates and(
XT
i Xi

)−1 exists. Obviously, this unique solution must equal to the observed
yoi . Therefore, in such a setting the conditional likelihood function reduces to

L(β|aoi , yoi+, i = 1, . . . ,K) =
∏
i

exp(βTaoi )∑
Ri2

exp(βT
∑yo

i+
k=1 xikyik)

. (7.7)

Maximizing this conditional likelihood (7.7) will lead to the MLE of the β. In
this approach, neither the intercept parameter β0 nor the random intercept
bi is estimated. Breslow and Day (1980) derived a conditional likelihood of
the same form as (7.7) in the context of stratified case-control studies. The
numerical methods suggested in their paper can be applied to obtain the
estimate of β.

Another common scenario is that xij are all time-independent, namely
xij = xi. For this case, Ri1 is identical to the configuration of Ri2, as long
as xTi xi �= 0. This is because

∑
j xiyij = aoi = xi

∑
j y

o
ij , which leads to∑

j yij =
∑
j y

o
ij = yoi+. As a result, the first condition in the set Ri1 is

coincident with its second condition, which is the same as that given in set
Ri2.

The focus of the conditional likelihood approach is to infer the fixed effects
β. It conditions out the random effects through the conditional likelihood
on the sufficient statistics, so it does not provide estimation for the random
effects. This method does not estimate any variance components parameters,
either. An advantage of this conditional likelihood estimation is that it does
not need any distributional assumptions for the random effects.

7.7 MLE Based on EM Algorithm

Treat the random effects bi as missing data from MVNq(0, D). Then, EM-
algorithm can be applied to carry out the likelihood inference. Readers who
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are not familiar with EM algorithm may first read Section 13.4.3 for an intro-
duction in the context of maximum likelihood estimation in the presence of
missing data. In effect, this method is relatively straightforward for the class
of ED models, in which the score functions are in a linear form of residuals
yi − μi. Hence this section focuses only on the ED models. Let θ = (β, D).
Given the augmented data (yi,bi), i = 1, . . . ,K, the augmented likelihood
function is

L(θ|y,b) =
K∏
i=1

ni∏
j=1

f(yij |bi,β)f(bi;D)

∝
K∏
i=1

ni∏
j=1

exp [λ {θijyij − κ(θij)}] f(bi;D),

where the additive ED model density is used.
With the choice of canonical link function g, the log-likelihood function

then takes the form

�(θ) = λ
K∑
i=1

⎧⎨
⎩

ni∑
j=1

θbijyij −
ni∑
j=1

κ(θbij)

⎫⎬
⎭+

K∑
i=1

log f(bi;D)

= λ
K∑
i=1

⎧⎨
⎩βT

ni∑
j=1

xijyij + bTi

ni∑
j=1

zijyij −
ni∑
j=1

κ(xTijβ + zTijbi)

⎫⎬
⎭

+
K∑
i=1

log f(bi;D).

It follows that the score equation for β is

∂�(θ)
∂β

= λ
K∑
i=1

ni∑
j=1

xij {yij − μij(β,bi)} ,

where
μij(β,bi) = E(Yij |bi) = g−1(xTijβ + zTijbi).

Also, the augmented data score function for D = D(τ ) is

∂�(θ)
∂τ

=
∂

∂τ

(
−K

2
log |D| − 1

2

K∑
i=1

bTi D
−1bi

)

= −K
2

tr
(
D−1 ∂D

∂τ

)
+

1
2

K∑
i=1

bTi D
−1 ∂D

∂τ
D−1bi.

The E-step pertains to the calculation of an objective function, under
“posterior” f

(
bi|y;θ(k)

)
, where θ(k) is an update value of the parameter

from the previous iteration k. That is,
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Q(θ;θ(k)) =
∫

log f(θ|y,b)f(b|y,θ(k))db

∝ λ
K∑
i=1

βT
ni∑
j=1

xijyij − λ
ni∑
j=1

E
bi|yi,θ

(k)κ(xTijβ + zTijbi)

−K
2

log |D| − K
2

K∑
i=1

E
bi|yi,θ

(k)bTi D
−1bi.

In order to evaluate the Q function, it is necessary to compute two expecta-
tions:

E
bi|yi,θ

(k)

{
κ(xTijβ + zTijbi)

}
=
∫
κ(xTijβ + zTijbi)f(bi|yi,θ(k))dbi

E
bi|yi,θ

(k)

(
bTi D

−1bi
)

=
∫

bTi D
−1bif(bi|yi,θ(k))dbi.

The M-step involves the maximization of the Q function with respect to
the parameter θ to obtain a new update value θ(k+1). That is,

θ(k+1) = argmax
θ
Q(θ;θ(k)).

This update can be done by solving the following two equations:

∂Q(θ;θ(k))
∂β

= λ
K∑
i=1

ni∑
j=1

xij
{
yij − E

bi|yi,θ
(k)(μbij)

}
= 0

∂Q(θ;θ(k))
∂τ

= −K
2

tr
(
D−1 ∂D

∂τ

)

+
1
2
tr

{
D−1 ∂D

∂τ
D−1

(
K∑
i=1

E
bi|yi,θ

(k)(bibTi )

)}

= 0.

Here the following two additional conditional expectations need to be com-
puted in the E-step:

E
bi|yi,θ

(k)

(
μbij
)

=
∫
g−1(xTijβ + zTijbi)f(bi|yi,θ(k))dbi

E
bi|yi,θ

(k)

(
bibTi

)
= Var

bi|yi,θ
(k)(bi) + E

bi|yi,θ
(k)(bi)Ebi|yi,θ

(k)(bi)T .

Iterate the E- and M- steps until a certain convergence criterion is satisfied.
In many cases, these conditional expectations in the E-step have no closed

form expressions, and Monte Carlo simulation is suggested by Wei and Tanner
(1990) to approximate them. The resulting algorithm is referred to as the
Monte Carlo EM(MCEM) algorithm. That is, at each E-step, drawK random
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samples of size M each, b(1)
i , . . . ,b

(M)
i

i.i.d.∼ f(bi|yi,θ(k)), and then calculate
the following sample means:

E
bi|yi,θ

(k)

(
μbij
) ≈ 1

M

M∑
l=1

g−1
(
xTijβ

(k) + zTijb
(l)
i

)
, i = 1, . . . ,K,

E
bi|yi,θ

(k)(bi) ≈ bi =
1
M

M∑
l=1

b(l)
i , i = 1, . . . ,K,

Var
bi|yi,θ

(k)(bi) ≈ 1
M

M∑
l=1

(b(l)
i − bi)(b

(l)
i − bi)T , i = 1, . . . ,K.

Drawing random variates from the posteriors of the random effects may
not always be trivial. When the dimension q is high, sampling can be difficult.
McCulloch (1997) suggested a Gibbs sampling scheme to carry out Monte
Carlo simulation from a Markov chain, with stationary distributions equal
to the posteriors. This Markov chain Monte Carlo method basically turns
a high-dimensional sampling problem into several low-dimensional sampling
problems via Markov chains.

Any alternative to the Monte Carlo approach, the EM-algorithm may also
be implemented through the iterative weighted least squares algorithm pro-
posed by Green (1987). This is an approximate method, in which the theory
of linear predictor (Chapter 9) is employed to estimate the expectations re-
quired in the E-step based only on the first two moments. This approximation
works reasonably well for the estimation of the fixed effects β, but may incur
some bias in the estimation of variance component parameters.

Suppose that iteration k is completed, and that now one likes to update
the estimates for β, D as well as bi at iteration k + 1. Following Harville’s
(1977) theory for the linear mixed-effects models, define a surrogate response

Y ∗
ij = g(μbij) + (Yij − μbij)ġ(μbij),

and the covariance matrix of Y∗
i = (Y ∗

i1, . . . , Y
∗
ini

)T is

Ci = Qi + ZiDZTi ,

where ZTi = (zi1, . . . , zini), Qi = diag
{
vbij [ġ(μ

b
ij)]

2
}
, with vbij = Var(Yij |bi) =

σ2V (μbij). Here ġ denotes the first order derivatives of link function g. Note
that Qi is the covariance matrix of ε∗i whose j element is (Yij − μbij)ġ(μbij),
and V (·) is the unit variance function of the data distribution f(yij |bi). Then
a linear mixed-effects model of the surrogate data is given by

Y∗
i = XT

i β + Zibi + ε∗i

where ε∗i has mean 0 and covariance matrix Qi. According to Harville (1977),
for fixed D, the update of β at iteration k + 1 is obtained as the solution to
equation
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(∑
i

XT
i C

−1
i Xi

)
β(k+1) =

∑
i

XT
i C

−1
i Y∗

i ,

where Y∗
i and Ci are updated by using the results from the previous iteration

k.
In the mean time, updating bi is given by the following best linear unbiased

predictor (BLUP),

b̂(k+1)
i = DZiC−1

i

(
Y∗
i −Xiβ̂

(k+1)
)
. (7.8)

See details concerning BLUP in Chapter 9.
It follows immediately that an approximate covariance for β̂ might be(∑
iX

T
i C

−1
i Xi

)−1
.

Updating the D matrix can be carried out by

D̂(k+1) = K−1
∑
i

Eb

(
bibTi |yi,θ(k)

)

= K−1
∑
i

Eb

(
bi|yi,θ(k)

)
Eb

(
bi|yi,θ(k)

)T

+K−1
∑
i

Varb
(
bi|yi,θ(k)

)
,

where Eb

(
bi|yi,θ(k)

)
is estimated by the BLUP given in (7.8), and Varb(bi|yi)

is estimated by the Mean Squared Error (MSE) of the BLUP, i.e., (ZiQ−1
i Zi+

D−1)−1.
This version of approximate EM-algorithm may start with bi = 0 and

β0 that is the estimate obtained from a cross-sectional GLM fit. Then the
algorithm proceeds iteratively until convergence. This EM algorithm can be
applied to obtain parameter estimation in nonlinear mixed effects models, see,
for example, Lindstrom and Bates (1990).

7.8 Approximate Inference: PQL and REML

In comparison to the methods discussed above, this approximate inference can
be developed in the GLMMs for the dispersion models. Both penalized quasi-
likelihood (PQL) and restricted maximum likelihood (REML) can bypass the
analytical difficulty arising from the nonlinearity of the score functions. More
importantly, this PQL/REML method works for any dimensions of the ran-
dom effects. Therefore, it is a rather general inference approach. It is worth
pointing out that this approximate inference is similar to the MLE based only
on 1-point quadrature evaluation of the integral in the likelihood.

Breslow and Clayton (1993) suggested using PQL to jointly estimating
the fixed effects parameter β and random effects bi, and then applying the
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REML to estimate the variance parameter τ . Their development was initially
established within the family of ED models, but this inference tool is in fact
available for the broader family of DM models. SAS PROC GLIMMIX fur-
nishes PQL/REML inference in the GLMMs with ED models.

Denote b = (bT1 ,bT2 , · · · ,bTK)T and y = (yT1 ,yT2 , · · · ,yTK)T with yi =
(yi1, yi2, · · · , yini)T for each subject i. It is easy to see that the augmented
likelihood based on (y,b) for parameters θ = (β, τ ) is proportional to

|D(τ )|−K/2 exp

⎧⎨
⎩− 1

2σ2

K∑
i=1

ni∑
j=1

d(yij , μbij) −
1
2

K∑
i=1

bTi D
−1(τ )bi

⎫⎬
⎭ ,

where for convenience the dispersion parameter σ2 is assumed to be known,
such as in Binomial or Poisson mixed effects models, and otherwise it will be
estimated separately with no use of the likelihood as done in Section 2.6.1.

Thus, subject to a constant the log-likelihood of θ is given by

�(θ) ∝ −K
2

log |D(τ )| + log
∫
RKq

e−κ(b)db, (7.9)

where | · | denotes the determinant of a matrix, and the exponent takes the
form

κ(b) =
1

2σ2

K∑
i=1

ni∑
j=1

d(yij , μbij) +
1
2

K∑
i=1

bTi D
−1(τ )bi.

To deal with the Kq-dimensional integration in (7.9), Breslow and Clayton
suggested to invoke Laplacian method for integral approximation at the sad-
dlepoint of the κ(·) function. The basic idea of the Laplacian method is to
approximate the κ(·) function by its second order Taylor expansion evalu-
ated at the saddlepoint b̃ = (b̃T1 , . . . , b̃TK)T with the respective b̃i being the
solutions to the equations

κ̇bi(b) = 0, i = 1, 2, · · · ,K.
Note that in such a second order Taylor expansion, the quadratic term resem-
bles a multivariate normal density and the linear term is zero at solution b̃.
This observation immediately leads to

�(θ) ≈ −K
2

log |D(τ )| − 1
2

log |κ̈(b̃)| − κ(b̃),

where the approximation pertains to the ignorance of the third or higher or-
der terms in the Taylor expansion of κ(b) around the b̃. Breslow and Lin
(1995) showed that PQL may lead to estimators that are asymptotically bi-
ased. Among several authors, Lin and Breslow (1996) and Raudenbush et
al. (2000) derived PQL/REML using the high-order multivariate Laplacian
approximation. This section only focuses on the second order approximation.
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Some simple algebra gives the following derivatives,

κ̇bi(b) =
1

2σ2

ni∑
j=1

ḋbi(yij , μ
b
ij) +D−1(τ )bi,

κ̈bibT
i
(b) =

1
2σ2

ni∑
j=1

d̈bibT
i
(yij , μbij) +D−1(τ ), (7.10)

κ̈bibT
i′
(b) = 0, i �= i′.

Also it is easy to derive

d̈bibT
i
(yij , μbij) =

d̈μijμij (yij , μbij){
ġ
(
μbij
)}2 zTijzij+ḋbi(yij , μ

b
ij)

∂

∂bTi

{
zij ġ

(
μbij
)}
, (7.11)

where the conditional expectation of the second term given bi is zero because
E{ḋbi(Yij , μbij)|bi} = 0. It follows that

E{d̈bibT
i
(Yij , μbij)|bi} = wijzTijzij

with the weights wij equal to

wij = E

[
d̈μijμij (Yij , μbij){
ġ
(
μbij
)}2 | bi

]

=
E
{
d̈μijμij (Yij , μbij)|bi

}

2σ2
{
ġ
(
μbij
)}2

=
E
{
ḋ2μij

(Yij , μbij)|bi
}

{
2σ2ġ

(
μbij
)}2 . (7.12)

In expression (7.11), the second term may be ignored due to the fact that it
has expectation 0 and thus, in probability, is of lower order than the first term
with respect to K. This gives rise to an approximation to (7.10) as follows,

κ̈bibT
i
(b) ≈

ni∑
j=1

zTijwijzij +D−1(τ )

= ZiWiZ
T
i +D−1(τ ) (7.13)

where ZTi = (zi1, · · · , zini ), andWi = diag(wi1, . . . , wini ), an ni×ni diagonal
matrix with the j-th diagonal element given by (7.12).

Note that κ̈(b) is a block-diagonal matrix with the i-th block equal to
κ̈bibT

i
(b), i = 1, 2, · · · ,K, which is approximated according to (7.13). There-

fore, the approximate log-likelihood of (7.9) can take the following form:
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�(θ) ≈ −1
2

K∑
i=1

log |I + ZiWiZ
T
i D(τ )|

− 1
2σ2

K∑
i=1

ni∑
j=1

d(yij , μbij) −
1
2

K∑
i=1

b̃Ti D
−1(τ )b̃i. (7.14)

Estimates (β̂, b̂) = (β̂(τ ), b̂(τ )), with b̂(τ ) = b̃(β̂(τ )), can be obtained
by jointly maximizing Green’s (1987) penalized quasi-likelihood of the form
(provided that the first derivative of the first term or Wi in (7.14) w.r.t. μbij
is ignorable)

�pq(β,b) = − 1
2σ2

K∑
i=1

ni∑
j=1

d(yij , μbij) −
1
2

K∑
i=1

bTi D
−1(τ )bi. (7.15)

Differentiating the �pq with respect to β and bi, respectively, leads to the
following quasi-score equations,

K∑
i=1

ni∑
j=1

xij
σ2ġ(μbij)

δ(yij ;μbij) = 0 (7.16)

ni∑
j=1

zij
σ2ġ(μbij)

δ(yij ;μbij) = D−1(τ )bi, i = 1, . . . ,K, (7.17)

where the deviance score vector δi = (δi1, · · · , δini)T consists of elements
δij = δ(yij ;μbij) = − 1

2 ḋ(yij ;μ
b
ij), j = 1, . . . , ni, i = 1, . . . ,K. It is known that

the deviance scores are equal to (yij − μbij)/V (μbij) for the ED models, but
they in general are nonlinear functions in both yij and μbij .

An iterative procedure is used to solve the above equations for estimates
β̂ and b̂i, i = 1, . . . ,K. Given the values of these parameters from the pre-
vious iteration, define a surrogate vector y∗

i = (y∗i1, . . . , y
∗
ini

)T with the j-th
component equal to

y∗ij = ηbij +
2ġ(μbij)

E
{
d̈μijμij (Yij , μbij)|bi

}δ(yij ;μbij)

= ηbij +
4σ2ġ(μbij)

E
{
ḋ2μij

(Yij , μbij)|bi
}δ(yij ;μbij).

Numerically, updating the parameters is equivalent to fitting a normal linear
mixed-effects model,

Y∗
i = XT

i β + Zibi + ε∗i , i = 1, . . . ,K,

where ε∗i ∼ MVNni(0,W
−1
i ), and b1, . . . ,bK are i.i.d. MVNq(0, D(τ )). This

update in the framework of LMMs can be done via SAS PROC MIXED.
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As a matter of fact, Harville (1977) found that the solution to (7.16) and
(7.17) can be obtained by first solving

(
K∑
i=1

XT
i C

−1
i Xi

)
β̂ =

K∑
i=1

XT
i C

−1
i Y∗

i , (7.18)

where Ci =W−1
i + ZiD(τ )ZTi and then setting the BLUP

b̂i = D(τ )ZTi C
−1
i (Y∗

i −Xiβ̂). (7.19)

At the convergence, the approximate covariance for β̂ is given by the matrix(∑K
i=1X

T
i C

−1
i Xi

)−1

. It is worth pointing out that the inference functions
defined by (7.16) and (7.17) are both insensitive to the variance components
parameter τ and the dispersion parameter σ2. So, the efficiency of the esti-
mators of τ and σ2 would have little effect on the asymptotic covariance of
β̂.

Now let us turn to the discussion of REML that provides an inference
on the variance parameter τ using an approximate profile quasi-likelihood
function. Invoking the small-dispersion asymptotics of the Pearson residual
type (Proposition 2.6), the unit deviance may be approximated by a quadratic
polynomial function in the neighborhood of the PQL estimates (β̂, b̂i) as
follows,

d(yij , μbij) �
(yij − μbij)2
V (μbij)

, for small dispersion σ2.

Similar arguments in Breslow and Clayton (1993) lead to the REML of the
form

�1(β̂(τ ), τ ) ≈ −1
2

K∑
i=1

log |Ci| − 1
2

log |
K∑
i=1

XT
i C

−1
i Xi|

−1
2

K∑
i=1

(Y∗
i −Xiβ̂)TC−1

i (Y∗
i −Xiβ̂). (7.20)

The REML estimate of τ can then be obtained by solving the following esti-
mating equations,

S(τk) =
1
2

K∑
i=1

[
(y∗
i −Xiβ̂)TC−1

i

∂Ci
∂τk

C−1
i (Y∗

i −Xiβ̂) − tr
(
Pi
∂Ci
∂τk

)]
= 0,

(7.21)

where Pi = C−1
i −C−1

i Xi

(∑K
i=1X

T
i C

−1
i Xi

)−1

XT
i C

−1
i . The standard errors

of the REML estimates τ̂ are computed from the Fisher information matrix
j whose (k, l)-th element is given by
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[j]kl =
1
2

K∑
i=1

tr
(
Pi
∂Ci
∂τk

Pi
∂Ci
∂τl

)
. (7.22)

Note that if τk corresponds to the entry (a, b) in D, then ∂Ci/∂τk equals to
[Zi]a[Zi]Tb , where [Zi]a denotes the a-th column of matrix Zi.

The updating procedure of the Fisher-scoring algorithm takes form

τ (k+1) = τ (k) +
{
j(β(k+1), τ (k))

}−1

S(β(k+1), τ (k)),

which produces the solution to equation (7.21) when convergence is achieved.
An important issue in the implementation of Fisher-scoring algorithm is

the efficiency of searching for the solution. In order to ensure that covariance
matrix D remains positive-definite along iterations, one may invoke Cholesky
decomposition, D = LTL, where the Cholesky factor L is an upper triangular
matrix. Let α denote the set of distinct elements of the L. The REML is now
applied to α and the related derivative w.r.t. α can be derived easily. This
reparametrization approach converts a constrained optimization problem to
an unconstrained problem, by the insurance of a positive-definite estimate
for D. As pointed out in the literature, this decomposition method facilitates
numerical stability of the Fisher scoring algorithm (Lindstrom and Bates,
1988).

In a model where the dispersion parameter σ2 is unknown to be estimated,
estimating σ2 may be separately carried out using the method of moments.
To proceed, a certain moment property is needed. For instance, Proposition
2.17 suggests

E
{
d̈μijμij (Yij , μ

b
ij)|bi

}
=

E
{
ḋμij (Yij , μbij)|bi

}
2σ2

.

It follows that

σ2 =
2E
{
r2s(Yij , μ

b
ij)
}

E
{
d̈μijμij (Yij , μbij)V (μbij)

}

where rs(·) is the score residual given in Table 2.3. Thus, a consistent estimator
of σ2 is given by

σ̂2 =
2
∑K
i=1

∑ni

j=1 r
2
s(yij , μ̂ij)∑K

i=1

∑ni

j=1 d̈(yij , μ̂ij)V (μ̂ij)
, (7.23)

where the fitted values μ̂ij could be either the marginal means or conditional
means. The marginal means are usually preferred because the performance of
the resulting estimator is numerically more stable.

Note that formula (7.23) can be simplified in the case of the ED models
where rs = (y − μ) and d̈ = 2/V (μ). Therefore,
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σ̂2 =

∑K
i=1

∑ni

j=1(yij − μ̂ij)2∑K
i=1 ni

,

which is identical to the estimate derived directly from the variance-mean
relation Var(Yij) = σ2V (μij) for the ED models. The denominator may be
adjusted to

∑K
i=1 ni − p to account for the number of estimated fixed effects

(including the intercept term), p, in the model when the marginal means are
used.

For the GLMMs with non-ED models, some ad hoc moment properties
may be used to formulate the dispersion parameter estimation, which may be
different from (7.23). For example, Song and Tan (2000) suggested a moment
property for the simplex distribution, Ed(y;μ) = σ2. In the von Mises model,
Artes et al. (2000) suggested a moment property E{cos(Y − μ)} = A1(λ),
with λ = 1/σ2, to estimate the dispersion parameter, where A1(·) is the mean
resultant length given in Section 2.6.4.

SAS PROC GLIMMIX has implemented the PQL/REML inference pro-
cedures discussed above. It can be applied to fit various GLMMs with ED
models, including correlated binary data, correlated count data and corre-
lated continuous data. The interpretation of results from this SAS Proc has no
difference from that of the utility of SAS PROC NLMIXED as illustrated in
Example 7.1. Which package to use in a given data analysis depends on the
objective of the analysis; for example, GLIMMIX would be used if one wants to
acquire estimates of random effects.

The following two examples consider two GLMMs that cannot be fitted
by any of the currently available SAS procedures. One is the simplex GLMM
for correlated continuous proportional outcomes, and the other is the von
Mises GLMM for correlated circular outcomes. Because the generalization
of the PQL/REML has been developed in the GLMMs for the DM family
distributions, analyzing a broader range of data types becomes possible.

Example 7.3 (Simplex Mixed-Effects Models).
A simplex mixed effects model refers to a generalized linear mixed model

for repeated continuous proportional data defined as follows:

Yij |bi ind.∼ S−(μbij , σ
2), j = 1, . . . , ni, i = 1, . . . ,K,

with g(μbij) = xTijβ+ zTijbi, and bi
i.i.d.∼ MVNq(0, D). Here S−(μ, σ2) denotes

the simplex distribution with mean μ and dispersion parameter σ2 (refer to
Section 2.6.3 for the details), and as in the marginal GLM considered in
Section 5.7.3, the g is chosen to be a logit link.

This simplex mixed-effects model is now applied to analyze the retinal
surgery data introduced in Section 1.3.3. Let Yij be the measurement of the
j-th gas volume for the i-th individual at day tij after the surgery. Recall
these outcomes are percentages confined in the unitary interval (0, 1). Refer
to Section 5.7.3 for an analysis of the data using the marginal model, as well as
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the descriptions of the covariates, gas as standardized gas concentration level
and time as days after eye surgery. See Section 5.7.3 for more discussion about
the observations and covariates. Now, it is of interest to infer subject-specific
effects of the covariates.

The conditional expectation of gas volume takes the form

logit(μbij) = β0 + b0i + β1 log(timeij) + β2 log2(timeij) + β3gasi, (7.24)

where the random intercept b0i ∼ N(0, τ0). For comparison, another model is
considered with one extra random effect term b1i ∼ N(0, τ1) (independent of
b0i) as follows:

logit(μij) = β0 + b0i+β1 log(timeij)+β2 log2(timeij)+ (β3 + b1i)gasi. (7.25)

The PQL/REML inference approach was first applied to fit the second
model (7.25) and produced τ̂0 = 0.26(0.19) and τ̂1 = 0.09(0.25). These results
indicate that none of the variance parameters is statistically significant, imply-
ing that the two random effects (bi0, bi1) together may over-parametrize the
population heterogeneity. This is not surprising, as the estimated correlation
from the marginal simplex model in Table 5.7 is about 0.3 for the exchangeable
correlation or approximately 0.5 for the AR-1 correlation. Given such a mild
within-subject correlation, the random intercepts alone seem to be sufficient
to capture the heterogeneity and within subject correlation of the data. For
the purpose of comparison, in this simplex model with 1-dimensional random
effects, the method of MLE based on numerical integration given in Section
7.4 and the simple-minded fit of the normal LMM to the logit-transformed
responses were also implemented to obtain parameter estimates.

Table 7.5 summarizes the results of model (7.24) using the approximate
PQL/REML inference, the MLE method based on quadrature numerical eval-
uation and the naive method based on the normal LMM. For the MLE method,
the number of quadrature points was set as 20 and 50, respectively, in the
Gauss-Hermite quadrature evaluation of integrals. The naive analysis first
takes a logit transformation directly on the response of gas volume percent-
age and then fits the logit-transformed response by the linear mixed-effects
model.

The results of the MLE(20) and MLE(50) are very similar, meaning that
20 quadrature points may have already given satisfactory accuracy in the
evaluation of integration. Overall, the results given by MLE and PQLs are very
comparable. The estimate of the dispersion parameter σ2 is 159.0, confirming
again that the data are far from a normal distribution. Also, the variance
component τ0 is found to differ significantly from zero. For the fixed effects, the
gas concentration level and the log.time2 covariate are found clearly significant
by both PQL and MLE methods. It indicates that the higher the concentration
was, the longer it takes for the gas volume decreasing to a given level. Note
that this significance of gas concentration was not found in the marginal GLM
analysis either in Table 5.7 or in Table 5.8 (actually close to being significant).
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Table 7.5. The analysis of the retinal surgery data by the simplex mixed-effects
model using both PQL/REML approximate inference and quadrature numerical
MLE. The results of the MLE are obtained with 20 and 50 quadrature points,
respectively, and the results of the LMM are obtained by fitting the logit-transformed
response to the normal LMM.

Method Intercept log(time) log2(time) Gas τ0 σ2

PQL/REML 2.91(0.33) 0.06(0.34) −0.35(0.09) 0.44(0.20) 0.283(0.03) 162.9

p-value < .0001 .6904 < .0001 .0351 < .0001

MLE(20) 3.12(0.32) −0.13(0.49) −0.33(0.14) 0.52(0.25) 0.991(0.12) 133.7

MLE(50) 3.13(0.33) −0.15(0.51) −0.32(0.15) 0.55(0.27) 0.996(0.12) 133.9

p-value < .0001 .7641 .0340 .0393 < .0001 < .0001

LMM 3.46(0.38) −0.01(0.28) −0.39(0.07) 0.65(0.43) 1.650(0.35) 1.302

p-value < .0001 .9624 < .0001 .1398

Similar to the marginal GLM analysis, the log time covariate (log.time) was
found not significant.

In the comparison to the results from the normal LMM, clearly this simple
method failed to identify the gas concentration level as an important factor.
This might be caused by the violation of normality assumption on the trans-
formed responses. A Q-Q plot (not shown here) of the residuals from the naive
LMM showed a curved pattern. A careful parametric modeling would help to
better summarize the data and lead to a more powerful analysis.

Example 7.4 (von Mises Mixed Effects Models).
A GLMM is now applied to analyze the sandhopper orientation data intro-

duced in Section 1.3.4. Sandhoppers who live in the beaches of the Mediter-
ranean are driven by two main forces. First, they endeavor to stay away from
the shore to avoid the risk of being swept away by waves, but they also stay
close to the water to avoid the risk of dehydration under the sun. During the
day, sandhoppers tend to stay burrowed in the sand. If they are displaced, the
risk of dehydration is high. It is believed that sandhoppers will escape toward
the sea, taking a course perpendicular to the shoreline known as the theo-
retical escape direction (TED). An experiment was performed at Castiglione
della Pescaia beach in Italy, in which 65 sandhoppers were released sequen-
tially five times. Each of their escape directions was recorded, along with
other covariates such as wind, sun, and eye measurements. The sea was to the
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south-southwest, and the TED was 201◦. Escape directions were measured as
the compass direction, so 0◦ is north, 90◦ is east and so on. See Figure 7.4.

Fig. 7.4. Orientation for sandhoppers’ escape direction.

Let Yij be the escape direction (in radians) of sandhopper i at the j-th
release, j = 1, . . . , 5 and i = 1, . . . , 65. The fixed effects covariates in the
GLMM include Azimuth for sun azimuth (in degrees), wind speeds measured
in four categories (OS for Offshore, LSE for Longshore East, LSW for Longshore
West, and Onshore), Eye for eye asymmetry, and Release for release num-
ber (equivalently time covariate). The wind speed categories are coded such
that Onshore wind speed is the reference category. The GLMM contains only
random intercepts. That is,

Yij |bi ∼ vM(μbij , λ), i = 1, . . . , 65; j = 1, . . . , 5,

where

μbij = μ0 + 2 arctan(ηbij)

ηbij = β1Azimuth + β2Eye + β3OS + β4LSW + β5LSE + β6Release + b0i
b0,1, . . . , b0,65 ∼ N(0, τ0).

The PQL/REML approximation inference is implemented to obtain the pa-
rameter estimates and their standard errors. Table 7.6 lists the results.

This analysis suggests that all covariates, except Longshore East wind
speed, have an effect on the escape direction of the sandhoppers. The covariate
of the sun azimuth appears to influence a sandhopper’s orientation the most.
This means that as the sun moves more and more to the west, a sandhopper’s
escape direction will tend to increase along the circle of east, south, west,
and north, as indicated in Figure 7.4. This finding is consistent with previous
analyses of this data by Borgioli et al. (1999) and D’Elia et al. (2001).
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Table 7.6. Results of sandhopper orientation data analysis by the von Mises GLMM
based on the PQL/REML approximate inference approach.

Parameter Estimate Std Err Z p-value

Azimuth 0.006 0.001 4.734 < 0.001
Eye −1.043 0.592 −1.762 0.039
OS −0.665 0.232 −2.867 0.002
LSW −1.134 0.388 −2.918 0.002
LSE −0.187 0.344 −0.542 0.294
Release 0.058 0.022 2.620 0.004
τ0 0.194 0.054 3.599 < 0.001
μ0 2.093 – – –
λ 2.080 – – –

The release number also had an effect, which suggests that on later releases,
escape direction tends to increase, which is clearly related to the movement
of the sun during the day time; that is, because a later release was done at a
later time, when the sun moved more to the west. The same pattern is found
with the covariate of the sun azimuth.

The inclusion of the random effects is clearly necessary, as the variance
parameter τ0 is significantly different from zero, suggesting the presence of
both heterogeneity across sandhoppers and within subject correlation among
multiple releases. This implies that as expected, the repeated measurements
of sandhoppers’ escape directions are correlated.

7.9 SAS Software

7.9.1 PROC MIXED

SAS PROC MIXED implements the MLE in the LMMs, in which the inference
is based on the multivariate normal likelihood, which is equivalent to the
weighted least squares estimation with particular covariance structures. The
random effects are estimated by the best linear unbiased predictor (BLUP) or
the empirical Bayesian estimation. Harville (1977) presents a joint estimation
procedure for both fixed effects β and random effects bi and the REML for the
variance component parameters. This is basically the same as the PQL/REML
discussed in Section 7.8.

The SAS code for the analysis of the data from the hypothetical clinical
trial example is listed below:

proc mixed data = clinic;
class subj trt time;
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model y = age trt time trt*time;
random subj (time);

run;

7.9.2 PROC NLMIXED

The SAS NLMIXED procedure fits both nonlinear mixed models and gener-
alized linear mixed models. It implements the adaptive Gaussian quadrature
numerical evaluation of integral over the random effects and a dual quasi-
Newton algorithm as default. PROC NLMIXED is best suited for models
with a single random effect, although it can reasonably compute two and
three dimensions of the random effects as well. Currently, this procedure does
not handle nested or crossed random effects.

Here is an illustration of PROC NLMIXED used in the analysis of multiple
sclerosis trial data in Example 7.1 for model (c). In the use of this procedure,
giving initial values is tricky. In this analysis, a sequence of steps was taken
by starting with the simplest model with only one fixed-effects covariate EDSS
and random intercepts. Using those as initial values one additional term was
included at one time until all the terms were included. SAS failed to converge
if the estimates from the marginal GLM were chosen as the initial values.

data msclero;
infile "P:\sclerdat.txt" delimiter=" ";
input number id time EDSS exacer dur Ptrt Ltrt n;
proc print;
run;

proc sort data=msclero;
by id;
run;

proc nlmixed data=msclero;
parms b0= -2.59 b1=-0.0302 b2=0.000245 b3=0.3155

b4=0.4945 b5=0.4503 b6=-0.0365
s2b1=0.668 cb12=-0.1101 s2b2=0.024;

eta = b0 + b1*time + b2*time*time + b3*EDSS + b4*Ptrt
+ b5*Ltrt + b6*dur
+ u1 + u2*EDSS;

expeta = exp(eta);
p = expeta/(1+expeta);
model exacer ~ binomial(n,p);
random u1 u2 ~ normal([0,0],[s2b1,cb12,s2b2])

subject = id out=eb;
predict eta out=eta;

run;



194 7 Mixed-Effects Models: Likelihood-Based Inference

7.9.3 PROC GLIMMIX

SAS PROC GLIMMIX implements the PQL/REML inference based on Lapla-
cian approximation in the GLMMs. This PROC is available in SAS Version
9.1.2 or above. Based on the same data and model setup in Section 7.9.2, the
statement is given as follows.

proc glimmix data=one;
class id trt;
model y/n = trt visit / solution;
random intercept visit / subject = id;

run;

Here n is the size of the binomial distribution. In order to use binomial dis-
tribution, syntax y/n is necessary; otherwise GLIMMIX will use the default
of normal distribution.



8

Mixed-Effects Models: Bayesian Inference

8.1 Bayesian Inference Using MCMC Algorithm

A powerful method for handling the numerical integration is the Markov chain
Monte Carlo (MCMC) algorithm, first investigated by Zeger and Karim (1991)
in the context of generalized linear mixed effects models (GLMM). Nowadays,
the availability of software such as BUGS (Bayesian Analysis Using Gibbs
Sampling) or its Windows version WinBUGS has made related computation
really easy to do and hence, greatly facilitated the popularity of Bayesian
inference. BUGS is a free software developed by MRC Biostatistics Unit, the
Institute of Public Health, Cambridge, which can be downloaded from the
Internet at the URL address:

http://www.mrc-bsu.cam.ac.uk/bugs/

The primary usefulness of this software is to draw random samples from a
Markov chain with a given stationary distribution f .

8.1.1 Gibbs Sampling: A Practical View

MCMC plays a leading role in dealing with high-dimensional objects in various
statistical inference problems, including the evaluation of the high-dimensional
integral required in the GLMMs or more generally, the generation of random
samples in hierarchical models. The use of MCMC algorithm to enhance nu-
merical evaluation of integration in GLMMs essentially results in a Bayesian
inference, where all model parameters have to be assumed to follow certain
pre-specified prior distributions. It is known that a Bayesian inference is based
fully on posterior densities of parameters, or the conditional density f(θj|data)
for the j-th parameter θj , given data and other known quantities in a model.

Let us start with the Bayesian formulation of a GLMM. The posterior
distribution f(θ|y) can be expressed as follows:
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f(θ|y) ∝ f(θ,y) =
K∏
i=1

∫
f(yij |bi,β)f(bi|D)f(θ)dbi, (8.1)

where the normalizing constant is independent of the parameter θ. An esti-
mate of θ can be derived from f(θ,y) alone, via a certain location measure
of the posterior, such as posterior mode, mean, or median.

If the prior for θ, f(θ), is a constant, then the posterior in (8.1) is effectively
proportional to the likelihood function (7.4), and hence the posterior mode is
numerically identical to the maximum likelihood estimate. For this sake, flat
priors or non-informative priors for β and D are usually preferred.

Throughout this section, the distribution of random effects assumed to be
normal, namely b1, . . . ,bK are i.i.d. q-dimensional MVNq(0, D). In principle,
MCMC method can handle other types of distributions of random effects.

Typically, conjugate priors for β and D are specified as follows:

(a) For the fixed effects β, assume each component βi ∼ N(0, ς), where the
precision hyper-parameter ς, defined as the reciprocal of the variance pa-
rameter σ2

β , is taken to be as small as 10−6. This will effectively specify a
normal prior with large variance, so the resulting prior density is approx-
imately flat within a reasonable range of the parameter space.

(b) For the matrix D, when D is a diagonal matrix, diag(D11, . . . , Dqq), the
prior for each of the diagonals is set as the inverse gamma or 1/Dii ∼
Γ (a, b), where both hyper-parameters a and b are set small, say 10−3 or
10−4.

(c) When D takes a general form with non-zero off-diagonal elements, the
prior is specified on its inverse matrix, namely D−1 ∼ Wishart(R, κ),
where κ ≥ q is the degrees of freedom and R is a q × q symmetric non-
singular matrix. To make the prior “flat”, κ is set small and matrix R may
be set as a diagonal matrix with diagonal elements equal to the estimates
from a pilot model that assumes a diagonal D matrix.

When random effects themselves are of interest, the posteriors of bi, i =
1, . . . ,K, are given as follows,

f(bi|y) =

∏
j

∫
Θ
f(yij |bi,β)f(bi|D)f(θ)dθ∫

Rq

∏
j

∫
Θ f(yij |bi,β)f(bi|D)f(θ)dθdbi

, i = 1, . . . ,K,

where Θ is the parameter space.
When Monte Carlo method is applied to numerically evaluate the integrals

in the the posteriors, random samples of (θ,bi, i = 1, . . . ,K) from their joint
distribution are needed. Each integral is approximated by its corresponding
sample mean. However, drawing samples is a difficult task due to the curse of
dimensionality. Gibbs sampling is a solution to this obstacle. The key idea of
Gibbs sampling is that drawing samples from a high-dimensional joint distri-
bution can be carried out through low dimensional conditional distributions.
In the statistical literature, various sampling schemes have been developed
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for low dimensional (especially 1-dimensional) distributions. As a result, the
implementation of Gibbs simpling method becomes feasible, but at a cost that
would be very computationally intensive.

To understand the Gibbs sampling scheme, let us consider a simple case of
trivariate U, V,W , and its joint distribution is denoted by [U, V,W ]. Suppose
that it is difficult or impossible to sample directly from the joint distribution
[U, V,W ], but sampling from each of its conditional distributions, [U |V,W ],
[V |U,W ], and [W |V, U ], is feasible. The Gibbs sampling scheme suggests that

• Step 0: Assign arbitrary starting values U (0), V (0),W (0).
• Step 1.1: Draw U (1) ∼ [U |V (0),W (0)],

Step 1.2: Draw V (1) ∼ [V |U (1),W (0)],
Step 1.3: Draw W (1) ∼ [W |U (1), V (1)];
Complete iteration 1 and yield the first drawn sample (U (1), V (1),W (1)).

• Step 2.1: Draw U (2) ∼ [U |V (1),W (1)],
Step 2.2: Draw V (2) ∼ [V |U (2),W (1)],
Step 2.3: Draw W (2) ∼ [W |U (2), V (2)];
Complete iteration 2 and yield the second drawn sample (U (2), V (2),W (2)).

• Continue such cycles as long as needed.

After a large number of iterations, sayB, obtain sample (U (B), V (B),W (B)).
Geman and Geman (1984) showed that under some regularity conditions, the
empirical distribution of the sample (U (B), V (B),W (B)) will converge to the
true underlying stationary distribution [U, V,W ] at an exponential rate,

[U (B), V (B),W (B)] B→∞−→ [U, V,W ].

Therefore, after the length of burn-in, the empirical cumulative distribution
function of the M sample values,

[U (B+k), V (B+k),W (B+k)], k = 1, . . . ,M

converges to [U, V,W ]. Loosely speaking, burn-in refers to such a B, after
which the Markov process has no memory about the initial states that the
process started at. If multiple sample paths were generated by different initial
states on this Markov process, then at the point of B, these sample paths
would get mixed or tangled together, and produce similar sample paths after-
wards. Under such a circumstance, [U (B+k), V (B+k),W (B+k)], k = 1, . . . ,M
may be approximately regarded as of samples generated from the joint sta-
tionary distribution [U, V,W ]. However, since these M samples are drawn via
a Markov chain, they are in general auto-correlated, which would make the use
of the theory of Law of Large Number questionable. The Law of Large Num-
ber, which assumes independence, is the theoretical base for the justification of
sample mean approximating integration. Gelfand and Smith (1990) suggested
using a thinned chain, namely recording every b (say, b = 20) value in the
sequence to reduce auto-correlation among sample values. Another method
of alleviating auto-correlation is Neal’s (1998) over-relaxation method that
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generates multiple random variates from a conditional distribution at each it-
eration and selects the one that is most negatively correlated with the lagged
sample values. This option of over-relaxation is available in the WinBUGS soft-
ware.

After the completion of sample generation, the next task is to estimate the
marginal distribution for each of the variables, which may be given as follows:

[̂U ] =
1
M

M∑
k=1

[U |V (B+k),W (B+k)].

This density estimation uses the functional form of the conditional distribu-
tion, which turns out to be more efficient than those based only on available
samples. In contrast, kernel density estimation for the density of variable U
only uses marginal samples, U (B+k), k = 1, . . . ,M . However, in many practical
cases, the functional form of conditional density [U |V,W ] may be unavailable,
so the latter one appears more convenient and hence, is often used in practice.

With the available samples, an empirical CDF may be constructed, which
produces some basic statistics such as mean, standard deviation, median, 0.025
quantile, and 0.975 quantile for each of variables. Mode can also be obtained
based on the estimated kernel density [̂U ]. In cases where the estimated density
[̂U ] is (approximately) symmetrical, mode and mean, as well as median, are
approximately equal.

8.1.2 Diagnostics

The biggest challenge in the application of Bayesian inference via MCMC
practically is convergence diagnosis as well as model validity. Convergence di-
agnosis of the MCMC algorithm must be properly conducted since it is highly
relevant to the appropriateness of results given by the follow-up analysis. In
other words, how many initial iterations B are needed to achieve burn-in (or
convergence), so that samples after it would be usable? The length of burn-
in depends on initial values chosen to start the Gibbs sampler as well as on
whether the conditional distributions of values at time k, given initials, (e.g.,
conditional distribution [U (k)|V (0),W (0)] of U), are close to [U, V,W ]. This
is equivalent to checking if the stationarity has achieved by time B. There
are some diagnostic tools suggested in the literature that will be studied in
this section. Another important decision is when the Gibbs sampler should
stop, or equivalently how to choose M . The rule of stopping time may vary
from case to case, depending upon a specific problem under investigation. It is
difficult to find out a general answer, since it not only involves the evaluation
of variance of, for example, [̂U ] and but also dealing with the autocorrelation
among sample values.

Sensitivity analysis that aims to check whether the results are robust
against certain choices of priors should also draw a critical attention. For
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instance, the prior distribution of the precision parameter may be specified
as gamma, uniform, log-normal, or Pareto. Even if its importance has been
widely accepted, the lack of suitable protocols or guidelines as well as efficient
tools remains a big hurdle in the application of MCMC Bayesian inference in
the GLMMs. More investigations seem to be needed in order to widen the use
of MCMC further in subject-matter research areas.

There are a few relatively simple diagnostics of algorithm convergence
available in the WinBUGS software.

(1) Use the plot of the sample paths generated from the process at several
very different initial values, in which identifying the point of coalition will
provide a good decision on the value of B. Also, Brooks-Gelman-Rubin’s
F test (R statistic) can be used further to confirm the eye-picked value of
B from the plot. See Gelman and Rubin (1992) and Brooks and Gelman
(1998).

(2) Simply monitor the trace plot of updates while MCMC runs. If a clear
trend in the trace plot is seen, indicating a certain violation of stationarity,
a longer chain has to be run till the updates become stablized.

(3) Use the plot of autocorrelation function of the generated samples to decide
if an over-relaxation method is needed or if a different size of thinning bin
is needed to record the updates. When every updates are recorded, the
sampler generates a full sample path with bin size 1; however, this full
chain can be thinned by choosing, for example, a bin size 50, which means
every 50th updates will be recorded. Thinning is necessary to ensure the
application of the Law of Large Number in the calculation of summary
statistics, most of which are in the form of average.

In addition, there are some other convergence diagnostic methods in the
literature, two of which are discussed below. One is the so-called Geweke test
for stationarity proposed by Geweke (1992), using the idea of two-sample
equal mean test. This test proceeds as follows:

Step 1: Select two segments from a sequence of M sampled values with,
respectively, the first a% values and the last b% values. Usually a = 10 or
25, and b = 50.
Step 2: Divide each of the segments into 25 bins (sub-segments), say,
and calculated sample averages and sample variances for each of the bins,
denoted by,

{mearly
i , v

early
i , i = 1, . . . , 25}, {mlate

i , vlate
i , i = 1, . . . , 25}.

If the stationarity achieves, then the mean from the early segment popu-
lation should be close to that from the late segment population.
Step 3: Define a discrepancy measure Z-score

Z =
Eearly − Elate√
(V early + V late)

,
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which would follow approximately the standard normal distribution if all
sample values are from the same distribution, which corresponds to the
validation of stationarity (i.e., the null hypothesis). So ±2 will be chosen
as the yardstick for the test. Clearly the sample counterpart of Z-score is
given by

Z =
m̄early − m̄late√
(v̄early + v̄late)/25

.

Step 4: Display a comprehensive picture of the Geweke test through a plot
of many Geweke Z-scores in terms of different extractions. A sequence of
nested chains may be given as follows:
– Chain 1: Full chain with M values
– Chain 2: A sub-chain with last M − n values, discarding the first n

values, and its first iteration number is n+ 1
– Chain 3: A sub-chain with last M − 2n values, discarding the first 2n

values, and its first iteration number is 2n+ 1
– Extracting procedure continues until the final sub-chain contains at

least 50 values but further extraction will result in a sub-chain with
less than 50 values

– Chain Q: Stop, for a suitable Q, and its first iteration number is Qn+1
Step 5: For sub-chain i, calculate Zi-score by the definition, where a and
b is chosen fixed over the Q chains. Plotting Z-scores, Zi, against the first
iteration numbers, in + 1, i = 1, . . . , Q, and expect most points fall into
the band (−2, 2) if the stationarity achieves.

The other approach is due to Heidelberger and Welch (1983), which is
developed to test the null hypothesis that sample values come from a sta-
tionary process. If the null hypothesis is rejected, the first 10% of sampled
values should be discarded; if the null hypothesis is rejected again based on
the 90% of sampled values, then further 10% of sampled values should be
ruled out. Repeat this test until either a portion of the chain (at least 50% of
sample values) passes the stationarity test, or 50% of sample values have been
thrown away and the null hypothesis is still rejected. If the latter happens,
the stationarity test fails and a longer run (increasing B) is deemed to achieve
convergence.

Associated with the Heidelberger and Welch’s test, a statistic called
halfwidth, defined as the half length of a 95% confidence interval, is used to
make a decision on whether a longer run should be considered. The halfwidth
test is conducted as follows: based on the portion of the chain that passed the
stationarity test, the corresponding sample mean and its asymptotic standard
error can be obtained, and therefore the halfwidth of the associated 95% con-
fidence interval for this mean is equal to 1.96 × s.e. (standard error). If the
halfwidth is less than ε × sample mean, the test is passed and the retained
sample is deemed to estimate the posterior mean with acceptable precision.
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The coefficient ε is usually taken to be 0.1. If the test fails, a longer run is
needed to achieve a satisfactory accuracy for estimates.

Both available in R software, CODA (Convergence Diagnostics and Output
Analysis) and BOA (Bayesian Output Analysis) provide Geweke’s test and
Heidelberger and Welch’s test, as well as other diagnostic methods.

8.1.3 Enhancing Burn-in

The MCMC approach is to obtain a set of “independent” draws from the joint
posterior distribution of the quantities of interest after the Markov chain has
reached its burn-in or stationary distribution. This stationarity has been the-
oretically proved achievable when the Markov chain is geometrically ergodic.
The CODA or BOA packages discussed in Section 8.1.2 implement various
convergence diagnostics. In practice, however, some models need to run a
large number of loops in order to obtain approximately independent sam-
ples via thinning technique. This extremely slow convergence is of particular
concern.

Besides the techniques of thinning and over-relaxation, an alternative way
to enhance burn-in is via reparameterization based on strategies of modifying
model structures or sweeping method suggested by Gilks et al. (1996). First,
it explores the between- and within-variable correlations through a certain
pilot study based on a small number of draws, which provides some basic
evidence to choose a proper strategy for improvement. In the following, two
common reparametrization strategies are discussed, which will be illustrated
in Section 8.3 to improve the rate of burn-in and hence to considerably reduce
computational time.

The first reparametrization strategy is to standardize covariates around
their means, so that fixed effects parameters become orthogonal. That is, a
hierarchical model takes the centered form as follows:

g(μ) = x̄Tβ + (x − x̄)Tβ + zTb.

This reparametrization approach is, in fact, widely used in the classical set-
ting of regression analysis to deal with the multicollinearity problem. The
reparametrization is appealing here, since the resulting hierarchical model can
achieve better correlation properties. The reparametrized models are equiv-
alent to the original hierarchical models subject to a certain re-arrangement
of intercept terms, but gain convergence faster than the original one at little
cost.

The second reparametrization strategy takes place on the part of zTb,
which may involve nested random effects in the modeling of multi-level corre-
lated data. Hierarchical centering, proposed by Gelfand et al. (1995 and 1996),
aims to acquire better correlation properties in the reformulated hierarchical
models, so that computational time per update is reduced. In particular, the
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partial hierarchical centering is simple and useful, which centralizes the ran-
dom effects around the nested mean instead of zero. See Qiu et al. (2002) for
an application of this centering approach.

8.1.4 Model Selection

The common Bayes (or Schwarz) Information Criterion (BIC/SIC) (Kass and
Raftery,1995) for model selection is inappropriate because the presence of ran-
dom effects in hierarchical models complicates the determination of the true
number of free parameters (or degrees of freedom) in the assessment of model
complexity. The deviance information criterion (DIC), proposed recently by
Spiegelhalter et al. (2002), attempts to resolve this problem in the perspective
of approximate Akaike Information Criterion (AIC), and is adopted for model
selection in the framework of hierarchical models. According to Spiegelhalter
et al. (2002), the Bayesian deviance is given by

D(θ|Mk) = −2 logL(y|θ;Mk) + 2 log f(y)

for model Mk with parameter θ, where f(y) is a certain normalizing term
that is known and fully determined by data. The value of true number of free
parameters is defined as

pD = Eθ|yD(θ |Mk) −D(Eθ|y(θ) |Mk)
def
= D̄ −D(θ̄).

Moreover, the DIC takes the form

DIC = D̄ + pD = D(θ̄) + 2pD,

where as usual, term D̄ explains the model fit and pD indicates the model
complexity. Spiegelhalter et al. (2002) showed asymptotically that the DIC is
a generalization of the AIC.

Computing the DIC is straightforward in an MCMC implementation.
Tracking both θ and D(θ) in MCMC iterations, at the exit of sampling, one
can estimate the D̄ by the sample mean of the simulated values of D and the
D(θ̄) by plugging in the sample mean of the simulated values of θ. A lower
value of DIC indicates a better-fit model.

One may also adopt the so-called null standardization criterion D0(θ|Mk)
= −2 logL(y|θ;Mk) in the model comparison. Because the normalizing term,
2 log f(y), it is independent of model Mk. For the purpose of model compar-
ison, ignoring this term does not affect the conclusion about the ranking of
candidate models. This model selection criterion allows users to assess the
necessity of a certain configuration of random effects in the formulation of
a GLMM, and moreover to determine a proper covariance structure for the
distribution of random effects. The implementation of this model selection
criterion is demonstrated in Sections 8.2 and 8.3 numerically.
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8.2 An Illustration: Multiple Sclerosis Trial Data

This section illustrates the application of MCMC algorithm to fit the gener-
alized logistic mixed effects model for multiple sclerosis trial data. The en-
tire analysis is conducted with the utility of the WinBUGS software package.
Note that the same data has been analyzed in Example 7.1 using SAS PROC
NLMIXED. Refer to Section 1.3.6 for the details of data description.

In this illustration, model (b) in Example 7.1 is chosen; that is, the prob-
ability of exacerbation at the j-th visit for patient i, πij = prob(Yij = 1|xij),
follows the following model:

logitπij = β0 + β1tj + β2t2j + β3EDSSi + β4Ptrti + β5Ltrti + β6duri
+bi0 + EDSSibi1, j = 1, . . . , 17, i = 1, . . . , 52, (8.2)

where both random effects bi0 and bi1 are assumed to be independent and
normally distributed, namely

(bi0, bi1) ∼ MVN2

(
0,
(
D11 0
0 D22

))
.

Fig. 8.1. Graphic representation of the logistic mixed effects models for the multiple
sclerosis data.

The WinBUGS Doodle allows users to produce a graphic representation of
model specification, as shown in Figure 8.1 that clearly displays relations
among variables included in the GLMM 8.2. In this graph, the nodes outside
of the outer plate represent the variables or parameters whose samples will be
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generated by the Gibbs sampler. Different plates indicate different dimensions
of loops. The double-arrowed line indicates a deterministic relation, whereas
the single-arrowed line indicates a stochastic relation as long as the MCMC
sampling concerns. Moreover, Doodle can translate this graphic representation
into a BUGS programming code, which will be discussed in detail in next
section. As usual, “noninformative” priors are specified for the coefficients
and precision parameters in the model.

To examine burn-in by the Brooks-Gelman-Rubin’s method of multiple
chains, three very different sets of initial values were chosen, as listed in Table
8.1.

Table 8.1. Three sets of initial values set to generate three chains by Gibbs sam-
pling.

Parameter Set 1 Set 2 Set 3

intercept 1.0 −1.0 2.0
time 0.0 0.1 −0.1
time2 0.0 0.0 0.0
EDSS 0.0 0.0 0.0
Ptrt 0.0 0.0 0.0
Ltrt 0.0 0.0 0.0
dur 0.0 0.0 0.0

1/D11 4.0 10.0 1.0
1/D22 1.0 1.0 4.0

Three chains of 10,000 samples, thinned by 3, were generated with the
three sets of initial values. Monitoring the trace plots suggested that the
samples of the fixed effects quickly got mixed well, but the samples of the
variance components took a long journey to join together. Figure 8.2 shows
the worst scenarios of mixing occurred on the samples for the precision pa-
rameters 1/D11 (called tau.b in the top plot) and 1/D22 (called tau.b1 in
the bottom plot).

Figure 8.2 looks messy. To better examine the convergence of the Gibbs
sampling algorithm, the Brooks-Gelman-Rubin diagnostic tool was applied.
Discarding the first 100 (effectively the original 4,000 samples due to the
thinning) simulated data, the Brooks-Gelman-Rubin statistic R can be plotted
up to the 6,000 iterations in Figure 8.3.

In each plot, the red curve (or the second darkest curve) represents the
statistic R; the green curve (or the least dark curve) shows the central 80%
interval of the pooled runs; and the blue curve (or the darkest curve) indicates
the central 80% interval of individual runs. Once convergence occurs, the blue
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Fig. 8.2. History plots of the thinned samples for the precision parameters 1/D11

(the top panel) and 1/D22 (the bottom panel) generated by Gibbs sampler in Win-
BUGS.

Fig. 8.3. Plots of Brooks-Gelman-Rubin statistic R for the model parameters over
6,000 iterations with the first 100 (equivalent to the original 4,000 due to the thin-
ning) iterations being discarded.

and green curves should become almost equivalent and hence the R would be
getting close to 1. A careful examination of all the plots in Figure 8.3 easily
concluded the convergence after the 4,000-th iteration.
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Based on the convergence diagnosis analysis, it seems reasonable to use
samples generated after the 4,000-th iterations to make inference on the model
parameters. In the meanwhile, the autocorrelation plots (not shown) sug-
gested some moderate correlation between samples, which basically means
longer chains needed to be generated or a larger thinning interval is required.
Therefore, in the second step, 5,000 additional samples were generated and
the results reported in Table 8.2 are based on a total of 9,000 samples, con-
sisting of the last 3,000 samples of each chain. In comparison, the estimates of
the GLMM obtained from SAS PROC NLMIXED and of the marginal GLM
obtained from SAS PROC GENMOD under interchangeable correlation struc-
ture are also listed in the table. Estimates from WinBUGS are the mean and
standard deviation of the estimated posterior for each of the model parame-
ters.

Table 8.2. Estimation results of the logistic mixed effects model for the multiple
sclerosis data obtained from WinBUGS, SAS PROC NLMIXED, and SAS PROC
GENMOD.

Parameter WinBUGS NLMIXED GENMOD

intercept −1.7420(.5399) −1.6348(.5241) −1.5691(.4834)
time −0.0318(.0150) −0.0306(.0151) −0.0302(.0133)
time2 0.0003(.0001) 0.0002(.0001) 0.0002(.0001)
EDSS 0.3137(.0949) 0.2935(.0854) 0.2885(.0891)
Ptrt 0.3184(.3561) 0.2536(.3295) 0.2442(.2982)
Ltrt 0.5421(.3415) 0.4620(.3248) 0.4332(.3071)
dur −0.0437(.0235) −0.0433(.0215) −0.0446(.0219)
1/D11 or D11 132.80(343.50) 0.1306(.2148) –
1/D22 or D22 259.70(426.60) 0.0007(.0143) –

Table 8.2 indicates that the estimates of the fixed effects are very close
between the NLMIXED and WinBUGS, because non-informative priors were
used in the WinBUGS. Again, the Bayesian analysis did not find the significant
presence of heterogeneity among the patients. Given the ease of computation
and interpretation, for the analysis of this multiple sclerosis data, the marginal
GLM seems to be the best approach among the three.

8.3 Multi-Level Correlated Data

Multi-level correlated data arise from many practical studies, such as spatio-
temporal data. Correlated data considered in the previous chapters, including
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longitudinal data, clustered data, or spatial data are special cases of multi-
level data. On the line of conditional modeling approach, mixed-effects models
may be extended to incorporate more random effects in a hierarchical (or
nested) form, and the resulting models are often referred to as hierarchical
models. In practice, hierarchical models are widely used to analyze multi-
level data, even though some difficulties in statistical inference and model
fitting have not completely been overcome yet. For example, because more
random effects enter the model via complicated structures, the difficulty of
integration in likelihood functions becomes even more challenging. MCMC
algorithm appears particularly useful and handy to deal with such a high-
dimensional integration problem, even if there are some caveats in the use of
this algorithm.

Instead of giving a general presentation of hierarchical models, this section
is intended to focus only on an example, from which readers can appreciate the
utility of MCMC method, with the assistance of WinBUGS software package, to
carry out a Bayesian inference in hierarchical models. The Tretinoin Emollient
Cream (TEC) trial data, introduced in Section 1.3.7, is used to facilitate the
discussion. From the data description, it is known that the response measured
in this trial is in an ordinal scale. In the literature, the analysis of correlated
ordinal measurements has been investigated by many researchers, such as
Heagerty and Zeger (1996) for marginal models, Hederker and Mermelstein
(2000) for random effects models, and Kosorok and Chao (1996) for ordinal
longitudinal data in continuous time.

Let Yijl be the response variable for the l-th observation of the j-th lo-
cation (j = 1 indicating arm; j = 2 indicating face; l = 1, · · · , κj , where
κ1 = 4 and κ2 = 1) in the i-th patient (i = 1, 2, · · · ,K, where K = 32). Be-
cause the response variable is ordinal with 4 levels, a hierarchical proportional
odds model is considered for the data analysis. To analyze correlated ordinal
measurements, readers may refer to Heagerty and Zeger (1996) for marginal
models and Hederker and Mermelstein (2000) for random effects models.

Let the cumulative probability be πijl,m = Prob(Yijl ≤ m) with

m =

⎧⎪⎪⎨
⎪⎪⎩

1, no change or worsening
2, slight improvement
3, improvement
4, great improvement.

The cumulative probability πijl,m represents the probability that the symptom
score for patient i at the j-th location during the l-th visit is not better than
category m.

Then, the point mass probabilities are

μijl,m = πijl,m − πijl,m−1, m = 1, 2, 3, 4.

The proportional odds model (McCullagh and Nelder, 1989) usually assumes
that these probabilities arise, via the threshold method, from an underlying
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continuum Zijl that takes values on R according to the following one-to-one
relation:

Yijl = m if and only if Zijl ∈ (am−1, am], m = 1, 2, 3, 4,

where the threshold (or cut) points are constrained with −∞ = a0 < a1 <
a2 < a3 < a4 = ∞. The hierarchical model takes the form

g(πijl,m) = am + xTijβ + bi + dij , (8.3)

where the three threshold points are am,m = 1, 2, 3 with a1 < a2 < a3, bi are
the patient-specific random effects and dij are the location-specific random
effect. In effect, model (8.3) with the logit link g is resulted from the assump-
tion that each latent variable Zijl follows marginally a standardized logistic
distribution. The three-element vector of covariates, xij , includes x1ijl = 1 if
the active drug TEC is applied to the j-th location of the i-th patient, and
x1ijl = 0 if placebo is applied; x2ijl is the number of weeks for the treatment,
which is either 24 or 48; and x3ijl is the interaction of treatment and time.

The complication in statistical analysis is the presence of the correlation
among multiple locations on a patient (spatial correlation at level 2) and the
serial correlation across multiple time points (autocorrelation at level 3). This
hierarchical model is a natural extension of the generalized linear mixed effects
model with nested random effects. To invoke MCMC based inference, priors
on both regression coefficients and parameters in the distribution of random
effects have to be specified. As discussed in the preceding section, if flat (or
diffuse) priors are used, this model essentially gives results numerically similar
to those from the frequentist maximum likelihood inference. This is because
the resulting posterior is equal or approximately equal to the normalized like-
lihood function.

To satisfy the order restriction on the cut-points a1 < a2 < a3, one may
introduce two parameters θ1 > 0, θ2 > 0 such that a2 = a1 + θ1 and a3 =
a2 + θ2. Under this reparametrization, the assumed priors are listed in Table
8.3.

Table 8.3. Priors specified in the hierarchical proportional odds model.

Parameters Prior

Each βk, k = 1, . . . , p N(0, 10002)
Cut-point a2 N(0, 10002)
Each θk, k = 1, 2 Truncated N(0, 10002) on (0,∞)

Four candidate models may be resulted from the above model specification
and hence will be compared in the following analysis. They are:
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(a) the naive model, with no random effects (that is, both bi and dij are
degenerated at zero);

(b) the level-1 hierarchical model that just incorporates location-specific ran-
dom effects bi, but with no time-dependent random effects dij ;

(c) the level-2 (variance component) hierarchical model that includes both
random effects bi and dij , but the variance matrix of random effects D
of the random effects vector γi = (bi, di1, di2)T is assumed to be a diag-
onal structure, denoted by D =diag(τ1, τ2, τ2), where τ1 and τ2 are the
respective variances of bi and dij ;

(d) the level-2 (full) hierarchical model as specified in (c) with a general vari-
ance matrix D = (τij)3×3.

Obviously Model (d) specification refers to the case that all random effects are
correlated while Model (c) implies that the random effects at the patient level
and those at the location level are uncorrelated. In Model (c), it is possible to
further reduce the number of variance parameters to 2 by assuming two arms
to share common random effects di1. This seems to be a reasonable reduction
because the skin tissue on the left arm is anatomically almost identical with
that on the right arm.

The Wishart prior distribution for the inverse of the fully unspecified vari-
ance matrix D is adopted in Model (d), where the hyper-parameters are set
as follows: the scale matrix R = diag(1, 1, 1) and the degrees of freedom equal
to 3. In Model (c), priors for the variance components are specified as the
conjugate inverse gamma distribution IG(a0, b0) with hyper-parameter values
a0 = b0 = 0.0001. The conjugate prior is commonly used in the literature as
prior distributions for variance parameters. The variance of each prior for βk
or the variance components τk is set so large that the resulting prior would be
(approximately) non-informative. Thus the choice of priors would have little
effect on the analysis (Sun et al., 2001).

Table 8.4. Comparison among candidate hierarchical proportional odds models for
the TEC data analysis.

Model D̄0 D0(θ̄) pD DIC

(a) Naive 254.8 248.804 5.996 260.796
(b) Level-1 199.4 169.614 29.759 229.133
(c) Level-2 VC 91.2 39.663 51.514 142.692
(d) Level-2 FM 107.3 58.224 49.076 156.376

Table 8.4 reports the values of the DIC model selection criterion based on
5,000 records after the burn-in of 5, 000 iterations generated by the WinBUGS
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package with the option of Neal’s over-relaxation. It is noticeable that Model
(c) with the variance components structure appears to be superior over the
all other three models, including the model with a fully unspecified variance
matrix, as Model (c) receives the smallest DIC value, as well as the minimum
BIC. Therefore, Model (c) is used as the final model to draw conclusions.

Three chains of 15,000 iterations were first run for Model (c) in WinBUGS,
with three different sets of initial values and a thinning interval of 2. All
parameters have indicated reasonably fast rates of mixing, except for the
variance parameters τk, k = 1, 2 that appeared to have a very slow pace of
mixing. With first 2,500 iterations discarded, panel (a) in Figure 8.4 shows
the Brooks-Gelman-Rubin diagnostic plots for τk, k = 1 (left) and k = 2
(right). The red lines (the second darkest) in both plots seem to suggest that
iteration 5,000 would be a safer point to draw the line of burn-in, judged by
the closeness to the horizontal line at 1.

Fig. 8.4. Brooks-Gelman-Rubin diagnostic plots and posterior densities for the
variance component parameters τk, k = 1, 2 based on three chains of 15,000 iterations
in the analysis of TEC data.

Also in Figure 8.4, the posterior densities of the two variance parameters
are displayed in panel (b). The density of τ1 has a sharp peak near zero as
well as a very long tail, which means that this parameter was poorly esti-
mated. This is further confirmed by Figure 8.5 in that the history plots of
the last 1,000 iterations clearly show a low quality of mixing, especially for
parameter τ1. This is due largely to the limited size of observed data–only one
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measurement on face and two repeated measurements on arms, as opposed to
a large number of random effects involved in the model. Therefore, in order
to calculate summary statistics for the model parameters, a long chain seems
to be necessary.

Fig. 8.5. History plots for the variance component parameters τk, k = 1, 2 based
on three chains of 15,000 iterations in the analysis of TEC data.

Table 8.5 lists the summary statistics on the basis of a single chain of
40,000 iterations, with deletion of the first 10,000 iterations. For this case, the
burn-in was further confirmed by both Geweke’s Z-scores and Heidelberger
& Welch test using R package CODA.

Table 8.5 also reports the estimated log odds ratios for TEC treatment
versus placebo at 24 weeks, log(OR24) = β1 + 24 × β3, and at 48 weeks,
log(OR48) = β1 + 48× β3. Both of them are highly significant. This indicates
strong evidence for the efficacy of TEC drug in treating photo-age skin.

In this data analysis, because the convergence for the chains associated
with the variance parameters appeared very slow, drawing the final conclusion
on the treatment effectiveness requires extra caution. Section 8.4.2 provides
the WinBUGS code used to run the above analysis.
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Table 8.5. Summary statistics from the respective posteriors of the model param-
eters in the TEC drug treatment analysis, using WinBUGS.

Parameter Mean Std Dev MC error 2.5% Median 97.5%

a1 10.290 4.658 0.233 2.815 9.718 20.870
a2 19.710 7.593 0.437 8.278 18.510 37.520
a3 28.360 10.380 0.597 13.170 26.570 52.940
β1 −15.730 6.490 0.347 −31.030 −14.700 −5.744
β2 0.029 0.075 0.002 −0.116 0.027 0.186
β3 −0.180 0.089 0.003 −0.376 −0.174 −0.019
log(OR24) −20.050 6.795 0.390 −36.240 −18.820 −10.280
log(OR48) −24.370 7.716 0.438 −42.700 −23.100 −13.120
τ1 2.462 2.865 0.171 0.015 1.286 9.547
τ2 9.296 3.784 0.215 3.893 8.570 18.500

8.4 WinBUGS Software

WinBUGS is a free software package that is useful to generate random sam-
ples from multivariate distributions via Markov chain Monte Carlo (MCMC)
algorithm. This software can be downloaded from

http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml

Users need to apply for a key to unlock and upgrade the package from an
educational version to an advanced version in order to run the codes given in
this section.

Beginners of the software may visit a webpage

http://www.statslab.cam.ac.uk/~krice/winbugsthemovie.html

to watch a movie about Getting Started with WinBUGS. Also, it is beneficial
to join in a discussion mailing list, jscmail@jiscmail.ac.uk, to receive or
ask questions regarding WinBUGs problems. Most importantly, always get help
from an online users’ manual or a hard copy manual that can be found on the
home page of WinBUGS at

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/manual14.pdf.

In the manual, the tutorial section is always worth reading.
This section presents WinBUGS codes, respectively, used in the fit of the

multiple sclerosis data to a logistic mixed effects model and in the fit of the
TEC drug data to a hierarchical proportional odds model.
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8.4.1 WinBUGS Code in Multiple Sclerosis Trial Data Analysis

The WinBUGS program for the analysis of multiple sclerosis trial data produced
by the WinBUGS’ Doodle in Figure 8.1 is given as follows. The diagnostic
analysis of the burn-in is based on the Brooks-Gelman-Rubin’s R statistic
via multiple chains (available in WinBUGS), where three very different initial
values are specified; see Table 8.1.

model
{
for(j in 1 : N) {

for(k in 1 : T) {
logit(p[j,k]) <- beta0+beta.Time*Time[k]

+beta.Time2*Time2[k]+beta.EDSS*EDSS[j,k]
+beta.Placebo*Placebo[j]+beta.Low*Low[j]
+beta.Duration*Duration[j]
+b1[j]+b[j]*EDSS[j,k]

y[j,k] ~ dbin(p[j, k],1)
}

# subject random effects
b1[j] ~ dnorm(0.0, tau.b)
b[j] ~ dnorm(0.0, tau.b1)

}
# priors:

beta0 ~ dnorm(0.0,1.0E-4)
beta.Time ~ dnorm(0.0,1.0E-4)

beta.Time2 ~ dnorm(0.0,1.0E-4)
beta.EDSS ~ dnorm(0.0,1.0E-4)
beta.Placebo ~ dnorm(0.0,1.0E-4)
beta.Low ~ dnorm(0.0,1.0E-4)
beta.Duration ~ dnorm(0.0,1.0E-4)
tau.b1 ~ dgamma(1.0E-3,1.0E-3);
sigma.b1 <- 1.0 /sqrt(tau.b1)
tau.b ~ dgamma(1.0E-3,1.0E-3);
sigma.b <- 1.0/sqrt(tau.b)

}

In this program, the priors for the coefficients βk are specified as normal
with a variance of 104 (or precision 10−4), and the priors for the precisions
of the random effects are specified as gamma with both small rate and scale
parameters 10−3.

For the convergence diagnostics, WinBUGS provides trace plots that mon-
itor updates while programs are running, autocorrelation plot, and Brooks-
Gelman-Rubin diagnostic with multiple chains. In addition, CODA (Con-
vergence Diagnostics and Output Analysis) and BOA (Bayesian Output
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Analysis), both available in R packages, provide Geweke test and Heidelberger
and Welch’s test.

8.4.2 WinBUGS Code for the TEC Drug Analysis

Below lists the WinBUGS code used in the implementation of the hierarchical
proportional odds model (the selected level-2 VC model ) in the TEC drug
data analysis. Denote N = 160 as the number of observations, NS = 32 as
the number of subjects, NJ = 2 as as the number of locations, and Ncut = 3
as the number of cut-points. Also, let h be the index of overall observations,
so i = U(h), j = V (h), where U and V are the index variables for level i and
j. In addition, x1.bar, x2.bar, and x3.bar are the mean values (given in the
dataset) of covariates x1, x2, and x3, respectively. In the code, variable sigma
denotes the vector of variance component parameters τk in the covariance
matrix D, and cut denotes the threshold points am.

Inits
list(beta=c(0, 0, 0), a=c(1, 0, 1), tau=c(1,1) )
list(beta=c(0, 0, 0), a=c(1, 0, 1), tau=c(0.1, 0.1) )

model {
for (h in 1:N) {

covc[h] <- beta[1] * (x1[h] - x1.bar)
+ beta[2] * (x2[h] - x2.bar)
+ beta[3] * (x3[h] - x3.bar)

logit(Q[h,1]) <- -a[1] + d[U[h], V[h]] + covc[h]
logit(Q[h,2]) <- d[U[h], V[h]] + covc[h]
logit(Q[h,3]) <- a[3] + d[U[h], V[h]] + covc[h]

# probability of response = m
mu[h,1] <- Q[h,1]
for (m in 2:Ncut) {

mu[h,m] <- Q[h,m] - Q[h,m - 1]
}
mu[h,(Ncut+1)] <- 1 - Q[h,Ncut]
y[h] ~ dcat(mu[h, 1: (Ncut + 1)])

}
# Patient-specific/Patient*location-specific random effects

for (i in 1: NS) {
b[i] ~ dnorm(a[2], tau[1])
for (j in 1: NJ ) {

d[i, j] ~ dnorm(b[i], tau[2])
}

}
# Priors

for(k in 1:3){
beta[k] ~ dnorm(0, 1.0E-06)
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}
a[2] ~ dnorm(0, 1.0E-06)
a[1] ~ dnorm(0, 1.0E-06)I(0, );
a[3] ~ dnorm(0, 1.0E-06)I(0, )
for(k in 1:2){

tau[k] ~ dgamma(0.0001, 0.0001)
sigma[k] <- 1 / sqrt(tau[k])

}
# log odds ratios and intercepts on original scale:

LOR[1] <- beta[1] + 24*beta[3]
LOR[2] <- beta[1] + 48*beta[3]
x.bar <- beta[1]*x1.bar + beta[2]*x2.bar + beta[3]*x3.bar
cut[1] <- a[2] - a[1] - x.bar
cut[2] <- a[2] - x.bar
cut[3] <- a[2] + a[3] - x.bar

}
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Linear Predictors

This chapter is devoted to the best linear unbiased predictor (BLUP). Starting
with the definition of BLUP, Section 9.1 investigates some basic properties of
BLUP. Then, Section 9.2 derives the estimates of random effects in linear
or generalized linear mixed models. Finally, Section 9.3 presents the Kalman
filter and smoother, originally proposed by Kalman (1960) and Kalman and
Bucy (1961), under a more general hierarchical structure than the classic
linear hierarchical model.

9.1 General Results

Throughout this section, we consider random vectors X, Y, and Z with finite
second moments whose means, variances, and covariances are denoted by

E

⎛
⎝X

Y
Z

⎞
⎠ =

⎛
⎝μXμY
μZ

⎞
⎠ and Var

⎛
⎝X

Y
Z

⎞
⎠ =

⎛
⎝ ΣX ΣXY ΣXZ

ΣYX ΣY ΣY Z

ΣZX ΣZY ΣZ

⎞
⎠ .

The linear predictor (or the least squares prediction) of X given Y is defined
by

X|Y ∼ [mX|Y ;CX|Y ],

where mX|Y and CX|Y , called respectively the predictor or BLUP and the
mean square error (MSE), are given by

mX|Y = μX + ΣXY Σ−1
Y (Y − μY ) (9.1)

CX|Y = ΣX − ΣXY Σ−1
Y ΣYX . (9.2)

Here Greek letters μ and Σ denote the true moments, while the Roman letters
m and C denote the linear predictor and the MSE, with appropriate subscripts
to index particular variables in expression.
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When no conditioning is involved, the linear predictor gives the true mean
and variance. If X and Y are jointly multivariate normally distributed, then
mX|Y and CX|Y coincide with the conditional mean and variance, which is
otherwise not generally the case. Furthermore, mX|Y is the linear combination
of the elements of Y that minimizes the MSE for prediction of X, i.e., the
best linear unbiased predictor (BLUP) (e.g., Brockwell and Davis, 1991, p.
64).

In general, the linear predictor behaves much like the conditional mean in
the context of the multivariate normal distribution, with some basic properties
listed below.

(1) The MSE may be expressed in the form

CX|Y = E
{
(X − mX|Y )(X − mX|Y )T

}
= Var

(
X − mX|Y

)
.

Thus, CX|Y resembles Var {X− E(X|Y)} = E{Var(X|Y)}.
(2) For suitable matrices or scalars α and β,

(αX + β)|Y ∼ [αmX|Y + β;αCX|YαT ].

(3) For the multivariate normal distribution, the conditional mean is a linear
function of Y and the conditional variance is not functionally dependent
on the value of Y. Similarly for linear predictors, if E(X|Y) is linear in
Y, then

X|Y ∼ [E(X|Y); E{Var(X|Y)}] . (9.3)

(4) The prediction error X− mX|Y is uncorrelated with Y; that is,

cov(X − mX|Y ,Y) = cov(X,Y) − ΣXYΣ−1
Y Var(Y) = 0.

This is an important property used later.
(5) If Y and Z are uncorrelated, then X|(Y,Z) ∼ [mX|Y,Z;CX|Y,Z ], with

mX|Y,Z = μX + ΣXYΣ−1
Y (Y − μY ) + ΣXZΣ−1

Z (Z − μZ) (9.4)

CX|Y,Z = ΣX − ΣXY Σ−1
Y ΣYX − ΣXZΣ−1

Z ΣZX . (9.5)

Theorem 9.1 shows that the joint, marginal, and conditional linear predic-
tors behave much like the joint, marginal, and conditional means and variances
for the multivariate normal distribution.

Theorem 9.1. Let X, Y, and Z be random vectors with finite second mo-
ments. Then the joint predictor of X,Y given Z is given by

(
X
Y

)∣∣∣∣Z ∼
[(

mX|Z
mY |Z

)
;
(

CX|Z CXY |Z
CYX|Z CY |Z

)]
(9.6)

where CXY |Z = ΣXY − ΣXZΣ−1
Z ΣZY . The linear predictor of X given both

Y and Z is given by
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X
∣∣∣∣
(

Y
Z

)
∼
[
mX|Z + CXY |ZC−1

Y |Z
(
Y − mY |Z

)
;

CX|Z − CXY |ZC−1
Y |ZCYX|Z

]
. (9.7)

Proof. The joint predictor (9.6) is obtained directly from the definition.
To show (9.7), the facts that the vector (Y,Z) has the same span as
(Y − mY |Z ,Z) and that the two components of the latter vector are un-
correlated imply that the linear predictor of X given (Y,Z) is the same as
that given {(Y−mY |Z),Z}. Also, note that cov(X,Y−mY |Z) = CXY |Z and
Var(Y − mY |Z) = CY |Z . Then, (9.4) leads to

mX|Y Z = μX +
(
cov(X,Y − mY |Z), cov(X,Z)

) (CY |Z 0
0 ΣZ

)(
Y − mY |Z
Z − μZ

)

= μX +
(
CXY |ZC−1

Y |Z ,ΣXZΣ−1
Z

)(Y − mY |Z
Z − μZ

)

= mX|Z + CXY |ZC−1
Y |Z

(
Y − mY |Z

)
.

And (9.5) results in

CX|Y Z = ΣX −
(
CXY |ZC−1

Y |Z ,ΣXZΣ−1
Z

)(CYX|Z
ΣZX

)

= ΣX − CXY |ZC−1
Y |ZCY X|Z − ΣXZΣ−1

Z ΣZX

= CX|Z − CXY |ZC−1
Y |ZCY X|Z .

This completes the proof.

Corollary 9.2. If X and Y are conditionally uncorrelated given Z, and if
either E(X|Z) or E(Y|Z) is linear in Z, then

X
∣∣∣∣
(

Y
Z

)
≡ X|Z ∼ [mX|Z ;CX|Z

]
. (9.8)

Proof. From (9.7), if CXY |Z = 0, then (9.8) is true. Hence it suffices to show
CXY |Z = 0 under the given conditions. By symmetry, it is equivalent to
proving the result in the case E(X|Z) = αZ + β. Since cov(X,Y|Z) = 0,

ΣXY = cov(X,Y)
= E{cov(X,Y|Z)} + cov{E(X|Z),E(Y|Z)}
= cov{E(X|Z),E(Y|Z)}
= cov(αZ + β,Y)
= αΣZY

and
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ΣXZ = cov(X,Z) = cov[E(X|Z),Z]
= cov(αZ + β,Z) = αΣZ .

This implies that

CXY |Z = ΣXY − ΣXZΣ−1
Z ΣZY = αΣZY −αΣZΣ−1

Z ΣZY = 0.

This proves the corollary.

Theorem 9.3. Assume Y|Z ∼ [mY |Z ;CY |Z ] and X|Y,Z ∼ [αY + βZ +
γ;CX|Y Z ]. The joint predictor of X,Y given Z is(

X
Y

)∣∣∣∣Z ∼
[(
αmY |Z + βZ + γ

mY |Z

)
;
(

CX|Y Z +αCY |ZαT αCY |Z
CY |ZαT CY |Z

)]
.

(9.9)
In particular, X|Z ∼ [αmY |Z + βZ + γ;CX|Y Z +αCY |ZαT ].

Proof. First note that

(α,β) = (ΣXY ,ΣXZ)
(

ΣY ΣY Z

ΣZY ΣZ

)−1

γ = μX −αμY − βμZ .
This implies that

ΣXY = αΣY + βΣZY

ΣXZ = αΣY Z + βΣZ .

It follows from the definition (9.1) that

mX|Z = μX + (αΣY Z + βΣZ)Σ−1
Z (Z − gZ)

= μX +α
(
mY |Z − μY

)
+ β (Z − μZ)

= αmY |Z + βZ + γ.

Similarly it is seen from (9.2) that

CXY |Z = ΣXY − ΣXZΣ−1
Z ΣZY

= αΣY + βΣZY − (αΣY Z + βΣZ)Σ−1
Z ΣZY

= αCY |Z . (9.10)

To derive CX|Z , note that β = (ΣXZ −αΣY Z)Σ−1
Z , which gives

CX|Y Z +αCY |ZαT = ΣX −αΣYX − βΣZX +αCY |ZαT

= ΣX − ΣXZΣ−1
Z ΣZX −α (CY X|Z − CY |ZαT

)
.

According to (9.10) the last term of this expression vanishes, and hence

CX|Z = ΣX − ΣXZΣ−1
Z ΣZX

= CX|Y Z +αCY |ZαT .
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9.2 Estimation of Random Effects in GLMMs

This section discusses the estimation of random effects in the linear mixed
models (LMMs) and in the generalized linear mixed models (GLMMs), re-
spectively.

9.2.1 Estimation in LMMs

For subject/cluster i, let Yi = (Yi1, . . . , Yini)T be an ni-dimensional vector of
responses, XT

i = (xi1, . . . ,xini) be a p× ni matrix, and ZTi = (zi1, . . . , zini)
be a q×ni matrix. A LMM can be rewritten as of the matrix form as follows:

yi = Xiβ + Zibi + εi

where εi = (εi1, . . . , εini)T ∼ MVNni(0, Σε), bi ∼ MVNq(0, D), and εi and
bi are independent. Note that since random effects are cluster-specific, only
data from cluster i will be relevant in the estimation of bi.

Under the multivariate normality assumption, according to (9.1) the BLUP
of bi is then the conditional expectation, E(bi|Ỹi), with Ỹi = Yi−Xiβ, which
is given as follows:

E(bi|Ỹi) = E(bi) + cov(bi, Ỹi)Var(Ỹi)−1{Ỹi − E(Ỹi)}
= DZTi {ZiDZTi +Σε}−1(Yi −Xiβ).

In particular, when εij ’s are i.i.d. N(0, σ2), Σε = σ2Ini . In addition, by (9.2)
the MSE of the BLUP is

E{Var(bi|Ỹi)} = Var(bi) − cov(bi, Ỹi)Var(Ỹi)−1cov(Ỹi,bi)
= D −DZTi {ZiDZTi +Σε}−1ZiD.

When estimates β̂ and D̂ as well as σ̂2 are available, the estimated BLUP
of the bi and the corresponding MSE are given by

b̂i = D̂ZTi {ZiD̂ZTi + σ̂2Ini}−1(Yi −Xiβ̂),

M̂SE(b̂i) = D̂ − D̂ZTi {ZiD̂ZTi + σ̂2Ini}−1ZiD̂.

When the cluster size ni is small, the performance of the above estimates
may be unstable.

9.2.2 Estimation in GLMMs

In general, the theory of BLUP is not directly applicable for the estimation
of the random effects in the GLMMs. An approximate inference method has
been suggested in the literature to estimate the random effects iteratively.



222 9 Linear Predictors

Let β(1),b(1)
i , D

(1), (σ2)(1) be the updates of the model parameters ob-
tained at the previous iteration 1. At the current iteration 2, define surrogate
responses

Y ∗
ij = g(μbij) + (Yij − μbij)ġ(μbij), j = 1, . . . , ni, i = 1, . . . ,K,

and set errors
ε∗ij = (Yij − μbij)ġ(μbij).

In matrix notation, the above equations can be rewritten into the following
form:

Y∗
i = Xiβ + Zibi + ε∗i ,

where Y∗
i = (Y ∗

i1, . . . , Y
∗
ini

)T and the variance matrix of ε∗i is

Σε∗,i = diag[σ2V (μbij){ġ(μbij)}2], i = 1, . . . ,K,

which are computed on the basis of the previous updates. Then, after β and
D being updated first at iteration 2, the random effects are then updated by

b(2)
i = D(2)ZTi

{
ZiD

(2)ZTi +Σ(1)
ε∗,i

}−1 (
Y∗(1)
i −Xiβ(2)

)
,

with the corresponding MSE given by

MSE(b̂(2)
i ) = D(2) −D(2)ZTi

{
ZiD

(2)ZTi +Σ(1)
ε∗,i

}−1

ZiD
(2).

9.3 Kalman Filter and Smoother

This section presents both Kalman filter and smoother under a general frame-
work, where only the mean structure is assume to be linear, extending the
classical theory given by, for example, Harvey (1981). In other words, the
classical Kalman filtering and smoothing recursions would be special cases of
the formulas given in this section.

9.3.1 General Forms

Assume that two vector-valued stochastic processes {Yt}nt=1 ∈ Rp and
{θt}nt=0 ∈ Rq follow the comb structure defined as follows:

(A1) Given θt, Yt is uncorrelated with the rest of the Yt’s;
(A2) {θt} is a first-order Markov process.

Figure 9.1 gives a graphic illustration of the comb structure at time t −
1, t, t+ 1. In addition, the two processes are assumed to satisfy the following
first and second moment structures:
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θt−1 θt+1θt

Yt−1 Yt+1Yt

Fig. 9.1. The comb structure.

(A3) E (Yt|θt) = Atθt + at, and Var (Yt|θt) = Wt(θt) + W0
t ;

and

(A4) E (θt|θt−1) = Btθt−1 + bt, and Var (θt|θt−1) = Dt(θt−1) + D0
t .

Here the first moment structures are assumed to be linear, but the second
moment structures may be nonlinear. In the second moments, both Wt(θt)
and Dt(θt) are matrices of functions in θt entrywise, with constant terms
W0

t and D0
t , respectively. The inclusion of these constant terms explicitly is

just for the mathematical convenience in the development of theories later
in Chapters 11 and 12. Denote E {Wt(θt)} = W̄t, E {Dt(θt)} = D̄t and
E(θt) = τ t.

Let Yt be the set of the first t vectors Y1, . . . ,Yt. In general, the Kalman
filter is defined as the BLUP of θt given Yt, and the Kalman smoother is the
BLUP of θt based on the all observations Yn. Both predictions are calculated
via recursive procedures given in the following theorems, respectively.

Theorem 9.4. Under assumptions (A1)–(A4), for the given prediction at
time t − 1, θt−1|Yt−1 ∼ [mt−1;Ct−1], the Kalman filter proceeds recursively
as follows:

Step 1: Compute two predictions

θt|Yt−1 ∼ [Btmt−1 + bt; Ht] and Yt|Yt−1 ∼ [ft; Qt]

where

Ht = D̄t−1 + D0
t + BtCt−1BT

t

ft = At (Btmt−1 + bt) + at, Qt = F̄t−1 + F0
t + AtBtCt−1BT

t AT
t .

Step 2: Update the prediction of θt given Yt,

θt|Yt ∼ [mt; Ct]
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where

mt = Btmt−1+bt+HT
t AT

t Q−1
t (Yt−ft), and Ct = Ht−HT

t AT
t Q−1

t AtHt.

Note that the Kalman filtering recursions move forward from time 1 to n.

Theorem 9.5. Suppose that the Kalman filtering has been complete. Under
assumptions (A1)–(A4), the Kalman smoother proceeds backwards as follows:
Given the prediction at time t + 1, θt+1|Yn ∼ [

m∗
t+1; C∗

t+1

]
, the Kalman

smoother and the corresponding error are given by

m∗
t = mt + CtBT

t+1H
−1
t+1(m

∗
t+1 − Bt+1mt − bt+1)

and

C∗
t = Ct − CtBT

t+1H
−1
t+1Bt+1Ct + CtBT

t+1H
−1
t+1C

∗
t+1H

−T
t+1Bt+1Ct.

The recursion starts with t = n by taking m∗
n = mn and C∗

n = Cn.

These two theorems are proved below.

Proof. (Theorem 9.4) It follows from the assumptions (A1)-(A4) that

E (Yt|θt−1) = AtBtθt−1 + Atbt + at, (9.11)
Var (Yt|θt−1) = E {Var (Yt|θt) |θt−1} + Var {E (Yt|θt) |θt−1}

= Ft(θt−1) + F0
t

cov(Yt,θt|θt−1) = cov {E (Yt|θt) ,θt|θt−1} = Atcov(θt,θt|θt−1)
= AtDt(θt−1) + AtD0

t ,

where

Ft(θt−1) = E {Wt(θt)|θt−1} + AtDt(θt−1)AT
t , and F0

t = W0
t + AtD0

tA
T
t .

Since both conditional expectations E(Yt|θt−1) and E(θt|θt−1) are linear
in θt−1, by the property (9.3),

(
Yt

θt

)∣∣∣∣ θt−1 ∼
[(

AtBtθt−1 + Atbt + at
Btθt−1 + bt

)
;

(
F̄t−1 + F0

t AtD̄t−1 + AtD0
t

D̄T
t−1A

T
t + D0T

t AT
t D̄t−1 + D0

t

)]
(9.12)

where

F̄t−1 = E {Ft(θt−1)}
= E [E {Wt(θt)|θt−1}] + AtE {Dt(θt−1)}AT

t

= W̄t + AtD̄t−1AT
t .
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With the availability of the filter at t − 1, at the present step, assume that
one currently knows

θt−1|Yt−1 ∼ [mt−1; Ct−1] .

Theorem 9.3 leads to the predictions of (Yt,θt) given Yt−1 as follows:
(

Yt

θt

)∣∣∣∣Yt−1 ∼
[
m̃t|t−1; C̃t|t−1

]
(9.13)

where the predictor is

m̃t|t−1 =
(

At

I

)
Btmt−1 +

(
At

I

)
bt +

(
at
0

)
,

with the prediction error

C̃t|t−1 =
(

F̄t−1 + F0
t AtD̄t−1 + AtD0

t

D̄T
t−1A

T
t + D0T

t AT
t D̄t−1 + D0

t

)

+
(

AtBtCt−1BT
t AT

t AtBtCt−1BT
t

BtCt−1BT
t AT

t BtCt−1BT
t

)
.

In particular,
θt|Yt−1 ∼ [Btmt−1 + bt; Ht]

with
Ht = D̄t−1 + D0

t + BtCt−1BT
t .

In addition,
Yt|Yt−1 ∼ [ft; Qt]

with

ft = At (Btmt−1 + bt) + at, Qt = F̄t−1 + F0
t + AtBtCt−1BT

t AT
t .

Now update the prediction of θt given a new vector Yt and Yt−1 from the
expression (9.13). It follows from Theorem 9.1 that

θt|Yt ∼ [mt; Ct]

where

mt = Btmt−1 + bt +
(
D̄t−1 + D0

t + BtCt−1BT
t

)T
AT

(
F̄t−1 + F0

t + AtBtCt−1BT
t AT

t

)−1
(Yt − ft)

= Btmt−1 + bt + HT
t AT

t Q−1
t (Yt − ft)

Ct = Ht − HT
t AT

t Q−1
t AtHt.

The proof of Theorem 9.4 is complete.
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Proof. (Theorem 9.5) Suppose that the current Kalman smoother is available

θt+1|Yn ∼ [m∗
t+1; C∗

t+1

]
(9.14)

and the entire sequence of the Kalman filters have been completed

θt|Yt ∼ [mt; Ct] , t = 1, . . . , n. (9.15)

Note that for given θt, θt+1 is independent of Yt by the assumptions (A1)–
(A4), then from (9.12),

θt+1|Yt,θt
d≡ θt+1|θt ∼

[
Bt+1θt + bt+1; D̄t + D0

t+1

]
, (9.16)

where U
d≡ V means that random variables U and V are identically dis-

tributed. By Theorem 9.3, (9.15) and (9.16),
(
θt
θt+1

)∣∣∣∣Yt ∼
[(

mt

Bt+1mt + bt+1

)
;
(

Ct CtBT
t+1

Bt+1Ct Ht+1

)]
. (9.17)

Furthermore, it follows from Theorem 9.1 and (9.17) that

θt|θt+1,Yt ∼ [mt + CtBT
t+1H

−1
t+1(θt+1 − Bt+1mt − bt+1);

Ct − CtBT
t+1H

−1
t+1Bt+1Ct

]
. (9.18)

Similar to the calculation of the equation (9.11), it is easy to prove that for
each s ≥ 1, E(Yt+s|θt+1) is linear in θt+1. From the Corollary 9.2,

θt|θt+1,Yn d≡ θt|θt+1,Yt

and again from Theorem 9.3 and (9.14),
(
θt
θt+1

)∣∣∣∣Yn ∼
[(

m∗
t

m∗
t+1

)
;
(

C∗
t CtBT

t+1H
T
t+1C

∗
t+1

C∗
t+1Ht+1Bt+1Ct C∗

t+1

)]
.

Here m∗
t and C∗

t are the Kalman smoother and the corresponding prediction
error given by

m∗
t = mt + CtBT

t+1H
−1
t+1(m

∗
t+1 − Bt+1mt − bt+1)

C∗
t = Ct − CtBT

t+1H
−1
t+1Bt+1Ct + CtBT

t+1H
−1
t+1C

∗
t+1H

−T
t+1Bt+1Ct.

The proof of Theorem 9.5 is complete.
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Generalized State Space Models

10.1 Introduction

Generalized state space models (GSSM) refer to a class of nonlinear state
space models with parametric error distributions, which are possibly non-
normal. The class of models attempts to model the dynamic feature of time
series of, for example, counts or binary observations. Such models and the
associated Kalman filtering technique have had a profound impact on time
series analysis and longitudinal data analysis when the number of repeated
observations is large. First introduced by Kalman (1960) in connection to the
theory of controls in linear systems, state space models appear very flexible in
the modeling of certain stochastic systems and include Box and Jenkins’ lin-
ear ARIMA models as a special case. In practice, many types of models may
be formulated in the form of state space models; for example, the structural
time series models by Harvey (1990) and mean-drifting time series models
considered by Kitagawa (1987).

Although the ordinary linear Gaussian state space model has been well
studied in the literature, in many practical studies, time series are primarily
not measurements from normal distributions. In biomedical and health sci-
ences, time series of counts or binary observations are often collected. For
instance, in Section 1.3.9 readers have seen a time series of binomial obser-
vations, and in Section 1.3.10, a 4-dimensional time series of counts. In com-
parison to the conventional time series analysis, longitudinal data analysis
focuses on modeling systematic trends and estimating effects of time-varying
covariates at both first two moments and transition structures, with the in-
corporation of stochastic mechanism governed by a certain time series model.

Generalized state space models are flexible and suitable for a variety of
longitudinal data, which has been demonstrated in the literature such as West
and Harrison (1997), Kitagawa (1987), Carlin et al. (1992), and Jørgensen
et al. (1999), among others. A crucial step in the application of all these
models to data analysis is to estimate the conditional distribution of state
variables given all or part of the data as well as the other unknown model
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parameters. In an abstract fashion, there is no difficulty in deriving MLE, but
the actual implementation is extremely challenging due to the lack of closed
form expressions for typically very high-dimensional integrals in the likelihood
function. Thus, one has to rely on various approximations that essentially fall
into three categories: analytic, Monte Carlo, and numerical.

An analytic solution concerning the approximation may be given by the
extended Kalman filtering recursions based on BLUP, discussed in Section
9.3. Monte Carlo approximation in the form of MCMC has received most
attention in recent years; see, for example, Carlin et al. (1992) and de Jong
and Shephard (1995). Another version of Monte Carlo method is proposed
by Durbin and Koopman (1997) in that they derived a direct approximation
to the log-likelihood for generalized state space models and invoked a Monte
Carlo simulation via importance sampling scheme. The numerical approxi-
mation proposed by Kitagawa (1987) uses a crude numerical evaluation of
integration over the state space via the piece-wise linear approximation. One
shortcoming of this method is that it does not utilize related distributional
properties in the approximation, and hence the resulting approximation is not
satisfactorily accurate, unless a very large number of nodes are used.

This book concentrates on two methods: the BLUP based frequentist in-
ference and MCMC based Bayesian inference. The selection of the topics is
made purely according to the author’s familiarity with them, given that there
are some alternatives also working well in inference. Durbin and Koopman’s
simulated MLE will be discussed briefly at the end of this Chapter. The BLUP
based inference essentially resembles the EM algorithm, in which the E-step
is obtained approximately by BLUP and the M-step proceeds to maximizing
an augmented likelihood as usual. This method is termed as Kalman Estimat-
ing Equation (KEE) in this book. As discussed in the context of generalized
linear mixed-effects models in Chapter 8, MCMC is appealing to overcome
the difficulty of high-dimensional integration when priors and convergence
diagnostics are carefully handled. In particular, Chapter 11 illustrates that
de Jong and Shephard’s (1995) simulation smoother is an efficient sampler,
which considerably enhances the computational speed in the analysis of bino-
mial longitudinal data.

Let us begin with the model. A generalized state space model consists of
two stochastic processes: an d-dimensional observation process {Yt} and a
q-dimensional state process {θt} given as follows.

M1: The state process θ0,θ1, . . . , is a Markov chain with initial condition
θ0 ∼ p0(θ)dθ and transition (conditional) distribution is given by

θt|θt−1 ∼ gt(θ|θt−1)dθ. (10.1)

M2: The observation process {Yt} are conditionally independent given the
state process {θt, t ≥ 0} and each Yt is conditionally independent of
θs, s �= t; Given θt, the conditional distribution is

Yt|θt ∼ ft(y|θt)dy. (10.2)
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This model can be graphically presented by a comb structure shown in Figure
10.1.

� ��

�

����

��

θt−1 θt+1θt

Yt−1 Yt+1Yt

Fig. 10.1. Graphic representation of a generalized state space model.

Let Ys be the collection of all observations up to time s, namely Ys =
(Y1, . . . ,Ys). Denote the conditional density of θt, given Ys = ys, by
ft|s(θ|ys). Then, the prediction, filter, or smoother density is defined, respec-
tively, according to whether t > s, t = s or t < s. This conditional density
ft|s(θ|ys) is the key component of statistical inference in GSSMs.

In particular, one-step prediction densities, ft|t−1, and filter densities, ft|t,
can be given by the Kalman recursions, respectively:

ft|t−1

(
θt|yt−1

)
=
∫
Rq

ft−1|t−1

(
θt−1|yt−1

)
gt(θt|θt−1)dθt−1, (10.3)

ft|t
(
θt|yt

)
=

ft|t−1

(
θt|yt−1

)
ft(yt|θt)∫

Rq ft|t−1 (θt|yt−1) ft(yt|θt)dθt , (10.4)

with the recursion starting with f0|0(θ) = p0(θ). In general, exact evalua-
tion of the integrals in (10.3) and (10.4) is analytically unavailable, unless in
some simple situations, such as both processes M1 and M2 being linear and
normally distributed. For the linear Gaussian state space model, all ft|s are
Gaussian, so the first two moments of (10.3) and (10.4) can be easily derived
from the conventional Kalman filtering procedure, as discussed in Section 9.3.

To develop the maximum likelihood inference for model parameters in
GSSMs, the one-step prediction densities ft|t−1 are the key components for
the computation of the likelihood function. Given a time series data {Yt, t =
1, . . . , n}, the likelihood of Yn is
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f(Yn) =
∫
Rq

f(Y1, . . . ,Yn−1|θn)fn(Yn|θn)gn(θn)dθn

=
∫
Rq

f(Y1, . . . ,Yn−1)f(θn|Y1, . . . ,Yn−1)fn(Yn|θn)dθn
= · · · · · · (applying the same trick repeatedly)

=
n∏
t=2

f(Y1)
∫
Rq

ft|t−1

(
θt|Yt−1

)
ft(Yt|θt)dθt

=
n∏
t=1

∫
Rq

ft|t−1

(
θt|Yt−1

)
ft(Yt|θt)dθt,

where f1(Y1) is expressed as follows:

f1(Y1) =
∫
Rq

f1(Y1|θ1)g1(θ1)dθ1 =
∫
Rq

f1(Y1|θ1)f1|0(θ1|Y0)dθ1

where by convention g1(θ1) = f1|0(θ1|Y0), conditional on an imaginary ob-
servation Y0 at time 0. The challenge arises from the fact that, in general,
all the integrals in the likelihood have no closed form expressions. Numerical
evaluation of related integrals is possible via quadrature numerical evaluation,
only when the dimension of θt is low. The difficulty in the implementation of
MLE is really rooted in the fact that the assignment of quadrature points and
weights varies over time t, because the probability distribution is different at
a different time point.

When evaluating the integrals is not analytically feasible, a certain ap-
proximation seems inevitable. This book focuses on BLUP and Markov chain
Monte Carlo, both of which are generally applicable for a variety of models
and data types.

On the other hand, in the computation of smoother densities ft|n, t < n,
namely the conditional densities of state variable θt given all observations
Yn, a backward recursion procedure is performed:

θn|Yn = yn ∼ fn|n(θ|yn)dθ,

θt|(θt+1,yn) ∼ gt+1(θt+1|θ)ft|t(θ|yt)
ft+1|t(θt+1|yt) dθ.

It follows that the smoother density at time t, t < n, is

ft|n(θ|yn) =
∫
gt+1(θt+1|θ)ft|t(θ|yt)
ft+1|t(θt+1|yt) ft+1|n(θt+1|yn)dθt+1

= ft|t(θ|yt)
∫

gt+1(θt+1|θ)
ft+1|t(θt+1|yt)ft+1|n(θt+1|yn)dθt+1. (10.5)

Generalized state space models, (M1 and M2), can accommodate a va-
riety of discrete and continuous longitudinal data. This book is devoted to
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the analysis of longitudinal discrete data, Chapter 11 for longitudinal binary
data and Chapter 12 for longitudinal count data. Statistical inference is dis-
cussed selectively based on some specific settings of M1 and M2. For example,
MCMC based inference is illustrated in GSSMs for binary or binomial data,
and BLUP based inference is demonstrated in GSSMs for count data. In ef-
fect, the two methods are general and suitable for many other data types. It
is suggested that readers pay attention to ideas and procedures of developing
these inference methods.

10.2 Linear State Space Models

The classical state space models refer to a class of linear Gaussian state models
in that the observation process {Yt} is driven by a latent state process {θt}
by a linear observation equation, as described below,

Yt = Atθt + εt, with εt
iid∼ MVNd(0,Wt)

and the state process is governed by a linear transition equation,

θt = Btθt−1 + ξt, with ξt
iid∼ MVNq(0,Dt),

where the design matrix At and the transition matrix Bt are known, and the
covariance matrices Wt and Dt may be known or unknown. The initial state
θ0 is assumed to follow θ0 ∼ MVNq(g0,D0).

Assume that the two processes satisfy the conditions of a comb structure
in Section 9.3; that is, {εt}, {ξt} and θ0 are mutually independent. Note that
Box and Jenkins’ ARMA(p, q) models are a special case of the linear state
space model (Brockwell and Davis, 1996, Section 8.3). Under the Gaussian
errors in both observation and state processes, the integration can be carried
out analytically, and the resulting recursions for filtering and smoothing are
exactly the same as those given in Theorem 9.4 and 9.5 with Wt(θt) = Wt,
W0

t = 0, Dt(θt−1) = Dt, and D0
t = 0. The normality assumption can be

relaxed to requiring only the existence of first two moments. The resulting
model is referred to as the linear state space model. According to the results
in Section 9.3, Kalman filter and smoother, in the form of BLUP, are still
available in the linear state space model.

However, the linear Gaussian state space model is challenged by many
real world time series data. For example, in many financial time series data,
distributions of processes are often highly positively skewed with heavy tails,
which essentially impairs the normality assumption. When data are discrete,
such as time series of binomial observations or time series of counts, normal
distributed errors are no longer suitable. Chapters 11 and 12 will discuss some
extensions of the linear state space model to handle time series of discrete
observations.
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10.3 Shift-Mean Model

Modeling structural change is of great interest in time series data analysis.
Mean shift in a stochastic process presents a challenge to the linear state space
model, when a systematic trend in the mean is broken at multiple times by
strong change points. To elucidate, consider a time series data simulated by
Kitagawa (1987) from the following shift-mean model:

Yt ∼ N(μt, 1)
μt = 0, t = 1, · · · , 100,

= −1, t = 101, · · · , 250,
= 1, t = 251, · · · , 350,
= 0, t = 351, · · · , 500.

Figure 10.2 displays a simulated sample path. Clearly, the mean function is
not continuous, with jumps occurring at time t = 101, 251, and 351. The
objective is to estimate the shifting mean value function, μt, and especially
to identify the jump locations.
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Fig. 10.2. Simulated sample path with the shifting mean function.
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Kitagawa (1987) proposed a state space model to analyze the data, by
borrowing a latent state process that is presumably able to capture the jumps
at proper times. The model takes the form:

Yt = θt + εt, with εt ∼ N(0, σ2),
θt = θt−1 + ξt, with ξt ∼ Q(b, τ2),

where b = 0.75 according to Kitagawa (1987), and Q(b, τ2) denotes the dis-
tribution of the Pearson system, which has the density

q(x; b, τ) = C(τ2 + x2)−b

with C = τ2b−1Γ (b)/{Γ (b − 1
2 )Γ (1

2 )}. Note that this density function does
not produce finite second moments, which in fact is a desirable property to re-
spond to jumps of any size. Intuitively, when the process arrives at the time at
which a jump occurs, the Q distribution will react to the discontinuity by an
extraordinarily large second moment. Kitagawa used a crude numerical inte-
gration over the state space by a piecewise linear approximation and obtained
ML estimates of τ2 and σ2, τ̂2 = 2.2×10−7, and σ̂2 = 1.022, respectively. See
Table 10.1.

Table 10.1. Maximum likelihood estimates of the variance parameters τ 2 and σ2

in the shift-mean state space model.

M τ̂ 2
SBQF σ̂2

SBQF Log-likelihood

25 9.966 × 10−10 1.026 −742.6331
50 1.448 × 10−9 1.028 −742.7902
100 1.603 × 10−9 1.029 −742.7885
200 1.668 × 10−9 1.029 −742.7946
400 1.692 × 10−9 1.030 −742.7982
800 1.700 × 10−9 1.030 −742.7998

τ̂ 2
Kitagawa σ̂2

Kitagawa Log-likelihood

400 2.2 × 10−7 1.022 −741.944

Since the estimate of τ2 is extremely small and corresponding error density
is very sharply peaked, it appears very difficult to evaluate related integrals
in filter densities or smoother densities accurately by only a piecewise lin-
ear approximation. To mitigate this problem, some numerical techniques are
proposed to improve Kitagawa’s crude numerical evaluation. One solution
proposed in the same paper by Kitagawa was a method of variable mesh,
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which essentially divides the intervals around the mode of a filter or smoother
density further into a finer mesh. This second step effort on a finer scale in-
creases tremendously the computational intensity in all related procedures of
estimation and integral evaluation.

A more efficient method was proposed recently by Xing (2004) based on
high-order smoothed best quadrature formulas (SBQF). Xing’s quadrature
numerical evaluation of integration controls a global approximation precision
on the nq-multiple integral. A noticeable merit of this method is that it pro-
vides a universal allocation of quadrature points and weights for all integrals,
regardless of probability measures at different time points. It is shown that
the optimal quadrature points should be placed at respective quantiles. So,
the SBQF ends up with a global assessment of approximation accuracy and
greatly improves the computational efficiency. Table 10.1 reports the maxi-
mum likelihood estimates of the model parameters, τ̂2 and σ̂2, with the utility
of Xing’s SBQF and under different numbers (M) of quadrature points equally
spaced on interval (−4, 4). Kitagawa’s estimates are obtained with M = 400
and are similar to Xing’s estimates.
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Fig. 10.3. Estimated smoother densities ft|n(x|Yn)(t = 5, 10, · · · , 500) by the shift-
mean model with τ̂ 2 = 1.667863 × 10−9 and σ̂2 = 1.029391.

Figure 10.3 displays a collection of smoother densities at time t =
5, 10, · · · , 500, including those time points where jumps occur. They are com-
puted from the formula (10.5) with parameter estimates τ̂2 = 1.667863×10−9
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and σ̂2 = 1.029391 using M = 200. It is easy to see from this figure that
the means of the smoother densities are shifted at the jump points. Figure
10.4 shows the median (bold curve) and 0.13, 2.27, 15.87, 84.13, 97.73, 99.87
percentiles of the smoother density functions that correspond to ±1,±2,±3
sigma points of Gaussian density, respectively.
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Fig. 10.4. Estimated median indicated by the bold line and 0.13, 2.27, 15.87, 84.13,
97.73, 99.87 percentiles in the shifted-mean model.

10.4 Monte Carlo Maximum Likelihood Estimation

Monte Carlo maximum likelihood estimation (MCMLE) proposed by Durbin
and Koopman (1997) is a general likelihood-based inference in that related
integrals are evaluated by Monte Carlo simulation. In comparison to the sim-
ulated maximum likelihood method that uses Monte Carlo simulation to di-
rectly evaluate integrals in likelihood function, this MCMLE approach ex-
plores some structures of the proposed model by borrowing strength from a
similar but well-studied existing model. For example, when the errors in the
model of an observation process follow a heavy-tailed distribution, a direct
MLE would be generally hard to carry out. However, the linear state space
model with normally distributed errors has been well studied, which can be
therefore utilized to assist the search for the MLE in the model with nonnormal
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errors. Durbin and Koopman (1997) proposed a way to embed the likelihood
of a chosen working model into that of the model under investigation.

To elucidate, suppose ft(y|θt) for the observation process (10.2) is non-
normal, but gt(θ|θt−1) in the state process (10.1) is normal. Let L(η) denote
the likelihood function of this proposed state space model, where η represents
the vector of all model parameters. The working model would be the linear
Gaussian state space model, in which the f̃t(y|θt) is assumed to be normal,
while the gt(θ|θt−1) remains the same. The resulting likelihood of the work-
ing model is denoted by Lw(η). Note that this working model has been well
studied, where Kalman filter and smoother are available and easily calculated.
Then, the likelihood for the proposed model is

L(η) =
∫
f(yn,θn)dθn

=
∫
fw(yn)

f(yn,θn)
fw(yn,θn)

fw(θn | yn)dθn

= Lw(η)Ew

{
f(yn,θn)
fw(yn,θn)

}

= Lw(η)Le(η),

where Le(η) is the remainder likelihood that bridges between the wanted
likelihood L(η) and the working likelihood Lw(η). The Le(η) takes the form

Le(η) = Ew

{
f(yn,θn)
fw(yn,θn)

}

= EwC(η;θn,yn),

where the expectation is taken under the conditional distribution, fw(θn | yn),
in the setup of the working model. It follows that the log likelihood functions
satisfy an additive relation:

�(η) = �w(η) + �e(η),

where the piece �w(η) is analytically easy with no involvement of integration,
and the other piece �e(η) is hard to be dealt with both analytically and
numerically. Durbin and Koopman (1997) suggested the use of Monte Carlo
simulation to evaluate the second piece �e(η). Suppose, θn(k), k = 1, . . . ,M ,
are M i.i.d. samples drawn from fw(θn | Yn). Then, the resulting Monte
Carlo likelihood is

�mc(η) = �w(η) +
1
M

M∑
k=1

C(η;θn(k),Yn),

where

C(k)(η;θn(k),Yn)) =
f(Yn,θn(k))

fw(Yn,θn(k))
.
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The MCML estimation of η is obtained by maximizing the �mc w.r.t. η. The
maximization is carried out iteratively by, say, a Newton algorithm and the
sampling from fw(θn | Yn) may be implemented via de Jong and Shephard’s
(1995) simulation smoother. Alternatively, one may consider the maximization
by parts (MBP) algorithm of Song et al. (2005) discussed in Section 6.5.1 to
directly maximize the �(η), in which Monte Carlo may be used to evaluate
integrals in the first order derivatives �̇e(η).

An issue in the use of MCML is the choice of the working model or working
likelihood function. In the analysis of time series of continuous observations,
the linear Gaussian state space model seems to be a sensible candidate for a
working model, but in the analysis of time series of discrete observations, it is
not so clear in general to opt a proper working model. This is simply because
none of models for discrete-valued time series has been recognized as being
central, simple, and handy, in comparison to the linear Gaussian state space
model for continuous-valued time series. Chapters 11 and 12 will discuss the
modeling and inference in the generalized state space models for time series
of binomial observations and counts, respectively.
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Generalized State Space Models
for Longitudinal Binomial Data

11.1 Introduction

Assume {(Yt,xt), t = 1, . . . , n} is a collection of time series observations,
where Yt is a d-dimensional binomial response and xt is a p-dimensional
covariate vector xt. According to models M1 10.1 and M2 10.2, a class of
GSSMs for such binomial longitudinal data is formulated by specifying the
following equations, respectively:

θt|θt−1 ∼ MVNq(μ(θt−1), Σ(θt−1))
Yit|θt ∼ Bi(kit, πit(θt)).

For the state process θt, a widely used model in the literature is a linear
transition model given by

θt = Btθt−1 + ξt, (11.1)

where Bt is a q × q-dimensional transition matrix and ξt is the q-variate
Gaussian white noise with zero mean and covariance matrix Qt, i.e., ξt ∼
MVNq(0, Qt). For the special case of one-dimensional state process with q = 1,
the following two models are popular. One is the random walk process, with
Bt ≡ 1,

θt = θt−1 + ξt, (11.2)

where ξt ∼ N(0, σ2). This model assumes essentially the increments θt− θt−1

are i.i.d. normal random variates.
The other one is Box and Jenkins’ stationary AR(1) process, with Bt ≡

ρ, |ρ| < 1,
θt = ρθt−1 + ξt, (11.3)

where ξt ∼ N(0, σ2), and ρ represents the autocorrelation coefficient. This
implies that the autocorrelation function (ACF) of this process is ρ|h|, h =
0, 1, . . . , with lag h.



240 11 Generalized State Space Models for Longitudinal Binomial Data

One primary difference between these two types of processes is rooted in
their variances: the AR(1) process has a bounded variance, σ2/(1 − ρ2), but
the random walk has an unbounded variance, tσ2, which effectively increases
in time and hence is unbounded.

For the observation process Yt, each probability component of the vector
πt = (π1t, . . . , πdt)T is assumed to follow a GLM of the form

g(πit) = ηit +GTitθt, i = 1, . . . , d,

where the ηit is the componentwise deterministic predictor that may be spec-
ified in a similar way as one of those given in (i)–(v) for model (4.1). In
particular, both trend and seasonality would be modeled via the ηit term. For
example, if one wants to fit the data by a linear predictor, then specifying
ηit = xTitα, i = 1, . . . , d, in which α is a vector of regression coefficients to be
estimated. Other parameters in the model to be estimated include the state
variables θt, the variance parameters σ2, and/or the autocorrelation parame-
ter ρ.

11.2 Monte Carlo Kalman Filter and Smoother

Following Song (2000b), let us consider a simple case with no deterministic
predictors, namely ηit = 0, i = 1, . . . , d. When the link function g is chosen
to be the probit link, g(π) = Φ−1(π), the above GSSM for binomial time
series may be rewritten via the latent variable representation, so that the
classical Kalman filter and smoothing available in the Gaussian linear state
space models can be transplanted to this probit GSSM. Let the initial state
θ0 ∼ MVNq(a0, Q0) where both a0 and Q0 are known.

The probit state space model for binary time series may be regarded as
being merged from a linear Gaussian state space model. To proceed, let {Zt =
(Z1t, . . . , Zdt)T } be a d-dimensional latent process satisfying

Zt = GT
t θt + εt, t = 1, . . . , n, (11.4)

where Gt = (G1t, . . . , Gdt) is a q × d matrix and εt are i.i.d. MVNd(0, I)
Gaussian innovations. For the i-th component, define a one-to-one correspon-
dence

Yit = 1 if and only if Zit ≥ 0, i = 1, . . . , d. (11.5)

Therefore, as desired, the latent variable representation results in

πit = P(Zit ≥ 0|θt) = Φ(GTitθt), i = 1, . . . , d.

It is noted that models (11.4) and (11.1) together form a linear and Gaus-
sian state space model, for which the optimal linear Kalman filter and smooth-
ing are available in terms of the latent process {Zt}. They are the minimum
mean square error estimates of the states and could be computed using the
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standard recursive procedures given in Theorems 9.4 and 9.5 in Chapter 9,
if these latent vectors Zt were known. For convenience, such a state space
model, consisting of (11.4) and (11.1), is called the interim model.

Clearly,
Zn = (ZT1 , . . . ,Z

T
n )T ∼ MVNdn(μ, Σ),

where μ = (μT1 , . . . ,μTn )T with

μit = GTitE(θt)
= GTitBt · · ·B1a0, (11.6)

and covariance matrix is Σ = (Σst) with the (s, t)-th element [Σ]st being
a d × d variance-covariance matrix of cov(Zs,Zt), s, t = 1, . . . , n. It follows
immediately from the model specification that the block-diagonals of the Σ
are equal to

Σtt = Var(Zt) = I + GT
t Var(θt)Gt, t = 1, . . . , n, (11.7)

where

Var(θt) = Qt + BtQt−1BT
t + (BtBt−1)Qt−2(BtBt−1)T + · · ·+

(BtBt−1 · · ·B2)Q1(BtBt−1 · · ·B2)T + (BtBt−1 · · ·B1)Q0(BtBt−1 · · ·B1)T .

The off-block-diagonals of the Σ are given by

Σt,t+s = GT
t cov(θt,θt+s)Gt+s, (11.8)

where
cov(θt,θt+s) = Var(θt)(Bt+s · · ·Bt+1)T .

Clearly, the Gaussianity of the latent process {Zt} and that of state variables
{θt} imply that the joint distribution of (Zn,θ) is Gaussian, and so is the
marginal distribution of Zn, with its mean vector μ and covariance matrix Σ
given by (11.6), (11.7), and (11.8).

To obtain the Kalman filter and smoother, the central task is to compute
two conditional mean estimates, E (θt|Yt) and E (θt|Yn), respectively, given
the information available up to time t and all information.

It follows from (11.5) that

E (θt|Ys,Zs) = E (θt|Zs) , t, s = 1, . . . , n.

Hence,

E
(
θt|Yt

)
= E

{
E
(
θt|Yt,Zt

) |Yt
}

= E
{
E
(
θt|Zt

) |Yt
}

= E
(
Θt|Yt

)
, (11.9)

and similarly,
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E (θt|Yn) = E {E (θt|Zn) |Yn}
= E(Θ∗

t |Yn) , (11.10)

where Θt = E (θt|Zt) and Θ∗
t = E (θt|Zn) are the conditional expectations of

θt with respect to the latent process {Zt}, respectively.
If Zt’s were observed, both Θt and Θ∗

t would be computed recursively
according to the following standard Kalman filter and smoother recursions:

1. Filter Prediction Step

Θt|t−1 = E(θt|Zt−1) = BtΘt−1, with Θ0 = a0,

Λt|t−1 = BtΛt−1BT
t +Qt, with Λ0 = Q0.

2. Filter Correction Step

Θt = Θt|t−1 + Λt|t−1GtΔ
−1
t

(
Zt − GT

t Θt|t−1

)
,

Λt = Λt|t−1 − Λt|t−1GtΔ
−1
t GT

t Λt|t−1,

where
Δt = GT

t Λt|t−1Gt + I.

3. Smoothing Step

Θ∗
t = E(θt|Zn) = Θt + Pt

(
Θ∗
t+1 −Bt+1Θt

)
,

Λ∗
t = Λt + Pt

(
Λ∗
t+1 − Λt+1|t

)
PTt

where Pt = ΛtBT
t+1

(
Λt+1|t

)−1
, t = n− 1, . . . , 1. At time n, Θ∗

T = Θn and
Λ∗
T = ΛT .

Based on equations (11.9) and (11.10), Song (2000b) suggested applying
the Monte Carlo technique to approximate both conditional mean estimates
of the states based on {Yt}. For convenience, let [u|w] denote the conditional
distribution of u given w.

Suppose Zn(1), . . . ,Zn(M) are M i.i.d. samples generated from [Zn|Yn].
For each sample Zn(i) = (ZT (i)

1 , . . . ,ZT (i)
n )T , the Kalman filter and smoother

given by above steps 1–3 produce
{
Θ

(i)
t , Λ

(i)
t

}
and

{
Θ

∗(i)
t , Λ

∗(i)
t

}
, respectively,

i = 1, . . . ,M . By the Law of Large Number, E(θt|Yn) is then approximated
by the average of M smoothers of the form

m∗
t =

1
M

M∑
i=1

Θ
∗(i)
t , t = 1, . . . , n. (11.11)

According to Song (2000b), the m∗
t in (11.11) is called the Monte Carlo

Kalman smoother (MCKS). The Monte Carlo approximation of E(θt|Yt)
needs to draw samples from [Zt|Yt] for each t and the corresponding es-
timator may be defined in a way similar to that of the MCKS. Given the
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availability of full samples Zn(1), . . . ,Zn(M), however, a better estimator of
E(θt|Yt), which has smaller mean square error than the ordinary one, may
be obtained by

mt =
1
M

M∑
i=1

Θ
(i)
t , t = 1, . . . , n. (11.12)

The mt in (11.12) is referred to as the Monte Carlo Kalman filter (MCKF).
It is easy to show that the conditional distribution [Zn|Yn] is a truncated

multivariate normal distribution with mean vector μ in (11.6) and covariance
matrix Σ in (11.7) and (11.8), where the truncated region is a rectangular
area specified by aj ≤ zj ≤ bj , with aj = log(yj) and bj = − log(1 − yj), j =
1, . . . , dn. Generating random variates from truncated multivariate normal
distributions has been discussed extensively in the literature; see, for example,
Robert (1995).

To assess the accuracy of the given Kalman filter or smoother, the respec-
tive mean square errors (MSE) are used. For the MC smoother m∗

t , the MSE
is E (θt − m∗

t ) (θt − m∗
t )
T . Song (2000b) found that for large M , this MSE

can be approximated by

E(θt − m∗
t )(θt − m∗

t )
T ≈ 1

M

M∑
i=1

Λ
∗(i)
t (11.13)

where Λ∗(i)
t are the mean square errors corresponding to the Kalman smoother

Θ
∗(i)
t available in terms of M samples Zn(i), i = 1, . . . ,M .

In the Kalman filter and smoother, both covariance Qt and autocorrela-
tion coefficient ρ (if present) are usually unknown, and a method of moments
estimation is suggested by Song (2000b). Assume Qt = Q, independent of t.
A consistent estimator ofQmay be obtained by iteratively applying the follow-
ing formula (11.14) until convergence, with initializing matrix being specified
by, for example, Q = I,

Q̂ =
1
n

n∑
t=1

(
m∗
t − Btm∗

t−1

) (
m∗
t − Btm∗

t−1

)T

+
1
n

n∑
t=1

(
Λ̄∗
t + BtΛ̄

∗
t−1B

T
t − 2Λ̄∗

t,t−1B
T
t

)
, (11.14)

where Λ̄∗
t =M−1

∑M
i=1 Λ

∗(i)
t and Λ̄∗

t,t−1 =M−1
∑M
i=1 Λ

(i)
t−1B

T
t

(
Λ

(i)
t|t−1

)−1

Λ
∗(i)
t .

If the state process follows the 1-dimensional stationary AR(1) model, the
autocorrelation coefficient ρ may be consistently estimated as follows. Let
φ = ρ/(1 − ρ2). Then a consistent estimate of φ is given by

φ̂ =
1
nσ̂2

n−1∑
t=1

m∗
tm

∗
t+1 +

1
nσ̂2

n−1∑
t=1

Λ̄∗
t,t+1. (11.15)
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This leads to a consistent estimate of ρ as

ρ̂ =
−1 +

√
1 + 4φ̂

2φ̂
. (11.16)

Example 11.1 (Infant Sleep Data).
The binary time series of infant sleep status, reported by Stoffer et al.

(1988), were recorded in a 120 minute EEG study where the response y = 1 if
the infant was judged to be in REM sleep during minute t, y = 0 otherwise.
The two horizontal lines of dots in Figure 11.1 represent the time series of
binary observations. The data were previously analyzed by Carlin and Polson
(1992) using MCMC algorithm and now is re-analyzed by applying the Monte
Carlo Kalman filter and smoother approach. According to Carlin and Polson
(1992), the probit state space model is comprised of the following two models:

Yt|θt ∼ Bi(1, πt), with πt = Φ(θt)
θt = ρθt−1 + εt,

t = 1, . . . , 120, with the initializing state θ0 ∼ N (0, 1). Here θt may be thought
essentially of as an underlying continuous “sleep state” following a stationary
Markov process of order 1 with mean zero and variance σ2/(1 − ρ2). The
objective is to estimate the process θt and hence the probability πt of being
in REM sleep status. The application of the MCKS algorithm, with d = k =
q = 1, Git = 1, Bt = ρ, and Qt = σ2 leads to the MCKS estimate of the state
process θt shown in Figure 11.1, with the 95% upper and lower confidence
bounds determined by the estimated MSE.

Figure 11.2 shows the patterns for updates in the estimation of φ (the
lower curve) and σ2 (the upper curve) over 70 iterations of the MCKS for the
state variables, initialized with φ = 0 and σ2 = 1. The figure clearly indicates
that both procedures of updates for φ and σ2 got stablized after iteration
20, which is hence taken as the convergence cutoff point. The corresponding
estimated values at this iteration are φ̂ = 0.2252 and σ̂2 = 0.9921, leading
to, by (11.16), ρ̂ = 0.8408. The bumps over the zero-line indicate that the
probabilities of being in REM are bigger than 0.50, and their patterns closely
follow the observed time series of 0’s and 1’s.

Notice that Figure 11.1 shows a great deal of similarity to Figure 1 of Carlin
and Polson’s (1992) analysis based on the MCMC algorithm. This indicates
that the MCKS estimate approximates to the state variables, at least in this
example, as competitively well as the MCMC estimate, but the MCKS method
is much simpler conceptually and much less burdensome computationally.

The above development can be extended to analyze time series of binomial
observations with little effort. That is, let {Yt} be d-dimensional binomial
responses with the i-th component following as 1-dimensional binomial distri-
bution Bi(kit, πit) and the marginal probability πit following the probit model
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πit = Φ(GTitθt). For simplicity, assume kit = k for all i and t. Now decompose
Yit into an independent sum of binary variables, namely Yit = Yit1 + · · ·+Yitk
where Yit1, . . . , Yitk are i.i.d. binary variables with probability πit. Following
Tanner and Wong (1987), draw n i.i.d. d-variates Ztj = (Z1tj , . . . , Zdtj)T ,
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j = 1, . . . , k from the normal distribution MVNd(GT
t θt, I) conditional on θt,

implying Zitj |θt ∼ N(GTitθt, 1). Define the one-to-one correspondence:

Yitj = 1 if and only if Zitj ≥ 0, j = 1, . . . , k.

It follows that

πit = P(Yitj = 1|θt) = P(Zitj ≥ 0|θt) = Φ(GTitθt), j = 1, . . . , k.

Let Zt = (ZTt1, . . . ,ZTtk)
T with Ztj = (Z1tj , . . . , Zdtj)T .

Zt = GT
t θt + εt (11.17)

where G∗
t = (Gt, . . . ,Gt) is a q×dk matrix and εt are independent innovations

with MVNdk(0, I). As a result, the interim state space model consisting of
(11.17) and (11.1) is apparently linear and Gaussian, similar to those obtained
in the probit model for time series of binary observation.

Example 11.2 (Tokyo Rainfall Data).
This extension is now applied to the Tokyo rainfall data introduced in

Section 1.3.9, which consist of the daily number of occurrences of rainfall over
1 mm in Tokyo for years 1983-1984. The data were previously analyzed by
many authors, for example, Kitagawa (1987) and Fahrmeir (1992), in which
the probit state space model takes the form

Yt|θt ∼ Bi(2, πt), with πt = Φ(θt),
θt = θt−1 + ξt,

for t = 1, . . . , 366, where ξt ∼ N (0, σ2), with repetition number k = 2.
This state process is assumed to be a random walk, with the initial state
θ0 ∼ N (−1.5, 0.002) known from Fahrmeir and Tutz (1994, Page 282). Figure
11.3 shows the estimated probabilities π̂t of rain using MCKS estimate for the
state process θt with σ̂2 = 0.028. Figure 11.3 shows a similar pattern to both
Kitagawa’s (1987) Figure 11 and Fahrmeir’s (1992) Figure 9. Once again, this
simple MC Kalman filter and smoother is fairly reliable compared to other
rather sophisticated methods of estimating state space variables in the gener-
alized state space models for time series of binary or binomial observations.

This figure clearly indicates some seasonal patterns of rainfall over a year
in Tokyo. The period of July-August seems to be the most wet season of
a year. However, this model does not explicitly address the seasonality, but
simply invokes a random walk process to deal with the nonstationarity. This
data will be analyzed again in the next section 11.3 by explicitly incorporating
seasonal covariates in the probit state space model.

11.3 Bayesian Inference Based on MCMC

This section concerns a Bayesian inference in the generalized linear state space
models for time series of binary or binomial observations, based on MCMC
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Fig. 11.3. Monte Carlo predicted probability process with 95% confidence bounds
based on Kalman smoother.

algorithm. Because MCMC gives a great deal of flexibility in inference, one
may add deterministic linear predictors ηit in a probit state space model, and
the resulting model is useful to explicitly address the effects of trend, seasonal,
or other time-varying covariates. In the context of state space models, de Jong
and Shephard’s (1995) simulation smoother is known as an efficient sampling
procedure for the state variables, which hence is adopted in the development
of MCMC. For the ease of exposition, fix d = 1 in the following presentation.

A probit state space model with the inclusion of linear predictor xTt α is
given by

Yt|θt ∼ Bi(1, πt), with πt = Φ(−xTt α− θt),
θt = ρθt−1 + ξt,

where ξt ∼ N(0, σ2). Here the latent process follows a univariate stationary
AR(1) process, |ρ| < 1. Note that θt represents a time-specific effect on the
observed process, similar to the subject-specific in the generalized linear mixed
models considered in Chapter 7. Czado and Song (2007) refers this class of
state space models to as the state space mixed models.

Again the latent variable representation is applied in that Yt is supposedly
generated through dichotomization of an underlying continuous process Zt on
the basis of the one-to-one correspondence

Yt = 1 if and only if Zt ≤ 0.
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Consequently, with the latent variable vector Zn = (Z1, · · · , Zn)T , the interim
state space model is

Zt = −xTt α− θt + εt, t = 1, · · · , n, (11.18)
θt+1 = ρθt + ξt, t = 0, 1, · · · , n. (11.19)

Further both error terms are assumed to be independent and normally dis-
tributed,

εt
iid∼ N(0, 1) and ξt

iid∼ N(0, σ2),

and hence the expressions (11.18) and (11.19) together represent a linear
Gaussian state space model. Note that the mutual independence between εt’s
and ξt’s implies that given θt, Zt is conditionally independent of the other Zt’s
and θt’s. In addition, the initial condition is set as θ0 = 0 and θ1 ∼ N(0, σ2

1−ρ2 ),
which is the unconditional distribution of the AR(1) process.

The parameters of primary interest include α and ρ. In order to make
forecasting or to conduct model diagnostics, estimates of the state variables
θt and the variance σ2 are also needed.

To implement MCMC, Czado and Song (2007) suggested the following
prior distributions: [α, σ2, ρ] = [α] × [σ2|ρ] × [ρ], where

α ∼ MVNp(α0, Σ0), (11.20)
σ2|ρ ∼ IG(a, b(ρ)) with b(ρ) = c2[(1 − ρ2)(a− 1)]−1, (11.21)
ρ ∼ Uniform(−1, 1). (11.22)

The hyper-parameters α0, Σ0, a, and c are pre-specified. Here the IG(a, b)
denotes the inverse gamma distribution with density given by

f(σ2) =
1

baΓ (a)
(σ2)a+1 exp(− 1

σ2b
), σ2 > 0,

with E(σ2) = [b(a− 1)]−1 and Var(σ2) = [(a− 1)2(a− 2)b2]−1 if a > 2.
The motivation behind the choice of the hyper-parameter b in (11.21), as

a function of c, ρ, and a, is given as follows. First, note that this prior implies

E(σ2|ρ) =
1 − ρ2
c2

. (11.23)

Second, to balance the effect between εt and θt, similar to the familiar signal-
to-noise ratio, it is useful to compare the standard deviation of εt (equal to 1)
to the unconditional standard deviation of the AR(1) process, which equals

to
√

σ2

1−ρ2 . Hence, the resulting ratio between these two random sources is
defined by

c2 =
Var(εt)
Var(θt)

=
1 − ρ2
σ2

,
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which leads to the restriction σ2 = 1−ρ2
c2 . Finally, by comparing this restriction

to (11.23), it is easy to see that the prior mean for σ2 may be chosen in such
a way that the parameter c balances the relative variability between the εt
and the θt.

A major gain from balancing the two sources of variations, as presented
in (11.21)-(11.22), is to reduce the sensitivity of the posterior distributions on
the hyper-parameters in the prior distributions, especially parameter b in the
IG prior. When the prior for σ2 is independent of ρ, Czado and Song (2007)
found that the posteriors are very sensitive to the hyper-parameter b in the
IG prior; in particular, if the b is not appropriately chosen, the MCMC runs
would not even converge. Therefore, the conditional prior choice for σ2 given
in (11.21) is crucial to alleviate this unpleasant sensitivity.

Based on the specification of the probit state space model, the marginal
likelihood function for the parameters (α, ρ, σ2) is,

L(α, ρ, σ2|Yn) =
∫

[Yt|θt;α][θt|θt−1; ρ, σ2][θ0]dθ0dθ1 · · · dθn

where the integral is clearly (n + 1)-dimensional, with [Yt|θt;α] being a
Bernoulli distribution and [θt|θt−1; ρ, σ2] a conditional normal. MCMC is
invoked to evaluate this high-dimensional integral, which basically draws
sufficiently large number of joint samples from the posterior distribution
[α,θn, σ2, ρ,Zn|Yn]. Then, these samples can be utilized to infer these pa-
rameters via, for example, their marginal posteriors. Refer to Chapter 8 for a
general introduction to the MCMC.

As suggested by Czado and Song (2007), the simulation smoother of de
Jong and Shephard (1995) is efficient to sample the state variables, and this
method is feasible since the probit state space model of (11.18)-(11.19) is a
special case of the general state space models considered by de Jong (1991).

Similar to Section 8.1.4, the DIC can be calculated for model comparison
and selection. In the present setting, the DIC is given by

DIC = D̄ + pD = D(ᾱ, θ̄n) + 2pD,

with the Bayesian deviance

D(α,θn) = −2 logL(α,θn) = −2
T∑
t=1

[yt log(πt) + (1 − yt) log(1 − πt)]

and the effective number of parameters

pD = Eα,θn
,ρ,σ2|YnD(α,θn) −D(Eα|Yn(α),Eθn|Yn(θn))

= D̄ −D(ᾱ, θ̄n).

As usual, D̄ explains the model fit and pD indicates the model complexity.
Computing the DIC is straightforward in an MCMC implementation. Mon-
itoring both (α,θn) and D(α,θn) in MCMC updates, at the end one can
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estimate the D̄ by the sample mean of the simulated values of D and the
D(ᾱ, θ̄n) by plugging in the sample means of the simulated posterior values
of α and θn. A lower value of DIC indicates a better-fitting model.

The posterior distributions required in the MCMC updating of unknown
variates are listed below.

Updating Latent Variable: Since the latent variables Zt are conditionally
independent given θn, one can reduce the update of [Zn|Yn,α,θn, σ2, ρ] to
the individual updates of [Zt|Yn,α,θn, σ2, ρ] for t = 1, · · · , n. Each of these
univariate conditional distribution is equivalent to [Zt|Yn,α,θn], since given
θn the information contained in σ2 and ρ has no influence on the Zn. More-
over, [Zt|Yn,α,θn] = [Zt|Yt,α, θt] holds for t = 1, . . . , n, due again to the
conditional independence. It is easy to see that these distributions are uni-
variate truncated normal with mean xTt α + θt and variance 1. Truncation
interval is (−∞, 0](or [0,∞)) when Yt = 1(or Yt = 0). The inversion method
for the generation of truncated univariate normal random variables, proposed
by Robert (1995), is easily implemented.

Updating State Variables and Regression Coefficients: The fact that
Yn is completely determined with given Zn produces the following reduction,
[α|Yn,Zn,θn, σ2, ρ] = [α|Zn,θn], which uses the simulation smoother of de
Jong and Shephard (1995). To update the state variables and the regression
parameters jointly, the simulation smoother applied to the probit state space
model for (11.18)-(11.19) suggests the following steps:

Step 1: Perform the Kalman filter recursions for t = 1, · · · , n,

Et = (xTt Σ0, Zt + xTt α0) +At

At+1 = ρAt − ρPt
Pt + 1

Et

Qt+1 = Qt +
1

Pt + 1
ETt Et

Pt+1 =
ρ2Pt
Pt + 1

+ σ2 , P1 = σ2.

In the meanwhile, identify matrix S and vector s from the partition of

Qn+1 =
(

S −s
−sT ∗

)
and then

draw δ ∼ MVNp((S + Ip)−1s, (S + Ip)−1).

Step 2: Perform the smoothing recursions for t = n, n− 1, · · · , 1:
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set rn = 0, Un = 0
draw εt ∼ N(0, σ2(1 − σ2Ut))

with et = Et

(
δ
1

)

rt−1 =
1

Pt + 1

[
ρrt − et − ρUtet

1 − σ2Ut

]

Ut−1 =
1

Pt + 1

[
1 +

ρ2Ut
(Pt + 1)(1 − σ2Ut)

]
.

Step 3: At the end of the filtering and smoothing recursions, set for t =
0, 1, · · · , n

χt = σ2rt + εt, t = 0, 1, . . . , n,

and update the state variables by

θt+1 = ρθt + χt, t = 0, 1, · · · , n,
with θ0 = 0. According to de Jong and Shephard (1995), this gives a draw
from the conditional distribution [θn|α,Zn, ρ, σ2].
Step 4: Furthermore, to make a draw from the conditional distribution
α|Zn,θn, ρ, σ2 ∼ MVNp(α0 +Σ0(S + Ip)−1ΣT0 ), simply set

α = α0 +Σ0δ.

Updating State Variance: The conditional prior IG(a, b(ρ)) given in
(11.21) is used for σ2. A straightforward calculation gives that the density
of [θn|σ2, ρ] is

f(θn|σ2, ρ) =
1

(2πσ2)
n+1

2

exp

{
− 1

2σ2

n∑
t=1

(θt+1 − ρθt)2 − 1 − ρ2
2σ2

θ21

}
.

(11.24)
It follows that

f(σ2|θn, ρ) ∝ f(θn|σ2, ρ)π(σ2)

∝ 1

(σ2)
n+1

2 +a+1
×

exp

{
− 1
σ2

[
1
b(ρ

+
1
2

{
n∑
t=1

(θt+1 − ρθt)2 + (1 − ρ2)θ21
}]}

,

which shows that the conditional distribution of [σ2|α, ρ] is an inverse gamma
IG(a∗, b∗) with

a∗ =
n+ 1

2
+ a

b∗ =

[
1
b(ρ)

+
1
2

{
n∑
t=1

(θt+1 − ρθt)2 + (1 − ρ2)θ21
}]−1

.
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Updating Autocorrelation Coefficient: A causal state process given by
(11.19) requires that ρ ∈ (−1, 1). So a uniform prior distribution on (−1, 1)
is assumed for ρ. First writing the exponent of [ρ|θn, σ2] and then turning it
into a quadratic form, it is easy to find that [ρ|θn, σ2] is truncated univariate
normal on (−1, 1) with mean μρ and variance σ2

ρ given by, respectively,

μρ =
∑n
t=1 θtθt+1∑n
t=2 θ

2
t

and σ2
ρ =

σ2∑n
t=2 θ

2
t

.

The above development can be extended to deal with the binomial state
space model by the method of aggregation of i.i.d. Bernoulli variates, in a
similar fashion to that used in Example 11.2. For more details, refer to Czado
and Song (2007).

Example 11.3 (Tokyo Rainfall Data).
Now the Tokyo rainfall data is analyzed again using the binomial state

space mixed model. As pointed in the previous section, a binomial variate
can be treated as an aggregation of i.i.d. Bernoulli variates, so the inference
established for the Bernoulli model can be extended to deal with binomial
data with little effort.

The analysis given by Example 11.2 assumes a (non-stationary) random
walk model for the state process. The state variable θt may be thought of as
a certain underlying meteorological variate, such as moisture, most directly
responsible for rainfall. One obvious limitation of the random walk formulation
is that it effectively increases the variability of moisture over time, which does
not seem to be realistic. In addition, it does not allow us to examine directly
the seasonal rainfall cycle.

The new model directly addresses seasonal and monthly effects through
covariates xt = (cos 1t, sin 1t, cos 4t, sin 4t, cos 12t, sin 12t)T , where

cosmt = cos
(

2πmt
n

)
and sinmt = sin

(
2πmt
n

)
, m = 1, . . . , n.

So the latent variables {Zit} follow

Zit = −α0

−α1 cos 1t − α2 sin 1t − α3 cos 4t − α4 sin 4t − α5 cos 12t − α6 sin 12t
−θt + εit, i = 1, 2; t = 1, . . . , 366, (11.25)

and the state variables {θt} follow the stationary AR(1) model. In each of all
the cases described in Table 11.1, a total of 20,000 iterations of the MCMC al-
gorithm were run with every 10th iteration recorded. A burn-in of 100 recorded
iterations (equivalent to 1000 unthinned iterations) was used for the posterior
density estimation.

To compare several possible combinations of seasonal covariates as well
as the effect of the ratio parameter c, the DIC information criterion is used.
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Table 11.1. Model Fit D, effective number of parameters pD and DIC for the
rainfall data.

Covariate xt Ratio c D pD DIC

(cos 4t, sin 4t, cos 12t, sin 12t)
T 1.0 702.31 79.83 782.14

2.0 745.67 33.76 779.42
5.0 763.21 11.53 774.74

(cos 1t, sin 1t, cos 4t, sin 4t)
′ 1.0 705.01 82.02 787.03

2.0 737.09 50.98 788.07
5.0 774.18 22.27 796.45

(cos 1t, sin 1t, cos 4t, sin 4t, cos 12t, sin 12t)
T 1.0 696.50 78.57 775.07

2.0 727.19 47.25 774.43
5.0 755.25 18.39 773.63

Totally, the MCMC is run in 9 different settings, each with a set of chosen
covariates and a value of the c. The results are summarized in Table 11.1.

From this table it is easy to see that the DIC values of the second submodel
are steadily higher than those of the two other models, so the second com-
bination xt = (cos 1t, sin 1t, cos 4t, sin 4t)T should not be considered further.
By comparing the DIC values between the first submodel and the full model
(11.25), the full model appeared to have a more stable performance over dif-
ferent levels of the c and reached the minimum at c = 5. It is important to
replicate the above exercise a few more times and to ensure the observed evi-
dence occurs by the chance of MCMC sampling. Over a few replications, the
DIC always appears to favor the full model. Thus, the full model is selected
for the further analysis of the data.

Figure 11.4 displays the estimated posterior densities for the regression
parameters αl, l = 0, · · · , 6, the standard error parameter σ, and the autocor-
relation parameter ρ, at different values c = 1, 2 and 5. It is clear that the
densities of the regression coefficients αl, l = 0, 1, . . . , 6 appeared to be less
affected by the c than the densities of the σ and γ. For comparison, the naive
point estimates obtained by a cross-sectional GLM fit (under the indepen-
dence correlation), are indicated by the vertical lines in the plots. It is evident
that the state space modeling of auto-correlated data does produce different
estimations from the naive GLM analysis that assumes independent observa-
tions. Furthermore, the 90% credible intervals of the regression parameters
based on the full model suggest that a yearly covariate cos(1t), a seasonal
covariate cos(4t), and two monthly covariates sin(12t) and cos(12t) turn out
to be important explanatory variables, at all of the c levels considered. In the
meanwhile, for the modeling of the state variables, the average estimate of the
autocorrelation coefficient ρ over the three c levels is around .41, and such a
medium sized ρ is supportive to the AR model, rather than the random walk
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Fig. 11.4. Posterior density estimates for the rainfall data with c = (5, 2, 1), corre-
sponding to the solid, the broken, and the dotted lines.

model with ρ = 1. In conclusion, the state space mixed model has identified
several important seasonal covariates to explain the variability in the rainfall
probability over one year period, which are useful for forecasting. The average
estimate of σ is around .32 over the three c levels.

In addition, the pointwise estimation of the rainfall probability πt at day
t, t = 1, . . . , 366 is computed with c = 5, because this case corresponds to
the smallest DIC. The solid line in Figure 11.5 shows the posterior mean esti-
mates π̄t, t = 1, . . . , 366, which was obtained by only using the deterministic
component of the full model, together with its 90% credible bounds indicated
by the dotted lines. The broken line, which is tightly tangled with the solid
line, represents the posterior mean estimates of the probabilities computed by
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Fig. 11.5. Pointwise posterior mean estimates of the probabilities of rainfall with
pointwise 90 % credible intervals.

using both deterministic component and random component θt. Again, this
analysis suggest that the period of July–August is the most wet season of a
year in Tokyo, and the periods of March–May and September also have high
amounts of precipitation.

Example 11.4 (Infant Sleep Data).
The state space mixed model is now applied to analyze the infant sleep

data. This new analysis includes two time-varying covariates collected together
with the response of sleep status. They are, the number of body movements
due not to sucking during minute t, xt1, and the number of body movements
during minute t, xt2. The objective of this analysis is to investigate whether the
probability of being in REM sleep status is significantly related to these two
types of body movements xt1 and xt2. If so, using the deterministic predictor,
α0 + α1xt1 + α0xt2, together with the random component, θt, would better
interpret and predict the probability of REM sleep status. This leads to the
observation equation of the following form:
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πt = Φ(α0 + α1xt1 + α2xt2 + θt),

where the state equation θt is the stationary AR(1) as before.
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Fig. 11.6. Posterior density estimates and estimated ACF among the recorded
MCMC iterates for the infant sleep data at different levels of ratio c = (0.65, 1, 2).
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The MCMC algorithm is applied with the conditional joint prior for (σ, ρ)
at different values of c. A total of 20,000 iterations with every 20th iteration
recorded were run. Various graphical examinations indicated that a burn-in of
recorded 10 iterations was sufficient for this case. Figure 11.6 displays the esti-
mated marginal posterior densities for the regression parameters (α0, α1, α2),
the autocorrelation (ρ), and the variance parameter (σ) together with the au-
tocorrelation functions of the MCMC updates for the different c values. These
autocorrelation functions suggested that the mixing of the MCMC algorithm
was fast for the regression parameters and the correlation parameter, but slow
for σ. Also, the posterior density estimates of the regression and correlation
parameter are less sensitive to the ratio c than that of σ. The posterior mode
estimate of σ increases as c decreases. It is further evident that a very high
autocorrelation is present in the AR(1) process for state variables and thus in
this binary time series.

Table 11.2. Posterior mean and quantiles for the infant sleep data.

Posterior c α0 α1 α2 γ σ

Mean 2.00 0.0624 −0.4315 0.2625 0.960 0.393
1.00 0.1140 −0.432 0.2419 0.958 0.473
.65 0.0540 −0.4225 0.2341 0.952 0.571

5% Quantile 2.00 −1.7610 −0.7765 −0.0137 0.915 0.181
1.00 −2.1040 −0.830 −0.0281 0.904 0.252
.65 −2.1023 −0.8122 −0.0594 0.887 0.339

10% Quantile 2.00 −1.2050 −0.7070 0.0462 0.927 0.213
1.00 −1.3708 −0.717 0.0213 0.919 0.282
.65 −1.5310 −0.7333 0.0163 0.909 0.373

50% Quantile 2.00 0.0755 −0.4291 0.2665 0.966 0.355
1.00 0.0879 −0.427 0.2399 0.965 0.434
.65 −0.0419 −0.4146 0.2333 0.961 0.543

90% Quantile 2.00 1.3204 −0.1632 0.4861 0.986 0.590
1.00 1.6967 −0.144 0.4536 0.986 0.727
.65 1.8113 −0.1389 0.4692 0.985 0.804

95% Quantile 2.00 1.8083 −0.0822 0.5303 0.988 0.667
1.00 2.2723 −0.064 0.5352 0.988 0.849
.65 2.6322 −0.0555 0.5523 0.987 0.925
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Posterior means and quantiles are listed in Table 11.2. It is clear that
the influence of the number of body movements (x2) is marginal, since the
corresponding 90% credible interval for α2 contains the zero value. In contrast,
the influence of the number of body movements not due to sucking (x1) is
detected. The negative value of the posterior mean for α1 shows that a higher
number of body movements not due to sucking will reduce the probability of
the infant being in REM sleep. This conclusion is intuitively meaningful.

The top panel of Figure 11.7 shows the posterior mean estimates for the
state variables {θt} with 90% pointwise credible intervals for c = .65 chosen
according to the smallest DIC. This shows that the state process θt behaves
as an underlying continuous “sleep state.” The posterior mean estimates of
the REM sleep state probabilities pt = Φ(α0 + α1xt1 + α2xt2 + θt) are shown
in the bottom panel of Figure 11.7 for c = .65, together with the 90% credible
bounds indicated by the dotted lines.
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Fig. 11.7. Posterior mean estimates of the state variables (top panel) and posterior
mean estimates of the REM sleep state probabilities (bottom panel), where dotted
lines indicate 90% credible intervals, and c = 0.65.
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To further demonstrate the usefulness of the state space mixed models,
it is worth investigating their predictive ability, in comparison to the regular
state space models. From the evidence presented below, it is clear that a state
space model with no deterministic predictor ηt will have poor performance
in prediction, caused simply by the fact that the state variables have zero
expectation. On the other hand, the inclusion of covariates will in general
improve the predictive power. To elucidate, three observation equations are
considered: (i) the inclusion of both covariates xt1 and xt2, (ii) the inclusion
of only xt1, and (iii) the exclusion of both covariates. The same MCMC al-
gorithm was run as before in each of the three cases based only on the first
80 observations used. The out-of-sample predicted probabilities of REM sleep
status were computed by

π̂t = Φ(xTt ᾱ+ θ̂t), t > 80

where θ̂t = ρ̄θ̂t−1. Here ᾱ and ρ̄ denote the corresponding posterior mean
estimates.

Figure 11.8 shows that the fitted probabilities for t ≤ 80 and the predicted
probabilities for t > 80. It is clear that for all three cases a reasonable fit
of the probabilities (t ≤ 80) is indicated. Moreover, compared to the fitted
probabilities with t < 80 given in the bottom panel of Figure 11.8, the pure
state space model has little predictive ability, while the model with both
covariates shows better predictive power by utilizing the information from
the both covariates over the period t > 80.

It is interesting to note that the DIC does not reflect the prediction ca-
pability. For example, at c = .65, the DIC values are computed for respective
models, (i) 100.1, (ii) 100.3, and (iii) 99.57. These values are in fact very close
to each other, which implies that the models are quite similar in terms of
quality of fit, but these three models have indicated very different prediction
power.



260 11 Generalized State Space Models for Longitudinal Binomial Data

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

P
ro

ba
bi

lit
y

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

o

o

o

o

o

oo

o

oo

o

ooo

oo

o

o

o

oo

o

oooooooooooooooooooooooooooo

ooo

o

ooo

o

ooo

ooooooooooooooooooooo

o

o

oo

o

oooooooooooooooooooooooooo

oo

oooooo

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

with x1 and x2
with x1
no covariates

Fig. 11.8. Pointwise posterior mean estimates (t ≤ 80) and predictions (t > 80) of
REM sleep state probabilities for the infant sleep data.
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Generalized State Space Models
for Longitudinal Count Data

12.1 Introduction

This chapter discusses three inference approaches in the framework of gen-
eralized state space models (GSSM) for time series of counts. They are, the
generalized estimating equation (GEE) method, Kalman estimating equation
(KEE) method, and Monte Carlo EM (MCEM) algorithm. Because MCMC
based inference has been studied in detail in Chapter 11 in the context of
GSMMs for time series of binomial data, a similar inference procedure can
derived in the setting of GSSMs for count data. Therefore, MCMC is not
covered in this chapter.

Consider a longitudinal data {(Yt,xt), t = 1, . . . , n}, where at time t a
d-dimensional response vector of counts Yt = (Y1t, . . . , Ydt)T is observed. To
set up a GSSM, model M2 (10.2) specifies the observation process as follows:

Yit|θt ∼ Po (aitθt) , i = 1, . . . , d; t = 1, . . . , n (12.1)

with the deterministic component

ait = exp(xTitαi), i = 1, . . . , d; t = 1, . . . , n

where αi is a p-element vector of regression parameters, and the initial state
θ0 is assumed to be degenerated at its mean just for convenience.

Also, model M1 (10.1) specifies the state process θt as a Markov process.
As part of the mean in a Poisson distribution, the θt is constrained with being
positive. In the literature, there are several versions of the M1 formulation,
each being imposed for the suitability of a particular statistical inference ap-
proach. Some examples are given as follows.

Example 12.1 (Poisson Parameter-Driven Model).
The GEE method introduced in Chapter 5 is a quasi-likelihood inference

based only on the first two moments of the underlying probability distribution.
It is known that one advantage of this inference is the robustness against the
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misspecification of the parametric model in the part of M1. On this line, Zeger
(1988) proposed a GSSM for time series of counts, termed parameter-driven
model according to Cox (1981), in which the state process θt is assumed to
be simply a weakly stationary process with E(θt) = 1 and the autocovariance
function (ACVF) cov(θt, θt+h) = σ2γθ(h), h = 0, 1, · · · . Here γθ(h) is the ACF
of the stationary process θt, with γθ(0) = 1 and σ2 = Var(θt).

It follows immediately that the marginal first two moments of Yt are

μit = E(Yit) = ait, vit = Var(Yit) = μit(1 + σ2μit),

γy,ij(t, h) = corr(yi,t, yj,t+h) =
γθ(h)

[{1 + (σ2μit)−1}{1 + (σ2μj,t+h)−1}]1/2 ,

for i, j = 1, . . . , d. It is interesting to note that the state process, θt, intro-
duces autocorrelation, cross-component correlation, and overdispersion into
the process {Yt}.

Example 12.2 (Poisson-Stationary Lognormal Model).
Chan and Ledolter (1995) considers a lognormal model for the state pro-

cess, {θt}, as follows. Let {Wt} be a stationary Gaussian AR(1) process; that
is,Wt = φWt−1 +εt, where {εt} is i.i.d. N(0, σ2

ε ). Then, the state process θt is
defined as θt = exp(Wt), which is also stationary. Equivalently, log(θt) follows
a stationary Gaussian AR(1) process, or

θt = θφt−1εt,

where εt = log εt is a Gaussian white noise. That is, model M1 takes a mul-
tiplicative form of the first order stationary Markov process. Such a specifi-
cation of model M1 gives rise to the ease of developing posterior densities at
the E-step in the application of Monte Carlo EM algorithm.

One shortcoming of this multiplicative AR(1) process is the interpretation.
For example, φ is no longer interpretable as the autocorrelation for the θt
process, and the marginal mean of θt involves both φ and the variance of
log εt. These two parameters are in the second moments of the process, and
from the modeling point of view, it seems unnatural to specify a model whose
first moments are dependent on the second moments.

Example 12.3 (Poisson-Stationary Gamma Model).
When a parametric distribution is adopted in the specification of the θt

process, a conjugate gamma distribution (w.r.t. Poisson) is commonly sug-
gested in the literature. That is, assume marginally at time t, θt ∼ Ga∗(μ =
1, λ), where Ga∗ denotes an ED model of the additive form (see (2.13)) with
the mean parameter equal to 1 and index parameter λ. This implies that the
dispersion parameter is 1/λ. Here the requirement of μ = 1 is necessary for
the sake of parameter identifiability w.r.t. the intercept term in the determin-
istic component ait (Jørgensen and Song, 1998b). A stationary AR(1) gamma
process (Lewis et al., 1989) for θt takes the following form:
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θt = Btθt−1 + εt, t = 1, . . . , n, (12.2)

where Bt is a beta random variable according to Beta(ρλ, (1−ρ)λ) with |ρ| < 1
and independent of θt process. The noise {εt} is a sequence of i.i.d. innova-
tions distributed as Ga∗(1, (1−ρ)λ). Therefore, the property of convolution in
Proposition 2.10 ensures the marginal stationarity, namely θt ∼ Ga∗(1, λ). It
can be shown that parameter ρ is the autocorrelation coefficient because the
ACF of this gamma process defined in (12.2) is ρ|h| for lag h. Interested readers
may refer to, for example, Jørgensen and Song (1998a) for more details.

This GSSM formulation is useful to model dynamics of infectious diseases.
For example, θt may represent the volume of contagious material present in
the environment, variable Bt is the proportion of contagious material that sur-
vives from time t−1 to time t, and εt is the amount of new contagious material
introduced at time t. At a given time t, the amount of contagious material θt
will trigger the number of affected subjects Yt in the population via a Pois-
son log-linear model. Because of this interpretation, the Poisson-stationary
gamma model will be applied to analyze the monthly polio incidences in USA
introduced in Section 1.3.8.

Example 12.4 (Poisson-Nonstationary Gamma Model).
In many studies, effects of covariates may be lagged in time; some covari-

ates may have an immediate effect on the response variable, and some may
have a carry-over or lagged effect on the response variable. For example, in
the analysis of Prince George air pollution data introduced in Section 1.3.10,
meteorological covariates of temperature and humidity are more likely to have
an acute (or short-term) effect on the daily counts of emergency room visits,
while air pollution covariates of sulphur and particulates influence disease
symptoms in a lagged (or long-term) fashion.

To reflect such a difference, it is appealing to distinguish and divide, if pos-
sible based on subject-matter knowledge, the covariates into different groups
in the formulation of a state space model. Jørgensen et al. (1996b) suggested
entering the meteorological covariates xt into the deterministic component ait
of the Poisson mean in model M2 (12.1), while entering the air pollution co-
variates zt into the state process θt Therefore, the M1 is specified as a gamma
Markov process,

θt|θt−1 ∼ Ga
(
btθt−1,

σ2

θt−1

)
,

where Ga(μ, δ2) denotes the gamma distribution with mean μ and coefficient
of variation δ. The parameter σ2 is a dispersion parameter expressing the
smoothness of the process, and log(bt) is a linear predictor depending on the
long-term covariates via their increments. That is,

bt = exp
{
(Δzt)Tβ

}
, with Δzt = zt − zt−1,
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where zt is the vector-valued process of multiple air pollution measurements
and β is the parameter vector representing the long-term effects of air pollu-
tants on morbidity rates of respiratory diseases.

12.2 Generalized Estimating Equation

Let us consider a simple case of a single time series of counts, d = 1, which is
modeled by the Poisson parameter-driven model discussed in Example 12.1.
The approach of GEE can be applied to estimate the vector of regression
coefficients, α in the log-linear Poisson model M2 (12.1). Let μ = E(Yn) =
(μ1(α), . . . , μn(α))T , and let V = Var(Yn) = G + σ2GΓθ(φ)G, where G =
diag(μ1(α), . . . , μn(α))T and Γθ(φ) is an n×nmatrix with (t, s)-element equal
to γθ(|t − s|;φ). Based on the first two moments specified above, the GEE
takes the form: (

∂μT

∂α

)
V−1(α,φ)(Yn − μ) = 0.

The nuisance parameter φ is to be estimated separately. Let φ̂ be a
√
n-

consistent estimator of φ depending possibly on α. Then the estimate of α,
α̂, is actually the solution to the following equation:

(
∂μT

∂α

)
V−1(α, φ̂(α))(Yn − μ) = 0. (12.3)

However, the inversion of matrix V is usually difficult because the parameter-
driven model does not have a stationary ACF. To overcome this, Zeger (1988)
suggested using an approximation of the actual ACF Γθ by an ACF matrix
of a stationary autoregressive process. That is, approximate V by a working
ACVF,

Vw = D
1
2Γw(ψ)D

1
2

where D = diag(μt + σ2μ2
t ) is a diagonal matrix of variances Var(Yt), and

Γw is the ACF matrix for a pre-specified working stationary AR process. Let
(σ̂2, ψ̂) be

√
n-consistent estimators of σ2 and ψ, respectively. Now define α̂w

as the solution to the estimating equation:

U(α) =
(
∂μT

∂α

)
V−1
w (α, σ̂2, ψ̂(α))(Yn − μ) = 0. (12.4)

Inference function U in (12.4) is (asymptotically) unbiased. Under some
mild regularity conditions, the estimator, α̂, of α produced by this GEE
(12.4) is consistent, and

√
n(α̂−α) is asymptotically normal with mean 0 and

covariance matrix limn n j−1
U , where jU is the Godambe information matrix

derived from the inference function U(α).
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To estimate the nuisance parameters, Zeger (1988) suggested the method
of moments. Utilizing the property Var(Yt) = μt + σ2μt, one can form a
consistent estimator of σ2 as follows:

σ̂2 =
n∑
t=1

{(Yt − μ̂t)2 − μ̂t}/
n∑
t=1

μ̂2
t . (12.5)

Using the residuals, one may estimate the ACF of the θt process by

γ̂θ(h) = σ̂−2
n∑

t=h+1

{(Yt − μ̂t)(Yt+h − μ̂t+h)}/
n∑

t=h+1

μ̂tμ̂t+h. (12.6)

Then based on the estimated ACF, the Yule-Walker equations can be set up
to estimate the AR parameter ψ in a given working AR process. For example,
consider an AR(r) process of the form,

θt = ψ1θt−1 + · · · + ψpθt−r + εt,

where εt’s are white noise with variance σ2
ε . The Yule-Walker equations esti-

mate of ψ = (ψ1, . . . , ψr)T is given by

ψ̂ = Γ̂−1
w γ̂,

where Γ̂w is an r × r matrix with the (t, s)-element equal to γ̂(|t − s|), |t −
s| = 0, 1, . . . , r − 1, and γ̂ is an r-element vector with the t-th element being
γ̂(t), t = 1, . . . , r. When r = 1 corresponding to the AR(1), the estimate of
single ψ is simply γ̂(1).

12.3 Monte Carlo EM Algorithm

Consider again the simple case of d = 1, corresponding to single time series
of counts, which is now modeled by Poisson-stationary lognormal model dis-
cussed in Example 12.2. Readers who are not familiar with EM algorithm may
refer to Section 13.4.3. Treating all state variables θt or Wt as missing values,
one can apply the EM algorithm to estimate parameter α. The augmented
data consist of (Yt,Wt), t = 1, . . . , n. The augmented likelihood function is,
subject to those terms independent of the model parameters,

�(α, φ, σ2
ε |Yn,Wn) =

n∑
t=1

{− exp(Wt + xTt α) + YtWt + YtxTt α
}

−n− 1
2

log(σ2
ε ) −

1
2σ2

ε

n−1∑
t=1

(Wt+1 − φWt)2

=
n∑
t=1

{−θtat + Yt log(at)} + E

−n− 1
2

log(σ2
ε ) −

1
2σ2

ε

(B − 2φD + Cφ2), (12.7)
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where

B =
n−1∑
t=1

W 2
t+1, C =

n−1∑
t=1

W 2
t , D =

n−1∑
t=1

WtWt+1, E =
n∑
t=1

WtYt.

Here the initial state W0 is assumed to be known as 0 or θ0 known as the
marginal mean of 1. The utility of the lognormal distribution produces a
nice property; that is, the augmented likelihood is linear in θt, as well as in
B,C,D and E. All these terms are certain functions of missing data Wt and
the observed data Yt.

Given a sequence of Monte Carlo samples Wn(1), . . . ,Wn(M) drawn from
the conditional distribution, f(Wn|α, φ, σ2

ε ,Y
n), the Monte Carlo E-step is

computed as follows:

Q(M)(·|α, φ, σ2
ε ) =

n∑
t=1

{−θ̄tat + Yt log(at)
}

+ Ē

−n− 1
2

log(σ2
ε ) −

1
2σ2

ε

(B̄ − 2φD̄ + C̄φ2), (12.8)

where

θ̄t =
1
M

M∑
m=1

exp(W (m)
t ), B̄ =

1
M

M∑
m=1

n−1∑
t=1

W
2(m)
t+1 , C̄ =

1
M

M∑
m=1

n−1∑
t=1

W
2(m)
t ,

D̄ =
1
M

M∑
m=1

n−1∑
t=1

W
(m)
t W

(m)
t+1 , Ē =

1
M

M∑
m=1

n∑
t=1

W
(m)
t Yt.

The M-step updates the parameter values. Since parameters φ and σ2
ε are

only involved in the second part of the augmented likelihood in the absence
of θt, immediately their updates are given by

φ̂ =
D̄

C̄
,

σ̂2
ε =

1
n− 1

(
B̄ − D̄

2

C̄

)
.

Likewise, parameter α does not appear in the second part of the augmented
likelihood, so updating α is equivalent to running a cross-sectional Poisson
log-linear regression with the linear predictor xTt α and offset log(θ̄t). That is,

log{E(Yt)} = log(θ̄t) + xTt α, t = 1, . . . , n.

Iterating the E-step and the M-step will produce the maximum likelihood
estimates of α, φ, and σ2

ε when the algorithm achieves convergence.
Clearly, in this setting the MCEM algorithm is computationally simple,

although the convergence rate of the EM algorithm is known slow. The tech-
nical challenge in this MCEM approach is really the procedure of sampling
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Wn from its conditional distribution. Chan and Ledolter (1995) suggested a
Gibbs sampler to generate the required samples from a Markov chain. Let
Wn

−t be a subvector of the Wn with the t-th component Wt being omitted.
It is easy to see that

f(wt|Wn
−t,Y

n) ∝ fα(yt|wt)fφ,σε(wt|Wn
−t). (12.9)

First, note that the conditional distribution ofWt, given Wn
−t, must be Gaus-

sian, simply because Wn is a joint Gaussian due to the fact that Wt follows
a Gaussian AR(1) process. It can be shown that

Wt|Wn
−t ∼

⎧⎨
⎩
N(φW1, σ

2
ε ), if t = 1

N(φ(Wt−1 +Wt+1)/(1 + φ2), σ2
ε/(1 − φ2)), if t = 2, . . . , n− 1

N(φWn−1, σ
2
ε ), if t = n.

Denote the mean and variance parameters of the conditional distribution
f(wt|Wn

−t) by ut and v2t , respectively. Then, it is interesting to notice that
it is more convenient to sample Zt = Wt + xTt α, based on the form given in
(12.9). Subject to a constant,

log f(zt|Wn
−t,Y

n) = − exp(zt) + ztYt − (zt − μt)2
2v2t

, (12.10)

where μt = ut + xTt α. This is a log-concave density, and sampling of Zt can
be easily implemented by a universal rejection algorithm (see, for example,
Devroye, 1984).

12.4 KEE in Stationary State Processes

12.4.1 Setup

For convenience, consider again the case of d = 1. Kalman estimating equation
(KEE) provides another way of implementing the EM algorithm, in which
rather than applying Monte Carlo in the E-step, KEE invokes BLUP (see
Chapter 9) based on Kalman filter and smoother. In other words, the E-
step performs Kalman filter and smoother to evaluate the involved integrals,
and the M-step solves an estimating equation derived from the augmented
likelihood. Again, readers who are not familiar with EM algorithm may refer
to Dempster et al. (1977) or first study Section 13.4.3. To elucidate, similar
to the MCEM algorithm in Section 12.3, first treat the state variables as
missing data. Let (α, ζ) denote the vector of all model parameters, where α
is the vector of regression coefficients in the observation process and ζ is the
vector of nuisance parameters in the gamma state process. The augmented
log-likelihood takes the form
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�(α, ζ|Yn,θn) =
n∑
t=1

log f(Yt|θt,α)+
n−1∑
t=1

log g(θt+1|θt, ζ)+log g(θ0). (12.11)

In order to update the parameter values via EM algorithm, maximizing
the following objective function

Q(α, ζ|α′, ζ′) = E {�(α, ζ|Yn,θn)}
is required, where the expectation is taken under the conditional distribution
of f(θn|Yn,α′, ζ′). Here α′ and ζ′ are given by the previous iteration. This
maximization can be carried out by solving the score equations derived from
this augmented likelihood, given respectively as follow:

s1(α, ζ) =
n∑
t=1

xTt {Yt − atE(θt | Yn,α′, ζ ′)} = 0, (12.12)

s2(α, ζ) =
n−1∑
t=1

E
{
∇ζg(θt+1|θt, ζ)/g(θt+1|θt, ζ) | Yn,α′, ζ′

}
= 0,

(12.13)

where ∇ denotes the operation of gradient and the second score vector s2

can be simplified when a specific model of the state process is given. Here,
instead of using Monte Carlo technique to calculate the conditional mean
E(θt | Yn,β′, ζ ′), an unbiased estimate based on BLUP would be an alter-
native. An obvious advantage for the utility of BLUP is the computational
simplicity, and the related calculation can be carried out easily via the ex-
tended Kalman smoother developed in Chapter 9. The resulting estimating
equations remain unbiased, so the standard theory of asymptotics for unbiased
inference functions given in Chapter 3 is available to make needed statistical
inference.

Let us first apply the KEE to the case of Poisson-Stationary gamma model
described in Example 12.3. In this case, the conditional distribution of θt | θt−1

is a convolution of gamma Ga∗(μ = 1, ρλ) random variable and a Beta(ρλ, (1−
ρ)λ) random variable times θt−1. Because the expression of conditional density
function g(θt | θt−1) is tedious, so the score s2 is analytically cumbersome.
In contrast, the expressions of both conditional and marginal moments of
this gamma process θt are neat and easily derived. Similar to the GEE in
Section 12.2, Jørgensen and Song (1998b) suggested the following estimation
procedure:

(a) estimate the nuisance parameter vector ζ = (ρ, λ) of the state process by
simply the method of moments; and

(b) given
√
n-consistent estimators, ρ̂ and λ̂, update β by the solution to the

following estimating equation:

U(α) =
n∑
t=1

xTt {Yt − atm∗
t (α

′, ζ̂)} = 0, (12.14)
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where m∗
t (α

′, ζ̂) is the Kalman smoother conditional on the observations
Yn, the previous update α′, and the available estimate ζ̂.

Note that estimating ζ involves parameter α, so the implementation needs to
iteratively update β and ζ along iterations until convergence.

It is worth pointing out that the inference function s1 in (12.12) is ζ-
insensitive, namely,

E
{
∂s1(α, ζ)
∂ζ

}
= 0.

This holds because for each m∗
t , t = 1, . . . , n,

E
{
∂m∗

t

∂ζ

}
= 0.

In effect, by the definition of BLUP, the Kalman smoother vector m∗ is
m∗ = E(θ) + cov(θ,Y)Σ−1

Y (Y − E(Y)), and all the nuisance parameters
in ζ are involved only in the two terms, i.e., cov(θ,Y) and Σ−1

Y . Therefore,
the expectation of the first order derivative of the m∗ w.r.t. the parameter
vector ζ is zero because the expectation of the residual term Y − E(Y ) is
always zero. This property of insensitivity ensures that the efficiency of the
nuisance parameter estimators would have a marginal effect on that of the
estimator of α.

12.4.2 Kalman Filter and Smoother

To derive Kalman filter and smoother, first acquire the conditional and
marginal moments of the Poisson stationary gamma model.

Proposition 12.5. (1) The conditional moments of the Poisson-stationary
gamma model given in Example 12.3 are

E(Yt|θt) = atθt, Var(Yt|θt) = atθtE(θt|θt−1) = ρθt−1 + ρ̄,
Var(θt|θt−1) = F (θt−1) + ρ̄/λ,

where ρ̄ = 1−ρ and F (θt−1) = Var {Gtθt−1}, with mean E {F (θt)} = ρρ̄/λ.
(2)The marginal moments of the Yt are

E(Yt) = at, Var(Yt) = at + a2t/λ.

(3)The covariances are

cov(Yt, θt) = at/λ, cov(θt, θt+h) = ρh/λ, cov(Yt, Yt+h) = atat+hρh/λ,

and
cov(Yt, θt+h) = atρh/λ, cov(Yt+h, θt) = at+hρh/λ.
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(4)The ACF of the state process {θt} is

corr(θt, θt+h) = ρh,

and the ACF of the observation process {Yt} is

corr(Yt, Yt+h) =
ρh√

(λa−1
t + 1)(λa−1

t+h + 1)
.

Based on these moment properties, the Kalman filter and smoother pre-
sented in Section 9.3 are readily applied, which are needed to establish the
KEE. Proposition 12.6 below is yielded immediately by the application of
Theorem 9.4 in Section 9.3.

Proposition 12.6. Suppose the filter at time t− 1 is complete, namely

θt−1

∣∣Yt−1 ∼ [mt−1, ct−1] .

(1)The prediction is Yt|Yt−1 ∼ [ft, Qt] with

ft = ρatmt−1 + ρ̄at,
Qt = ρ2a2t ct−1 + (1 − ρ2)a2t/λ+ at = a2tut−1 + at,

where ut−1 = ρ2ct−1 + (1 − ρ2)/λ.
(2)The forward Kalman filter recursion is

mt = ρmt−1 + ρ̄+ ct (Yt − ft) , (12.15)

ct =
ut−1

1 + atut−1
. (12.16)

The application of Theorem 9.5 in Section 9.3 leads to Proposition 12.7
for the Kalman smoother.

Proposition 12.7. Suppose that all Kalman filters are available, namely

θt
∣∣Yt ∼ [mt, ct] , t = 1, . . . , n,

and that the previous smoother is done,

θt |Yn ∼ [m∗
t , c

∗
t ] .

The backward smoothing recursion is given by

m∗
t = mt +

ρct
ut

(
m∗
t+1 − ρmt − ρ̄

)
(12.17)

and the prediction error is

c∗t =
1 − ρ2
λut

ct +
(
ρct
ut

)2

c∗t+1. (12.18)

The recursion is started at t = n by m∗
n = mn and c∗n = cn.
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12.4.3 Godambe Information Matrix

Let α̂ be the estimate obtained from the unbiased KEE (12.14) in that ρ and
λ are replaced by their

√
n-consistent estimates. Under some mild regular-

ity conditions, Jørgensen and Song (1998b) showed that α̂ is consistent and√
n(α̂ − α) is asymptotically Gaussian with mean zero and covariance matrix

limn→∞ n j−1
U , where jU = STV−1S is the Godambe information of inference

function given in (12.14), with the sensitivity matrix S and the variability
matrix V being detailed as follows.

The calculation of the Godambe information is done recursively. Let

Lα(t) = E (∇αmt) , and L∗
α(t) = E (∇αm∗

t ) .

Then,

Lα(t) = ρ
(

1 − atut−1

atut−1 + 1

)
Lα(t− 1) − atut−1

atut−1 + 1
xTt , with Lα(0) = 0,

L∗
α(t) = Lα(t) + ρ

ct
ut

{L∗
α(t+ 1) − ρLα(t)} , with L∗

α(n) = Lα(n).

Thus, the sensitivity matrix is given by

S = −
n∑
t=1

a−1
t xt

{
xTt + L∗

α(t)
}
. (12.19)

And, the variability matrix is V = XΣXT , where Σ = Var(Yn−Am∗) is an
n× n matrix whose (i, j)-th element takes the form

cov(Yi − aim∗
i , Yj − ajm∗

j ) =
{
ai − a2i c∗i , i = j
−aiajc∗i, j , i �= j

where c∗i, j is the (i, j)-th element of the mean square error (MSE) matrix of
the smoother, C∗ = E

{
(θn − m∗)(θn − m∗)T

}
. Jørgensen and Song (1998b)

found that

c∗t, t+h = ρhc∗t+h
h−1∏
i=0

ct+i
ut+i

.

The above recursions should be carried after the KEE algorithm has converged
and produced the final updates, α̂ and ζ̂.

A method of moment estimate for the index parameter λ is given as follows.
First, estimate the dispersion parameter σ2 = 1/λ by

σ̂2 =
n∑
t=1

{
(Yt − ât)2 − ât

}
/

n∑
t=1

â2t , (12.20)

then set λ̂ = 1/σ̂2.
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In the meanwhile, a method of moment estimate for the autocorrelation
parameter ρ is given by the property

cov(mt,mt−1) = ρVar(mt−1) + ctcov(Yt − ft,mt−1)
= ρ ct−1,

where the term second cov(Yt − ft,mt−1) = 0 because

E
{
cov(Yt − ft,mt−1|Y t−1)

}
= 0

cov
(
E(Yt − ft|Y t−1),E(mt−1|Y t−1)

)
= 0.

This leads to ρ = cov(mt,mt−1)/Var(mt−1), suggesting that the lag-1 au-
tocorrelation of the Kalman filtering mt or the lag-1 autocorrelation of the
standardized filtering mt/

√
ct may serve as an estimator of ρ.

A concern associated with these moment estimates is the possibility of
the updated values of σ2 and/or ρ falling outside of their admissible values.
This is more likely to happen when the sample size is small. Whenever this
happens, the KEE estimation algorithm stops. To overcome this issue, trans-
formations on the parameters are helpful. For example, the log transformation
may be invoked for the dispersion parameter σ2 and Fisher’s Z-transformation
is common for the autocorrelation ρ, i.e., 1

2 log 1+ρ
1−ρ .

12.4.4 Analysis of Polio Incidences Data

To illustrate the three inference approaches discussed above, this example
applies generalized state space models to analyze the polio incidence data
introduced in Section 1.3.8. Figure 1.5 displays time series of monthly numbers
of poliomyelitis cases in the USA from 1970 to 1983. The central question
of the analysis is to investigate if the data provide evidence of a long-term
decrease in the rate of polio infections in the USA; that is, whether the data
indicate a significant decreasing time trend.

All three models (the Poisson parameter-driven model, the Poisson-Lognormal
model, and the the Poisson-stationary gamma model) are applied to fit the
data, respectively. The observation process takes the form

Yt|θt ∼ Po(atθt), with at = exp(xTt α), t = 1, . . . , 168,

where xt = (1, t, cos(2πt/12), sin(2πt/12), cos(2πt/6), sin(2πt/6))T . The inclu-
sion of the intercept term in at implies that the mean μ of the state process
is eα0 .

Among the three model formulations, the stationary gamma AR(1) model
has a nice interpretation for the beta-distributed thinning operator Bt; that
is, it represents the volume of polio contagious material available in the en-
vironment. The solid line in Figure 12.1 shows the estimated state process
from the Kalman smoother obtained by the KEE approach. It is clear that
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Fig. 12.1. Monthly counts of polio incidences. Dots show the observed counts and
the solid line represents the estimated latent process by the Kalman smother.

various peaks in the latent state process nicely explain the episodes in the
observed counts of polio incidences (denoted by dots in the figure) caused by
the environmental risk. Note that this estimated state process is not available
in the GEE approach.

Table 12.1 reports the estimation results from the GEE, the MCEM, and
the KEE. Overall, the estimates from these three approaches are similar. Some
differences are pointed out as follows.

The KEE estimates are closer to the MCEM estimates than the GEE
estimates; for example, the estimates corresponding to the four seasonal effects
are almost the same in (b) and (c). Note that the MCEM algorithm is fully
likelihood-based and hence the resulting estimates should be most efficient. In
this case, the KEE does not lose much estimation efficiency but it gains much
computational efficiency. Because of invoking Gibbs sampler as well as the
rejection sampling scheme, the MCEM is computationally intensive, besides
the issue of convergence diagnosis for the Gibbs sampler.

With regard to the time trend, both the KEE method and the MCEM
algorithm found that the slope is significantly different from zero, implying
a significant decreasing time trend for the rate of polio incidences. The GEE
reported no significance for the slope of the time trend at the 0.05 level.
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Table 12.1. Estimates of coefficients and standard errors: (a) the Poisson
parameter-driven model using the GEE; (b) the Poisson-lognormal model using the
MCEM algorithm; (c) the Poisson-gamma model using the KEE.

(a) GEE (b) MCEM (c) KEE

Estimate Std Err Estimate Std Err Estimate Std Err

Intercept .17 .13 .42 .49 .16
Trend ×10−3 −4.35 2.68 −4.62 1.38 −3.87 1.64
cos(2πt/12) −.11 .16 .15 .09 .13 .10
sin(2πt/12) −.48 .17 −.50 .12 −.50 .12
cos(2πt/6) .20 .14 .44 .10 .45 .10
sin(2πt/6) −.41 .14 −.04 .10 −.06 .10
σ̂2 .77 .54 .81
ρ̂ .77 .88 .36

Standard errors for the KEE estimates corresponding to non-constant covari-
ates are uniformly smaller than those given by the KEE, being nearly the
same as the those obtained by the MCEM. Such differences are largely caused
by the use of fully parametric modeling for the state process, which returns a
desirable gain in efficiency if the parametric model is appropriately specified.
Jørgensen and Song (1998b) performed a comprehensive model checking on
the Poisson-gamma specification and validated all key assumptions imposed
on the model. Interested readers can refer to Section 12.5.4 for model diagnos-
tics developed for the nonstationary gamma process, where a similar residual
analysis is conducted.

The estimate for the lag 1 autocorrelation, ρ̂, is less than half the value
reported by the GEE, and only 40% of the value obtained by the MCEM.
The lag 1 autocorrelation for the raw data of polio counts is close to .3, so
the KEE estimate .36 seems reasonable for the lag 1 autocorrelation of the
state process, under the assumption that the observations are conditionally
independent given the state process. One way to see the connection is to invoke
property (4) of Proposition 12.5, with σ̂2 = 0.81,

corr(Yt, Yt+1) = ρ× 1√{1 + (σ2at)−1}{1 + (σ2at+1)−1}
≈ ρ/1.39

where the approximation is given by replacing the at’s with the mean ā = 1.32
based on the α̂j in Table 12.1. This implies that the ρ parameter would be
approximately equal to 1.39 ∗ 0.3 = 0.417.
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12.5 KEE in Non-Stationary State Processes

This section focuses on the KEE estimation approach for generalized state
space models in that the latent state process is nonstationary, proposed in
Jørgensen et al. (1999). As discussed in Example 12.4, in many practical
studies covariates are possibly divided into two types, long-term and short-
term covariates, according to subject-matter knowledge. The distinction lies
in the fact that effects of covariates may be different in lagged times. For
the long-term covariates, the Markov structure of the state process creates a
carry-over effect, which to some extent obviates the need for lagged covariates.
On the other hand, the short-term covariates pertain to some immediate or
acute effects on the mean of the observation process. When such a distinction
is observed, the long-term covariates will enter the state process, while the
short-term covariates will enter the observation process. The resulting state
process is effectively nonstationary, requiring a further generalization of the
classical state space models.

The Poisson-gamma model presented in this section is mainly inspired by
the analysis of the Prince George data, where the response constitutes the
number of emergency room visits for four categories of respiratory diseases
(see Section 1.3.10). However, the KEE can be established in a more general
GSSM framework than the Poisson-gamma model. This section follows the
framework of Jørgensen et al. (1996a) to present a class of generalized state
space models with nonstationary state processes, with the Poisson-gamma
model as a special case. Statistical inference is based on the Kalman esti-
mating equation approach, which is extended from that given in the previous
Section 12.3 for a stationary state process. In addition, this section also gives
a detailed discussion about the analysis of residuals for model diagnosis from
both the observation and the state process, which is not available for either
the GEE method or the MCMC method. The discussion of model diagnosis
was ignored in Section 12.3, simply because of great similarity between the
residual analysis in the GSSM with stationary state process to that with the
nonstationary state process developed in this section.

Let Yt be a d-dimensional response vector such that the components of
Yt all reflect the same underlying tendency θt, say, but where the individual
components may not all have the same distribution. Assume that the state
process θt is a Markov process including time-varying covariates and that the
observations are conditionally independent given the state process, both across
components and over time. A log-linear regression model for the marginal
means E(Yt) is considered.

12.5.1 Model Formulation

Suppose a d-dimensional Yt is recorded at equally spaced times t = 1, . . . , n,
and denote the full data vector by

Yn = (YT
1 , . . . ,Y

T
n )T .
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Let θt be a univariate state process and denote the vector of θt by

θn = (θ0, θ1, . . . , θn)T ,

where θ0 is an initializing variable.
In model M2 of equation (10.2), the conditional distribution of the ith

component of Yt given θt is assumed to follow a Tweedie exponential disper-
sion model (see Section 2.5),

Yit|θt ∼ Twri

(
aitθt,

ν2
i

θri−1
t

)
, (12.21)

for i = 1, . . . , d, t = 1, . . . , n, where ait = exp
(
xTt αi

)
and ri is the shape

parameter. Here covariates xt are assumed to be the same across all the d
components, but the following development of statistical inference does not
depend on such a specification of covariates, and hence can be extended to
deal with the case with component-dependent covariates xit.

The short-term covariates represent modulating factors that have an im-
mediate effect on Yit relative to the value of θt. Note that the corresponding
regression parameters αi ∈ Rp may vary among the d components.

It is known that the shape parameters ri of the Tweedie model must satisfy
ri ≥ 1 or ri ≤ 0, but may vary from component to component, allowing each
component to have a different distribution. The parameters ν2

i in (12.21) are
dispersion parameters, so that even in the case where all ri are equal, the d
components may have different dispersions.

Note that ri ≥ 1 corresponds to non-negative distributions while ri ≤ 0
corresponds to distributions with support R (see Section 2.5). In particular,
ri = 0 gives the normal distribution, ri = 1 gives the Poisson distribution,
1 < ri < 2 are compound Poisson distributions with a positive probability in
zero, ri = 2 is the gamma distribution, and ri = 3 is the inverse Gaussian
distribution. The Tweedie class hence accommodates a considerable range of
distributions, including continuous, discrete, and mixed ones.

In the Poisson case (ri = 1), (12.21) reduces to

Yit|θt ∼ Tw1

(
aitθt, ν

2
i

)
= ν2

i Po(aitθt/ν2
i ),

so in this case the dispersion parameter ν2
i = 1 in all formulas given in the

rest of this section when applicable.
In (12.21) the conditional expectation and variance are respectively,

E(Yit|θt) = aitθt, Var(Yit|θt) = ν2
i a
ri

it θt.

Hence θt may be interpreted as the “intensity” of the observation Yt, being
modified for the i-th component by the covariates xt via ait.

The state process of the state space model is assumed to be an exponential
dispersion model Markov process, defined by the transition distribution
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θt|θt−1 ∼ Twl

(
btθt−1,

σ2

θl−1
t−1

)
(12.22)

for t = 1, . . . , n, where the shape parameter l is known and satisfies l ≥ 2,
making the state process positive. In particular, this excludes the possibility
of a normal distribution for the state process. The conditional expectation
and variance are respectively

E(θt|θt−1) = btθt−1, Var(θt|θt−1) = σ2bltθt−1.

The state process may be interpreted as a random walk with drift, and is
hence non-stationary.

The parameter σ2 in (12.22) is a dispersion parameter, and bt depends on
the long-term covariates zt via their increments Δzt = zt − zt−1,

bt = exp
{(
ΔzTt

)
β
}
, (12.23)

β ∈ Rq being another regression parameter. For convenience, we assume from
now on that z0 = 0, which may be obtained by subtracting z0 from all zt.

Note that the Markov structure of the state process produces a carry-over
effect, such that an increase in the level of z at a given time t may have an
effect on subsequent time-points. An important characteristic of long-term
covariates is that they have the same effect on all d components of Yt, in
contrast to short-term covariates whose effects may vary across categories.

For a single series of observations Yn, assume θ0 ≡ g0 to be degenerate
where g0 is a certain positive constant. The marginal means of the state and
observed processes are log-linear in the covariates, as shown by

E(θt) = τt = gb1 · · · bt = exp
{
zTt β + log(g0)

}
and

E(Yit) = exp
{
xTt αi + zTt β + log(g0)

)
.

The marginal variance of the observed vector Yt consists of two terms,

Var(Yt) = Λtτt + ataTt Var(θt), (12.24)

where Λt = diag(ν2
1a
r1
1t , . . . , ν

2
da
rd

dt ), at = (a1t, . . . , adt)T and Var(θt) is given
by

Var(θt) = σ2φtτt

where
φt = bl−1

t + btbl−1
t−1 + · · · + btbt−1 · · · bl−1

1 .

The second term in (12.24) shows overdispersion relative to the model
(12.21) and shows that the correlation between components is positive. The
covariance between two observation vectors separated by a lag of s > 0 is

cov(Yt,Yt+s) = ataTt+sbt+1 · · · bt+sVar(θt).
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Fig. 12.2. Simulation of 100 observations from a process with four categories with
l = 2, ri = 0, 1, 1.5, 2, ν2

i = 1, σ2 = 0.05, and θ0 = 2 without any covariate effects.
Observations are shown with solid lines, and the state processes with dashed lines.

Jørgensen et al. (1996a) considers a state space for multi-dimensional time
series of mixed types. Figure 12.2 shows simulations of the model for l = 2
(a gamma state process) and four categories with r1 = 0, r2 = 1, r3 = 1.5,
and r4 = 2. The four observation processes represent the following character-
istics, respectively: symmetric continuous (normal observation process), dis-
crete (Poisson observation process), positive skew with positive probability
at zero (compound Poisson observation process), and positive skew (gamma
observation process).

12.5.2 Kalman Filter and Smoother

Recall that the key in the Kalman estimating equation is the Kalman filter
and smoother, which will be applied to approximate the E-step in the EM
algorithm. The innovations for the state process are given by

ξt = θt − E
(
θt|θt−1

)
= θt − btθt−1, t = 1, . . . , n, (12.25)
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and for the observed process

ϕt = Yt − E
(
Yt|θt

)
= Yt − atθt, t = 1, . . . , n. (12.26)

Using the innovations, the model may be rewritten as an additive form as
follows, for t = 1, . . . , n,

Yt = atθt +ϕt,
θt = btθt−1 + ξt,

where ϕt and θt are uncorrelated, and so are ξt and θt−1. In addition, it is
easy to show that all these 2n innovations, ϕt’s and ξt’s, are also uncorrelated.
Hence the model is structured as that of an ordinary linear state space model
given in Section 10.2. The marginal variances of the innovations are

Var(ξt) = E
(
ξ2t
)

= E
{
Var

(
θt|θt−1

)}
= σ2bl−1

t τt,

Var(ϕt) = E
(
ϕtϕ

T
t

)
= Λtτt.

A direct application of results given by Theorem 9.4 and Theorem 9.5 in
Section 9.3 yields Kalman recursions as follows. Let

θt−1|Yt−1 ∼ [mt−1;Ct−1],

and
Dt = btCt−1 + σ2bl−1

t τt−1.

The prediction is then given by

Yt|Yt−1 ∼ [ft;Qt], (12.27)

where
ft = atbtmt−1; Qt = btDtataTt + Λtτt.

The filtered values of the state process are, for t = 1, . . . , n

θt|Yt ∼ [mt;Ct], (12.28)

starting with m0 = g0 and C0 = 0, where

mt = bt
{
mt−1 +DtaTt Q−1

t (Yt − ft)
}
, (12.29)

Ct = btDt
(
1 − btDtaTt Q−1

t at
)
.

Given all n observations, the smoothed version of the state process is given
by the following backward recursion for t = n− 1, . . . , 0,

θt|Yn ∼ [m∗
t ;C

∗
t ], (12.30)

starting with m∗
n = mn and C∗

n = Cn, where
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m∗
t = mt +

Ct
Dt+1

(
m∗
t+1 − bt+1mt

)
,

and

C∗
t = σ2 Ct

Dt+1
bl−2
t+1τt+1 +

C2
t

D2
t+1

C∗
t+1.

The mean squared error matrix C∗ = E
{

(θ − m∗) (θ − m∗)T
}
. Jørgensen

et al. (1999) showed that the diagonal elements C∗
t and off-diagonal elements

of the C∗ are given by

C∗
t t+s = C∗

t+s

s∏
i=1

Ct+i−1

Dt+i
.

12.5.3 Parameter Estimation

As before, the KEE method is built on a set of unbiased inference functions
for regression coefficients, (α,β), while the dispersion parameters ν2

i and σ2,
denoted collectively by ζ, are treated as nuisance parameters that are esti-
mated separately by the method of moments. To make the KEE work, the
estimates of these nuisance parameters have to be

√
n-consistent.

As discussed in Section 12.4, the KEE is essentially an approximate EM
algorithm, in which the E-step is approximate by the Kalman smoother via
BLUP and the M-step is equivalent to conducting a cross-sectional Poisson
regression. It is easy to see that for the nonstationary state space models, the
observation process leads to a similar score equation to that given in (12.12),
and the state process results in a score equation, given by respectively

s1(α,β, ζ) =
n∑
t=1

d∑
i=1

xta1−ri

it (Yit − aitθt) = 0, (12.31)

s2(α,β, ζ) =
n∑
t=1

b−1
t (θt − btθt−1)Δzt = 0. (12.32)

It is interesting to note that both score equations are linear in the state vari-
ables, which makes the application of the Kalman filter and smoother really
straightforward. That is, the respective unbiased estimating equations are ob-
tained by replacing the state variables by their Kalman smoothers m∗

t (ζ),
leading to

U1(α,β, ζ) =
n∑
t=1

d∑
i=1

xta1−ri

it {Yit − aitm∗
t (ζ)} = 0, (12.33)

U2(α,β, ζ) =
n∑
t=1

b−1
t {m∗

t (ζ) − btm∗
t−1(ζ)}Δzt = 0. (12.34)
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Clearly, U = (UT1 , U
T
2 )T is an unbiased inference function, and the esti-

mates (α̂, β̂) are the solutions of the equation U = 0. The standard theory
of inference functions applies to the KEE estimating function U, and the
asymptotic standard errors of the estimator (α̂, β̂) can be calculated from the
inverse of the Godambe information matrix j = STV−1S, where S = E(∇U)
is the sensitivity matrix and V = E(UUT ) is the variability matrix.

Again, by a similar argument given at the end of Section 12.4.1, inference
function U1 is ζ-insensitive. This means that the efficiency of the estimator of
ζ will not affect the efficiency of the estimators of α and β much.

The Newton scoring algorithm, a parallel to Fisher’s scoring method, is
defined as the Newton algorithm applied to solve the equation U = 0, in
which iterations proceed as follows:

(
α′

β′

)
=
(
α
β

)
− S(α,β)−1U(α,β),

with the sensitivity matrix S. An advantage of this algorithm is that the
calculation of S can be done recursively in parallel with the calculation of
the Kalman smoother, in a similar fashion as in equation (12.19). The initial
values of the parameters may be obtained by fitting cross-sectional GLMs
under the independence correlation, and the initial smoother may be simply
the average of the moving averages of individual observed series.

The estimation of the nuisance parameters ζ may be obtained by the
method of moments. Jørgensen et al. (1999) suggested that an unbiased esti-
mate for σ2 is

σ̂2 =
1
n

n∑
t=1

(m∗
t − btm∗

t−1)
2

bl−1
t τt

+
1
n

n∑
t=1

C∗
t + b2tC

∗
t−1 − 2btCt−1C

∗
t /Dt

bl−1
t τt

, (12.35)

where the last term corrects for the bias introduced by using the smoother for
the state process.

Similarly, estimates for ν2
i are given by

ν̂2
i =

1
n

n∑
t=1

(Yit − aitm∗
t )2

τta
ri

it

+
1
n

n∑
t=1

a2itC
∗
t

τta
ri

it

. (12.36)

12.5.4 Model Diagnosis

Residual analysis for both observed and unobserved parts of the model is cru-
cial for any parametric modeling, such as the generalized state space models
presented in this chapter. Although the development below is primarily for
the GSSM with a nonstationary state process, a similar diagnosis is available
for the model with stationary state process (Jørgensen and Song, 1998b). The
basic idea is to use plots of standardized residuals (i.e., residuals divided by
their standard errors) in much the same way as in the theory of generalized
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linear models, in order to check the distributional assumptions and the regres-
sion part of the model. Also, it is possible to check the correlation structure of
the model by various methods from the theory of time-series analysis. Model
diagnosis may proceed with each series separately, or with a combination of
residuals from several series.

The main type of residuals are the conditional residuals, defined as the pre-
dicted values of the innovations ϕt and ξt, based on either the Kalman filter or
smoother. All residuals have means 0. The properties derived in the following
do not take into account the effect of substituting parameter estimates.

The predicted values of the innovations based on the Kalman filter are

ϕ̂t = Yt − ft and ξ̂t = mt − btmt−1.

The prediction errors ϕ̂t are mutually uncorrelated over time, and since ξ̂t =
btDtaTt Q−1

t ϕ̂t, then so are the predicted innovations of the state process.
This property of the filter residuals ϕ̂t and ξ̂t makes them especially useful
for residual plots. Moreover, ξ̂t is uncorrelated with fit, and ξ̂t is uncorrelated
with btmt−1. The variances of the two sets of residuals are, respectively,

Var (ϕ̂t) = Qt and Var
(
ξ̂t

)
= btDt − Ct.

A disadvantage of the filter residuals is that their variances may be large
for the first few observations of each series. This disadvantage is not shared by
residuals based on the Kalman smoother, which in fact have smaller variances
than the corresponding filter residuals. These residuals are

ϕ̂∗
t = Yt − atm∗

t and ξ̂∗t = m∗
t − btm∗

t−1.

However, the smoother residuals do not have the same uncorrelatedness prop-
erties as the filter residuals, making the smoother residuals less useful for some
purposes. Their variances are

Var
(
ϕ̂∗
t

)
= Λtτt − ataTt C

∗
t

and
Var

(
ξ̂∗t
)

= σ2bl−1
t τt − C∗

t − b2tC∗
t−1 + 2bt

Ct−1

Dt
C∗
t .

Standardized residuals (having unit variance) are denoted ˆ̄ξt and so on.
The residuals ϕ̂t are standardized componentwise. The correlation structure
of the model is easy to check by means of the autocorrelation functions of
the standardized filter residuals (the ˆ̄ϕit are considered separately for each i).
One may also plot ˆ̄ξt against ˆ̄ξt−1, to check the Markov assumption for the
state process, and ˆ̄ϕit against ˆ̄ϕi,t−1, to check the conditional independence
of the counts over time.

To check the assumption that the components are conditionally inde-
pendent given the state process, one may consider the empirical variance-
covariance matrices of the vector of standardized prediction errors,
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1
n

n∑
t=1

Q−1/2
t ϕ̂tϕ̂

T
t Q−T/2

t , (12.37)

whose expectations are all the d×d identity matrix. The off-diagonal elements
have asymptotic standard errors of n−1/2. Note that the standardization de-
pends on the version of the square-root matrix Q1/2

t chosen.
As in generalized linear models, the form of the variance functions (and

hence distributional forms) may be checked by plotting the standardized resid-
uals against the corresponding log fitted values. A “megaphone” shape would
indicate that the chosen shape parameter in the corresponding variance func-
tion is incorrect.

Plots of standardized residuals against each covariate are useful for de-
tecting nonlinearity of the model. The smoother residuals are a better choice
of residuals for this purpose. To check the log link assumption, one may plot
logYit against the log fitted values log(atm∗

t ). This plot should show a hori-
zontal linear relationship; a curvature or other unusual shape would indicate
inadequacy of the log link assumption.

Residual analysis may also help to determine whether a covariate is long-
term or short-term. The basic idea is that a short-term covariate would show
an association with the observation residuals (ϕ̂t or ϕ̂∗

t ) if it had been in-
correctly fitted as a long-term covariate, and similarly, a long-term covariate
would show association with the state process residuals (ξ̂t or ξ̂∗t ) if it had
been incorrectly fitted as a short-term covariate.

12.5.5 Analysis of Prince George Data

This section presents an application of the nonstationary KEE in the regres-
sion analysis of Prince George data introduced in Section 1.3.10. This is a sim-
pler version of the analysis than that given by Jørgensen et al. (1996b). The
response variable Yt is a four-dimensional vector, consisting of daily counts
of emergency room visits for the four respiratory disease categories. The main
idea in the model is to consider the number of daily emergency room visits
to be a Poisson process driven by a latent Markov process, denoted {θt}. The
components of Yt are assumed to be conditionally independent given θt, and
the conditional distribution for the i-th component of Yt follows a Poisson
distribution,

Yit|θt ∼ Po (aitθt) , i = 1, 2, 3, 4,

where log(ait) is a linear predictor depending on a common set of short-term
covariates xt via ait = exp

(
xTt αi

)
, where αi denotes the parameter vector

for the i-th disease category.
The latent morbidity process θt represents the “overall potential” for air

pollution to cause emergency room visits with respiratory symptoms. It is
assumed to follow a gamma Markov process, defined by
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θt|θt−1 ∼ Ga
(
btθt−1,

σ2

θt−1

)
,

where Ga(μ, δ2) denotes the gamma distribution with mean μ and coefficient
of variation δ. The parameter σ2 is a dispersion parameter, and log(bt) is a
linear predictor depending on the long-term covariates via their increments.
That is,

bt = exp
{
(ΔzTt )β

}
, with Δzt = zt − zt−1,

where zt is the vector process of air pollution measurements and β is the
parameter vector. The state process is standardized by taking θ0 = 1, and the
long-terms covariates are centralized by subtracting z1 from all values and
taking z0 = 0.

Knight et al. (1989) transformed Sulphur and Particulates to respectively
log(0.5+Sulphur) and log(Particulates), and both transformed covariates will
be used in the present analysis. For convenience, refer to log(0.5 + Sulphur)
as simply log-Sulphur. A logarithmic transformation of the minimum and
maximum humidity is made, and the difference and the sum of high and low
log-humidities are used as short-term covariates.

The three meteorological covariates are centralized by subtracting their
respective means. In this way, the intercept parameter represents the log ex-
pected number of emergency room visits for a day with average temperature
and humidity, and with air pollution as on April 1, 1984. The intercept is
allowed to depend on the day of the week.

To investigate the need for lagging the log-Sulphur covariate, according to
Knight et al. (1989), the proposed model includes up to lag 2 for log-Sulphur.
It does not seem reasonable to include lags for log-Particulates, because of
the linear interpolation used for this covariate (Jørgensen et al., 1996b).

The preliminary model for the data includes the covariates listed below.

Short-term covariates xt:
log-temperature,
difference of log-humidities,
sum of log-humidities,
7 day-of-week factors.

Long-term covariates zt:
lag 0, 1 and 2 of log-Sulphur,
log-Particulates.

The KEE estimates of the coefficients for the air pollution covariates are
reported in Table 12.2. To verify the need for lag 1 and lag 2 for log-Sulphur,
the Wald test given in Section 5.2.3 is used. The result wasW = 10.251, which,
compared with a χ2(2)-distribution, gave a p-value of 0.006. This confirms the
need for the inclusion of the two lagged log-Sulphur in the model.

The Kalman filter and smoother allow to define residuals for both the
observed and latent processes, to be used for model checking. There are two
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Table 12.2. Estimates and standard errors for air pollution effects.

log-Sulphur log-Particulates

lag 0 0.029 (0.016) −0.120(0.058)
lag 1 −0.023 (0.017) —
lag 2 0.048 (0.016) —

types of conditional residuals for the i-th observed process, defined in terms
of the Kalman filter and smoother by

ϕ̂it = Yit − fit, and ϕ̂∗
it = Yit − aitm∗

t ,

respectively. For the latent process, the conditional residuals are

ξ̂t = mt − btmt−1,

based on the Kalman filter. The residuals are then standardized to have zero
mean and unit variance. All references to residuals from now on are to these
standardized residuals with parameter estimates inserted.

The standardized residuals may be used for checking the correlation struc-
ture, the distributional assumptions, and the covariate structure of the model,
as shown below. The residuals ξ̂t and ϕ̂it are particularly useful for checking
the correlation structure of the data, because they are uncorrelated over time.

To investigate the possibility of a seasonality effect, the plots of the second
year’s residuals against the first year’s are shown, respectively, for both ξ̂t and
ϕ̂it in Figure 12.3 and Figure 12.4.

In the presence of seasonality not accounted for by the model, one would
expect to see a correlation between the first and second year’s residuals. None
of these five plots indicated any such correlation, but it should be kept in
mind that a two-year period may be too short to detect seasonality. However,
it seems that the meteorological variables have accounted for all seasonality
variation in the present data.

In order to verify the main model assumptions, now the residual analysis
is performed. Among many checks, here only a couple of key diagnoses are
reported.

To check the correlation structure for the state process, the autocorrelation
function (ACF) for ξ̂t is displayed in Figure 12.5. The plot shows that the
autocorrelations for lags 1, 16, and 27 fall slightly outside the asymptotic 95%
confidence bands. However, the confidence bands are approximate, even for
Gaussian time-series, and it seems that the significance would be slight in any
case, confirming the Markov assumption for the state process.

Similar ACF plots for ϕ̂it for each of the four categories shown in Figure
12.6, did not show anything unexpected. This confirms that the ϕ̂it are un-
correlated over time for each of the four categories and moreover confirms the
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Fig. 12.3. First-year residuals against second-year residuals for the four categories.

adequacy of assuming conditional independence of the Poisson counts over
time, given the state process.

The KEE estimates of the short-term effects are listed in Table 12.3, with
asymptotic standard errors in brackets. The interpretation of the model is
summarized as follows.

(a) The Wald test for the joint significance lag 0, 1 and 2 of log-Sulphur had
the value W = 11.706, which gave a p-value of 0.0085 compared with a
χ2(3)-distribution. Hence, the effect of log-Sulphur on emergency room
visits is highly significant.
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Fig. 12.6. Autocorrelation functions of residuals for the four categories.

(b)The coefficient for log-Particulates is negative, but only slightly signifi-
cant. Moreover, due to the use of linear interpolation, this result should
be interpreted with care. When the above model is fitted without covari-
ate log-Particulates, in order to see if correlation between log-Particulates
and log-Sulphur could have influenced the coefficient of log-Sulphur, the
resulting estimates for the effect of log-Sulphur are close to those of Table
12.2. The actual correlation between log-Particulates and log-Sulphur was
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Table 12.3. Estimates and standard errors for short-term effects.

Asthma Bronchitis Ear Others

Temperature 0.0106 (0.0060) −0.0147 (0.0045) 0.0002 (0.0039) − 0.0018 (0.0035)
Diff. humid 0.0682 (0.2336) 0.2964 (0.1763) 0.0903 (0.1168) − 0.0569 (0.0906)
Sum humid −0.0388 (0.1590) 0.1780 (0.1207) −0.0099 (0.0816) −0.1638 (0.0646)

Sunday 0.0796 (0.1760) 0.9099 (0.1620) 1.8208 (0.1552) 2.4185 (0.1531)
Monday −0.1050 (0.1807) 0.3878 (0.1695) 1.1237 (0.1601) 1.8075 (0.1554)
Tuesday −0.3667 (0.1893) 0.1634 (0.1745) 1.0236 (0.1614) 1.5843 (0.1571)
Wednesday −0.6121 (0.1986) 0.4878 (0.1685) 1.1242 (0.1606) 1.7100 (0.1564)
Thursday −0.5163 (0.1951) 0.3026 (0.1722) 1.0648 (0.1613) 1.6419 (0.1570)
Friday −0.1725 (0.1834) 0.1881 (0.1741) 1.1538 (0.1604) 1.8060 (0.1561)
Saturday 0.1798 (0.1747) 1.0689 (0.1612) 1.9462 (0.1554) 2.5418 (0.1535)

σ̂2 = 0.019

0.36, a modest value, confirming that the effect of log-Particulates on the
coefficient for log-Sulphur is likely to be of minor importance.

(c) Figure 12.7 shows the Kalman smoother estimate of the state process,
which estimates the potential morbidity due to air pollution without regard
to meteorological conditions. The estimated process is highly variable, and
the estimate of the dispersion parameter (σ̂ = 0.13, from Table 12.3) shows
that the stochastic variation of the state morbidity process θt itself is high.

(d)There is evidence of major episodes in December, 1985 and late March,
1986 of elevated risk of respiratory morbidity due to air pollution, and mi-
nor episodes in November–December, 1984 and April, 1985. These episodes
are to some extent evident in the counts for three of the categories (Bron-
chitis, Ear, and Others), seen in Figure 1.7 in Section 1.3.10.

(e) Figure 12.8 shows a plot of the day-of-the-week effects based on the es-
timated in Table 12.3 for the four categories, which are very similar to
the plot of daily averages shown by Knight et al. (1989). This plot shows
a fairly clear weekly cycle, with more emergency room visits during the
weekends than on workdays.
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13

Missing Data in Longitudinal Studies

13.1 Introduction

Missing values are omnipresent in longitudinal studies due to various reasons.
In general, a missing value refers to such an observation that is intended to
be recorded according a sampling or experimental protocol but failed to be
observed. Missing data present a potential source of bias for data collection,
especially when the number of missing values is substantial. It is ambiguity
introduced by missing values that possibly violates randomness and repre-
sentativeness of the collected sample from the study population, which, as a
result, could lead to misleading conclusions in data analysis.

Handling missing values is not a trivial task, as related statistical proce-
dures may be complicated by the following factors:

(a) The level of data incompleteness can vary from a study to another. Typi-
cally, observational studies are more likely to involve substantial amounts
of missing data than clinical trials or experiment-based studies. This is
simply because the former has essentially no control on the procedure of
data collection, as opposed to the latter in which some efforts can be made
to reduce the chance of getting void measurements on subjects. In addi-
tion, sometimes in clinical trials it is possible to track patients for reasons
behind the missing values. This extra information regarding reasons of
missingness is very useful for data analysts to determine a proper strat-
egy of handling missingness. However, such information is unavailable in
observational studies.

(b)The mechanism of missingness varies from case to case. In the literature,
three types of missing data mechanisms have been widely adopted. They
are, missing completely at random (MCAR), missing at random (MAR),
and not missing at random (NMAR). Among the three types, NMAR
is the most difficult case to deal with, because this is the situation where
causes of missingness depend on missing values themselves. Unfortunately,
NMAR does not occur rarely in practice. To properly handle NMAR, a
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certain probability model is inevitably required to describe the underlying
mechanism of NMAR. In the building of this model, however, the lack
of adequate information make this task almost impossible. Therefore, any
model built for the mechanism of missingness needs to go over an exhaus-
tive process of validation through a sensitivity analysis. More details will
be supplied in the consequent sections of this chapter.

(c) Reasons leading to incomplete data are manifold and variable. One reason
for missingness may be participants’ relocation to another location. This is
a reason that is unrelated to the study. More often reasons for missingness
are indeed related to the study. For example, in a quality of life study,
self-assessed questionnaires contain some questions that are personal and
highly sensitive, and hence patients are unwilling or feel uncomfortable
to answer them. This results in the so-called nonresponse. Dropouts oc-
cur in a longitudinal study when some subjects drop out from the study
due to various reasons. For instance, when a patient experiences adverse
treatment effects, this patient has to leave the study. It is not uncommon
in practice to encounter intermittent missingness, which is a missing data
pattern different from dropouts. Intermittent missing pattern refers to the
scenario in that a subject completes the study but skips a few occasions
in the middle of the study period. One example of this pattern is that
a scheduled date of clinical visit happens to be a patient’s birthday, so
he/she decides not to visit the clinic. In general, a study should make
every effort to collect and document reasons behind each missing value
because such information is very valuable for data analysts to determine
proper strategies of handling missing values.

Developing suitable strategies of handling missing values is challenged by
many complicating factors, including those discussed above. There are no
universal criteria or approaches available to dealing with missing data. Each
case has to be dealt with under specific circumstances related to that case.
Essentially, understanding the probability mechanism of how missing data
are generated is the key to draw valid statistical inference in the analysis of
incomplete data.

Data attrition can affect statistical analysis critically. For instance,

(1) Data attrition would reduce the power of statistical inference. This is par-
ticularly a concern in clinical trials where typically the sample size is deter-
mined beforehand, and increasing sample size in the middle of a clinical
trial, in order to compensate the loss of data, is nontrivial and costly.
Some statistical techniques, such as imputation method introduced in this
chapter, may help to partially overcome this difficulty.

(2) When part of data information is lost, data variability would be very likely
to be under-estimated on available data only. In some situations, this can
severely affect the estimation of standard errors and hence result in a
misleading conclusion about statistical significance.
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(3) Data attrition may incur bias in representativeness of the study sample
in relation to the study population. Therefore, estimation of treatment
effects is biased and the comparability of treatment groups is based on
unbalanced data information.

More detailed discussions on the effects of missing values can be found in
many books concerning missing data problems, such as in Little and Rubin
(2002), Schafer (1997), and Rubin (1987).

The present chapter will discuss two principled methods to handle missing
values in the context of longitudinal data analysis: the multiple imputation
based method and likelihood based method. These principled methods are
closely relied on missing data mechanisms, and in contrast some simple meth-
ods, such as the method of last observation carry over, do not need to assume
any missing data processes. Note that a modeling approach can only partially
retrieve in a systematic way the uncertainty of missing information in the
data. It is also hard to fully validate a model for a missing data mechanism.
Therefore, one must be always cautious to take any model-based approaches
in the analysis of incomplete longitudinal data. Sensitivity analysis is always
recommended in a serious investigation; see, for example, Little (1994), Rubin
et al. (1994), and Verbeke and Molenberghs (2000). Essentially, a sensitivity
analysis aims to examine how robust the results would be when some of key
model assumptions are intentionally perturbed in a set of “typical” scenarios.
A criterion widely used to assess robustness is the so-called local influence
proposed by Cook (1986). See Verbeke and Molenberghs (2000) for some de-
velopments of local influence in the modeling of missing data mechanisms.

Throughout this chapter, the schizophrenia trial data introduced in Section
1.3.5 will be used as a running example. Again, missing data behave very
differently in different settings, and the procedures presented in the analysis
of the data should not be assumed to be applicable everywhere.

In summary, there are three major steps required in analyzing incomplete
longitudinal data (or in any incomplete data analysis):

(1) Understand and model the underlying mechanism of missingness.
(2) Incorporate the understood mechanism to build a valid statistical infer-

ence.
(3) Conduct a sensitivity analysis and assess influences of some key model

assumptions on results of estimation and inference.

13.2 Missing Data Patterns

13.2.1 Patterns of Missingness

Let us begin by exploring missing data patterns, which is one of the most
important initial steps for understanding/modeling missing data mechanisms.
To illustrate some common missing data patterns encountered in practice,
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consider a hypothetical example given as follows. A longitudinal study involves
six subjects, each having three visits. Half of them are randomized into the
standard treatment and the other half into the new treatment. Blood pressure
is the outcome variable of interest.

Fig. 13.1. Graphic representation of five missing data patterns.

A complete data pattern refers to the case with no missing values, as shown
in Table 13.1 and in panel (a) of Figure 13.1.

A univariate (response) missing pattern refers to the situation where miss-
ing values only occur at the last visit, as shown in Table 13.2 and panel (b)
of Figure 13.1. This is a special case of dropout pattern.

Table 13.3 and panel (c) of Figure 13.1 show a uniform missing pattern,
in which missing values occur in a joint fashion. That is, the measurements at
last two visits are either both observed or both missing simultaneously. This
is a kind of dropout mechanism and the dropout time is uniform across all
subjects.
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Table 13.1. Complete data pattern.

Subject Time Treatment Blood pressure Subject Time Treatment Blood pressure

1 1 New 155 4 1 Standard 123
1 2 New 191 4 2 Standard 201
1 3 New 192 4 3 Standard 188
2 1 New 104 5 1 Standard 115
2 2 New 131 5 2 Standard 107
2 3 New 178 5 3 Standard 110
3 1 New 98 6 1 Standard 118
3 2 New 166 6 2 Standard 158
3 3 New 134 6 3 Standard 131

Table 13.2. Univariate missing data pattern.

Subject Time Treatment Blood pressure Subject Time Treatment Blood pressure

1 1 New 155 4 1 Standard 123
1 2 New 191 4 2 Standard 201
1 3 New ?? 4 3 Standard 188
2 1 New 104 5 1 Standard 115
2 2 New 131 5 2 Standard 107
2 3 New ?? 5 3 Standard ??
3 1 New 98 6 1 Standard 118
3 2 New 166 6 2 Standard 158
3 3 New 134 6 3 Standard 131

Table 13.4 and panel (d) of Figure 13.1 display a monotonic missing pat-
tern, where if one observation is missing, then all the observation after it will
be unobserved. This is a general and important kind of dropout mechanism
that allows subjects to have different dropout times. As a matter of fact, all
the above cases (b)-(d) are monotonic missing patterns.

An arbitrary missing pattern refers to the case in that missing values may
occur in any fashion, an arbitrary combination of intermittent missing values
and dropouts. Table 13.5 and panel (e) of Figure 13.1 demonstrate a possible
scenario for a mixture of intermittent missing (on Subject 5) at the second
visit and some dropouts (on both Subject 1 and Subject 2).

To fully describe the nature of data structure, it is convenient to introduce
an indicator variable for the status of missingness. An intended complete data
is denoted by Y = (Yobs,Ymis), where Yobs is the subset of all observed data
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Table 13.3. Uniform missing data pattern.

Subject Time Treatment Blood pressure Subject Time Treatment Blood pressure

1 1 New 155 4 1 Standard 123
1 2 New ?? 4 2 Standard 201
1 3 New ?? 4 3 Standard 188
2 1 New 104 5 1 Standard 115
2 2 New ?? 5 2 Standard ??
2 3 New ?? 5 3 Standard ??
3 1 New 98 6 1 Standard 118
3 2 New 166 6 2 Standard 158
3 3 New 134 6 3 Standard 131

Table 13.4. Monotonic missing data pattern.

Subject Time Treatment Blood pressure Subject Time Treatment Blood pressure

1 1 New 155 4 1 Standard 123
1 2 New 191 4 2 Standard 201
1 3 New ?? 4 3 Standard 188
2 1 New 104 5 1 Standard 115
2 2 New ?? 5 2 Standard 107
2 3 New ?? 5 3 Standard ??
3 1 New 98 6 1 Standard 118
3 2 New 166 6 2 Standard 158
3 3 New 134 6 3 Standard 131

and Ymis is the subset of all missing values. Here missing observations are
assumed to have their respective true underlying values and do not include
missing potential outcomes. Let R be the indicator of observedness. So, the
full set of observed data are

{Yij,obs, Rij}, j = 1, . . . , ni; i = 1, . . . ,K.

So far missing values are simply assumed to occur in response variables. For
example, the vector of (intended) observations for Subject 1 given in Table
13.5 is Y1 = (155,NA, NA), and the corresponding missing indicator vector
is R1 = (1, 0, 0). Similarly, the above discussion and notation can be extended
to cases of missing covariates.
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Table 13.5. Arbitrary missing data pattern.

Subject Time Treatment Blood Pressure Subject Time Treatment Blood Pressure

1 1 New 155 4 1 Standard 123
1 2 New ?? 4 2 Standard 201
1 3 New ?? 4 3 Standard 188
2 1 New 104 5 1 Standard 115
2 2 New 131 5 2 Standard ??
2 3 New ?? 5 3 Standard 110
3 1 New 98 6 1 Standard 118
3 2 New 166 6 2 Standard 158
3 3 New 134 6 3 Standard 131

13.2.2 Types of Missingness and Effects

According to Rubin (1976), in the context of likelihood inference there are
three types of missingness, defined as follows. These definitions are based
really on the conditional probability model of R given the data, namely f(R |
Yobs,Ymis, φ), where φ is a generic parameter involved in the modeling of
missing data process.

(1) Missing completely at random (MCAR) refers to the missing data process
that does not depend on either observed or missing values, namely

f(R | Yobs,Ymis, φ) = f(R | φ).
(2) Missing at random (MAR) refers to the missing data process that does

not depend on missing values, namely

f(R | Yobs,Ymis, φ) = f(R | Yobs, φ).

(3) Not missing at random (NMAR) refers to the missing data process that
can depend on observed and missing values, namely

f(R | Yobs,Ymis, φ) = f(R | Yobs,Ymis, φ).

These definitions can be better understood by examining the effects of such
mechanisms of missingness on likelihood inference. The following analytical
derivations provide a direct assessment.

First, the full likelihood function of model parameters η = (θ, φ) is

Lfull(η) =
∫
f(Yobs,Ymis | θ)f(R | Yobs,Ymis, φ)dYmis, (13.1)

where θ is related to the measurement process and φ is associated with the
missing data process.
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In the case of MCAR, the full likelihood function can be simplified as
follows:

Lfull(η) =
∫
f(Yobs,Ymis | θ)f(R | Yobs,Ymis, φ)dYmis

=
∫
f(Yobs,Ymis | θ)f(R | φ)dYmis

=
∫
f(Yobs,Ymis | θ)dYmis f(R | φ)

= f(Yobs | θ)f(R | φ).
This result implies that the complete-case analysis is valid if two parameters θ
and φ are distinct. Here the validity means that the large-sample performance
of the MLE obtained from the f(Yobs | θ) is equivalent to that obtained from
the full dataset (if missing data were observed). However, the small sample
performance might be different, to some extent, because of the attrition of
observations.

The complete-case dataset is generated by the so-called method of listwise
deletion, which deletes all subjects involving missing values from the data
collection. In parallel, the available-case dataset is obtained by deleting all of
those individual visits (not subjects if partially observed) at which missing
values occur. For example, in Table 13.4, the complete-case dataset would
contain the observations collected only from the three completers, namely
Subjects 3, 4, and 6; all observations of the other three Subjects 1, 2, and 5
are deleted because of the missing values. The resulting complete-case dataset
is then given in Table 13.6.

Table 13.6. Complete-case dataset.

Subject Time Treatment Blood pressure Subject Time Treatment Blood pressure

4 1 Standard 123
4 2 Standard 201
4 3 Standard 188

3 1 New 98 6 1 Standard 118
3 2 New 166 6 2 Standard 158
3 3 New 134 6 3 Standard 131

Most statistical softwares such as SAS set the method of listwise deletion
as a default procedure of dealing with (in fact, cleaning up) missing values.
Obviously, this default analysis is valid only when R follows MACR.

On the other hand, the available-case dataset comprises of all subjects,
either completely or partially observed, and only those visits involving missing
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values will be deleted. For the example of Table 13.4, the resulting available-
case dataset is given in Table 13.7.

Table 13.7. Monotonic missing data pattern.

Subject Time Treatment Blood pressure Subject Time Treatment Blood pressure

1 1 New 155 4 1 Standard 123
1 2 New 191 4 2 Standard 201

4 3 Standard 188
2 1 New 104 5 1 Standard 115

5 2 Standard 107

3 1 New 98 6 1 Standard 118
3 2 New 166 6 2 Standard 158
3 3 New 134 6 3 Standard 131

An issue in the analysis of available-case data is that the within-subject
correlation might be distorted in the connection to intermittent missingness.
For example, when the data of three repeated measurements were observed,
the AR-1 correlation structure is

corr(Yt, Yt−h) = ρh, h = 0, 1, 2,

where ρ ∈ (−1, 1) is the correlation coefficient. If Y2 is missing and deleted
from the dataset to create an available-case dataset, the AR-1 correlation
between Y1 and Y3 would be inflated to be ρ, rather than the originally ρ2.
However, the interchangeable correlation structure will not be affected by
the intermittent missingness. In contrast, for the case of monotonic dropouts,
both AR-1 and exchangeable correlation structure will be preserved. In gen-
eral, within-subject correlation structure is more easily made adaptive for the
pattern of monotonic dropouts to some of the existing models and methods
in the longitudinal data analysis than for other missing data patterns. This
available-case analysis allows more observations to remain in model fit, so it
is a better choice than the complete-case analysis, if the correlation structure
is not damaged or repairable. Nevertheless, this analysis is again valid only
when R follows MARC.

Second, when R follows MAR, the likelihood function can also be simplified
as follows.
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Lfull(η) =
∫
f(Yobs,Ymis | θ)f(R | Yobs,Ymis, φ)dYmis

=
∫
f(Yobs,Ymis | θ)f(R | Yobs, φ)dYmis

=
∫
f(Yobs,Ymis | θ)dYmis f(R | Yobs, φ)

= f(Yobs | θ)f(R | Yobs, φ).

This result suggests that the complete-case analysis is valid if θ and φ are
distinct. That is, the large-sample performance of the MLE obtained from
f(Yobs | θ) is equivalent to that obtained from the full data likelihood. The
small-sample performance can be affected by the shrinkage of sample size.

However, it is important to point out that when a quasi-likelihood infer-
ence (such as the GEE) is considered, the above arguments and conclusions
concerning MCAR and MAR are questionable. In effect, it is known that a
quasi-likelihood inference is still valid if R follows MCAR, but it is invalid if
R follows MAR.

Third, NMAR is often the case in practice. When R follows the NMAR
mechanism, the likelihood function cannot be further simplified,

Lfull(η) =
∫
f(Yobs,Ymis | θ)f(R | Yobs,Ymis, φ)dYmis.

This means that neither the complete-case analysis nor the available-case anal-
ysis is valid. As a default the complete-case analysis, implemented in most
statistical softwares, will unfortunately produce misleading results. Although
NMAR seems to be more plausible in many practical studies, it is very difficult
to justify specific assumptions made in the modeling of NMAR process since
there is often no strong evidence in the data against MAR. Sensitivity anal-
ysis is sometimes useful to provide certain clues for making a choice between
NMAR and MAR. Interested readers may refer to Verbeke and Molenberghs
(2000) for details regarding sensitivity analysis.

13.3 Diagnosis of Missing Data Types

Although it is difficult, understanding missing data patterns is the first step
in incomplete data analysis. In other words, for given a dataset with miss-
ing values, one has to examine which and how the missing data mechanism,
MCAR, MAR or NMAR, is plausible. In the current literature, little inves-
tigation has been made on this issue. Most methodological developments or
data analyses start with an assumption on missing data mechanism, either
MAR or NMAR, with no data-driven justification for the validity of the as-
sumption. Also, most of existing works in the literature are based only on the
mechanism of dropouts, a monotonic missing data pattern. Statistical proce-
dures inferring mechanisms of general missing data processes are much needed
in order to handle missing data properly.
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This section introduces a couple of methods that may assist in understand-
ing missing data patterns.

13.3.1 Graphic Approach

A simple way to inspect missing data patterns is plotting summary trajectories
across time or response variables. Take the schizophrenia trial data given in
Section 1.3.5 as an example. Figure 13.2 demonstrates average profiles of
patients’ dropout of the trial, where only the data collected at the medium
dose level are used in the summary. In this plot, the mean BPRS scores are
calculated within each of the dropout cohorts determined in terms of their
dropout times. This groping criterion is chosen according to the belief that
patients who withdrew at the same time from the study tended to have similar
medical conditions, and hence they can be considered as a clinically relevant
cohort. Note that the solid line (representing the completion cohort) in the
figure indicates a decreasing trend, reflecting on average the completers had
gained a certain improvement on their symptom over the course of the trial.
In other words, those patients, either in ST cohort and NT treatment, who
have benefited from the treatment are more likely to stay in the trial till the
end. In contrast, the mean BPRS scores of the dropout groups rise up right
prior to each dropout time, which seems to suggest the patients who did not
benefit from the trial tended to withdraw from the trial.
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Fig. 13.2. Summary plot of average response profiles across different times of
dropout.
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This study documented three major reasons for patients’ dropout: dropout
due to lack of treatment effect, dropout due to adverse experience, and
dropout due to other reasons. Table 1.4 summarizes the withdrawal patterns
for the two treatment groups. Based on the empirical evidence, it appears rea-
sonable to suspect that BPRS and patients’ intent of withdrawal are related.
This means that the dropout mechanism is NMAR and thus non-ignorable. To
conduct a proper comparability study between the two treatments, the infor-
mative dropout must be taken into account in statistical inference. To further
confirm the dependence of the dropout mechanism on the BPRS score, one
may run a logistic regression of Rij on Yij , by treating missing data (NA) as
a category. A mixture model may be needed to modify the standard logistic
regression in this setting.

13.3.2 Testing for MCAR

The graphic approach only provides an informal check on the missing data
mechanism, most useful for monotonic missing data patterns. It is appealing
to conduct a formal statistical test for whether a given missing data type is
MCAR, MAR, or NMAR.

Diggle (1989) developed a method to test the null hypothesis that the
dropouts are completely random (MCAR); that is, the probability that a sub-
ject drops out at time tj is independent of the observed sequence of outcomes
on that subject at time t1, . . . , tj−1. Let πij = P (Rij = 0) be the probability
that subject i drops out at time tj . Under the null hypothesis, πij cannot
depend on the observed measurements of subject i, but may be dependent on
some covariates such as treatment, time and so on. To screen if there is any
evidence from the data against the null hypothesis, Diggle (1989) suggested
first conducting tests separately at each time within each treatment group and
then investigating the resulting sample of p-values for any departure from the
uniform distribution on (0, 1).

The construction of individual tests at each time within each treatment
group requires a critical choice of a statistic such that it can properly reflect the
actual dependence of the dropout probabilities on the observed measurement
history. For example, a partial sum of Yij ’s may be used. With no doubt,
the conclusion drawn from this approach may vary over different choices of
test statistic. Moreover, the power of this approach is usually low because the
individual tests are typically based on very few cases.

Qu and Song (2002) proposed a method that seems appealing to test
for MCAR with the utility of quadratic inference functions (QIF). Unlike
Diggle’s approach that avoids any parameter assumptions about the process
generating the measurement data, Qu and Song consider the testing procedure
more specifically in the context of estimating equations based inferences. Their
idea essentially involves testing for whether the zero-mean (or unbiasedness)
property of estimating equations holds true. It is well known from the standard
theory of inference functions in Chapter 3 that the zero-mean assumption
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is a crucial condition that ensures consistency for estimators obtained from
estimating equations. If the unbiasedness holds in the presence of missing
values, modeling or not modeling the missing data mechanism will not matter,
so a complete-case analysis is proper. This case is generally referred to as the
ignorable missingness. Otherwise, modeling the missing data mechanism is
necessary, and in such a situation missing data mechanism is nonignorable.

In the context of quasi-likelihood or estimating equations based inferences,
because likelihood function is unavailable, deriving the effects of missing data
patterns discussed in Section 13.2.2 is no longer applicable. Thus in such a
quasi-likelihood setting, it seems reasonable to simply classify the missing data
types only into two categories: ignorable or nonignorable, corresponding to no-
need or need of modeling the missing data mechanism. A similar idea has been
also discussed in Chen and Little (1995) who developed a Wald-type test in the
GEE setting for testing for MCAR. Qu and Song’s test is a generalized score-
type test based on QIF, which essentially examines whether there exists a
common parameter under which the mean of estimating equations for different
missing patterns is zero.

Suppose first that there are two disjoint groups of subjects, one with com-
plete data and the other with incomplete data. Two vectors of estimating
equations, denoted by ψ1 and ψ2, respectively, can be constructed for each
group. Let ψ = (ψ1,ψ2)T . The ignorable missingness refers to the situation
where there exists a common parameter η such that

Eη(ψ) = 0, i.e., Eη(ψ1) = Eη(ψ2) = 0. (13.2)

The compatibility of two sets of estimating equations under two missing pat-
terns ensures that a consistent estimator can be obtained by solving ψ1 = 0
alone, with the incomplete observations being ignored.

To check the compatibility, a test for the zero-mean assumption in (13.2)
is utilized. Consider a quadratic inference function of the form

Q =
(
ψ1

ψ2

)T (
C1 0
0 C2

)−1(
ψ1

ψ2

)
= ψ1

TC−1
1 ψ1 +ψ2

TC−1
2 s2, (13.3)

where C1 and C2 are the estimated variances of ψ1 and ψ2, respectively. Note
that the covariance between ψ1 and ψ2 is 0, because they are dependent on
two distinct groups of subjects. A test statistic is naturally Q(η̂), which was
previously proposed to evaluate goodness-of-fit in Chapter 5, where η̂ is the
minimizer of the Q function. Under the null hypothesis of the existence of
a common parameter satisfying (13.2), Q(β̂) asymptotically follows χ2 with
{dim(ψ)−dim(η)} degrees of freedom, according to Theorem 3.14. Using this
chi-squared test, one can diagnose whether ignorable missingness is present in
the data.

Now extend this strategy to more general cases where there are m distinct
missing patterns instead of two. Note that subjects i and j are in the same
missing pattern if Ri = Rj . The vectors of missing status, Ri, i = 1, . . . ,K,
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contain not only dropout but also intermittent missingness. If there are m
missing-data patterns, then there are m unique missing indicator vectors,
denoted by el, l = 1, . . . ,m. Let el(Xi) and ek(Yi) denote observed covariates
and observed responses with respect to the l-th missing pattern.

According to Qu and Song (2002), the estimating function for the l-th
missing pattern is then given by

ψl(η) =
K∑
i=1

ψli{el(Xi), ek(Yi),η}I(Ri = el),

where I is an indicator function. The dimensions of the estimating functions
ψl do not have to be the same for different l. Under the null hypothesis
H0 : Eη(ψl) = 0, l = 1, . . . ,m, the generalized score-type test statistic,
defined in the form of the QIF by

Q(η̂) =
m∑
l=1

{ψl(η̂)}TC−1
l (η̂)ψl(η̂),where Cl = V̂ar(ψl), (13.4)

follows the chi-squared distribution with {∑m
l=1 dim(ψl)}−dim(η) degrees of

freedom asymptotically.
The flexibility of permitting ψl to have different dimensions for different

missing patterns provides advantages in estimation and testing with no in-
volvement of the so-called maximum identifiable parameter transformations
as required in Chen and Little’s (1995) Wald-type test. See more detailed
discussions in Qu and Song (2002).

Example 13.1 (Schizophrenia Trial Data Analysis).
Now let us apply Qu and Song’s generalized score-type test and Chen

and Little’s Wald-type test to a schizophrenia data example. By treating the
BPRS at week 0 as the baseline score, the marginal model with the identity
link function is

μ = E(Y ) = β0 + β1 trt + β2 base + β3 week,

where trt is 1 or 0 for the new or standard drug, base is the baseline score,
and the possible value of week is 1, 2, 3, 4, or 6.

As shown in Table 1.4, nearly half of the patients did not complete the trial
for various reasons. Obviously, only the dropout type of missingness occurs in
this study, possibly happening at follow-up time 2, 3, 4 or 6. Thereforem = 5,
including a pattern with complete observations.

Figure 13.2 displays the mean summary profiles for different missing pat-
terns including the complete one. As concluded in the preliminary graphic
screening, it appears there are very different trends for patients who com-
pleted the trial and for those who withdrew from the study. This suggests
that the mechanism of patients’ dropouts might not be ignorable.
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To provide rigorous statistical evidence as to whether ignorable missing
occurs for this trial, the generalized score-type test is applied, in which gener-
alized estimating equations with independence working correlation for m = 5.
The use of independence working correlation is tenable as far as consistency
concerns. The quadratic inference function is

Q(β) =
5∑
l=1

(ψl)TC−1
l ψl,

where

ψl =
124∑
i=1

XT
i (Yi − μi(β))I(Ri = el)

and Xi is a 4×5 covariate matrix whose t-th column is (1, trtit, baseit,weekit)T .
Table 13.8 lists estimates of regression coefficients β = (β0, β1, β2, β3)T , the
corresponding standard errors, and the Z-statistics.

Table 13.8. Estimates and test statistics for schizophrenia trial data.

Intercept trt base week

Estimates 5.49 0.89 0.62 −1.76
Std Err 3.45 1.91 0.09 0.25
Z-statistic 1.59 0.47 7.17 −7.04

The score-type test is found to be

Q(β̂) = 0.41 + 5.41 + 8.58 + 10.36 + 6.73 = 31.49,

with (5 − 1) × 4 = 16 degrees of freedom, and p-value= 0.012 under the
χ2

16 distribution. Thus there exists strong evidence that the missing data are
nonignorable. In particular, for missing patterns e3 = (1, 1, 1, 0, 0)T and e4 =
(1, 1, 0, 0, 0)T , missing data contribute more than 18 out of the total test
statistic of 31.49, or 57%. This implies that the patients who drop out of
the study at the mid-periods of the trial (i.e., e3 and e4) experience very
different treatment effectiveness in comparison to the other patients. Hence a
separate medical investigation for these patients may be required.

In the presence of nonignorable missing data, the estimators obtained
from minimizing the quadratic inference function are biased. Statistically this
means that there does not exist a common set of regression coefficients that
explain mechanisms of the complete and incomplete data generations.
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A useful property of the score-type test using the QIF is its flexibility
in pooling or collapsing data in the light of missing patterns. Since the Q-
statistic has an additive form and each component in the form uses different
patients or clusters, the chi-squared distribution is valid for different ways of
splitting the data. For instance, one could combine all patients who drop out
at different follow-up times together into one set, and those who complete the
trial to another set. Then two sets of estimating equations can be constructed,
one for each missing pattern. Under such a pooling, the minimum Q is found
as

Q(β̂) = 0.89 + 10.50 = 11.39,

where 0.89 and 10.50 are the test statistics from the completion group and
the drop-out group, respectively. The number of degrees of freedom is reduced
from 16 to 4, and the corresponding p-value is 0.023 under χ2

4-distribution.
The conclusion is drawn here again that missing is nonignorable.

13.4 Handling MAR Mechanism

There are a few approaches proposed in the literature to handling missing
data process that follows MAR mechanism. If a likelihood-based inference is
invoked, the complete-case analysis produces estimators that hold valid large-
sample properties. The weakness of the complete-case analysis is really the
shrinkage of sample size, which can sometimes seriously affect small-sample
performance.

In the context of correlated data analysis, a likelihood-based inference re-
quires the availability of proper parametric families of multivariate distribu-
tions for the data. As far as handling missing values concerns, vector general-
ized linear models in Chapter 6 and mixed-effects models in Chapter 7 furnish
two needed venues in that maximum likelihood inference is available. In con-
trast, a quasi-likelihood inference based on estimating functions, such as GEE
and QIF in Chapter 5, is more troublesome in handling missing values of MAR
type because in this case MAR is nonignorable missingness. Although MAR
mechanism favors likelihood-based inference, in reality it is difficult to deter-
mine if, for a given dataset, a missing data process follows MAR or NMAR. A
practical recommendation is to start with MAR mechanism, an much easier
mechanism to handle than NMAR, and then conduct a sensitivity analysis
to confirm the appropriateness of this MAR assumption, by perturbing the
dependence between the measurement process and missing data process. In
practice, there are no general rules as to how the perturbation is undertaken;
but the current consensus in the literature is to perturb some components in
an assumed missing data model, such as selection model and pattern-mixture
model introduced later in Section 13.5, in a rather restrictive manner. See
Minini and Chavance (2004). More substantial investigations are needed on
the research of sensitivity analysis.
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13.4.1 Simple Solutions and Limitations

Complete-case analysis is the simplest strategy to handle MAR, in which only
those subjects with complete records will be used in likelihood-based infer-
ence. As a rule of thumb, in practice when the resulting sample size of the
complete dataset is 10% of or less than that of the original sample size, the
complete-case analysis may be acceptable and the related small sample perfor-
mance may be little affected. Obviously, the complete-case analysis can waste
substantial amount of information, as those subjects that contain partially
observed measurements are removed from the analysis. Again, this method
is vulnerable to deviations from the assumption that the missing data pro-
cess is not related to the measurement process. For example, in the above
schizophrenia trial data analysis, patients who completed the trial cannot be
regarded as a random sample from the study population; as a result, the
complete-case analysis will produce a biased inference for the comparability
of two treatments.

An available-case analysis retains subjects who are partially observed,
which is otherwise deleted in a complete-case analysis. As pointed out be-
fore, a caveat for the available-case analysis is that the correlation structure
may be distorted by the resulting available data. For example, in longitudinal
data analysis, a serial correlation structure will be damaged by intermittent
missing types, but in clustered data analysis, an exchangeable correlation
structure may remain valid by the data restructuring.

Another simple method is the so-called last observation carried forward
(LOCF), proposed to handle monotonic missing data type of dropout. The
method of LOCF creates a complete dataset by carrying the last observation
forward. This is essentially a single-value imputation approach, so it suffers
most of the drawbacks that have been understood in the imputation paradigm
(see Section 13.4.2). For example, LOCF underestimates variation; that is, it
treats imputed values like observed measurements, but actual measurements
are apparently much less certain. In general, this method is not recommended
without cautious scrutiny and serious sensitivity analysis. See Cook et al.
(2004) for more discussions about LOCF.

13.4.2 Multiple Imputation

This section gives an introduction to the multiple imputation procedure, and
interested readers can find more discussions from Schafer (1997) and Rubin
(1987). This method works only for the case that the missing data process is
MAR.

The primary objective of an imputation method is to fill out missing values
with imputed data, so a complete dataset is created. Multiple Imputation (MI)
is developed to overcome some of shortcomings of single-value imputation, in-
cluding the key weakness–underestimation of variation. To some extent, MI
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can be regarded as a procedure that really “imputes variation.” Sampling vari-
ation is a familiar concept in the setting of data analysis. That is, a different
sample gives different parameter estimates. Standard error reflects such a vari-
ation. To estimate sampling variation, one needs to measure variation across
multiple samples, which may be generated by the method of bootstrapping
(Efron and Tibshirani, 1993).

Imputation variation is similar. Imputing different values leads to differ-
ent parameter estimates, and standard error should reflect this variation as
well. To estimate imputation variation, one needs to measure variation across
multiple imputed datasets. Figure 13.3 gives a graphic presentation of MI
procedure. First,M copies of the set of missing values, Ymis, is sampled from
a conditional distribution f(Ymis|Yobs,θ). Then, each of M copy fills in the
missing part of the dataset to produce an imputed dataset. In total, there are
M imputed datasets of the original full size.

Fig. 13.3. Graphic representation of multiple imputation procedure.

In principle, MI procedure works for arbitrary missing data patterns and
for missing responses and/or missing covariates. Markov chain Monte Carlo
(MCMC) facilitates MI for arbitrary missing patters, in that both model pa-
rameters θ and missing values Ymis are treated as unknowns. At the l-th
iteration, the algorithm proceeds by

drawing Y(l)
mis from f(Ymis | Yobs,θ

(l−1)), and then
drawing θ(l) from f(θ | Yobs,Y

(l)
mis).

After the burn-in is reached, the algorithm generatesM samples from the sta-
tionary distribution f(θ,Ymis | Yobs), and the simulated copies of Ymis can
therefore be used to form M imputed datasets. To implement this MCMC
sampling scheme, usually noninformative priors are assumed for θ. This
MCMC-based MI procedure is now available in SAS PROC MI as a default
imputation approach. PROC MI has the following features:
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• It outputs multiple copies of imputed datasets with the default of 5 sets.
• It works only for the multivariate normal distribution of the measurement

process. This imputing is undertaken directly from the distribution with
no modeling (such as linear regression models) at the mean component or
the variance component.

• It allows three imputation methods: regression, propensity, and MCMC,
with MCMC being the default. The first two methods work only for mono-
tone missing patterns, but the MCMC-based method works for arbitrary
missing patterns, including the scenario of missing covariates. Since the
multivariate normal distribution is assumed, all variables (either responses
or covariates) involved in imputation are presumably continuous.

A simpler version of MI is to sample M copies of Ymis directly from
f(Ymis | Yobs, θ̂EM ), where the parameter θ is replaced its MLE, θ̂EM ,
obtained from the EM algorithm (see the next section 13.4.3), provided that
this estimate θ̂EM is available. Of course, when the θ̂EM is already obtained,
there is no need to carry out MI procedure as far as parameter estimation
concerns. In fact, the MI-based estimation is a finite dimensional retrieval of
missing information and a discrete version of the EM-algorithm based MLE.
In other words, when imputed datasets covered all the sample space of Ymis

given Yobs, the MI estimation would be the same as the MLE obtained by the
EM algorithm. However, in many cases, finding MLE via the EM algorithm
is difficult, especially when missing values occur at both response variables
and covariates, and when the measurement process is high dimensional and
non-normal.

After the completion of imputation, for each imputed dataset, one sim-
ply conducts the complete-case analysis, which produces estimates, θ̂l, l =
1, . . . ,M , of the model parameter θ and the corresponding sampling covari-
ances (called the within-imputation variance), denoted by Wl = Var(θ̂l), l =
1, . . . ,M . On the other hand, the between-imputation variance is given by

B =
1

M − 1

M∑
l=1

(θ̂l − θ̄)(θ̂l − θ̄)T ,

where the average estimate is

θ̄ =
1
M

M∑
l=1

θ̂l.

Clearly, covariance B measures the variation due to imputation. Likewise, the
average of within-imputation variances is

W̄ =
1
M

M∑
l=1

Wl,
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which reflects the variation due to sampling of the data. Combining the two
types of variances in a componentwise fashion, the total variance of the average
estimator, θ̄i, of the i-th component θi of the θ, is given by

Ti = [W̄]ii +
(

1 +
1
M

)
[B]ii,

where [A]ii denotes the i-th diagonal element of matrix A. Moreover, for the
parameter θi, it is shown that

T
−1/2
i (θ̄i − θi) asy.∼ tvi,M , as M → ∞

a t-distribution with the degrees of freedom equal to

vi,M = (M − 1)
[
1 +

[W̄ ]ii
(1 +M−1)[B]ii

]2
.

This large-sample property allows us to easily establish related statistical in-
ferences for parameters θi’s.

In addition, to assess the efficiency of multiple imputation, first define the
ratio ri, called the relative increase in variance due to nonresponse,

ri =
(1 +M−1)[B]ii

[W̄ ]ii
,

and λi, called the fraction of missing information about θi

λi =
ri + 2/(vi,M + 3)

ri + 1
.

Then, the relative efficiency of using the finite M -copies imputation esti-
mator, rather than using an infinite copies of the fully efficient imputation, in
units of variance, is approximately a function of M and λi, given by

REi =
(

1 +
λi
M

)−1

.

SAS PROC MIANALYZE combines results of individual complete-case
analyses and produces valid statistics useful for inference. This SAS procedure
is applicable to many different statistical analyses, including linear mixed-
effects models (PROC MIXED) and generalized linear models (PROC GENMOD)
with or without GEE option.

Example 13.2 (SAS Illustration). Consider the hypothetical example of blood
pressure data discussed in Tables 13.1–13.5. Suppose that one applies a linear
mixed-effects model to analyze the data via SAS procedures MI and MIANA-
LYZE. To proceed, first invoke SAS PROC MI to create M = 5, say, imputed
datasets:
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proc mi data=bpress seed=12345 out=miout nimpute=5
minimum = 0 0 0
maximum = 300 300 300 .
round = 0.1 0.1 0.1 1;
var bp1 bp2 bp3 age;
mcmc nbiter=200 niter=100 chain=single;

run;

Since covariate treatment is categorical, it is not used in the calculation. A
continuous covariate age that was not shown in Tables 13.1–13.5 is added
here just for the illustration. One way to add treatment in the method of MI
is to separately run the above PROC MI for the two treatment cohorts, one
for the subpopulation of new treatment and the other for the subpopulation
of standard treatment.

After the imputed datasets are made available, run the complete-case anal-
ysis for individual dataset by PROC MIXED:

proc mixed data=miout method=ml;
class id trt;
model y=age trt /s;
repeat / type = un subject=id;
by _imputation_;
ods output solutionF=fixparms CovB=fixbcov;

run;

To combine individual results, run PROC MIANALYZE as follows:

proc mianalyze parms=fixparms covb=fixbcov;
var intercept age trt;

run;

13.4.3 EM Algorithm

In short, EM algorithm introduced by Dempster et al. (1977) is a general
approach to iterative computation of maximum-likelihood estimate when the
data are incomplete. Such an algorithm is comprised of an expectation step
followed by a maximization step at each iteration, so it is referred to as EM
algorithm. For the sake of ease for presentation, a Bayesian perspective is
taken to introduce this algorithm.

Suppose data are observed from a parametric model Y ∼ f(y|θ). In the
context of Bayesian inference for θ, the central task is to find the posterior
mode θ̂, namely, a statistic θ̂(y1, . . . , yK) that maximizes the posterior f(θ|Y ).

The basic idea behind EM algorithm is to augment the observed data Y
with latent (or missing) data Z so that the augmented posterior distribution
p(θ|Y, Z) is “simple” in the sense that for instance, it is easy to carry out
sampling, calculating, or maximizing the observed posterior p(θ|Y ).



312 13 Missing Data in Longitudinal Studies

EM algorithm is detailed as follows. Let θ(l) be the current estimate of the
mode of posterior p(θ|Y ). Then the next iteration requires:

• E-step: Compute an objective function of the form

Q(θ, θ(l)) = E{log p(θ|Z, Y )}, w.r.t. p(Z|θ(l), Y )

=
∫
Z

log{p(θ|Z, Y )}p(Z|θ(l), Y )dZ,

where Z is the sample space of the latent data Z.
• M-step: Maximize the Q function w.r.t. parameter θ to obtain θ(l+1). The

related optimization may be carried out by algorithms such as Newton-
Raphson, quasi-Newton, or downhill simplex.

The algorithm is iterated until a certain difference of, for example,

||θ(l+1) − θ(l)|| or ||Q(θ(l+1), θ(l)) −Q(θ(l), θ(l))||
is sufficiently small.

Why does the algorithm work? It is because EM algorithm is in nature
a fixed point algorithm with the ascent property; that is, each next iteration
pushes the update value closer towards the true mode of posterior p(θ|Y ) by
steadily increasing the posterior relative to the current value. That is,

p
(
θ(l+1)|Y

)
≥
(
θ(l)|Y

)
.

The theoretical justification is given below. Note first that

1 =
p(θ, Z, Y )
p(θ, Z, Y )

=
p(θ|Z, Y )p(Z, Y )

p(Z|θ, Y )p(θ|Y )p(Y )
=
p(θ|Z, Y )
p(Z|θ, Y )

1
p(θ|Y )

p(Z|Y ).

Taking logarithm on both sides yields

0 =log p(θ|Z, Y ) −log p(Z|θ, Y ) −log p(θ|Y ) + log p(Z|Y ).︸ ︷︷ ︸
constant w.r.t. θ.

Therefore,

log p(θ|Y ) = log p(θ|Z, Y ) −log p(Z|θ, Y ) + constant.

Now integrating both sides w.r.t. p(Z|Y, θ) gives

log p(θ|Y ) =
∫
Z

log p(θ|Z, Y )p(Z|Y, θ)dZ −
∫
Z

log p(Z|θ, Y )p(Z|θ, Y )dZ

+
∫
Z

log p(Z|Y )p(Z|θ, Y )dZ,

where the last term is always a constant when θ = θ∗ (given from the previous
iteration) in p(Z|θ, Y ).
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Define Q function and H function, respectively, as follows:

Q(θ, θ∗) =
∫
Z

log p(θ|Z, Y )p(Z|θ∗, Y )dZ,

and
H(θ, θ∗) =

∫
Z

log p(Z|θ, Y )p(Z|θ∗, Y )dZ.

The likelihood gain relative to the previous iteration θ = θ(l) is given by

log{p(θ(l+1)|Y )} − log{p(θ(l)|Y )} = Q(θ(l+1), θ(l)) −Q(θ(l), θ(l))
− (H(θ(l+1), θ(l)) −H(θ(l), θ(l)))︸ ︷︷ ︸

always ≤ 0, due to Rao(1973, 1e6.6).

Therefore, if we select an update θ(l+1) such thatQ(θ(l+1), θ(l)) > Q(θ(l), θ(l)),
which is what exactly the M-step does, then

p
(
θ(l+1)|Y

)
≥ p

(
θ(l)|Y

)
,

unless
Q(θ(l+1), θ(l)) = Q(θ(l), θ(l)).

When the latter happens, the algorithm stops and the convergence is declared.

Example 13.3 (Genetic Linkage Model).
Genetic linkage model (Rao, 1973) is an example used in many books

to illustrate the implementation of EM algorithm. Suppose 197 animals are
distributed into four genetic categories as

Y = (y1, y2, y3, y4) = (125, 18, 20, 34), (e.g., genotypes AA, AB, BA, BB)

with cell probabilities
(

1
2

+
θ

4
,
1
4
(1 − θ), 1

4
(1 − θ), θ

4

)
, implicitly confined θ ∈ (0, 1).

The direct approach is to use a flat prior θ ∼ U(0, 1), and for this case the
posterior is, via multinomial distribution,

p(θ|y1, y2, y3, y4) =
p(y1, y2, y3, y4|θ)p(θ)∫
p(y1, y2, y3, y4|θ)p(θ)dθ

∝ p(y1, y2, y3, y4|θ)p(θ)
∝ (2 + θ)y1(1 − θ)y2+y3θy4 .

Finding the posterior mode of p(θ|y1, y2, y3, y4) is equivalent to finding maxi-
mizer of the polynomial (2 + θ)y1(1 − θ)y2+y3θy4 .
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The latent data approach is to augment the observed data by splitting the
first cell into two cells with probabilities 1

2 and θ
4 , respectively. The augmented

data are then given by

X = (x1, x2, x3, x4, x5)

such that

x1 + x2 = y1 = 125,
xi+1 = yi, i = 2, 3, 4.

Also using a flat prior θ ∼ U(0, 1), the posterior conditional on the augmented
data is given by, through a similar augment based on a multinomial distribu-
tion as above,

p(θ|x1, x2, x3, x4, x5) ∝ (
1
2
)x1θx2(1 − θ)x3(1 − θ)x4θx5

∝ θx2+x5(1 − θ)x3+x4 .

By working with the augmented posterior, one can realize a simplification in
functional form.

Now the EM algorithm is invoked for estimation in this model. The E-step
computes

Q(θ, θ(l)) = E log p(θ|Z, Y )
= E{(x2 + x5) log θ + (x3 + x4) log(1 − θ)|X2, Y }

where

p(x2|θ(l), Y ) = p(x2|θ(l), x1 + x2)

∼ Binomial
(
125, θ(l)

θ(l)+2

)
.

So, the objective function takes the form

Q(θ, θ(l)) = {E(x2|θ(l), Y ) + x5} log θ + (x3 + x4) log(1 − θ),

which is linear in all of the latent data, with

E
(
x2|θ(l), Y

)
= 125

θ(l)

θ(l) + 2
. (13.5)

The M-step needs to find an update θ(l+1) as the solution to the following
equation

∂Q(θ, θ(l))
∂θ

∣∣∣∣
θ(l+1)

= 0.

It follows that the equation has a closed form expression given by



13.4 Handling MAR Mechanism 315

E(x2|θ(l), Y ) + x5

θ(l + 1)
− x3 + x4

1 − θ(l+1)
= 0,

and the solution is

θ(l+1) =
E(x2|θ(l), Y ) + x5

E(x2|θ(l), Y ) + x3 + x4 + x5
,

where E(x2|θ(i), Y ) is given by (13.5).
Starting at θ0 = 0.5 (a naive guess as the middle point of the parameter

space), the EM-algorithm converges to θ∗ = 0.6268 (the observed posterior
mode) after 4 iterations.

Having arrived at the observed posterior mode, θ∗, one wants to evaluate
the observed Fisher information given by

−∂
2 log p(θ|Y )
∂θ2

∣∣∣∣
θ=θ∗

.

Numerical differentiation may be used in this calculation. However, in practice
the direct numerical calculation of the observed Fisher information can be
numerically unstable.

The Louis’ Formula (1982) is based on the following identity relation,

−∂
2 log p(θ|Y )
∂θ2

= −
∫
Z

∂2 log p(θ|Y, Z)
∂θ2

p(Z|Y, θ)dZ − Var
{
∂ log p(θ|Y, Z)

∂θ

}

where the variance is taken under p(Z|Y, θ). In some situations, it may be
difficult to analytically compute the first term on the right-hand side

∫
Z

∂2 log p(θ|Y, Z)
∂θ2

p(Z|Y, θ)dZ,

which can be approximated by using the Monte Carlo simulation method,

∫
Z

∂2 log p(θ|Y, Z)
∂θ2

p(Z|Y, θ)dZ ≈ 1
M

M∑
l=1

∂2 log p(θ|Y, zl)
∂θ2

where z1, . . . , zM
iid∼ p(Z|θ∗, Y ).

Similarly, one can approximate the variance term on the right-hand side
by

Var
{
∂ log p(θ|Y, Z)

∂θ

}
≈ 1
M

M∑
l=1

{
∂ log p(θ|Y, zl)

∂θ

}2

−
{

1
M

M∑
l=1

∂ log p(θ|Y, zl)
∂θ

}2

.
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Example 13.4 (Genetic Linkage Model Continued).
In the Example 13.3 of the genetic linkage model, set

θ∗ = 0.6268, M = 10, 000, K = 125, p =
θ∗

θ∗ + 2
.

The Monte Carlo simulation estimated the variance as

V̂ar
(
∂ log p(θ|Y, Z)

∂θ

)
= 57.8.

Example 13.5 (Linear Regression Analysis).
Consider a linear regression model for n-dimensional response

Y = XTβ + ε

where ε ∼ MVNn(0, Σ) and XT = (xT1 , . . . ,x
T
n ). Data consist of independent

pairs (Yi,Xi), i = 1, . . . ,K.
Here consider a simple case that missing values occur only in the re-

sponses and no occurrence of missing values in covariates. For each data
point, set Yi = (Yi,obs,Yi,mis), i = 1, . . . ,K. Let Y = (Y1, . . . ,YK),
Yobs = (Y1,obs, . . . ,YK,obs), and Ymis = (Y1,mis, . . . ,YK,mis). Thus, write
Y = (Yobs,Ymis). Also, let μi = E(Yi) = (μi1, . . . , μin)T , and let θ be the
vector of parameters to be estimated, including the regression coefficients β
and distinct variance-component elements in the covariance matrix Σ.

It is easy to show that for the multivariate normal distribution,

S(Y) = {Yi, i = 1, . . . ,K;YiYT
i , i = 1, . . . ,K}

gives a set of sufficient statistics. So, to estimate θ, the EM algorithm is
formulated as follows.

• E-Step: Calculate conditional expectations of the sufficient statistics:

Y(l)
i = E(Yi|Yobs,X,β(l), Σ(l))

=
{
Yij , if Yij is observed
xTijβ

(l), if Yij is missing.

And the (j, k)-th element of matrix (YiYT
i )(l) = E(YiYT

i |Yobs,X,β
(l), Σ(l))

is given by

[
(YiY Ti )(l)

]
j,k

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

YijYik, Yij and Yik observed[
Σ(l)

]
jk

+ Y (l)
ij Y

(l)
ik , Yij and Yik missing

YijY
(l)
ik , Yij observed but Yik missing

Y
(l)
ij Yik, Yij missing but Yik observed.
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• M-step: Find the MLE based on the sufficient statistics S(Y(l)) of the full
data Y(l) obtained from the E-step. For the regression coefficient β,

β(l+1) =

(
K∑
i=1

XT
i Σ

(l)−1Xi

)−1 K∑
i=1

XT
i Σ

(l)−1Y(l)
i .

And, for the variance matrix Σ,

Σ(l+1) =
1
K

K∑
i=1

(YiYT
i )(l) − 1

K

K∑
i=1

XT
i β

(l+1)Y(l)T
i

− 1
K

K∑
i=1

Y(l)
i β

(l+1)TXi +
1
K

K∑
i=1

XT
i β

(l+1))β(l+1)TXi.

(13.6)

Iterate the E and M steps until convergence. The initial values may be
specified as follows. First conduct an available-data analysis under the inde-
pendence correlation structure (Σ = I) and obtain β(0). Then acquire Σ(0)

by applying the formula (13.6).

13.4.4 Inverse Probability Weighting

Handling MAR missing mechanism becomes a lot harder when likelihood-
based inference is not available. For example, a complete-case analysis based
on GEE, when the missing data process is MAR, produces biased estimation
for effects of covariates. Therefore, in order to conduct a valid inference using
GEE approach or as such, it is necessary to adjust for sampling bias induced
by missing observations. Typically, in the context of estimating (or inference)
functions, adjusting MAR type of missingness is facilitated through weighting
subjects’ probabilities of being sampled from the study population. This sec-
tion introduces the so-called inverse probability weighting procedure proposed
by Robins et al. (1994,1995) that gives rise to unbiased estimating equations
under MAR.

For convenience, the following presentation focus only on dropout missing
data pattern. Let πij = P (Rij = 1|Yi,xi) be the probability of observing
subject i at time point j, given the response vector Yi and covariates xi. Here
probability πij may involve the parameter vector α, of dimension q, say, which
parametrizes the missing data process. Let Δi = diag{Rij/πij , j = 0, 1, ..., ni}
be a matrix of weights accommodating missingness, and let Di = ∂μi/∂β

T be
an ni× p matrix of the first-order derivatives of the mean vector μi w.r.t. the
regression parameter vector β of p dimension, i = 1, 2, ...,K. Denote by Vi =
Var(Yi) the covariance matrix of the response vector Yi. Let γij = Yij − μij ,
and γi = (γi1, ..., γini)T . Set an estimating function of the form
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U(β,α) =
K∑
i=1

Ui(β,α) =
K∑
i=1

DT
i V−1

i Δiγi, (13.7)

with
Ui(β,α) = DT

i V−1
i Δiγi, i = 1, 2, ...,K.

The resulting estimating equations U(β,α) = 0 is called the inverse probabil-
ity weighted GEE (IPWGEE). Note that the inclusion of Rij in the expression
helps to select all observed data in the formulation of IPWGEE. Therefore,
this corresponds effectively to an available-case analysis. Under some regular-
ity conditions, IPWGEE produces consistent estimation for the β, because as
shown in the following Proposition 13.6, the U(·) is unbiased.

Proposition 13.6. Suppose that the weight matrices Δi(α0) are correctly
specified under the true value α0 and that the first moment of the measurement
process, μij = E(Yij |xi), is correctly modeled. Then the estimating function
U(β,α0) given in (13.7) is unbiased, namely E(U) = 0.

Proof. First let

Ai = ER|(Y,x)(Δi)
= diag{E(Rij |Y,x)/πij , j = 0, 1, ..., ni}.

It follows that

E{Ui(β,α0)} = EY |x
{
ER|(Y,x)(DT

i V−1
i Δiγi)

}
= EY |x(DT

i V−1
i Aiγi)

= EY |x(DT
i V−1

i γi)
= 0,

where the second last equality holds by the fact that Ai is the identity matrix
if the probabilities πij are correctly specified; that is, πij(α0) = E(Rij |Y,x)
under the true value α0. Moreover, the last equality is due to the assumption
that the mean structure of the measurement process is correctly specified;
that is, EY |x(γi) = 0.

This weighting strategy was originally proposed in the literature of sur-
vey sampling (Horvitz and Thompson, 1952) to handle unequal probability
sampling. The basic idea is that each subject’s contribution to the weighted
available-case analysis at time j is replicated in a scale of 1

πij
, where πij is

the probability that subject i is sampled (or observed) at time tj . The weight
1
πij

counts once for himself/herself and
(

1
πij

− 1
)

for those subjects with the
same history of responses and covariates, but who are not observed at time tj .

One constraint in the utility of this IPWGEE is the proper modeling of
probabilities πij of the dropout process, which is unknown in practice. The
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estimator β̂ obtained from IPWGEE (13.7) is consistent only if
√
K-consistent

estimates π̂ij are plugged in the equation. Another limitation for the IPWGEE
is that the probabilities πij must be bounded from a certain lower limit. This
lower bound cannot be too small; otherwise very few observations that have
small (close to zero) probabilities of occurrence will have very large weights
and hence dominate the performance of the IPWGEE. In practice, however,
this condition is not always satisfied or controlled properly, especially when
the modeling of the dropout probabilities is involved. One possible approach
to dealing with this issue is to trim or tune the probabilities πij under a
certain criterion, such as a trade-off between bias and efficiency of the resulting
estimators. This is worth a further exploration.

There are two modeling strategies for missing data processes that are
widely used in practice. The first one is a transition model in that the
propensities for dropout are dependent on the history of dropout process.
Let λij = P (Rij = 1|Ri,j−1 = 1,xi, Yi) be the conditional probability that
subject i is observed at time tj , given covariates xi (containing no missing
values), the response vector Yi, and that subject i stays at the study up to
the previous time point j − 1. Let Hy

ij = {Yi1, ..., Yi,j−1} denote the history
of observed responses up to (but not including) time point tj .

A logistic regression model may be used for the dropout probabilities,

logit(λij) = uTijα, (13.8)

where uij is a vector consisting of both information concerning covariates Xi

and observed responses Hy
ij . This model implies that the conditional proba-

bility λij is determined by the covariates Xi and the historic responses Hy
ij ,

given subject i is in the study at the previous time point tj−1, and hence
this model (13.8) characterizes an MAR mechanism. This approach has been
widely used in the literature for the modeling of dropout processes. See Dig-
gle and Kenward (1994), Robins et al. (1995), Fitzmaurice et al. (1996), and
Molenberghs et al. (1997).

Estimation of parameter α can be proceeded by running a logistic regres-
sion analysis. Let Di be the random dropout time for subject i, and di be a
realization, i = 1, 2, ...,K. Denote

Li(α) = (1 − λidi)
di−1∏
j=2

λij ,

where λij follows the model (13.8). Then the log-likelihood is given by

�(α) =
K∏
i=1

logLi(α).

Then, the score equation is s(α) =
∑K
i=1 ∂ logLi(α)/∂α, which will be un-

biased if model (13.8) is correctly assumed. Moreover, the resulting marginal
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probabilities πij = πij(α) =
∏j
t=2 λit(α) can be consistently estimated, when

the α is replaced by a consistent estimator α̂.
The second model is a marginal model in that the marginal probabilities

of the dropout process are directly specified as a function of historic responses
and covariates. A logistic model takes the form

logit(πij) = uTijα, (13.9)

where uij is similar to that defined above in (13.8). Note that model (13.9)
states that marginally the probability of observing subject i at time tj de-
pends on the observed responses and covariates Xi. In contrast, jointly the
probability of observing subject i over the entire time course could or could
not depend on unobserved responses, depending on the imposed association
structure for observed indices Rij . If the association structure depends only
on the observed responses and covariates Xi, then (13.9) models MAR mech-
anism; otherwise, it models NMAR mechanism. Under this setup, estimation
of α can be proceeded by applying a usual GEE approach on observed in-
dices Rij , in which the covariance matrix of Ri = (Ri1, . . . , Rini)T may be
further modeled by an setup similar to GEE2 presented in Section 5.3 (e.g.,
Yi and Cook, 2002). Some alternatives to the IPWGEE are also proposed in
the literature, such as Paik (1997) and Zorn (2001).

13.5 Handling NMAR Mechanism

This section gives a brief review on several parametric and semiparametric ap-
proaches to handling dropouts that are potentially NMAR. Follmann and Wu
(1995) and Ibrahim et al. (2001) gave considerable attention to the modeling of
longitudinal binary data with nonignorable missing values for GLMMs, while
Paik (1997), Lipsitz and Ibrahim (2000), and Fitzmaurice and Laird (2000)
analyzed nonignorable missing data using GEEs, among others. Interested
readers can find more details regarding parametric modeling of the dropout
process from Diggle et al. (2002) and Verbeke and Molenberghs (2000). This
section focuses on a semiparametric pattern mixture model proposed by Sun
and Song (2001).

13.5.1 Parametric Modeling

In the literature, there are three parametric approaches to modeling of lon-
gitudinal data with potentially informative dropouts. The first one is the
so-called selection model approach, proposed by Diggle and Kenward (1994).
This model corresponds to the following factorization of the joint distribution
(or the likelihood):

f(Y,R) = fθ(Y)fφ(R|Y)

=
∫
fθ(Yobs,Ymis)dYmis

∫
fφ(R|Yobs,Ymis)dYmis,
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which essentially claims that the missing data mechanism is dependent on
the measurement process. In a selection model, probabilities of dropout are
specified as a function of the measurement process via a marginal model of
the form, for example,

logitP (Rij = 1|Y) = φ0 + φ1(Hi,j−1) + φ2(Yij), (13.10)

where φl, l = 1, 2 are certain suitable functions. Clearly, when φl ≡ 0, l = 1, 2,
(13.10) corresponds to MCAR; when φ2 ≡ 0, (13.10) corresponds to MAR;
and φ2 �= 0, (13.10) corresponds to NMAR.

The application of selection models should be cautious. When the dropout
process is NMAR, the parameters θ and φ cannot be separately identifiable in
the likelihood, and the resulting likelihood inference becomes nontrivial. More
critically, validating the assumed model from the observed data is very difficult
or even impossible due to poor identifiability of the model parameters. See,
for example, Fitzmaurice et al. (1996) and Verbeke and Molenberghs (2000).

The second approach is based on a shared random effects model proposed
by Wu and Carroll (1988). Intuition behind this modeling strategy is that
both measurement process and dropout process are driven by a common set
of unobserved characteristics, U, of subjects, and assume that conditional on
such a shared set of random effects (describing those unobserved characteris-
tics) U, Y,R|U are independent. The measurement process can be modeled
by the familiar mixed-effects models in Chapter 7, and the dropout process
may be specified as follows:

logit P(Rij = 1|U) = φ0 + φ1(Hi,j−1) + φ2(Yij) + ui (13.11)

where φl, l = 1, 2 are certain suitable functions and ui is the random effect.
Similar to the selection model, when (φ1, φ2) ≡ (0, 0), (13.11) corresponds
to MCAR; when φ2 ≡ 0, (13.11) corresponds to MAR; and φ2 �= 0,(13.11)
corresponds to NMAR.

Since both measurement and dropout processes depend on random effects,
related inferential procedures are very challenging. Little progress has been
seen in the literature regarding statistical inference in such a model setting.

Pattern mixture models is the third parametric modeling approach pro-
posed by Little (1993). It takes a completely opposite view of factorizing the
joint distribution (or the likelihood) to that of the selection model:

f(Y,R) = fθ(Y|R)fφ(R) = fφ(R)
∫
f(Yobs,Ymis|R)dYmis,

which essentially claims that the measurement process is driven by the
dropout process. In other words, measurements are generated under differ-
ent missing data patterns that classify subjects into different subpopulations.
On the basis of this point of view, one may conduct a stratified analysis con-
ditional on dropout patterns if the dropout process is NMAR. In the situation
of clinical trials, this parametric modeling approach is relevant to ask what is
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the difference between two treatments on patients who drop out from the trial
with similar reasons. Interested readers may find more discussion about pat-
tern mixtures models in the mixed-effects models in Verbeke and Molenberghs
(2000).

13.5.2 A Semiparametric Pattern Mixture Model

This section presents a semiparametric version of pattern mixture model to
handle informative dropouts, proposed by Sun and Song (2001). This example
is motivated from the schizophrenia clinical trial described in Section 1.3.5.
The main objective of the trial is to evaluate a new treatment against a
standard treatment for the disease.

Suppose a longitudinal study prespecifies a fixed number of visits, say
n, at times t1 < . . . < tn on K subjects. For subjet i, let Yi(t) denote the
measurement process and Ri be the time of dropout due to lack of treatment
effect, and Ci the time of withdrawal for reasons unrelated to the measurement
process. In practice, Yi(t) is observed only if t ≤ min{Ri, Ci} and for the
withdrawal (censoring) time, one observes R̃i = min{Ri, Ci} and an indicator
ξi = I{Ri ≤ Ci}.

The dropout time Ri can take possible values in {t1, . . . , tn}. Let xi =
(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 0) be (p − 1)-dimensional vectors of
treatment indicators for subjects in treatment groups 1, 2, . . . , p, respectively.

To compare treatment groups, Hogan and Laird (1997) suggested to strat-
ify subjects according to their dropout patterns (or dropout times). Therefore,
all subjects can be classified into n+1 groups according to their values of Ri.
This gives groups of subjects with Ri = tl, l = 1, . . . , n, and the group of
subjects who complete the study or withdraw for reasons unrelated to treat-
ment effect (ξi = 0), respectively. For convenience, for subjects who finish the
study, define Ri = tn+1 = ∞. For subjects with Ri = tl and ξi = 1, define
vector {δi,k, k = 1, ..., n + 1} as its classification group indicators (0 or 1)
such that δil = 1 and

∑n+1
k=1 δik = 1. For subjects with ξi = 0 and who finish

the study, define δik = 0, k = 1, ..., n, and δi,n+1 = 1.
Let Yi = {Yi(t1), ..., Yi(tki) } denote the observed values of Yi(t), 1 ≤ ki ≤

n. Then the observed data consist of {(Yi, xi, R̃i, ξi, {δik, k = 1, . . . , n +
1} ) ; i = 1, . . . ,K}. Although this idea is applicable to general missing data
patterns, the presentation below focuses on the pattern of dropout only. Let
ωil = P{Ri = tl}, l = 1, . . . , n, and ωi n+1 = 1 −∑n

l=1 ωil (the probability
that a subject completes the study), i = 1, . . . ,K. Here the ωil are assumed
to be identical for the subjects within the same treatment group, but could
differ for the subjects in different treatment groups. In addition, assume that
conditional on Ri, the missing mechanism of the response is MAR.

The first objective is to test for the hypothesis H0: there is no treatment
effect. A natural way to test this H0 is to estimate the underlying treatment-
specific process of the clinical outcomes and then to compare the estimated
processes. Another method is to summarize each subject’s outcomes with a
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single summary statistic and then to compare the summary statistics. Sun
and Song (2001) proposed a Wilcoxon-type statistic:

U =
1
K3/2

n+1∑
l=1

∑∑
i<j
ω̂ilω̂jl δilδjl (xi − xj)

ki∑
u=1

kj∑
v=1

[Yi(tu) − Yj(tv) ]

(13.12)
where the ω̂il are the treatment-specific product-limit estimators of the cor-
responding ωil based on the time-to-event data {( R̃i, ξi, ) ; i = 1, . . . ,K},
which is well known in the survival analysis (see for example Klein and
Moeschberger, 1997, Section 4.2).

Let Sl = {i : δil = 1}, l = 1, . . . , n+1, and Ȳi =
∑ki

u=1 Yi(tu), i = 1, . . . ,K.
Then the statistic in (13.12) can be rewritten as

U =
1

K3/2

n+1∑
l=1

∑∑
i<j∈Sl

ω̂ilω̂jl(xi − xj)(kj Ȳi − kiȲj), (13.13)

which is a weighted summation of treatment differences over different with-
drawal groups. Note that the estimated weights ω̂il are used in U to take into
account the possible differences of withdrawal distributions among different
treatment groups.

It is easy to show that under the null hypothesis H0, U has expectation
zero. Also, under H0, U is asymptotically equivalent to the U-statistic U∗ =
K−1/2

∑K
i=1 ai, where

ai =
n+1∑
l=1

ωil δil Ȳi ( k̄l xi − x̄l ) , (13.14)

where,

k̄l =
1
K

K∑
j=1

ωjl δjl kj

and

x̄l =
1
K

K∑
j=1

ωjl δjl kj xj .

It follows that for large K, the distribution of U can be approximated by a
multivariate normal distribution with mean zero and covariance matrix Σ̂ =
K−1

∑K
i=1 âi âTi , where âi is the ai in (13.14) with the replacement of the

ωjl by their estimates. Thus, the null H0 is rejected at significance level α if
the observed Wald statistic W = UT Σ̂−1 U > χ2

p−1(α), where Σ̂−1 denotes
the inverse of Σ̂ and χ2

p−1(α) the level α critical value of the χ2 distribution
with p− 1 degrees of freedom.

The second objective is, after the null H0 is rejected, to estimate the
magnitude of differenced treatment effects. To proceed, Sun and Song (2001)
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assumed that given xi and Ri, the mean function of the underlying measure-
ment process for subject i follows a semi-parametric model of the from

μi(t) = E[Yi(t) |xi, Ri = tl ] = μ
(l)
0 (t) exp{xTi β } , (13.15)

i = 1, . . . ,K, l = 1, . . . , n + 1. Here μ(l)
0 (t) denotes the underlying baseline

mean function for all individuals with Ri = tl and is assumed to be a con-
tinuous and completely unspecified function, and β is a (p − 1) dimensional
vector of regression parameters representing treatment effects on the mean
function of the Yi(t).

Model (13.15) can be thought of essentially as a semiparametric pattern
mixture model or as a stratified marginal model. It implies that all subjects
having the same dropout time (or the same dropout pattern) share the same
underlying mean function and that treatments have multiplicative effects on
the conditional mean functions of the underlying measurement process. Model
(13.15) also states that the treatment effect does not differ across different
dropout groups. It should be noted that here β represents conditional treat-
ment effects; that is, it gives the effect of treatments on subjects who remain
in the study for the same period of time. In other words, it models treatment
effects separately according to dropout patterns. As pointed out by Shih and
Quan (1997), in clinical trials, the conditional effect could be more relevant
than the unconditional effect. For example, a medical doctor may be more
interested in answers to the questions such that what would be the difference
between two treatments if a patient took them for the same period of time.

If the baseline mean functions μ(l)
0 are identical for different dropout pat-

terns or the dropout probabilities are the same for all subjects, then the
regression parameters β also represent unconditional marginal treatment ef-
fects. This follows since

E [Yi(t) |xi ] = exp{xTi β
T }

n+1∑
l=1

μ
(l)
0 (t)ωil ,

which can be used to estimate the unconditional marginal treatment effect.
An estimating function similar to GEE is proposed to estimate β. That is,

U(β) =
1

K3/2

n+1∑
l=1

∑∑
i<j
ω̂ilω̂jl δilδjl (xi − xj) ×

ki∑
u=1

kj∑
v=1

[
Yi(tu) e−xT

i β − Yj(tv) e−xT
j β
]
.

This inference function U(β) is unbiased, namely E{U(β)} = 0. First note
that under model (13.15), E

[
exp{−xTi β} Yi(t) |xi, Ri = tl

]
is independent of

index i. It follows that
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E[U(β) ] =
1

K3/2

n+1∑
l=1

∑∑
i<j

E{ω̂ilω̂jl δilδjl (xi − xj) ×

E

⎡
⎣ ki∑
u=1

kj∑
v=1

[Yi(tu) e−xT
i β − Yj(tv) e−xT

j β ] | all xi, all Ri

⎤
⎦ } ,

which is equal to zero under the model (13.15). An estimate of β, say β̂, is
defined as the solution of equation U(β) = 0. A main advantage of this esti-
mating equation lies in the fact that the equation does not involve the under-
lying mean functions μ(l)

0 (t). It follows from the standard theory of estimating
functions in Chapter 3 that β̂ is a consistent estimate of β. Moreover, for
large K, the distribution of

√
K ( β̂−β) can be approximated by a multivari-

ate normal distribution with mean zero and observed Godambe Information
covariance matrix given by

jo(β̂) = K S−1
o (β̂) V̂o(β̂)S−T

o (β̂) ,

where So is the observed sensitivity matrix So(β) = − ∂U(β)/∂β, and Vo is
the observed variability matrix given by

V̂o(β) = K−1
K∑
i=1

exp(−2xTi β) âi âTi .

Given β̂, a natural estimator of the baseline mean function μ(l)
0 (t) is given

by

μ̂
(l)
0 (tk) =

∑K
i=1 δil I(tk ≤ tki)Yi(tk) / exp(xTi β̂)∑K

i=1 δil I(tk ≤ tki)
(13.16)

at time tk, and by the straight line between μ̂(l)
0 (tk−1) and μ̂(l)

0 (tk) for tk−1 <
t ≤ tk, where t0 = 0, k = 1, . . . , n.

Example 13.7 (Analysis of Schizophrenia Trial Data).
This example continues the analysis of the schizophrenics data given in

Example 13.1, where the dropout process has been found to be nonignorable.
Now the above semiparametric pattern mixture model is applied to analyze
the data and draw inference on the treatment effects.

The trial was designed to compare a standard anti-psychotic medication
(ST) to a new one (NT), of which three doses (low, medium, and high) were
administered in the trial. The variable of interest, BPRS, was assessed at week
zero (randomization) and at weeks 1, 2, 3, 4, and 6 and ranges from 0 to 108
with higher scores indicating more severe symptoms. Thus, n = 6 and t1 = 0,
t2 = 1, t3 = 2, t4 = 3, t5 = 4, t6 = 6. At each of these times, there were
patient dropouts and the study protocol called for BPRS assessed at the time
of dropout. The focus of this example is on the comparison of two treatment
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arms, ST (63 patients) and NT with medium dose (61 patients). Here only
medium dose is considered in the analysis just for simplicity. During the study,
patients who did not complete the trial were categorized into three dropout
types, which are withdrawal due to lack of treatment effect, withdrawal due
to adverse experience, and withdrawal due to other reasons.

Table 13.9. Estimates for probability of dropout at a given day, by treatment
group.

Treatment Day

0 1 2 3 4 6 ∞ (Finish)

New (ω̂1) .016 .000 .037 .021 .022 .043 .861
Standard (ω̂0) .000 .000 .035 .057 .062 .067 .779

For the i-th patient, let Yi(t) denote his or her BPRS at week t and Ri
the time to dropout due to lack of treatment effect. Other withdrawal times
are considered as censoring times Ci. Define Ti = 0 if patient i received ST
and 1 if patient i received NT. For convenience, let Z0 = {i : xi = 0}, the set
of indices for patients receiving ST, and Z1 = {i : xi = 1}, the set of indices
for patients receiving NT. Let ω(0)

l and ω(1)
l denote ωil for patients in Z0 and

Z1, respectively. Table 13.9 gives the estimates of ω(0)
l and ω(1)

l , which were
obtained by differencing the Kaplan-Meier estimates of the probabilities that
patients remained on the study at a given week by treatment group.

The testing procedure gave U = 4.8005 and test statistic W = 0.0007,
with a p-value of 0.98 according to the χ2

1 distribution with 1 degree of free-
dom. This suggests that there is no significant difference globally between the
standard and new treatments. The result is similar to those given in Hogan
and Laird (1997), who tested the treatment difference by comparing the mean
BPRS of the two arms.

In estimation of 1-dimensional β, note that with only two treatment arms,
the estimate of β yields a closed form expression given by

β̂ = − log

(
−
∑
i∈Z0

âi∑
i∈Z1

âi

)

with the standard error equal to
√
Kσ(β̂)/|A(β̂)|, where
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A(β̂) = − 1√
K

∑
i∈Z0

âi,

σ2(β̂) =
1
K

{∑
i∈Z0

â2i + e−2β̂
∑
i∈Z1

â2i

}
.

A simple calculation leads to β̂ = 0.0055 with the corresponding standard
error equal to 2.4162. This suggests again that for two patients taking ST
and NT, respectively, their mean BPRS would not significantly differ if they
stayed on the treatments for the same period of time.
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Fig. 13.4. The estimated baseline mean functions of BPRS scores by time of infor-
mative dropout.

To estimate the underlying baseline mean functions specified by model
(13.15), the estimates given by (13.16) were obtained and are displayed in
Figure 13.4 for each of four dropout patterns. These four baseline mean BPRS
functions all indicate that subjects’ symptoms on average got worse prior to
their dropouts.

In contrast, Figure 13.5 shows the estimated underlying baseline mean
function for subjects with δin+1 = 1, the completers and non-informative
dropouts. It is easy to see that subjects’ symptoms on average improved or
stablized over the coure of the trial. In summary, Both Figures 13.4 and 13.5
clearly indicate an NMAR mechanism; that is, early dropout due to treatment
effect is related to higher BPRS.
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Fig. 13.5. The estimated baseline mean functions for completers and non-
informative dropouts.
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algorithm
EM, see EM algorithm
Fisher-scoring, 52, 187
Gauss-Newton, 137, 146, 170
iterative weighted least squares, 181
maximization by parts, 137, 142–146
Monte Carlo EM, 180
Newton-scoring, 106, 281

angular data, 10
AR(1) process, 239
association, 75

Kendall’s τ , 77, 129
normal scoring ν, 77, 130
odds ratio, 76
polychoric, 133
Spearman’s ρ, 77, 129
tetrachoric, 133

association matrix, see correlation
structure, 127

association model, 75
conditional, 75, 80, 157
joint, 75
quasi-likelihood, 75

asymptotic relative efficiency, 148
augmented likelihood, 265
autocorrelation, 5
available-case analysis, 299, 307

Bahadur’s representation, 122, 124
Bayesian inference, 195

formulation, 195
posterior, 196
priors, 196, 248

summary statistics, 198
best linear unbiased predictor, 182, 217
BLUP, see best linear unbiased

predictor

Cholesky decomposition, 187
comb structure, 222, 229
complete-case analysis, 298, 307
conditional residual, 282
convolution, 34
correlated data, 1

clustered data, 1
longitudinal data, 1
mixed type, 153
multi-level data, 2
repeated measurements, 2, 13
spatial data, 2
vector data, 2, 121

correlation structure, see association
1-dependence, 141
AR-1, 78, 97, 104, 141
exponential, 97
independence, 78
interchangeability, 78, 97, 104, 140,

162
m-dependence, 79
unstructured, 78, 140

cross-over trial, 4, 150
cross-sectional data,, 5
Crowder optimality, 65

multi-dimensional, 68

data example, 6
air pollution study, 16, 283–289
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body fat index, 49
burn injury, 153
children hospital visit, 152
children’s health studies, 6
cross-over trial, 150
epileptic seizures, 7, 112–115
infant sleep, 255–259
multiple sclerosis trial, 13, 110–112,

171–174, 203–206
retinal surgery, 9, 116–120, 188–190
sandhopper orientation, 10, 190–192
schizophrenia trial, 11, 302, 304,

325–329
shift-mean time series, 232
TEC trial, 13, 207–211
Tokyo rainfall, 15, 246, 252–255
US polio incidences, 14, 272–274

deviance information criterion, 249
deviance score, 38
dispersion model, 20, 26

asymptotic normality, 29, 186
bivariate exponential model, 143
maximum likelihood estimation, 37
multivariate, 128

binary, 132
continuous, 128
discrete, 128
gamma, 136
mixed type, 128
Poisson, 133

property, 28
saddlepoint approximation, 29

duality transformation, 33

EM algorithm, 311–317
linear regression, 316–317
Louis formula, 315

estimating equation
stable, 55

estimating function, see inference
function

exponential dispersion model, 24, 30
additive, 33

filter density, 229
Fisher information, 62
Fréchet bound, 77, 127, 133

gamma process, 262, 263

Gaussian copula, 122
density, 126
parametric copula, 125

GEE, 92, 261
ED, 93
GEE2, 95

constant dispersion, 96
varying dispersion, 100

inverse probability weighting, 318
parameter-driven, 264–265
simplex, 94
von Mises, 94

generalized linear mixed effects model,
163

marginal interpretation, 162, 174
generalized method of moment, 61, 68
generalized state space model, 228

nonstationary, 263–264
stationary, 262–263

Gibbs sampler, 181, 195–198, 267
Godambe inequality, 64

multi-dimensional, 67
Godambe information, 62, 271

sandwich covariance estimator, 92
sensitivity, 62
sensitivity matrix, 66
variability, 62
variability matrix, 66

hierarchical model, 207
prior, 208

Wishart distribution, 209
proportional odds model, 207

inference function, 20, 55
additive, 59
Crowder class, 65
equivalent, 59
generalized method of moments, 68
insensitivity, 62, 92, 186, 269, 281
kernel, 59
multi-dimensional, 65
normalized, 63, 67
optimal, 55, 61
regular, 61, 65
unbiased, 59

interim model, 241
inverse gamma, 248
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jumps, 232

Kalman estimating equation, 228
nonstationary, 275–283
stationary, 267–272

Kalman filter, 223, 270, 279
Kalman smoother, 224, 270, 279

Laplace method, 183
linear mixed effects model, 161
linear state space model, 231

Gaussian, 231
listwise deletion, 298
local influence, 293
log-linear model representation, see

Bahadur’s representation
quadratic exponential model, 123

lognormal model, 262
long-term effects, 263
longitudinal plot, 9
lorelogram, 80, 112

marginal GLM, 88
Markov chain Monte Carlo, 195, 247

burn-in, 197
convergence, 197
convergence diagnostics, 198–201

autocorrelation plot, 199
Brooks-Gelman-Rubin R statistic,

199
Geweke test, 199–200
Heidelberger and Welch’s test, 200
trace plot, 199

enhancing burn-in, 201–202
hierarchical centering, 201
sweeping method, 201

Gibbs sampler, see Gibbs sampler
model selection, 202

deviance information criterion, 202
over-relaxation, 198
thinning, 197

maximization by parts, 237
maximum likelihood

conditional approach, 176–178
EM algorithm, 178–182
numerical integration, 167–174
PQL and REML, 182–192
REML, 182
simulated, 174–176

mean square error, 217, 271
mean value mapping, 31
missing data, 6

dropout, 11
marginal model, 320
transition model, 319

ignorable, 303
informative, 6
MAR, 6, 297
MCAR, 6, 109, 297
NMAR, 297

pattern mixture model, 321
selection model, 320
shared model, 321

nonignorable, 303
score-type test, 303

missing data pattern, 293–296
arbitrary, 295
complete, 294
monotonic, 295
uniform, 294
univariate, 294

model diagnosis, 281–283
model selection, 103

Akaike information criterion, 106
Bayes information criterion, 106
deviance information criterion, see

deviance information criterion
Monte Carlo EM algorithm, 265–267

E-step, 266
M-step, 266

Monte Carlo Kalman filter, 243
Monte Carlo Kalman smoother, 242
Monte Carlo MLE, 235
multiple imputation, 307–311

between-imputation variance, 309
imputation variation, 308
sampling variation, 308
within-imputation variance, 309

multiplicative AR(1) process, 262

normal-score transformation, 77

over-identification, 59
overdispersion, 55, 56, 159

parameter-driven model, 261–262
penalized quasi-likelihood, 182, 185
Poisson-gamma model, 275
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quadratic inference function, 103
robust, 103, 112
test for MCAR, 302

quadrature method
Gauss-Hermite, 167
Hermite orthogonal polynomials, 168

quasi-likelihood, 58
penalized, see penalized quasi-

likelihood
quasi-score, 57

random effects, 82, 159
random walk, 239
residual, 35, 96

deviance, 35
model diagnosis, 101
modified score, 91
Pearson, 35, 96

residual analysis, 79, 281

saddlepoint, 183
serial correlation, see autocorrelation
shift-mean model, 232
short-term effects, 263
signal-to-noise ratio, 248
simplex distribution, 10, 30, 42
simulation smoother, 237
smoothed best quadrature formula, 234
smoother density, 230
software, 106

R, 53
SAS, 107

macro qif, 108
proc genmod, 107
proc glimmix, 183, 194

proc mi, 308
proc mianalyze, 310
proc mixed, 166, 185, 192
proc nlmixed, 167, 171, 193

WinBUGS, 195, 212
BOA, 201
CODA, 201
Doodle, 203

state space mixed model, 247
stochastic representation, 134
subject-specific effects, see random

effects
surrogate response, 181

third order approximation, 36
Barndorff-Nielsen formula, 36
Lugannani-Rice formula, 36

Tweedie class, 34, 276

U statistic, 323
unit deviance, 26

regular, 26
unit variance function, 26

power, 36

variable mesh, 234
variogram, 79
vector GLM, 121

reproducible, 122
von Mises distribution, 50

Wald test, 95
Wilcoxon-type test, 323
working correlation, 91

Yule-Walker equation, 265
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