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Preface

The aim of the book did not require any remarkable changes with respect to
contents and presentation for a translation of the German version. Only the
references to textbooks in German language were omitted, as a rule, in the
translation.

Since this preface is followed by the translation of the foreword to the
German edition, which contains also remarks on intention and organization
of the present book, it may suffice here to restrict oneself to appreciate all
the support the author received in preparation and in writing the present
translation.

The author has to thank his former colleagues from the Technical Uni-
versity Bergakademie Freiberg, Professor Dietrich Stoyan, particularly for his
critical examination of the German version and his valuable remarks and
suggestions, Professor Wolfgang Näther, particularly for his hints to recent
publications and his constant readiness for discussion and support, finally,
Ingenieur of informatics Irmgard Gugel, for her again excellent work of fi-
nal technical edition and completion of the manuscript. Moreover, the author
acknowledges with thanks the encouragement and occasional support by Pro-
fessor Reinhard Viertl, Wien, and hints to recent publications by Professor
Jürgen Pilz, Klagenfurt.

The author is indebted to Springer-Verlag Heidelberg, represented by
Dr. Thomas Ditzinger, for having included the title in the list of his famous
Publishing House.

Finally, the author thanks again his wife for her permanent encourage-
ment and understanding consideration, which made the completion also of
this translation possible.

Halle Hans Bandemer
May 2005
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Foreword to the German Edition

The present book is an outcome of decades of dealings with users of mathe-
matics and their problems. With the quotation1 above, adapted to the math-
ematician, the quintessence of cognition of these dealings can be described.
For realizing this it will be helpful to look back some hundred years.

In former times modelling of a practical problem, computing of numerical
results for its solution, and expertly interpretation of them were the work of
one and the same person: An engineer formulated his mathematical task from
his problem, e.g. with simple mathematical terms for a computation by his
slide rule or – in more complicated cases – e.g. as a mixed boundary value
problem for an approximate solution by series. In every case he was aware that
his mathematical model represents a (useful) approximation and his material
parameters and measurement values make sense only within a few digits of
precision. A confrontation of the results computed by him with the practical
problem could be carried out by himself each time immediately.

With growing complexity of the problems tackled the request for “recipes”
was expressed more and more perceptibly and gradually satisfied by in-
dustrious mathematicians. Because, however, application-oriented mathemat-
ics fragmented more and more into subfields, mathematicians as writers of
1 Life is short, art is long, opportunity fugitive, experimenting dangerous, reasoning

difficult: it is necessary not only to do oneself what is right, but also to be seconded
by the patient, by those who attend him, by external circumstances. Hippokrates,
Algorithm I1.
Translation according to The Encyclopaedia Britannica, 14th edition, London –
New York 1929, Vol 2, page 97.
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“recipe-collections” favoured each time only one modelling approach and ne-
glected however other approaches more or less. Moreover, those recipes came
off more and more from practical problems and treated only prepared model-
setups.

There is, by the way, an analogous development in real cookery books:
Whereas hundred years ago the young housewife was still said how a hen to
be bought for a certain dish should look like (with respect to age, weight,
and constitution) and how it is to be treated before cooking, today one reads
laconically: take a hen.

By the explosively increasing efficiency of electronical computers for gen-
eral scientific requirements and by the deluge of available software packages
the mathematical recipe system was increased extremely. As is well known,
it is the pride of any software seller to have collected in his package, possi-
bly, all known appropriate procedures. With this tendency to perfection the
programmer cannot be presupposed any longer to have an overview over the
concrete application situations. The necessary use of software by the applying
engineer separates him necessarily from his practical problem. (The engineer
stands here only as a representative and an example for a scientifically working
user.) The comfortability of the software tempts him additionally to replace
his expertly reflection on a model by an easy-made choice from a catalogue
of offered models, which should be useful for the problem only in few cases.
By the psycologically designed output of the results as colourful diagrams the
user has, as a rule, hardly a chance for a critical assessment of the results with
respect to relevance, reliability, and precision.

At this point the matter of the present book starts. The reader is assumed
to have access to hard- and software suitable for his problems. The book is
so neither a handbook nor a textbook for the application of mathematics in
special practical situations. Instead of, it should represent a recommendation
for the user, in which he is said what he should really take into account in
application of mathematics together with this modern equipment in order to
come to a reasonable treatment of his practical problem. This topic includes
the choice of such a mathematical model that is adequate to his practical
situation and to the requirements of his aim with respect to complexity and
mathematical tractability, as well as the choice of an effective solving procedure
for the mathematical task, and, finally, the choice of such criteria, which allow
to assess realistically the reliability of his starting values and the dependability
and precision of the results.

When so, in the following, procedures are presented explicitly, then only in
principle or as typical simple examples. There is no claim made with respect to
any completeness. Because, even though the procedures are permanently im-
proved and increased, the problems with their application remain, in principle,
the same.

Already rather early in application of mathematics a certain separation
of competence took place. Interest in concrete mathematical modelling ex-
ists essentially within the applying discipline. Mathematicians, however, are
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concentrated on the development of mathematical solving procedures and, in
fact, each only in his respective subfield as analysis, algebra, stochastics, or
numerics.

Because each of these subfields has developed its own traditional denota-
tion, it was not trivial to find a workable compromise for the presentation in
the present book, simultaneously avoiding a set of different types of characters
being too extensive.

Therefore, as long as possible, no special type was used for common sets,
variables, and functions. If with vectors and matrices their character should
be emphasized, e.g. because their connection rules are used, then they are
denoted by bold-faced letters, e.g. x, B. In this context the components or
elements can be also random variables or fuzzy sets. Common n-tuples, e.g.
multidimensional parameters, are not stressed as vectors.

Random variables are denoted by sanserif-letters, e.g. G, T, also if they
have the character of vectors or matrices, but this property do play only a
secondary role in the given context. For random errors, however, the tradi-
tional exception (ε) is used to guarantee the connection to the usual textbook
literature.

For fuzzy sets, unknown yet in many places, letters in script (A,B) are
used, if not their character as vectors or matrices should be emphasized.

Finally, occasionally for special sets and systems of sets also shadow letters
are introduced, as IR for the Euclidean space, IP for the power set of a set,
and IN for the set of natural numbers.

The formulae used should either remind of facts learned from textbooks
or specify uniquely newly presented mathematical ideas. In every case the
most important details are explained within the text. Hence, if someone does
not understand the formulae immediately, then he may pass over them in his
first reading without any loss of comprehension for the facts following and
concentrate on the text. Surely, he will then, in repeated reading, feel that it
means a thing to him.

Cross-references occur in usual manner to chapters, sections, and numbers
of formulae.

If it is referred to common textbooks and in this context also some titles
are named, then this does not mean that only these are recommended. The
author did not take the trouble to look through the each time immense set of
literature; the cited books lay on his desk and he has used them to look up.

The author has, in his academic life, worked through different fields of
mathematics and in this course gathered varied experiences in application.
In the present book he wants to convey of these to a wide section of users,
but without to emphasize natural philosophical insights. A standard math-
ematical course for students of engineering or of another applying discipline
at the graduate level should suffice to understand the presentation, certain
experiences with application of mathematics are desirable.
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Especially such fields of mathematics are dealt with, in which uncertainty,
variability, and imprecision of data are of importance, e.g. if they are to be
obtained from practical situations.

Starting with values of functions, from observations or measurements, at
first problems of interpolation and approximation are treated. Then observa-
tion fuzziness is considered and mathematically specified, which can influence
essentially preciseness and reliability of statements on functional relationships.
Then the notions of randomness and probability are examined as a model for
the variability of observation and measurement results and their use is con-
sidered critically. Finally, also a mathematical approach is presented for the
vagueness of data, and observation fuzziness and variability are handled under
a mutual point of view.

After this supply of basing ideas the book turns to some methods of qual-
itative data analysis (cluster analysis and classification) and of evaluation
of functional relationships (regression analysis and quantitative fuzzy data
analysis).

If a mathematical approach, followed up by a reader for years, remains
unmentioned or occurs only by a hint in the present book, then the author
asks this reader to be lenient, because for the matter of the book a selection
of topics must be sufficient.

Hints to errors or shortcomings (unavoidable even with great care) are
always welcome.

The book was written essentially unnoticed by colleagues and without
any support by a scientific staff. Hence the author has to thank only the
coordinator of his graduate college Spatial statistics, Dr. Martina Lorenz, and
his last graduate student for a doctorate , Dr. Silvio Hartmann, each for a
critical examination of the manuscript, and Dr. Wolfgang Fleischer for his
kind allowance to reprint a figure from his book (see Fig. 2.1 of the present
book). The technical final edition and completion was again, as with former
manuscripts of the author, in the reliable hands of Irmgard Gugel. The author
thanks her cordially for her excellent work.

The author is indebted to Teubner-Verlag, especially to Jürgen Weiß, for
his insistence, with which he has pressed him for years to write the manuscript,
and for his understanding cooperation in the genesis of the book.

Finally the author thanks his wife for her permanent encouragement and
understanding consideration, which made the completion of the book possible.

Halle Hans Bandemer
April 1997



1

Introduction

1.1 Application of Mathematics

The central problem of every science, as is well known, is the determination
of conclusions from realized conditions, i.e. producing statements of the form

IF ... THEN ...

According to the degree of formalization of the branch of science in question
these statements are presented as more or less precise verbal concentrations
of experiences up to mathematically formulated laws of nature, e.g. the law
of falling bodies.

In every case mathematics serve for ordering of thoughts and for ,,ready-
making” of reasoning. Hence mathematics provides brain tools, by which some-
thing can be managed intellectually, likewise the hand tools, which a manual
worker uses to make his work easier or even anyhow possible. Thus the math-
ematician corresponds to the tool maker in some respects.

Application of brain tools to real problems has some similarity with the
use of hand tools:
1. You must get clear, what you are really want to aim at, e.g. you must
fix the aim (and the purpose) you want to reach by your investigation using
mathematical means.
2. Next you have to fix the quality requirements, which the result of your
investigation has to fulfill. This becomes clear if you compare the requirements
on a box for rejects with those on a cabinet. This is the same case with respect
to the results of a mathematical problem. Fixing of quality is important, it
determines the tools and the requirements necessary for a satisfying solution
of the problem.

Now you can start with an appropriate mathematical treatment of the
given problem. First you have to translate the structure of the real problem
and the realized conditions into the abstract language of mathematics.

This translation divides into three components:
a) the choice of a mathematical model ;

H. Bandemer: Mathematics of Uncertainty, StudFuzz 189, 1–9 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005



2 1 Introduction

b) the choice of a mathematical procedure for the conclusions; shortly a math-
ematical solving procedure;
c) the description of the given situation by mathematically specified data.

For the “quality” of the mathematical treatment and of its mathematical
results there is a rule of the weakest chain-link:
The result in every given case is, with respect to its meaningfulness (e.g. rele-
vance, reliability, accuracy, precision), at most as good as the weakest “qual-
ity” of the three components.

The notion “quality” points in the same direction for each of the three
components, but it must be defined in different ways for each of them, and,
unfortunately, it can not, in general, be recorded quantitatively. The next
section will be concerned with this notion in more detail.

1.2 The Quality of the Mathematical Treatment

1.2.1 The Quality of the Model

In modelling the notion quality will be interpreted as adequacy. Modelling of a
real problem is not unique, there are, as a rule, many possibilities to formulate
mathematically the structure of the given problem. One can interprete ade-
quacy as sufficient correspondence with reality. In this statement sufficiency
depends on the aim and the purpose of the investigation. (Hence fixing of aim
and purpose was put on the first place above.)

As a simple example consider the playing at dice.
To predict the result of a throw in the long run of a game a simple stochas-

tic model will suffice, by which you can decide, if necessary by a test, whether
the used dice is unfair.

To predict the result of one single throw, considered as a physical phenom-
enon one needs a large expenditure of measurement instruments to record
all the influencing factors of the dice, with respect to the throwing technique
(e.g. starting acceleration and throwing direction) and impact surface (e.g.
elasticity and roughness). Possibly in this case a system of partial differential
equations with many variables may suffice for an exact prediction, but there
remain some doubts, whether this may do.

Besides on orientation on aim and purpose of the investigation the choice
of the model depends also on the different complexity and mathematical and
numerical manageability as well as on the practical transparency and inter-
pretability of the models to choose from. Frequently the choice of the model is
also influenced by the order of magnitude, in which the problem is to be han-
dled. All these aspects will be explained by examples in respective situations
later on.

The choice of the model is a creative main problem of the user himself;
he can be supported by the mathematician at most by providing of brain
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tools. In this way in a given context, e.g., a model from the field of differential
equations becomes possible as well as one from regression theory.

An assessment of model quality, of adequacy, on theoretical grounds by
means of mathematics, is in principle impossible; nevertheless it is tried again
and again, e.g., by means of statistical test theory. In doing so the user forgets
that in this manner he decides only, whether the given data are sufficiently
probable, if some special assumptions are valid, whereas a set of other as-
sumptions is taken for granted.

A proper assessment is only possible by confrontation of the results of
the theoretical investigation with practical findings. But even in the case of
sufficient agreement the conclusion that the used model is adequate do not
need to be valid. In many cases it suffices to state the usefulness of the model.
What is meant by these remarks in practice will be explained in the following
example.

As is well known, in the flat rolling process the material, e.g. steel, is pushed
through the opening between two rolls in order to reduce the thickness of the
material. Usually experts (e.g. Hensel/Spittel (1978)) assume that this
process can be modelled as a process of continuous compressing: As soon as a
small part of the material reaches the opening it is pressed by the rolls from
above and from below, i.e. the material is compressed. Hence the mathematical
models for flat rolling are taken from those for compressing. In the fifties of the
last century an applied mathematician had the idea to consider the treated
material under the high pressure of the rolls as a viscous fluid and to model the
rolling process by hydrodynamics (see e.g. Kneschke/Bandemer (1964)).

Denote p(x) the pressure distribution and u(x, y) the speed component of
the material particles parallel to the rolling plan, then the movement within
the opening of the rolls can be modelled by means of the hydrodynamic theory
of fluid friction using the differential equation

∂2u

∂y2
=

1
η

dp

dx
, (1.1)

where η means the dynamical viscosity of the material to be rolled, which
stands in the opening under a certain fluid stress. The used differential equa-
tion was obtained by extensive simplification (neglecting unimportant terms)
from the Navier-Stokes differential equations.

To investigate the adequacy of this model the technical fact was used that
the steel within the mould solidifies not as a whole but in layers following the
temperature gradient. This can leave a linear structure within the ingot to
be rolled: a net of parallel planes (Seigerebenen). If, for that investigation of
adequacy, the rolling direction is chosen as being orthogonal to these planes,
then the distortion of the cross-section plane of the rolled material can be
made visible experimentally (by cutting the rolled material orthogonally to
the cross-section plane and corroding the obtained sectional surface plane).
At the same time the distortion of the cross-section plane was computed, as-
suming that the model with the differential equation (1.1) is valid. This was
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Fig. 1.1. Move lines in a specimen (By courtesy of the Institut für Bildsame For-
mgebung der RWTH Aachen)

effected by solving the corresponding integral equation of the first kind nu-
merically using an integraph, as it is called, a mechanical tool for integration
of a given function. From the solution a figure was drawn showing the mo-
mentary position of the material particles on the cross-section surface plane
after different time lags.

Figure 1.1 shows the move lines from the input to the output of the
rolling train (from the right to the left). It is taken from a paper by Kneschke
(Kneschke (1967)).

Figure 1.2. shows the result of the computation for the model with assumed
parameters and is taken from the paper Kneschke/Bandemer (1964). The
pictures correspond with each other with respect to the mathematical form of

Fig. 1.2. Move lines computed according to the hydrodynamic theory of rolling
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the curves amazingly well. If the assumption of continuous compression would
be valid, the straight move line of the input must be followed by straight move
lines throughout and after rolling. Nevertheless the hydrodynamic rolling the-
ory was not accepted by the engineers, because they did not see any possibility
to measure the dynamic viscosity η, which depends not only on the material
but also on temperature and pressure.

1.2.2 The Quality of the Solving Procedure

The quality of a solving procedure may be considered as its property to pro-
vide the solution of the given problem with sufficient precision and tenable
(appropriate) expenditure.

The assessment of this quality can be effected after interpretation of the
corresponding result. Iteration procedures, e.g., will be assessed with respect
to their numerical stability, i.e., if such a procedure had come, in a certain
step by a more or less gross numerical mistake, to a weaker approximate solu-
tion, then the procedure should approach, in the next steps, the exact solution
again. Besides, the procedure can be assessed by its speed of convergence, i.e.,
how fast it approaches a sufficient solution, if no gross mistakes are made in
computing. Finally, bounds for the solution are of interest, when the proce-
dure was stopped at some step, e.g., when there was no more change in the
approximate solutions.

In mathematical statistics the estimation procedures, used in this field, are
assessed, among others, according to unbiasedness and variance of estimation,
i.e., according to their properties in frequent use.

In every case the assessment follows criteria of precision and efforts. The
investigation, the comparison and hence the construction of such solving pro-
cedures are essential problems of mathematicians.

The user should, in every case, be interested in corresponding statements
with respect to these properties for procedures suggested to him, he should
look for them in the literature or demand them from the supplier of the
procedures.

All these properties of the procedures are stated on certain conditions
with respect to the model and the data used. These conditions are fulfilled
in practical cases at most approximately. Hence for the user statements of
robustness, as they are called, are of importance. These statements explain,
how strongly, or better how weakly, deviations from the ideal conditions have
an effect on the properties of the procedures.

In mathematical statistics (see Sect. 4.2) the arithmetic mean of a sample
is suggested as a good estimation of the expectation value EX of a random
variable X. This estimation is of a good quality, its variance is minimal. How-
ever, if gross mismeasurements (a common form of outliers) are expected, it
may be advantageous to ignore such measurements in averaging, which lie
very far from the arithmetic mean. The estimation will be (presumably in-
significantly) worse in quality (the variance grows a bit), however possibly
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occuring outliers can no longer bias the estimation, at least not so heavily. So
the estimation is made robust against the occurence of (some few) outliers.
This strategy is an example for the construction of robust statistics, as they
are called. A further frequently used strategy for robustification consists in a
variable weighting of the sample elements in averaging (see for this problem
area e.g. Huber (1981)).

1.2.3 The Quality of the Data

The quality of the data is assessed by how reliably they characterize the given
problem. So the question is, whether they are the right data: Are they suitable
to reflect the given problem in the model or are they only minor matters of
neglectable importance? Do they belong really to the given practical problem
or do they describe a quite different situation? Are they carefully and respon-
sibly obtained and specified, suitably for the problem, as numbers or as other
mathematical objects?

According to the rule of the weakest chain-link the answers of the questions
decide essentially on the quality of the whole investigation.

Seldom the common user is conscious of how often gross errors (e.g. out-
liers), imaginative data or manipulated values occur in his data. The applica-
tion of methods from data analysis (see Sect. 2.1) for detection and possible
deletion of such suspicious data is an only weak compromise measure. This is,
as a rule, inferior to a technical and critical examination of the data.

Moreover, already in specifying the data, mostly unconsciously, some “pre-
ciseness” is introduced. So, by the number of given digits it is insinuated
implicitly that the last given digit is precise to one half of its unit. When
considering what the datum is to express this statement is seldom valid.

Reading a room thermometer results in the temperature in the room at
most in the surroundings of the thermometer with a reading accuracy of half a
degree. The spatial variations of temperature within the whole room, however,
should be of a wider range.

This wrong assessment of data precision should be of more serious conse-
quences when the data are handed over to a computer, which brings them up
to its computational accuracy by adding zeros for the lacking digits. Then,
however, the results of the computation are only valid for those “highly pre-
cised” data!

Since the quality of the data is scarcely considered in present-day appli-
cations of mathematics and does not play any role in common textbooks and
software tools, in the present book the main attention is devoted to this chain-
link. Here some reserves lie for a realistic assessment of the computed results,
on which factual decisions are to be based, as well as as a source, from which
one can scoop, if an adequate model is not (yet) found for the given facts.
In the following chapters the different principal practical initial positions are
considered in the interaction of model, procedure and data.
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The main scope will be occupied by the investigation of such relations,
for which mathematics plays a central role. The text will start with a purely
empirical representation without any use of mathematical formulae. Then
the consideration will pass over to specify the problems by such formulae,
via simple approximation to representations with different backgrounds, as
in mathematical statistics and fuzzy theory. In parallel mathematical means
are described to specify the uncertainty of data and hence of the results for
practical facts. The mathematical procedures are treated only in principle or
as examples. It is assumed that the reader has access to efficient hardware
and software, hence elaborated numerical examples can be omitted.

1.3 On Model Harmony

The choice of a model implies always also the fixing of the interpretation of
the data used, the choice of an appropriate type of solving procedure and,
finally, also of the form of statement, in which the solution is to be presented.

In mathematics the following model backgrounds are available:

numerical approximation theory;
interval mathematics;
probability theory and mathematical statistics;
and, in these days also, fuzzy set theory.

Thereby the user comes into the position to choose such a model back-
ground, which seems to him the most appropriate, depending on the given
problem, his general background knowledge and his decision on adequacy.

In doing so the different forms of solution presentation get transparent,
following the principle of model harmony:

approximate data as the starting point supply approximate statements;
interval data as the starting point supply statements in the form of intervals;
fuzzy data as the starting point supply statements in form of fuzzy sets;
probabilistic assumptions on the origin of the data supply statements with
probabilistic character.

As an example for the case last mentioned the situation is considered that
the given data are interpreted as realizations of random variables, on the
distribution of which certain assumptions are put. The results of the solving
procedure are then interpreted as probability statements, e.g. as confidence
regions for some unknown parameters.

Frequently, however, in applications, even sometimes in contributions to
serious scientific journals, the reader is confronted with an eclectic conduct
of the authors. In those contributions approaches are mixed ignoring that the
character of the conclusions and statements depend on the assumed character
of the data used. In this way, e.g., procedures from different backgrounds are
applied to the same data and the results are compared numerically taking no
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notice of what type of data and with which background these procedures are
developed. Investigations of such a kind are in the best case useless and in the
worst case misleading.

A combination of approaches, however, is sometimes possible. In Subsect.
7.2.4 the case is presented that the data are realizations of random variables
and, simultaneously, specified as fuzzy sets. There are already special proce-
dures available to handle this combination (see e.g. Viertl (1996)).

Hence, in the following chapters always the background of the model and
the type of the mathematically formulated problem are explained, for which
the given model and the solving procedure make sense.

1.4 On Information Balance

The mathematical treatment of a practical problem can be taken as “infor-
mation processing” in a wider sense of the wording:
Information on the problem from different sources is to be “assembled” or
brought together in such a way that the problem question can be answered
“sufficiently precise”.

As sources of information are mainly possible:

1. Sure knowledge from practically confirmed theories and reliable experi-
ences as is available in the literature and with experts. Hence it is always
worth to read and to ask, before tackling a problem.

2. Knowledge from the neighbourhood of the given problem on some con-
nections, conditions, previous experiences, which can be condensed to rea-
sonable assumptions.

3. Finally empirically and experimentally obtained results, which will be
called (a special form of) data later on.

A “Golden rule of problem solving” can be phrased:
Information necessary for the problem solution and not (yet) known or

not included, must be obtained requiring expenditure of time, material, and
manpower.

Hence it is always useful to draw up a balance sheet for the information:
Information already available from the three sources above stands on the

credit side, whereas information necessary for the solution enters the debit
side. On the balance you see then what is yet required as well as what is not
necessary for the given problem. In this balancing the purpose and the aim
of the investigation as well as the quality requirements on the solution, as
discussed in the preceding subsections, will play a central role.

Naturally, for a balance sheet one needs some “monetary unit” to compare
and balance the single entries on the credit and debit sides with each other.
This demand raises the problem of a mathematical definition and specifica-
tion of information. But for the further practical considerations any specifi-
cation and measuring of a certain quantity called “information” will be not
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of importance and hence not treated. Because this would lead to an academic
discussion of a mathematical notion of information, e.g. via entropy measures.
In certain fields of mathematics there are proposals for this purpose. However,
in the present text this notion is looked upon as an allegorical one. Informa-
tion processing means here: including of available information into the given
problem by mathematical specifications, and recording of knowledge on the
problem, e.g. by formulae and rules, and on the environment of the problem
by mathematical assumptions, and of the data characterizing the situation by
mathematical objects (numbers, vectors, functions, etc.). Not until the avail-
able information is specified and recorded in such a way one can turn over to
question how this information can be combined and used to solve the given
problem. But these considerations are already part of the design of the inves-
tigation, which has to contain also the chosen solving procedure, if and when
the information is specified and recorded.

In the following chapters different situations for the information, for the
problem aim, and the quality demands on the solution, together with re-
quirement lists to the data are treated, with which this basic position will be
illustrated.



2

Mathematical Representation
of Simple Data and Connections

In this chapter mathematics is used only as a means for representing data and
their connections. Experts’ ideas on possible models and assumptions on the
genesis of the data and their uncertainty are omitted. In the chapter some
techniques are presented, which will form the basis of solving procedures later
on in the book, when they are considered under additional assumptions on
the model and the data genesis.

2.1 Some Elementary Procedures of Data Analysis

Before one can speak of data analysis, it must be clear, what is meant by a
datum.

2.1.1 Data and Their Representation

Up to now the expression “datum” was used, but its concept was left vague.
Within mathematics usually a datum is understood as a real number, obtained
as a result of some measurement or observation and to be introduced into a
mathematical procedure.

For a better inclusion of really practical situations the notion will now be
mathematically formulated more generally and exactly.

The wording “datum” means, literally, “something actually given”. It
makes sense only in a certain context and expresses that “something” was
found in a state characterized by just this datum. Obviously, such a datum
contains information only if there are at least two different possibilities for
the state of the “something” in question. Hence one can consider every datum
as a realization of a certain variable in a set of values, called the universe of
discourse, and reflecting these possibilities for the state in the given context.

The first task in a mathematical modelling of such an affair consists in a
mathematical representation of the possible data simultaneously specifying a
suitable universe. For illustration some special cases will be mentioned.

H. Bandemer: Mathematics of Uncertainty, StudFuzz 189, 11–38 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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In the simplest case the datum only reflects whether a certain characteristic
property (an attribute, a feature) is present or absent. The suitable universe
is then any two-point-set. If, as usual, the set {0, 1} is chosen as the universe
in this case, one must be clear that the two numbers are no “measure values”,
but evaluate only the truth of the statement:

The something has the certain property.

In this context the number 1 means that the statement is true and the number
0 that it is false. Hence the variable over this universe is called a logical variable
(see, e.g. Jambu (1991)).

If there are several possibilities for a shaping of the property, e.g. several
possible places of origin or types of a product, several possible answers to a
questionnaire, then the suitable universe will be a finite set, the members of
which are usually chosen as characters. The likewise usual choice of natural
numbers is in general rather problematic, because the numbers, in the given
context, are only distinguishing marks, denoting categories and not implying
neither a sequence nor a scale of values. Hence variables with such a “range”
are also called categorial variables.

An interesting special case arises if the different possibilities are grades
(degrees, shades, nuances) of a considered property, e.g. the number of chil-
dren in a family, but also nuances of hair colour (very fair, fair, light brown,
etc.) or degrees of satisfaction (not contended, little . . . , more or less . . . , mod-
erate . . . , very . . . ). When the use of numbers makes sense as a measure for
childfriendliness, their use for nuances and grades is absolutely arbitrary and
suggests frequently the existence of a “measurable distance” between them.
This problem is considered in more detail in Sect. 3.2 Variables of this type
are often called ordinal variables , in contrast with categorial data, in which
such an order is not existent, the sequence of the categories may be arbitrary.
Categorical data of the latter type are sometimes called nominal ones. (See
also Agresti (1990)).

When considering observations or measurements, the result in a concrete
situation is usually given by numbers. Although every result of an observation
or a measurement can be given only with finite many, mostly very few digits,
the whole real axis is chosen as an appropriate universe, which can supply
relevant advantages for a theoretical treatment. Usually such variables are
called quantitative variables.

If the observation or measurement is performed continuously in time or
space (e.g. temperature records, spectrograms, geological profiles), then every
result is presented by a trajectory or a (hyper-)surface, resp. The corre-
sponding variables are called processes and regionalized variables, resp. Then
the universe can be chosen e.g. as an appropriate space of functions (e.g. a
Hilbert-space) ore some finite-dimensional approximation of it (a so-called
“setup”). The transition to time series (observations at a sequence of times)
or to grids (observations at a grid in area or in space) leads to presentations
by vectors or by matrices, resp.
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Here usually the opinion ends what may be understood as a type of data.
But with respect to new developments within mathematics already at this
point two further types of data will be mentioned.

Also grey tone pictures (and colour pictures) may be considered as data,
since they reflect each “the state of a certain something”, e.g. X-ray records,
projections of transparent sections taken from cellular tissues, two-dimensional
projections of three-dimensional particles recorded by optical devices, or some
scenes scanned by some tv-equipment and to be recognized. A possible rep-
resentation of a grey tone picture is a basing area (the picture frame) within
which a function is defined reflecting the grey tone at each single point of the
picture by a numerical value. Such a representation can often be not appro-
priate, e.g. if the semantic picture content must be the starting point for the
investigation (e.g. extent, shape and position of a tumour). Whether, in such
a case, a partial set of the set of all possible grey tone functions or whether
only the pixel field matrices of the finite many distinguishable grey tones
should form the universe, depends on the practical problem standing behind
the modelling task for the data.

Finally, every opinion of an expert or of a panel of experts can be inter-
preted as a datum, when it is related to the state of a given “something”
(e.g. the state of the market, a certain investment, the weather forecast, etc.)
These opinions are usually uttered as statements, rules and conclusions. The
mathematical formulation will then be taken from mathematical logic. The
appropriate universe is then chosen as a set of such statements, rules and con-
clusions, being available as possible “values” for the opinions of the experts.
Simple examples are questionnaires with a given range of anwers to each single
question. The usual coding of experts’ opinions by numbers is a but rather
doubtful and arbitrary proceeding. A more problem-oriented mathematical
representation of grey tone pictures and experts’ opinions will be presented
in Sect. 3.2

Moreover, one should notice that every datum is connected with uncer-
tainty of different origin and kind. Examples are given by considering the
larger or smaller variations of the state of the something in comparable situa-
tions or the unsharpness of every in some respect somehow rough measuring
tool or the differences in the understanding of words and notions among ex-
perts or people answering a questionnaire, e.g. with respect to the intended
sense of the different answers. Not only in each of these cases the respective
state of the something in question cannot be reflected totally by any math-
ematical specification. Disregard of all uncertainty, however, can essentially
influence the result and the conclusions of any data analysis, this will become
clear in Sect. 3.2

2.1.2 Simple Procedures of Data Analysis

Data analysis consists of an investigation and an evaluation of the given
data, and of the drawing of conclusions from the data, and of the evaluation
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of these conclusions. Data analysis is performed in several stages of increasing
complexity, of which stages now only the first two are considered for the
moment.

In the first stage the data have to undergo first a critical inspection from
the standpoint of the branch of science the given problem is taken from.
Even if the size of the data material is rather extensive, one should at least
require some impression on the reliability of the data. By this one has to
decide, whether the data really describe comparable states of the “something”.
Naturally, it would be best, if the “data analyst” has obtained the data himself,
or if he had, at least, got a personal idea on the procedure of the “data capture”
so that he can assess its care of performance and its level of precision. If he
finds, in his inspection, such data that are inexplicable or unexpected from the
standpoint of his branch of science, he should again look at the circumstances
under which these data were obtained and try to confirm or correct them. In
the case of confirmation he may come to some new insight with respect to the
reflected state. Mostly, however, he will find that an error or a mistake in the
data capture occured. Within statistics such data are usually called outliers,
because they lie, as a rule, far away from the bulk of the data. It is unwise,
however, without any consideration to declare all those doubtful data outliers
and generally to delete them, or perhaps to let the decision to the software,
which offers some formal criteria for this purpose.

Moreover, the data should be inspected with respect to possibilities of
effected manipulation. This case is more frequent than people believe. The
person, who has to obtain the data, or the data analyst or the client of the
project possibly may have some personal interest that the data lie in a certain
field, e.g. because this is connected with the quality of his work or with the
profit of his enterprise, respective, or the person is so apathetic towards the
data that he avoids the effort of data capture, and he records data according
to his imagination seeming plausible to him. Obviously, in both cases the data
are worthless for a scientific investigation.

A further reflection on the data concerns their essentiality, credibility and
trustworthiness, e.g. whether the data reflect the state of the “something”
truly, although they are recorded reliably. Do the data characterize the state
accurately, or, e.g., only irrelevant symptoms were recorded? Also with respect
to the substance of experts’ opinions this fact is important and suggests the
introduction of competency weights and truth-values for their statements.

Not until these inspections the second stage of data analysis with math-
ematical means will make sense. The procedures of simple (mathematical)
analysis consists in arrangements (sorting and plotting) and suitable trans-
formations of the data (see, e.g., Polasek (1994)).

The very first arrangement of the data is performed, as a rule, with respect
to frequency. A single but important property of the “something” is considered
and evaluated at a time. A frequency analysis deals with “usual” states of the
“something”, e.g. with respect to its expected states in future. For this purpose
“similar” data are combined in classes, the frequency of which is determined. If
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a stochastic background is supposed for the genesis of the data, the frequency
distribution is taken as a hint to a possibly existing probability distribution.
Data far away from the bulk of the data will be handled as potential outliers.

The main aim of data analysis, however, is the search for pattern or struc-
tures in the data , from which hints may be obtained about possible mathe-
matical models, which may be used for further conclusions.

In this chapter procedures are presented, for which it is assumed that all
data introduced are reliable and trustworthy, and that these data are rep-
resented by real numbers exactly or, in the multidimensional case, by real-
valued vectors likewise. This means, among others, the assumption that there
is not any information available with respect to the possible uncertainty or
inaccuracy of the data, at least that such information is not used. In later
chapters, when such information will play its role, data of this kind will be
called pseudo-exact data.

Since the following procedures do not use any information with respect
to possible models, to the background and to possible side informations and
prior knowledge on the given practical situation they require a relatively large
size of the given data, according to the Golden rule in Sect. 1.4.

The main strategy will be a “visualization” of the data: two- or three-
dimensional projections of the data vectors are made visible as points on the
screen and are inspected by eye with respect to patterns or structures.

With respect to pattern two large groups are distinguished:
So a “data cloud” can break into “partial clouds” more or less clearly.

These partial clouds are called clusters , and one looks for scientific explana-
tions why and how they occur. In this way a doctor comes to special diagnoses,
by which diseases, the symptoms of which may be rather similar, can be dis-
tinguished in future cases.

In the other case the data points may be grouped around mathemati-
cal structures as functions or surfaces, which could give a hint that such a
regularity can be used as a mathematical model.

Frequently those structures, clusters or functions are not visible at once,
but only when the data have been transformed first. Such transformations are
sometimes suggested by the context, usually the software for data analysis
offers a wide variety for this purpose. For this approach the assumption is
essential that the data are specified exactly, because the transformations can
distort any small deviation of the original in a non-transparent manner. To
give an impression of such distortions a nice example is reproduced here taken
from the book Nagel/Wernecke/Fleischer (1994).

If one accepts a transformation offer from the software and finds so struc-
tures in the data material, then one should really consider the obtained re-
sults whether they make sense and can be interpreted in the given situation.
It is quite possible that there are several mathematical representations for
the structure in question, among which it oscillates, when more data are
obtained. Moreover, one remember the advice for a possibly simple mathe-
matical representation. A further possibility to realize structures consists in
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Fig. 2.1. Two-dimensional transformations of an animal picture. The pig in the
centre of the figure is the original picture. The characters mark the type of trans-
formation of the corresponding axes: A = square, B = exponential, C = linear, D =
logarithmic, E = square root. (By courtesy of the authors of the book cited above,
see page 183 of the book)

the construction of contingency tables, as they are called. In the simplest case
two different properties, say A and B, of the objects to be investigated (states
of the “something”) are considered and the elements of the corresponding
universes are collected in classes Ki and Lj , respective, of neighbouring or
similar values. (Naturally, with nominal data the categories form the classes.)
The frequencies mij found for the combinations (Ki, Lj) will be inserted into
the boxes of the table. These frequencies can be interpreted, using a stochastic
background, as estimates of the corresponding probabilities, or they will give
only a hint to a possibly existing connection, combining somehow the classes
with the highest frequencies, between the two properties, which should be
investigated further (see, e.g., Agresti (1990)).

If the data vector (of the properties, which should be considered simulta-
neously) has a high dimension, then the confrontations in pairs or in threes
remain possible to a certain extent (sometimes offered by a field of sixteen on
the screen), but any track is increasingly lost with the number of components
of the data vector.
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Table 2.1. Example of a contingency table. m1+ means the sum of the m1j , m+1

the sum of the mi1, etc., and m++ the total sum for all cases

B\A K1 K2 K3 K4

∑

L1 m11 m12 m13 m14 m1+

L2 m21 m22 m23 m24 m2+

L3 m31 m32 m33 m34 m3+∑
m+1 m+2 m+3 m+4 m++

For this case a projection technique was developed (see, e.g., Friedman/

Stuetzle (1981) and Huber (1985)). The high-dimensional real-valued data
are projected, from different standpoints in succession, into the plane or the
three-dimensional space (on the screen). The aim of this procedure is to ob-
serve a structure when reaching a certain angle of vision, e.g. some disinte-
gration of the point cloud or its grouping around a mathematical dependence
representation, a curve or a surface. One may imagine the technique like as on
a flight around the Galaxy, on which flight the lentil shape of it becomes clear
especially under a certain angle. This technique was perfected in a manner
that by a system, similar to that used in orbit runs of spacecrafts near to the
earth, at each time shifted by a small angle, an animation of the cloud of the
projected data is effected on the screen. The observing data analyst can stop
the picture at any time and register the present direction of the projection,
by which proceeding the structure found can be mathematically recorded at
once. This technique is called projection pursuit in general, the observation
of the whole animation process especially is called “grand tour” and may be
rather time-consuming.

In every case data analysis helps to come to reliable data and to first ideas
on its structure, especially on functional connections between the components
of the data vector. The components are to be given as exact real numbers.
Investigations of those connections considering also data uncertainty and al-
lowing for stochastic or fuzzy connections can be found in Sects. 7.1 and 7.2.

2.2 Representation of Functional Relationships Basing
on Data

As already announced, in this section data are considered as exact points,
or, sometimes, as mathematical subjects (e.g. curves or surfaces) composed
of them. Moreover, there will be no assumption made on how deviations may
occur as will be done later on with respect to their assumed random character.
The main task will be the mathematical representation of relations among
the data by functional relationships, either only numerically or by formula
expressions.
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2.2.1 Relationships and Data

Statements about functional relationships are possible in different forms, as
may be demonstrated by the following examples.

By local interpolation statements are made with respect to the numerical
values of a functional relationship within a neighbourhood of a given observa-
tion point, the datum.

By a mostly only geometrical global interpolation a functional relationship
will be given, which joins up the observed values, the data, over the whole
interesting domain.

By local approximation an approximate representation of a functional
relationship near a given datum is desired.

By global approximation an approximate representation of a functional
relationship is to be computed, which is usable over the whole interesting
domain.

For solving of all these tasks a rich variety of methods is provided in the
usual software. The problem of the user, however, is again and again the
question, which of the representation variants he should choose and which of
the procedures offered he should use for the computation of the functional
relationship in his given case.

The answers to these questions depend, as already discussed in the first
chapter, essentially on the information situation given in the practical prob-
lem, and on the aim of the investigation intended.

The information situation is characterized by the following questions:
What is already known on the relationship, besides the given data? Is there

any idea with respect to the possible type of the relationship, i.e. especially to
the form of the curve (straight line, parabola, trigonometric function), exactly
or approximately, from the theory of the branch of science or from experience?
Or, if this is not the case, are at least some properties of the relationship
known, e.g. with respect to its monotonicity or to its differentiability or to
bounds, which cannot be crossed by it?

Moreover, the information situation includes the whole complex of data
quality, which is excluded in this section by the assumption that all data are
reliable and exact. Nevertheless sometimes this aspect will be considered, when
the problems occur, whether deviations are neglectable, or random errors are
possible or gross errors are to be feared.

Finally, an essential role for the information situation the fact will play, in
which form the data are available. Obviously, there is a remarkable difference,
whether the data are given by a continuous record of a function possibly
superimposed by small errors or by observations at only few points. Cases,
where the data are surrounded by an uncertainty part, randomly or fuzzily,
will be considered later on in Chap. 7.

With respect to the aim of an investigation the main point of interest is
how the statement about the relationship will be used in the practical problem.
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The highest claim is meant, if the relationship obtained has to express the
realization of a technical regularity. Here, absolutely, a closed form expression
for the relationship will be necessary.

If a control process is to be started or supervised by the relationship, then
a closed form is agreeable, but practically also a pointwise representation is
sufficient for these purposes.

If only a prediction for a given part of the interesting domain is wanted,
then an approximate representation of the relationship may satisfy.

Finally, if by investigation of the relationship only an optimal value of it
should be found, then an approximate representation only within a neigh-
bourhood of this optimum will be of interest.

Hence, information situation and aim control in common the choice of an
appropriate solving procedure. In the given special case of determination of
a functional relationship such a procedure uses an idea of a type of depen-
dence and an approximation principle. Both should be chosen from practical
considerations. Examples will be presented in the next subsections.

2.2.2 Interpolation

Now the simplest case is handled that the data are given only at few points and
without any error. For the relationship wanted a continuous function is to be
computed, which is, moreover, locally monotonous, i.e. between neighbouring
data there are neither maxima nor minima.

As the aim of the task an approximate prediction of the functional values
between neighbouring data is requested.

Moreover, in this subsection it is assumed that the distances between the
data points are small, and, for the next consideration, that the function is
differentiable.

First, the problem of interpolation is considered.
Because of the preceding assumptions for a function in question, which

maps the (one-dimensional) x-axis into the (one-dimensional) y-axis, one can
use the well-known Taylor-formula

f(x) = f(x0) + (x − x0)f ′(ξ); ξ ∈ [x0, x] . (2.1)

Because of the assumed smallness of the distances between every single
couple of neighbouring points, one can put within each of this single spaces
approximately

f ′(ξ) = const. (2.2)

That means, in each single of these gaps f(x) can be approximated by a
straight line. Practically, one can join up each two neighbouring points by a
line, an operation, which can be executed by any graphic software. The use
of the functional values on the lines as approximating values of the functional
relationship for the data is called linear interpolation.
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The resulting broken line as an approximating representation of the func-
tion may be rather busy and can show corners at the data, which are really
forbidden by the assumption of differentiability and being possibly senseless in
the practical context. However, as already mentioned, the broken line should
give an only local prediction of the functional values and, obviously, only
approximately.

If this approximation does not suffice for the precision of the prediction,
then one can go over to a Taylor-formula of higher order, e.g. to

f(x) = f(x0) + (x − x0)f ′(x0) + (x − x0)2
f ′′(ξ)

2
. (2.3)

In this case the interpolating values between the data lie on a parabola,
in general on a graph of a polynomial of higher order. The coefficients of the
parabola, or the polynomial of higher order, respectively, are not uniquely
determined by the two neighbouring points, which they have to hit, as it was
the case with the straight line.

Hence there are two different ways for an interpolation of higher order.
On the first way each time several neighbouring points are used for the

interpolation.
For example the cubic interpolation is considered. In this case the desired

curve should be interpolated between the data within the interval [x2, x3] by
a cubical parabola

a0 + a1x + a2x
2 + a3x

3 = p3(x) . (2.4)

For a unique determination of p3(x) two further neighbouring points x1, x4

will be included and p3(x) has to hit all the four data points (x1, y1); (x2, y2);
(x3, y3); (x4, y4). This yields four equations with four unknowns, which are, in
general, solvable uniquely:

y1 = a0 + a1x1 + a2x
2
1 + a3x

3
1

y2 = a0 + a1x2 + a2x
2
2 + a3x

3
2 (2.5)

y3 = a0 + a1x3 + a2x
2
3 + a3x

3
3

y4 = a0 + a1x4 + a2x
2
4 + a3x

3
4 .

The interpolation takes place only in the middle interval. By including
of the additional neighbouring points the precision in the prediction interval
will be essentially increased, in general. Numerical investigation on the real
approximation precision within the prediction interval and in the given case
needs reliable information on the real behaviour of the function to be inter-
polated and its derivatives and can be handled, e.g., by methods of interval
mathematics (see Subsect. 3.1.2).

On the second way one will put a polynomial of higher order over each in-
terval and will remove the ambiguity of the coefficients by demanding smooth-
ness of the curve, when crossing from an interval to a neighbouring one.
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Again the three intervals are considered: ∆1 = [x1, x2];∆2 = [x2, x3];∆3 =
[x3, x4]. Over each interval a cubical parabola is defined:

∆1 : y = a01 + a11x + a21x
2 + a31x

3

∆2 : y = a02 + a12x + a22x
2 + a32x

3 (2.6)
∆3 : y = a03 + a13x + a23x

2 + a33x
3 .

This represents a system of three equations for the 12 coefficients. The
demand that neighbouring curves should connect each other continuously at
(x2, y2) and (x3, y3) does not yet fix the coefficients. Only the further demand
that the crossing should be also smoothly, i.e. the corresponding values of the
first and second derivatives of the neighbouring curves should be equal, yields
the desired unique solution of the system.

This spline technique can be extended to arbitrary many intervals, for
which procedure the continuity of the crossing at all the single data points
is demanded (if using cubical parabolae up to the second derivative). This
technique reminds of pliable curve templates, by which smooth curves can
be drawn through a few single points. This task is now taken over by an
appropriate software, which presents the result on the screen.

The interpolation problem is essentially more difficult, if the interpolation
has to take place in a space of higher dimension. In the three-dimensional
space the surface between three neighbouring points can be interpolated in a
linear manner by a piece of a plane, and the different pieces will meet each
other continuously. An interpolation with surfaces of higher order, however,
will make sense only locally. So the non-linear interpolation can be modified
by using more points from the neighbourhood of a “mesh”, where the in-
terpolation should be used, to determine the coefficients of the interpolating
polynomials, though the expression obtained will be applied only within this
mesh.

If the demands on splines for smooth crossing are transfered to a mul-
tidimensional space, then they must be valid for multidimensional subjects
(curves, hyper-surfaces). Those demands can only be fulfilled for very special
combinations of given mesh shapes and approximating functions in the single
meshes. This problem will be of interest in connection with an approximation
of functions of several variables, which have to satisfy a given mixed bound-
ary problem, within the framework of the method of finite elements (FEM),
as it is called (see some textbook on this topic, e.g. Hughes (1987), and in
Subsect. 2.4.2).

2.3 Local Approximation

If the formula expression for the desired approximate functional relationship
should remain transparent and handy, then the demand must be given up that
the approximating function has to hit all the data points strictly. This leads
to a task, which is called approximation in a general sense.
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2.3.1 Approximation

The information situation is now characterized by the allowance that the
functional values yi of the data may be superimposed by small not necessarily
statistical errors, and by the assumption that inaccuracy with the correspond-
ing argument values xi may be neglected.

The aim is still the approximate representation of the unknown functional
relationship, which the data fulfil, by a formula expression.

In contrast to interpolation, with which the local character is immanent,
here local and global approximation are to be distinguished.

As with interpolation also with local approximation a contextual interpre-
tation of the approximating function obtained is not intended. Only a repre-
sentation of the graph of this function within a bounded domain is requested,
from which approximate values can be read and predictions can be made.

As with interpolation the argumentation starts with the Taylor-formula
and approximation is tried by polynomials.

In the following in this chapter only the simplest case is considered that
the argument values x are taken from the one-dimensional space. The tranfer
to the multidimensional space for the arguments does not offer any difficulty,
in principle, but it is essentially more space-consuming in its presentation.

Hence now the data consist of the points (xi, yi), where i = 1, . . . , n. For
approximation a polynomial of order m

fm(x) =
m∑

j=0

ajx
j (2.7)

will be used.
The central question of every local or global approximation is, how should

the possible deviations of the approximating function fm(xi) from the ob-
served or measured data values yi be evaluated.

According to a suggestion by Gauss as a measure of deviation the square
of the difference is chosen, i.e. (yi−fm(xi))2. This choice leads to simply man-
ageable numerical tasks und will be used advantageously within mathematical
statistics later on. Hence this measure can be never negative, the deviation of
all data in common can be evaluated by the sum:

Q∗(y1, . . . , yn; fm(x1), . . . , fm(xn)) =
n∑

i=1

(yi − fm(xi))2 . (2.8)

With all (xi, yi) given, Q∗ is a function of the coefficients of fm(x):

Q(a1, . . . , am) =
n∑

i=1

(yi −
m∑

j=0

ajx
j)2 . (2.9)

The best approximation of the given data according to this principle is
obtained by minimization of Q with respect to the coefficients a1, . . . , am.
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This is a simple optimization problem, which can be reduced by equating to
zero of the partial derivatives of Q into a linear equation system:

n∑

i=1

m∑

j=0

ajx
j
ix

k
i =

n∑

i=1

yix
k
i ; k = 0, . . . , m . (2.10)

Although the solution (â0, . . . , âm) can be given in a closed form (which
will be presented and considered in Subsect. 7.1.2) at this point it is assumed
for the moment that the solution is given by a computer output.

Hence the approximation of the unknown functional relationship y = f(x)
is presented as

ŷ = f̂m(x) =
m∑

j=0

âjx
j (2.11)

With that the considerations are mostly finished and the unknown function
is identified with the obtained polynomial approximation. This thoughtless and
dangerous inference, however, needs some critical assessment:

By the given procedure the deviations between the functional values and
the approximating values become known only at the observation points, the
data. In the spaces between these observation points there is not any informa-
tion available on those deviations (but even here it will be of interest!). To
have some confidence in these values in between it must be assumed that the
functional values lie near each other and the unknown function is sufficiently
smooth. The latter is the case, e.g., if it is known or may be assumed from
the practical context that the unknown function has continuous derivatives of
some higher order. The ideal situation is met, if it is known a-priori that the
function itself is approximately a polynomial of some order m. Also here the
argument with the Taylor-formula will help.

A further problem can be raised by the numerical solution of the system of
(2.10), especially then, if many unknown coefficients aj are to be determined
simultaneously, that is the rule especially in the multidimensional case. In the
following the numerical problem will be illustrated by a radically simplified
demonstration example.

Let us consider the system of linear equations

1, 00a0 + 1, 00a1 = 1, 00 (2.12)
1, 01a0 + 1, 02a1 = 1, 03

with the obvious solution (−1; 2). An insignificant change of the coefficients,
e.g. by an increase of the number of digits (notice that the preceding system
arises from the following one by rounding of the coefficients), leads to the
system

1, 000a0 + 1, 000a1 = 1, 000 (2.13)
1, 013a0 + 1, 016a1 = 1, 028
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Fig. 2.2. A glancing intersection of two straight lines in the plane

with the obvious solution (4;−5). Thus an insignificant changing of the co-
efficients causes an enormous changing of the solution. This effect is called
numerical instability. In the given case the reason for this phenomenon can
be explained simply geometrically: The solution of a system of two linear
equations with two unknowns is equivalent with the determination of the in-
tersection point of two straight lines in the plane. If the two lines are nearly
parallel, then they have a glancing intersection.

A small motion of the lines (i.e. a change of their coefficients) leads to an
enormous moving of their intersection point.

This effect cannot be eliminated by choosing another solving procedure,
even if this will seemingly yield a higher precision. The reason lies here in the
choice of the structure of the system of approximating polynomials. To see
this one should consider the behaviour of the basing functions

1, x, x2, . . . , xm , (2.14)

which will be linearly combined to a polynomial fm(x). Their graphs over
the interval [−1, 1] are shown in the following Fig. 2.3: As can be seen the
curves are “nearly parallel” within [0, 1]. If the data lie within this part of the
interval, then a numerical instability can almost be expected.

Hence sometimes it is suggested, especially if the argument values xi will
be needed as “standard argument values” for the observations, instead of
the ordinary power functions, to use certain linear combinations f

(r)
m (x); r =

0, . . . ,m of them, which are orthogonal over the set of arguments, i.e. having
the property

n∑

i=1

f (r)
m (xi)f (s)

m (xi) = 0 ; r �= s ∈ {0, . . . , m} . (2.15)
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Fig. 2.3. Graphs of the functions xj over [–1,1]

With these functions the solution of the system of linear (2.10) is trivial
and the mentioned disagreeable effects cannot occur.

The same idea may be used, if the argument values xi are to be determined
beforehand, at which the function y = f(x) is to be observed. According to
a corresponding formula as (2.15) the ordinary polynomials fr(x) = xr; r =
0, . . . ,m are orthogonalized with respect to the intended observation points xi.
The choice of those arguments is called orthogonal design of experiments and
will be reconsidered in connection with regression theory in Subsect. 7.1.2.

Local approximations can be linked together as it was done by the spline
technique with interpolations. In different fields various systems of approxi-
mating polynomials are used. In the one-dimensional case conditions for the
smoothness of the crossings can be put, in the multidimensional case this leads
to certain complications. Suggestions, how to overcome these problems, are
treated in Subsect. 2.4.2.

Besides the ordinary polynomials and their multidimensional correspon-
dences also other systems of functions are possible and useful as systems of
approximating functions. Thus periodical functions are chosen, if it is known
from the practical context that the unknown function will behave periodi-
cally. If, e.g., it is known that the original period of this function is q , i.e.
f(t + q) = f(t), then by the scale transformation x = (2π/q)t and with the
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system of functions

1, cos x, sin x, cos(2x), sin(2x), . . . (2.16)

one arrives at the Fourier series setup

fFm(x) = a0/2 +
m/2∑

j=1

ajcos(jx) +
m/2∑

j=1

bjsin(jx) , (2.17)

as it is called. Other representations are possible and usual. Likewise there
are corresponding setups for the multidimensional case. For the numerical
determination of the coefficients a0, aj , bj ; j = 1, . . . ,m/2 appropriate soft-
ware exists, at least for the usually equidistant observation points xi. With
respect to a closed form solution of the resulting systems of equations see
some textbook of this topic.

A modification of the approach is necessary for the case that the datum
itself is a function or some hypersurface. This occurs, if the data values are
obtained continuously, e.g. measured by electronic means. Again only the
one-dimensional case is considered that the datum is given geometrically or
pointwise with neglegible spaces between, as a curve y = g(x). The inaccuracy
of the measurements of x and y may be neglegible. This characterizes the given
information situation.

The aim is a local approximation by a closed form function, an analytical
expression as it is called. The motives for this aim may be diverse. It may
simply be the desire for a data reduction, since the pointwise storing is too
space-consuming. A comparison with other functions is most comfortable, if
these are given in the same form with corresponding coefficients being synony-
mous with each other. But also it may be the request of only a reconstruction
of the function when required.

As with approximation on the basis of a few discrete points an appropriate
system of functions is to be chosen, polynomials, trigonometrical or other
functions.

The approximation in the quadratic mean over the interesting local domain
B is effected by minimizing the integral

Q(a1, . . . , am) =
∫

B

(g(x) −
m∑

j=1

ajf
(j)(x))2dx , (2.18)

with respect to the arguments, at it was done in the case with discrete points.
By equating to zero of the partial derivatives of Q with respect to the aj again
a system of linear equations, now

m∑

j=1

aj

∫

B

f (j)(x)f (l)(x)dx =
∫

B

g(x)f (l)(x)dx , (2.19)
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with l = 1, . . . , m is obtained, the solution â1, . . . , âm of which can be given
numerically. For a unique solution of (2.19) it is necessary that the functions
f (l)(x) are linearly independent, i.e. the following equation

m∑

j=1

ajf
(j)(x) = 0 (2.20)

has, demanded for all x ∈ B, only the trivial solution a1 = · · · = am = 0. If
there would exist a non-trivial solution, then at least one function could be
expressed by a linear combination of the others and hence would be superflu-
ous.

Also in the case of continuous data the problem of numerical instability can
occur. Hence also here it is suggested to use systems of functions, which are
orthogonal over the domain intended for approximation, i.e. systems, which
fulfil the condition

∫

B

f (j)(x)f (l)(x)dx = 0; j �= l ∈ {1, . . . , m} . (2.21)

By successive application of these conditions a given linearly independent sys-
tem of functions can be orthogonalized. As an example the system of polyno-
mials (2.14) with m = 5 : 1, x, x2, . . . , x5 over the domain [−1, 1] is considered,
which is shown in Fig. 2.3. Every finite interval can be normalized to this in-
terval. The result of that orthogonalization are the Legendre polynomials:

f (1)(x) = 1
f (2)(x) = x

f (3)(x) =
1
2
(3x2 − 1) (2.22)

f (4)(x) =
1
2
(5x3 − 3x)

f (5)(x) =
1
8
(35x4 − 30x2 + 3)

f (6)(x) =
1
8
(63x5 − 70x3 + 15x) ,

which are presented in Fig. 2.4, which may be compared with Fig. 2.3. By
using of orthogonal functions the solution of the corresponding systems of
equations is trivial, because only the diagonal elements of the system matrix
are different from zero. Together with the constants

∫

B

f2
j (x)dx = γj , (2.23)

to be determined beforehand, the minimal quadratic deviation Qmin is ob-
tained by
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Fig. 2.4. Orthogonal polynomials over [–1,1]

Qmin =
∫

B

g2(x)dx −
m∑

j=1

â2
jγj . (2.24)

From this result some further advantages by the application of orthogonal
setups can be seen. Every inclusion of a further orthogonal function improves
the approximation. This is valid naturally also for non-orthogonal systems,
but it is recognized not so clearly there. For orthogonal systems, however, the
coefficients âj need not be computed anew for the previous functions, when a
next function is included, because they remain the same ones.

A possible disadvantage of orthogonal systems is, in general, that the single
orthogonal functions cannot be interpreted so simply in the practical context.

The transfer to multidimensional orthogonal systems is without any prob-
lem, in principle, but it is essentially space-consuming and sometimes confus-
ing. The construction of those systems may be effected by tools for formula
manipulation (for example: Mathematica).

2.3.2 Other Approximation Principles

The approximation principle “in the quadratic mean” (see (2.18)), as pre-
sented up to now, tolerates very large deviations (peaks), if only the set, on
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which they occur, is sufficiently “small”. That may be undesirable, perhaps
even dangerous, because possibly already a short-term leaving of the “security
belt” may cause a damage.

Hence also other approximation principles as that suggested by Gauss are
of practical interest.

Such a principle, named after Tschebyscheff, demands to minimize the
largest absolute deviation by the approximating function. In the continuous
case this means for the expression

QT (a1, . . . , am) = max
x∈B

∣
∣
∣g(x) −

m∑

j=1

ajfj(x)
∣
∣
∣ (2.25)

that it is to be minimized by determining suitable aj . For this uniform approx-
imation a far reaching theorem is valid that every continuous function can
be approximated by polynomials arbitrarily precisely. This statement makes
the use of polynomials attractive for a uniform approximation.

With the pleasant property that the tolerance against short-time peaks is
prevented by the uniform approximation some unpleasant properties are con-
nected, which one has to weigh up the one and the others in a concrete case.
The approximation is assessed according to the most disadvantageous point,
which may, however, be practically without any importance. This fact may be
considered, e.g., if there is a chance for the occurence of undetected outliers.
Moreover, for this type of approximation there is not so a nice simple math-
ematics, which is transparent also for laymen. But this will be of decreasing
importance by the increasing efficiency of computers and numerical approxi-
mating procedures. Especially in the case of multidimensional domains B the
computation of the parameters âj can be rather time-consuming.

In the case of a few discrete data (xi, yi) the QT has the analogous form

QTd(a1, . . . , am) = max
i

∣
∣
∣yi −

m∑

j=1

ajfj(xi)
∣
∣
∣ . (2.26)

The solution of the corresponding minimizing problem with respect to the aj

will be handled by routine procedures of linear programming.
Also here again the comment is useful that about the approximation be-

tween the observation points, in general, nothing can be stated, except that
information are given about the behaviour of the unknown function in the
whole domain of approximation.

If only the quadratic weighting of the deviations is felt unreasonable (e.g.
as too strong), then for the approximation the principle of the smallest sum
of the absolute values may be chosen. Then the functional

QMKA(a1, . . . , am) =
∫

B

∣
∣
∣g(x) −

m∑

j=1

ajfj(x)
∣
∣
∣dx (2.27)
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is to be minimized by a suitable determination of the aj . Also here a simple
and transparent procedure for a closed form solution is lacking. Again approx-
imating optimizing procedures are to be applied. The analogon for the case
that only a few discrete data are given has the form

QMKAd(a1, . . . , am) =
n∑

i=1

∣
∣
∣yi −

m∑

j=1

ajfj(xi)
∣
∣
∣ . (2.28)

Also in this case for the determination of the optimal coefficients âj meth-
ods from linear programming are used. For an assessment of the approximation
between the points the same comment is given as for the principles already
mentioned for this case.

Theoretically, the power exponent p, by which the deviations are weighted
(p = 2 : quadratic mean; p = 1 : absolute value) can be put to any positive
value; even the Tschebyscheff-approximation can be included in this scale
by taking p “infinitely large”.

The principles show a different sensitivity against untypical data, e.g.
against outliers. This may be important in certain cases. Thus this sensitiv-
ity increases from the principle of the least absolute values over the Gauss-
principle to the Tschebyscheff-principle.

2.3.3 Empirical Smoothing

The presented approximation principles can also be used for a local smoothing
of a given data material, given as finite sets of data points or as curves or
surfaces.

In contrast with the preceding subsections no representation by mathe-
matical formulae is demanded; only a smoothed geometrical representation
is requested, which the relationship may change only insignificantly within a
small local domain. Hence the representation should remain data oriented. As-
sumptions on the form of the relationship are not (yet) available, one hopes to
obtain a hint to a possibly suitable function by this smoothed representation.

With respect to the information situation nothing is known besides the
data, which are assumed to be obtained exactly. It is only presumed that the
data could be superimposed by small deviations or errors, on the character
and extent of which no assumption can be formulated though. The aim is only
the construction of a “smoothed picture” and the hope for an idea to grasp it
by a function. This aim is typical for an early stage of the investigation. Since
there is no information besides the data, a larger size of them is necessary
(Golden rule).

The procedure, now to be presented, is sometimes called empirical regres-
sion, because it is frequently used in preparation of a statistical treatment of
the data.

First a window is to be chosen, as it is called, i.e. a small domain, from
which data will be used for the smoothing. Two types are distinguished: a
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“hard” window, a domain of simple shape, an interval in the one-dimensional
case, and a “soft” window, such a domain endowed with a weighting function
h(x) defined over it, which assumes its maximum value 1 somewhere in the
“centre” of the domain and with non-negative values monotonously decreasing
towards the borders.

Then the type of function is to be fixed, with which the local smoothing
is to be effected. Usually these are a constant f(x) = a0; a linear function, in
the one-dimensional space f(x) = a0 +a1x; and at most a quadratic function,
correspondingly f(x) = a0 + a1x + a2x

2.
Finally, an approximation principle is to be chosen, e.g. the sum of the

squared deviations as the criterion.
After these choices of the three components the procedure begins in a

certain starting window F1. As an example the following one is chosen: A soft
window with the weighting function h(x), a linear approximating function
f(x) = a0 + a1x, and the method of least sqares.

In F1 the coefficients a0 and a1 are computed using the weight h(xi) for
each datum (xi, yi) according to

N∑

i=1

h(xi)(yi − a0 − a1xi)2 = min . (2.29)

Note that the sum in fact runs only over such data, which are in the
window F1, because the function h(x) is equal to zero outside. The function
f̂1(x) = â0 + â1x formed with the solution â0 and â1 of (2.29) is used for
approximation only in the centre (and a small neighbourhood) of the win-
dow. Then the window is shifted by one half of this small neighbourhood and
denoted by F2. Then the procedure is repeated until the whole interesting
domain is succesively covered over. Because this procedure makes sense, prac-
tically, only at the screen, where the result is presented, the “granularity” of
the screen effects that the single small shiftings are no longer perceived and
the impression of a continuous, even smooth approximation function arises.

2.4 Global Approximation

Within global approximation two directions can be distinguished.
In the first case from the given data an expression in a closed form is

to be derived being valid for the whole interesting domain and containing
parameters, the number of which being as small as possible, but nevertheless
representing the unknown function sufficiently precisely. Here the practical
main problem consists in the choice or the bringing out of a setup , i.e. of a
mathematical structure for the approximating function.

In the second case the unknown function is “known” implicitly, e.g. as the
solution of a given mixed boundary value problem, or even explicitly, e.g. as
an empirically given curve or surface, e.g. recorded by an electronic medium.
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This function is to be represented by a series of local standard functions (i.e.
functions, which are different from zero only over a small subdomain), in order
that the specialist will be able to consider or investigate the local behaviour
of the function at every place of the interesting domain. Examples of this case
are supplied by the method of finite elements and by the conception of the
wavelets.

2.4.1 Approximating Functional Relationships

In the present context a functional relationship is understood as a relation
between one (or several) dependent variable and one (or several) explanatory
variable, which should be represented by an expression in a closed form con-
taining yet some unknown parameters, which may take values from a given
index set. These parameter values are to be determined or computed e.g. from
given data. For the sake of simplicity of presentation only the simplest case
of one dependent variable is considered, thus the functional relation

y = η(x; a1, a2, . . . , am); (a1, a2, . . . , am) ∈ A . (2.30)

The function η, giving the structure of the mathematical connection up to
parameters, is usually called setup. Its expertly supported choice is the main
problem with global approximation.

Global approximation differs from local approximation, as is already men-
tioned in Sect. 2.3, only in the aim, the information situation is the same.

A scientific, technical or economic regularity is to be approximately put
into a mathematical form, with which theoretical considerations as well as
concrete predictions for yet unknown situations can be effected. The number
of parameters should be as small as possible, to guarantee tranparency and
easy handling.

Starting point for the setup choice, as it is called, should always be theoret-
ical considerations on the situation, which is to be described, and examination
and reflection of already available numerical results, in doing so a sound scep-
ticism is advised. All which seems interesting and important for the case given
should be kept in mind, let it be only for later assessments or improvements
of the results obtained. These preliminary considerations should end with a
supposition of the form of the relationship, i.e. with a setup.

It is advantageous in every case to have a setup supported by the field of
application, even if therein some unknown parameters occur in a non-linear
manner, as e.g. in

y = a1 + a2 exp(a3x
a4) , (2.31)

which will be used in an example in Subsect. 7.2.2. Such setups have the great
advantage that they can be interpreted in the practical context and hence are
comprehensible in their meaningfulness.
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In case that such an expertly supported setup is not (yet) available or
that the unknown function can only be given as a numerical solution of some
mathematically complicated problem, e.g. a differential equation, then one
should be content with an approximating setup using a system of functions
(polynomials, trigonometrical or exponential functions), in the choice of such
a system taking into consideration known properties of the unknown function.

In both cases it can occur that several setups seeming to be suitable and,
so to speak, compete for the title “best setup”. Here a criterion is to be
chosen to decide on the quality of the setup, e.g. the value of the criterion for
approximating the given data. This problem is considered in Subsect. 7.1.3 in
connection with methods of mathematical statistics.

On no account the setup choice should be left to a software tool offering a
catalogue of function types, which may be combined arbitrarily to a “setup”.
For this “setup” the computer supplies an approximating function, which
approximates the given data “in the best way” according to the given criterion.
Such an approach leads to a result, which needs neither be interpretable in
the given context nor be stable with respect to the data, i.e. slightly changed
or further data can result in a possibly completely other selection from the
catalogue.

The method for determination of a global approximating function numeri-
cally is totally analogous to that used for local approximation. After the choice
of an approximation criterion such parameter values â1, â2, . . . , âm are com-
puted, which minimize it. The only difference consists in the fact that now
the whole interesting domain G and all the given data are included simulta-
neously.

Linking together of local approximating functions over the whole domain
constitutes no global approximation according to the explanation given above,
since it does not justice to the chosen aim for that.

Though it can occur that the problem itself suggests the use of different
setups in different subdomains of G. It can happen, however, that e.g. turn-
over points, boundary surfaces of layers, take-over times, or similar factual
changings divide the domain G into phases, as they are called. Taking into
account only this partition by different setups in different subdomains does not
lead away from global approximation. An interesting mathematical problem
arises if the turn-over points or other phase borders are unknown and should
be determined from the data at the same time. This problem is subject of
multi-phase regression (see some textbook on this topic and for an example
Bandemer/Schulze (1985)).

2.4.2 Approximation with Locally Variable Setups

As already mentioned in the preceding subsection the concept of global ap-
proximation can also be used sensibly, if a mathematical model of the sit-
uation is given, e.g. by expertly supported considerations, but its adaption
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to the given data consists in a complicated numerical problem, for which a
solution in a closed form does not exist.

Typical cases for this problem area are mathematical models in form of dif-
ferential equations (mixed boundary value problems) and integral equations.
Since the specification of such equations is always effected by a process of ab-
straction and idealization, a highly precise solution of the arising mathematical
tasks would be senseless for practical requirements, even if the data used are
assumed to be given exactly, which is, as is well known, also an idealization.

Since the field of numerical handling of such equations is very wide (see
some textbook on this topic) the treatment of this field in the present context
will be restricted to a short consideration of simple mixed boundary value
problems, in order to fit a modern concept into the framework of this section.

The approximately solving of such problems usually starts with a setup of
the type

u(x, y) = ϕ0(x, y) +
m∑

k=1

ckϕk(x, y) , (2.32)

where the function ϕ0 has to satisfy the non-homogeneous boundary condi-
tions, whereas the ϕk fullfil the homogeneous ones. (Ritz-setup). This setup
is then introduced into a certain functional, for which the stationary points
with respect to the coefficients ck are computed. But this well-known pro-
cedure is practicable only for “nicely regular” domains G. Hence a method
due to Galerkin is preferred, in which the setup mentioned above is intro-
duced into the differential equation and the deviations obtained, remainders
R(x, y), as they are called, should be minimized by the choice of the ck. Then
an approximation functional is chosen, being quadratic in the coefficients. This
leads, in analogy to the method of least squares to the system of equations

∫

G

R(x, y)ϕj(x, y)dxdy = 0; j = 1, . . . ,m . (2.33)

With very complicated regions G, however, it is hopeless to find functions
ϕk, which satify the demanded conditions in the whole domain. Therefore the
method of finite elements (for details see some textbook on this topic, e.g.
Hughes (1987)), was developed, with which approximating solutions can be
obtained for practically interesting but rather irregularly shaped domains.

In this method first the domain G is split up into elements, as they are
called. These elements are relatively small, up to their boundaries disjoint
subdomains Gj , by which the whole domain is exhausted. In each single of the
Gj the unknown function u(x, y) is approximated by a problem-appropriate
but simple setup. Usually simple polynomials at most of third order in each
variable are used. To guarantee continuous crossings between the elements, the
form of the polynoms in neighbouring elements must be suited to each other.
If this proves impossible, sometimes continuity of the crossing is renounced.
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To fulfil the conditions of continuity in a practically easily comprehensible
manner setups of the form (2.32) with their coefficients ck are unsuitable.
Rather a representation of such functions in the single elements should be
looked for, in which special values of the unknown function and possibly of
its (partial) derivatives in certain points in the elements occur. These points
are called nodal points and their values are considered as “free parameters”,
nodal variables as they are called. These coefficients, denoted by u

(l)
i and later

also by uk may also be sometimes values of derivatives. Instead of the simple
powers in setup (2.32) special polynomials are introduced, now called shape
functions.

As an example let be considered the p nodal variables u
(l)
i at the nodal

points (x(l)
i , y

(l)
i ) in the l-th element Gl, then one gets the representation of

the unknown function u(l) in this element

u(l)(x, y) =
p∑

i=1

u
(l)
i N

(l)
i (x, y) (2.34)

with shape functions N
(l)
i , each one only defined over Gl, for which functions

a sort of orthogonality should be valid:

N
(l)
i (x(l)

j , y
(l))
j ) =

{
1 for j = i ,
0 for j �= i .

(2.35)

Since the nodal points very frequently are put on the boundaries of the
elements, in neighbouring elements also nodal variables occur, which are the
same. Taking this into account with (2.34) a setup can be generated over the
whole domain G by combining and renumbering:

u(x, y) =
n∑

k=1

ukNk(x, y) . (2.36)

This setup corresponds, with respect to its intention, to the approach with
the Ritz-setup; but now the coefficients uk are, at the same time, the function
values of the requested function at the nodal points, and the setup function
Nk(x, y) have each only a local support. In the setup (2.36), which represents
the main formula of the method of finite elements, the geometrical boundary
conditions can be taken into account in a simple manner, by putting the
corresponding nodal variables to the given values.

By inserting the whole setup into a corresponding (quadratic in uk) func-
tional and demanding its stationarity a system of linear equations for these
values of the function arises. In this way the mixed boundary value problem is
(approximately) reduced to a system of linear equations with very many un-
knowns. Since always only values of the function from neighbouring elements
will occur at the same time, the system matrix S of the system of equations
has a rather special structure with many vanishing elements (sparse matrix),
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which makes the solving of the system possible in spite of the high number of
unknowns.

Naturally, also the Galerkin-approach can be used as an optimizing func-
tional for a minimizing of the residua.

A presentation of the internal solving procedure can be omitted here, since
a treatment of the task is practicable only by means of suitable hard- and
software. With respect to further details see a corresponding textbook, e.g.
Hughes (1987).

The problem is interesting for data analysis by the influence of model
impreciseness. The mixed boundary value problem is an idealization of the
practical problem; hence the coefficients of the differential equation may be
characterizing values of the material used, which are known, in the case given,
only imprecisely. Moreover, even with the initial and boundary values impre-
ciseness can occur, e.g. when they are obtained by measurement or observa-
tion. Both influences are investigated today by sensitivity analysis, by which
the effect of small changes is considered theoretically. An assessment of the
magnitude in the concrete situation is seldom effected. The problem of impre-
ciseness, however, is of great importance for the choice of a meaningful nu-
merical preciseness for the procedure of the method of finite elements. Mostly
things are overdone here and a precision is demanded, which suggests a real
precision of the solution for the problem at hand proving totally virtual, if the
impreciseness of the model and of the initial and boundary values is taken
into account.

A well known method for an approximate representation of a graphically
given periodical function is its expansion in a Fourier series . The approxi-
mation is effected by using only some terms from the beginning of the series,
such that the graph of the function and the graph of its reconstruction by this
partial series can not be distinguished at first glance. This approach was im-
proved extensively and in different directions. The function need no longer be
periodical (the period is “infinitely long”). For this case (orthogonal) systems
of functions are developed, in which each single function is different from zero
only on a finite interval, which decreases in length with increasing index of
the function. This approach was generalized in different respects. For a com-
prehension of this direction of development the consideration of a suggestion
by Haas (1910) will suffice, called already classical today. He considered the
function

ψ(x) =
{

1 for x ∈ [0, 1/2] ,
−1 for x ∈ (1/2, 1] ,

(2.37)

and formed with it

ψj
k(x) = 2j/2ψ(2jx − k) ; j, k = 0,±1,±2, . . . . (2.38)

The ψj
k are different from zero exactly over the interval [2−jk, 2−j(k +1)].

This system of functions forms a basis for the set of all twice continuously
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differentiable functions over the x-axis. With functions of this kind, but offer-
ing a richer set of functional values, predominate frequencies and abnormal
amplitudes can be recognized rather well at the same time. Such systems of
functions are called wavelets and used successfully for different practical pur-
poses, e.g. for data compression, where only a few coefficients of the expansion
are stored, from which the original function can be reconstructed with suffi-
cient precision (see some textbook on this topic, e.g. Walnut (2002)). Also
here the consideration starts with the assumption that all original data are
exact and all pecularities found are of equal interest. To this day the real as-
sessment of the necessary precision for a given application purpose is an open
problem. For investgation of the properties of a wavelet usually the starting
point are test functions, which show certain phenomena, as they may also
occur in the planned field of application, and from the results for these test
functions the properties of the wavelet are concluded. The use of wavelets
makes sense only with an extensive data material, as it is given e.g. with grey
tone pictures on pixel level.

2.4.3 Approximation in Differential and Integral Equations

A well-known field of application of global approximation is the determina-
tion of interesting constants in differential or integral equations. The informa-
tion situation consists in the assumptions that, on the one hand, a practical
solution of the equation is given, graphically or only in some discrete points,
and, on the other hand, a solution in a closed form or an approximating
solution is known represented by a functional relationship, which contains
unknown parameters yet.

After the choice of an approximation principle, meaningfully the same as
for the approximating solution, the unknown parameters are determined by
minimization according to this principle. Also here the real approximation
precision between the practical problem, the differential or integral equation,
and the given practical solution, and hence the real precision of the deter-
mined parameter values, which is important for their further use, remain in
darkness. In practical cases, however, this precision will be rather small, hence
in many cases assumptions suggest theirselves that the parameter values may
be realizations of random variables (see Subsect. 4.1.3).

2.5 Approximate Optimization of Empirical Functions

If, in the information situation, the values of the unknown function are avail-
able only pointwise (and perhaps only approximately) by measurement or
observation, which causes expenditure of time and money, but if the aim is
only the determination of the (rough) position of its optimum, then an explicit
representation of the function, e.g. by a suitable setup, is not necessary.
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For this problem different procedures are offered, the effectivity of which
depends on the dimension of the space of arguments and on the assumption
on the precision of the observation method to determine the “true” values of
the functions.

If the dimension of the argument space is high, but at the same time the
precision of the observations is high, then search procedures are appropriate.

In the blind search the choice of the argument points, where the obser-
vations should take place, follows the uniform distribution over the whole
interesting domain G. The points are fixed by a random number generator
according to the distribution: Every point has the same probability to be
chosen.

In the controlled search the probability distribution over G is modified
after each single observation. The search starts with a certain a-priori distri-
bution, as it is called, around the presumed position of the optimum. This
approach was developed further by the creation of genetic algorithms, as they
are called, into a subtle heuristics, which claims to model evolutionary strate-
gies of Nature. The procedures are rather effective for the case considered (see
for details e.g. Goldberg (1989)).

If the dimension of the argument space is moderate, but remarkable ob-
servational errors are to be expected, then another sequential approach is
recommended. In a (small) starting subdomain the function to be optimized
is approximated by a hyper-plane and the coefficients of this hyper-plane are
determined by approximation from observations in the subdomain. The posi-
tion of the hyperplane supplies a rough direction of the tangential plane and
hence the direction, in which the function changes its values most strongly.
In this direction in increasing distances from the starting subdomain observa-
tions take place as long as remarkable changings (according to the interest –
towards a minimum or a maximum) can be recorded. If the changings are
too small or in the “wrong” direction, then a new “basing subdomain” is
specified in the neighbourhood of the last observed points and the proceeding
is repeated. In this way a subdomain is reached, where remarkable chang-
ings can no longer be observed in any direction. Then it is assumed that a
neighbourhood of a stationary point is reached and the unknown function is
approximated in that subdomain with a quadratic setup in order to locate the
optimum further. This procedure was suggested by Box/Wilson (1951) and
uses a statistical background and methods of statistical experimental design
for the choice of the observation points aiming at minimizing the observation
costs in a wide sense.



3

Specification and Use of Observation Fuzziness

In this chapter impreciseness and vagueness of data (sometimes also of com-
ponents of the model) are treated purely phenomenologically. Imprecision is
considered given and tried to be specified mathematically. The data back-
ground is not analysed and not any assumption is put with respect to models
for interpretation and for specification of the process of data genesis. Possibili-
ties for such data models are introduced and treated in the following chapters,
so, e.g., stochastical assumptions in Chap. 4.

3.1 Specification by Intervals

The mathematical form of specification and treatment of data imprecision
depends essentially on how large imprecision of the values is when compared
with the scale of the values and their variation. Hence at first the simplest
case is considered, when that imprecision may be assumed to be small in
comparison with the values.

3.1.1 Simple Error Propagation

An approach, which can be already called classical, for inclusion of impre-
ciseness caused by measurement or observation is the consideration of error
propagation.

Here the starting point is the information situation that the imprecision
of certain argument variables xj can be specified by intervals, in which the
“true” values of the corresponding variables are situated with certainty. The
generalization to multidimensional closed (convex) domains for several ar-
gument variables simultaneously makes sense theoretically, but will not be
treated here.

Moreover, it is assumed that the functional relationship

y = f(x1, . . . , xm) (3.1)

H. Bandemer: Mathematics of Uncertainty, StudFuzz 189, 39–61 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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is known accurately and surely, i.e. a possible model incertainty is neglected
in the face of argument impreciseness.

The aim of investigation is an assessment of the imprecision of the value
y of the function.

For that two further assumptions are introduced. On the one hand it is
assumed that the function f is differentiable with respect to its arguments,
and on the other hand that the imprecision of the measurements is small when
compared with the variations of these derivatives.

On these conditions the Taylor-formula can be approximately used, writ-
ten with the argument value intervals ∆xj in the form

∆y =
m∑

j=1

∂f

∂xj
∆xj (3.2)

In this representation the partial derivatives ∂f
∂xj

are to be interpreted each as
the mean value within the interval ∆xj . By this and by further neglections,
inter alia with respect to the approximation of f the interval ∆y is also only
an approximation, of which one can no longer say that it contains the “true”
value with certainty. Hence this approach is taken as a starting point for a
stochastic idea of the observation imprecision, which leads then to the error
propagation law due to Gauss (see Subsect. 4.1.3). Because of the assumed
relative smallness of the intervals for the variables the interval formula as
above gives a sound impression of the scale of the imprecision of the function
value y.

If the functional relationship has the special form of an exponential product

y = kxa1
1 xa2

2 · · ·xam
m , (3.3)

which occurs frequently in application, by logarithmic differentiation, as it is
called, an assessment of the relative error is obtained

∆y

y
=

m∑

j=1

aj
∆xj

xj
. (3.4)

Also starting from this expression a special form of the (stochastic) error
propagation law is supplied.

3.1.2 Basic Ideas of Interval Mathematics

The formulae of error propagation give only an impression on the possible
scale of deviations of the function values, when the scales of imprecision of the
argument values are known. This problem can be sharpened to a mathematical
task:

For the argument values xj exact intervals xju ≤ xj ≤ xjo, j = 1, . . . , n,
shortly [xju, xjo], are given, which interval (as small as possible) includes then
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all possible values of the function f : IRn → IR1 for argument values from those
intervals? Obviously instead or besides these argument values also parameter
values may be given as intervals, the influence of which on the function values
is to be specified.

This task demands so the development and investigation of computing
methods for intervals, an interval mathematics. But already an interval arith-
metics, i.e. the treatment of basic arithmetical operations for intervals, shows
some drastic differences to methods used for pure numbers. It seems reason-
able to introduce the resulting intervals as sets of all possible results for single
values:

A ∗ B := {a ∗ b | a ∈ A, b ∈ B} with ∗ ∈ {+,−, ·, :} . (3.5)

When applied to concrete intervals A = [au, ao], B = [bu, bo]

A + B = [au + bu, ao + bo] , (3.6)
A − B = [au − bo, ao − bu] , (3.7)

A · B =
[

min{aubu, aubo, aobu, aobo} , (3.8)

max{aubu, aubo, aobu, aobo}
]

,

A : B = [au, ao] · [1/bo, 1/bu]; 0 /∈ B , (3.9)

already strange effects occur.
For A = [−3, 1] and B = [2, 4], e.g., this results in:

A − A = [−4, 4];B − B = [−2, 2];B : B =
[
1
2
, 2
]

.

Addition and multiplication are still commutative and associative, i.e. one
can change the sequence of summands or factors and put in brackets arbi-
trarily. But for a simultaneous use of addition and multiplication there are
no longer a distributive law, by which sums could be multiplied out. It holds
only

A(B + C) ⊆ A · B + A · C , (3.10)

which leads, e.g., for A = [−2, 1] to the astonishing result A2 + A = [−4, 5]
and A(A + 1) = [−4, 2]. Hence it is reasonable to put in brackets as many as
possible in arithmetical expressions to keep the result as narrow as possible.
Since the difference of equal interval numbers is no longer the number 0 and
the quotient of equal interval numbers is no longer the number 1, equations
for intervals can no longer be transformed by subtraction or division applied
to both sides.

When using interval matrices and interval vectors, i.e. matrices and vectors
the elements of which are intervals each, one can form the product as usual,
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e.g. to represent a system of linear equations: Ax = b, where A is an interval
matrix and x and b are interval vectors of appropriate orders. This form is
then the starting point for the determination of an interval evaluation for the
unknown interval vector x, if A and b are given. The solving methods for that
task are purely numerical procedures, by which always including sets for x are
determined; closed form solutions can not be obtained by means of interval
arithmetics. In the included single subprocedures, in order to secure an always
sure inclusion of values, “rounding” is always effected outwardly, this must be
guaranteed by a suitable software.

The demand that the including set for all possible solutions should al-
ways have the form of intervals leads in many cases to a blowing out of the
requested supersets, which can make the final statement of the interval arith-
metical treatment practically useless. This would be obvious especially if for
the inverse A−1 of a matrix A with intervals as elements an inclusion by a
matrix of even this type should be specified.

Trying to escape from this overestimation effect also other types of includ-
ing sets (e.g. parallelepipeds, balls) are considered, or a suitable partition of
the interesting domain in subdomains is introduced, in each single of which
inclusions are given by intervals or vectors of intervals, respectively.

The search for methods to find including sets as small as possible, i.e. sets
including really possible solving values and possibly only those, is an always
topical field of research in interval mathematics.

The field of application of interval mathematics comprehends the whole
numerical mathematics; determination of the zeros of a function, solution of
systems of linear or nonlinear equations, computation for interpolation and
approximation, linear and nonlinear programming, numerical treatment of
mixed initial value problems for ordinary and partial differential equations
and integral equations.

For details see e.g. Moore (1979) and Alefeld/Herzberger (1983).
In real situations in application some imbalances may occur in several

respects. On the one hand the intervals for the input values should be spec-
ified as precisely as possible, which can be effected in practical cases only
with some arbitrariness. Hence application of interval mathematics is recom-
mended, as a rule, if the specified intervals are small when compared with the
variability of the quantities considered, hoping that in such cases minor mis-
specifications remain without perceptible consequences. On the other hand
interval mathematics demands for a practically infinitely precise performance
of the chosen procedure, in order to include the changings of the intervals
always towards the “safe” side. This requires a lot in the performance of the
computations necessary. But this difficulty is defused in an increasing extent
by the development of computer hardware. Finally by an overemphasising of
specification and acknowledgement of imprecision in the arguments and para-
meters a feeling of safety is generated for the user, which cannot be supported
by the knowledge on the determining role of the weakest link in the chaine:
model – procedure – data (see Sect. 1.1). The mathematical model of a real
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situation needs, as a rule, much more idealization and neglections as can be
“compensated” by an exact specification of data incertainty by intervals.

3.2 Specification by Fuzzy Sets

World War Two gave the development of system and control theory for au-
tomation an immense impetus. For military purposes always more and more
extensive and complicated problems were treated and partly solved employ-
ing and using gigantic masses of manpower, material and money. Nevertheless
either the necessary abstractions to specify mathematical models led away far-
ther and farther from the facts of reality or the solutions of the mathematical
tasks obtained demanded for the application of complicated approximation
procedures, the behaviour of which in concrete situations could not always
be assessed. The use of procedures developed in this way during the war for
control purposes in simple civilian situations proved rather problematic. Ex-
penditure and benefit were in stark discrepancy, the control procedures were
frequently too expensive, sometimes too slow, because of their relative com-
plexity too susceptible to faults and, as a rule, inferior to control by manpower.

In the mid-1960s the time was ripe for a new approach to this problem
area. On the one hand the mathematical theory, by the development of multi-
valued logic and lattice theory, had come into the position to formulate and
treat mathematically the pressing demands of practical application, on the
other hand the development of electronical computer technology had made
progress to solve mathematically formulated tasks for these new structures
within tolerable time. This situation was realized, for the first time, by Zadeh,
an American system theoretician, in 1965. Since then his name is closely
connected with the development of this field. He put two demanding problems
to mathematics and to himself:

The model for the practical situation should be chosen as a simple as
possible one, it should allow a simple and comprehensible solution of the given
problem.

The uncertainty on the practical situation and the data are to be modelled
in a manner that a computer can understand the semantic contents of the
problem and of the question sufficiently well.

This leads to the reasonable maxim:
It should be formulated and specified only so accurately and precisely as it

is appropriate to the practical problem with respect to the model as well as to
the data. Naturally, in the control problem also the single control instructions
are data.

Zadeh (see Zadeh (1965)) called his ideas: Theory of fuzzy sets being
unimpressed by the sometimes pejorative use of the word fuzzy. Also today
his approach is refused by large sections of mathematicians, sometimes even
fighted, but this could neither stop nor slow down its triumphal march in
practical applications.
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In this section some basic ideas of the theory of fuzzy sets are presented,
which may suffice to get an idea of the theory. For further details and more
references see Bandemer/Gottwald (1995).

3.2.1 The Idea of a Fuzzy Set

For more than hundred years (Cantor (1984), (1884)) set theory is estab-
lished as the general basis of mathematics. Every mathematical statement can
be reduced to a statement on the membership of elements from a universal
set, the set of all elements to be considered in a given context in general. In
the following the respective appropriate universal set will be called universe.
The general transformability to statements with respect to set membership is
a theoretically true statement; an actual transformation could be very trou-
blesome or even impracticable.

The membership of an element u of a universe U to a subset A can be
indicated by a suitable mark in the “list” of all elements u of U . Without loss
of generality this mark can be chosen as the number 1 and for filling up the
corresponding column of the list the mark 0 indicates then all those elements
u not belonging to the set A. The function generated in this manner is the
well-known characteristic function usually denoted by χ:

χA(u) =
{

1 , if u ∈ A,
0 , if u /∈ A .

(3.11)

The basic idea is now the allowence for an element u to belong to a set A also
gradually.

From everyday life it is a familiar experience that in many respects there
is no either – or, but there are degrees or grades and nuances. Already the
pairs of notions

healthy – ill,
sober – drunk,
learned – uneducated,
clever – stupid

make clear this dilemma of allocation to a set in practical cases. Even if an
objective scale does exist, as with time and temperature, similar problems can
occur:

A German citizen becomes of age at his eighteenth birthday 0 o’clock in
the morning, that is determined by a law uniquely and precisely in the interest
of legal certainty.

But when becomes a certain in Germany resident human being full grown
(in the biological sense)?

A thermometer located somewhere in a certain room shows 22 degrees
Celsius. The precision for reading it is one half degree.

How many degrees Celsius should be recorded as the temperature of the
whole room, in which, as is well known, a spatially and timely varying tem-
perature field is established, and how should this record be justified?
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Problems of this kind can be treated by specifying of fuzzy sets, by which
every possible exact value is evaluated by a number between 0 and 1, the
degree of acceptance, as it is called, measuring the acceptance that even this
value can be considered as a representative in the given statement.

Normally a certain man at the age of forty is surely accepted as “biologi-
cally” full-grown, whereas an eight year old child surely is not at all. Between
these two time marks, however, there will be an increasing (at least not de-
creasing) acceptance for a human being biologically full-grown. For the mo-
ment, the problem is (yet) not the specification of the degrees of acceptance
for the age values between, but the impossibility, like with the becoming of
age, to fix a precise time, at which the change occurs from the state of being
not at all full-grown to that of being totally full-grown.

With a similar problem one is faced, when a precise temperature is to be
specified for a whole room. One has to evaluate the different values from a
certain interval of possible temperature by acceptance degrees, with which
they are accepted as representatives for the temperature of the room. For this
evaluation the temperature read from the thermometer will help only as a
point of reference, the precision of this reading will play an only minor role
when compared with the possible variation within the room.

Here one can see an interesting connection with the concept of interval
specification of imprecision as presented in Subsect. 3.1.2. The interval of
possible values there is now endowed with an evaluating function, which re-
flects the degrees of acceptance, the membership function µA, as it is called,
by which a fuzzy set A is defined. The peculiarity of the set A as a fuzzy set
will not be emphasised additionally by using the same type also in the index
of the membership function, for the sake of simplicity of presentation.

A fuzzy set A is hence characterized by its membership function µA

µA|U → [0, 1] . (3.12)

A usual (crisp) set is then a special fuzzy set and the characteristic func-
tion χA is a special membership function. There is a further close connection
with the concept of interval mathematics, even with its generalization to ar-
bitrary including sets. Namely, starting from a fuzzy set A crisp sets Aα are
defined, over which the membership function µA assumes at least the value
α(α ∈ [0, 1]), these sets are called α-cuts of A. In this manner an equivalent
representation of the fuzzy set A is obtained by the infinite set of crisp sets
{Aα}, α ∈ [0, 1] lying into one another with decreasing α. Hence for every fixed
α a basis is established for a treatment by crisp sets, in the one-dimensional
case by intervals. The equivalence with the representation by a membership
function results from the inversion formula

µA(u) = sup
α∈(0,1]

α · χAα
(u) . (3.13)

Further inversion formulae can be found in the literature (e.g. Bande-

mer/Gottwald (1995)).
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Fig. 3.1. Example of a membership function specified for the fuzzy set “pleasant
temperature at a desk in a room”

In appropriate cases this connection makes it possible to choose a finite
(usually small) number of α−cuts, for which the given task is treated, and to
put together an entire solution by means of the involution formula. But there
are also enough procedures, for which such a cutting up is not necessary (see,
e.g., Subsect. 3.2.3).

From the concept of fuzzy sets result two basic problems:
In a concrete case for every u ∈ U a value µA(u) is to be specified, which

should express the degree of membership of u to A. This specification problem
is of central importance for all applications. The next subsection is devoted
to this problem.

Since the basic notion of mathematics, the set, has got a new definition,
the whole mathematics must be reconsidered with respect to the consequences,
if the usual notion of a set is replaced by the new notion of a fuzzy set.
This means, in principle, a new version of all notions used in mathematics.
This structure problem will be a main task for mathematicians, the results
of their efforts, developing new procedures and investigating their properties,
are of central importance for theory as well as for application. The simplest
composition rules and their properties are treated in Subsect. 3.2.3.

3.2.2 Specification of Fuzzy Sets

In the assessment of interval mathematics the difficulty was emphasised to
determine exact boundaries of those domains, in which the possible values of
the considered variables can still vary within the framework of impreciseness.
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The problem consists in the fact that the transition from an absolutely possible
value to an absolutely impossible value is effected as an abrupt one, such that
values of both categories can be infinitely near neighbours, which is scarcely
plausible in practical cases.

The possibility to specify the imprecision of an observation or of a mea-
surement by a fuzzy set A removes this dilemma in its essential contents. The
specification of the membership function µA can naturally also not be effected
without any arbitrariness. But now the possibilities of differently large devi-
ations are weighted and one can specify a gentle (gradual) transition. The
specification of µA should be carried out by a specialist, who is familiar with
the given problem. In this manner his knowledge on the situation and on the
peculiarities of the measurement or observation process are included, possibly
only unconsciously.

On the other hand a specification exactly and uniquely obtained from
the given problem, as again and again reminded by theoretical mathemati-
cians, is neither practically possible nor practically useful. The question here
is the specification, the mathematically modelling, but really only the evalu-
ation (a mathematical form of assessment) of impreciseness, uncertainty and
vagueness in a given concrete problem. In this case demanding an exact and
unique specification from the situation can be understood only as an un-
worldly suggestion, especially in view of the usual performance in specifying
mixed boundary problems, problems in mathematically programming or a dis-
tribution function for a problem from practice in stochastics. In these cases
for the sake of tractability neglections and idealizations are so common that
they are, as a rule, no longer felt as such ones.

Hence it will be sufficient, if all the persons involved in the project agree
on a rough form of the membership functions. This group of people includes
persons, who put the problem, as well as those, who treat the tasks, and those,
who use the results, and hence all, who have to specify the fuzzy sets from the
situation and to interprete and to use the statements obtained by the treat-
ment with fuzzy sets in the given situation. First of all a local monoticity of the
membership functions will be of importance: The group must agree, in which
subdomains the values of a certain membership function should be larger than
in other subdomains and whether the membership values should decrease or
increase in certain directions. For a mathematical representation simple types
of functions should be chosen, which can fulfil these considerations sufficiently
well. Hence scruples and over-subtlety are not useful in specifying membership
functions. The individual “rules” in this specification will be reflected in the
mathematical form of the results and then serve for an adequate interpreta-
tion and use of these “fuzzy” results according to analogous “rules”; hence
they remain an inside part of the mathematical treatment. Their influence on
practical consequences can be neglected, if the fuzzy treatment is carried out
in a well-informed manner.

For typical mathematical (crisp) subjects now the fuzzy generalization will
be considered.
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For the sake of simplicity of presentation and specification the support
of a fuzzy set A is introduced. The support is a subdomain of the universe,
in which the membership to A is positive, it is denoted by its abbreviation
supp(A)

supp (A) = {u ∈ U : µA(u) > 0} . (3.14)

Hence the support includes all elements, which are of interest for the set
A and for which the membership is to be really specified.

On the other hand the subdomain of elements is important, which belong
to A completely, i.e. for which µA(u) = 1. This set is called the core: core(A)

core (A) = {u ∈ U : µA(u) = 1} . (3.15)

A fuzzy number is usually defined over the real axis as its universe. If only
numbers of elements occur in the set of possible numbers (of persons, objects,
etc.) then obviously the set of natural numbers suffice as the universe.

A fuzzy number should mathematically specify the idea of “approxi-
mately”. Hence the corresponding fuzzy set should contain one and only one
number in its core (e.g. approximately 10). Moreover the support of the fuzzy
number is to be specified, i.e. the set of all numbers, which should be ac-
cepted as the number in the core to any positive degree. This specification
is closely related to the concrete problem considered and must start from it.
It is reasonable that the degree of acceptance of the numbers in the support
(monotonously) decreases with increasing distance from the number in the
core. Also the speed of the decrease depends on the concrete situation. As
a rule, a suitable type of functions is chosen describing the speed roughly
and containing still some free parameter for an individual adaption. For the
fuzzy number “A = approximately 10” over the real axis e.g. the following
membership functions are possible

µA(x) = exp
{

− (x − 10)2

a

}

; a > 0 (3.16)

or

µA(x) = max{0, 1 − b(x − 10)2}; b > 0 . (3.17)

The example shows that rather different types of functions can lead to
practically hardly distinguishable specifications by a suitable choice of the
parameters. This allows in many cases, for different fuzzy sets occuring in
the same problem, to choose the same type of function, this can simplify the
practical computations essentially. This is used especially in calculations with
fuzzy numbers (see Subsect. 3.2.4).

If the fuzzy number is to be specified only over the set of all natural
numbers, then only for (a few) interesting natural numbers of the support the
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Fig. 3.2. Representation of two membership functions according to (3.16) and
(3.17), respectively, with parameters suitable for comparison

membership values are to be determined; obviously it is still µA(10) = 1, and
the membership must again decrease (monotonously) towards both sides.

In an analogous manner a fuzzy interval is specified by fixing a (crisp)
interval as the core, from which the membership is decreasing towards both
sides (monotonously).

Also the analogous specification of a fuzzy point is reasonable. Start-
ing from a crisp point as the core the membership function must decrease
(monotonously) towards every direction. Here geometrical domains present
themselves as graphs of membership functions, e.g. pyramids and ellipsoids.
For construction of fuzzy vectors, frequently used in practice, it is necessary
to introduce rules for the composition of fuzzy sets, which are presented in
the next subsection.

Quite in analogy a fuzzy domain is specified by choosing a domain in the
usual sense as the core, from which the membership function (monotonously)
decreases towards every direction.

For two-dimensional fuzzy points there is a useful visualization. If the
membership values are interpreted as grey tones, the value 1 as the “darkest”
black and the value 0 as the “brightest” white, then a fuzzy point or a (small)
fuzzy domain occurs as a greytone spot. This makes it possible not only to get
a vivid impression of the “fuzziness” of some specification but also, the other
way round, to interpret and treat grey tone pictures as fuzzy sets in suitable
situations, a possibility used later on.

But not only mathematical objects can be “fuzzified”. It is also possible
to specify verbal statements by fuzzy sets. This is even emphasised as a spe-
cial achievement of the new approach, which goes essentially far beyond the
possibilities of a “generalized” interval mathematics.
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Not all applied branches of science use quantitatively mathematically ori-
ented descriptions of processes and situations considered and treated by
them, e.g. in medicine and psychology. But also in everyday industrial work,
processes and courses are described verbally, e.g. to develop instructions for
machine operators. The presentation is, according to the target group, written
in a colloquial or a technical terminology, which can be comprehended by the
recipients in its semantic contents. As typical examples one may remember the
instructions for driving a car he got at driving school, especially e.g. the in-
structions governing the process of parking a car into a (small) parking space
parallel to the traffic direction. Other typical examples are cooking recipes
with their vague data of “a teaspoon of . . . ”, others are some characteristic
effects for diagnosing some specific kind of illness, and evaluation of the qual-
ity of scientific work or of welded joints or hints for an energy-saving driving
of trains.

In all such cases the essential data as instructions, features, characteristic
values, etc., are given fuzzily. The theory of fuzzy sets makes it possible to
bring those qualitative descriptions to a mathematical modelling that they
can be “treated” by a computer according to their semantic contents. For this
purpose, in each single case, obviously one has to determine for each occuring
variable (i.e. a quantity, which can assume, in every given situation, a value
from a given set of possible values), which can be its naturally fuzzy values and
from which basic domain, the appropriate universe, these fuzzy subdomains
should be taken.

Moreover, such fuzzy values of a fuzzy variable must be named to become
utilizable. But the difference with real numbers is that standard names for
fuzzy sets do not exist (as they do for numbers). From the relation to the
qualitative description of processes and situations is seems reasonable to name
the values of such fuzzy variables immediately by colloquially or technically
usual words, where one has to fix, which words are allowed to name the fuzzy
values and which fuzzy sets should form the range of such a fuzzy variable.

The decision of naming the values of fuzzy variables using suitable words in
our everyday language was already explained by Zadeh (1975), who created
this idea of fuzzy variables, to call them linguistic variables, e.g. to distinguish
them from numerical variables with imprecisely determined values. But one
has to be very careful here: it is inessential for the true character of a fuzzy
variable, whether their values are named by linguistic terms or not, as it is
inessential for a real variable to have their values denoted using a decimal or
a dual system of numbers.

The concept of linguistic variables gains its attrativeness from the fact that
it allows to “translate” nearly immediately some rough description of some
industrial process (or another situation) – of course a description of such a
process which can successfully be used by a human operator – into a formal-
ized, non-traditional mathematical model to be implemented almost directly.
The main problem which remains is to specify the membership functions of the
“linguistic” values which are involved in the modelling process. A theoretical
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solution of this problem does not (yet) exist, and it can be expected not in near
future, if at all. It seems to be one of the main lines of present research to try
to determine these membership functions by automatic learning processes,
or even to learn control rules, e.g. by the use of neural net techniques, or
by using genetic algorithms (for literature see e.g. Bandemer/Gottwald

(1995)). But also here the comment given for the specification of fuzzy num-
bers and points remains valid that a meticulous consideration of this problem
is senseless and of very little use.

The example considered now may be called already “classical”, it is the
linguistic variable age describing the age of some subject or object. It plays
its role not only in medical or psychological situations, but also to charac-
terize states of wearing out of tools, e.g. in automated production lines. The
values may be fuzzy subsets of the real interval [0, 100], perhaps after an ap-
propriate changing of the scale. Then one could start, e.g. with three different
values named young, middle-aged, old. The determination of the correspond-
ing membership functions µyoung , µmiddle−aged, µold depends essentially on
the context. One may compare his ideas of the age of an “old competitive
sportsman” with that of an “old cardinal” or even with that of an “old car”.
The proceeding is analogous to that mentioned with fuzzy numbers: first one
has to fix, which values of the scale should be taken at all for each single
special value of the linguistic variable (i.e. the supports) and then one has to
determine the core of each fuzzy set, i.e. that set of values, which one wants
to have in the set as “full members” with firm conviction and absolutely.

If the number of possible values seems to be too poor, the splitting up too
coarse, then the theory of fuzzy sets offers the possibility to generate rules to
create a “language” (a generative grammar) of fuzzy sets, by which formula-
tions in a colloquial or technical terminology can be translated into such a lan-
guage of fuzzy sets. Such rules are either linguistic modifiers introducing mod-
ifications like “very”, “more or less”, etc., changing the membership function
of the linguistic value to be modified systemetically, or linguistic combination
rules “not”, “and”, “or”, which are carried out by complementation, intersec-
tion and union of the corresponding fuzzy sets, or, finally, rules for quantifi-
cation and for qualification of the single fuzzy values: “always”, “frequently”,
“seldom”, “never”, or, respectively “true”, “not very true”, “rather false”,
“absolutely false”, or, respectively, “possible”, “rather possible”, “hardly pos-
sible”, “impossible”.

As an example the determination of values of the linguistic variable sol-

ubility in water is mentioned, as it was used in a special problem of chem-
istry.

Finally a case is mentioned, where even physical measurements supply the
membership functions of the corresponding values of a linguistic variable. In
a chemometric context for the linguistic variable colour in its verbally given
nuances bright yellow, yellow, dark yellow, orange, brick-red, crimson, etc,
as occuring with special chemical indicators the corresponding membership
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Fig. 3.3. Membership function for the linguistic variable: solubility in water (see
Otto/Bandemer (1988a)), where x = 0 means: “insoluble at all”, and x = 1 means
“completely and immediately soluble” on conditions each time to be indicated

Fig. 3.4. Visible spectra of indicators in the wavelength range between 400 and 700
nm renormed to the height 1 and used as membership functions for two values of
the linguistic variable colour: 1 – Bromoscresol (green); 2 – Bromophenol (blue)
(with respect to the problem see Otto/Bandemer (1988a))

functions were specified as the intensities over the wavelength normed to
height 1. Figure 3.4 shows two of the examples.

3.2.3 Operations with Fuzzy Sets

As already mentioned in the preceding subsection the notion “set” forms the
basis of mathematics as a whole (Cantor (1984), (1884)). If this notion is
generalized and newly defined, then all operations with sets are to be recon-
sidered and also newly defined. Since the common (crisp) sets are special fuzzy
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sets, these new definitions must lead to usual results when applied to crisp
sets.

The most elementary operations for usual sets are the union and the inter-
section of two sets and the complement of a set (i.e. the set of elements of the
universe not belonging to the set). The procedures should be carried out ele-
mentwise, i.e. the membership of an element of the union, of the intersection
or of the complement should depend only on its membership in the starting
sets. If one puts further reasonable demands with respect to the properties
then one obtains the following suggestions, which had been presented already
by Zadeh in his paper (1965).

For the union A ∪ B of the fuzzy sets A,B this is the definition

C = A ∪ B : µC(x) = max{µA(x), µB(x)} for all x ∈ U , (3.18)

and for the intersection A ∩ B

D = A ∩ B : µD(x) = min{µA(x), µB(x)} for all x ∈ U (3.19)

and for the complement Ac of a fuzzy set (with respect to the universe U)

K = Ac : µK(x) = 1 − µA(x) for all x ∈ U . (3.20)

For crisp sets the definitions yield the usual results. When the α−cuts are
considered, which are crisp sets, then the usual results are obtained, e.g.

(A ∪ B)α = Aα ∪ Bα . (3.21)

Without any difficulty one can show for the definitions above the following
simple calculating rules:

A ∪ B = B ∪ A , (3.22)
A ∪ (B ∪ C) = (A ∪ B) ∪ C , (3.23)

A ∪A = A . (3.24)

Analogous rules are valid for intersection.
A connection of union and intersection is given by the deMorgan laws:

(A ∩ B)c = Ac ∪ Bc , (3.25)
(A ∪ B)c = Ac ∩ Bc . (3.26)

If the inclusion of a fuzzy set A in another fuzzy set B is defined by (as it
is also valid for crisp sets)

A ⊆ B : µA(x) ≤ µB(x) for all x ∈ U , (3.27)

then one has
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A ⊆ B ⇒ A∪ C ⊆ B ∪ C , (3.28)

and for intersection there holds an analogous statement.
For connecting of two crisp sets A,B defined over different universes X,Y

the Cartesian product is known, containing all pairs of elements (x, y) with
x ∈ A and y ∈ B. The corresponding notion for fuzzy sets is that of a fuzzy
Cartesian product, its membership function is defined as

C = A⊗ B : µC(x, y) = min{µA(x), µB(y)} . (3.29)

Also here a series of simple computing rules can be shown (see, e.g., Ban-

demer/Gottwald (1995)).
Though this generalizations of union and intersection for fuzzy sets are

simple and natural, there exist also other possibilities for this purpose. How-
ever, in this way, some usual and pleasant properties are lost, but this may
occasionally be unimportant for an application. One of these possibilities is
the algebraic sum usable as a union

C = A + B : µC(x) = µA(x) + µB(x) − µA(x) · µB(x) (3.30)

and the algebraic product usable as an intersection

D = A • B : µD(x) = µA(x) · µB(x) , (3.31)

each defined for all x ∈ U .
It belongs to the astonishing deficiencies of the last mentioned definition

that the intersection of a proper fuzzy set A with itself does not result in the
set itself but in a smaller set contained in A. This can be seen from formula
(3.31) when considering that the square of a positive number properly less
than 1 (the membership value) is smaller than the number itself.

In the course of the recent decades classes of t-norms, as they are called,
and suitable to each single one corresponding t-conorms are suggested and in-
vestigated, which differ in their algebraic properties. By those means one can
try to model connections for practical situations, which differ factually from
the usual forms, e.g. for combining of assessments on the credit-worthiness
of bank-customers with respect to different forms of security (surety, assets,
personal qualities, attractivity of the project intended). Moreover, there are
also compensatory operations, the results of which lie between interaction and
union or, more generally, compensate the membership values of the participat-
ing sets in a desirable manner. (see for this topic e.g. Zimmermann (1991)).

3.2.4 Connections Via Functions and of Fuzzy Numbers

Besides the generalization of union and intersection of fuzzy sets for applica-
tion also connections of other kinds are necessary. Let be given a usual (crisp)
function f of (several) variables
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f | X × Y → Z . (3.32)

What should happen, if the values of the variables, say x and y, are given
only fuzzily, i.e. as fuzzy sets A over X and B over Y . This corresponds to
the situation that x and y are known or can be given only “approximately”.
One expects that also a fuzzy value C over Z can be ascribed to the function
f as belonging to A and B. But, how should this fuzzy value be computed?
Theoretical considerations from logic and from the theory of relations lead to
the proposal due to Zadeh (1975):

µC(z) = sup
x,y:z=f(x,y)

min{µA(x), µB(y)} for all z ∈ Z . (3.33)

This is written also C = f(A,B) shortly and symbolically. This rule can
obviously generalized for more than two arguments and is generally called
extension principle.

For special cases this principle can be simplified essentially with respect to
its numerical form. Especially fuzzy numbers are considered now, which occur
usually as argument values of functions. As already mentioned, a fuzzy number
has one and only one value in its core and its membership values decrease
starting from this value towards both sides (or remain at least constant).
Moreover, this fuzzy set has to be convex, i.e. every α−cut consists of only
one (connected) interval.

For such fuzzy numbers now arithmetical operations are introduced. If the
function f in the extension principle is the sum f(A,B) = A ⊕ B = S then
the corresponding membership function is

µS(z) = sup
x

min{µA(x), µB(z − x)} , (3.34)

and for the difference A� B = D it holds

µD(z) = sup
x

min{µA(x), µB(x − z)} , (3.35)

which was obtained by rearranging of z = f(x, y) with respect to y and
inserting into the extension principle. Likewise for the product A  B = P
the membership function is computed using

µP (z) = sup
x,y:z=xy

min{µA(x), µB(y)} . (3.36)

In all the three cases obviously one has to add z ∈ Z. The results are
always fuzzy numbers, if A and B are fuzzy numbers. These formulae can be
generalized also for fuzzy intervals, in which a crisp interval forms the core
instead of a single crisp value. Also here, fuzzy intervals yield again fuzzy
intervals.

Also the negative N of a fuzzy number or interval is defined in this way
by
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µN (x) = µA(−x) for all x ∈ X . (3.37)

But one has to be cautious in defining a quotient of fuzzy numbers or
intervals, because a division by 0 must be excluded. Hence one expresses first
under the additional assumption 0 /∈ supp(B) the reciprocal K := B−1 by

µK(z) =
{

µB(1/z) for all z with 1/z ∈ supp(B)
0 for all other z

(3.38)

Using this and again assuming 0 /∈ supp(B) one has the quotient Q := A�B
as Q = A B−1 with the membership function

µQ(z) = sup
x,y:z=x/y

min{µA(x), µB(y)} . (3.39)

The computing operations for fuzzy numbers and intervals include the
usual ones of interval arithmetics. Many known rules for real numbers hold
true for the operations mentioned above, but not all of them do. For addition
and multiplication one has commutativity and associativity, i.e. one can put
in and outside the brackets and change the order of sequence of the operands.
But distributivity does not hold true unrestrictedly. Nevertheless, e.g. in the
case that 0 /∈ supp (A) as also 0 < supp (B  C) (i.e. this set lies completely
within the positive axis), then it holds as usually

A (B ⊕ C) = (A B) ⊕ (A C) . (3.40)

Moreover, in any case one has instead of the distribution law only the
subdistributivity (an inclusion statement)

A (B ⊕ C) ⊆ (A B) ⊕ (A C) . (3.41)

Furthermore, one has to have in mind that −A added to A does not supply
the crisp zero; hence the two equations A⊕C = B and B⊕D = A are no longer
equivalent formulae (expected is C = −D), because it may occur that the one
equation can have a solution C, whereas there does not exist any fuzzy number
D, which satisfies the other equation (with respect to a numerical example
see Bandemer/Gottwald (1995)).

This phenomenon occurs already in interval arithmetics. In principle, the
splitting up of the computational tasks for fuzzy numbers via consideration
of the corresponding α−cuts allows the use of arithmetics for crisp intervals,
but in the following more comfortable procedures for arithmetics for fuzzy
numbers are presented.

Since the fixing of membership functions in detail can be effected only with
certain arbitrariness, which was explained in Subsect. 3.2.1, practically it is
hardly a general restriction, if for fuzzy numbers in concrete situations the
membership functions are restricted to certain types of functions. Especially
this means that auxiliary functions are chosen, reference functions L,R, as
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they are called, assuming the value 1 for the argument value 0 and their
values decrease for positive arguments with increasing values monotonously.
Then one can introduce, using the parameter m for the core value and two
positive scale parameter q, p two partial functions

µl
A(x) = L((m − x)/p) for all x ≤ m ; (3.42)

µr
A(x) = R((x − m)/q) for all x ≥ m ,

which put together, as a left and a right branch, form the membership function
of the fuzzy number A. With L and R fixed, the fuzzy number can be written
symbolically as

A = (m; p, q)LR . (3.43)

Fig. 3.5. Example of a LR-representation of a fuzzy number

With this symbolism the addition, which are represented by the same pair
of functions LR, i.e. B = (n; s, t)LR, can be written as

A⊕ B = (m + n; p + s, q + t)LR . (3.44)

Also the multiplication of a fuzzy number A by a crisp positive number c
can be easily represented as

cA = (cm; cp, cq)LR . (3.45)

Because obviously

−A = (−m; q, p)RL (3.46)
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a symbolically representation of subtraction is only possible, if for the number
to be subtracted the functions L,R are interchanged. Hence an easy general
application can only be expected for L = R.

The product of two LR−numbers is in general no longer such a number.
A practically usable and easily computable approximating representation in
LR−form for the product is given by Dubois/Prade (1978), (1980)

A B ≈ (mn;ms + np,mt + nq)LR (3.47)

where especially 0 /∈ supp(A) and 0 /∈ supp(B) and further m,n > 0 and q
and t have to be small each, when compared with m and n, respectively. In
similar manner approximating formulae are obtained for similar cases.

Starting point for considerations with respect to division are again
approximating representations for the inverse, especially for the case that
0 /∈ supp(B) in the neighbourhood of n

B−1 ≈ (1/n; t/n2, s/n2)RL . (3.48)

Further approximation formulae can be found in Dubois/Prade (1980)
and Kaufmann/Gupta (1985). When such formulae are needed, already
contained in the software tool or to be introduced by user’s programming,
one should get a general idea of the numerical precision for the practically
required domain, if necessary by a series of suitable examples.

The computations present themselves as particularly easy and clear, if the
reference functions are linear. Those functions are called triangular or simply
“hats”. They can be characterized again by three numbers, besides the core
m the two numbers a1 and a2 are given, where each of the straight lines meets
the x−axis, respectively. Obviously it holds supp(A) = (a1, a2) and the fuzzy
number can be simply represented by

A =
〈
m; a1, a2

〉
. (3.49)

A connection with the representation according to (3.43) can be seen as
follows: With the denotations L(x) = 1 − bx and R(x) = 1 − cx one has
p = b(m − a1) and q = c(a2 − m).

With B =
〈
n; b1, b2

〉
one can write

A⊕ B =
〈
m + n; a1 + b1, a2 + b2

〉
, (3.50)

A� B =
〈
m − n; a1 − b2, a2 − b1

〉
, (3.51)

−A =
〈
− m;−a2,−a1

〉
. (3.52)

As it is expected, however, product and quotient are no longer hat-numbers.
Again approximation formulae may help, e.g. for a1, a2 ≥ 0 and with division
additionally 0 /∈ supp(B)

A B ≈
〈
m · n; a1 · b1, a2 · b2

〉
, (3.53)

A� B ≈
〈
m/n; a1/b2, a2/b1

〉
. (3.54)
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Also here for further cases it is referred to the software or to the literature
mentioned above.

Because of this easy “arithmetics” hat-numbers are very popular in ap-
plication, although sometimes this means a rather generous idealization. But
frequently one can justify this form of membership function from the situation
directly (examples see Bandemer/Kraut (1990) and Bandemer/Lorenz

(1998)).

3.2.5 Fuzzy Relations

Not only mathematical objects as sets, numbers or points can be “fuzzified”
but also relations between objects as known from mathematics. So equality
between numbers can be represented by the equality relation, which is denoted
symbolically by the equal sign = . The relation is defined over all pairs of
numbers (a, b) by declaration for every single pair, whether the relation is
fulfilled or not. So the equality relation is not fulfilled for the pair (2, 1),
whereas it is for (3, 3) obviously. The equality relation R= can be identified
with the set of all pairs of numbers, for which it is fulfilled:

R= : {(x, y) : x = y} . (3.55)

The graphical representation is then the well known bisectrix x = y in the
(x, y)-plane. By passing over to the fuzzy relation R≈ “approximately equal”
additionally the points in the neighbourhood of this straight line are consid-
ered, but with grading membership. The determination of this membership
by the membership function µ≈ should express the idea of “approximately”,
i.e. it should evaluate the deviation from the exact equality with respect to its
tolerability in the sense of the desired idea of “approximately”. This can, e.g.,
be effected by determination of an order of fading away of the membership
function, which corresponds with the ideas and necessities of the practical
problem. The result could be, e.g.,

µ≈(x, y) =
[
1 − a|x − y|

]+
= max

{
0, 1 − a|x − y|

}
, a > 0 , (3.56)

and represents a linear fading away with a factor a. Also other specifications
make sense, which consider the difference in relation with the absolute values,
e.g.

µ≈(x, y) = 1 − b(x − y)2

(1 + x2 + y2)
; b ∈ (0, 1) . (3.57)

In analogy with the identification of a crisp relation with the set of all
pairs, for which it is fulfilled, one can identify a fuzzy relation with the fuzzy
set, by which the pairs (x, y) are evaluated with respect to its fulfilment, which
is, in the preceding example, specified by the membership function µ≈.
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Fig. 3.6. Representation of the membership function for the fuzzy relation “ap-
proximately equal” according to (3.57)

According to this model the crisp relation ≤ (“smaller or equal”)

R≤ : {(x, y) : x ≤ y} , (3.58)

which corresponds to the halfplane above and on the bisectrix x = y, can
be replaced by the fuzzy relation R≤≈ (“more or less smaller than”). The
wording “more or less” will be interpreted here in the sense that a sleight
surplus is tolerable, hence the halfplane will be endowed with a “fuzziness
band” downwards. A specification in analogy with (3.56) would be

µ≤≈(x, y) =
{

[1 − a|x − y|]+ for x > y
1 for x ≤ y .

(3.59)

An other interpretation of the relation can be obtained, if the coordinate
axes are understood as domains of two real variable u, v connected by the
considered relation. When fixing one of the variables, e.g., v = y0, then the
relation R≤≈ acts as a fuzzy bound Su for the other variable, here for u,
with the membership function µu(x) = µ≤≈(x, y0). Such fuzzy analoga of
mathematical objects will be used to specify fuzzy versions of mathematical
programming topics, where bounds usually play a main role for the solutions
(A presentation of fuzzy mathematical programming can be found e.g. in
Rommelfanger (1994).)

A fuzzy relation shows to which a degree two elements of a universe (or a
pair each one from a universe) stand in this relation.

With respect to similarity of objects such a grading is generally usual:
very similar, not much similar with the extreme assessments indistinguish-
able, totally different. A relation expressing such a relation is called similarity
relation. Such a relation R is expected to be reflexive (i.e. every element is
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indistiguishable from itself: µR(x, x) = 1) and symmetrically (i.e. every ele-
ment x is similar to every element y in the same degree as this y is to x:
µR(x, y) = µR(y, x)).

Within the set of crisp relations especially equivalence relations are consid-
ered, which split the universe into disjoint subdomains each of all elements,
which are equivalent with each other. These relations possess, besides the
properties of reflexivity and symmetry, also the property of transitivity: if
two elements each are equivalent to a third one, then they are also equivalent
with each other. As is well known this does not hold with respect to similarity,
similarity can diminish in a series of pairwise comparisons. This may become
clear, when imaging a unit of soldiers fallen in line and were compared by
individual height of neighbours. Now it is tried to define transitivity for fuzzy
sets anew, to come to partitions of the universe as they are known from crisp
relations (see for more details e.g. in Bandemer/Gottwald (1995)). Simi-
larity relations will play their important role in fuzzy qualitative analysis in
Chap. 6.

For the development of fuzzy controler from verbally formulated rule bases,
in which these rules are represented by a relational connection R of linguistic
variables (for the fuzzy input Ai and the fuzzy output Bi of the controler),

Bi = Ai ◦ R; i = 1, . . . , n , (3.60)

the problem is to solve this system of relational equations. This is the start-
ing point for that, what is not quite exactly called fuzzy logic. Some hints
to the extensive literature on fuzzy control are contained e.g. in Bande-

mer/Gottwald (1995).



4

Specification and Use of Uncertain Variability

In the preceding Chap. 2 important kinds of uncertainty are treated. First
the impreciseness of mathematical quantities was considered: it is uncertain,
what had been precisely given (by measurement or observation). This kind
of uncertainty was handled by interval mathematics and by specification of
fuzzy sets. Then the case was looked at that uncertainty is due to the verbal
formulation of the findings by observation and measurement, i.e. from the
vagueness of language: it is uncertain, what is accurately meant. Also here
the specification of fuzzy sets suggests itself, now as specification of values of
linguistic variables, as they are called.

In both cases the currently given situation was of interest. Statements
about similar situations in future are only justified by the general scientific
mode of conclusion: Similar results in similar situations. Now the uncertainty
in the future should supply the matter of interest: it is at present uncertain,
what will be in future. This is the province of stochastics, the theory of the
regularities of variability. The basic notions of this theory are chance and
probability, which should be presented in the following first section.

4.1 Chance and Probability

4.1.1 Model Ideas for the Notion Chance

Unique events in the past or in the future are objects of interpretation and
speculation more than of formulation of theories and prognosis. Hence frequent
events, occuring “in masses”, are suitable for a systematic investigation to find
“regularities” and to give some hope for a possibility to predict their behaviour
in future.

These regularities do not refer to a single concrete situation, but to large
numbers of such situations “of the same kind”, as it is known from playing at
dice: The result of the next throw cannot be predicted, but one expects that a

H. Bandemer: Mathematics of Uncertainty, StudFuzz 189, 63–95 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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(fair) die yields each single of the six possible outcomes with (approximately)
equal frequencies in the long run.

All the notions above, which have been marked with inverted commas,
must be stated more precisely within the framework of mathematics to get
a theory, which base its statements scientifically. By this process of “making
scientific” the meaning of certain words and wordings from everyday language
will change their semantic contents when used in the context of this theory
and its application. Usually, especially in the routine software, it is not re-
ferred to this fact explicitly. This may be the source for many and extensive
misinterpretations of the procedures and their results, which leads sometimes
to senseless applications and absurd conclusions. Hence the philosophical and
mathematical basic assumptions and ideas will be discussed relatively broadly
at this place.

If events occuring “in masses” should be considered, first one has to take
care for the comparability of the single events.

What should be taken as essential and fixed?
For this purpose the notion random experiment is introduced, following

the terminology of physics and chemistry: A random experiment is defined and
given by its fixed conditions. (It is even spoken of experimental conditions).

These conditions should be fullfiled, i.e. the experiment can be performed,
arbitrarily often, (because of the mathematical theory!), hence the experiment
can be repeated arbitrarily often.

The repetition of an experiment, a single performance of it, consists in
the fulfilment of the fixed conditions and in the recording of the phenomena
observed, i.e. the outcome of that trial.

Obviously, to be worth to be observed at all, an experiment must have at
least two different possible outcomes. In this case, however, the fixed condi-
tions cannot determine the observed outcome uniquely !

Now, the mathematical model idea consists in that all conditions, which
are not fixed, but influence the outcome, are explained as the effect of
chance.

Hence the explanation of the notion chance differs essentially from its
semantic contents in everyday life. There is no flavour of rareness and unex-
pectedness, but it is a simple expression of ignorance on what will influence
and decide on a coming observed outcome of the experiment at last.

A further aspect of the notion “chance” in the framework of the math-
ematical theory and its applications should be really noticed: By the fixing
of the conditions the user decides, what he will regard as the effect of chance
in the given situation. This can be either an expression of a being not able
to know (further conditions are not accessible for a fixing) or of a being not
interested to know (further conditions should not be fixed, e.g. because of high
costs of fixing or such conditions should vary “by chance”, in order to obtain
statements from the mathematical investigation being more generally valid).
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This formation of the concept is of central importance for all applications
and plays a main role in the capture of meaningful data for mathematical
investigations.

In a next step it is to be fixed, what should be considered as a result
of a certain experiment. All single possible outcomes of trials of the random
experiment and all single sets of different outcomes are called random events
and are denoted for distinction by different characters A,B,C, . . .. The set
of all possible events of a random experiment united forms the certain event
Ω, as it is called, the empty set of events is the impossible event ∅, as it is
called. This concept makes it possible to represent mathematically interesting
situations between events.

All random events and the both extreme events mentioned above form the
field of events IA of the experiment, which so contains all what is of interest
with respect to the experiment.

This field of events is interpreted, as a rule, as a system of sets, in which
Ω represents the universal set and ∅ the empty set, and the random events
consist each of elementary events ω ∈ Ω or of coarser disjoint subsets of
Ω, which are called atoms. (The set Ω corresponds to the universe in the
definition of fuzzy sets. The denotion by Ω is but traditional in stochastics
and hence should be kept in this context to facilitate the access to textbooks.)

The usual operations with sets can now be interpreted in the language of
the corresponding random events:

The intersection of two events (A∩B) means that both the events occur
simultaneously.

The union of two events (A ∪ B) means that at least one of the both
events occurs.

The complement Ac of A with respect to Ω means that the event A does
not occur.

Finally, the inclusion (A ⊆ B) means that together with the event A also
the event B occurs: A is followed by B.

4.1.2 Probability

Seen in the light of history the first determination of future uncertainty of ran-
dom events considered cases, in which each single of the finite many elemen-
tary events has the same chance for its occurrence in a future trial. Instead of
elementary events also atoms Ai with the same property were handled, which
form a partition of the certain event (Ω = ∪iAi). A normalization to the
chance measure 1 for the certain event led then to the well known classical
definition of probability as a normalized chance measure:

The probability P (B) of an event B is equal to the number of all atoms
Ai, to which this event B follows, divided by the number of all atoms, which
form the partition of the certain event.

This rule for a determination of a probability does only hold in the case
that a finite system of disjoint atoms (or elementary events) is given, which
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form a partition of the certain event and of which each single has the same
chance to occur. The applications of this rule in the investigation of the game
of dice or of Lotto, and in quality control are well known (see some textbook
for details).

If one keeps the assumption of equal chances, but allows as elementary
events all points of a continuum, e.g. a plane domain, then one obtains in
generalization of the classical probability the geometrical probability :

The probability P (B) of an event B is equal to the area of all its elementary
events divided by the area of Ω.

This is the starting point of stochastic geometry, which is devoted to spatial
distributions and geometrical shapes of objects both influenced by chance, e.g.
in medicine and earth sciences (see, e.g. Stoyan/Kendall/Mecke (1995)).

In general there is neither an atomic structure nor a principle of equal
chances. Hence von Mises in his paper (1919) suggested for this case to
choose as the probability of an event B the limit of its relative frequency
Wn(B) after n trials:

P (B) = lim
n→∞Wn(B) . (4.1)

For this purpose some additional theoretical assumptions must be put on
the manner, in which the series of trials should be performed and the limit
should be interpreted. With these problems some researchers within math-
ematics are still concerned from time to time, but which might be without
any interest in the present context. This discussion on the basis of probability
faded out, when Kolmogorov in his book (1933) axiomatized simply some
properties of relative frequency for a definition of probability and introduced
it as a normalized measure over the experimental domain. Besides the nor-
malization P (Ω) = 1 it is the addition rule for mutually disjoint events (i.e.
which cannot occur simultaneously: A ∩ B = ∅):

A ∩ B = ∅ ⇒ P (A ∪ B) = P (A) + P (B) , (4.2)

which governs the so created probability theory. From this rule many other
computing rules can be derived, of which only the general addition rule is
mentioned here:

P (A ∪ B) = P (A) + P (B) − P (A ∩ B) . (4.3)

A very fruitful concept proved that of conditional probability, which asks
for the probability of an event B, if another event A has already occurred or
can be so conceived

P (B|A) =
P (A ∩ B)

P (A)
, (4.4)

where, obviously, P (A) �= 0 is to be assumed.
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With the definitions up to now the idea plays some role that the proba-
bility represents a looking ahead on the expected frequency of the event in a
sufficiently long series of trials, hence it reflects an objective situation. This is
called the frequentistic interpretation of probability.

Already very early (Leibniz (1703)) in the treatment of uncertainty (see
for the accurate sources e.g. Schneider (1989)) the notion probability was
used also as a degree of belief, of conjecture, of doubt, of uncertainty, and of
suspiciousness. Then, however, probability is a matter of an “individual” that
believes, conjectures or takes for possible. This subjective interpretation as
a measure of the feeling of uncertainty has also its followers (among others
deFinetti (1937), Savage (1972)).

The problem left then is still the specification, i.e. the subjective deter-
mination of the values P (A) for all interesting events A. For this purpose it
was suggested to use the betting behaviour of the individual: The numeri-
cal value of a probability should be specified as proportional to the sum an
individual would be willing to pay should a probable event A, expected by
him, not occur, i.e. a proposition that he asserts proves false. Naturally, it
must be assumed that such a sum can be specified. Then it is shown that the
subjective measure of uncertainty so defined obeys the axioms of probability
theory, provided that the behaviour of the individual satisfies somes condi-
tions of “rationality” (see Savage (1972)), first of all the rule of coherence.
On this basis, the subjectivists succeeded in showing that Kolmogorov’s
axioms were the only reasonable basis for evaluating subjective uncertainty.

This rather extreme attitude can be contested from a philosophical and
from a practical point of view (Dubois/Prade (1988)), from which some
remarks may indicate the problem area.

So it seems difficult to maintain that every uncertain judgement obeys the
rules of betting. The necessary monetary commitment that forms an essential
part of the model could prevent an individual from uncovering the true state
of his knowledge, for fear of financial loss.

From the practical point of view, it is clear that the number given by
individuals to describe, in terms of probabilities, for example the state of
their knowledge, must be considered for what they are, namely, approximate
indications. This is admitted even by Savage explicitly, nevertheless it is
demanded that a rational individual must be able to furnish precise numbers,
when proper procedures for their elicitation are used.

Not willing to enter this controversy, for application it seems advisable in
every case to consider the probabilities specified subjectively as (perhaps only
rough) approximations, the character of which is transmitted, naturally, to
the conclusions drawn from it, e.g. by computing rules for probabilities.

An important strategy to adapt uncertain knowledge or estimation to given
experimental findings is the use of Bayes’ theorem. The idea standing behind
is the assumption that it is possible to specify an “estimation” of the probabil-
ity P (Ai); i = 1, . . . , N , for each single event of a partition of the certain event
(i.e. a system of mutually disjoint events, A1, A2, . . . , AN ). These estimations
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should reflect the probability or simply only the subjectively specified state
of information before at present the investigation is to be performed. Hence
it is called a-prior probability. Then it is conceived that the experiment is
performed, to which the events belong, and that the event B is realized. This
result contains information with respect to the experiment and hence to the
events Ai. How should the probabilities of these events be evaluated after this
result? The answer to this question is given by the Bayes’ theorem

P (Ai|B) =
P (B|Ai)P (Ai)

∑N
j=1 P (B|Aj)P (Aj)

, (4.5)

which defines the a-posteriori probability (for details with respect to the
derivation see some textbook or Robert (2001)).

Because this formula can be applied sequentially, i.e. repeatedly after every
result of a further trial, it establishes the basis of a learning theory, which is
at present practised by the type of the probabilistic neural networks (see also
Subsect. 6.1.5). Also in information theory the formula serves as a basis for
decisions. Information theory starts with considering the following situation:
Given outgoing signals Ai through a randomly disturbed channel K, which
is characterized by the probability law P (Bj |Ai) (the channel property, as it
is called), are changed into incoming signals Bj . The maximum a-posteriori
probability P (Ai|Bj) is then the criterion, which of the outgoing signals Ai

should be assumed to belong to the observed incoming signal Bj . Within the
Bayesian decision theory the decisions to be made after an observation and
using a loss function are evaluated by this a-posteriori probabilities (see for
details e.g. Berger (1985) and Sect. 4.3).

In every case of application it should be really noticed that a-priori prob-
abilities are only rather rough data, a high precision in numerical handling
them, e.g. in the Bayes’ theorem, does not make sense. One should always
check the meaningfulness of the results obtained within the practical context.

From the definition of conditional probability (4.4) another central notion
of stochastics is deduced, the pairwise independence of two events A and B.
The notion reflects the fact that the occurrence of the one event does not
have any influence on the probability of the other one, that P (A|B) = P (A)
as well as P (B|A) = P (B) are valid. Together these two formulae yield the
essentially simpler one

P (A ∩ B) = P (A) · P (B) , (4.6)

which is therefore chosen as the definition of the pairwise independence of
two events. The notion of independence of more than two events will play
an important role for the probabilistic inference from samples (see Sect. 4.2),
especially in application.
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4.1.3 Random Variables and Their Distributions

As already mentioned in the preceding subsection random events can be inter-
preted as sets, more precisely as subsets of the certain event Ω. With respect
to a visualization of models as well as for handling it is convenient, if sets on
the real axis can be chosen. For application it is rather unimportant, whether
these sets are understood as direct equivalents or as mappings (from the field
of events IA ). For a theoretical treatment, however, the idea of mapping is
useful. Mostly with the representation of the events as sets on the real axis an
idea of the genesis of randomness is connected, as will be shown by a simple
example.

An experiment is considered, in which only one single random event A
is of interest. The field of events IA has then the form {∅, A,Ac, Ω}. This
experiment is repeated n-times independently. For this purpose the notion of
pairwise independence of n events in the sense of (4.6) must be generalized to
the notion of independence for all n events: n events from n fields of events are
independent, if for any selection of one event from each of m of these fields
(m = 2, 3, . . . , n) the probability value for the simultaneous occurrence of
these selected events is equal to the product of their single probability values
(see details in some textbook under the headword: independence of events).
Note that pairwise independence of three or more events does not imply their
independence in this sense.

Given the n results of the trials, it is counted, how often the event A has
occurred. This number X is at random, since it depends on the random results
in the single trials. Hence it is called a (one-dimensional) random variable.
It can, obviously, assume each of the values 0, 1, . . . , n (its domain), naturally
randomly for every series of n trials according to the experiment.

Let be the probability of A equal to p in one trial. Then by combinatorical
considerations and using the assumption of independence one can compute
the probability values for each single value of X, because X = i; i = 1, . . . , n,
are all random events:

P (X = i) =
(

n

i

)

pi(1 − p)n−i . (4.7)

The random variable X can assume only the n+1 values i = 0, . . . , n. Two
or more of these events X = i are simultaneously impossible, hence they are
incompatible or disjoint. Their union is the certain event and hence the sum of
their probability values is 1. The probability 1 of the certain event is distributed
among the single events X = i. Therefore the assignment of probability to the
values of a random variable is called a probability distribution, or shortly a
distribution.

If, as in the preceding example, the random variable X can assume only
finite many discrete values, then it is called discrete random variable and its
distribution a discrete distribution. This name remains obviously meaningful,
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Fig. 4.1. Binomial distribution with p = 0, 3 and n = 8

if the random variable can assume denumerably infinite many values, e.g. all
natural numbers.

The distribution types bear mostly more or less easily remembered names.
So, the example distribution above is called binomial distribution, because of
the binomial coefficients in its formula. Naturally, the number values of the
probabilities in (4.7) are also dependent on the probability p of the basing
event A and the number n of the trials. Hence p and n are called the parameters
of the distribution. It is liked to represent the probabilities for given parameter
values graphically, as is shown e.g. in Fig. 4.1. (In some textbooks the tops
of the value columns are connected by segments, but this is absurd, because
probabilities for values between the natural numbers are obviously senseless.)

Besides the binomial distribution, which is used especially in statistical
quality control, there are also several other types of discrete distributions,
which are of interest for application. One of them is the hypergeometrical dis-
tribution, which yields e.g. the probabilities for winning combinations in Lotto;
another one is the Poisson distribution, a limiting distribution of the binomial
distribution, if n tends towards infinity and simultaneously p tends towards
zero, which plays a role especially for events with very small probabilities in
but numerous trials:

P (X = i) =
λi

i!
e−λ mit i = 0, 1, 2, . . . (4.8)

Provinces for application of Poisson distributions are the atomic decay, then
also queueing processes with high numbers of clientes and rare demands, and
particle structures in materials in engineering and medicine.
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With respect to further suggestions for distributions in textbooks and in
software one should be concerned first of all with the model ideas on the gen-
esis of the corresponding random variables in assumed “standard situations”,
which stand behind the formulae for the given distributions. These ideas con-
tain essential hints for the usability of the distributions in practical situations
and on the “experimental conditions” to be observed.

Naturally, in every practical situation there are each only finite many dis-
tinguishable results. In principle, it would be sufficient to consider only discrete
random variables. This can, however, lead to rather confused and extensive
representations, particularly with measure and observation processes with rel-
atively and perhaps necessarily high precision. Moreover, perhaps available
knowledge on the processes, and hence on the random genesis of the measure
and observation values, cannot be introduced into the model. Therefore, in
these cases it is supposed that the considered random variable can assume
values from a continuum. This can frequently be justified also objectively, if
the values express quantities of time, length, temperature, pressure, or mass.
But even with sufficiently high amounts of money the assumption of continuity
on the cent level seems meaningful.

Random variables with such continuous domains are called continuous
random variables. The probability of a single value will then vanish, as a rule,
without that the value becomes impossible. Note that actually the probability
of the impossible event is zero, but that with a continuous domain an event
with vanishing probability needs not be impossible. Because of the uncertainty
(fuzziness) of observations mentioned at the beginning and considered already
earlier (see Sect. 3.1) only intervals are of interest anyway. Instead of events
X = i now events of the form X ∈ I (the random variable X assumes a value
from the interval I), are those, the probability of which is to be determined.

For this purpose the existence of a function f is supposed, which measures
the “intensity” of the probability, such that the “infinitesimal” interval [x, x+
dx] is endowed with the infinitesimal probability f(x)dx. For a finite interval
I = [a, b] the probability

P (a ≤ X ≤ b) =
∫ b

a

f(x)dx (4.9)

is obtained; even if one or both of the ends of the interval tends towards
infinity. Obviously, the function f , called the probability density or shortly
density, must have some natural properties: it must not be negative, it must
be integrable and its integral over the whole axis, corresponding to the cer-
tain event, must have the value 1. Since the probability of a single value for
continuous random variables is always zero, it remains unimportant, whether
for the event in brackets in (4.9) one or two of the endpoints of the interval
are included or not.

The best known example of a continuous distribution is the suggestion of
Gauss: the normal distribution, as it is called,



72 4 Specification and Use of Uncertain Variability

f(x) =
1

σ
√

2π
exp
{

− (x − µ)2

2σ2

}

(4.10)

with its parameters µ and σ (an example see in Fig. 4.2).
It came out of a limiting consideration, which will be treated in the next

subsection.
For a long time it was presumed that all randomly influenced measure

and observation processes show a probability distribution of this type. This
is really not so, but frequently the normal distribution remains a useful ap-
proximation. One can easily realize that the normal distribution is always
an approximation. This is not only because of the always existing observa-
tion uncertainty (fuzziness), but also because it assigns positive probabilities
to intervals everywhere on the axis, e.g. also to negative values of mass and
length. Certainly, in practical applications this is rarely of importance, since
the distribution concentrates the probability amount 0.9973 to the interval
[µ − 3σ, µ + 3σ]. Usually the parameter µ is called the “true” measurement
and the parameter σ a measure of precision of the measurement.

Fig. 4.2. Density of a normal distribution

A pleasant property of the normal distribution is that after a changing of
the origin and of the scale the random variable remains normally distributed.
Hence the random variable X can be standardized by the linear transformation

Y =
X − µ

σ
. (4.11)

The random variable Y has then the parameter values µ = 0, σ = 1.
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Having realized that the normal distribution does not describe all ran-
domly influenced measurements and observations, one turned to functions of
random variables hoping to obtain for these functions better approximations
by normal distributions. From the results of this way the logarithmic normal
distribution proved very useful.

Besides, mainly from interesting application cases, also further types of
continuous distributions were established, with respect to which it is referred
to the textbooks. Before using them one should first of all look at the model
ideas from which they were derived. As an example merely the exponential
distribution will be mentioned here, which is defind by the simple density

f(x) = λ exp(−λx) , (4.12)

with the parameter λ and the domain (0,∞). It has a remarkable property. If
one takes this distribution as a model for a random length of time T and asks
for the conditional probability that this length after a duration of t units will
last still another s units, i.e.

P (T ≥ t + s|T ≥ t) =
P (T ≥ t + s)

P (T ≥ t)
, (4.13)

then one obtains, by inserting the corresponding integrals over the simple
density (4.12), that this probability equals the probability P (T ≥ s), as if the
length of time has started in the very moment t. Hence the distribution is
called “without memory”, it does not remember the length of time already
passed. According to extensive practical investigations the length of telephone
conversations obeys in each case sufficiently precisely an exponential distribu-
tion. Therefore the expected length of such a call could not be estimated more
precisely if one would know how long the conversation has lasted already, an
interesting question for a waiting customer.

Moreover, there is a useful connection between a Poisson distributed ran-
dom variable and an exponential distributed one. If one considers “point
shaped” events (e.g. times of arrival) on the time axis and realizes that their
number in periods of fixed length obeys a Poisson distribution, then the dis-
tances of such (following one another) point shaped events is exponentially
distributed. Therefore, the outlook on the problem can be chosen from each
side without any loss of information.

All the mentioned distributions in closed analytical form were derived
each one on special assumptions, which will be satisfied only approximately
in practical cases. Hence it does not make sense to handle probabilities with
high precision in such environments. When such items are found in concrete
problems, one should question the precision and round the values reasonably.

For a unified representation of probability distributions for discrete as
well as for continuous random variables the distribution function FX(x) was
introduced, which indicates the probability of the random event −∞ < X < x.
For continuous random variables this is the integral
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FX(x) =
∫ x

−∞
f(x)dx (4.14)

and for discrete random variables the corresponding sum

FX(x) =
∑

ai<x

P (X = ai) , (4.15)

where the ai run through the domain of X.
With some other mathematical notions the representation can be unified

further and even mixed distributions (i.e. with a discrete part and a continu-
ous one, e.g. lifetime distributions with a stillbirth portion) can be specified
in closed form. The distribution function is obviously monotonically nonde-
creasing (from 0 to 1) and continuous on the left, i.e. in a jump the value of
the function lies at the lower border. For discrete distribution the distribution
function is a step function with the jumps at ai of height pi: pi = P (X = ai).
For further details it is referred to the textbooks.

In long series of trials the arithmetic mean of the results is an interesting
quantity. If it occurs as the average payoff in a (randomly influenced) zero-sum
two-player game, it can be regarded as (the long-term mean) expected gain
and can be compared with the stake in every game. If both this values are
equal, then the game would be called fair, in the other case the game makes a
profit (the difference between the expected gain and the stake in every game)
on average for one of the two players.

In the next subsection also the behaviour of the relative frequency in series
of infinite many trials is considered, which was used already by von Mises to
define probability. In this way it can be shown that the arithmetic mean tends
towards a “distribution mean”, which is used to define an expected value for
the distribution. For continuous distributions one obtains

EX =
∫ ∞

−∞
xf(x)dx (4.16)

and for discete distributions correspondingly

EX =
∑

i

aipi , (4.17)

where the pi are the probability values for ai, respectively.
Naturally, it must be assumed that the integral and the sum (for countably

infinite many values) yield finite values at all.
In corresponding manner also expected values for functions g(X) of a ran-

dom variable can be computed, when x and ai in the formulae are replaced
by the function values g(x) and g(ai), respectively.

As an important special case the function

g(x) = (x − EX)2 (4.18)
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is considered, which evaluates the square deviation of the random variable X
from its expectated value EX. Note that EX is not a random variable but
a constant dependent on X, a characteristic of the random variable X. The
expected value of g(x) according to (4.18)

E g(X) = E (X − EX)2 = D2X (4.19)

is called the variance of X and is a measure of variability of the random
variable X and of the variations of its realizations (i.e. the results of the trials
according to the random experiment, which is represented by the random
variable).

As important for application the rule for the addition of variances is
mentioned. When the sum of random variables, in the simplest case Z = X+Y,
is considered and the variance of Z is to be computed, then because of the
linearity of sums and integrals one obtains for D2Z

D2Z = D2X + D2Y + 2E
[
(X − EX)(Y − EY)

]
. (4.20)

If X and Y are independent of each other or at least are uncorrelated, then
the third term on the right side equals to zero and the variances are added.
In this context uncorrelatedness means less than independence, namely, only
that this third term in the sum disappears for even these two variables X
and Y. This case can happen even if the two variables are not independent in
the sense of probability theory. This argumentation remains valid also for the
difference X − Y, because the subtraction sign occurs then only before that
third disappearing term.

This fact is used in the error propagation law, as it is called, to evaluate
and to assess the influence of small errors in the arguments of a function.

Starting point is the linear part of a Taylor’s expansion in several vari-
ables, e.g.

df =
∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂z
dz + · · · (4.21)

= adx + bdy + cdz + · · · (4.22)

If the differentials are replaced by corresponding random variables F,X,Y,
Z, . . ., which should represent the random finite deviations from the “true”
function or argument values f, x, y, z, respectively, and if it is assumed that
the derivations X,Y,Z, . . . are pairwise independent of each other, or at least
uncorrelated in the sense given above, then one obtains for their variances

D2F = a2D2X + b2D2Y + c2D2Z + · · · (4.23)

The variance of the arguments are estimated from the experimental find-
ings (see Subsect. 4.2.2), e.g. by the corresponding sample dispersions s2

X , s2
Y ,

s2
Z , . . ., and then they yield for the deviation sF from the function value ac-

cording to
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sF =
√

a2s2
X + b2s2

Y + c2s2
Z + · · · , (4.24)

where for a statement at the measurement point (x, y, z, . . .) the a, b, c, . . . are
to be replaced by the according values of the partial derivatives ∂f

∂x , ∂f
∂y , ∂f

∂z , . . ..
This is the famous error propagation law, as it is called, due to Gauss. In spite
of the scientific claim connected with the name of Gauss this proceeding is
in its essence only a useful heuristic.

Multidimensional random variables as e.g. vectors of random variables are
considered in Subsect. 4.2.1; with respect to further details it is referred to
the textbooks.

4.1.4 Asymptotic Statements

In the beginning of this chapter stochastics was presented also as a mean to in-
vestigate regularities in events occurring “in masses”. This involves, naturally,
also the consideration of infinite series of random variables Xn;n = 1, 2, . . .
and their behaviour in the limit n → ∞. The results can then be used for
extensive data sets, which may be assumed to be obtained from such a series.

In stochastics different kinds of convergence of such series are distinstigu-
ished: almost certain convergence, if the convergence has the probability 1
with respect to all elementary events; convergence in square mean, if the
expected values of the square deviation from a fixed random variable (the
limit in the mean) tend towards zero; and finally convergence in probability,
if the probability of the absolute deviation from the limit tends towards zero
for every elementary event and every arbitrarily small deviation. On certain
conditions these three notions of convergence are even equivalent. Their rela-
tionship among each other and general assumptions as weak as possible for
their occurrence and the rate of convergence are a wide field of research for
mathematicians concerned with stochastics. For the user, who will be only
seldom in the position to test the partly rather complicated mathematical
conditions or only to consider them in the light of the given situation, it
would be enough to know that many procedures offered in the software are
based on such asymptotic investigations and make sense only for sufficiently
extensive data material, especially for samples of large size (With respect to
the notion “sample” see the next section.).

Some notions and statements used in this field should now be presented.
For further details it is referred to some textbook.

A series of random variables {Xn} obeys a law of large numbers, if the
series of differences of their arithmetic means tends towards zero in one of the
senses given above

1
n

n∑

i=n

Xi −
1
n

n∑

i=1

EXi → 0 . (4.25)

If, especially, all the Xi have the same expected value EX, then this means
that the arithmetic mean tends towards this expected value.
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Moreover, also the relative frequency of an event A can be considered as
an arithmetic mean of a random variable X with the value 1 (the event A
occurred) and 0 (it does not). Then the law of large numbers means that the
relative frequency converges to its probability. Whereas von Mises used this
statement as the starting point for his definition of probability, it is here a
conclusion from Kolmogorov’s axioms.

Further-reaching statements can be obtained, if a notion convergence in
distribution functions is introduced (by means of characteristic functions as
they are called). In this manner it can be shown that, with appropriate nor-
malization of the partial sums Zn =

∑n
i=1 Xi, e.g. with

Z∗
n =

Zn − EZn√
D2Zn

, (4.26)

the distribution of Z∗
n, on certain conditions, tends towards a standardized

normal distribution ((4.10) with µ = 0 and σ2 = 1). Such statements are called
limit theorems (according to their considered field of validity a local or a global
one). Especially it follows that even a (discrete) binomial distribution for large
n can be approximated very well by a (continuous) normal distribution with
the parameters µ = np and σ2 = np(1 − p).

The property of a normal distribution, on certain partly also restricting
conditions, to be limiting distribution of suitable normalized sums of random
variables, is used with high profit in probabilistic inference and emphasises
the privileged role of this distribution. The Poisson distribution has a similar
position among the discrete distributions, if these are considered from an
asymptotic standpoint. Further details see in some textbook.

4.2 Probabilistic Inference

Statements from data sets are possible more easily and better, if assumptions
can be put basing their genesis plausibly or scientifically. If these assumptions
lead to a probabilistic model, then the statements can be obtained as con-
clusions from the given data in the framework of this model. A probabilistic
model can be formulated as a (random) experiment by fixing experimental
conditions, which are taken for essential. As was mentioned already in the be-
ginning of the chapter, simultaneously all other influencing facts on the result
are explained as the effect of chance. In such way a random variable, mostly a
one-dimensional one X, is defined. If its distribution is known precisely, then,
on the given experimental conditions, all available information on the experi-
mental result is specified, further statements are not possible. A near at hand
example is yielded by the playing at dice: on the condition that the dice is
fair, no more can be stated than that in the next throw each side has the same
chance.

As a rule, the probability distribution of a practically defined random
variable is not precisely known. From a model idea, e.g. the type of distribution
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may be deduced, for a measuring process perhaps the normal distribution and
for statistical quality control the binomial distribution, but their parameters
remain unknown. On the other hand some data material is given, which is
related to the experiment and hence to the random variable and those data
can contain information on these unknown parameters. With this problem of
parameter estimation Subsect. 4.2.2 will be concerned.

Another problem considers the case that an experiment is given, the ran-
dom variable of which obeys a distribution likewise given. By means of the
given data material it should be decided, whether this is actually so. Such cases
occur especially in statistical quality control and in process control. Problems
of this kind are treated in Subsect. 4.2.3.

But first of all the important problem of application is to be considered:
how a data material is to be gathered or which qualities it has to have so that
it can answer the questions with respect to the distribution of the random
variable. The central notion for this purpose is the sample.

4.2.1 Samples

Methods of mathematical statistics, as probabilistic inference is usually called
and implemented in common software tools, base on several assumptions.
If these assumptions are not fulfilled, then the statements obtained can be
doubtful, even misleading and absurd. Therefore they should be presented
rather detailed in this subsection.

A single special result of a trial or the value, which a random variable X
has assumed really in a concrete case, is called a realization. When, e.g., a
4 was thrown with a dice or the result 17.3 was obtained in a measurement
influenced by chance, so these are examples for realizations of throwing a dice
or of the random variable modelling the measurement.

A number of such realizations x1, x2, . . . , xn of a random variable X is
called a concrete sample.

Because a statistical procedure should be usable generally in any possible
case, all possible concrete samples must be considered. For this purpose they
are explained as points x = (x1, x2, . . . , xn) in an n−dimensional space, the
sample space. In order to indicate the probability that a certain sample x0 will
occur or will lie in a certain domain of the sample space, the random vector
X = (X1,X2, . . . ,Xn) is introduced. The concrete sample x (consisting of n
realizations of X) is now interpreted as a single realization of this vector X.
Also, x1 is a realization of X1, x2 of X2, . . . , xn of Xn. Since all realizations
xi should come from the same random variable, all the Xi must have the
same distribution, hence the Xi are called copies of X. Up to this point the
proceeding is only a change in the line of sight to use the thought habit of the
n-dimensional space in order to simplify the way of speaking.

If, however, the probability distribution of X should be computed, from
which the desired probability values for the samples can be obtained, an addi-
tional assumption is necessary to deduce the distribution of X from that one



4.2 Probabilistic Inference 79

of X. The mathematically simplest such assumption is that of the indepen-
dence of the components Xi of the vector X. Then, namely, the distribution
of X can be obtained by multiplication of the distributions of Xi. Let be,
e.g., given the densities fi(xi) of the corresponding random variables Xi for
i = 1, 2, . . . , n, then the density f(x) of the distribution of X is

f(x) =
n∏

i=1

fi(xi) . (4.27)

A vector X of n independent random variables Xi; i = 1, . . . , n, all with
the same distribution, is called a (mathematical) sample. The number n is
the sample size. The random variable X, which supplies the sample, is called
the population (with respect to the sample).

Naturally, problems in statistics can be treated also without the assump-
tion of independence, however, the procedures then necessary are essentially
more complicated, as a rule, they demand other assumptions on the stochas-
tic correlation of the components Xi or they are rather restricted in their
meaningfulness. Considerations of random fields, e.g. in geostatistics, provide
impressive examples (see, e.g. Cressie (1991)).

The important problem of data quality in application manifests itself here
in the questions: What consequences have the specifications in the definition
of a sample for the organization of data gathering? On what conditions can
methods of mathematical statistics be applied meaningfully to given data?
How must results be obtained to be regarded as a concrete sample, i.e. as a
realization of a sample? These questions must be, naturally, answered before
the consideration or the gathering of data is thought about!

These questions are discussed first for the case that the data (which should
be considered as realizations of X) are crisp values. Data uncertainty (fuzzi-
ness) is additionally taken into account in Subsect. 4.2.4.

The sample is based by a certain random variable, i.e. by a random exper-
iment with fixed experimental conditions; all other influences are explained as
the effect of chance. The consequence of this determination are two necessary
checking procedures:

Checking procedure 1: Are all the fixed experimental conditions really fulfilled
in every trial (realization of the random variable)?

Hence the researcher is always recommended to get an idea of the situation
in this respect, also if or even if he does not take the necessary measurements
or observations himself.

If the question must be answered in the negative, then there is a risk
that (some) results are recorded, which do not come from the considered
random variable. In many a case these results lie outside the bulk of the
other realizations and are called outliers in the software of data analysis. It is
advisable not to depend on the “decision” of such software, which recommends
simply to eliminate such results. It is, namely, absolutely normal that also
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erroneous values are hidden in the bulk and seperately lying values belong in
fact to the considered variable. A scientifically based inspection of the results
is recommended in any case, which should end in an individual decision on
each single realization. If there is a possibility given to repeat situations with
outlying values, then one should use it. If such values are confirmed in that
way, then they can open new insight into the practical problem.

Moreover, it can happen that only realizations from a certain bounded
domain can be recorded, whereas also realizations outside of this domain occur
but remain undetected. Examples for this situation are lifetime investigations,
in which not all objects under test failed out before the end of the test time,
and observation values, which are prevented by control actions during the
investigation (e.g. by switching on a supplementary device when approaching
a dangerous domain). In such cases the samples are truncated. This can be
detected, as a rule, by a scientifically trained eye in a consideration within
the framework of data analysis. Then suitable measures are to be taken either
to neutralize this truncation by assumptions on the basing distribution or to
take this into account in the conclusions.

Finally, situations are to be considered, which can even depreciate the data
for a probabilistic inference. If, namely, the employee, instructed to measure
or to observe the realizations, is interested in what values he records (e.g.
because his income or prestige depends on this) or he is apathetic against
what he is recording (e.g. because care is neither demanded nor appreciated),
then the data might be manipulated. The conclusions drawn from such data
are no longer objective, sometimes not even meaningful. A sound scepticism
in too good or senseless results likewise is always advised.

Checking procedure 2: More difficult to realize, but at least likewise seri-
ous the frequent case is found that besides the fixed experimental conditions
further conditions are fixed in all trials of the obtained sample, i.e. for all the
realizations. This conditions become automatically part of the experimental
conditions, which define the population, and all conclusions drawn from the
sample then are valid only on these additionally fixed conditions. This is,
obviously, a restriction for the assumed effect of chance, which is not in the
interest of the researcher in many cases. Known situations, in which such cases
occur, are investigations with unintentional restrictions, e.g. selection of de-
partments in an enterprise, choice of saison, day in the week and time of day
in business management investigations; selection of the location for field tests
in agricultural research; selection of manpower in engineering investigations,
where experience and care is of importance. In order that the conclusions are
valid for all possible objects (departments, seasons, days in the week, times
of day, field locations, manpower) it must be taken care that the influence of
them is “by chance”, or, as it is frequently called in mathematical statistics,
at random. This is effected in practical cases by including all possible objects
into the investigation in a random manner, this is called randomization.

Examples for application of such procedures are known from many fields:
experimental design for agricultural research, selection of objects for statistical
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quality control, sampling for the analysis of debris, process control, surveys
among customers or voters. All possible objects are imagined to be numbered
in some way and then the necessary number of random numbers are produced
by a random number generator (with equal distributed digits). The objects
with the realized numbers are selected for inspection or analysis. With this
procedure it is guaranteed that each possible object has the same chance to
be selected (see e.g. Ogawa (1974)).

Finally the definition of the sample demands that the realizations should
be obtained independently. In a concrete case this means that any obtained
realization xi must not have any influence on what values the other realiza-
tions xj with j different from i will have. The fulfilment of this demand can
be checked, e.g. by consideration of the procedure for obtaining the realiza-
tions. Is there any possibility that in such a procedure running in time the
results already obtained have any influence on those to be still obtained? For
instance, there is a temptation for the employee instructed to take a gathered
sample from debris during the gathering up of such a sample to “correct”
the whole sample by intentionally selected further material from the debris.
A further strategy for checking the demand of independence uses software
for data analysis for finding correlation and functional relationships. One has,
however, to apply a stricter standard to the results for their relevance, because
it would be always possible to find any weak connections, but which will be
originated “by chance” and can be quite compatible with independence.

The random selection of objects in more complex situations and with the
claim that, on the one side, only relatively few objects are necessary for their
intended analysis, and on the other side, simultaneously the whole variability
of all possible objects is considered and reflected, is the subject of a very
elaborated sample theory (see e.g. Cochran (1957)).

The sample vector X is the starting point as well as the basis of the whole
probabilistic inference or mathematical statistics.

The histogram and the empirical distribution function (see textbooks for
detail) are derived from the concrete sample and supply a first rough picture
of the distribution (of the single probabilities or of the density) or of the
distribution function itself. For increasing sample size n the approximation
to the corresponding characteristics of the distribution becomes better and
better (law of large numbers). For small n they are but little meaningful, one
should, in this case, refrain from conclusions.

4.2.2 Parameter Estimation

One of the two basing problems of mathematical statistics is the estimation
of unknown parameters of the distribution. Starting point is the assumption
that the distribution type of the population is already known. The notation
“distribution type” is understood mathematically by the notion distribution
family. Such a family consists of all the distributions, the mathematical rep-
resentations of which are distinguished only by different values of parameters.
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For illustration here the well known family of normal distributions

f(x;µ, σ2) =
1

σ
√

2π
exp{− (x − µ)2

2σ2
} (4.28)

with the parameter domain

Θ = {ϑ = (µ, σ) : −∞ < µ < ∞; 0 < σ < ∞} (4.29)

and the family of Poisson distributions

Pλ(X = k) =
λk

k!
exp(−λ) (4.30)

with the parameter domain

Θ = {ϑ = λ : 0 < λ < ∞} . (4.31)

will serve as examples. This is the form, in which the distribution types are
usually represented in textbooks and software.

The main assumption of estimation theory consists in that there is always
a special parameter value ϑ∗ to which the population of the given sample
belongs. The fulfilment of this assumption is formulated in the wording: the
distribution family is a true model. If this assumption is not valid in the
concrete case, then the result of the estimation may be possibly meaningless.

The problem of estimation arises, because this true ϑ∗ is unknown. An
estimation procedure must assign a corresponding suitable estimation value to
every possible sample from the population, this assigned value should act as
an approximation of the assumed true one. Hence every element x from the
sample space must correspond to an element ϑ̂ of the parameter domain, not
necessarily one-to-one. This is called also, rather graphically, a mapping of the
sample space into the parameter domain:

ϑ̂ = θ̂(x1, . . . , xn) . (4.32)

Before its realization the sample is a random vector X = (X1, . . . ,Xn), and
hence also the estimation value is “at random”, since it depends on the random
realization of the (mathematical) sample. Accordingly the random variable
θ̂(X1, . . . ,Xn) is considered as the (by the sample random) estimation of the
unknown true parameter value ϑ∗ and also called an estimator of ϑ and its
realization will be called an estimate of ϑ. Because the estimation procedure
must be applicable for any true parameter value, the star is omitted after
having emphasised the importance of the existence of such a value.

For an example the family of normal distributions is considered. As an es-
timator of the expected value µ the arithmetic mean X̄n = 1

n

∑n
i=1 Xi is suit-

able, it tends for increasing n towards the expected value (see Subsect. 4.1.4).
With respect to other estimation procedures for different families of dis-

tribution functions it is referred to textbooks or to software documents.
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Fig. 4.3. The arithmetic mean as an estimator of the expected value for different
sample sizes

Perhaps also properties of the recommended estimators are given, then
their meanings will be of interest. Because the estimates in concrete cases
are realizations of random variables θ̂ (see Fig. 4.3 for an example), these
properties can be described only for those random variables.

If the frequentistic interpretation of probability is chosen, then unbiased-
ness of an estimator means that the estimates, which are obtained each by the
procedure from a realization of the (mathematical) sample, in the long run,
will scatter around the “true” value of the parameter (it is the expected value
of the estimator). A biased estimator would show a systematic mean deviation
from this true value. The effectivity of an unbiased estimator is measured by
its variance, i.e. the expected square deviation from the true (and expected)
value. The smaller this variance the higher is the effectivity of the estimator;
the intensity of the scattering around the true value decreases.

The consistency of an estimator is mentioned in connection with its be-
haviour if the sample size tends towards infinity. If the estimator becomes
more and more effective, or, in another sense, better and better (it contracts,
so to speak, to the true value), then it is called a consistent estimator. Hence
this property consists in an asymptotic statement.

Though all properties refer to special sets of randomly obtained estimates.
With respect to more precise definitions and further properties see some text-
book.

In a single concrete case nothing can be stated on the nearness of the
obtained estimate to the true value.

This remaining uncertainty led to the concept of confidence region estima-
tion. To every concrete sample x not only a single parameter value ϑ, but a
whole region B ⊆ Θ is assigned. In the one-dimensional case Θ ⊆ (−∞,∞),
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which is considered in the following for the sake of simple presentation, this
would be an interval I for practical reasons. This interval depends on the
sample: I(X1, . . . ,Xn), and becomes so a random interval. Its realization for
a concrete sample is then some fixed interval I(x1, . . . , xn). This interval is
assumed to cover over the true but unknown parameter value ϑ. Naturally,
this assumption can, in every single case, be either true or false. If this region
estimation procedure is used permanently (frequentistic interpretation), then
this assumption should be true as frequently as possible. The “fuzzy” for-
mulation “as frequently as possible” must be made “precise” here within the
framework of stochastics. Therefore the random interval is considered and the
probability for the case that ϑ is the true value. This assumption is indicated
by an index at P . Moreover the sign � should emphasis that the set before
is variable whereas the element behind is fixed (usually with ∈ the variable
element stands before and the fixed set behind). For the expected frequency of
a correct decision (i.e. the true value is in fact covered up by the interval) a
lower bound 1 − α is given. Hence the (small) number α is the probability of
a wrong decision, i.e. that the random interval does not cover over the true
value. A random interval I(X1, . . . ,Xn) is called a confidence region estimation
or here shortly confidence interval to the confidence probability 1 − α, if

Pϑ(I(X1, . . . ,Xn) � ϑ) ≥ 1 − α (4.33)

is valid for all ϑ from the parameter domain Θ. The length of the interval is
then a measure of the accuracy (generally the measure of the region) and the
probability 1−α gives obviously the certainty of the estimation. An example
should explain the connection.

A normally distributed random variable X with the parameters µ and σ is
considered. The parameter σ, the precision of the measuring procedure, let be
known. The parameter µ, the true measurement, is to be estimated: µ = ϑ.
Let denote u1−α/2 the (1− α/2)-quantil of the standardized normal distribu-
tion, i.e.

FZ(u1−α/2) =
1√
2π

∫ u1−α/2

−∞
exp
{

−x2

2

}

dx = 1 − α/2 (4.34)

for the standardized normally distributed random variable Z (with µ = 0 and
σ = 1). (In general a quantil uβ indicates the point on the x-axis, where the
probability P (X ≤ uβ) of a continuous random variable X reaches the value β
exactly.) Then a good confidence interval to the confidence probability 1 − α
is recommended as

X̄ − u1−α/2
σ√
n
≤ ϑ ≤ X̄ + u1−α/2

σ√
n

. (4.35)

The length of this interval as the accuracy of the estimation is

l(I) = 2u1−α/2
σ√
n

(4.36)
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and depends obviously on the precision σ of the measuring procedure used and
the number n of measurements. Moreover the certainty 1 − α influences the
length via the value u1−α/2. From this situation some practically important
conclusions can be derived. The accuracy of the estimation is proportional to
the precision of a (single) measurement. The number of repeated measure-
ments effects a shortening, hence it increases the accuracy, but only by its
root. Therefore it is not worthwhile, to repeat the measuring procedure very
often, especially if this costs time or money. From a certain number on there is
no longer a remarkable increase in accuracy. Finally an increase in certainty of
the estimation by u1−α/2 effects a lengthen of the interval and hence a decrease
in accuracy. This means that there exists something like an indetermination
relation. From a given sample one can obtain either a rather accurate estima-
tion with moderate certainty or a rather rough estimation with high certainty.
By the choice of α, the risk for an error with respect to the covering up of
the true parameter, one decides on the compromise between certainty and
accuracy. Obviously, however, in a single concrete case it remains further un-
certain whether the given concrete interval covers up the true parameter, but
one has by α at least an assessment of the faced risk when using this method
in the long run.

In general the length of the confidence interval itself is at random and
such a clear presentation as above is no longer possible. The main statements
on the connection between accuracy and certainty remain but valid in this
general case.

4.2.3 Testing of Hypotheses

The second basing problem of mathematical statistics considers the case that
for a situation a probabilistic model is already found, which is assumed to be
true. The model is represented by a random variable, the distribution of which
is accurately known. By a sample it is to be decided, whether the assumption
on the truth of the model is (still) valid or whether there are founded doubts
against this assumption.

Two classical examples will be mentioned here.
A lot of low mass-produced items, for which a tolerated proportion p0 of

rejectives was agreed, is to be tested, whether this condition is fulfilled. This
is a known situation in quality control.

The number Xn of rejectives in a sample of n items chosen at random
obeys, as is well known, a binomial distribution with the expected value para-
meter np, with p as the rejective proportion of the lot. The supplier kept the
agreement, if the proportion of rejectives is not larger than p0: i.e. if p ≤ p0.
This hypothesis is confronted with the result of the inspection, the number x
of rejectives in the sample. If this result is only little probable if the hypoth-
esis is true, then this hypothesis should be rejected. In practical cases this
leads to consequences against the supplier, who is now suspected of breaking
the agreement. Because the result of the sample is influenced by chance (the
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random selection of the items), also rather inprobable results are possible,
even if the hypothesis is true. Hence an always correct decision is in principle
impossible.

For the consignee of the lot there is a risk with each of his both options: To
reject the hypothesis, although it is really true (only the result of the concrete
sample was unfavourable). This leads to problems with the supplier. To take
the hypothesis for acceptable after the sample, although it is false (there are
essentially more rejectives in the lot than agreed). This leads to a loss, when
the lot is used.

A solution of this dilemma is possible by economic considerations, in which
the two kinds of loss are specified quantitatively and weighed up, e.g. by their
expected values (see e.g. Uhlmann (1970)).

But usually only the error of first kind is considered, when the lot is
complained, although it is according to the agreement. This is felt more em-
barrassing than the error of second kind , when the lot is accepted, although
is has a higher proportion of rejectives than agreed. But this can be detected,
when the lot is used and can be considered in further business connections.

Another classical case of testing a hypothesis is the plain process control.
The characteristic value of a product is allowed to vary within a given toler-
ance interval. It is assumed that the corresponding variable obeys a normal
distribution, where the probability outside the given tolerance interval corre-
sponds to the tolerated proportion of rejectives. During the production time of
many product items the parameter of the normal distribution can change, e.g.
by running out of adjustment or by worsening of the process characteristics
determining the product quality. The given parameter values of the product
distribution above, perhaps with small surrounding intervals, form the hypoth-
esis in this case. By regular samples from the running production process it
should be decided, when the process should be stopped for a new adjustment
or a new (partial) equipment. Here the decision dilemma manifests itself in
the two possible wrong decisions:
The process is stopped, although the sample has, at random, included un-
favourable products (false alarm). The loss consists here in an (avoidable)
loss of production during the stoppage.

The process is not stopped, although it had been necessary, but the sample
was still favourable. The loss consists here in an (avoidable) higher propor-
tion of rejectives by continuing the production (overlooked running out of
tolerance).

In both the cases just mentioned as also in other cases of application
from the result of the sample a value of a test variable, as it is called, is
computed, the accurate distribution of which is known on the assumption
that the hypothsis is true. If the computed value is within a critical domain,
as it is called, then the hypothesis is rejected. A rejection or a nonrejection of
a hypothesis on the basis of a sample says nothing on its truth. The hypothesis
can be true or false in any case.
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If the rejection of a true hypothesis is considered as the more embarrassing
wrong decision, then the error probability α is specified, which should bound
from above the probability of such an event. This α determines then the extent
of the critical domain for the test variable. Its position will also be influenced
by considering alternative hypotheses, as they are called. More details see in
some textbook.

In a single case, as with confidence estimates, no statement is possible,
whether the decision on the hypothesis was right or wrong. Only when using
the test procedure in the long run, statements become possible, from a fre-
quentistic standpoint, on the frequency of wrong decisions. Hence the decision
situations above are classical examples of such situations.

Application of the test conception to more or less unique events, as it is
the case frequently in natural sciences, in economics or in medicine, does not
mean a thing with the frequentistic interpretation. On the other side, the sub-
jectivistic interpretation of probability leads to formulations, with which the
applying sciences would have some problems: “The odds are 80 : 20 that this
hypothesis is true.” At present in such situations the probability is determined
that the hypothesis is just rejected after the obtained sample, and it is called
the P-value (see e.g. Lehmann (1986)) This number should give an idea
how strongly the data contradict the hypothesis. Because the final decision
on the hypothesis (rejection or acceptance) is left to the user in considering
the computed P-values, actually nothing can be said on the risk of such a
decision. Nevertheless the problem is treated further, on certain conditions,
for various questions of interpretation and some extensions of the concept see
the literature cited in Lehmann (1986).

4.2.4 Problems with Imprecise Data

In textbooks and software documents it is assumed, as a rule, that the consid-
ered realizations are given exactly, as real or natural numbers. The case that
the realizations are given as other symbols, e.g. as characters, is classified into
this framework in that then only frequencies are included into the statistical
analysis.

By handing over to a computer the data are “precised” into computer
numbers, in which the observation impreciseness is no longer reflected (e.g. by
the number of given digits in the original data). These pseudo-exact data now
undergo the numerically formulated statistical procedures, e.g. to calculate
an estimate of a distribution parameter. Hence the results of the computation
are additionally objects of the procedure impreciseness. Because the comput-
ers give their outputs, as a rule, with a fixed number of digits (correspondingly
also in floating point calculations), the user is unable to assess the influence of
the input data “precising” and the imprecision inherent in the procedure for
making sense of the number of obtained digits. To avoid such calamity text-
books and software handbooks construct simple and clear numerical examples
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without any practical background, “all clear cases”, even if they are sometimes
practically “couched”.

In practically application it is really important to know how numerically
precise the results of a probabilistic inference turn out and how observation
imprecision and data “precising” effect to the result.

If a direct pursuit of impreciseness and an analysis of procedure imprecision
seem impossible or inappropriate, then it remains advisable to get at least an
idea on this circumstances.

A very simple possibility to do so consists in the following: the given data
are varied several times slightly within the framework of observation or mea-
surement precision, e.g. by randomly varying the last given digits within their
rounding intervals, and then each time the results of the computation are
recorded. This can be very simply managed on the computer and should be-
long already to the software standard. By a visual inspection of the so found
results one can see how many digits remain stable and the result to be used
can be rounded accordingly. Especially with confidence estimations rounding
should be effected always outwardly; e.g. an estimating interval must not get
smaller by rounding, because in covering one might keep on the safe side and
not lower the probability of covering.

In testing numerical reliability plays a role especially, if the value occurs in
the neighbourhood of the critical value. In this case the temptation is insistent
to change the error probability a posteriori to cause a “clear” situation. This
is, however, questionable, if one has adopted the frequentistic interpretation of
hypothesis testing. For the P-value approach this does no matter, because the
decision on the hypothesis is effected individually in considering this computed
value rather roughly.

If one is in the position to specify the fuzziness of each single element of
the sample, e.g. by determining a fuzzy number for each single pseudo-exact
datum, then one can assess the influence of at least this kind of uncertainty on
the test value. The extension principle of Zadeh yields then a fuzzy number
as the result of the inference (Viertl (1996)).

Let be (see (4.32)) ϑ̂ = θ̂(x1, x2, . . . , xn) the estimate for the parameter ϑ
from the concrete sample x1, x2, . . . , xn. Having specified for each component
of the sample a corresponding fuzzy number A1,A2, . . . ,An over the real axis,
then one obtains by a near at hand generalization of the extension principle
(3.33) the fuzzy set Θ with the membership function µΘ(ϑ)

µΘ(ϑ) = sup
ϑ=θ̂(x1,x2,...,xn)

min
i

µAi
(xi) , (4.37)

on the assumption that the fuzziness of the single sample components do not
influence each other, in the language of fuzzy set theory: that they are not
interactive.

Obviously, the procedure impreciseness is left out of consideration, which
can be much higher in solving the optimization problem above than in com-
puting the initial estimate.



4.3 Bayesian Theory 89

With respect to an analogous treatment of the problem of confidence region
estimation, in which a fuzzy estimating region is computed, it must be noted
that in fact the core of the region represents a confidence estimation of the
given confidence probability, but that a meaningful transition of the concept of
covering the unknown parameter value by the fuzzy region is still to be found.
For instance the question is to be answered: What about the characteristics
of the fuzzy confidence regions found by the extension principle among all
possible fuzzy estimating regions and how are the properly fuzzy parts of the
regions are to be evaluated in the sense of the frequentistic interpretation of
covering probability?

Nevertheless, this approach led already to practicable procedures even
for rather sophisticated statistical problems (see e.g. Filzmoser/Viertl

(2004)).
An idea of the influence of the observation fuzziness on the statements of

mathematical statistics is yielded by the extension principle at any rate. A
direct treatment of the fuzziness in the sample, which is useful in “very fuzzy”
data, was presented by Kruse/Meyer (1987) (see also Subsect. 5.3.1). Start-
ing from their concept of fuzzy confidence regions Grzegorzewski (2000)
constructed tests with fuzzy data.

4.3 Bayesian Theory

Probabilistic inference, as was presented in the preceding section, usually
starts at the point that for information on the parameter to be estimated
only the sample obtained is available. Previous knowledge on the situation
consists only in a reasonable assumption on the distribution type of the pop-
ulation.

There are situations, however, in which already “certain knowledge” on
the value of the unknown parameter is also available. But this knowledge
does not (yet) suffice the demands on an estimation with respect to accuracy
and certainty. These rough ideas contain but information on the unknown
parameter, the inclusion of which into the inference arouses some hope for its
improvement.

The three essential sources for such previous knowledge are theories from
the applying sciences, somehow more vague experiences, and finally data ma-
terial from investigations in the past.

Scientific theories indicate mostly that certain subdomains for the para-
meter are impossible for factual reasons, although they are not excluded by
the statistical model. Frequently these bounds can be adjusted in suitable
manner into the statistical procedure.

Available experience cannot be expressed, usually, in such a sharp form.
Therefore they are frequently formulated as probabilistic statements. They are
specified as a-priori distributions for the unknown parameter. Because these
are, as a rule, subjective determinations, the comments from Subsect. 4.1.2 on
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subjective probability are valid also here: They are rough findings, which do
not claim high numerical accuracy and factual reliability. Hence recently fuzzy
specifications of a-priori distributions are introduced and used to generalize
Bayes’ theorem (see Viertl/Hareter (2004)).

Finally in certain cases data material from investigations in the past can
be used. This can be done either by estimating an a-priori distribution of the
parameter from the conditional distribution of the (mathematical) sample
combined with the empirical distribution of the concrete sample (see Maritz

(1970) for details). Or, heuristically, by surrounding the parameter value, es-
timated from the sample, by a distribution, which reflects the estimation ac-
curacy and possible deviations from the conditions in the past. Sometimes the
old data can be introduced as additional components into the present sam-
ple, but a sound scepticism is advised, first of all, if the conditions of their
occurrence thence are only scarcely known.

The possibilities to formulate a-priori distributions form the starting point
of the Bayesian theory or statistics, as it is called, which will be the subject
of the next subsection. A rather reasonable presentation also of the problems
in application of this approach one can find in Berger (1985).

Application of Bayesian theory in practice is always connected with the
problem of interpretation. It fits into the framework of frequentistic philos-
ophy, if the parameter itself can be considered a random variable. Then the
specified a-priori distribution can be explained as a (perhaps only heuristic)
estimation of some “true” but unknown distribution with all the consequences
of uncertainty from its origin, which are bequeathed to all statements derived
from it. From another standpoint the a-priori distribution may reflect also the
present state of knowledge with respect to a fixed but unknown value of the
parameter. Then it is part of the subjectivistic philosophy and all statements
derived from it demand for an appropriate interpretation. These problems one
has to have in mind, when Bayesian theory is applied.

4.3.1 Bayesian Inference

Combining information from the a-priori distribution with that contained in
the sample on the parameter is effected, in principle, by the Bayes’ theorem
(4.5). However, in the continuous case of an a-priori density π(ϑ) and a con-
tinuous population X with the distribution density fX(x|ϑ) , the dependence
of which on the parameter ϑ is given explicitly, this formula has a more com-
plicated form. The a-posteriori density π(ϑ|x) of the unknown parameter ϑ
after the sample x = (x1, . . . , xn) looks like

π(ϑ|x) =
f(x|ϑ)π(ϑ)

∫
Θ

f(x|λ)π(λ)dλ
, (4.38)

where f(x|ϑ) =
∏n

i=1 f(xi|ϑ) is the density of the (mathematical) sample.
With the a-posteriori distribution a predicative distribution can be com-

puted, which in the continuous case is given by its predicative density
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f(x|π,x) =
∫

Θ

f(x, ϑ)π(ϑ|x)dϑ (4.39)

which unites the information on the statistical model, the a-priori density and
the sample results and could be used to predict the behaviour of the random
variable X in future.

From the a-posteriori distribution of the parameter estimating values and
estimating regions can be obtained. E.g., the expected value of this distribu-
tion is used and called a-posteriori Bayes estimate.

The confidence region I(X1, . . . ,Xn), which should cover up the true pa-
rameter with probability 1 − α, is replaced by a HPD region (highest a-
posteriori – density – region) Θ∗ = {ϑ : π(ϑ|x) ≥ k(α)}. This region is
defined as the set of all parameter values ϑ, for which the a-posteriori density
π(ϑ|x) reaches at least the value k(α) > 0. This k(α) is a constant, as large
as possible, for which simultaneously

∫

Θ∗
π(ϑ|x)dϑ = 1 − α . (4.40)

The elements of Θ∗ must have a certain minimum probability (here given
by the density value) and the whole region must have the demanded confidence
probability. Opposite to the confidence region (see (4.33)) which is assumed to
cover up the unknown true parameter value ϑ, the HPD region is interpreted
as a region, which contains the random variable Θ with probability 1 − α.

Sometimes the problem is considered within the framework of decision
theory, in which the true unknown parameter is regarded as a state of a
nature. As the nature all that is understood what the decider, the “antagonist”
of the nature, cannot influence. The estimation problem is looked at to be an
experiment of the decider to meet the true parameter value from the result
of the sample. Let be ϑ the true value and ϑ̂(x) the value estimated from the
sample; then the decider is penalized by a loss of L(ϑ, ϑ̂). Because he uses
the estimating procedure in the long run his estimates are realizations of the
estimator, a random variable θ̂(X), a function of the mathematical sample X.
In this way the loss becomes also a random variable

L(ϑ, θ̂(X)) . (4.41)

In the permanent use of the procedure the average loss is of interest, i.e.
its expected value, which is called the risk R

R(ϑ, θ̂) = EXL(ϑ, θ̂(X)) . (4.42)

The dependence of the risk on the unknown true parameter ϑ can be
removed, if one has an a-priori distribution π(ϑ). The expected value of R
with respect to this distribution is called Bayes’ risk

ρ(π, θ̂) = EπR(ϑ, θ̂) . (4.43)
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The best estimator in this sense, with respect to the loss function L and
the a-priori density π, is that, which minimizes the Bayes’ risk.

For application the most important mathematical result of this approach
is the statement that an estimate according to this best estimator can be ob-
tained, if for the concrete sample x the a-posteriori expected loss is minimized:

Eπ(ϑ,x)L(θ, ϑ̂) = min
ϑ̂

, (4.44)

where θ is here the random variable, with respect to which the expectation is
to be computed. For a square loss function (ϑ− ϑ̂)2 this is even the expected
value of the a-posteriori distribution.

The decision theory approach, here demonstrated by the example of point
estimation, can be applied to more general decision situations.

Starting from the standpoint of application of mathematics decision theory
offers the advantage that many statistical procedures can be provided with
practical evaluations, whether by financial quantification of the risk or by
assessment of the value of previous knowledge (see e.g. Ferguson (1967)).

These advantages, however, cannot be used in many cases, because besides
the specification of the a-priori distribution π first of all it is the determination
of a realistic loss function what makes the problem in practical cases. In using
of aspects from decision theory within mathematical statistics one goes back,
as a rule, to mathematically well manageable types of functions as e.g. square
loss functions as mentioned above. For multidimensional parameters, as in
regression (see Sect. 7.1), matrix-valued loss functions are rather popular. In
all these cases the loss function gives only a qualitative impression of the
consequences of possible wrong estimations and hence theoretical insight into
the behaviour of the estimations.

4.3.2 Hierarchical Inference and Robustness

The problematic exact determination of the a-priori distribution, how it is
necessary for a use of the Bayes’ theorem and the other procedures mentioned
in the preceding subsection, can be avoided: For the a-priori distribution only a
family of distributions is chosen, the parameter of which is replaced by another
family of distributions and so forth. This proceeding is called a hierarchical
Bayesian approach. Certainly, this hierarchy is stopped on a suitable level,
as a rule on the second one, because the influence of the determinations, if
they are taken meaningfully from the situation and problem environment, will
decrease with increasing level. Specifications on a higher level can be easily
led back to those on the lowest level. Let be, e.g., π1(ϑ|λ) an a-priori density
with the still free parameter λ and π2(λ) a density of second level for this λ;
then the resulting a-priori density for ϑ is obtained by

π(ϑ) =
∫

Λ

π1(ϑ|λ)π2(λ)dλ . (4.45)
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This approach can become a tentation, it leads easily to imaginations
playing away from the given problem. For Bayesians, however, this is an
important argument for a universal usefulness of their methods.

In recent times the hierarchical approach seems to have lost a lot of its
importance, since now computation methods are available to handle arbitrary
a-priori distributions. This approach, however, is not only a way to deter-
mine an a-priori distribution but also to reflect the present state of previous
knowledge.

If on the parameter too little is known to determine a plausible a-priori
distribution, then as a rule it is recommended to choose a non-informative
distribution, which prefers non of the possible parameter values. Very fre-
quently this will be a uniform distribution or, if the domain for the parameter
is infinite, an improper uniform distribution, being constant over the domain
and hence no longer a proper distribution.

In the case of multidimensional parameters the immediate determination
of an a-priori distribution is frequently very or even too complicated. If one can
assume that the parameter components, considered as random variables, are
independent of each other, then the a-priori distributions can be determined
componentwise and afterwards be multiplicated for the vector distribution.
If this is not possible or not for all components, then frequently conditional
distributions can be determined, which can be combined according to the
usual rules.

On another side the statements obtained by the Bayesian approach de-
pend very frequently only little on the type of the a-priori distribution. It suf-
fices mostly, especially on higher levels, to fix the parameters approximately.
This robustness is very pleasant for application. Robustness is defined, as gen-
erally in mathematics, as that the conclusions are not changed essentially, if
the assumptions and conditions are varied within a reasonable framework,
whether with respect to the a-priori distribution or to the loss function or,
finally, to the distribution type of the sample. Corresponding investigations of
sensitivity can be carried out, e.g., by repeating the procedures under shightly
changed conditions with respect to distribution type and parameter values.
On the other hand, by a suitable (arbitrary) choice of the a-priori distribution
and of the loss function the given sample can lead to any desired conclusion,
it may be even absurd.

Especially for linear models (see Subsect. 7.1.5) the robustness of the
Bayesian approach will be used advantageously with respect to the distrib-
ution types.

A further advantage of Bayesian methods is their usefulness in sequen-
tial procedures. Starting with an a-priori distribution a sample of small size is
realized from the population and the a-posteriori distribution is computed. If
the so obtained statements, e.g. for parameter estimation or for prediction, do
not suffice with respect to accuracy and certainty, then the a-posteriori distri-
bution is declared to be the new a-priori distribution and a further sample of
small size is realized and the procedure is repeated. The sample size depends
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on the given situation, e.g. on the costs and possibilities of a short-term re-
alization, and can even mean only one realization of the population in each
step. Therefore the sequential Bayesian procedures are so popular in learning
theory and a standard in probabilistic neural networks (see Subsect. 6.1.5).

For a simple implementation of such sequential procedures it is sometimes
recommended to choose a type for the a-priori distribution, which is conju-
gate to the distribution of the sample, the parameter of which are suitably
adapted. Let be F (x|ϑ) the distribution of the sample, then the family of a-
priori distributions π(ϑ;λ) is a conjugate family to F (x|ϑ), if the a-posteriori
distribution π(ϑ|λ) belongs again to this family. If π(ϑ|λ0) was chosen as the
a-priori distribution, then there exists a λ1 for the a-posteriori distribution
of the same type. In this way in the next step of the sequential procedure
one has the same starting situation, only with another value for λ. However,
sequential procedures, e.g. in Bayesian learning theory, are not restricted to
the concept of conjugate distributions.

4.3.3 Numerical Problems

As already mentioned in Sect. 4.1 a-priori distributions are not very precise,
i.e. a high precision in computing a-posteriori distributions and of conclusions
derived from them does not make sense. This is especially important, if the
determination of an a-posteriori distribution can be obtained only numeri-
cally. The integrals occurring in Bayes’ theorem, particularly if they have
multidimensional domains, can be computed frequently only approximately
by Monte-Carlo simulation. Here a few essential digits may suffice, what can
reduce the efforts essentially and keep the real impreciseness transparent.

Sometimes the assumption is introduced that the distribution of the sam-
ple and of the a-priori distribution are independent of each other, because this
simplifies their joint handling. Strictly speaking, this is nearly never fulfilled,
because by the choice of the model and the consideration of the data for this
purpose it is just defined what should be meant by the parameter ϑ. Moreover,
by a preceding data analysis imaginations are inspired on the possible values
of ϑ. Such assumptions on independence are valid at most approximately and
hence to be considered in this manner.

A further problem in using the Bayesian approach is the subjectivity
in specifying the a-priori distribution (and perhaps the loss function). One
sees easily, however, that also the choice of the model is a subjective decision,
even if it is sometimes, seemingly objectively, left to an automatic procedure
from the software. But already the possibilities implemented are a result of a
subjective decision (by the software producer). Finally it should be pointed
out that already in defining “randomness” (see Subsect. 4.1.1) it was stated
that by the choice of the essential experimental conditions it was decided
(subjectively) what should be considered as the effect of chance in the given
case.
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Closing this subsection the question will be examined what should be done
if between the imagination on the position of ϑ, given by the a-priori distri-
bution, and the results x of the sample obtained, there are discrepances or
perhaps even contradictions. A first hint is always to confront conclusions
derived from the a-posteriori distribution, e.g. the presented estimate, with
the corresponding conclusions, which come only from the sample. Naturally,
differences between corresponding conclusions are based by the a-priori infor-
mation used additionally. If the discrepances are rather large, then one should
trust more in the result of a sample of not too small size than in the a-priori
distribution. At least, obvious contradictions are an important reason to check
the specification of the a-priori distribution as well as the data quality (see
Subsect. 4.2.1) of the sample.



5

Specification of Vagueness
of Statements on Sets

In contrast to the preceding chapters, where the existence of extensive software
tools could be assumed, now some approaches for mathematical treatment of
certain kinds of uncertainty are presented, for which this is not the case, at
least not in the same extent. Hence the presentation is restricted here to the
explanation of ideas and trains of thoughts in order to inform, what could be
managed by such a software for practical problems, when the tools will be
developed in the course of time.

5.1 Fuzzy Measures

5.1.1 The Idea of a Fuzzy Measure

A function assigning a value to every single set of a certain kind is called a set
function or a measure. This is clear, if one considers the length of a distance
or the weight of a bag of flour: it is measured. However, not only material
measurements will make sense.

So, purely theoretically, a certain element x0 of the universe U could be
also described uniquely by specifying for every single possible subset of the
universe, whether the element x0 is contained in it or not. The set of all
subsets of U is called its power set IP (U), and the just specified mathematical
object would be the localization measure gx0 , which assigns to every single set
A ∈ IP (U) the value 1, if x0 ∈ A, and 0, if this is not the case. This proceeding
takes for granted that one does exactly know, where x0 is located, and hence
it is practically senseless. The approach becomes meaningful again in the
moment, when the element x0 of interest can be located not yet exactly, e.g.
the cause of a disease, the culprit of a crime, or the affilation of a discovered
fossil to a species. This gives cause for a fuzzy description of this element, not
by a fuzzy set in U , but by specifying a corresponding degree of assignment
for every one of the crisp sets of IP (U). In this way one obtains the fuzzy
measure g. For the function

H. Bandemer: Mathematics of Uncertainty, StudFuzz 189, 97–111 (2005)
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g : IP (U) → [0, 1] (5.1)

it makes sense, obviously, to demand that

g(∅) = 0 und g(U) = 1 (5.2)

and moreover

A ⊆ B ⇒ g(A) ≤ g(B) , (5.3)

i.e. that the degree of assignment can not decrease, if the set is enlarged. Or,
with other words, if A ⊆ B, then the statement “x ∈ A” is less certain than
the statement “x ∈ B”.

For finite universes these properties suffice already to develop a useful
theory and application of such fuzzy measures. For infinite universes continuity
with respect to set inclusion is required, i.e. if a series of sets growing in extent
and lying each within the following one tends towards a limiting set, then the
series of the corresponding values of the fuzzy measure converges to the value
of the measure of this limiting set.

In Subsect. 4.1.1 is was mentioned that random events can be represented
by corresponding sets. So, a probability measures the chance that a random
variable realizes an event that corresponds to the set A, or, with other words,
that the realization lies within A. Hence probability distributions yield special
measures. Typical for such a probability measure is its additivity as expressed
in formula (4.2):

A ∩ B = ∅ ⇒ P (A ∪ B) = P (A) + P (B) . (5.4)

This is, by the way, a property, which probability shares with all measures
of mass and length. Because monotonicity follows directly from additivity,
probability measures are special fuzzy measures.

With respect to probability, it can be interpreted also as a statement on
the position of a not yet localized element of a set of possible elements (the
universe U) for every possible set of the power set IP (U). (Probability is
usually introduced only for a subset of IP (U), a sigma-algebra IB, however,
this does not play any role for the present argumentation.)

Statements on the possible position of a not yet localized element in all
possible sets on the condition of uncertainty form the subject of this chapter.
Variability in the sense of the frequentistic interpretation of probability is,
as is known, only one kind of uncertainty. In contrast with fuzzy sets, by
which statements are expressed on a given case (description of uncertainty),
by fuzzy measures statements are expressed on cases not yet occurred using
fuzzy knowledge on the given situation. Hence probability measures can be
considered as particular cases of fuzzy measures.
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5.1.2 Forms and Properties of Fuzzy Measures

Already in Sect. 4.1 arguments were considered, which question the only use
of probability for a description of uncertainty. Especially for a description of
the individual state of knowledge on a given situation additivity is sometimes
rather restrictive. Two events can, with respect to their possibility, seem to be
quite equal, whereas their real probabities can differ to some extent. Another
situation is met in the diagnosis e.g. of diseases: nobody can be sure that
the list of possible diseases is complete and that the items on the list are all
disjoint.

From monoticity as demanded by (5.3) it follows immediately that

g(A ∪ B) ≥ max{g(A), g(B)} (5.5)

and

g(A ∩ B) ≤ min{g(A), g(B)} . (5.6)

The limiting case in (5.5) was used by Zadeh (1978) for defining the
possibility measure Poss:

Poss (A ∪ B) = max{Poss (A),Poss (B)} . (5.7)

It should denote the degree of possibility that an element of interest not
yet located is situated within the set forming the argument.

If the universe U is finite, then every possibility measure Poss can be
defined by its values assumed on the single elements x ∈ U :

Poss (A) = max
x∈A

π(x) , (5.8)

where

π(x) = Poss ({x}) (5.9)

is the possibility degree of the element x. Then the function π(x) is called a
possibility distribution. Because of the reasonable condition Poss (U) = 1
the function π(x) is normalized, i.e. there is at least one element with pos-
sibility degree 1. Hence the possibility distribution π(x) has the property of
a normalized membership function and can be explained as the membership
function µB(x) of a fuzzy set B, more precisely, as the degree of possibility
that a variable v assumes the value x ∈ U . The fuzzy set B is often called
the inducing set and carried with when specifying possible degrees of some
variable:

Poss ({x}) = Poss (v = x|B) ; Poss (A) = Poss (v = A|B) . (5.10)

So, one could ask for the degree of possibility that a good student (element
of the fuzzy set B) will achieve an only sufficient result in a certain exam, i.e.
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that he belongs to the crisp set A of those students, for which that exam is
marked “sufficient”.

If U is infinite, then such a possibility distribution need not exist. However,
this existence is guaranteed, if the condition (5.7) is extended to infinite unions
of sets. In practical application the existence can be always assumed and in
(5.8) max can be replaced by sup. However, in case of infinite universes U
possibility measures need not satisfy the condition of continuity, as mentioned
in the preceding subsection, and hence then they are no longer fuzzy measures
in the sense given above (see Puri/Ralescu (1982) for details).

The other limiting case, in (5.6), leads to necessity measures Nec, as they
are called, which hence satisfy the condition

Nec (A ∩ B) = min{Nec (A),Nec (B)} . (5.11)

The necessity measure indicates the degree that a non-located element of U
is situated necessarily within the set forming the argument. This interpretation
becomes clear when one considers that (5.11) is eqivalent to

Nec (A) = 1 − Poss (Ac) . (5.12)

this reflects, at least for the function values 0 and 1 of unique membership,
the intuitively clear idea that an event A must be necessary if its contrary Ac

is impossible.
Naturally, via (5.12) and (5.9), also a necessity measure can be constructed

by a given possibility distribution.
Since all considered argument sets here are crisp sets, it holds A∪Ac = U

und A∩Ac = ∅. For such sets one obtains some interesting properties of these
fuzzy measures, which motivate their naming:

Nec (A) ≤ Poss (A) , (5.13)

because what is necessary must be even possible. Moreover, one has

Nec (A) > 0 ⇒ Poss (A) = 1 ; (5.14)

which means: what is necessary to any degree, as small as it may be, that is
absolutely possible, without any restriction; and, in the other direction

Poss (A) < 1 ⇒ Nec (A) = 0 , (5.15)

what is not absolutely possible that cannot be necessary at all.
Obviously, these two measures are rather extreme in their properties. How

they can be used nevertheless, especially in their interplay with fuzzy sets,
can be found in some detail in Dubois/Prade (1988).

Frequently the problem is merely to weaken somewhat the likewise hard
condition for additivity of probability.
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A very interesting suggestion is due to Sugeno (1974). For disjoint sets
(A ∩ B = ∅) he suggests to replace formula (5.4) by the following connection
formula

Qλ(A ∪ B) = min{Qλ(A) + Qλ(B) + λQλ(A)Qλ(B), 1} (5.16)

which turns into (5.4) for λ = 0 in (5.4). In this way, by Q0 probability is
contained in the set of these λ-measures, as they are called. The conditions,
put on a fuzzy measure, are fulfilled by these measures for all λ > −1. Further
corresponding formulae for application can be obtained from the definition of
fuzzy measures and the connection formula above. So one has for the comple-
mentary set

Qλ(Ac) =
1 − Qλ(A)
1 + λQλ(A)

(5.17)

and for the union of arbitrary sets:

Qλ(A ∪ B) (5.18)

= min






(
Qλ(A) + Qλ(B) − Qλ(A ∩ B) + λQλ(A)Qλ(B)

)

(
1 + λQλ(A ∩ B)

) , 1





.

The application one can imagine in the following manner: Certain impor-
tant pairs of sets from the situation are considered and the measure values
of the pairwise unions of these sets are specified using the measure values of
the single sets according to the ideas of the applying scientist. Then a λ is
computed, which approximately corresponds to these specified measure val-
ues. In this way, one obtains an impression, how strong the ideas of connection
deviate, in the given case, from those for probability.

For the special case that the universe U is the real axis X, Qλ can be
defined by a function h, which shows the properties of a continuous distribu-
tion function of a random variable, i.e. being continuous monotonuosly non-
decreasing with limits 0 and 1 (see Sugeno (1977)). Then for all intervals
[a, b] one has

Qλ

(
[a, b]

)
=

h(b) − h(a)
1 + λh(a)

. (5.19)

5.2 Simple Inference with Fuzzy Measures

The most problematic but also most important task for the use of fuzzy mea-
sures with respect to inference is the specification of such measures, i.e. the
determination of their values for different interesting sets. In the first subsec-
tion an approach to fuzzy measures is presented, which uses the vocabulary
of probability theory to model the state of knowledge of some individual on
a situation.
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5.2.1 Specification of Partial Ignorance

As is known, a probability measure is given, if the probabilities are known
for all possible events of a given field of events IA. Naturally, these probabil-
ities can be computed from those ones for all elementary events. Often, in
practical cases, however, probabilities can be specified meaningfully only for
certain events of the field IA, because there is no more known yet on the basing
practical problem. In some cases from this knowledge the yet lacking proba-
bility values can be computed according to the rules of probability theory, in
other cases the given information does not suffice for this purpose. Possibly
the first reference to such a problem can be found already in Boole (1854),
who considered the case that for two events A,B only the probability values

P (A) = p and P (A ∩ B) = q (5.20)

are given. From these values for P (B) only bounds

q ≤ P (B) ≤ q + 1 − p (5.21)

can be concluded and hence no unique determination of this probability is
possible.

This deficiency reflects the insufficient state of knowledge in this case: the
partial ignorance, as it is called.

For finite universes U Shafer (1976) presented an interesting concept, by
which fuzzy measures can be constructed from such an insufficient state of
knowledge. The total weight 1 is spread out over the power set IP (U) of the
universe

p|IP (U) → [0, 1] with
∑

B∈IP (U)

p(B) = 1 (5.22)

(and not, as with probability, over the elements of U). Naturally in this distri-
bution the empty set should obtain the weight 0. The set function p is called
basic probability assignment. The sets with positive weights (p(A) > 0) are
the focal sets of p. The set of all focal sets, so to speak the support of p, will
be denoted by supp p. The pair (supp p, p) was called a representation of
a body of evidence by Shafer (1976). The weight p(A) can be interpreted
in different manner. It can be understood as a remainder of the probability
P (A), which – at the given state of knowledge – cannot be distributed further
to subevents of A. On the other hand the value p(A) is frequently considered
as the relative level of confidence in A as a representation of the available
information. It represents the “probability” that this information is described
correctly and completely by x ∈ A.

The focal sets need not be neither disjoint, nor form a covering of U .
Even U can be a focal set. Then p(U) means that portion of confidence,
which is owed to ignorance. Hence total ignorance is expressed by p(U) = 1.
(Here it becomes clear, why one should question the advice to assume an
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equal distribution in the case of total ignorance with respect to a probability
distribution.)

This interpretation of p rests on the assumption that the focal set A de-
scribes all possible positions, which the value of a certain variable can assume,
e.g. A can be a fuzzy observation or measurement, perhaps recorded only ver-
bally. In this context the information is called disjunctive, in such a sense
that the actual value of the variable is unique. Hence the focal sets represent
mutually excluding possible values of the variable.

The focal sets and their evidence weights p are specified, as a rule, subjec-
tively; the approach was created even for this purpose. So it may easily happen
that different experts specify differing bodies of evidence in the same situation.
By Dempster (1967) (see also Dubois/Prade (1988)) a rule was suggested,
by which discrepancies between different assignments can be reconciled to a
certain degree.

For presenting the rule an intermediate step seems useful. Let denote by p1

and p2 the respective probability assignments of two experts. For all A ∈ IP (U)
the formal product

(p1 · p2)(A) =
∑

B∩C=A

p1(B) · p2(C) (5.23)

is considered. The basic probability assignments for this product assume again
values in [0, 1], but the sum over all A ∈ IP (U) can be less than 1. The
probability assignment to the empty set can be positive:

(p1 · p2)(∅) > 0 . (5.24)

This reflects the conflict between the two assignments p1 and p2. If the case
of total conflict (p1 ·p2)(∅) = 1 is excluded, which seems to be reasonable, then
by renormalizing (p1 · p2) a conflict reconciling basic probability assignment
for all A �= ∅ can be generated, which will be denoted by (p1 ∩ p2):

(p1 ∩ p2)(A) =
(p1 · p2)(A)

1 − (p1 · p2)(∅)
. (5.25)

This is the announced Dempster rule. The application of this rule will be
somewhat problematic, if the conflict is very hard, the assignment by the prod-
uct to the empty set reaches a remarkable value. Then the rule may be even
instable, inasmuch as slight changes in the assignments of the single experts
cause considerable changes of the assignment according to this rule. In such
a case one should interpret the result as a signal to reconsider the situation
and the experts again carefully.

In general, the probabilities of the events, (P (A)), themselves remain un-
specified by a basic probability assignment p. It is only known that the prob-
ability P (A) lies within an interval [P∗(A), P ∗(A)], where

P∗(A) =
∑

B⊆A

p(B) , (5.26)
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P ∗(A) =
∑

A∩B �=∅
p(B) . (5.27)

So, the value P∗(A) is computed by considering all focal sets B, which
make the event A a necessary one (i.e. as a consequence), whereas for P ∗(A)
all focal sets are taken into account, which make the event a possible one.

Moreover, there exists a duality relation between the values

P ∗(A) = 1 − P∗(Ac) . (5.28)

However, P ∗ and P∗, in general, are no longer possibility and necessity
measures, respectively. This is only then valid, if the focal sets are nested,
this case is then called the consonant case. More precisely, if for the focal sets
it holds

A1 ⊂ A2 ⊂ · · · ⊂ As , (5.29)

then the corresponding possibility distribution is defined by

π(x) = P ∗({x}) =
{∑s

j=i p(Aj) , if x ∈ Ai; x �∈ Ai−1 ,

0 , if x ∈ U\As .
(5.30)

If, on the other hand, all focal sets are elementary events (respectively
atoms) and hence disjoint, that is the dissonant case, then it holds obviously
for all A of the power set

P∗(A) = P (A) = P ∗(A) . (5.31)

When the state of knowledge is expressed by a body of evidence it becomes
clear that probability measures address precise but differentiated items of
information, whereas possibility measures reflect imprecise but coherent items.
So, possibility measures are useful for subjective uncertainty: one expects from
an informant no very precise data, however, one expects the greatest possible
coherence among his statements. On the other hand, precise, but variable data
are usually the result of carefully observing physical phenomena.

As a rule, the state of knowledge is neither precise nor totally coherent,
i.e. P ∗ and P∗ are neither probabilities nor possibility or necessity degrees,
respectively. Hence Shafer (1976) called the measure P∗, defined by (5.26)
for finite universes U , in the general case, the of Adegree of credibility (or of
belief)

Cr (A) =
∑

B⊆A

p(B) . (5.32)

It represents the weight of evidence, the degree of confidence, concentrated
on A, i.e. on events, which have the occurrence of A as a consequence. De-
ducing from this measure, Shafer defined by
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Pl (A) = 1 − Cr (Ac) =
∑

A∩B �=∅
p(B) (5.33)

the degree of plausibility, the degree of “understanding”, which obviously
conincides with P ∗ according to (5.27). It represents the weight of evidence
concentrated on events, which make the occurrence of A a possible event.

Interpreting Cr (Ac) as the degree, with which the affiliation of a non-
located element to A is doubted, then Pl (A) is the degree, to which this
is undoubted, thus taken for understandable or plausible. Naturally, it holds
always

Pl (A) ≥ Cr (A) . (5.34)

With respect to further properties and examples of application see Ban-

demer/Gottwald (1995) and the literature cited there, first of all Smets

(1981).

5.2.2 Possibilistic Inference

Whereas in modelling partial ignorance probability measures constituted the
starting point of specification and inference, possibilistic inference uses only
properties of possibility.

A possibilistic variable is defined in analogy to the notion of a random
variable (see Subsect. 4.1.3). It is given by a domain W ⊆ U and a possibility
distribution π(x) for x ∈ W according to (5.9). As a realization of such a
possibilistic variable provisionally a concrete (crisp) element x0 of the domain
W will be regarded.

A possible idea of the model can be obtained by considering the elements
of the domain as individuals, which have partly equal and partly possibly
different degrees of possibility of a breakthrough, and that at a certain time
the breakthrough of such an individual occurs and is observed. In contrast to
probabilistic modelling one does not consider here an actual infinite period of
time, in which all the individuals experience their breakthroughs with each
different frequencies.

In contrast to Subsect. 3.2.2 the observed data themselves are specified
here not as fuzzy sets, but the specification of uncertainty and fuzziness is
effected by the modelling of the data genesis, i.e. of their uncertain emergence,
or, as one often used to say, of their environment.

In practical application this happens, e.g., in taking the given pseudo-exact
data, or, if the observation results are given as fuzzy sets, e.g., in restricting the
single fuzzy data (provisionally) to their respective (one-dimensional) cores.

In analogy to the sample in probabilistic inference the observation vector
x0 = (x10, . . . , xn0) is assumed to be a realization of a vector of possibilistic
variables X = (X1, . . . ,Xn). The condition of independence of the components
of the random sample vector is replaced by the condition that the components
should be minimum-related: Let be πi(xi) the possibility distribution of the
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i-th component, then the possibility distribution of the observation vector
should be given by

πX = min{π1(x1), . . . , πn(xn)} . (5.35)

In analogy to probabilistic inference it is now assumed that the type of
the possibility distribution is known up to a (possibly multidimensional) pa-
rameter c, which should be estimated using the given observation results. Let
denote π(x; c) the given type of the possibility distribution (the setup) and c
the unknown parameter, then every estimation C∗ is again a possibilistic vari-
able, which depends on the possibilistic distribution of the observation vector.
According to the equivalence of a possibility distribution with the member-
ship function of its inducing fuzzy set (see in (5.10)), the connection rules
for fuzzy sets can be used also for possibility distributions. For every possible
parameter value c one obtains in such manner via the extension principle and
with respect to this value the conditional possibility distribution induced by
the observation vector and using the supposed minimum-relatedness

πc∗|c(t) = sup
c∗(x1,...,xn)=t

min{π(x10, c), . . . , π(xn0, c)} . (5.36)

From here a plausible estimating value c∗1 for c can be computed, which
reaches the highest degree of possibility according to this distribution:

c∗1 = arg max
c

min{π(x10, c), . . . , π(xn0, c)} . (5.37)

This estimation is called maximum possibility estimation and corresponds
to the maximum likelihood estimation of probabilistic inference (see some
textbook on mathematical statistics with respect to this estimation).

However, one is not forced to use even this estimation, which is very sen-
sitive to outliers. It can happen that the minimum in (5.37) vanishes for all
possible c, because the “spread” of the observation values is too large and
always a π(xi0, c) exists, which equals to zero for even this c. Hence also other
estimations can be considered, which are more robust against outliers, e.g.

c∗2 = arg max
c

1
n

n∑

i=1

π(xi0, c) , (5.38)

c∗3 = arg max
c

max{π(x10, c), . . . , π(xn0, c)} . (5.39)

As the estimating procedures of probabilistic inference also the estimat-
ing procedures of possibilistic inference can be assessed with respect to their
properties within the framework of a decision theory. Remarks to this topic
can be found e.g. in Bandemer/Näther (1992), especially in Chap. 7 there.

A generalization of possibilistic inference to fuzzy observations (A1, . . . ,An)
is now simply possible by another application of the extension principle to the
formulae (5.37–5.39) for the crisp case.
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A further generalization to the evaluation of functional relationships, in
which the multidimensional parameter c to be estimated means, e.g., the co-
efficients of the functional relationship, is possible in simple manner, although
perhaps with much higher computational efforts.

The here presented approach, however, is absolutely different from that
one in data analysis, treated in Subsect. 7.2.2, in which there is no modelling
of the environment, but only the fuzziness of the observation results is trans-
ferred into the parameter domain of the relationship. A comparison of these
approaches, possibilistic inference and explorative evaluation, must take into
account the basically difference in the conditions put and the assumptions
used, and is, in general, of no use.

Finally, the important role of subjective specifications in handling fuzzy
measures should kept always in mind, when using such means to solve prac-
tical problems. Hence numerical preciseness does not make sense and the
concluded statements should undergo reasonable control by the scientists in-
volved. Nevertheless, fuzzy measures offer powerful means, when the state of
knowledge is rather weak.

5.3 Probability and Fuzziness

In the preceding section fuzzy measures are introduced for crisp sets and
should express the degree of possibility, of necessity, of probability, of credi-
bility or of plausibility, respectively, that a non-located element is situated or
will be situated within a crisp argument set. In practical application, however,
such sets can be specified only fuzzily, e.g. the set of potential customers for a
newly introduced product, the set of locations belonging to a special climatic
region, the set of symptoms characterizing a special disease, or the set of worn
out components due for replacement. The fuzzy measures mentioned above
can now be generalized to this case, i.e., mathematically speaking, they can
be defined over the set IF (U), the set of all fuzzy sets over the universe U .

So, for a possibility measure, for which a possibility distribution π(x) ex-
ists, the defining formula (5.9) can be written in another form using the char-
acteristic function χA(x) = 1 for all x ∈ A and χA(x) = 0 for x �∈ A

Poss (A) = sup
x∈A

π(x) = sup
x∈U

min{π(x), χA(x)} . (5.40)

If the characteristic function in this formula is replaced by the membership
function of the now fuzzy set A, i.e.

Poss (A) = sup
x∈U

min{π(x), µA(x)} (5.41)

then the desired generalization is obtained.
With respect to a generalization of credibility and plausibility measures it

is referred , e.g., to Bandemer/Gottwald (1995).
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Because of its importance for application, however, the generalization of
probability measures to fuzzy arguments is considered in some detail in the
following.

5.3.1 Probability of Fuzzy Events

In a certain analogy to the proceeding with the degree of possibility a contin-
uous probability measure is considered, the distribution of which is based by
a density f(x). Then the probability of a crisp event can be represented by
an integral

P (A) =
∫

A

f(x)dx =
∫

U

χA(x)f(x)dx , (5.42)

from which, replacing the characteristic function by the membership function,
immediately the probability of a fuzzy event A is obtained

P (A) =
∫

U

µA(x)f(x)dx . (5.43)

The analogous construction for discrete probabilities is obvious.
This representation was the starting point taken by Zadeh (1968) for

defining probabilities for fuzzy sets. The concept proved workable in many
applications, although the usual interpretation of probability as the measure of
chance for the event that the next realization will fall into the crisp set A rises
considerable difficulties in comprehension: the position of a crisp singleton,
the realization, within the fuzzy set A would be possible, according to the
principle of inclusion for fuzzy sets, only within the core A1 of A. Here an
interpretation of P (A) according to (5.43) may help as the expected value of
the membership function µ(X), (comp. (4.16))

P (A) = EP µA(X) , (5.44)

where the index P should point to the distribution, with respect to which the
expected value is to be computed; in the example above this would mean the
density f(x).

In this manner the statistical interpretation of this probability becomes
possible. Let be x1, x2, . . . , xn independent realizations of a random variable
X with the distribution P and Xi the components of the corresponding (math-
ematical) sample, then on certain little restrictive conditions, one obtains
statements like those known from the laws of large numbers in probability
theory, (see Subsect. 4.1.4), e.g.

P (A) = lim
n→∞

1
n

n∑

i=1

µA(Xi) . (5.45)
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For a fuzzy set probability can be interpreted as the mean membership degree
of the elements of a sample of infinite size from the population according to
the probability distributions P .

This probability measure shows some known properties as monotonicity
(A ⊆ B ⇒ P (A) ≤ P (B)) and the formula of generalized addition

P (A ∪ B) = P (A) + P (B) − P (A ∩ B) . (5.46)

A transfer of the notion of independence of two fuzzy events is not possible,
as long as intersection is defined by the minimum of the corresponding mem-
bership values. If, however, the algebraic product is chosen for this purpose
(and correspondingly the algebraic sum for the union) (see (3.30) and (3.31),
respectively), then the usual form is yielded

A,B independent ⇐⇒ P (A · B) = P (A) · P (B) (5.47)

and hence even an approach is opened to define conditional probabilities and
connections in the sense of Bayesian theory.

The introduction of fuzzy sets as arguments of probability takes into ac-
count the observation fuzziness, frequently met in practice, and allows even to
endow linguistic variables with probabilities and to treat them with methods
of mathematical statistics.

Another approach to include observational fuzziness was chosen by Kruse/

Meyer (1987). As a starting point they consider the case that the realiza-
tions of a really crisp random variable Y can be observed only fuzzily. Such an
observation is defined as a realization of a fuzzy coarsening, a fuzzy random
variable Z, from which the characteristic values of the original Y are to be
inferred. For this purpose by IY the set of all possible originals Y is introduced
and the fuzzy random variable Z is assumed given. The set of all originals,
which can belong to this Z is a fuzzy set over IY . If the set of possible originals
can be parametrized, e.g. by assuming a certain type of distributions, then
fuzziness can be transferred to obtain a fuzzy set over the parameter domain.
By an extension principle all formulae used in probability theory can then
be fuzzified. This is effected best, as assumed usually, if the realizations are
fuzzy numbers or intervals. The already mentioned (see Subsect. 4.2.4) prob-
abilistic inference from fuzzy data in the sense of Viertl (1996) belongs to
this environment. For further details of the Kruse-approach it is referred to
Kruse/Meyer (1987).

Up to now probability was considered for fuzzy sets. However, even proba-
bility can become a fuzzy set, e.g. when stating “the reliability is high”, which
can be expressed equivalently by “the probability of a failure in a time interval
of given length is “small”.

For the sake of simplicity a universe consisting of finite many (N) ele-
ments is considered. Then as the probability a vector P of single probabilities
Pi(xi) for the elementary probabilities xi ∈ U is to be specified. Even if these
probabilities are fuzzy, the probability for the certain event, that any element
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xi ∈ U occurs as an event at all (which corresponds to the universe U itself)
must be exact, hence must be crisply equal to 1:

N∑

i=1

Pi(xi) = 1 . (5.48)

When computing fuzzy probabilities of events A, which are not elementary
events, according to the extension principle this side condition must be taken
into account.

The problem becomes essentially more complicated, if the universe is a
continuous set, e.g. an interval. Hence with respect to this case it is referred
to the book by Dubois/Prade (1980) and to the literature cited in it.

In the considerations on fuzzy probability, up to now, the random events
themselves are assumed as crisp sets. In some cases, however, it seems to be
scarcely comprehensible that fuzzy events are evaluated by crisp probabili-
ties. So, in investigating the ageing process of components one could obtain
the statement that the probability of the random event “the component is
worn out” equals precisely 0.84. Such an exact statement could be felt a
rather artificial one, whereas the statement “the probability is high” would
be understood as an appropriate one with respect to the fuzziness of the spec-
ification of the whole problem. There ar several suggestions on how to come to
reasonable fuzzy probabilities for fuzzy events. Their explicit treatment would
be beyond the scope of the present book and its mathematical level. Hence it
may suffice to mention the respective basic ideas and to refer to the literature.

Naturally, in turning to fuzzy argument sets starting from fuzzy probability
one can choose the way via an extension principle, taking into account the
side condition (5.48) mentioned above. This leads, already in the case of more
than two elementary events, to the necessity of solving optimization problems
(Dubois/Prade (1980)).

Another way was taken by Yager (1984). He considered the α-cuts of the
fuzzy argument sets A. Then the fuzzy probability is introduced as fuzzy set
over the crisp probabilities P (Aα) as

P(A) : µP (A)(P (Aα)) = α . (5.49)

Yager remarks that this can be interpreted as “probability of an at least
to the degree α existing satisfaction of the condition A”. The so defined proba-
bility is denoted by P∗(A). With P∗(A) = (P∗(Ac))c

Yager obtained finally
in his cited paper by

P(A) = P∗(A) ∩ P∗(A) (5.50)

the desired probability. With respect to the properties of this fuzzy probability
see Yager (1984).
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5.3.2 Random Fuzzy Sets

Finally, one can consider situations, where the fuzzy sets themselves are even
random objects, e.g. random grey-tone pictures, and hence values of random
fuzzy sets, as they are called. For an evaluation of the randomly influenced
degree Z of components of being worn out one can agree on, e.g., several
values of a linguistic variable u over a scale [0, 100]: A1 = badly worn out;
A2 = rather worn out; · · · Am = useful. Let the probabilities be known

P (u = Ai) = pi, i = 1, . . . ,m . (5.51)

Such problems for discrete (with respect to the finite number of possible
values for Z) random fuzzy sets are treated by Nahmias (1979). So, the aver-
age degree of being worn out is defined as expected value E Z, in explaining

the usual weighted sum
m∑

i=1

piAi as sum of fuzzy numbers and computing it

according to an extension principle.
In the approach due to Puri/Ralescu (1986) the concept of random sets

on Euclidian spaces (see for this topic e.g. Matheron (1975), Stoyan/Ken-

dall/Mecke (1995)) is fuzzified. For application of this it is interesting that
the interpretation of fuzzy data as realizations of random fuzzy sets in the
sense of Puri/Ralescu (1986) offers possibilities to transfer methods of
mathematical morphology (see Serra (1982)), as used for crisp sets in image
processing, to fuzzy sets, i.e. grey-tone pictures. With respect to erosion and
dilation of grey-tone pictures with fuzzy structure elements see Goetcherian

(1980) and Bandemer/Kraut/Näther (1989). Worth mentioning in this
context is the fact that the membership function of a non-random set can be
interpreted as the projection shadow, as it is called, of a random crisp set (see,
e.g., Wang/Sanchez (1982)). More precisely formulated, this means that the
membership degree µA(x) can be considered as the probability that a corre-
sponding random set S covers the point x (one-point-coverage probability):

µA(x) = P (x ∈ S) = EµS(x) . (5.52)

On the other side every random set S is connected with a certain fuzzy set
A (see for details e.g. Goodman/Nguyen (1985)). Recently these math-
ematical objects are subsumed to fuzzy set-valued random variables (see
Li/Ogura/Kreinovich (2002) with respect to the state of art). This con-
nection between fuzzy and random sets can sometimes be used in situations, in
which several kinds of uncertainty are latent and further information gathering
would require different experimental expenditure of time, money, equipment,
and activated specialized knowledge. Examples of such situations are provided
by cases, where really crisp random variables can or will be observed only
fuzzily, e.g. because more complicated experiments would exceed the given
resources (see for further considerations of such topics Bandemer/Näther

(1992)).



6

Methods from Qualitative Data Analysis

The adjective “qualitative” should point to the character of the statements,
which are required in this branch of data analysis. The ultimate aim are not
numerical results, but a grouping of data according to qualitative criteria of
rather different kind. The character of the data themselves (see Subsect. 2.1.1)
is unimportant first, although also here the usual starting point are numerical
or binary data.

The main aim is a partition of the given data set into subsets (cluster analy-
sis) and the development of procedures to classify further data (classification,
discriminance analysis). Every statistical software tool contains procedures to
solve these problems, however, only seldom the mathematical background of
them is illuminated and the choice of the offered methods is founded.

In this chapter not only hints are given for an assessment of results of
cluster analysis, but also some new ideas are presented to get such procedures
more flexible and bind them nearer to the context of the given situation.

6.1 Crisp Classification of Crisp Data

6.1.1 The Problem of Cluster Analysis

The problem occurs, as a rule, in preparation of tasks of diagnosis and therapy,
of decision making and control.

A given set O = {o1, . . . , oN} of distinguishable objects or situations
should be partitioned into subsets, into clusters, as they are called, in such
a manner that the objects within such a subset are very similar (as much as
possible) and that objects from different subsets are only little similar to each
other (as less as possible). This possibility for a cognition of “similarity” is
used e.g. in biology to form new species, in medicine for diagnosis and therapy,
in technology to detect causes, in general to discover causal relationships.

The fuzzy formulation (“as possible”) will later invite for a treatment by
methods of the theory of fuzzy sets. In this section, however, the treatment
should be effected on the basis of “classical” methods.

H. Bandemer: Mathematics of Uncertainty, StudFuzz 189, 113–140 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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The proceeding in partition the given object set into clusters must be, as a
rule, highly context depending and heuristic. It includes usually the following
three stages (see e.g. Anderberg (1973), Hartigan (1975), Bezdek (1981)):

(a) The specification of those features, which are assumed to be essential:
feature selection.

(b) The choice of rules for aggregation and transformation of the different
feature shapes observed on the objects and the representation of them as a set
of comprehensible mathematical objects (points, functions, graphs, standard
forms, etc.) and of rules for decisions on allocation of certain objects to certain
subsets: cluster analysis.

(c) The confrontation of the result of cluster analysis with the given prac-
tical problem for a decision, whether the obtained and suggested partition
does make sense in the given situation: cluster validation.

Finally, in general, specifications are necessary, how future objects should
be allocated to the given clusters: classification.

When the partition in clusters is used as a procedure of diagnosis, e.g. by
means of a discriminance function in the feature domain, then it is spoken of
a discriminance procedure.

The heuristic of decision making is frequently supported or padded by
model ideas, e.g. from mathematical statistics.

For a mathematical treatment the partition task must be represented in a
mathematical form:

For every object oj of the set O then t features Fi are selected, the single
shapes of which are specified each by the “value” xij . In general, the “values”
can obviously assume any form of a datum (see Subsect. 2.1.1): cardinal,
nominal, quantitative, or set-valued as function, surface or picture, or even as
a verbally formulated finding.

The known procedures of crisp cluster analysis, however, require crisp
items for the feature values xij , i.e., either real numbers or qualitative yes-no-
statements (with “1” for yes and “0” for no).

As can be seen, already by the selection of the features to be taken into con-
sideration and their numerical coding essential decisions are made influencing
the result of the cluster analysis seriously. The loss of information suffered in
this manner cannot be compensated by any mathematical treatment, how-
ever subtle it might be. On the contrary, many procedures of cluster analysis
tempt to “information creation” by introducing assumptions that ease the
mathematical treatment and decision making, but which are not protected by
practical findings.

The usually offered way out to effect the selection of features just in the
course of investigation (feature discrimination ) applies only to the initially
already included features and cannot enlarge this subjective selection.

Starting point of a cluster analysis is hence the data set, as it is called, or
the data matrix

X = ((xij)) . (6.1)
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According to this data matrix the N objects oj should be partitioned into n
clusters C1, . . . , Cn, where n is given and each single object should be allocated
to exactly one of the clusters.

6.1.2 Mathematical Formulation of the Problem

As already mentioned in presenting the problem, objects are to be allocated
according to their similarity. For this purpose a similarity relation R is to
be specified. Over the cartesian product O × O the (really fuzzy) relation
is defined with values on the positive real axis or in the interval [0, 1]. It is
required that the values should increase with growing similarity and, as a rule,
that the relation is symmetric. For the sake of brevity

ojRok = sjk (6.2)

the similarity degree between the objects oj and ok is introduced. Then

S = ((sjk)) (6.3)

is the similarity matrix of the object set O.
The specification of this similarity matrix depends strongly on the char-

acter of the given data.
In taxonomy, e.g., a branch of biology, only the presence or absence of sin-

gle features is recorded, to develop a grouping of plants and animals according
to their similarity. With such qualitative data (1 if present, 0 if absent) the
determination of similarity is effected by the number of correpondences. So,
e.g., Sneath (1957) suggested to divide the number of those features, which
are simultaneously present at both objects, by the number of features, which
are present at both objects at all to obtain the corresponding value s.

If the shapes xij are given be real numbers, then the introduction of a suit-
ably defined distance d(j, k) between the objects oj and ok is recommended.
In such a way the distance matrix of the object set

D = ((djk)) (6.4)

is introduced. Because similarity decreases with increasing distance, d is some-
times called also dissimilarity coefficient. In every case a transition from a
distance d to a similarity relation with values s is possible, even in different
ways. One has only to keep in mind that monotonicity inverts its direction
and that s(0) = 1 and s(∞) = 0 are reached. Then the similarity matrix has
the form

S = ((s(djk))) . (6.5)

If some features are specified only qualitatively and others quantitatively,
then always a common similarity matrix can be constructed, in the simplest
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case by a weighted sum of the sjk according to (6.2) and the s(djk) according
to (6.5).

One should realize that the introduction of such a combination rule will
influence the result of cluster analysis essentially. Already the choice of a for-
mula to specify the similarity values sjk and even more of the distance function
d for all features in common is one of the most critical points of the whole
procedure. Even if the range of possible distance functions (see e.g. Bande-

mer/Näther (1992)) and the possibilities of their factorwise combination is
enormous, by which the adaption according to the problem should be given,
the practical translation is, as a rule, impossible even because of this variety
of possibilities. Moreoven, there is a tendency to choose the known Euclid-
ean distances, how they are used in mathematical statistics, which is even
supported by the common interpretation of the feature values as realizations
of random variables (see for this problem area, e.g., Mardia/Kent/Bibby

(1979)).
To obtain a unique partition of the object set O in clusters C1, . . . , Cn,

a decision rule for the purpose is required, which brings the fuzzy demand:
“objects similar as much as possible within each cluster – objects similar as
less as possible in different clusters” into a formulation, which can be handled
by classical mathematics. As can be seen this is a problem including two
different criteria.

Let be G a functional, which reflects the similarity of the objects within
each single cluster C1, . . . , Cn; it supplies values, which are the smaller the
more similar the objects are. Hence one has to demand that

G(S;C1, . . . , Cn) = min
C1,...,Cn

, (6.6)

where reasonably G(S; o1, . . . , oN ) = 0 and G(S;O) = max should be valid.
Here the number of desired clusters is left open yet. Moreover, it would be
reasonable, if the union of clusters would raise the functional value, since the
dissimilarity increases in the united cluster:

G(S;C1 ∪ C2, C3, . . . , Cn) ≥ G(S;C1, . . . , Cn) . (6.7)

Let be H a functional, which reflects the similarity of objects each of a
different cluster; it assumes values, which are the larger the more similar the
objects are:

H(S;C1, . . . , Cn) = max
C1,...,Cn

, (6.8)

where, correspondingly, H(S; o1, . . . , oN ) = max and H(S;O) = min are to
be demanded. Moreover, it will make sense, if

H(S;C1 ∪ C2, C3, . . . , Cn) ≤ H(S;C1, . . . , Cn) . (6.9)

Both these criteria must be satisfied by one and the same cluster partition
C1, . . . , Cn simultaneously. Hence a cluster partition is to be computed, for
which
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G(S;C1, . . . , Cn) = min (6.10)

and

H(S;C1, . . . , Cn) = max . (6.11)

are valid. In certain special cases both these conditions are united, e.g. by

G(S;C1, . . . , Cn) − H(S;C1, . . . , Cn) . (6.12)

In every clustering procedure one will recognize these two components.

6.1.3 Some Procedures for Crisp Cluster Partition

Which of the proposals for similarity of objects and for possible cluster parti-
tions should be used depends largely on the practical problem. Strictly scien-
tifically such a decision should be made after a “training course”(a learning
period, as it may be called): objects of known allocation are classified accord-
ing to factual aspects as well as by different cluster concepts. The results
are compared and the decision is made on the expediency of the chosen con-
cepts. Hence in recent times the application of neural networks is so popular.
By this means, namely, the parameters of corresponding classification proce-
dures, which are specified as neural networks, are computed within a learning
period. Though also for this purpose it is necessary to code the single ob-
jects by vectors of numbers, all of the same structure. (With respect to neural
networks see Subsect. 6.1.5.)

In many concrete cases, however, a preliminary phase of learning would
lead either to a unjustifiable expenditure or to not uniquely usable statements.
Hence there is an interest in methods, which solve the optimization problem
(6.10), (6.11) in tendency, where, in general, dissimilarity (the functional H)
is given priority.

With the strong restriction that the distance between the objects is spec-
ified as the Euclidean distance of the feature vectors xj = (x1j , x2j , . . . , xtj),
i.e.

d2
jk = (xj − xk)τ (xj − xk) =

t∑

m=1

(xmj − xmk)2 , (6.13)

there exist different proposals for the partition in clusters. (The usually in
(6.13) additionally introduced weight matrix G is omitted for the sake of a
simple presentation, it does not change the proceeding methodologically.)

The simplest method consists in the specification of a similarity threshold
s0, which corresponds to a distance value d0. All objects, which have a mu-
tual distance, each of each, that is smaller than d0, are united to a cluster
(Sorenson (1968)).
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Usually, however, hierarchical procedure are preferred. Here, initially each
single object forms a one-object cluster. Then the two objects with the smallest
mutual distance are united to a cluster. In further steps each time those two
clusters, the distance of their most distant objects (taken each from the one
and from the other cluster) is shortest, are united in one cluster. The procedure
ends, when all objects are united in one cluster. In this manner one obtains
in the course of the computation all clusters, which could be obtained for
arbitrary similarity thresholds according to the preceding proposal.

This cluster partition could be evaluated either subjectively according to
factual aspects or by functionals G and H specified beforehand.

The proposals mentioned above can be modified or improved in several
directions. So, one can, e.g., choose one of the objects by chance and all objects
up to a given maximum distance from it unite to a cluster. With the remaining
objects the procedure is repeated, and so on (for further details see Bonner

(1964)).
The best known of this kind of procedures is that suggested by Ball/Hall

(1965) and called ISODATA (described in more detail e.g. in Bezdek (1981)):

(1) Choose k objects out of O by chance (the “centres” of the clusters);
(2) allocate the remaining N − k objects to these centres, each to the nearest

centre;
(3) compute the centres of gravity x̄ for each of the so obtained preliminary

clusters;
(4) unite those clusters, for which the distance of their centres of gravity is

less than a given threshold τ0;
(5) split up all those single clusters, for which the “inner variation”

c0

∑

j

(xj − x̄)τ (xj − x̄) (6.14)

is larger than a given upper bound; c0 is the inverse value of the number
of objects within the just considered single cluster.

(6) repeate the steps 4 and 5 as often as necessary.

There is a variety of similar procedures.
The main reason for the popularity of the Euclidean distance is the intu-

itively appealing connection with the variance terms in mathematical statis-
tics. There are different objections to this “minimum-variance” approach to
cluster analysis. So, e.g., a change of the scale for only one feature can cause a
changing of the whole cluster partition. Therefore it is generally recommended
to normalize the data, i.e. to centre them to a mean value 0 and divide them
by a factor such that the correponding “variance” equals to 1. A clustering
method would be desirable, which remains invariant against the numerous
families of scale transformations. This demand is largely fulfilled by the fuzzy
approach, see Sect. 6.3.
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The procedures mentioned up to now pursue the problem of an optimal
partition only in tendency, because they consider only a few possible parti-
tions, the construction of which seems reasonable. If, however, a criterion is
realized as suitable for the given situation, e.g.,

K(S;C1, . . . , Cn) = K∗(G,H) = min
C1,...,Cn

, (6.15)

then the solution task arises for this optimization problem. It is a combinato-
rial problem and hence always solvable theoretically, because all sets involved
are finite. The method for the solution is called total enumeration and con-
sists in a listing of all possible constellations. Naturally, the number of cases
to be considered is enormous already for small numbers of objects. For exam-
ple for 8 objects and 3 possible clusters already 966 values of K∗ are to be
computed. Hence this procedure is practicable only for such situations, where
the relations can be looked over with naked eye and knowledge of the subject.
Therefore iterative procedures from dynamical and integer programming are
used to come to acceptable results for realistic numbers of objects essentially
more rapidly. Obviously, all this expenditure is worthwhile, however, only if
both, the chosen types of distance as well as the optimization criterion have
a solid basis by specialized knowledge on the situation.

For hierarchic procedures, which produce series of sets Cs of clusters, e.g.
C1, C2, . . . , Cr = O, the results of the partitions can be presented very clearly
in graphical form, if the number N of objects is not too large. Figure 6.1 shows
an example of such a dendrogram by which can be seen, how the clusters were
united with decreasing similarity. Obviously, the uniting itself could be effected
also according to another criterion.

Specially, if the objects are allocated according to the principle of near-
est neighbourhood, then there is a connection to graph theory; in this case

Fig. 6.1. Dendrogram
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Table 6.1. shows a possible similarity matrix S corresponding to the dendrogram
in Fig. 6.1











1 0.5 0.9 0.5 0.5 0.7
0.5 1 0.5 0.6 0.6 0.5
0.9 0.5 1 0.5 0.5 0.7
0.5 0.6 0.5 1 0.8 0.5
0.5 0.6 0.5 0.6 1 0.5
0.7 0.5 0.7 0.5 0.5 1











the dendrogram is represented as a tree, as it is called. (For details see, e.g.
Jardine/Sibson (1971).)

6.1.4 Clustering with a Mathematical-Statistical Background

Naturally, the solution of the partition problem becomes clearer, if there are
assumptions on the genesis of the data, here the feature values, which are
based on technical considerations or scientific plausibility. The usual assump-
tion that these data are realizations of random variables are only seldom scien-
tifically founded, even as a rule, when software is used, it is hardly questioned
or made transparent.

Most clearly the relation to probability theory can be seen in modal analy-
sis after Wishart (1969). For the sake of simple presentation the case of only
one feature is considered. It is assumed that the number of objects are suffi-
ciently high such that the histogram of the feature values observed is already
meaningful, in the sense of mathematical statistics. The procedure investigates
at first, whether the probability distribution basing the data is multi-modal,
i.e. whether its density shows several maxima. From this fact it is concluded
that the distribution is a mixture of several distributions, which sufficiently
contrast from each other. The aim of the partition means here the allocation
of each single object to one of these different distributions. The procedure
consists in that at first the histogram of the feature values is established, in
which the respective relation of each value to its object can be seen. Then the
objects are allocated to different regions with high frequencies (the modal re-
gions of the histogram) and the intermediate regions with low frequencies are
left out of consideration at first. Finally, the remaining objects are allocated
each to that cluster, to which their respective feature values are nearest. In
the case of several features this method is, as a rule, impractical.

Hence Wishart (1969) suggested a threshold-algorithm to recognize re-
gions with high frequencies as initial clusters. With a given frequency thresh-
old w0 and a distance threshold d0 for each object oj the frequency wj of all
objects with a smaller distance than d0 is computed:

wj = number {k | d(j, k) ≤ d0} . (6.16)
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Then, at first, all those objects are left out of consideration, for which it
holds wj < w0. The remaining objects are allocated to clusters by gather-
ing suitable nearest neighbours. Then those objects left out of consideration
are allocated to these clusters according to any useful criterion. This is only
one possible procedure that should show the general proceeding. Also the
ISODATA-procedure is such a procedure, if the feature values are assumed to
be realizations of random variables.

The problem changes again, if one can assume that the n different dis-
tributions, which form the mixture for the distribution of the feature values,
are all known exactly. What matter is then, obviously, to allocate each single
object to its respective distribution correctly. This allocation specifies then
the different clusters. In this case the starting point and the criterion for the
cluster partition of all objects consists in the likelihood function for all feature
values, interpreted as a sample. The allocation of the objects to the clusters
is then effected according to the reasonable principle of regarding that spe-
cial distribution as the true one (and allocating the object to the respective
cluster), for which the likelihood function of the feature value is largest. If the
distributions are all normal, then (the logarithm of) the likelihood function is
a square function, one comes back to square distances, how they are already
considered with the heuristics in the preceding subsections (See for details
and this case the book by Mardia/Kent/Bibby (1979).)

The classification, i.e. the allocation of further objects to the already ob-
tained clusters, when should be considered as a routine task with a statistical
background, is called discriminance analysis. The procedures developed and
founded for this case within the framework of mathematical statistics, are
used in practise, passing over in silence, also in such cases, in which this back-
ground is not given at all; then they remain heuristics, naturally, as all other
procedures mentioned in the preceding subsection.

The background model has the following form: It is assumed that the
vector of the feature shapes x of an object oj is a realization of a random
vector X, the density of which is one of n possible densities fi(x). The aim of
discriminance analysis consists in the allocation of a given realization x0 of a
further object o0 to one of the n populations. It is the idea that the populations
had been deduced from the clusters beforehand in some reasonable manner.
The decision on the allocation is to be effected as well as possible, that is
interpreted in mathematical statistics that wrong decisions should happen as
seldom as possible. Hence a discrimination rule is a decision rule, which brings
about a partition of the sample space (the set of all possible sample vectors)
into regions Ri together with the instruction: If the given realization x0 lies in
Ri, then assign the corresponding object o0 to the population with the density
fi. The task of mathematical statistics consists then in the determination of
such regions Ri in dependence on the given densities fi, on the condition that
the probability of a wrong assignment is as small as possible.

Naturally, the assumption that the densities are known exactly is only lit-
tle realistic. Hence usually the case is considered that these densities (e.g.
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via suitable parameters) are estimated from the clusters determined before-
hand. This is one of the methods mentioned above for a connection of cluster
problems with those from discriminance analysis.

Also here a Bayesian approach exists, in which there are given a-priori
probabilities for the assignment to the populations. A typical example from
medicine is the assignment of new patients (“objects”) from their symptoms
(“features”) to different diseases (“populations”). The a-priori probabilities
would be obtained from the frequencies of the occurrence of these diseases.
The assignment follows then according to the largest a-posteriori probability
among the diseases given the feature vector x. The practical application of
this approach is frequently problematic, e.g. with respect to the origin and
the reach of validity of the a-priori probabilities as well as in the case of
multimorbidity.

The properties of the different rules of discriminance are investigated usu-
ally by Monte-Carlo-simulations or by application to extensive sets of real
data, the correct assignment of which is known. If the parameters of the pop-
ulations are only estimated, then an estimation of the probability of wrong
classifications turns out, as a rule, to be too optimistic.

A sound scepticism is always reasonable also in the use of standard pro-
cedures of cluster and discriminance analysis. However, this should not lead
to a general refusal of such procedures as being unsuitable, they remain a
reasonable support in problems to make necessary partitions of practical data
sets clearly visible and comprehensible.

6.1.5 Basic Ideas of Neural Networks

For the assignment of objects to certain sets the concept of neural networks
is used already for years. A first instructive presentation of the basic ideas,
from the point of view of artificial intelligence, is contained in the collection
by Rumelhart (1986), with respect to a comprehensible introduction into
the theory see e.g. Rojas (1993) and Kosko (1992). Starting point of this
approach are imaginations on the way, how human thinking operates “techni-
cally”, which is superior to high-speed computers in some respects. The brain
consists, as is well known, in a highly complicated net of neurons, which can
activate and deactivate each other. This makes possible a high paralellism
of single events as well as a strong robustness against faults and failures in
certain parts. The work of the neurons is, first of all, important for intelli-
gent concluding, the basis of which consists in recognition and assignment of
situations.

The theory of neural networks tries to model, mathematically, this way
of action of the net of neurons within the brain and to implement it on suit-
able computers in a simplified manner. At present the set of concepts can
hardly be overlooked. Hence, in the following, only certain simple basic ideas
are presented as starting point for some hints for an assessment and use of
corresponding brain tools.
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First of all, a practically rather uninteresting information situation will
be considered: n objects oj are characterized each by a (column) vector vj

of n exact feature values. As an aim it is demanded that the objects are to
be recognized in their respective occurrence in a manner as simple as possible.
Moreover, it is assumed that the n vectors are linearly independent in the
corresponding n-dimensional Euclidean space IRn (i.e. that no one of them
can be represented by a linear combination of the others). The solution of
this task is given by a square matrix

W = ((wkl)) , (6.17)

which maps the n input vectors vj on n corresponding output vectors uj

uj = Wvj . (6.18)

These output vectors uj could be, e.g., the n unit vectors, which have only
in the respective jth coordinate the number 1 and zeros in the other ones. In
this way a simple distinction of the n possible objects would be guaranteed.

The elements of the weight matrix W are determined in an easy algebraic
manner from the given input and output vectors vj and uj . The determination
is, particularly, very easy, if the input vectors are normalized and orthogonal,
i.e. if

vτ
i vj =

{
0 for i �= j ,
1 for i = j .

(6.19)

In this case the network matrix W

W =
n∑

i=1

uivτ
i , (6.20)

is thus the sum over the matrix products of the connected input-output vector-
couples.

In interpreting as a neural network the coordinates of the vectors are inter-
preted as neurons and their present values as their activations; the elements
of the weight matrix wkl evaluate then the respective connectivity between
the k-th coordinate of the input and the l-th one of the output according to
(6.17).

The information situation becomes immediately interesting practically, if
the input vectors are allowed to vary. Then it concerns feature vectors of
objects, for which the allocation only to a category can be effected, a prob-
lem, which was considered, in a slightly changed expression, already in the
clustering problem.

If the ranges of variability of the input vectors are (approximately) known,
then one succeeds mostly by specifying of a function for an additional mod-
ification of the coordinate values of the computed output vector to come to
unique and, as a rule, correct allocations.
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Thus, e.g., the threshold function is such a popular activating function, as
it is called. In this manner, the value of each coordinate of the output vector,
which lies usually between 0 and 1, is put to 0, if a given threshold value
is not reached. The threshold values can be chosen differently for different
coordinates. Another type of activating functions are the sigmoid functions s,
which change the original output value u of a coordinate monotonically into
a value g(u) ∈ [0, 1], e.g., by

s(u) =
1

(1 + exp{−cu}) ; c > 0 . (6.21)

With such an activating function one succeeds e.g. to suppress a certain
basic noise, i.e. slight variations of the input vectors, with respect to the
allocation of the objects. One should note that the problem does not consist
in a discovering of a pattern (pattern cognition), but in a recognizing (pattern
recognition) of a pattern (one of the categories of the inputs).

If the variation of the inputs obeys stochastical rules, then these must be
known in order to construct the weight matrix and to compute the outputs
in such a manner that in spite of these variations an allocation, as correct as
possible, on the basis of these outputs can be guaranteed. Moreover, sometimes
even a temporal change of these rules can be taken into account, if this change
is known, e.g. if the probabilities pj(t) for the appearance of the representatives
of the different categories as functions of time t are given. This would be the
case, e.g., when certain appearing species of animals, the feature vectors of
which are observed as inputs, are known to be active only at night. Mostly,
however, the probabilities of appearance are assumed to be independent of
time.

A-priori knowledge of the probability of occurrence of objects, which
should be allocated, by neural networks, to categories, are indispensable first
of all, if the corresponding input vectors are allowed to be mutilated, i.e. if
the respective items can be missing for some features. In this case the given
probabilities for the occurrence of the n categories considered are interpreted
as an a-priori distribution and over the mutilated coordinates a probability
distribution of maximum entropy is spread out. With respect to Shannon

entropy see some textbook and (6.63).
A possibility to further flexibility of neural networks is given by the intro-

duction of hidden units, as they are called. These are neurons (units), which
do not appear as supports of values neither of input coordinates nor of out-
put ones. In the simplest case they form a second layer after the input and
before the output. Some coordinates of the input are mapped, at first, onto
this “interim output”, which influences for its part the whole network. This
interim mapping is represented e.g. by a further matrix. By introduction of
several interim layers of hidden units the overall configuration of the neural
network can be simplified and the number of identifiable categories can be in-
creased essentially. Also in this case the connectivity remains linear, because
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Fig. 6.2. Example of a neural network with a layer of hidden units

the overall matrix of the neural network, which represents the connectivity of
input and output, is obtained by matrix multiplication of the single matrices.

If, however, also the interim outputs are subjected to activating functions,
then the system becomes really nonlinear. Nevertheless, such neural networks
have each a domain, in which they behave approximately linearly; hence one
finds for this case sometimes the notation semilinear.

The attractivity of neural networks is supported essentially by the possibil-
ity to determine the elements of the network matrices and of the parameters
of the activating functions (e.g. the threshold values or the parameters of the
sigmoid functions) sequentially and approximately within a learning process.

The learning process starts with adjusting of the required quantities, the
elements of the matrices and the parameters, to certain values. Then input-
output vector-couples belonging to each other are offered to the neural network
in random selection and order and the initial values of the required quanti-
ties are changed in a such manner that each time the difference between the
given and the just obtained output is as small as possible. For demonstra-
tion the simplest case is considered that only one network matrix W is to be
determined and no activating function is used.

Let be given m vector couples (vj ,uj), the connectivity of which is to be
learned by the neural network. As the initial matrix W(0) the zero matrix O
is chosen. Moreover, let be (vi,ui) the vector-couple offered in the i-th step,
then the delta rule, as it is called, for the computation of the network matrix
W(i + 1) in the next step has the form

W(i + 1) = W(i) + ηδ(i)vτ
i . (6.22)

Here η ∈ (0, 1) is a given scalar constant, which determines the learning
rate, as it is called, and δ(i) is the difference vector between the corresponding
and the just computed output vector

δ(i) = ui − W(i)vi . (6.23)
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The value of this learning rule consists in that it can be applied also if the
input vectors are chosen no longer as being orthogonal to each other, but that
they are only linearly independent. Even if the input vectors are disturbed by
realizations of slight random variables, one obtains still useful results. Also in
the case that the input vectors be no longer linearly independent (or cannot
be so because the dimension n of the vectors is smaller than their number
m) a network matrix is created, which yields an adaption in the sense of the
method of least squares.

A neural network can be interpreted, generally, also as a representation of
a function of several variables. Starting with m couples of argument vectors
xj , yj a function y = f(x) is to be “learned’, which assigns the training output
values yj to the training input values xj as precisely as possible (in the sense of
the method of least squares). As a special case, the deviations for the training
set are all zero and the approximation is an interpolation. Frequently the result
obtained by the network is a piecewise constant function (see Rojas (1993) or
some other textbook on this topic). On the other side, by a suitable network a
procedure can be constructed, which (in the arguments) corresponds to linear
regression and hence yields the same computing formula for the parameter
vector. For the setup

y = b0 +
n∑

i=1

bixi (6.24)

one obtains with the design matrix X, the rows of which consist of a 1 (with
respect to the constant b0) and of the vector xτ

j , the estimation b̂ of the
column vector formed by the coefficients bi

b̂ = (XτX)−1Xτy . (6.25)

See Subsect. 7.1.2.
By networks with several layers and by use of sigmoids as activating func-

tions even nonlinear connectivities can be represented approximately (accord-
ing to the criterion of least squares), e.g. with setups of logistic regression

y =
1

1 + exp{−∑n
i=1 bixi}

. (6.26)

Learning procedures, which utilize minimization of the deviations of the
just obtained outputs from the given ones, are called frequently backpropa-
gation algorithms (see e.g. Rojas (1993)). Backpropagation in networks with
several layers is a very popular method to solve practical problems. It is ap-
plied e.g. in robotics, in recognition problems for patterns and speach, and
for encoding problems. In all these fields of application the aim is in common
that with only a few empirical data a network should be designed, by which
the basing connectivity can be simulated in a certain sense. In many cases the
empirical connectivities of the model variables are unknown from the outset
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or can change in the course of time. The users are convinced that by back-
propagation statistical regularities can be discovered and exploited. Moreover,
changes in time can be taken into account by adaption of the network para-
meters (by permanent learning).

Backpropagation in multi-layer networks is only one direction in the devel-
opment of theory and practice of neural networks. Similar fields of application,
as picture processing, cluster and discriminance analysis, are mentioned, and
in each field successful applications are referred to. This led in wide sections of
scientists, especially among users, to the euphorical assessment that with the
concept of neural networks a factotum (literally: a man who does all kinds of
work) had been found, by which, in a uniform and natural manner, every prob-
lem of application can be solved. However, the problems in handling numerical
tasks of interpolation, approximation, and discrimination are not removed by
their couching in the language of neural networks, but only covered up and
left out of consideration. This is the main danger in general application of
neural networks for the using practician: The necessary critical point of view
on the respective procedure, the input vectors as well as the results obtained,
is replaced by fascination and firm belief in their quality.

In this context it can even be left out of consideration that many pro-
cedures effected by neural networks turn out to be well-known already for
a long time. So, the computation rule for Hopfield networks corresponds to
the relaxation method of Southwell, introduced into physics many years ago
(see e.g. Courant/Friedrichs/Lewy (1928); and Rojas (1993)). Similar
remarks can be made also with some recommended cluster and approximation
procedures.

Already rather early there were critical considerations on problems of
neural networks (see Minsky/Papert (1969)), but today it seems to be rather
difficult to hear critical voices out of the mass choir of publications on neural
networks.

The remarks made in this book with respect to the treatment of individual
practical problems remain valid also for neural networks.

Thus already the specification of data for the input as vectors of binary
or real numbers is a source of uncertainty and arbitrariness.

For the learning process with “disturbed” inputs, as a rule, there are ex-
plicitly no assumptions put on the kind and possible regularities of the dis-
turbance, although these would be important for an assessment of the perfor-
mance of the network after the training period.

Finally, as a rule, the user is unable to follow the way of uncertainty of
the input through the network and to assess the numerical behaviour within
the network.

If training and working periods should alternate regularly, which is the
case frequently in practical application, then the “convergence” of the learn-
ing process is assessed by criteria (e.g. by the deviations of training runs fol-
lowing each other), which are not unproblematic even in common sequential
processes.
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Hence one should combine also neural networks with an accompanying
critial point of view. The quality of data used should be proved and the
behaviour of the neural network should be investigated by testing with data
from problems with simple and known results.

Also a neural network cannot create information, one can obtain appropri-
ate results only if the network is offered the necessary information for these,
and if the network reflects the practical situation sufficiently precisely.

Finally, a development will be mentioned, in which the concept of networks
is combined with that of fuzzy sets: the fuzzy neural networks. The fuzzy inputs
Vi are connected with each other according to their character, e.g. by

Vij = Vi ∩ Vj , (6.27)

which means for the corresponding membership functions µi(x), µj(x) e.g.

µij(x) = min{µi(x), µj(x)} . (6.28)

These can be suitably combined to a fuzzy output, e.g.

Ui =
⋃

j

αijVij , (6.29)

where the αij ∈ (0, 1] are appropriate parameters with
∑

j αij = 1 for all i.
The just mentioned example is a purely theoretical one, but it can show

how the connection of the crisp input values by multiplication and summation,
e.g. in (6.18), can be replaced by connection rules for fuzzy sets. As a nice
example for the information processing in a fuzzy neural network the colour
sense in the human eye is mentioned by Rojas (1993), which gets by on
fuzzy receptors for blue, green, and red, and produces, nevertheless, a picture
in the brain with a lot of nuances of colours. In modelling this process it
could be shown that functions of a form like density functions of normal
distributions (“Gauss’ bell curves”) are suitable as the membership functions
of the three basic colours. In the case that also mutilated data are allowed, the
probability approach mentioned above can be modified for fuzzy data. Then
the probability distribution for the occurrence of the n different categories (e.g.
the 10 digits in handwritten and mutilated items in the input) is replaced by
a possibility distribution πi; i = 1, ..., n, and over the mutilated “coordinates”
a conditional possibility distribution of maximum entropy is spread out. The
entropy of a fuzzy set is given by an entropy measure e, as it is called, e.g. by

e(A) =
card (A ∩Ac)
card (A ∪Ac)

. (6.30)

With respect to a detailed representation see e.g. Kosko (1992). and the
journal IEEE Transactions of Neural Networks.

Naturally, the general remarks with respect to the handling of fuzzy sets
remain valid also for fuzzy neural networks.
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6.2 Fuzzy Classification of Crisp Data

6.2.1 Fuzzy Cluster

In partition of a set of objects O in clusters C1, . . . , Cn it is assumed with-
out saying that each object oj should be allocated to its “correct” cluster.
In discriminance analysis this requirement is contained in the problem even
explicitly. However, there are practical situations, in which this assumption
of uniqueness is no longer realistic, e.g. if a patient has several diseases from
the given list of possibilities (multi-morbidity), or if an asked electorate in the
run-up to the elections is yet attracted by several parties or if he has several
votes, which could be splitted. In many cases, however, it seems rather diffi-
cult to allocate an object to one of the clusters, which are felt to be suitable,
only from the feature values, because there would be, obviously, too much ar-
bitrariness involved. Even this necessarily subjective assessment, which may
have definitely its factual reasons, makes it desirable to allocate those objects
to several clusters or to each single of these clusters gradually. This leads fre-
quently, first of all for feature values in certain “border regions” to a more
meaningful interpretation of the partition of the set of objects. Such clusters
with gradual memberships of objects are called, consequently, fuzzy clusters.
With respect to the following considerations in this Sect. 6.2 the feature vec-
tors remain but crisp or common vectors of real numbers.

Starting point of the considerations is, as in Sect. 6.1, the similarity matrix
S or the distance matrix

D = ((djk)) (6.31)

(compare (6.4)). The allocation of the objects to crisp clusters can be repre-
sented by a partition matrix Z, the elements of which zij indicate, whether
the object oj belongs to the cluster Ci (zij = 1) or not (zij = 0):

Z = ((zij)) . (6.32)

Since in the crisp case each object should belong to exactly one cluster,
the matrix Z has the property that for all j

n∑

i=1

zij = 1 (6.33)

is valid, and because one wants to have at least one cluster that contains at
least two objects (in the other case clustering would be senseless) one obtains
the condition

0 <

N∑

j=1

zij < N . (6.34)

Bezdek (1981) called such a partition a hard n-partition.



130 6 Methods from Qualitative Data Analysis

The problem of such a hard partition leads, as a rule, to combinatorial
tasks, which might demand a high numerical expenditure, as already men-
tioned with the method of total enumeration. The transition to fuzzy clusters
yields therefore additionally also advantages in the numerical treatment of the
tasks.

If gradual membership of objects to several clusters is allowed, then both
the preceding conditions can be really omitted. However, in order to preserve
the crisp case as a particular one, Bezdek retains the condition (6.33). Hence
each object oj must distribute its membership to the n cluster. The part
apportioned to the cluster Ci is then µj(i), and it should hold

n∑

i=1

µj(i) = 1 . (6.35)

For a numerical handling it is favourable (Bezdek (1981)) to consider the
case with the condition (6.34) retained (called fuzzy n-partition) as well as the
case that this condition is moderated to

0 ≤
N∑

j=1

µi(j) ≤ N (6.36)

for all i. In this latter case also procedures are conceivable that the procedure
itself searches for a favourable number of clusters, because also empty clusters
are allowed. Such partitions are called degenerated fuzzy n-partitions. More-
over, this closure eases the theoretical treatment (see for details the book by
Bezdek (1981) just mentioned).

Obviously, a fuzzy cluster Ci with the membership function µi(j) can be
interpreted also as a fuzzy set over the set of objects O. There are different
possibilities for what should be understood as similarity of such fuzzy sets.
This problem is treated within Sect. 6.3 from a point of view somewhat more
general.

6.2.2 Procedures of Fuzzy Cluster Analysis

Naturally, every procedure of cluster generation with crisp feature values can
be generalized to the case that fuzzy clusters are allowed, e.g. by allocating
such objects with approximately equal affinity (similarity, distance) to several
clusters with appropriate single degrees.

For Bezdek (1981) first of all such procedures are interesting for a gener-
alization, which use a Euclidian distance djk of the objects and a criterion of
optimality (objective function) (see Subsect. 6.1.3). Already Ruspini (1972)
originated the idea to choose the local density of the feature vectors as a mea-
sure of “quality” of the clustering. He considered the following criterion of
optimality
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JR(M) =
N∑

j=1

N∑

k=1

{[ n∑

i=1

σ(µi(j) − µi(k))2
]
− djk

}2

= min
µ

(6.37)

with the real positive constant σ and a fixed chosen n. The matrix M consists
of the membership values µi(j). Obviously, the value of this functional JR is
small if the single terms of the sum are each small. This happens if couples of
objects lying near to each other (i.e. djk is small) obtain approximately equal
membership values to the respective clusters (the difference of the respective
µi is small). The factor σ makes sure that distances and membership values
are comparable in magnitude.

For a determination of an optimal membership matrix M = ((µi(j)))
according to the criterion (6.37) gradient methods are used. Because these
methods, naturally, find only stationary points in the corresponding space of
possible membership values, the obtained recommended clusters should be,
absolutely, tested for their meaningfulness (cluster validation).

The original algorithm due to Ruspini (1972), which is not presented here,
is said to be rather difficultly implementable. Its computional efficiency should
be weak and its generalization to more than two clusters should be of little
success. But it was the pioneer for a successful development of this approach,
which was mentioned here for its exemplarity and intuitive comprehensibility
of the criterion used.

Hence Bezdek starts with the case that for each cluster Ci a virtual object
vi (cluster centre, prototype) can be defined, the feature values of which are
determined as the centres of gravity of the feature values of the corresponding
objects. Let denote xj the feature vector of the object oj and vi the feature
vector of the virtual object vi, determined by all those objects in the cluster Ci,
and let be dj(i) the Euclidean distance of the object oj from vi. Then Bezdek

(1981) had chosen the following functional (fuzzy q-mean-functional):

Jq(M,V) =
N∑

j=1

n∑

i=1

(
µi(j)

)q

d2
j (i) ; (6.38)

with the matrix V consisting of the feature vectors of the cluster centres. The
parameter q ∈ (1,∞) is an arbitrary but given weighting exponent, by which
the fuzziness of the clusters can be controlled. The larger the chosen q the more
fuzzy the assignment of membership to the clusters will be. If q tends to 1, then
the clusters form a hard partition. For a solution of this special optimization
problem Bezdek suggested an iteration procedure, which should be presented
here for the simplest case. With respect to possible generalizations it is referred
to the book by Bezdek and for a short survey to Bandemer/Näther (1992).

For starting the procedure, generally, one has to choose a Euclidean norm
dj(i), a number n for the number of clusters allowed at the most, a number
q ∈ (1,∞) and, for a stopping rule, a measure of dissimilarity of matrices M,
e.g. a matrix norm, as it is called, and for that a small number (ε).
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As a starting point one chooses then a matrix M(0), which has all the
properties of a non-degenerated partition matrix (e.g. as a result of a rough
crisp clustering).

For l = 0, 1, 2, . . . one executes the following steps:
(1) Compute the n cluster centres {v(l)

i } according to

vi =

∑N
j=1(µi(j))qxj
∑N

j=1(µi(j))q
(6.39)

with M = M(0).
(2) Determine a matrix M(l) using these {v(l)

i }:
in defining first the index set of all those xj , which coincide with certain of
the computed centres v(l)

i :

I
(l)
j =

{
i ∈ {1, .., n} : dj(i)(l) = d(v(l)

i ,xj) = 0
}

and its complementary set

I
(−l)
j = {1, . . . , n} \ I

(l)
j .

If I
(l)
j is empty, then determine as the new membership values for oj

µ
(l+1)
i (j) =

[
n∑

s=1

(
d
(l)
j (i)

d
(l)
j (s)

) 2
(q−1)

]−1

. (6.40)

If, however, I
(l)
j contains at least one index, then put all µ

(l+1)
i (j) for the

indices i ∈ I
(−l)
j to 0 and distribute the membership 1 to the clusters with

indices from I
(l)
j .

Both these steps are to be repeated until the “difference” between the
matrices M(l),M(l+1) following each other is smaller than the initially chosen
ε.

Naturally, also the result of this proceeding is only a suggestion on how
the object set can be allocated to subsets.

Although fuzzy cluster analysis represents a certain progress compared
with crisp analysis, because it can react more flexibly to the facts of practical
problems, however, an essential restriction remains: the feature values, at last,
must be numbers, and the observation fuzziness of these feature values is left
out of consideration.

Naturally, methods of cluster analysis supply reasonable results in many
practical situations, first of all, if they are controlled by basic knowledge of the
applying scientist. There is, however, a whole string of principal objections
against cluster analysis, especially if it should go along with a criterion of
optimality. It is not only the arbitrariness of such a criterion and its structure,



6.3 Fuzzy Classification of Fuzzy Data 133

as e.g. the notion of the basing distance and its mathematical formulation
and the parameters of the procedure, it is also the vagueness of the notion
of optimality itself and, first of all, the necessity to form a common feature
vector x out of partly totally incomparable features, a vector, the similarities
or distances of its components determine the result essentially.

Therefore it seems to be important to make oneself aware of the ultimate
aim of cluster analysis. Frequently the search for a structure, here for subsets
of objects, which are very similar to each other, is only an intermediate target
for the problem to allocate further objects to classes (e.g. typical situations
in controlling or in diagnosis in medicine) or to find relations among features.
Moreover, if the number of features increases, then the problems in carry-
ing out cluster analysis become more and more serious. Hence in such cases
methods of local concluding become more and more interesting, by which
problems of classification and specification of relations among features can
be solved without a preliminary total partition of the whole object set by an
algorithm of clustering. Moreover, some of the specified features should be al-
lowed to assume fuzzy data as values. In this manner, inter alia, also the case
of aggregation of fuzzy descriptions of a situation and that of determination
of approximate control instructions, are examined from another point of view
and solved. With such methods of local concluding in data and knowledge
bases the next section will be concerned.

6.3 Fuzzy Classification of Fuzzy Data

The frequently unrealistic assumption that the feature shapes of the single
objects can be represented sufficiently precisely by numbers is omitted in this
section. Features are allowed for consideration, the shapes of which can be
described by fuzzy sets. In this context the problem of finding a distance, in
which all the features of the objects are included, is not tackled directly. The
similarity concept will be proved to be a more appropriate way of looking at
the problem. That the result of the considerations can also be comprehended
formally as a specification of a distance again will turn out to be unimportant
for practical application.

6.3.1 Fuzzy Similarity of Fuzzy Data

Starting point of cluster analysis was the demand that the objects within a
cluster should be “as similar as possible” and that objects in different clusters
should be “as dissimilar as possible”. This typically fuzzy formulation was
precised in Sect. 6.1 mathematically by introduction of a fuzzy similarity
relation R, which provides for each two elements of a universe U the degree
on the scale [0, 1], by which they are similar to each other. For points as feature
values this was effected by a distance d, in which all the different features of
an object must be included.
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Now a further fuzzy structure will be added. The shapes of the features
for the single objects are allowed to be fuzzy sets Xij each over the respective
single feature universe Ui. In this case the data matrix (6.1) has the form

X = ((Xij)) . (6.41)

As an example of such an Xij a chemical compund oj is considered and as
a feature Fi its toxicity for the human respiratory tracts. The Xij would be,
e.g., the value high of the linguistic variable respiratory toxicity.

For a better comprehension of the contents and for the sake of simplifi-
cation of the mathematical representation in this subsection in the following
only one feature is considered. Hence, transiently, the index i is omitted.

Moreover, at first a possible specification of similarity will be treated for
crisp sets A and B.

Two crisp sets are equal, if they are identical, A = A ∩ B = B or, in
equivalent form, if A ⊆ B and B ⊆ A. A possible meaning of similarity can
start with the conception that two sets are similar, if they are approximately
equal. An interpretation of “approximately equal” could read that the subsets
of the sets outside their intersection A ∩ B (the set of all elements belonging
to both the sets) is “small” when compared with their union A∪B (the set of
all elements belonging to at least one of the two sets). Now, the corresponding
sets must be equipped with a measure of content: for a finite set this would be
its number of elements, for a continuous set the integral over it. If the character
of the set (discrete or continuous) should not be indicated, then the respective
measure is called the cardinality card of the set. This way of speaking differs
but essentially from the definition due to Cantor, however, it is rather useful
in the present context. In this manner a possibility to define the similarity
sim(A,B) of two crisp sets can be given by the following expression:

sim(A,B) =
card (A ∩ B)
card (A ∪ B)

. (6.42)

This formula corresponds, by the way, with that coefficient suggested by
Sneath (1957) and mentioned already in Subsect. 6.1.2. Naturally, this is only
an example for the variety of possibilities, with respect to further examples
see e.g. Bandemer/Näther (1992).

This approach remains useful, if the sets A and B are allowed to be also
fuzzy ones. In this case the common integral over the crisp set becomes an in-
tegral over the membership function, i.e. one takes as the cardinality the aera
below this function, a rather comprehensible choice. With discrete sets one
takes the corresponding sums over the membership values. One can apply here
even other t-norms instead of the usual min-max variant for defining inter-
section and union. Moreover, instead of the just defined cardinality also other
suitable measures can be used for the given purpose (see Bandemer/Näther

(1992), where also some practical applications are shown).
If in the universe corresponding to a single feature a distance d(u, v) is

introduced, then this distance can be generalized via an extension principle
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Fig. 6.3. Similarity of fuzzy sets, represented by the quotient of the areas below
the membership functions of A ∩ B and A ∪ B

(see Subsect. 3.2.4) to a distance d(A,B) between fuzzy sets. However, the
transition from such a generalized distance to a similarity relation requires a
repeated application of an extension principle and leads to fuzzy sets of type
2, as they are called, which will be considered below within another context.

Moreover, distances between fuzzy sets are also introduced basing on the
difference of the membership functions (references see in Bandemer/Näther

(1992)). Finally, there can be found also concepts and practical examples for a
similarity notion with fuzzy functions in such a manner that the function value
f(z) at every argument point z is given as a fuzzy set Y(z) over a universe
Uy.

If a fuzzy similarity relation over a universe U of a feature could be spec-
ified, then it is possible and sometimes more appropriate if the similarity of
two fuzzy sets in the sense of R is expressed as a fuzzy set S, which can be
interpreted as a value of some linguistic variable similarity on the similarity
scale [0, 1]. For the computation of S(A,B;R) an extension principle can be
used, e.g.

µS(z;A,B;R) = sup
(u,v):µR(u,v)=z

min{µA(u), µB(v)} . (6.43)

This is a fuzzy set of type 2, this will be clear immediately from the in-
terpretation of S(A,B;R): The fuzzy similarity is expressed fuzzily, e.g. as a
value of a linguistic variable. Hence S(A,B;R) is called fuzzily expressed fuzzy
similarity of A and B in the sense of R. Although the procedure for compu-
tation of µS looks rather complicated, one can solve problems of classification
by this means. Especially the procedure is practicable in the case, when the



136 6 Methods from Qualitative Data Analysis

values of the linguistic variable (e.g. for a feature of objects) can be specified
explicitly, e.g. by fuzzy sets F1,F2, . . . ,Fν over U without specifying R over
this universe before. Then the fuzzy similarity values (T1, . . . , Tκ) (over [0, 1])
must be specified, by experts, only for all couples (Fr, Fs) of feature shapes,
e.g.

S(Fr,Fs) = Trs with r, s ∈ {1, . . . , κ} . (6.44)

This (generalized to fuzzy sets) fuzzy similarity relation S can be used to
construct, for every fuzzy set A, neighbourhoods within the set of all fuzzy
sets over U . So, a crisp set of fuzzy sets J(A; c0, µ0) with

J(A; c0, µ0) =
{
B : sup

z≥c0

µS(z;A,B;R) ≥ µ0

}
(6.45)

will be called a (c0, µ0)-neighbourhood of A where c0, µ0 ∈ (0, 1] are the pa-
rameters of this neighbourhood. This neighbourhood contains all those fuzzy
sets B, which are (in the sense of R) similar to A at least with the degree
c0 with a membership of at least µ0. If one cannot or will not fix some µ0

because this would not make sense, one can specify also a fuzzy neighbourhood
of A, e.g. by

Jc0(A,R) : µJ(B,A; c0) = sup
z≥c0

µS(z;A,B;R) . (6.46)

The membership value for B in the neighbourhood of A is additionally
marked in Fig. 6.4. Over the set of all fuzzy sets over U the expression Jc0 is
a fuzzy similarity relation.

Fig. 6.4. Representation of a (c0, µ0)-neighbourhood of the fuzzy set A
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The application is especially practicable in the case mentioned above, if
all occurring fuzzy sets are values of linguistic variables. In this case one has
only to list all the couples of feature shapes, which belong each to the same
fuzzy similarity value, e.g.

T1 · · · {(r11, s11), . . . , (r1n1 , s1n1)}
T2 · · · {(r21, s21), . . . , (r2n2 , s2n2)} (6.47)

· · ·
Tκ · · · {(rκ1, sκ1), . . . , (rκnκ

, sκnκ
)} .

Then only those membership curves of the Tt are to be confronted with
the rectangle for the (c0, µ0)-neighbourhood, in the index set of which the
index for the set A is contained. These will be, as a rule, rather few.

Finally, by a meaningful and systematic enlargement of this rectangle one
has the possibility of a “clustering” procedure for the given sets around A =
F0.

In many cases, however, the handling of fuzzily expressed fuzzy similarities
will be too confused and involved. Hence, it seems to be desirable to assign
to the couples of fuzzy sets over U each a scalar value for solving classifica-
tion problems, as it has been tried by ad-hoc proposals in the beginning of
this section. These similarity degrees then define a fuzzy similarity relation
over the set of all fuzzy sets over U . One of these proposals for a system-
atic construction of such similarity degrees with a given similarity relation
R over U starts from multi-valued logic due to Klaua (1966), (1966a) (see
Bandemer/Näther (1992) and Bandemer/Gottwald (1995)). E.g. one
obtains by connecting with the algebraic product (see (3.31)) and using an
“optimistic” interpretation of the similarity relation the similarity degree

roptalg(A,B;R) = sup
(u,v)

{
µA(u) · µB(v) · µR(u, v)

}
. (6.48)

In analogy to the approach with S according to (6.43) also similarity de-
grees r of arbitrary origin can be used for establishing neighbourhoods of a
fuzzy set A. For every crisp similarity degree r0 a crisp subset Jr(A; r0) of
the set of all fuzzy sets over U can be specified containing all those fuzzy sets,
which are similar to A at least with a degree r0:

Jr(A; r0) = {B : r(A,B;R) ≥ r0} , (6.49)

where r0 ∈ (0, 1] is the parameter of the considered neighbourhood.
Naturally, also here a fuzzy neighbourhood Jr0(A) can be introduced. For

this purpose the value r(A,B;R) is to be interpreted as the membership value
of B to the fuzzy neighbourhood of A (and vice versa).

6.3.2 The Use of The Concept for Classification

After this exposition on the specification of similarity for fuzzy sets now the
data matrix (6.41)
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X = ((Xij)) (6.50)

is considered again, which is frequently called a knowledge base, because it
contains also additional background knowledge by the fuzzy specification of
the data.

From this X one obtains a similarity matrix for each feature Fi

Sjk = ((S(oj , ok))) , (6.51)

which represents the fuzzily expressed similarity of the two objects with re-
spect to the feature considered.

The neighbourhood of an object oj is no longer required with respect to
all possible fuzzy sets over Ui, but only with respect to the other objects from
O or to a new object oN+1, e.g.

J(Xij ; c0, µ0) = {Xik : sup
z≥c0

µS(z;Xij ,Xik;R) ≥ µ0)} , (6.52)

as it was shown in Fig. 6.4.
If for all features F1, F2, . . . , Ft fuzzily expressed fuzzy similarities are spec-

ified, then the hypermatrix

S = ((Sijk)) (6.53)

represents the similarity structure of the feature system of the knowledge base
for all objects. This hypermatrix S can be used to tackle diverse problems of
classification.

For fixed i = i0 the matrix of fuzzy sets

Si0 = ((Si0jk)) (6.54)

reflects the fuzzily expressed similarity of all objects with respect to the i0-
th feature. This matrix can be used to introduce neighbourhoods of features
within the set of all features (see Bandemer/Näther (1992)).

For fixed object indices j = j0 and k = k0 the vector of fuzzy sets

S(j0, k0) = (S1j0k0 , . . . ,Stj0k0) (6.55)

represents the fuzzily expressed similarity of the two objects oj0 and ok0 with
respect to all features. Here neighbourhoods of objects can be introduced, e.g.

J(Xj ; c0, µ0) =
{
Xk : for all i : max

z≥c0
µS(z;Xij ,Xik;R) ≥ µ0

}
. (6.56)

In analogy to the proceeding with the fuzzy sets Sijk also similarity degrees

r(Xij ,Xik, R) = µi(j, k) (6.57)

can be used for the formation of neighbourhoods. For each i and for every
similarity degree r0 a crisp set of objects ok can be determined containing all
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objects, which are similar to oj with respect to the i-th feature at least to the
degree r0:

Ji(Xij ; r0) = {Xik : µi(j, k) ≥ r0) . (6.58)

By combining the specifications with respect to all features one obtains
the hypermatrix

M = ((µi(j, k))) , (6.59)

which represents the similarity structure of the knowledge base with respect
to all objects and all features.

For fixed i0 the matrix

M(i0) = ((µi0(j, k))) (6.60)

reflects the fuzzy similarity of all objects with respect to the i0-th feature.
A neighbourhood of the i0-th feature can now be determined e.g. by

JF (i0; ε) = {i : for all j, k : |µi0(j, k) − µi(j, k)| ≤ ε} , (6.61)

where ε > 0 is the parameter characterizing the neighbourhood. In (6.61)
implicitly the distance measure for matrices

d(E,F) = max
jk

|ejk − fjk| (6.62)

is used. Naturally, also other distances are possible, if they reflect the opin-
ion of the user on the variedness of the features within the context of the
knowledge base. A smaller distance means then that the two features consid-
ered behave rather similarly with regard to the given set of objects and hence
supply similar information on the variedness of the objects. This can be used
for decisions, whether and which of the features can be omitted in future for
being redundant, and, on the other side, it can form the starting point for an
“interpolating” of missing values of features if necessary.

Moreover, the matrix M(i0) can be used to evaluate the discriminablility
of the i0-th feature with respect to the given set of objects. If the elements µi0

for j �= k are all approximately equal to each other, then there is only little
hope for finding any substructure of the objects by means of this feature. If,
particularly, M(i0) is the unit matrix, then the feature discriminates among
the objects to the utmost, however, it does not demonstrate any non-trivial
substructure, either.

Another possibility to evaluate the discriminability of a feature seems to
be given by the Shannon entropy

H(M(i0)) = −c
∑

j,k

µi0(j, k) ln(µi0(j, k)) , (6.63)
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where c is a normalizing constant depending on the elements of the matrix
(see also Bandemer/Näther (1992)). If this entropy is large, then the loss
in information is small, if that feature is omitted from the consideration.
(Entropy is here a pure information theoretical value without any physical
interpretation.)

For fixed j = j0 and k = k0 the vector

M(j0, k0) = (µ1(j0, k0), . . . , µt(j0, k0)) (6.64)

represents the fuzzy similarity of the two objects oj0 and ok0 and with respect
to all features. A neighbourhood of the object oj0 would be given by

Jr(j0; r0) = {l : min
i

µi(j0, l) ≥ r0} , (6.65)

where r0 is the parameter characterizing the neighbourhood. The so specified
neighbourhood contains all objects of the knowledge base that are similar to
oj0 at least to the degree r0 in all features. Obviously, the neighbourhoods
can also be specified for only a part of the knowledge base and with different
bounds for different features.

Finally, the similarity degrees µi(j, k) may be aggregated with respect to
the features, e.g. by a suitable functional defining an overall degree of simi-
larity between each two objects with respect to all features. This would lead
back, in a certain manner, again to the introduction of an overall distance
between the objects. Therefore the choice and interpretation of such an ex-
pression is controversial in a similar manner and with the same arguments as
with that distance.

The neighbourhoods can now be used to solve problems usually, i.e. when
the feature values are crisp, tackled by cluster analysis. This will be very clear
in the case frequently met in practice that typical objects can be selected or
constructed. Then the objects allocated by the corresponding neighbourhoods
represent the equivalent to those clusters determined to each of the initial
prototypes.

The practical solution of classification tasks for fuzzy feature values re-
quire, obviously, another structuring of computer software, however, this
should not be a serious problem with the present state-of-the-art in com-
puter science. The obvious advantage of such a proceeding is its narrow guide
along the practical environment, such that at every time the user’s knowledge
of facts can be introduced into the consideration, being even demanded for
application, whereas the “classical” solving procedures introduce mathemat-
ically motivated additional conditions, and the applying scientist is involved
again not until for the assessment of the numerically found results, e.g. in
cluster analysis, for the assessment of their meaningfulness.
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Evaluation of Functional Relationships

As already introduced in Subsect. 2.4.1, a functional relationship is explained
as a relationship between one (or several) dependent variable and one (or
several) explanatory variable, which can be represented by a functional ex-
pression containing yet unknown parameters, which can assume values from
a given index set. The determination of these free parameters should be exe-
cuted by means of results from measurements or observations, actually, as a
rule, only approximately. This proceeding is called evaluation of a functional
relationship using experimental results.

The finding and fixing of such a special functional relationship (called
the setup) is the decisive main problem in every kind of approximation from
experimental results. Here the special knowledge of the applying scientist with
respect to the environment of his investigation is required. One should read
again in Subsect. 2.4.1 with regard to the problem of choosing a setup.

Compared with Chap. 2, however, a new aspect is introduced by founded
assumptions on the genesis of the data used and their mathematical form and
structure. These assumptions increase the information content of the data
essentially and hence the meaningfulness of the statements on the connection
(its sensibleness, precision, and reliability). Therefore, one should consider
these assumptions thoroughly and check them carefully. Because all obtained
statements are correct only on the condition of the validity of all these assump-
tions, their uncritical use can lead to euphoric assessments of the statements,
to rough misinterpretations and even to uselessness of the obtained results. All
the remarks in Chap. 1 with respect to data quality are also for the present
chapter to a high degree and also with respect to the assumptions on the
genesis of the data and their structure.

In the first section of this chapter the data are considered as realizations
of random variables, in the second section at first the dependent variable is
allowed to be fuzzy, and finally all the variables involved can assume fuzzy
values.

H. Bandemer: Mathematics of Uncertainty, StudFuzz 189, 141–172 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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7.1 Statistical Regression Analysis

7.1.1 Model Assumptions with Random Dependent Variables

As in Chap. 2 n given values yi of the dependent variable at the corresponding
points xi with

xi = (x1i, . . . , xki) (7.1)

form the starting point of the information situation. In contrast to Chap. 2
the arguments here are always considered multidimensional, because this case
is the most frequent one in practical application. For the sake of simplification
of the presentation the dependent variable is taken one-dimensional, the gen-
eralization to the multidimensional case is possible, on principle, but rather
more complicated in its treatment. With respect to this multivariate case it
is referred to textbooks (see e.g. Mardia/Kent/Bibby (1979)).

The problem will consist in the specification of a function

y = g(x) , (7.2)

which connects the dependent variable y with the arguments xj ; j = 1, . . . , k,
the components of the vector x, now called explanatory variables.

Up to now the points (xi, yi) were considered as given exactly. Now some
additional assumptions are introduced.

The first assumption enlarges the information situation. The values yi of
the dependent variable are allowed to be influenced by observational errors.
However, the values of the explanatory variables xji should be given still

exactly, or, formulated more realistically: the observational or adjusting er-
rors of the explanatory variables xj should be allowed to be neglected when
compared with the observational and measurement errors of the dependent
variable y. The typical case in application for this assumption is the techno-
logical measurement of a technologically defined quantity in dependence on
very precisely adjustable influencing quantities.

The second assumption defines the kind of data genesis. The values of the
dependent variable yi are taken as realisations of random variables Yi, which
can be splitted each into two terms

Yi = Y(xi) = g(xi) + ε(xi) , (7.3)

the value g(xi) of the required function at the point xi and the realization
ε(xi) of a random error.

The function g(x) is called also response surface. Hence the random vari-
able Y is then the response variable and its realizations are the response values.

The third assumption demands that the random error ε does not influence
the values of the response variable systematically:

Eε (x) = 0 (7.4)

for all possible x ∈ B ⊆ IRk.
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In order to make the mathematical treatment easier a fourth assumption
is introduced: The random errors of the different measurements should not
influence each other. This is really a demand for statistical independence, but
it is moderated, as a rule, to a demand for uncorrelatedness

cov(ε (xi), ε (xl)) = E[ε (xi), ε (xl)] = 0 for i �= l (7.5)

which is, as is well known, equivalent in the case of normally distributed errors.
Moreover, frequently a fifth assumption is put that the precision of the

measurements should be independent of the point, where the measurement
takes place, i.e.

D2ε (xi) = σ2 for all i = 1, . . . , n . (7.6)

The fourth and fifth assumption can be moderated, though then other
assumptions are necessary on the kind of the stochastic dependence or of the
kind of the dependence of the variance on the points of measurement, respec-
tively. The methods for such cases should check these assumptions, because
they influence the results explicitly.

As in the case of approximation in Chap. 2, without any assumption on
the function g(x) no conclusions can be drawn with regard to the values of
the function between the points of measurement. One needs, as in that case,
a functional relationship

y = η(x;a) (7.7)

with free parameters a = (a1, . . . , am), which is called usually a setup in this
context. In view of the later treatment in numerical procedures now also the
parameters are handled as a vector.

Because it leads to simple mathematical tasks for a solution, the linear
setup is particularly popular. Linearity refers here only to the free parameters
as; s = 1, . . . ,m. One starts in this approach with m known functions fs,
which are linearly independent over the considered domain B, and combine
them linearly by the free parameters:

η(x;a) =
m∑

s=1

asfs(x) . (7.8)

This approach was already considered, for only one argument x, with ap-
proximation in Chap. 2. As explained there, the choice of a setup depends
essentially on the aim of the investigation. For an investigation of scientific
and technological connections also non-linear (in the parameters) setups are of
high interest (e.g. for saturation processes), if they can be founded by facts. If
but only a comfortable presentation is of interest, perhaps only in a small sub-
domain, then one chooses a setup, as a rule, which is linear in the parameters.
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As a motivation then the possiblity of a Taylor- or Fourier-representation,
as with approximation, will be effective. Also the recommendation to use or-
thogonal functions may be helpful here.

For a rational interpretability of the results obtained by the methods from
mathematical statistics (estimation, prediction, test decisions) a sixth assump-
tion is necessary: It should exist a particular value a0 of the parameter vector
with

g(x) = η(x;a0) , (7.9)

i.e., the unknown response surface to be found should be a particular function
of the functional relationship, or – with other words – the response surface
must have exactly the form of the functions of the setup. In this case this
setup is called a true setup.

The treatment of the approximation and the prediction problem for the
function g on the assumptions mentioned in this section (and of general-
izations and leading on investigations based on these assumptions) is called
regression analysis. The naming took place long ago in connection with an
anthropological problem, the presentation of which can be omitted here.

Problems in connection with the assumptions presented in this subsection
are considered again in Subsect. 7.1.3, after a short presentation of some
methods of mathematical statistics.

7.1.2 The Problem of Estimation

The six assumptions specified in the preceding subsection are used now to
formulate the problem:

Specify the unknown function g approximately by the data (xi, yi) as a
problem of mathematical statistics and estimate the unknown parameter vec-
tor a0 = (a10, . . . , am0)τ by means of the given sample vector (y1, . . . , yn)τ .

The vectors are used here as column vectors, as usual in this context, in
the following; hence a transposition sign is necessary, when they occur as row
vectors within the text.

First the simple case of a linear setup is considered. In this case the for-
mulation of the task and the results by means of matrix theory is advisable.

For the sake of simplicity, restricting the set of possible estimations to
those of linear forms of the sample

âs =
n∑

i=1

cisyi + c0s (7.10)

and putting the additional condition of unbiasness (see Subsect. 4.2.2 and
(7.18) below)

EÂ = a0 , (7.11)
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then the “best” estimation is obtained by the method of least squares (more
precisely: the method of the least sum of squares). This method was introduced
already in Sect. 2.3, though for only one explanatory variable x. In contrast
here a vector x of explanatory variables is allowed and for the response variable
y a stochastic background is considered.

With the given realizations yi and the true linear setup (7.8) and (7.9)
for the unknown function g the optimization problem of the method of least
squares has the mathematical form

Q(a) =
n∑

i=1

(
yi −

m∑

s=1

asfs(xi)
)2

= min
a

. (7.12)

In usual manner by partial derivation of Q(a) with respect to the com-
ponents of a and nullifying of the derivatives the following system of linear
equations is obtained

m∑

s=1

as

n∑

i=1

fs(xi)f1(xi) =
n∑

i=1

yif1(xi)

· · · (7.13)
m∑

s=1

as

n∑

i=1

fs(xi)fm(xi) =
n∑

i=1

yifm(xi) .

With the abbreviations

F = ((fs(xi))); s = 1, . . . , m; i = 1, . . . , n;
y = (y1, . . . , yn)τ (7.14)
a = (a1, . . . , am)τ

it can be written clearly as

FτFa = Fτy . (7.15)

If the system matrix FτF is non-singular, i.e. it possesses an inverse ma-
trix, then the system of equations (7.15) can be resolved for a formally and
yields the solution â, the wanted estimating value:

â = (FτF)−1Fτy . (7.16)

Necessary conditions, on which the matrix is non-singular, are the linear
independence of the set functions over the considered domain and that the
observations took place at points xi, of which at least m were different from
each other.

Generally, the vector of the response values is a random vector Y (the
procedure should be valid for all possible realizations), hence the estimator is
a random vector
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Â = (FτF)−1FτY . (7.17)

Numerically, the vector â is provided by a computer. As mentioned al-
ready in Chap. 2 also here a numerical error is supervened by the computa-
tion, which has, however, nothing in common with the random error, which
occurred in specifying the values yi. The scale of the numerical error depends
on the equation system, more precisely, on the condition of the matrix FτF.
The effect was demonstrated already in Subsect. 2.3.1 by the example of a
glancing intersection of two straight lines. Also in the present case the advice
remains valid to assess this numerical error in every case. This can be effected
by comparing the solutions of the system of equations, when the “inputs” are
changed several times numerically to only an insignificant extent each time.

A purely statistical problem, however, is the assessment of precision of
the estimation, i.e. the question, how the measurement errors ε propagate
themselves to the estimation. Let be δ = (δ1, . . . , δm)τ the random vector of
the deviations from the “true value” a0:

a0 + δ = Â (7.18)
= (FτF)−1FτY

= (FτF)−1Fτ (g(x) + ε)

with g(x) = (g(x1), . . . , g(xn))τ and ε = (ε (x1), . . . , ε (xn)τ ). Then, on ac-
count of the unbiasedness (7.11) one obtains by the simple result

δ = (FτF)−1Fτ ε (7.19)

a connection between the estimation errors δ and the measurement or input
errors ε. Even if the input errors are uncorrelated, the estimation errors, in
general, will be correlated. Hence, for an assessment of the estimation preci-
sion one uses quantities, which are derived from the covariance matrix of the
estimation error vector

Bδ = ((E(δsδr))); s, r = 1, . . . ,m . (7.20)

In the main diagonal of this matrix one finds the variances D2δs of the
estimators Âs of the parameters as. If the measurement errors are uncorrelated
with a constant variance σ2, then one obtains immediately from (7.19)

Bδ = σ2(FτF)−1 . (7.21)

If, moreover, the matrix in brackets is a diagonal matrix, then also the
components of the estimation are uncorrelated and one can read the precision
of the parameter estimation directly. Therefore, if the points xi, where the
measurement should take place, can be chosen beforehand, then one can try
to choose them, e.g., in such a manner that one will obtain, with the given
functions fs, a diagonal matrix Bδ. This is a problem of statistical experimen-
tal design (see e.g. Bandemer/Näther (1980)).
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The given estimator Â, according to (7.17) and on the assumptions from
Subsect. 7.1.1, is the best one in the following sense that every other linear
unbiased estimation has a “larger” covariance matrix Bδ (in the sense of the
partial ordering of positive definite matrices, see some textbook on matrix
theory).

7.1.3 Discussion of the Model Assumptions

The statements of Subsect. 7.1.2 are valid only on the assumptions of Sub-
sect. 7.1.1. Now it will be investigated what will happen, if some of them are
no longer valid, and how these assumptions can be checked or guaranteed.

With the first assumption is was presupposed that the points xi, where
the measurements took place, are relatively precise when compared with the
response values yi. If xi as well as yi are afflicted by observation errors being
not neglectable, then (X1, . . . ,Xk,Y) is a random vector. This forms the start-
ing point for the general regression problem with random variables (called the
regression model of second kind) and for the regression analysis with errors
in variables. Subsect. 7.1.5 will be devoted to these problems.

By the second assumption it was demanded that the random error ε occurs
as an additive term (“absolute” error). Frequently, however, the “relative”
error will play a role, i.e. the connection is a multiplicative one:

Y(xi) = g(xi)ε (xi) . (7.22)

Formally a transition is possible then, in turning to the logarithm on both
sides and putting down the problem again to an additive one:

log Y(xi) = log g(xi) + log ε (xi) (7.23)

changing the notation appropriately. However, this near at hand proceeding
can be treacherous. The transformed problem can show totally unexpected
results. Apart from the fact that all occurring quantities must be positive, of
which the logarithms should be taken, the distances on the y-axis are changed
radically. It can be disastrous, first of all in the case, when the input errors
are really essentially additive terms.

By the third assumption it was demanded that the measurement errors do
not provoke systematic deviations in the results. In practice preferences can
but happen at all. In measuring, e.g., of inner calibres of pipes the results are
more likely too short than too long.

The cases of weak data quality, already discussed in Chap. 1, go also in
this category of hurting assumptions. Hence the warnings and hints to be
given here are essentially repetitions: A careful expertly done examination of
the data material is always advisable.

Again it is warned of procedures, which realize and eliminate potential
outliers (lying outside the bulk of the data) automatically. If procedures for
realizing outliers are applied at all, so these must present the realized potential
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outliers to the handling scientist first. Starting from his expertly point of view
and his technological possibilities the scientist will decide, what should be
done: Whether the measurement or observation can or will be repeated, or
the value can be corrected or left as a valid value, or, finally, it must be deleted
after all. For interest of new insight it is advisable in any case to investigate
the causes of the unexpected or seeming deviation with a potential outlier.

If one reckons already with a certain percentage of outliers, which will
be “harmless” with respect to the statements of interest, then it might be
useful to apply procedures, which are called “robust against outliers”. Such
procedures weigh the potential outliers according to the degree of their single
“being outside” by factors smaller than 1 and hence decreasing their influence
on the statements (e.g. estimations) respectively.

In general, the advice is repeated here that the scientist dealing with the
data should require information as precise as possible on how the data are
gathered, best by personal close look.

Finally, residual analysis, as presented shortly at the end of this subsection,
can give some insight into possible hurtings of the assumptions.

With the fourth assumption the independence (or at least the uncorrelated-
ness) of the random measurements was required. If this assumption is hurted
systematically, then one must know this system, when statements on the con-
nection are to be made. The system can also be a stochastic one. The random
response variable Y needs then a stochastic model, either a random process
(e.g., when time is the only explanatory variable) or a random field (e.g., when
coordinates of points are the explanatory variables). Models of this kind are
beyond the framework of the present book, because they need an essentially
more profound background. With respect to an important special case it is
referred to Subsect. 7.1.6.

With regard to time series see, e.g., Box/Jenkins (1970).
By the fifth assumption it was demanded that the variance is constant

over the whole domain of the explanatory variables. But the variance can
change, e.g., when the measurement scale measures the quantities only after
a transformation, e.g., by their logarithms. When already results from earlier
investigations are available or when by preliminary investigations the depen-
dence of the measurement precision on the explanatory variables was made
clear, e.g., by residual analysis, then the original formula of the method of
least squares can be modified to obtain again good estimates. Let be σ2(xi)
the variance at the respective point xi, then the modified optimization prob-
lem reads

n∑

i=1

σ−2(xi)
(
yi −

m∑

s=1

asfs(xi)
)2

= min
a

. (7.24)

In the software the variance values should be called up, as a rule, and
taken respectively into account in the computation.

Finally, the sixth assumption is usually the most important one: The cho-
sen setup should be true. If there is some factually supported uncertainty or



7.1 Statistical Regression Analysis 149

doubt with respect to the setup, then this is the starting point for a model dis-
crimination, as it is called usually. One is faced with this problem in different
manner, whether the setup is expertly supported or a purely approximating
setup.

With expertly supported setups one wishes to have a closed analytical form
for the relationship, which should be used always in future as a scientifically
based knowledge. It can happen, however, that for the given situation there
exist several supported theories or assumptions on the (causal) connection,
which each leads to an expertly supported setup. In an investigation it should
be decided, which of these setups does justice to the given data material in the
best way. This one obtains then, in the future, the greatest factual confidence.

A simple decision method for one of the setups is the following. For each
of the setups the parameters are estimated according to the method of least
squares and then that setup is chosen, for which the smallest residual sum
Qmin is reached. But this method is problematic. It does not decide on the
truth of the setup and of the theory basing it, as it is frequently desired. More-
over, setups with more parameters are preferred, because the approximation
quality increases, as a rule, with the number of free parameters. The decision
on an expertly supported setup should be, as in the last instance, always a
problem of the applying scientist.

If the observational points can be chosen within a certian framework arbi-
trarily, method of statistical experimental design can be used to increase the
power of discernment of the method of model discrimination.

With approximating setups the situation is quite different. Here a setup
should be chosen, which, on the one side, represents the given data quite
well, and on the other side, does not contain too many parameters. A later
modification considering further data is not excluded. In this case the model
error, e.g.

min
a

max
x

|g(x) − η(x,a)| , (7.25)

should have the scale of the measuremet error σ. Instead of the maximum of
the absolute value of the difference, as in (7.25) one could consider the integral
over the square (g(x) − η(x,a))2 over the domain B and try to bring it into
the scale of the variance σ2. Especially interesting is a proceeding beginning
with a simple setup (e.g., linear in the explanatory variables) and enlarging
it succesively by further terms, until a satisfying approximation of the data
is reached. This is the usual procedure in statistical designing in the sense of
Box (see with regard to further literature also Bandemer/Näther (1980)).

In every case it should be warned of an unsystematic trial and error ap-
proach, as it is offered by some software tools. From a catalogue of standard
functions (polynomials, trigonometrical functions, logarithms, power functions
and other exponential functions, up to “exotic expressions”) terms are selected
and compiled to setups, until the residual sum with the given data is suffi-
ciently small. The result is almost never factually interpretable and always
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numerically unstable; slight changes in the data or additional measurements
lead possibly to totally different setups.

Also the frequently for this purpose recommended method of principal
components (see, e.g., Lawley/Maxwell (1971) with respect to the problem
and the procedure) is not without its problems as a method to choose a setup.
On the one side the result depends considerably on the data, on the other side,
the so created linear combination of partial setup functions, turning out as
new explanatory variables, can frequently interpreted in the real application
case only very difficultly. It needs really a well investigated background, when
the method of principal components should yield a valuable result.

A tried method for a heuristical check of certain assumptions is supplied by
residual analysis, although it represents, naturally, also no universal remedy
and needs a supporting expertly interpretation and examination. From the
“estimated errors”

ε̂i = yi − η(xi, â) , (7.26)

which are connected by the estimating equations (hence they are no longer
stochastically independent) possible hurtings of the assumptions are inferred.
Usually for this purpose extensive software packages of statistical data analysis
are used, which can visualize also multidimensional data via projections.

In the following two simple cases are demonstrated.
In Fig. 7.1 the estimated errors show the same sign over a whole subdomain

of the x-axis. In this subdomain something is wrong with the chosen setup;
possibly, in the present case, a quadratic term is missing in the setup.

In Fig. 7.2 the scale of the estimated errors changes with increasing x.
Here the assumption demanding equal variance is hurted. Squaring the values

Fig. 7.1. Estimated error values from a sample drawn over the domain of the
explanatory variable
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Fig. 7.2. Estimated error values from a sample drawn over the domain of the
explanatory variable, another example

ε̂i and fitting a function over the domain yields an impression of the function
σ2(x) to be used in the modified method of least squares.

Also drawing the estimated errors over y yields sometimes hints on a pos-
sible multiplicativity of the measurement errors.

The common software for data analysis offers further procedures of residual
analysis also for the multidimensional case.

7.1.4 Further A-Priori Knowledge and Assumptions

According to the “golden rule” of statistics (What of a-priori knowledge does
not exists or is not used, must be compensated by a higher expenditure of
measurement and observation) further a-priori knowledge on the response
surface can be used, either to increase precision and certainty of estimation
or to decrease expenditure of observation.

If, e.g., certain points are known, where the response surface must as-
sume known values, for factual reasons, then the setup can be reduced or the
pointwise connections can be introduced as restrictions into the optimization
problem. As an example: if g(0) = 0, then the constant in the setup can be
omitted. Moreover, also given bounds, supported by facts, can be taken into
account, e.g., g(x) ≥ 0 oder gu(x) ≤ g(x) ≤ go(x). Hints to procedures for
these cases are contained, e.g., in Toutenburg (1982).

For specifying of a confidence estimation with

Pa0

(
C(Y1, . . . ,Yn) � a0

)
≥ 1 − α , (7.27)
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i.e. a random domain C(Y1, . . . ,Yn), which covers the true parameter value
a0 with a probability of at least 1 − α, an additional assumption on the
distribution of the observational errors ε is necessary.

Usually as a seventh assumption it is required that ε is normally distributed
or at least approximately normally distributed. On this condition confidence
regions for the unknown parameter and the unknown response surface make
sense. If the assumption is hurted, then the regions are, as a rule, at least much
too optimistic, sometimes, however, even totally senseless. An examination,
whether the assumption is valid can be effected (conditionally) by residual
analysis. It would be ideal, but too expensive, to have preliminary investia-
gations with several repeated measurements at each of the points. For large
n the formulae for confidence regions are relatively robust against hurtings of
the seventh assumption.

If observations or measurements are to be carried out very often, e.g. as
an accompanying routine, or if the connection is already investigated rather
well, one succeeds sometimes in specifying the theoretical or empirical a-
priori knowledge by a frequency or probability distribution for the coefficients.
This is a meaningful use of today nearly everywhere available “data heaps”.
Bayesian inference as already presented in Sect. 4.3 can be applied also in
the present case of evaluation of functional relationships.

First an a-priori distribution for the vector a is to be specified, either as
a histogram or by exploitation of experts’ opinions. Practically this is mostly
carried out gradually. In the first step an expectation vector aB is fixed, either
by averaging or by taking an assumed centre, around which the values scatter.
Then a covariance matrix BaB

is fixed, either estimated from available data
material or specified by factual considerations. Finally, a type of distribution is
to be chosen yet. The Bayes’ theorem yields then an a-posteriori distribution
for the parameters and hence also for the response surface.

If the setup is true and linear, the problem proves to be essentially simpler.
Then already expectation vector aB and covariance matrix BaB

suffice to
obtain a linear a-posteriori estimation for the true parameter vector a0. This
linear Bayes’ estimator, as it is called, has the form

ÂB(Y) = [FτF + B−1
aB

]−1[FτY + B−1
aB

aB] . (7.28)

Comparing this estimator with the common estimator according to the
method of least squares, one realizes that the corresponding expressions of the
a-priori distribution are each added to those of that estimator. This makes it
possible to come to reasonable estimates of the parameters even if the normal
system matrix FτF is singular. Hence for a Bayes’ estimator one gets by, as a
rule, on a smaller observation expenditure, this is a result of the introduction
of a-priori knowledge, i.e. additional information.

With the same observation expenditure the Bayes’ estimator improves
the quality of the estimation statement. This estimator is also relatively ro-
bust against smaller misspecifications of the a-priori quantities. But it is,
naturally, a preconceived opinion about the parameters, this can lead to
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misinterpretations of the observation results. Hence it is suggested to keep
always in mind the consistency of the a-priori assumptions with the observa-
tion results. There exist also tests, by which the consistency can be “checked”
, however, it is warned to appley them uncritically. If it is possible, the depen-
dence of the estimator on the a-priori distribution should remain transparent
(see e.g. formula (7.28)). Further details of this field of problems see, e.g.,
Pilz (1991).

Sometimes it is possible to interprete also bounds for the response surface
in the sense of Bayesian theory (see e.g. Bandemer/Pilz/Fellenberg

(1986)).

7.1.5 Random Influence in All Variables

Up to now it was assumed that only the response variable y is a random
variable, i.e. the uncertainty in x may be neglected. Now the case is considered
that this assumption is no longer valid. With respect to this problem there
are at least three different approaches.

In the first approach all variables involved, response variables as well as
explanatory variables, are considered as random variables. For a presentation
of this approach the simplest case of one random reponse variable Y and one
random explanatory variable X will suffice.

So, starting point is the random vector (X,Y). The curve of the expected
values of Y for each fixed x

E(Y|X = x) = gY (x) (7.29)

and correspondingly

E(X|Y = y) = gX(y) (7.30)

are called the regression lines of the common distribution of X and Y. In
general, they are different from each other and allow statements only in one
direction each, either on the behaviour of Y with given x, or on that of X with
given y. Conclusions in the each opposite direction, as with usual functions
e.g. by an inverse function, are impossible.

Without any knowledge about the common distribution these notions are,
as a rule, of only little use. Naturally, one could consider the common fre-
quency distribution. However, for well-founded conclusions the number n of
available realizations should be rather large.

There exists an “approximation approach”, in which both the regression
lines are approximated each by a linear setup, the free parameters of which are
to be estimated then. The numerical procedure is identical with that for non-
stochastical arguments x (with gY (x)) and y in the other case. In interpretation
of the results of regression analysis, however, the model background is to be
taken into account. This kind of regression with random variables is also called
regression of second kind.
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A second approach is the regression for functional relationships with errors
in variables. The assumptions on the relationship and on the nature of the
variables involved are similar to those put for regression with fixed and known
values of the explanatory variables:

The unknown function g(x), which describes the relation, is assumed con-
tinuous and even developable into a Taylor-series. A true setup η(x,a) let
be known. The observatorial errors be all additive:

Yi = yi + εi (7.31)
Xji = xji + uji . (7.32)

The functional relationship be valid exactly for the true values, i.e.

yi = g(xi) . (7.33)

The deviations εi and uji let be realizations of continuous random variables
with expectation value zero each.

The given methods differ from each other by further assumptions.
If the deviations are stochastically independent of each other (further as-

sumption a)) and if the variances of these deviations σ2
Y and σ2

j for Y and the
corresponding component Xj of X, respectively, are known (further assump-
tion b)), then the free parameters a of the setup and the true observation
points xi can be estimated by a modified method of least squares:

QF (a,x1, . . . ,xn)

= σ−2
Y

n∑

i=1

(
Yi − η(Xi;a)

)2

+
k∑

j=1

[
σ−2

j

n∑

i=1

(Xji − xji)2
]

= min . (7.34)

There are methods to eliminate the xji in order to reduce the problem, be-
cause the dimension of the problem increases with the number of observation
points.

Another approach suggests to divide the data material into groups and
to estimate the parameter vector a from the centres of gravity of the single
groups.

A survey of the problem with references can be found, e.g., in Schmer-

ling/Bandemer (1985).
Finally, methods of local approximation can be adapted also to this case

(see Sect. 2.3).
The next subsection is devoted to an interesting and for application im-

portant special case of “local” estimation, if the observations are stochastically
dependent on each other.

7.1.6 Local Regression in a Random Field

A special model, which plays its role in deposit geometry and which led to the
development of a branch of geostatistics (see, e.g., Cressie (1991)), considers
a field function, e.g., in the three-dimensional natural space
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v = g(x, y, z) . (7.35)

In this context x may indicate the length, y the width, and z the depth as
corresponding coordinates, whereas v can indicate, e.g. the contents of ash,
metal, or water. Actually, such a function can assume only the values 1 or 0,
when considered on the level of single points: either the point lies within a
corresponding particle or not. However, the value v at a single certain place
(x0, y0, z0) can be “measured” only as the mean taken from a “specimen”
P (x0, y0, z0) of finite extent with fixed shape, quantity, and orientation in
space around the point:

gP (x0, y0, z0) =
∫

P (x0,y0,z0)

g(x, y, z)dxdy dz , (7.36)

perhaps divided by the volume of the specimen
∫

P (x0,y0,z0)

dxdy dz . (7.37)

It is also possible to introduce a weight function w(x, y, z) within the single
corresponding integrals.

Such a function gP (x, y, z) is called usually a regionalized variable in
considering the variation of the specimen P with respect to shape, quantity,
and orientation (see Matheron (1965)).

The mathematical task consists in the local approximation of the function
gP , in order, e.g., to estimate the quantity of an interesting substance within
a given solid. Let be B0 a solid planned for being mined (a “block”). Because
the specimens P are small when compared with the extent of the block, the
quantity of the interesting substance within the block, J(B0), is obviously

J(B0) =
∫

B0

g(x, y, z)dxdy dz =
∫

B0

gP (x, y, z)dxdydz , (7.38)

if gP was normalized by the integral (7.37). Another problem is the interpo-
lation or approximation of gP within a region V .

In both cases one wishes to “composite” the expression by linear functions
of certain “measurement values” gP (xi, yi, zi), e.g. by

Ĵ(B0) =
∑

i

cigP (xi, yi, zi) (7.39)

ĝP (x, y, z) =
∑

i

di(x, y, z)gP (xi, yi, zi) . (7.40)

The most important model idea for a statistical handling of these tasks
consists in the following assumption:

The function gP is, over its domain B ⊂ IR3, a realization of a random
field with
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GP (x, y, z) = g0(x, y, z) + ε (x, y, z) , (7.41)

where g0 is called the trend part and ε the random part. Note the analogy with
the regression model.

The application of this model is not unproblematic. Therefore some of
these problems will be discussed here, because they find their expression in
the course of computation explicitly.

Firstly, the splitting of the regionalized variable into a trend part and a
random part depends essentially on the chosen scale of the investigation. In
the two-dimensional case, local differences in the elevation of the ground are
assessed by a landscape gardener in another way than by a road construction
planner or even by a carthographer. What is a sytematic trend to be taken into
account yet for the one of them can be already a random deviation for the other
one. So, the choice of the scale depends on the intended aim and the context,
removes arbitrariness and specifies what should be considered as randomness.
In this way the statement is confirmed here, which was already held in Subsect.
4.1.1 that the applying scientist decides what should be considered as a matter
of chance in his problem.

If one has decided, in this way, for a stochastic model idea, immediately a
second problem arises: The given deposit is only one realization of the hypo-
thetically assumed random field. Probabilistic statements are conclusions on
varieties of possible realizations. Statistical conclusions from only one real-
ization are, as a rule, highly questionable. There are different interpretations
tried to escape from this dilemma, so, e.g., the assumption that the different
blocks, in which the deposit is partitioned are realizations of some “random
block”. This supports the useful recommendation that the model should be
considered as valid only locally.

From the definition of a regionalized variable above one realizes clearly
that “neighbouring values” can be not independent of each other, hence that
also random deviations ε will show a dependence. One expects an improve-
ment of the quality of statistical statements, if this dependence is taken into
account within the formulae of estimation and prediction. However, for this
purpose one has again to specify assumptions on the kind and extent of this
dependence, shortly on its “regularity”. Besides, also the usual assumption on
the independence is an assumption on such an regularity.

Fore the sake of simplification of the representation in the following the
points are denoted by Q = (x, y, z) and the difference of the functional values
is abbreviated by GP (Q1, Q2) = GP (Q1)−GP (Q2). According to the splitting
formula (7.41) of GP one obtains

EGP (Q1, Q2) = G0(Q1, Q2) + E (ε (Q1) − ε (Q2)) (7.42)
EG2

P (Q1, Q2) = G2
0(Q1, Q2) + E ε2(Q1) + E ε2(Q2)
−2E(ε (Q1)ε (Q2)) . (7.43)

Without any additional assumptions from these formulae for one realiza-
tion no statistical conclusions can be drawn.
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The first assumption concerns the isotropy of the field: The dependence
of the random deviations depends only on the distance of the two points, i.e.

E(ε (Q1)ε (Q2)) = C
(√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2
)

, (7.44)

where the function C is called the covariance function of the field. The validity
of the isotropy assumption seems reasonable for small regions in application.
Certain and different generalizations of the model are possible.

When considering two-dimensional cases in a plane region, then obviously
the formulae above can be written also for points Q = (x, y) and, particularly,
isotropy and covariance are defined in the same manner. With respect to the
third coordinate, say the depth z, also other regularities of dependence can
be introduced and are used in application (see e.g. Cressie (1991)).

In geostatistics and in the case of isotropy instead of the covariance func-
tion the variogram, as it is called,

EG2
P (Q1, Q2) = 2γ(Q, d) (7.45)

is considered, where Q1 = Q and Q2 = Q + d are replaced. The function γ
is called the semivariogram. Semivariogram and covariance function can be
computed from each other, according to (7.43) and (7.44), theoretically.

The problem, however, consists in that neither C nor γ is known. Their
estimation is impossible, because only one realization is given. For a reasonable
estimation of g0(Q) one needs information on the stochastically regularity of
the deviations, i.e. on C or γ. So the estimation problem would be really
unsolvable.

A way out is offered by the intrinsic hypothesis, as it is called: The co-
variance function, respective the semivariogram, does not depend on Q, but
only on d. This assumption is fulfilled in practical situations again within
local regions approximately. From this starting point there are two different
approaches.

In the first approach one demands Eε (Q) = 0 and assumes moreover
that the field is homogeneous in a wide sense, i.e. among others D2ε (Q) =
Eε2(Q) = σ2. Then the trend part g0 may have an arbitrary form. The intrinsic
hypothesis applies here only to the covariance function.

With the second approach one demands E(ε (Q1)−ε (Q2)) = 0 and assumes
moreover that the field has homogeneous increments, this means among others
D2(ε (Q1) − ε (Q2))2 = τ2. Then g0(Q) = m must be constant. The intrinsic
hypothesis applies here to the semivariogram.

With these assumptions estimations are possible. One obtains the empir-
ical variogram, as it is called,

2γ̂(h) =
1

n(h)

n(h)∑

i=1

[

gP (Qi) − gP (Qi + h)
]2

(7.46)
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by adding up over all n(h) couples of values at observation points Qi, which
have each the respective distance h.

The semivariogram can be discontinuous at the origin:

γ(0) = 0 but lim
h→0

γ(h) = C0 > 0 . (7.47)

The magnetude of discontinuity C0 is called nugget-effect and results from
the existence of subdimensional structures (problem of the chosen scale) or
by small additional measurement errors in the process of gathering the obser-
vation values. The typical behaviour of an empirical semivariogram is shown
in Fig. 7.3. As a rule, a (parametric) setup is chosen for a representation of
this semivariogram and its parameters are estimated from the given data.
These estimates are then used for estimating the required quantities of the
regionalized variables. A particular proceeding was called Kriging-technique
according to a suggestion of Matheron (1969), who intended by this to hon-
our his friend Krige, being the first in applying this technique, in prospection
and mining gold in South Africa.

First in a trend analysis the systematic part is splitted off. From the es-
timated deviations in the observation points the covariance function is es-
timated. With this estimate the trend estimate is improved and from this
improved estimate the estimate of the covariance function is improved. This
iteration procedure is continued until no essential improvements can be ob-
tained.

Fig. 7.3. Typical picture of a semivariogram with the nugget-effect C0, the reach a,
the stable region S and the region V , in which the intrinsic hypothesis is no longer
valid
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In the decades passed diverse variants, refinements and generalizations of
this technique became known, which found their expressions in textbooks and
software tools.

Because of the local character of the theory it suggests itself to use results
from other regions, which are considered as similar for factual reasons to the
situation in the present region. This invites to apply Bayesian methods (see
Pilz/Pluch/Spöck (2005), for a connection with considerations from fuzzy
set theory see Bandemer/Gebhardt (2000)).

The above explanations should only serve to clarify the essence of the
technique and to allow a reasonable assessment of the results obtained by it.

7.2 Fuzzy Evaluation of Functional Relationships

In the preceding section the uncertainty of the data, which served for an
evaluation of the functional relationships, are modelled by a probabilistic
background. They were interpreted as realizations of random variables, the
properties of which were specified by a series of assumptions to be considered
and checked in every case of application. In the third chapter two alternatives
for specifying uncertainty were presented, which should be now confronted
with the problem of evaluation of functional relationships.

As the simplest case an information situation is considered, in which the
values of the explanatory variables are given exactly and for the values yi of
the response variable at the observation points xi intervals of the form are
specified

yui ≤ yi ≤ yoi . (7.48)

A near at hand plausible proceeding would be the consideration of the set
of all values of the parameter vector a of the functional relationship

y = η(x,a) , (7.49)

for which the functional values lie between the corresponding lower and upper
bound at each single observation point:

A = {a | for all i : yui ≤ η(xi,a) ≤ yoi} . (7.50)

This proceeding shows, however, two essential difficulties. On the one side
the specification of the crisp bounds is not possible without a high arbitrari-
ness, as already explained in Sect. 3.1. The solution set A could depend essen-
tially on this specification (as in the case of the linear equation system with
interval data presented in Alefeld/Mayer (1995)). On the other side the
computation of A in non-trivial setups might be very complicated and will be
effected numerically only with an unjustifiably high expenditure.
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Therefore, it is reasonable to go over immediately to evaluated intervals,
i.e. to fuzzy sets (see Sect. 3.2). In using fuzzy sets for evaluation of functional
relationships there are two different approaches.

In the one approach it is tried to generalize methods of mathematical sta-
tistics for crisp data to the case of fuzzy data in applying extension principles
to the corresponding notions and expressions, as it was mentioned already in
Subsect. 4.2.4 (see Viertl (1996)).

The other approach transforms the starting problem and offers a solution
by general methods from the theory of fuzzy sets.

7.2.1 Crisp Data Analysis as a Starting Point

Usually crisp data are given as points in a k-dimensional space. In the ex-
plorative phase of data investigation, if there is not yet given an expertly
supported or a near at hand setup, data analysis starts with the arrangement
of the points according to further properties, mostly with respect to their fre-
quency in pre-assigned classes. This arrangement is connected with a search
for outliers, the reliability and representativity of which is questioned, at least
for the moment. Next it is tried, by suitable representations and transforma-
tions, to realize structures within the “point cloud”, inter alia to obtain an
idea for a setup. If the data space has a dimension higher than two or three,
which is usually the case, then these transformations must be projections to
allow a visual inspection at the screen. With series of such projections obeying
a certain rule of generation, called projection pursuit, it is tried at the screen
to find such projections, by which a special structure in the data becomes ob-
vious. Such structures may be, e.g., a decomposition of the whole cloud into
partial clouds or an arrangement of the bulk of the points along curves or sur-
faces. This technique was used first by Friedman/Tukey (1974); the survey
paper by Huber (1985) can be recommended for a pregnant and coherent
overview.

If the search is to be performed automatically, then the software must have
some measure of interestingness given for every single found constellation, by
which the computer “learns”, which type of “structure” it should look for. This
technique was generalized to fuzzy data (see Bandemer/Näther (1988a)),
especially if the points are specified as of generalized “bean-type”

µ(x) = h(d(x,xi)) , (7.51)

where d is a distance function and h is a suitable monotonically increasing
function (with respect to details see Bandemer/Näther (1988a)).

Most of the methods of classical multivariate analysis, as principal com-
ponent analysis, discriminant analysis, and some methods of factor analysis,
turn out to be partial cases of projection pursuit technique (with correspond-
ing measures of interestingness).

A special case widespread in application is the partial least squares tech-
nique, as it is called, PLS for short. It goes back to Wold (1985) and forms
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the essential element of his “soft modelling”. This technique tries to evaluate
(linear) functional relationships among non-observable (latent) variables from
observable ones assumed to be dependent on those. Also this PLS-technique
was adapted to fuzzy data (see Bandemer/Näther (1988b)). Taking into
account data fuzziness in these procedures facilitates an essentially higher
sensivity of cognition procedures, because functionally caused differences will
be realized much better against data fuzziness, or possibly erroneously as
functional interpreted differences may disappear in data fuzziness.

A simple method to come to an approximation for an assumed functional
relationship in the crisp case is, as is well known, the strictly connecting of
neighbouring observation points with each other in order to obtain an approx-
imation at least in a local region. This method can be applied, obviously, also
to fuzzy data.

To avoid a proliferation of notations only the simple two-dimensional spe-
cial case (x, y) ∈ IR2 is considered for the fuzzy data Zi; i = 1, . . . , n with the
corresponding membership functions µi(x, y).

Since the supports of the single data supp(Zi) can overlap, for a local rep-
resentation first an aggregation principle must be chosen to obtain a unique
aggregated datum. Usually the union is chosen for this purpose, mostly rep-
resented by the maximum.

Then a first and near at hand recommendation for a local approximation
of the functional relationship of the response variable y and the explanatory
variable x is to choose the modal trace

Fmod(x) = {y | y = arg sup
y

µZ(x, y)}; x ∈ {x| sup
y

µZ(x, y) > 0} , (7.52)

i.e. for every single x the set of all y is considered having maximum member-
ship to Z at x, naturally only within the set, where information is supplied
by Z at all. This criterion can be interpreted in the sense of possibility theory
(see Subsect. 5.2.2): as aiming at maximum possibility for the fitting values.
In general the modal trace will present for some x several values of y. The
trace will be neither unique nor continuous, but will show the behaviour of a
natural range of mountains as can be seen in topographical maps. All these
shortcomings will not be a disadvantage: for a first impression it suffices to
realize occurring trends. Moreover, a premature smoothing and pressing to
uniqueness and spreading into unobserved regions may alter the information
inherent in the original data inadmissibly and can be misleading for the fol-
lowing analysis. If the trace branches out into several clearly separated ranges
with respect to y, then one should inspect the original data for outliers, re-
consider the specifications of the fuzzy sets, or, remind the possibility that
the functional relationship can have an implicit form.

In the case of an implicit functional relationship the principle of modal
trace can be modified. Interpreting now the values of the membership function
µZ as values of height in a topographical map, then one may adopt a principle
of watersheds, where only the ridges are chosen to support the approximation,
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which are watersheds of the fuzzy “mountains”. Methods for calculating such
watersheds can be found in Bandemer/Hulsch/Lehmann (1986).

A case study, including an application of this modal trace in a practi-
cal case to find an expertly supported setup, will be given within the next
subsection.

7.2.2 Explorative Evaluation of Functional Relationships

In the preceding subsection the data were considered locally, i.e. each time in
the immediate neighbourhood of each single datum. Now it is started aim-
ing at a representation of the data by a functional expression. A functional
relationship

y = η(x,a) (7.53)

is given over the domain x ∈ B. The parameter vector a may vary within the
set A.

For a treatment of this global evaluation problem two different attitudes
for a model understanding can be distinguished. In the explorative attitude,
which is considered first, the data are taken as they are. Statements on the
functional relationship use only these data and refer only to those parts of
the aggregated datum, in which its membership function is positive, i.e. to
supp(Z). In the problem of approximation treated later on, assumptions are
necessary, which allow the inclusion also of the domain outside the support.

For the explorative case one starts with the functional relationship (7.53)
and tries to transfer the obtained (fuzzy) information contained in the fuzzy
data Z1, . . . ,Zn into the parameter set A of the functional relationship. The
corresponding mapping

A = V (Z1, . . . ,Zn) (7.54)

is called transfer principle. The evaluation of every single function η(x,a)
of the functional relationship (7.53) is a fuzzy evaluation of a, i.e. by the
membership function µA(a) of A from (7.54).

The mapping V consists of two operations: an aggregating one Vagg, which
removes the dependence on the individuality of the data (the index i) and
an integrating one Vint, which removes the dependence on the diversity of the
x-points in the domain.

For mathematical convenience, theoretically as well as numerically, the two
operations should be specified individually and applied one after another. The
proposed transfer principle used differ from each other in the specification of
the partial mappings and in the order of their application.

For aggregating the data one can first take into account for the functional
relationship all those points, which belong to at least one of the data Zi. Then
the data are to be united, e.g. by maximizing
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µZ(x, y) = max
i

µi(x, y) , (7.55)

as it had been practised in forming the modal trace.
If each single datum should be used at every point with equal rights,

perhaps with different degrees of trustworthiness βi ∈ [0, 1], then the weighted
mean is near at hand, i.e. computing an aggregated datum of another kind
with the membership function

µZ(x, y) =
n∑

i=1

βiµi(x, y) , (7.56)

with suitable chosen β′
is, such that µZ remains in the unit interval.

If one takes for useful only such information that is contained in each single
of the given data, then even an intersection of the data would make sense.

Finally, the transfer principle can be made more robust against outliers,
if the aggregation is restricted to only a certain subset of the data (see Ban-

demer/Näther (1992)).
Now, one can apply an integrating operation Vint to the aggregated datum

Z. In general

µZ(η(.,a))(x) = µZ(x,a) (7.57)

with x ∈ B represents the degree to which the graph {(x, η(x,a))};x ∈ B
hits the aggregated datum Z in x for a given parameter value a. Considered
over B then Z(η(.,a)) is a fuzzy set with the membership function (7.57). In
this manner every integrating operation Vint is an evaluation principle for this
set and hence for a. For specifying a quite simple integrating operation one
chooses some weight function w over B expressing some additional knowledge
or desirable requirements. For example, by

w(x) = w0 sup
y

µZ(x, y) (7.58)

every single x is weighted by the modal trace value of membership (7.52), and
regions without any information by fuzzy sets are omitted.

Then

A∗
1 : µA∗

1
(a) =

∫

B

µZ(x, η(x,a))w(x)dx (7.59)

is a quantitative evaluation and together with the chosen aggregation principle
Vagg it is a useful tranfer principle. If w(x) is interpreted as some probability
density, then (7.59) gets the character of an expectation value. This tempted
to use the misleading name “transfer principle of expected cardinality” in the
first publication of this principle (see Bandemer (1985)).

Obviously, a probabilistic interpretation is possible, but not necessary (see
Bandemer/Näther (1992)).
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Finally, the membership function of Z(η(.,a)) can also be interpreted as
a possibility distribution leading to

A∗
2 : µA∗

2
(a) = sup

x
µZ(x, η(x,a)) . (7.60)

The given examples for both the partial operations may suffice to give
an idea of their aim and form. Obviously, each aggregating operation Z =
Vagg(Z1, . . . ,Zn) can be combined with each integration operation A∗ =
Vint(Z), if this combination makes sense in the practical situation.

Now, the opposite order of applying the operations is considered, i.e. Ai =
Vint(Zi) and A∗ = Vagg(A1, . . . ,An).

A first suggestion for Vint is motivated by the extension principle and leads
to the membership function

µAi,1(a) = sup
(x,y):y=η(x,a)

µi(x, y) = sup
x

µi(x, η(x,a)) . (7.61)

The membership function for Ai can be interpreted as the uncertainty
induced by the fuzzy datum Zi to the parameter set A, possibly as a sort
of possibility distribution. The same operation is obtained, if the usual state-
ment on the validity of a relation in a given set is fuzzified (see Bande-

mer/Schmerling (1985) and Bandemer/Näther (1992)). Obviously, the
integral (7.59) can be computed also for each single i separately leading to

µAi,2(a) =
∫

B

µi(x, η(x,a)wi(x)dx , (7.62)

where the weight function may vary from datum to datum according to the
practical context.

The fuzzy sets Ai can now be aggregated by some chosen operation Vagg.
The intersection, e.g. represented by the minimum,

µA∗
3
(a) = min

i
µAi

(a) , (7.63)

could be explained as the degree to which at least each single fuzzy datum
Zi contains a point of the functional relationship η(x,a). Hence A∗

3 was at
first called also the “joint grade of validity of the functional relationship” with
respect to the given data (see Bandemer/Schmerling (1985)). Naturally,
one can choose for minimizing only a suitable part of the data, to make the
procedure robust against outliers.

Another possibility is again an aggregation by the weighted mean. This is
preferred, if the data are obtained by frequency analysis.

With respect to other principles and, generally, with regard to their
special mathematical properties and distinctions it is referred to Bande-

mer/Näther (1992).
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To give an idea how these proposals do work in a practical context in
evaluating a functional relationship from fuzzy data, in the following a prac-
tical application with real data is sketched. A detailed presentation, includ-
ing the original numerical data, can be found in Bandemer/Kraut/Vogt

(1988) and, each time shortened, in Bandemer/Kraut (1990) and Bande-

mer/Näther (1992).
One of the most common procedures in testing of material is the measure-

ment of its hardness. A usual method to measure Vicker’s hardness consists
in the following performance. A regular quadrangular pyramid made of dia-
mond is pressed with a certain power onto the surface of the specimen. When
the pyramid is removed the specimen shows a remaining impress of quadran-
gular shape. Hardness h is then defined as the quotient of the pressing power
p and the area of the impress surface, say s, on which the power worked

h(p, s) =
p

s
. (7.64)

Let d denote the length of the diagonal of the square base of the pyramid,
then one obtains the area of the impress by

s =
d2

c0
, (7.65)

where c0 depends on the face vertex angle of the pyramid.
The following problem of fuzzy data analysis was considered. A rectangular

solid specimen was subjected to a hardening treatment onto one of its faces.
Then the specimen was cut up orthogonally to this treated face. The inner
plane produced in this manner was covered by a grid of points, at each single
point of which Vicker’s hardness was measured. From the results of these
measurements a functional relationship should be evaluated connecting the
hardness and the distance to the border, where the hardening treatment was
applied, shortly called the depth. This functional relationship should then be
used to optimize and control the hardening process and hence should have a
form as simple as possible and expertly supportable.

The specimen was very small, caused by the intended application of the
results. (As is well known, the transfer of results to other magnitudes is prob-
lematic. Laboratory micro results may loose their sense frequently when being
transferred to a production scale, whereas, on the other side, results from a
usual experimental department need no longer be valid in a micro region.)
Moreover, for a high resolving power with respect to position, both, pressing
power and impress, must be very small. The observation must be performed
by presenting the specimen plane to a microscope and by enlarging the picture
by means of an image processing equipment. The result of the observation was
presented as a grey-tone picture of the impress grid on the screen. The diag-
onal of each single impress was to be measured to obtain the corresponding
local hardness.
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If the effect of the pressing procedure is considered more precisely, one
realizes that the impress in the material is not an exact copy of the press-
ing pyramid, because material was pressed out of the produced cavern and
formed an embarkment around the impress changing its shape and preventing
an exact measurement of the diagonal. Moreover, the two-dimensional image
of the three-dimensional impress on the screen acts as an another source of
impreciseness, which cannot be controlled by the observer, but influences the
result perhaps essentially. The human eye as a measuring tool, the light-optical
lower bound of resolving power, wavelength of light, adjusting conditions at
the microscope, scanning quality of the television equipment and the internal
automatical control of brightness and contrast are mentioned in this respect.
Note that a sharpening of edges in the grey-tone picture by means of math-
ematical morphology might raise precision only virtually, because it induces
some arbitrariness by the observer.

Moreover, the coordinates of the points, where hardness was measured on
the specimen, are likewise subject to inaccuracy and uncertainty. The impress
has a finite extent and thus measures hardness in a certain neighbourhood of
the putting down point of the top of the pyramid. Additionally, the screen
shows always only a part of the plane segment under investigation and turning
from one segment to the next one causes increasing inaccuracy in specifying
the respective depth.

Hence both, hardness and depth, were modelled by fuzzy sets.
The grey-tone pictures of the impresses were interpreted as fuzzy sets

Gi in the plane IR2, where the shades should reflect the vagueness of the
experimental result. The diagonals of these fuzzy squares Gi had the same
directions each as the respective axes of the chosen coordinate system. For
measuring the lengths of the diagonals the fuzzy regions Gi were transformed
into their corresponding fuzzy contours Ci

Ci : µCi
(x, y) = 2min{µGi

(x, y), 1 − µGi
(x, y)} . (7.66)

The membership function of a fuzzy region G indicates the degree of mem-
bership of a point to the region itself, but not to the border of this region,
the contour C. Formula (7.66) generalizes the usual conception of the border
for crisp regions that the border should belong to the closed region and si-
multaneously to the closed complement of the region. For details and general
proposals see Bandemer/Kraut (1988) and Bandemer/Näther (1992).

Let y0i be the coordinate of the horizontal diagonal of Ci. The correponding
membership function µCi

(x, y0i) splitted into two disjoint curves, which could
be interpreted as the membership functions of two fuzzy numbers Mli and
Mri. They indicated the positions of the left and right end, respectively, of
the diagonal on the x-axis, which denotes here the depth. Their difference

Di = Mri �Mli (7.67)

defines the fuzzy length of the diagonal. An inspection of the α-cuts of Di by
the grey-tone levels of the picture on the screen showed that an approximation



7.2 Fuzzy Evaluation of Functional Relationships 167

of the membership function of M by linear reference functions was appropri-
ate. In this manner also D is of such a simple form, namely

Di =
〈
di; l(di), r(di)

〉
; (7.68)

where di is the core of Di, and l(di) and r(di) are the left and right spread,
respectively, of the fuzzy number Di (see (3.49)). Since Di belongs to the point
xi where the top of the pyramid touched the plane, in (7.68) the dependence
of the fuzzy diagonal length on the depth of the corresponding observation is
indicated explicitly.

For convenience the constant c0 is omitted in the hardness formula (7.65)
in the following. The fuzzy hardness H(x) at the crisp depth x is computed
from the fuzzy diagonal length Di according to the extension principle

µH(x|xi)(h) = sup
v:h=p/v2

µDi
(v) = µDi

((p/h)1/2) . (7.69)

For modelling the fuzziness of the specification of depth X (xi) also a fuzzy
number with a triangular membership function is assumed, which might be
symmetric, since a preference of one of the directions for the fuzziness did not
seem reasonable:

X (xi) =
〈
xi; c(xi), c(xi)

〉
. (7.70)

Because there is no reason to assume an interaction between the mea-
surement of hardness and the specification of depth, the two fuzzy sets are
combined by the common Cartesian product, here represented by the mini-
mum operator:

µH(X(xi))(h, x) = min{µH(x|xi)(h), µX(xi)(x)} . (7.71)

Considered as a surface over the (x, h)-plane this function looks like a
rectangular tent with four curved roof edges from the top. With respect to the
analytical form of the function see the paper by Bandemer/Kraut/Vogt

(1988).
For evaluating the functional relationship between hardness and depth the

fuzzy observations H(X(xi)) at the different observation points are aggregated
by union, represented by the maximizing operator

µH(h, x) = max
i

µH(X(xi))(h, x) . (7.72)

For a first impression on the possible functional relationship between h
and x the modal trace of µH(h, x) is considered, i.e.

HF (x) = {(h, x) : µH(h, x) = sup
u

µH(u, x) > 0} . (7.73)

It is marked in Fig. 7.4 by a lighter grey-tone within the grey band. This
modal trace suggested the functional relation
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Fig. 7.4. Result of the fuzzy data analysis for the hardness example: the fuzzy
functional relationship as a grey-tone picture and the “best” crisp estimating curve
through the modal trace

h(x; a, b, ν, q) = a + b exp
{
−
(x

ν

)q}
, (7.74)

which allowed an expertly supported interpretation. The parameter a repre-
sents the hardness of the kernel of the material (not influenced by the hard-
ening treatment), b is the maximum hardness increase at the frontal surface,
and ν and q explain, where and how fast hardness decreases with increasing
depth. With this setup for each single interesting quadruplet (a, b, ν, q) the
integral principle according to (7.59) was applied, where the characteristic
function of the support S = suppHF (x) was used as a weighting function
w(x). This led to a fuzzy set A∗ over the four-dimensional parameter space
with the membership function

µA∗(a, b, ν, q) =
∫

S

µH(h(x; a, b, ν, q), x)dx/

∫

S

dx . (7.75)

This approach was also technologically the simplest one, because it could
be effected immediately on an image processing equipment, which supplied
integration results by summing up the grey-tone values with sufficiently nu-
merical precision. Because the result was practically exceptionally convincing,
no other transfer principle was tried. A short and simple optimizing proce-
dure to find a function with highest membership resulted in a curve marked
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in Fig. 7.4. The numerical results are recorded in Bandemer/Kraut/Vogt

(1988).

7.2.3 Evaluation with Additional Assumptions

Up to now the fuzzy data were treated only in an exploratory sense, outside
the supports of the data no information was expected or used. This led to
the recommendation to consider only that part of B, where the united datum
Z has positive membership values. It can happen, however, that there is no
function of the functional relationship, which hits all the fuzzy data simulta-
neously. In this case and by a union according to the minimizing principle it
led to a fuzzy parameter set A∗, which does not contain any element, although
a lot of graphs of functions of the functional relationship run through the data
“cloud”.

Hence there are some proposals to overcome this unwanted property tak-
ing into account neighbourhoods of the functions and/or of the data. The crisp
or fuzzy approximating parameter for the desired approximation is then de-
termined by a given optimizing procedure. In the following three proposals of
such approximation principles will be sketched.

In the first option, the transfer principle for belts is considered, by which
the function η(x,a) of the functional relationship is replaced by a whole func-
tional “belt”

η(x,a) + ∆; ∆ ∈ IR1 . (7.76)

For each fixed ∆0 > 0 this specifies a neighbourhood for η(x,a) with
|∆| ≤ ∆0. Introducing (7.76) into some chosen tranfer principle one obtains
a fuzzy set over A× IR1. The membership function µ(a,∆) of which can now
be maximized with respect to |∆| ≤ ∆0. More details for this approach see
Bandemer/Näther (1992).

Another approach of “broadening” the function η(x,a) would be its re-
placing by a fuzzy function H(x,a), for which η represents the core function
(with µ = 1). Then the individual distance of each single datum from this
fuzzy functional relationship is considered, i.e.

d(Zi,H(x,a)) , (7.77)

where d is here a suitable distance function between fuzzy sets.
The general principle consists in that the distances are aggregated with

respect to i and parameter values a ∈ A are to be computed, for which the
aggregated distance is minimum.

Examples for such a proceeding can be found in Diamond (1988),
Albrecht (1992), Celmins (1987), on which it is reported in Bandemer/

Näther (1992).
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Finally, the approach by Tanaka is mentioned (see Tanaka/Uejima/

Asai (1982), Tanaka/Watada (1988)), which allows fuzziness only in y-
direction represented by fuzzy numbers and which considers only special (lin-
ear) relationships (see also Bandemer/Näther (1992)). This approach has
already gained a certain spreading and adapting in application.

All these approaches introduce each an optimizing criterion, which could
be justified by a decision problem in the background and by assumptions on
the regularity of the data genesis. Without such a motivation these criteria
are arbitrary restrictions of the information transfer with the aim of only an
increase of definiteness of the respective result, which but decreases the value
of the obtained statements really.

7.2.4 Inference with Fuzzy Parameter Values

In mathematical statistics the obtained estimates of the parameters in a re-
gression setup are used for different problems of inference, e.g. for predicting
the response at further observation points or for discriminating among com-
peting setups.

In fuzzy data analysis for evaluating functional relationships one obtains
a fuzzy parameter set A∗, e.g. by some extension principle. With such a set a
parameterfuzzy functional relationship over B

y = η(x,A∗) (7.78)

can be specified, which will form the basis of a correponding fuzzy inference.
The star at A is suppressed in the following, since the origin of the fuzzy
set is not essential for the fuzzy inference itself. For the practical interpre-
tation, however, and the assessment of the inference results this origin plays
its role, obviously. If A would be, e.g., a fuzzy specification by experts, then
the credibility of the inference results would be not higher than that of this
specification.

The usual inference is effected by the extension principle. Especially, at
the crisp point x0 one obtains as an interpolation the fuzzy functional value
Y

µY (y;x0) = sup
a:y=η(x0,a)

µA(a) (7.79)

and at the fuzzy point X0

µY (y,X0) = sup
a:y=η(x,a)

min{µA(a), µX0(x)} . (7.80)

Naturally, these formulae can be used for extrapolation as well, but with
due caution, since extrapolation includes the silent assumption that the model,
i.e. the form of the relationship, is valid also in the point under consideration.
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This assumption may fail outside the region, where the observations were
performed to find the fuzzy parameter set.

In contrast with the difficulties found in statistical inference the problem
of calibration is now symmetric to that of interpolation. For the given crisp
value y0 the fuzzy argument value X is calibrated by

µX(x; y0) = sup
a:y0=η(x,a)

µA(a) , (7.81)

and for the fuzzy value Y0 one computes the fuzzy calibrated argument value
X by

µX(x,Y0) = sup
(a,y):y=η(x,a)

min{µA(a), µY0(y)} . (7.82)

Applications of these formulae in a practical context of chemometrics can
be found in Otto/Bandemer (1986), (1988a), (1988b).

Another interesting problem of inference consists in the combination of
fuzzily expressed information on the parameter a from different sources. Let
be, e.g., AP a fuzzy set specifying a-priori knowledge on a, and AE be the
result of an estimation of a according to a transfer principle.

In a first step one could multiply both the membership functions each with
a respective factor evaluating the contained information with respect to its
trustworthiness, from an objective or from a subjective point of view. Then, in
a second step, one can choose a connection to combine the two sets. Finally,
in a third step, the obtained result can be renormalized in a certain sense.
Particularly, if the two sets are to be used with equal rights, combined by
intersection expressed by the minimum, and renormalized by the supremum,
then the result is

µA(a|Z) =
min{µP (a), µE(a)}

supb∈A min{µP (b), µE(b)} ; (7.83)

where |Z means that the data Z1, . . . ,Zn are taken into account via AE . This
is a fuzzy analogue of the well-known Bayes’ theorem (see (4.38)). If the
membership functions are interpreted as possibility distributions (see (5.9)),
then in (7.83) a possibilistic a-priori distribution is coupled with a current
possibility distribution yielding an a-posteriori distribution.

The problem of model discrimination occurs, if several functional relation-
ships

η1(x,a1), . . . , ηr(x,ar); aj ∈ Aj ; j = 1, . . . , r (7.84)

compete to be used, motivated each single one either by an expertly supported
idea or, merely, by the demand for a good approximation with a number of
parameters as small as possible. The choice should be made with respect to
the given data Z1, . . . ,Zn. A near at hand procedure consists in an evaluation
of the parameters in each single given functional relationship, according to the
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same tranfer principle, and in an assessment of the respective fitting of the
data by the obtained parameterfuzzy functional relationships. As a measure of
good fitting a fuzziness measure would be useful. (A fuzziness measure is
a set function, which evaluates every single set globally with respect to its
fuzziness, e.g. to its deviation from the type of crisp sets. For details see
Bandemer/Gottwald (1995).) The chosen fuzziness measure reflects the
desirable kind of goodness according to the user’s ideas. As an example the
transfer principle with Vint = supx and Vagg = mini will be considered. Then

sup
aj∈Aj

min
i

sup
x

µi(x, ηj(x,aj)) (7.85)

would be a useful criterion for the selection of ηj . The value in (7.85) ex-
presses, for each single j, namely the highest membership value that the graph
of the respective functional relationship can reach for all the fuzzy data si-
multaneously. If there is only one datum, which is not met by this graph,
the corresponding membership function vanishes. Therefore, the principle is
a good one for model discrimination. However, the decision bases each time
on only one (the highest) value; hence one should take into consideration also
the whole membership functions of the single A∗

j , especially if the decision is
discussed.
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Outlook and Conclusions

The “classical” treatment of a problem in application of mathematics consists,
as is well known, in its idealization to a mathematical task, e.g., to a system
of equations, or to a differential equation, or to an eigenvalue problem. This
mathematical task is then solved exactly, and, if possible, in a closed analytical
form. The quality of the solution is assessed by comparison with actuality. An
example for such a proceeding was cited in Chap. 1 by the mathematical
treatment of the flat rolling process.

However, such text-book applications are rather seldom. Frequently, the
structure of the approximating task obtained by idealization and abstraction
reflects the practical problem only essentially, and the data supplied by the
practical situation are rather rough.

This problematic concerned some mathematicians open-minded to appli-
cation already for many years. As a typical example from the point of view of
interval mathematics the paper by Nuding (1975) may be cited. By a similar
intention also this book was originated.

So, on the one side, interpolation and approximation are considered on
different assumptions on the background and, on the other side, the effect of
fuzziness, variability, and vagueness of data is investigated in simple tasks of
qualitative and quantitative data analysis.

As is well known, such approximation approaches with data, possibly af-
flicted with uncertainty, are inserted as blocks in software packages for math-
ematical statistics and data analysis, for methods of finite elements, and for
genetic algorithms, to cite only the best known fields. The development here
goes to always more extensive, more elaborated, and allegedly more effective
packages with always more comfortable output scenarios (tools, workbenches).

As a rule, the user is only said what the package is able to solve. What
mathematical procedures exactly and in what manner were implemented, is
frequently left in darkness. But even if all this would be explained, the common
user could assess the procedure only seldom.

Moreover, different packages and techniques for solving the same prob-
lem are offered, e.g. from data analysis and from neural networks for cluster
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analysis. Because for each approach anyway there are still several competing
software packages, the search for a suitable procedure can lead with the user
to a “blackout by information overflow”. In thus manner the final choice of a
procedure is widely at random and arbitrarily.

A phenomenon interesting for mathematicians and regrettable for users
is that the same mathematical procedures, algorithms, and techniques are
“invented” again and again under new names each time. The present book
may show, e.g., how the approximation with the method of least squares, con-
sidered against different backgrounds, leads to various interpretations of the
same mathematical principle. A veritable Babel of languages would appear
presumably, when the different mathematical terms, obtained by this prin-
ciple, are listed accompanied by all the names given each single term in the
various connections of backgrounds and application fields.

In the present book a lot of space is devoted to the question, how im-
preciseness, variability, and vagueness in the data influence the result. This
problem does not play, as a rule, any role in software packages, if they are
not concerned explicitly with even the handling of such data. It is, however,
of importance in every case, in order to supply the user with an impression
on preciseness and reliability of the results obtained. Moreover, it is relevant
to the procedure itself; a highly precise computation (e.g. with the method
of finite elements) with boundary values and perhaps also with coefficients of
low precision does not make sense usually.

In the opinion of the author the development in this field runs in the wrong
direction at present. Not always more extensive collections of methods with
always “more precise” numerical procedures on always faster computers can
be the aim of the development - it makes mathematics a sort of mysticism and
shows the known “airport effect”: Whereas the flying time from one airport
to another one was shortened again and again with faster jets, the time nec-
essary for the journey to the airport, from starting at home until the take-off,
grew longer and longer, simultaneously. This means, in analogy, for the use of
computing equipment that, before the task can be handled by the computer,
one has to find first a suitable procedure within a package, then to under-
stand the version found, and to interpret the given programme parameters
meaningfully, and finally to specify them in a correct manner. Therefore the
decision “all options” is so popular, but it does also not lead, as a rule, to an
adequate treatment of the practical problem. It would be more reasonable,
if the growing efficiency of computer equipment would be used to make soft-
ware “intelligent”, i.e. that computation is performed really reasonably: to
create a reasonable computing as it was formulated in the subtitle of the book
prognostically and programmatically.

To this end one should first think over what aim is actually pursued by
the solution of the practically given problem. From this the level of detail is
derived for the mathematical model necessary for that problem. Examples are
given particularly in the Chaps. 2, 6, and 7.
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Then the quality of the available data should be inspected to get an idea
with respect to the background to be chosen.

From both considerations results then the choice of the solving procedure
and the manner of interpretation of the result obtained.

Software packages, which should support the users in this process, should
have a considerably other structure than the available ones at present. This
requires changing in views with the mathematician, who has devoted himself
to application, as well as with the software designer, who has to see over and
above his collection package of methods.

A mathematician, who wishes to apply mathematics really, must first put
aside his esoteric aura, in many places still very popular, and think oneself
as a toolmaker for brain tools in a service position. For him mathematics
is no longer organized only in disciplines (as algebra, analysis, stochastics,
and numerics, to cite only the most common), but according to abstraction
principles: what is considered as essential in the practical problem; what math-
ematical structure is suitable with the given aim to represent this in the best
manner. Up to now the consultative mathematician recommends, as a rule,
models and methods from his special discipline. One has to escape from this
hammer-nail-strategy to get mathematics effective for application in its full
ability.

In the next step fuzziness and impreciseness, variability and dependency
must be considered, whether and how they should be specified and modelled,
in order to choose a mathematical solving procedure and to be able for a
reasonable interpretation of the result.

The software must support the user in doing so. It would be already a
first step in this direction, if these problems would be picked out as themes
and the user would be asked questions in this respect. These questions should
be formulated by experienced users, because otherwise the questions would
be felt as packed on top and hence ignored. Moreover, the user should be
kept informed on the consequences of his decisions and hence put into the
position to interpret the results obtained in this way also with respect to
their precision, reliability and relevance. So, the input data should always be
analysed with respect to their character and their numerical precision by the
programme (with the user) and the parameters of the procedure should always
be reasonably adjusted and adapted with respect to numerical precision (also
to the internal precision of the procedure).

Such a new attitude has, naturally, also consequences for mathematical
instruction of students from applied fields of knowledge outside mathematics.
The aspect of modelling should take precedence over that of teaching proce-
dures with all details. The reproduction of text-book examples with pseudo-
exact data should be replaced by the discussion of modelling methods starting
from practically typical situations. In such a course each discipline of mathe-
matics should get the opportunity to present its structures of thinking as well
as its possibilities of modelling.
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Also for modelling of the practically relevant data impreciseness a training
with standard situations should be offered. Here the starting point should be
the demonstration of its specification and treatment.

Both these aspects should then be completed by practical work with com-
puters. In doing so the details of the software packages used can be left in
the background, because the software changes, as experience shows, rather
frequently in its outfit.

Naturally it is clear that this type of instruction in mathematics of students
from applied fields needs also another type of “teacher”: a mathematician with
knowledge from many disciplines and with practical experience - currently a
rather rare species at universities.

If the present book can help only a little bit to lift mathematics for users
out of its role as a source of heuristics, eclectic compilations, and recipes, and
to turn it again into its role as a science of rationalization in thinking on the
basis of logically founded models and procedures, then the book has fulfilled
its purpose completely as planned by the author.
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error propagation 40

law of large numbers 76
learning theory 68
likelihood function 121
limit theorem 77
linear estimation 144
linear interpolation 19
linear setup 143
linear Bayes’ estimator 152
linguistic combination rules 51
linguistic modifier 51
linguistic variable 50
local approximation 18
local interpolation 18
local monoticity 47
local smoothing 30
local validity of a model 156

main assumption of estimation theory
82

main formula of the method of finite
elements 35

manipulation of data 14, 80
mathematical sample 79
mathematical statistics 78
mathematical structures 15
maximum possibility estimation 106
mean membership degree 109
measure 97

fuzziness 172
fuzzy 97, 102, 107
necessity 100
possibility 99

membership function 45
specification of a 47
triangular 58

membership values
grey tones as 49

method of finite elements 21, 32, 34

method of least squares 145
method of principal components 150
minimum-related components 105
modal analysis 120
modal trace 161
model

probabilistic 77
model adequacy 2
model choice 2
model discrimination 149
model error 149
model harmony 7
modifier

linguistic 51
monoticity

local 47
multi-dimensional random variable 76
multi-phase regression 33
multiplication of a fuzzy number by a

crisp positive number 57
mutually disjoint events

addition rule for probabilities of 66

necessity measure 100
negative of a fuzzy number 55
neighbourhood of a feature 138
neighbourhood of a fuzzy set 136
neighbourhood of an object 138
networks

fuzzy neural 128
neural networks 68, 122

fuzzy 128
neurons 122
nominal variable 12
non-located element 107
normal distribution 71
normalized measure

probability as a 66
not localized element 98
nugget-effect 158
number

fuzzy 48, 55
numerical coding of feature values 114
numerical error 146
numerical instability 24
numerical stability 5

observational error 142
one-dimensional random variable 69
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operation
compensatory 54

opinion of an expert as datum 13
ordinal variable 12
orthogonal design of experiments 25
orthogonal polynomials 24, 27
orthogonal system of functions 27
outcome of a trial 64
outlier 5, 14, 79, 106, 147

P-value for testing hypothesis 87
pairwise independence 68
parameter estimation 82
partial ignorance 102
partial least squares technique 160
partition matrix 129
pattern cognition 15
pattern in data 15
plausibility

degree of 105
point

fuzzy 49
Poisson distribution 70
polynomials

orthogonal 24, 27
possibilistic inference 105
possibilistic variable 105
possibility

degree of 99
possibility degree 99
possibility distribution 99
possibility measure 99
preciseness of data 6
previous knowledge 89
principal components

method of 150
principle

approximation 19
principle of the smallest sum of the

absolute values 29
probabilistic model 77
probability

a-posteriori 68
a-priori 68
betting behaviour and 67
classical definition of 65
conditional 66
frequentistic interpretation of 67
geometrical 66

specification of subjective 67
subjective interpretation of 67

probability as a normalized measure
66

probability as the limit of relative
frequency 66

probability assignment
basic 102

probability assignments
conflict between 103

probability density 71
probability distribution 69
probability theory 66
problem

specification 46
structure 46

problem solving
golden rule of 8

procedure impreciseness 87
process as variable 12
process control 86
product of fuzzy sets 55
product of two fuzzy numbers 58
projection pursuit 17, 160
propagation

error 39
property

grades of a 12
pseudo-exact data 15, 87

quadratic mean
approximation in the 26

qualification
rules for 51

quality control 85
quality requirements 1
quantification

rules for 51
quantitative variable 12
quotient of fuzzy sets 56

random error 142
random event 65
random experiment 64
random field 155
random fuzzy sets 111
random interval 84
random variable 78, 142

continuous 71
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discrete 69
multi-dimensional 76
one-dimensional 69
realization of a 78

random variables
series of 76

randomization 80
randomness 156
realization of a random variable 78
realization of a variable 11
realizations

independently obtained 81
reciprocal of a fuzzy number 56
reference function 56
region

fuzzy 166
regionalized variable 12, 155
regression

empirical 30
multi-phase 33

regression analysis 144
regression lines 153
regression of second kind 153
regularities of events in masses 63
relation

equality 59
equivalence 61
fuzzy 59
fuzzy similarity 133
similarity 60

relationship
functional 17, 32, 39, 141

relative error 147
relative frequency

probability as the limit of 66
relative level of confidence 102
reliability of data 14
repeatability of conditions 64
response surface 142
response value 142
response variable 142
result of an experiment 65
resulting interval 41
robust statistics 6
robustness 5, 93
rule for the addition of variances 75
rule of weakest chain-link 2
rules for qualification 51
rules for quantification 51

sample 78

concrete 78

mathematical 79

truncated 80

sample size 79

sample space 78

scale

choice of 156

search procedures 38

semivariogram 157

sequential procedures 93

series of random variables 76

set

fuzzy 45

setup 31, 141, 143

approximating 33

linear 143

true 144, 148

setup choice 32

sigmoid function 124

similarity 115

fuzzy 135, 140

similarity concept 133

similarity degree 115, 137

similarity matrix 115

similarity relation 60, 115

fuzzy 133

similarity structure of the knowledge
base 138, 139

similarity threshold 117

smoothing

local 30

specification of a membership function
47

specification of fuzzy measures 101

specification of subjective probability
67

specification problem 46

speed of convergence 5

spline technique 21

stability

numerical 5

statistical estimation problem 144

statistical experimental design 146

statistical interpretation of the
probability of a fuzzy set 108

statistics

robust 6
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structur of a system of approximating
polynomials 24

structure problem 46
structures

mathematical 15
subjective interpretation of probability

67
subtraction of fuzzy numbers 58
sum of fuzzy numbers 55
support of a fuzzy set 48
system of approximating polynomials

structure of a 24
system of functions

orthogonal 27

test variable 86
testing hypothesis

P-value for 87
theory of fuzzy sets 43
threshold function 124
total conflict 103
total enumeration 119
total ignorance 102
transfer principle 162
transformation of data 15
trial

outcome of a 64
triangular membership function 58
true model 82
true setup 144, 148
truncated sample 80
trustworthiness of data 14
type of dependence 19
type of distribution 78

unbiased estimation 144
unbiasedness of an estimator 83

unbiasness 144
uncorrelatedness 143
uniform approximation 29
union of events 65
union of two fuzzy sets 53
universal set 44
universe 44
universe of discourse 11

validity of a model
local 156

variable
categorial 12
fuzzy 50
linguistic 50
nominal 12
ordinal 12
possibilistic 105
quantitative 12
realization of a 11
regionalized 12, 155

variance 75
variances

rule for the addition of 75
variedness of the features 139
variogram 157

empirical 157
vector

fuzzy 49

wavelets 32, 37
weakest chain-link

rule of the 2
weight

evidence 103
window 30




