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This book is intended to survey the most important computer algorithms in use today, 
and to teach fundamental techniques to the growing number of people in need of 
knowing them.  It is intended for use as a textbook for a second course in computer 

science, after students have acquired basic programming skills and familiarity with computer 
systems. The book also may be useful for self-study or as a reference for people engaged in 
the development of computer systems or applications programs, since it contains implemen-
tations of useful algorithms and detailed information on performance characteristics and 
clients. The broad perspective taken makes the book an appropriate introduction to the field.

the study of algorithms and data structures is fundamental to any computer-science 
curriculum, but it is not just for programmers and computer-science students. Everyone who 
uses a computer wants it to run faster or to solve larger problems. The algorithms in this book 
represent a body of knowledge developed over the last 50 years that has become indispens-
able.  From N-body simulation problems in physics to genetic-sequencing problems in mo-
lecular biology, the basic methods described here have become essential in scientific research; 
from architectural modeling systems to aircraft simulation, they have become essential tools 
in engineering; and from database systems to internet search engines, they have become es-
sential parts of modern software systems. And these are but a few examples—as the scope of 
computer applications continues to grow, so grows the impact of the basic methods covered 
here.

In Chapter 1, we develop our fundamental approach to studying algorithms, includ-
ing coverage of data types for stacks, queues, and other low-level abstractions that we use 
throughout the book. In Chapters 2 and 3, we survey fundamental algorithms for sorting and 
searching; and in Chapters 4 and 5, we cover algorithms for processing graphs and strings. 
Chapter 6 is an overview placing the rest of the material in the book in a larger context.

PREFACE
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Distinctive features The orientation of the book is to study algorithms likely to be of 
practical use. The book teaches a broad variety of algorithms and data structures and pro-
vides sufficient information about them that readers can confidently implement, debug, and 
put them to work in any computational environment. The approach involves:

Algorithms. Our descriptions of algorithms are based on complete implementations and on 
a discussion of the operations of these programs on a consistent set of examples. Instead of 
presenting pseudo-code, we work with real code, so that the programs can quickly be put to 
practical use. Our programs are written in Java, but in a style such that most of our code can 
be reused to develop implementations in other modern programming languages.

Data types. We use a modern programming style based on data abstraction, so that algo-
rithms and their data structures are encapsulated together.

Applications. Each chapter has a detailed description of applications where the algorithms 
described play a critical role. These range from applications in physics and molecular biology, 
to engineering computers and systems, to familiar tasks such as data compression and search-
ing on the web.

A scientific approach  We emphasize developing mathematical models for describing the 
performance of algorithms, using the models to develop hypotheses about performance, and 
then testing the hypotheses by running the algorithms in realistic contexts.

Breadth of coverage  We cover basic abstract data types, sorting algorithms, searching al-
gorithms, graph processing, and string processing. We keep the material in algorithmic con-
text, describing data structures, algorithm design paradigms, reduction, and problem-solving 
models. We cover classic methods that have been taught since the 1960s and new methods 
that have been invented in recent years.

Our primary goal is to introduce the most important algorithms in use today to as wide an 
audience as possible. These algorithms are generally ingenious creations that, remarkably, can 
each be expressed in just a dozen or two lines of code. As a group, they represent problem-
solving power of amazing scope. They have enabled the construction of computational ar-
tifacts, the solution of scientific problems, and the development of commercial applications 
that would not have been feasible without them.
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Booksite An important feature of the book is its relationship to the online booksite 
algs4.cs.princeton.edu. This site is freely available and contains an extensive amount of 
material about algorithms and data structures, for teachers, students, and practitioners, in-
cluding:

An online synopsis. The text is summarized in the booksite to give it the same overall struc-
ture as the book, but linked so as to provide easy navigation through the material.

Full implementations  All code in the book is available on the booksite, in a form suitable for 
program development. Many other implementations are also available, including advanced 
implementations and improvements described in the book, answers to selected exercises, and 
client code for various applications. The emphasis is on testing algorithms in the context of 
meaningful applications. 

Exercises and answers  The booksite expands on the exercises in the book by adding drill 
exercises (with answers available with a click), a wide variety of examples illustrating the 
reach of the material, programming exercises with code solutions, and challenging problems.

Dynamic visualizations  Dynamic simulations are impossible in a printed book, but the 
website is replete with implementations that use a graphics class to present compelling visual 
demonstrations of algorithm applications.

Course materials  A complete set of lecture slides is tied directly to the material in the book 
and on the booksite. A full selection of programming assignments, with check lists, test data, 
and preparatory material, is also included.

Online course  A full set of lecture videos and self-assessment materials provide opportuni-
ties for students to learn or review the material on their own and for instructors to replace or 
supplement their lectures.

Links to related material  Hundreds of links lead students to background information about 
applications and to resources for studying algorithms.

Our goal in creating this material was to provide a complementary approach to the ideas. 
Generally, you should read the book when learning specific algorithms for the first time or 
when trying to get a global picture, and you should use the booksite as a reference when pro-
gramming or as a starting point when searching for more detail while online.



ptg12441863

xii

Use in the curriculum The book is intended as a textbook in a second course in com-
puter science.  It provides full coverage of core material and is an excellent vehicle for stu-
dents to gain experience and maturity in programming, quantitative reasoning, and problem-
solving. Typically, one course in computer science will suffice as a prerequisite—the book is 
intended for anyone conversant with a modern programming language and with the basic 
features of modern computer systems.

The algorithms and data structures are expressed in Java, but in a style accessible to 
people fluent in other modern languages. We embrace modern Java abstractions (including 
generics) but resist dependence upon esoteric features of the language.

Most of the mathematical material supporting the analytic results is self-contained (or 
is labeled as beyond the scope of this book), so little specific preparation in mathematics is 
required for the bulk of the book, although mathematical maturity is definitely helpful. Ap-
plications are drawn from introductory material in the sciences, again self-contained.

The material covered is a fundamental background for any student intending to major 
in computer science, electrical engineering, or operations research, and is valuable for any 
student with interests in science, mathematics, or engineering.

Context The book is intended to follow our introductory text, An Introduction to Pro-
gramming in Java: An Interdisciplinary Approach, which is a broad introduction to the field. 
Together, these two books can support a two- or three-semester introduction to computer sci-
ence that will give any student the requisite background to successfully address computation 
in any chosen field of study in science, engineering, or the social sciences.

The starting point for much of the material in the book was the Sedgewick series of Al-
gorithms books. In spirit, this book is closest to the first and second editions of that book, but 
this text benefits from decades of experience teaching and learning that material. Sedgewick’s 
current Algorithms in C/C++/Java, Third Edition is more appropriate as a reference or a text 
for an advanced course; this book is specifically designed to be a textbook for a one-semester 
course for first- or second-year college students and as a modern introduction to the basics 
and a reference for use by working programmers.
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The objective of this book is to study a broad variety of important and useful 
algorithms—methods for solving problems that are suited for computer imple-
mentation. Algorithms go hand in hand with data structures—schemes for or-

ganizing data that leave them amenable to efficient processing by an algorithm. This 
chapter introduces the basic tools that we need to study algorithms and data structures. 

First, we introduce our basic programming model. All of our programs are imple-
mented using a small subset of the Java programming language plus a few of our own 
libraries for input/output and for statistical calculations. Section 1.1 is a summary of 
language constructs, features, and libraries that we use in this book. 

Next, we emphasize data abstraction, where we define abstract data types (ADTs) in 
the service of modular programming. In Section 1.2 we introduce the process of im-
plementing an ADT in Java, by specifying an applications programming interface (API) 
and then using the Java class mechanism to develop an implementation for use in client 
code. 

As important and useful examples, we next consider three fundamental ADTs: the 
bag, the queue, and the stack. Section 1.3 describes APIs and implementations of bags, 
queues, and stacks using arrays, resizing arrays, and linked lists that serve as models and 
starting points for algorithm implementations throughout the book. 

Performance is a central consideration in the study of algorithms. Section 1.4 de-
scribes our approach to analyzing algorithm performance. The basis of our approach is 
the scientific method: we develop hypotheses about performance, create mathematical 
models, and run experiments to test them, repeating the process as necessary.

We conclude with a case study where we consider solutions to a connectivity problem 
that uses algorithms and data structures that implement the classic union-find ADT.

3
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Algorithms When we write a computer program, we are generally implementing a 
method that has been devised previously to solve some problem. This method is often 
independent of the particular programming language being used—it is likely to be 
equally appropriate for many computers and many programming languages. It is the 
method, rather than the computer program itself, that specifies the steps that we can 
take to solve the problem. The term algorithm is used in computer science to describe 
a finite, deterministic, and effective problem-solving method suitable for implementa-
tion as a computer program. Algorithms are the stuff of computer science: they are 
central objects of study in the field.

We can define an algorithm by describing a procedure for solving a problem in a 
natural language, or by writing a computer program that implements the procedure, 
as shown at right for Euclid’s algorithm for finding the greatest common divisor of 
two numbers, a variant of which was devised 
over 2,300 years ago. If you are not familiar 
with Euclid’s algorithm, you are encour-
aged to work Exercise 1.1.24 and Exercise 
1.1.25, perhaps after reading Section 1.1. In 
this book, we use computer programs to de-
scribe algorithms. One important reason for 
doing so is that it makes easier the task of 
checking whether they are finite, determin-
istic, and effective, as required. But it is also 
important to recognize that a program in a 
particular language is just one way to express 
an algorithm. The fact that many of the al-
gorithms in this book have been expressed 
in multiple programming languages over the 
past several decades reinforces the idea that each algorithm is a method suitable for 
implementation on any computer in any programming language.

Most algorithms of interest involve organizing the data involved in the computa-
tion. Such organization leads to data structures, which also are central objects of study 
in computer science. Algorithms and data structures go hand in hand. In this book we 
take the view that data structures exist as the byproducts or end products of algorithms 
and that we must therefore study them in order to understand the algorithms. Simple 
algorithms can give rise to complicated data structures and, conversely, complicated 
algorithms can use simple data structures. We shall study the properties of many data 
structures in this book; indeed, we might well have titled the book Algorithms and Data 
Structures.

Compute the greatest common divisor of 
two nonnegative integers p and q as follows: 
If q is 0, the answer is p. If not, divide p by q
and take the remainder r. The answer is the
greatest common divisor of q and r.

public static int gcd(int p, int q)
{
   if (q == 0) return p;
   int r = p % q;
   return gcd(q, r);
}

Euclid’s algorithm

Java-language description

English-language description

4 Chapter 1 n Fundamentals
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When we use a computer to help us solve a problem, we typically are faced with a 
number of possible approaches. For small problems, it hardly matters which approach 
we use, as long as we have one that correctly solves the problem. For huge problems (or 
applications where we need to solve huge numbers of small problems), however, we 
quickly become motivated to devise methods that use time and space efficiently.

The primary reason to learn about algorithms is that this discipline gives us the 
potential to reap huge savings, even to the point of enabling us to do tasks that would 
otherwise be impossible. In an application where we are processing millions of objects, 
it is not unusual to be able to make a program millions of times faster by using a well-
designed algorithm. We shall see such examples on numerous occasions throughout 
the book. By contrast, investing additional money or time to buy and install a new 
computer holds the potential for speeding up a program by perhaps a factor of only 10 
or 100. Careful algorithm design is an extremely effective part of the process of solving 
a huge problem, whatever the applications area.

When developing a huge or complex computer program, a great deal of effort must 
go into understanding and defining the problem to be solved, managing its complex-
ity, and decomposing it into smaller subtasks that can be implemented easily. Often, 
many of the algorithms required after the decomposition are trivial to implement. In 
most cases, however, there are a few algorithms whose choice is critical because most 
of the system resources will be spent running those algorithms. These are the types of 
algorithms on which we concentrate in this book. We study fundamental algorithms 
that are useful for solving challenging problems in a broad variety of applications areas.

The sharing of programs in computer systems is becoming more widespread, so 
although we might expect to be using a large fraction of the algorithms in this book, we 
also might expect to have to implement only a small fraction of them. For example, the 
Java libraries contain implementations of a host of fundamental algorithms. However, 
implementing simple versions of basic algorithms helps us to understand them bet-
ter and thus to more effectively use and tune advanced versions from a library. More 
important, the opportunity to reimplement basic algorithms arises frequently. The pri-
mary reason to do so is that we are faced, all too often, with completely new computing 
environments (hardware and software) with new features that old implementations 
may not use to best advantage. In this book, we concentrate on the simplest reasonable 
implementations of the best algorithms. We do pay careful attention to coding the criti-
cal parts of the algorithms, and take pains to note where low-level optimization effort 
could be most beneficial.

Choosing the best algorithm for a particular task can be a complicated process, per-
haps involving sophisticated mathematical analysis. The branch of computer science 
that comprises the study of such questions is called analysis of algorithms. Many of the 

5Chapter 1 n Fundamentals
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algorithms that we study have been shown through analysis to have excellent theoreti-
cal performance; others are simply known to work well through experience. Our pri-
mary goal is to learn reasonable algorithms for important tasks, yet we shall also pay 
careful attention to comparative performance of the methods. We should not use an 
algorithm without having an idea of what resources it might consume, so we strive to 
be aware of how our algorithms might be expected to perform.

Summary of topics As an overview, we describe the major parts of the book, giv-
ing specific topics covered and an indication of our general orientation toward the 
material. This set of topics is intended to touch on as many fundamental algorithms as 
possible. Some of the areas covered are core computer-science areas that we study in 
depth to learn basic algorithms of wide applicability. Other algorithms that we discuss 
are from advanced fields of study within computer science and related fields. The algo-
rithms that we consider are the products of decades of research and development and 
continue to play an essential role in the ever-expanding applications of computation. 

Fundamentals (Chapter 1) in the context of this book are the basic principles and 
methodology that we use to implement, analyze, and compare algorithms. We consider 
our Java programming model, data abstraction, basic data structures, abstract data 
types for collections, methods of analyzing algorithm performance, and a case study.

Sorting algorithms (Chapter 2) for rearranging arrays in order are of fundamental 
importance. We consider a variety of algorithms in considerable depth, including in-
sertion sort, selection sort, shellsort, quicksort, mergesort, and heapsort. We also en-
counter algorithms for several related problems, including priority queues, selection, 
and merging. Many of these algorithms will find application as the basis for other algo-
rithms later in the book.

Searching algorithms (Chapter 3) for finding specific items among large collections 
of items are also of fundamental importance. We discuss basic and advanced methods 
for searching, including binary search trees, balanced search trees, and hashing. We 
note relationships among these methods and compare performance.

Graphs (Chapter 4) are sets of objects and connections, possibly with weights and 
orientation. Graphs are useful models for a vast number of difficult and important 
problems, and the design of algorithms for processing graphs is a major field of study. 
We consider depth-first search, breadth-first search, connectivity problems, and sev-
eral algorithms and applications, including Kruskal’s and Prim’s algorithms for finding 
minimum spanning tree and Dijkstra’s and the Bellman-Ford algorithms for solving 
shortest-paths problems.

6 Chapter 1 n Fundamentals
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Strings (Chapter 5) are an essential data type in modern computing applications. 
We consider a range of methods for processing sequences of characters. We begin with 
faster algorithms for sorting and searching when keys are strings. Then we consider 
substring search, regular expression pattern matching, and data-compression algo-
rithms. Again, an introduction to advanced topics is given through treatment of some 
elementary problems that are important in their own right.

Context (Chapter 6) helps us relate the material in the book to several other advanced 
fields of study, including scientific computing, operations research, and the theory of 
computing. We survey event-driven simulation, B-trees, suffix arrays, maximum flow, 
and other advanced topics from an introductory viewpoint to develop appreciation for 
the interesting advanced fields of study where algorithms play a critical role. Finally, we 
describe search problems, reduction, and NP-completeness to introduce the theoretical 
underpinnings of the study of algorithms and relationships to material in this book.

The study of algorithms is interesting and exciting because it is a new field 
(almost all the algorithms that we study are less than 50 years old, and some were just 
recently discovered) with a rich tradition (a few algorithms have been known for hun-
dreds of years). New discoveries are constantly being made, but few algorithms are 
completely understood. In this book we shall consider intricate, complicated, and diffi-
cult algorithms as well as elegant, simple, and easy ones. Our challenge is to understand 
the former and to appreciate the latter in the context of scientific and commercial ap-
plications. In doing so, we shall explore a variety of useful tools and develop a style of 
algorithmic thinking that will serve us well in computational challenges to come.

7Chapter 1 n Fundamentals
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1.1 BASiC ProgrAMMing MoDel

Our study of algorithms is based upon implementing them as programs written in 
the Java programming language. We do so for several reasons:

n	 Our programs are concise, elegant, and complete descriptions of algorithms.
n	 You can run the programs to study properties of the algorithms.
n	 You can put the algorithms immediately to good use in applications.

These are important and significant advantages over the alternatives of working with 
English-language descriptions of algorithms.

A potential downside to this approach is that we have to work with a specific pro-
gramming language, possibly making it difficult to separate the idea of the algorithm 
from the details of its implementation. Our implementations are designed to mitigate 
this difficulty, by using programming constructs that are both found in many modern 
languages and needed to adequately describe the algorithms. 

We use only a small subset of Java. While we stop short of formally defining the 
subset that we use, you will see that we make use of relatively few Java constructs, and 
that we emphasize those that are found in many modern programming languages. The 
code that we present is complete, and our expectation is that you will download it and 
execute it, on our test data or test data of your own choosing.

We refer to the programming constructs, software libraries, and operating system 
features that we use to implement and describe algorithms as our programming model. 
In this section and Section 1.2, we fully describe this programming model. The treat-
ment is self-contained and primarily intended for documentation and for your refer-
ence in understanding any code in the book. The model we describe is the same model 
introduced in our book An Introduction to Programming in Java: An Interdisciplinary 
Approach, which provides a slower-paced introduction to the material.

For reference, the figure on the facing page depicts a complete Java program that 
illustrates many of the basic features of our programming model. We use this code for 
examples when discussing language features, but defer considering it in detail to page 
46 (it implements a classic algorithm known as binary search and tests it for an applica-
tion known as whitelist filtering). We assume that you have experience programming 
in some modern language, so that you are likely to recognize many of these features in 
this code. Page references are included in the annotations to help you find answers to 
any questions that you might have. Since our code is somewhat stylized and we strive 
to make consistent use of various Java idioms and constructs, it is worthwhile even for 
experienced Java programmers to read the information in this section.

8
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import java.util.Arrays;

public class BinarySearch
{
   public static int rank(int key, int[] a)
   {
                                                                                                          int lo = 0;
      int hi = a.length - 1;
      while (lo <= hi)
      {
         int mid = lo + (hi - lo) / 2;
         if      (key < a[mid]) hi = mid - 1;
         else if (key > a[mid]) lo = mid + 1;
         else                   return mid;
      }
      return -1;
   }

   public static void main(String[] args)
   {
      
      int[] whitelist = In.readInts(args[0]);

      Arrays.sort(whitelist);

      while (!StdIn.isEmpty())
      {
         int key = StdIn.readInt();
         if (rank(key, whitelist) == -1)
            StdOut.println(key);
      }
   }

}

expression (see page 11)

call a method in our standard library;
need to download code (see page 27)

call a method in a Java library (see page 27)

call a local method
(see page 27)

import a Java library (see page 27)

code must be in file BinarySearch.java (see page 26)

initializing
declaration statement

(see page 16)

command line
(see page 36)

static method (see page 22)

unit test client (see page 26)

loop statement
(see page 15)

conditional statement
(see page 15)

system calls main()

system passes argument value
"largeW.txt" to main()

Anatomy of a Java program and its invocation from the command line

parameter
variables

return type parameter type

return statement

no return value; just side effects (see page 24)

% java BinarySearch largeW.txt < largeT.txt

499569
984875
...

file name (args[0])

file redirected from StdIn
(see page 40)

StdOut
(see page 37)

91.1 n Basic Programming Model
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Basic structure of a Java program  A Java program (class) is either a library of 
static methods (functions) or a data type definition. To create libraries of static methods 
and data-type definitions, we use the following seven components, the basis of pro-
gramming in Java and many other modern languages:

n	 Primitive data types precisely define the meaning of terms like integer, real num-
ber, and boolean value within a computer program. Their definition includes the 
set of possible values and operations on those values, which can be combined 
into expressions like mathematical expressions that define values.

n	 Statements allow us to define a computation by creating and assigning values to 
variables, controlling execution flow, or causing side effects. We use six types of 
statements: declarations, assignments, conditionals, loops, calls, and returns.

n	 Arrays allow us to work with multiple values of the same type.
n	 Static methods allow us to encapsulate and reuse code and to develop programs 

as a set of independent modules.
n	 Strings are sequences of characters. Some operations on them are built into Java.
n	 Input/output sets up communication between programs and the outside world.
n	 Data abstraction extends encapsulation and reuse to allow us to define non-

primitive data types, thus supporting object-oriented programming.
In this section, we will consider the first five of these in turn. Data abstraction is the 
topic of the next section. 

Running a Java program involves interacting with an operating system or a program 
development environment. For clarity and economy, we describe such actions in terms 
of a virtual terminal, where we interact with programs by typing commands to the 
system. See the booksite for details on using a virtual terminal on your system, or for 
information on using one of the many more advanced program development environ-
ments that are available on modern systems. 

For example, BinarySearch is two static methods, rank() and main(). The first 
static method, rank(), is four statements: two declarations, a loop (which is itself an as-
signment and two conditionals), and a return. The second, main(), is three statements: 
a declaration, a call, and a loop (which is itself an assignment and a conditional).

To invoke a Java program, we first compile it using the javac command, then run it 
using the java command. For example, to run BinarySearch, we first type the com-
mand javac BinarySearch.java (which creates a file BinarySearch.class that 
contains a lower-level version of the program in Java bytecode). Then we type java
BinarySearch (followed by a whitelist file name) to transfer control to the bytecode 
version of the program. To develop a basis for understanding the effect of these actions, 
we next consider in detail primitive data types and expressions, the various kinds of 
Java statements, arrays, static methods, strings, and input/output.
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Primitive data types and expressions A data type is a set of values and a set of 
operations on those values. We begin by considering the following four primitive data 
types that are the basis of the Java language:

n	 Integers, with arithmetic operations (int)
n	 Real numbers, again with arithmetic operations (double)
n	 Booleans, the set of values { true, false } with logical operations (boolean)
n	 Characters, the alphanumeric characters and symbols that you type (char)

Next we consider mechanisms for specifying values and operations for these types. 
A Java program manipulates variables that are named with identifiers. Each variable 

is associated with a data type and stores one of the permissible data-type values. In Java 
code, we use expressions like familiar mathematical expressions to apply the operations 
associated with each type. For primitive types, we use identifiers to refer to variables, 
operator symbols such as + - * / to specify operations, literals such as 1 or 3.14 to 
specify values, and expressions such as (x + 2.236)/2 to specify operations on values. 
The purpose of an expression is to define one of the data-type values. 

term examples definition

primitive 
data type

int double boolean char

a set of values and a set of 
operations on those values 

(built into the Java language)

identifier a  abc  Ab$  a_b  ab123  lo  hi
a sequence of letters, digits, 
_, and $, the first of which is 

not a digit

variable [any identifier] names a data-type value

operator + - * / names a data-type operation

literal source-code representation
of a value

int 1  0  -42

double 2.0  1.0e-15  3.14

boolean true  false

char 'a'  '+'  '9'  '\n'

expression

a literal, a variable, or a 
sequence of operations on 

literals and/or variables that 
produces a value

int     lo + (hi - lo)/2

double  1.0e-15 * t

boolean  lo <= hi

Basic building blocks for Java programs
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To define a data type, we need only specify the values and the set of operations on 
those values. This information is summarized in the table below for Java’s int, double, 
boolean, and char data types. These data types are similar to the basic data types found 
in many programming languages. For int and double, the operations are familiar 
arithmetic operations; for boolean, they are familiar logical operations. It is important 
to note that +, -, *, and / are overloaded—the same symbol specifies operations in mul-
tiple different types, depending on context. The key property of these primitive opera-
tions is that an operation involving values of a given type has a value of that type. This rule 
highlights the idea that we are often working with approximate values, since it is often 
the case that the exact value that would seem to be defined by the expression is not a 
value of the type. For example, 5/3 has the value 1 and 5.0/3.0 has a value very close 
to 1.66666666666667 but neither of these is exactly equal to 5/3. This table is far from 
complete; we discuss some additional operators and various exceptional situations that 
we occasionally need to consider in the Q&A at the end of this section.

type set of values operators
typical expressions

expression value

int

integers between 
231 and231 1 

(32-bit two’s 
complement)

+ (add) 
- (subtract) 
* (multiply) 
/ (divide) 

% (remainder)

5 + 3 

5 - 3 

5 * 3 

5 / 3 

5 % 3

8 

2 

15 

1 

2

double

double-precision 
real numbers

(64-bit IEEE 754 
standard)

+ (add) 
- (subtract) 
* (multiply) 
/ (divide)

3.141 - .03 

2.0 - 2.0e-7 

100 * .015 

6.02e23 / 2.0

3.111 

1.9999998 

1.5 

3.01e23

boolean true or false

&& (and) 
|| (or) 
! (not) 
^ (xor)

true && false 

false || true 

!false 

true ^ true

false 

true 

true 

false

char
characters
(16-bit)

[arithmetic operations, rarely used]

primitive data types in Java
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Expressions  As illustrated in the table at the bottom of the previous page, typical ex-
pressions are infix: a literal (or an expression), followed by an operator, followed by 
another literal (or another expression). When an expression contains more than one 
operator, the order in which they are applied is often significant, so the following pre-
cedence conventions are part of the Java language specification: The operators * and /   
(and %) have higher precedence than (are applied before) the + and - operators; among 
logical operators, ! is the highest precedence, followed by && and then ||. Generally, 
operators of the same precedence are applied left to right. As in standard arithmetic ex-
pressions, you can use parentheses to override these rules. Since precedence rules vary 
slightly from language to language, we use parentheses and otherwise strive to avoid 
dependence on precedence rules in our code.

Type conversion  Numbers are automatically promoted to a more inclusive type if no 
information is lost. For example, in the expression 1 + 2.5 , the 1 is promoted to the 
double value 1.0 and the expression evaluates to the double value 3.5 . A cast is a type 
name in parentheses within an expression, a directive to convert the following value 
into a value of that type. For example (int) 3.7 is 3 and (double) 3 is 3.0. Note that 
casting to an int is truncation instead of rounding—rules for casting within compli-
cated expressions can be intricate, and casts should be used sparingly and with care. A 
best practice is to use expressions that involve literals or variables of a single type.

Comparisons  The following operators compare two values of the same type and 
produce a boolean value: equal (==), not equal (!=), less than (<), less than or equal 
(<=), greater than (>), and greater than or equal (>=). These operators are known as 
mixed-type operators because their value is boolean, not the type of the values being 
compared. An expression with a boolean value is known as a boolean expression. Such 
expressions are essential components in conditional and loop statements, as we will see.

Other primitive types  Java’s int has 232 different values by design, so it can be repre-
sented in a 32-bit machine word (many machines have 64-bit words nowadays, but the 
32-bit int persists). Similarly, the double standard specifies a 64-bit representation. 
These data-type sizes are adequate for typical applications that use integers and real 
numbers. To provide flexibility, Java has five additional primitive data types: 

n	 64-bit integers, with arithmetic operations (long)
n	 16-bit integers, with arithmetic operations (short)
n	 16-bit characters, with arithmetic operations (char)
n	 8-bit integers, with arithmetic operations (byte)
n	 32-bit single-precision real numbers, again with arithmetic operations (float)

We most often use int and double arithmetic operations in this book, so we do not 
consider the others (which are very similar) in further detail here. 
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Statements A Java program is composed of statements, which define the computa-
tion by creating and manipulating variables, assigning data-type values to them, and 
controlling the flow of execution of such operations. Statements are often organized in 
blocks, sequences of statements within curly braces.

n	 Declarations create variables of a specified type and name them with identifiers.
n	 Assignments associate a data-type value (defined by an expression) with a vari-

able. Java also has several implicit assignment idioms for changing the value of a 
data-type value relative to its current value, such as incrementing the value of an 
integer variable. 

n	 Conditionals provide for a simple change in the flow of execution—execute the 
statements in one of two blocks, depending on a specified condition.

n	 Loops provide for a more profound change in the flow of execution—execute the 
statements in a block as long as a given condition is true.

n	 Calls and returns relate to static methods (see page 22), which provide another way 
to change the flow of execution and to organize code.

A program is a sequence of statements, with declarations, assignments, conditionals, 
loops, calls, and returns. Programs typically have a nested structure : a statement among 
the statements in a block within a conditional or a loop may itself be a conditional or a 
loop. For example, the while loop in rank() contains an if statement. Next, we con-
sider each of these types of statements in turn.

Declarations  A declaration statement associates a variable name with a type at com-
pile time. Java requires us to use declarations to specify the names and types of vari-
ables. By doing so, we are being explicit about any computation that we are specify-
ing. Java is said to be a strongly typed language, because the Java compiler checks for 
consistency (for example, it does not permit us to multiply a boolean and a double).  
Declarations can appear anywhere before a variable is first used—most often, we put 
them at the point of first use. The scope of a variable is the part of the program where it 
is defined. Generally the scope of a variable is composed of the statements that follow 
the declaration in the same block as the declaration. 

Assignments  An assignment statement associates a data-type value (defined by an ex-
pression) with a variable. When we write c = a + b in Java, we are not expressing 
mathematical equality, but are instead expressing an action: set the value of the vari-
able c to be the value of a plus the value of b. It is true that c is mathematically equal 
to a + b immediately after the assignment statement has been executed, but the point 
of the statement is to change the value of c (if necessary). The left-hand side of an as-
signment statement must be a single variable; the right-hand side can be an arbitrary 
expression that produces a value of the type. 
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Conditionals  Most computations require different actions for different inputs. One 
way to express these differences in Java is the if statement:

if (<boolean expression>) { <block statements> }

This description introduces a formal notation known as a template that we use occa-
sionally to specify the format of Java constructs. We put within angle brackets (< >) 
a construct that we have already defined, to indicate that we can use any instance of 
that construct where specified. In this case, <boolean expression> represents an 
expression that has a boolean value, such as one involving a comparison operation, 
and <block statements> represents a sequence of Java statements. It is possible to 
make formal definitions of <boolean expression> and <block statements>, but 
we refrain from going into that level of detail. The meaning of an if statement is self-
explanatory: the statement(s) in the block are to be executed if and only if the boolean 
expression is true. The if-else statement:

if (<boolean expression>) { <block statements> } 
else                      { <block statements> }

allows for choosing between two alternative blocks of statements.

Loops  Many computations are inherently repetitive. The basic Java construct for han-
dling such computations has the following format:

while (<boolean expression>) { <block statements> }

The while statement has the same form as the if statement (the only difference being 
the use of the keyword while instead of if), but the meaning is quite different. It is an 
instruction to the computer to behave as follows: if the boolean expression is false, 
do nothing; if the boolean expression is true, execute the sequence of statements in 
the block (just as with if) but then check the boolean expression again, execute the se-
quence of statements in the block again if the boolean expression is true, and continue 
as long as the boolean expression is true. We refer to the statements in the block in a 
loop as the body of the loop.

Break and continue  Some situations call for slightly more complicated control flow 
than provided by the basic if and while statements. Accordingly, Java supports two 
additional statements for use within while loops:

n	 The break statement, which immediately exits the loop
n	 The continue statement, which immediately begins the next iteration of the 

loop
We rarely use these statements in the code in this book (and many programmers never 
use them), but they do considerably simplify code in certain instances.
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Shortcut notations There are several ways to express a given computation; we 
seek clear, elegant, and efficient code. Such code often takes advantage of the following 
widely used shortcuts (that are found in many languages, not just Java).

Initializing declarations  We can combine a declaration with an assignment to ini-
tialize a variable at the same time that it is declared (created). For example, the code 
int i = 1; creates an int variable named i and assigns it the initial value 1. A best 
practice is to use this mechanism close to first use of the variable (to limit scope).

Implicit assignments  The following shortcuts are available when our purpose is to 
modify a variable’s value relative to its current value:

n	 Increment/decrement operators: ++i is the same as i = i + 1; both have the 
value i in an expression. Similarly, --i is the same as i = i - 1. The code i++ 
and i-- are the same except that the expression value is the value before the 
increment/decrement, not after.

n	 Other compound operators: Prepending a binary operator to the = in an assign-
ment is equivalent to using the variable on the left as the first operand. For ex-
ample, the code i/=2; is equivalent to the code i = i/2; Note that  i += 1; 
has the same effect as i = i+1; (and i++).

Single-statement blocks  If a block of statements in a conditional or a loop has only a 
single statement, the curly braces may be omitted.

For notation  Many loops follow this scheme: initialize an index variable to some val-
ue and then use a while loop to test a loop continuation condition involving the index 
variable, where the last statement in the while loop increments the index variable. You 
can express such loops compactly with Java’s for notation:

for (<initialize>; <boolean expression>; <increment>) 
{ 
   <block statements> 

}

This code is, with only a few exceptions, equivalent to

<initialize>; 
while (<boolean expression>) 
{ 
   <block statements> 
   <increment>; 
}

We use for loops to support this initialize-and-increment programming idiom.
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statement examples definition

declaration
int i;

double c;

create a variable of a specified type, 
named with a given identifier

assignment
a = b + 3;

discriminant = b*b - 4.0*c;
assign a data-type value to a variable

initializing 
declaration

int i = 1;

double c = 3.141592625;

declaration that also assigns an 
initial value

implicit 
assignment

i++;

i += 1;
i = i + 1;

conditional (if) if (x < 0) x = -x;
execute a statement,

depending on boolean expression

conditional 
(if-else)

if (x > y) max = x; 
else       max = y;

execute one or the other statement,
depending on boolean expression

loop (while)

int v = 1;

while (v <= N) 

   v = 2*v;

double t = c; 

while (Math.abs(t - c/t) > 1e-15*t) 

   t = (c/t + t) / 2.0;

execute statement 
until boolean expression is false

loop (for)

for (int i = 1; i <= N; i++) 

   sum += 1.0/i;

for (int i = 0; i <= N; i++) 

   StdOut.println(2*Math.PI*i/N);

compact version of while statement

call int key = StdIn.readInt(); invoke other methods (see page 22) 

return return false; return from a method (see page 24)

Java statements
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Arrays An array stores a sequence of values that are all of the same type. We want 
not only to store values but also to access each individual value. The method that we 
use to refer to individual values in an array is numbering and then indexing them. If 
we have N values, we think of them as being numbered from 0 to N1. Then, we can 
unambiguously specify one of them in Java code by using the notation a[i] to refer to 
the ith value for any value of i from 0 to N-1. This Java construct is known as a one-
dimensional array. 

Creating and initializing an array  Making an array in a Java program involves three 
distinct steps:

n	 Declare the array name and type.
n	 Create the array.
n	 Initialize the array values.

To declare the array, you need to specify a name and the type of data it will contain. 
To create it, you need to specify its length (the number of values). For example, the 
“long form” code shown at right makes 
an array of N numbers of type double, all 
initialized to 0.0. The first statement is 
the array declaration. It is just like a dec-
laration of a variable of the correspond-
ing primitive type except for the square 
brackets following the type name, which 
specify that we are declaring an array. 
The keyword new in the second state-
ment is a Java directive to create the ar-
ray. The reason that we need to explicitly 
create arrays at run time is that the Java 
compiler cannot know how much space 
to reserve for the array at compile time (as it can for primitive-type values). The for 
statement initializes the N array values. This code sets all of the array entries to the value 
0.0. When you begin to write code that uses an array, you must be sure that your code 
declares, creates, and initializes it. Omitting one of these steps is a common program-
ming mistake. 

Default array initialization  For economy in code, we often take advantage of Java’s 
default array initialization convention and combine all three steps into a single state-
ment, as in the “short form” code in our example. The code to the left of the equal sign 
constitutes the declaration; the code to the right constitutes the creation. The for loop 
is unnecessary in this case because the default initial value of variables of type double 

declaration

creationdouble[] a;
a = new double[N];
for (int i = 0; i < N; i++)
   a[i] = 0.0;   

double[] a = new double[N];

initialization

Declaring, creating, and initializing an array

short form

int[] a = { 1, 1, 2, 3, 5, 8 };

initializing declaration

long form
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in a Java array is 0.0, but it would be required if a nonzero value were desired. The de-
fault initial value is zero for numeric types and false for type boolean.

Initializing declaration  The third option shown for our example is to specify the 
initialization values at compile time, by listing literal values between curly braces, sepa-
rated by commas. 

Using an array  Typical array-processing code is shown on page 21. After declaring 
and creating an array, you can refer to any individual value anywhere you would use 
a variable name in a program by enclosing an integer index in square brackets after 
the array name. Once we create an array, its size is fixed. A program can refer to the 
length of an array a[] with the code a.length. The last element of an array a[] is 
always a[a.length-1]. Java does automatic bounds checking—if you have created an 
array of size N and use an index whose value is less than 0 or greater than N-1, your pro-
gram will terminate with an ArrayOutOfBoundsException runtime exception. 

Aliasing  Note carefully that an array name refers to the whole array—if we assign one 
array name to another, then both refer to the same array, as illustrated in the following 
code fragment. 

int[] a = new int[N]; 
... 
a[i] = 1234; 
... 
int[] b = a; 
... 
b[i] = 5678;  // a[i] is now 5678.

This situation is known as aliasing and can lead to subtle bugs. If your intent is to make 
a copy of an array, then you need to declare, create, and initialize a new array and then 
copy all of the entries in the original array to the new array, as in the third example on 
page 21.

Two-dimensional arrays  A two-dimensional array in Java is an array of one-dimen-
sional arrays. A two-dimensional array may be ragged (its arrays may all be of differing 
lengths), but we most often work with (for appropriate parameters M and N) M-by-N
two-dimensional arrays that are arrays of M rows, each an array of length N (so it also 
makes sense to refer to the array as having N columns). Extending Java array constructs 
to handle two-dimensional arrays is straightforward. To refer to the entry in row i and 
column j of a two-dimensional array a[][], we use the notation a[i][j]; to declare a 
two-dimensional array, we add another pair of square brackets; and to create the array, 
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we specify the number of rows followed by the number of columns after the type name 
(both within square brackets), as follows:

double[][] a = new double[M][N];

We refer to such an array as an M-by-N array. By convention, the first dimension is the 
number of rows and the second is the number of columns. As with one-dimensional 
arrays, Java initializes all entries in arrays of numeric types to zero and in arrays of 
boolean values to false. Default initialization of two-dimensional arrays is useful 
because it masks more code than for one-dimensional arrays. The following code is 
equivalent to the single-line create-and-initialize idiom that we just considered:

double[][] a; 
a = new double[M][N]; 
for (int i = 0; i < M; i++) 
   for (int j = 0; j < N; j++) 
      a[i][j] = 0.0;

This code is superfluous when initializing to zero, but the nested for loops are needed 
to initialize to other value(s).  
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task implementation (code fragment)                              

find the maximum of
the array values

double max = a[0];
for (int i = 1; i < a.length; i++)
   if (a[i] > max) max = a[i]; 

compute the average of
 the array values

int N = a.length;
double sum = 0.0;
for (int i = 0; i < N; i++)
   sum += a[i];  
double average = sum / N; 

copy to another array

int N = a.length;
double[] b = new double[N];
for (int i = 0; i < N; i++)
   b[i] = a[i]; 

reverse the elements
within an array

int N = a.length;
for (int i = 0; i < N/2; i++)
{
   double temp = a[i];
   a[i] = a[N-i-1];
   a[N-i-1] = temp;
}

matrix-matrix multiplication
(square matrices)

a[][]*b[][] = c[][]

int N = a.length;
double[][] c = new double[N][N];
for (int i = 0; i < N; i++)
   for (int j = 0; j < N; j++)
   { // Compute dot product of row i and column j.
      for (int k = 0; k < N; k++) 
         c[i][j] += a[i][k]*b[k][j];
   }

typical array-processing code
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Static methods Every Java program in this book is either a data-type definition 
(which we describe in detail in Section 1.2) or a library of static methods (which we de-
scribe here). Static methods are called functions in many programming languages, since 
they can behave like mathematical functions, as described next. Each static method is 
a sequence of statements that are executed, one after the other, when the static method 
is called, in the manner described below. The modifier static distinguishes these meth-
ods from instance methods, which we discuss in Section 1.2. We use the word method
without a modifier when describing characteristics shared by both kinds of methods.

Defining a static method  A method encapsulates a computation that is defined as a 
sequence of statements. A method takes arguments (values of given data types) and 
computes a return value of some data type that depends upon the arguments (such 
as a value defined by a mathematical function) or causes a side effect that depends on 
the arguments (such as printing a value). The static method rank() in BinarySearch 

is an example of the first; main() is an ex-
ample of the second. Each static method 
is composed of a signature (the keywords 
public static followed by a return type, 
the method name, and a sequence of ar-
guments, each with a declared type) and 
a body (a statement block: a sequence of 
statements, enclosed in curly braces). Ex-
amples of static methods are shown in the 
table on the facing page.

Invoking a static method  A call on a static 
method is its name followed by expressions 
that specify argument values in parenthe-

ses, separated by commas. When the method call is part of an expression, the method 
computes a value and that value is used in place of the call in the expression. For ex-
ample the call on rank() in BinarySearch() returns an int value. A method call 
followed by a semicolon is a statement that generally causes side effects. For example, 
the call Arrays.sort() in main() in BinarySearch is a call on the system method 
Arrays.sort() that has the side effect of putting the entries in the array in sorted 
order. When a method is called, its argument variables are initialized with the values 
of the corresponding expressions in the call. A return statement terminates a static 
method, returning control to the caller. If the static method is to compute a value, that 
value must be specified in a return statement (if such a static method can reach the 
end of its sequence of statements without a return, the compiler will report the error). 

signature

method
body

return statement

method
name

return
type

argument
variable

local
variables

argument
type

call on another method

public static double sqrt ( double c )

{  
   if (c < 0) return Double.NaN;
   double err = 1e-15;

   double t = c;
   while (Math.abs(t - c/t) > err * t)
      t = (c/t + t) / 2.0;
   return t;
}

Anatomy of a static method
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task                     implementation    

absolute value of an
int value

public static int abs(int x) 
{ 
   if (x < 0) return -x; 
   else       return  x; 
}

absolute value of a
double value

public static double abs(double x) 
{   
   if (x < 0.0) return -x; 
   else         return  x; 
}

primality test

public static boolean isPrime(int N) 
{   
   if (N < 2) return false; 
   for (int i = 2; i*i <= N; i++) 
      if (N % i == 0) return false; 
   return true; 
}

square root
(Newton’s method)

public static double sqrt(double c) 
{   
   if (c < 0.0) return Double.NaN; 
   double err = 1e-15; 
   double t = c; 
   while (Math.abs(t - c/t) > err * t)
      t = (c/t + t) / 2.0;
   return t; 
}

hypotenuse of
a right triangle

public static double hypotenuse(double a, double b) 
{  return Math.sqrt(a*a + b*b);  }

Harmonic number
(see page 185)

public static double H(int N) 
{   
   double sum = 0.0;
   for (int i = 1; i <= N; i++)
      sum += 1.0 / i;
   return sum; 
}

typical implementations of static methods
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Properties of methods  A complete detailed description of the properties of methods 
is beyond our scope, but the following points are worth noting:

n	 Arguments are passed by value. You can use argument variables anywhere in the 
code in the body of the method in the same way you use local variables. The 
only difference between an argument variable and a local variable is that the 
argument variable is initialized with the argument value provided by the call-
ing code. The method works with the value of its arguments, not the arguments 
themselves. One consequence of this approach is that changing the value of an 
argument variable within a static method has no effect on the calling code. Gen-
erally, we do not change argument variables in the code in this book. The pass-
by-value convention implies that array arguments are aliased (see page 19)—the 
method uses the argument variable to refer to the caller’s array and can change 
the contents of the array (though it cannot change the array itself). For example, 
Arrays.sort() certainly changes the contents of the array passed as argument: 
it puts the entries in order.

n	 Method names can be overloaded. For example, the Java Math library uses 
this approach to provide implementations of Math.abs(), Math.min(), and 
Math.max() for all primitive numeric types. Another common use of overload-
ing is to define two different versions of a function, one that takes an argument 
and another that uses a default value of that argument.

n	 A method has a single return value but may have multiple return statements. A 
Java method can provide only one return value, of the type declared in the 
method signature. Control goes back to the calling program as soon as the first 
return statement in a static method is reached. You can put return statements 
wherever you need them. Even though there may be multiple return statements, 
any static method returns a single value each time it is invoked: the value follow-
ing the first return statement encountered.

n	 A method can have side effects. A method may use the keyword void as its return 
type, to indicate that it has no return value. An explicit return is not necessary 
in a void static method: control returns to the caller after the last statement. 
A void static method is said to produce side effects (consume input, produce 
output, change entries in an array, or otherwise change the state of the system). 
For example, the main() static method in our programs has a void return type 
because its purpose is to produce output. Technically, void methods do not 
implement mathematical functions (and neither does Math.random(), which 
takes no arguments but does produce a return value).

The instance methods that are the subject of Section 2.1 share these properties, though 
profound differences surround the issue of side effects.
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Recursion  A method can call itself (if you are not comfortable with this idea, known 
as recursion, you are encouraged to work Exercises 1.1.16 through 1.1.22). For ex-
ample, the code at the bottom of this page gives an alternate implementation of the 
rank() method in BinarySearch. We often use recursive implementations of methods 
because they can lead to compact, elegant code that is easier to understand than a cor-
responding implementation that does not use recursion. For example, the comment 
in the implementation below provides a succinct description of what the code is sup-
posed to do. We can use this comment to convince ourselves that it operates correctly, 
by mathematical induction. We will expand on this topic and provide such a proof for 
binary search in Section 3.1. There are three important rules of thumb in developing 
recursive programs:

n	 The recursion has a base case—we always include a conditional statement as the 
first statement in the program that has a return.

n	 Recursive calls must address subproblems that are smaller in some sense, so 
that recursive calls converge to the base case. In the code below, the difference 
between the values of the fourth and the third arguments always decreases.

n	 Recursive calls should not address subproblems that overlap. In the code below, 
the portions of the array referenced by the two subproblems are disjoint.

Violating any of these guidelines is likely to lead to incorrect results or a spectacularly 
inefficient program (see Exercises 1.1.19 and 1.1.27). Adhering to them is likely to 
lead to a clear and correct program whose performance is easy to understand. Another 
reason to use recursive methods is that they lead to mathematical models that we can 
use to understand performance. We address this issue for binary search in Section 3.2
and in several other instances throughout the book.

public static int rank(int key, int[] a) 
{  return rank(key, a, 0, a.length - 1);  }

public static int rank(int key, int[] a, int lo, int hi) 
{  // Index of key in a[], if present, is not smaller than lo 
   //                                  and not larger than hi. 
  if (lo > hi) return -1; 

   int mid = lo + (hi - lo) / 2; 
   if      (key < a[mid]) return rank(key, a, lo, mid - 1); 
   else if (key > a[mid]) return rank(key, a, mid + 1, hi); 
   else                   return mid; 
}

recursive implementation of binary search
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Basic programming model  A library of static methods is a set of static methods that 
are defined in a Java class, by creating a file with the keywords public class followed 
by the class name, followed by the static methods, enclosed in braces, kept in a file with 
the same name as the class and a .java extension. A basic model for Java programming 
is to develop a program that addresses a specific computational task by creating a li-
brary of static methods, one of which is named main(). Typing java followed by a class 
name followed by a sequence of strings leads to a call on main() in that class, with an 
array containing those strings as argument. After the last statement in main() executes, 
the program terminates. In this book, when we talk of a Java program for accomplishing 
a task, we are talking about code developed along these lines (possibly also including 
a data-type definition, as described in Section 1.2). For example, BinarySearch is a 
Java program composed of two static methods, rank() and main(), that accomplishes 
the task of printing numbers from an input stream that are not found in a whitelist file 
given as command-line argument.

Modular programming  Of critical importance in this model is that libraries of stat-
ic methods enable modular programming where we build libraries of static methods 
(modules) and a static method in one library can call static methods defined in other 
libraries. This approach has many important advantages. It allows us to

n	 Work with modules of reasonable size, even in program involving a large 
amount of code

n	 Share and reuse code without having to reimplement it
n	 Easily substitute improved implementations
n	 Develop appropriate abstract models for addressing programming problems
n	 Localize debugging (see the paragraph below on unit testing)

For example, BinarySearch makes use of three other independently developed librar-
ies, our StdIn and In library and Java’s Arrays library. Each of these libraries, in turn, 
makes use of several other libraries. 

Unit testing  A best practice in Java programming is to include a main() in every li-
brary of static methods that tests the methods in the library (some other programming 
languages disallow multiple main() methods and thus do not support this approach).   
Proper unit testing can be a significant programming challenge in itself. At a minimum, 
every module should contain a main() method that exercises the code in the module   
and provides some assurance that it works. As a module matures, we often refine the 
main() method to be a development client that helps us do more detailed tests as we 
develop the code, or a test client that tests all the code extensively. As a client becomes 
more complicated, we might put it in an independent module. In this book, we use 
main() to help illustrate the purpose of each module and leave test clients for exercises.
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External libraries  We use static methods from four different kinds of libraries, each 
requiring (slightly) differing procedures for code reuse. Most of these are libraries of 
static methods, but a few are data-type definitions that also include some static methods.

n	 The standard system libraries java.lang.*. These include Math, which contains 
methods for commonly used mathematical functions; Integer and Double, 
which we use for converting between  strings of characters and 
int and double values; String and StringBuilder, which 
we discuss in detail later in this section and in Chapter 5; and 
dozens of other libraries that we do not use.

n	 Imported system libraries such as java.util.Arrays. There 
are thousands of such libraries in a standard Java release, but 
we make scant use of them in this book. An import statement 
at the beginning of the program is needed to use such libraries 
(and signal that we are doing so).

n	 Other libraries in this book. For example, another program can 
use rank() in BinarySearch. To use such a program, down-
load the source from the booksite into your working directory.

n	 The standard libraries Std* that we have developed for use 
in this book (and our introductory book An Introduction to 
Programming in Java: An Interdisciplinary Approach). These 
libraries are summarized in the following several pages. Source 
code and instructions for downloading them are available on 
the booksite.

To invoke a method from another library (one in the same directory 
or a specified directory, a standard system library, or a system library 
that is named in an import statement before the class definition), we 
prepend the library name to the method name for each call. For ex-
ample, the main() method in BinarySearch calls the sort() method 
in the system library java.util.Arrays, the readInts() method in 
our library In, and the println() method in our library StdOut. 

Libraries of methods implemented by ourselves and by others in a modular 
programming environment can vastly expand the scope of our programming model. 
Beyond all of the libraries available in a standard Java release, thousands more are avail-
able on the web for applications of all sorts. To limit the scope of our programming 
model to a manageable size so that we can concentrate on algorithms, we use just the 
libraries listed in the table at right on this page, with a subset of their methods listed in 
APIs, as described next. 

standard system libraries

Math

Integer†

Double†

String†

StringBuilder

System 

imported system libraries

java.util.Arrays

our standard libraries

StdIn

StdOut

StdDraw

StdRandom

StdStats

In†

Out†

† data type definitions that
include some static methods

Libraries with static 
methods used in this book
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APIs A critical component of modular programming is documentation that explains 
the operation of library methods that are intended for use by others. We will consis-
tently describe the library methods that we use in this book in application programming 
interfaces (APIs) that list the library name and the signatures and short descriptions of 
each of the methods that we use. We use the term client to refer to a program that calls 
a method in another library and the term implementation to describe the Java code that 
implements the methods in an API. 

Example  The following example, the API for commonly used static methods from the 
standard Math library in java.lang, illustrates our conventions for APIs: 

public class Math

static double abs(double a) absolute value of a
static double max(double a, double b) maximum of a and b
static double min(double a, double b) minimum of a and b

Note 1: abs(), max(), and min() are defined also for int, long, and float.

static double sin(double theta) sine function
static double cos(double theta) cosine function 
static double tan(double theta) tangent function 

Note 2: Angles are expressed in radians. Use toDegrees() and toRadians() to convert.  
Note 3: Use asin(), acos(), and atan() for inverse functions.

static double exp(double a) exponential (e a)
static double log(double a) natural log (loge  a, or ln a)
static double pow(double a, double b) raise a to the bth power (ab )

static double random() random number in [0, 1)
static double sqrt(double a) square root of a

static double E value of e (constant)
static double PI value of  (constant)

See booksite for other available functions.

apI for Java’s mathematics library (excerpts)
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These methods implement mathematical functions—they use their arguments to com-
pute a value of a specified type (except random(), which does not implement a math-
ematical function because it does not take an argument). Since they all operate on 
double values and compute a double result, you can consider them as extending the 
double data type—extensibility of this nature is one of the characteristic features of 
modern programming languages. Each method is described by a line in the API that 
specifies the information you need to know in order to use the method. The Math li-
brary also defines the precise constant values PI (for ) and E (for e), so that you can 
use those names to refer to those constants in your programs. For example, the value 
of Math.sin(Math.PI/2) is 1.0 and the value of Math.log(Math.E) is 1.0 (because 
Math.sin() takes its argument in radians and Math.log() implements the natural 
logarithm function). 

Java libraries  Extensive online descriptions of thousands of libraries are part of every   
Java release, but we excerpt just a few methods that we use in the book, in order to clear-
ly delineate our programming model. For example, BinarySearch uses the sort() 
method from Java’s Arrays library, which we document as follows: 

public class Arrays

static void sort(int[] a) put the array in increasing order

Note : This method is defined also for other primitive types and Object.

excerpt from Java’s Arrays library (java.util.Arrays)

The Arrays library is not in java.lang, so an import statement is needed to use it, as 
in BinarySearch. Actually, Chapter 2 of this book is devoted to implementations of 
sort() for arrays, including the mergesort and quicksort algorithms that are imple-
mented in Arrays.sort(). Many of the fundamental algorithms that we consider in 
this book are implemented in Java and in many other programming environments. For 
example, Arrays also includes an implementation of binary search. To avoid confusion, 
we generally use our own implementations, although there is nothing wrong with using 
a finely tuned library implementation of an algorithm that you understand.
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Our standard libraries  We have developed a number of libraries that provide useful 
functionality for introductory Java programming, for scientific applications, and for 
the development, study, and application of algorithms. Most of these libraries are for 
input and output; we also make use of the following two libraries to test and analyze 
our implementations. The first extends Math.random() to allow us to draw random 
values from various distributions; the second supports statistical calculations:

public class StdRandom

static    void setSeed(long seed) initialize

static  double random() real between 0 and 1

static     int uniform(int N) integer between 0 and N-1

static     int uniform(int lo, int hi) integer between lo and hi-1

static  double uniform(double lo, double hi) real between lo and hi

static boolean bernoulli(double p) true with probability p

static  double gaussian() normal, mean 0, std dev 1

static  double gaussian(double m, double s) normal, mean m, std dev s

static     int discrete(double[] a) i with probability a[i]

static    void shuffle(double[] a) randomly shuffle the array a[]

Note: overloaded implementations of shuffle() are included for other primitive types and for Object.

apI for our library of static methods for random numbers

public class StdStats

static double max(double[] a) largest value

static double min(double[] a) smallest value

static double mean(double[] a) average

static double var(double[] a) sample variance

static double stddev(double[] a) sample standard deviation

static double median(double[] a) median

apI for our library of static methods for data analysis
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The setSeed() method in StdRandom allows us to seed the random number genera-
tor so that we can reproduce experiments involving random numbers. For reference, 
implementations of many of these methods are given on page 32. Some of these 
methods are extremely easy to implement; why do we bother including them in a li-
brary? Answers to this question are standard for well-designed libraries:

n	 They implement a level of abstraction that allow us to focus on implement-
ing and testing the algorithms in the book, not generating random objects or 
calculating statistics. Client code that uses such methods is clearer and easier to 
understand than homegrown code that does the same calculation.

n	 Library implementations test for exceptional conditions, cover rarely encoun-
tered situations, and submit to extensive testing, so that we can count on them to 
operate as expected. Such implementations might involve a significant amount 
of code. For example, we often want implementations for various types of data. 
For example, Java’s  Arrays library includes multiple overloaded implementa-
tions of sort(), one for each type of data that you might need to sort.

These are bedrock considerations for modular programming in Java, but perhaps a bit 
overstated in this case. While the methods in both of these libraries are essentially self-
documenting and many of them are not difficult to implement, some of them represent 
interesting algorithmic exercises. Accordingly, you are well-advised to both study the 
code in StdRandom.java and StdStats.java on the booksite and to take advantage 
of these tried-and-true implementations. The easiest way to use these libraries (and to 
examine the code) is to download the source code from the booksite and put them in 
your working directory; various system-dependent mechanisms for using them with-
out making multiple copies are also described on the booksite.  

Your own libraries  It is worthwhile to consider every program that you write as a li-
brary implementation, for possible reuse in the future.

n	 Write code for the client, a top-level implementation that breaks the computa-
tion up into manageable parts.

n	 Articulate an API for a library (or multiple APIs for multiple libraries) of static 
methods that can address each part.

n	 Develop an implementation of the API, with a main() that tests the methods 
independent of the client.

Not only does this approach provide you with valuable software that you can later 
reuse, but also taking advantage of modular programming in this way is a key to suc-
cessfully addressing a complex programming task.
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intended result                                        implementation

random double
value in [a, b)

public static double uniform(double a, double b) 
{  return a + StdRandom.random() * (b-a);  }

random int
value in [0..N)

public static int uniform(int N) 
{  return (int) (StdRandom.random() * N);  }

random int
value in [lo..hi)

public static int uniform(int lo, int hi) 
{  return lo + StdRandom.uniform(hi - lo);  }

random int value drawn 
from discrete distribution
(i with probability a[i])

public static int discrete(double[] a) 
{  // Entries in a[] must sum to 1. 
     double r = StdRandom.random(); 
     double sum = 0.0; 
     for (int i = 0; i < a.length; i++) 
     { 
        sum = sum + a[i];
        if (sum >= r) return i;
     }
     return -1;
}

randomly shuffle the 
elements in an array of 

double values  
(See Exercise 1.1.36)

public static void shuffle(double[] a) 
{ 
   int N = a.length;
   for (int i = 0; i < N; i++) 
   {  // Exchange a[i] with random element in a[i..N-1] 
      int r = i + StdRandom.uniform(N-i);
      double temp = a[i];
      a[i] = a[r];
      a[r] = temp;
   } 
}

Implementations of static methods in StdRandom library
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The purpose of an API is to separate the client from the implementation: the client 
should know nothing about the implementation other than information given in the 
API, and the implementation should not take properties of any particular client into 
account.  APIs enable us to separately develop code for various purposes, then reuse 
it widely. No Java library can contain all the methods that we might need for a given 
computation, so this ability is a crucial step in addressing complex programming ap-
plications. Accordingly, programmers normally think of the API as a contract between 
the client and the implementation that is a clear specification of what each method is to 
do. Our goal when developing an implementation is to honor the terms of the contract. 
Often, there are many ways to do so, and separating client code from implementation 
code gives us the freedom to substitute new and improved implementations. In the 
study of algorithms, this ability is an important ingredient in our ability to understand 
the impact of algorithmic improvements that we develop.
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Strings A String is a sequence of characters (char values). A literal String is a 
sequence of characters within double quotes, such as "Hello, World". The data type 
String is a Java data type but it is not a primitive type. We consider String now be-
cause it is a fundamental data type that almost every Java program uses.

Concatenation  Java has a built-in concatenation operator (+) for String like the 
built-in operators that it has for primitive types, justifying the addition of the row in 
the table below to the primitive-type table on page 12. The result of concatenating two 
String values is a single String value, the first string followed by the second. 

Conversion  Two primary uses of strings are to convert values that we can enter on a 
keyboard into data-type values and to convert data-type values to values that we can 
read on a display. Java has built-in operations for String to facilitate these operations. 
In particular, the language includes libraries Integer and Double that contain static 
methods to convert between String values and int values and between String values 
and double values, respectively.

public class Integer

static    int parseInt(String s) convert s to an int value

static String toString(int i) convert i to a String value

public class Double

static double parseDouble(String s) convert s to a double value

static String toString(double x) convert x to a String value

apIs for conversion between numbers and String values

type set of values typical literals operators
typical expressions

expression value

String
character 
sequences

"AB" 
"Hello" 
"2.5"

+ 
(concatenate)

"Hi, " + "Bob" 

"12" + "34" 

"1" + "+" + "2"

"Hi, Bob" 

"1234" 

"1+2"

Java’s String data type

34 Chapter 1 n Fundamentals



ptg12441863

Automatic conversion  We rarely explicitly use the static toString() methods just 
described because Java has a built-in mechanism that allows us to convert from any data 
type value to a String value by using concatenation: if one of the arguments of + is a 
String, Java automatically converts the other argument to a String (if it is not already 
a String). Beyond usage like "The square root of 2.0 is " + Math.sqrt(2.0) 
this mechanism enables conversion of any data-type value to a String, by concatenat-
ing it with the empty string "".

Command-line arguments  One important use of strings in Java programming is to 
enable a mechanism for passing information from the command line to the program. 
The mechanism is simple. When you type the java command followed by a library 
name followed by a sequence of strings, the Java system invokes the main() method in 
that library with an array of strings as argument: the strings typed after the library name. 
For example, the main() method in BinarySearch takes one command-line argument, 
so the system creates an array of size one. The program uses that value, args[0], to 
name the file containing the whitelist, for use as the argument to In.readInts(). An-
other typical paradigm that we often use in our code is when a command-line argu-
ment is intended to represent a number, so we use parseInt() to convert to an int 
value or parseDouble() to convert to a double value.

Computing with strings is an essential component of modern computing. For the 
moment, we make use of String just to convert between external representation of 
numbers as sequences of characters and internal representation of numeric data-type 
values. In Section 1.2, we will see that Java supports many, many more operations on 
String values that we use throughout the book; in Section 1.4, we will examine the 
internal representation of String values;  and in Chapter 5, we consider in depth al-
gorithms that process String data. These algorithms are among the most interesting, 
intricate, and impactful methods that we consider in this book.

351.1 n Basic Programming Model



ptg12441863

Input and output The primary purpose of our standard libraries for input, out-
put, and drawing is to support a simple model for Java programs to interact with the 
outside world. These libraries are built upon extensive capabilities that are available in 
Java libraries, but are generally much more complicated and much more difficult to 

learn and use. We begin by briefly reviewing the model.
In our model, a Java program takes input values from 

command-line arguments or from an abstract stream of 
characters known as the standard input stream and writes 
to another abstract stream of characters known as the 
standard output stream. 

Necessarily, we need to consider the interface between 
Java and the operating system, so we need to briefly dis-
cuss basic mechanisms that are provided by most modern 
operating systems and program-development environ-
ments. You can find more details about your particular 
system on the booksite. By default, command-line argu-
ments, standard input, and standard output are associated 

with an application supported by either the operating system or the program develop-
ment environment that takes commands. We use the generic term terminal window to 
refer to the window maintained by this application, where we type and read text. Since 
early Unix systems in the 1970s this model has proven to be a convenient and direct way 
for us to interact with our programs and data. We add to the classical model a standard 
drawing that allows us to create visual representations for data analysis.

Commands and arguments  In the terminal window, we see a prompt, where we type 
commands to the operating system that may take arguments. We use only a few com-
mands in this book, shown in the table below. Most often, we use the java command, 
to run our programs. As mentioned on page 35, Java classes have a main() static 
method that takes a String array args[] as its argument. That array is the sequence 
of command-line arguments that we type, provided to Java by the operating system. 

By convention, both Java and 
the operating system process 
the arguments as strings. If 
we intend for an argument to 
be a number, we use a method 
such as Integer.parseInt() 
to convert it from String to 
the appropriate type.

standard input command-line
arguments

standard output

standard drawing

file I/O

A bird’s-eye view of a Java program

command arguments purpose

javac .java file name compile Java program

java
.class file name (no extension)
and command-line arguments

run Java program

more any text file name print file contents

typical operating-system commands
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Standard output  Our StdOut library provides sup-
port for standard output. By default, the system con-
nects standard output to the terminal window. The 
print() method puts its argument on standard out-
put; the println() method adds a newline; and the 
printf() method supports formatted output, as de-
scribed next. Java provides a similar method in its 
System.out library; we use StdOut to treat standard 
input and standard output in a uniform manner (and 
to provide a few technical improvements).

public class StdOut

static void print(String s) print s 

static void println(String s) print s, followed by newline

static void println() print a new line

static void printf(String f, ... ) formatted print

Note: overloaded implementations are included for primitive types and for Object.

apI for our library of static methods for standard output

To use these methods, download into 
your working directory StdOut.java 
from the booksite and use code such as 
StdOut.println("Hello, World"); 
to call them. A sample client is shown 
at right.

Formatted output  In its simplest 
form, printf() takes two arguments. 
The first argument is a format string 
that describes how the second argu-
ment is to be converted to a string for 
output. The simplest type of format 
string begins with % and ends with a 
one-letter conversion code. The conversion codes that we 
use most frequently are d (for decimal values from Java’s 
integer types), f (for floating-point values), and s (for 
String values). Between the % and the conversion code 
is an integer value that specifies the field width of the 

% java RandomSeq 5 100.0 200.0 
123.43 
153.13 
144.38 
155.18 
104.02

public class RandomSeq 
{ 
   public static void main(String[] args) 
   {  // Print N random values in (lo, hi). 
      int N = Integer.parseInt(args[0]); 
      double lo = Double.parseDouble(args[1]); 
      double hi = Double.parseDouble(args[2]); 
      for (int i = 0; i < N; i++) 
      { 
         double x = StdRandom.uniform(lo, hi); 
         StdOut.printf("%.2f\n", x); 
      } 
   } 
}

Sample StdOut client

prompt

invoke
Java 

runtime

call the static method
main() in RandomSeq

args[0]
args[1]

args[2]

  % java RandomSeq 5 100.0 200.0

Anatomy of a command
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converted value (the number of characters in the converted output string). By default, 
blank spaces are added on the left to make the length of the converted output equal to 
the field width; if we want the spaces on the right, we can insert a minus sign before the 
field width. (If the converted output string is bigger than the field width, the field width 
is ignored.) Following the width, we have the option of including a period followed by 
the number of digits to put after the decimal point (the precision) for a double value 
or the number of characters to take from the beginning of the string for a String value. 
The most important thing to remember about using printf() is that the conversion 
code in the format and the type of the corresponding argument must match. That is, Java 
must be able to convert from the type of the argument to the type required by the con-
version code. The first argument of printf() is a String that may contain characters 
other than a format string. Any part of the argument that is not part of a format string 
passes through to the output, with the format string replaced by the argument value 
(converted to a String as specified). For example, the statement

StdOut.printf("PI is approximately %.2f\n", Math.PI);

prints the line

PI is approximately 3.14

Note that we need to explicitly include the newline character \n in the argument in 
order to print a new line with printf(). The printf() function can take more than 
two arguments. In this case, the format string will have a format specifier for each ad-
ditional argument, perhaps separated by other characters to pass through to the out-
put. You can also use the static method String.format() with arguments exactly as 
just described for printf() to get a formatted string without printing it. Formatted 
printing is a convenient mechanism that allows us to develop compact code that can 
produce tabulated experimental data (our primary use in this book).

type code
typical
literal

sample
format strings

converted string
values for output

int d 512
"%14d" 
"%-14d"

"           512" 
"512           "

double f 1595.1680010754388
"%14.2f" 
"%.7f" 
"%14.4e"

"       1595.17" 
"1595.1680011" 
"    1.5952e+03"e

String s "Hello, World"
"%14s" 
"%-14s" 
"%-14.5s"

"  Hello, World" 
"Hello, World  " 
"Hello         "

Format conventions for printf() (see the booksite for many other options)
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Standard input  Our StdIn library 
takes data from the standard input 
stream that may be empty or may 
contain a sequence of values sepa-
rated by whitespace (spaces, tabs, 
newline characters, and the like). By 
default, the system connects stan-
dard output to the terminal win-
dow—what you type is the input 
stream (terminated by <ctrl-d> or 
<ctrl-z>, depending on your termi-
nal window application). Each value 
is a String or a value from one of 
Java’s primitive types. One of the key 
features of the standard input stream 
is that your program consumes values when it reads them. Once 
your program has read a value, it cannot back up and read it again. 
This assumption is restrictive, but it reflects physical characteristics 
of some input devices and simplifies implementing the abstrac-
tion. Within the input stream model, the static methods in this li-
brary are largely self-documenting (described by their signatures).

public class StdIn

static boolean isEmpty() true if no more values, false otherwise

static     int readInt() read a value of type int

static  double readDouble() read a value of type double

static   float readFloat() read a value of type float

static    long readLong() read a value of type long

static boolean readBoolean() read a value of type boolean

static    char readChar() read a value of type char

static    byte readByte() read a value of type byte

static  String readString() read a value of type String

static boolean hasNextLine() is there another line in the input stream?

static  String readLine() read the rest of the line

static  String readAll() read the rest of the input stream

apI for our library of static methods for standard input

public class Average 
{  
   public static void main(String[] args) 
   {  // Average the numbers on StdIn. 
      double sum = 0.0; 
      int cnt = 0; 
      while (!StdIn.isEmpty()) 
      {  // Read a number and cumulate the sum. 
         sum += StdIn.readDouble(); 
         cnt++; 
      } 
      double avg = sum / cnt; 
      StdOut.printf("Average is %.5f\n", avg); 
   } 
}

Sample StdIn client

% java Average 
1.23456 
2.34567 
3.45678 
4.56789 
<ctrl-d> 
Average is 2.90123
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Redirection and piping  Standard input and output enable us to take advantage of 
command-line extensions supported by many operating-systems. By adding a simple 
directive to the command that invokes a program, we can redirect its standard output 
to a file, either for permanent storage or for input to another program at a later time:

% java RandomSeq 1000 100.0 200.0 > data.txt

This command specifies that the standard output stream is not to be printed in the ter-
minal window, but instead is to be written to a text file named data.txt. Each call to 

StdOut.print() or StdOut.println() 
appends text at the end of that file. In 
this example, the end result is a file that 
contains 1,000 random values. No out-
put appears in the terminal window: it 
goes directly into the file named after 
the > symbol. Thus, we can save away 
information for later retrieval. Note that 
we do not have to change RandomSeq in 
any way—it is using the standard out-
put abstraction and is unaffected by our 
use of a different implementation of 
that abstraction. Similarly, we can redi-
rect standard input so that StdIn reads 
data from a file instead of the terminal 
application:

% java Average < data.txt

This command reads a sequence of 
numbers from the file data.txt and 
computes their average value. Specifi-
cally, the < symbol is a directive that tells 
the operating system to implement the 
standard input stream by reading from 
the text file data.txt instead of waiting 
for the user to type something into the 

terminal window. When the program calls StdIn.readDouble(), the operating system 
reads the value from the file. Combining these to redirect the output of one program to 
the input of another is known as piping:

% java RandomSeq 1000 100.0 200.0 | java Average

redirecting standard output to a �le

piping the output of one program to the input of another

redirecting from a �le to standard input

standard input

Average

% java Average < data.txt

data.txt

standard output

RandomSeq

% java RandomSeq 1000 100.0 200.0 > data.txt

data.txt

standard inputstandard output

RandomSeq

% java RandomSeq 1000 100.0 200.0 | java Average

Average

Redirection and piping from the command line
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This command specifies that standard output for RandomSeq and standard input for 
Average are the same stream. The effect is as if RandomSeq were typing the numbers it 
generates into the terminal window while Average is running. This difference is pro-
found, because it removes the limitation on the size of the input and output streams that 
we can process. For example, we could replace 1000 in our example with 1000000000, 
even though we might not have the space to save a billion numbers on our computer 
(we do need the time to process them). When RandomSeq calls StdOut.printf(), a 
string is added to the end of the stream; when Average calls StdIn.readDouble(), 
a string is removed from the beginning of the stream. The timing of precisely what 
happens is up to the operating system: it might run RandomSeq until it produces some 
numbers, and then run Average to consume those numbers, or it might run Average 
until it needs to consume a number, and then run RandomSeq until it produces the 
needed number. The end result is the same, but our programs are freed from worry-
ing about such details because they work solely with the standard input and standard 
output abstractions.

Input and output from a file  Our In and Out libraries provide static methods that 
implement the abstraction of reading from and writing to a file the contents of an ar-
ray of values of a primitive type (or String). We use readInts(), readDoubles(), 
and readStrings() in the In library and writeInts(), writeDoubles(), and 
writeStrings() in the Out library. The named argument can be a file or a web page. 
For example, this ability allows us to use a file and standard input for two different pur-
poses in the same program, as in BinarySearch. The In and Out libraries also imple-
ment data types with instance methods that allow us the more general ability to treat 
multiple files as input and output streams, and web pages as input streams, so we will 
revisit them in Section 1.2.

public class In

static    int[] readInts(String name) read int values

static double[] readDoubles(String name) read double values

static String[] readStrings(String name) read String values

public class Out

static void write(int[] a, String name) write int values

static void write(double[] a, String name) write double values

static void write(String[] a, String name) write String values

Note 1: Other primitive types are supported.
Note 2: StdIn and StdOut are supported (omit name argument).

apIs for our static methods for reading and writing arrays
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Standard drawing (basic methods)  Up to this point, 
our input/output abstractions have focused exclusively 
on text strings. Now we introduce an abstraction for 
producing drawings as output. This library is easy to 
use and allows us to take advantage of a visual medi-
um to cope with far more information than is possible 
with just text. As with standard input/output, our stan-
dard drawing abstraction is implemented in a library 
StdDraw that you can access by downloading the file 
StdDraw.java from the booksite into your working 
directory. Standard draw is very simple: we imagine an 
abstract drawing device capable of drawing lines and 
points on a two-dimensional canvas. The device is ca-
pable of responding to the commands to draw basic 
geometric shapes that our programs issue in the form 
of calls to static methods in StdDraw, including meth-
ods for drawing lines, points, text strings, circles, rect-
angles, and polygons. Like the methods for standard 
input and standard output, these methods are nearly 
self-documenting: StdDraw.line() draws a straight 
line segment connecting the point (x0 , y0) with the 
point (x1 , y1) whose coordinates are given as arguments. 
StdDraw.point() draws a spot centered on the point 
(x, y) whose coordinates are given as arguments, and so 
forth, as illustrated in the diagrams at right. Geometric 
shapes can be filled (in black, by default). The default 
scale is the unit square (all coordinates are between 0 
and 1). The standard implementation displays the can-
vas in a window on your computer’s screen, with black 
lines and points on a white background. 

(x0, y0)

(x1, y1)

(x2, y2)
(x3, y3)

double[] x = {x0, x1, x2, x3};
double[] y = {y0, y1, y2, y3};
StdDraw.polygon(x, y);

(x, y)

StdDraw.circle(x, y, r);

StdDraw.square(x, y, r);

r

(x, y)

r

r

StdDraw examples

(1, 1)

StdDraw.point(x0, y0);
StdDraw.line(x1, y1, x2, y2);

(x0, y0)

(x2, y2)

(x1, y1)

(0, 0)
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public class StdDraw

static void line(double x0, double y0, double x1, double y1)

static void point(double x, double y)

static void text(double x, double y, String s)

static void circle(double x, double y, double r)

static void filledCircle(double x, double y, double r)

static void ellipse(double x, double y, double rw, double rh)

static void filledEllipse(double x, double y, double rw, double rh)

static void square(double x, double y, double r)

static void filledSquare(double x, double y, double r)

static void rectangle(double x, double y, double rw, double rh)

static void filledRectangle(double x, double y, double rw, double rh)

static void polygon(double[] x, double[] y)

static void filledPolygon(double[] x, double[] y)

apI for our library of static methods for standard drawing (drawing methods)

Standard drawing (control methods)  The library also includes methods to change 
the scale and size of the canvas, the color and width of the lines, the text font, and 
the timing of drawing (for use in animation). As arguments for setPenColor() you 
can use one of the predefined colors BLACK, BLUE, CYAN, DARK_GRAY, GRAY, GREEN, 
LIGHT_GRAY, MAGENTA, ORANGE, PINK, RED, BOOK_RED, WHITE, and YELLOW that are de-
fined as constants in StdDraw (so we refer to one of them with code like StdDraw.RED). 
The window also includes a menu option to save your drawing to a file, in a format 
suitable for publishing on the web. 

public class StdDraw

static void setXscale(double x0, double x1) reset x range to (x0 , x1) 

static void setYscale(double y0, double y1) reset y range to (y0 , y1)

static void setPenRadius(double r) set pen radius to r

static void setPenColor(Color c) set pen color to c

static void setFont(Font f) set text font to f

static void setCanvasSize(int w, int h) set canvas to w-by-h window

static void clear(Color c) clear the canvas; color it c

static void show(int dt) show all; pause dt milliseconds

apI for our library of static methods for standard drawing (control methods)
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In this book, we use StdDraw for data analysis and for creating visual representations 
of algorithms in operation. The table on the opposite page indicates some possiblities; 
we will consider many more examples in the text and the exercises throughout the 
book. The library also supports animation—of course, this topic is treated primarily 
on the booksite.
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data plot implementation (code fragment) result

function
values

int N = 100; 
StdDraw.setXscale(0, N);
StdDraw.setYscale(0, N*N);
StdDraw.setPenRadius(.01);
for (int i = 1; i <= N; i++) 
{ 
   StdDraw.point(i, i);
   StdDraw.point(i, i*i);
   StdDraw.point(i, i*Math.log(i));
}

array of 
random
values

int N = 50;
double[] a = new double[N];
for (int i = 0; i < N; i++)
   a[i] = StdRandom.random();
for (int i = 0; i < N; i++)
{
   double x = 1.0*i/N;
   double y = a[i]/2.0;
   double rw = 0.5/N;
   double rh = a[i]/2.0;
   StdDraw.filledRectangle(x, y, rw, rh);
}

sorted array 
of random

values

int N = 50;
double[] a = new double[N];
for (int i = 0; i < N; i++)
   a[i] = StdRandom.random();
Arrays.sort(a);
for (int i = 0; i < N; i++)
{
   double x = 1.0*i/N;
   double y = a[i]/2.0;
   double rw = 0.5/N;
   double rh = a[i]/2.0;
   StdDraw.filledRectangle(x, y, rw, rh);
}

StdDraw plotting examples
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Binary search The sample Java program that we started with, shown on the facing 
page, is based on the famous, effective, and widely used binary search algorithm. This 
example is a prototype of the way in which we will examine new algorithms throughout 
the book. As with all of the programs we consider, it is both a precise definition of the 
method and a complete Java implementation that you can download from the booksite. 

Binary search  We will study the binary search algorithm in detail in Section 3.2, 
but a brief description is appropriate here. The algorithm is implemented in the static 

method rank(), which takes an integer key and 
a sorted array of int values as arguments and re-
turns the index of the key if it is present in the 
array, -1 otherwise. It accomplishes this task by 
maintaining variables lo and hi such that the key 
is in a[lo..hi] if it is in the array, then entering 
into a loop that tests the middle entry in the in-
terval (at index mid). If the key is equal to a[mid], 
the return value is mid; otherwise the method cuts 
the interval size about in half, looking at the left 
half if the key is less than a[mid] and at the right 
half if the key is greater than a[mid].  The process 
terminates when the key is found or the interval is 
empty. Binary search is effective because it needs 
to examine just a few ar-
ray entries (relative to the 
size of the array) to find 
the key (or determine that 
it is not there).

Development client  For every algorithm implementation, 
we include a development client main() that you can use with 
sample input files provided in the book and on the booksite 
to learn about the algorithm and to test its performance. In 
this example, the client reads integers from the file named on 
the command line, then prints any integers to standard output 
that do not appear in the file. We use small test files such as 
those shown at right to demonstrate this behavior, and as the 
basis for traces and examples such as those at left above. We 
use large test files to model real-world applications and to test 
performance (see page 48).

10 11 12 16 18 23 29 33 48 54 57 68 77 84 98

10 11 12 16 18 23 29 33 48 54 57 68 77 84 98

10 11 12 16 18 23 29 33 48 54 57 68 77 84 98

successful search for 23
lo mid hi

lo mid hi

lo mid hi

10 11 12 16 18 23 29 33 48 54 57 68 77 84 98

10 11 12 16 18 23 29 33 48 54 57 68 77 84 98

10 11 12 16 18 23 29 33 48 54 57 68 77 84 98

10 11 12 16 18 23 29 33 48 54 57 68 77 84 98

10 11 12 16 18 23 29 33 48 54 57 68 77 84 98

Binary search in an ordered array

unsuccessful search for 50

lo mid hi

lo mid hi

lo mid

hi lo 

hi

lo mid hi

84
48
68
10
18
98
12
23
54
57
48
33
16
77
11
29

tinyW.txt

23
50
10
99
18
23
98
84
11
10
48
77
13
54
98
77
77
68

tinyT.txt

Small test �les for
BinarySearch test client

not in
tinyW.txt
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Binary Search

import java.util.Arrays;

public class BinarySearch 
{ 
   public static int rank(int key, int[] a) 
   {  // Array must be sorted. 
      int lo = 0; 
      int hi = a.length - 1; 
      while (lo <= hi) 
      {  // Key is in a[lo..hi] or not present. 
         int mid = lo + (hi - lo) / 2; 
         if      (key < a[mid]) hi = mid - 1; 
         else if (key > a[mid]) lo = mid + 1; 
         else                   return mid; 
      } 
      return -1; 
   } 

   public static void main(String[] args) 
   { 
      int[] whitelist = In.readInts(args[0]);

      Arrays.sort(whitelist);

      while (!StdIn.isEmpty()) 
      {  // Read key, print if not in whitelist. 
         int key = StdIn.readInt(); 
         if (rank(key, whitelist) == -1) 
            StdOut.println(key); 
      }

   }

}

This program takes the name of a whitelist file (a sequence of integers) as argument and filters any 
entry that is on the whitelist from standard input, leaving only integers that are not on the whitelist 
on standard output. It uses the binary search algorithm, implemented in the static method rank(), 
to accomplish the task efficiently. See Sec-
tion 3.1 for a full discussion of the binary 
search algorithm, its correctness, its per-
formance analysis, and its applications.

% java BinarySearch tinyW.txt < tinyT.txt 
50 
99 
13
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Whitelisting  When possible, our development clients are intended to mirror practical 
situations and demonstrate the need for the algorithm at hand. In this case, the process 
is known as whitelisting. Specifically, imagine a credit card company that needs to check 
whether customer transactions are for a valid account. To do so, it can

n	 Keep customers account numbers in a file, which we refer to as a whitelist.
n	 Produce the account number associated with each transaction in the standard 

input stream. 
n	 Use the test client to put onto standard output the numbers that are not associat-

ed with any customer. Presumably the company would refuse such transactions. 
It would not be unusual for a big company with millions of customers to have to pro-
cess millions of transactions or more. To model this situation, we provide on the book-
site the files largeW.txt (1 million integers) and largeT.txt (10 million integers).

Performance  A working program is often not sufficient. For example, a much simpler 
implementation of rank(), which does not even require the array to be sorted, is to 
check every entry, as follows:

public static int rank(int key, int[] a) 
{ 
   for (int i = 0; i < a.length; i++) 
      if (a[i] == key) return i; 
   return -1; 
}

Given this simple and easy-to-understand solution, why do we use mergesort and bi-
nary search? If you work Exercise 1.1.38, you will see that your computer is too slow 
to run this brute-force implementation of rank() for large numbers of inputs (say, 1 
million whitelist entries and 10 million transactions). Solving the whitelist problem for 
a large number of inputs is not feasible without efficient algorithms such as binary search 
and mergesort. Good performance is often of critical importance, so we lay the ground-
work for studying performance in Section 1.4 and analyze the performance character-
istics of all of our algorithms (including binary search, in Section 3.1 and mergesort, 
in Section 2.2). 

In the present context, our goal in thoroughly outlining our programming model 
is to ensure that you can run code like BinarySearch on your computer, use it on test 
data like ours, and modify it to adapt to various situations (such as those described in 
the exercises at the end of this section), in order to best understand its applicability. 
The programming model that we have sketched is designed to facilitate such activities, 
which are crucial to our approach to studying  algorithms.
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489910
 18940
774392
490636
125544
407391
115771
992663
923282
176914
217904
571222
519039
395667
 ...
  

944443
293674
572153
600579
499569
984875
763178
295754
 44696
207807
138910
903531
140925
699418
759984
199694
774549
635871
161828
805380
 ...
  

% java BinarySearch largeW.txt < largeT.txt
499569
984875
295754
207807
140925
161828
 ...

largeW.txt largeT.txt

Large �les for BinarySearch test client

not in
largeW.txt

1,000,000
int values

367,966
int values

10,000,000
int values
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Perspective In this section, we have described a fine and complete programming 
model that served (and still serves) many programmers for many decades. Modern 
programming, however, goes one step further. This next level is called data abstraction, 
sometimes known as object-oriented programming, and is the subject of the next sec-
tion. Simply put, the idea behind data abstraction is to allow a program to define data 
types (sets of values and sets of operations on those values), not just static methods that 
operate on predefined data types.

Object-oriented programming has come into widespread use in recent decades, and 
data abstraction is central to modern program development. We embrace data abstrac-
tion in this book for three primary reasons:

n	 It enables us to expand our ability to reuse code through modular programming. 
For example, our sorts in Chapter 2 and binary search and other algorithms in 
Chapter 3 allow clients to make use of the same code for any type of data (not 
just integers), including one defined by the client.

n	 It provides a convenient mechanism for building so-called linked data structures 
that provide more flexibility than arrays and are the basis of efficient algorithms 
in many settings.

n	 It enables us to precisely define the algorithmic challenges that we face. For ex-
ample, our union-find algorithms in Section 1.5, our priority-queue algorithms 
in Section 2.4, and our symbol-table algorithms in Chapter 3 are all oriented 
toward defining data structures that enable efficient implementations of a set of 
operations. This challenge aligns perfectly with data abstraction.

Despite all of these considerations, our focus remains on the study of algorithms. In 
this context, we proceed to consider next the essential features of object-oriented pro-
gramming that are relevant to our mission.
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Q&A

Q. What is Java bytecode?

A. A low-level version of your program that runs on the Java virtual machine. This level 
of abstraction makes it easier for the developers of Java to ensure that our programs run 
on a broad variety of devices.

Q. It seems wrong that Java should just let ints overflow and give bad values. Shouldn’t 
Java automatically check for overflow?

A. This issue is a contentious one among programmers. The short answer is that the 
lack of such checking is one reason such types are called primitive data types. A little 
knowledge can go a long way in avoiding such problems. We use the int type for small 
numbers (less than ten decimal digits), and the long type when values run into the bil-
lions or more. 

Q. What is the value of Math.abs(-2147483648)?

A. -2147483648. This strange (but true) result is a typical example of the effects of 
integer overflow.

Q. How can I initialize a double variable to infinity?

A. Java has built-in constants available for this purpose: Double.POSITIVE_INFINITY 
and Double.NEGATIVE_INFINITY.

Q. Can you compare a double to an int?

A. Not without doing a type conversion, but remember that Java usually does the req-
uisite type conversion automatically. For example, if x is an int with the value 3, then 
the expression (x < 3.1) is true—Java converts x to double (because 3.1 is a double 
literal) before performing the comparison.

Q. What happens if I use a variable before initializing it to a value?

A. Java will report a compile-time error if there is any path through your code that 
would lead to use of an uninitialized variable.

Q. What are the values of 1/0 and 1.0/0.0 as Java expressions?

A. The first generates a runtime exception for division by zero (which stops your pro-
gram because the value is undefined); the second has the value Infinity.
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Q. Can you use < and > to compare String variables?

A. No. Those operators are defined only for primitive types. See page 80.

Q. What is the result of division and remainder for negative integers?

A. The quotient a/b rounds toward 0; the remainder a % b is defined such that (a / 
b) * b + a % b is always equal to a. For example, -14/3 and 14/-3 are both -4, but 
-14 % 3 is -2 and 14 % -3 is 2.

Q. Why do we say (a && b) and not (a & b)?

A. The operators &, |, and ^ are bitwise logical operations for integer types that do and, 
or, and exclusive or (respectively) on each bit position. Thus the value of 10 & 6 is 2, the 
value of 10 | 6 is 14, and the value of 10 ^ 6 is 12. We use these operators rarely (but 
occasionally) in this book. The operators && and || are valid only in boolean expres-
sions; they differ from the operators & and | because of short-circuiting: an expression 
is evaluated left-to-right and the evaluation stops when the value is known.

Q. Is ambiguity in nested if statements a problem?

A. Yes. In Java, when you write

if <expr1> if <expr2> <stmntA> else <stmntB>

it is equivalent to

if <expr1> { if <expr2> <stmntA> else <stmntB> }

even if you might have been thinking

if <expr1> { if <expr2> <stmntA> } else <stmntB>

Using explicit braces is a good way to avoid this dangling else pitfall.

Q. What is the difference between a for loop and its while formulation?

A. The code in the for loop header is considered to be in the same block as the for 
loop body. In a typical for loop, the incrementing variable is not available for use in 
later statements; in the corresponding while loop, it is. This distinction is often a rea-
son to use a while instead of a for loop. 

Q. Some Java programmers use int a[] instead of int[] a to declare arrays. What’s 
the difference?

Q&A (continued)
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A. In Java, both are legal and equivalent. The former is how arrays are declared in C. 
The latter is the preferred style in Java since the type of the variable int[] more clearly 
indicates that it is an array of integers.

Q. Why do array indices start at 0 instead of 1?

A. This convention originated with machine-language programming, where the ad-
dress of an array element would be computed by adding the index to the address of the 
beginning of an array. Starting indices at 1 would entail either a waste of space at the 
beginning of the array or a waste of time to subtract the 1.

Q. If a[] is an array, why does StdOut.println(a) print out a hexadecimal integer, 
such as @f62373 , instead of the elements of the array?

A. Good question. Typically, it prints the memory address of the array, which, unfor-
tunately, is rarely what you want. Instead, you can first call Arrays.toString(a).

Q. Why are we not using the standard Java libraries for input and graphics?

A. We are using them, but we prefer to work with simpler abstract models. The Java 
libraries behind StdIn and StdDraw are built for production programming, and the 
libraries and their APIs are a bit unwieldy. To get an idea of what they are like, look at 
the code in StdIn.java and StdDraw.java. 

Q. Can my program reread data from standard input?

A. No. You only get one shot at it, in the same way that you cannot undo println().

Q. What happens if my program attempts to read after standard input is exhausted?

A. You will get an error. StdIn.isEmpty() allows you to avoid such an error by check-
ing whether there is more input available.

Q. What does this error message mean?

       Exception in thread "main" java.lang.NoClassDefFoundError: StdIn

A. You probably forgot to put StdIn.java in your working directory.

Q. Can a static method take another static method as an argument in Java?

A. No. Good question, since many other languages do support this capability.
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ExErcisEs

1.1.1 Give the value of each of the following expressions:

a. ( 0 + 15 ) / 2

b. 2.0e-6 * 100000000.1

c.  true && false || true && true

1.1.2 Give the type and value of each of the following expressions:

a. (1 + 2.236)/2

b. 1 + 2 + 3 + 4.0

c. 4.1 >= 4

d. 1 + 2 + "3"

1.1.3 Write a program that takes three integer command-line arguments and prints 
equal if all three are equal, and not equal otherwise.

1.1.4 What (if anything) is wrong with each of the following statements?

a.  if (a > b) then c = 0;

b.  if a > b { c = 0; }

c.  if (a > b) c = 0;

d.  if (a > b) c = 0 else b = 0;

1.1.5 Write a code fragment that prints true if the double variables x and y are both 
strictly between 0 and 1 and false otherwise.

1.1.6 What does the following program print?

int f = 0; 
int g = 1; 
for (int i = 0; i <= 15; i++) 
{ 
   StdOut.println(f); 
   f = f + g; 
   g = f - g; 
} 
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1.1.7 Give the value printed by each of the following code fragments:

a.   double t = 9.0; 
    while (Math.abs(t - 9.0/t) > .001) 
       t = (9.0/t + t) / 2.0; 

    StdOut.printf("%.5f\n", t);

b.   int sum = 0; 
    for (int i = 1; i < 1000; i++) 

       for (int j = 0; j < i; j++) 

          sum++; 

    StdOut.println(sum);

c.    int sum = 0; 
    for (int i = 1; i < 1000; i *= 2) 

       for (int j = 0; j < 1000; j++) 

          sum++; 

    StdOut.println(sum); 

1.1.8 What do each of the following print?

a. System.out.println('b');

b. System.out.println('b' + 'c');

c. System.out.println((char) ('a' + 4));

Explain each outcome.

1.1.9 Write a code fragment that puts the binary representation of a positive integer N 
into a String s.

Solution: Java has a built-in method Integer.toBinaryString(N) for this job, but 
the point of the exercise is to see how such a method might be implemented. Here is a 
particularly concise solution:

String s = ""; 
for (int n = N; n > 0; n /= 2) 
   s = (n % 2) + s;
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1.1.10 What is wrong with the following code fragment?

int[] a; 
for (int i = 0; i < 10; i++) 
   a[i] = i * i; 

Solution: It does not allocate memory for a[] with new. This code results in a 
variable a might not have been initialized compile-time error.

1.1.11 Write a code fragment that prints the contents of a two-dimensional boolean 
array, using * to represent true and a space to represent false. Include row and column 
numbers.

1.1.12 What does the following code fragment print?

int[] a = new int[10]; 
for (int i = 0; i < 10; i++) 
   a[i] = 9 - i;  
for (int i = 0; i < 10; i++) 
   a[i] = a[a[i]];  
for (int i = 0; i < 10; i++) 
   System.out.println(a[i]); 

1.1.13 Write a code fragment to print the transposition (rows and columns changed) 
of a two-dimensional array with M rows and N columns.

1.1.14 Write a static method lg() that takes an int value N as argument and returns 
the largest int not larger than the base-2 logarithm of N. Do not use Math.

1.1.15 Write a static method histogram() that takes an array a[] of int values and 
an integer M as arguments and returns an array of length M whose ith entry is the num-
ber of times the integer i appeared in the argument array. If the values in a[] are all 
between 0 and M–1, the sum of the values in the returned array should be equal to 
a.length.

1.1.16 Give the value of exR1(6):

public static String exR1(int n) 
{ 
   if (n <= 0) return ""; 
   return exR1(n-3) + n + exR1(n-2) + n; 
}

ExErcisEs (continued)
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1.1.17 Criticize the following recursive function:

public static String exR2(int n) 
{ 
   String s = exR2(n-3) + n + exR2(n-2) + n; 
   if (n <= 0) return ""; 
   return s; 
}

Answer : The base case will never be reached. A call to exR2(3) will result in calls to 
exR2(0), exR2(-3), exR3(-6), and so forth until a StackOverflowError occurs.

1.1.18 Consider the following recursive function:

public static int mystery(int a, int b) 
{ 
   if (b == 0)     return 0; 
   if (b % 2 == 0) return mystery(a+a, b/2); 
   return mystery(a+a, b/2) + a; 
}

What are the values of  mystery(2, 25) and mystery(3, 11)? Given positive integers 
a and b, describe what value mystery(a, b) computes. Answer the same question, but 
replace the three + operators with * and replace return 0 with return 1.

1.1.19 Run the following program on your computer:

public class Fibonacci 
{ 
   public static long F(int N) 
   { 
      if (N == 0) return 0; 
      if (N == 1) return 1; 
      return F(N-1) + F(N-2); 
   }

   public static void main(String[] args) 
   { 
      for (int N = 0; N < 100; N++) 
         StdOut.println(N + " " + F(N)); 
   } 
}
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What is the largest value of N for which this program takes less than 1 hour to compute 
the value of F(N)? Develop a better implementation of F(N) that saves computed values 
in an array.

1.1.20 Write a recursive static method that computes the value of ln (N !).

1.1.21 Write a program that reads in lines from standard input with each line contain-
ing a name and two integers and then uses printf() to print a table with a column of 
the names, the integers, and the result of dividing the first by the second, accurate to 
three decimal places. You could use a program like this to tabulate batting averages for 
baseball players or grades for students.

1.1.22 Write a version of BinarySearch that uses the recursive rank() given on page 
25 and traces the method calls. Each time the recursive method is called, print the argu-
ment values lo and hi, indented by the depth of the recursion. Hint: Add an argument 
to the recursive method that keeps track of the depth. 

1.1.23 Add to the BinarySearch test client the ability to respond to a second argu-
ment: + to print numbers from standard input that are not in the whitelist, - to print 
numbers that are in the whitelist.

1.1.24 Give the sequence of values of p and q that are computed when Euclid’s algo-
rithm is used to compute the greatest common divisor of 105 and 24. Extend the code 
given on page 4 to develop a program Euclid that takes two integers from the command 
line and computes their greatest common divisor, printing out the two arguments for 
each call on the recursive method. Use your program to compute the greatest common 
divisor of 1111111 and 1234567.

1.1.25 Use mathematical induction to prove that Euclid’s algorithm computes the 
greatest common divisor of any pair of nonnegative integers p and q.

ExErcisEs (continued)
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crEAtivE problEms

1.1.26  Sorting three numbers. Suppose that the variables a, b, c, and t are all of the 
same numeric primitive type. Show that the following code puts a, b, and c in ascending 
order:

if (a > b) { t = a; a = b; b = t; } 
if (a > c) { t = a; a = c; c = t; } 
if (b > c) { t = b; b = c; c = t; }

1.1.27  Binomial distribution. Estimate the number of recursive calls that would be 
used by the code

public static double binomial(int N, int k, double p) 
{ 
   if ((N == 0) && (k == 0)) return 1.0; 
   if ((N  < 0) || (k  < 0)) return 0.0; 
   return (1 - p)*binomial(N-1, k, p) + p*binomial(N-1, k-1, p); 
}

to compute binomial(100, 50, 0.25). Develop a better implementation that is based 
on saving computed values in an array.

1.1.28  Remove duplicates. Modify the test client in BinarySearch to remove any du-
plicate keys in the whitelist after the sort.

1.1.29  Equal keys. Add to BinarySearch a static method rank() that takes a key and 
a sorted array of int values (some of which may be equal) as arguments and returns the 
number of elements that are smaller than the key and a similar method count() that 
returns the number of elements equal to the key. Note : If i and j are the values returned 
by rank(key, a) and count(key, a) respectively, then a[i..i+j-1] are the values in 
the array that are equal to key.

1.1.30  Array exercise. Write a code fragment that creates an N-by-N boolean array 
a[][] such that a[i][j] is true if i and j are relatively prime (have no common fac-
tors), and false otherwise.  

1.1.31  Random connections. Write a program that takes as command-line arguments 
an integer N and a double value p (between 0 and 1), plots N equally spaced dots of size 
.05 on the circumference of a circle, and then, with probability p for each pair of points, 
draws a gray line connecting them.
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1.1.32  Histogram. Suppose that the standard input stream is a sequence of double 
values. Write a program that takes an integer N and two double values l and r from the 
command line and uses StdDraw to plot a histogram of the count of the numbers in the 
standard input stream that fall in each of the N intervals defined by dividing (l , r) into 
N equal-sized intervals.

1.1.33  Matrix library. Write a library Matrix that implements the following API:

public class Matrix

static     double dot(double[] x, double[] y) vector dot product

static double[][] mult(double[][] a, double[][] b) matrix-matrix product

static double[][] transpose(double[][] a) transpose

static   double[] mult(double[][] a, double[] x) matrix-vector product

static   double[] mult(double[] y, double[][] a) vector-matrix product

Develop a test client that reads values from standard input and tests all the methods.

1.1.34  Filtering. Which of the following require saving all the values from standard 
input (in an array, say), and which could be implemented as a filter using only a fixed 
number of variables and arrays of fixed size (not dependent on N)? For each, the input 
comes from standard input and consists of N real numbers between 0 and 1.

n	 Print the maximum and minimum numbers.
n	 Print the median of the numbers.
n	 Print the k th smallest value, for k less than 100.
n	 Print the sum of the squares of the numbers.
n	 Print the average of the N numbers.
n	 Print the percentage of numbers greater than the average.
n	 Print the N numbers in increasing order.
n	 Print the N numbers in random order.

crEAtivE problEms (continued)
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ExpErimENts

1.1.35  Dice simulation. The following code computes the exact probability distribu-
tion for the sum of two dice:

int SIDES = 6; 
double[] dist = new double[2*SIDES+1]; 
for (int i = 1; i <= SIDES; i++) 
   for (int j = 1; j <= SIDES; j++) 
      dist[i+j] += 1.0; 

for (int k = 2; k <= 2*SIDES; k++) 
   dist[k] /= 36.0; 

The value dist[k] is the probability that the dice sum to k. Run experiments to vali-
date this calculation simulating N dice throws, keeping track of the frequencies of oc-
currence of each value when you compute the sum of two random integers between 1 
and 6. How large does N have to be before your empirical results match the exact results 
to three decimal places?

1.1.36  Empirical shuffle check. Run computational experiments to check that our 
shuffling code on page 32 works as advertised. Write a program ShuffleTest that 
takes command-line arguments M and N, does N shuffles of an array of size M that is 
initialized with a[i] = i before each shuffle, and prints an M-by-M table such that row 
i gives the number of times i wound up in position j for all j. All entries in the table 
should be close to N/M.

1.1.37  Bad shuffling. Suppose that you choose a random integer between 0 and N-1 
in our shuffling code instead of one between i and N-1. Show that the resulting order is 
not equally likely to be one of the N ! possibilities. Run the test of the previous exercise 
for this version.

1.1.38  Binary search versus brute-force search. Write a program BruteForceSearch 
that uses the brute-force search method given on page 48 and compare its running time 
on your computer with that of BinarySearch for largeW.txt and largeT.txt. 
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1.1.39  Random matches. Write a BinarySearch client that takes an int value T as 
command-line argument and runs T trials of the following experiment for N = 103, 104, 
105, and 106: generate two arrays of N randomly generated positive six-digit int values, 
and find the number of values that appear in both arrays. Print a table giving the average 
value of this quantity over the T trials for each value of N. 

ExpErimENts (continued)
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1.2 DAtA ABStrACtion

A data type is a set of values and a set of operations on those values. So far, we have 
discussed in detail Java’s primitive data types: for example, the values of the primitive 
data type int are integers between 231 and 231  1; the operations of int include +, *, 
-, /, %, <, and >. In principle, we could write all of our programs using only the built-in 
primitive types, but it is much more convenient to write programs at a higher level of 
abstraction. In this section, we focus on the process of defining and using data types, 
which is known as data abstraction (and supplements the function abstraction style that 
is the basis of SECTION 1.1). 

Programming in Java is largely based on building data types known as reference types
with the familiar Java class. This style of programming is known as object-oriented 
programming, as it revolves around the concept of an object, an entity that holds a data 
type value. With Java’s primitive types we are largely confined to programs that operate 
on numbers, but with reference types we can write programs that operate on strings, 
pictures, sounds, any of hundreds of other abstractions that are available in Java’s stan-
dard libraries or on our booksite. Even more significant than libraries of predefined 
data types is that the range of data types available in Java programming is open-ended, 
because you can define your own data types to implement any abstraction whatsoever. 

An abstract data type (ADT) is a data type whose representation is hidden from the 
client. Implementing an ADT as a Java class is not very different from implementing a 
function library as a set of static methods. The primary difference is that we associate 
data with the function implementations and we hide the representation of the data 
from the client. When using an ADT, we focus on the operations specified in the API and 
pay no attention to the data representation; when implementing an ADT, we focus on 
the data, then implement operations on that data. 

Abstract data types are important because they support encapsulation in program 
design. In this book, we use them as a means to

n	 Precisely specify problems in the form of APIs for use by diverse clients
n	 Describe algorithms and data structures as API implementations

Our primary reason for studying different algorithms for the same task is that perfor-
mance characteristics differ. Abstract data types are an appropriate framework for the 
study of algorithms because they allow us to put knowledge of algorithm performance 
to immediate use: we can substitute one algorithm for another to improve performance 
for all clients without changing any client code. 
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Using abstract data types You do not need to know how a data type is imple-
mented in order to be able to use it, so we begin by describing how to write programs 
that use a simple data type named Counter whose values are a name and a nonnega-
tive integer and whose operations are create and initialize to zero, increment by one, and 
examine the current value. This abstraction is useful in many contexts. For example, it 
would be reasonable to use such a data type in electronic voting software, to ensure that 
the only thing that a voter can do is increment a chosen candidate’s tally by one. Or, 
we might use a Counter to keep track of fundamental operations when analyzing the 
performance of algorithms. To use a Counter, you need to learn our mechanism for 
specifying the operations defined in the data type and the Java language mechanisms 
for creating and manipulating data-type values. Such mechanisms are critically im-
portant in modern programming, and we use them throughout this book, so this first 
example is worthy of careful attention.

API for an abstract data type  To specify the behavior of an abstract data type, we use 
an application programming interface (API), which is a list of constructors and instance 
methods (operations), with an informal description of the effect of each, as in this API 
for Counter:

 public class Counter

Counter(String id) create a counter named id
void increment() increment the counter by one
int tally() number of increments since creation

String toString() string representation
an apI for a counter

Even though the basis of a data-type definition is a set of values, the role of the values 
is not visible from the API, only the operations on those values. Accordingly, an ADT 
definition has many similarities with a library of static methods (see page 24):  

n	 Both are implemented as a Java class.
n	 Instance methods may take zero or more arguments of a specified type, sepa-

rated by commas and enclosed in parentheses.
n	 They may provide a return value of a specified type or no return value (signified 

by void).
And there are three significant differences:

n	 Some entries in the API have the same name as the class and lack a return type. 
Such entries are known as constructors and play a special role. In this case, 
Counter has a constructor that takes a String argument.
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n	 Instance methods lack the static modifier. They are not static methods—their 
purpose is to operate on data type values.

n	 Some instance methods are present so as to adhere to Java conventions—we 
refer to such methods as inherited methods and shade them gray in the API.

As with APIs for libraries of static methods, an API for an abstract data type is a con-
tract with all clients and, therefore, the starting point both for developing any client 
code and for developing any data-type implementation. In this case, the API tells us 
that to use Counter, we have available the Counter() constructor, the increment() 
and tally() instance methods, and the inherited toString() method. 

Inherited methods  Various Java conventions enable a data type to take advantage of 
built-in language mechanisms by including specific methods in the API. For example, 
all Java data types inherit a toString() method that typically returns a String repre-
sentation of the data-type values. Java calls this method when any data-type value is to 
be concatenated with a String value with the + operator. The default implementation 
is not particularly useful (it gives a string representation of the memory address of the 
data-type value), so we often provide an implementation that overrides the default, and 
include toString() in the API whenever we do so. Other examples of such methods 
include equals(), compareTo(), and hashCode() (see page 101).

Client code  As with modular programming based on static methods, the API allows 
us to write client code without knowing details of the implementation (and to write 
implementation code without knowing details of any particular client). The mecha-
nisms introduced on page 28 for organizing programs as independent modules are use-
ful for all Java classes, and thus are effective for modular programming with ADTs as 
well as for libraries of static methods. Accordingly, we can use an ADT in any program 
provided that the source code is in a .java file in the same directory, or in the standard 
Java library, or accessible through an import statement, or through one of the classpath 
mechanisms described on the booksite. All of the benefits of modular programming 
follow. By encapsulating all the code that implements a data type within a single Java 
class, we enable the development of client code at a higher level of abstraction. To de-
velop client code, you need to be able to declare variables, create objects to hold data-
type values, and provide access to the values for instance methods to operate on them. 
These processes are different from the corresponding processes for primitive types, 
though you will notice many similarities.
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Objects  Naturally, you can declare that a variable heads is to be associated with data 
of type Counter with the code

Counter heads;

but how can you assign values or specify operations? The  answer to this question in-
volves a fundamental concept in data abstraction: an object is an entity that can take on 
a data-type value. Objects are characterized by three essential prop-
erties: state, identity, and behavior. The state of an object is a value 
from its data type. The identity of an object distinguishes one object 
from another. It is useful to think of an object’s identity as the place 
where its value is stored in memory. The behavior of an object is the 
effect of data-type operations. The implementation has the sole re-
sponsibility for maintaining an object’s identity, so that client code 
can use a data type without regard to the representation of its state 
by conforming to an API that describes an object’s behavior. An ob-
ject’s state might be used to provide information to a client or cause 
a side effect or be changed by one of its data type’s operations, but 
the details of the representation of the data-type value are not rel-
evant to client code. A reference is a mechanism for accessing an ob-
ject. Java nomenclature makes clear the distinction from primitive 
types (where variables are associated with values) by using the term 
reference types for nonprimitive types. The details of implementing 
references vary in Java implementations, but it is useful to think of a 
reference as a memory address, as shown at right (for brevity, we use 
three-digit memory addresses in the diagram).

Creating objects  Each data-type value is stored in an object. To 
create (or instantiate) an individual object, we invoke a constructor 
by using the keyword new, followed by the class name, followed by 
() (or a list of argument values enclosed in parentheses, if the con-
structor takes arguments). A constructor has no return type because 
it always returns a reference to an object of its data type. Each time 
that a client uses new(), the system

n	 Allocates memory space for the object
n	 Invokes the constructor to initialize its value
n	 Returns a reference to the object

In client code we typically create objects in an initializing declaration that associates a 
variable with the object, as we often do with variables of primitive types. Unlike primi-
tive types, variables are associated with references to objects, not the data-type values 

460        

heads     460  

reference

460        

heads     460 

612        

tails     612 
identity
of heads

identity
of tails

identity
(details hidden)

Object representation

one Counter object

two Counter objects
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themselves. We can create any num-
ber of objects from the same class—
each object has its own identity 
and may or may not store the same 
value as another object of the same 
type. For example, the code

Counter heads = new Counter("heads"); 
Counter tails = new Counter("tails");

creates two different Counter objects. In an abstract data type, details of the representa-
tion of the value are hidden from client code. You might assume that the value associ-
ated with each Counter object is a String name and an int tally, but you cannot write 
code that depends on any specific representation (or even know whether that assumption 
is true—perhaps the tally is a long value). 

Invoking instance methods  The purpose of an instance method is to operate on data-
type values, so the Java language includes a special mechanism to invoke instance meth-
ods that emphasizes a connection to an object. Specifically, we invoke an instance meth-

od by writing a variable name that refers to an object, 
followed by a period, followed by an instance method 
name, followed by 0 or more arguments, enclosed in 
parentheses and separated by commas. An instance   
method might change the data-type value or just exam-
ine the data-type value. Instance methods have all of 
the properties of static methods that we considered on 
page 24—arguments are passed by value, method names 
can be overloaded, they may have a return value, and 
they may cause side effects—but they have an addi-
tional property that characterizes them: each invoca-
tion is associated with an object. For example, the code 

    heads.increment();

invokes the instance method increment() to operate 
on the Counter object heads (in this case the opera-
tion involves incrementing the tally), and the code 

    heads.tally() - tails.tally();

invokes the instance method tally() twice, first to 
operate on the Counter object heads and then to op-
erate on the Counter object tails (in this case the 

StdOut.println( heads );

invoke heads.toString()

heads.tally() - tails.tally()

invoke an instance method
that accesses the object’s value

heads.increment();

object name

declaration

object name

invoke an instance method
that changes the object’s value

heads = new Counter ("heads");

invoke a constructor (create an object)

Invoking instance methods

via automatic type conversion (toString())

as an expression

as a statement (void return value)

with new (constructor)

Counter heads;

invoke constructor
to create an object

declaration to associate
variable with object reference

Counter heads  =  new Counter("heads");

Creating an object

68 Chapter 1 n Fundamentals



ptg12441863

operation involves returning the tally as an int value). As these examples illustrate, you 
can use calls on instance methods in client code in the same way as you use calls on stat-
ic methods—as statements (void methods) or values in expressions (methods that re-
turn a value). The primary purpose of stat-
ic methods is to implement functions; the 
primary purpose of non-static (instance) 
methods is to implement data-type opera-
tions. Either type of method may appear in 
client code, but you can easily distinguish 
between them, because a static method 
call starts with a class name (uppercase, by 
convention) and a non-static method call 
always starts with an object name (lower-
case, by convention). These differences are 
summarized in the table at right.

Using objects  Declarations give us variable names for objects that we can use in code 
not just to create objects and invoke instance methods, but also in the same way as we 
use variable names for integers, floating-point numbers, and other primitive types. To 
develop client code for a given data type, we:

n	 Declare variables of the type, for use in referring to objects
n	 Use the keyword new to invoke a constructor that creates objects of the type
n	 Use the object name to invoke instance methods, either as statements or within 

expressions
For example, the class Flips shown at the top of the next page is a Counter client that 
takes a command-line argument T and simulates T coin flips (it is also a StdRandom cli-
ent). Beyond these direct uses, we can use variables associated with objects in the same 
way as we use variables associated with primitive-type values: 

n	 In assignment statements
n	 To pass or return objects from methods
n	 To create and use arrays of object.

Understanding the behavior of each of these types of uses requires thinking in terms of 
references, not values, as you will see when we consider them, in turn. 

Assignment statements  An assignment statement with a reference type creates a copy 
of the reference. The assignment statement does not create a new object, just another 
reference to an existing object. This situation is known as aliasing: both variables refer 
to the same object. The effect of aliasing is a bit unexpected, because it is different for 
variables holding values of a primitive type. Be sure that you understand the difference. 

instance method static method

sample call heads.increment() Math.sqrt(2.0)

invoked with object name class name

parameters
reference to object 
and argument(s)

argument(s)

primary 
purpose

examine or change 
object value

compute return 
value

Instance methods versus static methods
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If x and y are variables of a primitive type, then the as-
signment x = y copies the value of y to x. For reference 
types, the reference is copied (not the value). Aliasing is a 
common source of bugs in Java programs, as illustrated 
by the following example:

Counter c1 = new Counter("ones"); 
c1.increment(); 
Counter c2 = c1; 
c2.increment(); 
StdOut.println(c1);

With a typical toString() implementation this code   
would print the string "2 ones" which may or may not 
be what was intended and is counterintuitive at first. Such 
bugs are common in programs written by people without 
much experience in using objects (that may be you, so pay 
attention here!). Changing the state of an object impacts 
all code involving aliased variables referencing that ob-
ject. We are used to thinking of two different variables of 
primitive types as being independent, but that intuition 
does not carry over to variables of reference types.

public class Flips 
{ 
   public static void main(String[] args) 
   { 
      int T = Integer.parseInt(args[0]); 
      Counter heads = new Counter("heads"); 
      Counter tails = new Counter("tails"); 
      for (int t = 0; t < T; t++) 
         if (StdRandom.bernoulli(0.5)) 
              heads.increment(); 
         else tails.increment(); 
      StdOut.println(heads); 
      StdOut.println(tails); 
      int d = heads.tally() - tails.tally(); 
      StdOut.println("delta: " + Math.abs(d)); 
   } 
}

Counter client that simulates t coin flips

% java Flips 10 
5 heads 
5 tails 
delta: 0

% java Flips 10 
8 heads 
2 tails 
delta: 6

% java Flips 1000000 
499710 heads 
500290 tails 
delta: 580

Counter c1; 
c1 = new Counter("ones");
c1.increment();
Counter c2 = c1;
c2.increment();

811        

       2

  c2    811 

  c1    811 references to
same object

reference to
"ones"

Aliasing
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Objects as arguments  You can pass objects as arguments to methods. This ability typi-
cally simplifies client code. For example, when we use a Counter as an argument, we are 
essentially passing both a name and a tally, but need only specify one variable. When 
we call a method with arguments, the effect in Java is as if each argument value were 
to appear on the right-hand side of an assignment statement with the corresponding 
argument name on the left. That is, Java passes a copy of the argument value from the 
calling program to the method. This arrangement is known as pass by value (see page 
24). One important consequence is that the method cannot change the value of a caller’s 
variable. For primitive types, this policy is what we expect (the two variables are inde-
pendent), but each time that we use a reference type as a method argument we create 
an alias, so we must be cautious. In other words, the convention is to pass the reference
by value (make a copy of it) but to pass the object by reference. For example, if we pass 
a reference to an object of type Counter, the method cannot change the original refer-
ence (make it point to a different Counter), but it can change the value of the object, 
for example by using the reference to call increment().

Objects as return values  Naturally, you can also use an object as a return value from 
a method. The method might return an object passed to it as an argument, as in the 
example below, or it might create an object and return a reference to it. This capa-
bility is important because 
Java methods allow only one 
return value—using objects 
enables us to write code that, 
in effect, returns multiple 
values.

public class FlipsMax 
{ 
   public static Counter max(Counter x, Counter y) 
   { 
      if (x.tally() > y.tally()) return x; 
      else                       return y; 
   }

   public static void main(String[] args) 
   { 
      int T = Integer.parseInt(args[0]); 
      Counter heads = new Counter("heads"); 
      Counter tails = new Counter("tails"); 
      for (int t = 0; t < T; t++) 
         if (StdRandom.bernoulli(0.5)) 
              heads.increment(); 
         else tails.increment();

      if (heads.tally() == tails.tally())  
           StdOut.println("Tie"); 
      else StdOut.println(max(heads, tails) + " wins"); 
   } 
}

example of a static method with object arguments and return values

% java FlipsMax 1000000 
500281 tails wins
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Arrays are objects  In Java, every value of any nonprimitive type is an object. In par-
ticular, arrays are objects. As with strings, there is special language support for certain 
operations on arrays: declarations, initialization, and indexing. As with any other ob-
ject, when we pass an array to a method or use an array variable on the right hand side 
of an assignment statement, we are making a copy of the array reference, not a copy 
of the array. This convention is appropriate for the typical case where we expect the 
method to be able to modify the array, by rearranging its entries, as, for example, in 
java.util.Arrays.sort() or the shuffle() method that we considered on page 32.

Arrays of objects  Array entries can be of any type, as we have already seen: args[] in 
our main() implementations is an array of String objects. When we create an array of 
objects, we do so in two steps:

n	 Create the array, using the bracket syntax for array constructors.
n	 Create each object in the array, using a standard constructor for each.

For example, the code below simulates rolling a die, using an array of Counter objects 
to keep track of the number of occurrences of each possible value.  An array of objects 
in Java is an array of references to objects, not the objects themselves. If the objects are 
large, then we may gain efficiency by not having to move them around, just their refer-
ences. If they are small, we may lose efficiency by having to follow a reference each time 
we need to get to some information. 

public class Rolls 
{ 
   public static void main(String[] args) 
   { 
      int T = Integer.parseInt(args[0]); 
      int SIDES = 6; 
      Counter[] rolls = new Counter[SIDES+1]; 
      for (int i = 1; i <= SIDES; i++) 
         rolls[i] = new Counter(i + "'s");

      for (int t = 0; t < T; t++) 
      { 
         int result = StdRandom.uniform(1, SIDES+1); 
         rolls[result].increment(); 
      } 
      for (int i = 1; i <= SIDES; i++) 
         StdOut.println(rolls[i]); 
   } 
}

Counter client that simulates T rolls of a die

% java Rolls 1000000 
167308 1's 
166540 2's 
166087 3's 
167051 4's 
166422 5's 
166592 6's
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With this focus on objects, writing code that embraces data abstraction (defining 
and using data types, with data-type values held in objects) is widely referred to as 
object-oriented programming. The basic concepts that we have just covered are the start-
ing point for object-oriented programming, so it is worthwhile to briefly summarize 
them. A data type is a set of values and a set of operations defined on those values. We 
implement data types in independent Java class modules and write client programs 
that use them. An object is an entity that can take on a data-type value or an instance of 
a data type. Objects are characterized by three essential properties: state, identity, and 
behavior.  A data-type implementation supports clients of the data type as follows:

n	 Client code can create objects (establish identity) by using the new construct to 
invoke a constructor that creates an object, initializes its instance variables, and 
returns a reference to that object.

	n	 Client code can manipulate data-type values (control an object’s behavior, pos-
sibly changing its state) by using a variable associated with an object to invoke 
an instance method that operates on that object’s instance variables. 

n	 Client code can manipulate objects by creating arrays of objects and passing them 
and returning them to methods, in the same way as for primitive-type values, 
except that variables refer to references to values, not the values themselves.

These capabilities are the foundation of a flexible, modern, and widely useful program-
ming style that we will use as the basis for studying algorithms in this book.
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Examples of abstract data types The Java language has thousands of built-in 
ADTs, and we have defined many other ADTs to facilitate the study of algorithms. In-
deed, every Java program that we write is a data-type implementation (or a library of 
static methods). To control complexity, we will specifically cite APIs for any ADT that 
we use in this book (not many, actually). 

In this section, we introduce as examples several data types, with some examples 
of client code. In some cases, we present excerpts of APIs that may contain dozens of 
instance methods or more. We articulate these APIs to present real-world examples, to 
specify the instance methods that we will use in the book, and to emphasize that you 
do not need to know the details of an ADT implementation in order to be able to use it. 

For reference, the data types that we use and develop in this book are shown on the 
facing page. These fall into several different categories:

n	 Standard system ADTs in java.lang.*, which can be used in any Java program.
n	 Java ADTs in libraries such as java.awt, java.net, and java.io, which can also 

be used in any Java program, but need an import statement.
n	 Our I/O ADTs that allow us to work with multiple input/output streams similar 

to StdIn and StdOut.
n	 Data-oriented ADTs whose primary purpose is to facilitate organizing and pro-

cessing data by encapsulating the representation. We describe several examples 
for applications in computational geometry and information processing later in 
this section and use them as examples in client code later on.

n	 Collection ADTs whose primary purpose is to facilitate manipulating collections 
of data of the same type. We describe the basic Bag, Stack, and Queue types in 
Section 1.3, PQ types in Chapter 2, and the ST and SET types in Chapters 3
and 5.

n	 Operations-oriented ADTs that we use to analyze algorithms, as described in 
Section 1.4 and Section 1.5.

n	 ADTs for graph algorithms, including both data-oriented ADTs that focus on 
encapsulating representations of various kinds of graphs and operations-orient-
ed ADTs that focus on providing specifications for graph-processing algorithms.

This list does not include the dozens of types that we consider in exercises, which may 
be found in the index. Also, as described on page 90, we often distinguish multiple imple-
mentations of various ADTs with a descriptive prefix. As a group, the ADTs that we 
use demonstrate that organizing and understanding the data types that you use is an 
important factor in modern programming.

A typical application might use only five to ten of these ADTs. A prime goal in the 
development and organization of the ADTs in this book is to enable programmers to 
easily take advantage of a relatively small set of them in developing client code.
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standard Java system types in java.lang

Integer int wrapper

Double double wrapper

String indexed chars

StringBuilder builder for strings

other Java types

java.awt.Color colors

java.awt.Font fonts

java.net.URL URLs

java.io.File files

our standard I/o types

In input stream

Out output stream

Draw drawing

data-oriented types  for client examples

Point2D point in the plane

Interval1D 1D interval

Interval2D 2D interval

Date date

Transaction transaction

types for the analysis of algorithms

Counter counter

Accumulator accumulator

VisualAccumulator visual version

Stopwatch stopwatch

collection types

Stack pushdown stack

Queue FIFO queue

Bag bag

MinPQ MaxPQ priority queue

IndexMinPQ IndexMaxPQ priority queue (indexed )

ST symbol table

SET set

StringST symbol table (string keys )

data-oriented graph types

Graph graph

Digraph directed graph

Edge edge (weighted )

EdgeWeightedGraph graph (weighted )

DirectedEdge edge (directed, weighted )

EdgeWeightedDigraph graph (directed, weighted )

operations-oriented graph types

UF dynamic connectivity

DepthFirstPaths DFS path search

CC connected components

BreadthFirstPaths BFS path search

DirectedDFS DFS digraph path search

DirectedBFS BFS digraph path search

TransitiveClosure all paths

Topological topological order

DepthFirstOrder DFS order

DirectedCycle cycle search

SCC strong components

MST minimum spanning tree

SP shortest paths

Selected aDts used in this book
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Geometric objects  A natural example of object-oriented programming is designing 
data types for geometric objects. For example, the APIs on the facing page define ab-

stract data types for three familiar 
geometric objects: Point2D (points 
in the plane), Interval1D (intervals 
on the line), and Interval2D (two-
dimensional intervals in the plane, 
or axis-aligned rectangles). As usual, 
the APIs are essentially self-docu-
menting and lead immediately to 
easily understood client code such as 
the example at left, which reads the 
boundaries of an Interval2D and 
an integer T from the command line, 
generates T random points in the 
unit square, and counts the number 
of points that fall in the interval (an 
estimate of the area of the rectangle). 
For dramatic effect, the client also 
draws the interval and the points that 
fall outside the interval. This compu-
tation is a model for a method that 
reduces the problem of computing 
the area and volume of geometric 
shapes to the problem of determin-

ing whether a point falls within the shape or not (a less dif-
ficult but not trivial problem). Of course, we can define APIs 
for other geometric objects such as line segments, triangles, 
polygons, circles, and so forth, though implementing opera-
tions on them can be challenging. Several examples are ad-
dressed in the exercises at the end of this section. 

Programs that process geometric objects have wide 
application in computing with models of the natural world, 
in scientific computing, video games, movies, and many 
other applications. The development and study of such pro-
grams and applications has blossomed into a far-reaching 
field of study known as computational geometry, which is a 

public static void main(String[] args) 
{ 
   double xlo = Double.parseDouble(args[0]); 
   double xhi = Double.parseDouble(args[1]); 
   double ylo = Double.parseDouble(args[2]); 
   double yhi = Double.parseDouble(args[3]); 
   int T = Integer.parseInt(args[4]);

   Interval1D xint = new Interval1D(xlo, xhi); 
   Interval1D yint = new Interval1D(ylo, yhi); 
   Interval2D box  = new Interval2D(xint, yint); 
   box.draw();

   Counter c = new Counter("hits"); 
   for (int t = 0; t < T; t++) 
   { 
      double x = StdRandom.random(); 
      double y = StdRandom.random(); 
      Point2D p = new Point2D(x, y); 
      if (box.contains(p)) c.increment(); 
      else                 p.draw(); 
   }

   StdOut.println(c); 
   StdOut.printf("area = %.2f\n", box.area()); 
}

Interval2D test client

% java Interval2D .2 .5 .5 .6 10000
297 hits
area = .03
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fertile area of examples for the application of the algorithms that we address in this 
book, as you will see in examples throughout the book. In the present context, our 
interest is to suggest that abstract data types that directly represent geometric abstrac-
tions are not difficult to define and can lead to simple and clear client code. This idea is 
reinforced in several exercises at the end of this section and on the booksite.

public class Point2D

Point2D(double x, double y) create a point

double x() x coordinate

double y() y coordinate

double r() radius (polar coordinates)

double theta() angle (polar coordinates)

double distanceTo(Point2D that) Euclidean distance from this point to that

void draw() draw the point on StdDraw

an apI for points in the plane

public class Interval1D

Interval1D(double left, double right) create an interval

double left() left endpoint

double right() right endpoint

double length() length of the interval

boolean contains(double x) does the interval contain x?

boolean intersects(Interval1D that) does the interval intersect that?

an apI for intervals on the line

public class Interval2D

Interval2D(Interval1D x, Interval1D y) create a 2D interval

double area() area of the 2D interval

boolean contains(Point2D p) does the 2D interval contain p?

boolean intersects(Interval2D that) does the 2D interval intersect that?

void draw() draw the 2D interval on StdDraw

an apI for two dimensional intervals in the plane
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Information processing  Whether it be a bank processing millions of credit card trans-
actions or a web analytics company processing billions of touchpad taps or a scien-
tific research group processing millions of experimental observations, a great many 
applications are centered around processing and organizing information. Abstract data 
types provide a natural mechanism for organizing the information. Without getting 
into details, the two APIs on the facing page suggest a typical approach for a commer-
cial application. The idea is to define data types that allow us to keep information in 
objects that correspond to things in the real world. A date is a day, a month, and a year 
and a transaction is a customer, a date, and an amount. These two are just examples: we 
might also define data types that can hold detailed information for customers, times, 
locations, goods and services, or whatever. Each data type consists of constructors that 
create objects containing the data and methods for use by client code to access it. To 
simplify client code, we provide two constructors for each type, one that presents the 
data in its appropriate type and another that parses a string to get the data (see Exer-
cise 1.2.19 for details). As usual, there is no reason for client code to know the rep-
resentation of the data. Most often, the reason to organize the data in this way is to 
treat the data associated with an object as a single entity: we can maintain arrays of 
Transaction values, use Date values as a argument or a return value for a method, and 
so forth. The focus of such data types is on encapsulating the data, while at the same 
time enabling the development of client code that does not depend on the representa-
tion of the data. We do not dwell on organizing information in this way, except to take 
note that doing so and including the inherited methods toString(), compareTo(), 
equals(), and hashCode() allows us to take advantage of algorithm implementations 
that can process any type of data. We will discuss inherited methods in more detail 
on page 100.  For example, we have already noted Java’s convention that  enables clients 
to print a string representation of every value if we include toString() implemen-
tation in a data type. We consider conventions corresponding to the other inherited 
methods in Section 1.3, Section 2.5, Section 3.4, and Section 3.5, using Date and 
Transaction as examples. Section 1.3 gives classic examples of data types and a Java 
language mechanism known as parameterized types, or generics, that takes advantage of 
these conventions, and Chapter 2 and Chapter 3 are also devoted to taking advantage 
of generic types and inherited methods to develop implementations of sorting and 
searching algorithms that are effective for any type of data. 

Whenever you have data of different types that logically belong together, it is 
worthwhile to contemplate defining an ADT as in these examples. The ability to do so 
helps to organize the data, can greatly simplify client code in typical applications, and 
is an important step on the road to data abstraction.
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public class Date implements Comparable<Date>

Date(int month, int day, int year) create a date

Date(String date) create a date (parse constructor)

int month() month

int day() day

int year() year

String toString() string representation

boolean equals(Object that) is this the same date as that?

int compareTo(Date that) compare this date to that

int hashCode() hash code

public class Transaction implements Comparable<Transaction>

Transaction(String who, Date when, double amount)

Transaction(String transaction) create a transaction (parse constructor)

String who() customer name

Date when() date

double amount() amount

String toString() string representation

boolean equals(Object that) is this the same transaction as that?

int compareTo(Transaction that) compare this transaction to that

int hashCode() hash code

Sample apIs for commercial applications (dates and transactions)
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Strings  Java’s String is an important and useful ADT. A String is an indexed se-
quence of char values. String has dozens of instance methods, including the following: 

public class String

String() create an empty string
int length() length of the string
char charAt(int i) ith character
int indexOf(String p) first occurrence of p (-1 if none)
int indexOf(String p, int i) first occurrence of p after i (-1 if none)

String concat(String t) this string with t appended
String substring(int i, int j) substring of this string (ith to j-1st chars)

String[] split(String delim) strings between occurrences of delim
int compareTo(String t) string comparison

boolean equals(String t) is this string’s value the same as t’s ?
int hashCode() hash code

Java String apI (partial list of methods)

String values are similar to arrays of characters, but the two are not the same. Ar-
rays have built-in Java language syntax for accessing a character; String has instance 
methods for indexed access, length, and many other operations. On the other hand, 
String has special language support for initialization and concatenation: instead of 
creating and initializing a string with a constructor, we can use a string literal; instead 
of invoking the method concat() we can use the + operator. We do not need to con-
sider the details of the implementation, though 
understanding performance characteristics of 
some of the methods is important when develop-
ing string-processing algorithms, as you will see 
in Chapter 5. Why not just use arrays of charac-
ters instead of String values? The answer to this 
question is the same as for any ADT: to simplify 
and clarify client code. With String, we can write 
clear and simple client code that uses numerous 
convenient instance methods without regard to 
the way in which strings are represented (see fac-
ing page). Even this short list contains powerful 
operations that require advanced algorithms such 

String a = "now is ";
String b = "the time ";
String c = "to"

a.length()
a.charAt(4)
a.concat(c)

a.indexOf("is")
a.substring(2, 5)
a.split(" ")[0]
a.split(" ")[1]

b.equals(c)

7
i
"now is to"
4
"w i"
"now"
"is"
false

call value

Examples of string operations
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task                                   implementation

is the string
a palindrome?

public static boolean isPalindrome(String s) 
{   
   int N = s.length(); 
   for (int i = 0; i < N/2; i++)
      if (s.charAt(i) != s.charAt(N-1-i))
         return false;
   return true; 
}

extract file name
and extension from a 

command-line
argument

String s = args[0];
int dot = s.indexOf(".");
String base      = s.substring(0, dot);
String extension = s.substring(dot + 1, s.length());

print all lines in
 standard input that

 contain a string
specified on the
command line

String query = args[0];
while (!StdIn.isEmpty()) 
{ 
   String s = StdIn.readLine();
   if (s.contains(query)) StdOut.println(s); 
}

create an array
of the strings on StdIn
delimited by whitespace

String input = StdIn.readAll();
String[] words = input.split("\\s+");

check whether an array 
of strings is in

 alphabetical order

public boolean isSorted(String[] a)
{
   for (int i = 1; i < a.length; i++) 
   {
      if (a[i-1].compareTo(a[i]) > 0) 
         return false; 
   }
   return true;
}

typical string-processing code
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as those considered in Chapter 5. For example, the argument of split() can be a
regular expression (see Section 5.4)—the split() example on page 81 uses the argu-
ment "\\s+", which means “one or more tabs, spaces, newlines, or returns.”

Input and output revisited  A disadvantage of the StdIn, StdOut, and StdDraw stan-
dard libraries of Section 1.1 is that they restrict us to working with just one input file, 
one output file, and one drawing for any given program. With object-oriented pro-
gramming, we can define similar mechanisms that allow us to work with multiple input 
streams, output streams, and drawings within one program. Specifically, our standard 
libary includes the data types In, Out, and Draw with the APIs shown on the facing page. 
When invoked with a constructor having a String argument, In and Out will first try 
to find a file in the current directory of your computer that has that name. If it cannot 

do so, it will assume the argu-
ment to be a website name and 
will try to connect to that web-
site (if no such website exists, it 
will issue a runtime exception). 
In either case, the specified file 
or website becomes the source/
target of the input/output for 
the stream object thus created, 
and the read*() and print*() 
methods will refer to that file or 
website. (If you use the no-argu-
ment constructor, then you ob-
tain the standard streams.) This 
arrangement makes it possible 
for a single program to process 

multiple files and drawings. You also can assign such 
objects to variables, pass them as arguments or re-
turn values from methods, create arrays of them, and 
manipulate them just as you manipulate objects of 
any type. The program Cat shown at left is a sample 
client of In and Out that uses multiple input streams 
to concatenate several input files into a single out-
put file. The In and Out classes also contain static 
methods for reading files containing values that are 
all int, double, or String types into an array (see 
page 126 and Exercise 1.2.15).

public class Cat 
{ 
   public static void main(String[] args) 
   {  // Copy input files to out (last argument). 
      Out out = new Out(args[args.length-1]); 
      for (int i = 0; i < args.length - 1; i++) 
      {  // Copy input file named on ith arg to out. 
         In in = new In(args[i]); 
         String s = in.readAll(); 
         out.println(s); 
         in.close(); 
      } 
      out.close(); 
   } 
} 

a sample In and Out client

% more in1.txt 
This is

% more in2.txt 
a tiny 
test.

% java Cat in1.txt in2.txt out.txt

% more out.txt 
This is 
a tiny 
test.
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public class In

In() create an input stream from standard input

In(String name) create an input stream from a file or website

boolean isEmpty() true if no more input, false otherwise

int readInt() read a value of type int

double readDouble() read a value of type double

...

void close() close the input stream

Note: all operations supported by StdIn are also supported for In objects.

apI for our data type for input streams

public class Out

Out() create an output stream to standard output

Out(String name) create an output stream to a file

void print(String s) append s to the output stream

void println(String s) append s and a newline to the output stream

void println() append a newline to the output stream

void printf(String f, ...) formatted print to the output steam

void close() close the output stream

Note: all operations supported by StdOut are also supported for Out objects.

apI for our data type for output streams

public class Draw

Draw()

void line(double x0, double y0, double x1, double y1)

void point(double x, double y)

...

Note: all operations supported by StdDraw are also supported for Draw objects.

apI for our data type for drawings
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Implementing abstract data types As with libraries of static methods, we im-
plement ADTs with a Java class, putting the code in a file with the same name as the 
class, followed by the .java extension. The first statements in the file declare instance 
variables that define the data-type values. Following the instance variables are the con-
structor and the instance methods that implement operations on data-type values. In-
stance methods may be public (specified in the API) or private (used to organize the 
computation and not available to clients). A data-type definition may have multiple 
constructors and may also include definitions of static methods. In particular, a unit-
test client main() is normally useful for testing and debugging. As a first example, we 
consider an implementation of the Counter ADT that we defined on page 65. A full 
annotated implementation is shown on the facing page, for reference as we discuss its 
constituent parts. Every ADT implementation that you will develop has the same basic 
ingredients as this simple example. 

Instance variables  To define data-type 
values (the state of each object), we de-
clare instance variables in much the same 
way as we declare local variables. There is a 
critical distinction between instance vari-
ables and the local variables within a static 
method or a block that you are accustomed to: there is just one value corresponding to 
each local variable at a given time, but there are numerous values corresponding to each 
instance variable (one for each object that is an instance of the data type). There is no 
ambiguity with this arrangement, because each time that we access an instance variable, 
we do so with an object name—that object is the one whose value we are accessing. 
Also, each declaration is qualified by a visibility modifier. In ADT implementations, we 
use private, using a Java language mechanism to enforce the idea that the representa-
tion of an ADT is to be hidden from the client, and also final, if the value is not to be 
changed once it is initialized. Counter has two instance variables: a String value name 
and an int value count. If we were to use public instance variables (allowed in Java) 
the data type would, by definition, not be abstract, so we do not do so.

Constructors  Every Java class has at least one constructor that establishes an object’s 
identity. A constructor is like a static method, but it can refer directly to instance vari-
ables and has no return value. Generally, the purpose of a constructor is to initialize 
the instance variables. Every constructor creates an object and provides to the client a 
reference to that object. Constructors always share the same name as the class. We can 
overload the name and have multiple constructors with different signatures, just as 
with methods. If no other constructor is defined, a default no-argument constructor is 

   public class Counter
   {
      private final String name;
      private int count;  
   ...
   } 

Instance variables in ADTs are  private

instance
variable

declarations
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public class Counter
{
   private final String name;
   private int count;

   public Counter(String id)
   { name = id; }

   public void increment()
   { count++; }

   public int tally()
   { return count; }

   public String toString()
   { return count + " " + name; }

   public static void main(String[] args)
   {
      Counter heads = new Counter("heads");
      Counter tails = new Counter("tails");

      heads.increment();
      heads.increment();
      tails.increment();

      StdOut.println(heads + " " + tails);
      StdOut.println(heads.tally() - tails.tally() );
   }
}

Anatomy of a class that de�nes a data type 

instance
variables

instance
methods

constructor

test client

invoke
constructor

invoke
method

automatically invoke
toString()

instance
variable
 name

create
and

initialize
objects

object
name

class
name
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implicit, has no arguments, and initializes instance values to default values. The default 
values of instance variables are 0 for primitive numeric types, false for boolean, and 
null for reference types. These defaults 
may be changed by using initializing 
declarations for instance variables. Java 
automatically invokes a constructor 
when a client program uses the keyword 
new. Overloaded constructors are typi-
cally used to initialize instance variables 
to client-supplied values other than the 
defaults.  For example, Counter has a 
one-argument constructor that initial-
izes the name instance variable to the 
value given as argument (leaving the 
count instance variable to be initialized 
to the default value 0). 

Instance methods  To implement data-type operations (the behavior of each object), 
we implement instance methods with code that is precisely like the code that you learned 
in Section 1.1 to implement static methods (functions). Each instance method has a 
return type, a signature (which specifies its name and the types and names of its param-
eter variables), and a body (which consists 
of a sequence of statements, including a 
return statement that provides a value of 
the return type back to the client). When 
a client invokes a method, the parameter 
values (if any) are initialized with client 
values, the statements are executed un-
til a return value is computed, and the 
value is returned to the client, with the 
same effect as if the method invocation 
in the client were replaced with that value. All of this action is the same as for static 
methods, but there is one critical distinction for instance methods: they can access and 
perform operations on instance variables. How do we specify which object’s instance 
variables we want to use? If you think about this question for a moment, you will see 
the logical answer: a reference to a variable in an instance method refers to the value 
for the object that was used to invoke the method. When we say heads.increment() the 
code in increment() is referring to the instance variables for heads. In other words, 

method
name

return
type

visibility
modifier signature

instance variable name

Anatomy of an instance method

public void increment()

{ count++; }

public class Counter
{
   private final String name;
   private int count;
   ...

   ...
}

code to initialize instance variables
(count initialized to 0 by default)

visibility
modifier

NO return
type

constructor name
(same as class name)

signature

parameter
variable

Anatomy of a constructor

   public  Counter ( String id )

   { name = id; }
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object-oriented programming adds one critically important additional way to use vari-
ables in a Java program:

n	 to invoke an instance method that operates on the object’s values. 
The difference from working solely with static methods is semantic (see the Q&A), 
but has reoriented the way that modern programmers think about developing code in 
many situations. As you will see, it also dovetails well with the study of algorithms and 
data structures.

Scope  In summary, the Java code that we write to implement instance methods uses 
three kinds of variables:

n	 Parameter variables
n	 Local variables
n	 Instance variables

The first two of these are the same as for static methods: parameter variables are spec-
ified in the method signature and initialized with client values when the method is 
called, and local variables are declared and initialized within the method body. The 
scope of parameter variables is the entire method; the scope of local variables is the 
following statements in the block where they are defined. Instance variables are com-
pletely different: they hold data-type values for objects in a class, and their scope is the 
entire class (whenever there is an ambiguity, you can use the this prefix to identify in-
stance variables). Understanding the distinctions among these three kinds of variables 
in instance methods is a key to success in object-oriented programming.

public class Example
{
   private int var;
   ...

   private void method1()
   {
      int var;

      ...  var       ...
      ...  this.var  ...

   }
   
   private void method2()
   {
      ...  var       ...
   }
   ...
}

Scope of instance and local variables in an instance method

instance
variable

refers to local variable, NOT instance variable

refers to instance variable

refers to instance variable

local variable
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API, clients, and implementations  These are the basic components that you need 
to understand to be able to build and use abstract data types in Java. Every ADT im-
plementation that we will consider will be a Java class with private instance variables, 
constructors, instance methods, and a client. To fully understand a data type, we need 
the API, typical client code, and an implementation, summarized for Counter on the 
facing page. To emphasize the separation of client and implementation, we normally 
present each client as a separate class containing a static method main() and reserve 
test client’s main() in the data-type definition for minimal unit testing and develop-
ment (calling each instance method at least once). In each data type that we develop, 
we go through the same steps. Rather than thinking about what action we need to take 
next to accomplish a computational goal (as we did when first learning to program), we 
think about the needs of a client, then accommodate them in an ADT, following these 
three steps:

n	 Specify an API. The purpose of the API is to separate clients from implementa-
tions, to enable modular programming. We have two goals when specifying an 
API. First, we want to enable clear and correct client code. Indeed, it is a good 
idea to write some client code before finalizing the API to gain confidence that 
the specified data-type operations are the ones that clients need. Second, we 
want to be able to implement the operations. There is no point specifying opera-
tions that we have no idea how to implement.

n	 Implement a Java class that meets the API specifications. First we choose the 
instance variables, then we write constructors and the instance methods. 

n	 Develop multiple test clients, to validate the design decisions made in the first 
two steps.

What operations do clients need to perform, and what data-type values can best sup-
port those operations? These basic decisions are at the heart of every implementation 
that we develop.
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public class Counter 
{ 
   private final String name; 
   private int count;

   public Counter(String id) 
   { name = id; }

   public void increment() 
   { count++; }

   public int tally() 
   { return count; }

   public String toString() 
   { return count + " " + name; }

}

an abstract data type for a simple counter

apI

typical client

applicationimplementation

public class Flips 
{ 
   public static void main(String[] args) 
   { 
      int T = Integer.parseInt(args[0]);

      Counter heads = new Counter("heads"); 
      Counter tails = new Counter("tails");

      for (int t = 0; t < T; t++) 
         if (StdRandom.bernoulli(0.5)) 
              heads.increment(); 
         else tails.increment();

      StdOut.println(heads); 
      StdOut.println(tails); 
      int d = heads.tally() - tails.tally(); 
      StdOut.println("delta: " + Math.abs(d)); 
   } 
}

public class Counter

Counter(String id) create a counter named id
void increment() increment the counter
int tally() number of increments since creation

String toString() string representation

% java Flips 1000000 
500172 heads 
499828 tails 
delta: 344
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More implementations of abstract data types As with any programming 
concept, the best way to understand the power and utility of ADTs is to consider care-
fully more examples and more implementations. There will be ample opportunity for 
you to do so, as much of this book is devoted to ADT implementations, but a few more 
simple examples will help us lay the groundwork for addressing them.

Date  Shown on the facing page are two implementations of the Date ADT that we con-
sidered on page 79. To reduce clutter, we omit the parsing constructor (which is described 
in Exercise 1.2.19) and the inherited methods equals() (see page 103), compareTo() (see 
page 247),  and hashCode() (see Exercise 3.4.22). The straightforward implementation 
on the left maintains the day, month, and year as instance variables, so that the instance 
methods can just return the appropriate value; the more space-efficient implementa-
tion on the right uses only a single int value to represent a date, using a mixed-radix 
number that represents the date with day d, month m, and year y as 512y + 32m + d. 
One way that a client might notice the difference between these implementations is by 
violating implicit assumptions: the second implementation depends for its correctness 
on the day being between 0 and 31, the month being between 0 and 15, and the year be-
ing positive (in practice, both implementations should check that months are between 
1 and 12, days are between 1 and 31, and that dates such as June 31 and February 29, 
2009, are illegal, though that requires a bit more work).  This example highlights the 
idea that we rarely fully specify implementation requirements in an API (we normally 
do the best we can, and could do better here). Another way that a client might notice the 
difference between the two implementations is performance: the implementation on the 
right uses less space to hold data-type values at the cost of more time to provide them to 
the client in the agreed form (one or two arithmetic operations are needed). Such trad-
eoffs are common: one client may prefer one of the implementations and another client 
might prefer the other, so we need to accommodate both. Indeed, one of the recurring 
themes of this book is that we need to understand the space and time requirements of 
various implementations and their suitability for use by various clients. One of the key 
advantages of using data abstraction in our implementations is that we can normally 
change from one implementation to another without changing any client code.

Maintaining multiple implementations  Multiple implementations of the same API 
can present maintainence and nomenclature issues. In some cases, we simply want to 
replace an old implementation with an improved one. In others, we may need to main-
tain two implementations, one suitable for some clients, the other suitable for others. 
Indeed, a prime goal of this book is to consider in depth several implementations of 
each of a number of fundamental ADTs, generally with different performance charac-
teristics. In this book, we often compare the performance of a single client using two 
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public static void main(String[] args) 
{ 
   int m = Integer.parseInt(args[0]); 
   int d = Integer.parseInt(args[1]); 
   int y = Integer.parseInt(args[2]); 
   Date date = new Date(m, d, y); 
   StdOut.println(date); 
}

public class Date 
{ 
   private final int month; 
   private final int day; 
   private final int year;

   public Date(int m, int d, int y) 
   {  month = m; day = d; year = y; }

   public int month() 
   {  return month;  }

   public int day() 
   {  return day;  }

   public int year() 
   {  return day;  }

   public String toString() 
   {  return month() + "/" + day() 
                     + "/" + year();  }

}

public class Date 
{ 
   private final int value;

   public Date(int m, int d, int y) 
   { value = y*512 + m*32 + d; }

   public int month() 
   { return (value / 32) % 16; }

   public int day() 
   { return value % 32; }

   public int year() 
   { return value / 512; } 

   public String toString() 
   {  return month() + "/" + day() 
                     + "/" + year();  }

}

% java Date 12 31 1999 
12/31/1999

 public class Date

Date(int month, int day, int year) create a date
int month() month
int day() day
int year() year

String toString() string representation

test client

implementation

application

alternate implementation

apI

an abstract data type to encapsulate dates, with two implementations
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different implementations of the same API. For this reason, we generally adopt an in-
formal naming convention where we: 

n	 Identify different implementations of the same API by prepending a descrip-
tive modifier. For example, we might name our Date implementations on the 
previous page BasicDate and SmallDate, and we might wish to develop a 
SmartDate implementation that can validate that dates are legal.

n	 Maintain a reference implementation with no prefix that makes a choice that 
should be suitable for most clients. That is, most clients should just use Date.

In a large system, this solution is not ideal, as it might involve changing client code. For 
example, if we were to develop a new implementation ExtraSmallDate, then our only 
options are to change client code or to make it the reference implementation for use by 
all clients. Java has various advanced language mechanisms for maintaining multiple 
implementations without needing to change client code, but we use them sparingly 
because their use is challenging (and even controversial) even for experts, especially in 
conjuction with other advanced language features that we do value (generics and itera-
tors). These issues are important (for example, ignoring them led to the celebrated Y2K 
problem at the turn of the millennium, because many programs used their own imple-
mentations of the date abstraction that did not take into account the first two digits of 
the year), but detailed consideration of these issues would take us rather far afield from 
the study of algorithms.

Accumulator  The accumulator API shown on the facing page defines an abstract data 
type that provides to clients the ability to maintain a running average of data values. For 
example, we use this data type frequently in this book to process experimental results 
(see Section 1.4). The implementation is straightforward: it maintains an int instance 
variable N that counts the number of data values seen so far and a double instance 
variable total that keeps track of the sum of the values seen so far; to compute the 
average it divides the sum by the count. Note that the implementation does not save the 
data values—it could be used for a huge number of them (even on a device that is not 
capable of holding that many), or a huge number of accumulators could be used on a 
big system. This performance characteristic is subtle and might be specified in the API, 
because an implementation that does save the values might cause an application to run 
out of memory. 
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public class TestAccumulator 
{ 
   public static void main(String[] args) 
   { 
      int T = Integer.parseInt(args[0]); 
      Accumulator a = new Accumulator(); 
      for (int t = 0; t < T; t++) 
         a.addDataValue(StdRandom.random()); 
      StdOut.println(a); 
   } 
}

public class Accumulator 
{ 
   private double total; 
   private int N;

   public void addDataValue(double val) 
   { 
       N++; 
       total += val; 
   }

   public double mean() 
   {  return total/N;  }

   public String toString() 
   { return "Mean (" + N + " values): " 
                 + String.format("%7.5f", mean()); }

}

% java TestAccumulator 1000 
Mean (1000 values): 0.51829

% java TestAccumulator 1000000 
Mean (1000000 values): 0.49948

% java TestAccumulator 1000000 
Mean (1000000 values): 0.50014

an abstract data type for accumulating data values

 public class Accumulator

Accumulator() create an accumulator
void addDataValue(double val) add a new data value

double mean() mean of all data values
String toString() string representation

typical client

implementation

application

apI
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Visual accumulator  The visual accumulator implementation shown on the facing 
page extends Accumulator to present a useful side effect: it draws on StdDraw all the 
data (in gray) and the running average (in red). 
The easiest way to do so is to add a constructor 
that provides the number of points to be plotted 
and the maximum value, for rescaling the plot. 
VisualAccumulator is not technically an imple-
mentation of the Accumulator API (its construc-
tor has a different signature and it causes a differ-
ent prescribed side effect). Generally, we are 
careful to fully specify APIs and are loath to make 
any changes in an API once articulated, as it might 
involve changing an unknown amount of client (and implementation) code, but add-
ing a constructor to gain functionality can sometimes be defended because it involves 
changing the same line in client code that we change when changing a class name. In 
this example, if we have developed a client that uses an Accumulator and perhaps has 
many calls to addDataValue() and mean(), we can enjoy the benefits of 
VisualAccumulator by just changing one line of client code.

Visual accumulator plot

height of gray dot
is the data point value

height of Nth red dot from the left
is the average of the heights
of  the leftmost N gray dots

application

% java TestVisualAccumulator 2000
Mean (2000 values): 0.509789
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public class TestVisualAccumulator 
{ 
   public static void main(String[] args) 
   { 
      int T = Integer.parseInt(args[0]); 
      VisualAccumulator a = new VisualAccumulator(T, 1.0); 
      for (int t = 0; t < T; t++) 
         a.addDataValue(StdRandom.random()); 
      StdOut.println(a); 
   } 
}

public class VisualAccumulator 
{ 
   private double total; 
   private int N;

   public VisualAccumulator(int trials, double max) 
   { 
      StdDraw.setXscale(0, trials); 
      StdDraw.setYscale(0, max); 
      StdDraw.setPenRadius(.005); 
   }

   public void addDataValue(double val) 
   { 
      N++; 
      total += val; 
      StdDraw.setPenColor(StdDraw.DARK_GRAY); 
      StdDraw.point(N, val); 
      StdDraw.setPenColor(StdDraw.RED); 
      StdDraw.point(N, mean()); 
   }

   public double mean() 
   public String toString() 
   // Same as Accumulator.

}

an abstract data type for accumulating data values (visual version)

 public class VisualAccumulator

VisualAccumulator(int trials, double max)

void addDataValue(double val) add a new data value
double mean() mean of all data values
String toString() string representation

typical client

implementation

apI
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Designing abstract data types An abstract data type is a data type whose repre-
sentation is hidden from the client. This idea has had a powerful effect on modern pro-
gramming. The various examples that we have considered give us the vocabulary to ad-
dress advanced characteristics of ADTs and their implementation as Java classes. Many 
of these topics are, on the surface, tangential to the study of algorithms, so it is safe for 
you to skim this section and refer to it later in the context of specific implementation 
problems. Our goal is to put important information related to designing data types in 
one place for reference and to set the stage for implementations throughout this book. 

Encapsulation  A hallmark of object-oriented programming is that it enables us to 
encapsulate data types within their implementations, to facilitate separate development 
of clients and data type implementations. Encapsulation enables modular program-
ming, allowing us to

n	 Independently develop client and implementation code
n	 Substitute improved implementations without affecting clients
n	 Support programs not yet written (the API is a guide for any future client)

Encapsulation also isolates data-type operations, which leads to the possibility of
n	 Limiting the potential for error
n	 Adding consistency checks and other debugging tools in implementations
n	 Clarifying client code

An encapsulated data type can be used by any client, so it extends the Java language. 
The programming style that we are advocating is predicated on the idea of breaking 
large programs into small modules that can be developed and debugged independently. 
This approach improves the resiliency of our software by limiting and localizing the ef-
fects of making changes, and it promotes code reuse by making it possible to substitute 
new implementations of a data type to improve performance, accuracy, or memory 
footprint. The same idea works in many settings. We often reap the benefits of encap-
sulation when we use system libraries. New versions of the Java system often include 
new implementations of various data types or static method libraries, but the APIs do 
not change. In the context of the study of algorithms and data structures, there is strong 
and constant motivation to develop better algorithms because we can improve perfor-
mance for all clients by substituting an improved ADT implementation without chang-
ing the code of any client. The key to success in modular programming is to maintain 
independence among modules. We do so by insisting on the API being the only point of 
dependence between client and implementation. You do not need to know how a data 
type is implemented in order to use it and you can assume that a client knows nothing but 
the API when implementing a data type. Encapsulation is the key to attaining both of 
these advantages.
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Designing APIs  One of the most important and most challenging steps in building 
modern software is designing APIs. This task takes practice, careful deliberation, and 
many iterations, but any time spent designing a good API is certain to be repaid in time 
saved debugging or code reuse. Articulating an API might seem to be overkill when 
writing a small program, but you should consider writing every program as though you 
will need to reuse the code someday. Ideally, an API would clearly articulate behavior 
for all possible inputs, including side effects, and then we would have software to check 
that implementations meet the specification. Unfortunately, a fundamental result from 
theoretical computer science known as the specification problem implies that this goal 
is actually impossible to achieve. Briefly, such a specification would have to be written 
in a formal language like a programming language, and the problem of determining 
whether two programs perform the same computation is known, mathematically, to be 
undecidable. Therefore, our APIs are brief English-language descriptions of the set of 
values in the associated abstract data type along with a list of constructors and instance 
methods, again with brief English-language descriptions of their purpose, including 
side effects.  To validate the design, we always include examples of client code in the text 
surrounding our APIs. Within this broad outline, there are numerous pitfalls that every 
API design is susceptible to: 

n	 An API may be too hard to implement, implying implementations that are dif-
ficult or impossible to develop.

n	 An API may be too hard to use, leading to client code that is more complicated 
than it would be without the API. 

n	 An API may be too narrow, omitting methods that clients need.
n	 An API may be too wide, including a large number of methods not needed 

by any client. This pitfall is perhaps the most common, and one of the most 
difficult to avoid. The size of an API tends to grow over time because it is not 
difficult to add methods to an existing API, but it is difficult to remove methods 
without breaking existing clients.

n	 An API may be too general, providing no useful abstractions. 
n	 An API may be too specific, providing abstractions so detailed or so diffuse as to 

be useless. 
n	 An API may be too dependent on a particular representation, therefore not serv-

ing the purpose of freeing client code from the details of using that representa-
tion. This pitfall is also difficult to avoid, because the representation is certainly 
central to the development of the implementation.

These considerations are sometimes summarized in yet another motto: provide to cli-
ents the methods they need and no others. 
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Algorithms and abstract data types  Data abstraction is naturally suited to the study 
of algorithms, because it helps us provide a framework within which we can precisely 
specify both what an algorithm needs to accomplish and how a client can make use of 
an algorithm. Typically, in this book, an algorithm is an implementation of an instance 
method in an abstract data type. For example, our whitelisting example at the begin-
ning of the chapter is naturally cast as an ADT client, based on the following operations:

n	 Construct a SET from an array of given values.
n	 Determine whether a given value is in the set.

These operations are encapsulated in the StaticSETofInts ADT, shown on the facing 
page along with Whitelist, a typical client. StaticSETofInts is a special case of the 
more general and more useful symbol table ADT that is the focus of Chapter 3. Binary 
search is one of several algorithms that we study that is suitable for implementing these 
ADTs. By comparison with the BinarySearch implementation on page 47, this imple-
mentation leads to clearer and more useful client code. For example, StaticSETofInts 
enforces the idea that the array must be sorted before rank() is called. With the abstract 
data type, we separate the client from the implementation making it easier for any client 
to benefit from the ingenuity of the binary search algorithm, just by following the API 
(clients of rank() in BinarySearch have to know to sort the array first). Whitelisting is 
one of many clients that can take advantage of binary search. 

Every Java program is a set of 
static methods and/or a data type 
implementation. In this book, we 
focus primarily on abstract data 
type implementations such as 
StaticSETofInts, where the focus 
is on operations and the representa-
tion of the data is hidden from the 
client. As this example illustrates, 
data abstraction enables us to

n	 Precisely specify what algorithms can provide for clients
n	 Separate algorithm implementations from the client code
n	 Develop layers of abstraction, where we make use of well-understood algorithms 

to develop other algorithms
These are desirable properties of any approach to describing algorithms, whether it be 
an English-language description or pseudo-code. By embracing the Java class mecha-
nism in support of data abstraction, we have little to lose and much to gain: working 
code that we can test and use to compare performance for diverse clients.

% java Whitelist largeW.txt < largeT.txt 
499569 
984875 
295754 
207807 
140925 
161828 
 ...

application
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public class Whitelist 
{ 
   public static void main(String[] args) 
   { 
      int[] w = In.readInts(args[0]); 
      StaticSETofInts set = new StaticSETofInts(w); 
      while (!StdIn.isEmpty()) 
      {  // Read key, print if not in whitelist.  
         int key = StdIn.readInt(); 
         if (!set.contains(key)) 
            StdOut.println(key); 
      } 
   } 
}

import java.util.Arrays;

public class StaticSETofInts 
{ 
   private int[] a;

   public StaticSETofInts(int[] keys) 
   { 
      a = new int[keys.length]; 
      for (int i = 0; i < keys.length; i++) 
         a[i] = keys[i]; // defensive copy 
      Arrays.sort(a); 
   }

   public boolean contains(int key) 
   {  return rank(key) != -1;  }

   private int rank(int key) 
   {  // Binary search. 
      int lo  = 0; 
      int hi = a.length - 1; 
      while (lo <= hi) 
      {  // Key is in a[lo..hi] or not present. 
         int mid = lo + (hi - lo) / 2; 
         if      (key < a[mid]) hi = mid - 1; 
         else if (key > a[mid]) lo = mid + 1; 
         else                   return mid; 
      } 
      return -1; 
   } 
}

Binary search recast as an object-oriented program (an aDt for search in a set of integers)

typical client

implementation

apI public class StaticSETofInts

StaticSETofInts(int[] a) create a set from the values in a[]
boolean contains(int key) is key in the set?
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Interface inheritance  Java provides language support for defining relationships 
among objects, known as inheritance. These mechanisms are widely used by software 
developers, so you will study them in detail if you take a course in software engineer-
ing. The first inheritance mechanism that we consider is known as subtyping, which 
allows us to specify a relationship between otherwise unrelated classes by specifying in 
an interface a set of common methods that each implementing class must contain. An 
interface is nothing more than a list of instance methods. For example, instead of using 
our informal API, we might have articulated an interface for Date: 

public interface Datable 
{ 
   int month(); 
   int day(); 
   int year(); 
}

and then referred to the interface in our implementation code

public class Date implements Datable 
{ 
   // implementation code (same as before)
}

so that the Java compiler will check that it matches the interface. Adding the code 
implements Datable to any class that implements month(), day(), and year() pro-
vides a guarantee to any client that an object of that class can invoke those methods. 
This arrangement is known as interface inheritance—an implementing class inherits the 
interface. Interface inheritance allows us to write client programs that can manipulate 

objects of any type that implements 
the interface (even a type to be creat-
ed in the future), by invoking meth-
ods in the interface. We might have 
used interface inheritance in place of 
our more informal APIs, but chose 
not to do so to avoid dependence on 
specific high-level language mecha-
nisms that are not critical to the 
understanding of algorithms and 
to avoid the extra baggage of inter-
face files. But there are a few situa-
tions where Java conventions make 

interface methods section

comparison

java.lang.Comparable compareTo() 2.1

java.util.Comparator compare() 2.5

iteration

java.lang.Iterable iterator() 1.3

java.util.Iterator

hasNext() 

next() 

remove()
1.3

Java interfaces used in this book
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it worthwhile for us to take advantage of interfaces: we use them for comparison and for 
iteration, as detailed in the table at the bottom of the previous page, and will consider 
them in more detail when we cover those concepts. 

Implementation inheritance  Java also supports another inheritence mechanism 
known as subclassing, which is a powerful technique that enables a programmer to 
change behavior and add functionality without rewriting an entire class from scratch. 
The idea is to define a new class (subclass, or derived class) that inherits instance meth-
ods and instance variables from another class (superclass, or base class). The subclass 
contains more methods than the superclass. Moreover, the subclass can redefine or 
override methods in the superclass. Subclassing is widely used by systems programmers 
to build so-called extensible libraries—one programmer (even you) can add methods to 
a library built by another programmer (or, perhaps, a team of systems programmers), 
effectively reusing the code in a potentially huge library. For example, this approach is 
widely used in the development of graphical user interfaces, so that the large amount of 
code required to provide all the facilities that users expect (drop-down menus, cut-and-
paste, access to files, and so forth) can be reused. The use of subclassing is controversial 
among systems and applications programmers (its advantages over interface inheri-
tance are debatable), and we avoid it in this book because it generally works against 
encapsulation. Certain vestiges of the approach are built into Java and therefore un-
avoidable: specifically, every class is a subtype of Java’s Object class. This structure 
enables the “convention” that every class includes an implementation of getClass(), 
toString(), equals(), hashCode(), and several other methods that we do not use in 
this book. Actually, every class inherits these methods from Object through subclassing, 
so any client can use them for any object. We usually override toString(), equals(), 
hashCode() in new classes because the default Object implementation generally does 
not lead to the desired behavior. We now will consider toString() and equals(); we 
discuss hashCode() in Section 3.4.

method purpose section

Class getClass() what class is this object? 1.2

String toString() string representation of this object 1.1

boolean equals(Object that) is this object equal to that? 1.2

int hashCode() hash code for this object 3.4

Inherited methods from Object used in this book
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String conversion  By convention, every Java type inherits toString() from Object, 
so any client can invoke toString() for any object. This convention is the basis for Ja-
va’s automatic conversion of one operand of the concatenation operator + to a String 
whenever the other operand is a String. If an object’s data type does not include an 
implementation of toString(), then the default implementation in Object is invoked, 
which is normally not helpful, since it typically returns a string representation of the 
memory address of the object. Accordingly, we generally include implementations of 
toString() that override the default in every class that we develop, as highlighted for 
Date on the facing page. As illustrated in this code, toString() implementations are 
often quite simple, implicitly (through +) using toString() for each instance variable.

Wrapper types  Java supplies built-in reference types known as wrapper types, one for 
each of the primitive types: Boolean, Byte, Character, Double, Float, Integer, Long, 
and Short correspond to boolean, byte, char, double, float, int, long, and short, 
respectively. These classes consist primarily of static methods such as parseInt() but 
they also include the inherited instance methods toString(), compareTo(), equals(), 
and hashCode(). Java automatically converts from primitive types to wrapper types 
when warranted, as described on page 122. For example, when an int value is concat-
enated with a String, it is converted to an Integer that can invoke toString().

Equality  What does it mean for two objects to be equal? If we test equality with 
(a == b) where a and b are reference variables of the same type, we are testing whether 
they have the same identity : whether the references are equal. Typical clients would 
rather be able to test whether the data-type values (object state) are the same, or to 
implement some type-specific rule. Java gives us a head start by providing implementa-
tions both for standard types such as Integer, Double, and String and for more com-
plicated types such as File and URL. When using these types of data, you can just use the 
built-in implementation.  For example, if x and y are String values, then x.equals(y) 
is true if and only if x and y have the same length and are identical in each character 
position. When we define our own data types, such as Date or Transaction, we need 
to override equals(). Java’s convention is that equals() must be an equivalence rela-
tion. It must be

n	 Reflexive : x.equals(x) is true.
n	 Symmetric : x.equals(y) is true if and only if y.equals(x) is true. 
n	 Transitive : if x.equals(y) and y.equals(z) are true, then so is x.equals(z). 

In addition, it must take an Object as argument and satisfy the following properties. 
n	 Consistent : multiple invocations of x.equals(y) consistently return the same 

value, provided neither object is modified. 
n	 Not null : x.equals(null) returns false. 
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These are natural definitions, but ensuring that these properties hold, adhering to Java 
conventions, and avoiding unnecessary work in an implementation can be tricky, as il-
lustrated for Date below. It takes the following step-by-step approach:

n	 If the reference to this object is the same as the reference to the argument object, 
return true. This test saves the work of doing all the other checks in this case.

n	 If the argument is null, return false, to adhere to the convention (and to avoid 
following a null reference in code to follow).

n	 If the objects are not from the same class, return false. To determine an object’s 
class, we use getClass(). Note that we can use == to tell us whether two objects 
of type Class are equal because getClass() is guaranteed to return the same 
reference for all objects in any given class.

n	 Cast the argument 
from Object to Date 
(this cast must succeed 
because of the previous 
test).

n	 Return false if any 
instance variables do 
not match. For other 
classes, some other 
definition of equality 
might be appropriate. 
For example, we might 
regard two Counter 
objects as equal if their 
count instance variables 
are equal. 

This implementation is a 
model that you can use to 
implement equals() for any 
type that you implement. 
Once you have implemented 
one equals(), you will not 
find it difficult to implement 
another.

public class Date 
{ 
   private final int month; 
   private final int day; 
   private final int year;

   public Date(int m, int d, int y) 
   {  month = m; day = d; year = y; }

   public int month() 
   {  return month;  }

   public int day() 
   {  return day;  }

   public int year() 
   {  return year;  }

   public String toString() 
   {  return month() + "/" + day() + "/" + year();  }

   public boolean equals(Object x) 
   { 
      if (this == x) return true; 
      if (x == null) return false; 
      if (this.getClass() != x.getClass()) return false; 
      Date that = (Date) x; 
      if (this.day != that.day)            return false; 
      if (this.month != that.month)        return false; 
      if (this.year != that.year)          return false; 
      return true; 
   }

}

overriding toString() and equals() in a data-type definition 
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Memory management  The ability to assign a new value to a reference variable cre-
ates the possibility that a program may have created an object that can no longer be 
referenced. For example, consider the three assignment statements in the figure at left. 
After the third assignment statement, not only do a and b refer to the same Date object 
(12/31/1999), but also there is no longer a reference to the Date object that was created 

and used to initialize b. The only reference to that object 
was in the variable b, and this reference was overwritten 
by the assignment, so there is no way to refer to the object 
again. Such an object is said to be orphaned. Objects are 
also orphaned when they go out of scope. Java programs 
tend to create huge numbers of objects (and variables that 
hold primitive data-type values), but only have a need for a 
small number of them at any given point in time. Accord-
ingly, programming languages and systems need mecha-
nisms to allocate memory for data-type values during the 
time they are needed and to free the memory when they 
are no longer needed (for an object, sometime after it is 
orphaned). Memory management turns out to be easier 
for primitive types because all of the information needed 
for memory allocation is known at compile time. Java (and 
most other systems) takes care of reserving space for vari-
ables when they are declared and freeing that space when 
they go out of scope. Memory management for objects is 
more complicated: the system can allocate memory for an 
object when it is created, but cannot know precisely when 
to free the memory associated with each object because 
the dynamics of a program in execution determines when 
objects are orphaned. In many languages (such as C and 
C++) the programmer is responsible for both allocating 
and freeing memory. Doing so is tedious and notoriously 

error-prone. One of Java’s most significant features is its ability to automatically man-
age memory. The idea is to free the programmers from the responsibility of managing 
memory by keeping track of orphaned objects and returning the memory they use to 
a pool of free memory. Reclaiming memory in this way is known as garbage collection. 
One of Java’s characteristic features is its policy that references cannot be modified. 
This policy enables Java to do efficient automatic garbage collection. Programmers still 
debate whether the overhead of automatic garbage collection justifies the convenience 
of not having to worry about memory management. 

Date a = new Date(12, 31, 1999);
Date b = new Date( 1,  1, 2011);
b = a;

811       1

812       1

813    2011

  b     655

  a     655

655      12

656      31

657    1999

New Year’s
 Eve 1999

New Year’s
 Day 2011

orphaned
object

references to
same object

An orphaned object
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Immutability  An immutable data type, such as Date, has the property that the value 
of an object never changes once constructed. By contrast, a mutable data type, such as 
Counter or Accumulator, manipulates object values that are intended to change. Java’s 
language support for helping to enforce immutability is the final modifier. When you 
declare a variable to be final, you are promising to assign it a value only once, either 
in an initializer or in the constructor. Code that could modify the value of a final 
variable leads to a compile-time error. In our code, we use the modifier final with 
instance variables whose values never change. This policy serves as documentation that 
the value does not change, prevents accidental changes, and makes programs easier 
to debug. For example, you do not have to include a final value in a trace, since you 
know that its value never changes. A data type such as Date whose instance variables 
are all primitive and final is immutable (in code that does not use implementation 
inheritence, our convention). Whether to make a data type immutable is an important 
design decision and depends on the application at hand. For data 
types such as Date, the purpose of the abstraction is to encap-
sulate values that do not change so that we can use them in as-
signment statements and as arguments and return values from 
functions in the same way as we use primitive types (without hav-
ing to worry about their values changing). A programmer imple-
menting a Date client might reasonably expect to write the code 
d = d0 for two Date variables, in the same way as for double or 
int values. But if Date were mutable and the value of d were to 
change after the assignment d = d0, then the value of d0 would also change (they are 
both references to the same object)! On the other hand, for data types such as Counter 
and Accumulator, the very purpose of the abstraction is to encapsulate values as they 
change. You have already encountered this distinction as a client programmer, when 
using Java arrays (mutable) and Java’s String data type (immutable). When you pass 
a String to a method, you do not worry about that method changing the sequence of 
characters in the String, but when you pass an array to a method, the method is free to 
change the contents of the array. String objects are immutable because we generally do 
not want String values to change, and Java arrays are mutable because we generally do
want array values to change. There are also situations where we want to have mutable 
strings (that is the purpose of Java’s StringBuilder class) and where we want to have 
immutable arrays (that is the purpose of the Vector class that we consider later in this 
section). Generally, immutable types are easier to use and harder to misuse than muta-
ble types because the scope of code that can change their values is far smaller. It is easier 
to debug code that uses immutable types because it is easier to guarantee that variables 
in client code that uses them remain in a consistent state. When using mutable types, 

mutable immutable

Counter Date

Java arrays String

Mutable/immutable examples
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you must always be concerned about where and when their values change. The down-
side of immutability is that a new object must be created for every value. This expense is 
normally manageable because Java garbage collectors are typically optimized for such 
situations. Another downside of immutability stems from the fact that, unfortunately, 
final guarantees immutability only when instance variables are primitive types, not 
reference types. If an instance variable of a reference type has the final modifier, the 
value of that instance variable (the reference to an object) will never change—it will 
always refer to the same object—but the value of the object itself can change. For ex-
ample, this code does not implement an immutable type:

public class Vector 
{ 
   private final double[] coords;

   public Vector(double[] a) 
   {  coords = a; } 
   ... 
}

A client program could create a Vector by specifying the entries in an array, and then 
(bypassing the API) change the elements of the Vector after construction:

double[] a = { 3.0, 4.0 }; 
Vector vector = new Vector(a); 
a[0] = 0.0;  // Bypasses the public API.

The instance variable coords[] is private and final, but Vector is mutable because 
the client holds a reference to the data. Immutability needs to be taken into account in 
any data-type design, and whether a data type is immutable should be specified in the 
API, so that clients know that object values will not change. In this book, our primary 
interest in immutability is for use in certifying the correctness of our algorithms. For 
example, if the type of data used for a binary search algorithm were mutable, then cli-
ents could invalidate our assumption that the array is sorted for binary search. 
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Design by contract  To conclude, we briefly discuss Java language mechanisms that 
enables you to verify assumptions about your program as it is running. We use two Java 
language mechanisms for this purpose:

n	 Exceptions and errors, which generally handle unforeseen errors outside
our control

n	 Assertions, which verify assumptions that we make within code we develop
Liberal use of both exceptions and assertions is good programming practice. We use 
them sparingly in the book for economy, but you will find them throughout the code 
on the booksite. This code aligns with a substantial amount of the surrounding com-
mentary about each algorithm in the text that has to do with exceptional conditions 
and with asserted invariants.

Exceptions and errors  Exceptions and errors are disruptive events that occur while a 
program is running, often to signal an error. The action taken is known as throwing an 
exception or throwing an error. We have already encountered exceptions thrown by Java 
system methods in the course of learning basic features of Java: StackOverflowError, 
ArithmeticException, ArrayIndexOutOfBoundsException, OutOfMemoryError, 
and NullPointerException are typical examples. You can also create your own ex-
ceptions. The simplest kind is a RuntimeException that terminates execution of the 
program and prints an error message

throw new RuntimeException("Error message here.");

A general practice known as fail fast programming suggests that an error is more easily 
pinpointed if an exception is thrown as soon as an error is discovered (as opposed to 
ignoring the error and deferring the exception to sometime in the future). 

Assertions  An assertion is a boolean expression that you are affirming is true at that 
point in the program. If the expression is false, the program will terminate and re-
port an error message. We use assertions both to gain confidence in the correctness of 
programs and to document intent. For example, suppose that you have a computed 
value that you might use to index into an array. If this value were negative, it would 
cause an ArrayIndexOutOfBoundsException sometime later. But if you write the code 
assert index >= 0; you can pinpoint the place where the error occurred. You can 
also add an optional detail message such as

assert index >= 0 : "Negative index in method X"; 

to help you locate the bug. By default, assertions are disabled. You can enable them from 
the command line by using the -enableassertions flag (-ea for short). Assertions are 
for debugging: your program should not rely on assertions for normal operation since 
they may be disabled. When you take a course in systems programming, you will learn 
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to use assertions to ensure that your code never terminates in a system error or goes into 
an infinite loop. One model, known as the design-by-contract model of programming 
expresses the idea. The designer of a data type expresses a precondition (the condition 
that the client promises to satisfy when calling a method), a postcondition (the condi-
tion that the implementation promises to achieve when returning from a method), and 
side effects (any other change in state that the method could cause). During develop-
ment, these conditions can be tested with assertions. 

Summary  The language mechanisms discussed throughout this section illustrate that 
effective data-type design leads to nontrivial issues that are not easy to resolve. Ex-
perts are still debating the best ways to support some of the design ideas that we are 
discussing. Why does Java not allow functions as arguments? Why does Matlab copy 
arrays passed as arguments to functions? As mentioned early in Chapter 1, it is a slip-
pery slope from complaining about features in a programming language to becoming 
a programming-language designer. If you do not plan to do so, your best strategy is 
to use widely available languages. Most systems have extensive libraries that you cer-
tainly should use when appropriate, but you often can simplify your client code and 
protect yourself by building abstractions that can easily transport to other languages. 
Your main goal is to develop data types so that most of your work is done at a level of 
abstraction that is appropriate to the problem at hand.

The table on the facing page summarizes the various kinds of Java classes that we 
have considered. 
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kind of class examples characteristics

static methods Math StdIn StdOut no instance variables

immutable 
abstract data type

Date Transaction 

String Integer

instance variables all private 
instance variables all final  

defensive copy for reference types
Note: these are necessary but not sufficient.

mutable 
abstract data type

Counter Accumulator
instance variables all private 

not all instance variables final

abstract data type 
with I/O side effects

VisualAccumulator 

In Out Draw
instance variables all private 

instance methods do I/O

Java classes (data-type implementations)
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Q & A

Q. Why bother with data abstraction?

A. It helps us produce reliable and correct code. For example, in the 2000 presidential 
election, Al Gore received –16,022 votes on an electronic voting machine in Volusia 
County, Florida—the tally was clearly not properly encapsulated in the voting machine 
software!

Q. Why the distinction between primitive and reference types? Why not just have refer-
ence types?

A. Performance. Java provides the reference types Integer, Double, and so forth that 
correspond to primitive types that can be used by programmers who prefer to ignore 
the distinction. Primitive types are closer to the types of data that are supported by 
computer hardware, so programs that use them usually run faster than programs that 
use corresponding reference types.

Q. Do data types have to be abstract?

A. No. Java also allows public and protected to allow some clients to refer directly 
to instance variables. As described in the text, the advantages of allowing client code to 
directly refer to data are greatly outweighed by the disadvantages of dependence on a 
particular representation, so all instance variables are private in our code. We also oc-
casionally use private instance methods to share code among public methods. 

Q. What happens if I forget to use new when creating an object?

A. To Java, it looks as though you want to call a static method with a return value of the 
object type. Since you have not defined such a method, the error message is the same as 
anytime you refer to an undefined symbol. If you compile the code

Counter c = Counter("test");

you get this error message: 

cannot find symbol 
symbol  : method Counter(String)

You get the same kind of error message if you provide the wrong number of arguments 
to a constructor.
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Q. What happens if I forget to use new when creating an array of objects?

A. You need to use new for each object that you create, so when you create an array of 
N objects, you need to use new N+1 times: once for the array and once for each of the 
objects. If you forget to create the array:

Counter[] a; 
a[0] = new Counter("test");

you get the same error message that you would get when trying to assign a value to any 
uninitialized variable:

variable a might not have been initialized 
      a[0] = new Counter("test");  
      ^

but if you forget to use new when creating an object within the array and then try to use 
it to invoke a method:

Counter[] a = new Counter[2]; 
a[0].increment();

you get a NullPointerException. 

Q. Why not write StdOut.println(x.toString()) to print objects?

A. That code works fine, but Java saves us the trouble of writing it by automatically 
invoking the toString() method for any object, since println() has a method that 
takes an Object as argument. 

Q. What is a pointer ? 

A. Good question. Perhaps that should be NullReferenceException. Like a Java ref-
erence, you can think of a pointer as a machine address. In many programming lan-
guages, the pointer is a primitive data type that programmers can manipulate in many 
ways. But programming with pointers is notoriously error-prone, so operations pro-
vided for pointers need to be carefully designed to help programmers avoid errors. 
Java takes this point of view to an extreme (that is favored by many modern program-
ming-language designers). In Java, there is only one way to create a reference (new) and 
only one way to change a reference (with an assignment statement). That is, the only 
things that a programmer can do with references are to create them and copy them. In 
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programming-language jargon, Java references are known as safe pointers, because Java 
can guarantee that each reference points to an object of the specified type (and it can 
determine which objects are not in use, for garbage collection). Programmers used to 
writing code that directly manipulates pointers think of Java as having no pointers at 
all, but people still debate whether it is really desirable to have unsafe pointers.

Q. Where can I find more details on how Java implements references and does garbage 
collection?

A. One Java system might differ completely from another. For example, one natural 
scheme is to use a pointer (machine address); another is to use a handle (a pointer to 
a pointer). The former gives faster access to data; the latter provides for better garbage 
collection.

Q. What exactly does it mean to import a name?

A.  Not much: it just saves some typing. You could type java.util.Arrays instead of 
Arrays everywhere in your code instead of using the import statement.

Q. What is the problem with implementation inheritance?

A. Subtyping makes modular programming more difficult for two reasons. First, any 
change in the superclass affects all subclasses. The subclass cannot be developed inde-
pendently of the superclass; indeed, it is completely dependent on the superclass. This 
problem is known as the fragile base class problem. Second, the subclass code, hav-
ing access to instance variables, can subvert the intention of the superclass code. For 
example, the designer of a class like Counter for a voting system may take great care 
to make it so that Counter can only increment the tally by one (remember Al Gore’s 
problem). But a subclass, with full access to the instance variable, can change it to any 
value whatever. 

Q. How do I make a class immutable?

A. To ensure immutability of a data type that includes an instance variable of a mu-
table type, we need to make a local copy, known as a defensive copy. And that may not be 
enough. Making the copy is one challenge; ensuring that none of the instance methods 
change values is another.

Q. What is null?

Q & A (continued)
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A. It is a literal value that refers to no object. Invoking a method using the null ref-
erence is meaningless and results in a NullPointerException. If you get this error 
message, check to make sure that your constructor properly initializes all of its instance 
variables.

Q. Can I have a static method in a class that implements a data type?

A. Of course. For example, all of our classes have main(). Also, it is natural to consider 
adding static methods for operations that involve multiple objects where none of them 
naturally suggests itself as the one that should invoke the method. For example, we 
might define a static method like the following within Point:

public static double distance(Point a, Point b) 
{   
   return a.distTo(b); 
}

Often, including such methods can serve to clarify client code.

Q. Are there other kinds of variables besides parameter, local, and instance variables?

A. If you include the keyword static in a class declaration (outside of any type) it 
creates a completely different type of variable, known as a static variable. Like instance 
variables, static variables are accessible to every method in the class; however, they are 
not associated with any object. In older programming languages, such variables are 
known as global variables, because of their global scope. In modern programming, we 
focus on limiting scope and therefore rarely use such variables. When we do, we will call 
attention to them.

Q. What is a deprecated method?

A. A method that is no longer fully supported, but kept in an API to maintain compat-
ibility. For example, Java once included a method Character.isSpace(), and pro-
grammers wrote programs that relied on using that method’s behavior. When the de-
signers of Java later wanted to support additional Unicode whitespace characters, they 
could not change the behavior of isSpace() without breaking client programs, so, 
instead, they added a new method, Character.isWhiteSpace(), and deprecated the 
old method. As time wears on, this practice certainly complicates APIs. Sometimes, en-
tire classes are deprecated. For example, Java deprecated its java.util.Date in order 
to better support internationalization.
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ExErcisEs

1.2.1 Write a Point2D client that takes an integer value N from the command line, 
generates N random points in the unit square, and computes the distance separating 
the closest pair of points.

1.2.2 Write an Interval1D client that takes an int value N as command-line argu-
ment, reads N intervals (each defined by a pair of double values) from standard input, 
and prints all pairs that intersect.

1.2.3 Write an Interval2D client that takes command-line arguments N, min, and max 
and generates N random 2D intervals whose width and height are uniformly distributed 
between min and max in the unit square. Draw them on StdDraw and print the number 
of pairs of intervals that intersect and the number of intervals that are contained in one 
another.

1.2.4 What does the following code fragment print?

String string1 = "hello"; 
String string2 = string1; 
string1 = "world"; 
StdOut.println(string1); 
StdOut.println(string2);

1.2.5 What does the following code fragment print?

String s = "Hello World"; 
s.toUpperCase(); 
s.substring(6, 11); 
StdOut.println(s);

Answer : "Hello World". String objects are immutable—string methods return 
a new String object with the appropriate value (but they do not change the value 
of the object that was used to invoke them). This code ignores the objects returned 
and just prints the original string. To print "WORLD", use s = s.toUpperCase() and 
s = s.substring(6, 11).

1.2.6 A string s is a circular rotation of a string t if it matches when the characters 
are circularly shifted by any number of positions; e.g., ACTGACG is a circular shift of 
TGACGAC, and vice versa. Detecting this condition is important in the study of genomic 
sequences. Write a program that checks whether two given strings s and t are circular 
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shifts of one another. Hint : The solution is a one-liner with indexOf(), length(), and 
string concatenation.

1.2.7 What does the following recursive function return?

public static String mystery(String s) 
{ 
   int N = s.length(); 
   if (N <= 1) return s; 
   String a = s.substring(0, N/2); 
   String b = s.substring(N/2, N); 
   return mystery(b) + mystery(a); 
}

1.2.8 Suppose that a[] and b[] are each integer arrays consisting of millions of inte-
gers. What does the follow code do? Is it reasonably efficient?

int[] t = a; a = b; b = t;

Answer. It swaps them. It could hardly be more efficient because it does so by copying 
references, so that it is not necessary to copy millions of elements.

1.2.9 Instrument BinarySearch (page 47) to use a Counter to count the total number 
of keys examined during all searches and then print the total after all searches are com-
plete. Hint : Create a Counter in main() and pass it as an argument to rank().

1.2.10 Develop a class VisualCounter that allows both increment and decrement 
operations. Take two arguments N and max in the constructor, where N specifies the 
maximum number of operations and max specifies the maximum absolute value for 
the counter. As a side effect, create a plot showing the value of the counter each time its 
tally changes.

1.2.11 Develop an implementation SmartDate of our Date API that raises an excep-
tion if the date is not legal.

1.2.12 Add a method dayOfTheWeek() to SmartDate that returns a String value 
Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, or Sunday, giving the ap-
propriate day of the week for the date. You may assume that the date is in the 21st 
century.
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1.2.13 Using our implementation of Date as a model (page 91), develop an implementa-
tion of Transaction. 

1.2.14 Using our implementation of equals() in Date as a model (page 103), develop an 
implementation of equals() for Transaction.

ExErcisEs (continued)
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crEAtivE problEms

1.2.15  File input. Develop a possible implementation of the static readInts() meth-
od from In (which we use for various test clients, such as binary search on page 47) that 
is based on the split() method in String. 

Solution:

public static int[] readInts(String name) 
{ 
   In in = new In(name); 
   String input = in.readAll(); 
    String[] words = input.split("\\s+"); 
   int[] ints = new int[words.length]; 
   for int i = 0; i < word.length; i++) 
      ints[i] = Integer.parseInt(words[i]); 
   return ints; 
}

We will consider a different implementation in Section 1.3 (see page 126).

1.2.16  Rational numbers. Implement an immutable data type Rational for rational 
numbers that supports addition, subtraction, multiplication, and division.

public class Rational

Rational(int numerator, int denominator)

Rational plus(Rational b) sum of this number and b

Rational minus(Rational b) difference of this number and b

Rational times(Rational b) product of this number and b

Rational dividedBy(Rational b) quotient of this number and b

boolean equals(Object that) is this number equal to that ?

String toString() string representation

You do not have to worry about testing for overflow (see Exercise 1.2.17), but use as 
instance variables two long values that represent the numerator and denominator to 
limit the possibility of overflow. Use Euclid’s algorithm (see page 4) to ensure that the 
numerator and denominator never have any common factors. Include a test client that 
exercises all of your methods.
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1.2.17  Robust implementation of rational numbers. Use assertions to develop an im-
plementation of Rational (see Exercise 1.2.16) that is immune to overflow.

1.2.18  Variance for accumulator. Validate that the following code, which adds the 
methods var() and stddev() to Accumulator, computes both the sample mean, sam-
ple variance, and sample standard deviation of the numbers presented as arguments to 
addDataValue():

public class Accumulator 
{ 
   private double m; 
   private double s; 
   private int N;

   public void addDataValue(double x) 
   { 
      N++; 
      s = s + 1.0 * (N-1) / N * (x - m) * (x - m); 
      m = m + (x - m) / N; 
   }

   public double mean() 
   {  return m;  }

   public double var() 
   {  return s/(N - 1);  }

   public double stddev() 
   {  return Math.sqrt(this.var());  }

}

This implementation is less susceptible to roundoff error than the straightforward im-
plementation based on saving the sum of the squares of the numbers.

crEAtivE problEms (continued)
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1.2.19  Parsing. Develop the parse constructors for your Date and Transaction im-
plementations of Exercise 1.2.13 that take a single String argument to specify the 
initialization values, using the formats given in the table below.

Partial solution:

public Date(String date) 
{ 
   String[] fields = date.split("/"); 
   month = Integer.parseInt(fields[0]); 
   day   = Integer.parseInt(fields[1]); 
   year  = Integer.parseInt(fields[2]); 
}

type format example

Date integers separated by slashes 5/22/1939

Transaction
customer, date, and amount, 

separated by whitespace
Turing 5/22/1939 11.99

Formats for parsing
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1.3 BAgS, QUeUeS, AnD StACkS

Several fundamental data types involve collections of objects. Specifically, the set 
of values is a collection of objects, and the operations revolve around adding, remov-
ing, or examining objects in the collection. In this section, we consider three such data 
types, known as the bag, the queue, and the stack. They differ in the specification of 
which object is to be removed or examined next.

Bags, queues, and stacks are fundamental and broadly useful. We use them in imple-
mentations throughout the book. Beyond this direct applicability, the client and imple-
mentation code in this section serves as an introduction to our general approach to the 
development of data structures and algorithms.

One goal of this section is to emphasize the idea that the way in which we represent 
the objects in the collection directly impacts the efficiency of the various operations. 
For collections, we design data structures for representing the collection of objects that 
can support efficient implementation of the requisite operations.

A second goal of this section is to introduce generics and iteration, basic Java con-
structs that substantially simplify client code. These are advanced programming-lan-
guage mechanisms that are not necessarily essential to the understanding of algorithms, 
but their use allows us to develop client code (and implementations of algorithms) that 
is more clear, compact, and elegant than would otherwise be possible.

A third goal of this section is to introduce and show the importance of linked data 
structures. In particular, a classic data structure known as the linked list enables im-
plementation of bags, queues, and stacks that achieve efficiencies not otherwise pos-
sible. Understanding linked lists is a key first step to the study of algorithms and data 
structures.

For each of the three types, we consider APIs and sample client programs, then 
look at possible representations of the data type values and implementations of the 
data-type operations. This scenario repeats (with more complicated data structures) 
throughout this book. The implementations here are models of implementations later 
in the book and worthy of careful study. 
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APIs As usual, we begin our discussion of abstract data types for collections by de-
fining their APIs, shown below. Each contains a no-argument constructor, a method to 
add an item to the collection, a method to test whether the collection is empty, and a 
method that returns the size of the collection. Stack and Queue each have a method to 
remove a particular item from the collection. Beyond these basics, these APIs reflect two 
Java features that we will describe on the next few pages: generics and iterable collections.

apIs for fundamental generic iterable collections

public class Queue<Item> implements Iterable<Item>

Queue() create an empty queue
void enqueue(Item item) add an item
Item dequeue() remove the least recently added item

boolean isEmpty() is the queue empty?
int size() number of items in the queue

public class Stack<Item> implements Iterable<Item>

Stack() create an empty stack
void push(Item item) add an item
Item pop() remove the most recently added item

boolean isEmpty() is the stack empty?
int size() number of items in the stack

public class Bag<Item> implements Iterable<Item>

Bag() create an empty bag
void add(Item item) add an item

boolean isEmpty() is the bag empty?
int size() number of items in the bag

FIFo queue

pushdown (LIFo) stack

Bag
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Generics  An essential characteristic of collection ADTs is that we should be able to use 
them for any type of data. A specific Java mechanism known as generics, also known 
as parameterized types, enables this capability. The impact of generics on the program-
ming language is sufficiently deep that they are not found in many languages (including 
early versions of Java), but our use of them in the present context involves just a small 
bit of extra Java syntax and is easy to understand. The notation <Item> after the class 
name in each of our APIs defines the name Item as a type parameter, a symbolic place-
holder for some concrete type to be used by the client. You can read Stack<Item> as 
“stack of items.” When implementing Stack, we do not know the concrete type of Item, 
but a client can use our stack for any type of data, including one defined long after we 
develop our implementation. The client code provides a concrete type when the stack 
is created: we can replace Item with the name of any reference data type (consistently, 
everywhere it appears). This provides exactly the capability that we need. For example, 
you can write code such as

Stack<String> stack = new Stack<String>(); 
stack.push("Test"); 
... 
String next = stack.pop();

to use a stack for String objects and code such as

Queue<Date> queue = new Queue<Date>(); 
queue.enqueue(new Date(12, 31, 1999)); 
... 

Date next = queue.dequeue();

to use a queue for Date objects. If you try to add a Date (or data of any other type than 
String) to stack or a String (or data of any other type than Date) to queue, you will 
get a compile-time error. Without generics, we would have to define (and implement) 
different APIs for each type of data we might need to collect; with generics, we can use 
one API (and one implementation) for all types of data, even types that are imple-
mented in the future. As you will soon see, generic types lead to clear client code that is 
easy to understand and debug, so we use them throughout this book. 

Autoboxing  Type parameters have to be instantiated as reference types, so Java has 
special mechanisms to allow generic code to be used with primitive types. Recall that 
Java’s wrapper types are reference types that correspond to primitive types: Boolean, 
Byte, Character, Double, Float, Integer, Long, and Short correspond to boolean, 
byte, char, double, float, int, long, and short, respectively. Java automatically con-
verts between these reference types and the corresponding primitive types—in assign-
ments, method arguments, and arithmetic/logic expressions. In the present context, 
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this conversion is helpful because it enables us to use generics with primitive types, as 
in the following code:

Stack<Integer> stack = new Stack<Integer>(); 
stack.push(17);      // auto-boxing (int -> Integer)
int i = stack.pop(); // auto-unboxing (Integer -> int)

Automatically casting a primitive type to a wrapper type is known as autoboxing, and 
automatically casting a wrapper type to a primitive type is known as auto-unboxing. 
In this example, Java automatically casts (autoboxes) the primitive value 17 to be of 
type Integer when we pass it to the push() method. The pop() method returns an 
Integer, which Java casts (auto-unboxes) to an int before assigning it to the variable i. 

Iterable collections  For many applications, the client’s requirement is just to process 
each of the items in some way, or to iterate through the items in the collection. This 
paradigm is so important that it has achieved first-class status in Java and many other 
modern languages (the programming language itself has specific mechanisms to sup-
port it, not just the libraries). With it, we can write clear and compact code that is free 
from dependence on the details of a collection’s implementation. For example, suppose 
that a client maintains a collection of transactions in a Queue, as follows:

Queue<Transaction> collection = new Queue<Transaction>();

If the collection is iterable, the client can print a transaction list with a single statement:

for (Transaction t : collection) 
{  StdOut.println(t);  }

This construct is known as the foreach statement: you can read the for statement as for 
each transaction t in the collection, execute the following block of code. This client code 
does not need to know anything about the representation or the implementation of the 
collection; it just wants to process each of the items in the collection. The same for loop 
would work with a Bag of transactions or any other iterable collection. We could hardly 
imagine client code that is more clear and compact. As you will see, supporting this 
capability requires extra effort in the implementation, but this effort is well worthwhile.

It is interesting to note that the only differences between the APIs for Stack and 
Queue are their names and the names of the methods. This observation highlights the 
idea that we cannot easily specify all of the characteristics of a data type in a list of 
method signatures. In this case, the true specification has to do with the English-lan-
guage descriptions that specify the rules by which an item is chosen to be removed (or 
to be processed next in the foreach statement). Differences in these rules are profound, 
part of the API, and certainly of critical importance in developing client code.
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Bags  A bag is a collection where removing items is not supported—its purpose is to 
provide clients with the ability to collect items and then to iterate through the collected 
items (the client can also test if a bag is empty and find its number of items). The order 
of iteration is unspecified and should be immaterial to the client. To appreciate the con-
cept, consider the idea of an avid marble collector, who might put marbles in a bag, one 
at a time, and periodically process all the marbles to look 
for one having some particular characteristic. With our 
Bag API, a client can add items to a bag and process them 
all with a foreach statement whenever needed. Such a cli-
ent could use a stack or a queue, but one way to emphasize 
that the order in which items are processed is immaterial 
is to use a Bag. The class Stats at right illustrates a typi-
cal Bag client. The task is simply to compute the average 
and the sample standard deviation of the double values 
on standard input. If there are N numbers on standard in-
put, their average is computed by adding the numbers and 
dividing by N; their sample standard deviation is comput-
ed by adding the squares of the difference between each 
number and the average, dividing by N–1, and taking the 
square root. The order in which the numbers are consid-
ered is not relevant for either of these calculations, so we 
save them in a Bag and use the foreach construct to com-
pute each sum. Note : It is possible to compute the stan-
dard deviation without saving all the numbers (as we did 
for the average in Accumulator—see Exercise 1.2.18). 
Keeping the numbers in a Bag is required for more com-
plicated statistics. 

Operations on a bag

a bag of
marbles

process each marble m
(in any order)

add(  )

for (Marble m : bag)

add(  )
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public class Stats 
{ 
   public static void main(String[] args) 
   { 
      Bag<Double> numbers = new Bag<Double>();

      while (!StdIn.isEmpty()) 
         numbers.add(StdIn.readDouble()); 
      int N = numbers.size();

      double sum = 0.0; 
      for (double x : numbers) 
         sum += x; 
      double mean = sum/N;

      sum = 0.0; 
      for (double x : numbers) 
         sum += (x - mean)*(x - mean); 
      double std = Math.sqrt(sum/(N-1));

      StdOut.printf("Mean: %.2f\n", mean); 
      StdOut.printf("Std dev: %.2f\n", std);

   } 
}

% java Stats 
100 
99 
101 
120 
98 
107 
109 
81 
101 
90

Mean: 100.60 
Std dev: 10.51

typical Bag client

application
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FIFO queues  A FIFO queue (or just a queue) is a collection that is based on the first-
in-first-out (FIFO) policy. The policy of doing tasks in the same order that they arrive 

is one that we encounter frequently in everyday life: 
from people waiting in line at a theater, to cars wait-
ing in line at a toll booth, to tasks waiting to be ser-
viced by an application on your computer. One bed-
rock principle of any service policy is the perception 
of fairness. The first idea that comes to mind when 
most people think about fairness is that whoever has 
been waiting the longest should be served first. That 
is precisely the FIFO discipline. Queues are a natu-
ral model for many everyday phenomena, and they 
play a central role in numerous applications. When 
a client iterates through the items in a queue with 
the foreach construct, the items are processed in the 
order they were added to the queue. A typical reason 
to use a queue in an application is to save items in 
a collection while at the same time preserving their 
relative order : they come out in the same order in 
which they were put in. For example, the client be-
low is a possible implementation of the readInts() 
static method from our In class. The problem that 
this method solves for the client is that the client can 
get numbers from a file into an array without know-

ing the file size ahead of time. We enqueue the numbers from the file, use the size() 
method from Queue to find the size needed for the array, create the array, and then 
dequeue the numbers to move 
them to the array. A queue is 
appropriate because it puts the 
numbers into the array in the 
order in which they appear in 
the file (we might use a Bag 
if that order is immaterial). 
This code uses autoboxing and 
auto-unboxing to convert be-
tween the client’s int primitive 
type and the queue’s Integer 
wrapper type.

A typical FIFO queue

queue of customers
server

enqueue

first in line
leaves queue

new  arrival
 at the end

new  arrival
at the end

next in line
leaves queue

0 1 2

0 1 2 3

3 4

4

3

enqueue

4

dequeue

0

dequeue

1

0 1 2

10

1

2 3

2 3 4

public static int[] readInts(String name) 
{ 
   In in = new In(name); 
   Queue<Integer> q = new Queue<Integer>(); 
   while (!in.isEmpty()) 
       q.enqueue(in.readInt());

   int N = q.size(); 
   int[] a = new int[N]; 
   for (int i = 0; i < N; i++) 
      a[i] = q.dequeue(); 
   return a; 
}

Sample Queue client
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Pushdown stacks  A pushdown stack (or just a stack) is 
a collection that is based on the last-in-first-out (LIFO) 
policy. When you keep your mail in a pile on your desk, 
you are using a stack. You pile pieces of new mail on the 
top when they arrive and take each piece of mail from 
the top when you are ready to read it. People do not 
process as many papers as they did in the past, but the 
same organizing principle underlies several of the ap-
plications that you use regularly on your computer. For 
example, many people organize their email as a stack—
they push messages on the top when they are received 
and pop them from the top when they read them, with 
most recently received first (last in, first out). The ad-
vantage of this strategy is that we see interesting email as 
soon as possible; the disadvantage is that some old email 
might never get read if we never empty the stack. You 
have likely encountered another common example of a 
stack when surfing the web. When you click a hyperlink, 
your browser displays the new page (and pushes onto a 
stack). You can keep clicking on hyperlinks to visit new 
pages, but you can always revisit the previous page by 
clicking the back button (popping it from the stack). 
The LIFO policy offered by a stack provides just the be-
havior that you expect. When a client iterates through 
the items in a stack with the foreach construct, the items 
are processed in the reverse of the order in 
which they were added. A typical reason to 
use a stack iterator in an application is to save 
items in a collection while at the same time 
reversing their relative order . For example, 
the client Reverse at right reverses the or-
der of the integers on standard input, again 
without having to know ahead of time how 
many there are. The importance of stacks in 
computing is fundamental and profound, 
as indicated in the detailed example that we 
consider next. 

Operations on a pushdown stack

a stack of
documents

new (black) one
goes on top

remove the
black one

from the top

remove the
gray one

from the top

new (gray) one
goes on toppush(     )

push(     )

 = pop()

 = pop()

public class Reverse 
{ 
   public static void main(String[] args) 
   { 
      Stack<Integer> stack; 
      stack = new Stack<Integer>(); 
      while (!StdIn.isEmpty()) 
         stack.push(StdIn.readInt());

      for (int i : stack) 
         StdOut.println(i); 
   } 
}

Sample Stack client
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Arithmetic expression evaluation  As another example of a stack client, we consider 
a classic example that also demonstrates the utility of generics. Some of the first pro-
grams that we considered in Section 1.1 involved computing the value of arithmetic 
expressions like this one:

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

If you multiply 4 by 5, add 3 to 2, multiply the result, and then add 1, you get  the value 
101. But how does the Java system do this calculation? Without going into the details of 
how the Java system is built, we can address the essential ideas by writing a Java program 
that can take a string as input (the expression) and produce the number represented by 
the expression as output. For simplicity, we begin with the following explicit recursive 
definition: an arithmetic expression is either a number, or a left parenthesis followed by 
an arithmetic expression followed by an operator followed by another arithmetic ex-
pression followed by a right parenthesis. For simplicity, this definition is for fully paren-
thesized arithmetic expressions, which specify precisely which operators apply to which 
operands—you are a bit more familiar with expressions such as 1 + 2 * 3, where we 
often rely on precedence rules instead of parentheses. The same basic mechanisms that 
we consider can handle precedence rules, but we avoid that complication. For speci-
ficity, we support the familiar binary operators *, +, -, and /, as well as a square-root 
operator sqrt that takes just one argument. We could easily allow more operators and 
more kinds of operators to embrace a large class of familiar mathematical expressions, 
involving trigonometric, exponential, and logarithmic functions. Our focus is on un-
derstanding how to interpret the string of parentheses, operators, and numbers to en-
able performing in the proper order the low-level arithmetic operations that are avail-
able on any computer. Precisely how can we convert an arithmetic expression—a string 
of characters—to the value that it represents? A remarkably simple algorithm that was 
developed by E. W. Dijkstra in the 1960s uses two stacks (one for operands and one for 
operators) to do this job. An expression consists of parentheses, operators, and oper-
ands (numbers). Proceeding from left to right and taking these entities one at a time, 
we manipulate the stacks according to four possible cases, as follows:

n	 Push operands onto the operand stack.
n	 Push operators onto the operator stack.
n	 Ignore left parentheses.
n	 On encountering a right parenthesis, pop an operator, pop the requisite number 

of operands, and push onto the operand stack the result of applying that opera-
tor to those operands.

After the final right parenthesis has been processed, there is one value on the stack, 
which is the value of the expression. This method may seem mysterious at first, but it 
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Dijkstra’s two-Stack Algorithm for expression evaluation

public class Evaluate 
{ 
   public static void main(String[] args) 
   { 
      Stack<String> ops  = new Stack<String>(); 
      Stack<Double> vals = new Stack<Double>(); 
      while (!StdIn.isEmpty())  
      {  // Read token, push if operator. 
         String s = StdIn.readString(); 
         if      (s.equals("("))               ; 
         else if (s.equals("+"))    ops.push(s); 
         else if (s.equals("-"))    ops.push(s); 
         else if (s.equals("*"))    ops.push(s); 
         else if (s.equals("/"))    ops.push(s); 
         else if (s.equals("sqrt")) ops.push(s); 
         else if (s.equals(")")) 
         {  // Pop, evaluate, and push result if token is ")". 
            String op = ops.pop(); 
            double v = vals.pop(); 
            if      (op.equals("+"))    v = vals.pop() + v; 
            else if (op.equals("-"))    v = vals.pop() - v; 
            else if (op.equals("*"))    v = vals.pop() * v; 
            else if (op.equals("/"))    v = vals.pop() / v; 
            else if (op.equals("sqrt")) v = Math.sqrt(v); 
            vals.push(v); 
         }  // Token not operator or paren: push double value. 
         else vals.push(Double.parseDouble(s)); 
      } 
      StdOut.println(vals.pop()); 
   } 
}

This Stack client uses two stacks to evaluate arithmetic expressions, illustrating an essential compu-
tational process: interpreting a string as a program and executing that program to compute the de-
sired result. With generics, we can use the code in a single Stack implementation to implement one 
stack of String values and another stack of Double 
values. For simplicity, this code assumes that the expres-
sion is fully parenthesized, with numbers and characters 
separated by whitespace.

% java Evaluate 
( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) ) 
101.0

% java Evaluate 
( ( 1 + sqrt ( 5.0 ) ) / 2.0 ) 
1.618033988749895
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is easy to convince yourself that it computes the proper value: any time the algorithm 
encounters a subexpression consisting of two operands separated by an operator, all 
surrounded by parentheses, it leaves the result of performing that operation on those 
operands on the operand stack. The result is the same as if that value had appeared in 
the input instead of the subexpression, so we can think of replacing the subexpression 
by the value to get an expression that would yield the same result. We can apply this 
argument again and again until we get a single value. For example, the algorithm com-
putes the same value for all of these expressions:

( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) ) 
( 1 + ( 5 * ( 4 * 5 ) ) ) 
( 1 + ( 5 * 20 ) ) 
( 1 + 100 ) 
101

Evaluate on the previous page is an implementation of this algorithm. This code is a 
simple example of an interpreter: a program that interprets the computation specified 
by a given string and performs the computation to arrive at the result. 
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( 1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

1 + ( ( 2 + 3 ) * ( 4 * 5 ) ) )

+ ( ( 2 + 3 ) * ( 4 * 5 ) ) )

( ( 2 + 3 ) * ( 4 * 5 ) ) )

( 2 + 3 ) * ( 4 * 5 ) ) )

2 + 3 ) * ( 4 * 5 ) ) )

+ 3 ) * ( 4 * 5 ) ) )

3 ) * ( 4 * 5 ) ) )

) * ( 4 * 5 ) ) )

* ( 4 * 5 ) ) )

( 4 * 5 ) ) )

4 * 5 ) ) )
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5 ) ) )

) ) )

) )

)

Trace of Dijkstra’s two-stack arithmetic expression-evaluation algorithm

left parenthesis: ignore

operand: push onto operand stack

operator: push onto operator stack

right parenthesis: pop operator 
and operands and push result

operand
stack

operator
stack
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Implementing collections To address the issue of implementing Bag, Stack and 
Queue, we begin with a simple classic implementation, then address improvements that 
lead us to implementations of the APIs articulated on page 121. 

Fixed-capacity stack  As a strawman, we consider an abstract data type for a fixed-
capacity stack of strings, shown on the opposite page. The API differs from our Stack 
API: it works only for String values, it requires the client to specify a capacity, and it 
does not support iteration. The primary choice in developing an API implementation is 
to choose a representation for the data. For FixedCapacityStackOfStrings, an obvious 
choice is to use an array of String values. Pursuing this choice leads to the implemen-
tation shown at the bottom on the opposite page, which could hardly be simpler (each 
method is a one-liner). The instance variables are an array a[] that holds the items in 
the stack and an integer N that counts the number of items in the stack. To remove an 
item, we decrement N and then return a[N]; to insert a new item, we set a[N] equal to 
the new item and then increment N. These operations preserve the following properties:

n	 The items in the array are in their insertion order.
n	 The stack is empty when N is 0.
n	 The top of the stack (if it is nonempty) is at a[N-1].

As usual, thinking in terms of invariants of this sort is the easiest way to verify that an 
implementation operates as intended. Be sure that you fully understand this implemen-
tation. The best way to do so is to examine a trace of the stack contents for a sequence of 

operations, as illustrated at left for the test client, 
which reads strings from standard input and push-
es each string onto a stack, unless it is "-", when it 
pops the stack and prints the result. The primary 
performance characteristic of this implementation 
is that the push and pop operations take time inde-
pendent of the stack size. For many applications, it 
is the method of choice because of its simplicity. 
But it has several drawbacks that limit its potential 
applicability as a general-purpose tool, which we 
now address. With a moderate amount of effort 
(and some help from Java language mechanisms), 
we can develop an implementation that is broadly 
useful. This effort is worthwhile because the im-
plementations that we develop serve as a model for 
implementations of other, more powerful, abstract 
data types throughout the book.

StdIn

(push)
StdOut

(pop) N
a[]

0 1 2 3 4

0

to 1 to

be 2 to be

or 3 to be or

not 4 to be or not

to 5 to be or not to

- to 4 to be or not to

be 5 to be or not be

- be 4 to be or not be

- not 3 to be or not be

that 4 to be or that be

- that 3 to be or that be

- or 2 to be or that be

- be 1 to be or that be

is 2 to is or not to

trace of FixedCapacityStackOfStrings test client
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public class FixedCapacityStackOfStrings 
{ 
   private String[] a; // stack entries 
   private int N;      // size

   public FixedCapacityStackOfStrings(int cap) 
   {  a = new String[cap];  }

   public boolean isEmpty() {  return N == 0; } 
   public int size()        {  return N; }

   public void push(String item) 
   {  a[N++] = item; }

   public String pop() 
   {  return a[--N]; }

}

public static void main(String[] args) 
{ 
   FixedCapacityStackOfStrings s; 
   s = new FixedCapacityStackOfStrings(100); 
   while (!StdIn.isEmpty()) 
   { 
      String item = StdIn.readString(); 
      if (!item.equals("-")) 
           s.push(item); 
      else if (!s.isEmpty()) StdOut.print(s.pop() + " "); 
   }

   StdOut.println("(" + s.size() + " left on stack)"); 
}

% more tobe.txt 
to be or not to - be - - that - - - is

% java FixedCapacityStackOfStrings < tobe.txt 
to be not that or be (2 left on stack)

an abstract data type for a fixed-capacity stack of strings

test client

application

implementation

apI public class FixedCapacityStackOfStrings

FixedCapacityStackOfStrings(int cap) create an empty stack of capacity cap

void push(String item) add a string

String pop() remove the most recently added string

boolean isEmpty() is the stack empty?
int size() number of strings on the stack
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Generics  The first drawback of FixedCapacityStackOfStrings is that it works only 
for String objects. If we want a stack of double values, we would need to develop 
another class with similar code, essentially replacing String with double everywhere. 
This is easy enough but becomes burdensome when we consider building a stack of 
Transaction values or a queue of Date values, and so forth. As discussed on page 122, 
Java’s parameterized types (generics) are specifically designed to address this situation, 
and we saw several examples of client code (on pages 125, 126, 127, and 129). But how 
do we implement a generic stack? The code on the facing page shows the details. It imple-
ments a class FixedCapacityStack that differs from FixedCapacityStackOfStrings 
only in the code highlighted in red—we replace every occurrence of String with Item 
(with one exception, discussed below) and declare the class with the following first line 
of code:

public class FixedCapacityStack<Item>

The name Item is a type parameter, a symbolic placeholder for some concrete type to be 
used by the client. You can read FixedCapacityStack<Item> as stack of items, which is 
precisely what we want. When implementing FixedCapacityStack, we do not know 
the actual type of Item, but a client can use our stack for any type of data by providing a 
concrete type when the stack is created. Concrete types must be reference types, but cli-
ents can depend on autoboxing to convert primitive types to their corresponding wrap-
per types. Java uses the type parameter Item to check for type mismatch errors—even 
though no concrete type is yet known, variables of type Item must be assigned values 
of type Item, and so forth. But there is one significant hitch in this story: We would like 
to implement the constructor in FixedCapacityStack with the code

a = new Item[cap];

which calls for creation of a generic array. For historical and technical reasons beyond 
our scope, generic array creation is disallowed in Java. Instead, we need to use a cast:

a = (Item[]) new Object[cap];

This code produces the desired effect (though the Java compiler gives a warning, which 
we can safely ignore), and we use this idiom throughout the book (the Java system li-
brary implementations of similar abstract data types use the same idiom).  
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public class FixedCapacityStack<Item>
{ 
   private Item[] a;   // stack entries 
   private int N;      // size

   public FixedCapacityStack(int cap) 
   {  a = (Item[]) new Object[cap];  }

   public boolean isEmpty() {  return N == 0; } 
   public int size()        {  return N; }

   public void push(Item item) 
   {  a[N++] = item; }

   public Item pop() 
   {  return a[--N]; }

}

public static void main(String[] args) 
{ 
   FixedCapacityStack<String> s; 
   s = new FixedCapacityStack<String>(100); 
   while (!StdIn.isEmpty()) 
   { 
      String item = StdIn.readString(); 
      if (!item.equals("-")) 
           s.push(item); 
      else if (!s.isEmpty()) StdOut.print(s.pop() + " "); 
   }

   StdOut.println("(" + s.size() + " left on stack)"); 
}

% more tobe.txt 
to be or not to - be - - that - - - is

% java FixedCapacityStack < tobe.txt 
to be not that or be (2 left on stack)

an abstract data type for a fixed-capacity generic stack

test client

application

implementation

apI public class FixedCapacityStack<Item>

FixedCapacityStack(int cap) create an empty stack of capacity cap

void push(Item item) add an item

Item pop() remove the most recently added item

boolean isEmpty() is the stack empty?
int size() number of items on the stack
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Array resizing  Choosing an array to represent the stack contents implies that clients 
must estimate the maximum size of the stack ahead of time. In Java, we cannot change 
the size of an array once created, so the stack always uses space proportional to that 
maximum. A client that chooses a large capacity risks wasting a large amount of mem-
ory at times when the collection is empty or nearly empty. For example, a transaction 
system might involve billions of items and thousands of collections of them. Such a 
client would have to allow for the possibility that each of those collections could hold 
all of those items, even though a typical constraint in such systems is that each item 
can appear in only one collection. Moreover, every client risks overflow if the collection 
grows larger than the array. For this reason, push() needs code to test for a full stack, 
and we should have an isFull() method in the API to allow clients to test for that 
condition. We omit that code, because our desire is to relieve the client from having to 
deal with the concept of a full stack, as articulated in our original Stack API. Instead, 
we modify the array implementation to dynamically adjust the size of the array a[] so 
that it is both sufficiently large to hold all of the items and not so large as to waste an 
excessive amount of space. Achieving these goals turns out to be remarkably easy. First, 
we implement a method that moves a stack into an array of a different size:

private void resize(int max) 
{  // Move stack of size N <= max to a new array of size max. 
   Item[] temp = (Item[]) new Object[max]; 
   for (int i = 0; i < N; i++) 
      temp[i] = a[i]; 
   a = temp; 
}

Now, in push(), we check whether the array is too small. In particular, we check wheth-
er there is room for the new item in the array by checking whether the stack size N is 
equal to the array size a.length. If there is no room, we double the size of the array. 
Then we simply insert the new item with the code a[N++] = item, as before:

public void push(Item item) 
{  // Add item to top of stack. 
   if (N == a.length) resize(2*a.length); 
   a[N++] = item; 
}

Similarly, in pop(), we begin by deleting the item, then we halve the array size if it is 
too large. If you think a bit about the situation, you will see that the appropriate test 
is whether the stack size is less than one-fourth the array size. After the array is halved, 
it will be about half full and can accommodate a substantial number of push() and 
pop() operations before having to change the size of the array again. 
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public Item pop() 
{  // Remove item from top of stack. 
   String item = a[--N]; 
   a[N] = null;  // Avoid loitering (see text). 
   if (N > 0 && N == a.length/4) resize(a.length/2); 
   return item; 
}

With this implementation, the stack never overflows and never becomes less than one-
quarter full (unless the stack is empty, when the array size is 2). We will address the 
performance analysis of this approach in more detail in Section 1.4.

Loitering  Java’s garbage collection policy is to reclaim the memory associated with 
any objects that can no longer be accessed. In our pop() implementations, the reference 
to the popped item remains in the array. The item is effectively an orphan—it will never 
be accessed again—but the Java garbage collector has no way to know this until it is 
overwritten. Even when the client is done with the item, the reference in the array may 
keep it alive. This condition (holding a reference to an item that is no longer needed) 
is known as loitering. In this case, loitering is easy to avoid, by setting the array entry 
corresponding to the popped item to null, thus overwriting the unused reference and 
making it possible for the system to reclaim the memory associated with the popped 
item when the client is finished with it.

push() pop() N a.length
a[]

0 1 2 3 4 5 6 7

0 1 null

to 1 1 to

be 2 2 to be

or 3 4 to be or null

not 4 4 to be or not

to 5 8 to be or not to null null null

- to 4 8 to be or not null null null null

be 5 8 to be or not be null null null

- be 4 8 to be or not null null null null

- not 3 8 to be or null null null null null

that 4 8 to be or that null null null null

- that 3 8 to be or null null null null null

- or 2 4 to be null null

- be 1 2 to null

is 2 2 to is

trace of array resizing during a sequence of push() and pop() operations
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Iteration  As mentioned earlier in this section, one of the fundamental operations on 
collections is to process each item by iterating through the collection using Java’s foreach
statement. This paradigm leads to clear and compact code that is free from dependence 
on the details of a collection’s implementation. To consider the task of implementing 
iteration, we start with a snippet of client code that prints all of the items in a collection 
of strings, one per line:

Stack<String> collection = new Stack<String>(); 
... 
for (String s : collection) 
   StdOut.println(s); 
...

Now, this foreach statement is shorthand for a while construct (just like the for state-
ment itself). It is essentially equivalent to the following while statement:

Iterator<String> i = collection.iterator(); 
while (i.hasNext()) 
{ 
   String s = i.next(); 
   StdOut.println(s); 
}

This code exposes the ingredients that we need to implement in any iterable collection:
n	 The collection must implement an iterator() method that returns an 

Iterator object.
n	 The Iterator class must include two methods: hasNext() (which returns a 

boolean value) and next() (which returns a generic item from the collection).
In Java, we use the interface mechanism to express the idea that a class implements 
a specific method (see page 100). For iterable collections, the necessary interfaces are al-
ready defined for us in Java. To make a class iterable, the first step is to add the phrase 
implements Iterable<Item> to its declaration, matching the interface

public interface Iterable<Item> 
{ 
   Iterator<Item> iterator(); 
}

(which is in java.lang.Iterable), and to add a method iterator() to the class that 
returns an Iterator<Item>. Iterators are generic, so we can use our parameterized 
type Item to allow clients to iterate through objects of whatever type is provided by our 
client. For the array representation that we have been using, we need to iterate through 
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an array in reverse order, so we name the iterator ReverseArrayIterator and add this 
method:

public Iterator<Item> iterator() 

{  return new ReverseArrayIterator();  }

What is an iterator? An object from a class that implements the methods hasNext() 
and next(), as defined in the following interface (which is in java.util.Iterator):

public interface Iterator<Item> 
{ 
    boolean hasNext(); 
    Item next(); 
    void remove(); 
}

Although the interface specifies a remove() method, we always use an empty method 
for remove() in this book, because interleaving iteration with operations that modify 
the data structure is best avoided. For ReverseArrayIterator, these methods are all 
one-liners, implemented in a nested class within our stack class:

private class ReverseArrayIterator implements Iterator<Item> 
{ 
   private int i = N;

   public boolean hasNext() {  return i > 0;   } 
   public Item next()       {  return a[--i];  } 
   public void remove()     {                  } 
}

Note that this nested class can access the instance variables of the enclosing class, in 
this case a[] and N (this ability is the main reason we use nested classes for iterators). 
Technically, to conform to the Iterator specification, we should throw exceptions 
in two cases: an UnsupportedOperationException if a client calls remove() and a 
NoSuchElementException if a client calls next() when i is 0. Since we only use itera-
tors in the foreach construction where these conditions do not arise, we omit this code. 
One crucial detail remains: we have to include

import java.util.Iterator;

at the beginning of the program because (for historical reasons) Iterator is not part 
of java.lang (even though Iterable is part of java.lang). Now a client using the 
foreach statement for this class will get behavior equivalent to the common for loop for 
arrays, but does not need to be aware of the array representation (an implementation 
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detail). This arrangement is of critical importance for implementations of fundamen-
tal data types like the collections that we consider in this book and those included in 
Java libraries. For example, it frees us to switch to a totally different representation 
without having to change any client code. More important, taking the client’s point of 
view, it allows clients to use iteration without having to know any details of the class 
implementation.

Algorithm 1.1 is an implementation of our Stack API that resizes the array, allows 
clients to make stacks for any type of data, and supports client use of foreach to iterate 
through the stack items in LIFO order. This implementation is based on Java language 
nuances involving Iterator and Iterable, but there is no need to study those nuances 
in detail, as the code itself is not complicated and can be used as a template for other 
collection implementations.

For example, we can implement the Queue API by maintaining two indices as in-
stance variables, a variable head for the beginning of the queue and a variable tail for 
the end of the queue. To remove an item, use head to access it and then increment head; 
to insert an item, use tail to store it, and then increment tail. If incrementing an 
index brings it past the end of the array, reset it to 0. Developing the details of checking 
when the queue is empty and when the array is full and needs resizing is an interesting 
and worthwhile programming exercise (see Exercise 1.3.14).

In the context of the study of algorithms, Algorithm 1.1 is significant because 
it almost (but not quite) achieves optimum performance goals for any collection 
implementation:

n	 Each operation should require time independent of the collection size.
n	 The space used should always be within a constant factor of the collection size.

The flaw in ResizingArrayStack is that some push and pop operations require resiz-
ing: this takes time proportional to the size of the stack. Next, we consider a way to cor-
rect this flaw, using a fundamentally different way to structure data. 

StdIn

(enqueue)
StdOut

(dequeue) N head tail
a[]

0 1 2 3 4 5 6 7

5 0 5 to be or not to

- to 4 1 5 to be or not to

be 5 1 6 to be or not to be

- be 4 2 6 to be or not to be

- or 3 3 6 to be or not to be

trace of ResizingArrayQueue test client
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aLgorIthM 1.1 Pushdown (liFo) stack (resizing array implementation)

import java.util.Iterator; 
public class ResizingArrayStack<Item> implements Iterable<Item> 
{ 
   private Item[] a = (Item[]) new Object[1];  // stack items 
   private int N = 0;                          // number of items

   public boolean isEmpty()  {  return N == 0; } 
   public int size()         {  return N;      }

   private void resize(int max) 
   {  // Move stack to a new array of size max. 
      Item[] temp = (Item[]) new Object[max]; 
      for (int i = 0; i < N; i++) 
         temp[i] = a[i]; 
      a = temp; 
   }

   public void push(Item item) 
   {  // Add item to top of stack. 
      if (N == a.length) resize(2*a.length); 
      a[N++] = item; 
   }

   public Item pop() 
   {  // Remove item from top of stack. 
      Item item = a[--N]; 
      a[N] = null;  // Avoid loitering (see text). 
      if (N > 0 && N == a.length/4) resize(a.length/2); 
      return item; 
   }

   public Iterator<Item> iterator() 
   {  return new ReverseArrayIterator();  }

   private class ReverseArrayIterator implements Iterator<Item> 
   {  // Support LIFO iteration. 
      private int i = N; 
      public boolean hasNext() {  return i > 0;   } 
      public    Item next()    {  return a[--i];  } 
      public    void remove()  {                  } 
   } 
}

This generic, iterable implementation of our Stack API is a model for collection ADTs that keep 
items in an array. It resizes the array to keep the array size within a constant factor of the stack size.
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Linked lists Now we consider the use of a fundamental data structure that is an ap-
propriate choice for representing the data in a collection ADT implementation. This is 
our first example of building a data structure that is not directly supported by the Java 
language. Our implementation serves as a model for the code that we use for building 
more complex data structures throughout the book, so you should read this section 
carefully, even if you have experience working with linked lists.

Definition. A linked list is a recursive data structure that is either empty (null) or a 
reference to a node having a generic item and a reference to a linked list. 

The node in this definition is an abstract entity that might hold any kind of data, in ad-
dition to the node reference that characterizes its role in building linked lists. As with a 
recursive program, the concept of a recursive data structure can be a bit mindbending 
at first, but is of great value because of its simplicity.

Node record  With object-oriented programming, implementing linked lists is not dif-
ficult. We start with a nested class that defines the node abstraction:

private class Node 
{ 
   Item item; 
   Node next; 
}

A Node has two instance variables: an Item (a parameterized type) and a Node. We 
define Node within the class where we want to use it, and make it private because it 
is not for use by clients. As with any data type, we create an object of type Node by in-
voking the (no-argument) constructor with new Node(). The result is a reference to a 
Node object whose instance variables are both initialized to the value null. The Item is 
a placeholder for any data that we might want to structure with a linked list (we will use 
Java’s generic mechanism so that it can represent any reference type); the instance vari-
able of type Node characterizes the linked nature of the data structure. To emphasize 
that we are just using the Node class to structure the data, we define no methods and 
we refer directly to the instance variables in code: if first is a variable associated with 
an object of type Node, we can refer to the instance variables with the code first.item 
and first.next. Classes of this kind are sometimes called records. They do not imple-
ment abstract data types because we refer directly to instance variables. However, Node 
and its client code are in the same class in all of our implementations and not accessible 
by clients of that class, so we still enjoy the benefits of data abstraction.
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Building a linked list  Now, from the recursive definition, we can represent a linked 
list with a variable of type Node simply by ensuring that its value is either null or a ref-
erence to a Node whose next field is a reference to a linked list. For example, to build a 
linked list that contains the items to, be, and or, we create a Node for each item:

Node first  = new Node(); 
Node second = new Node(); 
Node third  = new Node();

and set the item field in each of the nodes to the 
desired value (for simplicity, these examples assume 
that Item is String):

first.item  = "to"; 
second.item = "be"; 
third.item  = "or";

and set the next fields to build the linked list:

first.next  = second; 
second.next = third;

(Note that third.next remains null, the value it 
was initialized to at the time of creation.) As a re-
sult, third is a linked list (it is a reference to a node 
that has a reference to null, which is the null refer-
ence to an empty linked list), and second is a linked 
list (it is a reference to a node that has a reference to 
third, which is a linked list), and first is a linked 
list (it is a reference to a node that has a reference to 
second, which is a linked list). The code that we will 
examine does these assignment statements in a dif-
ferent order, depicted in the diagram on this page.

A linked list represents a sequence of items. In the example just considered, first 
represents the sequence to be or. We can also use an array to represent a sequence of 
items. For example, we could use

String[] s = { "to", "be", "or" };

to represent the same sequence of strings. The difference is that it is easier to insert 
items into the sequence and to remove items from the sequence with linked lists. Next, 
we consider code to accomplish these tasks.

        
or

null
        

be

Node third  = new Node();
third.item  = "or";
second.next = third;

        
to

        
be

Node second = new Node();
second.item = "be";
first.next  = second;

        
to

Node first  = new Node();
first.item  = "to";

        
to

first

secondfirst

second
third

first

null

null

Linking together a list
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When tracing code that uses linked lists and other linked structures, we use a visual 
representation where

n	 We draw a rectangle to represent each object
n	 We put the values of instance variables within the rectangle
n	 We use arrows that point to the referenced objects to depict references

This visual representation captures the essential characteristic of linked lists. For econ-
omy, we use the term links to refer to node references. For simplicity, when item values 
are strings (as in our examples), we put the string within the object rectangle rather 
than the more accurate rendition depicting the string object and the character array 
that we discussed in Section 1.2. This visual representation allows us to focus on the 
links.

Insert at the beginning  First, suppose that you want to insert a new node into a linked 
list. The easiest place to do so is at the beginning of the list. For example, to insert the 
string not at the beginning of a given linked list whose first node is first, we save 
first in oldfirst, assign to first a new Node, and assign its item field to not and its 
next field to oldfirst. This code for inserting a node at the beginning of a linked list 
involves just a few assignment statements, so the amount of time that it takes is inde-
pendent of the length of the list. 

        
or

        
be

Inserting a new node at the beginning of a linked list

first = new Node();

Node oldfirst = first;

tofirst

        
or

        
be

to

oldfirst

oldfirst

        
first

save a link to the list

create a new node for the beginning

set the instance variables in the new node

first.item = "not";
first.next = oldfirst;

        
or

be
to

        
notfirst

null

null

null
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Remove from the beginning  Next, suppose that you 
want to remove the first node from a list. This op-
eration is even easier: simply assign to first the value 
first.next. Normally, you would retrieve the value of 
the item (by assigning it to some variable of type Item) 
before doing this assignment, because once you change 
the value of first, you may not have any access to the 
node to which it was referring. Typically, the node ob-
ject becomes an orphan, and the Java memory manage-
ment system eventually reclaims the memory it occupies. 
Again, this operation just involves one assignment statement, so its running time is 
independent of the length of the list.

Insert at the end  How do we add a node to the end of a linked list? To do so, we need 
a link to the last node in the list, because that node’s link has to be changed to refer-
ence a new node containing the item to be inserted. Maintaining an extra link is not 
something that should be taken lightly in linked-list code, because every method that 
modifies the list needs code to check whether that variable needs to be modified (and 
to make the necessary modifications). For 
example, the code that we just examined for 
removing the first node in the list might in-
volve changing the reference to the last node 
in the list, since when there is only one node 
in the list, it is both the first one and the last 
one! Also, this code does not work (it follows 
a null link) in the case that the list is empty. 
Details like these make linked-list code noto-
riously difficult to debug. 

Insert/remove at other positions  In sum-
mary, we have shown that we can implement 
the following operations on linked lists with 
just a few instructions, provided that we have 
access to both a link first to the first ele-
ment in the list and a link last to the last 
element in the list:

n	 Insert at the beginning.
n	 Remove from the beginning.
n	 Insert at the end.

        
or

        
be

tofirst

first = first.next;

        
or

be
to

first

null

null

Removing the �rst node in a linked list

        
or

        
be

Inserting a new node at the end of a linked list

last = new Node();
last.item = "not";

Node oldlast = last;

tofirst

        
or

        
be

to

oldlast

oldlast

last

        

save a link to the last node

create a new node for the end

link the new node to the end of the list

oldlast.next = last;

        
not

not

or
be

        
tofirst

null

null

null

null

last

last
first

oldlast
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Other operations, such as the following, are not so easily handled:
n	 Remove a given node.
n	 Insert a new node before a given node.

For example, how can we remove the last node from a list? The link last is no help, 
because we need to set the link in the previous node in the list (the one with the same 
value as last) to null. In the absence of any other information, the only solution is to 
traverse the entire list looking for the node that links to last (see below and Exercise 
1.3.19). Such a solution is undesirable because it takes time proportional to the length 
of the list. The standard solution to enable arbitrary insertions and deletions is to use 
a doubly-linked list, where each node has two links, one in each direction. We leave the 
code for these operations as an exercise (see Exercise 1.3.31). We do not need doubly 
linked lists for any of our implementations.

Traversal  To examine every item in an array, we use familiar code like the following 
loop for processing the items in an array a[]:

for (int i = 0; i < N; i++) 
{ 
   // Process a[i].
}

There is a corresponding idiom for examining the items in a linked list: We initialize a 
loop index variable x to reference the first Node of the linked list. Then we find the item 
associated with x by accessing x.item, and then update x to refer to the next Node in the 
linked list, assigning to it the value of x.next and repeating this process until x is null 
(which indicates that we have reached the end of the linked list). This process is known 
as traversing the list and is succinctly expressed in code like the following loop for pro-
cessing the items in a linked list whose first item is associated with the variable first:

for (Node x = first; x != null; x = x.next) 
{ 
   // Process x.item.
}

This idiom is as natural as the standard idiom for iterating through the items in an ar-
ray. In our implementations, we use it as the basis for iterators for providing client code 
the capability of iterating through the items, without having to know the details of the 
linked-list implementation.
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Stack implementation  Given these preliminaries, developing an implementation for 
our Stack API is straightforward, as shown in Algorithm 1.2 on page 149. It maintains 
the stack as a linked list, with the top of the stack at the beginning, referenced by an 
instance variable first. Thus, to push() an item, we add it to the beginning of the 
list, using the code discussed on page 144 and to pop() an item, we remove it from the 
beginning of the list, using the code discussed on page 145. To implement size(), we keep 
track of the number of items in an instance variable N, incrementing N when we push 
and decrementing N when we pop. To implement isEmpty() we check whether first 
is null (alternatively, we could check whether N is 0). The implementation uses the 
generic type Item—you can think of the code <Item> after the class name as meaning 
that any occurrence of Item in the implementation will be replaced by a client-supplied 
data-type name (see page 134). For now, we omit the code to support iteration, which we 
consider on page 155. A trace for the test client that we have been using is shown on the 
next page. This use of linked lists achieves our optimum design goals:

n	 It can be used for any type of data.
n	 The space required is always proportional to the size of the collection.
n	 The time per operation is always independent of the size of the collection.

This implementation is a prototype for many algorithm implementations that we con-
sider. It defines the linked-list data structure and implements the client methods push() 
and pop() that achieve the specified effect with just a few lines of code. The algorithms 
and data structure go hand in hand. In this case, the code for the algorithm implemen-
tations is quite simple, but the properties of the data structure are not at all elemen-
tary, requiring explanations on the past several pages. This interaction between data 
structure definition and algorithm implementation is typical and is our focus in ADT 
implementations throughout this book.

public static void main(String[] args) 
{  // Create a stack and push/pop strings as directed on StdIn.

   Stack<String> s = new Stack<String>();

   while (!StdIn.isEmpty()) 
   { 
      String item = StdIn.readString(); 
      if (!item.equals("-")) 
           s.push(item); 
      else if (!s.isEmpty()) StdOut.print(s.pop() + " "); 
   }

   StdOut.println("(" + s.size() + " left on stack)"); 
}

test client for Stack
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aLgorIthM 1.2 Pushdown stack (linked-list implementation)

public class Stack<Item> implements Iterable<Item>
{ 
   private Node first; // top of stack (most recently added node) 
   private int N;      // number of items

   private class Node 
   {  // nested class to define nodes 
      Item item; 
      Node next; 
   }

   public boolean isEmpty() {  return first == null; } 
   public int size()        {  return N; }

   public void push(Item item) 
   {  // Add item to top of stack. 
      Node oldfirst = first; 
      first = new Node(); 
      first.item = item; 
      first.next = oldfirst; 
      N++; 
   }

   public Item pop() 
   {  // Remove item from top of stack. 
      Item item = first.item; 
      first = first.next; 
      N--; 
      return item; 
   }

   // See page 155 for iterator() implementation.

   // See page 147 for test client main().

}

This generic Stack implementation is based on a linked-list data structure. It can be used to create 
stacks containing any type of data. To support 
iteration, add the highlighted code described 
for Bag on page 155. % more tobe.txt 

to be or not to - be - - that - - - is

% java Stack < tobe.txt 
to be not that or be (2 left on stack)
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Queue implementation  An implementation of our Queue API based on the linked-
list data structure is also straightforward, as shown in Algorithm 1.3 on the facing 
page. It maintains the queue as a linked list in order from least recently to most recently 
added items, with the beginning of the queue referenced by an instance variable first 
and the end of the queue referenced by an instance variable last. Thus, to enqueue() 
an item, we add it to the end of the list (using the code discussed on page 145, augmented 
to set both first and last to refer to the new node when the list is empty) and to 
dequeue() an item, we remove it from the beginning of the list (using the same code 
as for pop() in Stack, augmented to update last when the list becomes empty). The 
implementations of size() and isEmpty() are the same as for Stack. As with Stack 
the implementation uses the generic type parameter Item, and we omit the code to 
support iteration, which we consider in our Bag implementation on page 155.  A develop-
ment client similar to the one we used for Stack is shown below, and the trace for this 
client is shown on the following page. This implementation uses the same data struc-
ture as does Stack—a linked list—but it implements different algorithms for adding 
and removing items, which make the difference between LIFO and FIFO for the client. 
Again, the use of linked lists achieves our optimum design goals: it can be used for any 
type of data, the space required is proportional to the number of items in the collection, 
and the time required per operation is always independent of the size of the collection. 

public static void main(String[] args) 
{  // Create a queue and enqueue/dequeue strings.

   Queue<String> q = new Queue<String>();

   while (!StdIn.isEmpty()) 
   { 
      String item = StdIn.readString(); 
      if (!item.equals("-")) 
           q.enqueue(item); 
      else if (!q.isEmpty()) StdOut.print(q.dequeue() + " "); 
   }

   StdOut.println("(" + q.size() + " left on queue)"); 
}

test client for Queue

% more tobe.txt 
to be or not to - be - - that - - - is

% java Queue < tobe.txt 
to be or not to be (2 left on queue)
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aLgorIthM 1.3 FiFo queue

public class Queue<Item> implements Iterable<Item>
{ 
   private Node first; // link to least recently added node 
   private Node last;  // link to most recently added node 
   private int N;      // number of items on the queue

   private class Node 
   {  // nested class to define nodes 
      Item item; 
      Node next; 
   }

   public boolean isEmpty() {  return first == null;  } 
   public int size()        {  return N;  }

   public void enqueue(Item item) 
   {  // Add item to the end of the list. 
      Node oldlast = last; 
      last = new Node(); 
      last.item = item; 
      last.next = null; 
      if (isEmpty()) first = last; 
      else           oldlast.next = last; 
      N++; 
   }

   public Item dequeue() 
   {  // Remove item from the beginning of the list. 
      Item item = first.item; 
      first = first.next; 
      N--; 
      if (isEmpty()) last = null; 
      return item; 
   }

   // See page 155 for iterator() implementation.

   // See page 150 for test client main().

}

This generic Queue implementation is based on a linked-list data structure. It can be used to create 
queues containing any type of data. To support iteration, add the highlighted code described for Bag
on page 155. 
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Linked lists are a fundamental alternative to arrays for structuring a collection 
of data. From a historical perspective, this alternative has been available to program-
mers for many decades. Indeed, a landmark in the history of programming languages 
was the development of LISP by John McCarthy in the 1950s, where linked lists are the 
primary structure for programs and data. Programming with linked lists presents all 
sorts of challenges and is notoriously difficult to debug, as you can see in the exercises. 
In modern code, the use of safe pointers, automatic garbage collection (see page 111), and 
ADTs allows us to encapsulate list-processing code in just a few classes such as the ones 
presented here.
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Bag implementation  Implementing our Bag API using a linked-list data structure is 
simply a matter of changing the name of push() in Stack to add() and removing the 
implementation of pop(), as shown in Algorithm 1.4 on the facing page (doing the 
same for Queue would also be effective but requires a bit more code). This implemen-
tation also highlights the code needed to make Stack, Queue, and Bag all iterable, by 
traversing the list. For Stack the list is in LIFO order; for Queue it is in FIFO order; and 
for Bag it happens to be in LIFO order, but the order is not relevant. As detailed in the 
highlighted code in Algorithm 1.4, to implement iteration in a collection, the first step 
is to include

import java.util.Iterator;

so that our code can refer to Java’s Iterator interface. The second step is to add 

implements Iterable<Item>

to the class declaration, a promise to provide an iterator() method. The iterator() 
method itself simply returns an object from a class that implements the Iterator 
interface:

public Iterator<Item> iterator() 
{  return new ListIterator();  }

This code is a promise to implement a class that implements the hasNext(), next(), 
and remove() methods that are called when a client uses the foreach construct. To 
implement these methods, the nested class ListIterator in Algorithm 1.4 maintains 
an instance variable current that keeps track of the current node on the list. Then the 
hasNext() method tests if current is null, and the next() method saves a reference 
to the current item, updates current to refer to the next node on the list, and returns 
the saved reference. 
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aLgorIthM 1.4 Bag

import java.util.Iterator;

public class Bag<Item> implements Iterable<Item>
{ 
   private Node first;  // first node in list

   private class Node 
   { 
       Item item; 
       Node next; 
   }

   public void add(Item item) 
   {  // same as push() in Stack 
      Node oldfirst = first; 
      first = new Node(); 
      first.item = item; 
      first.next = oldfirst; 
   }

   public Iterator<Item> iterator() 
   {  return new ListIterator();  }

   private class ListIterator implements Iterator<Item> 
   { 
       private Node current = first;

       public boolean hasNext() 
       {  return current != null;  }

       public void remove() { }

       public Item next() 
       { 
           Item item = current.item; 
           current = current.next;  
           return item; 
       } 
   }
}

This Bag implementation maintains a linked list of the items provided in calls to add(). Code for 
isEmpty() and size() is the same as in Stack and is omitted. The iterator traverses the list, main-
taining the current node in current. We can make Stack and Queue iterable by adding the code 
highlighted in red to Algorithms 1.2 and Algorithm 1.3, because they use the same underlying 
data structure and Stack and Queue maintain the list in LIFO and FIFO order, respectively.
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Overview The implementations of bags, queues, and stacks that support generics 
and iteration that we have considered in this section provide a level of abstraction that 
allows us to write compact client programs that manipulate collections of objects. De-
tailed understanding of these ADTs is important as an introduction to the study of al-
gorithms and data structures for three reasons. First, we use these data types as building 
blocks in higher-level data structures throughout this book. Second, they illustrate the 
interplay between data structures and algorithms and the challenge of simultaneously 
achieving natural performance goals that may conflict. Third, the focus of several of 
our implementations is on ADTs that support more powerful operations on collections 
of objects, and we use the implementations here as starting points.

Data structures  We now have two ways to represent collections of objects, arrays and 
linked lists. Arrays are built into Java; linked lists are easy to build with standard Java 
records. These two alternatives, often referred to as sequential allocation and linked al-
location, are fundamental. Later in the book, we develop ADT implementations that 

combine and extend these basic structures 
in numerous ways. One important exten-
sion is to data structures with multiple 
links. For example, our focus in Sections 
3.2 and 3.3 is on data structures known as 
binary trees that are built from nodes that 
each have two links. Another important 
extension is to compose data structures: 
we can have a bag of stacks, a queue of ar-
rays, and so forth. For example, our focus 
in Chapter 4 is on graphs, which we rep-

resent as arrays of bags. It is very easy to define data structures of arbitrary complexity 
in this way: one important reason for our focus on abstract data types is an attempt to 
control such complexity.

data structure advantage disadvantage

array
index provides 

immediate access 
to any item

need to know size 
on initialization

linked list uses space 
proportional to size

need reference to 
access an item

Fundamental data structures
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Our treatment of BAGS, queues, and STACKS in this section is a prototypical ex-
ample of the approach that we use throughout this book to describe data structures 
and algorithms. In approaching a new applications domain, we identify computational 
challenges and use data abstraction to address them, proceeding as follows:

n	 Specify an API.
n	 Develop client code with reference to specific applications.
n	 Describe a data structure (representation of the set of values) that can serve as 

the basis for the instance variables in a class that will implement an ADT that 
meets the specification in the API.

n	 Describe algorithms (approaches to implementing the set of operations) that 
can serve as the basis for implementing the instance methods in the class.

n	 Analyze the performance characteristics of the algorithms.
In the next section, we consider this last step in detail, as it often dictates which algo-
rithms and implementations can be most useful in addressing real-world applications.

data structure section aDt representation

parent-link tree 1.5 UnionFind array of integers

binary search tree 3.2, 3.3 BST two links per node

string 5.1 String array, offset, and length

binary heap 2.4 PQ array of objects

hash table 
(separate chaining) 3.4 SeparateChainingHashST arrays of linked lists

hash table 
(linear probing) 3.4 LinearProbingHashST two arrays of objects

graph adjacency lists 4.1, 4.2 Graph array of Bag objects

trie 5.2 TrieST node with array of links

ternary search trie 5.3 TST three links per node

examples of data structures developed in this book
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Q&A

Q. Not all programming languages have generics, even early versions of Java. What are 
the alternatives?

A. One alternative is to maintain a different implementation for each type of data, as 
mentioned in the text. Another is to build a stack of Object values, then cast to the 
desired type in client code for pop(). The problem with this approach is that type mis-
match errors cannot be detected until run time. But with generics, if you write code to 
push an object of the wrong type on the stack, like this:

Stack<Apple> stack = new Stack<Apple>(); 
Apple  a = new Apple(); 
... 
Orange b = new Orange(); 
... 
stack.push(a); 
... 
stack.push(b);     // compile-time error

you will get a compile-time error:

push(Apple) in Stack<Apple> cannot be applied to (Orange)

This ability to discover such errors at compile time is reason enough to use generics. 

Q. Why does Java disallow generic arrays?

A. Experts still debate this point. You might need to become one to understand it! For 
starters, learn about covariant arrays and type erasure.

Q. How do I create an array of stacks of strings?

A. Use a cast, such as the following: 

Stack<String>[] a = (Stack<String>[]) new Stack[N];

Warning : This cast, in client code, is different from the one described on page 134. You 
might have expected to use Object instead of Stack. When using generics, Java 
checks for type safety at compile time, but throws away that information at run time, 
so it is left with Stack<Object>[] or just Stack[], for short, which we must cast to 
Stack<String>[].

Q. What happens if my program calls pop() for an empty stack?
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A. It depends on the implementation. For our implementation on page 149, you will get a 
NullPointerException. In our implementations on the booksite, we throw a runtime 
exception to help users pinpoint the error. Generally, including as many such checks as 
possible is wise in code that is likely to be used by many people.

Q. Why do we care about resizing arrays, when we have linked lists?

A. We will see several examples of ADT implementations that need to use ar-
rays to perform other operations that are not easily supported with linked lists. 
ResizingArrayStack is a model for keeping their memory usage under control.

Q. Why declare Node as a nested class? Why private?

A. By declaring the nested class Node to be private, we restrict its access only to meth-
ods and instance variables within the enclosing class. One characteristic of a private 
nested class is that its instance variables can be directly accessed from within the enclos-
ing class but nowhere else, so there is no need to declare the instance variables public 
or private. Note for experts : A nested class that is not static is known as an inner class, 
so technically our Node classes are inner classes.

Q.  When I type javac Stack.java to compile Algorithm 1.2 and similar programs, 
I find Stack.class and a file Stack$Node.class. What is the purpose of that second 
one?

A. That file is for the inner class Node. Java’s naming convention is to use $ to separate 
the name of the outer class from the inner class.

Q. Are there Java libraries for stacks and queues?

A. Yes and no. Java has a built-in library called java.util.Stack, but you should 
avoid using it when you want a stack. It has several additional operations that are not 
normally associated with a stack, e.g., getting the ith element. It also allows adding an 
element to the bottom of the stack (instead of the top), so it can implement a queue! 
Although having such extra operations may appear to be a bonus, it is actually a curse. 
We use data types not just as libraries of all the operations we can imagine, but also as 
a mechanism to precisely specify the operations we need. The prime benefit of doing so 
is that the system can prevent us from performing operations that we do not actually 
want. The java.util.Stack API is an example of a wide interface, which we generally 
strive to avoid.
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Q. Should a client be allowed to insert null items onto a stack or queue?

A. This question arises frequently when implementing collections in Java. Our imple-
mentation (and Java’s stack and queue libraries) do permit the insertion of null values.

Q. What should the Stack iterator do if the client calls push() or pop() during iterator?

A. Throw a java.util.ConcurrentModificationException to make it a fail-fast it-
erator. See Exercise 1.3.50.

Q. Can I use a foreach loop with arrays?

A. Yes (even though arrays do not implement the Iterable interface). The following 
one-liner prints out the command-line arguments:

public static void main(String[] args)  
{  for (String s : args) StdOut.println(s);  }

Q. Can I use a foreach loop with strings?

A. No. String does not implement Iterable.

Q. Why not have a single Collection data type that implements methods to add items, 
remove the most recently inserted, remove the least recently inserted, remove random, 
iterate, return the number of items in the collection, and whatever other operations we 
might desire? Then we could get them all implemented in a single class that could be 
used by many clients.

A. Again, this is an example of a wide interface. Java has such implementations in its 
java.util.ArrayList and java.util.LinkedList classes. One reason to avoid them 
is that there is no assurance that all operations are implemented efficiently. Throughout 
this book, we use APIs as starting points for designing efficient algorithms and data 
structures, which is certainly easier to do for interfaces with just a few operations as 
opposed to an interface with many operations. Another reason to insist on narrow in-
terfaces is that they enforce a certain discipline on client programs, which makes client 
code much easier to understand. If one client uses Stack<String> and another uses 
Queue<Transaction>, we have a good idea that the LIFO discipline is important to the 
first and the FIFO discipline is important to the second.

Q & A (continued)

160 Chapter 1 n Fundamentals



ptg12441863

ExErcisEs

1.3.1 Add a method isFull() to FixedCapacityStackOfStrings.

1.3.2 Give the output printed by java Stack for the input

it was - the best - of times - - - it  was - the - -

1.3.3 Suppose that a client performs an intermixed sequence of (stack) push and pop
operations. The push operations put the integers 0 through 9 in order onto the stack; 
the pop operations print out the return values. Which of the following sequence(s) 
could not occur?

a. 4 3 2 1 0 9 8 7 6 5

b. 4 6 8 7 5 3 2 9 0 1 

c. 2 5 6 7 4 8 9 3 1 0

d. 4 3 2 1 0 5 6 7 8 9
e. 1 2 3 4 5 6 9 8 7 0
f. 0 4 6 5 3 8 1 7 2 9
g. 1 4 7 9 8 6 5 3 0 2
h. 2 1 4 3 6 5 8 7 9 0 

1.3.4 Write a stack client Parentheses that reads in a text stream from standard input 
and uses a stack to determine whether its parentheses are properly balanced. For ex-
ample, your program should print true for [()]{}{[()()]()} and false for [(]). 

1.3.5 What does the following code fragment print when N is 50? Give a high-level 
description of what it does when presented with a positive integer N.

Stack<Integer> stack = new Stack<Integer>(); 
while (N > 0) 
{ 
   stack.push(N % 2); 
   N = N / 2; 
} 
for (int d : stack) StdOut.print(d); 
StdOut.println();

Answer : Prints the binary representation of N (110010 when N is 50).
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1.3.6 What does the following code fragment do to the queue q?

Stack<String> stack = new Stack<String>(); 
while (!q.isEmpty()) 
   stack.push(q.dequeue()); 
while (!stack.isEmpty()) 
   q.enqueue(stack.pop());

1.3.7 Add a method peek() to Stack that returns the most recently inserted item on 
the stack (without popping it).

1.3.8 Give the contents and size of the array for ResizingArrayStackOfStrings with 
the input

it was - the best - of times - - - it was - the - -

1.3.9 Write a program that takes from standard input an expression without left pa-
rentheses and prints the equivalent infix expression with the parentheses inserted. For 
example, given the input:

1 + 2 ) * 3 - 4 ) * 5 - 6 ) ) ) 

your program should print

( ( 1 + 2 ) * ( ( 3 - 4 ) * ( 5 - 6 ) ) )

1.3.10 Write a filter InfixToPostfix that converts an arithmetic expression from in-
fix to postfix.

1.3.11 Write a program EvaluatePostfix that takes a postfix expression from stan-
dard input, evaluates it, and prints the value. (Piping the output of your program from 
the previous exercise to this program gives equivalent behavior to Evaluate.)

1.3.12 Write an iterable Stack client that has a static method copy() that takes a stack 
of strings as argument and returns a copy of the stack. Note : This ability is a prime 
example of the value of having an iterator, because it allows development of such func-
tionality without changing the basic API.

1.3.13 Suppose that a client performs an intermixed sequence of (queue) enqueue and 
dequeue operations. The enqueue operations put the integers 0 through 9 in order onto 

ExErcisEs (continued)
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the queue; the dequeue operations print out the return value. Which of the following 
sequence(s) could not occur?

a. 0 1 2 3 4 5 6 7 8 9

b. 4 6 8 7 5 3 2 9 0 1
c. 2 5 6 7 4 8 9 3 1 0

d. 4 3 2 1 0 5 6 7 8 9 

1.3.14 Develop a class ResizingArrayQueueOfStrings that implements the queue 
abstraction with a fixed-size array, and then extend your implementation to use array 
resizing to remove the size restriction.

1.3.15 Write a Queue client that takes a command-line argument k and prints the kth 
from the last string found on standard input (assuming that standard input has k or 
more strings).

1.3.16 Using readInts() on page 126 as a model, write a static method readDates() for 
Date that reads dates from standard input in the format specified in the table on page 119 
and returns an array containing them. 

1.3.17 Do Exercise 1.3.16 for Transaction.
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liNkED-list ExErcisEs

This list of exercises is intended to give you experience in working with linked lists. Sugges-
tion: make drawings using the visual representation described in the text.

1.3.18 Suppose x is a linked-list node and not the last node on the list. What is the ef-
fect of the following code fragment?

x.next = x.next.next;

Answer : Deletes from the list the node immediately following x.

1.3.19 Give a code fragment that removes the last node in a linked list whose first node 
is first.

1.3.20 Write a method delete() that takes an int argument k and deletes the kth ele-
ment in a linked list, if it exists.

1.3.21 Write a method find() that takes a linked list and a string key as arguments 
and returns true if some node in the list has key as its item field, false otherwise.

1.3.22 Suppose that x is a linked list Node. What does the following code fragment do?

t.next = x.next; 
x.next = t;     

Answer : Inserts node t immediately after node x.

1.3.23 Why does the following code fragment not do the same thing as in the previous 
question?

x.next = t; 
t.next = x.next;

Answer : When it comes time to update t.next, x.next is no longer the original node 
following x, but is instead t itself!

1.3.24 Write a method removeAfter() that takes a linked-list Node as argument and 
removes the node following the given one (and does nothing if the argument or the next 
field in the argument node is null).

1.3.25 Write a method insertAfter() that takes two linked-list Node arguments and 
inserts the second after the first on its list (and does nothing if either argument is null).
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1.3.26 Write a method remove() that takes a linked list and a string key as arguments 
and removes all of the nodes in the list that have key as its item field.

1.3.27 Write a method max() that takes a reference to the first node in a linked list as 
argument and returns the value of the maximum key in the list. Assume that all keys are 
positive integers, and return 0 if the list is empty. 

1.3.28 Develop a recursive solution to the previous question.

1.3.29 Write a Queue implementation that uses a circular linked list, which is the same 
as a linked list except that no links are null and the value of last.next is first when-
ever the list is not empty. Keep only one Node instance variable (last).

1.3.30 Write a function that takes the first Node in a linked list as argument and (de-
structively) reverses the list, returning the first Node in the result.

Iterative solution : To accomplish this task, we maintain references to three consecutive 
nodes in the linked list, reverse, first, and second. At each iteration, we extract the 
node first from the original linked list and insert it at the beginning of the reversed 
list. We maintain the invariant that first is the first node of what’s left of the original 
list, second is the second node of what’s left of the original list, and reverse is the first 
node of the resulting reversed list.

public Node reverse(Node x) 
{ 
   Node first   = x; 
   Node reverse = null; 
   while (first != null) 
   { 
      Node second = first.next; 
      first.next  = reverse; 
      reverse     = first; 
      first       = second; 
   } 
   return reverse; 
}

When writing code involving linked lists, we must always be careful to properly handle 
the exceptional cases (when the linked list is empty, when the list has only one or two 
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nodes) and the boundary cases (dealing with the first or last items). This is usually 
much trickier than handling the normal cases.

Recursive solution : Assuming the linked list has N nodes, we recursively reverse the last 
N – 1 nodes, and then carefully append the first node to the end.

public Node reverse(Node first) 
{ 
   if (first == null) return null; 
   if (first.next == null) return first; 
   Node second = first.next; 
   Node rest = reverse(second); 
   second.next = first; 
   first.next  = null; 
   return rest; 
}

1.3.31 Implement a nested class DoubleNode for building doubly-linked lists, where 
each node contains a reference to the item preceding it and the item following it in the 
list (null if there is no such item). Then implement static methods for the following 
tasks: insert at the beginning, insert at the end, remove from the beginning, remove 
from the end, insert before a given node, insert after a given node, and remove a given 
node.

liNkED-list ExErcisEs (continued)
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crEAtivE problEms

1.3.32  Steque. A stack-ended queue or steque is a data type that supports push, pop, and 
enqueue. Articulate an API for this ADT. Develop a linked-list-based implementation.

1.3.33  Deque. A double-ended queue or deque (pronounced “deck”) is like a stack or 
a queue but supports adding and removing items at both ends. A deque stores a collec-
tion of items and supports the following API:

public class Deque<Item> implements Iterable<Item>

Deque() create an empty deque

boolean isEmpty() is the deque empty?

int size() number of items in the deque

void pushLeft(Item item) add an item to the left end

void pushRight(Item item) add an item to the right end

Item popLeft() remove an item from the left end

Item popRight() remove an item from the right end

apI for a generic double-ended queue

Write a class Deque that uses a doubly-linked list to implement this API and a class 
ResizingArrayDeque that uses a resizing array.

1.3.34  Random bag. A random bag stores a collection of items and supports the fol-
lowing API:

public class RandomBag<Item> implements Iterable<Item>

RandomBag() create an empty random bag

boolean isEmpty() is the bag empty?

int size() number of items in the bag

void add(Item item) add an item

apI for a generic random bag

Write a class RandomBag that implements this API. Note that this API is the same as for 
Bag, except for the adjective random, which indicates that the iteration should provide 
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the items in random order (all N ! permutations equally likely, for each iterator). Hint : 
Put the items in an array and randomize their order in the iterator’s constructor.

1.3.35  Random queue. A random queue stores a collection of items and supports the 
following API:

 public class RandomQueue<Item>

RandomQueue() create an empty random queue

boolean isEmpty() is the queue empty?

void enqueue(Item item) add an item

Item dequeue()
remove and return a random item 
(sample without replacement)

Item sample()
return a random item, but do not remove 
(sample with replacement)

apI for a generic random queue

Write a class RandomQueue that implements this API. Hint : Use an array representation 
(with resizing). To remove an item, swap one at a random position (indexed 0 through 
N-1) with the one at the last position (index N-1). Then delete and return the last ob-
ject, as in ResizingArrayStack. Write a client that deals bridge hands (13 cards each) 
using RandomQueue<Card>.

1.3.36  Random iterator. Write an iterator for RandomQueue<Item> from the previous 
exercise that returns the items in random order. 

1.3.37  Josephus problem. In the Josephus problem from antiquity, N people are in dire 
straits and agree to the following strategy to reduce the population. They arrange them-
selves in a circle (at positions numbered from 0 to N–1) and proceed around the circle, 
eliminating every Mth person until only one person is left. Legend has it that Josephus 
figured out where to sit to avoid being eliminated. Write a Queue client Josephus that 
takes M and N from the command line and prints out the order in which people are 
eliminated (and thus would show Josephus where to sit in the circle).

% java Josephus 2 7 

1 3 5 0 4 2 6

crEAtivE problEms (continued)
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1.3.38  Delete kth element. Implement a class that supports the following API:

public class GeneralizedQueue<Item>

GeneralizedQueue() create an empty queue

boolean isEmpty() is the queue empty?

void insert(Item x) add an item

Item delete(int k) delete and return the kth least recently inserted item

apI for a generic generalized queue

First, develop an implementation that uses an array implementation, and then develop 
one that uses a linked-list implementation. Note : the algorithms and data structures 
that we introduce in Chapter 3 make it possible to develop an implementation that 
can guarantee that both insert() and delete() take time prortional to the logarithm 
of the number of items in the queue—see Exercise 3.5.27.

1.3.39  Ring buffer. A ring buffer, or circular queue, is a FIFO data structure of a fixed 
size N. It is useful for transferring data between asynchronous processes or for storing 
log files. When the buffer is empty, the consumer waits until data is deposited; when the 
buffer is full, the producer waits to deposit data. Develop an API for a RingBuffer and 
an implementation that uses an array representation (with circular wrap-around).

1.3.40  Move-to-front. Read in a sequence of characters from standard input and 
maintain the characters in a linked list with no duplicates. When you read in a previ-
ously unseen character, insert it at the front of the list. When you read in a duplicate 
character, delete it from the list and reinsert it at the beginning. Name your program 
MoveToFront: it implements the well-known move-to-front strategy, which is useful for 
caching, data compression, and many other applications where items that have been 
recently accessed are more likely to be reaccessed.

1.3.41  Copy a queue. Create a new constructor so that

Queue<Item> r = new Queue<Item>(q);

makes r a reference to a new and independent copy of the queue q. You should be able 
to enqueue and dequeue from either q or r without influencing the other. Hint : Delete 
all of the elements from q and add these elements to both q and r.
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1.3.42  Copy a stack. Create a new constructor for the linked-list implementation of 
Stack so that

Stack<Item> t = new Stack<Item>(s);

makes t a reference to a new and independent copy of the stack s. 

1.3.43  Listing files. A folder is a list of files and folders. Write a program that takes the 
name of a folder as a command-line argument and prints out all of the files contained 
in that folder, with the contents of each folder recursively listed (indented) under that 
folder’s name. Hint : Use a queue, and see java.io.File.

1.3.44  Text editor buffer. Develop a data type for a buffer in a text editor that imple-
ments the following API:

public class Buffer

Buffer() create an empty buffer

void insert(char c) insert c at the cursor position

char get() character at the cursor position

char delete() delete and return the character at the cursor

void left(int k) move the cursor k positions to the left

void right(int k) move the cursor k positions to the right

int size() number of characters in the buffer

apI for a text buffer

Hint : Use two stacks.

1.3.45  Stack generability. Suppose that we have a sequence of intermixed push and 
pop operations as with our test stack client, where the integers 0, 1, ..., N-1 in that 
order (push directives) are intermixed with N minus signs (pop directives). Devise an 
algorithm that determines whether the intermixed sequence causes the stack to under-
flow. (You may use only an amount of space independent of N—you cannot store the 
integers in a data structure.) Devise a linear-time algorithm that determines whether a 
given permutation can be generated as output by our test client (depending on where 
the pop directives occur).

crEAtivE problEms (continued)
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1.3.46  Forbidden triple for stack generability. Prove that a permutation can be gener-
ated by a stack (as in the previous question) if and only if it has no forbidden triple (a, b, 
c) such that a < b < c with c first, a second, and b third (possibly with other intervening 
integers between c and a and between a and b).

Partial solution: Suppose that there is a forbidden triple (a, b, c). Item c is popped before 
a and b, but a and b are pushed before c. Thus, when c is pushed, both a and b are on 
the stack. Therefore, a cannot be popped before b.

1.3.47  Catenable queues, stacks, or steques. Add an extra operation catenation that (de-
structively) concatenates two queues, stacks, or steques (see Exercise 1.3.32). Hint : Use 
a circular linked list, maintaining a pointer to the last item.

1.3.48  Two stacks with a deque.  Implement two stacks with a single deque so that each 
operation takes a constant number of deque operations (see Exercise 1.3.33).

1.3.49  Queue with a constant number of stacks. Implement a queue with a constant 
number of stacks so that each queue operation takes a constant (worst-case) number 
of stack operations. Warning : high degree of difficulty.

1.3.50  Fail-fast iterator. Modify the iterator code in Stack to immediately throw a 
java.util.ConcurrentModificationException if the client modifies the collection 
(via push() or pop()) during iteration?

Solution: Maintain a counter that counts the number of push() and pop() operations. 
When creating an iterator, store this value as an Iterator instance variable. Before 
each call to hasNext() and next(), check that this value has not changed since con-
struction of the iterator; if it has, throw the exception.
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1.4 AnAlySiS oF AlgorithMS

AS people gain experience using computers, they use them to solve difficult prob-
lems or to process large amounts of data and are invariably led to questions like these:

How long will my program take?

Why does my program run out of memory?

You certainly have asked yourself these questions, perhaps when rebuilding a music or 
photo library, installing a new application, working with a large document, or work-
ing with a large amount of experimental data. The questions are much too vague to 
be answered precisely—the answers depend on many factors such as properties of the 
particular computer being used, the particular data being processed, and the particular 
program that is doing the job (which implements some algorithm). All of these factors 
leave us with a daunting amount of information to analyze. 

Despite these challenges, the path to developing useful answers to these basic ques-
tions is often remarkably straightforward, as you will see in this section. This process is 
based on the scientific method, the commonly accepted body of techniques used by sci-
entists to develop knowledge about the natural world. We apply mathematical analysis
to develop concise models of costs and do experimental studies to validate these models.

Scientific method The very same approach that scientists use to understand the 
natural world is effective for studying the running time of programs:

n	 Observe some feature of the natural world, generally with precise measurements.
n	 Hypothesize a model that is consistent with the observations.
n	 Predict events using the hypothesis.
n	 Verify the predictions by making further observations.
n	 Validate by repeating until the hypothesis and observations agree.

One of the key tenets of the scientific method is that the experiments we design must 
be reproducible, so that others can convince themselves of the validity of the hypothesis. 
Hypotheses must also be falsifiable, so that we can know for sure when a given hypoth-
esis is wrong (and thus needs revision). As Einstein famously is reported to have said 
(“No amount of experimentation can ever prove me right; a single experiment can prove 
me wrong”), we can never know for sure that any hypothesis is absolutely correct; we 
can only validate that it is consistent with our observations. 
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Observations Our first challenge is to determine how to make quantitative mea-
surements of the running time of our programs. This task is far easier than in the natu-
ral sciences. We do not have to send a rocket to Mars or kill laboratory animals or split 
an atom—we can simply run the program. Indeed, every time you run a program, you 
are performing a scientific experiment that relates the program to the natural world 
and answers one of our core questions: How long will my program take?

Our first qualitative observation about most programs is that there is a problem size
that characterizes the difficulty of the computational task. Normally, the problem size 
is either the size of the input or the value of a command-line argument. Intuitively, the 
running time should increase with problem size, but the question of by how much it 
increases naturally comes up every time we develop and run a program. 

Another qualitative observation for many programs is that the running time is rela-
tively insensitive to the input itself; it depends primarily on the problem size. If this 
relationship does not hold, we need to take steps to better understand and perhaps 
better control the running time’s sensitivity to the input. But it does often hold, so we 
now focus on the goal of better quantifying the relationship between problem size and 
running time. 

Example  As a running example, we will work with the program ThreeSum shown 
here, which counts the number of triples in a file of N integers that sum to 0 (assum-
ing that overflow plays no role). This 
computation may seem contrived to you, 
but it is deeply related to numerous fun-
damental computational tasks (for exam-
ple, see Exercise 1.4.26). As a test input, 
consider the file 1Mints.txt from the 
booksite, which contains 1 million ran-
domly generated int values. The second, 
eighth, and tenth entries in 1Mints.txt 
sum to 0. How many more such triples 
are there in the file? ThreeSum can tell us, 
but can it do so in a reasonable amount 
of time? What is the relationship between 
the problem size N and running time 
for ThreeSum? As a first experiment, try 
running ThreeSum on your computer 
for the files 1Kints.txt, 2Kints.txt, 
4Kints.txt, and 8Kints.txt on the 

public class ThreeSum 
{ 
   public static int count(int[] a)  
   {  // Count triples that sum to 0. 
      int N = a.length; 
      int cnt = 0; 
      for (int i = 0; i < N; i++) 
         for (int j = i+1; j < N; j++) 
            for (int k = j+1; k < N; k++) 
               if (a[i] + a[j] + a[k] == 0) 
                  cnt++; 
      return cnt; 
   }

   public static void main(String[] args)  
   { 
      int[] a = In.readInts(args[0]); 
      StdOut.println(count(a)); 
   } 
}

given n, how long will this program take?
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booksite that contain the first 1,000, 2,000, 4,000, and 8,000 integers 
from 1Mints.txt, respectively. You can quickly determine that there are 
70 triples that sum to 0 in 1Kints.txt and that there are 528 triples that 
sum to 0 in 2Kints.txt. The program takes substantially more time 
to determine that there are 4,039 triples that sum to 0 in 4Kints.txt, 
and as you wait for the program to finish for 8Kints.txt, you will find 
yourself asking the question How long will my program take ? As you will 
see, answering this question for this program turns out to be easy. In-
deed, you can often come up with 
a fairly accurate prediction while 
the program is running.

Stopwatch  Reliably measuring 
the exact running time of a given 
program can be difficult. Fortu-
nately, we are usually happy with 
estimates. We want to be able to 
distinguish programs that will 
finish in a few seconds or a few 
minutes from those that might 

require a few days or a few months or more, and 
we want to know when one program is twice as 
fast as another for the same task. Still, we need 
accurate measurements to generate experimental 
data that we can use to formulate and to check 
the validity of hypotheses about the relationship 
between running time and problem size. For this 
purpose, we use the Stopwatch data type shown 
on the facing page. Its elapsedTime() method 
returns the elapsed time since it was created, in 
seconds. The implementation is based on using 
the Java system’s currentTimeMillis() method, 
which gives the current time in milliseconds, to 
save the time when the constructor is invoked, 
then uses it again to compute the elapsed time 
when elapsedTime() is invoked. 

% java ThreeSum 1Kints.txt

70

% java ThreeSum 2Kints.txt

% java ThreeSum 4Kints.txt

528

4039

tick tick tick

Observing the running time of a program

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

% more 1Mints.txt 
 324110 
-442472 
 626686 
-157678 
 508681 
 123414 
 -77867 
155091 
 129801 
287381 
 604242 
 686904 
-247109 
  77867 
 982455 
-210707 
-922943 
-738817 
  85168 
 855430 
 ...
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public static void main(String[] args) 
{ 
   int N = Integer.parseInt(args[0]); 
   int[] a = new int[N]; 
   for (int i = 0; i < N; i++) 
      a[i] = StdRandom.uniform(-1000000, 1000000); 
   Stopwatch timer = new Stopwatch(); 
   int cnt = ThreeSum.count(a); 
   double time = timer.elapsedTime(); 
   StdOut.println(cnt + " triples " + time + "seconds"); 
}

public class Stopwatch 
{ 
   private final long start;

   public Stopwatch() 
   {  start = System.currentTimeMillis();  }

   public double elapsedTime() 
   { 
      long now = System.currentTimeMillis(); 
      return (now - start) / 1000.0; 
   }

}

% java Stopwatch 1000 
51 triples 0.488 seconds

% java Stopwatch 2000 
516 triples 3.855 seconds

an abstract data type for a stopwatch

typical client

application

implementation

apI public class Stopwatch

Stopwatch() create a stopwatch

double elapsedTime() return elapsed time since creation

1751.4 n Analysis of Algorithms



ptg12441863

Analysis of experimental data  The program DoublingTest on the facing page is a 
more sophisticated Stopwatch client that produces experimental data for ThreeSum. It 
generates a sequence of random input arrays, doubling the array size at each step, and 
prints the running times of ThreeSum.count() for each input size. These experiments 
are certainly reproducible—you can also run them on your own computer, as many 
times as you like. When you run DoublingTest, you will find yourself in a prediction-
verification cycle: it prints several lines very quickly, but then slows down considerably. 
Each time it prints a line, you find yourself wondering how long it will be until it prints 
the next line. Of course, since you have a different computer from ours, the actual run-
ning times that you get are likely to be different from those shown for our computer. 
Indeed, if your computer is twice as fast as ours, your running times will be about half 
ours, which leads immediately to the well-founded hypothesis that running times on 
different computers are likely to differ by a constant factor. Still, you will find yourself 
asking the more detailed question How long will my program take, as a function of the 
input size? To help answer this question, we plot the data. The diagrams at the bottom of 
the facing page show the result of plotting the data, both on a normal and on a log-log 
scale, with the problem size N on the x-axis and the running time T(N ) on the y-axis. 
The log-log plot immediately leads to a hypothesis about the running time—the data 
fits a straight line of slope 3 on the log-log plot. The equation of such a line is

lg(T(N )) = 3 lg N + lg a

(where a is a constant) which is equivalent to

T(N ) = a N 3

the running time, as a function of the input size, as desired. We can use one of our data 
points to solve for a—for example, T(8000) = 51.1 = a 8000 3, so a = 9.9810 –11—and 
then use the equation

T(N ) = 9.9810 –11 N 3

to predict running times for large N. Informally, we are checking the hypothesis 
that the data points on the log-log plot fall close to this line. Statistical methods are 
available for doing a more careful analysis to find estimates of a and the exponent 
b, but our quick calculations suffice to estimate running time for most purposes. For 
example, we can estimate the running time on our computer for N = 16,000 to be 
about 9.9810 –11 16000 3 = 408.8 seconds, or about 6.8 minutes (the actual time was   
409.3 seconds). While waiting for your computer to print the line for N = 16,000 in 
DoublingTest, you might use this method to predict when it will finish, then check the 
result by waiting to see if your prediction is true.
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public class DoublingTest 
{ 
   public static double timeTrial(int N) 
   {  // Time ThreeSum.count() for N random 6-digit ints. 
      int MAX = 1000000; 
      int[] a = new int[N]; 
      for (int i = 0; i < N; i++) 
         a[i] = StdRandom.uniform(-MAX, MAX); 
      Stopwatch timer = new Stopwatch(); 
      int cnt = ThreeSum.count(a); 
      return timer.elapsedTime(); 
   }

   public static void main(String[] args) 
   {  // Print table of running times. 
      for (int N = 250; true; N += N) 
      {  // Print time for problem size N. 
         double time = timeTrial(N); 
         StdOut.printf("%7d %5.1f\n", N, time); 
      } 
   } 
}

program to perform experiments results of experiments

% java DoublingTest 
    250   0.0 
    500   0.0 
   1000   0.1 
   2000   0.8 
   4000   6.4 
   8000  51.1 
...
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So far, this process mirrors the process scientists use when trying to understand 
properties of the real world. A straight line in a log-log plot is equivalent to the hy-
pothesis that the data fits the equation T(N ) = a N b . Such a fit is known as a power law. 
A great many natural and synthetic phenomena are described by power laws, and it is 
reasonable to hypothesize that the running time of a program does, as well. Indeed, for 
the analysis of algorithms, we have mathematical models that strongly support this and 
similar hypotheses, to which we now turn.

Mathematical models In the early days of computer science, D. E. Knuth postu-
lated that, despite all of the complicating factors in understanding the running times of 
our programs, it is possible, in principle, to build a mathematical model to describe the 
running time of any program. Knuth’s basic insight is simple: the total running time of 
a program is determined by two primary factors:

n	 The cost of executing each statement
n	 The frequency of execution of each statement

The former is a property of the computer, the Java compiler and the operating system; 
the latter is a property of the program and the input. If we know both for all instruc-
tions in the program, we can multiply them together and sum for all instructions in the 
program to get the running time.

The primary challenge is to determine the frequency of execution of the statements. 
Some statements are easy to analyze: for example, the statement that sets cnt to 0 in 
ThreeSum.count() is executed exactly once. Others require higher-level reasoning: for 
example, the if statement in ThreeSum.count() is executed precisely 

N (N1)(N2)/6 

times (the number of ways to pick three different numbers from the input array—see 
Exercise 1.4.1). Others depend on the input data: for example the number of times the 
instruction cnt++ in ThreeSum.count() is executed is precisely the number of triples 
that sum to 0 in the input, which could range from 0 of them to all of them. In the case 
of DoublingTest, where we generate the numbers randomly, it is possible to do a prob-
abilistic analysis to determine the expected value of this quantity (see Exercise 1.4.40).

Tilde approximations  Frequency analyses of this sort can lead to complicated and 
lengthy mathematical expressions. For example, consider the count just considered of 
the number of times the if statement in ThreeSum is executed:

N (N1)(N2)/6 = N 3/6  N 2/2  N/3 
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As is typical in such expressions, the terms after 
the leading term are relatively small (for exam-
ple, when N = 1,000 the value of  N 2/2  N/3 
 499,667 is certainly insignificant by com-
parison with N 3/6  166,666,667). To allow us 
to ignore insignificant terms and therefore sub-
stantially simplify the mathematical formulas 
that we work with, we often use a mathemati-
cal device known as the tilde notation (~). This 
notation allows us to work with tilde approxi-
mations, where we throw away low-order terms 
that complicate formulas and represent a negli-
gible contribution to values of interest:

Definition. We write ~f (N ) to represent 
any function that, when divided by f (N ), 
approaches 1 as N grows, and we write 
g(N ) ~ f (N ) to indicate that g(N )/f (N ) 
approaches 1 as N grows.  

~For example, we use the approximation N 3/6 to de-
scribe the number of times the if statement in 
ThreeSum is executed, since N 3/6  N 2/2  N/3 di-
vided by N 3/6 approaches 1 as N grows. Most of-
ten, we work with tilde approximations of the form 
g (N) ~ a f (N ) where f (N ) = N b (log N ) c with a, b, and c
constants and refer to f (N ) as the order of growth of g (N ). 
When using the logarithm in the order of growth, we gener-
ally do not specify the base, since the constant a can absorb 
that detail. This usage covers the relatively few functions 
that are commonly encountered in studying the order of 
growth of a program’s running time shown in the table at 
left (with the exception of the exponential, which we defer 
to CONTEXT). We will describe these functions in more de-
tail and briefly discuss why they appear in the analysis of 
algorithms after we complete our treatment of ThreeSum.

function
tilde 

approximation
order 

of growth

N 3/6  N 2/2  N/3 ~ N 3/6 N 3

N 2/2  N/2 ~ N 2/2 N 2

lg N  + 1 ~ lg N lg N

3 ~ 3 1

typical tilde approximations

order of growth

description function

constant 1

logarithmic log N

linear N

linearithmic N log N

quadratic N 2

cubic N 3

exponential 2 N

Commonly encountered
order-of-growth functions

Leading-term approximation

N 3/6 

N NN ( � 1)( � 2)/6

166,167,000

1,000

166,666,667

N

1791.4 n Analysis of Algorithms



ptg12441863

Approximate running time  To follow through on Knuth’s approach to develop a 
mathematical expression for the total running time of a Java program, we can (in prin-
ciple) study our Java compiler to find the number of machine instructions correspond-
ing to each Java instruction and study our machine specifications to find the time of 
execution of each of the machine instructions, to produce a grand total. This process, 
for ThreeSum, is briefly summarized on the facing page. We classify blocks of Java state-
ments by their frequency of execution, develop leading-term approximations for the 
frequencies, determine the cost of each statement, and then compute a total. Note that 
some frequencies may depend on the input. In this case, the number of times cnt++ 
is executed certainly depends on the input—it is the number of triples that sum to 0, 
and could range from 0 to ~N 3/6. We stop short of exhibiting the details (values of the 
constants) for any particular system, except to highlight that by using constant values t0, 
t1, t2, ... for the time taken by the blocks of statements, we are assuming that each block 
of Java statements corresponds to machine instructions that require a specified fixed 
amount of time. A key observation from this exercise is to note that only the instruc-
tions that are executed the most frequently play a role in the final total—we refer to 
these instructions as the inner loop of the program. For ThreeSum, the inner loop is the 
statements that increment k and test that it is less than N and the statements that test 
whether the sum of three given numbers is 0 (and possibly the statement that imple-
ments the count, depending on the input). This behavior is typical: the running times 
of a great many programs depend only on a small subset of their instructions.

Order-of-growth hypothesis  In summary, the experiments on page 177 and the math-
ematical model on page 181 both support the following hypothesis:

property A. The order of growth of the running time of ThreeSum (to compute the 
number of triples that sum to 0 among N numbers) is N 3.

Evidence: Let T(N ) be the running time of ThreeSum for N numbers. The math-
ematical model just described suggests that T(N ) ~ aN 3 for some machine-de-
pendent constant a; experiments on many computers (including yours and ours) 
validate that approximation.

Throughout this book, we use the term property to refer to a hypothesis that needs to 
be validated through experimentation. The end result of our mathematical analysis is 
precisely the same as the end result of our experimental analysis—the running time 
of ThreeSum is ~ a N 3 for a machine-dependent constant a. This match validates both 
the experiments and the mathematical model and also exhibits more insight about the 
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public class ThreeSum
{
   public static int count(int[] a) 
   {
      int N = a.length;
      int cnt = 0;

      for (int i = 0; i < N; i++ )

         for (int j = i+1; j < N; j++ )

            for (int k = j+1; k < N; k++ )

               if (a[i] + a[j] + a[k] == 0)
                  cnt++;

      return cnt;
   }

   public static void main(String[] args)
   {
      int[] a = In.readInts(args[0]); 
      StdOut.println(count(a));
   }
}

statement 
block

time in 
seconds

frequency total time

e t0 x  (depends on input) t0 x

D t1 N 3/6  N 2/2  N/3 t1 (N 3/6  N 2/2  N/3)

C t2 N 2/2  N/2 t2 (N 2/2  N/2)

B t3 N t3 N

A t4 1 t4

grand total

     (t1/6) N 3 
          (t2/2  t1/2) N 2 

                   (t1/3  t2/2  t3) N 

                                                   t4   t0 x

tilde approximation ~ (t1 / 6) N 3 (assuming x is small)

order of growth N 3

analyzing the running time of a program (example)
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program because it does not require experimentation to determine the exponent. With 
some effort, we could validate the value of a on a particular system as well, though that 
activity is generally reserved for experts in situations where performance is critical. 

Analysis of algorithms  Hypotheses such as Property A are significant because they 
relate the abstract world of a Java program to the real world of a computer running it. 
Working with the order of growth allows us to take one further step: to separate a pro-
gram from the algorithm it implements. The idea that the order of growth of the run-
ning time of ThreeSum is N 3 does not depend on the fact that it is implemented in Java 
or that it is running on your laptop or someone else’s cellphone or a supercomputer; it 
depends primarily on the fact that it examines all the different triples of numbers in the 
input. The algorithm that you are using (and sometimes the input model) determines 
the order of growth. Separating the algorithm from the implementation on a particular 
computer is a powerful concept because it allows us to develop knowledge about the 
performance of algorithms and then apply that knowledge to any computer. For ex-
ample, we might say that ThreeSum is an implementation of the brute-force algorithm 
“compute the sum of all different triples, counting those that sum to 0”—we expect that an 
implementation of this algorithm in any programming language on any computer will 
lead to a running time that is proportional to N 3. In 
fact, much of the knowledge about the performance 
of classic algorithms was developed decades ago, but 
that knowledge is still relevant to today’s computers.

Cost model  We focus attention on properties of al-
gorithms by articulating a cost model that defines the 
basic operations used by the algorithms we are study-
ing to solve the problem at hand. For example, an ap-
propriate cost model for the 3-sum problem, shown 
at right, is the number of times we access an array 
entry. With this cost model, we can make precise mathematical statements about prop-
erties of an algorithm, not just a particular implementation, as follows:

~proposition b. The brute-force 3-sum algorithm uses N 3/2 array accesses to 
compute the number of triples that sum to 0 among N numbers.

proof: The algorithm accesses each of the 3 numbers for each of the ~N 3/6 triples.

We use the term proposition to refer to mathematical truths about algorithms in terms 
of a cost model. Throughout this book, we study the algorithms that we consider within 

3-sum cost model. When 
studying algorithms to 
solve the 3-sum problem, 
we count array accesses
(the number of times an 
array entry is accessed, for 
read or write).
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the framework of a specific cost model. Our intent is to articulate cost models such that 
the order of growth of the running time for a given implementation is the same as the 
order of growth of the cost of the underlying algorithm (in other words, the cost model 
should include operations that fall within the inner loop). We seek precise mathemati-
cal results about algorithms (propositions) and also hypotheses about performance 
of implementations (properties) that you can check through experimentation. In this 
case, Proposition B is a mathematical truth that supports the hypothesis stated in 
Property A, which we have validated with experiments, in accordance with the scien-
tific method.
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Summary  For many programs, developing a mathematical model of running time 
reduces to the following steps:

n	 Develop an input model, including a definition of the problem size.
n	 Identify the inner loop.
n	 Define a cost model that includes operations in the inner loop.
n	 Determine the frequency of execution of those operations for the given input. 

Doing so might require mathematical analysis—we will consider some examples 
in the context of specific fundamental algorithms later in the book. 

If a program is defined in terms of multiple methods, we normally consider the 
methods separately. As an example, consider our example program of Section 1.1, 
BinarySearch. 

Binary search  The input model is the array a[] of size N; the inner loop is the 
statements in the single while loop; the cost model is the compare operation 
(compare the values of two array entries); and the analysis, discussed in Section 
1.1 and given in full detail in Proposition B in Section 3.1, shows that the num-
ber of compares is at most lg N  1.

Whitelist  The input model is the N numbers in the whitelist and the M numbers 
on standard input where we assume M >> N; the inner loop is the statements in 
the single while loop; the cost model is the compare operation (inherited from 
binary search); and the analysis is immediate given the analysis of binary search—
the number of compares is at most M (lg N  1).

Thus, we draw the conclusion that the order of growth of the running time of the 
whitelist computation is at most M lg N , subject to the following considerations:

n	 If N is small, the input-output cost might dominate. 
n	 The number of compares depends on the input—it lies between ~M  and ~M

lg N, depending on how many of the numbers on standard input are in the 
whitelist and on how long the binary search takes to find the ones that are (typi-
cally it is ~M lg N ). 

n	 We are assuming that the cost of Arrays.sort() is small compared to M lg N. 
Arrays.sort() implements the mergesort algorithm, and in Section 2.2, we 
will see that the order of growth of the running time of mergesort is N log N
(see Proposition G in chapter 2), so this assumption is justified. 

Thus, the model supports our hypothesis from Section 1.1 that the binary search algo-
rithm makes the computation feasible when M and N are large. If we double the length 
of the standard input stream, then we can expect the running time to double; if we 
double the size of the whitelist, then we can expect the running time to increase only 
slightly. 
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Developing MATHEMATICal models for the analysis of algorithms is a fruitful area 
of research that is somewhat beyond the scope of this book. Still, as you will see with 
binary search, mergesort, and many other algorithms, understanding certain math-
ematical models is critical to understanding the efficiency of fundamental algorithms, 
so we often present details and/or quote the results of classic studies. When doing so, we 
encounter various functions and approximations that are widely used in mathemati-
cal analysis. For reference, we summarize some of this information in the tables below.

description approximation

harmonic sum N  HN  =  1  1/2  1/3  1/4  . . .  1/ ~  ln N

triangular sum N   1  2  3  4  . . .  ~  N 2/2

geometric sum 1  2  4  8  . . .  N   =  2N  – 1  ~  2N  when N = 2n

Stirling’s
approximation

 N lg N !  =   lg 1  lg 2  lg 3  lg 4  . . .  lg ~ N lg N

binomial 
coefficients ( N 

k ) ~ N k/k!  when k is a small constant

exponential (1 – 1/x) x ~ 1/e

Useful approximations for the analysis of algorithms

description notation definition

floor ⎣x⎦ largest integer not greater than x

ceiling ⎡x⎤ smallest integer not smaller than x

natural logarithm ln N log e N (x such that e x = N)

binary logarithm lg N log 2 N (x such that 2x = N)

integer
binary logarithm

⎣lg N⎦
largest integer not greater than lg N

(# bits in binary representation of N ) – 1

harmonic numbers HN 1  1/2  1/3  1/4  . . .  1/N

factorial N ! 1  2  3  4  . . .   N

Commonly encountered functions in the analysis of algorithms
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Order-of-growth classifications We use just a few structural primitives (state-
ments, conditionals, loops, nesting, and method calls) to implement algorithms, so very 
often the order of growth of the cost is one of just a few functions of the problem size N. 
These functions are summarized in the table on the facing page, along with the names 
that we use to refer to them, typical code that leads to each function, and examples.

Constant  A program whose running time’s order of growth is constant executes a 
fixed number of operations to finish its job; consequently its running time does not 
depend on N. Most Java operations take constant time.

Logarithmic  A program whose running time’s order of growth is logarithmic is barely 
slower than a constant-time program. The classic example of a program whose running 
time is logarithmic in the problem size is binary search (see BinarySearch on page 47). 
The base of the logarithm is not relevant with respect to the order of growth (since all 
logarithms with a constant base are related by a constant factor), so we use log N when 
referring to order of growth.

Linear  Programs that spend a constant amount of time processing each piece of input 
data, or that are based on a single for loop, are quite common. The order of growth of 
such a program is said to be linear —its running time is proportional to N.

Linearithmic  We use the term linearithmic to describe programs whose running time 
for a problem of size N has order of growth N log N. Again, the base of the logarithm 
is not relevant with respect to the order of growth. The prototypical examples of lin-
earithmic algorithms are Merge.sort() (see Algorithm 2.4) and Quick.sort() (see 
Algorithm 2.5). 

Quadratic  A typical program whose running time has order of growth N 2 has 
two nested for loops, used for some calculation involving all pairs of N elements. 
The elementary sorting algorithms Selection.sort() (see Algorithm 2.1) and 
Insertion.sort() (see Algorithm 2.2) are prototypes of the programs in this 
classification. 

Cubic  A typical program whose running time has order of growth N 3 has three nested 
for loops, used for some calculation involving all triples of N elements. Our example 
for this section, ThreeSum, is a prototype. 

Exponential  In ChAPter 6 (but not until then!) we will consider programs whose 
running times are proportional to 2N or higher. Generally, we use the term exponential
to refer to algorithms whose order of growth is b N for any constant b > 1, even though 
different values of b lead to vastly different running times. Exponential algorithms are 
extremely slow—you will never run one of them to completion for a large problem. 
Still, exponential algorithms play a critical role in the theory of algorithms because 
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description order of 
growth typical code framework description example

constant 1 a = b + c; statement
add two 
numbers

logarithmic log N [ see page 47 ] divide in 
half

binary 
search

linear N
double max = a[0];
for (int i = 1; i < N; i++)
   if (a[i] > max) max = a[i];

loop
find the 

maximum

linearithmic N log N [ see Algorithm 2.4 ] divide and 
conquer

mergesort

quadratic N 2

for (int i = 0; i < N; i++) 

   for (int j = i+1; j < N; j++) 

      if (a[i] + a[j] == 0) 

         cnt++;

double 
loop

check all 
pairs

cubic N 3

for (int i = 0; i < N; i++) 

   for (int j = i+1; j < N; j++) 

      for (int k = j+1; k < N; k++) 

         if (a[i] + a[j] + a[k] == 0) 

            cnt++;

triple loop
check all 
triples

exponential 2 N [ see chapter 6 ] exhasutive 
search

check all 
subsets

Summary of common order-of-growth hypotheses
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there exists a large class of problems for which it seems that an exponential algorithm 
is the best possible choice. 

These classifications are the most common, but certainly not a complete set. The 
order of growth of an algorithm’s cost might be N 2  log N or N 3/2 or some similar func-

tion. Indeed, the detailed analysis of algorithms 
can require the full gamut of mathematical tools 
that have been developed over the centuries. 

A great many of the algorithms that we con-
sider have straightforward performance charac-
teristics that can be accurately described by one 
of the orders of growth that we have considered. 
Accordingly, we can usually work with specific 
propositions with a cost model, such as mergesort 
uses between ½ N lg N and N lg N compares that 
immediately imply hypotheses (properties) such 
as the order of growth of mergesort’s running time 
is linearithmic. For economy, we abbreviate such 
a statement to just say mergesort is linearithmic.

The plots at left indicate the importance of 
the order of growth in practice. The x-axis is 
the problem size; the y-axis is the running time.   
These charts make plain that quadratic and cubic 
algorithms are not feasible for use on large prob-
lems. As it turns out, several important prob-
lems have natural solutions that are quadratic 
but clever algorithms that are linearithmic. Such 
algorithms (including mergesort) are critically 
important in practice because they enable us to 
address problem sizes far larger than could be 
addressed with quadratic solutions. Naturally, we 
therefore focus in this book on developing loga-
rithmic, linear, and linearithmic algorithms for 
fundamental problems.
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Designing faster algorithms One of the primary reasons to study the order of 
growth of a program is to help design a faster algorithm to solve the same problem. To 
illustrate this point, we consider next a faster algorithm for the 3-sum problem. How 
can we devise a faster algorithm, before even embarking on the study of algorithms? 
The answer to this question is that we have discussed and used two classic algorithms, 
mergesort and binary search, have introduced the facts that the mergesort is linearith-
mic and binary search is logarithmic. How can we take advantage of these algorithms 
to solve the 3-sum problem? 

Warmup: 2-sum  Consider the easier problem of determining the number of pairs of 
integers in an input file that sum to 0. To simplify the discussion, assume also that the 
integers are distinct. This problem is easily solved in quadratic time by deleting the k 
loop and a[k] from ThreeSum.count(), leaving a double loop that examines all pairs, 
as shown in the quadratic entry in the table on page 187 (we refer to such an implementa-
tion as TwoSum). The implementation below shows how mergesort and binary search 
(see page 47) can serve as a basis for a linearithmic solution to the 2-sum problem. The 
improved algorithm is based on the fact that an entry a[i] is one of a pair that sums to 
0 if and only if the value -a[i] is in the array (and a[i] is not zero). To solve the prob-
lem, we sort the array (to enable binary search) and then, for every entry a[i] in the ar-
ray, do a binary search for -a[i] with rank() in BinarySearch. If the result is an index 
j with j > i, we increment the count. 
This succinct test covers three cases:

n	 An unsuccessful binary search re-
turns -1, so we do not increment 
the count.

n	 If the binary search re-
turns j > i, we have 
a[i] + a[j] = 0, so we incre-
ment the count.

n	 If the binary search returns j 
between 0 and i, we also have 
a[i] + a[j] = 0 but do not 
increment the count, to avoid 
double counting.

The result of the computation is precise-
ly the same as the result of the quadratic 
algorithm, but it takes much less time. 
The running time of the mergesort is 

import java.util.Arrays;

public class TwoSumFast
{ 
   public static int count(int[] a)  
   {  // Count pairs that sum to 0. 
      Arrays.sort(a);  
      int N = a.length; 
      int cnt = 0; 
      for (int i = 0; i < N; i++) 
         if (BinarySearch.rank(-a[i], a) > i) 
            cnt++; 
      return cnt; 
   }

   public static void main(String[] args)  
   { 
      int[] a = In.readInts(args[0]); 
      StdOut.println(count(a)); 
   } 
}

Linearithmic  solution to the 2-sum problem
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proportional to N log N, and the N binary searches each take time proportional to log 
N, so the running time of the whole algorithm is proportional to N log N. Developing 
a faster algorithm like this is not merely an academic exercise—the faster algorithm 
enables us to address much larger problems. For example, you are likely to be able to 
solve the 2-sum problem for 1 million integers (1Mints.txt) in a reasonable amount 
of time on your computer, but you would have to wait quite a long time to do it with 
the quadratic algorithm (see Exercise 1.4.41).

Fast algorithm for 3-sum  The very same idea is effective for the 3-sum problem. 
Again, assume also that the integers are distinct. A pair a[i] and a[j] is part of a triple   
that sums to 0 if and only if the value -(a[i] + a[j]) is in the array (and not a[i] or 
a[j]). The code below sorts the array, then does N (N1)/ 2 binary searches that each 
take time proportional to log N, for a total running time proportional to N 2 log N. Note 
that in this case the cost of the sort is insignificant. Again, this solution enables us to ad-
dress much larger problems (see Exercise 1.4.42). The plots in the figure at the bottom 
of the next page show the disparity in costs among these four algorithms for problem 
sizes in the range we have considered. Such differences certainly motivate the search for 
faster algorithms.

Lower bounds  The table on page 191 summarizes the discussion of this section. An in-
teresting question immediately arises: Can we find algorithms for the 2-sum and 3-sum   

problems that are substantially 
faster than TwoSumFast and 
ThreeSumFast? Is there a linear 
algorithm for 2-sum or a linea-
rithmic algorithm for 3-sum? 
The answer to this question is no
for 2-sum (under a model that 
counts and allows only compari-
sons of linear or quadratic func-
tions of the numbers) and no one 
knows for 3-sum, though experts 
believe that the best possible al-
gorithm for 3-sum is quadratic. 
The idea of a lower bound on the 
order of growth of the worst-case 
running time for all possible al-
gorithms to solve a problem is a 
very powerful one, which we will 

import java.util.Arrays;

public class ThreeSumFast
{ 
   public static int count(int[] a)  
   {  // Count triples that sum to 0. 
      Arrays.sort(a); 
      int N = a.length; 
      int cnt = 0; 
      for (int i = 0; i < N; i++) 
         for (int j = i+1; j < N; j++) 
           if (BinarySearch.rank(-a[i]-a[j], a) > j) 
              cnt++; 
      return cnt; 
   }

   public static void main(String[] args)  
   { 
      int[] a = In.readInts(args[0]); 
      StdOut.println(count(a)); 
   } 
}

N 2 lg N  solution to the 3-sum problem
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revisit in detail in Section 2.2 in the context of sorting. Non-
trivial lower bounds are difficult to establish, but very helpful 
in guiding our search for efficient algorithms.

The examples in this section set the stage for our treat-
ment of algorithms in this book. Throughout the book, our 
strategy for addressing new problems is the following:

n	 Implement and analyze a straighforward solution to 
the problem. We usually refer to such solutions, like 
ThreeSum and TwoSum, as the brute-force solution.

n	 Examine algorithmic improvements, usually designed 
to reduce the order of growth of the running time, such as TwoSumFast and 
ThreeSumFast.

n	 Run experiments to validate the hypotheses that the new algorithms are faster.
In many cases, we examine several algorithms for the same problem, because running 
time is only one consideration when choosing an algorithm for a practical problem. We 
will develop this idea in detail in the context of fundamental problems throughout the 
book.

algorithm
order of growth 
of running time

TwoSum N 2

TwoSumFast N log N

ThreeSum N 3

ThreeSumFast N 2 log N

Summary of running times

Costs of algorithms to solve the 2-sum and 3-sum problems
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Doubling ratio experiments The following is a simple and effective shortcut for 
predicting performance and for determining the approximate order of growth of the 
running time of any program:

n	 Develop an input generator that produces inputs that model the inputs expected 
in practice (such as the random integers in timeTrial() in DoublingTest).

n	 Run the program DoublingRatio given below, a modification of DoublingTest 
that calculates the ratio of each running time with the previous.

n	 Run until the ratios approach a limit 2b.
This test is not effective if the ratios do not approach a limiting value, but they do for 
many, many programs, implying the following conclusions:

n	 The order of growth of the running time is approximately N b.
n	 To predict running times, multiply the last observed running time by 2b and 

double N, continuing as long as desired. If you want to predict for an input size 
that is not a power of 2 times N, you can adjust ratios accordingly (see Exercise 
1.4.9). 

As illustrated below, the ratio for ThreeSum is about 8 and we can predict the running 
times for N = 16,000, 32,000, 64,000 to be 408.8, 3270.4, 26163.2 seconds, respectively, 
just by successively multiplying the last time for 8,000 (51.1) by 8.

public class DoublingRatio 
{ 
   public static double timeTrial(int N) 
   // same as for DoublingTest (page 177)

   public static void main(String[] args) 
   {   
      double prev = timeTrial(125); 
      for (int N = 250; true; N += N) 
      {   
         double time = timeTrial(N); 
         StdOut.printf("%6d %7.1f ", N, time); 
         StdOut.printf("%5.1f\n", time/prev); 
         prev = time; 
      } 
   } 
}

results of experiments

program to perform experiments

predictions

% java DoublingRatio 
   250     0.0   2.7 
   500     0.0   4.8 
  1000     0.1   6.9 
  2000     0.8   7.7 
  4000     6.4   8.0 
  8000    51.1   8.0

 16000   408.8   8.0 
 32000  3270.4   8.0 
 64000 26163.2   8.0
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This test is roughly equivalent to the process described on page 176 (run experiments, 
plot values on a log-log plot to develop the hypothesis that the running time is aN b, 
determine the value of b from the slope of the line, then solve for a), but it is sim-
pler to apply.  Indeed, you can accurately predict preformance by hand when you run 
DoublingRatio. As the ratio approaches a limit, just multiply by that ratio to fill in later 
values in the table. Your approximate model of the order of growth is a power law with 
the binary logarithm of that ratio as the power.

Why does the ratio approach a constant? A simple mathematical calculation shows 
that to be the case for all of the common orders of growth just discussed (except 
exponential):

 ~ proposition c. (Doubling ratio) If T(N) a N b lg N then T(2N)/T(N)  ~ 2b .

proof: Immediate from the following calculation:

T(2N)/T(N)  = a (2N )b lg (2N ) / a N b lg N

            = 2b (1 + lg 2  /  lg N )

                                                           ~ 2b

Generally, the logarithmic factor cannot be ignored when developing a mathematical 
model, but it plays a less important role in predicting performance with a doubling 
hypothesis. 

You should consider running doubling ratio experiments for every program that 
you write where performance matters—doing so is a very simple way to estimate the 
order of growth of the running time, perhaps revealing a performance bug where a 
program may turn out to be not as efficient as you might think. More generally, we can 
use hypotheses about the order of growth of the running time of programs to predict 
performance in one of the following ways:

Estimating the feasibility of solving large problems  You need to be able to answer 
this basic question for every program that you write: Will the program be able to process 
this given input data in a reasonable amount of time? To address such questions for a 
large amount of data, we extrapolate by a much larger factor than for doubling, say 10, 
as shown in the fourth column in the table at the bottom of the next page. Whether it is 
an investment banker running daily financial models or a scientist running a program 
to analyze experimental data or an engineer running simulations to test a design, it is 
not unusual for people to regularly run programs that take several hours to complete, 
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so the table focuses on that situation. Knowing the order of growth of the running time 
of an algorithm provides precisely the information that you need to understand limita-
tions on the size of the problems that you can solve. Developing such understanding is 
the most important reason to study performance. Without it, you are likely have no idea 
how much time a program will consume; with it, you can make a back-of-the-envelope 
calculation to estimate costs and proceed accordingly.

Estimating the value of using a faster computer  You also may be faced with this basic 
question, periodically: How much faster can I solve the problem if I get a faster computer? 
Generally, if the new computer is x times faster than the old one, you can improve your 
running time by a factor of x. But it is usually the case that you can address larger prob-
lems with your new computer. How will that change affect the running time? Again, the 
order of growth is precisely the information needed to answer that question. 

A famous rule of thumb known as Moore’s Law implies that you can expect to have a 
computer with about double the speed and double the memory 18 months from now, 
or a computer with about 10 times the speed and 10 times the memory in about 5 years. 
The table below demonstrates that an algorithm cannot keep pace with Moore’s Law   
(solving a problem that is twice as big with a computer that is twice as fast) if its run-
ning time is quadratic or cubic. You can quickly determine whether that is the case by 
doing a doubling ratio test and checking that the ratio of running times as the input size 
doubles approaches 2 (linear or linearithmic), not 4 (quadratic) or 8 (cubic).

order of growth of time
2x 

factor
10x 

factor

for a program that takes a few hours for input of size n

description function predicted time for 10N
predicted time for10N

on a 10x faster computer

linear N 2 10 a day a few hours

linearithmic N log N 2 10 a day a few hours

quadratic N 2 4 100 a few weeks a day

cubic N 3 8 1,000 several months a few weeks

exponential 2 N 2 N 2 9N never never

predictions on the basis of order-of-growth function
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Caveats There are many reasons that you might get inconsistent or misleading re-
sults when trying to analyze program performance in detail. All of them have to do with 
the idea that one or more of the basic assumptions underlying our hypotheses might be 
not quite correct. We can develop new hypotheses based on new assumptions, but the 
more details that we need to take into account, the more care is required in the analysis.

Large constants  With leading-term approximations, we ignore constant coefficients 
in lower-order terms, which may not be justifed. For example, when we approximate 
the function 2 N 2 + c N by ~2 N 2, we are assuming that c is small. If that is not the case 
(suppose that c is 10 3 or 10 6) the approximation is misleading. Thus, we have to be 
sensitive to the possibility of large constants.

Nondominant inner loop  The assumption that the inner loop dominates may not 
always be correct. The cost model might miss the true inner loop, or the problem size 
N might not be sufficiently large to make the leading term in the mathematical descrip-
tion of the frequency of execution of instructions in the inner loop so much larger 
than lower-order terms that we can ignore them. Some programs have a significant 
amount of code outside the inner loop that needs to be taken into consideration. In 
other words, the cost model may need to be refined.

Instruction time  The assumption that each instruction always takes the same amount 
of time is not always correct. For example, most modern computer systems use a tech-
nique known as caching to organize memory, in which case accessing elements in huge 
arrays can take much longer if they are not close together in the array. You might ob-
serve the effect of caching for ThreeSum by letting DoublingRatio run for a while. 
After seeming to converge to 8, the ratio of running times may jump to a larger value 
for large arrays because of caching. 

System considerations  Typically, there are many, many things going on in your com-
puter. Java is one application of many competing for resources, and Java itself has many 
options and controls that significantly affect performance. A garbage collector or a just-
in-time compiler or a download from the internet might drastically affect the results 
of experiments. Such considerations can interfere with the bedrock principle of the 
scientific method that experiments should be reproducible, since what is happening at 
this moment in your computer will never be reproduced again. Whatever else is going 
on in your system should in principle be negligible or possible to control.

Too close to call  Often, when we compare two different programs for the same task, 
one might be faster in some situations, and slower in others. One or more of the consid-
erations just mentioned could make the difference.  There is a natural tendency among 
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some programmers (and some students) to devote an extreme amount of energy run-
ning races to find the “best” implementation, but such work is best left for experts. 

Strong dependence on inputs  One of the first assumptions that we made in order to 
determine the order of growth of the program’s running time of a program was that the 
running time should be relatively insensitive to the inputs. When that is not the case, we 
may get inconsistent results or be unable to validate our hypotheses. For example, sup-
pose that we modify ThreeSum to answer the question  Does the input have a triple that 
sums to 0 ? by changing it to return a boolean value, replacing cnt++ by return true 
and adding return false as the last statement. The order of growth of the running 
time of this program is constant if the first three integers sum to 0 and cubic if there are 
no such triples in the input.  

Multiple problem parameters  We have been focusing on measuring performance as a 
function of a single parameter, generally the value of a command-line argument or the 
size of the input. However, it is not unusual to have several parameters. A typical ex-
ample arises when an algorithm involves building a data structure and then performing 
a sequence of operations that use that data structure. Both the size of the data structure 
and the number of operations are parameters for such applications. We have already 
seen an example of this in our analysis of the problem of whitelisting using binary 
search, where we have N numbers in the whitelist and M numbers on standard input 
and a typical running time proportional to M log N.

Despite all these caveats, understanding the order of growth of the running time of 
each program is valuable knowledge for any programmer, and the methods that we 
have described are powerful and broadly applicable. Knuth’s insight was that we can 
carry these methods through to the last detail in principle to make detailed, accurate 
predictions. Typical computer systems are extremely complex and close analysis is best 
left for experts, but the same methods are effective for developing approximate esti-
mates of the running time of any program. A rocket scientist needs to have some idea 
of whether a test flight will land in the ocean or in a city; a medical researcher needs to 
know whether a drug trial will kill or cure all the subjects; and any scientist or engineer 
using a computer program needs to have some idea of whether it will run for a second 
or for a year.
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Coping with dependence on inputs For many problems, one of the most sig-
nificant of the caveats just mentioned is the dependence on inputs, because running 
times can vary widely. The running time of the modification of ThreeSum mentioned 
on the facing page ranges from constant to cubic, depending on the input, so a closer 
analysis is required if we want to predict performance. We briefly consider here some of 
the approaches that are effective and that we will consider for specific algorithms later 
in the book.

Input models  One approach is to more carefully model the kind of input to be pro-
cessed in the problems that we need to solve. For example, we might assume that the 
numbers in the input to ThreeSum are random int values. This approach is challenging 
for two reasons:

n	 The model may be unrealistic.
n	 The analysis may be extremely difficult, requiring mathematical skills quite be-

yond those of the typical student or programmer.
The first of these is the more significant, often because the goal of a computation is to 
discover characteristics of the input. For example, if we are writing a program to process 
a genome, how can we estimate its performance on a different genome? A good model 
describing the genomes found in nature is precisely what scientists seek, so estimating 
the running time of our programs on data found in nature actually amounts to con-
tributing to that model! The second challenge leads to a focus on mathematical results 
only for our most important algorithms. We will see several examples where a simple 
and tractable input model, in conjunction with classical mathematical analysis, helps 
us predict performance.

Worst-case performance guarantees  Some applications demand that the running 
time of a program be less than a certain bound, no matter what the input. To provide 
such performance guarantees, theoreticians take an extremely pessimistic view of the 
performance of algorithms: what would the running time be in the worst case? For 
example, such a conservative approach might be appropriate for the software that runs 
a nuclear reactor or a pacemaker or the brakes in your car. We want to guarantee that 
such software completes its job within the bounds that we set because the result could 
be catastrophic if it does not. Scientists normally do not contemplate the worst case 
when studying the natural world: in biology, the worst case might be the extinction 
of the human race; in physics, the worst case might be the end of the universe. But the 
worst case can be a very real concern in computer systems, where the input may be 
generated by another (potentially malicious) user, rather than by nature. For example, 
websites that do not use algorithms with performance guarantees are subject to denial-
of-service attacks, where hackers flood them with pathological requests that make them 
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run much more slowly than planned. Accordingly, many of our algorithms are designed 
to provide performance guarantees, such as the following:

proposition D. In the linked-list implementations of Bag (Algorithm 1.4), Stack 
(Algorithm 1.2), and Queue (Algorithm 1.3), all operations take constant time 
in the worst case.

proof: Immediate from the code. The number of instructions executed for each 
operation is bounded by a small constant. Caveat : This argument depends upon 
the (reasonable) assumption that the Java system creates a new Node in constant 
time.

Randomized algorithms  One important way to provide a performance guarantee is 
to introduce randomness. For example, the quicksort algorithm for sorting that we 
study in Section 2.3 (perhaps the most widely used sorting algorithm) is quadratic in 
the worst case, but randomly ordering the input gives a probabilistic guarantee that its 
running time is linearithmic. Every time you run the algorithm, it will take a different 
amount of time, but the chance that the time will not be linearithmic is so small as to be 
negligible. Similarly, the hashing algorithms for symbol tables that we study in Section 
3.4 (again, perhaps the most widely used approach) are linear-time in the worst case, 
but constant-time under a probabilistic guarantee. These guarantees are not absolute, 
but the chance that they are invalid is less than the chance your computer will be struck 
by lightning. Thus, such guarantees are as useful in practice as worst-case guarantees.

Sequences of operations  For many applications, the algorithm “input” might be 
not just data, but the sequence of operations performed by the client. For example, a 
pushdown stack where the client pushes N values, then pops them all, may have quite 
different performance characteristics from one where the client issues an alternating 
sequence N of push and pop operations. Our analysis has to take both situations into 
account (or to include a reasonable model of the sequence of operations).

Amortized analysis  Accordingly, another way to provide a performance guarantee is 
to amortize the cost, by keeping track of the total cost of all operations, divided by the 
number of operations. In this setting, we can allow some expensive operations, while 
keeping the average cost of operations low. The prototypical example of this type of 
analysis is the study of the resizing array data structure for Stack that we considered in 
Section 1.3 (Algorithm 1.1 on page 141). For simplicity, suppose that N is a power of 2. 
Starting with an empty structure, how many array entries are accessed for N consecu-
tive calls to push()? This quantity is easy to calculate: the number of array accesses is
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N + 4 + 8 + 16 + ... + 2N = 5N  4

The first term accounts for the array access 
within each of the N calls to push(); the sub-
sequent terms account for the array accesses to 
initialize the data structure each time it doubles 
in size. Thus the average number of array access-
es per operation is constant, even though the last 
operation takes linear time. This is known as an 
“amortized” analysis because we spread the cost 
of the few expensive operations, by assigning a 
portion of it to each of a large number of inexpensive operations. Amortized analysis 
provides a worst case guarantee on any sequence of operations, starting from an empty 
data structure.  VisualAccumulator illustrates the process, shown above. 

proposition E. In the resizing array implementation of Stack (Algorithm 1.1), 
the average number of array accesses for any sequence of push and pop operations 
starting from an empty data structure is constant in the worst case.

proof sketch: For each push operation that causes the array to grow (say from size 
N to size 2N), consider the N/2  1 push operations that most recently caused the 
stack size to grow to k, for k from N/2 + 2 to N. Averaging the 4N array accesses 
to grow the array to size 2N (2N array accesses to copy the N items and 2N array 
accesses to initialize an array) with N/2  1 array accesses (one for each push), we 
get an average cost of 9 array accesses for each of these N/2  1 push operations. 
Establishing this proposition for any sequence of push and pop operations is more 
intricate (see Exercise 1.4.32) 

This kind of analysis is widely applicable. In particular, we use resizing arrays as the 
underlying data structure for several algorithms that we consider later in this book.

It is the task of the algorithm analyst to discover as much relevant information 
about an algorithm as possible, and it is the task of the applications programmer to 
apply that knowledge to develop programs that effectively solve the problems at hand. 
Ideally, we want algorithms that lead to clear and compact code that provides both a 
good guarantee and good performance on input values of interest. Many of the classic 
algorithms that we consider in this chapter are important for a broad variety of ap-
plications precisely because they have these properties. Using them as models, you can 
develop good solutions yourself for typical problems that you face while programming. 

Amortized cost of adding to a RandomBag
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Memory As with running time, a program’s memory usage connects directly to the 
physical world: a substantial amount of your computer’s circuitry enables your pro-
gram to store values and later retrieve them. The more values you need to have stored 
at any given instant, the more circuitry you need. You probably are aware of limits on 
memory usage on your computer (even more so than for time) because you probably 
have paid extra money to get more memory. 

Memory usage is well-defined for Java on your computer (every value requires pre-
cisely the same amount of memory each time that you run your program), but Java is 
implemented on a very wide range of computational devices, and memory consump-
tion is implementation-dependent. For economy, we use the word typical to signal that 
values are subject to machine dependencies. 

One of Java’s most significant features is its memory allocation system, 
which is supposed to relieve you from having to worry about memory. 
Certainly, you are well-advised to take advantage of this feature when ap-
propriate. Still, it is your responsibility to know, at least approximately, 
when a program’s memory requirements will prevent you from solving a 
given problem.

Analyzing memory usage is much easier than analyzing running time, 
primarily because not as many program statements are involved (just dec-
larations) and because the analysis reduces complex objects to the primi-
tive types, whose memory usage is well-defined and simple to understand: 
we can count up the number of variables and weight them by the number 
of bytes according to their type. For example, since the Java int data type 
is the set of integer values between2,147,483,648 and 2,147,483,647, a 
grand total of 232 different values, typical Java implementations use 32 bits 

to represent int values. Similar considerations hold for other primitive types: typical 
Java implementations use 8-bit bytes, representing each char value with 2 bytes (16 
bits), each int value with 4 bytes (32 bits), each double and each long value with 8 
bytes (64 bits), and each boolean value with 1 byte (since computers typically access 
memory one byte at a time). Combined with knowledge of the amount of memory 
available, you can calculate limitations from these values. For example, if you have 1GB 
of memory on your computer (1 billion or 230 bytes), you cannot fit more than about 
256 million int values or 128 million double values in memory at any one time.

On the other hand, analyzing memory usage is subject to various differences in ma-
chine hardware and in Java implementations, so you should consider the specific ex-
amples that we give as indicative of how you might go about determining memory 
usage when warranted, not the final word for your computer. For example, many data 
structures involve representation of machine addresses, and the amount of memory 

type bytes

boolean 1

byte 1

char 2

int 4

float 4

long 8

double 8

typical memory 
requirements for 
primitive types
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needed for a machine address varies from machine to 
machine. For consistency, we assume that 8 bytes are 
needed to represent addresses, as is typical for 64-bit 
architectures that are now widely used, recognizing 
that many older machines use a 32-bit architecture that 
would involve just 4 bytes per machine address.

Objects  To determine the memory usage of an object, 
we add the amount of memory used by each instance 
variable to the overhead associated with each object, 
typically 16 bytes. The overhead includes a reference to 
the object’s class, garbage collection information, and 
synchronization information. Moreover, the memory 
usage is typically padded to be a multiple of 8 bytes 
(machine words, on a 64-bit machine). For example, 
an Integer object uses 24 bytes (16 bytes of overhead, 
4 bytes for its int instance variable, and 4 bytes of 
padding). Similarly, a Date (page 91) object also uses 32 
bytes: 16 bytes of overhead, 4 bytes for each of its three 
int instance variables, and 4 bytes of padding. A ref-
erence to an object typically is a memory address and 
thus uses 8 bytes of memory. For example, a Counter 
(page 89) object uses 32 bytes: 16 bytes of overhead, 8 
bytes for its String instance variable (a reference), 4 
bytes for its int instance variable, and 4 bytes of pad-
ding. When we account for the memory for a reference, 
we account separately for the memory for the object 
itself, so this total does not count the memory for the 
String value. 

Linked lists  A nested non-static (inner) class such 
as our Node class (page 142) requires an extra 8 bytes of  
overhead (for a reference to the enclosing instance). Thus, a Node object uses 40 bytes 
(16 bytes of object overhead, 8 bytes each for the references to the Item and Node ob-
jects, and 8 bytes for the extra overhead). Thus, since an Integer object uses 24 bytes, a 
stack with N integers built with a linked-list representation (Algorithm 1.2) uses 32 + 
64N bytes, the usual 16 for object overhead for Stack, 8 for its reference instance vari-
able, 4 for its int instance variable, 4 for padding, and 64 for each entry, 40 for a Node 
and 24 for an Integer.

public class Integer
{
   private int x;
...
}

Typical object memory requirements

object
overhead

private class Node
{
   Item item;
   Node next;
...
}

public class Counter
{
   private String name;
   private int count;
...
}

24 bytesinteger wrapper object 

counter object

node object (inner class)

32 bytes

int
value

int
value

String
reference

public class Date
{
   private int day;
   private int month;
   private int year;
...
}

date object

x

object
overhead

name

count

40 bytes

references

object
overhead

extra
overhead

item

next

32 bytes

int
values

object
overhead

year
month
day

padding

padding

padding
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Arrays  Typical memory requirements for various types of arrays in Java are summa-
rized in the diagrams on the facing page. Arrays in Java are implemented as objects, 
typically with extra overhead for the length. An array of primitive-type values typically 
requires 24 bytes of header information (16 bytes of object overhead, 4 bytes for the 
length, and 4 bytes of padding) plus the memory needed to store the values. For ex-
ample, an array of N int values uses 24  4N bytes (rounded up to be a multiple of 
8), and an array of N double values uses 24  8N bytes. An array of objects is an array 
of references to the objects, so we need to add the space for the references to the space 
required for the objects. For example, an array of N  Date objects (page 91) uses 24 bytes 
(array overhead) plus 8N bytes (references) plus 32 bytes for each object, for a grand 
total of 24 + 40N bytes. A two-dimensional array is an array of arrays (each array is an 
object). For example, a two-dimensional M-by-N array of double values uses 24 bytes 
(overhead for the array of arrays) plus 8 M bytes (references to the row arrays) plus M
times 24 bytes (overhead from the row arrays) plus M times N times 8 bytes (for the N 
double values in each of the M rows) for a grand total of 8NM  32M  24 ~ 8NM
bytes. When array entries are objects, a similar accounting leads to a total of 8NM 
32M  24 ~ 8NM bytes for the array of arrays filled with references to objects, plus the 
memory for the objects themselves.

String objects (Java 7 and later)  The standard String representation (used in typi-
cal Java 7 implementitons) has two instance variables: a reference to a character array 
value[] that stores the sequence of characters and an int value hash (that stores a 
hash code that saves recomputation in certain circumstances that need not concern us 
now). Therefore, a String of length N typically uses 40 bytes for the String object (16 
bytes for object overhead plus 8 bytes for the array reference plus 4 bytes for the int 
instance variables plus 4 bytes of padding) plus 24  2N bytes for the character array 
for a total of 56 + 2N bytes. 

String objects (Java 6 and earlier)  An alternate String representation (used in 
typical Java 6 implementations) maintains two extra int instance variables (offset 
and count) and represents the sequence of characters value[offset] through 
value[offset + count - 1]. Now, a String of length N typically uses 40 bytes (for the 
String object) plus 24  2N bytes (for the character array) for a total of 64 + 2N bytes. 
This representation saves memory when extracting substrings because two String ob-
jects can share the same underlying character array.

Substring extraction   When using the Java 7 representation to implement the 
substring() method, we must create a new character array, so substring extraction 
takes linear time and linear space (in the length of the resulting substring). When 
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int value
(4 bytes)

                                                                             length

object
overhead

d

Typical memory requirements for arrays of int values, double values, objects, and arrays

N references
(8N bytes)

Total: 24 + 8N + N�32 = 24 + 40N

Date[] d;
d = new Date[N];
for (int k = 0; k < N; k++)
{
   ...
   a[k] = new Date (...);
}

32 bytes

...

day
month
year

padding

padding

Total: 24 + 8M + M�(24 + 8N ) = 24 + 32M + 8MN

double[][] t;
t = new double[M][N];

.

.

.

24  + 8N bytes

array of objects array of arrays (two-dimensional array)

int[] a = new int[N];

        N

object
overhead

16 bytes

array of int values array of double values

Total: 24 + 4N (N even)

16 bytes

int value
(4 bytes)

int value
(4 bytes)

N int values
(4N bytes)

double[] c = new double[N];

        N

object
overhead

object
overhead

Total: 24 + 8N

a c

N double values
(8N bytes)

16 bytes

4 bytes        N

object
overhead

N double
values

(8N bytes)

        N

object
overhead

        N

object
overhead

16 bytes
int value
(4 bytes)

                                                                             M

object
overhead

t

M references
(8M bytes)

16 bytes

padding padding

padding

padding

padding

padding

summary

type bytes

int[] ~4N

double[] ~8N

Date[] ~40N

double[][] ~8NM 
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using the Java 6 representation,  we can implement the 
substring() method without having to make copies 
of the string’s characters: the character array contain-
ing the original string is aliased in the object for the 
substring; the offset and count fields identify the sub-
string. Thus, a substring of an existing string takes just 
40 bytes. In summary, extracting a substring takes either 
constant extra memory or linear extra memory depend-
ing on the underlying implementation. We will assume 
the Java 7 representation in this book.

These basic mechanisms are effective for esti-
mating the memory usage of a great many programs, 
but there are numerous complicating factors that can 
make the task significantly more difficult. We have 
already noted the potential effect of aliasing. More-
over, memory consumption is a complicated dynamic 
process when function calls are involved because the 
system memory allocation mechanism plays a more 
important role, with more system dependencies. For 
example, when your program calls a method, the sys-
tem allocates the memory needed for the method (for 
its local variables) from a special area of memory called 
the stack (a system pushdown stack), and when the 
method returns to the caller, the memory is returned to 
the stack. For this reason, creating arrays or other large 
objects in recursive programs is dangerous, since each 
recursive call implies significant memory usage. When 
you create an object with new, the system allocates the 
memory needed for the object from another special 
area of memory known as the heap (not the same as 
the binary heap data structure we consider in Sec-
tion 2.4), and you must remember that every object 
lives until no references to it remain, at which point 
a system process known as garbage collection reclaims 
its memory for the heap. Such dynamics can make the 
task of precisely estimating memory usage of a pro-
gram challenging.A String and a substring

String genome = "CGCCTGGCGTCTGTAC";
String codon  = genome.substring(6, 9);

 16 

object
overhead

char
values

C  G
C  C
T  G
G  C
G  T
C  T
G  T
A  C

        0

16

object
overhead

genome

        6

3

object
overhead

 codon

hash

hash

...

        value

public class String
{
   private char[] value;
   private int offset;
   private int count;
   private int hash;
...
}         offset

        count

        hash

object
overhead

40 bytes + char array

40 bytes

40 bytes

56 bytes

String  object (Java 6 library)

substring example (Java 6 aliasing)

reference

int
values

padding

padding

padding

        value

        value

padding

        value

public class String
{
   private char[] value;
   private int hash;
...
}         hash

        padding

object
overhead

32 bytes + char arrayString  object (Java 7 library)

reference

int
value
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Perspective Good performance is important. An impossibly slow program is al-
most as useless as an incorrect one, so it is certainly worthwhile to pay attention to the 
cost at the outset, to have some idea of which kinds of problems you might feasibly 
address. In particular, it is always wise to have some idea of which code constitutes the 
inner loop of your programs. 

Perhaps the most common mistake made in programming is to pay too much at-
tention to performance characteristics. Your first priority is to make your code clear 
and correct. Modifying a program for the sole purpose of speeding it up is best left for 
experts. Indeed, doing so is often counterproductive, as it tends to create code that is 
complicated and difficult to understand. C. A. R. Hoare (the inventor of quicksort and 
a leading proponent of writing clear and correct code) once summarized this idea by 
saying that “premature optimization is the root of all evil, ” to which Knuth added the 
qualifier “(or at least most of it) in programming.” Beyond that, improving the running 
time is not worthwhile if the available cost benefits are insignificant. For example, im-
proving the running time of a program by a factor of 10 is inconsequential if the run-
ning time is only an instant. Even when a program takes a few minutes to run, the total 
time required to implement and debug an improved algorithm might be substantially 
more than the time required simply to run a slightly slower one—you may as well let 
the computer do the work. Worse, you might spend a considerable amount of time and 
effort implementing ideas that should in theory improve a program but do not do so 
in practice.

Perhaps the second most common mistake made in programming is to ignore per-
formance characteristics. Faster algorithms are often more complicated than brute-
force ones, so you might be tempted to accept a slower algorithm to avoid having to 
deal with more complicated code. However, you can sometimes reap huge savings with 
just a few lines of good code. Users of a surprising number of computer systems lose 
substantial time unknowingly waiting for brute-force quadratic algorithms to finish 
solving a problem, when linear or linearithmic algorithms are available that could solve 
the problem in a fraction of the time. When we are dealing with huge problem sizes, we 
often have no choice but to seek better algorithms.

We generally take as implicit the methodology described in this section to estimate 
memory usage and to develop an order-of-growth hypothesis of the running time from 
a tilde approximation resulting from a mathematical analysis within a cost model, and 
to check those hypotheses with experiments. Improving a program to make it more 
clear, efficient, and elegant should be your goal every time that you work on it. If you 
pay attention to the cost all the way through the development of a program, you will 
reap the benefits every time you use it.
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Q&A

 ~ 

Q. Why not use StdRandom to generate random values instead of maintaining the file 
1Mints.txt ?

A. It is easier to debug code in development and to reproduce experiments. StdRandom 
produces different values each time it is called, so running a program after fixing a bug 
may not test the fix! You could use StdRandom.setSeed() to address this problem, but 
a reference file such as 1Mints.txt makes it easier to add test cases while debugging. 
Also, different programmers can compare performance on different systems, without 
worrying about the input model. Once you have debugged a program and have a good 
idea of how it performs, it is certainly worthwhile to test it on random data. For ex-
ample, DoublingTest and DoublingRatio take this approach.

Q. I ran DoublingRatio on my computer, but the results were not as consistent as in 
the book. Some of the ratios were not close to 8. Why?

A. That is why we discussed “caveats” on page 195.  Most likely, your computer’s operating 
system decided to do something else during the experiment. One way to mitigate such 
problems is to invest more time in more experiments. For example, you could change 
DoublingTest to run the experiments 1,000 times for each N, giving a much more ac-
curate estimate for the running time for each size (see Exercise 1.4.39).

Q. What, exactly, does “as N grows” mean in the definition of the tilde notation?

A. The formal definition of f(N) g(N) is limN→∞ f (N )/g (N ) = 1.

Q. I’ve seen other notations for describing order of growth. What’s the story?

A. The “big-Oh” notation is widely used: we say that f (N ) is O(g (N )) if there exist 
constants c and N0 such that | f (N )| ≤ c | g (N ) | for all N > N0. This notation is very use-
ful in providing asymptotic upper bounds on the performance of algorithms, which is 
important in the theory of algorithms. But it is not useful for predicting performance 
or for comparing algorithms.

Q. Why not?

A. The primary reason is that it describes only an upper bound on the running time. 
Actual performance might be much better. The running time of an algorithm might 
be both O (N 2) and ~ a N log N. As a result, it cannot be used to justify tests like our 
doubling ratio test (see Proposition C on page 193).
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Q. So why is the big-Oh notation so widely used?

A. It facilitates development of bounds on the order of growth, even for complicated 
algorithms for which more precise analysis might not be feasible. Moreover, it is com-
patible with the “big-Omega” and  “big-Theta” notations that theoretical computer sci-
entists use to classify algorithms by bounding their worst-case performance. We say 
that f (N ) is (g (N )) if there exist constants c and N0 such that | f (N )| ≥ c | g (N ) | for 
N > N0; and if  f (N ) is O(g (N )) and (g (N )), we say that  f (N ) is (g (N )). The “big-
Omega” notation is typically used to describe a lower bound on the worst case, and the 
“big-Theta” notation is typically used to describe the performance of algorithms that 
are optimal in the sense that no algorithm can have better asymptotic worst-case order 
of growth. Optimal algorithms are certainly worth considering in practical applica-
tions, but there are many other considerations, as you will see. 

Q. Aren’t upper bounds on asymptotic performance important?

A. Yes, but we prefer to discuss precise results in terms of frequency of statement ex-
ceution with respect to cost models, because they provide more information about 
algorithm performance and because deriving such results is feasible for the algorithms 
that we discuss. For example, we say “ThreeSum uses N 3/2 array accesses” and “the 
number of times cnt++ is executed in ThreeSum is ~N 3/6 in the worst case,” which is a 
bit more verbose but much more informative than the statement “the running time of 
ThreeSum is O (N 3).”

Q. When the order of growth of the running time of an algorithm is N log N, the dou-
bling test will lead to the hypothesis that the running time is ~ a N for a constant a. Isn’t 
that a problem?

A. We have to be careful not to try to infer that the experimental data implies a par-
ticular mathematical model, but when we are just predicting performance, this is not 
really a problem. For example, when N is between 16,000 and 32,000, the plots of 14N
and N lg N are very close to one another. The data fits both curves. As N increases, the 
curves become closer together. It actually requires some care to experimentally check 
the hypothesis that an algorithm’s running time is linearithmic but not linear.

Q. Does int[] a = new int[N] count as N array accesses (to initialize entries to 0)?

A. Most likely yes, so we make that assumption in this book, though a sophisticated 
compiler implementation might try to avoid this cost for huge sparse arrays.
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ExErcisEs

1.4.1 Show that the number of different triples that can be chosen from N items is pre-
cisely N (N1)(N2)/6. Hint : Use mathematical induction or a counting argument.

1.4.2 Modify ThreeSum to work properly even when the int values are so large that 
adding two of them might cause overflow.

1.4.3 Modify DoublingTest to use StdDraw to produce plots like the standard and 
log-log plots in the text, rescaling as necessary so that the plot always fills a substantial 
portion of the window.

1.4.4 Develop a table like the one on page 181 for TwoSum.

1.4.5 Give tilde approximations for the following quantities:

a. N  1

b. 1  1/N 

c. (1  1/N ) (1  2/N )

d. 2N 3 15 N 2  N

e. lg(2N ) / lg N

f. lg(N 2 + 1) / lg N

g.  N 100 / 2N

1.4.6 Give the order of growth (as a function of N ) of the running times of each of the 
following code fragments:

a.   int sum = 0; 
    for (int n = N; n > 0; n /= 2) 

      for(int i = 0; i < n; i++) 

         sum++;

b.   int sum = 0; 
    for (int i = 1; i < N; i *= 2) 

        for (int j = 0; j < i; j++) 

            sum++;
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c.    int sum = 0; 
    for (int i = 1; i < N; i *= 2) 

       for (int j = 0; j < N; j++) 

           sum++;

1.4.7 Analyze ThreeSum under a cost model that counts arithmetic operations (and 
comparisons) involving the input numbers.

1.4.8 Write a program to determine the number pairs of values in an input file that 
are equal. If your first try is quadratic, think again and use Arrays.sort() to develop 
a linearithmic solution.

1.4.9 Give a formula to predict the running time of a program for a problem of size N
when doubling experiments have shown that the doubling factor is 2b and the running 
time for problems of size N0 is T.

1.4.10 Modify binary search so that it always returns the element with the smallest 
index that matches the search element (and still guarantees logarithmic running time).

1.4.11 Add an instance method howMany() to StaticSETofInts (page 99) that finds the 
number of occurrences of a given key in time proportional to log N in the worst case.

1.4.12 Write a program that, given two sorted arrays of N int values, prints all ele-
ments that appear in both arrays, in sorted order. The running time of your program 
should be proportional to N in the worst case.

1.4.13 Using the assumptions developed in the text, give the amount of memory need-
ed to represent an object of each of the following types:

a. Accumulator

b. Transaction

c. FixedCapacityStackOfStrings with capacity C and N entries

d. Point2D

e. Interval1D

f. Interval2D

g. Double
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crEAtivE problEms

1.4.14  4-sum. Develop an algorithm for the 4-sum problem.

1.4.15  Faster 3-sum. As a warmup, develop an implementation TwoSumFaster that 
uses a linear algorithm to count the pairs that sum to zero after the array is sorted (in-
stead of the binary-search-based linearithmic algorithm). Then apply a similar idea to 
develop a quadratic algorithm for the 3-sum problem.

1.4.16  Closest pair (in one dimension). Write a program that, given an array a[] of N 
double values, finds a closest pair : two values whose difference is no greater than the 
the difference of any other pair (in absolute value). The running time of your program 
should be linearithmic in the worst case.

1.4.17  Farthest pair (in one dimension). Write a program that, given an array a[] of N 
double values, finds a farthest pair : two values whose difference is no smaller than the 
the difference of any other pair (in absolute value). The running time of your program 
should be linear in the worst case.

1.4.18  Local minimum of an array. Write a program that, given an array a[] of N
distinct integers, finds a local minimum: an entry a[i] that is strictly less than its neigh-
bors. Each internal entry (other than a[0] and a[N-1]) has 2 neighbors. Your program 
should use ~2 lg N compares in the worst case.

1.4.19  Local minimum of a matrix. Given an N-by-N array a[] of N  2 distinct integers, 
design an algorithm that finds a local minimum: an entry a[i][j] that is strictly less 
than its neighbors. Internal entries have 4 neighbors; entries on an edge have 3 neigh-
bors; entries on a corner have 2 neighbors. The running time of your program should 
be proportional to N in the worst case, which means that you cannot afford to examine 
all N  2 entries.

1.4.20  Bitonic search. An array is bitonic if it is comprised of an increasing sequence 
of integers followed immediately by a decreasing sequence of integers. Write a program 
that, given a bitonic array of N distinct int values, determines whether a given integer is 
in the array. Your program should use ~3 lg N compares in the worst case. Extra credit: 
use only ~2 lg N compares in the worst case. 

1.4.21  Binary search on distinct values. Develop an implementation of binary search 
for StaticSETofInts (see page 99) where the running time of contains() is guar-
anteed to be ~ lg R, where R is the number of different integers in the array given as 

210 Chapter 1 n Fundamentals



ptg12441863

argument to the constructor.

1.4.22  Binary search with only addition and subtraction. [Mihai Patrascu] Write a 
program that, given an array of N distinct int values in ascending order, determines 
whether a given integer is in the array.  You may use only additions and subtractions 
and a constant amount of extra memory. The running time of your program should be 
proportional to log N in the worst case.

1.4.23  Binary search for a fraction. Devise a method that uses a logarithmic number of 
compares of the form Is the number less than x? to find a rational number p/q such that 
0 < p < q < N. Hint : Two different fractions with denominators less than N must differ 
by at least 1/N 2.

1.4.24  Throwing eggs from a building. Suppose that you have an N-story building and 
plenty of eggs. Suppose also that an egg is broken if it is thrown off floor F or higher, 
and intact otherwise. First, devise a strategy to determine the value of F such that the 
number of broken eggs is ~lg N when using ~lg N throws, then find a way to reduce the 
cost to ~2 lg F.

1.4.25  Throwing two eggs from a building. Consider the previous question, but now 
suppose you only have two eggs, and your cost model is the number of throws. Devise a 
strategy to determine F such that the number of throws is at most 2√N, then find a way 
to reduce the cost to ~c √F for some constant c. This is analogous to a situation where 
search hits (egg intact) are much cheaper than misses (egg broken).

1.4.26  3-collinearity. Suppose that you have an algorithm that takes as input N dis-
tinct points in the plane and can return the number of triples that fall on the same line. 
Show that you can use this algorithm to solve the 3-sum problem. Strong hint : Use 
algebra to show that (a, a3), (b, b3),  and (c, c3) are collinear if and only if a + b + c = 0. 
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1.4.27  Queue with two stacks. Implement a queue with two stacks so that each queue 
operation takes a constant amortized number of stack operations. Hint : If you push 
elements onto a stack and then pop them all, they appear in reverse order. If you repeat 
this process, they’re now back in order.

1.4.28  Stack with a queue. Implement a stack with a single queue so that each stack 
operations takes a linear number of queue operations. Hint : To delete an item, get all 
of the elements on the queue one at a time, and put them at the end, except for the last 
one which you should delete and return. (This solution is admittedly very inefficient.)

1.4.29  Steque with two stacks. Implement a steque with two stacks so that each steque 
operation (see Exercise 1.3.32) takes a constant amortized number of stack operations.

1.4.30  Deque with a stack and a steque. Implement a deque with a stack and a steque 
(see Exercise 1.3.32) so that each deque operation takes a constant amortized number 
of stack and steque operations.

1.4.31  Deque with three stacks. Implement a deque with three stacks so that each 
deque operation takes a constant amortized number of stack operations.

1.4.32  Amortized analysis. Prove that, starting from an empty stack, the number of ar-
ray accesses used by any sequence of M operations in the resizing array implementation 
of Stack is proportional to M. 

1.4.33  Memory requirements on a 32-bit machine. Give the memory requirements 
for Integer, Date, Counter, int[], double[], double[][], String, Node, and Stack 
(linked-list representation) for a 32-bit machine. Assume that references are 4 bytes, 
object overhead is 8 bytes, and padding is to a multiple of 4 bytes.

1.4.34  Hot or cold. Your goal is to guess a secret integer between 1 and N. You repeat-
edly guess integers between 1 and N. After each guess you learn if your guess equals the 
secret integer (and the game stops). Otherwise, you learn if the guess is hotter (closer to) 
or colder (farther from) the secret number than your previous guess. Design an algo-
rithm that finds the secret number in at most ~2 lg N guesses. Then design an algorithm 
that finds the secret number in at most ~ 1 lg N guesses.

crEAtivE problEms (continued)
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1.4.35  Time costs for pushdown stacks. Justify the entries in the table below, which 
shows typical time costs for various pushdown stack implementations, using a cost 
model that counts both data references (references to data pushed onto the stack, either 
an array reference or a reference to an object’s instance variable) and objects created. As-
sume that the Integer objects are not cached (so they must be created for each push).

1.4.36  Space usage for pushdown stacks. Justify the entries in the table below, which 
shows typical space usage for various pushdown stack implementations. Use a static 
nested class for linked-list nodes to avoid the non-static nested class overhead.  Assume 
that the Integer objects are not cached (so they must be created for each push).

data structure item type
cost to push N int values

data  references objects created

linked list
int 2 N N

Integer 3 N 2N

resizing array
int ~5 N lg N

Integer ~5 N ~N

time costs for pushdown stacks  (various implementations)

data structure item type space usage for N int values (bytes)

linked list
int ~ 32 N

Integer ~ 56 N

resizing array
int

between
~4 N and ~16 N

Integer
between

~32 N and ~56 N

Space  usage in pushdown stacks (various implementations)
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ExpErimENts

1.4.37  Autoboxing performance penalty. Run experiments to determine the perfor-
mance penalty on your machine for using autoboxing and auto-unboxing. Develop an 
implementation FixedCapacityStackOfInts and use a client such as DoublingRatio 
to compare its performance with the generic FixedCapacityStack<Integer>, for a 
large number of push() and pop() operations. 

1.4.38  Naive 3-sum implementation. Run experiments to evaluate the following im-
plementation of the inner loop of ThreeSum:

      for (int i = 0; i < N; i++) 
         for (int j = 0; j < N; j++) 
            for (int k = 0; k < N; k++) 
               if (i < j && j < k) 
                  if (a[i] + a[j] + a[k] == 0) 
                     cnt++;

Do so by developing a version of DoublingTest that computes the ratio of the running 
times of this program and ThreeSum.

1.4.39  Improved accuracy for doubling test. Modify DoublingRatio to take a second 
command-line argument that specifies the number of calls to make to timeTrial() for 
each value of N. Run your program for 10, 100, and 1,000 trials and comment on the 
precision of the results.

1.4.40  3-sum for random values. Formulate and validate a hypothesis describing the 
number of triples of N random int values that sum to 0. If you are skilled in math-
ematical analysis, develop an appropriate mathematical model for this problem, where 
the values are uniformly distributed between –M and M, where M is not small.

1.4.41  Running times. Estimate the amount of time it would take to run TwoSumFast, 
TwoSum, ThreeSumFast and ThreeSum on your computer to solve the problems for a file 
of 1 million numbers. Use DoublingRatio to do so.

1.4.42  Problem sizes. Estimate the size of the largest value of P for which you can run 
TwoSumFast, TwoSum, ThreeSumFast, and ThreeSum on your computer to solve the 
problems for a file of 2P thousand numbers. Use DoublingRatio to do so.

1.4.43  Resizing arrays versus linked lists. Run experiments to validate the hypothesis 
that resizing arrays are faster than linked lists for stacks (see Exercise 1.4.35 and Exer-
cise 1.4.36). Do so by developing a version of DoublingRatio that computes the ratio 
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of the running times of the two programs.

1.4.44  Birthday problem. Write a program that takes an integer N from the command 
line and uses StdRandom.uniform() to generate a random sequence of integers be-
tween 0 and N – 1. Run experiments to validate the hypothesis that the number of 
integers generated before the first repeated value is found is ~√N/2.

1.4.45  Coupon collector problem. Generating random integers as in the previous exer-
cise, run experiments to validate the hypothesis that the number of integers generated 
before all possible values are generated is ~N HN.
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1.5 CASe StUDy: Union-FinD

To illustrate our basic approach to developing and analyzing algorithms, we now 
consider a detailed example. Our purpose is to emphasize the following themes.

n	 Good algorithms can make the difference between being able to solve a practical 
problem and not being able to address it at all.

n	 An efficient algorithm can be as simple to code as an inefficient one.
n	 Understanding the performance characteristics of an implementation can be an 

interesting and satisfying intellectual challenge.
n	 The scientific method is an important tool in helping us choose among different 

methods for solving the same problem.
n	 An iterative refinement process can lead to increasingly efficient algorithms.

These themes are reinforced throughout the book. This prototypical example sets the 
stage for our use of the same general methodology for many other problems. 

The problem that we consider is not a toy problem; it is a fundamental compu-
tational task, and the solution that we develop is of use in a variety of applications, 
from percolation in physical chemistry to connectivity in communications networks. 
We start with a simple solution, then seek to understand that solution’s performance 
characteristics, which help us to see how to improve the algorithm. 

Dynamic connectivity We start with the following problem specification: The 
input is a sequence of pairs of integers, where each integer represents an object of some 
type and we are to interpret the pair p q as meaning “p is connected to q.” We assume 
that “is connected to” is an equivalence relation, which means that it is

n	 Reflexive : p is connected to p.  
n	 Symmetric : If p is connected to q, then q is connected to p.  
n	 Transitive : If p is connected to q and q is connected to r, then p is connected to r.

An equivalence relation partitions the objects into equivalence classes. In this case, two 
objects are in the same equivalence class if and only if they are connected. Our goal is 
to write a program to filter out extraneous pairs (pairs where both objects are in the 
same equivalence class) from the sequence. In other words, when the program reads a 
pair p q from the input, it should write the pair to the output only if the pairs it has 
seen to that point do not imply that p is connected to q. If the previous pairs do imply 
that p is connected to q, then the program should ignore the pair p q and proceed to 
read in the next pair. The figure on the facing page gives an example of this process. To 
achieve the desired goal, we need to devise a data structure that can remember sufficient 
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information about the pairs it has seen to be able to decide whether or not a new pair of 
objects is connected. Informally, we refer to the task of designing such a method as the 
dynamic connectivity problem. This problem arises applications such as the following:

Networks  The integers might represent computers in a large network, and the pairs 
might represent connections in the network. Then, our program determines whether 
we need to establish a new direct connection for p and q to be able 
to communicate or whether we can use existing connections to 
set up a communications path. Or, the integers might represent 
contact sites in an electrical circuit, and the pairs might represent 
wires connecting the sites. Or, the integers might represent people 
in a social network, and the pairs might represent friendships. In 
such applications, we might need to process millions of objects 
and billions of connections.   

Variable-name equivalence  In certain programming environ-
ments, it is possible to declare two variable names as being equiv-
alent (references to the same object). After a sequence of such dec-
larations, the system needs to be able to determine whether two 
given names are equivalent. This application is an early one (for 
the FORTRAN programming language) that motivated the devel-
opment of the algorithms that we are about to consider.  

Mathematical sets  On a more abstract level, you can think of 
the integers as belonging to mathematical sets. When we process a 
pair p q, we are asking whether they belong to the same set. If not, 
we unite p’s set and q’s set, putting them in the same set.

To fix ideas, we will use networking terminology for the rest of 
this section and refer to the objects as sites, the pairs as connec-
tions, and the equivalence classes as connected components, or just 
components for short. For simplicity, we assume that we have N 
sites with integer names, from 0 to N-1. We do so without loss of 
generality because we shall be considering a host of algorithms in 
Chapter 3 that can associate arbitrary names with such integer 
identifiers in an efficient manner.

A larger example that gives some indication of the difficulty of the connectivity 
problem is depicted in the figure at the top of the next page. You can quickly identify 
the component consisting of a single site in the left middle of the diagram and the 

Dynamic connectivity example

0 1 2 3 4

5 6 7 8 9   

4 3

3 8

6 5

9 4

2 1

8 9

5 0

7 2

6 1

1 0

6 7

2 components

don’t print
pairs that

are already
connected
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component consisting of five sites at the bottom left, but you might have difficulty veri-
fying that all of the other sites are connected to one another. For a program, the task is 
even more difficult, because it has to work just with site names and connections and has 
no access to the geometric placement of sites in the diagram. How can we tell quickly 
whether or not any given two sites in such a network are connected? 

The first task that we face in developing an algorithm is to specify the problem in a 
precise manner.  The more we require of an algorithm, the more time and space we may 
expect it to need to finish the job. It is impossible to quantify this relationship a priori, 
and we often modify a problem specification on finding that it is difficult or expensive 
to solve or, in happy circumstances, on finding that an algorithm can provide informa-
tion more useful than what was called for in the original specification. For example, our 

Medium connectivity example (625 sites, 900 edges, 3 connected components) 

connected
component
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connectivity problem specification requires only that our program be able to determine 
whether or not any given pair p q is connected, and not that it be able to demonstrate a 
set of connections that connect that pair. Such a requirement makes the problem more 
difficult and leads us to a different family of algorithms, which we consider in Section 
4.1.

To specify the problem, we develop an API that encapsulates the basic operations 
that we need: initialize, add a connection between two sites, identify the component 
containing a site, determine whether two sites are in the same component, and count 
the number of components. Thus, we articulate the following API:

public class UF

UF(int N) initialize N sites with integer names (0 to N-1) 

void union(int p, int q) add connection between p and q 

int find(int p) component identifier for p (0 to N-1) 

boolean connected(int p, int q) return true if p and q are in the same component

int count() number of components

Union-find apI

The union() operation merges two components if the two sites are in different com-
ponents, the find() operation returns an integer component identifier for a given site, 
the connected() operation determines whether two sites are in the same component, 
and the count() method returns the number of components. We start with N compo-
nents, and each union() that merges two different components decrements the num-
ber of components by 1.

As we shall soon see, the development of an algorithmic solution for dynamic con-
nectivity thus reduces to the task of developing an implementation of this API. Every 
implementation has to

n Define a data structure to represent the known connections
n Develop efficient union(), find(),  connected(), and count() implementa-

tions that are based on that data structure
As usual, the nature of the data structure has a direct impact on the efficiency of the 
algorithms, so data structure and algorithm design go hand in hand. The API already 
specifies the convention that both sites and components will be identified by int val-
ues between 0 and N-1, so it makes sense to use a site-indexed array id[] as our basic 
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data structure to represent the components. We always use the name of one of the sites 
in a component as the component identifier, so you can think of each component as 
being represented by one of its sites. Initially, we start with N components, each site in 
its own component, so we initialize id[i] to i for all i from 0 to N-1. For each site 
i, we keep the information needed by find() to determine the component contain-
ing i in id[i], using various algorithm-dependent strategies. All of our implementa-
tions use a one-line implementation of connected() that returns the boolean value 
find(p) == find(q). 

In summary, our starting point is Algorithm 1.5 on the facing 
page. We maintain two instance variables, the count of components 
and the array id[]. Implementations of find() and union() are 
the topic of the remainder of this section. 

To test the utility of the API and to provide a basis for develop-
ment, we include a client in main() that uses it to solve the dy-
namic connectivity problem. It reads the value of N followed by a 
sequence of pairs of integers (each in the range 0 to N-1), calling 
connected() for each pair: If the two sites in the pair are already 
connected, it moves on to the next pair; if they are not, it calls 
union() and prints the pair. Before considering implementations, 
we also prepare test data: the file tinyUF.txt contains the 11 con-
nections among 10 sites used in the small example illustrated on 
page 217, the file mediumUF.txt contains the 900 connections 
among 625 sites illustrated on page 218, and the file largeUF.txt 
is an example with 2 million connections among 1 millions sites. 
Our goal is to be able to handle inputs such as largeUF.txt in a 
reasonable amount of time.

To analyze the algorithms, we focus on the number of times each 
algorithm accesses an array entry. By doing so, we are implicitly for-
mulating the hypothesis that the running times of the algorithms 
on a particular machine are 
within a constant factor of 

this quantity. This hypothesis is immediate from 
the code, is not difficult to validate through ex-
perimentation, and provides a useful starting 
point for comparing algorithms, as we will see.

% more tinyUF.txt 
10 
4 3 
3 8 
6 5 
9 4 
2 1 
8 9 
5 0 
7 2 
6 1 
1 0 
6 7

% more mediumUF.txt 
625 
528 503 
548 523 
... 
[900 connections]

% more largeUF.txt 
1000000 
786321 134521 
696834 98245 
... 
[2000000 connections]

Union-find cost model. When 
studying algorithms to imple-
ment the union-find API, we 
count array accesses (the num-
ber of times an array entry is 
accessed, for read or write). 
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aLgorIthM 1.5 Union-find implementation

public class UF 
{ 
   private int[] id;     // access to component id (site indexed) 
   private int count;    // number of components

   public UF(int N) 
   {  // Initialize component id array. 
      count = N; 
      id = new int[N]; 
      for (int i = 0; i < N; i++) 
         id[i] = i; 
   }

   public int count() 
   {  return count;  }

   public boolean connected(int p, int q) 
   {  return find(p) == find(q);  }

   public int  find(int p) 
   public void union(int p, int q) 
   // See page 222 (quick-find),page 224 (quick-union) andpage 228 (weighted).

   public static void main(String[] args) 
   {  // Solve dynamic connectivity problem on StdIn. 
      int N = StdIn.readInt();              // Read number of sites. 
      UF uf = new UF(N);                    // Initialize N components. 
      while (!StdIn.isEmpty()) 
      { 
         int p = StdIn.readInt();   
         int q = StdIn.readInt();           // Read pair to connect. 
         if (uf.connected(p, q)) continue;  // Ignore if connected. 
         uf.union(p, q);                    // Combine components 
         StdOut.println(p + " " + q);       //   and print connection. 
      } 
      StdOut.println(uf.count() + " components"); 
   }

}

Our UF implementations are based on this code, which maintains an array of integers id[] such 
that the find() method returns the same integer for every site in each connected component. The 
union() method must maintain this invariant. 

% java UF < tinyUF.txt 
4 3 
3 8 
6 5 
9 4 
2 1 
5 0 
7 2 
6 1 
2 components
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Implementations We shall consider three different implementations, all based on 
using the site-indexed id[] array, to determine whether two sites are in the same con-
nected component. 

Quick-find  One approach is to maintain the invariant that p and q are connected 
if and only if id[p] is equal to id[q]. In other words, all sites in a component must 
have the same value in id[]. This method is called quick-find because find(p) just 
returns id[p], which immediately implies that connected(p, q) reduces to just the 
test id[p] == id[q] and returns true if and only 
if p and q are in the same component. To maintain 
the invariant for the call union(p, q), we first check 
whether they are already in the same component, in 
which case there is nothing to do. Otherwise, we are 
faced with the situation that all of the id[] entries 
corresponding to sites in the same component as p 
have one value and all of the id[] entries correspond-
ing to sites in the same component as q have another 
value. To combine the two components into one, we 
have to make all of the id[] entries corresponding 
to both sets of sites the same value, as shown in the 
example at right. To do so, we go through the array, changing all the entries with values 
equal to id[p] to the value id[q]. We could have decided to change all the entries equal 
to id[q] to the value id[p]—the choice between these two alternatives is arbitrary. The 

code for find() and union() based 
on these descriptions, given at left, is 
straightforward. A full trace for our 
development client with our sample 
test data tinyUF.txt is shown on 
the next page. 

public int find(int p) 
{  return id[p];  }

public void union(int p, int q) 
{  // Put p and q into the same component. 
   int pID = find(p); 
   int qID = find(q);

   // Nothing to do if p and q are already 
        in the same component. 
   if (pID == qID) return;

   // Change values from id[p] to id[q]. 
   for (int i = 0; i < id.length; i++) 
       if (id[i] == pID) id[i] = qID; 
   count--; 
}

Quick-find

Quick-�nd overview 

find examines id[5] and id[9]

p q   0 1 2 3 4 5 6 7 8 9

5 9   1 1 1 8 8 1 1 1 8 8

p q   0 1 2 3 4 5 6 7 8 9

5 9   1 1 1 8 8 1 1 1 8 8

      8 8 8 8 8 8 8 8 8 8

union has to change all 1s to 8s
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Quick-find analysis  The find() operation is certainly quick, as it only accesses the 
id[] array once in order to complete the operation. But quick-find is typically not use-
ful for large problems because union() needs to scan through the whole id[] array for 
each input pair.

proposition F. The quick-find algorithm uses one array access for each call to 
find(), two array accesses for each call to connected(), and between N + 3 and 
2N + 1 array accesses for each call to union() that combines two components.

proof: Immediate from the code. Each call to connected() tests two entries in the 
id[] array, one for each of the two calls to find(). Each call to union() that com-
bines two components does so by making two calls to find(), testing each of the N 
entries in the id[] array, and changing between 1 and N  1 of them.

In particular, suppose that we use quick-find for the 
dynamic connectivity problem and wind up with a 
single component. This requires at least N1 calls to 
union(), and, consequently, at least (N3)(N1) ~ 
N 2 array accesses—we are led immediately to the hy-
pothesis that dynamic connectivity with quick-find 
can be a quadratic-time process. This analysis gener-
alizes to say that quick-find is quadratic for typical 
applications where we end up with a small number of 
components. You can easily validate this hypothesis 
on your computer with a doubling test (see Exercise 
1.5.23 for an instructive example). Modern comput-
ers can execute hundreds of millions or billions of in-
structions per second, so this cost is not noticeable if 
N is small, but we also might find ourselves with mil-
lions or billions of sites and connections to process in 
a modern application, as represented by our test file 
largeUF.txt. If you are still not convinced and feel 
that you have a particularly fast computer, try using 
quick-find to determine the number of components 
implied by the pairs in largeUF.txt. The inescap-
able conclusion is that we cannot feasibly solve such 
a problem using the quick-find algorithm, so we seek 
better algorithms.Quick-�nd trace

            id[]

p q  0 1 2 3 4 5 6 7 8 9

4 3  0 1 2 3 4 5 6 7 8 9  

     0 1 2 3 3 5 6 7 8 9  

3 8  0 1 2 3 3 5 6 7 8 9  

     0 1 2 8 8 5 6 7 8 9  

6 5  0 1 2 8 8 5 6 7 8 9  

     0 1 2 8 8 5 5 7 8 9  

9 4  0 1 2 8 8 5 5 7 8 9  

     0 1 2 8 8 5 5 7 8 8  

2 1  0 1 2 8 8 5 5 7 8 8  

     0 1 1 8 8 5 5 7 8 8  

8 9  0 1 1 8 8 5 5 7 8 8  

5 0  0 1 1 8 8 5 5 7 8 8  

     0 1 1 8 8 0 0 7 8 8  

7 2  0 1 1 8 8 0 0 7 8 8  

     0 1 1 8 8 0 0 1 8 8  

6 1  0 1 1 8 8 0 0 1 8 8  

     1 1 1 8 8 1 1 1 8 8  

1 0  1 1 1 8 8 1 1 1 8 8  

6 7  1 1 1 8 8 1 1 1 8 8

id[p] and id[q]
match, so no change

     id[p] and id[q] differ, so
union() changes entries equal

to id[p] to id[q] (in red)
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Quick-union  The next algorithm that we consider is a complementary method that 
concentrates on speeding up the union() operation. It is based on the same data 
structure—the site-indexed id[] ar-
ray—but we interpret the values dif-
ferently, to define more complicated 
structures. Specifically, the id[] entry 
for each site is the name of another 
site in the same component (possibly 
itself)—we refer to this connection as 
a link. To implement find(), we start 
at the given site, follow its link to an-
other site, follow that site’s link to yet 
another site, and so forth, following 
links until reaching a root, a site that 
has a link to itself (which is guaran-
teed to happen, as you will see). Two 
sites are in the same component if and 
only if this process leads them to the 
same root. To validate this process, we need union(p, q) to maintain this invariant, 
which is easily arranged: we follow links to find the roots associated with p and q, then 
rename one of the components by linking one of these roots to the other; hence the 
name quick-union. Again, we have an arbitrary choice of whether to rename the com-
ponent containing p or the component containing q; the implementation above re-

names the one containing p. The 
figure on the next page shows a 
trace of the quick-union algo-
rithm for tinyUF.txt. This trace 
is best understood in terms of the 
graphical representation depict-
ed at left, which we consider next.

Quick-union overview 

p q   0 1 2 3 4 5 6 7 8 9

5 9   1 1 1 8 3 0 5 1 8 8

p q   0 1 2 3 4 5 6 7 8 9

5 9   1 1 1 8 3 0 5 1 8 8

      1 8 1 8 3 0 5 1 8 8

0

5 4

1 8

6

2 7 3 9

0

5

4

1

8

6

2 7

3 9

find(5) is
id[id[id[5]]]

find(9) is
id[id[9]]

find has to follow links to the root

union changes just one link

id[] is parent-link representation
of a forest of trees

root

8 becomes parent of 1

public int find(int p) 
{  // Find component name. 
   while (p != id[p]) p = id[p]; 
   return p; 
}

public void union(int p, int q) 
{  // Give p and q the same root. 
   int i = find(p); 
   int j = find(q); 
   if (i == j) return;

   id[i] = j;

   count--; 
}

Quick-union
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Forest-of-trees representation  The code for quick-union is compact, but a bit opaque. 
Representing sites as nodes (labeled circles) and links as arrows from one node to an-
other gives a graphical representation of the data structure that makes it relatively easy 
to understand the operation of the algorithm. The resulting structures are trees—in 
technical terms, our id[] array 
is a parent-link representation 
of a forest (set) of trees. To sim-
plify the diagrams, we often omit 
both the arrowheads in the links 
(because they all point upwards) 
and the self-links in the roots 
of the trees. The forests corre-
sponding to the id[] array for 
tinyUF.txt are shown at right. 
When we start at the node cor-
responding to any site and follow 
links, we eventually end up at the 
root of the tree containing that 
node. We can prove this prop-
erty to be true by induction: It is 
true after the array is initialized 
to have every node link to itself, 
and if it is true before a given 
union() operation, it is certainly 
true afterward. Thus, the find() 
method on page 224 returns the 
name of the site at the root (so 
that connected() checks wheth-
er two sites are in the same tree). 
This representation is useful for 
this problem because the nodes 
corresponding to two sites are in 
the same tree if and only if the 
sites are in the same component. 
Moreover, the trees are not difficult to build: the union() implementation on page 224 
combines two trees into one in a single statement, by making the root of one the parent 
of the other. 

Quick-union trace (with corresponding forests of trees)

              id[]

p q   0 1 2 3 4 5 6 7 8 9

4 3   0 1 2 3 4 5 6 7 8 9  

      0 1 2 3 3 5 6 7 8 9  

3 8   0 1 2 3 3 5 6 7 8 9  

      0 1 2 8 3 5 6 7 8 9

  

6 5   0 1 2 8 3 5 6 7 8 9  

      0 1 2 8 3 5 5 7 8 9

  

9 4   0 1 2 8 3 5 5 7 8 9  

      0 1 2 8 3 5 5 7 8 8

  

2 1   0 1 2 8 3 5 5 7 8 8  

      0 1 1 8 3 5 5 7 8 8

  

8 9   0 1 1 8 3 5 5 7 8 8  

5 0   0 1 1 8 3 5 5 7 8 8  

      0 1 1 8 3 0 5 7 8 8

  

7 2   0 1 1 8 3 0 5 7 8 8  

      0 1 1 8 3 0 5 1 8 8

  

6 1   0 1 1 8 3 0 5 1 8 8  

      1 1 1 8 3 0 5 1 8 8

  

1 0   1 1 1 8 3 0 5 1 8 8

6 7   1 1 1 8 3 0 5 1 8 8
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Quick-union analysis  The quick-union algorithm would seem to be faster than the 
quick-find algorithm, because it does not have to go through the entire array for each 

input pair; but how much faster is it? Analyzing the 
cost of quick-union is more difficult than it was for 
quick-find, because the cost is more dependent on 
the nature of the input. In the best case, find() just 
needs one array access to find the identifier associ-
ated with a site, as in quick-find; in the worst case, it 
needs 2N  1 array accesses, as for 0 in the example 
at left (this count is conservative since compiled 
code will typically not do an array access for the 
second reference to id[p] in the while loop). Ac-
cordingly, it is not difficult to construct a best-case 
input for which the running time of our dynamic 
connectivity client is linear; on the other hand it is 
also not difficult to construct a worst-case input for 
which the running time is quadratic (see the dia-
gram at left and Proposition G below). Fortunate-
ly, we do not need to face the problem of analyzing 
quick union and we will not dwell on comparative 
performance of quick-find and quick-union be-

cause we will next examine another variant that is far more efficient than either. For the 
moment, you can regard quick-union as an improvement over quick-find because it 
removes quick-find’s main liability (that union() always takes linear time). This differ-
ence certainly represents an improvement for typical data, but quick-union still has the 
liability that we cannot guarantee it to be substantially faster than quick-find in every 
case (for certain input data, quick-union is no faster than quick-find). 

Definition. The size of a tree is its number of nodes. The depth of a node in a tree 
is the number of links on the path from it to the root. The height of a tree is the 
maximum depth among its nodes. 

proposition G. The number of array accesses used by find() in quick-union is 1 
plus the twice the depth of the node corresponding to the given site. The number 
of array accesses used by union() and connected() is the cost of the two find() 
operations (plus 1 for union() if the given sites are in different trees).

proof: Immediate from the code.

Quick-union worst case

          id[]

p q   0 1 2 3 4 ...

0 1   0 1 2 3 4 ...  

      1 1 2 3 4 ...  

0 2   0 1 2 3 4 ...  

      1 2 2 3 4 ...  

0 3   0 1 2 3 4 ...  

      1 2 3 3 4 ...

0 4   0 1 2 3 4 ...  

      1 2 3 4 4 ...

 .

 .

 . 

...

...

...

...

...

0 1 2 3 4

0

1 2 3 4

0

1

2 3 4

0

1

2

3 4

0

1

2

3

4

depth 4
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Again, suppose that we use quick-union for the dynamic connectivity problem and 
wind up with a single component. An immediate implication of Proposition G is that 
the running time is quadratic, in the worst case. Suppose that the input pairs come 
in the order 0-1, then 0-2, then 0-3, and so forth. After N  1 such pairs, we have N
sites all in the same set, and the tree that is formed by the quick-union algorithm has 
height N  1, with 0 linking to 1, which links to 2, which links to 3, and so forth (see 
the diagram on the facing page). By Proposition G, the number of array accesses for 
the union() operation for the pair 0 i is exactly 2i + 3 (site 0 is at depth i and site i at 
depth 0). Thus, the total number of array accesses for the find() operations for these 
N pairs is  (3 + 5 + 7 + . . . + 2N+ 1 ) ~N 2.

Weighted quick-union  Fortunately, there is an 
easy modification to quick-union that allows us 
to guarantee that bad cases such as this one do 
not occur. Rather than arbitrarily connecting the 
second tree to the first for union(), we keep track 
of the size of each tree and always connect the 
smaller tree to the larger. This change requires 
slightly more code and another array to hold the 
node counts, as shown on page 228, but it leads 
to substantial improvements in efficiency. We re-
fer to this algorithm as the weighted quick-union 
algorithm. The forest of trees constructed by this 
algorithm for tinyUF.txt is shown in the figure 
at left on the top of page 229. Even for this small example, the tree height is substan-
tially smaller than the height for the unweighted version.

Weighted quick-union analysis  The figure at right on the top of page 229 illustrates 
the worst case for weighted quick union, when the sizes of the trees to be merged by 
union() are always equal (and a power 
of 2). These tree structures look complex, 
but they have the simple property that 
the height of a tree of 2n nodes is n. Fur-
thermore, when we merge two trees of 2n 
nodes, we get a tree of 2n1 nodes, and we 
increase the height of the tree to n1. This 
observation generalizes to provide a proof 
that the weighted algorithm can guarantee 
logarithmic performance.

smaller
tree

larger
tree

q

p

smaller
tree

larger
tree

q

p

smaller
tree

larger
tree

q

p

smaller
tree

larger
tree

q

p

Weighted quick-union 

weighted

quick-union

always chooses the
better alternative

might put the
larger tree lower

% java WeightedQuickUnionUF < mediumUF.txt 
528 503 
548 523 
... 
3 components

% java WeightedQuickUnionUF < largeUF.txt 
786321 134521 
696834 98245 
... 
6 components
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aLgorIthM 1.5 (continued) Union-find implementation (weighted quick-union)

public class WeightedQuickUnionUF 
{  
   private int[] id;     // parent link (site indexed) 
  private int[] sz;     // size of component for roots (site indexed) 
   private int count;    // number of components

   public WeightedQuickUnionUF(int N) 
   {  
      count = N; 
      id = new int[N]; 
      for (int i = 0; i < N; i++) id[i] = i; 
      sz = new int[N]; 
      for (int i = 0; i < N; i++) sz[i] = 1;

   }

   public int count() 
   {  return count;  }

   public boolean connected(int p, int q) 
   {  return find(p) == find(q);  }

   public int find(int p) 
   {  // Follow links to find a root. 
      while (p != id[p]) p = id[p]; 
      return p; 
   }

   public void union(int p, int q) 
   {   
      int i = find(p); 
      int j = find(q); 
      if (i == j) return;

     // Make smaller root point to larger one. 
      if   (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; } 
      else                 { id[j] = i; sz[i] += sz[j]; } 
      count--; 
   } 
}

This code is best understood in terms of the forest-of-trees representation described in the text. We 
add a site-indexed array sz[] as an instance variable so that union() can link the root of the smaller 
tree to the root of the larger tree. This addition makes it feasible to address large problems.
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Weighted quick-union traces (forests of trees)

reference input

p q

4 3

3 8

6 5

9 4

2 1

8 9

5 0

7 2

6 1

1 0

6 7

worst-case input

p q

0 1

2 3

4 5

6 7

0 2

4 6

0 4

proposition H. The depth of any node in a forest built by weighted quick-union for 
N sites is at most lg N.

proof: We prove a stronger fact by (strong) induction: The height of every tree of 
size k in the forest is at most lg k. The base case follows from the fact that the tree 
height is 0 when k is 1. By the inductive hypothesis, assume that the tree height of a 
tree of size i is at most lg i for all i < k. When we combine a tree of size i with a tree 
of size j with i  j and i  j = k, we increase the depth of each node in the smaller set 
by 1, but they are now in a tree of size i  j = k, so the property is preserved because 
1+ lg i = lg(i  i )  lg(i  j ) = lg k.
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corollary. For weighted quick-union with N sites, the worst-case order of growth 
of the cost of find(), connected(), and union() is log N.

proof. Each operation does at most a constant number of array accesses for each 
node on the path from a node to a root in the forest.

For dynamic connectivity, the practical implication of Proposition H and its corollary 
is that weighted quick-union is the only one of the three algorithms that can feasibly 
be used for huge practical problems. The weighted quick-union algorithm uses at most
c M lg N array accesses to process M connections among N sites for a small constant c. 
This result is in stark contrast to our finding that quick-find always (and quick-union 
sometimes) uses at least MN array accesses. Thus, with weighted quick-union, we can 
guarantee that we can solve huge practical dynamic connectivity problems in a reason-
able amount of time. For the price of a few extra lines of code, we get a program that 
can be millions of times faster than the simpler algorithms for the huge dynamic con-
nectivity problems that we might encounter in practical applications.

A 100-site example is shown on the top of this page. It is evident from this diagram 
that relatively few nodes fall far from the root with weighted quick-union. Indeed it is 
frequently the case that a 1-node tree is merged with a larger tree, which puts the node 
just one link from the root. Empirical studies on huge problems tell us that weighted 
quick-union typically solves practical problems in constant time per operation. We 
could hardly expect to find a more efficient algorithm.

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average depth: 1.52

average depth: 5.11
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Optimal algorithms  Can we find an algorithm that has guaranteed constant-time-
per-operation performance? This question is an extremely difficult one that plagued 
researchers for many years. In pursuit of an answer, a number of variations of quick-
union and weighted quick-union have been studied. For example, the following meth-
od, known as path compression, is easy to implement. Ideally, we would like every node 
to link directly to the root of its tree, but we do not want to pay the price of changing a 
large number of links, as we did in the quick-find algorithm. We can approach the ideal 
simply by making all the nodes that we do examine directly link to the root. This step 
seems drastic at first blush, but it is easy to implement, and there is nothing sacrosanct 
about the structure of these trees: if we can modify them to make the algorithm more 
efficient, we should do so. To implement path compression, we just add another loop to 
find() that sets the id[] entry corresponding to each node encountered along the way 
to link directly to the root. The net result is to flatten the trees almost completely, ap-
proximating the ideal achieved by the quick-find algorithm. The method is simple and 
effective, but you are not likely to be able to discern any improvement over weighted 
quick-union in a practical situation (see Exercise 1.5.24). Theoretical results about 
the situation are extremely complicated and quite remarkable. Weighted quick union 
with path compression is optimal but not quite constant-time per operation. That is, not 
only is weighted quick-union with path compression not constant-time per operation 
in the worst case (amortized), but also there exists no algorithm that can guarantee to 
perform each union-find operation in amortized constant time (under the very general 
“cell probe” model of computation). Weighted quick-union with path compression is 
very close to the best that we can do for this problem.

algorithm
order of growth for N sites (worst case)

constructor union find

quick-find N N 1

quick-union N tree height tree height

weighted quick-union N lg N lg N

weighted quick-union with 
path compresson N

very, very nearly, but not quite 1 (amortized ) 
(see Exercise 1.5.13)

impossible N 1 1

performance characteristics of union-find algorithms
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Amortized cost plots  As with any data type implementation, it is worthwhile to run 
experiments to test the validity of our performance hypotheses for typical clients, as dis-

cussion in Section 1.4. The figure at left shows 
details of the performance of the algorithms for 
our dynamic connectivity development client 
when solving our 625-site connectivity example 
(mediumUF.txt). Such diagrams are easy to pro-
duce (see Exercise 1.5.16): For the i th connec-
tion processed, we maintain a variable cost that 
counts the number of array accesses (to id[] or 
sz[]) and a variable total that is the sum of 
the total number of array accesses so far. Then 
we plot a gray dot at (i, cost) and a red dot 
at (i, total/i). The red dots are the average 
cost per operation, or amortized cost. These 
plots provide good insights into algorithm be-
havior. For quick-find, every union() opera-
tion uses at least 625 accesses (plus 1 for each 
component merged, up to another 625) and 
every connected() operation uses 2 accesses. 
Initially, most of the connections lead to a call 
on union(), so the cumulative average hovers 
around 625; later, most connections are calls to 
connected() that cause the call to union() to 
be skipped, so the cumulative average decreas-
es, but still remains relatively high. (Inputs that 
lead to a large number of connected() calls that 
cause union() to be skipped will exhibit signifi-
cantly better performance—see Exercise 1.5.23
for an example). For quick-union, all operations 
initially require only a few array accesses; eventu-
ally, the height of the trees becomes a significant 
factor and the amortized cost grows noticably. 
For weighted quick-union, the tree height stays 
small, none of the operations are expensive, and 
the amortized cost is low. These experiments 

validate our conclusion that weighted quick-union is certainly worth implementing 
and that there is not much further room for improvement for practical problems.

Cost of all operations (625 sites)

quick-�nd

quick-union

weighted quick-union

0

0 900

1300

458

nu
m

be
r o

f a
rr

ay
 a

cc
es

se
s

number of connections

0

100

0
20

one gray dot
for each connection
processed by client

red dots give
cumulative average

union() operations
use at least 625 references 

connected() operations
use exactly 2  array accesses

find() operations
become expensive 

no expensive operations

20

8
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Perspective Each of the UF implementations that we considered is an improvement 
over the previous in some intuitive sense, but the process is artificially smooth because 
we have the benefit of hindsight in looking over the development of the algorithms as 
they were studied by researchers over the years. The implementations are simple and 
the problem is well specified, so we can evaluate the various algorithms directly by run-
ning empirical studies. Furthermore, we can use these studies to validate mathematical 
results that quantify the performance of these algorithms. When possible, we follow the 
same basic steps for fundamental problems throughout the book that we have taken for 
union–find algorithms in this section, some of which are highlighted in this list: 

n Decide on a complete and specific problem statement, including identifying 
fundamental abstract operations that are intrinsic to the problem and an API.

n Carefully develop a succinct implementation for a straightforward algorithm, 
using a well-thought-out development client and realistic input data.

n Know when an implementation could not possibly be used to solve problems on 
the scale contemplated and must be improved or abandoned.

n Develop improved implementations through a process of stepwise refinement, 
validating the efficacy of ideas for improvement through empirical analysis, 
mathematical analysis, or both.

n Find high-level abstract representations of data structures or algorithms in op-
eration that enable effective high-level design of improved versions. 

n Strive for worst-case performance guarantees when possible, but accept good 
performance on typical data when available.

n Know when to leave further improvements for detailed in-depth study to skilled 
researchers and move on to the next problem.

The potential for spectacular performance improvements for practical problems such 
as those that we saw for union–find makes algorithm design a compelling field of study.
What other design activities hold the potential to reap savings factors of millions or 
billions, or more?

Developing an efficient algorithm is an intellectually satisfying activity that can have 
direct practical payoff. As the dynamic connectivity problem indicates, a simply stated 
problem can lead us to study numerous algorithms that are not only both useful and 
interesting, but also intricate and challenging to understand. We shall encounter many 
ingenious algorithms that have been developed over the years for a host of practical 
problems. As the scope of applicability of computational solutions to scientific and 
commercial problems widens, so also grows the importance of being able to use ef-
ficient algorithms to solve known problems and of being able to develop efficient solu-
tions to new problems.
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Q&A

Q. I’d like to add a delete() method to the API that allows clients to delete connec-
tions. Any advice on how to proceed?

A. No one has devised an algorithm as simple and efficient as the ones in this section 
that can handle deletions. This theme recurs throughout this book. Several of the data 
structures that we consider have the property that deleting something is much more 
difficult than adding something.

Q. What is the cell-probe model?

A. A model of computation where we only count accesses to a random-access memory 
large enough to hold the input and consider all other operations to be free.
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ExErcisEs

1.5.1 Show the contents of the id[] array and the number of times the ar-
ray is accessed for each input pair when you use quick-find for the sequence 
9-0 3-4 5-8 7-2 2-1 5-7 0-3 4-2.

1.5.2 Do Exercise 1.5.1, but use quick-union (page 224). In addition, draw the forest of 
trees represented by the id[] array after each input pair is processed.

1.5.3 Do Exercise 1.5.1, but use weighted quick-union (page 228). 

1.5.4 Show the contents of the sz[] and id[] arrays and the number of array accesses 
for each input pair corresponding to the weighted quick-union examples in the text   
(both the reference input and the worst-case input).

1.5.5 Estimate the minimum amount of time (in days) that would be required for 
quick-find to solve a dynamic connectivity problem with 109 sites and 106 input pairs, 
on a computer capable of executing 109 instructions per second. Assume that each itera-
tion of the inner for loop requires 10 machine instructions.

1.5.6 Repeat Exercise 1.5.5 for weighted quick-union.

1.5.7 Develop classes QuickUnionUF and QuickFindUF that implement quick-union 
and quick-find, respectively. 

1.5.8 Give a counterexample that shows why this intuitive implementation of union() 
for quick-find is not correct:

public void union(int p, int q) 
{  
   if (connected(p, q)) return;

   // Rename p’s component to q’s name. 
   for (int i = 0; i < id.length; i++) 
       if (id[i] == id[p]) id[i] = id[q]; 
   count--; 
}

1.5.9 Draw the tree corresponding to the id[] array depicted at 
right. Can this be the result of running weighted quick-union? 
Explain why this is impossible or give a sequence of operations 
that results in this array.

i    0 1 2 3 4 5 6 7 8 9

id[i]  1 1 3 1 5 6 1 3 4 5
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1.5.10 In the weighted quick-union algorithm, suppose that we set id[find(p)] to q 
instead of to id[find(q)]. Would the resulting algorithm be correct?

Answer : Yes, but it would increase the tree height, so the performance guarantee would 
be invalid.

1.5.11 Implement weighted quick-find, where you always change the id[] entries of 
the smaller component to the identifier of the larger component. How does this change 
affect performance?

ExErcisEs (continued)
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crEAtivE problEms

1.5.12  Quick-union with path compression. Modify quick-union (page 224) to in-
clude path compression, by adding a loop to find() that links every site on the path 
from p to the root. Give a sequence of input pairs that causes this method to produce a 
path of length 4. Note : The amortized cost per operation for this algorithm is known to 
be logarithmic.

1.5.13  Weighted quick-union with path compression. Modify weighted quick-union 
(Algorithm 1.5) to implement path compression, as described in Exercise 1.5.12. 
Give a sequence of input pairs that causes this method to produce a tree of height 4.
Note : The amortized cost per operation for this algorithm is known to be bounded by a 
function known as the inverse Ackermann function and is less than 5 for any conceivable 
practical value of N.

1.5.14  Weighted quick-union by height. Develop a UF implementation that uses the 
same basic strategy as weighted quick-union but keeps track of tree height and always 
links the shorter tree to the taller one. Prove a logarithmic upper bound on the height 
of the trees for N sites with your algorithm.

1.5.15  Binomial trees. Show that the number of nodes at each level in the worst-case 
trees for weighted quick-union are binomial coefficients. Compute the average depth of 
a node in a worst-case tree with N = 2n nodes. 

1.5.16  Amortized costs plots. Instrument your implementations from Exercise 1.5.7
to make amortized costs plots like those in the text. 

1.5.17  Random connections. Develop a UF client ErdosRenyi that takes an integer 
value N from the command line, generates random pairs of integers between 0 and N-1, 
calling connected() to determine if they are connected and then union() if not (as in 
our development client), looping until all sites are connected, and printing the number 
of connections generated. Package your program as a static method count() that takes 
N as argument and returns the number of connections and a main() that takes N from 
the command line, calls count(), and prints the returned value.

1.5.18  Random grid generator. Write a program RandomGrid that takes an int value 
N from the command line, generates all the connections in an N-by-N grid, puts them 
in random order, randomly orients them (so that p q and q p are equally likely to oc-
cur), and prints the result to standard output. To randomly order the connections, use 
a RandomBag (see Exercise 1.3.34 on page 167). To encapsulate p and q in a single object, 
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use the Connection nested class shown below. Package your program as two static 
methods:  generate(), which takes N as argument and returns an array of connec-
tions, and main(), which takes N from the command line, calls generate(), and iterates 
through the returned array to print the connections. 

1.5.19  Animation. Write a RandomGrid client (see Exercise 1.5.18) that uses 
UnionFind as in our development client to check connectivity and uses StdDraw to 
draw the connections as they are processed.

1.5.20  Dynamic growth. Using linked lists or a resizing array, develop a weighted 
quick-union implementation that removes the restriction on needing the number of 
objects ahead of time. Add a method newSite() to the API, which returns an int 
identifier.

private class Connection 
{ 
   int p; 
   int q;

   public Connection(int p, int q) 
   {  this.p = p; this.q = q;  } 
}

record to encapsulate connections

crEAtivE problEms (continued)
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ExpErimENts

1.5.21  Erdös-Renyi model. Use your client from Exercise 1.5.17 to test the hypothesis 
that the number of pairs generated to get one component is ~ ½N ln N.

1.5.22  Doubling test for Erdös-Renyi model. Develop a performance-testing client that 
takes an int value T from the command line and performs T trials of the following ex-
periment: Use your client from Exercise 1.5.17 to generate random connections, using 
UnionFind to determine connectivity as in our development client, looping until all 
sites are connected. For each N, print the value of N, the average number of connections 
processed, and the ratio of the running time to the previous. Use your program to vali-
date the hypotheses in the text that the running times for quick-find and quick-union 
are quadratic and weighted quick-union is near-linear. 

1.5.23  Compare quick-find with quick-union for Erdös-Renyi model. Develop a perfor-
mance-testing client that takes an int value T from the command line and performs 
T trials of the following experiment: Use your client from Exercise 1.5.17 to generate 
random connections. Save the connections, so that you can use both quick-union and 
quick-find to determine connectivity as in our development client, looping until all 
sites are connected. For each N, print the value of N and the ratio of the two running 
times. 

1.5.24  Fast algorithms for Erdös-Renyi model. Add weighted quick-union and weight-
ed quick-union with path compression to your tests from Exercise 1.5.23 . Can you 
discern a difference between these two algorithms? 

1.5.25  Doubling test for random grids. Develop a performance-testing client that takes 
an int value T from the command line and performs T trials of the following experie-
ment: Use your client from Exercise 1.5.18 to generate the connections in an N-by-N 
square grid, randomly oriented and in random order, then use UnionFind to determine 
connectivity as in our development client, looping until all sites are connected. For each 
N, print the value of N, the average number of connections processed, and the ratio of 
the running time to the previous. Use your program to validate the hypotheses in the 
text that the running times for quick-find and quick-union are quadratic and weighted 
quick-union is near-linear. Note : As N doubles, the number of sites in the grid increases 
by a factor of 4, so expect a doubling factor of 16 for quadratic and 4 for linear.
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1.5.26  Amortized plot for Erdös-Renyi. Develop a client that takes an int value N from 
the command line and does an amortized plot of the cost of all operations in the style 
of the plots in the text for the process of generating random pairs of integers between 0 
and N-1, calling connected() to determine if they are connected and then union() if 
not (as in our development client), looping until all sites are connected.

ExpErimENts (continued)
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Sorting is the process of rearranging a sequence of objects so as to put them in 
some logical order. For example, your credit card bill presents transactions in 
order by date—they were likely put into that order by a sorting algorithm. In the 

early days of computing, the common wisdom was that up to 30 percent of all com-
puting cycles was spent sorting. If that fraction is lower today, one likely reason is that 
sorting algorithms are relatively efficient, not that sorting has diminished in relative 
importance. Indeed, the ubiquity of computer usage has put us awash in data, and the 
first step to organizing data is often to sort it. All computer systems have implementa-
tions of sorting algorithms, for use by the system and by users.

There are three practical reasons for you to study sorting algorithms, even though 
you might just use a system sort:

n	 Analyzing sorting algorithms is a thorough introduction to the approach that we 
use to compare algorithm performance throughout the book.

n	 Similar techniques are effective in addressing other problems.
n	 We often use sorting algorithms as a starting point to solve other problems. 

More important than these practical reasons is that the algorithms are elegant, classic, 
and effective. 

Sorting plays a major role in commercial data processing and in modern scientific 
computing. Applications abound in transaction processing, combinatorial optimiza-
tion, astrophysics, molecular dynamics, linguistics, genomics, weather prediction, and 
many other fields. Indeed, a sorting algorithm (quicksort, in Section 2.3) was named 
as one of the top ten algorithms for science and engineering of the 20th century.

In this chapter, we consider several classical sorting methods and an efficient imple-
mentation of a fundamental data type known as the priority queue.  We discuss the 
theoretical basis for comparing sorting algorithms and conclude the chapter with a 
survey of applications of sorting and priority queues.
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2.1 eleMentAry SortS

For our first excursion into the area of sorting algorithms, we shall study two ele-
mentary sorting methods and a variation of one of them. Among the reasons for study-
ing these relatively simple algorithms in detail are the following: First, they provide 
context in which we can learn terminology and basic mechanisms. Second, these simple 
algorithms are more effective in some applications than the sophisticated algorithms 
that we shall discuss later. Third, they are useful in improving the efficiency of more 
sophisticated algorithms, as we will see.

Rules of the game Our primary concern is algorithms for rearranging arrays of 
items where each item contains a key. The objective of the sorting algorithm is to rear-
range the items such that their keys are ordered according to some well-defined order-
ing rule (usually numerical or alphabetical order). We want to rearrange the array so 
that each entry’s key is no smaller than the key in each entry with a lower index and 
no larger than the key in each entry with a larger index. Specific characteristics of the 
keys and the items can vary widely across applications. In Java, items are just objects, 
and the abstract notion of a key is captured in a built-in mechanism—the Comparable 
interface—that is described on page 247.

The class Example on the facing page illustrates the conventions that we shall use: 
we put our sort code in a sort() method within a single class along with private helper 
functions less() and exch() (and perhaps some others) and a sample client main(). 
Example also illustrates code that might be useful for initial debugging: its test client 
main() sorts strings from standard input using the private method show() to print the 
contents of the array. Later in this chapter, we will examine various test clients for com-
paring algorithms and for studying their performance. To differentiate sorting meth-
ods, we give our various sort classes different names. Clients can call different imple-
mentations by name: Insertion.sort(), Merge.sort(), Quick.sort(), and so forth. 

With but a few exceptions, our sort code refers to the data only through two opera-
tions: the method less() that compares items and the method exch() that exchanges 
them. The exch() method is easy to implement, and the Comparable interface makes 
it easy to implement less(). Restricting data access to these two operations makes our 
code readable and portable, and makes it easier for us certify that algorithms are cor-
rect, to study performance and to compare algorithms. Before proceeding to consider 
sort implementations, we discuss a number of important issues that need to be care-
fully considered for every sort.

244



ptg12441863

% more tiny.txt 
S O R T E X A M P L E

% java Example < tiny.txt 
A E E L M O P R S T X

template for sort classes

public class Example 
{ 
   public static void sort(Comparable[] a) 
   {  /* See Algorithms 2.1, 2.2, 2.3, 2.4, 2.5, or 2.7. */  }

   private static boolean less(Comparable v, Comparable w) 
   {  return v.compareTo(w) < 0;  }

   private static void exch(Comparable[] a, int i, int j) 
   {  Comparable t = a[i]; a[i] = a[j]; a[j] = t;  }

   private static void show(Comparable[] a) 
   {  // Print the array, on a single line. 
      for (int i = 0; i < a.length; i++) 
         StdOut.print(a[i] + " "); 
      StdOut.println(); 
   }

   public static boolean isSorted(Comparable[] a) 
   {  // Test whether the array entries are in order. 
      for (int i = 1; i < a.length; i++) 
         if (less(a[i], a[i-1]))  return false; 
      return true; 
   }

   public static void main(String[] args) 
   {  // Read strings from standard input, sort them, and print. 
      String[] a = In.readStrings();  
      sort(a); 
      assert isSorted(a); 
      show(a); 
   } 
}

This class illustrates our conventions for imple-
menting array sorts. For each sorting algorithm 
that we consider, we present a sort() method for 
a class like this with Example changed to a name 
that corresponds to the algorithm. The test client 
sorts strings taken from standard input, but, with 
this code, our sort methods are effective for any 
type of data that implements Comparable.

% more words3.txt 
bed bug dad yes zoo ... all bad yet

% java Example < words3.txt 
all bad bed bug dad ... yes yet zoo
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Certification  Does the sort implementation always put the array in order, no mat-
ter what the initial order? As a conservative practice, we include the statement 
assert isSorted(a); in our test client to certify that array entries are in order after 
the sort. It is reasonable to include this statement in every sort implementation, even 
though we normally test our code and develop mathematical arguments that our al-
gorithms are correct. Note that this test is sufficient only if we use exch() exclusively 
to change array entries. When we use code that stores values into the array directly, we 
do not have full assurance (for example, code that destroys the original input array by 
setting all values to be the same would pass this test).  

Running time  We also test algorithm performance. We start by 
proving facts about the number of basic operations (compares 
and exchanges, or perhaps the number of times the array is ac-
cessed, for read or write) that the various sorting algorithms per-
form for various natural input models. Then we use these facts 
to develop hypotheses about the comparative performance of the 
algorithms and present tools that you can use to experimentally 
check the validity of such hypotheses. We use a consistent coding 
style to facilitate the development of valid hypotheses about per-
formance that will hold true for typical implementations.

Extra memory  The amount of extra memory used by a sorting algorithm is often as 
important a factor as running time. The sorting algorithms divide into two basic types: 
those that sort in place and use no extra memory except perhaps for a small function-
call stack or a constant number of instance variables, and those that need enough extra 
memory to hold another copy of the array to be sorted.

Types of data  Our sort code is effective for any item type that implements the 
Comparable interface. Adhering to Java’s convention in this way is convenient be-
cause many of the types of data that you might want to sort implement Comparable. 
For example, Java’s numeric wrapper types such as Integer and Double implement 
Comparable, as do String and various advanced types such as File or URL. Thus, 
you can just call one of our sort methods with an array of any of these types as argu-
ment. For example, the code at right uses quicksort (see Section 2.3) to sort N random 
Double values. When we create types of our 
own, we can enable client code to sort that type 
of data by implementing the Comparable in-
terface. To do so, we just need to implement a 
compareTo() method that defines an ordering 
on objects of that type known as the natural 

Double a[] = new Double[N]; 
for (int i = 0; i < N; i++) 
   a[i] = StdRandom.uniform(); 
Quick.sort(a);

Sorting an array of random values

sorting cost model. 
When studying sorting
algorithms, we count
compares and exchanges.
For algorithms that do 
not use exchanges, we 
count array accesses. 
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order for that type, as shown here for our Date data type (see page 91). Java’s convention 
is that the call v.compareTo(w) returns an integer that is negative, zero, or positive 
(usually -1, 0, or +1) when v < w,  v = w, 
or v > w, respectively. For economy, we 
use standard notation like v>w as short-
hand for code like v.compareTo(w)>0 
for the remainder of this paragraph. By 
convention, v.compareTo(w) throws 
an exception if v and w are incompatible 
types or either is null. Furthermore, 
compareTo() must implement a total 
order: it must be

n	 Reflexive (for all v, v = v)
n	 Antisymmetric (for all v and w, if 

v < w then w > v and if v = w then 
w = v) 

n	 Transitive (for all v, w, and x, if 
v <= w and w <= x then v <=x )

These rules are intuitive and standard 
in mathematics—you will have little 
difficulty adhering to them. In short, 
compareTo() implements our key ab-
straction—it defines the ordering of 
the items (objects) to be sorted, which 
can be any type of data that implements 
Comparable. Note that compareTo() need not use all of the instance variables. Indeed, 
the key might be a small part of each item.

For the remainder of this chapter, we shall address numerous algorithms for sort-
ing arrays of objects having a natural order. To compare and contrast the algorithms, 
we shall examine a number of their properties, including the number of compares and 
exchanges that they use for various types of inputs and the amount of extra memory 
that they use. These properties lead to the development of hypotheses about perfor-
mance properties, many of which have been validated on countless computers over the 
past several decades. Specific implementations always need to be checked, so we also 
consider tools for doing so. After considering the classic selection sort, insertion sort, 
shellsort, mergesort, quicksort, and heapsort algorithms, we will consider practical is-
sues and applications, in Section 2.5.

public class Date implements Comparable<Date>
{ 
   private final int day; 
   private final int month; 
   private final int year;

   public Date(int d, int m, int y) 
   {  day = d; month = m; year = y; }

   public int day()   {  return day;    } 
   public int month() {  return month;  } 
   public int year()  {  return year;   }

   public int compareTo(Date that) 
   { 
      if (this.year  > that.year ) return +1; 
      if (this.year  < that.year ) return -1; 
      if (this.month > that.month) return +1; 
      if (this.month < that.month) return -1; 
      if (this.day   > that.day  ) return +1; 
      if (this.day   < that.day  ) return -1; 
      return 0; 
   }

   public String toString() 
   { return month + "/" + day + "/" + year; }
}

Defining a comparable type
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Selection sort One of the simplest sorting algorithms works as follows: First, find 
the smallest item in the array and exchange it with the first entry (itself if the first entry 
is already the smallest). Then, find the next smallest item and exchange it with the sec-
ond entry. Continue in this way until the entire array is sorted. This method is called 
selection sort because it works by repeatedly selecting the smallest remaining item.

As you can see from the implementation in Algorithm 2.1, the inner loop of selec-
tion sort is just a compare to test a current item against the smallest item found so far 
(plus the code necessary to increment the current index and to check that it does not 
exceed the array bounds); it could hardly be simpler. The work of moving the items 
around falls outside the inner loop: each exchange puts an item into its final position, 
so the number of exchanges is N. Thus, the running time is dominated by the number 
of compares. 

proposition A. Selection sort uses N 2/2 compares and N exchanges to sort an 
array of length N.

proof: You can prove this fact by examining the trace, which is an N-by-N table 
in which unshaded letters correspond to compares. About one-half of the entries 
in the table are unshaded—those on and above the diagonal. The entries on the 
diagonal each correspond to an exchange. More precisely, examination of the code 
reveals that, for each i from 0 to N  1, there is one exchange and N  1  i  com-
pares, so the totals are N exchanges and (N  1) + (N  2) + . . . + 2 + 1+ 0 = N(N 
 1) / 2  N 2 / 2 compares.

In summary, selection sort is a simple sorting method that is easy to understand and to 
implement and is characterized by the following two signature properties:

Running time is insensitive to input  The process of finding the smallest item on one 
pass through the array does not give much information about where the smallest item 
might be on the next pass. This property can be disadvantageous in some situations. 
For example, the person using the sort client might be surprised to realize that it takes 
about as long to run selection sort for an array that is already in order or for an array 
with all keys equal as it does for a randomly-ordered array! As we shall see, other algo-
rithms are better able to take advantage of initial order in the input.

Data movement is minimal   Each of the N exchanges changes the value of two array 
entries, so selection sort uses N exchanges—the number of exchanges is a linear func-
tion of the array size. None of the other sorting algorithms that we consider have this 
property (most involve linearithmic or quadratic growth).
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aLgorIthM 2.1 Selection sort

public class Selection 
{ 
   public static void sort(Comparable[] a) 
   {  // Sort a[] into increasing order. 
      int N = a.length;               // array length 
      for (int i = 0; i < N; i++) 
      {  // Exchange a[i] with smallest entry in a[i+1...N). 
         int min = i;                 // index of a minimal entry. 
         for (int j = i+1; j < N; j++) 
            if (less(a[j], a[min])) min = j; 
         exch(a, i, min); 
      } 
   } 
   // See page 245 for less(), exch(), isSorted(), and main(). 
}

For each i, this implementation puts the ith smallest item in a[i]. The entries to the left of position 
i are the i smallest items in the array and are not examined again.

Trace of selection sort (array contents just after each exchange)

                       a[]

 i min   0  1  2  3  4  5  6  7  8  9 10

         S  O  R  T  E  X  A  M  P  L  E 

 0   6   S  O  R  T  E  X  A  M  P  L  E 

 1   4   A  O  R  T  E  X  S  M  P  L  E 

 2  10   A  E  R  T  O  X  S  M  P  L  E 

 3   9   A  E  E  T  O  X  S  M  P  L  R 

 4   7   A  E  E  L  O  X  S  M  P  T  R 

 5   7   A  E  E  L  M  X  S  O  P  T  R 

 6   8   A  E  E  L  M  O  S  X  P  T  R 

 7  10   A  E  E  L  M  O  P  X  S  T  R 

 8   8   A  E  E  L  M  O  P  R  S  T  X 

 9   9   A  E  E  L  M  O  P  R  S  T  X 

10  10   A  E  E  L  M  O  P  R  S  T  X 

         A  E  E  L  M  O  P  R  S  T  X  

entries in gray are
in final position

entries in black
are examined to find

the minimum

entries in red
are a[min]
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Insertion sort  The algorithm that people often use to sort bridge hands is to con-
sider the cards one at a time, inserting each into its proper place among those already 
considered (keeping them sorted). In a computer implementation, we need to make 
space to insert the current item by moving larger items one position to the right, before 
inserting the current item into the vacated position. Algorithm 2.2 is an implementa-
tion of this method, which is called insertion sort.

As in selection sort, the items to the left of the current index are in sorted order dur-
ing the sort, but they are not in their final position, as they may have to be moved to 
make room for smaller items encountered later. The array is, however, fully sorted when 
the index reaches the right end.

Unlike that of selection sort, the running time of insertion sort depends on the ini-
tial order of the items in the input. For example, if the array is large and its entries are 
already in order (or nearly in order), then insertion sort is much, much faster than if 
the entries are randomly ordered or in reverse order.

proposition b. Insertion sort uses N 2/4 compares and N 2/4 exchanges to sort 
a randomly ordered array of length N with distinct keys, on the average. The worst 
case is N 2/2 compares and N 2/2 exchanges and the best case is N  1 compares 
and 0 exchanges.

proof: Just as for Proposition A, the number of compares and exchanges is easy to 
visualize in the N-by-N diagram that we use to illustrate the sort. We count entries 
below the diagonal—all of them, in the worst case, and none of them, in the best 
case. For randomly ordered arrays, we expect each item to go about halfway back, 
on the average, so we count one-half of the entries below the diagonal.

The number of compares is the number of exchanges plus an additional term 
equal to N minus the number of times the item inserted is the smallest so far. In the 
worst case (array in reverse order), this term is negligible in relation to the total; in 
the best case (array in order) it is equal to N  1.

Insertion sort works well for certain types of nonrandom arrays that often arise in 
practice, even if they are huge. For example, as just mentioned, consider what happens 
when you use insertion sort on an array that is already sorted. Each item is immediately 
determined to be in its proper place in the array, and the total running time is linear. 
(The running time of selection sort is quadratic for such an array.) The same is true 
for arrays whose keys are all equal (hence the condition in Proposition B that the keys 
must be distinct).

250 Chapter 2 n Sorting



ptg12441863

aLgorIthM 2.2 insertion sort

public class Insertion 
{  
   public static void sort(Comparable[] a) 
   {  // Sort a[] into increasing order. 
      int N = a.length;              
      for (int i = 1; i < N; i++) 
      {  // Insert a[i] among a[i-1], a[i-2], a[i-3].... 
         for (int j = i; j > 0 && less(a[j], a[j-1]); j--) 
            exch(a, j, j-1); 
      } 
   } 
   // See page 245 for less(), exch(), isSorted(), and main(). 
}

For each i from 1 to N-1, exchange a[i] with the entries that are larger in a[0] through a[i-1]. As 
the index i travels from left to right, the entries to its left are in sorted order in the array, so the array 
is fully sorted when i reaches the right end.

Trace of insertion sort (array contents just after each insertion)

                       a[]

 i   j   0  1  2  3  4  5  6  7  8  9 10

         S  O  R  T  E  X  A  M  P  L  E 

 1   0   O  S  R  T  E  X  A  M  P  L  E 

 2   1   O  R  S  T  E  X  A  M  P  L  E 

 3   3   O  R  S  T  E  X  A  M  P  L  E 

 4   0   E  O  R  S  T  X  A  M  P  L  E 

 5   5   E  O  R  S  T  X  A  M  P  L  E 

 6   0   A  E  O  R  S  T  X  M  P  L  E 

 7   2   A  E  M  O  R  S  T  X  P  L  E 

 8   4   A  E  M  O  P  R  S  T  X  L  E 

 9   2   A  E  L  M  O  P  R  S  T  X  E 

10   2   A  E  E  L  M  O  P  R  S  T  X  

         A  E  E  L  M  O  P  R  S  T  X  

entries in black
moved one position
right for insertion

entries in gray
do not move 

entry in red 
is a[j]
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More generally, we consider the concept of a partially sorted array, as follows: An in-
version is a pair of entries that are out of order in the array. For instance, E X A M P L E 
has 11 inversions: E-A,  X-A,  X-M,  X-P,  X-L,  X-E,  M-L,  M-E,  P-L,  P-E, and  L-E. If the 
number of inversions in an array is less than a constant multiple of the array size, we 
say that the array is partially sorted. Typical examples of partially sorted arrays are the 
following:

n	 An array where each entry is not far from its final position
n	 A small array appended to a large sorted array
n	 An array with only a few entries that are not in place

Insertion sort is an efficient method for such arrays; selection sort is not. Indeed, when 
the number of inversions is low, insertion sort is likely to be faster than any sorting 
method that we consider in this chapter.

proposition c. The number of exchanges used by insertion sort is equal to the 
number of inversions in the array, and the number of compares is at least equal to 
the number of inversions and at most equal to the number of inversions plus the 
array size minus 1.

proof: Every exchange involves two inverted adjacent entries and thus reduces the 
number of inversions by one, and the array is sorted when the number of inver-
sions reaches zero. Every exchange corresponds to a compare, and an additional 
compare might happen for each value of i from 1 to N-1 (when a[i] does not 
reach the left end of the array).

It is not difficult to speed up insertion sort substantially, by shortening its inner loop to 
move the larger entries to the right one position rather than doing full exchanges (thus 
cutting the number of array accesses in half). We leave this improvement for an exercise 
(see Exercise 2.1.25). 

In summary, insertion sort is an excellent method for partially sorted arrays and is also 
a fine method for tiny arrays. These facts are important not just because such arrays 
frequently arise in practice, but also because both types of arrays arise in intermediate 
stages of advanced sorting algorithms, so we will be considering insertion sort again in 
relation to such algorithms.
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Visualizing sorting algorithms Throughout this chapter, we will be using 
a simple visual representation to help describe the properties of sorting algorithms. 
Rather than tracing the progress of a sort with key values such as letters, numbers, 
or words, we use vertical bars, to be sorted by their 
heights. The advantage of such a representation is 
that it can give insights into the behavior of a sort-
ing method.

For example, you can see at a glance on the visual 
traces at right that insertion sort does not touch 
entries to the right of the scan pointer and selec-
tion sort does not touch entries to the left of the 
scan pointer. Moreover, it is clear from the visual 
traces that, since insertion sort also does not touch 
entries smaller than the inserted item, it uses about 
half the number of compares as selection sort, on 
the average.

With our StdDraw library, developing a visual 
trace is not much more difficult than doing a stan-
dard trace. We sort Double values, instrument the 
algorithm to call show() as appropriate (just as we 
do for a standard trace), and develop a version of 
show() that uses StdDraw to draw the bars instead 
of printing the results. The most complicated task 
is setting the scale for the y-axis so that the lines of 
the trace appear in the expected order. You are en-
couraged to work Exercise 2.1.18 in order to gain a 
better appreciation of the value of visual traces and 
the ease of creating them. 

An even simpler task is to animate the trace so 
that you can see the array dynamically evolve to 
the sorted result. Developing an animated trace in-
volves essentially the same process described in the previous paragraph, but without 
having to worry about the y-axis (just clear the window and redraw the bars each time). 
Though we cannot make the case on the printed page, such animated representations 
are also effective in gaining insight into how an algorithm works. You are also encour-
aged to work Exercise 2.1.17 to see for yourself.

black entries
are involved 
in compares

gray entries
are untouched

Visual traces of elementary sorting algorithms

insertion sort selection sort
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Comparing two sorting algorithms Now that we have two implementations, 
we are naturally interested in knowing which one is faster: selection sort (Algorithm 
2.1) or insertion sort (Algorithm 2.2). Questions like this arise again and again and 
again in the study of algorithms and are a major focus throughout this book. We have 
discussed some fundamental ideas in Chapter 1, but we use this first case in point to 
illustrate our basic approach to answering such questions. Generally, following the ap-
proach introduced in Section 1.4, we compare algorithms by

n	 Implementing and debugging them
n	 Analyzing their basic properties
n	 Formulating a hypothesis about comparative performance
n	 Running experiments to validate the hypothesis

These steps are nothing more than the time-honored scientific method, applied to the 
study of algorithms. 

In the present context, Algorithm 2.1 and Algorithm 2.2 are evidence of the 
first step; Propositions A, B, and C constitute the second step; Property D on page 255 
constitutes the third step; and the class SortCompare on page 256 enables the fourth step. 
These activities are all interrelated. 

Our brief descriptions mask a substantial amount of effort that is required to prop-
erly implement, analyze, and test algorithms. Every programmer knows that such code 
is the product of a long round of debugging and refinement, every mathematician 
knows that proper analysis can be very difficult, and every scientist knows that formu-
lating hypotheses and designing and executing experiments to validate them require 
great care. Full development of such results is reserved for experts studying our most 
important algorithms, but every programmer using an algorithm should be aware of 
the scientific context underlying its performance properties. 

Having developed implementations, our next choice is to settle on an appropriate 
model for the input. For sorting, a natural model, which we have used for Proposi-
tions A, B, and C, is to assume that the arrays are randomly ordered and that the key 
values are distinct. In applications where significant numbers of equal key values are 
present we will need a more complicated model.

How do we formulate a hypothesis about the running times of insertion sort and 
selection sort for randomly ordered arrays? Examining Algorithms 2.1 and 2.2 and 
Propositions A and B, it follows immediately that the running time of both algorithms 
should be quadratic for randomly ordered arrays. That is, the running time of insertion 
sort for such an input is proportional to some small constant times N 2 and the running 
time of selection sort is proportional to some other small constant times N 2. The values 
of the two constants depend on the cost of compares and exchanges on the particular 
computer being used. For many types of data and for typical computers, it is reasonable 

254 Chapter 2 n Sorting



ptg12441863

to assume that these costs are similar (though we will see a few significant exceptions). 
The following hypothesis follows directly:

property D. The running times of insertion sort and selection sort are quadratic 
and within a small constant factor of one another for randomly ordered arrays of 
distinct values.

Evidence: This statement has been validated on many different computers over 
the past half-century. Insertion sort was about twice as fast as selection sort when 
the first edition of this book was written in 1980 and it still is today, even though it 
took several hours to sort 100,000 items with these algorithms then and just several 
seconds today. Is insertion sort a bit faster than selection sort on your computer? 
To find out, you can use the class SortCompare on the next page, which uses the 
sort() methods in the classes named as command-line arguments to perform the 
given number of experiments (sorting arrays of the given size) and prints the ratio 
of the observed running times of the algorithms.

To validate this hypothesis, we use SortCompare (see page 256) to perform the experi-
ments. As usual, we use Stopwatch to compute the running time. The implementation 
of time() shown here does the job for the basic sorts in this chapter. The “randomly or-
dered” input model is embedded in the timeRandomInput() method in SortCompare, 
which generates random Double values, sorts them, and returns the total measured 
time of the sort for the given 
number of trials. Using ran-
dom Double values between 
0.0 and 1.0 is much simpler 
than the alternative of us-
ing a library function such 
as StdRandom.shuffle() 
and is effective because equal 
key values are very unlikely 
(see Exercise 2.5.31). As 
discussed in Chapter 1, the 
number of trials is taken as an 
argument both to take advan-
tage of the law of large numbers (the more trials, the total running time divided by the 
number of trials is a more accurate estimate of the true average running time) and to 
help damp out system effects.  You are encouraged to experiment with SortCompare 

public static double time(String alg, Comparable[] a) 
{ 
   Stopwatch timer = new Stopwatch(); 
   if (alg.equals("Insertion")) Insertion.sort(a); 
   if (alg.equals("Selection")) Selection.sort(a); 
   if (alg.equals("Shell"))     Shell.sort(a); 
   if (alg.equals("Merge"))     Merge.sort(a); 
   if (alg.equals("Quick"))     Quick.sort(a); 
   if (alg.equals("Heap"))      Heap.sort(a); 
   return timer.elapsedTime(); 
}

timing one of the sort algorithms in this chapter on a given input

2552.1 n Elementary Sorts



ptg12441863

Comparing two sorting algorithms

public class SortCompare 
{ 
   public static double time(String alg, Double[] a) 
   {  /* See text. */  }

   public static double timeRandomInput(String alg, int N, int T) 
   {  // Use alg to sort T random arrays of length N.  
      double total = 0.0; 
      Double[] a = new Double[N]; 
      for (int t = 0; t < T; t++) 
      {  // Perform one experiment (generate and sort an array). 
         for (int i = 0; i < N; i++) 
            a[i] = StdRandom.uniform(); 
         total += time(alg, a); 
      } 
      return total; 
   }

   public static void main(String[] args) 
   { 
      String alg1 = args[0]; 
      String alg2 = args[1]; 
      int N = Integer.parseInt(args[2]); 
      int T = Integer.parseInt(args[3]); 
      double t1 = timeRandomInput(alg1, N, T); // total for alg1 
      double t2 = timeRandomInput(alg2, N, T); // total for alg2 
      StdOut.printf("For %d random Doubles\n    %s is", N, alg1); 
      StdOut.printf(" %.1f times faster than %s\n", t2/t1, alg2); 
   } 
}

This client runs the two sorts named in the first two command-line arguments on arrays of N (the 

third command-line argument) random Double values between 0.0 and 1.0, repeating the experi-
ment T (the fourth command-line argument) times, then prints the ratio of the total running times.

% java SortCompare Insertion Selection 1000 100 
For 1000 random Doubles 
  Insertion is 1.7 times faster than Selection
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on your computer to learn the extent to which its conclusion about insertion sort and 
selection sort is robust.

Property D is intentionally a bit vague—the value of the small constant factor is left 
unstated and the assumption that the costs of compares and exchanges are similar is left 
unstated—so that it can apply in a broad variety of situations. When possible, we try to 
capture essential aspects of the performance of each of the algorithms that we study in 
statements like this. As discussed in Chapter 1, each Property that we consider needs to 
be tested scientifically in a given situation, perhaps supplemented with a more refined 
hypothesis based upon a related Proposition (mathematical truth).

For practical applications, there is one further step, which is crucial: run experiments 
to validate the hypothesis on the data at hand. We defer consideration of this step to 
Section 2.5 and the exercises. In this case, if your sort keys are not distinct and/or 
not randomly ordered, Property D might not hold. You can randomly order an array 
with StdRandom.shuffle(), but applications with significant numbers of equal keys 
involve more careful analysis.

Our discussions of the analyses of algorithms are intended to be starting points, not 
final conclusions. If some other question about performance of the algorithms comes 
to mind, you can study it with a tool like SortCompare. Many opportunities to do so 
are presented in the exercises.

We do not dwell further on the comparative performance of insertion sort and selec-
tion sort because we are much more interested in algorithms that can run a hundred or 
a thousand or a million times faster than either. Still, understanding these elementary 
algorithms is worthwhile for several reasons:

n	 They help us work out the ground rules.
n	 They provide performance benchmarks.
n	 They often are the method of choice in some specialized situations.
n	 They can serve as the basis for developing better algorithms.

For these reasons, we will use the same basic approach and consider elementary algo-
rithms for every problem that we study throughout this book, not just sorting. Pro-
grams like SortCompare play a critical role in this incremental approach to algorithm 
development. At every step along the way, we can use such a program to help evaluate 
whether a new algorithm or an improved version of a known algorithm provides the 
performance gains that we expect.

2572.1 n Elementary Sorts



ptg12441863

Shellsort To exhibit the value of knowing properties of elementary sorts, we next 
consider a fast algorithm based on insertion sort. Insertion sort is slow for large un-
ordered arrays because the only exchanges it does involve adjacent entries, so items 
can move through the array only one place at a time. For example, if the item with the 
smallest key happens to be at the end of the array, N1 exchanges are needed to get that 
one item where it belongs. Shellsort is a simple extension of insertion sort that gains 
speed by allowing exchanges of array entries that are far apart, to produce partially 
sorted arrays that can be efficiently sorted, eventually by insertion sort.

The idea is to rearrange the array to give it the property that taking every hth entry 
(starting anywhere) yields a sorted subsequence. Such an array is said to be h-sorted. Put 

another way, an h-sorted array is h inde-
pendent sorted subsequences, interleaved 
together. By h-sorting for some large val-
ues of h, we can move items in the array 
long distances and thus make it easier to 
h-sort for smaller values of h. Using such 
a procedure for any sequence of values of
h that ends in 1 will produce a sorted ar-
ray: that is shellsort. The implementation 

in Algorithm 2.3 on the facing page uses the sequence of decreasing values ½(3k1), 
starting at the smallest increment greater than or equal to ⎣N/3⎦ and decreasing to 1. 
We refer to such a sequence as an increment sequence. Algorithm 2.3 computes its 
increment sequence; another alternative is to store an increment sequence in an array.

One way to implement shellsort would be, for each h, to use insertion sort indepen-
dently on each of the h subsequences. Because the subsequences are independent, we 
can use an even simpler approach: when h-sorting the array, we insert each item among 
the previous items in its h-subsequence by exchanging it with those that have larger 
keys (moving them each one position to the right in the subsequence). We accomplish 
this task by using the insertion-sort code, but modified to decrement by h instead of 1 
when moving through the array. This observation reduces the shellsort implementa-
tion to an insertion-sort-like pass through the array for each increment.

Shellsort gains efficiency by making a tradeoff between size and partial order in the 
subsequences. At the beginning, the subsequences are short; later in the sort, the subse-
quences are partially sorted. In both cases, insertion sort is the method of choice. The 
extent to which the subsequences are partially sorted is a variable factor that depends 
strongly on the increment sequence. Understanding shellsort’s performance is a chal-
lenge. Indeed, Algorithm 2.3 is the only sorting method we consider whose perfor-
mance on randomly ordered arrays has not been precisely characterized. 

L  E  E  A  M  H  L  E  P  S  O  L  T  S  X  R

L           M           P           T  

   E           H           S           S  

      E           L           O           X 

         A           E           L           R

h = 4

An h-sorted sequence is h interleaved sorted subsequences
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aLgorIthM 2.3 Shellsort

public class Shell 
{   
   public static void sort(Comparable[] a) 
   {  // Sort a[] into increasing order. 
      int N = a.length; 
      int h = 1; 
      while (h < N/3) h = 3*h + 1; // 1, 4, 13, 40, 121, 364, 1093, ... 
      while (h >= 1) 
      {  // h-sort the array. 
         for (int i = h; i < N; i++) 
         {  // Insert a[i] among a[i-h], a[i-2*h], a[i-3*h]... . 
            for (int j = i; j >= h && less(a[j], a[j-h]); j -= h) 
               exch(a, j, j-h); 
         } 
         h = h/3; 
      } 
   }

   // See page 245 for less(), exch(), isSorted(), and main().

}

If we modify insertion sort (Algorithm 2.2) to h-sort the array and add an outer loop to decrease 
h through a sequence of increments starting at an increment as large as a constant fraction of the ar-
ray length and ending at 1, we are led to this compact shellsort implementation.

% java SortCompare Shell Insertion 100000 100 
For 100000 random Doubles 
  Shell is 600 times faster than Insertion

Shellsort trace (array contents after each pass)

P  H  E  L  L  S  O  R  T  E  X  A  M  S  L  E  

A  E  E  E  H  L  L  L  M  O  P  R  S  S  T  X  

L  E  E  A  M  H  L  E  P  S  O  L  T  S  X  R  

S  H  E  L  L  S  O  R  T  E  X  A  M  P  L  Einput

13-sort

4-sort

1-sort
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How do we decide what increment sequence to use? In general, this question is a dif-
ficult one to answer. The performance of the algorithm depends not just on the num-
ber of increments, but also on arithmetical interactions among the increments such as 

the size of their common divi-
sors and other properties. Many 
different increment sequences 
have been studied in the lit-
erature, but no provably best 
sequence has been found. The 
increment sequence that is used 
in Algorithm 2.3 is easy to 
compute and use, and performs 
nearly as well as more sophisti-
cated increment sequences that 
have been discovered that have 
provably better worst-case per-
formance. Increment sequences 
that are substantially better still 
may be waiting to be discovered.

Shellsort is useful even for 
large arrays, particularly by 
contrast with selection sort and 
insertion sort. It also performs 
well on arrays that are in arbi-
trary order (not necessarily ran-
dom). Indeed, constructing an 
array for which shellsort runs 
slowly for a particular incre-
ment sequence is usually a chal-
lenging exercise. 

As you can learn with 
SortCompare, shellsort is much 
faster than insertion sort and 
selection sort, and its speed ad-
vantage increases with the array 

size. Before reading further, try using SortCompare to compare shellsort with insertion 
sort and selection sort for array sizes that are increasing powers of 2 on your computer 
(see Exercise 2.1.27). You will see that shellsort makes it possible to address sorting 

Detailed trace of shellsort (insertions)

13-sort

input

result

4-sort

1-sort

S  H  E  L  L  S  O  R  T  E  X  A  M  P  L  E

E  L  E  A  M  H  L  E  P  S  O  L  T  S  X  R  

E  E  L  A  M  H  L  E  P  S  O  L  T  S  X  R  

A  E  E  L  M  H  L  E  P  S  O  L  T  S  X  R  

A  E  E  L  M  H  L  E  P  S  O  L  T  S  X  R  

A  E  E  H  L  M  L  E  P  S  O  L  T  S  X  R  

A  E  E  H  L  L  M  E  P  S  O  L  T  S  X  R  

A  E  E  E  H  L  L  M  P  S  O  L  T  S  X  R  

A  E  E  E  H  L  L  M  P  S  O  L  T  S  X  R  

A  E  E  E  H  L  L  M  P  S  O  L  T  S  X  R  

A  E  E  E  H  L  L  M  O  P  S  L  T  S  X  R  

A  E  E  E  H  L  L  L  M  O  P  S  T  S  X  R  

A  E  E  E  H  L  L  L  M  O  P  S  T  S  X  R  

A  E  E  E  H  L  L  L  M  O  P  S  S  T  X  R  

A  E  E  E  H  L  L  L  M  O  P  S  S  T  X  R  

A  E  E  E  H  L  L  L  M  O  P  R  S  S  T  X  

L  H  E  L  P  S  O  R  T  E  X  A  M  S  L  E  

L  H  E  L  P  S  O  R  T  E  X  A  M  S  L  E  

L  H  E  L  P  S  O  R  T  E  X  A  M  S  L  E  

L  H  E  L  P  S  O  R  T  E  X  A  M  S  L  E  

L  H  E  L  P  S  O  R  T  E  X  A  M  S  L  E  

L  E  E  L  P  H  O  R  T  S  X  A  M  S  L  E  

L  E  E  L  P  H  O  R  T  S  X  A  M  S  L  E  

L  E  E  A  P  H  O  L  T  S  X  R  M  S  L  E  

L  E  E  A  M  H  O  L  P  S  X  R  T  S  L  E  

L  E  E  A  M  H  O  L  P  S  X  R  T  S  L  E  

L  E  E  A  M  H  L  L  P  S  O  R  T  S  X  E  

L  E  E  A  M  H  L  E  P  S  O  L  T  S  X  R  

P  H  E  L  L  S  O  R  T  E  X  A  M  S  L  E  

P  H  E  L  L  S  O  R  T  E  X  A  M  S  L  E  

P  H  E  L  L  S  O  R  T  E  X  A  M  S  L  E  

A  E  E  E  H  L  L  L  M  O  P  R  S  S  T  X  
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Visual trace of shellsort

input

40-sorted

13-sorted

4-sorted

result

problems that could not be addressed with the more elementary algorithms. This ex-
ample is our first practical illustration of an important principle that pervades this 
book: achieving speedups that enable the solution of problems that could not otherwise be 
solved is one of the prime reasons to study algorithm performance and design.

The study of the performance characteristics of shellsort requires mathematical ar-
guments that are beyond the scope of this book. If you want to be convinced, start 
by thinking about how you would prove the following fact: when an h-sorted array is 
k-sorted, it remains h-sorted. As for the performance of Algorithm 2.3, the most im-
portant result in the present context is the knowledge that the running time of shellsort 
is not necessarily quadratic—for example, it is known that the worst-case number of 
compares for Algorithm 2.3 is proportional to N 3/2. That such a simple modification 
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can break the quadratic-running-time barrier is quite interesting, as doing so is a prime 
goal for many algorithm design problems.

No mathematical results are available about the average-case number of compares 
for shellsort for randomly ordered input. Increment sequences have been devised that 
drive the asymptotic growth of the worst-case number of compares down to N 4/3, N 5/4, 
N 6/5, . . . , but many of these results are primarily of academic interest because these 
functions are hard to distinguish from one another (and from a constant factor of N ) 
for practical values of N. 

In practice, you can safely take advantage of the past scientific study of shellsort just 
by using the increment sequence in Algorithm 2.3 (or one of the increment sequences 
in the exercises at the end of this section, which may improve performance by 20 to 40 
percent). Moreover, you can easily validate the following hypothesis:

property E. The number of compares used by shellsort with the increments 1, 4, 
13, 40, 121, 364, . . . is bounded by a small multiple of N times the number of incre-
ments used.

Evidence: Instrumenting Algorithm 2.3 to count compares and divide by the 
number of increments used is a straightforward exercise (see Exercise 2.1.12). Ex-
tensive experiments suggest that the average number of compares per increment 
might be N 1/5, but it is quite difficult to discern the growth in that function unless 
N is huge. This property also seems to be rather insensitive to the input model.

Experienced programmers sometimes choose shellsort because it has acceptable 
running time even for moderately large arrays; it requires a small amount of code; and 
it uses no extra space. In the next few sections, we shall see methods that are more ef-
ficient, but they are perhaps only twice as fast (if that much) except for very large N, and 
they are more complicated. If you need a solution to a sorting problem, and are work-
ing in a situation where a system sort may not be available (for example, code destined 
for hardware or an embedded system), you can safely use shellsort, then determine 
sometime later whether it will be worthwhile to replace it with a more sophisticated 
method.
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Q&A

Q. Sorting seems like a toy problem.  Aren’t many of the other things that we do with 
computers much more interesting?

A. Perhaps, but many of those interesting things are made possible by fast sorting al-
gorithms. You will find many examples in Section 2.5 and throughout the rest of the 
book. Sorting is worth studying now because the problem is easy to understand, and 
you can appreciate the ingenuity behind the faster algorithms.

Q. Why so many sorting algorithms? 

A. One reason is that the performance of many algorithms depends on the input val-
ues, so different algorithms might be appropriate for different applications having dif-
ferent kinds of input. For example, insertion sort is the method of choice for partially 
sorted or tiny arrays. Other constraints, such as space and treatment of equal keys, also 
come into play. We will revisit this question in Section 2.5.

Q. Why bother using the tiny helper methods less() and exch()?

A. They are basic abstract operations needed by any sort algorithm, and the code is 
easier to understand in terms of these abstractions. Moreover, they make the code di-
rectly portable to other settings. For example, much of the code in Algorithms 2.1 
and 2.2 is legal code in several other programming languages. Even in Java, we can use 
this code as the basis for sorting primitive types (which are not Comparable): simply 
implement less() with the code v < w.

Q. When I run SortCompare, I get different values each time that I run it (and those 
are different from the values in the book). Why?

A. For starters, you have a different computer from the one we used, not to mention 
a different operating system, Java runtime, and so forth. All of these differences might 
lead to slight differences in the machine code for the algorithms. Differences each time 
that you run it on your computer might be due to other applications that you are run-
ning or various other conditions. Running a very large number of trials should dampen 
the effect. The lesson is that small differences in algorithm performance are difficult to 
notice nowadays. That is a primary reason that we focus on large ones!
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ExErcisEs

2.1.1 Show, in the style of the example trace with Algorithm 2.1, how selection sort 
sorts the array E A S Y Q U E S T I O N.

2.1.2 What is the maximum number of exchanges involving any particular item during 
selection sort? What is the average number of exchanges involving an item?

2.1.3 Give an example of an array of N items that maximizes the number of times the 
test a[j] < a[min] succeeds (and, therefore, min gets updated) during the operation 
of selection sort (Algorithm 2.1). 

2.1.4 Show, in the style of the example trace with Algorithm 2.2, how insertion sort 
sorts the array E A S Y Q U E S T I O N.

2.1.5 For each of the two conditions in the inner for loop in insertion sort (Algo-
rithm 2.2), describe an array of N items where that condition is always false when the 
loop terminates.

2.1.6 Which method runs faster for an array with all keys identical, selection sort or 
insertion sort?

2.1.7 Which method runs faster for an array in reverse order, selection sort or inser-
tion sort?

2.1.8 Suppose that we use insertion sort on a randomly ordered array where items have 
only one of three values. Is the running time linear, quadratic, or something in between?

2.1.9 Show, in the style of the example trace with Algorithm 2.3, how shellsort sorts 
the array E A S Y S H E L L S O R T Q U E S T I O N.

2.1.10 Why not use selection sort for h-sorting in shellsort?

2.1.11 Implement a version of shellsort that keeps the increment sequence in an array, 
rather than computing it.

2.1.12 Instrument shellsort to print the number of compares divided by the array size 
for each increment. Write a test client that tests the hypothesis that this number is a 
small constant, by sorting arrays of random Double values, using array sizes that are 
increasing powers of 10, starting at 100.
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crEAtivE problEms

2.1.13  Deck sort. Explain how you would put a deck of cards in order by suit (in the 
order spades, hearts, clubs, diamonds) and by rank within each suit, with the restriction 
that the cards must be laid out face down in a row, and the only allowed operations are 
to check the values of two cards and to exchange two cards (keeping them face down).

2.1.14  Dequeue sort. Explain how you would sort a deck of cards, with the restric-
tion that the only allowed operations are to look at the values of the top two cards, to 
exchange the top two cards, and to move the top card to the bottom of the deck.

2.1.15  Expensive exchange. A clerk at a shipping company is charged with the task of 
rearranging a number of large crates in order of the time they are to be shipped out. 
Thus, the cost of compares is very low (just look at the labels) relative to the cost of ex-
changes (move the crates).  The warehouse is nearly full—there is extra space sufficient 
to hold any one of the crates, but not two. What sorting method should the clerk use?

2.1.16  Certification. Write a check() method that calls sort() for a given array and 
returns true if sort() puts the array in order and leaves the same set of objects in the 
array as were there initially, false otherwise. Do not assume that sort() is restricted to 
move data only with exch(). You may use Arrays.sort() and assume that it is correct.

2.1.17  Animation. Add code to Insertion, Selection and Shell to make them 
draw the array contents as vertical bars like the visual traces in this section, redrawing 
the bars after each pass, to produce an animated effect, ending in a “sorted” picture 
where the bars appear in order of their height. Hint : Use a client like the one in the text 
that generates random Double values, insert calls to show() as appropriate in the sort 
code, and implement a show() method that clears the canvas and draws the bars.

2.1.18  Visual trace. Modify your solution to the previous exercise to make Insertion, 
Selection and Shell produce visual traces such as those depicted in this section. Hint : 
Judicious use of setYscale() makes this problem easy. Extra credit : Add the code nec-
essary to produce red and gray color accents such as those in our figures.

2.1.19  Shellsort worst case. Construct an array of 100 elements containing the num-
bers 1 through 100 for which shellsort, with the increments 1 4 13 40, uses as large a 
number of compares as you can find.

2.1.20  Shellsort best case. What is the best case for shellsort? Justify your answer. 
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2.1.21  Comparable transactions. Using our code for Date (page 247) as a model, ex-
pand your implementation of Transaction (Exercise 1.2.13) so that it implements 
Comparable, such that transactions are kept in order by amount.

Solution :

public class Transaction implements Comparable<Transaction>
{ 
   ... 
   private final double amount; 
   ... 
   public int compareTo(Transaction that) 
   { 
      if (this.amount > that.amount) return +1; 
      if (this.amount < that.amount) return -1; 
      return 0; 
   } 
   ... 
}

2.1.22  Transaction sort test client. Write a class SortTransactions that consists of a 
static method main() that reads a sequence of transactions from standard input, sorts 
them, and prints the result on standard output (see Exercise 1.3.17).

Solution :

public class SortTransactions 
{ 
   public static Transaction[] readTransactions() 

   {  /* See Exercise 1.3.17 */  }

   public static void main(String[] args) 
   { 
      Transaction[] transactions = readTransactions(); 
      Shell.sort(transactions); 
      for (Transaction t : transactions) 
         StdOut.println(t); 
   } 

}

crEAtivE problEms (continued)
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ExpErimENts

2.1.23  Deck sort. Ask a few friends to sort a deck of cards (see Exercise 2.1.13). Ob-
serve them carefully and write down the method(s) that they use.

2.1.24  Insertion sort with sentinel. Develop an implementation of insertion sort that 
eliminates the j>0 test in the inner loop by first putting the smallest item into position. 
Use SortCompare to evaluate the effectiveness of doing so. Note : It is often possible to 
avoid an index-out-of-bounds test in this way—the element that enables the test to be 
eliminated is known as a sentinel.

2.1.25  Insertion sort without exchanges. Develop an implementation of insertion sort 
that moves larger elements to the right one position with one array access per entry, 
rather than using exch(). Use SortCompare to evaluate the effectiveness of doing so.

2.1.26  Primitive types. Develop a version of insertion sort that sorts arrays of int 
values and compare its performance with the implementation given in the text (which 
sorts Integer values and implicitly uses autoboxing and auto-unboxing to convert).

2.1.27  Shellsort is subquadratic. Use SortCompare to compare shellsort with insertion 
sort and selection sort on your computer. Use array sizes that are increasing powers of 
2, starting at 128.

2.1.28  Equal keys. Formulate and validate hypotheses about the running time of in-
sertion sort and selection sort for arrays that contain just two key values, assuming that 
the values are equally likely to occur.

2.1.29  Shellsort increments. Run experiments to compare the increment sequence in 
Algorithm 2.3 with the sequence 1, 5, 19, 41, 109, 209, 505, 929, 2161, 3905, 8929, 
16001, 36289, 64769, 146305, 260609 (which is formed by merging together the se-
quences 9·4k 9·2k  1 and 4k 3·2k  1). See Exercise 2.1.11.

2.1.30  Geometric increments. Run experiments to determine a value of t that leads to 
the lowest running time of shellsort for random arrays for the increment sequence 1, 
⎣t⎦, ⎣t 2⎦, ⎣t 3⎦, ⎣t 4⎦, . . .  for N = 10 6. Give the values of t and the increment sequences for 
the best three values that you find.
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ExpErimENts (continued)

The following exercises describe various clients for helping to evaluate sorting methods. They 
are intended as starting points for helping to understand performance properties, using ran-
dom data. In all of them, use time(), as in SortCompare, so that you can get more accurate 
results by specifying more trials in the second command-line argument. We refer back to these 
exercises in later sections when evaluating more sophisticated methods. 

2.1.31  Doubling test. Write a client that performs a doubling test for sort algorithms. 
Start at N equal to 1000, and print N, the predicted number of seconds, the actual num-
ber of seconds, and the ratio as N doubles. Use your program to validate that insertion 
sort and selection sort are quadratic for random inputs, and formulate and test a hy-
pothesis for shellsort. 

2.1.32  Plot running times. Write a client that uses StdDraw to plot the average running 
times of the algorithm for random inputs and various values of the array size. You may 
add one or two more command-line arguments. Strive to design a useful tool.

2.1.33  Distribution. Write a client that enters into an infinite loop running sort() on 
arrays of the size given as the third command-line argument, measures the time taken 
for each run, and uses StdDraw to plot the average running times. A picture of the dis-
tribution of the running times should emerge.

2.1.34  Corner cases. Write a client that runs sort() on difficult or pathological cases 
that might turn up in practical applications. Examples include arrays that are already 
in order, arrays in reverse order, arrays where all keys are the same, arrays consisting of 
only two distinct values, and arrays of size 0 or 1.

2.1.35  Nonuniform distributions. Write a client that generates test data by randomly 
ordering objects using other distributions than uniform, including the following:

n	 Gaussian
n	 Poisson
n	 Geometric
n	 Discrete (see Exercise 2.1.28 for a special case)

Develop and test hypotheses about the effect of such input on the performance of the 
algorithms in this section.
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2.1.36  Nonuniform data. Write a client that generates test data that is not uniform, 
including the following:

n	 Half the data is 0s, half 1s.
n	 Half the data is 0s, half the remainder is 1s, half the remainder is 2s, and so forth.
n	 Half the data is 0s, half random int values.

Develop and test hypotheses about the effect of such input on the performance of the 
algorithms in this section.

2.1.37  Partially sorted. Write a client that generates partially sorted arrays, including 
the following:

n	 95 percent sorted, last percent random values
n	 All entries within 10 positions of their final place in the array
n	 Sorted except for 5 percent of the entries randomly dispersed throughout the 

array
Develop and test hypotheses about the effect of such input on the performance of the 
algorithms in this section.

2.1.38  Various types of items. Write a client that generates arrays of items of various 
types with random key values, including the following:

n	 String key (at least ten characters), one double value
n	 double key, ten String values (all at least ten characters)
n	 int key, one int[20] value

Develop and test hypotheses about the effect of such input on the performance of the 
algorithms in this section.
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2.2 MergeSort

The algorithms that we consider in this section are based on a simple operation 
known as merging : combining two ordered arrays to make one larger ordered array. 
This operation immediately leads to a simple recursive sort method known as merge-
sort : to sort an array, divide it into two halves, sort the two halves (recursively), and 
then merge the results. As you will see, one of mergesort’s most attractive properties is 
that it guarantees to sort any array of N items in time proportional to N log N. Its prime 
disadvantage is that it uses extra space proportional to N.

Abstract in-place merge The straightforward approach to implementing merg-
ing is to design a method that merges two disjoint ordered arrays of Comparable ob-
jects into a third array. This strategy is easy to implement: create an output array of the 
requisite size and then choose successively the smallest remaining item from the two 
input arrays to be the next item added to the output array. 

However, when we mergesort a large array, we are doing a huge number of merges, 
so the cost of creating a new array to hold the output every time that we do a merge is 
problematic. It would be much more desirable to have an in-place method so that we 
could sort the first half of the array in place, then sort the second half of the array in 
place, then do the merge of the two halves by moving the items around within the ar-
ray, without using a significant amount of other extra space. It is worthwhile to pause 
momentarily to consider how you might do that. At first blush, this problem seems to 
be one that must be simple to solve, but solutions that are known are quite complicated, 
especially by comparison to alternatives that use extra space.

Still, the abstraction of an in-place merge is useful. Accordingly, we use the method 
signature merge(a, lo, mid, hi) to specify a merge method that puts the result of 
merging the subarrays a[lo..mid] with a[mid+1..hi] into a single ordered array, 
leaving the result in a[lo..hi]. The code on the next page implements this merge 
method in just a few lines by copying everything to an auxiliary array and then merging 
back to the original. Another approach is described in Exercise 2.2.9.

M  E  R  G  E  S  O  R  T  E  X  A  M  P  L  E

E  E  G  M  O  R  R  S  T  E  X  A  M  P  L  E

E  E  G  M  O  R  R  S  A  E  E  L  M  P  T  X

A  E  E  E  E  G  L  M  M  O  P  R  R  S  T  X

input

sort left half

sort right half

merge results

Mergesort overview
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Abstract in-place merge

public static void merge(Comparable[] a, int lo, int mid, int hi) 
{  // Merge a[lo..mid] with a[mid+1..hi]. 
   int i = lo, j = mid+1;

   for (int k = lo; k <= hi; k++)  // Copy a[lo..hi] to aux[lo..hi]. 
      aux[k] = a[k];

   for (int k = lo; k <= hi; k++)  // Merge back to a[lo..hi]. 
      if      (i > mid)              a[k] = aux[j++]; 
      else if (j > hi )              a[k] = aux[i++]; 
      else if (less(aux[j], aux[i])) a[k] = aux[j++]; 
      else                           a[k] = aux[i++]; 
}

This method merges by first copying into the auxiliary array aux[] then merging back to a[]. In the 
merge (the second for loop), there are four conditions: left half exhausted (take from the right), right 
half exhausted (take from the left), current key on right less than current key on left (take from the 
right), and current key on right greater than or equal to current key on left (take from the left).

                 a[]                                 aux[]

k   0  1  2  3  4  5  6  7  8  9   i  j   0  1  2  3  4  5  6  7  8  9

    E  E  G  M  R  A  C  E  R  T          -  -  -  -  -  -  -  -  -  -

    E  E  G  M  R  A  C  E  R  T          E  E  G  M  R  A  C  E  R  T

                                   0  5

0   A                              0  6   E  E  G  M  R  A  C  E  R  T

1   A  C                           0  7   E  E  G  M  R     C  E  R  T     

2   A  C  E                        1  7   E  E  G  M  R        E  R  T    

3   A  C  E  E                     2  7      E  G  M  R        E  R  T   

4   A  C  E  E  E                  2  8         G  M  R        E  R  T  

5   A  C  E  E  E  G               3  8         G  M  R           R  T        

6   A  C  E  E  E  G  M            4  8            M  R           R  T      

7   A  C  E  E  E  G  M  R         5  8               R           R  T         

8   A  C  E  E  E  G  M  R  R      5  9                           R  T         

9   A  C  E  E  E  G  M  R  R  T   6 10                              T

    A  C  E  E  E  G  M  R  R  T                         

input

copy

Abstract in-place merge trace

merged result
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Top-down mergesort Algorithm 2.4 is a recur-
sive mergesort implementation based on this abstract in-
place merge. It is one of the best-known examples of the 
utility of the divide-and-conquer paradigm for efficient 
algorithm design. This recursive code is the basis for an 
inductive proof that the algorithm sorts the array: if it 
sorts the two subarrays, it sorts the whole array, by merg-
ing together the subarrays. 

To understand mergesort, it is worthwhile to consider 
carefully the dynamics of the method calls, shown in the 
trace at right. To sort a[0..15], the sort() method calls 
itself to sort a[0..7] then calls itself to sort a[0..3] 
and a[0..1] before finally doing the first merge of a[0] 
with a[1] after calling itself to sort a[0] and then a[1] 
(for brevity, we omit the calls for the base-case 1-entry 
sorts in the trace). Then the next merge is a[2] with a[3] 
and then a[0..1] with a[2..3] and so forth. From this 
trace, we see that the sort code simply provides an orga-
nized way to sequence the calls to the merge() method. 
This insight will be useful later in this section.

The recursive code also provides us with the basis for 
analyzing mergesort’s running time. Because mergesort 
is a prototype of the divide-and-conquer algorithm de-
sign paradigm, we will consider this analysis in detail. 

proposition F. Top-down mergesort uses between ½ N lg N and N lg N compares to 
sort any array of length N.

proof: Let C(N) be the number of compares needed to sort an array of length N. 
We have C(0) = C(1) = 0 and for N > 0 we can write a recurrence relationship that 
directly mirrors the recursive sort() method to establish an upper bound:

C(N )  C (⎡N/2⎤)   C (⎣N/2⎦)  N.

The first term on the right is the number of compares to sort the left half of the ar-
ray, the second term is the number of compares to sort the right half, and the third

sort(a, 0, 15)
  sort(a, 0, 7)
    sort(a, 0, 3)
      sort(a, 0, 1)
        merge(a, 0, 0, 1)
      sort(a, 2, 3)
        merge(a, 2, 2, 3)
      merge(a, 0, 1, 3)
    sort(a, 4, 7)
      sort(a, 4, 5)
        merge(a, 4, 4, 5)
      sort(a, 6, 7)
        merge(a, 6, 6, 7)
      merge(a, 4, 5, 7)
    merge(a, 0, 3, 7)
  sort(a, 8, 15)
    sort(a, 8, 11)
      sort(a, 8, 9)
        merge(a, 8, 8, 9)
      sort(a, 10, 11)
        merge(a, 10, 10, 11)
      merge(a, 8, 9, 11)
    sort(a, 12, 15)
      sort(a, 12, 13)
        merge(a, 12, 12, 13)
      sort(a, 14, 15)
        merge(a, 14, 14,15)
      merge(a, 12, 13, 15)
    merge(a, 8, 11, 15)
  merge(a, 0, 7, 15)

Top-down mergesort call trace

sort
left  half

sort
right half

merge
results
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aLgorIthM 2.4 top-down mergesort

public class Merge 
{   
   private static Comparable[] aux;      // auxiliary array for merges

   public static void sort(Comparable[] a) 
   { 
      aux = new Comparable[a.length];    // Allocate space just once. 
      sort(a, 0, a.length - 1); 
   }

   private static void sort(Comparable[] a, int lo, int hi) 
   {  // Sort a[lo..hi]. 
      if (hi <= lo) return; 
      int mid = lo + (hi - lo)/2; 
      sort(a, lo, mid);       // Sort left half. 
      sort(a, mid+1, hi);     // Sort right half. 
      merge(a, lo, mid, hi);  // Merge results (code on page 271). 
   } 
}

To sort a subarray a[lo..hi] we divide it into two parts: a[lo..mid] and a[mid+1..hi], sort them 
independently (via recursive calls), and merge the resulting ordered subarrays to produce the result.

Trace of merge results for top-down mergesort

                                                    a[]
                               0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15  
                               M  E  R  G  E  S  O  R  T  E  X  A  M  P  L  E
        merge(a,  0,  0,  1)   E  M  R  G  E  S  O  R  T  E  X  A  M  P  L  E  
        merge(a,  2,  2,  3)   E  M  G  R  E  S  O  R  T  E  X  A  M  P  L  E  
      merge(a,  0,  1,  3)     E  G  M  R  E  S  O  R  T  E  X  A  M  P  L  E  
        merge(a,  4,  4,  5)   E  G  M  R  E  S  O  R  T  E  X  A  M  P  L  E  
        merge(a,  6,  6,  7)   E  G  M  R  E  S  O  R  T  E  X  A  M  P  L  E  
      merge(a,  4,  5,  7)     E  G  M  R  E  O  R  S  T  E  X  A  M  P  L  E  
    merge(a,  0,  3,  7)       E  E  G  M  O  R  R  S  T  E  X  A  M  P  L  E  
        merge(a,  8,  8,  9)   E  E  G  M  O  R  R  S  E  T  X  A  M  P  L  E  
        merge(a, 10, 10, 11)   E  E  G  M  O  R  R  S  E  T  A  X  M  P  L  E  
      merge(a,  8,  9, 11)     E  E  G  M  O  R  R  S  A  E  T  X  M  P  L  E  
        merge(a, 12, 12, 13)   E  E  G  M  O  R  R  S  A  E  T  X  M  P  L  E  
        merge(a, 14, 14, 15)   E  E  G  M  O  R  R  S  A  E  T  X  M  P  E  L  
      merge(a, 12, 13, 15)     E  E  G  M  O  R  R  S  A  E  T  X  E  L  M  P 
    merge(a,  8, 11, 15)       E  E  G  M  O  R  R  S  A  E  E  L  M  P  T  X
 merge(a,  0,  7, 15)         A  E  E  E  E  G  L  M  M  O  P  R  R  S  T  X 

lo hi
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term is the number of compares for the merge. The lower bound

C(N )  C (⎡N/2⎤)   C(⎣N/2⎦)    ⎣N/2⎦ 

follows because the number of compares for the merge is at least ⎣N/2⎦ .
We derive an exact solution to the recurrence when equality holds and N is a 

power of 2 (say N = 2n). First, since  ⎣N/2⎦ = ⎡N/2⎤ = 2n1, we have

C(2n ) = 2C(2n1)  2n.

Dividing both sides by 2n gives

C(2n )/2n = C(2n1)/2n1  1.

Applying the same equation to the first term on the right, we have

C(2n )/2n = C(2n2)/2n2  1  1.

Repeating the previous step n  1 additional times gives

C(2n )/2n =C(20)/20  n.

which, after multiplying both sides by 2n, leaves us with the solution

C(N ) = C(2n ) = n 2n
  = N lg N.

Exact solutions for general N are more complicated, but it is not difficult to apply 
the same argument to the inequalities describing the bounds on the number of 
compares to prove the stated result for all values of N. This proof is valid no matter 
what the input values are and no matter in what order they appear. 

Another way to understand Proposition F is to examine the tree drawn below, where 
each node depicts a subarray for which sort() does a merge(). The tree has precisely 
n levels. For k from 0 to n  1, the kth level from the top depicts 2k subarrays, each of 
length 2nk, each of which thus requires at most 2nk compares for the merge. Thus we 
have 2k · 2nk   = 2n

  total cost for each of the n levels, for a total of n 2n
  = N lgN.

Mergesort subarray dependence tree for N = 16

a[0..1] a[2..3] a[4..5] a[6..7] a[8..9] a[10..11] a[12..13] a[14..15]

a[0..3]

a[0..7]

a[4..7]

a[0..15]

a[8..11]

a[8..15]

a[12..15]

lg N
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proposition G. Top-down mergesort uses at most 6N lg N array accesses to sort an 
array of length N.

proof: Each merge uses at most 6N array accesses (2N for the copy, 2N for the 
move back, and at most 2N for compares). The result follows from the same argu-
ment as for Proposition F. 

PropositionS F and G tell us that we can expect the time required by mergesort to be 
proportional to N log N. That fact brings us to a different level from the elementary 
methods in Section 2.1 because it tells us that we can sort huge arrays using just a 
logarithmic factor more time than it takes to examine every entry. You can sort millions 
of items (or more) with mergesort, but not with insertion sort or selection sort. The 
primary drawback of mergesort is that it requires extra space proportional to N, for 
the auxiliary array for merging. If space is at a premium, we need to consider another 
method.  On the other hand, we can cut the running time of mergesort substantially 
with some carefully considered modifications to the implementation.

Use insertion sort for small subarrays  We can improve most recursive algorithms by 
handling small cases differently, because the recursion guarantees that the method will 
be used often for small cases, so improvements in handling them lead to improvements 
in the whole algorithm. In the case of sorting, we know that insertion sort (or selection 
sort) is simple and therefore likely to be faster than mergesort for tiny subarrays. As 
usual, a visual trace provides insight into the operation of mergesort. The visual trace 
on the next page shows the operation of a mergesort implementation with a cutoff for 
small subarrays. Switching to insertion sort for small subarrays (length 15 or less, say) 
will improve the running time of a typical mergesort implementation by 10 to 15 per-
cent (see Exercise 2.2.23).

Test whether the array is already in order  We can reduce the running time to be 
linear for arrays that are already in order by adding a test to skip the call to merge() if 
a[mid] is less than or equal to a[mid+1]. With this change, we still do all the recursive 
calls, but the running time for any sorted subarray is linear (see Exercise 2.2.8).

Eliminate the copy to the auxiliary array  It is possible to eliminate the time (but not 
the space) taken to copy to the auxiliary array used for merging. To do so, we use two 
invocations of the sort method: one takes its input from the given array and puts the 
sorted output in the auxiliary array; the other takes its input from the auxiliary array 
and puts the sorted output in the given array. With this approach, in a bit of recursive 
trickery, we can arrange the recursive calls such that the computation switches the roles 
of the input array and the auxiliary array at each level (see Exercise 2.2.11).
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Visual trace of top-down mergesort with cuto� for small subarrays

�rst subarray

second subarray

�rst merge

�rst half sorted

second half sorted

result
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It is appropriate to repeat here a point raised in Chapter 1 that is easily forgotten and 
needs reemphasis. Locally, we treat each algorithm in this book as if it were critical in 
some application. Globally, we try to reach general conclusions about which approach 
to recommend. Our discussion of such improvements is not necessarily a recommen-
dation to always implement them, rather a warning not to draw absolute conclusions 
about performance from initial implementations. When addressing a new problem, 
your best bet is to use the simplest implementation with which you are comfortable 
and then refine it if it becomes a bottleneck. Addressing improvements that decrease 
running time just by a constant factor may not otherwise be worthwhile. You need to 
test the effectiveness of specific improvements by running experiments, as we indicate 
in exercises throughout.

In the case of mergesort, the three improvements just listed are simple to implement 
and are of interest when mergesort is the method of choice—for example, in situations 
discussed at the end of this chapter.

Bottom-up mergesort The recursive implementation of mergesort is prototypi-
cal of the divide-and-conquer algorithm design paradigm, where we solve a large prob-
lem by dividing it into pieces, solving the subproblems, then using the solutions for the 
pieces to solve the whole problem. Even though we are thinking in terms of merging 
together two large subarrays, the fact is that most merges are merging together tiny 
subarrays. Another way to implement mergesort is to organize the merges so that we do 
all the merges of tiny subarrays on one pass, then do a second pass to merge those sub-
arrays in pairs, and so forth, continuing until we 
do a merge that encompasses the whole array. This 
method requires even less code than the standard 
recursive implementation. We start by doing a pass 
of 1-by-1 merges (considering individual items as 
subarrays of size 1), then a pass of 2-by-2 merges 
(merge subarrays of size 2 to make subarrays of 
size 4), then 4-by-4 merges, and so forth. The sec-
ond subarray may be smaller than the first in the 
last merge on each pass (which is no problem for 
merge()), but otherwise all merges involve subar-
rays of equal size, doubling the sorted subarray size 
for the next pass.

sz = 1

2

4

  8

16

Visual trace of bottom-up mergesort
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Bottom-up mergesort

public class MergeBU 
{   
   private static Comparable[] aux;      // auxiliary array for merges

   // See page 271 for merge() code.

   public static void sort(Comparable[] a) 
   {  // Do lg N passes of pairwise merges.   
      int N = a.length; 
      aux = new Comparable[N]; 
      for (int sz = 1; sz < N; sz = sz+sz)        // sz: subarray size 
         for (int lo = 0; lo < N-sz; lo += sz+sz) // lo: subarray index 
            merge(a, lo, lo+sz-1, Math.min(lo+sz+sz-1, N-1)); 
   } 
}

Bottom-up mergesort consists of a sequence of passes over the whole array, doing sz-by-sz merges, 
starting with sz equal to 1 and doubling sz on each pass. The final subarray is of size sz only when 
the array size is an even multiple of sz (otherwise it is less than sz). 

Trace of merge results for bottom-up mergesort

                                                    a[i]
                               0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15  
                               M  E  R  G  E  S  O  R  T  E  X  A  M  P  L  E
        merge(a,  0,  0,  1)   E  M  R  G  E  S  O  R  T  E  X  A  M  P  L  E  
        merge(a,  2,  2,  3)   E  M  G  R  E  S  O  R  T  E  X  A  M  P  L  E  
        merge(a,  4,  4,  5)   E  M  G  R  E  S  O  R  T  E  X  A  M  P  L  E  
        merge(a,  6,  6,  7)   E  M  G  R  E  S  O  R  T  E  X  A  M  P  L  E  
        merge(a,  8,  8,  9)   E  M  G  R  E  S  O  R  E  T  X  A  M  P  L  E  
        merge(a, 10, 10, 11)   E  M  G  R  E  S  O  R  E  T  A  X  M  P  L  E 
        merge(a, 12, 12, 13)   E  M  G  R  E  S  O  R  E  T  A  X  M  P  L  E 
        merge(a, 14, 14, 15)   E  M  G  R  E  S  O  R  E  T  A  X  M  P  E  L
  
      merge(a,  0,  1,  3)     E  G  M  R  E  S  O  R  E  T  A  X  M  P  E  L 
      merge(a,  4,  5,  7)     E  G  M  R  E  O  R  S  E  T  A  X  M  P  E  L  
      merge(a,  8,  9, 11)     E  G  M  R  E  O  R  S  A  E  T  X  M  P  E  L  
      merge(a, 12, 13, 15)     E  G  M  R  E  O  R  S  A  E  T  X  E  L  M  P

    merge(a,  0,  3,  7)       E  E  G  M  O  R  R  S  A  E  T  X  E  L  M  P  
    merge(a,  8, 11, 15)       E  E  G  M  O  R  R  S  A  E  E  L  M  P  T  X

 merge(a,  0,  7, 15)         A  E  E  E  E  G  L  M  M  O  P  R  R  S  T  X 

sz = 1

sz = 2

sz = 4

sz = 8
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proposition H. Bottom-up mergesort uses between ½ N lg N and N lg N compares   
and at most 6N lg N array accesses to sort an array of length N.  

proof: The number of passes through the array is precisely ⎡lg N⎤ (that is precisely 
the value of n such that 2n – 1 < N   2n). For each pass, the number of array accesses 
is exactly 6N and the number of compares is at most N and no less than N/ 2. 

When the array length is a power of 2, top-down and bottom-up mergesort per-
form precisely the same compares and array accesses, just in a different order. When the 
array length is not a power of 2, the sequence of compares and array accesses for the two 
algorithms will be different (see Exercise 2.2.5).

A version of bottom-up mergesort is the method of choice for sorting data orga-
nized in a linked list. Consider the list to be sorted sublists of size 1, then pass through 
to make sorted sublists of size 2 linked together, then size 4, and so forth. This method 
rearranges the links to sort the list in place (without creating any new list nodes).

Both the top-down and bottom-up approaches to implementing a divide-and-
conquer algorithm are intuitive. The lesson that you can take from mergesort is this: 
Whenever you encounter an algorithm based on one of these approaches, it is worth 
considering the other. Do you want to solve the problem by breaking it up into smaller 
problems (and solving them recursively) as in Merge.sort() or by building small solu-
tions into larger ones as in MergeBU.sort()? 

The complexity of sorting One important reason to know about mergesort is 
that we use it as the basis for proving a fundamental result in the field of computational 
complexity that helps us understand the intrinsic difficulty of sorting.  In general, com-
putational complexity plays an important role in the design of algorithms, and this 
result in particular is directly relevant to the design of sorting algorithms, so we next 
consider it in detail.

The first step in a study of complexity is to establish a model of computation. Gen-
erally, researchers strive to understand the simplest model relevant to a problem. For 
sorting, we study the class of compare-based algorithms that make their decisions about 
items only on the basis of comparing keys. A compare-based algorithm can do an ar-
bitrary amount of computation between compares, but cannot get any information 
about a key except by comparing it with another one. Because of our restriction to the 
Comparable API, all of the algorithms in this chapter are in this class (note that we are 
ignoring the cost of array accesses), as are many algorithms that we might imagine. In 
Chapter 5, we consider algorithms that are not restricted to Comparable items.
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proposition i. No compare-based sorting algorithm can guarantee to sort N items 
with fewer than lg(N !) ~ N lg N compares. 

proof: First, we assume that the keys are all distinct, since any algorithm must be 
able to sort such inputs. Now, we use a binary tree to describe the sequence of com-
pares. Each node in the tree is either a leaf i0 i1 i2 ... iN-1  that indicates that the 
sort is complete and has discovered that the original inputs were in the order 
a[i0], a[i1], ...a[iN-1], or an internal node i:j  that corresponds to a com-
pare operation between a[i] and a[j], with a left subtree corresponding to the 
sequence of compares in the case that a[i] is less than a[j], and a right subtree 
corresponding to what happens if a[i] is greater than a[j]. Each path from the 
root to a leaf corresponds to the sequence of compares that the algorithm uses to 
establish the ordering given in the leaf. For example, here is a compare tree for 
N = 3:

0 1 2 1 0 2

0 2 1 2 0 1 1 2 0 2 1 0

0:1

0:2

1:2

1:2

0:2

We never explicitly construct such a tree—it is a mathematical device for describ-
ing the compares used by any algorithm. 

The first key observation in the proof is that the tree must have at least N ! leaves 
because there are N ! different permutations of N distinct keys. If there are fewer 
than N ! leaves, then some permutation is missing from the leaves, and the algo-
rithm would fail for that permutation. 

The number of internal nodes on a path from the root to a leaf in the tree is the 
number of compares used by the algorithm for some input. We are interested in the 
length of the longest such path in the tree (known as the tree height) since it mea-
sures the worst-case number of compares used by the algorithm. Now, it is a basic 
combinatorial property of binary trees that a tree of height h has no more than 2h 
leaves—the tree of height h with the maximum number of leaves is perfectly bal-
anced, or complete. An example for h = 4 is diagrammed on the next page. 
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complete tree of
height 4 (gray) has

24 = 16 leaves

any other tree of
height 4 (black) has
fewer than 16 leaves

Combining the previous two paragraphs, we have shown that any compare-based 
sorting algorithm corresponds to a compare tree of height h with

N !  number of leaves  2h

at least N! leaves no more than 2h leaves

h

The value of h is precisely the worst-case number of compares, so we can take the 
logarithm (base 2) of both sides of this equation and conclude that the number 
of compares used by any algorithm must be at least lg (N !). The approximation
lg (N !) ~ N lg N  follows immediately from Stirling’s approximation to the factorial 
function (see page 185). 

This result serves as a guide for us to know, when designing a sorting algorithm, how 
well we can expect to do. For example, without such a result, one might set out to try 
to design a compare-based sorting algorithm that uses half as many compares as does 
mergesort, in the worst case. The lower bound in Proposition I says that such an effort 
is futile—no such algorithm exists. It is an extremely strong statement that applies to any 
conceivable compare-based algorithm.

Proposition H asserts that the number of compares used by mergesort in the worst 
case is ~ N lg N. This result is an upper bound on the difficulty of the sorting problem 
in the sense that a better algorithm would have to guarantee to use a smaller number of 
compares. Proposition I asserts that no sorting algorithm can guarantee to use fewer 
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than ~ N lg N compares. It is a lower bound on the difficulty of the sorting problem in 
the sense that even the best possible algorithm must use at least that many compares in 
the worst case. Together, they imply:

 ~

proposition J. Mergesort is an asymptotically optimal compare-based sorting 
algorithm.

proof: Precisely, we mean by this statement that both the number of compares used 
by mergesort in the worst case and the minimum number of compares that any com-
pare-based sorting algorithm can guarantee are N lg N. Propositions H and I es-
tablish these facts. 

It is important to note that, like the model of computation, we need to precisely define 
what we mean by an optimal algorithm. For example, we might tighten the definition 
of optimality and insist that an optimal algorithm for sorting is one that uses precisely
lg (N !) compares. We do not do so because we could not notice the difference between 
such an algorithm and (for example) mergesort for large N. Or, we might broaden the 
definition of optimality to include any sorting algorithm whose worst-case number of 
compares is within a constant factor of N lg N. We do not do so because we might very 
well notice the difference between such an algorithm and mergesort for large N.

Computational complexity may seem rather abstract, but fundamental re-
search on the intrinsic difficulty of solving computational problems hardly needs jus-
tification. Moreover, when it does apply, it is emphatically the case that computational 
complexity affects the development of good software. First, good upper bounds allow 
software engineers to provide performance guarantees; there are many documented 
instances where poor performance has been traced to someone using a quadratic sort 
instead of a linearithmic one. Second, good lower bounds spare us the effort of search-
ing for performance improvements that are not attainable. 

But the optimality of mergesort is not the end of the story and should not be mis-
used to indicate that we need not consider other methods for practical applications. 
That is not the case because the theory in this section has a number of limitations. For 
example:

n	 Mergesort is not optimal with respect to space usage.
n	 The worst case may not be likely in practice.
n	 Operations other than compares (such as array accesses) may be important.
n	 One can sort certain data without using any compares.

Thus, we shall be considering several other sorting methods in this book.
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Q&A

Q. Is mergesort faster than shellsort?

A. In practice, their running times are within a small constant factor of one another 
(when shellsort is using a well-tested increment sequence like the one in Algorithm 
2.3), so comparative performance depends on the implementations. 

% java SortCompare Merge Shell 100000 
For 100000 random Double values 
    Merge is 1.2 times faster than Shell

In theory, no one has been able to prove that shellsort is linearithmic for random data, 
so there remains the possibility that the asymptotic growth of the average-case perfor-
mance of shellsort is higher. Such a gap has been proven for worst-case performance, 
but it is not relevant in practice.

Q. Why not make the aux[] array local to merge()?

A. To avoid the overhead of creating an array for every merge, even the tiny ones. This 
cost would dominate the running time of mergesort (see Exercise 2.2.26). A more 
proper solution (which we avoid in the text to reduce clutter in the code) is to make 
aux[] local to sort() and pass it as an argument to merge() (see Exercise 2.2.9).

Q. How does mergesort fare when there are duplicate values in the array?

A. If all the items have the same value, the running time is linear (with the extra test to 
skip the merge when the array is sorted), but if there is more than one duplicate value, 
this performance gain is not necessarily realized. For example, suppose that the input 
array consists of N items with one value in odd positions and N items with another 
value in even positions. The running time is linearithmic for such an array (it satisfies 
the same recurrence as for items with distinct values), not linear.
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ExErcisEs

2.2.1 Give a trace, in the style of the trace given at the beginning of this section, show-
ing how the keys A E Q S U Y E I N O S T are merged with the abstract in-place 
merge() method.

2.2.2 Give traces, in the style of the trace given with Algorithm 2.4, showing how the 
keys E A S Y Q U E S T I O N are sorted with top-down mergesort.

2.2.3 Answer Exercise 2.2.2 for bottom-up mergesort.

2.2.4 Does the abstract in-place merge produce proper output if and only if the two 
input subarrays are in sorted order? Prove your answer, or provide a counterexample.

2.2.5 Give the sequence of subarray sizes in the merges performed by both the top-
down and the bottom-up mergesort algorithms, for N = 39.

2.2.6 Write a program to compute the exact value of the number of array accesses used 
by top-down mergesort and by bottom-up mergesort. Use your program to plot the val-
ues for N from 1 to 512, and to compare the exact values with the upper bound 6N lg N.

2.2.7 Show that the number of compares used by mergesort is monotonically increas-
ing (C(N+1) > C(N) for all N > 0).

2.2.8 Suppose that Algorithm 2.4 is modified to skip the call on merge() whenever 
a[mid] <= a[mid+1]. Prove that the number of compares used to mergesort a sorted 
array is linear.

2.2.9 Use of a static array like aux[] is inadvisable in library software because multiple 
clients might use the class concurrently. Give an implementation of Merge that does not 
use a static array. Do not make aux[] local to merge() (see the Q&A for this section). 
Hint : Pass the auxiliary array as an argument to the recursive sort().
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crEAtivE problEms

~

2.2.10  Faster merge. Implement a version of merge() that copies the second half of 
a[] to aux[] in decreasing order and then does the merge back to a[]. This change al-
lows you to remove the code to test that each of the halves has been exhausted from the 
inner loop. Note: The resulting sort is not stable (see page 341).

2.2.11  Improvements. Implement the three improvements to mergesort that are de-
scribed in the text on page 275: Add a cutoff for small subarrays, test whether the array is 
already in order, and avoid the copy by switching arguments in the recursive code.

2.2.12  Sublinear extra space. Develop a merge implementation that reduces the extra 
space requirement to max(M, N/M), based on the following idea: Divide the array into 
N/M blocks of size M (for simplicity in this description, assume that N is a multiple 
of M). Then, (i) considering the blocks as items with their first key as the sort key, sort 
them using selection sort; and (ii) run through the array merging the first block with 
the second, then the second block with the third, and so forth.

2.2.13  Lower bound for average case. Prove that the expected number of compares used 
by any compare-based sorting algorithm must be at least N lg N (assuming that all 
possible orderings of the input are equally likely). Hint: The expected number of com-
pares is at least the external path length of the compare tree (the sum of the lengths of 
the paths from the root to all leaves), which is minimized when it is balanced.

2.2.14  Merging sorted queues. Develop a static method that takes two queues of sorted 
items as arguments and returns a queue that results from merging the queues into 
sorted order.

2.2.15  Bottom-up queue mergesort. Develop a bottom-up mergesort implementation 
based on the following approach: Given N items, create N queues, each containing one 
of the items. Create a queue of the N queues. Then repeatedly apply the merging opera-
tion of Exercise 2.2.14 to the first two queues and reinsert the merged queue at the end. 
Repeat until the queue of queues contains only one queue.

2.2.16  Natural mergesort. Write a version of bottom-up mergesort that takes advan-
tage of order in the array by proceeding as follows each time it needs to find two arrays 
to merge: find a sorted subarray (by incrementing a pointer until finding an entry that 
is smaller than its predecessor in the array), then find the next, then merge them. Ana-
lyze the running time of this algorithm in terms of the array size and the number of 
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maximal increasing sequences in the array.

2.2.17  Linked-list sort. Implement a natural mergesort for linked lists. (This is the 
method of choice for sorting linked lists because it uses no extra space and is guaranteed 
to be linearithmic.)

2.2.18  Shuffling a linked list. Develop and implement a divide-and-conquer algo-
rithm that randomly shuffles a linked list in linearithmic time and logarithmic extra 
space.

2.2.19  Inversions. Develop and implement a linearithmic algorithm for computing 
the number of inversions in a given array (the number of exchanges that would be 
performed by insertion sort for that array—see Section 2.1). This quantity is related 
to the Kendall tau distance; see Section 2.5.

2.2.20  Index sort. Develop and implement a version of mergesort that does not rear-
range the array, but returns an int[] array perm such that perm[i] is the index of the 
i th smallest entry in the array.

2.2.21  Triplicates. Given three lists of N names each, devise a linearithmic algorithm 
to determine if there is any name common to all three lists, and if so, return the lexico-
graphically first such name.

2.2.22  3-way mergesort. Suppose instead of dividing in half at each step, you divide 
into thirds, sort each third, and combine using a 3-way merge. What is the order of 
growth of the overall running time of this algorithm?

crEAtivE problEms (continued)
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ExpErimENts

2.2.23  Improvements. Run empirical studies to evaluate the effectiveness of each of the 
three improvements to mergesort that are described in the text (see Exercise 2.2.11). 
Also, compare the performance of the merge implementation given in the text with the 
merge described in Exercise 2.2.10. In particular, empirically determine the best value 
of the parameter that decides when to switch to insertion sort for small subarrays.

2.2.24  Sort-test improvement. Run empirical studies for large randomly ordered ar-
rays to study the effectiveness of the modification described in Exercise 2.2.8 for ran-
dom data. In particular, develop a hypothesis about the average number of times the 
test (whether an array is sorted) succeeds, as a function of N (the original array size for 
the sort).

2.2.25  Multiway mergesort. Develop a mergesort implementation based on the idea of 
doing k-way merges (rather than 2-way merges). Analyze your algorithm, develop a hy-
pothesis regarding the best value of k, and run experiments to validate your hypothesis.

2.2.26  Array creation. Use SortCompare to get a rough idea of the effect on perfor-
mance on your machine of creating aux[] in merge() rather than in sort().

2.2.27  Subarray lengths. Run mergesort for large random arrays, and make an empiri-
cal determination of the average length of the other subarray when the first subarray 
exhausts, as a function of N (the sum of the two subarray sizes for a given merge).

2.2.28  Top-down versus bottom-up. Use SortCompare to compare top-down and bot-
tom-up mergesort for N=103, 104, 105, and 106.

2.2.29  Natural mergesort. Determine empirically the number of passes needed in a 
natural mergesort (see Exercise 2.2.16) for random Long keys with N=103, 106, and 
109. Hint: You do not need to implement a sort (or even generate full 64-bit keys) to 
complete this exercise.
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2.3 QUiCkSort

The subject of this section is the sorting algorithm that is probably used more 
widely than any other, quicksort. Quicksort is popular because it is not difficult to 
implement, works well for a variety of different kinds of input data, and is substantially 
faster than any other sorting method in typical applications. The quicksort algorithm’s 
desirable features are that it is in-place (uses only a small auxiliary stack) and that 
it requires time proportional to N log N on the average to sort an array of length N. 
None of the algorithms that we have so far considered combine these two properties. 
Furthermore, quicksort has a shorter inner loop than most other sorting algorithms, 
which means that it is fast in practice as well as in theory. Its primary drawback is that 
it is fragile in the sense that some care is involved in the implementation to be sure to 
avoid bad performance. Numerous examples of mistakes leading to quadratic perfor-
mance in practice are documented in the literature. Fortunately, the lessons learned 
from these mistakes have led to various improvements to the algorithm that make it of 
even broader utility, as we shall see.

The basic algorithm  Quicksort is a divide-and-conquer method for sorting. It 
works by partitioning an array into two subarrays, then sorting the subarrays indepen-
dently. Quicksort is complementary to mergesort: for mergesort, we break the array 
into two subarrays to be sorted and then combine the ordered subarrays to make the 
whole ordered array; for quicksort, we rearrange the array such that, when the two 
subarrays are sorted, the whole array is ordered. In the first instance, we do the two 
recursive calls before working on the whole array; in the second instance, we do the two 
recursive calls after working on the whole array. For mergesort, the array is divided in 
half; for quicksort, the position of the partition depends on the contents of the array. 

Q  U  I  C  K  S  O  R  T  E  X  A  M  P  L  E

K  R  A  T  E  L  E  P  U  I  M  Q  C  X  O  S

E  C  A  I  E  K  L  P  U  T  M  Q  R  X  O  S

A  C  E  E  I  K  L  P  U  T  M  Q  R  X  O  S

A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X

A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X

not greater not less

partitioning item

input

shu�e

partition

sort left

sort right

result

Quicksort overview
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aLgorIthM 2.5 Quicksort

public class Quick 
{   
   public static void sort(Comparable[] a) 
   {   
      StdRandom.shuffle(a);          // Eliminate dependence on input. 
      sort(a, 0, a.length - 1); 
   }

   private static void sort(Comparable[] a, int lo, int hi) 
   { 
      if (hi <= lo) return; 
      int j = partition(a, lo, hi);  // Partition (see page 291). 
      sort(a, lo, j-1);              // Sort left part a[lo .. j-1]. 
      sort(a, j+1, hi);              // Sort right part a[j+1 .. hi]. 
   } 
}

Quicksort is a recursive program that sorts a subarray a[lo..hi] by using a partition() method 
that puts a[j] into position and arranges the rest of the entries such that the recursive calls finish 
the sort.

 lo   j  hi   0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
              Q  U  I  C  K  S  O  R  T  E  X  A  M  P  L  E
              K  R  A  T  E  L  E  P  U  I  M  Q  C  X  O  S 
  0   5  15   E  C  A  I  E  K  L  P  U  T  M  Q  R  X  O  S  
  0   3   4   E  C  A  E  I  K  L  P  U  T  M  Q  R  X  O  S  
  0   2   2   A  C  E  E  I  K  L  P  U  T  M  Q  R  X  O  S  
  0   0   1   A  C  E  E  I  K  L  P  U  T  M  Q  R  X  O  S  
  1       1   A  C  E  E  I  K  L  P  U  T  M  Q  R  X  O  S  
  4       4   A  C  E  E  I  K  L  P  U  T  M  Q  R  X  O  S  
  6   6  15   A  C  E  E  I  K  L  P  U  T  M  Q  R  X  O  S  
  7   9  15   A  C  E  E  I  K  L  M  O  P  T  Q  R  X  U  S  
  7   7   8   A  C  E  E  I  K  L  M  O  P  T  Q  R  X  U  S  
  8       8   A  C  E  E  I  K  L  M  O  P  T  Q  R  X  U  S  
10  13  15   A  C  E  E  I  K  L  M  O  P  S  Q  R  T  U  X  
10  12  12   A  C  E  E  I  K  L  M  O  P  R  Q  S  T  U  X  
10  11  11   A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X  

 10      10   A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X  
14  14  15   A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X  

 15      15   A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X  
  
              A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X 

no partition
 for subarrays

 of size 1

initial values

random shu�e

result

Quicksort trace (array contents after each partition)
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The crux of the method is the partitioning process, which rearranges the array to 
make the following three conditions hold: 

n	 The entry a[j] is in its final place in the array, for some j. 
n	 No entry in a[lo] through a[j-1] is greater than a[j]. 
n	 No entry in a[j+1] through a[hi] is less than a[j].

We achieve a complete sort by partitioning, then recursively applying the method.
Because the partitioning process always fixes one item into its position, a formal 

proof by induction that the recursive method constitutes a proper sort is not difficult 
to develop: if the left subarray and the right subarray are both properly sorted, then the 
result array, made up of the left subarray (in order, with no entry larger than the par-
titioning item), the partitioning item, and the right subarray (in order, with no entry 
smaller that the partitioning item), is in order. Algorithm 2.5 is a recursive program 

that implements this idea. It is a randomized algorithm, be-
cause it randomly shuffles the array before sorting it. Our 
reason for doing so is to be able to predict (and depend 
upon) its performance characteristics, as discussed below.

To complete the implementation, we need to implement 
the partitioning method. We use the following general strat-
egy: First, we arbitrarily choose a[lo] to be the partitioning 
item—the one that will go into its final position. Next, we 
scan from the left end of the array until we find an entry 
greater than (or equal to) the partitioning item, and we scan 
from the right end of the array until we find an entry less 
than (or equal to) the partitioning item. The two items that 

stopped the scans are out of place in the final partitioned array, so we exchange them. 
Continuing in this way, we ensure that no array entries to the left of the left index i are 
greater than the partitioning item, and no array entries to the right of the right index j 
are less than the partitioning item. When the scan indices cross, all that we need to do to 
complete the partitioning process is to exchange the partitioning item a[lo] with the 
rightmost entry of the left subarray (a[j]) and return its index j.

There are several subtle issues with respect to implementing quicksort that are re-
flected in this code and worthy of mention, because each either can lead to incorrect 
code or can significantly impact performance. Next, we discuss several of these is-
sues. Later in this section, we will consider three important higher-level algorithmic 
improvements. 

i

� v� v

j

v

v

lo hi

lo hi

v

� v� v

j

before

during

after

Quicksort partitioning overview

290 Chapter 2 n Sorting



ptg12441863

Quicksort partitioning

private static int partition(Comparable[] a, int lo, int hi) 
{  // Partition into a[lo..i-1], a[i], a[i+1..hi].  
   int i = lo, j = hi+1;            // left and right scan indices 
   Comparable v = a[lo];            // partitioning item 
   while (true) 
   {  // Scan right, scan left, check for scan complete, and exchange.  
      while (less(a[++i], v)) if (i == hi) break; 
      while (less(v, a[--j])) if (j == lo) break; 
      if (i >= j) break; 
      exch(a, i, j); 
   } 
   exch(a, lo, j);       // Put v = a[j] into position  
   return j;             // with a[lo..j-1] <= a[j] <= a[j+1..hi]. 
}

This code partitions on the item v in a[lo]. The main loop exits when the scan indices i and j cross. 
Within the loop, we increment i while a[i] is less than v and decrement j while a[j] is greater than 
v, then do an exchange to maintain the invariant property that no entries to the left of i are greater 
than v and no entries to the right of j are smaller than v. Once the indices meet, we complete the 
partitioning by exchanging a[lo] with a[j] (thus leaving the partitioning value in a[j]). 

                              a[]

 i   j    0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15

 0  16    K  R  A  T  E  L  E  P  U  I  M  Q  C  X  O  S

 1  12    K  R  A  T  E  L  E  P  U  I  M  Q  C  X  O  S

1  12    K  C  A  T  E  L  E  P  U  I  M  Q  R  X  O  S

 3   9    K  C  A  T  E  L  E  P  U  I  M  Q  R  X  O  S

3   9    K  C  A  I  E  L  E  P  U  T  M  Q  R  X  O  S

 5   6    K  C  A  I  E  L  E  P  U  T  M  Q  R  X  O  S

5   6    K  C  A  I  E  E  L  P  U  T  M  Q  R  X  O  S

 6   5    K  C  A  I  E  E  L  P  U  T  M  Q  R  X  O  S

6   5    E  C  A  I  E  K  L  P  U  T  M  Q  R  X  O  S

     5    E  C  A  I  E  K  L  P  U  T  M  Q  R  X  O  S

Partitioning trace (array contents before and after each exchange)

initial values

scan left, scan right

exchange

scan left, scan right

exchange

scan left, scan right

exchange

scan left, scan right

�nal exchange

result

v
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Partitioning in place  If we use an extra array, partitioning is easy to implement, but 
not so much easier that it is worth the extra cost of copying the partitioned version back 
into the original. A novice Java programmer might even create a new spare array within 
the recursive method, for each partition, which would drastically slow down the sort.

Staying in bounds  If the smallest item or the largest item in the array is the partition-
ing item, we have to take care that the pointers do not run off the left or right ends of 
the array, respectively. Our partition() implementation has explicit tests to guard 
against this circumstance. The test (j == lo) is redundant, since the partitioning item 
is at a[lo] and not less than itself. With a similar technique on the right it is not dif-
ficult to eliminate both tests (see Exercise 2.3.17). 

Preserving randomness  The random shuffle puts the array in random order. Since it 
treats all items in the subarrays uniformly, Algorithm 2.5 has the property that its two 
subarrays are also in random order. This fact is crucial to the predictability of the algo-
rithm’s running time. An alternate way to preserve randomness is to choose a random 
item for partitioning within partition().

Terminating the loop  Experienced programmers know to take special care to ensure 
that any loop must always terminate, and the partitioning loop for quicksort is no ex-
ception. Properly testing whether the pointers have crossed is a bit trickier than it might 
seem at first glance. A common error is to fail to take into account that the array might 
contain other items with the same key value as the partitioning item.

Handling items with keys equal to the partitioning item’s key  It is best to stop the 
left scan for items with keys greater than or equal to the partitioning item’s key and 
the right scan for items with key less than or equal to the partitioning item’s key, as in 
Algorithm 2.5. Even though this policy might seem to create unnecessary exchanges 
involving items with keys equal to the partitioning item’s key, it is crucial to avoiding 
quadratic running time in certain typical applications (see Exercise 2.3.11). Later, we 
discuss a better strategy for the case when the array contains a large number of items 
with equal keys.

Terminating the recursion  Experienced programmers also know to take special care 
to ensure that any recursive method must always terminate, and quicksort is again no 
exception. For instance, a common mistake in implementing quicksort involves not 
ensuring that one item is always put into position, then falling into an infinite recursive 
loop when the partitioning item happens to be the largest or smallest item in the array.
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Performance characteristics Quicksort has been subjected to very thorough 
mathematical analysis, so that we can make precise statements about its performance. 
The analysis has been validated through extensive empirical experience, and is a useful 
tool in tuning the algorithm for optimum performance.

The inner loop of quicksort (in the partitioning method) increments an index and 
compares an array entry against a fixed value. This simplicity is one factor that makes 
quicksort quick: it is hard to envision a shorter inner loop in a sorting algorithm. For 
example, mergesort and shellshort are typically slower than quicksort because they also 
do data movement within their inner loops.

The second factor that makes quicksort quick is that it uses few compares. Ulti-
mately, the efficiency of the sort depends on how well the partitioning divides the array, 
which in turn depends on the value of the partitioning item’s key. Partitioning divides 
a large randomly ordered array into two smaller randomly ordered subarrays, but the 
actual split is equally likely (for distinct keys) to be anywhere in the array. Next, we 
consider the analysis of the algorithm, which allows us to see how this choice compares 
to the ideal choice.

The best case for quicksort is when each partitioning stage divides the array exactly 
in half. This circumstance would make the number of compares used by quicksort 
satisfy the divide-and-conquer recurrence CN = 2CN/2 + N. The 2CN/2 term covers the 
cost of sorting the two subarrays; the N is the cost of examining each entry, using one 
partitioning index or the other. As in the proof of Proposition F for mergesort, we 
know that this recurrence has the solution CN ~ N lg N. Although things do not always 
go this well, it is true that the partition falls in the middle on the average. Taking into 
account the precise probability of each partition position makes the recurrence more 
complicated and more difficult to solve, but the final result is similar. The proof of 
this result is the basis for our confidence in quicksort. If you are not mathematically 
inclined, you may wish to skip (and trust) it; if you are mathematically inclined, you 
may find it intriguing. 

proposition k. Quicksort uses ~ 2N ln N compares (and one-sixth that many ex-
changes) on the average to sort an array of length N with distinct keys.

proof: Let CN be the average number of compares needed to sort N items with 
distinct values. We have C0 = C1 = 0 and for N > 1 we can write a recurrence relation-
ship that directly mirrors the recursive program:
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CN = N  1  (C0  C1 . . . CN2  CN1) / N + (CN1  CN2 . . . C0 )/N

The first term is the cost of partitioning (always N  1), the second term is the 
average cost of sorting the left subarray (which is equally likely to be any size from 
0 to N  1), and the third term is the average cost for the right subarray (which is 
the same as for the left subarray). Multiplying by N and collecting terms transforms 
this equation to

NCN = N(N  1) + 2(C0 + C1+ . . .+CN2+CN1)

Subtracting the same equation for N  1 from this equation gives

NCN  (N  1)CN1= 2N + 2CN1

Rearranging terms and dividing by N(N  1) leaves

CN  /(N  1) = CN1  /N  2 /(N  1)

which telescopes to give the result

CN   ~ 2 (N  1)(1/3  1/4  . . .  1/(N  1)  ) 

The parenthesized quantity is the discrete estimate of the area under the curve 1 /x
from 3 to N  1 and CN  ~ 2N lnN by integration. Note that 2N ln N  1.39N lg N, 
so the average number of compares is only about 39 percent higher than in the best 
case.

A similar (but much more complicated) analysis is needed to establish the stated 
result for exchanges. 

When keys may not be distinct, as is typical in practical applications, precise analysis is 
considerably more complicated, but it is not difficult to show that the average number 
of compares is no greater than CN  , even when duplicate keys may be present (on  page 
296, we will look at a way to improve quicksort in this case).

Despite its many assets, the basic quicksort program has one potential liability: it 
can be extremely inefficient if the partitions are unbalanced. For example, it could be 
the case that the first partition is on the smallest item, the second partition on the next 
smallest item, and so forth, so that the program will remove just one item for each call, 
leading to an excessive number of partitions of large subarrays. Avoiding this situation 
is the primary reason that we randomly shuffle the array before using quicksort. This 
action makes it so unlikely that bad partitions will happen consistently that we need not 
worry about the possibility.
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proposition l. Quicksort uses ~ N 2/2 compares in the worst case, but random 
shuffling protects against this case.

proof: By the argument just given, the number of compares used when one of the 
subarrays is empty for every partition is 

N  (N  1) + (N  2)   . . .  2  1 = (N  1) N / 2

This behavior means not only that the time required will be quadratic but also that 
the space required to handle the recursion will be linear, which is unacceptable for 
large arrays. But (with quite a bit more work) it is possible to extend the analysis 
that we did for the average to find that the standard deviation of the number of 
compares is about .65 N, so the running time tends to the average as N grows and is 
unlikely to be far from the average. For example, even the rough estimate provided 
by Chebyshev’s inequality says that the probability that the running time is more 
than ten times the average for an array with a million elements is less than .00001 
(and the true probability is far smaller). The probability that the running time for 
a large array is close to quadratic is so remote that we can safely ignore the pos-
sibility (see Exercise 2.3.10). For example, the probability that quicksort will use 
as many compares as insertion sort or selection sort when sorting a large array on 
your computer is much less than the probability that your computer will be struck 
by lightning during the sort!

In summary, you can be sure that the running time of Algorithm 2.5 will be within 
a constant factor of 1.39N lg N whenever it is used to sort N items. The same is true 
of mergesort, but quicksort is typically faster because (even though it does 39 per-
cent more compares) it does much less data movement. This mathematical assurance is 
probabilistic, but you can certainly rely upon it. 

Algorithmic improvements Quicksort was invented in 1960 by C. A. R. Hoare, 
and many people have studied and refined it since that time. It is tempting to try to 
develop ways to improve quicksort: a faster sorting algorithm is computer science’s 
“better mousetrap,” and quicksort is a venerable method that seems to invite tinkering. 
Almost from the moment Hoare first published the algorithm, people began proposing 
ways to improve the algorithm. Not all of these ideas are fully successful, because the al-
gorithm is so well-balanced that the effects of improvements can be more than offset by 
unexpected side effects, but a few of them, which we now consider, are quite effective. 
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If your sort code is to be used a great many times or to sort a huge array (or, in par-
ticular, if it is to be used as a library sort that will be used to sort arrays of unknown 
characteristics), then it is worthwhile to consider the improvements that are discussed 
in the next few paragraphs. As noted, you need to run experiments to determine the 
effectiveness of these improvements and to determine the best choice of parameters for 
your implementation. Typically, improvements of 20 to 30 percent are available.

Cutoff to insertion sort  As with most recursive algorithms, an easy way to improve 
the performance of quicksort is based on the following two observations:

n	 Quicksort is slower than insertion sort for tiny subarrays.
n	 Being recursive, quicksort’s sort() is certain to call itself for tiny subarrays.

Accordingly, it pays to switch to insertion sort for tiny subarrays. A simple change to 
Algorithm 2.5 accomplishes this improvement: replace the statement

if (hi <= lo) return;

 in sort() with a statement that invokes insertion sort for small subarrays:

if (hi <= lo + M) {  Insertion.sort(a, lo, hi); return;  }

The optimum value of the cutoff M is system-dependent, but any value between 5 and 
15 is likely to work well in most situations (see Exercise 2.3.25).

Median-of-three partitioning  A second easy way to improve the performance of 
quicksort is to use the median of a small sample of items taken from the subarray as the 
partitioning item. Doing so will give a slightly better partition, but at the cost of com-
puting the median. It turns out that most of the available improvement comes from 
choosing a sample of size 3 and then partitioning on the middle item (see Exercises 
2.3.18 and 2.3.19). As a bonus, we can use the sample items as sentinels at the ends of 
the array and remove both array bounds tests in partition(). 

Entropy-optimal sorting  Arrays with large numbers of duplicate keys arise fre-
quently in applications. For example, we might wish to sort a large personnel file 
by year of birth, or perhaps to separate females from males. In such situations, the 
quicksort implementation that we have considered has acceptable performance, 
but it can be substantially improved. For example, a subarray that consists solely of 
items that are equal (just one key value) does not need to be processed further, but 
our implementation keeps partitioning down to small subarrays. In a situation where 
there are large numbers of duplicate keys in the input array, the recursive nature of 
quicksort ensures that subarrays consisting solely of items with keys that are equal will 
occur often. There is potential for significant improvement, from the linearithmic-time 
performance of the implementations seen so far to linear-time performance.
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partitioning element

Quicksort with median-of-3 partitioning and cuto� for small subarrays
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result

result of
�rst partition

left subarray
partially sorted

both subarrays 
partially sorted
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One straightforward idea is to partition the array into three parts, one each for 
items with keys smaller than, equal to, and larger than the partitioning item’s key. 
Accomplishing this partitioning is more complicated than the 2-way partitioning that 
we have been using, and various different methods have been suggested for the task. 
It was a classical programming exercise popularized by E. W. Dijkstra as the Dutch 
National Flag problem, because it is like sorting an array with three possible key values, 
which might correspond to the three colors on the flag.

Dijkstra’s solution to this problem leads to the remarkably simple partition code 
shown on the next page. It is based on a single left-to-right pass through the array that 
maintains a pointer lt such that a[lo..lt-1] is less than v, a pointer gt such that 
a[gt+1, hi] is greater than v, and a pointer i such that a[lt..i-1] are equal to v 
and a[i..gt] are not yet examined. Starting with i equal to lo, we process a[i] using 
the 3-way comparison given by the Comparable interface (instead of using less()) to 
directly handle the three possible cases:

n	 a[i] less than v: exchange a[lt] with a[i] and increment both lt and i
n	 a[i] greater than v: exchange a[i] with a[gt] and decrement gt
n	 a[i] equal to v: increment i

Each of these operations both maintains the invariant and decreases the value of 
gt-i (so that the loop terminates). Furthermore, every item encountered leads to an 
exchange except for those items with keys equal to the partitioning item’s key.

Though this code was developed not long after quicksort in the 1970s, it fell out of 
favor because it uses many more exchanges 
than the standard 2-way partitioning method 
for the common case when the number of 
duplicate keys in the array is not high. In the 
1990s J. Bentley and D. McIlroy developed a 
clever implementation that overcomes this 
problem (see Exercise 2.3.22), and observed 
that 3-way partitioning makes quicksort 
asymptotically faster than mergesort and 
other methods in practical situations 
involving large numbers of equal keys. Later, 
J. Bentley and R. Sedgewick developed a proof of this fact, which we discuss next.

But we proved that mergesort is optimal. How have we defeated that lower bound? 
The answer to this question is that Proposition I in Section 2.2 addresses worst-
case performance over all possible inputs, while now we are looking at worst-case 
performance with some information about the key values at hand. Mergesort does not 
guarantee optimal performance for any given distribution of duplicates in the input: 

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning overview
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Quicksort with 3-way partitioning

public class Quick3way 
{  

   private static void sort(Comparable[] a, int lo, int hi) 
   {  // See page 289 for public sort() that calls this method. 
      if (hi <= lo) return; 
      int lt = lo, i = lo+1, gt = hi; 
      Comparable v = a[lo]; 
      while (i <= gt) 
      { 
         int cmp = a[i].compareTo(v); 
         if      (cmp < 0) exch(a, lt++, i++); 
         else if (cmp > 0) exch(a, i, gt--); 
         else              i++; 
      }  // Now a[lo..lt-1] < v = a[lt..gt] < a[gt+1..hi]. 
      sort(a, lo, lt - 1); 
      sort(a, gt + 1, hi); 
   } 
}

This sort code partitions to put keys equal to the partitioning element in place and thus does not have 
to include those keys in the subarrays for the recursive calls. It is far more efficient than the standard 
quicksort implementation for arrays with large numbers of duplicate keys (see text).

                              a[]

lt   i  gt    0  1  2  3  4  5  6  7  8  9 10 11 

 0   0  11    R  B  W  W  R  W  B  R  R  W  B  R

 0   1  11    R  B  W  W  R  W  B  R  R  W  B  R

1   2  11    B  R  W  W  R  W  B  R  R  W  B  R

 1   2  10    B  R  R  W  R  W  B  R  R  W  B  W

 1   3  10    B  R  R  W  R  W  B  R  R  W  B  W

 1   3   9    B  R  R  B  R  W  B  R  R  W  W  W

 2   4   9    B  B  R  R  R  W  B  R  R  W  W  W

 2   5   9    B  B  R  R  R  W  B  R  R  W  W  W

 2   5   8    B  B  R  R  R  W  B  R  R  W  W  W

 2   5   7    B  B  R  R  R  R  B  R  W  W  W  W

 2   6   7    B  B  R  R  R  R  B  R  W  W  W  W

 3   7   7    B  B  B  R  R  R  R  R  W  W  W  W

 3   8   7    B  B  B  R  R  R  R  R  W  W  W  W

3   8   7    B  B  B  R  R  R  R  R  W  W  W  W

v

3-way partitioning trace (array contents after each loop iteration)
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for example, mergesort is linearithmic for a randomly ordered array that has only a 
constant number of distinct key values, but quicksort with 3-way partitioning is linear 
for such an array. Indeed, by examining the visual trace above, you can see that N times 
the number of key values is a conservative bound on the running time.

The analysis that makes these notions precise takes the distribution of key values 
into account. Given N keys with k distinct key values, for each i  from 1 to k define fi to 
be frequency of occurrence of the i th key value and pi to be fi / N, the probability that 
the i th key value is found when a random entry of the array is sampled. The Shannon 
entropy of the keys (a classic measure of their information content) is defined as

H =  ( p1 lg p1  p2 lg p2  . . .  pk lg pk ).

Given any array of items to be sorted, we can calculate its entropy by counting the fre-
quency of each key value. Remarkably, we can also derive from the entropy both a lower 
bound on the number of compares and an upper bound on the number of compares 
used by quicksort with 3-way partitioning.

proposition m. No compare-based sorting algorithm can guarantee to sort N items   
with fewer than NH  N compares, where H is the Shannon entropy, defined from 
the frequencies of key values.

proof sketch: This result follows from a (relatively easy) generalization of the low-
er bound proof of Proposition I in Section 2.2.

equal to partitioning element

Visual trace of quicksort with 3-way partitioning
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proposition N. Quicksort with 3-way partitioning uses ~ (2ln 2) N H compares to 
sort N items, where H is the Shannon entropy, defined from the frequencies of key 
values.

proof sketch: This result follows from a (relatively difficult) generalization of the 
average-case analysis of quicksort in Proposition K. As with distinct keys, this 
costs about 39 percent more than the optimum (but within a constant factor).

Note that H = lg N when the keys are all distinct (all the probabilities are 1/N), which 
is consistent with Proposition I in Section 2.2 and Proposition K. The worst case 
for 3-way partitioning happens when the keys are distinct; when duplicate keys are 
present, it can do much better than mergesort. More important, these two properties 
together imply that quicksort with 3-way partitioning is entropy-optimal, in the sense 
that the average number of compares used by the best possible compare-based sorting 
algorithm and the average number of compares used by 3-way quicksort are within a 
constant factor of one another, for any given distribution of input key values.

As with standard quicksort, the running time tends to the average as the array size 
grows, and large deviations from the average are extremely unlikely, so that you can 
depend on 3-way quicksort’s running time to be proportional to N times the entropy 
of the distribution of input key values. This property of the algorithm is important in 
practice because it reduces the time of the sort from linearithmic to linear for arrays with 
large numbers of duplicate keys. The order of the keys is immaterial, because the algo-
rithm shuffles them to protect against the worst case. The distribution of keys defines 
the entropy and no compare-based algorithm can use fewer compares than defined by 
the entropy. This ability to adapt to duplicates in the input makes 3-way quicksort the 
algorithm of choice for a library sort—clients that sort arrays containing large numbers 
of duplicate keys are not unusual. 

A carefully tuned version of quicksort is likely to run significantly faster on most 
computers for most applications than will any other compare-based sorting method. 
Quicksort is widely used throughout today’s computational infrastructure because 
the mathematical models that we have discussed suggest that it will outperform other 
methods in practical applications, and extensive experiments and experience over the 
past several decades have validated that conclusion.

We will see in Chapter 5 that this is not quite the end of the story in the development 
of sorting algorithms, because it is possible to develop algorithms that do not use 
compares at all! But a version of quicksort turns out to be best in that situation, as well.
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Q & A

Q. Is there some way to just divide the array into two halves, rather than letting the 
partitioning element fall where it may?

A. That is a question that stumped experts for over a decade. It is tantamount to find-
ing the median key value in the array and then partitioning on that value. We discuss 
the problem of finding the median on page 346. It is possible to do so in linear time, but 
the cost of doing so with known algorithms (which are based on quicksort partition-
ing!) far exceeds the 39 percent savings available from splitting the array into equal 
parts.

Q. Randomly shuffling the array seems to take a significant fraction of the total time 
for the sort. Is doing so really worthwhile?

A. Yes. It protects against the worst case and makes the running time predictable. Hoare 
proposed this approach when he presented the algorithm in 1960—it is a prototypical 
(and among the first) randomized algorithm. 

Q. Why all the focus on items with equal keys?

A. The issue directly impacts performance in practical situations. It was overlooked by 
many for decades, with the result that some older implementations of quicksort take 
quadratic time for arrays with large numbers of  items with equal keys, which certainly 
do arise in applications. Better implementations such as Algorithm 2.5 take linearith-
mic time for such arrays, but improving that to linear-time as in the entropy-optimal 
sort at the end of this section is worthwhile in many situations.
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ExErcisEs

2.3.1 Show, in the style of the trace given with partition(), how that method parti-
tions the array E A S Y Q U E S T I O N.

2.3.2 Show, in the style of the quicksort trace given in this section, how quicksort sorts 
the array E A S Y Q U E S T I O N (for the purposes of this exercise, ignore the 
initial shuffle).

2.3.3 What is the maximum number of times during the execution of Quick.sort() 
that the largest item can be exchanged, for an array of length N ?

2.3.4 Suppose that the initial random shuffle is omitted. Give six arrays of ten elements 
for which Quick.sort() uses the worst-case number of compares.

2.3.5 Give a code fragment that sorts an array that is known to consist of items having   
just two distinct keys.

2.3.6 Write a program to compute the exact value of CN, and compare the exact value 
with the approximation 2N ln N, for N = 100, 1,000, and 10,000.

2.3.7 Find the expected number of subarrays of size 0, 1, and 2 when quicksort is used 
to sort an array of N items with distinct keys. If you are mathematically inclined, do the 
math; if not, run some experiments to develop hypotheses.

2.3.8 About how many compares will Quick.sort() make when sorting an array of 
N items that are all equal?

2.3.9 Explain what happens when Quick.sort() is run on an array having items with 
just two distinct keys, and then explain what happens when it is run on an array having 
just three distinct keys.

2.3.10 Chebyshev’s inequality says that the probability that a random variable is more 
than k standard deviations away from the mean is less than 1/k 2. For N = 1 million, use 
Chebyshev’s inequality to bound the probability that the number of compares used by 
quicksort is more than 100 billion (.1 N 2).

2.3.11 Suppose that we scan over items with keys equal to the partitioning item’s key 
instead of stopping the scans when we encounter them. Show that the running time 
of this version of quicksort is quadratic for all arrays with just a constant number of 
distinct keys.
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2.3.12 Show, in the style of the trace given with the code, how the 3-way quicksort first 
partitions the array B A B A B A B A C A D A B R A.

2.3.13 What is the recursive depth of quicksort, in the best, worst, and average cases? 
This is the size of the stack that the system needs to keep track of the recursive calls. See 
Exercise 2.3.20 for a way to guarantee that the recursive depth is logarithmic in the 
worst case.

2.3.14 Prove that when running quicksort on an array with N distinct items, the prob-
ability of comparing the i th and j th smallest items is 2 / (j  i  1). Then use this result 
to prove Proposition K. 

ExErcisEs (continued)
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crEAtivE problEms

2.3.15  Nuts and bolts. (G. J. E. Rawlins) You have a mixed pile of N nuts and N bolts 
and need to quickly find the corresponding pairs of nuts and bolts. Each nut matches 
exactly one bolt, and each bolt matches exactly one nut. By fitting a nut and bolt to-
gether, you can see which is bigger, but it is not possible to directly compare two nuts or 
two bolts. Give an efficient method for solving the problem.

2.3.16  Best case. Write a program that produces a best-case array (with no duplicates) 
for sort() in Algorithm 2.5: an array of N items with distinct keys having the prop-
erty that every partition will produce subarrays that differ in size by at most 1 (the same 
subarray sizes that would happen for an array of N equal keys). (For the purposes of this 
exercise, ignore the initial shuffle.)

The following exercises describe variants of quicksort. Each of them calls for an implementa-
tion, but naturally you will also want to use SortCompare for experiments to evaluate the 
effectiveness of each suggested modification.

2.3.17  Sentinels. Modify the code in Algorithm 2.5 to remove both bounds checks 
in the inner while loops. The test against the left end of the subarray is redundant since 
the partitioning item acts as a sentinel (v is never less than a[lo]). To enable removal of 
the other test, put an item whose key is the largest in the whole array into a[length-1] 
just after the shuffle. This item will never move (except possibly to be swapped with an 
item having the same key) and will serve as a sentinel in all subarrays involving the end 
of the array. Note : For a subarray that does not involve the end of the array, the leftmost 
entry to its right serves as a sentinel for the right end of the subarray. 

2.3.18  Median-of-3 partitioning. Add median-of-3 partitioning to quicksort, as de-
scribed in the text (see page 296). Run doubling tests to determine the effectiveness of
the change.

2.3.19  Median-of-5 partitioning. Implement a quicksort based on partitioning on the 
median of a random sample of five items from the subarray. Put the items of the sample 
at the appropriate ends of the array so that only the median participates in partitioning. 
Run doubling tests to determine the effectiveness of the change, in comparison both 
to the standard algorithm and to median-of-3 partitioning (see the previous exercise). 
Extra credit : Devise a median-of-5 algorithm that uses fewer than seven compares on 
any input. 
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2.3.20  Nonrecursive quicksort. Implement a nonrecursive version of quicksort based 
on a main loop where a subarray is popped from a stack to be partitioned, and the re-
sulting subarrays are pushed onto the stack. Note :  Push the larger of the subarrays onto 
the stack first, which guarantees that the stack will have at most lg N entries.

2.3.21  Lower bound for sorting with equal keys. Complete the first part of the proof 
of Proposition M by following the logic in the proof of Proposition I and using the 
observation that there are N! / f1!f2! . . . fk! different ways to arrange keys with k different 
values, where the i th value appears with frequency fi (= Npi , in the notation of Proposi-
tion M), with f1+. . . +fk = N.

2.3.22  Fast 3-way partitioning. (J. Bentley and D. McIlroy) Implement an entropy-
optimal sort based on keeping items with equal keys at both the left and right ends 

of the subarray. Maintain indices p and q such that 
a[lo..p-1] and a[q+1..hi] are all equal to a[lo], 
an index i such that a[p..i-1] are all less than a[lo], 
and an index j such that a[j+1..q] are all greater than 
a[lo]. Add to the inner partitioning loop code to swap 
a[i] with a[p] (and increment p) if it is equal to v and 
to swap a[j] with a[q] (and decrement q) if it is equal 
to v before the usual comparisons of a[i] and a[j] 
with v. After the partitioning loop has terminated, add 
code to swap the items with equal keys into position. 
Note : This code complements the code given in the 

text, in the sense that it does extra swaps for keys equal to the partitioning item’s key, 
while the code in the text does extra swaps for keys that are not equal to the partitioning 
item’s key.

2.3.23  Tukey's ninther. Add to your implementation from Exercise 2.3.22 code to use 
the Tukey ninther to compute the partitioning item—choose three sets of three items, 
take the median of each, then use the median of the three medians as the partitioning 
item. Also, add a cutoff to insertion sort for small subarrays. 

2.3.24  Samplesort. (W. Frazer and A. McKellar) Implement a quicksort based on us-
ing a sample of size 2k  1. First, sort the sample, then arrange to have the recursive 
routine partition on the median of the sample and to move the two halves of the rest of 
the sample to each subarray, such that they can be used in the subarrays, without having 
to be sorted again. This algorithm is called samplesort. 
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ExpErimENts

2.3.25  Cutoff to insertion sort. Implement quicksort with a cutoff to insertion sort 
for subarrays with less than M elements, and empirically determine the value of M for 
which quicksort runs fastest in your computing environment to sort random arrays 
of N doubles, for N = 103, 104, 105, and 106. Plot average running times for M from 0 
to 30 for each value of M. Note : You need to add a three-argument sort() method to 
Algorithm 2.2 for sorting subarrays such that the call Insertion.sort(a, lo, hi) 
sorts the subarray a[lo..hi].

2.3.26  Subarray sizes. Write a program that plots a histogram of the subarray sizes left 
for insertion sort when you run quicksort for an array of size N with a cutoff for subar-
rays of size less than M. Run your program for M=10, 20, and 50 and N = 105.

2.3.27  Ignore small subarrays. Run experiments to compare the following strategy for 
dealing with small subarrays with the approach described in Exercise 2.3.25: Simply 
ignore the small subarrays in quicksort, then run a single insertion sort after the quick-
sort completes. Note : You may be able to estimate the size of your computer’s cache 
memory with these experiments, as the performance of this method is likely to degrade 
when the array does not fit in the cache.

2.3.28  Recursion depth. Run empirical studies to determine the average recursive 
depth used by quicksort with cutoff for arrays of size M, when sorting arrays of N
distinct elements, for M=10, 20, and 50 and N = 103, 104, 105, and 106.

2.3.29  Randomization. Run empirical studies to compare the effectiveness of 
the strategy of choosing a random partitioning item with the strategy of initially 
randomizing the array (as in the text). Use a cutoff for arrays of size M, and sort arrays 
of N distinct elements, for M=10, 20, and 50 and N = 103, 104, 105, and 106.

2.3.30  Corner cases. Test quicksort on large nonrandom arrays of the kind described 
in Exercises 2.1.35 and 2.1.36 both with and without the initial random shuffle. How 
does shuffling affect its performance for these arrays?

2.3.31  Histogram of running times. Write a program that takes command-line argu-
ments N and T, does T trials of the experiment of running quicksort on an array of 
N random Double values, and plots a histogram of the observed running times. Run 
your program for N = 103, 104, 105, and 106, with T as large as you can afford to make 
the curves smooth. Your main challenge for this exercise is to appropriately scale the 
experimental results.
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2.4 Priority QUeUeS

Many applications require that we process items having keys in order, but not nec-
essarily in full sorted order and not necessarily all at once. Often, we collect a set of 
items, then process the one with the largest key, then perhaps collect more items, then 
process the one with the current largest key, and so forth. For example, you are likely to 
have a computer (or a cellphone) that is capable of running several applications at the 
same time. This effect is typically achieved by assigning a priority to events associated 
with applications, then always choosing to process next the highest-priority event. For 
example, most cellphones are likely to process an incoming call with higher priority 
than a game application.

An appropriate data type in such an environment supports two operations: remove 
the maximum and insert. Such a data type is called a priority queue. Using priority 
queues is similar to using queues (remove the oldest) and stacks (remove the newest), 
but implementing them efficiently is more challenging. 

In this section, after a short discussion of elementary representations where one or 
both of the operations take linear time, we consider a classic priority-queue implemen-
tation based on the binary heap data structure, where items are kept in an array, subject 
to certain ordering constraints that allow for efficient (logarithmic-time) implementa-
tions of remove the maximum and insert. 

Some important applications of priority queues include simulation systems, where 
the keys correspond to event times, to be processed in chronological order; job schedul-
ing, where the keys correspond to priorities indicating which tasks are to be performed 
first; and numerical computations, where the keys represent computational errors, in-
dicating in which order we should deal with them. We consider in Chapter 6 a detailed 
case study showing the use of priority queues in a particle-collision simulation.

We can use any priority queue as the basis for a sorting algorithm by inserting a se-
quence of items, then successively removing the smallest to get them out, in order. An 
important sorting algorithm known as heapsort also follows naturally from our heap-
based priority-queue implementations. Later on in this book, we shall see how to use 
priority queues as building blocks for other algorithms. In Chapter 4, we shall see how 
priority queues are an appropriate abstraction for implementing several fundamental 
graph-searching algorithms; in Chapter 5, we shall develop a data-compression algo-
rithm using methods from this section. These are but a few examples of the important 
role played by the priority queue as a tool in algorithm design.
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API The priority queue is a prototypical abstract data type (see Section 1.2): it rep-
resents a set of values and operations on those values, and it provides a convenient ab-
straction that allows us to separate application programs (clients) from various imple-
mentations that we will consider in this section. As in Section 1.2, we precisely define 
the operations by specifying an applications programming interface (API) that provides 
the information needed by clients. Priority queues are characterized by the remove the 
maximum and insert operations, so we shall focus on them. We use the method names 
delMax() for remove the maximum and insert() for insert. By convention, we will 
compare keys only with a helper less() method, as we have been doing for sorting. 
Thus, if items can have duplicate keys, maximum means any item with the largest key 
value. To complete the API, we also need to add constructors (like the ones we used for 
stacks and queues) and a test if empty operation. For flexibility, we use a generic imple-
mentation with a parameterized type Key that implements the Comparable interface. 
This choice eliminates our distinction between items and keys and enables clearer and 
more compact descriptions of data structures and algorithms. For example, we refer to 
the “largest key” instead of the “largest item” or the “item with the largest key.”

For convenience in client code, the API includes three constructors, which enable 
clients to build priority queues of an initial fixed size (perhaps initialized with a given 
array of keys). To clarify client code, we will use a separate class MinPQ whenever ap-
propriate, which is the same as MaxPQ except that it has a delMin() method that deletes 
and returns an item with the smallest key in the queue. Any MaxPQ implementation is 
easily converted into a MinPQ implementation and vice versa, simply by reversing the 
sense of the comparison in less(). 

public class MaxPQ<Key extends Comparable<Key>>

MaxPQ() create a priority queue

MaxPQ(int max) create a priority queue of initial capacity max

MaxPQ(Key[] a) create a priority queue from the keys in a[]

void insert(Key v) insert a key into the priority queue

Key max() return the largest key

Key delMax() return and remove the largest key

boolean isEmpty() is the priority queue empty?

int size() number of keys in the priority queue

apI for a generic priority queue
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A priority-queue client  To appreciate the 
value of the priority-queue abstraction, con-
sider the following problem: You have a huge 
input stream of N strings and associated inte-
ger values, and your task is to find the largest 
or smallest M integers (and associated strings) 
in the input stream. You might imagine the 
stream to be financial transactions, where 
your interest is to find the big ones, or pesti-
cide levels in an agricultural product, where 
your interest is to find the small ones, or re-
quests for service, or results from a scientific 
experiment, or whatever. In some applications, the size of the input stream is so huge 
that it is best to consider it to be unbounded. One way to address this problem would 
be to sort the input stream and take the M largest keys from the result, but we have 
just stipulated that the input stream is too large for that. Another approach would be 
to compare each new key against the M largest seen so far, but that is also likely to be 
prohibitively expensive unless M is small. With priority queues, we can solve the prob-
lem with the MinPQ client TopM on the next page provided that we can develop efficient 
implementations of both insert() and delMin(). That is precisely our aim in this sec-
tion. For the huge values of N that are likely to be encountered in our modern compu-
tational infrastructure, these implementations can make the difference between being 
able to address such a problem and not having the resources to do it at all. 

Elementary implementations The basic data structures that we discussed in 
Chapter 1 provide us with four immediate starting points for implementing priority 
queues. We can use an array or a linked list, kept in order or unordered. These imple-
mentations are useful for small priority queues, situations where one of the two opera-
tions are predominant, or situations where some assumptions can be made about the 
order of the keys involved in the operations. Since these implementations are elemen-
tary, we will be content with brief descriptions here in the text and leave the code for 
exercises (see Exercise 2.4.3).

Array representation (unordered)  Perhaps the simplest priority-queue implementa-
tion is based on our code for pushdown stacks in Section 1.3. The code for insert in the 
priority queue is the same as for push in the stack. To implement remove the maximum, 
we can add code like the inner loop of selection sort to exchange the maximum item 
with the item at the end and then delete that one, as we did with pop() for stacks. As 
with stacks, we can add resizing-array code to ensure that the data structure is always at 
least one-quarter full and never overflows.

client
order of growth

time space

sort client N log N N

PQ client using 
elementary implementation NM M

PQ client using 
heap-based implementation N log M M

Costs of finding the largest M in a stream of N items
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A priority-queue client

public class TopM 
{   
   public static void main(String[] args) 
   {  // Print the top M lines in the input stream. 
      int M = Integer.parseInt(args[0]); 
      MinPQ<Transaction> pq = new MinPQ<Transaction>(M+1); 
      while (StdIn.hasNextLine()) 
      {  // Create an entry from the next line and put on the PQ. 
         pq.insert(new Transaction(StdIn.readLine())); 
         if (pq.size() > M) 
            pq.delMin();     // Remove minimum if M+1 entries on the PQ. 
      }  // Top M entries are on the PQ.

      Stack<Transaction> stack = new Stack<Transaction>(); 
      while (!pq.isEmpty()) stack.push(pq.delMin()); 
      for (Transaction t : stack) StdOut.println(t); 
   } 
}

Given an integer M from the command line and an input stream where each line contains a trans-
action, this MinPQ client prints the M lines whose numbers are the highest. It does so by using our 
Transaction class (see page 79, Exercise 1.2.19, and Exercise 2.1.21) to build a priority queue using 

the numbers as keys, deleting the minimum after each 
insertion once the size of the priority queue reaches M. 
Once all the transactions have been processed, the top M 
come off the priority queue in increasing order, so this 
code puts them on a stack, then iterates through the 
stack to reverse the order and print them in decreasing 
order.

% more tinyBatch.txt 
Turing      6/17/1990   644.08 
vonNeumann  3/26/2002  4121.85 
Dijkstra    8/22/2007  2678.40 
vonNeumann  1/11/1999  4409.74 
Dijkstra   11/18/1995   837.42 
Hoare       5/10/1993  3229.27 
vonNeumann  2/12/1994  4732.35 
Hoare       8/18/1992  4381.21 
Turing      1/11/2002    66.10 
Thompson    2/27/2000  4747.08 
Turing      2/11/1991  2156.86 
Hoare       8/12/2003  1025.70 
vonNeumann 10/13/1993  2520.97 
Dijkstra    9/10/2000   708.95 
Turing     10/12/1993  3532.36 
Hoare       2/10/2005  4050.20

% java TopM 5 < tinyBatch.txt 
Thompson    2/27/2000  4747.08 
vonNeumann  2/12/1994  4732.35 
vonNeumann  1/11/1999  4409.74 
Hoare       8/18/1992  4381.21 
vonNeumann  3/26/2002  4121.85
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Array representation (ordered)  Another approach is to add code for insert to move 
larger entries one position to the right, thus keeping the keys in the array in order (as in 
insertion sort). Thus, the largest entry is always at the end, and the code for remove the 
maximum in the priority queue is the same as for pop in the stack.

Linked-list representations  Similarly, we can start with our linked-list code for push-
down stacks, modifying either the code for pop() to find and return the maximum or 
the code for push() to keep keys in reverse order and the code for pop() to unlink and 
return the first (maximum) item on the list.

Using unordered sequences is the prototypical lazy
approach to this problem, where we defer doing 
work until necessary (to find the maximum); us-
ing ordered sequences is the prototypical eager ap-
proach to the problem, where we do as much work 
as we can up front (keep the list sorted on insertion) 
to make later operations efficient.

The significant difference between implementing 
stacks or queues and implementing priority queues 
has to do with performance. For stacks and queues, 
we were able to develop implementations of all the 

operations that take constant time; for priority queues, all of the elementary imple-
mentations just discussed have the property that either the insert or the remove the 
maximum operation takes linear time in the worst case. The heap data structure that we 
consider next enables implementations where both operations are guaranteed to be fast.

P               1     P                        P
Q               2     P  Q                     P  Q
E               3     P  Q  E                  E  P  Q  
        Q       2     P  E                     E  P
X               3     P  E  X                  E  P  X
A               4     P  E  X  A               A  E  P  X
M               5     P  E  X  A  M            A  E  M  P  X
        X       4     P  E  M  A               A  E  M  P
P               5     P  E  M  A  P            A  E  M  P  P
L               6     P  E  M  A  P  L         A  E  L  M  P  P
E               7     P  E  M  A  P  L  E      A  E  E  L  M  P  P
        P       6     E  E  M  A  P  L         A  E  E  L  M  P   

insert
insert
insert

remove max
insert
insert
insert

remove max
insert
insert
insert

remove max

operation  argument return value contents (unordered) contents (ordered)size

A sequence of operations on a priority queue

data structure insert remove 
maximum

ordered array N 1

unordered array 1 N

heap log N log N

impossible 1 1

order of growth of worst-case running time 
for priority-queue implementations
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Heap definitions The binary heap is a data structure that can efficiently support 
the basic priority-queue operations. In a binary heap, the keys are stored in an array 
such that each key is guaranteed to be larger than (or equal to) the keys at two other 
specific positions. In turn, each of those keys must be larger than (or equal to) two ad-
ditional keys, and so forth. This ordering is easy to see if we view the keys as being in 
a binary tree structure with edges from each key to the two keys known to be smaller.

Definition. A binary tree is heap-ordered if the key in each node is larger than or 
equal to the keys in that node’s two children (if any). 

Equivalently, the key in each node of a heap-ordered binary tree is smaller than or 
equal to the key in that node’s parent (if any). Moving up from any node, we get a 
nondecreasing sequence of keys; moving down from any node, we get a nonincreasing 
sequence of keys. In particular: 

proposition o. The largest key in a heap-ordered binary tree is found at the root.

proof: By induction on the size of the tree. 

Binary heap representation  If we use a linked representation for heap-ordered binary 
trees, we would need to have three links associated with each key to allow travel up and 
down the tree (each node would have one pointer to its parent and one to each child). 
It is particularly convenient, instead, to use a complete binary tree like the one drawn at 
right. We draw such a structure by placing the root node 
and then proceeding down the page and from left to right, 
drawing and connecting two nodes beneath each node on 
the previous level until we have drawn N nodes. Complete 
trees provide the opportunity to use a compact array rep-
resentation that does not involve explicit links. Specifically, 
we represent complete binary trees sequentially within an 
array by putting the nodes in level order, with the root at 
position 1, its children at positions 2 and 3, their children 
in positions 4, 5, 6, and 7, and so on.

E
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A heap-ordered complete binary tree
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Definition. A binary heap is a collection of keys arranged in a complete heap-or-
dered binary tree, represented in level order in an array (not using the first entry).

(For brevity, from now on we drop the “binary” 
modifier and use the term heap when referring 
to a binary heap.) In a heap, the parent of the 
node in position k is in position ⎣k /2⎦ and, con-
versely, the two children of the node in position 
k are in positions 2k and 2k + 1. Instead of using 
explicit links (as in the binary tree structures that 
we will consider in Chapter 3), we can travel up 
and down by doing simple arithmetic on array 
indices: to move up the tree from a[k] we set k 
to k/2; to move down the tree we set k to 2*k or 
2*k+1. 

Complete binary trees represented as arrays 
(heaps) are rigid structures, but they have just 
enough flexibility to allow us to implement effi-
cient priority-queue operations. Specifically, we 

will use them to develop logarithmic-time insert and remove the maximum implemen-
tations. These algorithms take advantage of the capability to move up and down paths 
in the tree without pointers and have guaranteed logarithmic performance because of 
the following property of complete binary trees:

proposition p. The height of a complete binary tree of size N is ⎣ lg N ⎦ .

proof: The stated result is easy to prove by induction or by noting that the height 
increases by 1 only when N is incremented to become a power of 2.
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Algorithms on heaps We represent a heap of size N in private array pq[] of 
length N + 1, with pq[0] unused and the heap in pq[1] through pq[N]. As for sort-
ing algorithms, we access keys only through private helper functions less() and 
exch(), but since all items are in 
the instance variable pq[], we use 
the more compact implementations 
that do not involve passing the ar-
ray name as a parameter. The heap 
operations that we consider work by 
first making a simple modification 
that could violate the heap condi-
tion, then traveling through the heap, modifying the heap as required to ensure that 
the heap condition is satisfied everywhere. We refer to this process as reheapifying, or 
restoring heap order.

There are two cases. When the priority of some node is increased (or a new node is 
added at the bottom of a heap), we have to travel up the heap to restore the heap order. 
When the priority of some node is decreased (for example, if we replace the node at 
the root with a new node that has a smaller key), we have to travel down the heap to 
restore the heap order. First, we will consider how to implement these two basic auxil-
iary operations; then, we shall see how to use them to implement insert and remove the 
maximum.

Bottom-up reheapify (swim)  If the heap order is violated because a node’s key be-
comes larger than that node’s parent’s key, then we can make progress toward fixing 

the violation by exchanging the node with 
its parent. After the exchange, the node is 
larger than both its children (one is the old 
parent, and the other is smaller than the old 
parent because it was a child of that node) 
but the node may still be larger than its par-
ent. We can fix that violation in the same 
way, and so forth, moving up the heap until 
we reach a node with a larger key, or the 
root. Coding this process is straightforward 
when you keep in mind that the parent of 
the node at position k in a heap is at po-
sition k/2. The loop in swim() preserves 
the invariant that the only place the heap 
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Bottom-up reheapify (swim)

private boolean less(int i, int j) 
{  return pq[i].compareTo(pq[j]) < 0;  }

private void exch(int i, int j) 
{  Key t = pq[i]; pq[i] = pq[j]; pq[j] = t;  }

Compare and exchange methods for heap implementations
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order could be violated is when the node at 
position k might be larger than its parent. 
Therefore, when we get to a place where that 
node is not larger than its parent, we know 
that the heap order is satisfied throughout 

the heap. To jus-
tify the method’s 
name, we think 
of the new node, 
having too large a 
key, as having to swim to a higher level in the heap.

Top-down reheapify (sink)  If the heap order is violated be-
cause a node’s key becomes smaller than one or both of that 
node’s children’s keys, then we can make progress toward fix-
ing the violation by exchanging the node with the larger of its 
two children. This switch may cause a violation at the child; 
we fix that violation in the same way, and so forth, moving 
down the heap until we reach a node with both children 
smaller (or equal), or the bottom. The code again follows di-
rectly from 
the fact that 

the children of the node at position 
k in a heap are at positions 2k and 
2k+1. To justify the method’s name, 
we think about the node, having too 
small a key, as having to sink to a low-
er level in the heap. 

If we imagine the heap to represent 
a cutthroat corporate hierarchy, with 
each of the children of a node repre-
senting subordinates (and the parent 
representing the immediate superior), then these operations have amusing interpreta-
tions. The swim() operation corresponds to a promising new manager arriving on the 
scene, being promoted up the chain of command (by exchanging jobs with any lower-
qualified boss) until the new person encounters a higher-qualified boss. The sink() 
operation is analogous to the situation when the president of the company resigns and 
is replaced by someone from the outside. If the president’s most powerful subordinate 
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Top-down reheapify (sink)

private void sink(int k) 
{ 
   while (2*k <= N) 
   { 
      int j = 2*k; 
      if (j < N && less(j, j+1)) j++; 
      if (!less(k, j)) break; 
      exch(k, j); 
      k = j; 
   } 
}

top-down reheapify (sink) implementation

private void swim(int k) 
{ 
   while (k > 1 && less(k/2, k)) 
   { 
      exch(k/2, k); 
      k = k/2; 
   } 
}

Bottom-up reheapify (swim) implementation
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is stronger than the new person, they exchange jobs, and we move down the chain of 
command, demoting the new person and promoting others until the level of compe-
tence of the new person is reached, where there is no higher-qualified subordinate. 
These idealized scenarios may rarely be seen in the real world, but they may help you 
better understand basic operation on heaps.

These sink() and swim() operations provide the basis for efficient implementation 
of the priority-queue API, as diagrammed below and implemented in Algorithm 2.6.

Insert  We add the new key at the end of the array, increment the size of the heap, 
and then swim up through the heap with that key to restore the heap condition.

Remove the maximum. We take the largest item off the top, put the item from 
the end of the heap at the top, decrement the size of the heap, and then sink down 
through the heap with that key to restore the heap condition. 

Algorithm 2.6 solves the basic problem that we posed at the beginning of this section: 
it is a priority-queue API implementation for which both insert and delete the maxi-
mum are guaranteed to take time logarithmic in the size of the queue. 

Heap operations
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aLgorIthM 2.6 heap priority queue

public class MaxPQ<Key extends Comparable<Key>> 
{ 
   private Key[] pq;             // heap-ordered complete binary tree 
   private int N = 0;            //    in pq[1..N] with pq[0] unused

   public MaxPQ(int maxN) 
   {  pq = (Key[]) new Comparable[maxN+1];  }

   public boolean isEmpty() 
   {  return N == 0;  }

   public int size() 
   {  return N;  }

   public void insert(Key v) 
   {   
      pq[++N] = v; 
      swim(N); 
   }

   public Key delMax() 
   {   
      Key max = pq[1];           // Retrieve max key from top. 
      exch(1, N--);              // Exchange with last item. 
      pq[N+1] = null;            // Avoid loitering. 
      sink(1);                   // Restore heap property. 
      return max; 
   }

   // See pages 315-316 for implementations of these helper methods. 
   private boolean less(int i, int j) 
   private void exch(int i, int j) 
   private void swim(int k) 
   private void sink(int k) 
}

The priority queue is maintained in a heap-ordered complete binary tree in the array pq[] with 
pq[0] unused and the N keys in the priority queue in pq[1] through pq[N]. To implement insert(), 
we increment N, add the new element at the end, then use swim() to restore the heap order. For 
delMax(), we take the value to be returned from pq[1], then move pq[N] to pq[1], decrement the 
size of the heap, and use sink() to restore the heap condition. We also set the now-unused position 
pq[N+1] to null to allow the system to reclaim the memory associated with it. Code for dynamic 
array resizing is omitted, as usual (see Section 1.3). See Exercise 2.4.19 for the other constructors.
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proposition Q. In an N-key priority queue, the heap al-
gorithms require no more than 1 + lg N compares for in-
sert and no more than 2 lg N  compares for remove the 
maximum.

proof: By Proposition P, both operations involve mov-
ing along a path between the root and the bottom of the 
heap whose number of links is no more than lg N. The 
remove the maximum operation requires two compares 
for each node on the path (except at the bottom): one 
to find the child with the larger key, the other to decide 
whether that child needs to be promoted.

For typical applications that require a large number of inter-
mixed insert and remove the maximum operations in a large 
priority queue, Proposition Q represents an important per-
formance breakthrough, summarized in the table shown on 
page 312. Where elementary implementations using an or-
dered array or an unordered array require linear time for one 
of the operations, a heap-based implementation provides a 
guarantee that both operations complete in logarithmic time. 
This improvement can make the difference between solving a 
problem and not being able to address it at all.

Multiway heaps  It is not difficult to modify our code to 
build heaps based on an array representation of complete 
heap-ordered ternary trees, with an entry at position k larger 
than or equal to entries at positions 3k1, 3k, and 3k1 and 
smaller than or equal to entries at position ⎣(k+1)  3⎦, for all 
indices between 1 and N in an array of N items, and not much 
more difficult to use d-ary heaps for any given d. There is a 
tradeoff between the lower cost from the reduced tree height 
(log d N) and the higher cost of finding the largest of the d
children at each node. This tradeoff is dependent on details 
of the implementation and the expected relative frequency of 
operations.
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insert   P
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insert   E

remove max   (Q)

insert   X

insert   A

insert   M

remove max   (X)

insert   P

insert   L

insert   E

remove max   (P)
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Array resizing  We can add a no-argument constructor, code for array doubling in 
insert(), and code for array halving in delMax(), just as we did for stacks in Section 
1.3. Thus, clients need not be concerned about arbitrary size restrictions. The logarith-
mic time bounds implied by PROPOSITION Q are amortized when the size of the priority 
queue is arbitrary and the arrays are resized (see Exercise 2.4.22). 

Immutability of keys  The priority queue contains objects that are created by clients 
but assumes that client code does not change the keys (which might invalidate the 
heap-order invariant). It is possible to develop mechanisms to enforce this assumption, 
but programmers typically do not do so because they complicate the code and are likely 
to degrade performance. 

Index priority queue  In many applications, it makes sense to allow clients to refer 
to items that are already on the priority queue. One easy way to do so is to associate 
a unique integer index with each item. Moreover, it is often the case that clients have 
a universe of items of a known size N and perhaps are using (parallel) arrays to store 
information about the items, so other unrelated client code might already be using an 
integer index to refer to items. These considerations lead us to the following API:

public class IndexMinPQ<Key extends Comparable<Key>>

IndexMinPQ(int maxN)
create a priority queue of capacity maxN 
with possible indices between 0 and maxN-1

void insert(int i, Key key) insert key ; associate it with index i

void changeKey(int k, Key key) change the key associated with i to key

boolean contains(int i) is index i associated with some key?

void delete(int i) remove i and its associated key

Key minKey() return a minimal key

int minIndex() return a minimal key’s index

int delMin() remove a minimal key and return its index

boolean isEmpty() is the priority queue empty?

int size() number of keys in the priority queue

Key keyOf(int i) return key associated with index i 

apI for a generic priority queue with associated indices
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A useful way of thinking of this data type is as implementing an array, but with fast ac-
cess to the smallest entry in the array. Actually it does even better—it gives fast access 
to the minimum entry in a specified subset of an array’s entries (the ones that have been 
inserted). In other words, you can think of an IndexMinPQ named pq as representing a 
subset of an array pq[0..N-1] of items. Think of the call pq.insert(i, key) as add-
ing i to the subset and setting pq[i] = key and the call pq.changeKey(i, key) as 
setting pq[i] = key, both also maintaining data structures needed to support the other 
operations, most importantly delMin() (remove and return the index of the minimum 
key) and changeKey() (change the item associated with an index that is already in the 
data structure—just as in pq[i] = key). These operations are im-
portant in many applications and are enabled by our ability to refer 
to the key (with the index). Exercise 2.4.33 describes how to extend 
Algorithm 2.6 to implement index priority queues with remarkable 
efficiency and with remarkably little code. Intuitively, when an item 
in the heap changes, we can restore the heap invariant with a sink 
operation (if the key decreases) and a swim operation (if the key in-
creases). To perform the operations, we use the index to find the item 
in the heap. The ability to locate an item in the heap also allows us to 
add the delete() operation to the API. 

proposition Q (continued). In an index priority queue of size N, 
the number of compares required is proportional to at most log N
for insert, change priority, delete, and remove the minimum.

proof: Immediate from inspection of the code and the fact that all 
paths in a heap are of length at most ~lg N.

This discussion is for a minimum-oriented queue; as usual, we also im-
plement on the booksite a maximum-oriented version IndexMaxPQ. 

Index priority-queue client  The IndexMinPQ client Multiway on page 322 solves 
the multiway merge problem: it merges together several sorted input streams into one 
sorted output stream. This problem arises in many applications: the streams might 
be the output of scientific instruments (sorted by time), lists of information from the 
web such as music or movies (sorted by title or artist name), commercial transactions 
(sorted by account number or time), or whatever. If you have the space, you might just 
read them all into an array and sort them, but with a priority queue, you can read input 
streams and put them in sorted order on the output no matter how long they are.

operation

order of 
growth of 
number of 
compares

insert() log N

changeKey() log N

contains() 1

delete() log N

minKey() 1

minIndex() 1

delMin() log N

Worst-case costs for an 
N-item  heap-based indexed 

priority queue
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Multiway merge priority-queue client

public class Multiway 
{ 
   public static void merge(In[] streams) 
   { 
      int N = streams.length; 
      IndexMinPQ<String> pq = new IndexMinPQ<String>(N);

      for (int i = 0; i < N; i++) 
         if (!streams[i].isEmpty()) 
             pq.insert(i, streams[i].readString());

      while (!pq.isEmpty()) 
      { 
         StdOut.println(pq.minKey()); 
         int i = pq.delMin(); 
         if (!streams[i].isEmpty()) 
             pq.insert(i, streams[i].readString()); 
      } 
   }

   public static void main(String[] args) 
   { 
      int N = args.length; 
      In[] streams = new In[N]; 
      for (int i = 0; i < N; i++) 
          streams[i] = new In(args[i]); 
      merge(streams); 
   } 
}

This IndexMinPQ client merges together the sorted input streams given as command-line arguments 
into a single sorted output stream on standard output (see text). Each stream index is associated with 
a key (the next string in the stream). After initialization, it enters a loop that prints the smallest string 
in the queue and removes the corresponding entry, then adds a new entry for the next string in that 
stream. For economy, the output is shown on one line below—the actual output is one string per line.

% more m1.txt 
A B C F G I I Z 
% more m2.txt 
B D H P Q Q 
% more m3.txt 
A B E F J N

% java Multiway m1.txt m2.txt m3.txt 
A A B B B C D E F F G H I I J N P Q Q Z
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Heapsort We can use any priority queue to develop a sorting method. We insert 
all the items to be sorted into a minimum-oriented priority queue, then repeatedly use 
remove the minimum to remove them all in order. Using a priority queue represented as 
an unordered array in this way corresponds to doing a selection sort; using an ordered 
array corresponds to doing an insertion sort. What sorting method do we get if we use 
a heap? An entirely different one! Next, we use the heap to develop a classic elegant sort-
ing algorithm known as heapsort.

Heapsort breaks into two phases: heap construction, where we reorganize the original 
array into a heap, and the sortdown, where we pull the items out of the heap in decreas-
ing order to build the sorted result. For consistency with the code we have studied, we 
use a maximum-oriented priority queue and repeatedly remove the maximum. Focus-
ing on the task of sorting, we abandon the notion of hiding the representation of the 
priority queue and use swim() and sink() directly. Doing so allows us to sort an array 
without needing any extra space, by maintaining the heap within the array to be sorted.

Heap construction  How difficult is the process of building a heap from N given items? 
Certainly we can accomplish this task in time proportional to N log N, by proceeding 
from left to right through the array, using swim() to ensure that the items to the left of 
the scanning pointer make up a heap-ordered complete tree, like successive priority-
queue insertions. A clever method that is much more efficient is to proceed from right 
to left, using sink() to make subheaps as we go. Every position in the array is the root 
of a small subheap; sink() works for such subheaps, as well. If the two children of a 
node are heaps, then calling sink() on that node makes the subtree rooted at the par-
ent a heap. This process establishes the heap order inductively. The scan starts halfway 
back through the array because we can skip the subheaps of size 1. The scan ends at 
position 1, when we finish building the heap with one call to sink(). As the first phase 
of a sort, heap construction is a bit counterintuitive, because its goal is to produce a 
heap-ordered result, which has the largest item first in the array (and other larger items 
near the beginning), not at the end, where it is destined to finish.

proposition r. Sink-based heap construction uses fewer than 2N compares and 
fewer than N exchanges to construct a heap from N items.

proof: This fact follows from the observation that most of the heaps processed are 
small. For example, to build a heap of 127 items, we process 32 heaps of size 3, 16 
heaps of size 7, 8 heaps of size 15, 4 heaps of size 31, 2 heaps of size 63, and 1 heap 
of size 127, so 32·1 + 16·2 + 8·3 + 4·4 + 2·5 + 1·6 = 120 exchanges (twice as many 
compares) are required (at worst). See Exercise 2.4.20 for a complete proof.
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aLgorIthM 2.7 heapsort

public static void sort(Comparable[] a) 
{ 
   int N = a.length; 
   for (int k = N/2; k >= 1; k--) 
      sink(a, k, N); 
   while (N > 1) 
   { 
      exch(a, 1, N--); 
      sink(a, 1, N); 
   } 
}

This code sorts a[1] through a[N] using the sink() method (modified to take a[] and N as argu-
ments). The for loop constructs the heap; then the while loop exchanges the largest element a[1] 
with a[N] and then repairs the heap, continuing until the heap is empty. Decrementing the array in-
dices in the implementations of exch() and less() gives an implementation that sorts  a[0] through 
a[N-1], consistent with our other sorts. 

                       a[i]

  N   k   0  1  2  3  4  5  6  7  8  9 10 11

             S  O  R  T  E  X  A  M  P  L  E

 11   5      S  O  R  T  L  X  A  M  P  E  E  

 11   4      S  O  R  T  L  X  A  M  P  E  E 

 11   3      S  O  X  T  L  R  A  M  P  E  E  

 11   2      S  T  X  P  L  R  A  M  O  E  E  

 11   1      X  T  S  P  L  R  A  M  O  E  E

             X  T  S  P  L  R  A  M  O  E  E

 10   1      T  P  S  O  L  R  A  M  E  E  X

 9   1      S  P  R  O  L  E  A  M  E  T  X 

  8   1      R  P  E  O  L  E  A  M S  T  X  

  7   1      P  O  E  M  L  E  A  R  S  T  X 

  6   1      O  M  E  A  L  E  P  R  S  T  X  

  5   1      M  L  E  A  E  O  P  R  S  T  X  

  4   1      L  E  E  A  M  O  P  R  S  T  X 

  3   1      E  A  E  L  M  O  P  R  S  T  X  

  2   1      E  A  E  L  M  O  P  R  S  T  X 

 1   1      A  E  E  L  M  O  P  R  S  T  X

             A  E  E  L  M  O  P  R  S  T  X 

initial values

heap-ordered

sorted result

Heapsort trace (array contents just after each sink)
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sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown 

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap
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Sortdown  Most of the work during heapsort is done during 
the second phase, where we remove the largest remaining item 
from the heap and put it into the array position vacated as the 
heap shrinks. This process is a bit like selection sort (taking the 
items in decreasing order instead of in increasing order), but it 
uses many fewer compares because the heap provides a much 
more efficient way to find the largest item in the unsorted part 
of the array.

proposition s. Heapsort uses fewer than 2N lg N + 2N
compares (and half that many exchanges) to sort N items.

proof: The 2 N term covers the cost of heap construc-
tion (see Proposition R). The 2 N lg N term follows from 
bounding the cost of each sink operation during the sort-
down by 2lg N (see Proposition Q ). 

Algorithm 2.7 is a full implementation based on these ideas, 
the classical heapsort algorithm, which was invented by J. W. 
J. Williams and refined by R. W. Floyd in 1964. Although the 
loops in this program seem to do different tasks (the first 
constructs the heap, and the second destroys the heap for the 
sortdown), they are both built around the sink() method. We 
provide an implementation outside of our priority-queue API 
to highlight the simplicity of the sorting algorithm (eight lines 
of code for sort() and another eight lines of code for sink()) 
and to make it an in-place sort. 

As usual, you can gain some insight into the operation of the 
algorithm by studying a visual trace. At first, the process seems 
to do anything but sort, because large items are moving to the 
beginning of the array as the heap is being constructed. But 
then the method looks more like a mirror image of selection 
sort (except that it uses far fewer compares).

As for all of the other methods that we have studied, various 
people have investigated ways to improve heap-based priority-
queue implementations and heapsort. We now briefly consider 
one of them.

input

sorted
result

heap-
ordered

red entries are 
items that sank

gray entries
do not move

black entries
are involved
in exchanges

Visual trace of heapsort
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Sink to the bottom, then swim  Most items reinserted into the heap during sortdown 
go all the way to the bottom. Floyd observed in 1964 that we can thus save time by 
avoiding the check for whether the item has reached its position, simply promoting 
the larger of the two children until the bottom is reached, then moving back up the 
heap to the proper position. This idea cuts the number of compares by a factor of 2 as-
ymptotically—close to the number used by mergesort (for a randomly-ordered array). 
The method requires extra bookkeeping, and it is useful in practice only when the cost 
of compares is relatively high (for example, when we are sorting items with strings or 
other types of long keys).

Heapsort is significant in the study of the complexity of sorting (see page 279) because 
it is the only method that we have seen that is optimal (within a constant factor) in its 
use of both time and space—it is guaranteed to use ~2N lg N compares and constant 
extra space in the worst case. When space is very tight (for example, in an embedded 
system or on a low-cost mobile device) it is popular because it can be implemented 
with just a few dozen lines (even in machine code) while still providing optimal per-
formance. However, it is rarely used in typical applications on modern systems because 
it has poor cache performance: array entries are rarely compared with nearby array 
entries, so the number of cache misses is far higher than for quicksort, mergesort, and 
even shellsort, where most compares are with nearby entries.

On the other hand, the use of heaps to implement priority queues plays an increas-
ingly important role in modern applications, because it provides an easy way to guar-
antee logarithmic running time for dynamic situations where large numbers of insert
and remove the maximum operations are intermixed. We will encounter several ex-
amples later in this book.
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Q&A

Q. I’m still not clear on the purpose of priority queues. Why exactly don’t we just sort 
and then consider the items in increasing order in the sorted array?

A. In some data-processing examples such as TopM and Multiway, the total amount of 
data is far too large to consider sorting (or even storing in memory). If you are looking 
for the top ten entries among a billion items, do you really want to sort a billion-entry 
array? With a priority queue, you can do it with a ten-entry priority queue. In other ex-
amples, all the data does not even exist together at any point in time: we take something 
from the priority queue, process it, and as a result of processing it perhaps add some 
more things to the priority queue.

Q. Why not use Comparable, as we do for sorts, instead of the generic Item in MaxPQ?

A. Doing so would require the client to cast the return value of delMax() to an actual 
type, such as String. Generally, casts in client code are to be avoided.

Q. Why not use a[0] in the heap representation?

A. Doing so simplifies the arithmetic a bit. It is not difficult to implement the heap 
methods based on a 0-based heap where the children of a[0] are a[1] and a[2], the 
children of a[1] are a[3] and a[4], the children of a[2] are a[5] and a[6], and 
so forth, but most programmers prefer the simpler arithmetic that we use. Also, us-
ing a[0] as a sentinel value (in the parent of a[1]) is useful in some heap applications. 

Q. Building a heap in heapsort by inserting items one by one seems simpler to me than 
the tricky bottom-up method described on page 323 in the text. Why bother?

A. For a sort implementation, it is 20 percent faster and requires half as much tricky 
code (no swim() needed). The difficulty of understanding an algorithm has not neces-
sarily much to do with its simplicity, or its efficiency.

Q.  What happens if I leave off the extends Comparable<Key> phrase in an implemen-
tation like MaxPQ ?

A. As usual, the easiest way for you to answer a question of this sort for yourself is to 
simply try it.  If you do so for MaxPQ you will get a compile-time error:

MaxPQ.java:21: cannot find symbol 
symbol  : method compareTo(Key)

which is Java’s way of telling you that it does not know about compareTo() in Item 
because you neglected to declare that Key extends Comparable<Key>.
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ExErcisEs

2.4.1 Suppose that the sequence P R I O * R * * I * T * Y * * * Q U E * * * 
U * E (where a letter means insert and an asterisk means remove the maximum) is ap-
plied to an initially empty priority queue. Give the sequence of letters returned by the 
remove the maximum operations.

2.4.2 Criticize the following idea: To implement find the maximum in constant time, 
why not use a stack or a queue, but keep track of the maximum value inserted so far, 
then return that value for find the maximum?

2.4.3 Provide priority-queue implementations that support insert and remove the 
maximum, one for each of the following underlying data structures: unordered array, 
ordered array, unordered linked list, and ordered linked list. Give a table of the worst-
case bounds for each operation for each of your four implementations.

2.4.4 Is an array that is sorted in decreasing order a max-oriented heap?

2.4.5 Give the heap that results when the keys E A S Y Q U E S T I O N are inserted 
in that order into an initially empty max-oriented heap.

2.4.6 Using the conventions of Exercise 2.4.1, give the sequence of heaps produced 
when the operations P R I O * R * * I * T * Y * * * Q U E * * * U * E are 
performed on an initially empty max-oriented heap.

2.4.7 The largest item in a heap must appear in position 1, and the second largest must 
be in position 2 or position 3. Give the list of positions in a heap of size 31 where the 
kth largest (i) can appear, and (ii) cannot appear, for k=2, 3, 4 (assuming the values to 
be distinct).

2.4.8 Answer the previous exercise for the kth smallest item.

2.4.9 Draw all of the different heaps that can be made from the five keys A B C D E, 
then draw all of the different heaps that can be made from the five keys A A A B B.

2.4.10 Suppose that we wish to avoid wasting one position in a heap-ordered array 
pq[], putting the largest value in pq[0], its children in pq[1] and pq[2], and so forth, 
proceeding in level order. Where are the parents and children of pq[k]?

2.4.11 Suppose that your application will have a huge number of insert operations, but 
only a few remove the maximum operations.  Which priority-queue implementation do 
you think would be most effective: heap, unordered array, or ordered array?
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2.4.12 Suppose that your application will have a huge number of find the maximum
operations, but a relatively small number of insert and remove the maximum operations. 
Which priority-queue implementation do you think would be most effective: heap, 
unordered array, or ordered array?

2.4.13 Describe a way to avoid the j < N test in sink().

2.4.14 What is the minimum number of items that must be exchanged during a re-
move the maximum operation in a heap of size N with no duplicate keys? Give a heap 
of size 15 for which the minimum is achieved. Answer the same questions for two and 
three successive remove the maximum operations.

2.4.15 Design a linear-time certification algorithm to check whether an array pq[] is 
a min-oriented heap.

2.4.16 For N=32, give arrays of items that make heapsort use as many and as few com-
pares as possible.

2.4.17 Prove that building a minimum-oriented priority queue of size k then doing
N  k replace the minimum (insert followed by remove the minimum) operations leaves 
the k largest of the N items in the priority queue.

2.4.18 In MaxPQ, suppose that a client calls insert() with an item that is larger than 
all items in the queue, and then immediately calls delMax(). Assume that there are 
no duplicate keys. Is the resulting heap identical to the heap as it was before these op-
erations? Answer the same question for two insert() operations (the first with a key 
larger than all keys in the queue and the second for a key larger than that one) followed 
by two delMax() operations.

2.4.19 Implement the constructor for MaxPQ that takes an array of items as argument, 
using the bottom-up heap construction method described on page 323 in the text.

2.4.20 Prove that sink-based heap construction uses fewer than 2N compares and 
fewer than N exchanges.

ExErcisEs (continued)
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crEAtivE problEms

2.4.21  Elementary data structures. Explain how to use a priority queue to implement 
the stack, queue, and randomized queue data types from Section 1.3 and Exercise 
1.3.35.

2.4.22  Array resizing. Add array resizing to MaxPQ, and prove bounds like those of 
Proposition Q for array accesses, in an amortized sense.

2.4.23  Multiway heaps. Considering the cost of compares only, and assuming that 
it takes t compares to find the largest of t items, find the value of t that minimizes the 
coefficient of N lg N in the compare count when a t-ary heap is used in heapsort. First, 
assume a straightforward generalization of sink(); then, assume that Floyd’s method 
can save one compare in the inner loop.

2.4.24  Priority queue with explicit links. Implement a priority queue using a heap-
ordered binary tree, but use a triply linked structure instead of an array. You will need 
three links per node: two to traverse down the tree and one to traverse up the tree. Your 
implementation should guarantee logarithmic running time per operation, even if no 
maximum priority-queue size is known ahead of time.

2.4.25  Computational number theory. Write a program that prints out all integers of 
the form a3 + b3 where a and b are integers between 0 and N in sorted order, without 
using excessive space. That is, instead of computing an array of the N2 sums and sorting 
them, build a minimum-oriented priority queue, initially containing (03, 0, 0), (13, 1, 
0), (23, 2, 0),  . . .  , (N3, N, 0). Then, while the priority queue is nonempty, remove the 
smallest item(i3 + j3, i, j ), print it, and then, if j < N, insert the item (i3 + ( j+1)3, i, j+1). 
Use this program to find all distinct integers a, b, c, and d between 0 and 106 such that 
a3 + b3  = c3 + d3.

2.4.26  Heap without exchanges. Because the exch() primitive is used in the sink() 
and swim() operations, the items are loaded and stored twice as often as necessary. 
Give more efficient implementations that avoid this inefficiency, a la insertion sort (see 
Exercise 2.1.25).

2.4.27  Find the minimum. Add a min() method to MaxPQ. Your implementation 
should use constant time and constant extra space.

2.4.28  Selection filter. Write a program similar to TopM that reads points (x, y, z) from 
standard input, takes a value M from the command line, and prints the M points that 
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are closest to the origin in Euclidean distance. Estimate the running time of your client 
for N = 108 and M = 104. 

2.4.29  Min/max priority queue. Design a data type that supports the following opera-
tions: insert, delete the maximum, and delete the minimum (all in logarithmic time); and 
find the maximum and find the minimum (both in constant time). Hint: Use two heaps.

2.4.30  Dynamic median-finding. Design a data type that supports insert in logarith-
mic time, find the median in constant time, and delete the median in logarithmic time. 
Hint: Use a min-heap and a max-heap.

2.4.31  Fast insert. Develop a compare-based implementation of the MinPQ API such 
that insert uses ~ log log N compares and delete the minimum uses ~2 log N compares. 
Hint : Use binary search on parent pointers to find the ancestor in swim().

2.4.32  Lower bound. Prove that it is impossible to develop a compare-based imple-
mentation of the MinPQ API such that both insert and delete the minimum guarantee to 
use ~log log N compares per operation.

2.4.33  Index priority-queue implementation. Implement the basic operations in the 
index priority-queue API on page 320 by modifying Algorithm 2.6 as follows: Change 
pq[] to hold indices, add an array keys[] to hold the key values, and add an array qp[] 
that is the inverse of pq[] — qp[i] gives the position of i in pq[] (the index j such that 
pq[j] is i). Then modify the code in Algorithm 2.6 to maintain these data structures. 
Use the convention that qp[i] = -1 if i is not on the queue, and include a method 
contains() that tests this condition. You need to modify the helper methods exch() 
and less() but not sink() or swim().

crEAtivE problEms (continued)
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Partial solution :

public class IndexMinPQ<Key extends Comparable<Key>> 
{ 
   private int N;           // number of elements on PQ 
   private int[] pq;        // binary heap using 1-based indexing 
   private int[] qp;        // inverse: qp[pq[i]] = pq[qp[i]] = i 
   private Key[] keys;      // items with priorities 
   public IndexMinPQ(int maxN) 
   { 
      keys = (Key[]) new Comparable[maxN + 1]; 
      pq   = new int[maxN + 1]; 
      qp   = new int[maxN + 1]; 
      for (int i = 0; i <= maxN; i++) qp[i] = -1; 
   }

   public boolean isEmpty() 
   {  return N == 0;  }

   public boolean contains(int i) 
   {  return qp[i] != -1;  }

   public void insert(int i, Key key) 
   { 
      N++; 
      qp[i] = N; 
      pq[N] = i; 
      keys[i] = key; 
      swim(N);

   }

   public Key minKey() 
   {  return keys[pq[1]];  }

   public int delMin() 
   { 
      int indexOfMin = pq[1]; 
      exch(1, N--); 
      sink(1); 
      keys[pq[N+1]] = null; 
      qp[pq[N+1]] = -1; 
      return indexOfMin; 
   }

}
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2.4.34  Index priority-queue implementation (additional operations). Add minIndex(), 
changeKey(),  and delete() to your implementation of Exercise 2.4.33. 

Solution :

   public int minIndex() 
   {  return pq[1];  }

   public void changeKey(int i, Key key) 
   { 
      keys[i] = key; 
      swim(qp[i]); 
      sink(qp[i]); 
   }

   public void delete(int i) 
   { 
      int index = qp[i]; 
      exch(index, N--); 
      swim(index); 
      sink(index); 
      keys[i] = null; 
      qp[i] = -1;  
   }

2.4.35  Sampling from a discrete probability distribution. Write a class Sample with a 
constructor that takes an array p[] of double values as argument and supports the fol-
lowing two operations: random()—return an index i with probability p[i]/T (where 
T is the sum of the numbers in p[])—and changeKey(i, v)—change the value of 
p[i] to v. Hint: Use a complete binary tree where each node has implied weight p[i]. 
Store in each node the cumulative weight of all the nodes in its subtree. To generate a 
random index, pick a random number between 0 and T and use the cumulative weights 
to determine which branch of the subtree to explore. When updating p[i], change all 
of the weights of the nodes on the path from the root to i. Avoid explicit pointers, as we 
do for heaps.

crEAtivE problEms (continued)

334 Chapter 2 n Sorting



ptg12441863

ExpErimENts

2.4.36  Performance driver I. Write a performance driver client program that uses in-
sert to fill a priority queue, then uses remove the maximum to remove half the keys, then 
uses insert to fill it up again, then uses remove the maximum to remove all the keys, doing 
so multiple times on random sequences of keys of various lengths ranging from small to 
large; measures the time taken for each run; and prints out or plots the average running 
times.

2.4.37  Performance driver II. Write a performance driver client program that uses in-
sert to fill a priority queue, then does as many remove the maximum and insert opera-
tions as it can do in 1 second, doing so multiple times on random sequences of keys of 
various lengths ranging from small to large; and prints out or plots the average number 
of remove the maximum operations it was able to do.

2.4.38  Exercise driver. Write an exercise driver client program that uses the methods 
in our priority-queue interface of Algorithm 2.6 on difficult or pathological cases that 
might turn up in practical applications. Simple examples include keys that are already 
in order, keys in reverse order, all keys the same, and sequences of keys having only two 
distinct values.

2.4.39  Cost of construction. Determine empirically the percentage of time heapsort 
spends in the construction phase for N = 103, 106, and 109.

2.4.40  Floyd’s method. Implement a version of heapsort based on Floyd’s sink-to-the-
bottom-and-then-swim idea, as described in the text. Count the number of compares 
used by your program and the number of compares used by the standard implementa-
tion, for randomly ordered distinct keys with N = 103, 106, and 109.

2.4.41  Multiway heaps. Implement a version of heapsort based on complete heap-
ordered 3-ary and 4-ary trees, as described in the text. Count the number of compares 
used by each and the number of compares used by the standard implementation, for 
randomly ordered distinct keys with N = 103, 106, and 109.

2.4.42  Preorder heaps. Implement a version of heapsort based on the idea of repre-
senting the heap-ordered tree in preorder rather than in level order. Count the number 
of compares used by your program and the number of compares used by the standard 
implementation, for randomly ordered keys with N = 103, 106, and 109.
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2.5 APPliCAtionS

Sorting algorithms and priority queues are widely used in a broad variety of ap-
plications. Our purpose in this section is to briefly survey some of these applications, 
consider ways in which the efficient methods that we have considered play a critical role 
in such applications, and discuss some of the steps needed to make use of our sort and 
priority-queue code.

A prime reason why sorting is so useful is that it is much easier to search for an item 
in a sorted array than in an unsorted one. For over a century, people found it easy to 
look up someone’s phone number in a phone book where items are sorted by last name. 
Now digital music players organize song files by artist name or song title; search engines 
display search results in descending order of importance; spreadsheets display columns 
sorted by a particular field; matrix-processing packages sort the real eigenvalues of a 
symmetric matrix in descending order; and so forth. Other tasks are also made easier 
once an array is in sorted order: from looking up an item in the sorted index in the back 
of this book; to removing duplicates from a long list such as a mailing list, a list of vot-
ers, or a list of websites; to performing statistical calculations such as removing outliers, 
finding the median, or computing percentiles.

Sorting also arises as a critical subproblem in many applications that appear to have 
nothing to do with sorting at all. Data compression, computer graphics, computational 
biology, supply-chain management, combinatorial optimization, social choice, and 
voting are but a few of many examples. The algorithms that we have considered in this 
chapter play a critical role in the development of effective algorithms in each of the later 
chapters in this book.

Most important is the system sort, so we begin by considering a number of practical 
considerations that come into play when building a sort for use by a broad variety of 
clients. While some of these topics are specific to Java, they each reflect challenges that 
need to be met in any system.

Our primary purpose is to demonstrate that, even though we have used mechanisms 
that are relatively simple, the sorting implementations that we are studying are widely 
applicable. The list of proven applications of fast sorting algorithms is vast, so we can 
consider just a small fraction of them: some scientific, some algorithmic, and some 
commercial. You will find many more examples in the exercises, and many more than 
that on the booksite. Moreover, we will often refer back to this chapter to effectively ad-
dress the problems that we later consider in this book!
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Sorting various types of data Our implementations  sort arrays of Comparable 
objects. This Java convention allows us to use Java’s callback mechanism to sort arrays 
of objects of any type that implements the Comparable interface. As described in 
Section 2.1, implementing Comparable amounts to defining a compareTo() method 
that implements a natural ordering for the type. We can use our code immediately to 
sort arrays of type String, Integer, Double, and other types such as File and URL, 
because these data types all implement Comparable. Being able to use the same code 
for all of those types is convenient, but typical applications involve working with data 
types that are defined for use within the application. Accordingly it is common to im-
plement a compareTo() method for user-defined data types, so that they implement 
Comparable, thus enabling client code to sort arrays of that type (and build priority 
queues of values of that type). 

Transaction example  A prototypical breeding ground for sorting applications is 
commercial data processing. For example, imagine that a company engaged in internet 
commerce maintains a record for each transaction involving a customer account that 
contains all of the pertinent information, such as the customer name, date, amount, 
and so forth. Nowadays, a successful company needs to be able to handle millions and 
millions of such transactions. As we saw in Exercise 2.1.21, it is reasonable to decide 
that a natural ordering of such transactions is that they be ordered by amount, which 
we can implement by adding an appropriate compareTo() method in the class defini-
tion. With such a definition, we could process an array a[] of Transactions by, for ex-
ample, first sorting it with the call Quick.sort(a). Our sorting methods know nothing 
about our Transaction data type, but Java’s Comparable interface allows us to define 
a natural ordering so that we can use any of our methods to sort Transaction objects. 
Alternatively, we might specify that Transaction objects are to be ordered by date by 
implementing compareTo() to compare the Date fields. Since Date objects are them-
selves Comparable, we can just invoke the compareTo() method in Date rather than 
having to implement it from scratch. It is also reasonable to consider ordering this data 
by its customer field; arranging to allow clients the flexibility to switch among multiple 
different orders is an interesting challenge that we will soon consider.

public int compareTo(Transaction that) 
{  return this.when.compareTo(that.when);  }

alternate compareTo() implementation for sorting transactions by date
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Pointer sorting  The approach we are using is known in the classical literature as 
pointer sorting, so called because we process references to items and do not move the 
data itself. In programming languages such as C and C++, programmers explicitly de-
cide whether to manipulate data or pointers to data; in Java, pointer manipulation is 
implicit. Except for primitive numeric types, we always manipulate references to ob-
jects (pointers), not the objects themselves. Pointer sorting adds a level of indirection: 
the array contains references to the objects to be sorted, not the objects themselves. We 
briefly consider some associated issues, in the context of sorting. With multiple refer-
ence arrays, we can have multiple different sorted representations of different parts of a 
single body of data (perhaps using multiple keys, as described below). 

Keys are immutable  It stands to reason that an array might not remain sorted if a 
client is allowed to change the values of keys after the sort. Similarly, a priority queue 
can hardly be expected to operate properly if the client can change the values of keys 
between operations. In Java, it is wise to ensure that key values do not change by using 
immutable keys. Most of the standard data types that you are likely to use as keys, such 
as String,  Integer, Double, and File, are immutable.

Exchanges are inexpensive  Another advantage of using references is that we avoid the 
cost of moving full items. The cost saving is significant for arrays with large items (and 
small keys) because the compare needs to access just a small part of the item, and most 
of the item is not even touched during the sort. The reference approach makes the cost 
of an exchange roughly equal to the cost of a compare for general situations involving 
arbitrarily large items (at the cost of the extra space for the references). Indeed, if the 
keys are long, the exchanges might even wind up being less costly than the compare. 
One way to study the performance of algorithms that sort arrays of numbers is to sim-
ply look at the total number of compares and exchanges they use, implicitly making the 
assumption that the cost of exchanges is the same as the cost of compares. Conclusions 
based on this assumption are likely to apply to a broad class of applications in Java, 
because we are sorting reference objects.

Alternate orderings  There are many applications where we want to use differ-
ent orders for the objects that we are sorting, depending on the situation. The Java 
Comparator interface allows us to build multiple orders within a single class. It has 
a single public method compare() that compares two objects. If we have a data type 
that implements this interface, we can pass a Comparator to sort() (which passes it to 
less()) as in the example on the next page. The Comparator mechanism allows us to 
sort arrays of any type of object, using any total order that we wish to define for them. 
Using a Comparator instead of working with Comparable types better separates the 
definition of the type from the definition of what it means to compare two objects of 
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that type. Indeed, there are typically many possible ways to compare objects, and the 
Comparator mechanism allows us to choose among them. For instance, to sort an ar-
ray a[] of strings without regard to whether characters are uppercase or lowercase you 
can just call Insertion.sort(a, String.CASE_INSENSITIVE_ORDER) which makes 
use of the CASE_INSENSITIVE_ORDER comparator defined in Java’s String class. As
you can imagine, the precise rules for ordering strings are complicated and quite differ-
ent for various natural languages, so Java has many String comparators.

Items with multiple keys  In typical applications, items have multiple instance variables 
that might need to serve as sort keys. In our transaction example, one client may need 
to sort the transaction list by customer (for example, to bring together all transactions 
involving each customer); another client might need to sort the list by amount (for 
example, to identify high-value transactions); and other clients might need to use other 
fields as sort keys. The Comparator mechanism is precisely what we need to allow this 
flexibility. We can define multiple comparators, as in the alternate implementation of 
Transaction shown on the bottom of the next page. With this definition, a client can 
sort an array of Transaction objects by time with the call 

Insertion.sort(a, new Transaction.WhenOrder()) 

or by amount with the call 

Insertion.sort(a, new Transaction.HowMuchOrder()). 

The sort does each compare through a callback to the compare() method in 
Transaction that is specified by the client code. To avoid the cost of making a new 
Comparator object for each sort, we could use public static final instance variables 
to define the comparators (as Java does for CASE_INSENSITIVE_ORDER). 

public static void sort(Object[] a, Comparator c) 
{ 
   int N = a.length; 
   for (int i = 1; i < N; i++) 
      for (int j = i; j > 0 && less(c, a[j], a[j-1]); j--) 
         exch(a, j, j-1); 
}

private static boolean less(Comparator c, Object v, Object w) 
{  return c.compare(v, w) < 0;  }

private static void exch(Object[] a, int i, int j) 
{  Object t = a[i]; a[i] = a[j]; a[j] = t; }

Insertion sorting with a Comparator
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Priority queues with comparators  The same flexibility to use comparators is also 
useful for priority queues. Extending our standard implementation in Algorithm 2.6
to support comparators involves the following steps:

n	 Import java.util.Comparator.
n	 Add to MaxPQ an instance variable comparator and a constructor that takes a 

comparator as argument and initializes comparator to that value.
n	 Add code to less() that checks whether comparator is null (and uses it if it is 

not null).
For example, with these changes, you could build different priority queues with 
Transaction keys, using the time, place, or account number for the ordering. If you 
remove the Key extends Comparable<Key> phrase from MinPQ, you even can support 
keys with no natural order.

import java.util.Comparator;

public class Transaction 
{ 
   ... 
   private final String who; 
   private final Date when; 
   private final double amount; 
   ... 
   public static class WhoOrder implements Comparator<Transaction> 
   { 
      public int compare(Transaction v, Transaction w) 
      {  return v.who.compareTo(w.who);  } 
   }

   public static class WhenOrder implements Comparator<Transaction> 
   { 
      public int compare(Transaction v, Transaction w) 
      {  return v.when.compareTo(w.when);  } 
   }

   public static class HowMuchOrder implements Comparator<Transaction> 
   { 
      public int compare(Transaction v, Transaction w) 
      {   
         if (v.amount < w.amount) return -1; 
         if (v.amount > w.amount) return +1; 
         return 0;   
      } 
   } 
}

Comparator implementation for Transaction data type
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Stability  A sorting method is stable if it preserves the relative order of equal keys in the 
array. This property is frequently important. For example, consider an internet com-
merce application where we have to process a large number of events that have loca-
tions and timestamps. To begin, suppose that we store events in an array as they arrive, 
so they are in order of the timestamp in the array. Now suppose that the application 
requires that the transactions be separated out by location for further processing. One 
easy way to do so is to sort the array by location. If the sort is unstable, the transac-
tions for each city may not necessarily be in order by timestamp after the sort. Often, 
programmers who are unfamiliar with stability are surprised, when they first encounter 
the situation, by the way an unstable algorithm seems to scramble the data. Some of 
the sorting methods that we have considered in this chapter are stable (insertion sort 
and mergesort); many are not (selection sort, shellsort, quicksort, and heapsort). There 
are ways to trick any sort into stable behavior (see Exercise 2.5.18), but using a stable 
algorithm is generally preferable when stability is an essential requirement. It is easy 
to take stability for granted; actually, no practical method in common use achieves 
stability without using significant extra time or space (researchers have developed al-
gorithms that do so, but applications programmers have judged them too complicated 
to be useful).

Chicago  09:00:00
Phoenix  09:00:03
Houston  09:00:13
Chicago  09:00:59
Houston  09:01:10
Chicago  09:03:13
Seattle  09:10:11
Seattle  09:10:25
Phoenix  09:14:25
Chicago  09:19:32
Chicago  09:19:46
Chicago  09:21:05
Seattle  09:22:43
Seattle  09:22:54
Chicago  09:25:52
Chicago  09:35:21
Seattle  09:36:14
Phoenix  09:37:44

Chicago 09:00:00
Chicago 09:00:59
Chicago 09:03:13
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Chicago 09:25:52
Chicago 09:35:21
Houston 09:00:13
Houston 09:01:10
Phoenix 09:00:03
Phoenix 09:14:25
Phoenix 09:37:44
Seattle 09:10:11
Seattle 09:10:25
Seattle 09:22:43
Seattle 09:22:54
Seattle 09:36:14

Chicago 09:25:52
Chicago 09:03:13
Chicago 09:21:05
Chicago 09:19:46
Chicago 09:19:32
Chicago 09:00:00
Chicago 09:35:21
Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54

sorted by time sorted by location (not stable) sorted by location (stable)

no 
longer
sorted

by time

still
sorted

by time

Stability when sorting on a second key
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Which sorting algorithm should I use? We have considered numerous sorting 
algorithms in this chapter, so this question is natural. Knowing which algorithm is best 
possible depends heavily on details of the application and implementation, but we 
have studied some general-purpose methods that can be nearly as effective as the best 
possible for a wide variety of applications.

The table at the bottom of this page is a general guide that summarizes the impor-
tant characteristics of the sort algorithms that we have studied in this chapter. In all 
cases but shellsort (where the growth rate is only an estimate), insertion sort (where 
the growth rate depends on the order of the input keys), and both versions of quicksort 
(where the growth rate is probabilistic and may depend on the distribution of input key 
values), multiplying these growth rates by appropriate constants gives an effective way 
to predict running time. The constants involved are partly algorithm-dependent (for 
example, heapsort uses twice the number of compares as mergesort and both do many 
more array accesses than quicksort) but are primarily dependent on the implementa-
tion, the Java compiler, and your computer, which determine the number of machine 
instructions that are executed and the time that each requires. Most important, since 
they are constants, you can generally predict the running time for large N by running 
experiments for smaller N and extrapolating, using our standard doubling protocol.

algorithm stable? in place?
order of growth to sort N items

notes
running time extra space

selection sort no yes N 2 1

insertion sort yes yes
between 

N and N 2
1 depends on order 

of items

shellsort no yes N log N ? 
N 6/5 ?

1

quicksort no yes N log N lg N probabilistic 
guarantee

3-way quicksort no yes between 
N and N log N lg N

probabilistic, 
also depends on 
distribution of 

input keys

mergesort yes no N log N N

heapsort no yes N log N 1

performance characteristics of sorting algorithms
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property t. Quicksort is the fastest general-purpose sort.

Evidence: This hypothesis is supported by countless implementations of quick-
sort on countless computer systems since its invention decades ago. Generally, the 
reason that quicksort is fastest is that it has only a few instructions in its inner 
loop (and it does well with cache memories because it most often references data 
sequentially) so that its running time is ~c N lg N with the value of c smaller than 
the corresponding constants for other linearithmic sorts. With 3-way partitioning, 
quicksort becomes linear for certain key distributions likely to arise in practice, 
where other sorts are linearithmic.

Thus, in most practical situations, quicksort is the method of choice. Still, given the 
broad reach of sorting and the broad variety of computers and systems, a flat statement 
like this is difficult to justify. For example, we have already seen one notable exception: 
if stability is important and space is available, mergesort might be best. We will see oth-
er exceptions in Chapter 5. With tools like SortCompare and a considerable amount of 
time and effort, you can do a more detailed study of comparative performance of these 
algorithms and the refinements that we have discussed for your computer, as discussed 
in several exercises at the end of this section. Perhaps the best way to interpret Prop-
erty T is as saying that you certainly should seriously consider using quicksort in any 
sort application where running time is important. 

Sorting primitive types  In some performance-critical applications, the focus may be 
on sorting numbers, so it is reasonable to avoid the costs of using references and sort 
primitive types instead. For example, consider the difference between sorting an array 
of int values and sorting an array of Integer values. In the former case, we exchange 
the numbers themselves and put them in order in the array; in the latter, we exchange 
references to Integer objects, which contain the numbers. If we are doing nothing 
more than sorting a huge array of numbers, we avoid paying the cost of storing an equal 
number of references plus the extra cost of accessing the numbers through the refer-
ences, not to mention the cost of invoking compareTo() and less() methods. We can 
develop efficient versions of our sort codes for such purposes by replacing Comparable 
with the primitive type name, and redefining less() or just replacing calls to less() 
with code like a[i] < a[j] (see Exercise 2.1.26). 

Java system sort  As an example of applying the information given in the table on 
page 342, consider Java’s primary system sort method, java.util.Arrays.sort(). 
With overloading of argument types, this name actually represents a collection of 
methods:
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n	 A different method for each primitive type
n	 A method for data types that implement Comparable
n	 A method that uses a Comparator

Java’s systems programmers have chosen to use quicksort (with 3-way partitioning) 
to implement the primitive-type methods, and mergesort for reference-type methods. 
The primary practical implications of these choices are, as just discussed, to trade speed 
and memory usage (for primitive types) for guaranteed performance and stability (for 
reference types).

The algorithms and ideas that we have been considering are an essential part of 
many modern systems, including Java. When developing Java programs to address an 
application, you are likely to find that Java’s Arrays.sort() implementations (perhaps 
supplemented by your own implementation(s) of compareTo() and/or compare()) 
will meet your needs, because you will be using 3-way quicksort or mergesort, both 
proven classic algorithms. 

In this book, we generally will use our own Quick.sort() (usually) or Merge.sort() 
(when stability is important and space is not) in sort clients. You may feel free to use 
Arrays.sort() unless you have a good reason to use another specific method.

Reductions The idea that we can use sorting algorithms to solve other problems 
is an example of a basic technique in algorithm design known as reduction. We con-
sider reduction in detail in Chapter 6 because of its importance in the theory of al-
gorithms—in the meantime, we will consider several practical examples. A reduction
is a situation where an algorithm developed for one problem is used to solve another. 
Applications programmers are quite used to the concept of reduction (whether or not 
it is explicitly articulated)—every time you make use of a method that solves problem 
B in order to solve problem A, you are doing a reduction from A to B. Indeed, one goal 
in implementing algorithms is to facilitate reductions by making the algorithms useful 
for as wide a variety as possible of applications. We begin with a few elementary exam-
ples for sorting. Many of these take the form of algorithmic puzzles where a quadratic 
brute-force algorithm is immediate. It is often the case that sorting the data first makes 
it easy to finish solving the problem in linear additional time, thus reducing the total 
cost from quadratic to linearithmic. 

Duplicates  Are there any duplicate keys in an array of Comparable objects? How many 
distinct keys are there? Which value appears most frequently? For small arrays, these 
kinds of questions are easy to answer with a quadratic algorithm that compares each 
array entry with each other array entry. For large arrays, using a quadratic algorithm 
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is not feasible. With sorting, you can answer these questions in linearithmic time: first 
sort the array, then make a pass through the sorted array, taking note of duplicate keys 
that appear consecutively in the ordered array. For example, the code fragment at right 
counts the distinct keys in an array. With simple modifications to this code, you can 
answer the questions above and perform tasks such as printing all the distinct values, 
all the values that are duplicated, and so forth, even for huge arrays.

Rankings  A permutation (or ranking) is an 
array of N integers where each of the integers 
between 0 and N 1 appears exactly once. The 
Kendall tau distance between two rankings is 
the number of pairs that are in different order 
in the two rankings.  For example, the Kendall 
tau distance between 0 3 1 6 2 5 4 and 
1 0 3 6 4 2 5 is four because the pairs 
0-1, 3-1, 2-4, 5-4 are in different relative order in the two rankings, but all other pairs 
are in the same relative order. This statistic is widely used: in sociology to study social 
choice and voting theory, in molecular biology to compare genes using expression pro-
files, and in ranking search engine results on the web, among many other applications. 
The Kendall tau distance between a permutation and the identity permutation (where 
each entry is equal to its index) is the number of inversions in the permutation, and a 
quadratic algorithm based on insertion sort to compute the distance is not difficult to 
devise (recall Proposition C in Section 2.1). Efficiently computing the Kendall tau 
distance is an interesting exercise for a programmer (or a student!) who is familiar with 
the classical sorting algorithms that we have studied (see Exercise 2.5.19).

Priority-queue reductions  In Section 2.4, we considered two examples of problems 
that reduce to a sequence of operations on priority queues. TopM, on page 311, finds 
the M items in an input stream with the highest keys. Multiway, on page 322, merges 
M sorted input streams together to make a sorted output stream. Both of these prob-
lems are easily addressed with a priority queue of size M.

Median and order statistics  An important application related to sorting but for 
which a full sort is not required is the operation of finding the median of a collection 
of keys (the value with the property that half the keys are no larger and half the keys 
are no smaller). This operation is a common computation in statistics and in various 
other data-processing applications. Finding the median is a special case of selection: 
finding the k th smallest of a collection of numbers. Selection has many applications in 
the processing of experimental and other data. The use of the median and other order 

Quick.sort(a); 
int count = 1; // Assume a.length > 0.
for (int i = 1; i < a.length; i++) 
   if (a[i].compareTo(a[i-1]) != 0)    
      count++;

Counting the distinct keys in a[]
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statistics to divide an array into smaller groups is common. Often, only a small part 
of a large array is to be saved for further processing; in such cases, a program that can 
select, say, the top 10 percent of the items of the array might be more appropriate than 
a full sort. Our TopM application of Sec-
tion 2.4 solves this problem for an un-
bounded input stream, using a priority 
queue. An effective alternative to TopM 
when you have the items in an array is to 
just sort it: after the call Quick.sort(a) 
the k smallest items in the array are in 
the first k array positions for all k less 
than the array length. But this approach 
involves a sort, so the running time is 
linearithmic. Can we do better? Finding 
the k smallest items in an array is easy 

when k is very 
small or very 
large, but more 
challenging when k is a constant fraction of the array size, 
such as finding the median (k = N/2). You might be surprised 
to learn that it is possible to solve this problem in linear time, 
as in the select() method above (this implementation re-
quires a client cast; for the more pedantic code needed to avoid 
this requirement, see the booksite). To do the job, select() 
maintains the variables lo and hi to delimit the subarray that 
contains the index k of the item to be selected and uses quick-
sort partitioning to shrink the size of the subarray. Recall that 
partition() rearranges an array a[lo] through a[hi] and 
returns an integer j such that a[lo] through a[j-1] are less 
than or equal to a[j], and a[j+1] through a[hi] are greater 
than or equal to a[j]. Now, if k is equal to j, then we are done. 
Otherwise, if k < j, then we need to continue working in the 
left subarray (by changing the value of hi to j-1); if k > j, 
then we need to continue working in the right subarray (by 
changing lo to j+1). The loop maintains the invariant that no 
entry to the left of lo is larger and no entry to the right of hi 
is smaller than any element within a[lo..hi]. After partition-
ing, we preserve this invariant and shrink the interval until it 

public static Comparable 
select(Comparable[] a, int k) 
{ 
   StdRandom.shuffle(a); 
   int lo = 0, hi = a.length - 1; 
   while (hi > lo) 
   { 
      int j = partition(a, lo, hi); 
      if     (j == k)  return a[k]; 
      else if (j > k)  hi = j - 1; 
      else if (j < k)  lo = j + 1; 
   } 
   return a[k]; 
}

Selecting the k smallest items in a[]

median

lo j hi

Partitioning to �nd the median
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consists just of k. Upon termination, a[k] contains the (k +1)st smallest entry, a[0] 
through a[k-1] are all smaller than (or equal to) a[k], and a[k+1] through the end of 
the array are all greater than (or equal to) a[k]. To gain some insight into why this is a 
linear-time algorithm, suppose that partitioning divides the array exactly in half each 
time. Then the number of compares is N  N/2  N/4  N/8  . . . , terminating when 
the k th smallest item is found. This sum is less than 2 N. As with quicksort, it takes a bit 
of math to find the true bound, which is a bit higher. Also as with quicksort, the analysis 
depends on partitioning on a random item, so that the guarantee is probabilistic. 

proposition U. Partitioning-based selection is a linear-time algorithm, on average.

proof: An analysis similar to, but significantly more complex than, the proof of 
Proposition K for quicksort leads to the result that the average number of com-
pares is ~ 2N  2k ln(N/k)   2(N  k) ln(N/(N  k)), which is linear for any 
allowed value of k. For example, this formula says that finding the median (k = 
N/2) requires ~ (2  2 ln 2)N compares, on the average.  Note that the worst case 
is quadratic but randomization protects against that possibility, as with quicksort.

Designing a selection algorithm that is guaranteed to use a linear number of compares 
in the worst case is a classic result in computational complexity, but it has not yet led to 
a useful practical algorithm.

3472.5 n Applications



ptg12441863

A brief survey of sorting applications Direct applications of sorting are fa-
miliar, ubiquitous, and far too numerous for us to list them all. You sort your music by 
song title or by artist name, your email or phone calls by time or origin, and your pho-
tos by date. Universities sort student accounts by name or ID. Credit card companies 
sort millions or even billions of transactions by date or amount. Scientists sort not only 
experimental data by time or other identifier but also to enable detailed simulations 
of the natural world, from the motion of particles or heavenly bodies to the structure 
of materials to social interactions and relationships. Indeed, it is difficult to identify a 
computational application that does not involve sorting! To elaborate upon this point, 
we describe in this section examples of applications that are more complicated than the 
reductions just considered, including several that we will examine in detail later in this 
book.

Commercial computing  The world is awash in information. Government organiza-
tions, financial institutions, and commercial enterprises organize much of this infor-
mation by sorting it. Whether the information is accounts to be sorted by name or 
number, transactions to be sorted by date or amount, mail to be sorted by postal code 
or address, files to be sorted by name or date, or whatever, processing such data is sure 
to involve a sorting algorithm somewhere along the way. Typically, such information 
is organized in huge databases, sorted by multiple keys for efficient search. An effective 
strategy that is widely used is to collect new information, add it to the database, sort it 
on the keys of interest, and merge the sorted result for each key into the existing data-
base. The methods that we have discussed have been used effectively since the early days 
of computing to build a huge infrastructure of sorted data and methods for processing 
it that serve as the basis for all of this commercial activity. Arrays having millions or 
even billions of entries are routinely processed today—without linearithmic sorting 
algorithms, such arrays could not be sorted, making such processing extremely difficult 
or impossible.

Search for information  Keeping data in sorted order makes it possible to efficiently 
search through it using the classic binary search algorithm (see Chapter 1). You will 
also see that the same scheme makes it easy to quickly handle many other kinds of 
queries. How many items are smaller than a given item? Which items fall within a given 
range? In Chapter 3, we consider such questions. We also consider in detail various 
extensions to sorting and binary search that allow us to intermix such queries with 
operations that insert and remove objects from the set, still guaranteeing logarithmic 
performance for all operations. 
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Operations research  The field of operations research (OR) develops and applies math-
ematical models for problem-solving and decision-making. We will see several exam-
ples in this book of relationships between OR and the study of algorithms, beginning 
here with the use of sorting in a classic OR problem known as scheduling. Suppose that 
we have N jobs to complete, where job j requires tj seconds of processing time. We need 
to complete all of the jobs but want to maximize customer satisfaction by minimizing 
the average completion time of the jobs. The shortest processing time first rule, where we 
schedule the jobs in increasing order of processing time, is known to accomplish this 
goal. Therefore we can sort the jobs by processing time or put them on a minimum-
oriented priority queue. With various other constraints and restrictions, we get various 
other scheduling problems, which frequently arise in industrial applications and are 
well-studied. As another example, consider the load-balancing problem, where we have 
M identical processors and N jobs to complete, and our goal is to schedule all of the 
jobs on the processors so that the time at which the last job completes is as early as pos-
sible. This specific problem is NP-hard (see Chapter 6) so we do not expect to find a 
practical way to compute an optimal schedule. One method that is known to produce 
a good schedule is the longest processing time first rule, where we consider the jobs in 
descending order of processing time, assigning each job to the processor that becomes 
available first. To implement this algorithm, we first sort the jobs in reverse order. Then 
we maintain a priority queue of M processors, where the priority is the sum of the pro-
cessing times of its jobs. At each step, we delete the processor with the minimum prior-
ity, add the next job to the processor, and reinsert that processor into the priority queue.

Event-driven simulation  Many scientific applications involve simulation, where the 
point of the computation is to model some aspect of the real world in order to be able to 
better understand it. Before the advent of computing, scientists had little choice but to 
build mathematical models for this purpose; such models are now well-complemented 
by computational models. Doing such simulations efficiently can be challenging, and 
use of appropriate algorithms certainly can make the difference between being able 
to complete the simulation in a reasonable amount of time and being stuck with the 
choice of accepting inaccurate results or waiting for the simulation to do the computa-
tion necessary to get accurate results. We will consider in Chapter 6 a detailed example 
that illustrates this point.

Numerical computations  Scientific computing is often concerned with accuracy
(how close are we to the true answer?). Accuracy is extremely important when we are 
performing millions of computations with estimated values such as the floating-point 
representation of real numbers that we commonly use on computers. Some numeri-
cal algorithms use priority queues and sorting to control accuracy in calculations. For 
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example, one way to do numerical integration (quadrature), where the goal is to esti-
mate the area under a curve, is to maintain a priority queue with accuracy estimates for 
a set of subintervals that comprise the whole interval. The process is to remove the least 
accurate subinterval, split it in half (thus achieving better accuracy for the two halves), 
and put the two halves back onto the priority queue, continuing until a desired toler-
ance is reached.

Combinatorial search  A classic paradigm in artificial intelligence and in coping with 
intractable problems is to define a set of configurations with well-defined moves from 
one configuration to the next and a priority associated with each move. Also defined 
is a start configuration and a goal configuration (which corresponds to having solved 
the problem). The well-known A* algorithm is a problem-solving process where we put 
the start configuration on the priority queue, then do the following until reaching the 
goal: remove the highest-priority configuration and add to the queue all configurations 
that can be reached from that with one move (excluding the one just removed). As with 
event-driven simulation, this process is tailor-made for priority queues. It reduces solv-
ing the problem to defining an effective priority function. See Exercise 2.5.32 for an 
example.

Beyond such direct applications (and we have only indicated a small fraction of 
those), sorting and priority queues are an essential abstraction in algorithm design, 
so they will surface frequently throughout this book. We next list some examples of 
applications from later in the book. All of these applications depend upon the efficient 
implementations of sorting algorithms and the priority-queue data type that we have 
considered in this chapter.

Prim’s algorithm and Dijkstra’s algorithm are classical algorithms from Chapter 4. 
That chapter is about algorithms that process graphs, a fundamental model for items
and edges that connect pairs of items. The basis for these and several other algorithms 
is graph search, where we proceed from item to item along edges. Priority queues play a 
fundamental role in organizing graph searches, enabling efficient algorithms.

Kruskal’s algorithm is another classic algorithm for graphs whose edges have weights 
that depends upon processing the edges in order of their weight. Its running time is 
dominated by the cost of the sort.

Huffman compression is a classic data compression algorithm that depends upon pro-
cessing a set of items with integer weights by combining the two smallest to produce 
a new one whose weight is the sum of its two constituents. Implementing this opera-
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tion is immediate, using a priority queue. Several other data-compression schemes are 
based upon sorting.

String-processing algorithms, which are of critical importance in modern applica-
tions in cryptology and in genomics, are often based on sorting (generally using one 
of the specialized string sorts discussed in Chapter 5). For example, we will discuss in 
Chapter 6 algorithms for finding the longest repeated substring in a given string that is 
based on first sorting suffixes of the strings.
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 Q & A

Q. Is there a priority-queue data type in the Java library?

A. Yes, see java.util.PriorityQueue.

Q. Does stability matter when sorting arrays primitive types in Java?

A. Stability is a (mostly) meaningless concept when applied to primitive types because 
you cannot distinguish between two equal int or double values. There is one exotic 
exception that arises because there are multiple representations of NaN but they are 
considered equal when sorting.
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ExErcisEs

2.5.1 Consider the following implementation of the compareTo() method for String. 
How does the third line help with efficiency?

public int compareTo(String that) 
{ 
   if (this == that) return 0;  // this line 
   int n = Math.min(this.length(), that.length()); 
   for (int i = 0; i < n; i++) 
   { 
      if      (this.charAt(i) < that.charAt(i)) return -1; 
      else if (this.charAt(i) > that.charAt(i)) return +1; 
   } 
   return this.length() - that.length(); 
}

2.5.2 Write a program that reads a list of words from standard input and prints all two-
word compound words in the list. For example, if after, thought, and afterthought 
are in the list, then afterthought is a compound word.

2.5.3 Criticize the following implementation of a class intended to represent account 
balances. Why is compareTo() a flawed implementation of the Comparable interface?

public class Balance implements Comparable<Balance> 
{ 
   ... 
   private double amount; 
   public int compareTo(Balance that) 
   { 
      if (this.amount < that.amount - 0.005) return -1; 
      if (this.amount > that.amount + 0.005) return +1; 
      return 0; 
   } 
   ... 
}

Describe a way to fix this problem.

2.5.4 Implement a method String[] dedup(String[] a) that returns the objects in 
a[] in sorted order, with duplicates removed.

2.5.5 Explain why selection sort is not stable.
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2.5.6 Implement a recursive version of select().

2.5.7 About how many compares are required, on the average, to find the smallest of 
N items using select()?

2.5.8 Write a program Frequency that reads strings from standard input and prints 
the number of times each string occurs, in descending order of frequency.

2.5.9 Develop a data type that allows you to write a client that can sort a file such as the 
one shown at right.

2.5.10 Create a data type Version that represents a 
software version number, such as 115.1.1, 115.10.1, 
115.10.2. Implement the Comparable interface so 
that 115.1.1 is less than 115.10.1, and so forth.

2.5.11 One way to describe the result of a sorting al-
gorithm is to specify a permutation p[] of the num-
bers 0 to a.length-1, such that p[i] specifies where 
the key originally in a[i] ends up. Give the permuta-
tions that describe the results of insertion sort, selec-
tion sort, shellsort, mergesort, quicksort, and heapsort 
for an array of seven equal keys.

ExErcisEs (continued)

input (DJi A volumes for each day)

  1-Oct-28     3500000 
  2-Oct-28     3850000 
  3-Oct-28     4060000 
  4-Oct-28     4330000 
  5-Oct-28     4360000 
 ... 
 30-Dec-99   554680000 
 31-Dec-99   374049984 
  3-Jan-00   931800000 
  4-Jan-00  1009000000 
  5-Jan-00  1085500032 
  ...

output

 19-Aug-40 130000 
 26-Aug-40 160000 
 24-Jul-40 200000 
 10-Aug-42 210000 
 23-Jun-42 210000 
 ... 
 23-Jul-02 2441019904 
 17-Jul-02 2566500096 
 15-Jul-02 2574799872 
 19-Jul-02 2654099968 
 24-Jul-02 2775559936
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crEAtivE problEms

2.5.12  Scheduling. Write a program SPT.java that reads job names and processing 
times from standard input and prints a schedule that minimizes average completion 
time using the shortest processing time first rule, as described on page 349.

2.5.13  Load balancing. Write a program LPT.java that takes an integer M as a com-
mand-line argument, reads job names and processing times from standard input and 
prints a schedule assigning the jobs to M processors that approximately minimizes the 
time when the last job completes using the longest processing time first rule, as de-
scribed on page 349.

2.5.14  Sort by reverse domain. Write a data type Domain that represents domain names, 
including an appropriate compareTo() method where the natural order is in order of 
the reverse domain name. For example, the reverse domain of cs.princeton.edu is 
edu.princeton.cs. This is useful for web log analysis. Hint: Use s.split("\\.") to 
split the string s into tokens, delimited by dots. Write a client that reads domain names 
from standard input and prints the reverse domains in sorted order.

2.5.15  Spam campaign. To initiate an illegal spam campaign, you have a list of email 
addresses from various domains (the part of the email address that follows the @ 
symbol). To better forge the return addresses, you want to send the email from an-
other user at the same domain. For example, you might want to forge an email from 
wayne@princeton.edu to rs@princeton.edu. How would you process the email list 
to make this an efficient task?

2.5.16  Unbiased election. In order to thwart bias against candidates whose names ap-
pear toward the end of the alphabet, California sorted the candidates appearing on its 
2003 gubernatorial ballot by using the following order of characters: 

R W Q O J M V A H B S G Z X N T C I E K U P D Y F L

Create a data type where this is the natural order and write a client California with a 
single static method main() that sorts strings according to this ordering. Assume that 
each string is composed solely of uppercase letters.

2.5.17  Check stability. Extend your check() method from Exercise 2.1.16 to call 
sort() for a given array and return true if sort() sorts the array in order in a stable 
manner, false otherwise. Do not assume that sort() is restricted to move data only 
with exch().

3552.5 n Applications



ptg12441863

2.5.18  Force stability. Write a wrapper method that makes any sort stable by creating 
a new key type that allows you to append each key’s index to the key, call sort(), then 
restore the original key after the sort.

2.5.19  Kendall tau distance. Write a program KendallTau.java that computes the 
Kendall tau distance between two permutations in linearithmic time.

2.5.20  Idle time. Suppose that a machine processes N jobs. Write a program that, giv-
en the list of job start and finish times, finds the largest interval where the machine is 
idle and the largest interval where the machine is not idle.

2.5.21  Multidimensional sort. Write a Vector data type for use in having the sort-
ing methods sort multidimensional vectors of d integers, putting the vectors in order 
by first component, those with equal first component in order by second component, 
those with equal first and second components in order by third component, and so 
forth.

2.5.22  Stock market trading. Investors place buy and sell orders for a particular stock 
on an electronic exchange, specifying a maximum buy or minimum sell price that they 
are willing to pay, and how many shares they wish to trade at that price. Develop a 
program that uses priority queues to match up buyers and sellers and test it through 
simulation. Maintain two priority queues, one for buyers and one for sellers, executing 
trades whenever a new order can be matched with an existing order or orders.

2.5.23  Sampling for selection. Investigate the idea of using sampling to improve selec-
tion. Hint: Using the median may not always be helpful.

2.5.24  Stable priority queue. Develop a stable priority-queue implementation (which 
returns duplicate keys in the same order in which they were inserted).

2.5.25  Points in the plane. Write three static comparators for the Point2D data type 
of page 77, one that compares points by their x coordinate, one that compares them by 
their y coordinate, and one that compares them by their distance from the origin. Write 
two non-static comparators for the Point2D data type, one that compares them by 
their distance to a specified point and one that compares them by their polar angle with 
respect to a specified point.

2.5.26  Simple polygon. Given N points in the plane, draw a simple polygon with the 

crEAtivE problEms (continued)
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N points as vertices. Hint : Find the point p with the smallest y coordinate, breaking ties 
with the smallest x coordinate. Connect the points in increasing order of the polar angle 
they make with p.

2.5.27  One-dimensional intervals. Write three comparators for the Interval1D data 
type of page 77, one that compares intervals by their left endpoint, one that compares 
intervals by their right endpoint, and one that compares intervals by their length.

2.5.28  Sort files by name. Write a program FileSorter that takes the name of a 
directory as a command-line argument and prints out all of the files in that directory, 
sorted by file name. Hint : Use the File data type.

2.5.29  Sort files by size and date of last modification. Write comparators for the type 
File to order by increasing/decreasing order of file size, ascending/descending order 
of file name, and ascending/descending order of last modification date. Use these 
comparators in a program LS that takes a command-line argument and lists the files 
in the current directory according to a specified order, e.g., "-t" to sort by timestamp. 
Support multiple flags to break ties. Be sure to use a stable sort.

2.5.30  Boerner’s theorem. True or false: If you sort each column of a matrix, then sort 
each row, the columns are still sorted. Justify your answer.
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ExpErimENts

2.5.31  Distinct values. Write a client that takes integers M, N, and T as command-line 
arguments, then uses the code given in the text to perform T trials of the following ex-
periment: Generate N random int values between 0 and M – 1 and count the number 
of distinct values. Run your program for T = 10 and N = 10 3, 10 4, 10 5, and 10 6, with 
M = N  2, and N, and 2N. Probability theory says that the number of distinct values 
should be about M (1 – e –a) where a  N  M—print a table to help you confirm that 
your experiments validate that formula. 

2.5.32  8 puzzle. The 8 puzzle is a game invented and popularized by Noyes Palmer 
Chapman in the 1870s. It is played on a 3-by-3 grid with 8 tiles labeled 1 through 8 and a 
blank square. Your goal is to rearrange the tiles so that they are in order. You are permit-
ted to slide one of the available tiles horizontally or vertically (but not diagonally) into 
the blank square. Write a program that solves the puzzle using the A* algorithm. Start 
by using as priority the sum of the number of moves made to get to this board posi-
tion plus the number of tiles in the wrong position. (Note that the number of moves 
you must make from a given board position is at least as big as the number of tiles in 
the wrong place.) Investigate substituting other functions for the number of tiles in the 
wrong position, such as the sum of the Manhattan distance from each tile to its correct 
position, or the sums of the squares of these distances.

2.5.33  Random transactions. Develop a generator that takes an argument N, generates 
N random Transaction objects (see Exercises 2.1.21 and 2.1.22), using assumptions 
about the transactions that you can defend. Then compare the performance of shellsort, 
mergesort, quicksort, and heapsort for sorting N transactions, for N=103, 104, 105, and 
106.  
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Modern computing and the internet have made accessible a vast amount of 
information. The ability to efficiently search through this information is 
fundamental to processing it. This chapter describes classical searching algo-

rithms that have proven to be effective in numerous diverse applications for decades. 
Without algorithms like these, the development of the computational infrastructure 
that we enjoy in the modern world would not have been possible.

We use the term symbol table to describe an abstract mechanism where we save in-
formation (a value) that we can later search for and retrieve by specifying a key. The 
nature of the keys and the values depends upon the application. There can be a huge 
number of keys and a huge amount of information, so implementing an efficient sym-
bol table is a significant computational challenge. 

Symbol tables are sometimes called dictionaries, by analogy with the time-honored 
system of providing definitions for words by listing them alphabetically in a reference 
book. In an English-language dictionary, a key is a word and its value is the entry as-
sociated with the word that contains the definition, pronunciation, and etymology. 
Symbol tables are also sometimes called indices, by analogy with another time-honored 
system of providing access to terms by listing them alphabetically at the end of a book 
such as a textbook. In a book index, a key is a term of interest and its value is the list of 
page numbers that tell readers where to find that term in the book. 

After describing the basic APIs and two fundamental implementations, we consider 
three classic data structures that can support efficient symbol-table implementations: 
binary search trees, red-black trees, and hash tables. We conclude with several exten-
sions and applications, many of which would not be feasible without the efficient algo-
rithms that you will learn about in this chapter.
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3.1 SyMBol tABleS

The primary purpose of a symbol table is to associate a value with a key.  The client can 
insert key-value pairs into the symbol table with the expectation of later being able to 
search for the value associated with a given key, from among all of the key-value pairs 
that have been put into the table. This chapter describes several ways to structure this 
data so as to make efficient not just the insert and search operations, but several other 
convenient operations as well. To implement a symbol table, we need to define an un-
derlying data structure and then specify algorithms for insert, search, and other opera-
tions that create and manipulate the data structure. 

Search is so important to so many computer applications that symbol tables are 
available as high-level abstractions in many programming environments, including 
Java—we shall discuss Java’s symbol-table implementations in Section 3.5. The table 
below gives some examples of keys and values that you might use in typical applica-
tions. We consider some illustrative reference clients soon, and Section 3.5 is devoted 
to showing you how to use symbol tables effectively in your own clients. We also use 
symbol tables in developing other algorithms throughout the book.

Definition. A symbol table is a data structure for key-value pairs that supports two 
operations: insert (put) a new pair into the table and search for (get) the value as-
sociated with a given key.

application purpose of search key value

dictionary find definition word definition

book index find relevant pages term list of page numbers 

file share find song to download name of song computer ID     

account management process transactions account number transaction details     

web search find relevant web pages keyword list of page names     

compiler find type and value variable name type and value

typical symbol-table applications
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API The symbol table is a prototypical abstract data type (see Chapter 1): it repre-
sents a well-defined set of values and operations on those values, enabling us to develop 
clients and implementations separately. As usual, we precisely define the operations 
by specifying an applications programming interface (API) that provides the contract 
between client and implementation: 

  public class ST<Key, Value>

ST() create a symbol table

void put(Key key, Value val)
put key-value pair into the table 
(remove key from table if value is null)

Value get(Key key)
value paired with key 
(null if  key is absent)

void delete(Key key) remove key (and its value) from table
boolean contains(Key key) is there a value paired with key?
boolean isEmpty() is the table empty?

int size() number of key-value pairs in the table

Iterable<Key> keys() all the keys in the table

apI for a generic basic symbol table

Before examining client code, we consider several design choices for our implementa-
tions to make our code consistent, compact, and useful. 

Generics  As we did with sorting, we will consider the methods without specifying the 
types of the items being processed, using generics. For symbol tables, we emphasize the 
separate roles played by keys and values in search by specifying the key and value types 
explicitly instead of viewing keys as implicit in items as we did for priority queues in 
Section 2.4. After we have considered some of the characteristics of this basic API (for 
example, note that there is no mention of order among the keys), we will consider an 
extension for the typical case when keys are Comparable, which enables numerous ad-
ditional methods. 

Duplicate keys  We adopt the following conventions in all of our implementations:
n	 Only one value is associated with each key (no duplicate keys in a table).
n	 When a client puts a key-value pair into a table already containing that key (and 

an associated value), the new value replaces the old one. 
These conventions define the associative array abstraction, where you can think of a 
symbol table as being just like an array, where keys are indices and values are array 
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entries. In a conventional array, keys are integer indices that we use to quickly access ar-
ray values; in an associative array (symbol table), keys are of arbitrary type, but we can 
still use them to quickly access values. Some programming languages (not Java) provide 
special support that allows programmers to use code such as st[key] for st.get(key) 
and st[key] = val for st.put(key, val) where key and val are objects of arbitrary 
type.

Null keys  Keys must not be null. As with many mechanisms in Java, use of a null key 
results in an exception at runtime (see the third Q&A on page 387).

Null values  We also adopt the convention that no key can be associated with the value 
null. This convention is directly tied to our specification in the API that get() should 
return null for keys not in the table, effectively associating the value null with every 
key not in the table. This convention has two (intended) consequences: First, we can 
test whether or not the symbol table defines a value associated with a given key by test-
ing whether get() returns null. Second, we can use the operation of calling put() 
with null as its second (value) argument to implement deletion, as described in the 
next paragraph.

Deletion  Deletion in symbol tables generally involves one of two strategies: lazy dele-
tion, where we associate keys in the table with null, then perhaps remove all such keys 
at some later time; and eager deletion, where we remove the key from the table imme-
diately. As just discussed, the code put(key, null) is an easy (lazy) implementation 
of delete(key). When we give an (eager) implementation of delete(), it is intended 
to replace this default. In our symbol-table implementations that do not use the default 
delete(), the put() implementations on the booksite begin with the defensive code

if (val == null) {  delete(key); return; } 

to ensure that no key in the table is associated with null. For economy, we do not in-
clude this code in the book (and we do not call put() with a null value in client code).

Shorthand methods  For clarity in client code, we include the methods contains() 
and isEmpty() in the API, with the default one-line implementations shown here. 
For economy, we do not 
repeat this code, but we 
assume it to be present 
in all implementations of 
the symbol-table API and 
use these methods freely 
in client code.

method default implementation

   void delete(Key key) put(key, null);

boolean contains(Key key) return get(key) != null;

boolean isEmpty() return size() == 0;

Default implementations
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Iteration  To enable clients to process all the keys and values in the table, we might 
add the phrase implements Iterable<Key> to the first line of the API to specify that 
every implementation must implement an iterator() method that returns an iterator 
having appropriate implementations of hasNext() and next(), as described for stacks 
and queues in Section 1.3. For symbol tables, we adopt a simpler alternative approach, 
where we specify a keys() method that returns an Iterable<Key> object for clients 
to use to iterate through the keys. Our reason for doing so is to maintain consistency 
with methods that we will define for ordered symbol tables that allow clients to iterate 
through a specified subset of keys in the table.

Key equality  Determining whether or not a given key is in a symbol table is based on 
the concept of object equality, which we discussed at length in Section 1.2 (see page 
102). Java’s convention that all objects inherit an equals() method and its implemen-
tation of equals() both for standard types such as Integer, Double, and String and 
for more complicated types such as File and URL is a head start—when using these 
types of data, you can just use the built-in implementation.  For example, if x and y are 
String values, then x.equals(y) is true if and only if x and y have the same length 
and are identical in each character position. For such client-defined keys, you need to 
override equals(), as discussed in Section 1.2. You can use our implementation of 
equals() for Date (page 103) as a template to develop equals() for a type of your 
own. As discussed for priority queues on page 320, a best practice is to make Key types 
immutable, because consistency cannot otherwise be guaranteed. 
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Ordered symbol tables In typical applications, keys are Comparable objects, so 
the option exists of using the code a.compareTo(b) to compare two keys a and b. 
Several symbol-table implementations take advantage of order among the keys that is 
implied by Comparable to provide efficient implementations of the put() and get() 
operations. More important, in such implementations, we can think of the symbol ta-
ble as keeping the keys in order and consider a significantly expanded API that defines 
numerous natural and useful operations involving relative key order. For example, sup-
pose that your keys are times of the day. You might be interested in knowing the earliest 
or the latest time, the set of keys that fall between two given times, and so forth. In most 
cases, such operations are not difficult to implement with the same data structures and 
methods underlying the put() and get() implementations. Specifically, for applica-
tions where keys are Comparable, we implement in this chapter the following API:

  public class ST<Key extends Comparable<Key>, Value>

ST() create an ordered symbol table

void put(Key key, Value val)
put key-value pair into the table 
(remove key from table if value is null)

Value get(Key key)
value paired with key 
(null if key is absent)

void delete(Key key) remove key (and its value) from table
boolean contains(Key key) is there a value paired with key?
boolean isEmpty() is the table empty?

int size() number of key-value pairs
Key min() smallest key
Key max() largest key
Key floor(Key key) largest key less than or equal to key 
Key ceiling(Key key) smallest key greater than or equal to key
int rank(Key key) number of keys less than key 
Key select(int k) key of rank k
void deleteMin() delete smallest key
void deleteMax() delete largest key
int size(Key lo, Key hi) number of keys in [lo..hi]

Iterable<Key> keys(Key lo, Key hi) keys in [lo..hi], in sorted order
Iterable<Key> keys() all keys in the table, in sorted order

apI for a generic ordered symbol table
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Your signal that one of our programs is implementing this API is the presence of the 
Key extends Comparable<Key> generic type variable in the class declaration, which 
specifies that the code depends upon the keys being Comparable and implements the 
richer set of operations. Together, these operations define for client programs an or-
dered symbol table.

Minimum and maximum  Perhaps the most natural queries for a set of ordered keys 
are to ask for the smallest and largest keys. We have already encountered these opera-
tions, in our discussion of priority queues in Section 2.4. In ordered symbol tables, 
we also have methods to delete the maximum 
and minimum keys (and their associated val-
ues). With this capability, the symbol table can 
operate like the IndexMinPQ() class that we 
discussed in Section 2.4. The primary differ-
ences are that equal keys are allowed in prior-
ity queues but not in symbol tables and that 
ordered symbol tables support a much larger 
set of operations. 

Floor and ceiling  Given a key, it is often use-
ful to be able to perform the floor operation 
(find the largest key that is less than or equal to 
the given key) and the ceiling operation (find 
the smallest key that is greater than or equal to 
the given key). The nomenclature comes from 
functions defined on real numbers (the floor 
of a real number x is the largest integer that is 
smaller than or equal to x and the ceiling of 
a real number x is the smallest integer that is 
greater than or equal to x).

Rank and selection  The basic operations for determining where a new key fits in the 
order are the rank operation (find the number of keys less than a given key) and the 
select operation (find the key with a given rank). To test your understanding of their 
meaning, confirm for yourself that both i == rank(select(i)) for all i between 0 
and size()-1 and all keys in the table satisfy key == select(rank(key)). We have 
already encountered the need for these operations, in our discussion of sort applica-
tions in Section 2.5. For symbol tables, our challenge is to perform these operations 
quickly, intermixed with insertions, deletions, and searches.

09:00:00  Chicago  
09:00:03  Phoenix  
09:00:13  Houston  
09:00:59  Chicago  
09:01:10  Houston  
09:03:13  Chicago  
09:10:11  Seattle  
09:10:25  Seattle  
09:14:25  Phoenix  
09:19:32  Chicago  
09:19:46  Chicago  
09:21:05  Chicago  
09:22:43  Seattle  
09:22:54  Seattle  
09:25:52  Chicago  
09:35:21  Chicago  
09:36:14  Seattle  
09:37:44  Phoenix  

keys values

get(09:00:13)

ceiling(09:30:00)

keys(09:15:00, 09:25:00)

size(09:15:00, 09:25:00) is 5
rank(09:10:25) is 7

floor(09:05:00)

min()

select(7)

max()

Examples of ordered symbol-table operations
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Range queries  How many keys fall within a given range (between two given keys)? 
Which keys fall in a given range? The two-argument size() and keys() methods that 
answer these questions are useful in many applications, particularly in large databases. 
The capability to handle such queries is one prime reason that ordered symbol tables 
are so widely used in practice.

Exceptional cases  When a method is to return a key and there is no key fitting the de-
scription in the table, our convention is to throw an exception (an alternate approach, 
which is also reasonable, would be to return null  in such cases). For example, min(), 
max(), deleteMin(), deleteMax(), floor(), and ceiling() all throw exceptions if 
the table is empty, as does select(k) if k is less than 0 or not less than size(). 

Shorthand methods  As we have already seen with isEmpty() and contains() in our 
basic API, we keep some redundant methods in the API for clarity in client code. For 
economy in the text, we assume that the following default implementations are includ-
ed in any implementation of the ordered symbol-table API unless otherwise specified:

method default implementation

         void deleteMin() delete(min());

         void deleteMax() delete(max());

           int size(Key lo, Key hi) if (hi.compareTo(lo) < 0) 
   return 0; 
else if (contains(hi)) 
   return rank(hi) - rank(lo) + 1; 
else 
   return rank(hi) - rank(lo);

Iterable<Key> keys() return keys(min(), max());

Default implementations of redundant order-based symbol-table methods

Key equality (revisited)  The best practice in Java is to make compareTo() consistent 
with equals() in all Comparable types. That is, for every pair of values a and b in 
any given Comparable type, it should be the case that (a.compareTo(b) == 0) and 
a.equals(b) have the same value. To avoid any potential ambiguities, we avoid the use 
of equals() in ordered symbol-table implementations. Instead, we use compareTo() 
exclusively to compare keys: we take the boolean expression a.compareTo(b) == 0 to 
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mean “Are a and b equal ?” Typically, such a test marks the successful end of a search for 
a in the symbol table (by finding b). As you saw with sorting algorithms, Java provides 
standard implementations of compareTo() for many commonly used types of keys, 
and it is not difficult to develop a compareTo() implementation for your own data 
types (see Section 2.5). 

Cost model  Whether we use equals() (for symbol tables 
where keys are not Comparable) or compareTo() (for or-
dered symbol tables with Comparable keys), we use the term 
compare to refer to the operation of comparing a symbol-
table entry against a search key. In most symbol-table imple-
mentations, this operation is in the inner loop. In the few 
cases where that is not the case, we also count array accesses.

Symbol-table implementations are generally character-
ized by their underlying data structures and their implemen-
tations of get() and put(). We do not always provide im-
plementations of all of the other methods in the text because 
many of them make good exercises to test your understanding of the underlying data 
structures. To distinguish implementations, we add a descriptive prefix to ST that refers 
to the implementation in the class name of symbol-table implementations. In clients, 
we use ST to call on a reference implementation unless we wish to refer to a specific 
implementation. You will gradually develop a better feeling for the rationale behind the 
methods in the APIs in the context of the numerous clients and symbol-table imple-
mentations that we present and discuss throughout this chapter and throughout the 
rest of this book. We also discuss alternatives to the various design choices that we have 
described here in the Q&A and exercises.

searching cost model. 
When studying symbol-table 
implementations, we count
compares (equality tests or 
key comparisons). In (rare) 
cases where compares are not 
in the inner loop, we count 
array accesses. 
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Sample clients While we defer detailed consideration of applications to Section 
3.5, it is worthwhile to consider some client code before considering implementations. 
Accordingly, we now consider two clients: a test client that we use to trace algorithm 
behavior on small inputs and a performance client that we use to motivate the develop-
ment of efficient implementations.

Test client  For tracing our algorithms on small inputs we assume that all of our im-
plementations use the test client below, which takes a sequence of strings from standard 
input, builds a symbol table that associates the value i with the ith string in the input, 
and then prints the table. In the traces in the text, we assume that the input is a sequence 

of single-character strings. Most often, we 
use the string "S E A R C H E X A M P L E". 
By our conventions, this client associates 
the key S with the value 0, the key R with 
the value 3, and so forth. But E is associated 
with the value 12 (not 1 or 6) and A with 
the value 8 (not 2) because our associative-
array convention implies that each key is 
associated with the value used in the most 
recent call to put(). For basic (unordered) 
implementations, the order of the keys in 
the output of this test client is not specified 
(it depends on characteristics of the imple-
mentation); for an ordered symbol table 
the test client prints the keys in sorted order. 
This client is an example of an indexing cli-
ent, a special case of a fundamental symbol-
table application that we discuss in Section 
3.5.

keys

values

S  E  A  R  C  H  E  X  A  M  P  L  E

0  1  2  3  4  5  6  7  8  9 10 11 12

output for
basic symbol table

(one possibility)

L  11

P  10

M  9

X  7

H  5

C  4

R  3

A  8

E  12

S  0

output for
ordered

symbol table

A  8

C  4

E  12

H  5

L  11

M  9

P  10

R  3

S  0

X  7

Keys, values, and output for test client

public static void main(String[] args) 
{ 
   ST<String, Integer> st; 
   st = new ST<String, Integer>();

   for (int i = 0; !StdIn.isEmpty(); i++) 
   { 
      String key = StdIn.readString(); 
      st.put(key, i); 
   }

   for (String s : st.keys()) 
      StdOut.println(s + " " + st.get(s)); 
}

Basic symbol-table test client
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Performance client  FrequencyCounter (on the next page) is a symbol-table client 
that finds the number of occurrences of each string (having at least as many characters 
as a given threshold length) in a sequence of strings from standard input, then iterates 
through the keys to find the one that occurs the most frequently. This client is an exam-
ple of a dictionary client, an application that we discuss in more detail in Section 3.5. 
This client answers a simple question: Which word (no shorter than a given length) oc-
curs most frequently in a given text? Throughout this chapter, we measure performance 
of this client with three reference inputs: the first five lines of C. Dickens’s Tale of Two 
Cities (tinyTale.txt), the full text of the book (tale.txt), and a popular database of 
1 million sentences taken at random from the web that is known as the Leipzig Corpora 
Collection (leipzig1M.txt). For example, here is the content of tinyTale.txt:

% more tinyTale.txt 
it was the best of times it was the worst of times 
it was the age of wisdom it was the age of foolishness 
it was the epoch of belief it was the epoch of incredulity 
it was the season of light it was the season of darkness 
it was the spring of hope it was the winter of despair

Small test input

This text has 60 words taken from 20 distinct words, four of which occur ten times (the 
highest frequency). Given this input, FrequencyCounter will print out any of it, was, 
the, or of (the one chosen may vary, depending upon characteristics of the symbol-
table implementation), followed by the frequency, 10.

To study performance for the larger inputs, it is clear that two measures are of inter-
est: Each word in the input is used as a search key once, so the total number of words 
in the text is certainly relevant. Second, each distinct word in the input is put into the 

tinyTale.txt tale.txt leipzig1M.txt

words distinct words distinct words distinct

all words 60 20 135,635 10,679 21,191,455 534,580

at least 8 letters 3 3 14,350 5,737 4,239,597 299,593

at least 10 letters 2 2 4,582 2,260 1,610,829 165,555

Characteristics of larger test input streams
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A symbol-table client

public class FrequencyCounter 
{ 
   public static void main(String[] args) 
   { 
      int minlen = Integer.parseInt(args[0]);   // key-length cutoff 
      ST<String, Integer> st = new ST<String, Integer>(); 
      while (!StdIn.isEmpty()) 
      {  // Build symbol table and count frequencies. 
         String word = StdIn.readString(); 
         if (word.length() < minlen) continue;  // Ignore short keys. 
         if (!st.contains(word)) st.put(word, 1); 
         else                    st.put(word, st.get(word) + 1); 
      } 
      // Find a key with the highest frequency count. 
      String max = ""; 
      st.put(max, 0); 
      for (String word : st.keys()) 
         if (st.get(word) > st.get(max)) 
            max = word; 
      StdOut.println(max + " " + st.get(max)); 
   } 
}

This ST client counts the frequency of occurrence of the strings in standard input, then prints out 
one that occurs with highest frequency. The command-line argument specifies a lower bound on the 
length of keys considered. 

% java FrequencyCounter 1 < tinyTale.txt 
it 10

% java FrequencyCounter 8 < tale.txt 
business 122

% java FrequencyCounter 10 < leipzig1M.txt 
government 24763
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symbol table (and the total number of distinct words in the input gives the size of the 
table after all keys have been inserted), so the total number of distinct words in the 
input stream is certainly relevant. We need to know both of these quantities in order 
to estimate the running time of FrequencyCounter (for a start, see Exercise 3.1.6). 
We defer details until we consider some algorithms, but you should have in mind a 
general idea of the needs of typical applications like this one. For example, running 
FrequencyCounter on leipzig1M.txt for words of length 8 or more involves millions 
of searches in a table with hundreds of thousands of keys and values. A server on the 
web might need to handle billions of transactions on tables with millions of keys and 
values.

The basic question that this client and these examples raise is the following: Can 
we develop a symbol-table implementation that can handle a huge number of get() 
operations on a large table, which itself was built with a large number of intermixed 
get() and put() operations? If you are only doing a few searches, any implementation 
will do, but you cannot make use of a client like FrequencyCounter for large prob-
lems without a good symbol-table implementation. FrequencyCounter is surrogate 
for a very common situation. Specifically, it has the following characteristics, which are 
shared by many other symbol-table clients:

n	 Search and insert operations are intermixed.
n	 The number of distinct keys is not small.
n	 Substantially more searches than inserts are likely. 
n	 Search and insert patterns, though unpredictable, are not random.

Our goal is to develop symbol-table implementations that make it feasible to use such 
clients to solve typical practical problems.

Next, we consider two elementary implementations and their performance for 
FrequencyCounter. Then, in the next several sections, you will learn classic imple-
mentations that can achieve excellent performance for such clients, even for huge input 
streams and tables.

3733.1 n Symbol Tables



ptg12441863

Sequential search in an unordered linked list One straightforward option 
for the underlying data structure for a symbol table is a linked list of nodes that contain 
keys and values, as in the code on the facing page. To implement get(), we scan through 
the list, using equals() to compare the search key with the key in each node in the list. 
If we find the match, we return the associated value; if not, we return null. To imple-
ment put(), we also scan through the list, using equals() to compare the client key 
with the key in each node in the list. If we find the match, we update the value associ-
ated with that key to be the value given in the second argument; if not, we create a new 
node with the given key and value and insert it at the beginning of the list. This method 
is known as sequential search: we search by considering the keys in the table one after 
another, using equals() to test for a match with our search key.

Algorithm 3.1 (SequentialSearchST) is an implementation of our basic symbol-
table API that uses standard list-processing mechanisms, which we have used for el-
ementary data structures in Chapter 1. We have left the implementations of size(),  
keys(), and eager delete() for exercises. You are encouraged to work these exercises 
to cement your understanding of the linked-list data structure and the basic symbol-
table API. 

Can this linked-list-based implementation handle applications that need large ta-
bles, such as our sample clients? As we have noted, analyzing symbol-table algorithms 
is more complicated than analyzing sorting algorithms because of the difficulty of 

Trace of linked-list ST implementation for standard indexing client 
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aLgorIthM 3.1 Sequential search (in an unordered linked list)

public class SequentialSearchST<Key, Value> 
{ 
   private Node first;        // first node in the linked list

   private class Node 
   {  // linked-list node 
      Key key; 
      Value val; 
      Node next; 
      public Node(Key key, Value val, Node next) 
      { 
         this.key  = key; 
         this.val  = val; 
         this.next = next; 
      } 
   }

   public Value get(Key key) 
   {  // Search for key, return associated value. 
      for (Node x = first; x != null; x = x.next) 
         if (key.equals(x.key)) 
            return x.val;    // search hit 
      return null;           // search miss 
   }

   public void put(Key key, Value val) 
   {  // Search for key. Update value if found; grow table if new. 
      for (Node x = first; x != null; x = x.next) 
         if (key.equals(x.key)) 
         {  x.val = val; return;  }      // Search hit: update val. 
      first = new Node(key, val, first); // Search miss: add new node. 
   } 
}

This ST implementation uses a private Node inner class to keep the keys and values in an unordered 
linked list. The get() implementation searches the list sequentially to find whether the key is in the 
table (and returns the associated value if so). The put() implementation also searches the list sequen-
tially to check whether the key is in the table. If so, it updates the associated value; if not, it creates a 
new node with the given key and value and inserts it at the beginning of the list. Implementations of 
size(), keys(), and eager delete() are left for exercises.

3753.1 n Symbol Tables



ptg12441863

characterizing the sequence of operations that might be invoked by a given client. As 
noted for FrequencyCounter, the most common situation is that, while search and 
insert patterns are unpredictable, they certainly are not random. For this reason, we pay 
careful attention to worst-case performance. For economy, we use the term search hit to 
refer to a successful search and search miss to refer to an unsuccessful search.

proposition A. Search misses and insertions in an (unordered) linked-list symbol 
table having N key-value pairs both require N compares, and search hits N com-
pares in the worst case.

proof: When searching for a key that is not in the list, we test every key in the table 
against the search key. Because of our policy of disallowing duplicate keys, we need 
to do such a search before each insertion.

corollary. Inserting N distinct keys into an initially empty linked-list symbol table 
uses ~N 2/2 compares.

It is true that searches for keys that are in the table need not take linear time. One useful 
measure is to compute the total cost of searching for all of the keys in the table, divided 
by N. This quantity is precisely the expected number of compares required for a search 
under the condition that searches for each key in the table are equally likely. We refer to 
such a search as a random search hit. Though client search patterns are not likely to be 
random, they often are well-described by this model. It is easy to show that the average 
number of compares for a random search hit is ~ N/2: the get() method in Algo-
rithm 3.1 uses 1 compare to find the first key, 2 compares to find the second key, and 
so forth, for an average cost of (1 + 2 + ... + N )/ N = (N  1)/2 ~ N/2.

This analysis strongly indicates that a linked-list implementation with sequential 
search is too slow for it to be used to solve huge problems such as our reference inputs 
with clients like FrequencyCounter. The total number of compares is proportional to 
the product of the number of searches and the number of inserts, which is more than 
10 9 for Tale of Two Cities and more than 1014 for the Leipzig Corpora. 

As usual, to validate analytic results, we need to run experiments. As an example, 
we study the operation of FrequencyCounter with command-line argument 8 for 
tale.txt, which involves 14,350 put() operations (recall that every word in the in-
put leads to a put(), to update its frequency, and we ignore the cost of easily avoided 
calls to contains()). The symbol table grows to 5,737 keys, so about one-third of the 
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operations increase the size of the table; the rest are searches. To visualize the perfor-
mance, we use VisualAccumulator (see page 95) to plot two points corresponding 
to each put() operation as follows: for the i th  put() operation we plot a gray point 
with x coordinate i and y coordinate the number of key compares it uses and a red point   
with x coordinate i and y coordinate the cumulative average number of key compares 
used for the first i put() operations. As with any scientific data, there is a great deal 
of information in this data for us to investigate (this plot has 14,350 gray points and 
14,350 red points). In this context, our primary interest is that the plot validates our 
hypothesis that about half the list is accessed for the average put() operation. The ac-
tual total is slightly lower than half, but this fact (and the precise shape of the curves) 
is perhaps best explained by characteristics of the application, not our algorithms (see 
Exercise 3.1.36).

While detailed characterization of performance for particular clients can be com-
plicated, specific hypotheses are easy to formulate and to test for FrequencyCounter 
with our reference inputs or with randomly ordered inputs, using a client like the 
DoublingTest client that we introduced in Chapter 1. We will reserve such testing 
for exercises and for the more sophisticated implementations that follow. If you are not 
already convinced that we need faster implementations, be sure to work these exercises 
(or just run FrequencyCounter with SequentialSearchST on leipzig1M.txt!).

Costs for java FrequencyCounter 8 < tale.txt using SequentialSearchST
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Binary search in an ordered array Next, we consider a full implementation 
of our ordered symbol-table API. The underlying data structure is a pair of parallel 
arrays, one for the keys and one for the values. Algorithm 3.2 (BinarySearchST) on 
the facing page keeps Comparable keys in order in the array, then uses array indexing 
to enable fast implementation of get() and other operations.

The heart of the implementation is the rank() method, which returns the number 
of keys smaller than a given key. For get(), the rank tells us precisely where the key is 
to be found if it is in the table (and, if it is not there, that it is not in the table). 

For put(), the rank tells us precisely where to update the value when the key is in the 
table, and precisely where to put the key when the key is not in the table. We move all 
larger keys over one position to make room (working from back to front) and insert the 
given key and value into the proper positions in their respective arrays. Again, studying  
BinarySearchST in conjunction with a trace of our test client is an instructive intro-
duction to this data structure.

This code maintains parallel arrays of keys and values (see Exercise 3.1.12 for an 
alternative). As with our implementations of generic stacks and queues in Chapter 1, 
this code carries the inconvenience of having to create a Key array of type Comparable 
and a Value array of type Object, and to cast them back to Key[] and Value[] in the 
constructor. As usual, we can use array resizing so that clients do not have to be con-
cerned with the size of the array (noting, as you shall see, that this method is too slow 
to use with large arrays).

Trace of  ordered-array ST implementation for standard indexing client
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aLgorIthM 3.2 Binary search (in an ordered array)

public class BinarySearchST<Key extends Comparable<Key>, Value> 
{ 
   private Key[] keys; 
   private Value[] vals; 
   private int N;

   public BinarySearchST(int capacity) 
   {   // See Algorithm 1.1 for standard array-resizing code. 
       keys = (Key[]) new Comparable[capacity]; 
       vals = (Value[]) new Object[capacity]; 
   }   

   public int size() 
   {  return N;  }

   public Value get(Key key) 
   { 
      if (isEmpty()) return null; 
      int i = rank(key); 
      if (i < N && keys[i].compareTo(key) == 0) return vals[i]; 
      else                                      return null; 
   }

   public int rank(Key key) 
   // See page 381.

   public void put(Key key, Value val)  
   {  // Search for key. Update value if found; grow table if new. 
      int i = rank(key); 
      if (i < N && keys[i].compareTo(key) == 0) 
      {  vals[i] = val; return;  } 
      for (int j = N; j > i; j--) 
      {  keys[j] = keys[j-1]; vals[j] = vals[j-1];  } 
      keys[i] = key; vals[i] = val; 
      N++; 
   }

   public void delete(Key key)  
   // See Exercise 3.1.16 for this method.

}

This ST implementation keeps the keys and values in parallel arrays. The put() implementation 
moves larger keys one position to the right before growing the table as in the array-based stack imple-
mentation in Section 1.3. Array-resizing code is omitted here.
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public int rank(Key key, int lo, int hi) 
{ 
   if (hi < lo) return lo; 
   int mid = lo + (hi - lo) / 2; 
   int cmp = key.compareTo(keys[mid]); 
   if      (cmp < 0) 
        return rank(key, lo, mid-1); 
   else if (cmp > 0) 
        return rank(key, mid+1, hi); 
   else return mid; 
}

recursive binary search

Binary search  The reason that we keep keys in an ordered array is so that we can 
use array indexing to dramatically reduce the number of compares required for each 
search, using the classic and venerable binary search algorithm that we used as an exam-

ple in Chapter 1. We maintain indices into 
the sorted key array that delimit the subar-
ray that might contain the search key. To 
search, we compare the search key against 
the key in the middle of the subarray.  If the 
search key is less than the key in the middle, 
we search in the left half of the subarray; if 
the search key is greater than the key in the 
middle, we search in the right half of the 
subarray; otherwise the key in the middle is 
equal to the search key. The rank() code on 
the facing page uses binary search to com-

plete the symbol-table implementation just discussed. This implementation is worthy 
of careful study. To study it, we start with the equivalent recursive code at left. A call to 
rank(key, 0, N-1) does the same sequence of compares as a call to the nonrecursive 
implementation in Algorithm 3.2, but this alternate version better exposes the struc-
ture of the algorithm, as discussed in Section 1.1. This recursive rank() preserves the 
following properties:

n	 If key is in the table, rank() returns its index in the table, which is the same as 
the number of keys in the table that are smaller than key.

n	 If key is not in the table, rank() also returns the number of keys in the table 
that are smaller than key.

Taking the time to convince yourself that the nonrecursive rank() in Algorithm 3.2 
operates as expected (either by proving that it is equivalent to the recursive version or 
by proving directly that the loop always terminates with the value of lo precisely equal 
to the number of keys in the table that are smaller than key) is a worthwhile exercise for 
any programmer. (Hint : Note that lo starts at 0 and never decreases.) 

Other operations  Since the keys are kept in an ordered array, most of the order-based 
operations are compact and straightforward, as you can see from the code on page 382. For 
example, a call to select(k) just returns keys[k].We have left delete() and floor() 
as exercises. You are encouraged to study the implementation of ceiling() and the 
two-argument keys() and to work these exercises to cement your understanding of the 
ordered symbol-table API and this implementation.
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aLgorIthM 3.2 (continued) Binary search in an ordered array (iterative)

public int rank(Key key) 
{ 
   int lo = 0, hi = N-1; 
   while (lo <= hi) 
   { 
      int mid = lo + (hi - lo) / 2; 
      int cmp = key.compareTo(keys[mid]); 
      if      (cmp < 0) hi = mid - 1; 
      else if (cmp > 0) lo = mid + 1; 
      else return mid;

   } 
   return lo; 
}

This method uses the classic method described in the text to compute the number of keys in the table 
that are smaller than key. Compare key with the key in the middle: if it is equal, return its index; if it 
is less, look in the left half; if it is greater, look in the right half.

loop exits with lo > hi: return  7  

entries in black 
are a[lo..hi]

entry in red is a[mid]

successful search for P

loop exits with keys[mid] = P: return 6

lo hi mid

unsuccessful search for Q

lo hi mid

                      keys[]
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6  6  6    A  C  E  H  L  M  P  R  S  X
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5  9  7    A  C  E  H  L  M  P  R  S  X

5  6  5    A  C  E  H  L  M  P  R  S  X

7  6  6    A  C  E  H  L  M  P  R  S  X

Trace of  binary search for rank in an ordered array
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aLgorIthM 3.2 (continued) ordered symbol-table operations for binary search

public Key min() 
{  return keys[0];  }

public Key max() 
{  return keys[N-1];  }

public Key select(int k) 
{  return keys[k];  }

public Key ceiling(Key key) 
{ 
   int i = rank(key); 
   return keys[i]; 
}

public Key floor(Key key)  
// See Exercise 3.1.17.

public Key delete(Key key)  
// See Exercise 3.1.16.

public Iterable<Key> keys(Key lo, Key hi) 
{ 
   Queue<Key> q = new Queue<Key>(); 
   for (int i = rank(lo); i < rank(hi); i++) 
      q.enqueue(keys[i]); 
   if (contains(hi))  
      q.enqueue(keys[rank(hi)]); 
   return q; 
}

These methods, along with the methods of Exercise 3.1.16 and Exercise 3.1.17, complete the imple-
mentation of our (ordered) symbol-table API using binary search in an ordered array. The min(), 
max(), and select() methods are trivial, just amounting to returning the appropriate key from its 
known position in the array. The rank() method, which is the basis of binary search, plays a central 
role in the others. The floor() and delete() implementations, left for exercises, are more compli-
cated, but still straightforward. 
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Analysis of binary search The recursive implementation of rank() also leads 
to an immediate argument that binary search guarantees fast search, because it cor-
responds to a recurrence relation that describes an upper bound on the number of 
compares.

proposition b. Binary search in an ordered array with N keys uses no more than 
lg N  1 compares for a search (successful or unsuccessful).

proof: This analysis is similar to (but simpler than) the analysis of mergesort 
(Proposition F in Chapter 2). Let C(N) be the number of compares to search for 
a key in a symbol table of size N. We have C(0) = 0, C(1) = 1, and for N > 0 we can 
write a recurrence relationship that directly mirrors the recursive method:

C(N )  C(⎣N/2⎦)   1.

Whether the search goes to the left or to the right, the size of the subarray is no 
more than ⎣N/2⎦, and we use one compare to check for equality and to choose 
whether to go left or right. When N is one less than a power of 2 (say N = 2n1), 
this recurrence is not difficult to solve. First, since ⎣N/2⎦ = 2n11, we have

C(2n 1)  C(2n11)  1.

Applying the same equation to the first term on the right, we have

C(2n 1)  C(2n21)  1  1.

Repeating the previous step n  2 additional times gives

C(2n 1)  C(20)  n

which leaves us with the solution

C(N )  =  C(2n 1 )  n   1 <  lg N  1.

Exact solutions for general N are more complicated, but it is not difficult to extend 
this argument to establish the stated property for all values of N (see Exercise 
3.1.20). With binary search, we achieve a logarithmic-time search guarantee.

The implementation just given for ceiling() is based on a single call to rank(), and 
the default two-argument size() implementation calls rank() twice, so this proof also 
establishes that these operations (and floor()) are supported in guaranteed logarith-
mic time (min(), max(), and select() are constant-time operations).
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Despite its guaranteed logarithmic search, BinarySearchST 
still does not enable us to use clients like FrequencyCounter to 
solve huge problems, because the put() method is too slow. Bi-
nary search reduces the number of compares, but not the running 
time, because its use does not change the fact that the number of 
array accesses required to build a symbol table in an ordered ar-
ray is quadratic in the size of the array when keys are randomly 
ordered (and in typical practical situations where the keys, while 
not random, are well-described by this model).

proposition b (continued). Inserting a new key into an or-
dered array of size N uses  ~ 2N array accesses in the worst 
case, so inserting N keys into an initially empty table uses ~ 
N 2 array accesses in the worst case.

proof: Same as for Proposition A.

For Tale of Two Cities, with over 10 4 distinct keys, the cost to build 
the table is nearly 10 8 array accesses, and for the Leipzig project, 
with over 106 distinct keys, the cost to build the table is over 10 11 

array accesses. While not quite prohibitive on modern computers, these costs are ex-
tremely (and unnecessarily) high. 

Returning to the cost of the put() operations for FrequencyCounter for words of 
length 8 or more, we see a reduction in the average cost from 2,246 compares (plus 
array accesses) per operation for SequentialSearchST to 484 for BinarySearchST. 
As before, this cost is even better than would be predicted by analysis, and the extra 
improvement is likely again explained by properties of the application (see Exercise 
3.1.36). This improvement is impressive, but we can do much better, as you shall see.

method order of growth 
of running time

put() N

get() log N
delete() N

contains() log N

size() 1

min() 1

max() 1

floor() log N

ceiling() log N

rank() log N

select() 1

deleteMin() N

deleteMax() 1

BinarySearchST costs 

Costs for java FrequencyCounter 8 < tale.txt using BinarySearchST
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Preview Binary search is typically far better than sequential search and is the meth-
od of choice in numerous practical applications. For a static table (with no insert op-
erations allowed), it is worthwhile to initialize and sort the table, as in the version of 
binary search that we considered in Chapter 1 (see page 99). Even when the bulk of 
the key-value pairs is known before the bulk of the searches (a common situation in 
applications), it is worthwhile to add to BinarySearchST a constructor that initial-
izes and sorts the table (see Exercise 3.1.12). Still, binary search is infeasible for use 
in many other applications. For example, it fails for our Leipzig Corpora application 
because searches and inserts are intermixed and the table size is too large. As we have 
emphasized, typical modern search clients require symbol tables that can support fast 
implementations of both search and insert. That is, we need to be able to build huge 
tables where we can insert (and perhaps remove) key-value pairs in unpredictable pat-
terns, intermixed with searches. 

The table below summarizes performance characteristics for the elementary sym-
bol-table implementations considered in this section. The table entries give the leading 
term of the cost (number of array accesses for binary search, number of compares for 
the others), which implies the order of growth of the running time.

The central question is whether we can devise algorithms and data structures that 
achieve logarithmic performance for both search and insert. The answer is a resound-
ing yes! Providing that answer is the main thrust of this chapter. Along with the fast sort 
capability discussed in Chapter 2, fast symbol-table search/insert is one of the most 
important contributions of algorithmics and one of the most important steps toward 
the development of the rich computational infrastructure that we now enjoy. 

How can we achieve this goal? To support efficient insertion, it seems that we need a 
linked structure. But a singly linked list forecloses the use of binary search, because the 
efficiency of binary search depends on our ability to get to the middle of any subarray 

algorithm 
(data structure)

worst-case cost 
(after n inserts) 

average-case cost 
(after n random inserts)

efficiently 
support ordered 

operations?search insert search hit insert

sequential search 
(unordered linked list) N N N/2 N no

binary search 
(ordered array) lg N 2N lg N N yes

Cost summary for basic symbol-table implementations
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quickly via indexing (and the only way to get to the middle of a singly linked list is to 
follow links).  To combine the efficiency of binary search with the flexibility of linked 
structures, we need more complicated data structures.  That combination is provided 
both by binary search trees, the subject of the next two sections, and by hash tables, the 
subject of Section 3.4.

We consider six symbol-table implementations in this chapter, so a brief preview is 
in order.  The table below is a list of the data structures, along with the primary reasons 
in favor of and against using each for an application. They appear in the order in which 
we consider them.

We will get into more detail on properties of the algorithms and implementations 
as we discuss them, but the brief characterizations in this table will help you keep them 
in a broader context as you learn them. The bottom line is that we have several fast 
symbol-table implementations that can be and are used to great effect in countless 
applications.

underlying 
data structure  implementation pros cons

linked list 
(sequential 

search)
SequentialSearchST best for tiny STs slow for large STs 

ordered array 
(binary search) BinarySearchST 

optimal search 
and space, 
order-based ops

slow insert 

binary 
search tree

BST
easy to 
implement, 
order-based ops 

no guarantees 
space for links

balanced 
BST

RedBlackBST
optimal search 
and insert, 
order-based ops

space for links 

hash table SeparateChainingHashST

LinearProbingHashST

fast search/insert 
for common types 
of data

need hash for each type 
no order-based ops  
space for links/empty

pros and cons of symbol-table implementations
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Q&A 

Q. Why not use an Item type that implements Comparable for symbol tables, in the 
same way as we did for priority queues in Section 2.4, instead of having separate keys 
and values ?

A. That is also a reasonable option. These two approaches illustrate two different ways 
to associate information with keys—we can do so implicitly by building a data type that 
includes the key or explicitly by separating keys from values. For symbol tables, we have 
chosen to highlight the associative array abstraction. Note also that a client specifies just 
a key in search, not a key-value aggregation.

Q.  Why bother with equals() ? Why not just use compareTo() throughout?

A. Not all data types lead to key values that are easy to compare, even though having a 
symbol table still might make sense. To take an extreme example, you may wish to use   
pictures or songs as keys. There is no natural way to compare them, but we can certainly 
test equality (with some work).

Q. Why not allow keys to take the value null?

A. We assume that Key is an Object because we use it to invoke compareTo() or 
equals(). But a call like a.compareTo(b) would cause a null pointer exception if a is 
null. By ruling out this possibility, we allow for simpler client code.

Q.  Why not use a method like the less() method that we used for sorting?

A. Equality plays a special role in symbol tables, so we also would need a method for 
testing equality. To avoid proliferation of methods that have essentially the same func-
tion, we adopt the built-in Java methods equals() and compareTo().

Q.  Why not declare key[] as Object[] (instead of Comparable[]) in BinarySearchST 
before casting, in the same way that val[] is declared as Object?

A. Good question. If you do so, you will get a ClassCastException because keys need 
to be Comparable (to ensure that entries in key[] have a compareTo() method). Thus, 
declaring key[] as Comparable[] is required. Delving into the details of program-
ming-language design to explain the reasons would take us somewhat off topic. We use 
precisely this idiom (and nothing more complicated) in any code that uses Comparable 
generics and arrays throughout this book.
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Q.  What if we need to associate multiple values with the same key? For example, if we 
use Date as a key in an application, wouldn’t we have to process equal keys?

A. Maybe, maybe not. For example, you can’t have two trains arrive at the station on 
the same track at the same time (but they could arrive on different tracks at the same 
time). There are two ways to handle the situation: use some other information to dis-
ambiguate or make the value a Queue of values having the same key. We consider ap-
plications in detail in Section 3.5.

Q. Presorting the table as discussed on page 385 seems like a good idea. Why relegate 
that to an exercise (see Exercise 3.1.12)?

A. Indeed, this may be the method of choice in some applications. But adding a slow 
insert method to a data structure designed for fast search “for convenience” is a per-
formance trap, because an unsuspecting client might intermix searches and inserts in 
a huge table and experience quadratic performance. Such traps are all too common, 
so that “buyer beware” is certainly appropriate when using software developed by oth-
ers, particularly when interfaces are too wide. This problem becomes acute when a 
large number of methods are included “for convenience” leaving performance traps 
throughout, while a client might expect efficient implementations of all methods. Java’s 
ArrayList class is an example (see Exercise 3.5.27). 

Q&A (continued)
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ExErcisEs 

3.1.1 Write a client that creates a symbol table mapping letter grades to numerical 
scores, as in the table below, then reads from standard input a list of letter grades and 
computes and prints the GPA (the average of the numbers corresponding to the grades).

A+ A A- B+ B B- C+ C C- D F

4.33 4.00 3.67 3.33 3.00 2.67 2.33 2.00 1.67 1.00 0.00

3.1.2 Develop a symbol-table implementation ArrayST that uses an (unordered) array 
as the underlying data structure to implement our basic symbol-table API.

3.1.3 Develop a symbol-table implementation OrderedSequentialSearchST that 
uses an ordered linked list as the underlying data structure to implement our ordered 
symbol-table API.

3.1.4 Develop Time and Event ADTs that allow processing of data as in the example 
illustrated on page 367.

3.1.5 Implement size(), delete(),  and keys() for  SequentialSearchST.

3.1.6 Give the number of calls to put() and get() issued by FrequencyCounter, as a 
function of the number W of words and the number D of distinct words in the input.

3.1.7 What is the average number of distinct keys that FrequencyCounter will find 
among N random nonnegative integers less than 1,000, for N=10, 102, 103, 104, 105, and 
106?

3.1.8 What is the most frequently used word of ten letters or more in Tale of Two Cities?

3.1.9 Add code to FrequencyCounter to keep track of the last call to put(). Print the 
last word inserted and the number of words that were processed in the input stream 
prior to this insertion. Run your program for tale.txt with length cutoffs 1, 8, and 10.

3.1.10 Give a trace of the process of inserting the keys E A S Y Q U E S T I O N into an 
initially empty table using SequentialSearchST. How many compares are involved?

3.1.11 Give a trace of the process of inserting the keys E A S Y Q U E S T I O N into 
an initially empty table using BinarySearchST. How many compares are involved?

3.1.12 Modify BinarySearchST to maintain one array of Item objects that contain 
keys and values, rather than two parallel arrays. Add a constructor that takes an array of 
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Item values as argument and uses mergesort to sort the array.

3.1.13 Which of the symbol-table implementations in this section would you use for 
an application that does 10 3 put() operations and 10 6 get() operations, randomly 
intermixed? Justify your answer.

3.1.14 Which of the symbol-table implementations in this section would you use for 
an application that does 10 6 put() operations and 10 3 get() operations, randomly 
intermixed? Justify your answer.

3.1.15 Assume that searches are 1,000 times more frequent than insertions for a 
BinarySearchST client. Estimate the percentage of the total time that is devoted to 
insertions, when the number of searches is 103, 10 6, and 10 9.

3.1.16 Implement the delete() method for BinarySearchST.

3.1.17 Implement the floor() method for BinarySearchST.

3.1.18 Prove that the rank() method in BinarySearchST is correct.

3.1.19 Modify FrequencyCounter to print all of the values having the highest fre-
quency of occurrence, not just one of them. Hint : Use a Queue.

3.1.20 Complete the proof of Proposition B (show that it holds for all values of N).
Hint : Start by showing that C(N) is monotonic: C(N)  C(N+1) for all N > 0.

ExErcisEs (continued)
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crEAtivE problEms 

3.1.21  Memory usage. Compare the memory usage of BinarySearchST with that of 
SequentialSearchST for N key-value pairs, under the assumptions described in Sec-
tion 1.4. Do not count the memory for the keys and values themselves, but do count 
references to them. For BinarySearchST, assume that array resizing is used, so that the 
array is between 25 percent and 100 percent full.

3.1.22  Self-organizing search. A self-organizing search algorithm is one that rearrang-
es items to make those that are accessed frequently likely to be found early in the search.   
Modify your search implementation for Exercise 3.1.2 to perform the following action 
on every search hit: move the key-value pair found to the beginning of the list, moving 
all pairs between the beginning of the list and the vacated position to the right one posi-
tion.  This procedure is called the move-to-front heuristic.

3.1.23  Analysis of binary search. Prove that the maximum number of compares used 
for a binary search in a table of size N is precisely the number of bits in the binary rep-
resentation of N, because the operation of shifting 1 bit to the right converts the binary 
representation of N into the binary representation of  ⎣N/2⎦.

3.1.24  Interpolation search. Suppose that arithmetic operations are allowed on keys 
(for example, they may be Double or Integer values). Write a version of binary search 
that mimics the process of looking near the beginning of a dictionary when the word 
begins with a letter near the beginning of the alphabet. Specifically, if kx is the key value 
sought, klo is the key value of the first key in the table, and khi is the key value of the last 
key in the table, look first ⎣(kx  klo)/(khi  klo)⎦-way through the table, not half-way. 
Test your implementation against BinarySearchST for FrequencyCounter.

3.1.25  Software caching. Since the default implementation of contains() calls get(), 
the inner loop of FrequencyCounter 

if (!st.contains(word)) st.put(word, 1); 
else                    st.put(word, st.get(word) + 1);

leads to two or three searches for the same key. To enable clear client code like this 
without sacrificing efficiency, we can use a technique known as software caching, where 
we save the location of the most recently accessed key in an instance variable. Modify 
SequentialSearchST and BinarySearchST to take advantage of this idea.
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3.1.26  Frequency count from a dictionary. Modify FrequencyCounter to take the 
name of a dictionary file as its argument, count frequencies of the words from standard 
input that are also in that file, and print two tables of the words with their frequencies, 
one sorted by frequency, the other sorted in the order found in the dictionary file.

3.1.27  Small tables. Suppose that a BinarySearchST client has S search operations 
and N distinct keys. Give the order of growth of S such that the cost of building the table 
is the same as the cost of all the searches.

3.1.28  Ordered insertions. Modify BinarySearchST so that inserting a key that is larg-
er than all keys in the table takes constant time (so that building a table by calling put() 
for keys that are in order takes linear time).

3.1.29  Test client. Write a test client for BinarySearchST that tests the implemen-
tations of min(), max(), floor(), ceiling(), select(), rank(), deleteMin(), 
deleteMax(), and keys() that are given in the text. Start with the standard index-
ing client given on page 370. Add code to take additional command-line arguments, as 
appropriate.

3.1.30  Certification. Add assert statements to BinarySearchST to check algorithm 
invariants and data structure integrity after every insertion and deletion. For example, 
every index i should always be equal to rank(select(i)) and the array should always 
be in order.

crEAtivE problEms (continued)
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ExpErimENts

3.1.31  Performance driver. Write a performance driver program that uses put() to 
fill a symbol table, then uses get() such that each key in the table is hit an average of 
ten times and there is about the same number of misses, doing so multiple times on 
random sequences of string keys of various lengths ranging from 2 to 50 characters; 
measures the time taken for each run; and prints out or plots the average running times.

3.1.32  Exercise driver. Write an exercise driver program that uses the methods in our 
ordered symbol-table API on difficult or pathological cases that might turn up in prac-
tical applications.  Simple examples include key sequences that are already in order, key 
sequences in reverse order, key sequences where all keys are the same, and keys consist-
ing of only two distinct values.

3.1.33  Driver for self-organizing search. Write a driver program for self-organizing 
search implementations (see Exercise 3.1.22) that uses put() to fill a symbol table 
with N keys, then does 10 N successful searches according to a predefined probability 
distribution. Use this driver to compare the running time of your implementation from 
Exercise 3.1.22 with BinarySearchST for N = 103, 104, 105, and 106 using the prob-
ability distribution where search hits the i th smallest key with probability 1/2 i .

3.1.34  Zipf ’s law. Do the previous exercise for the probability distribution where 
search hits the i th smallest key with probability 1/(i HN) where  HN is a Harmonic num-
ber (see page 185). This distribution is called Zipf ’s law. Compare the move-to-front heu-
ristic with the optimal arrangement for the distributions in the previous exercise, which 
is to keep the keys in increasing order (decreasing order of their expected frequency).

3.1.35  Performance validation I. Run doubling tests that use the first N words of Tale 
of Two Cities for various values of N to test the hypothesis that the running time of 
FrequencyCounter is quadratic when it uses SequentialSearchST for its symbol 
table.

3.1.36  Performance validation II. Explain why the performance of BinarySearchST 
and SequentialSearchST for FrequencyCounter is even better than predicted by 
analysis.

3.1.37  Put/get ratio. Determine empirically the ratio of the amount of time that 
BinarySearchST spends on put() operations to the time that it spends on get() op-
erations when FrequencyCounter is used to find the frequency of occurrence of values 
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in 1 million random M-bit int values, for M = 10, 20, and 30. Answer the same question 
for tale.txt and compare the results.

3.1.38  Amortized cost plots. Develop instrumentation for FrequencyCounter, 
SequentialSearchST, and BinarySearchST so that you can produce plots like the 
ones in this section showing the cost of each put() operation during the computation.

3.1.39  Actual timings. Instrument FrequencyCounter to use Stopwatch and StdDraw 
to make a plot where the x-axis is the number of calls on get() or put() and the y-axis 
is the total running time, with a point plotted of the cumulative time after each call. 
Run your program for Tale of Two Cities using SequentialSearchST and again using 
BinarySearchST and discuss the results. Note : Sharp jumps in the curve may be ex-
plained by caching, which is beyond the scope of this question.

3.1.40  Crossover to binary search. Find the values of N for which binary search in a 
symbol table of size N becomes 10, 100, and 1,000 times faster than sequential search.   
Predict the values with analysis and verify them experimentally.

3.1.41  Crossover to interpolation search. Find the values of N for which interpolation 
search in a symbol table of size N becomes 1, 2, and 10 times faster than binary search, 
assuming the keys to be random 32-bit integers (see Exercise 3.1.24). Predict the values 
with analysis, and verify them experimentally.

ExpErimENts (continued)
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3.2 BinAry SeArCh treeS

In this section, we will examine a symbol-table implementation that combines the 
flexibility of insertion in a linked list with the efficiency of search in an ordered array. 
Specifically, using two links per node (instead of the one link per node found in linked 
lists) leads to an efficient symbol-table implementation based on the binary search tree 

data structure, which qualifies as one of the most fundamental al-
gorithms in computer science.

To begin, we define basic terminology. We are working with data 
structures made up of nodes that contain links that are either null
or references to other nodes.  In a binary tree, we have the restric-
tion that every node is pointed to by just one other node, which is 
called its parent (except for one node, the root, which has no nodes 
pointing to it), and that each node has exactly two links, which are 
called its left and right links, that point to nodes called its left child
and right child, respectively. Although links point to nodes, we can 

view each link as pointing to a binary tree, the tree whose root is the referenced node. 
Thus, we can define a binary tree as either a null link or a node with a left link and a 
right link, each references to (disjoint) subtrees that are themselves binary trees. In a 
binary search tree, each node also has a key and a value, with an ordering restriction to 
support efficient search.

Definition. A binary search tree (BST) is a binary tree where each node has a 
Comparable key (and an associated value) and satisfies the restriction that the key 
in any node is larger than the keys in all nodes in that node’s left subtree and small-
er than the keys in all nodes in that node’s right subtree.

We draw BSTs with keys in the nodes and use terminology 
such as “A is the left child of E” that associates nodes with keys. 
Lines connecting the nodes represent links, and we give the 
value associated with a key in black, beside the nodes (sup-
pressing the value as dictated by context). Each node’s links 
connect it to nodes below it on the page, except for null links, 
which are short segments at the bottom. As usual, our exam-
ples use the single-letter keys that are generated by our index-
ing test client.

right child
of root

a left link

a subtree

root

null links

Anatomy of a binary tree

value
associated

with R

parent of A and R

left link
of E

keys smaller than E keys larger than E
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9
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Basic implementation Algorithm 3.3 defines the BST data structure that we 
use throughout this section to implement the ordered symbol-table API. We begin by 
considering this classic data structure definition and the characteristic associated im-
plementations of the get() (search) and put() (insert) methods.

Representation  We define a private nested class to define nodes in BSTs, just as we 
did for linked lists. Each node contains a key, a value, a left link, a right link, and a node 
count (when relevant, we include node counts in red above the node 
in our drawings). The left link points to a BST for items with smaller 
keys, and the right link points to a BST for items with larger keys. 
The instance variable N gives the node count in the subtree rooted at 
the node. This field facilitates the implementation of various ordered 
symbol-table operations, as you will see. The private size() method 
in Algorithm 3.3 is implemented to assign the value 0 to null links, 
so that we can maintain this field by making sure that the invariant

size(x) = size(x.left) + size(x.right) + 1

holds for every node x in the tree.
A BST represents a set of keys (and associated values), and there 

are many different BSTs that represent the same set. If we project the 
keys in a BST such that all keys in each node’s left subtree appear to 
the left of the key in the node and all keys in each node’s right subtree 
appear to the right of the key in the node, then we always get the keys 
in sorted order. We take advantage of the flexibility inherent in having 
many BSTs represent this sorted order to develop efficient algorithms 
for building and using BSTs. 

Search  As usual, when we search for a key in a symbol table, we have one of two 
possible outcomes. If a node containing the key is in the table, we have a search hit, so 
we return the associated value. Otherwise, we have a search miss (and return null). A 
recursive algorithm to search for a key in a BST follows immediately from the recursive 
structure: if the tree is empty, we have a search miss; if the search key is equal to the key 
at the root, we have a search hit. Otherwise, we search (recursively) in the appropriate 
subtree, moving left if the search key is smaller, right if it is larger. The recursive get() 
method on page 399 implements this algorithm directly. It takes a node (root of a subtree) 
as first argument and a key as second argument, starting with the root of the tree and 
the search key. The code maintains the invariant that no parts of the tree other than the 
subtree rooted at the current node can have a node whose key is equal to the search key. 
Just as the size of the interval in binary search shrinks by about half on each iteration, 
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aLgorIthM 3.3 Binary search tree symbol table

public class BST<Key extends Comparable<Key>, Value> 
{ 
   private Node root;               // root of BST

   private class Node 
   { 
      private Key key;              // key 
      private Value val;            // associated value 
      private Node left, right;     // links to subtrees 
      private int N;                // # nodes in subtree rooted here

      public Node(Key key, Value val, int N) 
      {  this.key = key; this.val = val; this.N = N; } 
   }

   public int size() 
   {  return size(root);  }

   private int size(Node x) 
   { 
      if (x == null) return 0; 
      else           return x.N; 
   }

   public Value get(Key key) 
   // See page 399.

   public void put(Key key, Value val) 
   // See page 399.

   // See page 407 for min(), max(), floor(), and ceiling(). 
  // See page 409 for select() and rank(). 
   // See page 411 for delete(), deleteMin(), and deleteMax(). 
   // See page 413 for keys().

}

This implementation of the ordered symbol-table API uses a binary search tree built from Node ob-
jects that each contain a key, associated value, two links, and a node count N. Each Node is the root 
of a subtree containing N nodes, with its left link pointing to a Node that is the root of a subtree with 
smaller keys and its right link pointing to a Node that is the root of a subtree with larger keys. The 
instance variable root points to the Node at the root of the BST (which has all the keys and associ-
ated values in the symbol table). Implementations of other methods appear throughout this section.
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aLgorIthM 3.3 (continued) Search and insert for BSts

public Value get(Key key) 
{  return get(root, key);  }

private Value get(Node x, Key key) 
{  // Return value associated with key in the subtree rooted at x; 
   // return null if key not present in subtree rooted at x. 
   if (x == null) return null; 
   int cmp = key.compareTo(x.key); 
   if      (cmp < 0) return get(x.left, key); 
   else if (cmp > 0) return get(x.right, key); 
   else return x.val; 
}

public void put(Key key, Value val) 
{  // Search for key. Update value if found; grow table if new. 
   root = put(root, key, val); 
}

private Node put(Node x, Key key, Value val) 
{ 
   // Change key’s value to val if key in subtree rooted at x. 
   // Otherwise, add new node to subtree associating key with val. 
   if (x == null) return new Node(key, val, 1); 
   int cmp = key.compareTo(x.key); 
   if      (cmp < 0) x.left  = put(x.left,  key, val); 
   else if (cmp > 0) x.right = put(x.right, key, val); 
   else x.val = val; 
   x.N = size(x.left) + size(x.right) + 1; 
   return x; 
}

These implementations of get() and put() for the symbol-table API are characteristic recursive 
BST methods that also serve as models for several other implementations that we consider later in 
the chapter. Each method can be understood as both working code and a proof by induction of the 
inductive hypothesis in the opening comment.
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the size of the subtree rooted at the current node when searching in a BST shrinks when 
we go down the tree (by about half, ideally, but at least by one). The procedure stops 
either when a node containing the search key is found (search hit) or when the current 
subtree becomes empty (search miss). Starting at the top, the search procedure at each 
node involves a recursive invocation for one of that node’s children, so the search de-
fines a path through the tree.  For a search hit, the path terminates at the node contain-
ing the key.  For a search miss, the path terminates at a null link.

Insert  The search code in Algorithm 3.3 is almost as simple as binary search; that 
simplicity is an essential feature of BSTs. A more important essential feature of BSTs is 
that insert is not much more difficult to implement than search. Indeed, a search for a 
key not in the tree ends at a null link, and all that we need to do is replace that link with 
a new node containing the key (see the diagram on the next page). The recursive put() 
method in Algorithm 3.3 accomplishes this task using logic similar to that we used for 
the recursive search: if the tree is empty, we return a new node containing the key and 
value; if the search key is less than the key at the root, we set the left link to the result 
of inserting the key into the left subtree; otherwise, we set the right link to the result of 
inserting the key into the right subtree. 
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Recursion  It is worthwhile to take the time to 
understand the dynamics of these recursive im-
plementations. You can think of the code before 
the recursive calls as happening on the way down 
the tree: it compares the given key against the 
key at each node and moves right or left accord-
ingly. Then,  think of  the code after the recursive 
calls as happening on the way up the tree. For 
get() this amounts to a series of return state-
ments, but for put(), it corresponds to resetting 
the link of each parent to its child on the search 
path and to incrementing the counts on the way 
up the path. In simple BSTs, the only new link 
is the one at the bottom, but resetting the links 
higher up on the path is as easy as the test to 
avoid setting them. Also, we just need to incre-
ment the node count on each node on the path, 
but we use more general code that sets each to 
one plus the sum of the counts in its subtrees. 
Later in this section and in the next section, we 
shall study more advanced algorithms that are 
naturally expressed with this same recursive 
scheme but that can change more links on the search paths and need the more general 
node-count-update code. Elementary BSTs are often implemented with nonrecursive 
code (see Exercise 3.2.13)—we use recursion in our implementations both to make it 
easy for you to convince yourself that the code is operating as described and to prepare 
the groundwork for more sophisticated algorithms.

A careful study of the trace for our standard indexing client that is shown on the 
next page will give you a feeling for the way in which binary search trees grow. New 
nodes are attached to null links at the bottom of the tree; the tree structure is not oth-
erwise changed. For example, the root has the first key inserted, one of the children of 
the root has the second key inserted, and so forth. Because each node has two links, the 
tree tends to grow out, rather than just down. Moreover, only the keys on the path from 
the root to the sought or inserted key are examined, so the number of keys examined 
becomes a smaller and smaller fraction of the number of keys in the tree as the tree size 
increases.
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Analysis The running times of algorithms on binary 
search trees depend on the shapes of the trees, which, in turn, 
depend on the order in which keys are inserted. In the best 
case, a tree with N nodes could be perfectly balanced, with 
~ lg N nodes between the root and each null link. In the worst 
case there could be N nodes on the search path. The balance in 
typical trees turns out to be much closer to the best case than 
the worst case.

For many applications, the following simple model is rea-
sonable: We assume that the keys are (uniformly) random, or, 
equivalently, that they are inserted in random order. Analysis 
of this model stems from the observation that BSTs are dual 
to quicksort. The node at the root of the tree corresponds to 
the first partitioning item in quicksort (no keys to the left are 
larger, and no keys to the right are smaller) and the subtrees are 
built recursively, corresponding to quicksort’s recursive subar-
ray sorts. This observation leads us to the analysis of properties 
of the trees.

proposition c. Search hits in a BST built from N random keys require ~ 2 ln N
(about 1.39 lg N) compares, on the average.

proof: The number of compares used for a search hit ending at a given node is 1 
plus the depth. Adding the depths of all nodes, we get a quantity known as the in-
ternal path length of the tree. Thus, the desired quantity is 1 plus the average inter-
nal path length of the BST, which we can analyze with the same argument that we 
used for Proposition K in Section 2.3: Let CN be the internal path length of a BST 
built from inserting N randomly ordered distinct keys, so that the average cost of a 
search hit is 1 CN / N. We have C0 = C1 = 0 and for N > 1 we can write a recurrence 
relationship that directly mirrors the recursive BST structure:

CN = N  1  (C0  CN1) / N + (C1  CN2)/N   . . .  (CN1  C0 )/N

The N  1 term takes into account that the root contributes 1 to the path length 
of each of the other N  1 nodes in the tree; the rest of the expression accounts 
for the subtrees, which are equally likely to be any of the N sizes. After rearranging 
terms, this recurrence is nearly identical to the one that we solved in Section 2.3
for quicksort, and we can derive the approximation CN ~ 2N  ln N.

A

H

S
R

X

C
E

X

S

R
C

E

H

A

A

C

E

H

R

S

X

BST possibilities

best case

typical case

worst case

4033.2 n Binary Search Trees



ptg12441863

proposition D. Insertions and search misses in a BST built from N random keys 
require ~ 2 ln N (about 1.39 lg N) compares, on the average.

proof: Insertions and search misses take one more compare, on the average, than 
search hits. This fact is not difficult to establish by induction (see Exercise 3.2.16).

Proposition C says that we should expect the BST search cost for random keys to be 
about 39 percent higher than that for binary search. Proposition D says that the extra 
cost is well worthwhile, because the cost of inserting a new key is also expected to be 
logarithmic—flexibility not available with binary search in an ordered array, where the 
number of array accesses required for an insertion is typically linear. As with quicksort, 
the standard deviation of the number of compares is known to be low, so that these 
formulas become increasingly accurate as N increases.

Experiments  How well does our random-key model match what is found in typical 
symbol-table clients? As usual, this question has to be studied carefully for particular 
practical applications, because of the large potential variation in performance. Fortu-
nately, for many clients, the model is quite good for BSTs.

For our example study of the cost of the put() operations for FrequencyCounter 
for words of length 8 or more, we see a reduction in the average cost from 484 array 
accesses or compares per operation for BinarySearchST to 13 for BST, again providing 
a quick validation of the logarithmic performance predicted by the theoretical model. 
More extensive experiments for larger inputs are illustrated in the table on the next 
page. On the basis of Propositions C and D, it is reasonable to predict that this number 
should be about twice the natural logarithm of the table size, because the preponder-
ance of operations are searches in a nearly full table. This prediction has at least the 
following inherent inaccuracies:

n	 Many operations are for smaller tables.
n	 The keys are not random.
n	 The table size may be too small for the approximation 2 ln N to be accurate.

Nevertheless, as you can see in the table, this prediction is accurate for our 
FrequencyCounter test cases to within a few compares. Actually, most of the differ-
ence can be explained by refining the mathematics in the approximation (see Exercise 
3.2.35). 
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tale.txt leipzig1M.txt

words distinct
compares

words distinct
compares

model actual model actual

all words 135,635 10,679 18.6 17.5 21,191,455 534,580 23.4 22.1

8+ letters 14,350 5,737 17.6 13.9 4,239,597 299,593 22.7 21.4

10+ letters 4,582 2,260 15.4 13.1 1,610,829 165,555 20.5 19.3

average number of compares per put() for FrequencyCounter using BST

Costs for java FrequencyCounter 8 < tale.txt using BST

20

0

0 14350
operations

co
st

13.9

scale magnified by a factor of 250
 compared to previous figures

Typical BST, built from 256 random keys
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Order-based methods and deletion An important reason that BSTs are widely 
used is that they allow us to keep the keys in order. As such, they can serve as the basis 
for implementing the numerous methods in our ordered symbol-table API (see page 
366) that allow clients to access key-value pairs not just by providing the key, but also by 
relative key order. Next, we consider implementations of the various methods in our 
ordered symbol-table API.

Minimum and maximum  If the left link of the root is null, the smallest key in a BST 
is the key at the root; if the left link is not null, the smallest key in the BST is the smallest 
key in the subtree rooted at the node referenced by the left link. This statement is both 
a description of the recursive min() method on page 407 and an inductive proof that it 
finds the smallest key in the BST. The computation is equivalent to a simple iteration 
(move left until finding a null link), but we use recursion for consistency. We might 
have the recursive method return a Key instead of a Node, but we will later have a need 
to use this method to access the Node containing 
the minimum key. Finding the maximum key is 
similar, moving to the right instead of to the left.

Floor and ceiling  If a given key key is less than
the key at the root of a BST, then the floor of key 
(the largest key in the BST less than or equal to 
key) must be in the left subtree. If key is greater 
than the key at the root, then the floor of key 
could be in the right subtree, but only if there is 
a key smaller than or equal to key in the right 
subtree; if not (or if key is equal to the key at the 
root), then the key at the root is the floor of key. 
Again, this description serves both as the basis 
for the recursive floor() method and for an in-
ductive proof that it computes the desired result. 
Interchanging right and left (and less and greater) 
gives ceiling().

Selection  Selection in a BST works in a man-
ner analogous to the  partition-based method of 
selection in an array that we studied in Section 
2.5. We maintain in BST nodes the variable N that 
counts the number of keys in the subtree rooted 
at that node precisely to support this operation. 
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aLgorIthM 3.3 (continued) Min, max, floor, and ceiling in BSts

public Key min() 
{   
   return min(root).key; 
}

private Node min(Node x) 
{ 
   if (x.left == null) return x; 
   return min(x.left); 
}

public Key floor(Key key) 
{   
   Node x = floor(root, key); 
   if (x == null) return null; 
   return x.key; 
}

private Node floor(Node x, Key key) 
{   
   if (x == null) return null; 
   int cmp = key.compareTo(x.key); 
   if (cmp == 0) return x; 
   if (cmp < 0)  return floor(x.left, key); 
   Node t = floor(x.right, key); 
   if (t != null) return t; 
   else           return x; 
}

Each client method calls a corresponding private method that takes an additional link (to a Node) 
as argument and returns null or a Node containing the desired Key via the recursive procedure de-
scribed in the text. The max() and ceiling() methods are the same as min() and floor() (respec-
tively) with right and left (and < and >) interchanged. 
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Suppose that we seek the key of rank k (the key 
such that precisely k other keys in the BST are 
smaller). If the number of keys t in the left sub-
tree is larger than k, we look (recursively) for the 
key of rank k in the left subtree; if t is equal to k, 
we return the key at the root; and if t is smaller 
than k, we look (recursively) for the key of rank 
k  t  1 in the right subtree. As usual, this de-
scription serves both as the basis for the recursive 
select() method on the facing page and for a 
proof by induction that it works as expected. 

Rank  The inverse method rank() that returns 
the rank of a given key is similar: if the given 
key is equal to the key at the root, we return the 
number of keys t in the left subtree; if the given 
key is less than the key at the root, we return the 
rank of the key in the left subtree (recursively 

computed); and if the 
given key is larger than 
the key at the root, we re-
turn t plus one (to count 
the key at the root) plus 
the rank of the key in the 
right subtree (recursively 
computed). 

Delete the minimum/maximum  The most difficult BST op-
eration to implement is the delete() method that removes a 
key-value pair from the symbol table. As a warmup, consider 
deleteMin() (remove the key-value pair with the smallest key). 
As with put() we write a recursive method that takes a link to 
a Node as argument and returns a link to a Node, so that we can 
reflect changes to the tree by assigning the result to the link used 
as argument. For deleteMin() we go left until finding a Node 
that has a null left link and then replace the link to that node by 
its right link (simply by returning the right link in the recursive 
method). The deleted node, with no link now pointing to it, is 
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aLgorIthM 3.3 (continued) Selection and rank in BSts

public Key select(int k)  
{   
   return select(root, k).key; 
}

private Node select(Node x, int k) 
{   // Return Node containing key of rank k. 
    if (x == null) return null; 
    int t = size(x.left); 
    if      (t > k) return select(x.left,  k); 
    else if (t < k) return select(x.right, k-t-1); 
    else            return x; 
}

public int rank(Key key) 
{  return rank(key, root);  }

private int rank(Key key, Node x) 
{  // Return number of keys less than key in the subtree rooted at x. 
   if (x == null) return 0; 
   int cmp = key.compareTo(x.key); 
   if      (cmp < 0) return rank(key, x.left); 
   else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right); 
   else              return size(x.left); 
}

This code uses the same recursive scheme that we have been using throughout this chapter to imple-
ment the select() and rank() methods. It depends on using the private size() method given at the 
beginning of this section that returns the number of nodes in the subtree rooted at a node. 
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available for garbage collection. Our standard recursive setup accomplishes, after the 
deletion, the task of setting the appropriate link in the parent and updating the counts 
in all nodes in the path to the root. The symmetric method works for deleteMax(). 

Delete  We can proceed in a similar manner to de-
lete any node that has one child (or no children), but 
what can we do to delete a node that has two chil-
dren? We are left with two links, but have a place in 
the parent node for only one of them. An answer to 
this dilemma, first proposed by T. Hibbard in 1962, 
is to delete a node x by replacing it with its successor. 
Because x has a right child, its successor is the node 
with the smallest key in its right subtree. The replace-
ment preserves order in the tree because there are no 
keys between x.key and the successor’s key. We can 
accomplish the task of replacing x by its successor in 
four (!) easy steps: 

n	 Save a link to the node to be deleted in t. 
n	 Set x to point to its successor min(t.right). 
n	 Set the right link of x (which is supposed to 

point to the BST containing all the keys larger 
than x.key) to deleteMin(t.right), the link 
to the BST containing all the keys that are larger 
than x.key after the deletion. 

n	 Set the left link of x (which was null) to t.left 
(all the keys that are less than both the deleted 
key and its successor).

Our standard recursive setup accomplishes, after the 
recursive calls, the task of setting the appropriate link 
in the parent and decrementing the node counts in 
the nodes on the path to the root (again, we accom-
plish the task of updating the counts by setting the counts in each node on the search 
path to be one plus the sum of the counts in its children). While this method does the 
job, it has a flaw that might cause performance problems in some practical situations. 
The problem is that the choice of using the successor is arbitrary and not symmetric. 
Why not use the predecessor? In practice, it is worthwhile to choose at random between 
the predecessor and the successor. See Exercise 3.2.42 for details.
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aLgorIthM 3.3 (continued) Deletion in BSts

public void deleteMin() 
{   
   root = deleteMin(root); 
}

private Node deleteMin(Node x) 
{ 
   if (x.left == null) return x.right; 
   x.left = deleteMin(x.left); 
   x.N = size(x.left) + size(x.right) + 1; 
   return x; 
}

public void delete(Key key) 
{  root = delete(root, key);  }

private Node delete(Node x, Key key) 
{ 
   if (x == null) return null; 
   int cmp = key.compareTo(x.key); 
   if      (cmp < 0) x.left  = delete(x.left,  key); 
   else if (cmp > 0) x.right = delete(x.right, key); 
   else  
   { 
      if (x.right == null) return x.left; 
      if (x.left == null) return x.right; 
      Node t = x; 
      x = min(t.right);  // See page 407. 
      x.right = deleteMin(t.right); 
      x.left = t.left; 
   } 
   x.N = size(x.left) + size(x.right) + 1; 
   return x; 
}

These methods implement eager Hibbard deletion in BSTs, as described in the text on the facing 
page. The delete() code is compact, but tricky. Perhaps the best way to understand it is to read 
the description at left, try to write the code yourself on the basis of the description, then compare 
your code with this code. This method is typically effective, but performance in large-scale applica-

tions can become a bit problematic (see Exercise 3.2.42). The deleteMax() method is the same as 
deleteMin() with right and left interchanged.
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Range queries  To implement the keys() method that returns the keys in a given 
range, we begin with a basic recursive BST traversal method, known as inorder traversal. 
To illustrate the method, we consider the task of printing all the keys in a BST in order. 
To do so, print all the keys in the left subtree (which are less than the key at the root by 

definition of BSTs), then print the key at the root, then 
print all the keys in the right subtree (which are greater 
than the key at the root by definition of BSTs), as in the 
code at left. As usual, the description serves as an argu-
ment by induction that this code prints the keys in order. 
To implement the two-argument keys() method that re-
turns to a client all the keys in a specified range, we modi-
fy this code to add each key that is in the range to a Queue, 
and to skip the recursive calls for subtrees that cannot 
contain keys in the range. As with BinarySearchST, the 

fact that we gather the keys in a Queue is hidden from the client. The intention is that 
clients should process all the keys in the range of interest using Java’s foreach construct 
rather than needing to know what data structure we use to implement Iterable<Key>. 

Analysis  How efficient are the order-based operations in BSTs? To study this question, 
we consider the tree height (the maximum depth of any node in the tree). Given a tree, 
its height determines the worst-case cost of all BST operations (except for range search 
which incurs additional cost proportional to the number of keys returned). 

proposition E. In a BST, all operations take time proportional to the height of the 
tree, in the worst case.

proof: All of these methods go down one or two paths in the tree. The length of 
any path is no more than the height, by definition.

We expect the tree height (the worst-case cost) to be higher than the average internal 
path length that we defined on page 403 (which averages in the short paths as well), but 
how much higher? This question may seem to you to be similar to the questions an-
swered by Proposition C and Proposition D, but it is far more difficult to answer, 
certainly beyond the scope of this book. The average height of a BST built from random 
keys was shown to be logarithmic by J. Robson in 1979, and L. Devroye later showed 
that the value approaches 2.99 lg N for large N. Thus, if the insertions in our applica-
tion are well-described by the random-key model, we are well on the way toward our 
goal of developing a symbol-table implementation that supports all of these operations 

private void print(Node x) 
{ 
   if (x == null) return; 
   print(x.left); 
   StdOut.println(x.key); 
   print(x.right); 
}

printing the keys in a BSt in order
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aLgorIthM 3.3 (continued) range searching in BSts

public Iterable<Key> keys() 
{  return keys(min(), max());  }

public Iterable<Key> keys(Key lo, Key hi) 
{ 
    Queue<Key> queue = new Queue<Key>(); 
    keys(root, queue, lo, hi); 
    return queue; 
}

private void keys(Node x, Queue<Key> queue, Key lo, Key hi) 
{ 
   if (x == null) return; 
   int cmplo = lo.compareTo(x.key); 
   int cmphi = hi.compareTo(x.key); 
   if (cmplo < 0) keys(x.left, queue, lo, hi); 
   if (cmplo <= 0 && cmphi >= 0) queue.enqueue(x.key); 
   if (cmphi > 0) keys(x.right, queue, lo, hi); 
}

To enqueue all the keys from the tree rooted at a given node that fall in a given range onto a queue, we 
(recursively) enqueue all the keys from the left subtree (if any of them could fall in the range), then 
enqueue the node at the root (if it falls in the range), then (recursively) enqueue all the keys from the 
right subtree (if any of them could fall in the range).
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in logarithmic time. We can expect that no path in a tree built from random keys is 
longer than 3 lg N, but what can we expect if the keys are not random? In the next sec-
tion, you will see why this question is moot in practice because of balanced BSTs, which 
guarantee that the BST height will be logarithmic regardless of the order in which keys 
are inserted. 

In summary, BSTs are not difficult to implement and can provide fast search and insert 
for practical applications of all kinds if the key insertions are well-approximated by the 
random-key model. For our examples (and for many practical applications) BSTs make 
the difference between being able to accomplish the task at hand and not being able to 
do so. Moreover, many programmers choose BSTs for symbol-table implementations 
because they also support fast rank, select, delete, and range query operations. Still, as 
we have emphasized, the bad worst-case performance of BSTs may not be tolerable in 
some situations. Good performance of the basic BST implementation is dependent on 
the keys being sufficiently similar to random keys that the tree is not likely to contain 
many long paths. With quicksort, we were able to randomize; with a symbol-table API, 
we do not have that freedom, because the client controls the mix of operations. Indeed, 
the worst-case behavior is not unlikely in practice—it arises when a client inserts keys 
in order or in reverse order, a sequence of operations that some client certainly might 
attempt in the absence of any explicit warnings to avoid doing so. This possibility is a 
primary reason to seek better algorithms and data structures, which we consider next.

algorithm 
(data structure)

worst-case cost 
(after n inserts) 

average-case cost 
(after n random inserts) efficiently 

support ordered 
operations?search insert search hit insert

sequential search 
(unordered linked list) N N N/2 N no

binary search 
(ordered array) lg N N lg N N/2 yes

binary tree search
(BST) N N 1.39 lg N 1.39 lg N yes

Cost summary for basic symbol-table implementations (updated)
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Q&A

Q.  I’ve seen BSTs before, but not using recursion. What are the tradeoffs?

A. Generally, recursive implementations are a bit easier to verify for correctness; non-
recursive implementations are a bit more efficient. See Exercise 3.2.13 for an imple-
mentation of get(), the one case where you might notice the improved efficiency. If 
trees are unbalanced, the depth of the function-call stack could be a problem in a recur-
sive implementation. Our primary reason for using recursion is to ease the transition 
to the balanced BST implementations of the next section, which definitely are easier to 
implement and debug with recursion.

Q. Maintaining the node count field in Node seems to require a lot of code. Is it really 
necessary? Why not maintain a single instance variable containing the number of nodes 
in the tree to implement the size() client method?

A. The rank() and select() methods need to have the size of the subtree rooted at 
each node. If you are not using these ordered operations, you can streamline the code 
by eliminating this field (see Exercise 3.2.12). Keeping the node count correct for all 
nodes is admittedly error-prone, but also a good check for debugging. You might also 
use a recursive method to implement size() for clients, but that would take linear
time to count all the nodes and is a dangerous choice because you might experience 
poor performance in a client program, not realizing that such a simple operation is so 
expensive.
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ExErcisEs

3.2.1 Draw the BST that results when you insert the keys E A S Y Q U E S T I O N, 
in that order (associating the value i with the ith key, as per the convention in the text) 
into an initially empty tree. How many compares are needed to build the tree?

3.2.2 Inserting the keys in the order A X C S E R H into an initially empty BST gives 
a worst-case tree where every node has one null link, except one at the bottom, which 
has two null links.  Give five other orderings of these keys that produce worst-case trees.

3.2.3 Give five orderings of the keys A X C S E R H that, when inserted into an initially 
empty BST, produce the best-case tree.

3.2.4 Suppose that a certain BST has keys that are integers between 1 and 10, and we 
search for 5. Which sequence below cannot be the sequence of keys examined?

a. 10, 9, 8, 7, 6, 5
b. 4, 10, 8, 6, 5
c. 1, 10, 2, 9, 3, 8, 4, 7, 6, 5
d. 2, 7, 3, 8, 4, 5
e. 1, 2, 10, 4, 8, 5 

3.2.5 Suppose that we have an estimate ahead of time of how often search keys are 
to be accessed in a BST, and the freedom to insert them in any order that we desire.   
Should the keys be inserted into the tree in increasing order, decreasing order of likely 
frequency of access, or some other order? Explain your answer.

3.2.6 Add to BST a method height() that computes the height of the tree. Develop two 
implementations: a recursive method (which takes linear time and space proportional 
to the height), and a method like size() that adds a field to each node in the tree (and 
takes linear space and constant time per query).

3.2.7 Add to BST a recursive method avgCompares() that computes the average num-
ber of compares required by a random search hit in a given BST (the internal path 
length of the tree divided by its size, plus one). Develop two implementations: a re-
cursive method (which takes linear time and space proportional to the height), and a 
method like size() that adds a field to each node in the tree (and takes linear space and 
constant time per query).

3.2.8 Write a static method optCompares() that takes an integer argument N and com-
putes the number of compares required by a random search hit in an optimal (perfectly 

416 Chapter 3 n Searching



ptg12441863

balanced) BST with N nodes, where all the null links are on the same level if the number 
of links is a power of 2 or on one of two levels otherwise.

3.2.9 Draw all the different BST shapes that can result when N keys are inserted into an 
initially empty tree, for N = 2, 3, 4, 5, and 6. 

3.2.10 Write a test client for BST that tests the implementations of min(), max(), 
floor(), ceiling(), select(), rank(), delete(), deleteMin(), deleteMax(), and 
keys() that are given in the text. Start with the standard indexing client given on page 
370. Add code to take additional command-line arguments, as appropriate.

3.2.11 How many binary tree shapes of N nodes are there with height N?  How many 
different ways are there to insert N distinct keys into an initially empty BST that result 
in a tree of height N? (See Exercise 3.2.2.)

3.2.12 Develop a BST implementation that omits rank() and select() and does not 
use a count field in Node.

3.2.13 Give nonrecursive implementations of get() and put() for BST.

Partial solution : Here is an implementation of get():

public Value get(Key key) 
{ 
   Node x = root; 
   while (x != null) 
   { 
      int cmp = key.compareTo(x.key); 
      if (cmp == 0) return x.val; 
      else if (cmp < 0) x = x.left; 
      else if (cmp > 0) x = x.right; 
   } 
   return null; 
}

The implementation of put() is more complicated because of the need to save a point-
er to the parent node to link in the new node at the bottom. Also, you need a separate 
pass to check whether the key is already in the table because of the need to update the 
counts. Since there are many more searches than inserts in performance-critical imple-
mentations, using this code for get() is justified; the corresponding change for put() 
might not be noticed.
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3.2.14 Give nonrecursive implementations of min(), max(), floor(), ceiling(), 
rank(), and select().

3.2.15 Give the sequences of nodes examined when the methods in BST are used to 
compute each of the following quantities for the tree drawn at right.

a. floor("Q")
b. select(5)
c. ceiling("Q")
d. rank("J")
e. size("D", "T")
 f. keys("D", "T")

3.2.16 Define the external path length of a tree to be the sum of the number of nodes on 
the paths from the root to all null links. Prove that the difference between the external 
and internal path lengths in any binary tree with N nodes is 2N (see Proposition C).

3.2.17 Draw the sequence of BSTs that results when you delete the keys from the tree 
of Exercise 3.2.1, one by one, in the order they were inserted.

3.2.18 Draw the sequence of BSTs that results when you delete the keys from the tree 
of Exercise 3.2.1, one by one, in alphabetical order.

3.2.19 Draw the sequence of BSTs that results when you delete the keys from the tree 
of Exercise 3.2.1, one by one, by successively deleting the key at the root.

3.2.20 Prove that the running time of the two-argument keys() in a BST is at most 
proportional to the tree height plus the number of keys in the range.

3.2.21 Add a BST method randomKey() that returns a random key from the symbol 
table in time proportional to the tree height, in the worst case.

3.2.22 Prove that if a node in a BST has two children, its successor has no left child and 
its predecessor has no right child.

3.2.23 Is delete() commutative? (Does deleting x, then y give the same result as de-
leting y, then x?)

3.2.24 Prove that no compare-based algorithm can build a BST using fewer than 
lg(N !) ~ N lg N compares.

ExErcisEs (continued)
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crEAtivE problEms

3.2.25  Perfect balance. Write a program that inserts a set of keys into an initially emp-
ty BST such that the tree produced is equivalent to binary search, in the sense that the 
sequence of compares done in the search for any key in the BST is the same as the se-
quence of compares used by binary search for the same key.

3.2.26  Exact probabilities. Find the probability that each of the trees in Exercise 3.2.9 
is the result of inserting N random distinct elements into an initially empty tree. 

3.2.27  Memory usage. Compare the memory usage of BST with the memory usage of 
BinarySearchST and SequentialSearchST for N key-value pairs, under the assump-
tions described in Section 1.4 (see Exercise 3.1.21). Do not count the memory for 
the keys and values themselves, but do count references to them. Then draw a diagram 
that depicts the precise memory usage of a BST with String keys and Integer values 
(such as the ones built by FrequencyCounter), and then estimate the memory usage 
(in bytes) for the BST built when FrequencyCounter uses BST for Tale of Two Cities.

3.2.28  Sofware caching. Modify BST to keep the most recently accessed Node in an 
instance variable so that it can be accessed in constant time if the next put() or get() 
uses the same key (see Exercise 3.1.25).

3.2.29  Tree traversal with constant extra memory. Design an algorithm that performs 
an inorder tree traversal of a BST using only a constant amount of extra memory.  Hint : 
On the way down the tree, make the child point to the parent and reverse it on the way 
back up the tree. 

3.2.30  BST reconstruction. Given the preorder (or postorder) traversal of a BST (not 
including null nodes), design an algorithm to reconstruct the BST. 

4193.2 n Binary Search Trees



ptg12441863

3.2.31  Certification. Write a method isBST() that takes a Node as argument and re-
turns true if the argument node is the root of a binary search tree, false otherwise. 
Hint : Write a helper method that takes a Node and two Keys as arguments and returns 
true if the argument node is the root of a binary search tree with all keys strictly be-
tween the two argument keys, false otherwise.

Solution : 

private boolean isBST() 
{  return isBST(root, null, null)  } 

private boolean isBST(Node x, Key min, Key max) 
{ 
   if (x == null) return true; 
   if (min != null && x.key.compareTo(min) <= 0) return false; 
   if (max != null && x.key.compareTo(max) >= 0) return false; 
   return isBST(x.left, min, x.key) 
       && isBST(x.right, x.key, max); 
} 

3.2.32  Subtree count check. Write a recursive method that takes a Node as argument 
and returns true if the subtree count field N is consistent in the data structure rooted at 
that node, false otherwise. 

3.2.33  Select/rank check. Write a method that checks, for all i from 0 to size()-1,  
whether i is equal to rank(select(i)) and, for all keys in the BST, whether key is 
equal to select(rank(key)). 

3.2.34  Threading. Your goal is to support an extended API DoublyThreadedBST that 
supports the following additional operations in constant time:

Key next(Key key) key that follows key (null if key is the maximum)

Key prev(Key key) key that precedes key (null if key is the minimum)

To do so, add fields pred and succ to Node that contain links to the predecessor and 
successor nodes, and modify put(), deleteMin(), deleteMax(), and delete() to 
maintain these fields.

crEAtivE problEms (continued)
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3.2.35  Refined analysis. Refine the mathematical model to better explain the experi-
mental results in the table given in the text. Specifically, show that the average number 
of compares for a successful search in a tree built from random keys approaches the 
limit 2 ln N  2 – 3  1.39 lg N – 1.85 as N increases, where   .57721... is Euler’s 
constant. Hint : Referring to the quicksort analysis in Section 2.3, use the fact that the 
integral of 1/x approaches ln N  .

3.2.36  Iterator. Is it possible to write a nonrecursive version of keys() that uses space 
proportional to the tree height (independent of the number of keys in the range)?

3.2.37  Level-order traversal. Write a method printLevel() that takes a Node as argu-
ment and prints the keys in the subtree rooted at that node in level order (in order of 
their distance from the root, with nodes on each level in order from left to right). Hint : 
Use a Queue.

3.2.38  Tree drawing. Add a method draw() to BST that draws BST figures in the style 
of the text. Hint : Use instance variables to hold node coordinates, and use a recursive 
method to set the values of these variables.
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ExpErimENts

3.2.39  Average case. Run empirical studies to estimate the average and standard de-
viation of the number of compares used for search hits and for search misses in a BST 
built by running 100 trials of the experiment of inserting N random keys into an ini-
tially empty tree, for N = 10 4, 10 5, and 10 6. Compare your results against the formula 
for the average given in Exercise 3.2.35.

3.2.40  Height. Run empirical studies to estimate average BST height by running 100 
trials of the experiment of inserting N random keys into an initially empty tree, for N = 
104, 105, and 10 6. Compare your results against the 2.99 lg N estimate that is described 
in the text.

3.2.41  Array representation. Develop a BST implementation that represents the BST 
with three arrays (preallocated to the maximum size given in the constructor): one with 
the keys, one with array indices corresponding to left links, and one with array indices 
corresponding to right links. Compare the performance of your program with that of 
the standard implementation.

3.2.42  Hibbard deletion degradation. Write a program that takes an integer N from the 
command line, builds a random BST of size N, then enters into a loop where it deletes 
a random key (using the code delete(select(StdRandom.uniform(N)))) and then 
inserts a random key, iterating the loop N 2 times. After the loop, measure and print the 
average length of a path in the tree (the internal path length divided by N, plus 1).  Run 
your program for N = 102, 103, and 10 4 to test the somewhat counterintuitive hypoth-
esis that this process increases the average path length of the tree to be proportional to 
the square root of N. Run the same experiments for a delete() implementation that 
makes a random choice whether to use the predecessor or the successor node.

3.2.43  Put/get ratio. Determine empirically the ratio of the amount of time that 
BST spends on put() operations to the time that it spends on get() operations when 
FrequencyCounter is used to find the frequency of occurrence of values in 1 million 
randomly-generated integers.

3.2.44  Cost plots. Instrument BST so that you can produce plots like the ones in this 
section showing the cost of each put() operation during the computation (see Exer-
cise 3.1.38).

3.2.45  Actual timings. Instrument FrequencyCounter to use Stopwatch and StdDraw 
to make a plot where the x axis is the number of calls on get() or put() and the  y axis 
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is the total running time, with a point plotted of the cumulative time after each call. 
Run your program for Tale of Two Cities using SequentialSearchST and again using 
BinarySearchST and again using BST and discuss the results. Note : Sharp jumps in 
the curve may be explained by caching, which is beyond the scope of this question (see 
Exercise 3.1.39).

3.2.46  Crossover to binary search trees. Find the values of N for which using a binary 
search tree to build a symbol table of N random double keys becomes 10, 100, and 
1,000 times faster than binary search.  Predict the values with analysis and verify them 
experimentally.

3.2.47  Average search time. Run empirical studies to compute the average and stan-
dard deviation of the average length of a path to a random node (internal path length 
divided by tree size, plus 1) in a BST built by insertion of N random keys into an initially 
empty tree, for N from 100 to 10,000. Do 1,000 trials for each tree size. Plot the results in 
a Tufte plot, like the one at the bottom of this page, fit with a curve plotting the function 
1.39 lg N – 1.85 (see Exercise 3.2.35 and Exercise 3.2.39).

1.39 lg N − 1.85

Average path length to a random node in a BST built from random keys
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3.3 BAlAnCeD SeArCh treeS

The algorithms in the previous section work well for a wide variety of applications, but 
they have poor worst-case performance.  We introduce in this section a type of binary 
search tree where costs are guaranteed to be logarithmic, no matter what sequence of 
keys is used to construct them. Ideally, we would like to keep our binary search trees 
perfectly balanced. In an N-node tree, we would like the height to be ~lg N so that we 
can guarantee that all searches can be completed in ~lg N compares, just as for binary 
search (see Proposition B). Unfortunately, maintaining perfect balance for dynamic 
insertions is too expensive. In this section, we consider a data structure that slightly re-
laxes the perfect balance requirement to provide guaranteed logarithmic performance 
not just for the insert and search operations in our symbol-table API but also for all of 
the ordered operations (except range search).

2-3 search trees The primary step to get the flexibility that we need to guarantee 
balance in search trees is to allow the nodes in our trees to hold more than one key.  Spe-
cifically, referring to the nodes in a standard BST as 2-nodes (they hold two links and 
one key), we now also allow 3-nodes, which hold three links and two keys. Both 2-nodes 
and 3-nodes have one link for each of the intervals subtended by its keys.

Definition. A 2-3 search tree is a tree that is either empty or 
n	 A 2-node, with one key (and associated value) and two links, 

a left link to a 2-3 search tree with smaller keys, and a right 
link to a 2-3 search tree with larger keys

n	 A 3-node, with two keys (and associated values) and three
links, a left link to a 2-3 search tree with smaller keys, a mid-
dle link to a 2-3 search tree with keys between the node’s 
keys, and a right link to a 2-3 search tree with larger keys

As usual, we refer to a link to an empty tree as a null link.

A perfectly balanced 2-3 search tree is one whose null links are all the same distance 
from the root. To be concise, we use the term 2-3 tree to refer to a perfectly balanced 2-3 
search tree (the term denotes a more general structure in other contexts). Later, we shall 
see efficient ways to define and implement the basic operations on 2-nodes, 3-nodes, 
and 2-3 trees; for now, let us assume that we can manipulate them conveniently and see 
how we can use them as search trees. 

E J

H L

2-node3-node

null link

M

R

P S XA C

Anatomy of a 2-3 search tree
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ptg12441863Search  The search algorithm for keys in a 2-3 tree directly generalizes the search al-
gorithm for BSTs.  To determine whether a key is in the tree, we compare it against the 
keys at the root. If it is equal to any of them, we have a search hit; otherwise, we follow 
the link from the root to the subtree corresponding to the interval of key values that 
could contain the search key. If that link is null, we have a search miss; otherwise we 
recursively search in that subtree. 

Insert into a 2-node  To insert a new key in a 2-3 
tree, we might do an unsuccessful search and then 
hook on a new node with the key at the bottom, as 
we did with BSTs, but the new tree would not re-
main perfectly balanced. The primary reason that 
2-3 trees are useful is that we can do insertions and 
still maintain perfect balance. It is easy to accom-
plish this task if the node at which the search ter-
minates is a 2-node: we just replace the node with 
a 3-node containing its key and the new key to be 
inserted. If the node where the search terminates is 
a 3-node, we have more work to do. 

search for K ends here

replace 2-node with
new 3-node containing K

E J

H L

M

R

P S XA C

E J

H

M

R

P S XK LA C

inserting K

Insert into a 2-node

found H so return value (search hit)

H is less than M so
look to the left

H is between E and J so
look in the middle

B is between A and C so look in the middle

B is less than M so
look to the left

B is less than E
so look to the left

link is null so B is not in the tree (search miss)

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J
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E J
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E J

H L
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successful search for H unsuccessful search for B

Search hit (left) and search miss (right) in a 2-3 tree
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Insert into a tree consisting of a single 3-node  As a first warmup before considering 
the general case, suppose that we want to insert into a tiny 2-3 tree consisting of just a 
single 3-node. Such a tree has two keys, but no room for a new key in its one node. To be 
able to perform the insertion, we temporarily put the new key into a 4-node, a natural 
extension of our node type that has three keys and four links. Creating the 4-node is 
convenient because it is easy to convert it into a 2-3 tree made up of three 2-nodes, one 
with the middle key (at the root), one with the smallest of 
the three keys (pointed to by the left link of the root), and 
one with the largest of the three keys (pointed to by the 
right link of the root). Such a tree is a 3-node BST and also 
a perfectly balanced 2-3 search tree, with all the null links 
at the same distance from the root. Before the insertion, the 
height of the tree is 0; after the insertion, the height of the 
tree is 1. This case is simple, but it is worth considering be-
cause it illustrates height growth in 2-3 trees.

Insert into a 3-node whose parent is a 2-node  As a second warmup, suppose that the 
search ends at a 3-node at the bottom whose parent is a 2-node. In this case, we can still 
make room for the new key while maintaining perfect balance in the tree, by making a 

temporary 4-node as just described, then splitting the 
4-node as just described, but then, instead of creat-
ing a new node to hold the middle key, moving the 
middle key to the node’s parent. You can think of the 
transformation as replacing the link to the old 3-node 
in the parent by the middle key with links on either 
side to the new 2-nodes. By our assumption, there 
is room for doing so in the parent: the parent was a 
2-node (with one key and two links) and becomes 
a 3-node (with two keys and three links). Also, this 
transformation does not affect the defining properties 
of (perfectly balanced) 2-3 trees. The tree remains or-
dered because the middle key is moved to the parent, 
and it remains perfectly balanced: if all null links are 
the same distance from the root before the insertion, 
they are all the same distance from the root after the 
insertion. Be certain that you understand this trans-
formation—it is the crux of 2-3 tree dynamics.  

make a 4-node

no room for S

split 4-node into
this 2-3 tree

A E

 A E S 

A

E

S

inserting S

Insert into a single 3-node

split 4-node into two 2-nodes
pass middle key to parent

replace 3-node with
temporary 4-node

containing Z

replace 2-node
with new 3-node

containing
middle key

S X Z

S Z

E J

H L

L

M

R

PA C

search for Z ends
at this 3-nodeE J

H L

M

R

P S XA C

E J

H

M

P

R X

A C

inserting Z

Insert into a 3-node whose parent is a 2-node
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Insert into a 3-node whose parent is a 3-node  Now 
suppose that the search ends at a node whose parent is 
a 3-node. Again, we make a temporary 4-node as just 
described, then split it and insert its middle key into 
the parent. The parent was a 3-node, so we replace it 
with a temporary new 4-node containing the middle 
key from the 4-node split. Then, we perform precisely 
the same transformation on that node. That is, we split 
the new 4-node and insert its middle key into its par-
ent. Extending to the general case is clear: we con-
tinue up the tree, splitting 4-nodes and inserting their 
middle keys in their parents until reaching a 2-node, 
which we replace with a 3-node that does not need to 
be further split, or until reaching a 3-node at the root. 

Splitting the root  If we have 3-nodes along the 
whole path from the insertion point to the root, we 

end up with a tempo-
rary 4-node at the root. 
In this case we can pro-
ceed in precisely the 
same way as for inser-
tion into a tree consist-
ing of a single 3-node. 
We split the tempo-
rary 4-node into three 
2-nodes, increasing the height of the tree by 1. Note that 
this last transformation preserves perfect balance be-
cause it is performed at the root.

Local transformations  Splitting a temporary 4-node 
in a 2-3 tree involves one of six transformations, sum-
marized at the bottom of the next page. The 4-node may 
be the root; it may be the left child or the right child of a 
2-node; or it may be the left child, middle child, or right 
child of a 3-node. The basis of the 2-3 tree insertion al-
gorithm is that all of these transformations are purely lo-
cal: no part of the tree needs to be examined or modified 
other than the specified nodes and links. The number of 

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into two 2-nodes
pass middle key to parent

add middle key E to 2-node
to make new 3-node

add middle key C to 3-node
to make temporary 4-node

add new key D to 3-node
to make temporary 4-node

A C D

A D

search for D ends
at this 3-node E J

H L

M

R

P S XA C

E J

H L

M

R

P S X

C E J

H L

M

R

P S X

A D H L

C J R

P S X

E M

inserting D

Insert into a 3-node whose parent is a 3-node

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into
three 2-nodes
increasing tree

height by 1

add middle key C to 3-node
to make temporary 4-node

A C D

A D

search for D ends
at this 3-node E J

H LA C

E J

H L

C E J

H L

A D H L

C J

E

add new key D to 3-node
to make temporary 4-node

inserting D

Splitting the root
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links changed for each trans-
formation is bounded by a 
small constant. In particular, 
the transformations are effec-
tive when we find the specified 
patterns anywhere in the tree, 
not just at the bottom. Each of 
the transformations passes up 
one of the keys from a 4-node 
to that node’s parent in the tree 
and then restructures links ac-
cordingly, without touching 
any other part of the tree.

Global properties  Moreover, 
these local transformations 
preserve the global properties that the tree is ordered and perfectly balanced: the num-
ber of links on the path from the root to any null link is the same. For reference, a com-
plete diagram illustrating this point for the case that the 4-node is the middle child of a 
3-node is shown above. If the length of every path from a root to a null link is h before 
the transformation, then it is h after the transformation. Each transformation preserves 
this property, even while splitting the 4-node into two 2-nodes and while changing the 
parent from a 2-node to a 3-node or from a 3-node into a temporary 4-node. When 
the root splits into three 2-nodes, the length of every path from the root to a null link 
increases by 1. If you are not fully convinced, work Exercise 3.3.7, which asks you to 

... ... ... ... ......

... ... ... ... ...

b c d

a e

between
a and b

less
than a
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b and c
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Splitting a  4-node is a local transformation
that preserves order and perfect balance 
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extend the diagrams at the top of the previous page for the other five cases to illustrate 
the same point. Understanding that every local transformation preserves order and 
perfect balance in the whole tree is the key to understanding the algorithm.  

Unlike standard BSTs, which grow down from the top, 2-3 trees grow up from the 
bottom. If you take the time to carefully study the figure on the next page, which gives 
the sequence of 2-3 trees that is produced by our standard indexing test client and the 
sequence of 2-3 trees that is produced when the same keys are inserted in increasing or-
der, you will have a good understanding of the way that 2-3 trees are built. Recall that in 
a BST, the increasing-order sequence for 10 keys results in a worst-case tree of height 9. 
In the 2-3 trees, the height is 2. 

The preceding description is sufficient to define a symbol-table implementation 
with 2-3 trees as the underlying data structure. Analyzing 2-3 trees is different from 
analyzing BSTs because our primary interest is in worst-case performance, as opposed 
to average-case performance (where we analyze expected performance under the ran-
dom-key model). In symbol-table implementations, we normally have no control over 
the order in which clients insert keys into the table and worst-case analysis is one way 
to provide performance guarantees. 

proposition F. Search and insert operations in a 2-3 tree with N keys are guaran-
teed to visit at most lg N nodes.

proof: The height of an N-node 2-3 tree is between  ⎣log3 N⎦ = ⎣(lg N)/(lg 3)⎦ (if 
the tree is all 3-nodes) and  ⎣lg N⎦ (if the tree is all 2-nodes) (see Exercise 3.3.4). 

Thus, we can guarantee good worst-case performance with 2-3 trees. The amount of 
time required at each node by each of the operations is bounded by a constant, and 
both operations examine nodes on just one path, so the total cost of any search or insert 
is guaranteed to be logarithmic. As you can see from comparing the 2-3 tree depicted 
at the bottom of page 431 with the BST formed from the same keys on page 405, a perfectly 
balanced 2-3 tree strikes a remarkably flat posture. For example, the height of a 2-3 
tree that contains 1 billion keys is between 19 and 30. It is quite remarkable that we can 
guarantee to perform arbitrary search and insertion operations among 1 billion keys by 
examining at most 30 nodes.

However, we are only part of the way to an implementation.  Although it is possible 
to write code that performs transformations on distinct data types representing 2- and 
3-nodes, most of the tasks that we have described are inconvenient to implement in 
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this direct representation because there are numerous different cases to be handled. 
We would need to maintain two different types of nodes, compare search keys against 
each of the keys in the nodes, copy links and other information from one type of node 
to another, convert nodes from one type to another, and so forth.  Not only is there a 
substantial amount of code involved, but the overhead incurred could make the algo-
rithms slower than standard BST search and insert.  The primary purpose of balancing 
is to provide insurance against a bad worst case, but we would prefer the overhead cost 
for that insurance to be low. Fortunately, as you will see, we can do the transformations 
in a uniform way using little overhead. 

        

Typical 2-3 tree built from random keys
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Red-black BSTs The insertion algorithm for 2-3 trees just described is not difficult 
to understand; now, we will see that it is also not difficult to implement. We will con-
sider a simple representation known as a red-black BST that leads to a natural imple-
mentation. In the end, not much code is required, but understanding how and why the 
code gets the job done requires a careful look.

Encoding 3-nodes  The basic idea behind red-black 
BSTs is to encode 2-3 trees by starting with standard 
BSTs (which are made up of 2-nodes) and adding extra 
information to encode 3-nodes. We think of the links 
as being of two different types: red links, which bind 
together two 2-nodes to represent 3-nodes, and black 
links, which bind together the 2-3 tree.  Specifically, 
we represent 3-nodes as two 2-nodes connected by a 
single red link that leans left (one of the 2-nodes is the 
left child of the other). One advantage of using such a 
representation is that it allows us to use our get() code 
for standard BST search without modification. Given 
any 2-3 tree, we can immediately derive a corresponding BST, just by converting each 
node as specified. We refer to BSTs that represent 2-3 trees in this way as red-black BSTs. 

An equivalent definition  Another way to proceed is to define red-black BSTs as BSTs 
having red and black links and satisfying the following three restrictions:

n	 Red links lean left.
n	 No node has two red links connected to it.
n	 The tree has perfect black balance : every path from the root to a null link has the 

same number of black links—we refer to this number as the tree’s black height.
There is a 1-1 correspondence between red-black BSTs defined in this way and 2-3 trees.

A 1-1 correspondence  If we draw the red links horizontally in a red-black BST, all of 
the null links are the same distance from the root, and if we then collapse together the 
nodes connected by red links, the result is a 2-3 tree. Conversely, if we draw 3-nodes in 

A red-black tree with horizontal red links is a 2-3 tree

... ... ...

... ...

...

Encoding a 3-node with two 2-nodes
 connected by a left-leaning red link

a b3-node

between
a and b

less
than a

greater
than b

a

b

between
a and b

less
than a

greater
than b
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a 2-3 tree as two 2-nodes connected by 
a red link that leans left, then no node 
has two red links connected to it, and 
the tree has perfect black balance, since 
the black links correspond to the 2-3 
tree links, which are perfectly balanced 
by definition. Whichever way we choose 
to define them, red-black BSTs are both
BSTs and 2-3 trees. Thus, if we can im-
plement the 2-3 tree insertion algorithm 
by maintaining the 1-1 correspondence, 
then we get the best of both worlds: the 
simple and efficient search method from 
standard BSTs and the efficient inser-
tion-balancing method from 2-3 trees. 

Color representation  For convenience, since 
each node is pointed to by precisely one link 
(from its parent), we encode the color of links 
in nodes, by adding a boolean instance variable 
color to our Node data type, which is true if 
the link from the parent is red and false if it 
is black. By convention, null links are black. 
For clarity in our code, we define constants 
RED and BLACK for use in setting and testing 
this variable. We use a private method isRed() 
to test the color of a node’s link to its parent. 
When we refer to the color of a node, we are 
referring to the color of the link pointing to it, 
and vice versa.

Rotations  The implementation that we will 
consider might allow right-leaning red links or 
two red links in a row during an operation, but 
it always corrects these conditions before com-
pletion, through judicious use of an operation 
called rotation that switches the orientation of 

1-1 correspondence between red-black BSTs and 2-3 trees
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private static final boolean RED   = true;
private static final boolean BLACK = false;

private class Node
{
   Key key;          // key
   Value val;        // associated data
   Node left, right; // subtrees
   int N;            // # nodes in this subtree
   boolean color;    // color of link from
                     //   parent to this node

   Node(Key key, Value val, int N, boolean color)
   {
      this.key   = key;
      this.val   = val;
      this.N     = N;
      this.color = color;
   }
}

private boolean isRed(Node x)
{
   if (x == null) return false;
   return x.color == RED;
}

J

G

E

A D

C

Node representation for red-black BSTs

h
h.left.color

is RED
h.right.color

is BLACK
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red links. First, suppose that we have a right-leaning red link that 
needs to be rotated to lean to the left (see the diagram at left). This 
operation is called a left rotation. We organize the computation as 
a method that takes a link to a red-black BST as argument and, as-
suming that link to be to a Node h whose right link is red, makes the 
necessary adjustments and returns a link to a node that is the root of 
a red-black BST for the same set of keys whose left link is red. If you 
check each of the lines of code against the before/after drawings in 
the diagram, you will find this operation is easy to understand: we 
are switching from having the smaller of the two keys at the root to 
having the larger of the two keys at the root. Implementing a right 
rotation that converts a left-leaning red link to a right-leaning one 
amounts to the same code, with left and right interchanged (see the 
diagram at right below). 

Resetting the link in the parent after a rotation  Whether left or 
right, every rotation leaves us with a link. We always use the link 
returned by rotateRight() or rotateLeft() to reset the appro-
priate link in the parent (or the root of 
the tree). That may be a right or a left 
link, but we can always use it to reset 
the link in the parent. This link may be 
red or black—both rotateLeft() and 

rotateRight() preserve its color by setting x.color to 
h.color. This might allow two red links in a row to occur 
within the tree, but our algorithms will also use rotations 
to correct this condition when it arises. For example, the 
code

h = rotateLeft(h);

rotates left a right-leaning red link that is to the right of 
node h, setting h to point to the root of the resulting sub-
tree (which contains all the same nodes as the subtree 
pointed to by h before the rotation, but a different root). 
The ease of writing this type of code is the primary reason 
we use recursive implementations of BST methods, as it 
makes doing rotations an easy supplement to normal in-
sertion, as you will see.  

Left rotate (right link of h)

Node rotateLeft(Node h)
{
   Node x = h.right;
   h.right = x.left;
   x.left = h;
   x.color = h.color;
   h.color = RED;
   x.N = h.N;
   h.N = 1 + size(h.left)
           + size(h.right);
   return x;
}

h

x

x

h

E

S

between
E and S

less
than E

greater
than S

E

S

between
E and S

could be right or left,
red or black

less
than E

greater
than S

Node rotateRight(Node h)
{
   Node x = h.left;
   h.left = x.right;
   x.right = h;
   x.color = h.color;
   h.color = RED;
   x.N = h.N;
   h.N = 1 + size(h.left)
           + size(h.right);
   return x;
}
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Right rotate (left link of h)
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We can use rotations to help maintain the 1-1 correspondence between 
2-3 trees and red-black BSTs as new keys are inserted because they pre-
serve the two defining properties of red-black BSTs: order and perfect black 
balance. That is, we can use rotations on a red-black BST without having 
to worry about losing its order or its perfect black balance. Next, we see 
how to use rotations to preserve the other two defining properties of red-
black BSTs (no consecutive red links on any path and no right-leaning red 
links). We warm up with some easy cases.

Insert into a single 2-node  A red-black BST with 1 key is just a single 
2-node. Inserting the second key immediately shows the need for having 
a rotation operation. If the new key is smaller than the key in the tree, we 
just make a new (red) node with the new key and we are done: we have 
a red-black BST that is equivalent to a single 3-node. But if the new key 
is larger than the key in the tree, then attaching a new (red) node gives a 
right-leaning red link, and the code root = rotateLeft(root); com-
pletes the insertion by rotating the red link to the left and updating the 
tree root link. The result in both cases is the red-black representation of a 
single 3-node, with two keys, one left-leaning red link, and black height 0.

Insert into a 2-node at the bottom  We insert keys into a red-black BST 
as usual into a BST, adding a new node at the bottom (respecting the or-
der), but always connected to its parent with a red link. If the parent is a 
2-node, then the same two cases just discussed are effective. If the new node 
is attached to the left link, the parent simply becomes a 3-node; if it is at-
tached to a right link, we have a 3-node leaning the wrong way, but a left 
rotation finishes the job.

Insert into a tree with two keys (in a 3-node)  This case reduces to three 
subcases: the new key is either less than both keys in the tree, between them, 
or greater than both of them. Each of the cases introduces a node with two 
red links connected to it; our goal is to correct this condition.

n	 The simplest of the three cases is when the new key is larger than 
the two in the tree and is therefore attached on the rightmost link of 
the 3-node, making a balanced tree with the middle key at the root, 
connected with red links to nodes containing a smaller and a larger 
key. If we flip the colors of those two links from red to black, then 
we have a balanced tree of (black) height 1 with three nodes, exactly 
what we need to maintain our 1-1 correspondence to 2-3 trees. The 
other two cases eventually reduce to this case.
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 new node
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converts 2-node
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n	 If the new key is 
smaller than the two 
keys in the tree and 
goes on the left link, 
then we have two 
red links in a row, 
both leaning to the 
left, which we can 
reduce to the previ-
ous case (middle 
key at the root, con-
nected to the others 
by two red links) by 
rotating the top link 
to the right.

n	 If the new key goes 
between the two 
keys in the tree, we 

again have two red links in a row, a right-leaning one below 
a left-leaning one, which we can reduce to the previous case 
(two red links in a row, to the left) by rotating left the bot-
tom link.
In summary, we achieve the desired result by doing zero, 
one, or two rotations followed by flipping the colors of the 
two children of the root.  As with 2-3 trees, be certain that 
you understand these transformations, as they are the key to 
red-black tree dynamics.

Flipping colors  To flip the colors of the two red children 
of a node, we use a method flipColors(), shown at left. In 
addition to flipping the colors of the children from red to 
black, we also flip the color of the parent from black to red. 
A critically important characteristic of this operation is that, 
like rotations, it is a local transformation that preserves per-
fect black balance in the tree. Moreover, this convention im-
mediately leads us to a full implementation, as we describe 
next.
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void flipColors(Node h)
{
   h.color = RED;
   h.left.color = BLACK;
   h.right.color = BLACK;
}
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Keeping the root black  In the case just considered (insert into a single 3-node), the 
color flip will color the root red. This can also happen in larger trees. Strictly speaking, 
a red root  implies that the root is part of a 3-node, but that is not the case, so we color 
the root black after each insertion. Note that the black 
height of the tree increases by 1 whenever the root is 
involved in a color flip, where its childrens’ colors are 
both flipped from red to black.  

Insert into a 3-node at the bottom  Now suppose that 
we add a new node at the bottom that is connected to a 
3-node. The same three cases just discussed arise. Either 
the new link is connected to the right link of the 3-node 
(in which case we just flip colors) or to the left link of 
the 3-node (in which case we need to rotate the top link 
right and flip colors) or to the middle link of the 3-node 
(in which case we rotate left the bottom link, then rotate 
right the top link, then flip colors). Flipping the colors 
makes the link to the middle node red, which amounts 
to passing it up to its parent, putting us back in the same 
situation with respect to the parent, which we can fix by 
moving up the tree.

Passing a red link up the tree  The 2-3 tree insertion 
algorithm calls for us to split the 3-node, passing the 
middle key up to be inserted into its parent, continuing 
until encountering a 2-node or the root. In every case 
we have considered, we precisely accomplish this objec-
tive: after doing any necessary rotations, we flip colors, 
which turns the middle node to red. From the point of 
view of the parent of that node, that link becoming red 
can be handled in precisely the same manner as if the 
red link came from attaching a new node: we pass up 
a red link to the middle node.  The three cases sum-
marized in the diagram on the next page precisely capture the operations necessary in 
a red-black tree to implement the key operation in 2-3 tree insertion: to insert into a 
3-node, create a temporary 4-node, split it, and pass a red link to the middle key up to 
its parent. Continuing the same process, we pass a red link up the tree until reaching a 
2-node or the root. 
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In summary, we can maintain our 1-1 
correspondence between 2-3 trees and 
red-black BSTs during insertion by judi-
cious use of three simple operations: left 
rotate, right rotate, and color flip. We can 
accomplish the insertion by performing 
the following operations, one after the 
other, on each node as we pass up the tree 
from the point of insertion:

n	 If the right child is red and the left 
child is black, rotate left.

n	 If both the left child and its left 
child are red, rotate right.

n	 If both children are red, flip colors.
It certainly is worth your while to check that this sequence handles each of the cases 
just described. Note that the first operation handles both the rotation necessary to lean 
the 3-node to the left when the parent is a 2-node and the rotation necessary to lean the 
bottom link to the left when the new red link is the middle link in a 3-node. 

Implementation Since the balancing operations are to be performed on the way 
up the tree from the point of insertion, implementing them is easy in our standard 
recursive implementation: we just do them after the recursive calls, as shown in Algo-
rithm 3.4. The three operations listed in the previous paragraph each can be accom-
plished with a single if statement that tests the colors of two nodes in the tree. Even 
though it involves a small amount of code, this implementation would be quite difficult 
to understand without the two layers of abstraction that we have developed (2-3 trees 
and red-black BSTs) to implement it. At a cost of testing three to five node colors (and 
perhaps doing a rotation or two or flipping colors when a test succeeds), we get BSTs 
that have nearly perfect balance. 

The traces for our standard indexing client and for the same keys inserted in increas-
ing order are given on page 440. Considering these examples simply in terms of our 
three operations on red-black trees, as we have been doing, is an instructive exercise. 
Another instructive exercise is to check the correspondence with 2-3 trees that the algo-
rithm maintains (using the figure for the same keys given on page 430). In both cases, 
you can test your understanding of the algorithm by considering the transformations 
(two color flips and two rotations) that are needed when P is inserted into the red-black 
BST (see Exercise 3.3.12).

flip
colors

right
rotate

left
rotate

Passing a red link up a red-black BST

h

h
h
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aLgorIthM 3.4 insert for red-black BSts

public class RedBlackBST<Key extends Comparable<Key>, Value> 
{  

   private Node root;

   private class Node // BST node with color bit (see page 433)

   private boolean isRed(Node h)    // See page 433. 
   private Node rotateLeft(Node h)  // See page 434. 
   private Node rotateRight(Node h) // See page 434. 
   private void flipColors(Node h)  // See page 436.

   private int size()               // See page 398.

   public void put(Key key, Value val) 
   {  // Search for key. Update value if found; grow table if new.  
      root = put(root, key, val); 
      root.color = BLACK; 
   }

   private Node put(Node h, Key key, Value val) 
   { 
      if (h == null)  // Do standard insert, with red link to parent. 
         return new Node(key, val, 1, RED);

      int cmp = key.compareTo(h.key); 
      if      (cmp < 0) h.left  = put(h.left,  key, val); 
      else if (cmp > 0) h.right = put(h.right, key, val); 
      else h.val = val;

      if (isRed(h.right) && !isRed(h.left))    h = rotateLeft(h); 
      if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h); 
      if (isRed(h.left) && isRed(h.right))     flipColors(h);

      h.N = size(h.left) + size(h.right) + 1; 
      return h; 
   } 
}

The code for the recursive put() for red-black BSTs is identical to put() in elementary BSTs except 
for the three if statements after the recursive calls, which provide near-perfect balance in the tree 
by maintaining a 1-1 correspondence with 2-3 trees, on the way up the search path. The first rotates 
left any right-leaning 3-node (or a right-leaning red link at the bottom of a temporary 4-node); the 
second rotates right the top link in a temporary 4-node with two left-leaning red links; and the third 
flips colors to pass a red link up the tree (see text).
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Deletion Since put() in Algorithm 3.4 is already one of the most intricate 
methods that we consider in this book, and the implementations of deleteMin(), 
deleteMax(), and delete() for red-black BSTs are a bit more complicated, we defer 
their full implementations to exercises. Still, the basic approach is worthy of study. To 
describe it, we begin by returning to 2-3 trees. As with insertion, we can define a se-
quence of local transformations that allow us to delete a node while still maintaining 
perfect balance. The process is somewhat more complicated than for insertion, because 
we do the transformations both on the way down the search path, 
when we introduce temporary 4-nodes (to allow for a node to be 
deleted), and also on the way up the search path, where we split any 
leftover 4-nodes (in the same manner as for insertion).

Top-down 2-3-4 trees  As a first warmup for deletion, we con-
sider a simpler algorithm that does transformations both on the 
way down the path and on the way up the path: an insertion algo-
rithm for 2-3-4 trees, where the temporary 4-nodes that we saw in 
2-3 trees can persist in the tree. The insertion algorithm is based on 
doing transformations on the way down the path to maintain the 
invariant that the current node is not a 4-node (so we are assured 
that there will be room to insert the new key at the bottom) and 
transformations on the way up the path to balance any 4-nodes 
that may have been created. The transformations on the way down 
are precisely the same transformations that we used for splitting 
4-nodes in 2-3 trees. If the root is a 4-node, we split it into three 
2-nodes, increasing the height of the tree by 1. On the way down 
the tree, if we encounter a 4-node with a 2-node as parent, we split 
the 4-node into two 2-nodes and pass the middle key to the par-
ent, making it a 3-node; if we encounter a 4-node with a 3-node as 
parent, we split the 4-node into two 2-nodes and pass the middle 
key to the parent, making it a 4-node. We do not need to worry 
about encountering a 4-node with a 4-node as parent by virtue of 
the invariant. At the bottom, we have, again by virtue of the invariant, a 2-node or a 
3-node, so we have room to insert the new key. To implement this algorithm with red-
black BSTs, we

n	 Represent 4-nodes as a balanced subtree of three 2-nodes, with both the left and 
right child connected to the parent with a red link

n	 Split 4-nodes on the way down the tree with color flips
n	 Balance 4-nodes on the way up the tree with rotations, as for insertion

at the root

on the way down

at the bottom

Transformations for insert
in top-down 2-3-4 trees
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Remarkably, you can implement top-down 2-3-4 trees by moving one line of code in 
put() in Algorithm 3.4: move the colorFlip() call (and accompanying test) to be-
fore the recursive calls (between the test for null and the comparison). This algorithm 
has some advantages over 2-3 trees in applications where multiple processes have access 
to the same tree, because it always is operating within a link or two of the current node. 
The deletion algorithms that we describe next are based on a similar scheme and are 
effective for these trees as well as for 2-3 trees.

Delete the minimum  As a second warmup 
for deletion, we consider the operation of 
deleting the minimum from a 2-3 tree. The 
basic idea is based on the observation that we 
can easily delete a key from a 3-node at the 
bottom of the tree, but not from a 2-node. 
Deleting the key from a 2-node leaves a node 
with no keys; the natural thing to do would 
be to replace the node with a null link, but 
that operation would violate the perfect bal-
ance condition. So, we adopt the following 
approach: to ensure that we do not end up on 
a 2-node, we perform appropriate transfor-
mations on the way down the tree to preserve 
the invariant that the current node is not a 
2-node (it might be a 3-node or a tempo-
rary 4-node). First, at the root, there are two 
possibilities: if the root is a 2-node and both 
children are 2-nodes, we can just convert the 
three nodes to a 4-node; otherwise we can 
borrow from the right sibling if necessary to ensure that the left child of the root is not 
a 2-node. Then, on the way down the tree, one of the following cases must hold: 

n	 If the left child of the current node is not a 2-node, there is nothing to do.
n	 If the left child is a 2-node and its immediate sibling is not a 2-node, move a key 

from the sibling to the left child.
n	 If the left child and its immediate sibling are 2-nodes, then combine them with 

the smallest key in the parent to make a 4-node, changing the parent from a 
3-node to a 2-node or from a 4-node to a 3-node.

Following this process as we traverse left links to the bottom, we wind up on a 3-node 
or a 4-node with the smallest key, so we can just remove it, converting the 3-node to a 
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2-node or the 4-node to a 3-node. Then, on the way up the tree, we split any unused 
temporary 4-nodes. 

Delete  The same transformations along the search path just described for deleting the 
minimum are effective to ensure that the current node is not a 2-node during a search 
for any key. If the search key is at the bottom, we can just remove it. If the key is not 
at the bottom, then we have to exchange it with its successor as in regular BSTs. Then, 
since the current node is not a 2-node, we have reduced the problem to deleting the 
minimum in a subtree whose root is not a 2-node, and we can use the procedure just 
described for that subtree. After the deletion, as usual, we split any remaining 4-nodes 
on the search path on the way up the tree.

Several of the exercises at the end of this section are devoted to examples and 
implementations related to these deletion algorithms. People with an interest in devel-
oping or understanding implementations need to master the details covered in these 
exercises. People with a general interest in the study of algorithms need to recognize 
that these methods are important because they represent the first symbol-table imple-
mentation that we have seen where search, insert, and delete are all guaranteed to be 
efficient, as we will establish next.
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Properties of red-black BSTs Studying the properties of red-black BSTs is a 
matter of checking the correspondence with 2-3 trees and then applying the analysis of 
2-3 trees. The end result is that all symbol-table operations in red-black BSTs are guaran-
teed to be logarithmic in the size of the tree (except for range search, which additionally 
costs time proportional to the number of keys returned). We repeat and emphasize this 
point because of its importance. 

Analysis  First, we establish that red-black BSTs, while not perfectly balanced, are al-
ways nearly so, regardless of the order in which the keys are inserted. This fact immedi-
ately follows from the 1-1 correspondence with 2-3 trees and the defining property of 
2-3 trees (perfect balance).

proposition G. The height of a red-black BST with N nodes is no more than 2 lg N.

proof sketch: The worst case is a 2-3 tree that is all 2-nodes except that the leftmost 
path is made up of 3-nodes. The path taking left links from the root is twice as long 
as the paths of length ~ lg N that involve just 2-nodes. It is possible, but not easy, to 
develop key sequences that cause the construction of red-black BSTs whose average 
path length is the worst-case 2 lg N. If you are mathematically inclined, you might 
enjoy exploring this issue by working Exercise 3.3.24. 

This upper bound is conservative: experiments involving both random insertions and 
insertion sequences found in typical applications support the hypothesis that each 
search in a red-black BST of N nodes uses about 1.0 lg N – 0.5 compares, on the aver-
age. Moreover, you are not likely to encounter a substantially higher average number of 
compares in practice.

Typical red-black BST built from random keys (null links omitted)
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property H. The average length of a path from the root to a node in a red-black 
BST with N nodes is ~1.00 lg N. 

Evidence: Typical trees, such as the one at the bottom of the previous page (and 
even the one built by inserting keys in increasing order at the bottom of this page) 
are quite well-balanced, by comparison with typical BSTs (such as the tree depicted 
on page 405). The table at the top of this page shows that path lengths (search costs) 
for our FrequencyCounter application are about 40 percent lower than from el-
ementary BSTs, as expected. This performance has been observed in countless ap-
plications and experiments since the invention of red-black BSTs. 

For our example study of the cost of the put() operations for FrequencyCounter for 
words of length 8 or more, we see a further reduction in the average cost, again pro-
viding a quick validation of the logarithmic performance predicted by the theoretical 
model, though this validation is less surprising than for BSTs because of the guarantee 
provided by proposition G. The total savings is less than the 40 per cent savings in the 
search cost because we count rotations and color flips as well as compares.

tale.txt leipzig1M.txt

words distinct compares words distinct compares
model actual model actual

all words 135,635 10,679 13.6 13.5 21,191,455 534,580 19.4 19.1

8+ letters 14,350 5,737 12.6 12.1 4,239,597 299,593 18.7 18.4

10+ letters 4,582 2,260 11.4 11.5 1,610,829 165,555 17.5 17.3

average number of compares per put() for FrequencyCounter using RedBlackBST

Red-black BST built from ascending keys (null links omitted)
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The get() method in red-black BSTs does not examine the node color, so the balanc-
ing mechanism adds no overhead; search is faster than in elementary BSTs because 
the tree is balanced. Each key is inserted just once, but may be involved in many, many 
search operations, so the end result is that we get search times that are close to optimal 
(because the trees are nearly balanced and no work for balancing is done during the 
searches) at relatively little cost (unlike binary search, insertions are guaranteed to be 
logarithmic). The inner loop of the search is a compare followed by updating a link, 
which is quite short, like the inner loop of binary search (compare and index arithme-
tic). This implementation is the first we have seen with logarithmic guarantees for both 
search and insert, and it has a tight inner loop, so its use is justified in a broad variety of 
applications, including library implementations. 

Ordered symbol-table API  One of the most appealing features of red-black BSTs is 
that the complicated code is limited to the put() (and deletion) methods. Our code for 
the minimum/maximum, select, rank, floor, ceiling and range queries in standard BSTs 
can be used without any change, since it operates on BSTs and has no need to refer to the 
node color. Algorithm 3.4, together with these methods (and the deletion methods), 
leads to a complete implementation of our ordered symbol-table API. Moreover, all of 
the methods benefit from the near-perfect balance in the tree because they all require 
time proportional to the tree height, at most. Thus Proposition G, in combination 
with Proposition E, suffices to establish a logarithmic performance guarantee for all
of them.

Costs for java FrequencyCounter 8 < tale.txt using RedBlackBST
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proposition i. In a red-black BST, the following operations take logarithmic time 
in the worst case: search, insertion, finding the minimum, finding the maximum, 
floor, ceiling, rank, select, delete the minimum, delete the maximum, delete, and 
range count.

proof: We have just discussed get(), put(), and the deletion operations. For the 
others, the code from Section 3.2 can be used verbatim (it just ignores the node 
color). Guaranteed logarithmic performance follows from Propositions E and G, 
and the fact that each algorithm performs a constant number of operations on each 
node examined.

On reflection, it is quite remarkable that we are able to achieve such guarantees. In a 
world awash with information, where people maintain tables with trillions or quadril-
lions of entries, the fact is that we can guarantee to complete any one of these opera-
tions in such tables with just a few dozen compares.

algorithm 
(data structure)

worst-case cost 
(after n inserts) 

average-case cost 
(after n random inserts)

efficiently 
support ordered 

operations?search insert search hit insert

sequential search 
(unordered linked list) N N N/2 N no

binary search 
(ordered array) lg N N lg N N/2 yes

binary tree search 
(BST) N N 1.39 lg N 1.39 lg N yes

2-3 tree search 
(red-black BST) 2 lg N 2 lg N 1.00 lg N 1.00 lg N yes

Cost summary for symbol-table implementations (updated)
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Q&A

Q. Why not let the 3-nodes lean either way and also allow 4-nodes in the trees?

A. Those are fine alternatives, used by many for decades. You can learn about several of 
these alternatives in the exercises. The left-leaning convention reduces the number of 
cases and therefore requires substantially less code.

Q.  Why not use an array of Key values to represent 2-, 3-, and 4-nodes with a single 
Node type?

A. Good question. That is precisely what we do for B-trees (see Chapter 6), where we 
allow many more keys per node. For the small nodes in 2-3 trees, the overhead for the 
array is too high a price to pay.

Q. When we split a 4-node, we sometimes set the color of the right node to RED in 
rotateRight() and then immediately set it to BLACK in flipColors(). Isn’t that 
wasteful?

A. Yes, and we also sometimes unnecessarily recolor the middle node. In the grand 
scheme of things, resetting a few extra bits is not in the same league with the improve-
ment from linear to logarithmic that we get for all operations, but in performance-crit-
ical applications, you can put the code for rotateRight() and flipColors() inline 
and eliminate those extra tests. We use those methods for deletion, as well, and find 
them slightly easier to use, understand, and maintain by making sure that they preserve 
perfect black balance. 
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ExErcisEs

3.3.1 Draw the 2-3 tree that results when you insert the keys E A S Y Q U T I O N in 
that order into an initially empty tree.

3.3.2 Draw the 2-3 tree that results when you insert the keys Y L P M X H C R A E S 
in that order into an initially empty tree.

3.3.3 Find an insertion order for the keys S E A R C H X M that leads to a 2-3 tree 
of height 1.

3.3.4 Prove that the height of a 2-3 tree with N keys is between ~ log3 N
 .63 lg N (for a tree that is all 3-nodes) and ~ lg N (for a tree that is all 
2-nodes).

3.3.5 The figure at right shows all the structurally different 2-3 trees with N
keys, for N from 1 up to 6 (ignore the order of the subtrees). Draw all the 
structurally different trees for N = 7, 8, 9, and 10.

3.3.6 Find the probability that each of the 2-3 trees in Exercise 3.3.5 is the 
result of the insertion of N random distinct keys into an initially empty tree.

3.3.7 Draw diagrams like the one at the top of page 428 for the other five 
cases in the diagram at the bottom of that page.

3.3.8 Show all possible ways that one might represent a 4-node with three 
2-nodes bound together with red links (not necessarily left-leaning).

3.3.9 Which of the following are red-black BSTs?

3.3.10 Draw the red-black BST that results when you insert items with the keys 
E A S Y Q U T I O N in that order into an initially empty tree.

3.3.11 Draw the red-black BST that results when you insert items with the keys 
Y L P M X H C R A E S in that order into an initially empty tree.
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3.3.12 Draw the red-black BST that results after each transformation (color flip or 
rotation) during the insertion of P for our standard indexing client.

3.3.13 True or false: If you insert keys in increasing order into a red-black BST, the tree 
height is monotonically increasing.

3.3.14 Draw the red-black BST that results when you insert letters A through K in order 
into an initially empty tree, then describe what happens in general when trees are built 
by insertion of keys in ascending order (see also the figure in the text). 

3.3.15 Answer the previous two questions 
for the case when the keys are inserted in de-
scending order. 

3.3.16 Show the result of inserting n into the 
red-black BST drawn at right (only the search 
path is shown, and you need to include only 
these nodes in your answer).

3.3.17 Generate two random 16-node red-
black BSTs. Draw them (either by hand or 
with a program). Compare them with the 
(unbalanced) BSTs built with the same keys.

3.3.18 Draw all the structurally different red-black BSTs with N keys, for N from 2 up 
to 10 (see Exercise 3.3.5).

3.3.19 With 1 bit per node for color, we can represent 2-, 3-, and 4-nodes.  How many 
bits per node would we need to represent 5-, 6-, 7-, and 8-nodes with a binary tree?

3.3.20 Compute the internal path length in a perfectly balanced BST of N nodes, when 
N is a power of 2 minus 1.

3.3.21 Create a test client for RedBlackBST, based on your solution to Exercise 3.2.10.

3.3.22 Find a sequence of keys to insert into a BST and into a red-black BST such that 
the height of the BST is less than the height of the red-black BST, or prove that no such 
sequence is possible.
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crEAtivE problEms

3.3.23  2-3 trees without balance restriction. Develop an implementation of the basic 
symbol-table API that uses 2-3 trees that are not necessarily balanced as the underlying 
data structure. Allow 3-nodes to lean either way. Hook the new node onto the bottom 
with a black link when inserting into a 3-node at the bottom. Run experiments to de-
velop a hypothesis estimating the average path length in a tree built from N random 
insertions.

3.3.24  Worst case for red-black BSTs. Show how to construct a red-black BST dem-
onstrating that, in the worst case, almost all the paths from the root to a null link in a 
red-black BST of N nodes are of length 2 lg N.

3.3.25  Top-down 2-3-4 trees. Develop an implementation of the basic symbol-table 
API that uses balanced 2-3-4 trees as the underlying data structure, using the red-black 
representation and the insertion method described in the text, where 4-nodes are split 
by flipping colors on the way down the search path and balancing on the way up.

3.3.26  Single top-down pass. Develop a modified version of your solution to Exer-
cise 3.3.25 that does not use recursion. Complete all the work splitting and balancing 
4-nodes (and balancing 3-nodes) on the way down the tree, finishing with an insertion 
at the bottom.

3.3.27  Allow right-leaning red links. Develop a modified version of your solution to 
Exercise 3.3.25 that allows right-leaning red links in the tree.

3.3.28  Bottom-up 2-3-4 trees. Develop an implementation of the basic symbol-table 
API that uses balanced 2-3-4 trees as the underlying data structure, using the red-black 
representation and a bottom-up insertion method based on the same recursive approach 
as Algorithm 3.4. Your insertion method should split only the sequence of 4-nodes (if 
any) on the bottom of the search path.

3.3.29  Optimal storage. Modify RedBlackBST so that it does not use any extra storage 
for the color bit, based on the following trick: To color a node red, swap its two links. 
Then, to test whether a node is red, test whether its left child is larger than its right child.   
You have to modify the compares to accommodate the possible link swap, and this trick 
replaces bit compares with key compares that are presumably more expensive, but it 
shows that the bit in the nodes can be eliminated, if necessary.

3.3.30  Sofware caching. Modify RedBlackBST to keep the most recently accessed Node 
in an instance variable so that it can be accessed in constant time if the next put() or 
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get() uses the same key (see Exercise 3.1.25).

3.3.31  Tree drawing. Add a method draw() to RedBlackBST that draws red-black 
BST figures in the style of the text (see Exercise 3.2.38)

3.3.32  AVL trees. An AVL tree is a BST where the height of every node and that of 
its sibling differ by at most 1. (The oldest balanced tree algorithms are based on using 
rotations to maintain height balance in AVL trees.) Show that coloring red links that 
go from nodes of even height to nodes of odd height in an AVL tree gives a (perfectly 
balanced) 2-3-4 tree, where red links are not necessarily left-leaning. Extra credit : De-
velop an implementation of the symbol-table API that uses this as the underlying data 
structure. One approach is to keep a height field in each node, using rotations after the 
recursive calls to adjust the height as necessary; another is to use the red-black represen-
tation and use methods like moveRedLeft() and moveRedRight() in Exercise 3.3.39 
and Exercise 3.3.40.

3.3.33  Certification. Add to RedBlackBST a method is23() to check that no node is 
connected to two red links and that there are no right-leaning red links and a method 
isBalanced() to check that all paths from the root to a null link have the same number 
of black links. Combine these methods with code from isBST() in Exercise 3.2.31 to 
create a method isRedBlackBST() that checks that the tree is a red-black BST.

3.3.34  All 2-3 trees. Write code to generate all structurally different 2-3 trees of height 
2, 3, and 4. There are 2, 7, and 122 such trees, respectively.  (Hint : Use a symbol table.)

3.3.35  2-3 trees. Write a program TwoThreeST.java that uses two node types to im-
plement 2-3 search trees directly.

3.3.36  2-3-4-5-6-7-8 trees. Describe algorithms for search and insertion in balanced 
2-3-4-5-6-7-8 search trees.

3.3.37  Memoryless. Show that red-black BSTs are not memoryless: for example, if you 
insert a key that is smaller than all the keys in the tree and then immediately delete the 
minimum, you may get a different tree.

3.3.38  Fundamental theorem of rotations. Show that any BST can be transformed into 
any other BST on the same set of keys by a sequence of left and right rotations.

crEAtivE problEms (continued)
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3.3.39  Delete the minimum. Implement the deleteMin() operation for red-black 
BSTs by maintaining the correspondence with the transformations given in the text for 
moving down the left spine of the tree while maintaining the invariant that the current 
node is not a 2-node.

Solution:

   private Node moveRedLeft(Node h) 
   {  // Assuming that h is red and both h.left and h.left.left 
      // are black, make h.left or one of its children red. 
      flipColors(h); 
      if (isRed(h.right.left)) 
      { 
         h.right = rotateRight(h.right); 
         h = rotateLeft(h); 
      } 
      return h; 
   }

   public void deleteMin() 
   { 
      if (!isRed(root.left) && !isRed(root.right)) 
         root.color = RED; 
      root = deleteMin(root); 
      if (!isEmpty()) root.color = BLACK; 
   }

   private Node deleteMin(Node h) 
   { 
      if (h.left == null) 
         return null; 
      if (!isRed(h.left) && !isRed(h.left.left)) 
         h = moveRedLeft(h); 
      h.left = deleteMin(h.left); 
      return balance(h); 
   }

This code assumes a balance() method that consists of the line of code

if (isRed(h.right)) h = rotateLeft(h);
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followed by the last five lines of the recursive put() in Algorithm 3.4 and a 
flipColors() implementation that complements the three colors, instead of the 
method given in the text for insertion. For deletion, we set the parent to BLACK and the 
two children to RED.

3.3.40  Delete the maximum. Implement the deleteMax() operation for red-black 
BSTs. Note that the transformations involved differ slightly from those in the previous 
exercise because red links are left-leaning.

Solution:

   private Node moveRedRight(Node h) 
   {  // Assuming that h is red and both h.right and h.right.left 
      // are black, make h.right or one of its children red. 
      flipColors(h) 
      if (isRed(h.left.left)) 
         h = rotateRight(h); 
      return h; 
    }

   public void deleteMax() 
   { 
      if (!isRed(root.left) && !isRed(root.right)) 
         root.color = RED; 
      root = deleteMax(root); 
      if (!isEmpty()) root.color = BLACK; 
   }

   private Node deleteMax(Node h) 
   { 
      if (isRed(h.left)) 
          h = rotateRight(h); 
      if (h.right == null) 
         return null; 
      if (!isRed(h.right) && !isRed(h.right.left)) 
         h = moveRedRight(h); 
      h.right = deleteMax(h.right); 
      return balance(h); 

   }

crEAtivE problEms (continued)
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3.3.41  Delete. Implement the delete() operation for red-black BSTs, combining the 
methods of the previous two exercises with the delete() operation for BSTs.

Solution :

   public void delete(Key key) 
   { 
      if (!isRed(root.left) && !isRed(root.right)) 
         root.color = RED; 
      root = delete(root, key); 
      if (!isEmpty()) root.color = BLACK; 
   }

   private Node delete(Node h, Key key) 
   { 
      if (key.compareTo(h.key) < 0) 
      { 
         if (!isRed(h.left) && !isRed(h.left.left)) 
            h = moveRedLeft(h); 
         h.left =  delete(h.left, key); 
      } 
      else 
      { 
         if (isRed(h.left)) 
            h = rotateRight(h); 
         if (key.compareTo(h.key) == 0 && (h.right == null)) 
            return null; 
         if (!isRed(h.right) && !isRed(h.right.left)) 
            h = moveRedRight(h); 
         if (key.compareTo(h.key) == 0) 
         { 
            Node x = min(h.right); 
            h.key = x.key; 
            h.val = x.val; 
            h.right = deleteMin(h.right); 
         } 
         else h.right = delete(h.right, key); 
      }

      return balance(h); 

   }
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ExpErimENts

3.3.42  Count red nodes. Write a program that computes the percentage of red nodes 
in a given red-black BST. Test your program  by running at least 100 trials of the experi-
ment of inserting N random keys into an initially empty tree, for N = 10 4, 10 5, and 10 6, 
and formulate an hypothesis.

3.3.43  Cost plots. Instrument RedBlackBST so that you can produce plots like the 
ones in this section showing the cost of each put() operation during the computation 
(see Exercise 3.1.38).

3.3.44  Average search time. Run empirical studies to compute the average and stan-
dard deviation of the average length of a path to a random node (internal path length 
divided by tree size, plus 1) in a red-black BST built by insertion of N random keys into 
an initially empty tree, for N from 1 to 10,000. Do at least 1,000 trials for each tree size. 
Plot the results in a Tufte plot, like the one at the bottom of this page, fit with a curve 
plotting the function lg N –  .5.

3.3.45  Count rotations. Instrument your program for Exercise 3.3.43 to plot the 
number of rotations and node splits that are used to build the trees. Discuss the results.

3.3.46  Height. Instrument your program for Exercise 3.3.43 to plot the height of 
red-black BSTs. Discuss the results.

Average path length to a random node in a red-black BST built from random keys 
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3.4 hASh tABleS

If keys are small integers, we can use an array to implement an unordered symbol table, 
by interpreting the key as an array index so that we can store the value associated with 
key i in array entry i, ready for immediate access.  In this section, we consider hashing, 
an extension of this simple method that handles more complicated types of keys. We 
reference key-value pairs using arrays by doing arithmetic operations to transform keys 
into array indices.

Search algorithms that use hashing consist of two separate parts. The first part is 
to compute a hash function that transforms the search key into an array index.  Ide-

ally, different keys would map to different indices. This ideal is 
generally beyond our reach, so we have to face the possibility 
that two or more different keys may hash to the same array 
index. Thus, the second part of a hashing search is a collision-
resolution process that deals with this situation. After describ-
ing ways to compute hash functions, we shall consider two dif-
ferent approaches to collision resolution: separate chaining and 
linear probing.

Hashing is a classic example of a time-space tradeoff. If there 
were no memory limitation, then we could do any search with 
only one memory access by simply using the key as an index in 
a (potentially huge) array.  This ideal often cannot be achieved, 
however, because the amount of memory required is prohibi-
tive when the number of possible key values is huge.  On the 
other hand, if there were no time limitation, then we can get by 
with only a minimum amount of memory by using sequential 
search in an unordered array. Hashing provides a way to use a 
reasonable amount of both memory and time to strike a bal-

ance between these two extremes. Indeed, it turns out that we can trade off time and 
memory in hashing algorithms by adjusting parameters, not by rewriting code. To help 
choose values of the parameters, we use classical results from probability theory.

Probability theory is a triumph of mathematical analysis that is beyond the scope of 
this book, but the hashing algorithms we consider that take advantage of the knowl-
edge gained from that theory are quite simple, and widely used. With hashing, you can 
implement search and insert for symbol tables that require constant (amortized) time 
per operation in typical applications, making it the method of choice for implementing 
basic symbol tables in many situations.
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Hash functions The first problem that we face is the computation of the hash 
function, which transforms keys into array indices. If we have an array that can hold M
key-value pairs, then we need a hash function that can transform any given key into an 
index into that array: an integer in the range [0, M – 1]. We seek a hash function that 
both is easy to compute and uniformly distributes the keys: for each key, every integer 
between 0 and M – 1 should be equally likely (independently for every 
key). This ideal is somewhat mysterious; to understand hashing, we be-
gin by thinking carefully about how to implement such a function.

In principle, any key can be represented as a sequence of bits, so we 
might design a generic hash function that maps sequences of bits to in-
tegers in the desired range. In practice, programmers implement hash 
functions based on higher-level representations. For example, if the key 
involves a number, such as a social security number, we could start with 
that number; if the key involves a string, such as a person’s name, we need 
to convert the string into a number; and if the key has multiple parts, 
such as a mailing address, we need to combine the parts somehow. For 
many common types of keys, we can make use of default implementa-
tions provided by Java. We briefly discuss potential implementations for 
various types of keys so that you can see what is involved because you do 
need to provide implementations for key types that you create. 

Typical example  Suppose that we have an application where the keys 
are U.S. social security numbers. A social security number such as 
123-45-6789 is a nine-digit number divided into three fields. The first 
field identifies the geographical area where the number was issued (for 
example, social security numbers whose first field is 035 are from Rhode 
Island and numbers whose first field is 214 are from Maryland) and the 
other two fields identify the individual. There are a billion (109) different 
social security numbers, but suppose that our application will need to 
process just a few hundred keys, so that we could use a hash table of size 
M = 1,000. One possible approach to implementing a hash function is to 
use three digits from the key. Using three digits from the third field is likely to be pref-
erable to using the three digits in the first field (since customers may not be uniformly 
dispersed over geographic areas), but a better approach is to use all nine digits to make 
an int value, then consider hash functions for integers, described next.

Positive integers  The most commonly used method for hashing integers is called 
modular hashing : we choose the array size M to be prime and, for any positive inte-
ger key k, compute the remainder when dividing k by M. This function is very easy to 
compute (k % M, in Java) and is effective in dispersing the keys evenly between 0 and 

212     12      18
618     18      36
302      2      11
940     40      67
702      2      23
704      4      25
612     12      30
606      6      24
772     72      93
510     10      25
423     23      35
650     50      68
317     17      26
907      7      34
507      7      22
304      4      13
714     14      35
857     57      81
801      1      25
900      0      27
413     13      25
701      1      22
418     18      30
601      1      19

key hash
(M = 100)

hash
(M = 97)

Modular hashing
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M – 1. If M is not prime, it may be the case that not all of the bits of the key play a role, 
which amounts to missing an opportunity to disperse the values evenly. For example, 
if the keys are base-10 numbers and M is 10 k, then only the k least significant digits are 
used. As a simple example where such a choice might be problematic, suppose that the 
keys are telephone area codes and M = 100. For historical reasons, most area codes in 
the United States have middle digit 0 or 1, so this choice strongly favors the values less 
than 20, where the use of the prime value 97 better disperses them (a prime value not 
close to 100 would do even better). Similarly, IP addresses that are used in the internet 
are binary numbers that are not random for similar historical reasons as for telephone 
area codes, so we need to use a table size that is a prime (in particular, not a power of 2) 
if we want to use modular hashing to disperse them. 

Floating-point numbers  If the keys are real numbers between 0 and 1, we might just 
multiply by M and round off to the nearest integer to get an index between 0 and M – 1. 
Although this approach is intuitive, it is defective because it gives more weight to the 
most significant bits of the keys; the least significant bits play no role. One way to ad-
dress this situation is to use modular hashing on the binary representation of the key 
(this is what Java does).

Strings  Modular hashing works for long keys such as strings, too: we simply treat 
them as huge integers. For example, the code at left computes a modular hash func-
tion for a String s: recall that charAt() returns a char value in Java, which is a 16-bit 
nonnegative integer. If R is greater than any character value, this computation would 

be equivalent to treating the String as 
an N-digit base-R integer, computing the 
remainder that results when dividing that 
number by M. A classic algorithm known 
as Horner’s method gets the job done with 
N multiplications, additions, and remain-
der operations. If the value of R is suffi-

ciently small that no overflow occurs, the result is an integer between 0 and M – 1, as 
desired. The use of a small prime integer such as 31 ensures that the bits of all the 
characters play a role. Java’s default implementation for String uses a method like this.

Compound keys  If the key type has multiple integer fields, we can typically mix them 
together in the way just described for String values. For example, suppose that search 
keys are of type Date, which has three integer fields: day (two-digit day), month (two-
digit month), and year (four-digit year).We compute the number

int hash = (((day * R + month) % M ) * R + year) % M;

int hash = 0; 
for (int i = 0; i < s.length(); i++) 
   hash = (R * hash + s.charAt(i)) % M;

hashing a string key
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which, if the value of R is sufficiently small that no overflow occurs, is an integer be-
tween 0 and M – 1, as desired. In this case, we could save the cost of the inner % M opera-
tion by choosing a moderate prime value such as 31 for R. As with strings, this method 
generalizes to handle any number of fields. 

Java conventions  Java helps us address the basic problem that every type of data needs 
a hash function by ensuring that every data type inherits a method called hashCode() 
that returns a 32-bit integer. The implementation of hashCode() for a data type must 
be consistent with equals. That is, if a.equals(b) is true, then a.hashCode() must have 
the same numerical value as b.hashCode(). Conversely, if the hashCode() values are 
different, then we know that the objects are not equal. If the hashCode() values are 
the same, the objects may or may not be equal, and we must use equals() to decide 
which condition holds. This convention is a basic requirement for clients to be able to 
use hashCode() for symbol tables. Note that it implies that you must override both 
hashCode() and equals() if you need to hash with a user-defined type. The default 
implementation returns the machine address of the key object, which is seldom what 
you want. Java provides hashCode() implementations that override the defaults for 
many common types (including String, Integer, Double, File, and URL).

Converting a hashCode() to an array index  Since our goal is an array index, not a 
32-bit integer, we combine hashCode() with modular hashing in our implementations 
to produce integers between 0 and M – 1, as follows:

private int hash(Key x) 
{  return (x.hashCode() & 0x7fffffff) % M;  } 

This code masks off the sign bit (to turn the 32-bit number into a 31-bit nonnegative 
integer) and then computes the remainder when dividing by M, as in modular hashing. 
Programmers commonly use a prime number for the hash table size M when using code 
like this, to attempt to make use of all the 
bits of the hash code. Note: To avoid con-
fusion, we omit all of these calculations in 
our hashing examples and use instead the 
hash values in the table at right. 

User-defined hashCode()  Client code expects that hashCode() disperses the keys 
uniformly among the possible 32-bit result values. That is, for any object x, you can 
write x.hashCode() and, in principle, expect to get any one of the 232 possible 32-bit 
values with equal likelihood. Java’s hashCode() implementations for String, Integer, 
Double, File, and URL aspire to this functionality; for your own type, you have to 
try to do it on your own. The Date example that we considered on page 460 illustrates 

 Hash values for keys in examples

S   E   A   R   C   H   X   M   P   L

2   0   0   4   4   4   2   4   3   3

6  10   4  14   5   4  15   1  14   6

key

hash (M = 5)

hash (M = 16)
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one way to proceed: make integers from 
the instance variables and use modular 
hashing. In Java, the convention that all 
data types inherit a hashCode() method 
enables an even simpler approach: use the 
hashCode() method for the instance vari-
ables to convert each to a 32-bit int value 
and then do the arithmetic, as illustrated 
at left for Transaction. For primitive-
type instance variables, note that a cast to 
a wrapper type is necessary to access the 
hashCode() method. Again, the precise 
values of the multiplier (31 in our exam-
ple) is not particularly important.

Software caching  If computing the hash 
code is expensive, it may be worthwhile to 

cache the hash for each key. That is, we maintain an instance variable hash in the key 
type that contains the value of hashCode() for each key object (see Exercise 3.4.25). 
On the first call to hashCode(), we have to compute the full hash code (and set the val-
ue of hash), but subsequent calls on hashCode() simply return the value of hash. Java 
uses this technique to reduce the cost of computing hashCode() for String objects.

In summary, we have three primary requirements in implementing a good hash 
function for a given data type:

n	 It should be consistent—equal keys must produce the same hash value.
n	 It should be efficient to compute.
n	 It should uniformly distribute the set of keys.

Satisfying these requirements simultaneously in Java is a job for experts. As with many 
built-in capabilities, Java programmers who use hashing assume that hashCode() does 
the job, absent any evidence to the contrary.

Still, you should be vigilant whenever using hashing in situations where good perfor-
mance is critical, because a bad hash function is a classic example of a performance bug: 
everything will work properly, but much more slowly than expected. Perhaps the easiest 
way to ensure uniformity is to make sure that all the bits of the key play an equal role in 
computing every hash value; perhaps the most common mistake in implementing hash 
functions is to ignore significant numbers of the key bits. Whatever the implementa-
tion, it is wise to test any hash function that you use, when performance is important. 
Which takes more time: computing a hash function or comparing two keys? Does your 

public class Transaction 
{ 
   ... 
   private final String who; 
   private final Date when; 
   private final double amount;

   public int hashCode() 
   { 
       int hash = 17; 
       hash = 31 * hash + who.hashCode(); 
       hash = 31 * hash + when.hashCode();   
       hash = 31 * hash 
           + ((Double) amount).hashCode();   
       return hash; 
   } 
   ... 
}

Implementing hashCode() in a user-defined type
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hash function spread a typical set of keys uniformly among the values between 0 and 
M – 1? Doing simple experiments that answer these questions can protect future clients 
from unfortunate surprises. For example, the histogram above shows that our hash() 
implementation using the hashCode() from Java’s String data type produces a rea-
sonable dispersion of the words for our Tale of Two Cities example. 

Underlying this discussion is a fundamental assumption that we make when using 
hashing; it is an idealized model that we do not actually expect to achieve, but it guides 
our thinking when implementing hashing algorithms and facilitates their analyses:

Assumption J (uniform hashing assumption). The hash functions that we use uni-
formly and independently distribute keys among the integer values between 0 and 
M – 1.

Discussion: With all of the arbitrary choices we have made, the Java hash functions 
that we have considered do not satisfy these conditions; nor can any deterministic
hash function. The idea of constructing hash functions that uniformly and inde-
pendently distribute keys leads to deep issues in theoretical computer science. In 
1977, L. Carter and M. Wegman described how to construct a universal family of 
hash functions. If a hash function is chosen at random from a universal family, the 
hash function uniformly distributes the keys, but only with partial independence. 
Although weaker than full independence, the partial independence is sufficient to 
establish performance guarantees similar to those stated in Propositions K and M. 

Assumption J is a useful way to think about hashing for two primary reasons. First, 
it is a worthy goal when designing hash functions that guides us away from making 
arbitrary decisions that might lead to an excessive number of collisions. Second, we will 
use it to develop hypotheses about the performance of hashing algorithms—even when 
hash functions are not known to satisfy Assumption J, we can perform computational 
experiments and validate that they achieve the predicted performance.

Hash value frequencies for words in Tale of Two Cities (10,679 keys, M = 97)
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Hashing with separate chaining A hash function converts keys into array in-
dices. The second component of a hashing algorithm is collision resolution: a strategy 
for handling the case when two or more keys to be inserted hash to the same index. A 
straightforward and general approach to collision resolution is to build, for each of the 
M array indices, a linked list of the key-value pairs whose keys hash to that index. This 
method is known as separate chaining because items that collide are chained together 
in separate linked lists. The basic idea is to choose M to be sufficiently large that the lists 
are sufficiently short to enable efficient search through a two-step process: hash to find 
the list that could contain the key, then sequentially search through that list for the key.

One way to proceed is to ex-
pand SequentialSearchST (Al-
gorithm 3.1) to implement sep-
arate chaining using linked-list 
primitives (see Exercise 3.4.2). 
A simpler (though slightly less 
efficient) way to proceed is to 
adopt a more general approach: 
we build, for each of the M ar-
ray indices, a symbol table of the 
keys that hash to that index, thus 
reusing code that we have already 
developed. The implementa-
tion SeparateChainingHashST 
in Algorithm 3.5 maintains an 
array of SequentialSearchST 
objects and implements get() 
and put() by computing a 
hash function to choose which 

SequentialSearchST object can contain the key and then using get() and put() (re-
spectively) from SequentialSearchST to complete the job. 

Since we have M lists and N keys, the average length of the lists is always N  M, no 
matter how the keys are distributed among the lists. For example, suppose that all the 
items fall onto the first list—the average length of the lists is (N + 0 + 0 + 0 +. . . + 0)/M =  
N  M. However the keys are distributed on the lists, the sum of the list lengths is N and 
the average is N  M. Separate chaining is useful in practice because each list is extremely 
likely to have about N  M key-value pairs. In typical situations, we can verify this con-
sequence of Assumption J and count on fast search and insert.

Hashing with separate chaining for standard indexing client 

st

first

0

1

2

3

4

S 0X 7

E 12

first

first

first

first

A 8

P 10L 11

R 3C 4H 5M 9

independent
SequentialSearchST

objects

S  2   0

E  0   1

A  0   2

R  4   3

C  4   4

H  4   5

E  0   6

X  2   7

A  0   8

M  4   9

P  3  10

L  3  11

E  0  12

null

key hash value

464 Chapter 3 n Searching



ptg12441863

aLgorIthM 3.5 hashing with separate chaining

public class SeparateChainingHashST<Key, Value> 
{ 
   private int M;                                // hash table size 
   private SequentialSearchST<Key, Value>[] st;  // array of ST objects

   public SeparateChainingHashST() 
   {  this(997);  }

   public SeparateChainingHashST(int M) 
   {  // Create M linked lists. 
      this.M = M; 
      st = (SequentialSearchST<Key, Value>[]) new SequentialSearchST[M]; 
      for (int i = 0; i < M; i++) 
         st[i] = new SequentialSearchST(); 
   }

   private int hash(Key key) 
   {  return (key.hashCode() & 0x7fffffff) % M; }

   public Value get(Key key) 
   {  return (Value) st[hash(key)].get(key);  }

   public void put(Key key, Value val) 
   {  st[hash(key)].put(key, val);  }

   public Iterable<Key> keys() 
   // See Exercise 3.4.19.

}

This basic symbol-table implementation maintains an array of linked lists, using a hash function to 
choose a list for each key. For simplicity, we use SequentialSearchST methods. We need a cast when 
creating st[] because Java prohibits arrays with generics. The default constructor specifies 997 lists, 
so that for large tables, this code is about a factor of 1,000 faster than SequentialSearchST. This 
quick solution is an easy way to get good performance when you have some idea of the number of 
key-value pairs to be put() by a client. A more robust solution is to use array resizing to make sure 
that the lists are short no matter how many key-value pairs are in the table (see page 474 and Exercise 
3.4.18).
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proposition k. In a separate-chaining hash table with M lists and N keys, the prob-
ability (under Assumption J) that the number of keys in a list is within a small 
constant factor of N/M is extremely close to 1.

proof sketch: Assumption J makes this an application of classical probability 
theory. We sketch the proof, for readers who are familiar with basic probabilistic 
analysis. The probability that a given list will contain exactly k keys is given by the 
binomial distribution

                                                                                                        

N
k  1

M                                                                                                      

M − 1
M

k N − k

                                                                                                                                                                                                               

by the following argument: Choose k out of the N keys. Those k keys hash to the 
given list with probability 1  M, and the other N – k keys do not hash to the given 
list with probability 1 – (1  M ). In terms of a  N  M,  we can rewrite this expres-
sion as

N
k  

N

N

k N − k

1 − 

which (for small a) is closely
approximated by the classical
Poisson distribution

ke −

k!

It follows that the probability that a list has more than t a keys on it is bounded 
by the quantity (a e/t)t e –a. This probability is extremely small for practical ranges 
of the parameters. For example, if the average length of the lists is 10, the prob-
ability that we will hash to some list with more than 20 keys on it is less than (10 
e/2)2 e –10  0.0084, and if the average length of the lists is 20, the probability that 
we will hash to some list with more than 40 keys on it is less than (20 e/2)2 e –20 
 0.0000016. This concentration result does not guarantee that every list will be 
short. Indeed it is known that, if a is a constant, the average length of the longest 
list grows with log N / log log N. 
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This classical mathematical analysis is compelling, but it is important to note that 
it completely depends on Assumption J. If the hash function is not uniform and inde-
pendent, the search and insert cost could be proportional to N, no better than with 
sequential search. Assumption J is much stronger than the corresponding assumption 
for other probabilistic algorithms that we have seen, and much more difficult to verify. 
With hashing, we are assuming that each and every key, no matter how complex, is 
equally likely to be hashed to one of M indices. We cannot afford to run experiments 
to test every possible key, so we would have to do more sophisticated experiments in-
volving random sampling from the set of possible keys used in an application, followed 
by statistical analysis. Better still, we can use the algorithm itself as part of the test, to 
validate both Assumption J and the mathematical results that we derive from it.

property l. In a separate-chaining hash table with M lists and N keys, the number 
of compares (equality tests) for search miss and insert is ~N/M.

Evidence: Countless programmers since the 1950s have seen the speedups for sep-
arate-chaining hash tables predicted by Proposition K, even for hash functions 
that clearly do not satisfy Assumption J. For example, the diagram on page 468 
shows that list length distribution for our FrequencyCounter example (using our 
hash() implementation based on the hashCode() from Java’s String data type) 
precisely matches the theoretical model. One exception that has been documented 
on numerous occasions is poor performance due to hash functions not taking all 
of the bits of the keys into account. Otherwise, the preponderance of the evidence 
from the experience of practical programmers puts us on solid ground in stating 
that hashing with separate chaining using an array of size M speeds up search and 
insert in a symbol table by a factor of M. 

Table size  In a separate-chaining implementation, our goal is to choose the table size   
M to be sufficiently small that we do not waste a huge area of contiguous memory 
with empty chains but sufficiently large that we do not waste time searching through 
long chains. One of the virtues of separate chaining is that this decision is not critical: 
if more keys arrive than expected, then searches will take a little longer than if we had 
chosen a bigger table size ahead of time; if fewer keys are in the table, then we have ex-
tra-fast search with some wasted space. When space is not a critical resource, M can be 
chosen sufficiently large that search time is constant; when space is a critical resource, 
we still can get a factor of M improvement in performance by choosing M to be as 
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large as we can afford. For our example FrequencyCounter study, we see in the figure 
below a reduction in the average cost from thousands of compares per operation for 
SequentialSearchST to a small constant for SeparateChainingHashST, as expected. 
Another option is to use array resizing to keep the lists short (see Exercise 3.4.18).

Deletion  To delete a key-value pair, simply hash to find the SequentialSearchST 
containing the key, then invoke the delete() method for that table (see Exercise 
3.1.5). Reusing code in this way is preferable to reimplementing this basic operation 
on linked lists.

Ordered operations  The whole point of hashing is to uniformly disperse the keys, so 
any order in the keys is lost when hashing. If you need to quickly find the maximum 
or minimum key, find keys in a given range, or implement any of the other operations 
in the ordered symbol-table API on page 366, then hashing is not appropriate, since these 
operations will all take linear time.

Hashing with separate chaining is easy to implement and probably the fastest (and 
most widely used) symbol-table implementation for applications where key order is 
not important. When your keys are built-in Java types or your own type with well-
tested implementations of hashCode(), Algorithm 3.5 provides a quick and easy path 
to fast search and insert. Next, we consider an alternative scheme for collision resolu-
tion that is also effective.

125

0
0 10 20 30

� = 10.711...)

�ke −�

k!

List lengths for java FrequencyCounter 8 < tale.txt using SeparateChainingHashST   
list lengths (10,679 keys, M = 997)

fr
eq

ue
nc

y

Costs for java FrequencyCounter 8 < tale.txt using SeparateChainingHashST (M = 997)

3.9

10

0

0 14350
operations

eq
ua

lit
y 

te
st

s cumulative
average

468 Chapter 3 n Searching



ptg12441863

Hashing with linear probing Another approach to implementing hashing is to 
store N key-value pairs in a hash table of size M > N, relying on empty entries in the 
table to help with collision resolution. Such methods are called open-addressing hashing 
methods.

The simplest open-addressing method is called linear probing: when there is a colli-
sion (when we hash to a table index that is already occupied with a key different from 
the search key), then we just check the next entry in the table (by incrementing the 
index). Linear probing is characterized by identifying three possible outcomes:

n	 Key equal to search key: search hit
n	 Empty position (null key at indexed position): search miss
n	 Key not equal to search key: try next entry 

We hash the key to a table index, check whether the search key matches the key there, 
and continue (incrementing the index, wrapping back to the beginning of the table 
if we reach the end) until finding either the search key or an empty table entry. It is 
customary to refer to the operation of determining whether or not a given table entry 
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aLgorIthM 3.6 hashing with linear probing

public class LinearProbingHashST<Key, Value> 
{ 
   private int N;         // number of key-value pairs in the table 
   private int M = 16;    // size of linear-probing table                 
   private Key[] keys;    // the keys                                       
   private Value[] vals;  // the values                       

   public LinearProbingHashST() 
   { 
      keys = (Key[])   new Object[M]; 
      vals = (Value[]) new Object[M]; 
   }

   private int hash(Key key) 
   {  return (key.hashCode() & 0x7fffffff) % M; }

   private void resize()        // See page 474.

   public void put(Key key, Value val) 
   { 
      if (N >= M/2) resize(2*M);  // double M (see text)

      int i; 
      for (i = hash(key); keys[i] != null; i = (i + 1) % M) 
         if (keys[i].equals(key)) { vals[i] = val; return; } 
      keys[i] = key; 
      vals[i] = val; 
      N++; 
   }

   public Value get(Key key) 
   { 
      for (int i = hash(key); keys[i] != null; i = (i + 1) % M) 
         if (keys[i].equals(key)) 
             return vals[i]; 
      return null; 
   } 
}

This symbol-table implementation keeps keys and values in parallel arrays (as in BinarySearchST) 
but uses empty spaces (marked by null) to terminate clusters of keys. If a new key hashes to an empty 
entry, it is stored there; if not, we scan sequentially to find an empty position. To search for a key, we 
scan sequentially starting at its hash index until finding null (search miss) or the key (search hit). 
Implementation of keys() is left as Exercise 3.4.19.
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holds an item whose key is equal to the search key as a probe. We use the term inter-
changeably with the term compare that we have been using, even though some probes 
are tests for null. 

The essential idea behind hashing with open addressing is this: rather than using mem-
ory space for references in linked lists, we use it for the empty entries in the hash table, 
which mark the ends of probe sequences. As you can see from LinearProbingHashST 
(Algorithm 3.6), applying this idea to implement the symbol-table API is quite 
straightforward. We implement the table with parallel arrays, one for the keys and one 
for the values, and use the hash function as an index to access the data as just discussed.

Deletion  How do we delete a key-value pair from a linear-probing table? If you think 
about the situation for a moment, you will see that setting the key’s table position to 
null will not work, because that might prematurely terminate the search for a key that 
was inserted into the table later. As an example, sup-
pose that we try to delete C in this way in our trace 
example, then search for H. The hash value for H is 4, 
but it sits at the end of the cluster, in position 7. If we 
set position 5 to null, then get() will not find H.  As 
a consequence, we need to reinsert into the table all 
of the keys in the cluster to the right of the deleted 
key. This process is trickier than it might seem, so 
you are encouraged to trace through the code at right 
(see Exercise 3.4.17). 

As with separate chaining, the performance of 
hashing with open addressing depends on the ratio 
a  N  M, but we interpret it differently.  We re-
fer to a as the load factor of a hash table. For sepa-
rate chaining, a is the average number of keys per 
list and is often larger than 1; for linear probing, a 
is the percentage of table entries that are occupied; 
it cannot be greater than 1. In fact, we cannot let 
the load factor reach 1 (completely full table) in 
LinearProbingHashST because a search miss would 
go into an infinite loop in a full table. Indeed, for the 
sake of good performance, we use array resizing to guarantee that the load factor is 
between one-eighth and one-half. This strategy is validated by mathematical analysis, 
which we consider before we discuss implementation details. 

public void delete(Key key) 
{ 
   if (!contains(key)) return; 
   int i = hash(key); 
   while (!key.equals(keys[i])) 
      i = (i + 1) % M; 
   keys[i] = null; 
   vals[i] = null; 
   i = (i + 1) % M; 
   while (keys[i] != null) 
   { 
      Key   keyToRedo = keys[i]; 
      Value valToRedo = vals[i]; 
      keys[i] = null; 
      vals[i] = null; 
      N--;   
      put(keyToRedo, valToRedo); 
      i = (i + 1) % M; 
   } 
   N--;    
   if (N > 0 && N == M/8) 
      resize(M/2); 
}

Deletion for linear probing
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Clustering  The average cost of linear probing depends on the way in which the entries 
clump together into contiguous groups of occupied table entries, called clusters, when 

they are inserted. For example, when the key C is inserted 
in our example, the result is a cluster ( A C S ) of length 
3, which means that four probes are needed to insert H 
because H hashes to the first position in the cluster. Short 
clusters are certainly a requirement for efficient perfor-
mance. This requirement can be problematic as the table 
fills, because long clusters are common. Moreover, since 
all table positions are equally likely to be the hash value 
of the next key to be inserted (under the uniform hash-
ing assumption), long clusters are more likely to increase 
in length than short ones, because a new key hashing to 
any entry in the cluster will cause the cluster to increase 

in length by 1 (and possibly much more, if there is just one table entry separating the 
cluster from the next one). Next, we turn to the challenge of quantifying the effect of 
clustering to predict performance in linear probing, and using that knowledge to set 
design parameters in our implementations.

Table occupancy patterns (2,048 keys, tables laid out in 128-position rows)

long clusters are common

� = 1/2

� = 1/4

keys[0..127]

keys[8064..8192]

linear probing random

9/64 chance of new key
hitting this cluster

key lands here
in that event

and forms a much
longer cluster

Clustering in linear probing (M = 64)

before

after
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Analysis of linear probing  Despite the relatively simple form of the results, precise 
analysis of linear probing is a very challenging task.  Knuth’s derivation of the following 
formulas in 1962 was a landmark in the analysis of algorithms:

proposition m. In a linear-probing hash table of size M and N =  a M keys, the 
average number of probes (under Assumption J) required is

                                                                                                           

1
2 1 − 

1
1 +         1

2
1

(1 − )21 + and~ ~

for search hits and search misses (or inserts), respectively. In particular, when a 
is about 1/2, the average number of probes for a search hit is about 3/2 and for a 
search miss is about 5/2. These estimates lose a bit of precision as a approaches 1, 
but we do not need them for that case, because we will only use linear probing for 
a less than one-half.

Discussion: We compute the average by computing the cost of a search miss start-
ing at each position in the table, then dividing the total by M.  All search misses 
take at least 1 probe, so we count the number of probes after the first. Consider the 
following two extremes in a linear-probing table that is half full (M = 2N): In the 
best case, table positions with even indices could be empty, and table positions with 
odd indices could be occupied.  In the worst case, the first half of the table positions 
could be empty, and the second half occupied. The average length of the clusters 
in both cases is N/(2N) = 1/2, but the average number of probes for a search miss 
is 1 (all searches take at least 1 probe) plus (0 + 1 + 0 + 1 +.  .  . )/(2 N) = 1/2 in the 
best case, and is 1 plus (N + (N – 1)  + . . .)   (2 N) ~ N/4 in the worst case. This 
argument generalizes to show that the average number of probes for a search miss 
is proportional to the squares of the lengths of the clusters: If a cluster is of length t, 
then the expression (t + (t – 1) + .  .  . + 2 + 1) / M = t(t + 1)/(2M) counts the con-
tribution of that cluster to the grand total. The sum of the cluster lengths is N, so, 
adding this cost for all entries in the table, we find that the total average cost for a 
search miss is 1 + N  (2M) plus the sum of the squares of the lengths of the clusters, 
divided by 2M.  Thus, given a table, we can quickly compute the average cost of a 
search miss in that table (see Exercise 3.4.21). In general, the clusters are formed 
by a complicated dynamic process (the linear-probing algorithm) that is difficult to 
characterize analytically, and quite beyond the scope of this book. 
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Proposition M tells us (under our usual Assumption J) that we can expect a search to 
require a huge number of probes in a nearly full table (as a approaches 1 the values of 
the formulas describing the number of probes grow very large) but that the expected 
number of probes is between 1.5 and 2.5 if we can ensure that the load factor a is less 
than 1/2. Next, we consider the use of array resizing for this purpose.

Array resizing We can use our standard array-resizing technique from Chapter 
1 to ensure that the load factor never exceeds one-half. First, we need a new construc-
tor for LinearProbingHashST that takes a fixed capacity as argument (add a line to 

the constructor in Algorithm 
3.6 that sets M to the given value 
before creating the arrays). Next, 
we need the resize() method 
given at left, which creates a new 
LinearProbingHashST of the giv-
en size and puts all the key-value 
pairs from the old table into the 
new one by rehashing all the keys. 
These additions allow us to imple-
ment array doubling. The call to 
resize() in the first statement in 
put() ensures that the table is at 

most one-half full. This code builds a hash table twice the size with the same keys, thus 
halving the value of a. As in other applications of array resizing, we also need to add

 if (N > 0 && N <= M/8) resize(M/2);

as the last statement in delete() to ensure that the table is at least one-eighth full. 
This ensures that the amount of memory used is always within a constant factor of the 
number of key-value pairs in the table. With array resizing, we are assured that a  1/2. 

Separate chaining  The same method works to keep lists short (of average 
length between 2 and 8) in separate chaining: replace LinearProbingHashST by 
SeparateChainingHashST in resize(), call resize(2*M) when (N >= M/2) in put(), 
and call resize(M/2) when (N > 0 && N <= M/8) in delete(). For separate chain-
ing, array resizing is optional and not worth your trouble if you have a decent estimate 
of the client’s N: just pick a table size M based on the knowledge that search times are 
proportional to 1+ N/M. For linear probing, array resizing is necessary. A client that 
inserts more key-value pairs than you expect will encounter not just excessively long 
search times, but an infinite loop when the table fills.

private void resize(int cap) 
{ 
    LinearProbingHashST<Key, Value> t; 
    t = new LinearProbingHashST<Key, Value>(cap); 
    for (int i = 0; i < M; i++) 
       if (keys[i] != null) 
           t.put(keys[i], vals[i]); 
    keys = t.keys; 
    vals = t.vals; 
    M    = t.M; 
}

resizing a linear-probing hash table
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Amortized analysis  From a theoretical standpoint, when we use array resizing, we 
must settle for an amortized bound, since we know that those insertions that cause the 
table to double will require a large number of probes. 

proposition N. Suppose a hash table is built with array resizing, starting with 
an empty table. Under Assumption J, any sequence of t search, insert, and delete
symbol-table operations is executed in expected time proportional to t and with 
memory usage always within a constant factor of the number of keys in the table.

proof: For both separate chaining and linear probing, this fact follows from a sim-
ple restatement of the amortized analysis for array growth that we first discussed in 
Chapter 1, coupled with Proposition K and Proposition M.
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The plots of the cumulative averages for our FrequencyCounter example (shown at 
the bottom of the previous page) nicely illustrate the dynamic behavior of array resiz-
ing in hashing. Each time the array doubles, the cumulative average increases by about 
1, because each key in the table needs to be rehashed; then it decreases because about 
half as many keys hash to each table position, with the rate of decrease slowing as the 
table fills again.

Memory As we have indicated, understanding memory usage is an important factor 
if we want to tune hashing algorithms for optimum performance. While such tuning 
is for experts, it is a worthwhile exercise to calculate a rough estimate of the amount of 
memory required, by estimating the number of references used, as follows: Not counting 
the memory for keys and values, our implementation SeparateChainingHashST uses 
memory for M references to SequentialSearchST objects plus M SequentialSearchST 
objects. Each SequentialSearchST object has the usual 16 bytes of object overhead 
plus one 8-byte reference (first), and there are a total of N Node objects, each with 24 
bytes of object overhead plus 3 references (key, value, and next). This compares with 
an extra reference per node for binary search trees. With array resizing to ensure that 
the table is between one-eighth and one-half full, linear probing uses between 4N and 
16N references. Thus, choosing hashing on the basis of memory usage is not normally 
justified. The calculation is a bit different for primitive types (see Exercise 3.4.24)

method space usage for N items 
(reference types)

separate chaining ~ 48 N + 32 M

linear probing between
~32 N and ~128 N

BSTs ~56 N

Space  usage in symbol tables
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Since the earliest days of computing, researchers have studied (and are study-
ing) hashing and have found many ways to improve the basic algorithms that we have 
discussed.  You can find a huge literature on the subject. Most of the improvements 
push down the space-time curve: you can get the same running time for searches using 
less space or get faster searches using the same amount of space.  Other improvements 
involve better guarantees, on the expected worst-case cost of a search. Others involve 
improved hash-function designs. Some of these methods are addressed in the exercises.

Detailed comparison of separate chaining and linear probing depends on myriad 
implementation details and on client space and time requirements. It is not normally 
justified to choose separate chaining over linear probing on the basis of performance 
(see Exercise 3.5.31). In practice, the primary performance difference between the two 
methods has to do with the fact that separate chaining uses a small block of memory 
for each key-value pair, while linear probing uses two large arrays for the whole table. 
For huge tables, these needs place quite different burdens on the memory management 
system. In modern systems, this sort of tradeoff is best addressed by experts in extreme 
performance-critical situations. 

With hashing, under generous assumptions, it is not unreasonable to expect to 
support the search and insert symbol-table operations in constant time, independent 
of the size of the table. This expectation is the theoretical optimum performance for 
any symbol-table implementation. Still, hashing is not a panacea, for several reasons, 
including: 

n	 A good hash function for each type of key is required.
n	 The performance guarantee depends on the quality of the hash function.
n	 Hash functions can be difficult and expensive to compute.
n	 Ordered symbol-table operations are not easily supported.

Beyond these basic considerations, we defer the comparison of hashing with the other 
symbol-table methods that we have studied to the beginning of Section 3.5.
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Q&A

Q. How does Java implement hashCode() for Integer, Double, and Long?

A. For Integer it just returns the 32-bit value. For Double and Long it returns the ex-
clusive or of the first 32 bits with the second 32 bits of the standard machine representa-
tion of the number. These choices may not seem to be very 
random, but they do serve the purpose of spreading out the 
values. 

Q. When using array resizing, the size M of the table is al-
ways a power of 2. Isn’t that a potential problem, because it 
only uses the least significant bits of hashCode()?

A. Yes, particularly with the default implementations. One 
way to address this problem is to first distribute the key val-
ues using a prime larger than M, as in the following example:

private int hash(Key x) 
{   
   int t = x.hashCode() & 0x7fffffff;  
   if (lgM < 26) t = t % primes[lgM+5];  
   return t % M;  
} 

This code assumes that we maintain an instance variable 
lgM that is equal to lg M (by initializing to the appropri-
ate value, incrementing when doubling, and decrementing 
when halving) and an array primes[] of the largest prime 
less than each power of 2 (see the table at right). The con-
stant 5 is an arbitrary choice—we expect the first % to dis-
tribute the values equally among the values less than the 
prime and the second to map about 25 of those values to 
each value less than M. Note that the point is moot for large 
M.

Q. I’ve forgotten. Why don’t we implement hash(x) by returning x.hashCode() % M?

A. We need a result between 0 and M-1, but in Java, the % function may be negative.

Q. So, why not implement hash(x) by returning Math.abs(x.hashcode()) % M?

Primes for hash table sizes

k �k (2k − �k)

 5     1             31
 6     3             61
 7     1            127
 8     5            251
 9     3            509
10     3           1021
11     9           2039
12     3           4093
13     1           8191
14     3          16381
15    19          32749
16    15          65521
17     1         131071
18     5         262139
19     1         524287
20     3        1048573
21     9        2097143
22     3        4194301
23    15        8388593
24     3       16777213
25    39       33554393
26     5       67108859
27    39      134217689
28    57      268435399
29     3      536870909
30    35     1073741789
31     1     2147483647

primes[k]
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A. Nice try. Unfortunately, Math.abs() returns a negative result for the largest nega-
tive number.  For many typical calculations, this overflow presents no real problem, 
but for hashing it would leave you with a program that is likely to crash after a few bil-
lion inserts, an unsettling possibility. For example, s.hashCode() is 231 for the Java 
String value "polygenelubricants". Finding other strings that hash to this value 
(and to 0) has turned into an amusing algorithm-puzzle pastime. 

Q.  Do Java library hash functions satisfy Assumption J?

A. No. For example, the hashCode() implementation in the String data type is not 
only deterministic but it is specified in the API. 

Q.  Why not use BinarySearchST or RedBlackBST instead of SequentialSearchST in 
Algorithm 3.5?

A. Generally, we set parameters so as to make the number of keys hashing to each value 
small, and elementary symbol tables are generally better for the small tables. In certain 
situations, slight performance gains may be achieved with such hybrid methods, but 
such tuning is best left for experts.

Q.  Is hashing faster than searching in red-black BSTs?

A. It depends on the type of the key, which determines the cost of computing 
hashCode() versus the cost of compareTo(). For typical key types and for Java default 
implementations, these costs are similar, so hashing will be significantly faster, since it 
uses only a constant number of operations. But it is important to remember that this 
question is moot if you need ordered operations, which are not efficiently supported in 
hash tables. See Section 3.5 for further discussion.

Q. Why not let the linear probing table get, say, three-quarters full?

A. No particular reason. You can choose any value of a, using Proposition M to esti-
mate search costs. For a = 3/4, the average cost of search hits is 2.5 and search misses is 
8.5, but if you let a grow to 7/8, the average cost of a search miss is 32.5, perhaps more 
than you want to pay. As a gets close to 1, the estimate in Proposition M becomes in-
valid, but you don’t want your table to get that close to being full.
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ExErcisEs

3.4.1 Insert the keys E A S Y Q U T I O N in that order into an initially empty table 
of M = 5 lists, using separate chaining.  Use the hash function 11 k % M to transform 
the kth letter of the alphabet into a table index.

3.4.2 Develop an alternate implementation of SeparateChainingHashST that directly 
uses the linked-list code from SequentialSearchST.

3.4.3 Modify your implementation of the previous exercise to include an integer field 
for each key-value pair that is set to the number of entries in the table at the time that 
pair is inserted.  Then implement a method that deletes all keys (and associated values)   
for which the field is greater than a given integer k. Note : This extra functionality is use-
ful in implementing the symbol table for a compiler.

3.4.4 Write a program to find values of a and M, with M as small as possible, such that 
the hash function  (a * k) %  M  for transforming the kth letter of the alphabet into a 
table index produces distinct values (no collisions) for the keys S E A R C H X M P L. 
The result is known as a perfect hash function.

3.4.5 Is the following implementation of hashCode() legal?

public int hashCode() 
{  return 17;  } 

If so, describe the effect of using it. If not, explain why.

3.4.6 Suppose that keys are t-bit integers. For a modular hash function with prime M, 
prove that each key bit has the property that there exist two keys differing only in that 
bit that have different hash values.

3.4.7 Consider the idea of implementing modular hashing for integer keys with the 
code  (a * k) %  M , where a is an arbitrary fixed prime.  Does this change mix up the 
bits sufficiently well that you can use nonprime M?

3.4.8 How many empty lists do you expect to see when you insert N keys into a hash 
table with SeparateChainingHashST, for N=10, 102, 103, 104, 105, and 106? Hint : See 
Exercise 2.5.31.

3.4.9 Implement an eager delete() method for SeparateChainingHashST.

3.4.10 Insert the keys E A S Y Q U T I O N in that order into an initially empty table 
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of size M =16 using linear probing. Use the hash function 11 k % M to transform the 
kth letter of the alphabet into a table index. Redo this exercise for M = 10.

3.4.11 Give the contents of a linear-probing hash table that results when you insert the 
keys E A S Y Q U T I O N in that order into an initially empty table of initial size M
= 4 that is expanded with doubling whenever half full. Use the hash function 11 k % M 
to transform the kth letter of the alphabet into a table index.

3.4.12 Suppose that the keys A through G, with the hash values given below, are inserted 
in some order into an initially empty table of size 7 using a linear-probing table (with 
no resizing for this problem).

A   B   C   D   E   F   G

2   0   0   4   4   4   2

key

hash (M = 7)

Which of the following could not possibly result from inserting these keys? 
a.    E   F   G   A   C   B   D
b.    C   E   B   G   F   D   A
c.    B   D   F   A   C   E   G
d.    C   G   B   A   D   E   F
e.    F   G   B   D   A   C   E
f.    G   E   C   A   D   B   F

Give the minimum and the maximum number of probes that could be required to 
build a table of size 7 with these keys, and an insertion order that justifies your answer.

3.4.13 Which of the following scenarios leads to expected linear running time for a 
random search hit in a linear-probing hash table?

a. All keys hash to the same index.
b. All keys hash to different indices.
c. All keys hash to an even-numbered index.
d. All keys hash to different even-numbered indices.

3.4.14 Answer the previous question for search miss, assuming the search key is equally 
likely to hash to each table position.

3.4.15 How many compares could it take, in the worst case, to insert N keys into an 
initially empty table, using linear probing with array resizing?
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3.4.16 Suppose that a linear-probing table of size 106 is half full, with occupied posi-
tions chosen at random. Estimate the probability that all positions with indices divisible 
by 100 are occupied.

3.4.17 Show the result of using the delete() method on page 471 to delete C from the 
table resulting from using LinearProbingHashST with our standard indexing client 
(shown on page 469).

3.4.18 Add a constructor to SeparateChainingHashST that gives the client the ability 
to specify the average number of probes to be tolerated for searches. Use array resizing 
to keep the average list size less than the specified value, and use the technique described 
on page 478 to ensure that the modulus for hash() is prime. 

3.4.19 Implement keys() for SeparateChainingHashST and LinearProbingHashST.

3.4.20 Add a method to LinearProbingHashST that computes the average cost of a 
search hit in the table, assuming that each key in the table is equally likely to be sought. 

3.4.21 Add a method to LinearProbingHashST that computes the average cost of a 
search miss in the table, assuming a random hash function. Note : You do not have to 
compute any hash functions to solve this problem. 

3.4.22 Implement hashCode() for various types: Point2D, Interval, Interval2D,   
and Date. 

3.4.23 Consider modular hashing for string keys with R = 256 and M = 255. Show 
that this is a bad choice because any permutation of letters within a string hashes to the 
same value.

3.4.24 Analyze the space usage of separate chaining, linear probing, and BSTs for 
double keys. Present your results in a table like the one on page 476.

ExErcisEs (continued)
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crEAtivE problEms

3.4.25  Hash cache. Modify Transaction on page 462 to maintain an instance variable 
hash, so that hashCode() can save the hash value the first time it is called for each object 
and does not have to recompute it on subsequent calls. Note : This idea works only for 
immutable types.

3.4.26  Lazy delete for linear probing. Add to LinearProbingHashST a delete() 
method that deletes a key-value pair by setting the value to null (but not removing 
the key) and later removing the pair from the table in resize(). Your primary chal-
lenge is to decide when to call resize(). Note : You should overwrite the null value if 
a subsequent put() operation associates a new value with the key. Make sure that your 
program takes into account the number of such tombstone items, as well as the number 
of empty positions, in making the decision whether to expand or contract the table.

3.4.27  Double probing. Modify SeparateChainingHashST to use a second hash func-
tion and pick the shorter of the two lists. Give a trace of the process of inserting the keys 
E A S Y Q U T I O N in that order into an initially empty table of size M =3 using 
the function 11 k % M (for the kth letter) as the first hash function and the function 
17 k % M (for the kth letter) as the second hash function. Give the average number of 
probes for random search hit and search miss in this table.

3.4.28  Double hashing. Modify LinearProbingHashST to use a second hash function 
to define the probe sequence. Specifically, replace (i + 1) % M (both occurrences) by 
(i + k) % M where k is a nonzero key-dependent integer that is relatively prime to M. 
Note : You may meet the last condition by assuming that M is prime. Give a trace of the 
process of inserting the keys E A S Y Q U T I O N in that order into an initially empty 
table of size M =11, using the hash functions described in the previous exercise. Give 
the average number of probes for random search hit and search miss in this table. 

3.4.29  Deletion. Implement an eager delete() method for the methods described in 
each of the previous two exercises.

3.4.30  Chi-square statistic. Add a method to SeparateChainingHashST to compute 
the  2 statistic for the hash table. With N keys and table size M, this number is defined 
by the equation 

 2
   =   (M/N) ( (f0  N/M)2 + (f1  N/M)2   . . .  (fM  1 N/M)2 )
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where fi is the number of keys with hash value i. This statistic is one way of checking our 
assumption that the hash function produces random values. If so, this statistic, for N > 
cM, should be between  M   M  and M +  M  with probability 1  1/c.   

3.4.31  Cuckoo hashing. Develop a symbol-table implementation that maintains two 
hash tables and two hash functions. Any given key is in one of the tables, but not both. 
When inserting a new key, hash to one of the tables; if the table position is occupied, 
replace that key with the new key and hash the old key into the other table (again kick-
ing out a key that might reside there). If this process cycles, restart. Keep the tables less 
than half full. This method uses a constant number of equality tests in the worst case 
for search (trivial) and amortized constant time for insert.

3.4.32  Hash attack. Find 2N strings, each of length 2N, that have the same hashCode() 
value, supposing that the hashCode() implementation for String is the following:

public int hashCode() 
{   
   int hash = 0; 
   for (int i = 0; i < length(); i ++) 
      hash = (hash * 31) + charAt(i); 
   return hash;  
} 

Strong hint : Aa and BB have the same value. 

3.4.33  Bad hash function. Consider the following hashCode() implementation for 
String, which was used in early versions of Java:

public int hashCode() 
{   
   int hash = 0; 
   int skip = Math.max(1, length()/8); 
   for (int i = 0; i < length(); i += skip) 
      hash = (hash * 37) + charAt(i); 
   return hash;  
} 

Explain why you think the designers chose this implementation and then why you 
think it was abandoned in favor of the one in the previous exercise.

crEAtivE problEms (continued)
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ExpErimENts

3.4.34  Hash cost. Determine empirically the ratio of the time required for hash() 
to the time required for compareTo(), for as many commonly-used types of keys for 
which you can get meaningful results.

3.4.35  Chi-square test. Use your solution from Exercise 3.4.30 to check the assump-
tion that the hash functions for commonly-used key types produce random values.

3.4.36  List length range. Write a program that inserts N random int keys into a table 
of size N / 100 using separate chaining, then finds the length of the shortest and longest 
lists, for N = 10 3, 10 4, 10 5, 10 6.

3.4.37  Hybrid. Run experimental studies to determine the effect of using RedBlackBST 
instead of SequentialSearchST to handle collisions in SeparateChainingHashST. 
This solution carries the advantage of guaranteeing logarithmic performance even for 
a bad hash function and the disadvantage of necessitating maintenance of two different 
symbol-table implementations. What are the practical effects?  

3.4.38  Separate-chaining distribution. Write a program that inserts 10 5 random non-
negative integers less than 10 6 into a table of size 10 5 using separate chaining, and that 
plots the total cost for each 10 3 consecutive insertions. Discuss the extent to which your 
results validate Proposition K.

3.4.39  Linear-probing distribution. Write a program that inserts N/2 random int keys 
into a table of size N using linear probing, then computes the average cost of a search 
miss in the resulting table from the cluster lengths, for N = 10 3, 10 4, 10 5, 10 6. Discuss 
the extent to which your results validate Proposition M.

3.4.40  Plots. Instrument LinearProbingHashST and SeparateChainingHashST to 
produce plots like the ones shown in the text.

3.4.41  Double probing. Run experimental studies to evaluate the effectiveness of dou-
ble probing (see Exercise 3.4.27).

3.4.42  Double hashing. Run experimental studies to evaluate the effectiveness of dou-
ble hashing (see Exercise 3.4.28).

3.4.43  Parking problem. (D. Knuth) Run experimental studies to validate the hypoth-
esis that the number of compares needed to insert M random keys into a linear-probing 
hash table of size M is ~cM 3/2, where c = /2.
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3.5 APPliCAtionS

From the early days of computing, when symbol tables allowed programmers to 
progress from using numeric addresses in machine language to using symbolic names 
in assembly language, to modern applications of the new millennium, when symbolic 
names have meaning across worldwide computer networks, fast search algorithms have 
played and continue to play an essential role in computation. Modern applications for 
symbol tables include organization of scientific data, from searching for markers or 
patterns in genomic data to mapping the universe; organization of knowledge on the 
web, from searching in online commerce to putting libraries online; and implement-
ing the internet infrastructure, from routing packets among machines on the web to 
shared file systems and video streaming. Efficient search algorithms have enabled these 
and countless other important applications. We will consider several representative ex-
amples in this section:

n	 A dictionary client and an indexing client that enable fast and flexible access to 
information in comma-separated-value files (and similar formats), which are 
widely used to store data on the web

n	 An indexing client for building an inverted index of a set of files
n	 A sparse-matrix data type that uses a symbol table to address problem sizes far 

beyond what is possible with the standard implementation
In Chapter 6, we consider a symbol table that is appropriate for tables such as data-
bases and file systems that contain a vast number of keys, as large as can be reasonably 
contemplated. 

Symbol tables also play a critical role in algorithms that we consider throughout the 
rest of the book. For example, we use symbol tables to represent graphs (Chapter 4) 
and to process strings (Chapter 5).

As we have seen throughout this chapter, developing symbol-table implementations 
that can guarantee fast performance for all operations is certainly a challenging task. 
On the other hand, the implementations that we have considered are well-studied, 
widely used, and available in many software environments (including Java libraries). 
From this point forward, you certainly should consider the symbol-table abstraction to 
be a key component in your programmer’s toolbox.
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Which symbol-table implementation should I use? The table at the bottom 
of this page summarizes the performance characteristics of the algorithms that we have 
considered in propositions and properties in this chapter (with the exception of the 
worst-case results for hashing, which are from the research literature and unlikely to 
be experienced in practice). It is clear from the table that, for typical applications, your 
decision comes down to a choice between hash tables and binary search trees.

The advantages of hashing over BST implementations are that the code is simpler 
and search times are optimal (constant), if the keys are of a standard type or are suf-
ficiently simple that we can be confident of developing an efficient hash function for 
them that (approximately) satisfies the uniform hashing assumption. The advantages 
of BSTs over hashing are that they are based on a simpler abstract interface (no hash 
function need be designed); red-black BSTs can provide guaranteed worst-case perfor-
mance; and they support a wider range of operations (such as rank, select, sort, and 
range search).  As a rule of thumb, most programmers will use hashing except when 
one or more of these factors is important, when red-black BSTs are called for. In Chap-
ter 5, we will study one exception to this rule of thumb: when keys are long strings, 
we can build data structures that are even more flexible than red-black BSTs and even 
faster than hashing.

algorithm 
(data structure)

worst-case cost 
(after n inserts) 

average-case cost 
(after n random inserts) key 

interface
memory 
(bytes)

search insert search hit insert

sequential search 
(unordered list) N N N/2 N equals() 48 N

binary search 
(ordered array) lg N N lg N N/2 compareTo() 16 N

binary tree search 
(BST) N N 1.39 lg N 1.39 lg N compareTo() 64 N

2-3 tree search 
(red-black BST) 2 lg N 2 lg N 1.00 lg N 1.00 lg N compareTo() 64 N

separate chaining†

(array of lists) < lg N < lg N N / (2M ) N / M
equals() 

hashCode()
48 N + 32 M

linear probing†

(parallel arrays) c lg N c lg N < 1.50 < 2.50
equals() 

hashCode()
between

32 N and 128 N

† under uniform hashing assumption

asymptotic cost summary for symbol-table implementations
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Our symbol-table implementations are useful for a wide range of applications, but 
our algorithms are easily adapted to support several other options that are widely used 
and worth considering. 

Primitive types  Suppose that we have a symbol table with integer keys and associ-
ated floating-point numbers.  When we use our standard setup, the keys and values 
are stored as Integer and Double wrapper-type values, so we need two extra memory 
references to access each key-value pair.  These references may be no problem in an ap-
plication that involves thousands of searches on thousands of keys but may represent 
excessive cost in an application that involves billions of searches on millions of keys. Us-
ing a primitive type instead of Key would save one reference per key-value pair. When 
the associated value is also primitive, we can eliminate another reference. The situation 
is diagrammed at right for separate chaining; the 
same tradeoffs hold for other implementations. For 
performance-critical applications, it is worthwhile 
and not difficult to develop versions of our imple-
mentations along these lines (see Exercise 3.5.4).

Duplicate keys  The possibility of duplicate keys 
sometimes needs special consideration in symbol-
table implementations. In many applications, it is 
desirable to associate multiple values with the same 
key. For example, in a transaction-processing sys-
tem, numerous transactions may have the same 
customer key value. Our convention to disallow 
duplicate keys amounts to leaving duplicate-key 
management to the client. We will consider an ex-
ample of such a client later in this section. In many 
of our implementations, we could consider the al-
ternative of leaving key-value pairs with duplicate 
keys in the primary search data structure and to return any value with the given key for 
a search. We might also add methods to return all values with the given key. Our BST 
and hashing implementations are not difficult to adapt to keep duplicate keys within 
the data structure; doing so for red-black BSTs is just slightly more challenging (see Ex-
ercise 3.5.9 and Exercise 3.5.10). Such implementations are common in the literature 
(including earlier editions of this book).

Memory usage for separate chaining

data is stored in 
Key and Value objects

data is stored in 
linked-list nodes

standard implementation

primitive-type implementation
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Java libraries  Java’s java.util.TreeMap and java.util.HashMap libraries are 
symbol-table implementations based on red-black BSTs and hashing with separate 
chaining respectively. TreeMap does not directly support rank(), select(), and 
other operations in our ordered symbol-table API, but it does support operations 
that enable efficient implementation of these. HashMap is roughly equivalent to our 
SeparateChaingingHashST implementation—it uses array resizing to enforce a load 
factor of about 75 percent. Java’s java.util.IdentityHashMap library is a symbol-ta-
ble implementation that uses reference-equality in place of object-equality; it is roughly 
equivalent to our LinearProbingHashST with a load factor of 2/3.

To be consistent and specific, we use in this book the symbol-table implementation 
based on red-black BSTs from Section 3.3 or the one based on linear-probing hashing 
from Section 3.4. For economy and to emphasize client independence from specific 
implementations, we use the name ST as shorthand for RedBlackBST for ordered sym-
bol tables in client code and  the name HashST as shorthand for LinearProbingHashST 
when order is not important and hash functions are available. We adopt these conven-
tions with full knowledge that specific applications might have demands that could call 
for some variation or extension of one of these algorithms and data structures. Which 
symbol table should you use? Whatever you decide, test your choice to be sure that it is 
delivering the performance that you expect. 

Set APIs Some symbol-table clients do not need the values, just the ability to insert 
keys into a table and to test whether a key is in the table. Because we disallow duplicate 
keys, these operations correspond to the following API where we are just interested in 
the set of keys in the table, not any associated values:

public class SET<Key>

SET() create an empty set

void add(Key key) add key into the set

void delete(Key key) remove key from the set

boolean contains(Key key) is key in the set?

boolean isEmpty() is the set empty?

int size() number of keys in the set

String toString() string representation of the set

apI for a basic set data type
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You can turn any symbol-table implementation into a SET implementation by ignoring 
values or by using a simple wrapper class (see Exercises 3.5.1 through 3.5.3). 

Extending SET to include union, intersection, complement, and other common math-
ematical set operations requires a more sophisticated API (for example, the comple-
ment operation requires some mechanism for specifying a universe of all possible keys) 
and provides a number of interesting algorithmic challenges, as discussed in Exercise 
3.5.17.  

As with ST, we have unordered and ordered versions of SET. If keys are Comparable, 
we can include min(), max(), floor(), ceiling(), deleteMin(), deleteMax(), 
rank(), select(), and the two-argument versions of size() and get() to define a 
full API for ordered keys. To match our ST conventions, we use the name SET in client 
code for ordered sets and the name HashSET when order is not important.

To illustrate uses of SET, we consider filter clients that read a sequence of strings 
from standard input and write some of them to standard output. Such clients have their 
origin in early systems where main memory was far too small to hold all the data, and 
they are still relevant today, when we write programs that take their input from the web. 
As example input, we use tinyTale.txt (see page 371). For readability, we preserve
newlines from the input to the output in examples, even though the code does not do 
so.

Dedup  The prototypical filter 
example is a SET or HashSET cli-
ent that removes duplicates in 
the input stream. It is custom-
ary to refer to this operation as 
dedup. We maintain a set of the 
string keys seen so far. If the next 
key is in the set, ignore it; if it is 
not in the set, add it to the set and 
print it. The keys appear on stan-
dard output in the order they 
appear on standard input, with 
duplicates removed. This process 
takes space proportional to the 
number of distinct keys in the 
input stream (which is typically 
far smaller than the total number 
of keys). 

public class DeDup 
{ 
   public static void main(String[] args) 
   { 
      HashSET<String> set; 
      set = new HashSET<String>(); 
      while (!StdIn.isEmpty()) 
      { 
         String key = StdIn.readString(); 
         if (!set.contains(key)) 
         { 
            set.add(key); 
            StdOut.println(key); 
         } 
      } 
   } 
}

Dedup filter

% java DeDup < tinyTale.txt 
it was the best of times worst 
age wisdom foolishness 
epoch belief incredulity 
season light darkness 
spring hope winter despair
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Whitelist and blacklist  Another classic filter uses keys in a separate file to decide 
which keys from the input stream are passed to the output stream. This general process 
has many natural applications. The simplest example is a whitelist, where any key that 
is in the file is identified as “good.” The client might choose to pass through to standard 
output any key that is not in the whitelist and to ignore any key that is in the whitelist 
(as in the example considered in our first program in Chapter 1); another client might 
choose to pass through to standard output any key that is in the whitelist and to ig-
nore any key that is not in the whitelist (as 
shown in the HashSET client WhiteFilter 
at right). For example, your email applica-
tion might use such a filter to allow you to 
specify the addresses of your friends and 
to direct it to consider emails from any-
one else as spam. We build a HashSET of 
the keys in the specified list, then read the 
keys from standard input. If the next key 
is in the set, print it; if it is not in the set, 
ignore it. A blacklist is the opposite, where 
any key that is in the file is identified as 
“bad.” Again, there are two natural filters 
for clients using a blacklist. In our email 
example, you might specify the addresses 
of known spammers and direct the email 
application to let through all mail not 
from one of those addresses. We can im-
plement a HashSET client BlackFilter 
that implements this filter by negating the 
filter test in WhiteFilter. Typical practi-
cal situations such as a credit card com-
pany using a blacklist to filter out stolen 
card numbers or an internet router using a 
whitelist to implement a firewall are likely 
to involve huge lists, unbounded input 
streams, and strict response requirements. 
The sorts of symbol-table implementa-
tions that we have considered enable such 
challenges to easily be met.

public class WhiteFilter 
{ 
   public static void main(String[] args) 
   { 
      HashSET<String> set; 
      set = new HashSET<String>(); 
      In in = new In(args[0]); 
      while (!in.isEmpty()) 
         set.add(in.readString()); 
      while (!StdIn.isEmpty()) 
      { 
         String word = StdIn.readString(); 
         if (set.contains(word)) 
            StdOut.println(word); 
      } 
   } 
}

Whitelist filter

% more list.txt 
was it the of 

% java WhiteFilter list.txt < tinyTale.txt 
it was the of it was the of 
it was the of it was the of 
it was the of it was the of 
it was the of it was the of 
it was the of it was the of 

% java BlackFilter list.txt < tinyTale.txt 
best times worst times 
age wisdom age foolishness 
epoch belief epoch incredulity 
season light season darkness 
spring hope winter despair
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Dictionary clients The most basic kind of symbol-table client builds a symbol 
table with successive put operations in order to support get requests. Many applications 
also take advantage of the idea that a symbol table is a dynamic dictionary, where it is 
easy to look up information and to update the information in the table. The following 
list of familiar examples illustrates the utility of this approach:

n	 Phone book. When keys are people’s names and values are their phone num-
bers, a symbol table models a phone book. A very significant difference from 
a printed phone book is that we can add new names or change existing phone 
numbers. We could also use the phone number as the key and the name as the 
value—if you have never done so, try typing your phone number (with area 
code) into the search field in your browser. 

n	 Dictionary. Associating a word with its definition is a familiar concept that 
gives us the name “dictionary.” For centuries people kept printed dictionaries in 
their homes and offices in order to check the definitions and spellings (values) 
of words (keys). Now, because of good symbol-table implementations, people 
expect built-in spell checkers and immediate access to word definitions on their 
computers.

n	 Account information. People who own stock now regularly check the current 
price on the web. Several services on the web associate a ticker symbol (key) with 
the current price (value), usually along with a great deal of other information. 
Commercial applications of this sort abound, including financial institutions 
associating account information with a name or account number or educational 
institutions associating grades with a student name or identification number.

n	 Genomics. Symbols play a central role in modern genomics. The simplest ex-
ample is the use of the letters A, C, T, and G to represent the nucleotides found in 
the DNA of living organisms. The next simplest is the correspondence between 
codons (nucleotide triplets) and amino acids (TTA corresponds to leucine, TCT 
to serine, and so forth), then the correspondence between sequences of amino 
acids and proteins, and so forth. Researchers in genomics routinely use various 
types of symbol tables to organize this knowledge.

n	 Experimental data. From astrophysics to zoology, modern scientists are awash in 
experimental data, and organizing and efficiently accessing this data are vital to 
understanding what it means. Symbol tables are a critical starting point, and ad-
vanced data structures and algorithms that are based on symbol tables are now 
an important part of scientific research.

n	 Compilers. One of the earliest uses of symbol tables was to organize information 
for programming. At first, programs were simply sequences of numbers, but 
programmers very quickly found that using symbolic names for operations and 
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memory locations (variable names) was far more convenient. Associating the 
names with the numbers requires a symbol table. As the size of programs grew, 
the cost of the symbol-table operations became a bottleneck in program devel-
opment time, which led to the development of data structures and algorithms 
like the ones we consider in this chapter.

n	 File systems. We use symbol tables regularly to 
organize data on computer systems. Perhaps the 
most prominent example is the file system, where 
we associate a file name (key) with the location 
of its contents (value). Your music player uses the 
same system to associate song titles (keys) with 
the location of the music itself (value).

n	 Internet DNS. The domain name system (DNS) 
that is the basis for organizing information on 
the internet associates URLs (keys) that humans 
understand (such as www.princeton.edu or 
www.wikipedia.org) with IP addresses (values) 
that computer network routers understand (such 
as 208.216.181.15 or 207.142.131.206). This 
system is the next-generation “phone book.” 
Thus, humans can use names that are easy to re-
member and machines can efficiently process the 
numbers. The number of symbol-table lookups 
done each second for this purpose on internet 
routers around the world is huge, so perfor-
mance is of obvious importance. Millions of new computers and other devices 
are put onto the internet each year, so these symbol tables on internet routers 
need to be dynamic.

Despite its scope, this list is still just a representative sample, intended to give you a fla-
vor of the scope of applicability of the symbol-table abstraction. Whenever you specify 
something by name, there is a symbol table at work. Your computer’s file system or the 
web might do the work for you, but there is still a symbol table there somewhere.

As a specific example, we consider a symbol-table client that you can use to look up 
information that is kept in a table on a file or a web page using the comma-separated-
value (.csv) file format. This simple format achieves the (admittedly modest) goal of 
keeping tabular data in a form that anyone can read (and is likely to be able to read in 
the future) without needing to use a particular application: the data is in text form, 
one row per line, with entries separated by commas.  You can find on the booksite 

domain key value

phone 
book name phone 

number

dictionary word definition

account account 
number balance

genomics codon amino acid

data data/time results

compiler variable 
name

memory 
location

file share song name machine

internet website IP address

typical dictionary applications
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numerous .csv files that are related to vari-
ous applications that we have described, 
including amino.csv (codon-to-amino-
acid encodings), DJIA.csv (opening price, 
volume, and closing price of the Dow Jones 
Industrial Average, for every day in its his-
tory), ip.csv (a selection of entries from 
the DNS database), and upc.csv (the Uni-
form Product Code bar codes that are wide-
ly used to identify consumer products). 
Spreadsheet and other data-processing 
applications programs can read and write 
.csv files, and our example illustrates that 
you can also write a Java program to process 
the data any way that you would like.

LookupCSV (on the facing page) builds a 
set of key-value pairs from a file of comma-
separated values as specified on the com-
mand line and then prints out values corre-
sponding to keys read from standard input. 
The command-line arguments are the file 
name and two integers, one specifying the 
field to serve as the key and the other speci-
fying the field to serve as the value. 

The purpose of this example is to il-
lustrate the utility and flexibility of the 
symbol-table abstraction. What website 
has IP address 128.112.136.35? (www.
cs.princeton.edu) What amino acid  cor-
responds to the codon TCC ? (Serine) What 
was the DJIA on October 29, 1929? (230.07) 
What product has UPC 0002100001086? 
(Kraft Parmesan) You can easily look up 
the answers to questions like these with 
LookupCSV and the appropriate .csv files.

Performance is not much of an issue 
when handling interactive queries (since 
your computer can look through millions 

% more amino.csv 
TTT,Phe,F,Phenylalanine 
TTC,Phe,F,Phenylalanine 
TTA,Leu,L,Leucine 
TTG,Leu,L,Leucine 
TCT,Ser,S,Serine 
TCC,Ser,S,Serine 
... 
GAA,Gly,G,Glutamic Acid 
GAG,Gly,G,Glutamic Acid 
GGT,Gly,G,Glycine 
GGC,Gly,G,Glycine 
GGA,Gly,G,Glycine 
GGG,Gly,G,Glycine 

% more DJIA.csv 
... 
20-Oct-87,1738.74,608099968,1841.01 
19-Oct-87,2164.16,604300032,1738.74 
16-Oct-87,2355.09,338500000,2246.73 
15-Oct-87,2412.70,263200000,2355.09 
... 
30-Oct-29,230.98,10730000,258.47 
29-Oct-29,252.38,16410000,230.07 
28-Oct-29,295.18,9210000,260.64 
25-Oct-29,299.47,5920000,301.22 
... 

% more ip.csv 
... 
www.ebay.com,66.135.192.87 
www.princeton.edu,128.112.128.15 
www.cs.princeton.edu,128.112.136.35 
www.harvard.edu,128.103.60.24 
www.yale.edu,130.132.51.8 
www.cnn.com,64.236.16.20 
www.google.com,216.239.41.99 
www.nytimes.com,199.239.136.200 
www.apple.com,17.112.152.32 
www.slashdot.org,66.35.250.151 
www.espn.com,199.181.135.201 
www.weather.com,63.111.66.11 
www.yahoo.com,216.109.118.65 
... 

% more UPC.csv 
... 
0002058102040,,"1 1/4"" STANDARD STORM DOOR" 
0002058102057,,"1 1/4"" STANDARD STORM DOOR" 
0002058102125,,"DELUXE STORM DOOR UNIT" 
0002082012728,"100/ per box","12 gauge shells" 
0002083110812,"Classical CD","'Bits and Pieces'" 
002083142882,CD,"Garth Brooks - Ropin' The Wind" 
0002094000003,LB,"PATE PARISIEN" 
0002098000009,LB,"PATE TRUFFLE COGNAC-M&H 8Z RW" 
0002100001086,"16 oz","Kraft Parmesan" 
0002100002090,"15 pieces","Wrigley's Gum" 
0002100002434,"One pint","Trader Joe's milk" 
...

typical comma-separated-value (.csv) files
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Dictionary lookup

public class LookupCSV 
{ 
   public static void main(String[] args) 
   { 
      In in = new In(args[0]); 
      int keyField = Integer.parseInt(args[1]); 
      int valField = Integer.parseInt(args[2]);

      ST<String, String> st = new ST<String, String>();

      while (in.hasNextLine()) 
      { 
         String line = in.readLine(); 
         String[] tokens = line.split(","); 
         String key = tokens[keyField]; 
         String val = tokens[valField]; 
         st.put(key, val); 
      }

      while (!StdIn.isEmpty()) 
      { 
         String query = StdIn.readString(); 
         if (st.contains(query)) 
            StdOut.println(st.get(query)); 
      } 
   } 
}

This data-driven symbol-table client reads key-value pairs from a file, then prints the values corre-
sponding to the keys found on standard input. Both keys and values are strings. The fields to serve as 
the key and value are taken as command-line arguments.

% java LookupCSV ip.csv 1 0 
128.112.136.35 
www.cs.princeton.edu

% java LookupCSV DJIA.csv 0 3 
29-Oct-29 
230.07

% java LookupCSV UPC.csv 0 2 
0002100001086 
Kraft Parmesan

% java LookupCSV amino.csv 0 3 
TCC 
Serine
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of things in the time it takes to type a query), so fast implementations of ST are not no-
ticeable when you use LookupCSV. However, when a program is doing the lookups (and 
a huge number of them), performance matters. For example, an internet router might 
need to look up millions of IP addresses per second. In this book, we have already seen 
the need for good performance with FrequencyCounter, and we will see several other 
examples in this section. 

Examples of similar but more sophisticated test clients for .csv files are described 
in the exercises. For instance, we could make the dictionary dynamic by also allowing 
standard-input commands to change the value associated with a key, or we could allow 
range searching, or we could build multiple dictionaries for the same file.

Indexing clients Dictionaries are char-
acterized by the idea that there is one value 
associated with each key, so the direct use of 
our ST data type, which is based on the asso-
ciative-array abstraction that assigns one value 
to each key, is appropriate. Each account num-
ber uniquely identifies a customer, each UPC 
uniquely identifies a product, and so forth. In 
general, of course, there may be multiple val-
ues associated with a given key. For example, in 
our amino.csv example, each codon identifies 
one amino acid, but each amino acid is asso-
ciated with a list of codons, as in the example 
aminoI.csv at right, where each line contains 
an amino acid and the list of codons associated 
with it. We use the term index to describe sym-
bol tables that associate multiple values with 
each key. Here are some more examples: 

n	 Commercial transactions. One way for 
a company that maintains customer 
accounts to keep track of a day’s transactions is to keep an index of the day’s 
transactions. The key is the account number; the value is the list of occurrences 
of that account number in the transaction list.

n	 Web search. When you type a keyword and get a list of websites containing that 
keyword, you are using an index created by your web search engine. There is one 
value (the set of pages) associated with each key (the query), although the reality 
is a bit more complicated because we often specify multiple keys.

A small index �le (20 lines)

Alanine,AAT,AAC,GCT,GCC,GCA,GCG
Arginine,CGT,CGC,CGA,CGG,AGA,AGG
Aspartic Acid,GAT,GAC
Cysteine,TGT,TGC
Glutamic Acid,GAA,GAG
Glutamine,CAA,CAG
Glycine,GGT,GGC,GGA,GGG
Histidine,CAT,CAC
Isoleucine,ATT,ATC,ATA
Leucine,TTA,TTG,CTT,CTC,CTA,CTG
Lysine,AAA,AAG
Methionine,ATG
Phenylalanine,TTT,TTC
Proline,CCT,CCC,CCA,CCG
Serine,TCT,TCA,TCG,AGT,AGC
Stop,TAA,TAG,TGA
Threonine,ACT,ACC,ACA,ACG
Tyrosine,TAT,TAC
Tryptophan,TGG
Valine,GTT,GTC,GTA,GTG

  

aminoI.csv

valueskey

"," separator
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n	 Movies and performers. The file movies.txt on the booksite (excerpted below) 
is taken from the Internet Movie Database (IMDB). Each line has a movie name 
(the key), followed by a list of performers in that movie (the value), separated by 
slashes.

We can easily build an index by putting the values to be associated with each key into a 
single data structure (a Queue, say) and then associating that key with that data struc-
ture as value. Extending LookupCSV along these lines is straightforward, but we leave 
that as an exercise (see Exercise 3.5.12) 
and consider instead LookupIndex on 
page 499, which uses a symbol table to 
build an index from files like aminoI.txt 
and movies.txt (where the separator 
character need not be a comma, as in a 
.csv file, but can be specified on the com-
mand line). After building the index, 
LookupIndex then takes key queries and 
prints the values associated with each key. 
More interesting, LookupIndex also builds 
an inverted index associated with each file, where  values and keys switch roles. In the 
amino acid example, this gives the same functionality as Lookup (find the amino acid 
associated with a given codon); in the movie-performer example it adds the ability to 
find the movies associated with any given performer, which is implicit in the data but 
would be difficult to produce without a symbol table. Study this example carefully, as it 
provides good insight into the essential nature of symbol tables.

Small portion of a large index �le (250,000+ lines)

...
Tin Men (1987)/DeBoy, David/Blumenfeld, Alan/...
Tirez sur le pianiste (1960)/Heymann, Claude/...
Titanic (1997)/Mazin, Stan/...DiCaprio, Leonardo/...
Titus (1999)/Weisskopf, Hermann/Rhys, Matthew/...
To Be or Not to Be (1942)/Verebes, Ernö (I)/...
To Be or Not to Be (1983)/.../Brooks, Mel (I)/...
To Catch a Thief (1955)/París, Manuel/...
To Die For (1995)/Smith, Kurtwood/.../Kidman, Nicole/...
...
  

movies.txt

valueskey

"/" separator

domain key value

genomics amino acid list of codons

commercial account number list of transactions

web search search key list of web pages

IMDB movie list of performers

typical indexing applications
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Inverted index  The term inverted index is normally applied to a situation where values 
are used to locate keys. We have a large amount of data and want to know where certain 
keys of interest occur. This application is another prototypical example of a symbol-
table client that uses an intermixed sequence of calls to get() and put(). Again, we as-
sociate each key with a SET of locations, where the occurrences of the key can be found. 
The nature and use of the location depend on the application: in a book, a location 
might be a page number; in a program, a location might be a line number; in genomics, 
a location might be a position in a genetic sequence; and so forth: 

n	 Internet Movie DataBase (IMDB). In the example just considered, the input is 
an index that associates each movie with a list of performers. The inverted index 
associates each performer with a list of movies.

n	 Book index. Every textbook has an index where you look up a term and get 
the page numbers containing that term. While creating a good index generally 
involves work by the book author to eliminate common and irrelevant words, 
a document preparation 
system will certainly use a 
symbol table to help auto-
mate the process. An interest-
ing special case is known as a 
concordance, which associates 
each word in a text with the 
set of positions in the text 
where that word occurs (see 
Exercise 3.5.20).

n	 Compiler. In a large program 
that uses a large number of symbols, it is useful to know where each name is 
used. Historically, an explicit printed symbol table was one of the most impor-
tant tools used by programmers to keep track of where symbols are used in their 
programs. In modern systems, symbol tables are the basis of software tools that 
programmers use to manage names.

n	 File search. Modern operating systems provide you with the ability to type a term 
and to learn the names of files containing that term. The key is the term; the 
value is the set of files containing that term.

n	 Genomics. In a typical (if oversimplified) scenario in genomics research, a 
scientist wants to know the positions of a given genetic sequence in an existing 
genome or set of genomes. Existence or proximity of certain sequences may be 
of scientific significance. The starting point for such research is an index like a 
concordance, but modified to take into account the fact that genomes are not 
separated into words (see Exercise 3.5.15).

domain key value

IMDB performer set of movies

book term set of pages

compiler identifier set of places used

file search search term set of files

genomics subsequence set of locations

typical inverted indices
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index (and inverted index) lookup

public class LookupIndex 
{ 
   public static void main(String[] args) 
   { 
      In in = new In(args[0]);   // index database 
      String sp = args[1];       // separator

      ST<String, Queue<String>> st = new ST<String, Queue<String>>(); 
      ST<String, Queue<String>> ts = new ST<String, Queue<String>>();

      while (in.hasNextLine()) 
      { 
         String[] a = in.readLine().split(sp); 
         String key = a[0]; 
         for (int i = 1; i < a.length; i++) 
         { 
            String val = a[i]; 
            if (!st.contains(key)) st.put(key, new Queue<String>()); 
            if (!ts.contains(val)) ts.put(val, new Queue<String>()); 
            st.get(key).enqueue(val); 
            ts.get(val).enqueue(key); 
         } 
      }

      while (!StdIn.isEmpty()) 
      { 
         String query = StdIn.readLine(); 
         if (st.contains(query)) 
           for (String s : st.get(query)) 
              StdOut.println("  " + s);

         if (ts.contains(query)) 
           for (String s : ts.get(query)) 
              StdOut.println("  " + s); 
     } 
   } 
}

This data-driven symbol-table client reads key-value pairs 
from a file, then prints the values corresponding to the keys 
found on standard input. Keys are strings; values are lists 
of strings. The separating delimiter is taken as a command-
line argument.

% java LookupIndex aminoI.csv "," 
Serine 
  TCT 
  TCA 
  TCG 
  AGT 
  AGC 
TCG 
  Serine

% java LookupIndex movies.txt "/" 
Bacon, Kevin 
  Animal House (1978) 
  Apollo 13 (1995) 
  Beauty Shop (2005) 
  Diner (1982) 
  ... 
Tin Men (1987) 
  DeBoy, David 
  Blumenfeld, Alan 
  ...
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FileIndex (on the facing page) takes file names from the command line and uses a 
symbol table to build an inverted index associating every word in any of the files with 
a SET of file names where the word can be found, then takes keyword queries from 
standard input, and produces its associated list of files. This process is similar to that 
used by familiar software tools for searching the web or for searching for information 
on your computer; you type a keyword to get a list of places where that keyword occurs. 
Developers of such tools typically embellish the process by paying careful attention to

n	 The form of the query
n	 The set of files/pages that are indexed
n	 The order in which files are listed in the response

For example, you are certainly used to typing queries that contain multiple keywords   
to a web search engine (which is based on indexing a large fraction of the pages on the 
web) that provides answers in order of relevance or importance (to you or to an adver-
tiser). The exercises at the end of this section address some of these embellishments. We 
will consider various algorithmic issues related to web search later, but the symbol table 
is certainly at the heart of the process.

As with LookupIndex, you are certainly encouraged to download FileIndex from 
the booksite and use it to index some text files on your computer or some websites of 
interest, to gain further appreciation for the utility of symbol tables. If you do so, you 
will find that it can build large indices for huge files with little delay, because each put
operation and get request is taken care of immediately. Providing this immediate re-
sponse for huge dynamic tables is one of the classic triumphs of algorithmic technology. 
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File indexing

import java.io.File;

public class FileIndex 
{ 
   public static void main(String[] args) 
   { 
      ST<String, SET<File>> st = new ST<String, SET<File>>();

      for (String filename : args) 
      { 
         File file = new File(filename); 
         In in = new In(file); 
         while (!in.isEmpty()) 
         { 
            String word = in.readString(); 
            if (!st.contains(word)) st.put(word, new SET<File>()); 
            SET<File> set = st.get(word); 
            set.add(file); 
         } 
      }

      while (!StdIn.isEmpty()) 
      { 
         String query = StdIn.readString(); 
         if (st.contains(query)) 
             for (File file : st.get(query)) 
               StdOut.println("  " + file.getName()); 
      } 
    } 
}

This symbol-table client indexes a set of files. We search for each word in each file in a symbol table, 
maintaining a SET of file names that contain the word. Names for In can also refer to web pages, so 
this code can also be used to build an inverted index of web pages.

% more ex1.txt 
it was the best of times

% more ex2.txt 
it was the worst of times

% more ex3.txt 
it was the age of wisdom

% more ex4.txt 
it was the age of foolishness

% java FileIndex ex*.txt 
age 
  ex3.txt 
  ex4.txt 
best 
  ex1.txt 
was 
  ex1.txt 
  ex2.txt 
  ex3.txt 
  ex4.txt
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Sparse vectors Our next example illustrates the importance of symbol tables in sci-
entific and mathematical calculations. We describe a fundamental and familiar calcula-
tion that becomes a bottleneck in typical practical applications, then show how using a 
symbol table can remove the bottleneck and enable solution of vastly larger problems. 
Indeed, this particular calculation was at the core of the PageRank algorithm that was 
developed by S. Brin and L. Page and led to the emergence of Google in the early 2000s 

(and is a well-known mathematical abstraction 
that is useful in many other contexts).

The basic calculation that we consider is ma-
trix-vector multiplication : given a matrix and a 
vector, compute a result vector whose i th entry 
is the dot product of the given vector and the i th 
row of the matrix. For simplicity, we consider the 
case when the matrix is square with N rows and 
N columns and the vectors are of size N. This 
operation is elementary to code in Java, requir-
ing time proportional to N 2, for the N multipli-
cations to compute each of the N entries in the 

result vector, which also matches the space proportional to N 2 that is required to store 
the matrix.

In practice, it is very often the case that N is huge. For example, in the Google appli-
cation cited above, N is the number of pages on the web. At the time PageRank was de-
veloped, that was in the tens or hundreds of billions and it has skyrocketed since, so the 
value of N 2 would be far more than 10 20. No one can afford that much time or space, so 
a better algorithm is needed.

Fortunately, it is also often the 
case that the matrix is sparse: a huge 
number of its entries are 0. Indeed, 
for the Google application, the av-
erage number of nonzero entries 
per row is a small constant: virtual-
ly all web pages have links to only a 
few others (not all the pages on the 
web). Accordingly, we can represent 
the matrix as an array of sparse vec-
tors, using a SparseVector imple-
mentation like the HashST client on 
the facing page. Instead of using the 

  0 .90   0   0   0

  0   0 .36 .36 .18

  0   0   0 .90   0

.90   0   0   0   0

.47   0 .47   0   0

.05

.04

.36

.37

.19

a[][] x[] b[]

.036

.297

.333

.045

.1927

=

Matrix-vector multiplication

... 
double[][] a = new double[N][N]; 
double[] x = new double[N]; 
double[] b = new double[N]; 
... 
// Initialize a[][] and x[]. 
... 
for (int i = 0; i < N; i++) 
{ 
   sum = 0.0; 
   for (int j = 0; j < N; j++) 
      sum += a[i][j]*x[j]; 
   b[i] = sum; 
}

Standard implementation of matrix-vector multiplication
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Sparse vector with dot product

public class SparseVector 
{ 
   private HashST<Integer, Double> st;

   public SparseVector() 
    {  st = new HashST<Integer, Double>();  }

   public int size() 
   {  return st.size();  }

   public void put(int i, double x) 
    {  st.put(i, x);  }

   public double get(int i) 
   { 
      if (!st.contains(i)) return 0.0; 
      else return st.get(i); 
   }

   public double dot(double[] that) 
   { 
       double sum = 0.0; 
       for (int i : st.keys()) 
           sum += that[i]*this.get(i); 
       return sum; 
   }

}

This symbol-table client is a bare-bones sparse vector implementation that illustrates an efficient 
dot product for sparse vectors. We multiply each entry by its counterpart in the other operand and 
add the result to a running sum. The number of multiplications required is equal to the number of 
nonzero entries in the sparse vector.
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code a[i][j] to refer to the element in row i and column j, we use a[i].put(j, val) 
to set a value in the matrix and a[i].get(j) to retrieve a value. As you can see from the 
code below, matrix-vector multiplication using this class is even simpler than with the 
array representation (and it more clearly describes the computation). More important, 
it only requires time proportional to N plus the number of nonzero elements in the 
matrix. 

For small matrices or matrices that are not sparse, the overhead for maintaining 
symbol tables can be substantial, but it is worth your while to be sure to understand 
the ramifications of using symbol tables for huge sparse matrices. To fix ideas, consider 
a huge application (like the one faced by Brin and 
Page) where N is 10 billion or 100 billion, but the 
average number of nonzero elements per row is 
less than 10 . For such an application, using sym-
bol tables speeds up matrix-vector multiplication by 
a factor of a billion or more. The elementary na-
ture of this application should not detract from 
its importance: programmers who do not take 
advantage of the potential to save time and space 
in this way severely limit their potential to solve 
practical problems, while programmers who do 

a
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2

3

4

0     1     2     3     4  

0     1     2     3     4  

0     1     2     3     4  

0     1     2     3     4  

0     1     2     3     4  

a

0

1

2

3

4

array of double[]objects array of SparseVector objects

st

0.0 .90 0.0 0.0 0.0

0.0 0.0 .36 .36 .18

0.0 0.0 0.0 .90 0.0

.90 0.0 0.0 0.0 0.0

.45 0.0 .45 0.0 0.0
.452

.363 .184.362

st
.903

st
.900

st
.450

st
.901

independent
symbol-table

objects

key value

a[4][2]

Sparse matrix representations

.. 
SparseVector[] a; 
a = new SparseVector[N]; 
double[] x = new double[N]; 
double[] b = new double[N]; 
... 
// Initialize a[] and x[]. 
... 
for (int i = 0; i < N; i++) 
   b[i] = a[i].dot(x);

Sparse matrix-vector multiplication
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take factor-of-a-billion speedups when they are available are likely to be able to address 
problems that could not otherwise be contemplated.

Building the matrix for the Google application is a graph-processing application 
(and a symbol-table client!), albeit for a huge sparse matrix. Given the matrix, the Page-
Rank calculation is nothing more than doing a matrix-vector multiplication, replacing 
the source vector with the result vector, and iterating the process until it converges (as 
guaranteed by fundamental theorems in probability theory). Thus, the use of a class 
like SparseVector can improve the time and space usage for this application by a fac-
tor of 10 billion or 100 billion or more. 

Similar savings are possible in many scientific calculations, so sparse vectors and ma-
trices are widely used and typically incorporated into specialized systems for scientific 
computing. When working with huge vectors and matrices, it is wise to run simple per-
formance tests to be sure that the kinds of performance gains that we have illustrated 
here are not being missed. On the other hand, array processing for primitive types of 
data is built into most programming languages, so using arrays for vectors that are 
not sparse, as we did in this example, may offer further speedups. Developing a good 
understanding of the underlying costs and making the appropriate implementation 
decisions is certainly worthwhile for such applications.

Symbol tables are a primary contribution of algorithmic technology to the 
development of our modern computational infrastructure because of their ability to 
deliver savings on a huge scale in a vast array of practical applications, making the dif-
ference between providing solutions to a wide range of  problems and not being able 
to address them at all. Few fields of science or engineering involve studying the effects 
of an invention that improves costs by factors of 100 billion—symbol-table applica-
tions put us in just that position, as we have just seen in several examples, and these 
improvements have had profound effects. The data structures and algorithms that we 
have considered are certainly not the final word: they were all developed in just a few 
decades, and their properties are not fully understood. Because of their importance, 
symbol-table implementations continue to be studied intensely by researchers around 
the world, and we can look forward to new developments on many fronts as the scale 
and scope of the applications they address continue to expand.
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Q&A

Q.  Can a SET contain null?

A. No. As with symbol tables, keys are non-null objects.

Q.  Can a SET be null?

A. No. A SET can be empty (contain no objects), but not null. As with any Java data 
type, a variable of type SET can have the value null, but that just indicates that it does 
not reference any SET. The result of using new to create a SET is always an object that is 
not null.

Q.  If all my data is in memory, there is no real reason to use a filter, right?

A. Right. Filtering really shines in the case when you have no idea how much data to 
expect. Otherwise, it may be a useful way of thinking, but not a cure-all.

Q.  I have data in a spreadsheet. Can I develop something like LookupCSV to search 
through it?

A.  Your spreadsheet application probably has an option to export to a .csv file, so you 
can use LookupCSV directly.

Q.  Why would I need FileIndex? Doesn’t my operating system solve this problem?

A.  If you are using an OS that meets your needs, continue to do so, by all means. As 
with many of our programs, FileIndex is intended to show you the basic underlying 
mechanisms of such applications and to suggest possibilities to you. 

Q.  Why not have the dot() method in SparseVector take a SparseVector object as 
argument and return a SparseVector object?

A. That is a fine alternate design and a nice programming exercise that requires code 
that is a bit more intricate than for our design (see Exercise 3.5.16). For general matrix 
processing, it might be worthwhile to also add a SparseMatrix type. 
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ExErcisEs

3.5.1 Implement SET and HashSET as “wrapper class” clients of ST and HashST, respec-
tively (provide dummy values and ignore them).

3.5.2 Develop a SET implementation SequentialSearchSET by starting with the code 
for SequentialSearchST and eliminating all of the code involving values.

3.5.3 Develop a SET implementation BinarySearchSET by starting with the code for 
BinarySearchST and eliminating all of the code involving values. 

3.5.4 Develop classes HashSTint and HashSTdouble for maintaining sets of keys of 
primitive int and double types, respectively. (Convert generics to primitive types in 
the code of LinearProbingHashST.)

3.5.5 Develop classes STint and STdouble for maintaining ordered symbol ta-
bles where keys are primitive int and double types, respectively. (Convert generics 
to primitive types in the code of RedBlackBST.) Test your solution with a version of 
SparseVector as a client.

3.5.6 Develop classes HashSETint and HashSETdouble for maintaining sets of keys of 
primitive int and double types, respectively. (Eliminate code involving values in your 
solution to Exercise 3.5.4.)

3.5.7 Develop classes SETint and SETdouble for maintaining ordered sets of keys of 
primitive int and double types, respectively. (Eliminate code involving values in your 
solution to Exercise 3.5.5.)

3.5.8 Modify LinearProbingHashST to keep duplicate keys in the table. Return any
value associated with the given key for get(), and remove all items in the table that have 
keys equal to the given key for delete().

3.5.9 Modify BST to keep duplicate keys in the tree. Return any value associated with 
the given key for get(), and remove all nodes in the tree that have keys equal to the 
given key for delete().

3.5.10 Modify RedBlackBST to keep duplicate keys in the tree. Return any value associ-
ated with the given key for get(), and remove all nodes in the tree that have keys equal 
to the given key for delete().
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3.5.11 Develop a MultiSET class that is like SET, but allows equal keys and thus imple-
ments a mathematical multiset.

3.5.12 Modify LookupCSV to associate with each key all values that appear in a key-
value pair with that key in the input (not just the most recent, as in the associative-array 
abstraction). 

3.5.13 Modify LookupCSV to make a program RangeLookupCSV that takes two key val-
ues from the standard input and prints all key-value pairs in the .csv file such that the 
key falls within the range specified.

3.5.14 Develop and test a static method invert() that takes as argument an 
ST<String, Bag<String>> and produces as return value the inverse of the given sym-
bol table (a symbol table of the same type).

3.5.15 Write a program that takes a string on standard input and an integer k as com-
mand-line argument and puts on standard output a sorted list of the k-grams (sub-
strings of length k) found in the string, each followed by its index in the string.

3.5.16 Add a method sum() to SparseVector that takes a SparseVector as argument 
and returns a SparseVector that is the term-by-term sum of this vector and the argu-
ment vector. Note: You need delete() (and special attention to precision) to handle the 
case where an entry becomes 0.

ExErcisEs (continued)
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crEAtivE problEms

3.5.17  Finite mathematical sets. Your goal is to develop an implementation of the fol-
lowing  API for processing finite mathematical sets: 

3.5.18 

public class MathSET<Key>

MathSET(Key[] universe) create the empty set 
(using given universe) 

void add(Key key) put key into the set

MathSET<Key> complement()
set of keys in the universe that 
are not in this set

void union(MathSET<Key> a)
put any keys from a into the 
set that are not already there

void intersection(MathSET<Key> a)
remove any keys from this set 
that are not in a

void delete(Key key) remove key from the set

boolean contains(Key key) is key in the set?

boolean isEmpty() is the set empty?

int size() number of keys in the set

apI for a basic finite set data type

Multisets. After referring to Exercises 3.5.2 and 3.5.3 and the previous exer-
cise, develop APIs MultiHashSET and MultiSET for multisets (sets that can have equal 
keys) and implementations SeparateChainingMultiSET and BinarySearchMultiSET 
for multisets and ordered multisets, respectively.

3.5.19  Equal keys in symbol tables. Consider the API MultiST (unordered or ordered) 
to be the same as our symbol-table APIs defined on page 363 and page 366, but with 
equal keys allowed, so that the semantics of get() is to return any value associated with 
the given key, and we add a new method

Iterable<Value> getAll(Key key)
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that returns all values associated with the given key. Using our code for 
SeparateChainingHashST and BinarySearchST as a starting point, develop imple-
mentations BinarySearchMultiST and SeparateChainingMultiST for these APIs.

3.5.20  Concordance. Write an ST client Concordance that puts on standard output a 
concordance of the strings in the standard input stream (see page 498).

3.5.21  Inverted concordance. Write a program InvertedConcordance that takes a 
concordance on standard input and puts the original string on standard output stream. 
Note : This computation is associated with a famous story having to do with the Dead 
Sea Scrolls. The team that discovered the original tablets enforced a secrecy rule that 
essentially resulted in their making public only a concordance. After a while, other re-
searchers figured out how to invert the concordance, and the full text was eventually 
made public.

3.5.22  Fully indexed CSV. Implement an ST client FullLookupCSV that builds an ar-
ray of ST objects (one for each field), with a test client that allows the user to specify the 
key and value fields in each query.

3.5.23  Sparse matrices. Develop an API and an implementation for sparse 2D matri-
ces. Support matrix addition and matrix multiplication. Include constructors for row 
and column vectors.

3.5.24  Non-overlapping interval search. Given a list of non-overlapping intervals of 
items, write a function that takes an item as argument and determines in which, if 
any, interval that item lies. For example, if the items are integers and the intervals are 
1643-2033, 5532-7643, 8999-10332, 5666653-5669321, then the query point 9122 
lies in the third interval and 8122 lies in no interval.

3.5.25  Registrar scheduling. The registrar at a prominent northeastern University re-
cently scheduled an instructor to teach two different classes at the same exact time. Help 
the registrar prevent future mistakes by describing a method to check for such conflicts. 
For simplicity, assume all classes run for 50 minutes starting at 9:00, 10:00, 11:00, 1:00, 
2:00, or 3:00.

3.5.26  LRU cache. Create a data structure that supports the following operations: ac-
cess and remove. The access operation inserts the item onto the data structure if it’s 
not already present. The remove operation deletes and returns the item that was least 

crEAtivE problEms (continued)
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recently accessed. Hint : Maintain the items in order of access in a doubly linked list, 
along with pointers to the first and last nodes. Use a symbol table with keys = items, 
values = location in linked list. When you access an element, delete it from the linked 
list and reinsert it at the beginning. When you remove an element, delete it from the end 
and remove it from the symbol table.

3.5.27  List. Develop an implementation of the following API: 

public class List<Item> implements Iterable<Item>

List() create a list

void addFront(Item item) add item to the front

void addBack(Item item) add item to the back

Item deleteFront() remove from the front

Item deleteBack() remove from the back

void delete(Item item) remove item from the list

void add(int i, Item item) add item as the ith in the list

Item delete(int i) remove the ith item from the list

boolean contains(Item item) is item in the list?

boolean isEmpty() is the list empty?

int size() number of items in the list

apI for a list data type

Hint : Use two symbol tables, one to find the ith item in the list efficiently, and the other 
to efficiently search by item. (Java’s java.util.List interface contains methods like 
these but does not supply any implementation that efficiently supports all 
operations.)

3.5.28  UniQueue. Create a data type that is a queue, except that an element may only 
be inserted the queue once. Use an existence symbol table to keep track of all elements 
that have ever been inserted and ignore requests to re-insert such items.
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3.5.29  Symbol table with random access. Create a data type that supports inserting a 
key-value pair, searching for a key and returning the associated value, and deleting and 
returning a random key. Hint : Combine a symbol table and a randomized queue (see 
Exercise 1.3.35).

crEAtivE problEms (continued)
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ExpErimENts

3.5.30  Duplicates (revisited). Redo Exercise 2.5.31 using the Dedup filter given on 
page 490. Compare the running times of the two approaches. Then use Dedup to run the 
experiments for N = 10 7, 10 8, and10 9, repeat the experiments for random long values 
and discuss the results.

3.5.31  Spell checker. With  the file dictionary.txt from the booksite as command-
line argument, the BlackFilter client described on page 491 prints all misspelled words 
in a text file taken from standard input. Compare the performance of RedBlackBST, 
SeparateChainingHashST, and LinearProbingHashST for the file WarAndPeace.txt 
(available on the booksite) with this client and discuss the results. 

3.5.32  Dictionary. Study the performance of a client like LookupCSV in a scenario 
where performance matters. Specifically, design a query-generation scenario instead of 
taking commands from standard input, and run performance tests for large inputs and 
large numbers of queries. 

3.5.33  Indexing. Study a client like LookupIndex in a scenario where performance 
matters. Specifically, design a query-generation scenario instead of taking commands 
from standard input, and run performance tests for large inputs and large numbers of 
queries.

3.5.34  Sparse vector. Run experiments to compare the performance of matrix-vector 
multiplication using  SparseVector to the standard implementation using arrays.  

3.5.35  Primitive types. Evaluate the utility of using primitive types for Integer and 
Double values, for LinearProbingHashST and RedBlackBST. How much space and 
time are saved, for large numbers of searches in large tables?

5133.5 n Applications
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