
ptg12441863

ptg12441863

Algorithms
FOURTH EDITION

PART I

ptg12441863

This page intentionally left blank

ptg12441863

Algorithms

Robert Sedgewick
and

Kevin Wayne

Princeton University

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

FOURTH EDITION

PART I

ptg12441863

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or im-
plied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training goals,
marketing focus, or branding interests), please contact our corporate sales department at (800) 382-3419
or corpsales@pearsoned.com.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Copyright © 2014 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retriev-
al system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording,
or likewise. To obtain permission to use material from this work, please submit a written request to Pearson
Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-379869-2
ISBN-10: 0-13-379869-0

First digital release, February 2014

ptg12441863

To Adam, Andrew, Brett, Robbie

and especially Linda

To Jackie and Alex

ptg12441863

Note: This is an online edition of Chapters 1 through 3 of Algorithms, Fourth Edition, which con-

tains the content covered in our online course Algorithms, Part I.

Preface ix

1. Fundamentals . 3

1.1 Basic Programming Model 8
Primitive data types • Loops and conditionals • Arrays • Static methods •
Recursion • APIs • Strings • Input and output • Binary search

1.2 Data Abstraction 64
Objects • Abstract data types • Implementing ADTs • Designing ADTs

1.3 Bags, Queues, and Stacks 120
APIs • Arithmetic expression evaluation • Resizing arrays • Generics •
Iterators • Linked lists

1.4 Analysis of Algorithms 172
Running time • Computational experiments • Tilde notation • Order-of-
growth classifications • Amortized analysis • Memory usage

1.5 Case Study: Union-Find 216
Dynamic connectivity • Quick find • Quick union • Weighted quick union

CONTENTS

ptg12441863

2. Sorting . 243

2.1 Elementary Sorts 244
Rules of the game • Selection sort • Insertion sort • Shellsort

2.2 Mergesort 270
Abstract in-place merge • Top-down mergesort • Bottom-up mergesort •
N lg N lower bound for sorting

2.3 Quicksort 288
In-place partitioning • Randomized quicksort • 3-way partitioning

2.4 Priority Queues 308
Priority queue API • Elementary implementations • Binary heap • Heapsort

2.5 Applications 336
Comparators • Stability • Median and order statistics

3. Searching . 361

3.1 Symbol Tables 362
Symbol table API • Ordered symbol table API • Dedup • Frequency counter •
Sequential search • Binary search

3.2 Binary Search Trees 396
Basic implementation • Order-based methods • Deletion

3.3 Balanced Search Trees 424
2-3 search trees • Red-black BSTs • Deletion

3.4 Hash Tables 458
Hash functions • Separate chaining • Linear probing

3.5 Applications 486
Set data type • Whitelist and blacklist filters • Dictionary lookup • Inverted
index • File indexing • Sparse matrix-vector multiplication

Chapters 4 through 6, which correspond to our online course Algorithms, Part II, are available as

Algorithms, Fourth Edition, Part II.

For more information, see http://algs4.cs.princeton.edu.

ptg12441863

This page intentionally left blank

ptg12441863

ix

This book is intended to survey the most important computer algorithms in use today,
and to teach fundamental techniques to the growing number of people in need of
knowing them. It is intended for use as a textbook for a second course in computer

science, after students have acquired basic programming skills and familiarity with computer
systems. The book also may be useful for self-study or as a reference for people engaged in
the development of computer systems or applications programs, since it contains implemen-
tations of useful algorithms and detailed information on performance characteristics and
clients. The broad perspective taken makes the book an appropriate introduction to the field.

the study of algorithms and data structures is fundamental to any computer-science
curriculum, but it is not just for programmers and computer-science students. Everyone who
uses a computer wants it to run faster or to solve larger problems. The algorithms in this book
represent a body of knowledge developed over the last 50 years that has become indispens-
able. From N-body simulation problems in physics to genetic-sequencing problems in mo-
lecular biology, the basic methods described here have become essential in scientific research;
from architectural modeling systems to aircraft simulation, they have become essential tools
in engineering; and from database systems to internet search engines, they have become es-
sential parts of modern software systems. And these are but a few examples—as the scope of
computer applications continues to grow, so grows the impact of the basic methods covered
here.

In Chapter 1, we develop our fundamental approach to studying algorithms, includ-
ing coverage of data types for stacks, queues, and other low-level abstractions that we use
throughout the book. In Chapters 2 and 3, we survey fundamental algorithms for sorting and
searching; and in Chapters 4 and 5, we cover algorithms for processing graphs and strings.
Chapter 6 is an overview placing the rest of the material in the book in a larger context.

PREFACE

ptg12441863

x

Distinctive features The orientation of the book is to study algorithms likely to be of
practical use. The book teaches a broad variety of algorithms and data structures and pro-
vides sufficient information about them that readers can confidently implement, debug, and
put them to work in any computational environment. The approach involves:

Algorithms. Our descriptions of algorithms are based on complete implementations and on
a discussion of the operations of these programs on a consistent set of examples. Instead of
presenting pseudo-code, we work with real code, so that the programs can quickly be put to
practical use. Our programs are written in Java, but in a style such that most of our code can
be reused to develop implementations in other modern programming languages.

Data types. We use a modern programming style based on data abstraction, so that algo-
rithms and their data structures are encapsulated together.

Applications. Each chapter has a detailed description of applications where the algorithms
described play a critical role. These range from applications in physics and molecular biology,
to engineering computers and systems, to familiar tasks such as data compression and search-
ing on the web.

A scientific approach We emphasize developing mathematical models for describing the
performance of algorithms, using the models to develop hypotheses about performance, and
then testing the hypotheses by running the algorithms in realistic contexts.

Breadth of coverage We cover basic abstract data types, sorting algorithms, searching al-
gorithms, graph processing, and string processing. We keep the material in algorithmic con-
text, describing data structures, algorithm design paradigms, reduction, and problem-solving
models. We cover classic methods that have been taught since the 1960s and new methods
that have been invented in recent years.

Our primary goal is to introduce the most important algorithms in use today to as wide an
audience as possible. These algorithms are generally ingenious creations that, remarkably, can
each be expressed in just a dozen or two lines of code. As a group, they represent problem-
solving power of amazing scope. They have enabled the construction of computational ar-
tifacts, the solution of scientific problems, and the development of commercial applications
that would not have been feasible without them.

ptg12441863

xi

Booksite An important feature of the book is its relationship to the online booksite
algs4.cs.princeton.edu. This site is freely available and contains an extensive amount of
material about algorithms and data structures, for teachers, students, and practitioners, in-
cluding:

An online synopsis. The text is summarized in the booksite to give it the same overall struc-
ture as the book, but linked so as to provide easy navigation through the material.

Full implementations All code in the book is available on the booksite, in a form suitable for
program development. Many other implementations are also available, including advanced
implementations and improvements described in the book, answers to selected exercises, and
client code for various applications. The emphasis is on testing algorithms in the context of
meaningful applications.

Exercises and answers The booksite expands on the exercises in the book by adding drill
exercises (with answers available with a click), a wide variety of examples illustrating the
reach of the material, programming exercises with code solutions, and challenging problems.

Dynamic visualizations Dynamic simulations are impossible in a printed book, but the
website is replete with implementations that use a graphics class to present compelling visual
demonstrations of algorithm applications.

Course materials A complete set of lecture slides is tied directly to the material in the book
and on the booksite. A full selection of programming assignments, with check lists, test data,
and preparatory material, is also included.

Online course A full set of lecture videos and self-assessment materials provide opportuni-
ties for students to learn or review the material on their own and for instructors to replace or
supplement their lectures.

Links to related material Hundreds of links lead students to background information about
applications and to resources for studying algorithms.

Our goal in creating this material was to provide a complementary approach to the ideas.
Generally, you should read the book when learning specific algorithms for the first time or
when trying to get a global picture, and you should use the booksite as a reference when pro-
gramming or as a starting point when searching for more detail while online.

ptg12441863

xii

Use in the curriculum The book is intended as a textbook in a second course in com-
puter science. It provides full coverage of core material and is an excellent vehicle for stu-
dents to gain experience and maturity in programming, quantitative reasoning, and problem-
solving. Typically, one course in computer science will suffice as a prerequisite—the book is
intended for anyone conversant with a modern programming language and with the basic
features of modern computer systems.

The algorithms and data structures are expressed in Java, but in a style accessible to
people fluent in other modern languages. We embrace modern Java abstractions (including
generics) but resist dependence upon esoteric features of the language.

Most of the mathematical material supporting the analytic results is self-contained (or
is labeled as beyond the scope of this book), so little specific preparation in mathematics is
required for the bulk of the book, although mathematical maturity is definitely helpful. Ap-
plications are drawn from introductory material in the sciences, again self-contained.

The material covered is a fundamental background for any student intending to major
in computer science, electrical engineering, or operations research, and is valuable for any
student with interests in science, mathematics, or engineering.

Context The book is intended to follow our introductory text, An Introduction to Pro-
gramming in Java: An Interdisciplinary Approach, which is a broad introduction to the field.
Together, these two books can support a two- or three-semester introduction to computer sci-
ence that will give any student the requisite background to successfully address computation
in any chosen field of study in science, engineering, or the social sciences.

The starting point for much of the material in the book was the Sedgewick series of Al-
gorithms books. In spirit, this book is closest to the first and second editions of that book, but
this text benefits from decades of experience teaching and learning that material. Sedgewick’s
current Algorithms in C/C++/Java, Third Edition is more appropriate as a reference or a text
for an advanced course; this book is specifically designed to be a textbook for a one-semester
course for first- or second-year college students and as a modern introduction to the basics
and a reference for use by working programmers.

ptg12441863

xiii

Acknowledgments This book has been nearly 40 years in the making, so full recogni-
tion of all the people who have made it possible is simply not feasible. Earlier editions of this
book list dozens of names, including (in alphabetical order) Andrew Appel, Trina Avery, Marc
Brown, Lyn Dupré, Philippe Flajolet, Tom Freeman, Dave Hanson, Janet Incerpi, Mike Schid-
lowsky, Steve Summit, and Chris Van Wyk. All of these people deserve acknowledgement,
even though some of their contributions may have happened decades ago. For this fourth
edition, we are grateful to the hundreds of students at Princeton and several other institutions
who have suffered through preliminary versions of the work, and to readers around the world
for sending in comments and corrections through the booksite.

We are grateful for the support of Princeton University in its unwavering commitment
to excellence in teaching and learning, which has provided the basis for the development of
this work.

Peter Gordon has provided wise counsel throughout the evolution of this work almost
from the beginning, including a gentle introduction of the “back to the basics” idea that is
the foundation of this edition. For this fourth edition, we are grateful to Barbara Wood for
her careful and professional copyediting, to Julie Nahil for managing the production, and
to many others at Pearson for their roles in producing and marketing the book. All were ex-
tremely responsive to the demands of a rather tight schedule without the slightest sacrifice to
the quality of the result.

Robert Sedgewick
Kevin Wayne

Princeton, New Jersey
January 2014

ptg12441863

1.1 Basic Programming Model 8

1.2 Data Abstraction 64

1.3 Bags, Queues, and Stacks 120

1.4 Analysis of Algorithms 172

1.5 Case Study: Union-Find 216

one

Fundamentals

ptg12441863

The objective of this book is to study a broad variety of important and useful
algorithms—methods for solving problems that are suited for computer imple-
mentation. Algorithms go hand in hand with data structures—schemes for or-

ganizing data that leave them amenable to efficient processing by an algorithm. This
chapter introduces the basic tools that we need to study algorithms and data structures.

First, we introduce our basic programming model. All of our programs are imple-
mented using a small subset of the Java programming language plus a few of our own
libraries for input/output and for statistical calculations. Section 1.1 is a summary of
language constructs, features, and libraries that we use in this book.

Next, we emphasize data abstraction, where we define abstract data types (ADTs) in
the service of modular programming. In Section 1.2 we introduce the process of im-
plementing an ADT in Java, by specifying an applications programming interface (API)
and then using the Java class mechanism to develop an implementation for use in client
code.

As important and useful examples, we next consider three fundamental ADTs: the
bag, the queue, and the stack. Section 1.3 describes APIs and implementations of bags,
queues, and stacks using arrays, resizing arrays, and linked lists that serve as models and
starting points for algorithm implementations throughout the book.

Performance is a central consideration in the study of algorithms. Section 1.4 de-
scribes our approach to analyzing algorithm performance. The basis of our approach is
the scientific method: we develop hypotheses about performance, create mathematical
models, and run experiments to test them, repeating the process as necessary.

We conclude with a case study where we consider solutions to a connectivity problem
that uses algorithms and data structures that implement the classic union-find ADT.

3

ptg12441863

Algorithms When we write a computer program, we are generally implementing a
method that has been devised previously to solve some problem. This method is often
independent of the particular programming language being used—it is likely to be
equally appropriate for many computers and many programming languages. It is the
method, rather than the computer program itself, that specifies the steps that we can
take to solve the problem. The term algorithm is used in computer science to describe
a finite, deterministic, and effective problem-solving method suitable for implementa-
tion as a computer program. Algorithms are the stuff of computer science: they are
central objects of study in the field.

We can define an algorithm by describing a procedure for solving a problem in a
natural language, or by writing a computer program that implements the procedure,
as shown at right for Euclid’s algorithm for finding the greatest common divisor of
two numbers, a variant of which was devised
over 2,300 years ago. If you are not familiar
with Euclid’s algorithm, you are encour-
aged to work Exercise 1.1.24 and Exercise
1.1.25, perhaps after reading Section 1.1. In
this book, we use computer programs to de-
scribe algorithms. One important reason for
doing so is that it makes easier the task of
checking whether they are finite, determin-
istic, and effective, as required. But it is also
important to recognize that a program in a
particular language is just one way to express
an algorithm. The fact that many of the al-
gorithms in this book have been expressed
in multiple programming languages over the
past several decades reinforces the idea that each algorithm is a method suitable for
implementation on any computer in any programming language.

Most algorithms of interest involve organizing the data involved in the computa-
tion. Such organization leads to data structures, which also are central objects of study
in computer science. Algorithms and data structures go hand in hand. In this book we
take the view that data structures exist as the byproducts or end products of algorithms
and that we must therefore study them in order to understand the algorithms. Simple
algorithms can give rise to complicated data structures and, conversely, complicated
algorithms can use simple data structures. We shall study the properties of many data
structures in this book; indeed, we might well have titled the book Algorithms and Data
Structures.

Compute the greatest common divisor of
two nonnegative integers p and q as follows:
If q is 0, the answer is p. If not, divide p by q
and take the remainder r. The answer is the
greatest common divisor of q and r.

public static int gcd(int p, int q)
{
 if (q == 0) return p;
 int r = p % q;
 return gcd(q, r);
}

Euclid’s algorithm

Java-language description

English-language description

4 Chapter 1 n Fundamentals

ptg12441863

When we use a computer to help us solve a problem, we typically are faced with a
number of possible approaches. For small problems, it hardly matters which approach
we use, as long as we have one that correctly solves the problem. For huge problems (or
applications where we need to solve huge numbers of small problems), however, we
quickly become motivated to devise methods that use time and space efficiently.

The primary reason to learn about algorithms is that this discipline gives us the
potential to reap huge savings, even to the point of enabling us to do tasks that would
otherwise be impossible. In an application where we are processing millions of objects,
it is not unusual to be able to make a program millions of times faster by using a well-
designed algorithm. We shall see such examples on numerous occasions throughout
the book. By contrast, investing additional money or time to buy and install a new
computer holds the potential for speeding up a program by perhaps a factor of only 10
or 100. Careful algorithm design is an extremely effective part of the process of solving
a huge problem, whatever the applications area.

When developing a huge or complex computer program, a great deal of effort must
go into understanding and defining the problem to be solved, managing its complex-
ity, and decomposing it into smaller subtasks that can be implemented easily. Often,
many of the algorithms required after the decomposition are trivial to implement. In
most cases, however, there are a few algorithms whose choice is critical because most
of the system resources will be spent running those algorithms. These are the types of
algorithms on which we concentrate in this book. We study fundamental algorithms
that are useful for solving challenging problems in a broad variety of applications areas.

The sharing of programs in computer systems is becoming more widespread, so
although we might expect to be using a large fraction of the algorithms in this book, we
also might expect to have to implement only a small fraction of them. For example, the
Java libraries contain implementations of a host of fundamental algorithms. However,
implementing simple versions of basic algorithms helps us to understand them bet-
ter and thus to more effectively use and tune advanced versions from a library. More
important, the opportunity to reimplement basic algorithms arises frequently. The pri-
mary reason to do so is that we are faced, all too often, with completely new computing
environments (hardware and software) with new features that old implementations
may not use to best advantage. In this book, we concentrate on the simplest reasonable
implementations of the best algorithms. We do pay careful attention to coding the criti-
cal parts of the algorithms, and take pains to note where low-level optimization effort
could be most beneficial.

Choosing the best algorithm for a particular task can be a complicated process, per-
haps involving sophisticated mathematical analysis. The branch of computer science
that comprises the study of such questions is called analysis of algorithms. Many of the

5Chapter 1 n Fundamentals

ptg12441863

algorithms that we study have been shown through analysis to have excellent theoreti-
cal performance; others are simply known to work well through experience. Our pri-
mary goal is to learn reasonable algorithms for important tasks, yet we shall also pay
careful attention to comparative performance of the methods. We should not use an
algorithm without having an idea of what resources it might consume, so we strive to
be aware of how our algorithms might be expected to perform.

Summary of topics As an overview, we describe the major parts of the book, giv-
ing specific topics covered and an indication of our general orientation toward the
material. This set of topics is intended to touch on as many fundamental algorithms as
possible. Some of the areas covered are core computer-science areas that we study in
depth to learn basic algorithms of wide applicability. Other algorithms that we discuss
are from advanced fields of study within computer science and related fields. The algo-
rithms that we consider are the products of decades of research and development and
continue to play an essential role in the ever-expanding applications of computation.

Fundamentals (Chapter 1) in the context of this book are the basic principles and
methodology that we use to implement, analyze, and compare algorithms. We consider
our Java programming model, data abstraction, basic data structures, abstract data
types for collections, methods of analyzing algorithm performance, and a case study.

Sorting algorithms (Chapter 2) for rearranging arrays in order are of fundamental
importance. We consider a variety of algorithms in considerable depth, including in-
sertion sort, selection sort, shellsort, quicksort, mergesort, and heapsort. We also en-
counter algorithms for several related problems, including priority queues, selection,
and merging. Many of these algorithms will find application as the basis for other algo-
rithms later in the book.

Searching algorithms (Chapter 3) for finding specific items among large collections
of items are also of fundamental importance. We discuss basic and advanced methods
for searching, including binary search trees, balanced search trees, and hashing. We
note relationships among these methods and compare performance.

Graphs (Chapter 4) are sets of objects and connections, possibly with weights and
orientation. Graphs are useful models for a vast number of difficult and important
problems, and the design of algorithms for processing graphs is a major field of study.
We consider depth-first search, breadth-first search, connectivity problems, and sev-
eral algorithms and applications, including Kruskal’s and Prim’s algorithms for finding
minimum spanning tree and Dijkstra’s and the Bellman-Ford algorithms for solving
shortest-paths problems.

6 Chapter 1 n Fundamentals

ptg12441863

Strings (Chapter 5) are an essential data type in modern computing applications.
We consider a range of methods for processing sequences of characters. We begin with
faster algorithms for sorting and searching when keys are strings. Then we consider
substring search, regular expression pattern matching, and data-compression algo-
rithms. Again, an introduction to advanced topics is given through treatment of some
elementary problems that are important in their own right.

Context (Chapter 6) helps us relate the material in the book to several other advanced
fields of study, including scientific computing, operations research, and the theory of
computing. We survey event-driven simulation, B-trees, suffix arrays, maximum flow,
and other advanced topics from an introductory viewpoint to develop appreciation for
the interesting advanced fields of study where algorithms play a critical role. Finally, we
describe search problems, reduction, and NP-completeness to introduce the theoretical
underpinnings of the study of algorithms and relationships to material in this book.

The study of algorithms is interesting and exciting because it is a new field
(almost all the algorithms that we study are less than 50 years old, and some were just
recently discovered) with a rich tradition (a few algorithms have been known for hun-
dreds of years). New discoveries are constantly being made, but few algorithms are
completely understood. In this book we shall consider intricate, complicated, and diffi-
cult algorithms as well as elegant, simple, and easy ones. Our challenge is to understand
the former and to appreciate the latter in the context of scientific and commercial ap-
plications. In doing so, we shall explore a variety of useful tools and develop a style of
algorithmic thinking that will serve us well in computational challenges to come.

7Chapter 1 n Fundamentals

ptg12441863

1.1 BASiC ProgrAMMing MoDel

Our study of algorithms is based upon implementing them as programs written in
the Java programming language. We do so for several reasons:

n	 Our programs are concise, elegant, and complete descriptions of algorithms.
n	 You can run the programs to study properties of the algorithms.
n	 You can put the algorithms immediately to good use in applications.

These are important and significant advantages over the alternatives of working with
English-language descriptions of algorithms.

A potential downside to this approach is that we have to work with a specific pro-
gramming language, possibly making it difficult to separate the idea of the algorithm
from the details of its implementation. Our implementations are designed to mitigate
this difficulty, by using programming constructs that are both found in many modern
languages and needed to adequately describe the algorithms.

We use only a small subset of Java. While we stop short of formally defining the
subset that we use, you will see that we make use of relatively few Java constructs, and
that we emphasize those that are found in many modern programming languages. The
code that we present is complete, and our expectation is that you will download it and
execute it, on our test data or test data of your own choosing.

We refer to the programming constructs, software libraries, and operating system
features that we use to implement and describe algorithms as our programming model.
In this section and Section 1.2, we fully describe this programming model. The treat-
ment is self-contained and primarily intended for documentation and for your refer-
ence in understanding any code in the book. The model we describe is the same model
introduced in our book An Introduction to Programming in Java: An Interdisciplinary
Approach, which provides a slower-paced introduction to the material.

For reference, the figure on the facing page depicts a complete Java program that
illustrates many of the basic features of our programming model. We use this code for
examples when discussing language features, but defer considering it in detail to page
46 (it implements a classic algorithm known as binary search and tests it for an applica-
tion known as whitelist filtering). We assume that you have experience programming
in some modern language, so that you are likely to recognize many of these features in
this code. Page references are included in the annotations to help you find answers to
any questions that you might have. Since our code is somewhat stylized and we strive
to make consistent use of various Java idioms and constructs, it is worthwhile even for
experienced Java programmers to read the information in this section.

8

ptg12441863

import java.util.Arrays;

public class BinarySearch
{
 public static int rank(int key, int[] a)
 {
 int lo = 0;
 int hi = a.length - 1;
 while (lo <= hi)
 {
 int mid = lo + (hi - lo) / 2;
 if (key < a[mid]) hi = mid - 1;
 else if (key > a[mid]) lo = mid + 1;
 else return mid;
 }
 return -1;
 }

 public static void main(String[] args)
 {

 int[] whitelist = In.readInts(args[0]);

 Arrays.sort(whitelist);

 while (!StdIn.isEmpty())
 {
 int key = StdIn.readInt();
 if (rank(key, whitelist) == -1)
 StdOut.println(key);
 }
 }

}

expression (see page 11)

call a method in our standard library;
need to download code (see page 27)

call a method in a Java library (see page 27)

call a local method
(see page 27)

import a Java library (see page 27)

code must be in file BinarySearch.java (see page 26)

initializing
declaration statement

(see page 16)

command line
(see page 36)

static method (see page 22)

unit test client (see page 26)

loop statement
(see page 15)

conditional statement
(see page 15)

system calls main()

system passes argument value
"largeW.txt" to main()

Anatomy of a Java program and its invocation from the command line

parameter
variables

return type parameter type

return statement

no return value; just side effects (see page 24)

% java BinarySearch largeW.txt < largeT.txt

499569
984875
...

file name (args[0])

file redirected from StdIn
(see page 40)

StdOut
(see page 37)

91.1 n Basic Programming Model

ptg12441863

Basic structure of a Java program A Java program (class) is either a library of
static methods (functions) or a data type definition. To create libraries of static methods
and data-type definitions, we use the following seven components, the basis of pro-
gramming in Java and many other modern languages:

n	 Primitive data types precisely define the meaning of terms like integer, real num-
ber, and boolean value within a computer program. Their definition includes the
set of possible values and operations on those values, which can be combined
into expressions like mathematical expressions that define values.

n	 Statements allow us to define a computation by creating and assigning values to
variables, controlling execution flow, or causing side effects. We use six types of
statements: declarations, assignments, conditionals, loops, calls, and returns.

n	 Arrays allow us to work with multiple values of the same type.
n	 Static methods allow us to encapsulate and reuse code and to develop programs

as a set of independent modules.
n	 Strings are sequences of characters. Some operations on them are built into Java.
n	 Input/output sets up communication between programs and the outside world.
n	 Data abstraction extends encapsulation and reuse to allow us to define non-

primitive data types, thus supporting object-oriented programming.
In this section, we will consider the first five of these in turn. Data abstraction is the
topic of the next section.

Running a Java program involves interacting with an operating system or a program
development environment. For clarity and economy, we describe such actions in terms
of a virtual terminal, where we interact with programs by typing commands to the
system. See the booksite for details on using a virtual terminal on your system, or for
information on using one of the many more advanced program development environ-
ments that are available on modern systems.

For example, BinarySearch is two static methods, rank() and main(). The first
static method, rank(), is four statements: two declarations, a loop (which is itself an as-
signment and two conditionals), and a return. The second, main(), is three statements:
a declaration, a call, and a loop (which is itself an assignment and a conditional).

To invoke a Java program, we first compile it using the javac command, then run it
using the java command. For example, to run BinarySearch, we first type the com-
mand javac BinarySearch.java (which creates a file BinarySearch.class that
contains a lower-level version of the program in Java bytecode). Then we type java
BinarySearch (followed by a whitelist file name) to transfer control to the bytecode
version of the program. To develop a basis for understanding the effect of these actions,
we next consider in detail primitive data types and expressions, the various kinds of
Java statements, arrays, static methods, strings, and input/output.

10 Chapter 1 n Fundamentals

ptg12441863

Primitive data types and expressions A data type is a set of values and a set of
operations on those values. We begin by considering the following four primitive data
types that are the basis of the Java language:

n	 Integers, with arithmetic operations (int)
n	 Real numbers, again with arithmetic operations (double)
n	 Booleans, the set of values { true, false } with logical operations (boolean)
n	 Characters, the alphanumeric characters and symbols that you type (char)

Next we consider mechanisms for specifying values and operations for these types.
A Java program manipulates variables that are named with identifiers. Each variable

is associated with a data type and stores one of the permissible data-type values. In Java
code, we use expressions like familiar mathematical expressions to apply the operations
associated with each type. For primitive types, we use identifiers to refer to variables,
operator symbols such as + - * / to specify operations, literals such as 1 or 3.14 to
specify values, and expressions such as (x + 2.236)/2 to specify operations on values.
The purpose of an expression is to define one of the data-type values.

term examples definition

primitive
data type

int double boolean char

a set of values and a set of
operations on those values

(built into the Java language)

identifier a abc Ab$ a_b ab123 lo hi
a sequence of letters, digits,
_, and $, the first of which is

not a digit

variable [any identifier] names a data-type value

operator + - * / names a data-type operation

literal source-code representation
of a value

int 1 0 -42

double 2.0 1.0e-15 3.14

boolean true false

char 'a' '+' '9' '\n'

expression

a literal, a variable, or a
sequence of operations on

literals and/or variables that
produces a value

int lo + (hi - lo)/2

double 1.0e-15 * t

boolean lo <= hi

Basic building blocks for Java programs

111.1 n Basic Programming Model

ptg12441863

To define a data type, we need only specify the values and the set of operations on
those values. This information is summarized in the table below for Java’s int, double,
boolean, and char data types. These data types are similar to the basic data types found
in many programming languages. For int and double, the operations are familiar
arithmetic operations; for boolean, they are familiar logical operations. It is important
to note that +, -, *, and / are overloaded—the same symbol specifies operations in mul-
tiple different types, depending on context. The key property of these primitive opera-
tions is that an operation involving values of a given type has a value of that type. This rule
highlights the idea that we are often working with approximate values, since it is often
the case that the exact value that would seem to be defined by the expression is not a
value of the type. For example, 5/3 has the value 1 and 5.0/3.0 has a value very close
to 1.66666666666667 but neither of these is exactly equal to 5/3. This table is far from
complete; we discuss some additional operators and various exceptional situations that
we occasionally need to consider in the Q&A at the end of this section.

type set of values operators
typical expressions

expression value

int

integers between
231 and231 1

(32-bit two’s
complement)

+ (add)
- (subtract)
* (multiply)
/ (divide)

% (remainder)

5 + 3

5 - 3

5 * 3

5 / 3

5 % 3

8

2

15

1

2

double

double-precision
real numbers

(64-bit IEEE 754
standard)

+ (add)
- (subtract)
* (multiply)
/ (divide)

3.141 - .03

2.0 - 2.0e-7

100 * .015

6.02e23 / 2.0

3.111

1.9999998

1.5

3.01e23

boolean true or false

&& (and)
|| (or)
! (not)
^ (xor)

true && false

false || true

!false

true ^ true

false

true

true

false

char
characters
(16-bit)

[arithmetic operations, rarely used]

primitive data types in Java

12 Chapter 1 n Fundamentals

ptg12441863

Expressions As illustrated in the table at the bottom of the previous page, typical ex-
pressions are infix: a literal (or an expression), followed by an operator, followed by
another literal (or another expression). When an expression contains more than one
operator, the order in which they are applied is often significant, so the following pre-
cedence conventions are part of the Java language specification: The operators * and /
(and %) have higher precedence than (are applied before) the + and - operators; among
logical operators, ! is the highest precedence, followed by && and then ||. Generally,
operators of the same precedence are applied left to right. As in standard arithmetic ex-
pressions, you can use parentheses to override these rules. Since precedence rules vary
slightly from language to language, we use parentheses and otherwise strive to avoid
dependence on precedence rules in our code.

Type conversion Numbers are automatically promoted to a more inclusive type if no
information is lost. For example, in the expression 1 + 2.5 , the 1 is promoted to the
double value 1.0 and the expression evaluates to the double value 3.5 . A cast is a type
name in parentheses within an expression, a directive to convert the following value
into a value of that type. For example (int) 3.7 is 3 and (double) 3 is 3.0. Note that
casting to an int is truncation instead of rounding—rules for casting within compli-
cated expressions can be intricate, and casts should be used sparingly and with care. A
best practice is to use expressions that involve literals or variables of a single type.

Comparisons The following operators compare two values of the same type and
produce a boolean value: equal (==), not equal (!=), less than (<), less than or equal
(<=), greater than (>), and greater than or equal (>=). These operators are known as
mixed-type operators because their value is boolean, not the type of the values being
compared. An expression with a boolean value is known as a boolean expression. Such
expressions are essential components in conditional and loop statements, as we will see.

Other primitive types Java’s int has 232 different values by design, so it can be repre-
sented in a 32-bit machine word (many machines have 64-bit words nowadays, but the
32-bit int persists). Similarly, the double standard specifies a 64-bit representation.
These data-type sizes are adequate for typical applications that use integers and real
numbers. To provide flexibility, Java has five additional primitive data types:

n	 64-bit integers, with arithmetic operations (long)
n	 16-bit integers, with arithmetic operations (short)
n	 16-bit characters, with arithmetic operations (char)
n	 8-bit integers, with arithmetic operations (byte)
n	 32-bit single-precision real numbers, again with arithmetic operations (float)

We most often use int and double arithmetic operations in this book, so we do not
consider the others (which are very similar) in further detail here.

131.1 n Basic Programming Model

ptg12441863

Statements A Java program is composed of statements, which define the computa-
tion by creating and manipulating variables, assigning data-type values to them, and
controlling the flow of execution of such operations. Statements are often organized in
blocks, sequences of statements within curly braces.

n	 Declarations create variables of a specified type and name them with identifiers.
n	 Assignments associate a data-type value (defined by an expression) with a vari-

able. Java also has several implicit assignment idioms for changing the value of a
data-type value relative to its current value, such as incrementing the value of an
integer variable.

n	 Conditionals provide for a simple change in the flow of execution—execute the
statements in one of two blocks, depending on a specified condition.

n	 Loops provide for a more profound change in the flow of execution—execute the
statements in a block as long as a given condition is true.

n	 Calls and returns relate to static methods (see page 22), which provide another way
to change the flow of execution and to organize code.

A program is a sequence of statements, with declarations, assignments, conditionals,
loops, calls, and returns. Programs typically have a nested structure : a statement among
the statements in a block within a conditional or a loop may itself be a conditional or a
loop. For example, the while loop in rank() contains an if statement. Next, we con-
sider each of these types of statements in turn.

Declarations A declaration statement associates a variable name with a type at com-
pile time. Java requires us to use declarations to specify the names and types of vari-
ables. By doing so, we are being explicit about any computation that we are specify-
ing. Java is said to be a strongly typed language, because the Java compiler checks for
consistency (for example, it does not permit us to multiply a boolean and a double).
Declarations can appear anywhere before a variable is first used—most often, we put
them at the point of first use. The scope of a variable is the part of the program where it
is defined. Generally the scope of a variable is composed of the statements that follow
the declaration in the same block as the declaration.

Assignments An assignment statement associates a data-type value (defined by an ex-
pression) with a variable. When we write c = a + b in Java, we are not expressing
mathematical equality, but are instead expressing an action: set the value of the vari-
able c to be the value of a plus the value of b. It is true that c is mathematically equal
to a + b immediately after the assignment statement has been executed, but the point
of the statement is to change the value of c (if necessary). The left-hand side of an as-
signment statement must be a single variable; the right-hand side can be an arbitrary
expression that produces a value of the type.

14 Chapter 1 n Fundamentals

ptg12441863

Conditionals Most computations require different actions for different inputs. One
way to express these differences in Java is the if statement:

if (<boolean expression>) { <block statements> }

This description introduces a formal notation known as a template that we use occa-
sionally to specify the format of Java constructs. We put within angle brackets (< >)
a construct that we have already defined, to indicate that we can use any instance of
that construct where specified. In this case, <boolean expression> represents an
expression that has a boolean value, such as one involving a comparison operation,
and <block statements> represents a sequence of Java statements. It is possible to
make formal definitions of <boolean expression> and <block statements>, but
we refrain from going into that level of detail. The meaning of an if statement is self-
explanatory: the statement(s) in the block are to be executed if and only if the boolean
expression is true. The if-else statement:

if (<boolean expression>) { <block statements> }
else { <block statements> }

allows for choosing between two alternative blocks of statements.

Loops Many computations are inherently repetitive. The basic Java construct for han-
dling such computations has the following format:

while (<boolean expression>) { <block statements> }

The while statement has the same form as the if statement (the only difference being
the use of the keyword while instead of if), but the meaning is quite different. It is an
instruction to the computer to behave as follows: if the boolean expression is false,
do nothing; if the boolean expression is true, execute the sequence of statements in
the block (just as with if) but then check the boolean expression again, execute the se-
quence of statements in the block again if the boolean expression is true, and continue
as long as the boolean expression is true. We refer to the statements in the block in a
loop as the body of the loop.

Break and continue Some situations call for slightly more complicated control flow
than provided by the basic if and while statements. Accordingly, Java supports two
additional statements for use within while loops:

n	 The break statement, which immediately exits the loop
n	 The continue statement, which immediately begins the next iteration of the

loop
We rarely use these statements in the code in this book (and many programmers never
use them), but they do considerably simplify code in certain instances.

151.1 n Basic Programming Model

ptg12441863

Shortcut notations There are several ways to express a given computation; we
seek clear, elegant, and efficient code. Such code often takes advantage of the following
widely used shortcuts (that are found in many languages, not just Java).

Initializing declarations We can combine a declaration with an assignment to ini-
tialize a variable at the same time that it is declared (created). For example, the code
int i = 1; creates an int variable named i and assigns it the initial value 1. A best
practice is to use this mechanism close to first use of the variable (to limit scope).

Implicit assignments The following shortcuts are available when our purpose is to
modify a variable’s value relative to its current value:

n	 Increment/decrement operators: ++i is the same as i = i + 1; both have the
value i in an expression. Similarly, --i is the same as i = i - 1. The code i++
and i-- are the same except that the expression value is the value before the
increment/decrement, not after.

n	 Other compound operators: Prepending a binary operator to the = in an assign-
ment is equivalent to using the variable on the left as the first operand. For ex-
ample, the code i/=2; is equivalent to the code i = i/2; Note that i += 1;
has the same effect as i = i+1; (and i++).

Single-statement blocks If a block of statements in a conditional or a loop has only a
single statement, the curly braces may be omitted.

For notation Many loops follow this scheme: initialize an index variable to some val-
ue and then use a while loop to test a loop continuation condition involving the index
variable, where the last statement in the while loop increments the index variable. You
can express such loops compactly with Java’s for notation:

for (<initialize>; <boolean expression>; <increment>)
{
 <block statements>

}

This code is, with only a few exceptions, equivalent to

<initialize>;
while (<boolean expression>)
{
 <block statements>
 <increment>;
}

We use for loops to support this initialize-and-increment programming idiom.

16 Chapter 1 n Fundamentals

ptg12441863

statement examples definition

declaration
int i;

double c;

create a variable of a specified type,
named with a given identifier

assignment
a = b + 3;

discriminant = b*b - 4.0*c;
assign a data-type value to a variable

initializing
declaration

int i = 1;

double c = 3.141592625;

declaration that also assigns an
initial value

implicit
assignment

i++;

i += 1;
i = i + 1;

conditional (if) if (x < 0) x = -x;
execute a statement,

depending on boolean expression

conditional
(if-else)

if (x > y) max = x;
else max = y;

execute one or the other statement,
depending on boolean expression

loop (while)

int v = 1;

while (v <= N)

 v = 2*v;

double t = c;

while (Math.abs(t - c/t) > 1e-15*t)

 t = (c/t + t) / 2.0;

execute statement
until boolean expression is false

loop (for)

for (int i = 1; i <= N; i++)

 sum += 1.0/i;

for (int i = 0; i <= N; i++)

 StdOut.println(2*Math.PI*i/N);

compact version of while statement

call int key = StdIn.readInt(); invoke other methods (see page 22)

return return false; return from a method (see page 24)

Java statements

171.1 n Basic Programming Model

ptg12441863

Arrays An array stores a sequence of values that are all of the same type. We want
not only to store values but also to access each individual value. The method that we
use to refer to individual values in an array is numbering and then indexing them. If
we have N values, we think of them as being numbered from 0 to N1. Then, we can
unambiguously specify one of them in Java code by using the notation a[i] to refer to
the ith value for any value of i from 0 to N-1. This Java construct is known as a one-
dimensional array.

Creating and initializing an array Making an array in a Java program involves three
distinct steps:

n	 Declare the array name and type.
n	 Create the array.
n	 Initialize the array values.

To declare the array, you need to specify a name and the type of data it will contain.
To create it, you need to specify its length (the number of values). For example, the
“long form” code shown at right makes
an array of N numbers of type double, all
initialized to 0.0. The first statement is
the array declaration. It is just like a dec-
laration of a variable of the correspond-
ing primitive type except for the square
brackets following the type name, which
specify that we are declaring an array.
The keyword new in the second state-
ment is a Java directive to create the ar-
ray. The reason that we need to explicitly
create arrays at run time is that the Java
compiler cannot know how much space
to reserve for the array at compile time (as it can for primitive-type values). The for
statement initializes the N array values. This code sets all of the array entries to the value
0.0. When you begin to write code that uses an array, you must be sure that your code
declares, creates, and initializes it. Omitting one of these steps is a common program-
ming mistake.

Default array initialization For economy in code, we often take advantage of Java’s
default array initialization convention and combine all three steps into a single state-
ment, as in the “short form” code in our example. The code to the left of the equal sign
constitutes the declaration; the code to the right constitutes the creation. The for loop
is unnecessary in this case because the default initial value of variables of type double

declaration

creationdouble[] a;
a = new double[N];
for (int i = 0; i < N; i++)
 a[i] = 0.0;

double[] a = new double[N];

initialization

Declaring, creating, and initializing an array

short form

int[] a = { 1, 1, 2, 3, 5, 8 };

initializing declaration

long form

18 Chapter 1 n Fundamentals

ptg12441863

in a Java array is 0.0, but it would be required if a nonzero value were desired. The de-
fault initial value is zero for numeric types and false for type boolean.

Initializing declaration The third option shown for our example is to specify the
initialization values at compile time, by listing literal values between curly braces, sepa-
rated by commas.

Using an array Typical array-processing code is shown on page 21. After declaring
and creating an array, you can refer to any individual value anywhere you would use
a variable name in a program by enclosing an integer index in square brackets after
the array name. Once we create an array, its size is fixed. A program can refer to the
length of an array a[] with the code a.length. The last element of an array a[] is
always a[a.length-1]. Java does automatic bounds checking—if you have created an
array of size N and use an index whose value is less than 0 or greater than N-1, your pro-
gram will terminate with an ArrayOutOfBoundsException runtime exception.

Aliasing Note carefully that an array name refers to the whole array—if we assign one
array name to another, then both refer to the same array, as illustrated in the following
code fragment.

int[] a = new int[N];
...
a[i] = 1234;
...
int[] b = a;
...
b[i] = 5678; // a[i] is now 5678.

This situation is known as aliasing and can lead to subtle bugs. If your intent is to make
a copy of an array, then you need to declare, create, and initialize a new array and then
copy all of the entries in the original array to the new array, as in the third example on
page 21.

Two-dimensional arrays A two-dimensional array in Java is an array of one-dimen-
sional arrays. A two-dimensional array may be ragged (its arrays may all be of differing
lengths), but we most often work with (for appropriate parameters M and N) M-by-N
two-dimensional arrays that are arrays of M rows, each an array of length N (so it also
makes sense to refer to the array as having N columns). Extending Java array constructs
to handle two-dimensional arrays is straightforward. To refer to the entry in row i and
column j of a two-dimensional array a[][], we use the notation a[i][j]; to declare a
two-dimensional array, we add another pair of square brackets; and to create the array,

191.1 n Basic Programming Model

ptg12441863

we specify the number of rows followed by the number of columns after the type name
(both within square brackets), as follows:

double[][] a = new double[M][N];

We refer to such an array as an M-by-N array. By convention, the first dimension is the
number of rows and the second is the number of columns. As with one-dimensional
arrays, Java initializes all entries in arrays of numeric types to zero and in arrays of
boolean values to false. Default initialization of two-dimensional arrays is useful
because it masks more code than for one-dimensional arrays. The following code is
equivalent to the single-line create-and-initialize idiom that we just considered:

double[][] a;
a = new double[M][N];
for (int i = 0; i < M; i++)
 for (int j = 0; j < N; j++)
 a[i][j] = 0.0;

This code is superfluous when initializing to zero, but the nested for loops are needed
to initialize to other value(s).

20 Chapter 1 n Fundamentals

ptg12441863

task implementation (code fragment)

find the maximum of
the array values

double max = a[0];
for (int i = 1; i < a.length; i++)
 if (a[i] > max) max = a[i];

compute the average of
 the array values

int N = a.length;
double sum = 0.0;
for (int i = 0; i < N; i++)
 sum += a[i];
double average = sum / N;

copy to another array

int N = a.length;
double[] b = new double[N];
for (int i = 0; i < N; i++)
 b[i] = a[i];

reverse the elements
within an array

int N = a.length;
for (int i = 0; i < N/2; i++)
{
 double temp = a[i];
 a[i] = a[N-i-1];
 a[N-i-1] = temp;
}

matrix-matrix multiplication
(square matrices)

a[][]*b[][] = c[][]

int N = a.length;
double[][] c = new double[N][N];
for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 { // Compute dot product of row i and column j.
 for (int k = 0; k < N; k++)
 c[i][j] += a[i][k]*b[k][j];
 }

typical array-processing code

211.1 n Basic Programming Model

ptg12441863

Static methods Every Java program in this book is either a data-type definition
(which we describe in detail in Section 1.2) or a library of static methods (which we de-
scribe here). Static methods are called functions in many programming languages, since
they can behave like mathematical functions, as described next. Each static method is
a sequence of statements that are executed, one after the other, when the static method
is called, in the manner described below. The modifier static distinguishes these meth-
ods from instance methods, which we discuss in Section 1.2. We use the word method
without a modifier when describing characteristics shared by both kinds of methods.

Defining a static method A method encapsulates a computation that is defined as a
sequence of statements. A method takes arguments (values of given data types) and
computes a return value of some data type that depends upon the arguments (such
as a value defined by a mathematical function) or causes a side effect that depends on
the arguments (such as printing a value). The static method rank() in BinarySearch

is an example of the first; main() is an ex-
ample of the second. Each static method
is composed of a signature (the keywords
public static followed by a return type,
the method name, and a sequence of ar-
guments, each with a declared type) and
a body (a statement block: a sequence of
statements, enclosed in curly braces). Ex-
amples of static methods are shown in the
table on the facing page.

Invoking a static method A call on a static
method is its name followed by expressions
that specify argument values in parenthe-

ses, separated by commas. When the method call is part of an expression, the method
computes a value and that value is used in place of the call in the expression. For ex-
ample the call on rank() in BinarySearch() returns an int value. A method call
followed by a semicolon is a statement that generally causes side effects. For example,
the call Arrays.sort() in main() in BinarySearch is a call on the system method
Arrays.sort() that has the side effect of putting the entries in the array in sorted
order. When a method is called, its argument variables are initialized with the values
of the corresponding expressions in the call. A return statement terminates a static
method, returning control to the caller. If the static method is to compute a value, that
value must be specified in a return statement (if such a static method can reach the
end of its sequence of statements without a return, the compiler will report the error).

signature

method
body

return statement

method
name

return
type

argument
variable

local
variables

argument
type

call on another method

public static double sqrt (double c)

{
 if (c < 0) return Double.NaN;
 double err = 1e-15;

 double t = c;
 while (Math.abs(t - c/t) > err * t)
 t = (c/t + t) / 2.0;
 return t;
}

Anatomy of a static method

22 Chapter 1 n Fundamentals

ptg12441863

task implementation

absolute value of an
int value

public static int abs(int x)
{
 if (x < 0) return -x;
 else return x;
}

absolute value of a
double value

public static double abs(double x)
{
 if (x < 0.0) return -x;
 else return x;
}

primality test

public static boolean isPrime(int N)
{
 if (N < 2) return false;
 for (int i = 2; i*i <= N; i++)
 if (N % i == 0) return false;
 return true;
}

square root
(Newton’s method)

public static double sqrt(double c)
{
 if (c < 0.0) return Double.NaN;
 double err = 1e-15;
 double t = c;
 while (Math.abs(t - c/t) > err * t)
 t = (c/t + t) / 2.0;
 return t;
}

hypotenuse of
a right triangle

public static double hypotenuse(double a, double b)
{ return Math.sqrt(a*a + b*b); }

Harmonic number
(see page 185)

public static double H(int N)
{
 double sum = 0.0;
 for (int i = 1; i <= N; i++)
 sum += 1.0 / i;
 return sum;
}

typical implementations of static methods

231.1 n Basic Programming Model

ptg12441863

Properties of methods A complete detailed description of the properties of methods
is beyond our scope, but the following points are worth noting:

n	 Arguments are passed by value. You can use argument variables anywhere in the
code in the body of the method in the same way you use local variables. The
only difference between an argument variable and a local variable is that the
argument variable is initialized with the argument value provided by the call-
ing code. The method works with the value of its arguments, not the arguments
themselves. One consequence of this approach is that changing the value of an
argument variable within a static method has no effect on the calling code. Gen-
erally, we do not change argument variables in the code in this book. The pass-
by-value convention implies that array arguments are aliased (see page 19)—the
method uses the argument variable to refer to the caller’s array and can change
the contents of the array (though it cannot change the array itself). For example,
Arrays.sort() certainly changes the contents of the array passed as argument:
it puts the entries in order.

n	 Method names can be overloaded. For example, the Java Math library uses
this approach to provide implementations of Math.abs(), Math.min(), and
Math.max() for all primitive numeric types. Another common use of overload-
ing is to define two different versions of a function, one that takes an argument
and another that uses a default value of that argument.

n	 A method has a single return value but may have multiple return statements. A
Java method can provide only one return value, of the type declared in the
method signature. Control goes back to the calling program as soon as the first
return statement in a static method is reached. You can put return statements
wherever you need them. Even though there may be multiple return statements,
any static method returns a single value each time it is invoked: the value follow-
ing the first return statement encountered.

n	 A method can have side effects. A method may use the keyword void as its return
type, to indicate that it has no return value. An explicit return is not necessary
in a void static method: control returns to the caller after the last statement.
A void static method is said to produce side effects (consume input, produce
output, change entries in an array, or otherwise change the state of the system).
For example, the main() static method in our programs has a void return type
because its purpose is to produce output. Technically, void methods do not
implement mathematical functions (and neither does Math.random(), which
takes no arguments but does produce a return value).

The instance methods that are the subject of Section 2.1 share these properties, though
profound differences surround the issue of side effects.

24 Chapter 1 n Fundamentals

ptg12441863

Recursion A method can call itself (if you are not comfortable with this idea, known
as recursion, you are encouraged to work Exercises 1.1.16 through 1.1.22). For ex-
ample, the code at the bottom of this page gives an alternate implementation of the
rank() method in BinarySearch. We often use recursive implementations of methods
because they can lead to compact, elegant code that is easier to understand than a cor-
responding implementation that does not use recursion. For example, the comment
in the implementation below provides a succinct description of what the code is sup-
posed to do. We can use this comment to convince ourselves that it operates correctly,
by mathematical induction. We will expand on this topic and provide such a proof for
binary search in Section 3.1. There are three important rules of thumb in developing
recursive programs:

n	 The recursion has a base case—we always include a conditional statement as the
first statement in the program that has a return.

n	 Recursive calls must address subproblems that are smaller in some sense, so
that recursive calls converge to the base case. In the code below, the difference
between the values of the fourth and the third arguments always decreases.

n	 Recursive calls should not address subproblems that overlap. In the code below,
the portions of the array referenced by the two subproblems are disjoint.

Violating any of these guidelines is likely to lead to incorrect results or a spectacularly
inefficient program (see Exercises 1.1.19 and 1.1.27). Adhering to them is likely to
lead to a clear and correct program whose performance is easy to understand. Another
reason to use recursive methods is that they lead to mathematical models that we can
use to understand performance. We address this issue for binary search in Section 3.2
and in several other instances throughout the book.

public static int rank(int key, int[] a)
{ return rank(key, a, 0, a.length - 1); }

public static int rank(int key, int[] a, int lo, int hi)
{ // Index of key in a[], if present, is not smaller than lo
 // and not larger than hi.
 if (lo > hi) return -1;

 int mid = lo + (hi - lo) / 2;
 if (key < a[mid]) return rank(key, a, lo, mid - 1);
 else if (key > a[mid]) return rank(key, a, mid + 1, hi);
 else return mid;
}

recursive implementation of binary search

251.1 n Basic Programming Model

ptg12441863

Basic programming model A library of static methods is a set of static methods that
are defined in a Java class, by creating a file with the keywords public class followed
by the class name, followed by the static methods, enclosed in braces, kept in a file with
the same name as the class and a .java extension. A basic model for Java programming
is to develop a program that addresses a specific computational task by creating a li-
brary of static methods, one of which is named main(). Typing java followed by a class
name followed by a sequence of strings leads to a call on main() in that class, with an
array containing those strings as argument. After the last statement in main() executes,
the program terminates. In this book, when we talk of a Java program for accomplishing
a task, we are talking about code developed along these lines (possibly also including
a data-type definition, as described in Section 1.2). For example, BinarySearch is a
Java program composed of two static methods, rank() and main(), that accomplishes
the task of printing numbers from an input stream that are not found in a whitelist file
given as command-line argument.

Modular programming Of critical importance in this model is that libraries of stat-
ic methods enable modular programming where we build libraries of static methods
(modules) and a static method in one library can call static methods defined in other
libraries. This approach has many important advantages. It allows us to

n	 Work with modules of reasonable size, even in program involving a large
amount of code

n	 Share and reuse code without having to reimplement it
n	 Easily substitute improved implementations
n	 Develop appropriate abstract models for addressing programming problems
n	 Localize debugging (see the paragraph below on unit testing)

For example, BinarySearch makes use of three other independently developed librar-
ies, our StdIn and In library and Java’s Arrays library. Each of these libraries, in turn,
makes use of several other libraries.

Unit testing A best practice in Java programming is to include a main() in every li-
brary of static methods that tests the methods in the library (some other programming
languages disallow multiple main() methods and thus do not support this approach).
Proper unit testing can be a significant programming challenge in itself. At a minimum,
every module should contain a main() method that exercises the code in the module
and provides some assurance that it works. As a module matures, we often refine the
main() method to be a development client that helps us do more detailed tests as we
develop the code, or a test client that tests all the code extensively. As a client becomes
more complicated, we might put it in an independent module. In this book, we use
main() to help illustrate the purpose of each module and leave test clients for exercises.

26 Chapter 1 n Fundamentals

ptg12441863

External libraries We use static methods from four different kinds of libraries, each
requiring (slightly) differing procedures for code reuse. Most of these are libraries of
static methods, but a few are data-type definitions that also include some static methods.

n	 The standard system libraries java.lang.*. These include Math, which contains
methods for commonly used mathematical functions; Integer and Double,
which we use for converting between strings of characters and
int and double values; String and StringBuilder, which
we discuss in detail later in this section and in Chapter 5; and
dozens of other libraries that we do not use.

n	 Imported system libraries such as java.util.Arrays. There
are thousands of such libraries in a standard Java release, but
we make scant use of them in this book. An import statement
at the beginning of the program is needed to use such libraries
(and signal that we are doing so).

n	 Other libraries in this book. For example, another program can
use rank() in BinarySearch. To use such a program, down-
load the source from the booksite into your working directory.

n	 The standard libraries Std* that we have developed for use
in this book (and our introductory book An Introduction to
Programming in Java: An Interdisciplinary Approach). These
libraries are summarized in the following several pages. Source
code and instructions for downloading them are available on
the booksite.

To invoke a method from another library (one in the same directory
or a specified directory, a standard system library, or a system library
that is named in an import statement before the class definition), we
prepend the library name to the method name for each call. For ex-
ample, the main() method in BinarySearch calls the sort() method
in the system library java.util.Arrays, the readInts() method in
our library In, and the println() method in our library StdOut.

Libraries of methods implemented by ourselves and by others in a modular
programming environment can vastly expand the scope of our programming model.
Beyond all of the libraries available in a standard Java release, thousands more are avail-
able on the web for applications of all sorts. To limit the scope of our programming
model to a manageable size so that we can concentrate on algorithms, we use just the
libraries listed in the table at right on this page, with a subset of their methods listed in
APIs, as described next.

standard system libraries

Math

Integer†

Double†

String†

StringBuilder

System

imported system libraries

java.util.Arrays

our standard libraries

StdIn

StdOut

StdDraw

StdRandom

StdStats

In†

Out†

† data type definitions that
include some static methods

Libraries with static
methods used in this book

271.1 n Basic Programming Model

ptg12441863

APIs A critical component of modular programming is documentation that explains
the operation of library methods that are intended for use by others. We will consis-
tently describe the library methods that we use in this book in application programming
interfaces (APIs) that list the library name and the signatures and short descriptions of
each of the methods that we use. We use the term client to refer to a program that calls
a method in another library and the term implementation to describe the Java code that
implements the methods in an API.

Example The following example, the API for commonly used static methods from the
standard Math library in java.lang, illustrates our conventions for APIs:

public class Math

static double abs(double a) absolute value of a
static double max(double a, double b) maximum of a and b
static double min(double a, double b) minimum of a and b

Note 1: abs(), max(), and min() are defined also for int, long, and float.

static double sin(double theta) sine function
static double cos(double theta) cosine function
static double tan(double theta) tangent function

Note 2: Angles are expressed in radians. Use toDegrees() and toRadians() to convert.
Note 3: Use asin(), acos(), and atan() for inverse functions.

static double exp(double a) exponential (e a)
static double log(double a) natural log (loge a, or ln a)
static double pow(double a, double b) raise a to the bth power (ab)

static double random() random number in [0, 1)
static double sqrt(double a) square root of a

static double E value of e (constant)
static double PI value of  (constant)

See booksite for other available functions.

apI for Java’s mathematics library (excerpts)

28 Chapter 1 n Fundamentals

ptg12441863

These methods implement mathematical functions—they use their arguments to com-
pute a value of a specified type (except random(), which does not implement a math-
ematical function because it does not take an argument). Since they all operate on
double values and compute a double result, you can consider them as extending the
double data type—extensibility of this nature is one of the characteristic features of
modern programming languages. Each method is described by a line in the API that
specifies the information you need to know in order to use the method. The Math li-
brary also defines the precise constant values PI (for ) and E (for e), so that you can
use those names to refer to those constants in your programs. For example, the value
of Math.sin(Math.PI/2) is 1.0 and the value of Math.log(Math.E) is 1.0 (because
Math.sin() takes its argument in radians and Math.log() implements the natural
logarithm function).

Java libraries Extensive online descriptions of thousands of libraries are part of every
Java release, but we excerpt just a few methods that we use in the book, in order to clear-
ly delineate our programming model. For example, BinarySearch uses the sort()
method from Java’s Arrays library, which we document as follows:

public class Arrays

static void sort(int[] a) put the array in increasing order

Note : This method is defined also for other primitive types and Object.

excerpt from Java’s Arrays library (java.util.Arrays)

The Arrays library is not in java.lang, so an import statement is needed to use it, as
in BinarySearch. Actually, Chapter 2 of this book is devoted to implementations of
sort() for arrays, including the mergesort and quicksort algorithms that are imple-
mented in Arrays.sort(). Many of the fundamental algorithms that we consider in
this book are implemented in Java and in many other programming environments. For
example, Arrays also includes an implementation of binary search. To avoid confusion,
we generally use our own implementations, although there is nothing wrong with using
a finely tuned library implementation of an algorithm that you understand.

291.1 n Basic Programming Model

ptg12441863

Our standard libraries We have developed a number of libraries that provide useful
functionality for introductory Java programming, for scientific applications, and for
the development, study, and application of algorithms. Most of these libraries are for
input and output; we also make use of the following two libraries to test and analyze
our implementations. The first extends Math.random() to allow us to draw random
values from various distributions; the second supports statistical calculations:

public class StdRandom

static void setSeed(long seed) initialize

static double random() real between 0 and 1

static int uniform(int N) integer between 0 and N-1

static int uniform(int lo, int hi) integer between lo and hi-1

static double uniform(double lo, double hi) real between lo and hi

static boolean bernoulli(double p) true with probability p

static double gaussian() normal, mean 0, std dev 1

static double gaussian(double m, double s) normal, mean m, std dev s

static int discrete(double[] a) i with probability a[i]

static void shuffle(double[] a) randomly shuffle the array a[]

Note: overloaded implementations of shuffle() are included for other primitive types and for Object.

apI for our library of static methods for random numbers

public class StdStats

static double max(double[] a) largest value

static double min(double[] a) smallest value

static double mean(double[] a) average

static double var(double[] a) sample variance

static double stddev(double[] a) sample standard deviation

static double median(double[] a) median

apI for our library of static methods for data analysis

30 Chapter 1 n Fundamentals

ptg12441863

The setSeed() method in StdRandom allows us to seed the random number genera-
tor so that we can reproduce experiments involving random numbers. For reference,
implementations of many of these methods are given on page 32. Some of these
methods are extremely easy to implement; why do we bother including them in a li-
brary? Answers to this question are standard for well-designed libraries:

n	 They implement a level of abstraction that allow us to focus on implement-
ing and testing the algorithms in the book, not generating random objects or
calculating statistics. Client code that uses such methods is clearer and easier to
understand than homegrown code that does the same calculation.

n	 Library implementations test for exceptional conditions, cover rarely encoun-
tered situations, and submit to extensive testing, so that we can count on them to
operate as expected. Such implementations might involve a significant amount
of code. For example, we often want implementations for various types of data.
For example, Java’s Arrays library includes multiple overloaded implementa-
tions of sort(), one for each type of data that you might need to sort.

These are bedrock considerations for modular programming in Java, but perhaps a bit
overstated in this case. While the methods in both of these libraries are essentially self-
documenting and many of them are not difficult to implement, some of them represent
interesting algorithmic exercises. Accordingly, you are well-advised to both study the
code in StdRandom.java and StdStats.java on the booksite and to take advantage
of these tried-and-true implementations. The easiest way to use these libraries (and to
examine the code) is to download the source code from the booksite and put them in
your working directory; various system-dependent mechanisms for using them with-
out making multiple copies are also described on the booksite.

Your own libraries It is worthwhile to consider every program that you write as a li-
brary implementation, for possible reuse in the future.

n	 Write code for the client, a top-level implementation that breaks the computa-
tion up into manageable parts.

n	 Articulate an API for a library (or multiple APIs for multiple libraries) of static
methods that can address each part.

n	 Develop an implementation of the API, with a main() that tests the methods
independent of the client.

Not only does this approach provide you with valuable software that you can later
reuse, but also taking advantage of modular programming in this way is a key to suc-
cessfully addressing a complex programming task.

311.1 n Basic Programming Model

ptg12441863

intended result implementation

random double
value in [a, b)

public static double uniform(double a, double b)
{ return a + StdRandom.random() * (b-a); }

random int
value in [0..N)

public static int uniform(int N)
{ return (int) (StdRandom.random() * N); }

random int
value in [lo..hi)

public static int uniform(int lo, int hi)
{ return lo + StdRandom.uniform(hi - lo); }

random int value drawn
from discrete distribution
(i with probability a[i])

public static int discrete(double[] a)
{ // Entries in a[] must sum to 1.
 double r = StdRandom.random();
 double sum = 0.0;
 for (int i = 0; i < a.length; i++)
 {
 sum = sum + a[i];
 if (sum >= r) return i;
 }
 return -1;
}

randomly shuffle the
elements in an array of

double values
(See Exercise 1.1.36)

public static void shuffle(double[] a)
{
 int N = a.length;
 for (int i = 0; i < N; i++)
 { // Exchange a[i] with random element in a[i..N-1]
 int r = i + StdRandom.uniform(N-i);
 double temp = a[i];
 a[i] = a[r];
 a[r] = temp;
 }
}

Implementations of static methods in StdRandom library

32 Chapter 1 n Fundamentals

ptg12441863

The purpose of an API is to separate the client from the implementation: the client
should know nothing about the implementation other than information given in the
API, and the implementation should not take properties of any particular client into
account. APIs enable us to separately develop code for various purposes, then reuse
it widely. No Java library can contain all the methods that we might need for a given
computation, so this ability is a crucial step in addressing complex programming ap-
plications. Accordingly, programmers normally think of the API as a contract between
the client and the implementation that is a clear specification of what each method is to
do. Our goal when developing an implementation is to honor the terms of the contract.
Often, there are many ways to do so, and separating client code from implementation
code gives us the freedom to substitute new and improved implementations. In the
study of algorithms, this ability is an important ingredient in our ability to understand
the impact of algorithmic improvements that we develop.

331.1 n Basic Programming Model

ptg12441863

Strings A String is a sequence of characters (char values). A literal String is a
sequence of characters within double quotes, such as "Hello, World". The data type
String is a Java data type but it is not a primitive type. We consider String now be-
cause it is a fundamental data type that almost every Java program uses.

Concatenation Java has a built-in concatenation operator (+) for String like the
built-in operators that it has for primitive types, justifying the addition of the row in
the table below to the primitive-type table on page 12. The result of concatenating two
String values is a single String value, the first string followed by the second.

Conversion Two primary uses of strings are to convert values that we can enter on a
keyboard into data-type values and to convert data-type values to values that we can
read on a display. Java has built-in operations for String to facilitate these operations.
In particular, the language includes libraries Integer and Double that contain static
methods to convert between String values and int values and between String values
and double values, respectively.

public class Integer

static int parseInt(String s) convert s to an int value

static String toString(int i) convert i to a String value

public class Double

static double parseDouble(String s) convert s to a double value

static String toString(double x) convert x to a String value

apIs for conversion between numbers and String values

type set of values typical literals operators
typical expressions

expression value

String
character
sequences

"AB"
"Hello"
"2.5"

+
(concatenate)

"Hi, " + "Bob"

"12" + "34"

"1" + "+" + "2"

"Hi, Bob"

"1234"

"1+2"

Java’s String data type

34 Chapter 1 n Fundamentals

ptg12441863

Automatic conversion We rarely explicitly use the static toString() methods just
described because Java has a built-in mechanism that allows us to convert from any data
type value to a String value by using concatenation: if one of the arguments of + is a
String, Java automatically converts the other argument to a String (if it is not already
a String). Beyond usage like "The square root of 2.0 is " + Math.sqrt(2.0)
this mechanism enables conversion of any data-type value to a String, by concatenat-
ing it with the empty string "".

Command-line arguments One important use of strings in Java programming is to
enable a mechanism for passing information from the command line to the program.
The mechanism is simple. When you type the java command followed by a library
name followed by a sequence of strings, the Java system invokes the main() method in
that library with an array of strings as argument: the strings typed after the library name.
For example, the main() method in BinarySearch takes one command-line argument,
so the system creates an array of size one. The program uses that value, args[0], to
name the file containing the whitelist, for use as the argument to In.readInts(). An-
other typical paradigm that we often use in our code is when a command-line argu-
ment is intended to represent a number, so we use parseInt() to convert to an int
value or parseDouble() to convert to a double value.

Computing with strings is an essential component of modern computing. For the
moment, we make use of String just to convert between external representation of
numbers as sequences of characters and internal representation of numeric data-type
values. In Section 1.2, we will see that Java supports many, many more operations on
String values that we use throughout the book; in Section 1.4, we will examine the
internal representation of String values; and in Chapter 5, we consider in depth al-
gorithms that process String data. These algorithms are among the most interesting,
intricate, and impactful methods that we consider in this book.

351.1 n Basic Programming Model

ptg12441863

Input and output The primary purpose of our standard libraries for input, out-
put, and drawing is to support a simple model for Java programs to interact with the
outside world. These libraries are built upon extensive capabilities that are available in
Java libraries, but are generally much more complicated and much more difficult to

learn and use. We begin by briefly reviewing the model.
In our model, a Java program takes input values from

command-line arguments or from an abstract stream of
characters known as the standard input stream and writes
to another abstract stream of characters known as the
standard output stream.

Necessarily, we need to consider the interface between
Java and the operating system, so we need to briefly dis-
cuss basic mechanisms that are provided by most modern
operating systems and program-development environ-
ments. You can find more details about your particular
system on the booksite. By default, command-line argu-
ments, standard input, and standard output are associated

with an application supported by either the operating system or the program develop-
ment environment that takes commands. We use the generic term terminal window to
refer to the window maintained by this application, where we type and read text. Since
early Unix systems in the 1970s this model has proven to be a convenient and direct way
for us to interact with our programs and data. We add to the classical model a standard
drawing that allows us to create visual representations for data analysis.

Commands and arguments In the terminal window, we see a prompt, where we type
commands to the operating system that may take arguments. We use only a few com-
mands in this book, shown in the table below. Most often, we use the java command,
to run our programs. As mentioned on page 35, Java classes have a main() static
method that takes a String array args[] as its argument. That array is the sequence
of command-line arguments that we type, provided to Java by the operating system.

By convention, both Java and
the operating system process
the arguments as strings. If
we intend for an argument to
be a number, we use a method
such as Integer.parseInt()
to convert it from String to
the appropriate type.

standard input command-line
arguments

standard output

standard drawing

file I/O

A bird’s-eye view of a Java program

command arguments purpose

javac .java file name compile Java program

java
.class file name (no extension)
and command-line arguments

run Java program

more any text file name print file contents

typical operating-system commands

36 Chapter 1 n Fundamentals

ptg12441863

Standard output Our StdOut library provides sup-
port for standard output. By default, the system con-
nects standard output to the terminal window. The
print() method puts its argument on standard out-
put; the println() method adds a newline; and the
printf() method supports formatted output, as de-
scribed next. Java provides a similar method in its
System.out library; we use StdOut to treat standard
input and standard output in a uniform manner (and
to provide a few technical improvements).

public class StdOut

static void print(String s) print s

static void println(String s) print s, followed by newline

static void println() print a new line

static void printf(String f, ...) formatted print

Note: overloaded implementations are included for primitive types and for Object.

apI for our library of static methods for standard output

To use these methods, download into
your working directory StdOut.java
from the booksite and use code such as
StdOut.println("Hello, World");
to call them. A sample client is shown
at right.

Formatted output In its simplest
form, printf() takes two arguments.
The first argument is a format string
that describes how the second argu-
ment is to be converted to a string for
output. The simplest type of format
string begins with % and ends with a
one-letter conversion code. The conversion codes that we
use most frequently are d (for decimal values from Java’s
integer types), f (for floating-point values), and s (for
String values). Between the % and the conversion code
is an integer value that specifies the field width of the

% java RandomSeq 5 100.0 200.0
123.43
153.13
144.38
155.18
104.02

public class RandomSeq
{
 public static void main(String[] args)
 { // Print N random values in (lo, hi).
 int N = Integer.parseInt(args[0]);
 double lo = Double.parseDouble(args[1]);
 double hi = Double.parseDouble(args[2]);
 for (int i = 0; i < N; i++)
 {
 double x = StdRandom.uniform(lo, hi);
 StdOut.printf("%.2f\n", x);
 }
 }
}

Sample StdOut client

prompt

invoke
Java

runtime

call the static method
main() in RandomSeq

args[0]
args[1]

args[2]

 % java RandomSeq 5 100.0 200.0

Anatomy of a command

371.1 n Basic Programming Model

ptg12441863

converted value (the number of characters in the converted output string). By default,
blank spaces are added on the left to make the length of the converted output equal to
the field width; if we want the spaces on the right, we can insert a minus sign before the
field width. (If the converted output string is bigger than the field width, the field width
is ignored.) Following the width, we have the option of including a period followed by
the number of digits to put after the decimal point (the precision) for a double value
or the number of characters to take from the beginning of the string for a String value.
The most important thing to remember about using printf() is that the conversion
code in the format and the type of the corresponding argument must match. That is, Java
must be able to convert from the type of the argument to the type required by the con-
version code. The first argument of printf() is a String that may contain characters
other than a format string. Any part of the argument that is not part of a format string
passes through to the output, with the format string replaced by the argument value
(converted to a String as specified). For example, the statement

StdOut.printf("PI is approximately %.2f\n", Math.PI);

prints the line

PI is approximately 3.14

Note that we need to explicitly include the newline character \n in the argument in
order to print a new line with printf(). The printf() function can take more than
two arguments. In this case, the format string will have a format specifier for each ad-
ditional argument, perhaps separated by other characters to pass through to the out-
put. You can also use the static method String.format() with arguments exactly as
just described for printf() to get a formatted string without printing it. Formatted
printing is a convenient mechanism that allows us to develop compact code that can
produce tabulated experimental data (our primary use in this book).

type code
typical
literal

sample
format strings

converted string
values for output

int d 512
"%14d"
"%-14d"

" 512"
"512 "

double f 1595.1680010754388
"%14.2f"
"%.7f"
"%14.4e"

" 1595.17"
"1595.1680011"
" 1.5952e+03"e

String s "Hello, World"
"%14s"
"%-14s"
"%-14.5s"

" Hello, World"
"Hello, World "
"Hello "

Format conventions for printf() (see the booksite for many other options)

38 Chapter 1 n Fundamentals

ptg12441863

Standard input Our StdIn library
takes data from the standard input
stream that may be empty or may
contain a sequence of values sepa-
rated by whitespace (spaces, tabs,
newline characters, and the like). By
default, the system connects stan-
dard output to the terminal win-
dow—what you type is the input
stream (terminated by <ctrl-d> or
<ctrl-z>, depending on your termi-
nal window application). Each value
is a String or a value from one of
Java’s primitive types. One of the key
features of the standard input stream
is that your program consumes values when it reads them. Once
your program has read a value, it cannot back up and read it again.
This assumption is restrictive, but it reflects physical characteristics
of some input devices and simplifies implementing the abstrac-
tion. Within the input stream model, the static methods in this li-
brary are largely self-documenting (described by their signatures).

public class StdIn

static boolean isEmpty() true if no more values, false otherwise

static int readInt() read a value of type int

static double readDouble() read a value of type double

static float readFloat() read a value of type float

static long readLong() read a value of type long

static boolean readBoolean() read a value of type boolean

static char readChar() read a value of type char

static byte readByte() read a value of type byte

static String readString() read a value of type String

static boolean hasNextLine() is there another line in the input stream?

static String readLine() read the rest of the line

static String readAll() read the rest of the input stream

apI for our library of static methods for standard input

public class Average
{
 public static void main(String[] args)
 { // Average the numbers on StdIn.
 double sum = 0.0;
 int cnt = 0;
 while (!StdIn.isEmpty())
 { // Read a number and cumulate the sum.
 sum += StdIn.readDouble();
 cnt++;
 }
 double avg = sum / cnt;
 StdOut.printf("Average is %.5f\n", avg);
 }
}

Sample StdIn client

% java Average
1.23456
2.34567
3.45678
4.56789
<ctrl-d>
Average is 2.90123

391.1 n Basic Programming Model

ptg12441863

Redirection and piping Standard input and output enable us to take advantage of
command-line extensions supported by many operating-systems. By adding a simple
directive to the command that invokes a program, we can redirect its standard output
to a file, either for permanent storage or for input to another program at a later time:

% java RandomSeq 1000 100.0 200.0 > data.txt

This command specifies that the standard output stream is not to be printed in the ter-
minal window, but instead is to be written to a text file named data.txt. Each call to

StdOut.print() or StdOut.println()
appends text at the end of that file. In
this example, the end result is a file that
contains 1,000 random values. No out-
put appears in the terminal window: it
goes directly into the file named after
the > symbol. Thus, we can save away
information for later retrieval. Note that
we do not have to change RandomSeq in
any way—it is using the standard out-
put abstraction and is unaffected by our
use of a different implementation of
that abstraction. Similarly, we can redi-
rect standard input so that StdIn reads
data from a file instead of the terminal
application:

% java Average < data.txt

This command reads a sequence of
numbers from the file data.txt and
computes their average value. Specifi-
cally, the < symbol is a directive that tells
the operating system to implement the
standard input stream by reading from
the text file data.txt instead of waiting
for the user to type something into the

terminal window. When the program calls StdIn.readDouble(), the operating system
reads the value from the file. Combining these to redirect the output of one program to
the input of another is known as piping:

% java RandomSeq 1000 100.0 200.0 | java Average

redirecting standard output to a �le

piping the output of one program to the input of another

redirecting from a �le to standard input

standard input

Average

% java Average < data.txt

data.txt

standard output

RandomSeq

% java RandomSeq 1000 100.0 200.0 > data.txt

data.txt

standard inputstandard output

RandomSeq

% java RandomSeq 1000 100.0 200.0 | java Average

Average

Redirection and piping from the command line

40 Chapter 1 n Fundamentals

ptg12441863

This command specifies that standard output for RandomSeq and standard input for
Average are the same stream. The effect is as if RandomSeq were typing the numbers it
generates into the terminal window while Average is running. This difference is pro-
found, because it removes the limitation on the size of the input and output streams that
we can process. For example, we could replace 1000 in our example with 1000000000,
even though we might not have the space to save a billion numbers on our computer
(we do need the time to process them). When RandomSeq calls StdOut.printf(), a
string is added to the end of the stream; when Average calls StdIn.readDouble(),
a string is removed from the beginning of the stream. The timing of precisely what
happens is up to the operating system: it might run RandomSeq until it produces some
numbers, and then run Average to consume those numbers, or it might run Average
until it needs to consume a number, and then run RandomSeq until it produces the
needed number. The end result is the same, but our programs are freed from worry-
ing about such details because they work solely with the standard input and standard
output abstractions.

Input and output from a file Our In and Out libraries provide static methods that
implement the abstraction of reading from and writing to a file the contents of an ar-
ray of values of a primitive type (or String). We use readInts(), readDoubles(),
and readStrings() in the In library and writeInts(), writeDoubles(), and
writeStrings() in the Out library. The named argument can be a file or a web page.
For example, this ability allows us to use a file and standard input for two different pur-
poses in the same program, as in BinarySearch. The In and Out libraries also imple-
ment data types with instance methods that allow us the more general ability to treat
multiple files as input and output streams, and web pages as input streams, so we will
revisit them in Section 1.2.

public class In

static int[] readInts(String name) read int values

static double[] readDoubles(String name) read double values

static String[] readStrings(String name) read String values

public class Out

static void write(int[] a, String name) write int values

static void write(double[] a, String name) write double values

static void write(String[] a, String name) write String values

Note 1: Other primitive types are supported.
Note 2: StdIn and StdOut are supported (omit name argument).

apIs for our static methods for reading and writing arrays

411.1 n Basic Programming Model

ptg12441863

Standard drawing (basic methods) Up to this point,
our input/output abstractions have focused exclusively
on text strings. Now we introduce an abstraction for
producing drawings as output. This library is easy to
use and allows us to take advantage of a visual medi-
um to cope with far more information than is possible
with just text. As with standard input/output, our stan-
dard drawing abstraction is implemented in a library
StdDraw that you can access by downloading the file
StdDraw.java from the booksite into your working
directory. Standard draw is very simple: we imagine an
abstract drawing device capable of drawing lines and
points on a two-dimensional canvas. The device is ca-
pable of responding to the commands to draw basic
geometric shapes that our programs issue in the form
of calls to static methods in StdDraw, including meth-
ods for drawing lines, points, text strings, circles, rect-
angles, and polygons. Like the methods for standard
input and standard output, these methods are nearly
self-documenting: StdDraw.line() draws a straight
line segment connecting the point (x0 , y0) with the
point (x1 , y1) whose coordinates are given as arguments.
StdDraw.point() draws a spot centered on the point
(x, y) whose coordinates are given as arguments, and so
forth, as illustrated in the diagrams at right. Geometric
shapes can be filled (in black, by default). The default
scale is the unit square (all coordinates are between 0
and 1). The standard implementation displays the can-
vas in a window on your computer’s screen, with black
lines and points on a white background.

(x0, y0)

(x1, y1)

(x2, y2)
(x3, y3)

double[] x = {x0, x1, x2, x3};
double[] y = {y0, y1, y2, y3};
StdDraw.polygon(x, y);

(x, y)

StdDraw.circle(x, y, r);

StdDraw.square(x, y, r);

r

(x, y)

r

r

StdDraw examples

(1, 1)

StdDraw.point(x0, y0);
StdDraw.line(x1, y1, x2, y2);

(x0, y0)

(x2, y2)

(x1, y1)

(0, 0)

42 Chapter 1 n Fundamentals

ptg12441863

public class StdDraw

static void line(double x0, double y0, double x1, double y1)

static void point(double x, double y)

static void text(double x, double y, String s)

static void circle(double x, double y, double r)

static void filledCircle(double x, double y, double r)

static void ellipse(double x, double y, double rw, double rh)

static void filledEllipse(double x, double y, double rw, double rh)

static void square(double x, double y, double r)

static void filledSquare(double x, double y, double r)

static void rectangle(double x, double y, double rw, double rh)

static void filledRectangle(double x, double y, double rw, double rh)

static void polygon(double[] x, double[] y)

static void filledPolygon(double[] x, double[] y)

apI for our library of static methods for standard drawing (drawing methods)

Standard drawing (control methods) The library also includes methods to change
the scale and size of the canvas, the color and width of the lines, the text font, and
the timing of drawing (for use in animation). As arguments for setPenColor() you
can use one of the predefined colors BLACK, BLUE, CYAN, DARK_GRAY, GRAY, GREEN,
LIGHT_GRAY, MAGENTA, ORANGE, PINK, RED, BOOK_RED, WHITE, and YELLOW that are de-
fined as constants in StdDraw (so we refer to one of them with code like StdDraw.RED).
The window also includes a menu option to save your drawing to a file, in a format
suitable for publishing on the web.

public class StdDraw

static void setXscale(double x0, double x1) reset x range to (x0 , x1)

static void setYscale(double y0, double y1) reset y range to (y0 , y1)

static void setPenRadius(double r) set pen radius to r

static void setPenColor(Color c) set pen color to c

static void setFont(Font f) set text font to f

static void setCanvasSize(int w, int h) set canvas to w-by-h window

static void clear(Color c) clear the canvas; color it c

static void show(int dt) show all; pause dt milliseconds

apI for our library of static methods for standard drawing (control methods)

431.1 n Basic Programming Model

ptg12441863

In this book, we use StdDraw for data analysis and for creating visual representations
of algorithms in operation. The table on the opposite page indicates some possiblities;
we will consider many more examples in the text and the exercises throughout the
book. The library also supports animation—of course, this topic is treated primarily
on the booksite.

44 Chapter 1 n Fundamentals

ptg12441863

data plot implementation (code fragment) result

function
values

int N = 100;
StdDraw.setXscale(0, N);
StdDraw.setYscale(0, N*N);
StdDraw.setPenRadius(.01);
for (int i = 1; i <= N; i++)
{
 StdDraw.point(i, i);
 StdDraw.point(i, i*i);
 StdDraw.point(i, i*Math.log(i));
}

array of
random
values

int N = 50;
double[] a = new double[N];
for (int i = 0; i < N; i++)
 a[i] = StdRandom.random();
for (int i = 0; i < N; i++)
{
 double x = 1.0*i/N;
 double y = a[i]/2.0;
 double rw = 0.5/N;
 double rh = a[i]/2.0;
 StdDraw.filledRectangle(x, y, rw, rh);
}

sorted array
of random

values

int N = 50;
double[] a = new double[N];
for (int i = 0; i < N; i++)
 a[i] = StdRandom.random();
Arrays.sort(a);
for (int i = 0; i < N; i++)
{
 double x = 1.0*i/N;
 double y = a[i]/2.0;
 double rw = 0.5/N;
 double rh = a[i]/2.0;
 StdDraw.filledRectangle(x, y, rw, rh);
}

StdDraw plotting examples

451.1 n Basic Programming Model

ptg12441863

Binary search The sample Java program that we started with, shown on the facing
page, is based on the famous, effective, and widely used binary search algorithm. This
example is a prototype of the way in which we will examine new algorithms throughout
the book. As with all of the programs we consider, it is both a precise definition of the
method and a complete Java implementation that you can download from the booksite.

Binary search We will study the binary search algorithm in detail in Section 3.2,
but a brief description is appropriate here. The algorithm is implemented in the static

method rank(), which takes an integer key and
a sorted array of int values as arguments and re-
turns the index of the key if it is present in the
array, -1 otherwise. It accomplishes this task by
maintaining variables lo and hi such that the key
is in a[lo..hi] if it is in the array, then entering
into a loop that tests the middle entry in the in-
terval (at index mid). If the key is equal to a[mid],
the return value is mid; otherwise the method cuts
the interval size about in half, looking at the left
half if the key is less than a[mid] and at the right
half if the key is greater than a[mid]. The process
terminates when the key is found or the interval is
empty. Binary search is effective because it needs
to examine just a few ar-
ray entries (relative to the
size of the array) to find
the key (or determine that
it is not there).

Development client For every algorithm implementation,
we include a development client main() that you can use with
sample input files provided in the book and on the booksite
to learn about the algorithm and to test its performance. In
this example, the client reads integers from the file named on
the command line, then prints any integers to standard output
that do not appear in the file. We use small test files such as
those shown at right to demonstrate this behavior, and as the
basis for traces and examples such as those at left above. We
use large test files to model real-world applications and to test
performance (see page 48).

10 11 12 16 18 23 29 33 48 54 57 68 77 84 98

10 11 12 16 18 23 29 33 48 54 57 68 77 84 98

10 11 12 16 18 23 29 33 48 54 57 68 77 84 98

successful search for 23
lo mid hi

lo mid hi

lo mid hi

10 11 12 16 18 23 29 33 48 54 57 68 77 84 98

10 11 12 16 18 23 29 33 48 54 57 68 77 84 98

10 11 12 16 18 23 29 33 48 54 57 68 77 84 98

10 11 12 16 18 23 29 33 48 54 57 68 77 84 98

10 11 12 16 18 23 29 33 48 54 57 68 77 84 98

Binary search in an ordered array

unsuccessful search for 50

lo mid hi

lo mid hi

lo mid

hi lo

hi

lo mid hi

84
48
68
10
18
98
12
23
54
57
48
33
16
77
11
29

tinyW.txt

23
50
10
99
18
23
98
84
11
10
48
77
13
54
98
77
77
68

tinyT.txt

Small test �les for
BinarySearch test client

not in
tinyW.txt

46 Chapter 1 n Fundamentals

ptg12441863

Binary Search

import java.util.Arrays;

public class BinarySearch
{
 public static int rank(int key, int[] a)
 { // Array must be sorted.
 int lo = 0;
 int hi = a.length - 1;
 while (lo <= hi)
 { // Key is in a[lo..hi] or not present.
 int mid = lo + (hi - lo) / 2;
 if (key < a[mid]) hi = mid - 1;
 else if (key > a[mid]) lo = mid + 1;
 else return mid;
 }
 return -1;
 }

 public static void main(String[] args)
 {
 int[] whitelist = In.readInts(args[0]);

 Arrays.sort(whitelist);

 while (!StdIn.isEmpty())
 { // Read key, print if not in whitelist.
 int key = StdIn.readInt();
 if (rank(key, whitelist) == -1)
 StdOut.println(key);
 }

 }

}

This program takes the name of a whitelist file (a sequence of integers) as argument and filters any
entry that is on the whitelist from standard input, leaving only integers that are not on the whitelist
on standard output. It uses the binary search algorithm, implemented in the static method rank(),
to accomplish the task efficiently. See Sec-
tion 3.1 for a full discussion of the binary
search algorithm, its correctness, its per-
formance analysis, and its applications.

% java BinarySearch tinyW.txt < tinyT.txt
50
99
13

471.1 n Basic Programming Model

ptg12441863

Whitelisting When possible, our development clients are intended to mirror practical
situations and demonstrate the need for the algorithm at hand. In this case, the process
is known as whitelisting. Specifically, imagine a credit card company that needs to check
whether customer transactions are for a valid account. To do so, it can

n	 Keep customers account numbers in a file, which we refer to as a whitelist.
n	 Produce the account number associated with each transaction in the standard

input stream.
n	 Use the test client to put onto standard output the numbers that are not associat-

ed with any customer. Presumably the company would refuse such transactions.
It would not be unusual for a big company with millions of customers to have to pro-
cess millions of transactions or more. To model this situation, we provide on the book-
site the files largeW.txt (1 million integers) and largeT.txt (10 million integers).

Performance A working program is often not sufficient. For example, a much simpler
implementation of rank(), which does not even require the array to be sorted, is to
check every entry, as follows:

public static int rank(int key, int[] a)
{
 for (int i = 0; i < a.length; i++)
 if (a[i] == key) return i;
 return -1;
}

Given this simple and easy-to-understand solution, why do we use mergesort and bi-
nary search? If you work Exercise 1.1.38, you will see that your computer is too slow
to run this brute-force implementation of rank() for large numbers of inputs (say, 1
million whitelist entries and 10 million transactions). Solving the whitelist problem for
a large number of inputs is not feasible without efficient algorithms such as binary search
and mergesort. Good performance is often of critical importance, so we lay the ground-
work for studying performance in Section 1.4 and analyze the performance character-
istics of all of our algorithms (including binary search, in Section 3.1 and mergesort,
in Section 2.2).

In the present context, our goal in thoroughly outlining our programming model
is to ensure that you can run code like BinarySearch on your computer, use it on test
data like ours, and modify it to adapt to various situations (such as those described in
the exercises at the end of this section), in order to best understand its applicability.
The programming model that we have sketched is designed to facilitate such activities,
which are crucial to our approach to studying algorithms.

48 Chapter 1 n Fundamentals

ptg12441863

489910
 18940
774392
490636
125544
407391
115771
992663
923282
176914
217904
571222
519039
395667
 ...

944443
293674
572153
600579
499569
984875
763178
295754
 44696
207807
138910
903531
140925
699418
759984
199694
774549
635871
161828
805380
 ...

% java BinarySearch largeW.txt < largeT.txt
499569
984875
295754
207807
140925
161828
 ...

largeW.txt largeT.txt

Large �les for BinarySearch test client

not in
largeW.txt

1,000,000
int values

367,966
int values

10,000,000
int values

491.1 n Basic Programming Model

ptg12441863

Perspective In this section, we have described a fine and complete programming
model that served (and still serves) many programmers for many decades. Modern
programming, however, goes one step further. This next level is called data abstraction,
sometimes known as object-oriented programming, and is the subject of the next sec-
tion. Simply put, the idea behind data abstraction is to allow a program to define data
types (sets of values and sets of operations on those values), not just static methods that
operate on predefined data types.

Object-oriented programming has come into widespread use in recent decades, and
data abstraction is central to modern program development. We embrace data abstrac-
tion in this book for three primary reasons:

n	 It enables us to expand our ability to reuse code through modular programming.
For example, our sorts in Chapter 2 and binary search and other algorithms in
Chapter 3 allow clients to make use of the same code for any type of data (not
just integers), including one defined by the client.

n	 It provides a convenient mechanism for building so-called linked data structures
that provide more flexibility than arrays and are the basis of efficient algorithms
in many settings.

n	 It enables us to precisely define the algorithmic challenges that we face. For ex-
ample, our union-find algorithms in Section 1.5, our priority-queue algorithms
in Section 2.4, and our symbol-table algorithms in Chapter 3 are all oriented
toward defining data structures that enable efficient implementations of a set of
operations. This challenge aligns perfectly with data abstraction.

Despite all of these considerations, our focus remains on the study of algorithms. In
this context, we proceed to consider next the essential features of object-oriented pro-
gramming that are relevant to our mission.

50 Chapter 1 n Fundamentals

ptg12441863

Q&A

Q. What is Java bytecode?

A. A low-level version of your program that runs on the Java virtual machine. This level
of abstraction makes it easier for the developers of Java to ensure that our programs run
on a broad variety of devices.

Q. It seems wrong that Java should just let ints overflow and give bad values. Shouldn’t
Java automatically check for overflow?

A. This issue is a contentious one among programmers. The short answer is that the
lack of such checking is one reason such types are called primitive data types. A little
knowledge can go a long way in avoiding such problems. We use the int type for small
numbers (less than ten decimal digits), and the long type when values run into the bil-
lions or more.

Q. What is the value of Math.abs(-2147483648)?

A. -2147483648. This strange (but true) result is a typical example of the effects of
integer overflow.

Q. How can I initialize a double variable to infinity?

A. Java has built-in constants available for this purpose: Double.POSITIVE_INFINITY
and Double.NEGATIVE_INFINITY.

Q. Can you compare a double to an int?

A. Not without doing a type conversion, but remember that Java usually does the req-
uisite type conversion automatically. For example, if x is an int with the value 3, then
the expression (x < 3.1) is true—Java converts x to double (because 3.1 is a double
literal) before performing the comparison.

Q. What happens if I use a variable before initializing it to a value?

A. Java will report a compile-time error if there is any path through your code that
would lead to use of an uninitialized variable.

Q. What are the values of 1/0 and 1.0/0.0 as Java expressions?

A. The first generates a runtime exception for division by zero (which stops your pro-
gram because the value is undefined); the second has the value Infinity.

511.1 n Basic Programming Model

ptg12441863

Q. Can you use < and > to compare String variables?

A. No. Those operators are defined only for primitive types. See page 80.

Q. What is the result of division and remainder for negative integers?

A. The quotient a/b rounds toward 0; the remainder a % b is defined such that (a /
b) * b + a % b is always equal to a. For example, -14/3 and 14/-3 are both -4, but
-14 % 3 is -2 and 14 % -3 is 2.

Q. Why do we say (a && b) and not (a & b)?

A. The operators &, |, and ^ are bitwise logical operations for integer types that do and,
or, and exclusive or (respectively) on each bit position. Thus the value of 10 & 6 is 2, the
value of 10 | 6 is 14, and the value of 10 ^ 6 is 12. We use these operators rarely (but
occasionally) in this book. The operators && and || are valid only in boolean expres-
sions; they differ from the operators & and | because of short-circuiting: an expression
is evaluated left-to-right and the evaluation stops when the value is known.

Q. Is ambiguity in nested if statements a problem?

A. Yes. In Java, when you write

if <expr1> if <expr2> <stmntA> else <stmntB>

it is equivalent to

if <expr1> { if <expr2> <stmntA> else <stmntB> }

even if you might have been thinking

if <expr1> { if <expr2> <stmntA> } else <stmntB>

Using explicit braces is a good way to avoid this dangling else pitfall.

Q. What is the difference between a for loop and its while formulation?

A. The code in the for loop header is considered to be in the same block as the for
loop body. In a typical for loop, the incrementing variable is not available for use in
later statements; in the corresponding while loop, it is. This distinction is often a rea-
son to use a while instead of a for loop.

Q. Some Java programmers use int a[] instead of int[] a to declare arrays. What’s
the difference?

Q&A (continued)

52 Chapter 1 n Fundamentals

ptg12441863

A. In Java, both are legal and equivalent. The former is how arrays are declared in C.
The latter is the preferred style in Java since the type of the variable int[] more clearly
indicates that it is an array of integers.

Q. Why do array indices start at 0 instead of 1?

A. This convention originated with machine-language programming, where the ad-
dress of an array element would be computed by adding the index to the address of the
beginning of an array. Starting indices at 1 would entail either a waste of space at the
beginning of the array or a waste of time to subtract the 1.

Q. If a[] is an array, why does StdOut.println(a) print out a hexadecimal integer,
such as @f62373 , instead of the elements of the array?

A. Good question. Typically, it prints the memory address of the array, which, unfor-
tunately, is rarely what you want. Instead, you can first call Arrays.toString(a).

Q. Why are we not using the standard Java libraries for input and graphics?

A. We are using them, but we prefer to work with simpler abstract models. The Java
libraries behind StdIn and StdDraw are built for production programming, and the
libraries and their APIs are a bit unwieldy. To get an idea of what they are like, look at
the code in StdIn.java and StdDraw.java.

Q. Can my program reread data from standard input?

A. No. You only get one shot at it, in the same way that you cannot undo println().

Q. What happens if my program attempts to read after standard input is exhausted?

A. You will get an error. StdIn.isEmpty() allows you to avoid such an error by check-
ing whether there is more input available.

Q. What does this error message mean?

 Exception in thread "main" java.lang.NoClassDefFoundError: StdIn

A. You probably forgot to put StdIn.java in your working directory.

Q. Can a static method take another static method as an argument in Java?

A. No. Good question, since many other languages do support this capability.

531.1 n Basic Programming Model

ptg12441863

ExErcisEs

1.1.1 Give the value of each of the following expressions:

a. (0 + 15) / 2

b. 2.0e-6 * 100000000.1

c. true && false || true && true

1.1.2 Give the type and value of each of the following expressions:

a. (1 + 2.236)/2

b. 1 + 2 + 3 + 4.0

c. 4.1 >= 4

d. 1 + 2 + "3"

1.1.3 Write a program that takes three integer command-line arguments and prints
equal if all three are equal, and not equal otherwise.

1.1.4 What (if anything) is wrong with each of the following statements?

a. if (a > b) then c = 0;

b. if a > b { c = 0; }

c. if (a > b) c = 0;

d. if (a > b) c = 0 else b = 0;

1.1.5 Write a code fragment that prints true if the double variables x and y are both
strictly between 0 and 1 and false otherwise.

1.1.6 What does the following program print?

int f = 0;
int g = 1;
for (int i = 0; i <= 15; i++)
{
 StdOut.println(f);
 f = f + g;
 g = f - g;
}

54 Chapter 1 n Fundamentals

ptg12441863

1.1.7 Give the value printed by each of the following code fragments:

a. double t = 9.0;
 while (Math.abs(t - 9.0/t) > .001)
 t = (9.0/t + t) / 2.0;

 StdOut.printf("%.5f\n", t);

b. int sum = 0;
 for (int i = 1; i < 1000; i++)

 for (int j = 0; j < i; j++)

 sum++;

 StdOut.println(sum);

c. int sum = 0;
 for (int i = 1; i < 1000; i *= 2)

 for (int j = 0; j < 1000; j++)

 sum++;

 StdOut.println(sum);

1.1.8 What do each of the following print?

a. System.out.println('b');

b. System.out.println('b' + 'c');

c. System.out.println((char) ('a' + 4));

Explain each outcome.

1.1.9 Write a code fragment that puts the binary representation of a positive integer N
into a String s.

Solution: Java has a built-in method Integer.toBinaryString(N) for this job, but
the point of the exercise is to see how such a method might be implemented. Here is a
particularly concise solution:

String s = "";
for (int n = N; n > 0; n /= 2)
 s = (n % 2) + s;

551.1 n Basic Programming Model

ptg12441863

1.1.10 What is wrong with the following code fragment?

int[] a;
for (int i = 0; i < 10; i++)
 a[i] = i * i;

Solution: It does not allocate memory for a[] with new. This code results in a
variable a might not have been initialized compile-time error.

1.1.11 Write a code fragment that prints the contents of a two-dimensional boolean
array, using * to represent true and a space to represent false. Include row and column
numbers.

1.1.12 What does the following code fragment print?

int[] a = new int[10];
for (int i = 0; i < 10; i++)
 a[i] = 9 - i;
for (int i = 0; i < 10; i++)
 a[i] = a[a[i]];
for (int i = 0; i < 10; i++)
 System.out.println(a[i]);

1.1.13 Write a code fragment to print the transposition (rows and columns changed)
of a two-dimensional array with M rows and N columns.

1.1.14 Write a static method lg() that takes an int value N as argument and returns
the largest int not larger than the base-2 logarithm of N. Do not use Math.

1.1.15 Write a static method histogram() that takes an array a[] of int values and
an integer M as arguments and returns an array of length M whose ith entry is the num-
ber of times the integer i appeared in the argument array. If the values in a[] are all
between 0 and M–1, the sum of the values in the returned array should be equal to
a.length.

1.1.16 Give the value of exR1(6):

public static String exR1(int n)
{
 if (n <= 0) return "";
 return exR1(n-3) + n + exR1(n-2) + n;
}

ExErcisEs (continued)

56 Chapter 1 n Fundamentals

ptg12441863

1.1.17 Criticize the following recursive function:

public static String exR2(int n)
{
 String s = exR2(n-3) + n + exR2(n-2) + n;
 if (n <= 0) return "";
 return s;
}

Answer : The base case will never be reached. A call to exR2(3) will result in calls to
exR2(0), exR2(-3), exR3(-6), and so forth until a StackOverflowError occurs.

1.1.18 Consider the following recursive function:

public static int mystery(int a, int b)
{
 if (b == 0) return 0;
 if (b % 2 == 0) return mystery(a+a, b/2);
 return mystery(a+a, b/2) + a;
}

What are the values of mystery(2, 25) and mystery(3, 11)? Given positive integers
a and b, describe what value mystery(a, b) computes. Answer the same question, but
replace the three + operators with * and replace return 0 with return 1.

1.1.19 Run the following program on your computer:

public class Fibonacci
{
 public static long F(int N)
 {
 if (N == 0) return 0;
 if (N == 1) return 1;
 return F(N-1) + F(N-2);
 }

 public static void main(String[] args)
 {
 for (int N = 0; N < 100; N++)
 StdOut.println(N + " " + F(N));
 }
}

571.1 n Basic Programming Model

ptg12441863

What is the largest value of N for which this program takes less than 1 hour to compute
the value of F(N)? Develop a better implementation of F(N) that saves computed values
in an array.

1.1.20 Write a recursive static method that computes the value of ln (N !).

1.1.21 Write a program that reads in lines from standard input with each line contain-
ing a name and two integers and then uses printf() to print a table with a column of
the names, the integers, and the result of dividing the first by the second, accurate to
three decimal places. You could use a program like this to tabulate batting averages for
baseball players or grades for students.

1.1.22 Write a version of BinarySearch that uses the recursive rank() given on page
25 and traces the method calls. Each time the recursive method is called, print the argu-
ment values lo and hi, indented by the depth of the recursion. Hint: Add an argument
to the recursive method that keeps track of the depth.

1.1.23 Add to the BinarySearch test client the ability to respond to a second argu-
ment: + to print numbers from standard input that are not in the whitelist, - to print
numbers that are in the whitelist.

1.1.24 Give the sequence of values of p and q that are computed when Euclid’s algo-
rithm is used to compute the greatest common divisor of 105 and 24. Extend the code
given on page 4 to develop a program Euclid that takes two integers from the command
line and computes their greatest common divisor, printing out the two arguments for
each call on the recursive method. Use your program to compute the greatest common
divisor of 1111111 and 1234567.

1.1.25 Use mathematical induction to prove that Euclid’s algorithm computes the
greatest common divisor of any pair of nonnegative integers p and q.

ExErcisEs (continued)

58 Chapter 1 n Fundamentals

ptg12441863

crEAtivE problEms

1.1.26 Sorting three numbers. Suppose that the variables a, b, c, and t are all of the
same numeric primitive type. Show that the following code puts a, b, and c in ascending
order:

if (a > b) { t = a; a = b; b = t; }
if (a > c) { t = a; a = c; c = t; }
if (b > c) { t = b; b = c; c = t; }

1.1.27 Binomial distribution. Estimate the number of recursive calls that would be
used by the code

public static double binomial(int N, int k, double p)
{
 if ((N == 0) && (k == 0)) return 1.0;
 if ((N < 0) || (k < 0)) return 0.0;
 return (1 - p)*binomial(N-1, k, p) + p*binomial(N-1, k-1, p);
}

to compute binomial(100, 50, 0.25). Develop a better implementation that is based
on saving computed values in an array.

1.1.28 Remove duplicates. Modify the test client in BinarySearch to remove any du-
plicate keys in the whitelist after the sort.

1.1.29 Equal keys. Add to BinarySearch a static method rank() that takes a key and
a sorted array of int values (some of which may be equal) as arguments and returns the
number of elements that are smaller than the key and a similar method count() that
returns the number of elements equal to the key. Note : If i and j are the values returned
by rank(key, a) and count(key, a) respectively, then a[i..i+j-1] are the values in
the array that are equal to key.

1.1.30 Array exercise. Write a code fragment that creates an N-by-N boolean array
a[][] such that a[i][j] is true if i and j are relatively prime (have no common fac-
tors), and false otherwise.

1.1.31 Random connections. Write a program that takes as command-line arguments
an integer N and a double value p (between 0 and 1), plots N equally spaced dots of size
.05 on the circumference of a circle, and then, with probability p for each pair of points,
draws a gray line connecting them.

591.1 n Basic Programming Model

ptg12441863

1.1.32 Histogram. Suppose that the standard input stream is a sequence of double
values. Write a program that takes an integer N and two double values l and r from the
command line and uses StdDraw to plot a histogram of the count of the numbers in the
standard input stream that fall in each of the N intervals defined by dividing (l , r) into
N equal-sized intervals.

1.1.33 Matrix library. Write a library Matrix that implements the following API:

public class Matrix

static double dot(double[] x, double[] y) vector dot product

static double[][] mult(double[][] a, double[][] b) matrix-matrix product

static double[][] transpose(double[][] a) transpose

static double[] mult(double[][] a, double[] x) matrix-vector product

static double[] mult(double[] y, double[][] a) vector-matrix product

Develop a test client that reads values from standard input and tests all the methods.

1.1.34 Filtering. Which of the following require saving all the values from standard
input (in an array, say), and which could be implemented as a filter using only a fixed
number of variables and arrays of fixed size (not dependent on N)? For each, the input
comes from standard input and consists of N real numbers between 0 and 1.

n	 Print the maximum and minimum numbers.
n	 Print the median of the numbers.
n	 Print the k th smallest value, for k less than 100.
n	 Print the sum of the squares of the numbers.
n	 Print the average of the N numbers.
n	 Print the percentage of numbers greater than the average.
n	 Print the N numbers in increasing order.
n	 Print the N numbers in random order.

crEAtivE problEms (continued)

60 Chapter 1 n Fundamentals

ptg12441863

ExpErimENts

1.1.35 Dice simulation. The following code computes the exact probability distribu-
tion for the sum of two dice:

int SIDES = 6;
double[] dist = new double[2*SIDES+1];
for (int i = 1; i <= SIDES; i++)
 for (int j = 1; j <= SIDES; j++)
 dist[i+j] += 1.0;

for (int k = 2; k <= 2*SIDES; k++)
 dist[k] /= 36.0;

The value dist[k] is the probability that the dice sum to k. Run experiments to vali-
date this calculation simulating N dice throws, keeping track of the frequencies of oc-
currence of each value when you compute the sum of two random integers between 1
and 6. How large does N have to be before your empirical results match the exact results
to three decimal places?

1.1.36 Empirical shuffle check. Run computational experiments to check that our
shuffling code on page 32 works as advertised. Write a program ShuffleTest that
takes command-line arguments M and N, does N shuffles of an array of size M that is
initialized with a[i] = i before each shuffle, and prints an M-by-M table such that row
i gives the number of times i wound up in position j for all j. All entries in the table
should be close to N/M.

1.1.37 Bad shuffling. Suppose that you choose a random integer between 0 and N-1
in our shuffling code instead of one between i and N-1. Show that the resulting order is
not equally likely to be one of the N ! possibilities. Run the test of the previous exercise
for this version.

1.1.38 Binary search versus brute-force search. Write a program BruteForceSearch
that uses the brute-force search method given on page 48 and compare its running time
on your computer with that of BinarySearch for largeW.txt and largeT.txt.

611.1 n Basic Programming Model

ptg12441863

1.1.39 Random matches. Write a BinarySearch client that takes an int value T as
command-line argument and runs T trials of the following experiment for N = 103, 104,
105, and 106: generate two arrays of N randomly generated positive six-digit int values,
and find the number of values that appear in both arrays. Print a table giving the average
value of this quantity over the T trials for each value of N.

ExpErimENts (continued)

62 Chapter 1 n Fundamentals

ptg12441863

This page intentionally left blank

ptg12441863

1.2 DAtA ABStrACtion

A data type is a set of values and a set of operations on those values. So far, we have
discussed in detail Java’s primitive data types: for example, the values of the primitive
data type int are integers between 231 and 231  1; the operations of int include +, *,
-, /, %, <, and >. In principle, we could write all of our programs using only the built-in
primitive types, but it is much more convenient to write programs at a higher level of
abstraction. In this section, we focus on the process of defining and using data types,
which is known as data abstraction (and supplements the function abstraction style that
is the basis of SECTION 1.1).

Programming in Java is largely based on building data types known as reference types
with the familiar Java class. This style of programming is known as object-oriented
programming, as it revolves around the concept of an object, an entity that holds a data
type value. With Java’s primitive types we are largely confined to programs that operate
on numbers, but with reference types we can write programs that operate on strings,
pictures, sounds, any of hundreds of other abstractions that are available in Java’s stan-
dard libraries or on our booksite. Even more significant than libraries of predefined
data types is that the range of data types available in Java programming is open-ended,
because you can define your own data types to implement any abstraction whatsoever.

An abstract data type (ADT) is a data type whose representation is hidden from the
client. Implementing an ADT as a Java class is not very different from implementing a
function library as a set of static methods. The primary difference is that we associate
data with the function implementations and we hide the representation of the data
from the client. When using an ADT, we focus on the operations specified in the API and
pay no attention to the data representation; when implementing an ADT, we focus on
the data, then implement operations on that data.

Abstract data types are important because they support encapsulation in program
design. In this book, we use them as a means to

n	 Precisely specify problems in the form of APIs for use by diverse clients
n	 Describe algorithms and data structures as API implementations

Our primary reason for studying different algorithms for the same task is that perfor-
mance characteristics differ. Abstract data types are an appropriate framework for the
study of algorithms because they allow us to put knowledge of algorithm performance
to immediate use: we can substitute one algorithm for another to improve performance
for all clients without changing any client code.

64

ptg12441863

Using abstract data types You do not need to know how a data type is imple-
mented in order to be able to use it, so we begin by describing how to write programs
that use a simple data type named Counter whose values are a name and a nonnega-
tive integer and whose operations are create and initialize to zero, increment by one, and
examine the current value. This abstraction is useful in many contexts. For example, it
would be reasonable to use such a data type in electronic voting software, to ensure that
the only thing that a voter can do is increment a chosen candidate’s tally by one. Or,
we might use a Counter to keep track of fundamental operations when analyzing the
performance of algorithms. To use a Counter, you need to learn our mechanism for
specifying the operations defined in the data type and the Java language mechanisms
for creating and manipulating data-type values. Such mechanisms are critically im-
portant in modern programming, and we use them throughout this book, so this first
example is worthy of careful attention.

API for an abstract data type To specify the behavior of an abstract data type, we use
an application programming interface (API), which is a list of constructors and instance
methods (operations), with an informal description of the effect of each, as in this API
for Counter:

 public class Counter

Counter(String id) create a counter named id
void increment() increment the counter by one
int tally() number of increments since creation

String toString() string representation
an apI for a counter

Even though the basis of a data-type definition is a set of values, the role of the values
is not visible from the API, only the operations on those values. Accordingly, an ADT
definition has many similarities with a library of static methods (see page 24):

n	 Both are implemented as a Java class.
n	 Instance methods may take zero or more arguments of a specified type, sepa-

rated by commas and enclosed in parentheses.
n	 They may provide a return value of a specified type or no return value (signified

by void).
And there are three significant differences:

n	 Some entries in the API have the same name as the class and lack a return type.
Such entries are known as constructors and play a special role. In this case,
Counter has a constructor that takes a String argument.

651.2 n Data Abstraction

ptg12441863

n	 Instance methods lack the static modifier. They are not static methods—their
purpose is to operate on data type values.

n	 Some instance methods are present so as to adhere to Java conventions—we
refer to such methods as inherited methods and shade them gray in the API.

As with APIs for libraries of static methods, an API for an abstract data type is a con-
tract with all clients and, therefore, the starting point both for developing any client
code and for developing any data-type implementation. In this case, the API tells us
that to use Counter, we have available the Counter() constructor, the increment()
and tally() instance methods, and the inherited toString() method.

Inherited methods Various Java conventions enable a data type to take advantage of
built-in language mechanisms by including specific methods in the API. For example,
all Java data types inherit a toString() method that typically returns a String repre-
sentation of the data-type values. Java calls this method when any data-type value is to
be concatenated with a String value with the + operator. The default implementation
is not particularly useful (it gives a string representation of the memory address of the
data-type value), so we often provide an implementation that overrides the default, and
include toString() in the API whenever we do so. Other examples of such methods
include equals(), compareTo(), and hashCode() (see page 101).

Client code As with modular programming based on static methods, the API allows
us to write client code without knowing details of the implementation (and to write
implementation code without knowing details of any particular client). The mecha-
nisms introduced on page 28 for organizing programs as independent modules are use-
ful for all Java classes, and thus are effective for modular programming with ADTs as
well as for libraries of static methods. Accordingly, we can use an ADT in any program
provided that the source code is in a .java file in the same directory, or in the standard
Java library, or accessible through an import statement, or through one of the classpath
mechanisms described on the booksite. All of the benefits of modular programming
follow. By encapsulating all the code that implements a data type within a single Java
class, we enable the development of client code at a higher level of abstraction. To de-
velop client code, you need to be able to declare variables, create objects to hold data-
type values, and provide access to the values for instance methods to operate on them.
These processes are different from the corresponding processes for primitive types,
though you will notice many similarities.

66 Chapter 1 n Fundamentals

ptg12441863

Objects Naturally, you can declare that a variable heads is to be associated with data
of type Counter with the code

Counter heads;

but how can you assign values or specify operations? The answer to this question in-
volves a fundamental concept in data abstraction: an object is an entity that can take on
a data-type value. Objects are characterized by three essential prop-
erties: state, identity, and behavior. The state of an object is a value
from its data type. The identity of an object distinguishes one object
from another. It is useful to think of an object’s identity as the place
where its value is stored in memory. The behavior of an object is the
effect of data-type operations. The implementation has the sole re-
sponsibility for maintaining an object’s identity, so that client code
can use a data type without regard to the representation of its state
by conforming to an API that describes an object’s behavior. An ob-
ject’s state might be used to provide information to a client or cause
a side effect or be changed by one of its data type’s operations, but
the details of the representation of the data-type value are not rel-
evant to client code. A reference is a mechanism for accessing an ob-
ject. Java nomenclature makes clear the distinction from primitive
types (where variables are associated with values) by using the term
reference types for nonprimitive types. The details of implementing
references vary in Java implementations, but it is useful to think of a
reference as a memory address, as shown at right (for brevity, we use
three-digit memory addresses in the diagram).

Creating objects Each data-type value is stored in an object. To
create (or instantiate) an individual object, we invoke a constructor
by using the keyword new, followed by the class name, followed by
() (or a list of argument values enclosed in parentheses, if the con-
structor takes arguments). A constructor has no return type because
it always returns a reference to an object of its data type. Each time
that a client uses new(), the system

n	 Allocates memory space for the object
n	 Invokes the constructor to initialize its value
n	 Returns a reference to the object

In client code we typically create objects in an initializing declaration that associates a
variable with the object, as we often do with variables of primitive types. Unlike primi-
tive types, variables are associated with references to objects, not the data-type values

460

heads 460

reference

460

heads 460

612

tails 612
identity
of heads

identity
of tails

identity
(details hidden)

Object representation

one Counter object

two Counter objects

671.2 n Data Abstraction

ptg12441863

themselves. We can create any num-
ber of objects from the same class—
each object has its own identity
and may or may not store the same
value as another object of the same
type. For example, the code

Counter heads = new Counter("heads");
Counter tails = new Counter("tails");

creates two different Counter objects. In an abstract data type, details of the representa-
tion of the value are hidden from client code. You might assume that the value associ-
ated with each Counter object is a String name and an int tally, but you cannot write
code that depends on any specific representation (or even know whether that assumption
is true—perhaps the tally is a long value).

Invoking instance methods The purpose of an instance method is to operate on data-
type values, so the Java language includes a special mechanism to invoke instance meth-
ods that emphasizes a connection to an object. Specifically, we invoke an instance meth-

od by writing a variable name that refers to an object,
followed by a period, followed by an instance method
name, followed by 0 or more arguments, enclosed in
parentheses and separated by commas. An instance
method might change the data-type value or just exam-
ine the data-type value. Instance methods have all of
the properties of static methods that we considered on
page 24—arguments are passed by value, method names
can be overloaded, they may have a return value, and
they may cause side effects—but they have an addi-
tional property that characterizes them: each invoca-
tion is associated with an object. For example, the code

 heads.increment();

invokes the instance method increment() to operate
on the Counter object heads (in this case the opera-
tion involves incrementing the tally), and the code

 heads.tally() - tails.tally();

invokes the instance method tally() twice, first to
operate on the Counter object heads and then to op-
erate on the Counter object tails (in this case the

StdOut.println(heads);

invoke heads.toString()

heads.tally() - tails.tally()

invoke an instance method
that accesses the object’s value

heads.increment();

object name

declaration

object name

invoke an instance method
that changes the object’s value

heads = new Counter ("heads");

invoke a constructor (create an object)

Invoking instance methods

via automatic type conversion (toString())

as an expression

as a statement (void return value)

with new (constructor)

Counter heads;

invoke constructor
to create an object

declaration to associate
variable with object reference

Counter heads = new Counter("heads");

Creating an object

68 Chapter 1 n Fundamentals

ptg12441863

operation involves returning the tally as an int value). As these examples illustrate, you
can use calls on instance methods in client code in the same way as you use calls on stat-
ic methods—as statements (void methods) or values in expressions (methods that re-
turn a value). The primary purpose of stat-
ic methods is to implement functions; the
primary purpose of non-static (instance)
methods is to implement data-type opera-
tions. Either type of method may appear in
client code, but you can easily distinguish
between them, because a static method
call starts with a class name (uppercase, by
convention) and a non-static method call
always starts with an object name (lower-
case, by convention). These differences are
summarized in the table at right.

Using objects Declarations give us variable names for objects that we can use in code
not just to create objects and invoke instance methods, but also in the same way as we
use variable names for integers, floating-point numbers, and other primitive types. To
develop client code for a given data type, we:

n	 Declare variables of the type, for use in referring to objects
n	 Use the keyword new to invoke a constructor that creates objects of the type
n	 Use the object name to invoke instance methods, either as statements or within

expressions
For example, the class Flips shown at the top of the next page is a Counter client that
takes a command-line argument T and simulates T coin flips (it is also a StdRandom cli-
ent). Beyond these direct uses, we can use variables associated with objects in the same
way as we use variables associated with primitive-type values:

n	 In assignment statements
n	 To pass or return objects from methods
n	 To create and use arrays of object.

Understanding the behavior of each of these types of uses requires thinking in terms of
references, not values, as you will see when we consider them, in turn.

Assignment statements An assignment statement with a reference type creates a copy
of the reference. The assignment statement does not create a new object, just another
reference to an existing object. This situation is known as aliasing: both variables refer
to the same object. The effect of aliasing is a bit unexpected, because it is different for
variables holding values of a primitive type. Be sure that you understand the difference.

instance method static method

sample call heads.increment() Math.sqrt(2.0)

invoked with object name class name

parameters
reference to object
and argument(s)

argument(s)

primary
purpose

examine or change
object value

compute return
value

Instance methods versus static methods

691.2 n Data Abstraction

ptg12441863

If x and y are variables of a primitive type, then the as-
signment x = y copies the value of y to x. For reference
types, the reference is copied (not the value). Aliasing is a
common source of bugs in Java programs, as illustrated
by the following example:

Counter c1 = new Counter("ones");
c1.increment();
Counter c2 = c1;
c2.increment();
StdOut.println(c1);

With a typical toString() implementation this code
would print the string "2 ones" which may or may not
be what was intended and is counterintuitive at first. Such
bugs are common in programs written by people without
much experience in using objects (that may be you, so pay
attention here!). Changing the state of an object impacts
all code involving aliased variables referencing that ob-
ject. We are used to thinking of two different variables of
primitive types as being independent, but that intuition
does not carry over to variables of reference types.

public class Flips
{
 public static void main(String[] args)
 {
 int T = Integer.parseInt(args[0]);
 Counter heads = new Counter("heads");
 Counter tails = new Counter("tails");
 for (int t = 0; t < T; t++)
 if (StdRandom.bernoulli(0.5))
 heads.increment();
 else tails.increment();
 StdOut.println(heads);
 StdOut.println(tails);
 int d = heads.tally() - tails.tally();
 StdOut.println("delta: " + Math.abs(d));
 }
}

Counter client that simulates t coin flips

% java Flips 10
5 heads
5 tails
delta: 0

% java Flips 10
8 heads
2 tails
delta: 6

% java Flips 1000000
499710 heads
500290 tails
delta: 580

Counter c1;
c1 = new Counter("ones");
c1.increment();
Counter c2 = c1;
c2.increment();

811

 2

 c2 811

 c1 811 references to
same object

reference to
"ones"

Aliasing

70 Chapter 1 n Fundamentals

ptg12441863

Objects as arguments You can pass objects as arguments to methods. This ability typi-
cally simplifies client code. For example, when we use a Counter as an argument, we are
essentially passing both a name and a tally, but need only specify one variable. When
we call a method with arguments, the effect in Java is as if each argument value were
to appear on the right-hand side of an assignment statement with the corresponding
argument name on the left. That is, Java passes a copy of the argument value from the
calling program to the method. This arrangement is known as pass by value (see page
24). One important consequence is that the method cannot change the value of a caller’s
variable. For primitive types, this policy is what we expect (the two variables are inde-
pendent), but each time that we use a reference type as a method argument we create
an alias, so we must be cautious. In other words, the convention is to pass the reference
by value (make a copy of it) but to pass the object by reference. For example, if we pass
a reference to an object of type Counter, the method cannot change the original refer-
ence (make it point to a different Counter), but it can change the value of the object,
for example by using the reference to call increment().

Objects as return values Naturally, you can also use an object as a return value from
a method. The method might return an object passed to it as an argument, as in the
example below, or it might create an object and return a reference to it. This capa-
bility is important because
Java methods allow only one
return value—using objects
enables us to write code that,
in effect, returns multiple
values.

public class FlipsMax
{
 public static Counter max(Counter x, Counter y)
 {
 if (x.tally() > y.tally()) return x;
 else return y;
 }

 public static void main(String[] args)
 {
 int T = Integer.parseInt(args[0]);
 Counter heads = new Counter("heads");
 Counter tails = new Counter("tails");
 for (int t = 0; t < T; t++)
 if (StdRandom.bernoulli(0.5))
 heads.increment();
 else tails.increment();

 if (heads.tally() == tails.tally())
 StdOut.println("Tie");
 else StdOut.println(max(heads, tails) + " wins");
 }
}

example of a static method with object arguments and return values

% java FlipsMax 1000000
500281 tails wins

711.2 n Data Abstraction

ptg12441863

Arrays are objects In Java, every value of any nonprimitive type is an object. In par-
ticular, arrays are objects. As with strings, there is special language support for certain
operations on arrays: declarations, initialization, and indexing. As with any other ob-
ject, when we pass an array to a method or use an array variable on the right hand side
of an assignment statement, we are making a copy of the array reference, not a copy
of the array. This convention is appropriate for the typical case where we expect the
method to be able to modify the array, by rearranging its entries, as, for example, in
java.util.Arrays.sort() or the shuffle() method that we considered on page 32.

Arrays of objects Array entries can be of any type, as we have already seen: args[] in
our main() implementations is an array of String objects. When we create an array of
objects, we do so in two steps:

n	 Create the array, using the bracket syntax for array constructors.
n	 Create each object in the array, using a standard constructor for each.

For example, the code below simulates rolling a die, using an array of Counter objects
to keep track of the number of occurrences of each possible value. An array of objects
in Java is an array of references to objects, not the objects themselves. If the objects are
large, then we may gain efficiency by not having to move them around, just their refer-
ences. If they are small, we may lose efficiency by having to follow a reference each time
we need to get to some information.

public class Rolls
{
 public static void main(String[] args)
 {
 int T = Integer.parseInt(args[0]);
 int SIDES = 6;
 Counter[] rolls = new Counter[SIDES+1];
 for (int i = 1; i <= SIDES; i++)
 rolls[i] = new Counter(i + "'s");

 for (int t = 0; t < T; t++)
 {
 int result = StdRandom.uniform(1, SIDES+1);
 rolls[result].increment();
 }
 for (int i = 1; i <= SIDES; i++)
 StdOut.println(rolls[i]);
 }
}

Counter client that simulates T rolls of a die

% java Rolls 1000000
167308 1's
166540 2's
166087 3's
167051 4's
166422 5's
166592 6's

72 Chapter 1 n Fundamentals

ptg12441863

With this focus on objects, writing code that embraces data abstraction (defining
and using data types, with data-type values held in objects) is widely referred to as
object-oriented programming. The basic concepts that we have just covered are the start-
ing point for object-oriented programming, so it is worthwhile to briefly summarize
them. A data type is a set of values and a set of operations defined on those values. We
implement data types in independent Java class modules and write client programs
that use them. An object is an entity that can take on a data-type value or an instance of
a data type. Objects are characterized by three essential properties: state, identity, and
behavior. A data-type implementation supports clients of the data type as follows:

n	 Client code can create objects (establish identity) by using the new construct to
invoke a constructor that creates an object, initializes its instance variables, and
returns a reference to that object.

	n	 Client code can manipulate data-type values (control an object’s behavior, pos-
sibly changing its state) by using a variable associated with an object to invoke
an instance method that operates on that object’s instance variables.

n	 Client code can manipulate objects by creating arrays of objects and passing them
and returning them to methods, in the same way as for primitive-type values,
except that variables refer to references to values, not the values themselves.

These capabilities are the foundation of a flexible, modern, and widely useful program-
ming style that we will use as the basis for studying algorithms in this book.

731.2 n Data Abstraction

ptg12441863

Examples of abstract data types The Java language has thousands of built-in
ADTs, and we have defined many other ADTs to facilitate the study of algorithms. In-
deed, every Java program that we write is a data-type implementation (or a library of
static methods). To control complexity, we will specifically cite APIs for any ADT that
we use in this book (not many, actually).

In this section, we introduce as examples several data types, with some examples
of client code. In some cases, we present excerpts of APIs that may contain dozens of
instance methods or more. We articulate these APIs to present real-world examples, to
specify the instance methods that we will use in the book, and to emphasize that you
do not need to know the details of an ADT implementation in order to be able to use it.

For reference, the data types that we use and develop in this book are shown on the
facing page. These fall into several different categories:

n	 Standard system ADTs in java.lang.*, which can be used in any Java program.
n	 Java ADTs in libraries such as java.awt, java.net, and java.io, which can also

be used in any Java program, but need an import statement.
n	 Our I/O ADTs that allow us to work with multiple input/output streams similar

to StdIn and StdOut.
n	 Data-oriented ADTs whose primary purpose is to facilitate organizing and pro-

cessing data by encapsulating the representation. We describe several examples
for applications in computational geometry and information processing later in
this section and use them as examples in client code later on.

n	 Collection ADTs whose primary purpose is to facilitate manipulating collections
of data of the same type. We describe the basic Bag, Stack, and Queue types in
Section 1.3, PQ types in Chapter 2, and the ST and SET types in Chapters 3
and 5.

n	 Operations-oriented ADTs that we use to analyze algorithms, as described in
Section 1.4 and Section 1.5.

n	 ADTs for graph algorithms, including both data-oriented ADTs that focus on
encapsulating representations of various kinds of graphs and operations-orient-
ed ADTs that focus on providing specifications for graph-processing algorithms.

This list does not include the dozens of types that we consider in exercises, which may
be found in the index. Also, as described on page 90, we often distinguish multiple imple-
mentations of various ADTs with a descriptive prefix. As a group, the ADTs that we
use demonstrate that organizing and understanding the data types that you use is an
important factor in modern programming.

A typical application might use only five to ten of these ADTs. A prime goal in the
development and organization of the ADTs in this book is to enable programmers to
easily take advantage of a relatively small set of them in developing client code.

74 Chapter 1 n Fundamentals

ptg12441863

standard Java system types in java.lang

Integer int wrapper

Double double wrapper

String indexed chars

StringBuilder builder for strings

other Java types

java.awt.Color colors

java.awt.Font fonts

java.net.URL URLs

java.io.File files

our standard I/o types

In input stream

Out output stream

Draw drawing

data-oriented types for client examples

Point2D point in the plane

Interval1D 1D interval

Interval2D 2D interval

Date date

Transaction transaction

types for the analysis of algorithms

Counter counter

Accumulator accumulator

VisualAccumulator visual version

Stopwatch stopwatch

collection types

Stack pushdown stack

Queue FIFO queue

Bag bag

MinPQ MaxPQ priority queue

IndexMinPQ IndexMaxPQ priority queue (indexed)

ST symbol table

SET set

StringST symbol table (string keys)

data-oriented graph types

Graph graph

Digraph directed graph

Edge edge (weighted)

EdgeWeightedGraph graph (weighted)

DirectedEdge edge (directed, weighted)

EdgeWeightedDigraph graph (directed, weighted)

operations-oriented graph types

UF dynamic connectivity

DepthFirstPaths DFS path search

CC connected components

BreadthFirstPaths BFS path search

DirectedDFS DFS digraph path search

DirectedBFS BFS digraph path search

TransitiveClosure all paths

Topological topological order

DepthFirstOrder DFS order

DirectedCycle cycle search

SCC strong components

MST minimum spanning tree

SP shortest paths

Selected aDts used in this book

751.2 n Data Abstraction

ptg12441863

Geometric objects A natural example of object-oriented programming is designing
data types for geometric objects. For example, the APIs on the facing page define ab-

stract data types for three familiar
geometric objects: Point2D (points
in the plane), Interval1D (intervals
on the line), and Interval2D (two-
dimensional intervals in the plane,
or axis-aligned rectangles). As usual,
the APIs are essentially self-docu-
menting and lead immediately to
easily understood client code such as
the example at left, which reads the
boundaries of an Interval2D and
an integer T from the command line,
generates T random points in the
unit square, and counts the number
of points that fall in the interval (an
estimate of the area of the rectangle).
For dramatic effect, the client also
draws the interval and the points that
fall outside the interval. This compu-
tation is a model for a method that
reduces the problem of computing
the area and volume of geometric
shapes to the problem of determin-

ing whether a point falls within the shape or not (a less dif-
ficult but not trivial problem). Of course, we can define APIs
for other geometric objects such as line segments, triangles,
polygons, circles, and so forth, though implementing opera-
tions on them can be challenging. Several examples are ad-
dressed in the exercises at the end of this section.

Programs that process geometric objects have wide
application in computing with models of the natural world,
in scientific computing, video games, movies, and many
other applications. The development and study of such pro-
grams and applications has blossomed into a far-reaching
field of study known as computational geometry, which is a

public static void main(String[] args)
{
 double xlo = Double.parseDouble(args[0]);
 double xhi = Double.parseDouble(args[1]);
 double ylo = Double.parseDouble(args[2]);
 double yhi = Double.parseDouble(args[3]);
 int T = Integer.parseInt(args[4]);

 Interval1D xint = new Interval1D(xlo, xhi);
 Interval1D yint = new Interval1D(ylo, yhi);
 Interval2D box = new Interval2D(xint, yint);
 box.draw();

 Counter c = new Counter("hits");
 for (int t = 0; t < T; t++)
 {
 double x = StdRandom.random();
 double y = StdRandom.random();
 Point2D p = new Point2D(x, y);
 if (box.contains(p)) c.increment();
 else p.draw();
 }

 StdOut.println(c);
 StdOut.printf("area = %.2f\n", box.area());
}

Interval2D test client

% java Interval2D .2 .5 .5 .6 10000
297 hits
area = .03

76 Chapter 1 n Fundamentals

ptg12441863

fertile area of examples for the application of the algorithms that we address in this
book, as you will see in examples throughout the book. In the present context, our
interest is to suggest that abstract data types that directly represent geometric abstrac-
tions are not difficult to define and can lead to simple and clear client code. This idea is
reinforced in several exercises at the end of this section and on the booksite.

public class Point2D

Point2D(double x, double y) create a point

double x() x coordinate

double y() y coordinate

double r() radius (polar coordinates)

double theta() angle (polar coordinates)

double distanceTo(Point2D that) Euclidean distance from this point to that

void draw() draw the point on StdDraw

an apI for points in the plane

public class Interval1D

Interval1D(double left, double right) create an interval

double left() left endpoint

double right() right endpoint

double length() length of the interval

boolean contains(double x) does the interval contain x?

boolean intersects(Interval1D that) does the interval intersect that?

an apI for intervals on the line

public class Interval2D

Interval2D(Interval1D x, Interval1D y) create a 2D interval

double area() area of the 2D interval

boolean contains(Point2D p) does the 2D interval contain p?

boolean intersects(Interval2D that) does the 2D interval intersect that?

void draw() draw the 2D interval on StdDraw

an apI for two dimensional intervals in the plane

771.2 n Data Abstraction

ptg12441863

Information processing Whether it be a bank processing millions of credit card trans-
actions or a web analytics company processing billions of touchpad taps or a scien-
tific research group processing millions of experimental observations, a great many
applications are centered around processing and organizing information. Abstract data
types provide a natural mechanism for organizing the information. Without getting
into details, the two APIs on the facing page suggest a typical approach for a commer-
cial application. The idea is to define data types that allow us to keep information in
objects that correspond to things in the real world. A date is a day, a month, and a year
and a transaction is a customer, a date, and an amount. These two are just examples: we
might also define data types that can hold detailed information for customers, times,
locations, goods and services, or whatever. Each data type consists of constructors that
create objects containing the data and methods for use by client code to access it. To
simplify client code, we provide two constructors for each type, one that presents the
data in its appropriate type and another that parses a string to get the data (see Exer-
cise 1.2.19 for details). As usual, there is no reason for client code to know the rep-
resentation of the data. Most often, the reason to organize the data in this way is to
treat the data associated with an object as a single entity: we can maintain arrays of
Transaction values, use Date values as a argument or a return value for a method, and
so forth. The focus of such data types is on encapsulating the data, while at the same
time enabling the development of client code that does not depend on the representa-
tion of the data. We do not dwell on organizing information in this way, except to take
note that doing so and including the inherited methods toString(), compareTo(),
equals(), and hashCode() allows us to take advantage of algorithm implementations
that can process any type of data. We will discuss inherited methods in more detail
on page 100. For example, we have already noted Java’s convention that enables clients
to print a string representation of every value if we include toString() implemen-
tation in a data type. We consider conventions corresponding to the other inherited
methods in Section 1.3, Section 2.5, Section 3.4, and Section 3.5, using Date and
Transaction as examples. Section 1.3 gives classic examples of data types and a Java
language mechanism known as parameterized types, or generics, that takes advantage of
these conventions, and Chapter 2 and Chapter 3 are also devoted to taking advantage
of generic types and inherited methods to develop implementations of sorting and
searching algorithms that are effective for any type of data.

Whenever you have data of different types that logically belong together, it is
worthwhile to contemplate defining an ADT as in these examples. The ability to do so
helps to organize the data, can greatly simplify client code in typical applications, and
is an important step on the road to data abstraction.

78 Chapter 1 n Fundamentals

ptg12441863

public class Date implements Comparable<Date>

Date(int month, int day, int year) create a date

Date(String date) create a date (parse constructor)

int month() month

int day() day

int year() year

String toString() string representation

boolean equals(Object that) is this the same date as that?

int compareTo(Date that) compare this date to that

int hashCode() hash code

public class Transaction implements Comparable<Transaction>

Transaction(String who, Date when, double amount)

Transaction(String transaction) create a transaction (parse constructor)

String who() customer name

Date when() date

double amount() amount

String toString() string representation

boolean equals(Object that) is this the same transaction as that?

int compareTo(Transaction that) compare this transaction to that

int hashCode() hash code

Sample apIs for commercial applications (dates and transactions)

791.2 n Data Abstraction

ptg12441863

Strings Java’s String is an important and useful ADT. A String is an indexed se-
quence of char values. String has dozens of instance methods, including the following:

public class String

String() create an empty string
int length() length of the string
char charAt(int i) ith character
int indexOf(String p) first occurrence of p (-1 if none)
int indexOf(String p, int i) first occurrence of p after i (-1 if none)

String concat(String t) this string with t appended
String substring(int i, int j) substring of this string (ith to j-1st chars)

String[] split(String delim) strings between occurrences of delim
int compareTo(String t) string comparison

boolean equals(String t) is this string’s value the same as t’s ?
int hashCode() hash code

Java String apI (partial list of methods)

String values are similar to arrays of characters, but the two are not the same. Ar-
rays have built-in Java language syntax for accessing a character; String has instance
methods for indexed access, length, and many other operations. On the other hand,
String has special language support for initialization and concatenation: instead of
creating and initializing a string with a constructor, we can use a string literal; instead
of invoking the method concat() we can use the + operator. We do not need to con-
sider the details of the implementation, though
understanding performance characteristics of
some of the methods is important when develop-
ing string-processing algorithms, as you will see
in Chapter 5. Why not just use arrays of charac-
ters instead of String values? The answer to this
question is the same as for any ADT: to simplify
and clarify client code. With String, we can write
clear and simple client code that uses numerous
convenient instance methods without regard to
the way in which strings are represented (see fac-
ing page). Even this short list contains powerful
operations that require advanced algorithms such

String a = "now is ";
String b = "the time ";
String c = "to"

a.length()
a.charAt(4)
a.concat(c)

a.indexOf("is")
a.substring(2, 5)
a.split(" ")[0]
a.split(" ")[1]

b.equals(c)

7
i
"now is to"
4
"w i"
"now"
"is"
false

call value

Examples of string operations

80 Chapter 1 n Fundamentals

ptg12441863

task implementation

is the string
a palindrome?

public static boolean isPalindrome(String s)
{
 int N = s.length();
 for (int i = 0; i < N/2; i++)
 if (s.charAt(i) != s.charAt(N-1-i))
 return false;
 return true;
}

extract file name
and extension from a

command-line
argument

String s = args[0];
int dot = s.indexOf(".");
String base = s.substring(0, dot);
String extension = s.substring(dot + 1, s.length());

print all lines in
 standard input that

 contain a string
specified on the
command line

String query = args[0];
while (!StdIn.isEmpty())
{
 String s = StdIn.readLine();
 if (s.contains(query)) StdOut.println(s);
}

create an array
of the strings on StdIn
delimited by whitespace

String input = StdIn.readAll();
String[] words = input.split("\\s+");

check whether an array
of strings is in

 alphabetical order

public boolean isSorted(String[] a)
{
 for (int i = 1; i < a.length; i++)
 {
 if (a[i-1].compareTo(a[i]) > 0)
 return false;
 }
 return true;
}

typical string-processing code

811.2 n Data Abstraction

ptg12441863

as those considered in Chapter 5. For example, the argument of split() can be a
regular expression (see Section 5.4)—the split() example on page 81 uses the argu-
ment "\\s+", which means “one or more tabs, spaces, newlines, or returns.”

Input and output revisited A disadvantage of the StdIn, StdOut, and StdDraw stan-
dard libraries of Section 1.1 is that they restrict us to working with just one input file,
one output file, and one drawing for any given program. With object-oriented pro-
gramming, we can define similar mechanisms that allow us to work with multiple input
streams, output streams, and drawings within one program. Specifically, our standard
libary includes the data types In, Out, and Draw with the APIs shown on the facing page.
When invoked with a constructor having a String argument, In and Out will first try
to find a file in the current directory of your computer that has that name. If it cannot

do so, it will assume the argu-
ment to be a website name and
will try to connect to that web-
site (if no such website exists, it
will issue a runtime exception).
In either case, the specified file
or website becomes the source/
target of the input/output for
the stream object thus created,
and the read*() and print*()
methods will refer to that file or
website. (If you use the no-argu-
ment constructor, then you ob-
tain the standard streams.) This
arrangement makes it possible
for a single program to process

multiple files and drawings. You also can assign such
objects to variables, pass them as arguments or re-
turn values from methods, create arrays of them, and
manipulate them just as you manipulate objects of
any type. The program Cat shown at left is a sample
client of In and Out that uses multiple input streams
to concatenate several input files into a single out-
put file. The In and Out classes also contain static
methods for reading files containing values that are
all int, double, or String types into an array (see
page 126 and Exercise 1.2.15).

public class Cat
{
 public static void main(String[] args)
 { // Copy input files to out (last argument).
 Out out = new Out(args[args.length-1]);
 for (int i = 0; i < args.length - 1; i++)
 { // Copy input file named on ith arg to out.
 In in = new In(args[i]);
 String s = in.readAll();
 out.println(s);
 in.close();
 }
 out.close();
 }
}

a sample In and Out client

% more in1.txt
This is

% more in2.txt
a tiny
test.

% java Cat in1.txt in2.txt out.txt

% more out.txt
This is
a tiny
test.

82 Chapter 1 n Fundamentals

ptg12441863

public class In

In() create an input stream from standard input

In(String name) create an input stream from a file or website

boolean isEmpty() true if no more input, false otherwise

int readInt() read a value of type int

double readDouble() read a value of type double

...

void close() close the input stream

Note: all operations supported by StdIn are also supported for In objects.

apI for our data type for input streams

public class Out

Out() create an output stream to standard output

Out(String name) create an output stream to a file

void print(String s) append s to the output stream

void println(String s) append s and a newline to the output stream

void println() append a newline to the output stream

void printf(String f, ...) formatted print to the output steam

void close() close the output stream

Note: all operations supported by StdOut are also supported for Out objects.

apI for our data type for output streams

public class Draw

Draw()

void line(double x0, double y0, double x1, double y1)

void point(double x, double y)

...

Note: all operations supported by StdDraw are also supported for Draw objects.

apI for our data type for drawings

831.2 n Data Abstraction

ptg12441863

Implementing abstract data types As with libraries of static methods, we im-
plement ADTs with a Java class, putting the code in a file with the same name as the
class, followed by the .java extension. The first statements in the file declare instance
variables that define the data-type values. Following the instance variables are the con-
structor and the instance methods that implement operations on data-type values. In-
stance methods may be public (specified in the API) or private (used to organize the
computation and not available to clients). A data-type definition may have multiple
constructors and may also include definitions of static methods. In particular, a unit-
test client main() is normally useful for testing and debugging. As a first example, we
consider an implementation of the Counter ADT that we defined on page 65. A full
annotated implementation is shown on the facing page, for reference as we discuss its
constituent parts. Every ADT implementation that you will develop has the same basic
ingredients as this simple example.

Instance variables To define data-type
values (the state of each object), we de-
clare instance variables in much the same
way as we declare local variables. There is a
critical distinction between instance vari-
ables and the local variables within a static
method or a block that you are accustomed to: there is just one value corresponding to
each local variable at a given time, but there are numerous values corresponding to each
instance variable (one for each object that is an instance of the data type). There is no
ambiguity with this arrangement, because each time that we access an instance variable,
we do so with an object name—that object is the one whose value we are accessing.
Also, each declaration is qualified by a visibility modifier. In ADT implementations, we
use private, using a Java language mechanism to enforce the idea that the representa-
tion of an ADT is to be hidden from the client, and also final, if the value is not to be
changed once it is initialized. Counter has two instance variables: a String value name
and an int value count. If we were to use public instance variables (allowed in Java)
the data type would, by definition, not be abstract, so we do not do so.

Constructors Every Java class has at least one constructor that establishes an object’s
identity. A constructor is like a static method, but it can refer directly to instance vari-
ables and has no return value. Generally, the purpose of a constructor is to initialize
the instance variables. Every constructor creates an object and provides to the client a
reference to that object. Constructors always share the same name as the class. We can
overload the name and have multiple constructors with different signatures, just as
with methods. If no other constructor is defined, a default no-argument constructor is

 public class Counter
 {
 private final String name;
 private int count;
 ...
 }

Instance variables in ADTs are private

instance
variable

declarations

84 Chapter 1 n Fundamentals

ptg12441863

public class Counter
{
 private final String name;
 private int count;

 public Counter(String id)
 { name = id; }

 public void increment()
 { count++; }

 public int tally()
 { return count; }

 public String toString()
 { return count + " " + name; }

 public static void main(String[] args)
 {
 Counter heads = new Counter("heads");
 Counter tails = new Counter("tails");

 heads.increment();
 heads.increment();
 tails.increment();

 StdOut.println(heads + " " + tails);
 StdOut.println(heads.tally() - tails.tally());
 }
}

Anatomy of a class that de�nes a data type

instance
variables

instance
methods

constructor

test client

invoke
constructor

invoke
method

automatically invoke
toString()

instance
variable
 name

create
and

initialize
objects

object
name

class
name

851.2 n Data Abstraction

ptg12441863

implicit, has no arguments, and initializes instance values to default values. The default
values of instance variables are 0 for primitive numeric types, false for boolean, and
null for reference types. These defaults
may be changed by using initializing
declarations for instance variables. Java
automatically invokes a constructor
when a client program uses the keyword
new. Overloaded constructors are typi-
cally used to initialize instance variables
to client-supplied values other than the
defaults. For example, Counter has a
one-argument constructor that initial-
izes the name instance variable to the
value given as argument (leaving the
count instance variable to be initialized
to the default value 0).

Instance methods To implement data-type operations (the behavior of each object),
we implement instance methods with code that is precisely like the code that you learned
in Section 1.1 to implement static methods (functions). Each instance method has a
return type, a signature (which specifies its name and the types and names of its param-
eter variables), and a body (which consists
of a sequence of statements, including a
return statement that provides a value of
the return type back to the client). When
a client invokes a method, the parameter
values (if any) are initialized with client
values, the statements are executed un-
til a return value is computed, and the
value is returned to the client, with the
same effect as if the method invocation
in the client were replaced with that value. All of this action is the same as for static
methods, but there is one critical distinction for instance methods: they can access and
perform operations on instance variables. How do we specify which object’s instance
variables we want to use? If you think about this question for a moment, you will see
the logical answer: a reference to a variable in an instance method refers to the value
for the object that was used to invoke the method. When we say heads.increment() the
code in increment() is referring to the instance variables for heads. In other words,

method
name

return
type

visibility
modifier signature

instance variable name

Anatomy of an instance method

public void increment()

{ count++; }

public class Counter
{
 private final String name;
 private int count;
 ...

 ...
}

code to initialize instance variables
(count initialized to 0 by default)

visibility
modifier

NO return
type

constructor name
(same as class name)

signature

parameter
variable

Anatomy of a constructor

 public Counter (String id)

 { name = id; }

86 Chapter 1 n Fundamentals

ptg12441863

object-oriented programming adds one critically important additional way to use vari-
ables in a Java program:

n	 to invoke an instance method that operates on the object’s values.
The difference from working solely with static methods is semantic (see the Q&A),
but has reoriented the way that modern programmers think about developing code in
many situations. As you will see, it also dovetails well with the study of algorithms and
data structures.

Scope In summary, the Java code that we write to implement instance methods uses
three kinds of variables:

n	 Parameter variables
n	 Local variables
n	 Instance variables

The first two of these are the same as for static methods: parameter variables are spec-
ified in the method signature and initialized with client values when the method is
called, and local variables are declared and initialized within the method body. The
scope of parameter variables is the entire method; the scope of local variables is the
following statements in the block where they are defined. Instance variables are com-
pletely different: they hold data-type values for objects in a class, and their scope is the
entire class (whenever there is an ambiguity, you can use the this prefix to identify in-
stance variables). Understanding the distinctions among these three kinds of variables
in instance methods is a key to success in object-oriented programming.

public class Example
{
 private int var;
 ...

 private void method1()
 {
 int var;

 ... var ...
 ... this.var ...

 }

 private void method2()
 {
 ... var ...
 }
 ...
}

Scope of instance and local variables in an instance method

instance
variable

refers to local variable, NOT instance variable

refers to instance variable

refers to instance variable

local variable

871.2 n Data Abstraction

ptg12441863

API, clients, and implementations These are the basic components that you need
to understand to be able to build and use abstract data types in Java. Every ADT im-
plementation that we will consider will be a Java class with private instance variables,
constructors, instance methods, and a client. To fully understand a data type, we need
the API, typical client code, and an implementation, summarized for Counter on the
facing page. To emphasize the separation of client and implementation, we normally
present each client as a separate class containing a static method main() and reserve
test client’s main() in the data-type definition for minimal unit testing and develop-
ment (calling each instance method at least once). In each data type that we develop,
we go through the same steps. Rather than thinking about what action we need to take
next to accomplish a computational goal (as we did when first learning to program), we
think about the needs of a client, then accommodate them in an ADT, following these
three steps:

n	 Specify an API. The purpose of the API is to separate clients from implementa-
tions, to enable modular programming. We have two goals when specifying an
API. First, we want to enable clear and correct client code. Indeed, it is a good
idea to write some client code before finalizing the API to gain confidence that
the specified data-type operations are the ones that clients need. Second, we
want to be able to implement the operations. There is no point specifying opera-
tions that we have no idea how to implement.

n	 Implement a Java class that meets the API specifications. First we choose the
instance variables, then we write constructors and the instance methods.

n	 Develop multiple test clients, to validate the design decisions made in the first
two steps.

What operations do clients need to perform, and what data-type values can best sup-
port those operations? These basic decisions are at the heart of every implementation
that we develop.

88 Chapter 1 n Fundamentals

ptg12441863

public class Counter
{
 private final String name;
 private int count;

 public Counter(String id)
 { name = id; }

 public void increment()
 { count++; }

 public int tally()
 { return count; }

 public String toString()
 { return count + " " + name; }

}

an abstract data type for a simple counter

apI

typical client

applicationimplementation

public class Flips
{
 public static void main(String[] args)
 {
 int T = Integer.parseInt(args[0]);

 Counter heads = new Counter("heads");
 Counter tails = new Counter("tails");

 for (int t = 0; t < T; t++)
 if (StdRandom.bernoulli(0.5))
 heads.increment();
 else tails.increment();

 StdOut.println(heads);
 StdOut.println(tails);
 int d = heads.tally() - tails.tally();
 StdOut.println("delta: " + Math.abs(d));
 }
}

public class Counter

Counter(String id) create a counter named id
void increment() increment the counter
int tally() number of increments since creation

String toString() string representation

% java Flips 1000000
500172 heads
499828 tails
delta: 344

891.2 n Data Abstraction

ptg12441863

More implementations of abstract data types As with any programming
concept, the best way to understand the power and utility of ADTs is to consider care-
fully more examples and more implementations. There will be ample opportunity for
you to do so, as much of this book is devoted to ADT implementations, but a few more
simple examples will help us lay the groundwork for addressing them.

Date Shown on the facing page are two implementations of the Date ADT that we con-
sidered on page 79. To reduce clutter, we omit the parsing constructor (which is described
in Exercise 1.2.19) and the inherited methods equals() (see page 103), compareTo() (see
page 247), and hashCode() (see Exercise 3.4.22). The straightforward implementation
on the left maintains the day, month, and year as instance variables, so that the instance
methods can just return the appropriate value; the more space-efficient implementa-
tion on the right uses only a single int value to represent a date, using a mixed-radix
number that represents the date with day d, month m, and year y as 512y + 32m + d.
One way that a client might notice the difference between these implementations is by
violating implicit assumptions: the second implementation depends for its correctness
on the day being between 0 and 31, the month being between 0 and 15, and the year be-
ing positive (in practice, both implementations should check that months are between
1 and 12, days are between 1 and 31, and that dates such as June 31 and February 29,
2009, are illegal, though that requires a bit more work). This example highlights the
idea that we rarely fully specify implementation requirements in an API (we normally
do the best we can, and could do better here). Another way that a client might notice the
difference between the two implementations is performance: the implementation on the
right uses less space to hold data-type values at the cost of more time to provide them to
the client in the agreed form (one or two arithmetic operations are needed). Such trad-
eoffs are common: one client may prefer one of the implementations and another client
might prefer the other, so we need to accommodate both. Indeed, one of the recurring
themes of this book is that we need to understand the space and time requirements of
various implementations and their suitability for use by various clients. One of the key
advantages of using data abstraction in our implementations is that we can normally
change from one implementation to another without changing any client code.

Maintaining multiple implementations Multiple implementations of the same API
can present maintainence and nomenclature issues. In some cases, we simply want to
replace an old implementation with an improved one. In others, we may need to main-
tain two implementations, one suitable for some clients, the other suitable for others.
Indeed, a prime goal of this book is to consider in depth several implementations of
each of a number of fundamental ADTs, generally with different performance charac-
teristics. In this book, we often compare the performance of a single client using two

90 Chapter 1 n Fundamentals

ptg12441863

public static void main(String[] args)
{
 int m = Integer.parseInt(args[0]);
 int d = Integer.parseInt(args[1]);
 int y = Integer.parseInt(args[2]);
 Date date = new Date(m, d, y);
 StdOut.println(date);
}

public class Date
{
 private final int month;
 private final int day;
 private final int year;

 public Date(int m, int d, int y)
 { month = m; day = d; year = y; }

 public int month()
 { return month; }

 public int day()
 { return day; }

 public int year()
 { return day; }

 public String toString()
 { return month() + "/" + day()
 + "/" + year(); }

}

public class Date
{
 private final int value;

 public Date(int m, int d, int y)
 { value = y*512 + m*32 + d; }

 public int month()
 { return (value / 32) % 16; }

 public int day()
 { return value % 32; }

 public int year()
 { return value / 512; }

 public String toString()
 { return month() + "/" + day()
 + "/" + year(); }

}

% java Date 12 31 1999
12/31/1999

 public class Date

Date(int month, int day, int year) create a date
int month() month
int day() day
int year() year

String toString() string representation

test client

implementation

application

alternate implementation

apI

an abstract data type to encapsulate dates, with two implementations

911.2 n Data Abstraction

ptg12441863

different implementations of the same API. For this reason, we generally adopt an in-
formal naming convention where we:

n	 Identify different implementations of the same API by prepending a descrip-
tive modifier. For example, we might name our Date implementations on the
previous page BasicDate and SmallDate, and we might wish to develop a
SmartDate implementation that can validate that dates are legal.

n	 Maintain a reference implementation with no prefix that makes a choice that
should be suitable for most clients. That is, most clients should just use Date.

In a large system, this solution is not ideal, as it might involve changing client code. For
example, if we were to develop a new implementation ExtraSmallDate, then our only
options are to change client code or to make it the reference implementation for use by
all clients. Java has various advanced language mechanisms for maintaining multiple
implementations without needing to change client code, but we use them sparingly
because their use is challenging (and even controversial) even for experts, especially in
conjuction with other advanced language features that we do value (generics and itera-
tors). These issues are important (for example, ignoring them led to the celebrated Y2K
problem at the turn of the millennium, because many programs used their own imple-
mentations of the date abstraction that did not take into account the first two digits of
the year), but detailed consideration of these issues would take us rather far afield from
the study of algorithms.

Accumulator The accumulator API shown on the facing page defines an abstract data
type that provides to clients the ability to maintain a running average of data values. For
example, we use this data type frequently in this book to process experimental results
(see Section 1.4). The implementation is straightforward: it maintains an int instance
variable N that counts the number of data values seen so far and a double instance
variable total that keeps track of the sum of the values seen so far; to compute the
average it divides the sum by the count. Note that the implementation does not save the
data values—it could be used for a huge number of them (even on a device that is not
capable of holding that many), or a huge number of accumulators could be used on a
big system. This performance characteristic is subtle and might be specified in the API,
because an implementation that does save the values might cause an application to run
out of memory.

92 Chapter 1 n Fundamentals

ptg12441863

public class TestAccumulator
{
 public static void main(String[] args)
 {
 int T = Integer.parseInt(args[0]);
 Accumulator a = new Accumulator();
 for (int t = 0; t < T; t++)
 a.addDataValue(StdRandom.random());
 StdOut.println(a);
 }
}

public class Accumulator
{
 private double total;
 private int N;

 public void addDataValue(double val)
 {
 N++;
 total += val;
 }

 public double mean()
 { return total/N; }

 public String toString()
 { return "Mean (" + N + " values): "
 + String.format("%7.5f", mean()); }

}

% java TestAccumulator 1000
Mean (1000 values): 0.51829

% java TestAccumulator 1000000
Mean (1000000 values): 0.49948

% java TestAccumulator 1000000
Mean (1000000 values): 0.50014

an abstract data type for accumulating data values

 public class Accumulator

Accumulator() create an accumulator
void addDataValue(double val) add a new data value

double mean() mean of all data values
String toString() string representation

typical client

implementation

application

apI

931.2 n Data Abstraction

ptg12441863

Visual accumulator The visual accumulator implementation shown on the facing
page extends Accumulator to present a useful side effect: it draws on StdDraw all the
data (in gray) and the running average (in red).
The easiest way to do so is to add a constructor
that provides the number of points to be plotted
and the maximum value, for rescaling the plot.
VisualAccumulator is not technically an imple-
mentation of the Accumulator API (its construc-
tor has a different signature and it causes a differ-
ent prescribed side effect). Generally, we are
careful to fully specify APIs and are loath to make
any changes in an API once articulated, as it might
involve changing an unknown amount of client (and implementation) code, but add-
ing a constructor to gain functionality can sometimes be defended because it involves
changing the same line in client code that we change when changing a class name. In
this example, if we have developed a client that uses an Accumulator and perhaps has
many calls to addDataValue() and mean(), we can enjoy the benefits of
VisualAccumulator by just changing one line of client code.

Visual accumulator plot

height of gray dot
is the data point value

height of Nth red dot from the left
is the average of the heights
of the leftmost N gray dots

application

% java TestVisualAccumulator 2000
Mean (2000 values): 0.509789

94 Chapter 1 n Fundamentals

ptg12441863

public class TestVisualAccumulator
{
 public static void main(String[] args)
 {
 int T = Integer.parseInt(args[0]);
 VisualAccumulator a = new VisualAccumulator(T, 1.0);
 for (int t = 0; t < T; t++)
 a.addDataValue(StdRandom.random());
 StdOut.println(a);
 }
}

public class VisualAccumulator
{
 private double total;
 private int N;

 public VisualAccumulator(int trials, double max)
 {
 StdDraw.setXscale(0, trials);
 StdDraw.setYscale(0, max);
 StdDraw.setPenRadius(.005);
 }

 public void addDataValue(double val)
 {
 N++;
 total += val;
 StdDraw.setPenColor(StdDraw.DARK_GRAY);
 StdDraw.point(N, val);
 StdDraw.setPenColor(StdDraw.RED);
 StdDraw.point(N, mean());
 }

 public double mean()
 public String toString()
 // Same as Accumulator.

}

an abstract data type for accumulating data values (visual version)

 public class VisualAccumulator

VisualAccumulator(int trials, double max)

void addDataValue(double val) add a new data value
double mean() mean of all data values
String toString() string representation

typical client

implementation

apI

951.2 n Data Abstraction

ptg12441863

Designing abstract data types An abstract data type is a data type whose repre-
sentation is hidden from the client. This idea has had a powerful effect on modern pro-
gramming. The various examples that we have considered give us the vocabulary to ad-
dress advanced characteristics of ADTs and their implementation as Java classes. Many
of these topics are, on the surface, tangential to the study of algorithms, so it is safe for
you to skim this section and refer to it later in the context of specific implementation
problems. Our goal is to put important information related to designing data types in
one place for reference and to set the stage for implementations throughout this book.

Encapsulation A hallmark of object-oriented programming is that it enables us to
encapsulate data types within their implementations, to facilitate separate development
of clients and data type implementations. Encapsulation enables modular program-
ming, allowing us to

n	 Independently develop client and implementation code
n	 Substitute improved implementations without affecting clients
n	 Support programs not yet written (the API is a guide for any future client)

Encapsulation also isolates data-type operations, which leads to the possibility of
n	 Limiting the potential for error
n	 Adding consistency checks and other debugging tools in implementations
n	 Clarifying client code

An encapsulated data type can be used by any client, so it extends the Java language.
The programming style that we are advocating is predicated on the idea of breaking
large programs into small modules that can be developed and debugged independently.
This approach improves the resiliency of our software by limiting and localizing the ef-
fects of making changes, and it promotes code reuse by making it possible to substitute
new implementations of a data type to improve performance, accuracy, or memory
footprint. The same idea works in many settings. We often reap the benefits of encap-
sulation when we use system libraries. New versions of the Java system often include
new implementations of various data types or static method libraries, but the APIs do
not change. In the context of the study of algorithms and data structures, there is strong
and constant motivation to develop better algorithms because we can improve perfor-
mance for all clients by substituting an improved ADT implementation without chang-
ing the code of any client. The key to success in modular programming is to maintain
independence among modules. We do so by insisting on the API being the only point of
dependence between client and implementation. You do not need to know how a data
type is implemented in order to use it and you can assume that a client knows nothing but
the API when implementing a data type. Encapsulation is the key to attaining both of
these advantages.

96 Chapter 1 n Fundamentals

ptg12441863

Designing APIs One of the most important and most challenging steps in building
modern software is designing APIs. This task takes practice, careful deliberation, and
many iterations, but any time spent designing a good API is certain to be repaid in time
saved debugging or code reuse. Articulating an API might seem to be overkill when
writing a small program, but you should consider writing every program as though you
will need to reuse the code someday. Ideally, an API would clearly articulate behavior
for all possible inputs, including side effects, and then we would have software to check
that implementations meet the specification. Unfortunately, a fundamental result from
theoretical computer science known as the specification problem implies that this goal
is actually impossible to achieve. Briefly, such a specification would have to be written
in a formal language like a programming language, and the problem of determining
whether two programs perform the same computation is known, mathematically, to be
undecidable. Therefore, our APIs are brief English-language descriptions of the set of
values in the associated abstract data type along with a list of constructors and instance
methods, again with brief English-language descriptions of their purpose, including
side effects. To validate the design, we always include examples of client code in the text
surrounding our APIs. Within this broad outline, there are numerous pitfalls that every
API design is susceptible to:

n	 An API may be too hard to implement, implying implementations that are dif-
ficult or impossible to develop.

n	 An API may be too hard to use, leading to client code that is more complicated
than it would be without the API.

n	 An API may be too narrow, omitting methods that clients need.
n	 An API may be too wide, including a large number of methods not needed

by any client. This pitfall is perhaps the most common, and one of the most
difficult to avoid. The size of an API tends to grow over time because it is not
difficult to add methods to an existing API, but it is difficult to remove methods
without breaking existing clients.

n	 An API may be too general, providing no useful abstractions.
n	 An API may be too specific, providing abstractions so detailed or so diffuse as to

be useless.
n	 An API may be too dependent on a particular representation, therefore not serv-

ing the purpose of freeing client code from the details of using that representa-
tion. This pitfall is also difficult to avoid, because the representation is certainly
central to the development of the implementation.

These considerations are sometimes summarized in yet another motto: provide to cli-
ents the methods they need and no others.

971.2 n Data Abstraction

ptg12441863

Algorithms and abstract data types Data abstraction is naturally suited to the study
of algorithms, because it helps us provide a framework within which we can precisely
specify both what an algorithm needs to accomplish and how a client can make use of
an algorithm. Typically, in this book, an algorithm is an implementation of an instance
method in an abstract data type. For example, our whitelisting example at the begin-
ning of the chapter is naturally cast as an ADT client, based on the following operations:

n	 Construct a SET from an array of given values.
n	 Determine whether a given value is in the set.

These operations are encapsulated in the StaticSETofInts ADT, shown on the facing
page along with Whitelist, a typical client. StaticSETofInts is a special case of the
more general and more useful symbol table ADT that is the focus of Chapter 3. Binary
search is one of several algorithms that we study that is suitable for implementing these
ADTs. By comparison with the BinarySearch implementation on page 47, this imple-
mentation leads to clearer and more useful client code. For example, StaticSETofInts
enforces the idea that the array must be sorted before rank() is called. With the abstract
data type, we separate the client from the implementation making it easier for any client
to benefit from the ingenuity of the binary search algorithm, just by following the API
(clients of rank() in BinarySearch have to know to sort the array first). Whitelisting is
one of many clients that can take advantage of binary search.

Every Java program is a set of
static methods and/or a data type
implementation. In this book, we
focus primarily on abstract data
type implementations such as
StaticSETofInts, where the focus
is on operations and the representa-
tion of the data is hidden from the
client. As this example illustrates,
data abstraction enables us to

n	 Precisely specify what algorithms can provide for clients
n	 Separate algorithm implementations from the client code
n	 Develop layers of abstraction, where we make use of well-understood algorithms

to develop other algorithms
These are desirable properties of any approach to describing algorithms, whether it be
an English-language description or pseudo-code. By embracing the Java class mecha-
nism in support of data abstraction, we have little to lose and much to gain: working
code that we can test and use to compare performance for diverse clients.

% java Whitelist largeW.txt < largeT.txt
499569
984875
295754
207807
140925
161828
 ...

application

98 Chapter 1 n Fundamentals

ptg12441863

public class Whitelist
{
 public static void main(String[] args)
 {
 int[] w = In.readInts(args[0]);
 StaticSETofInts set = new StaticSETofInts(w);
 while (!StdIn.isEmpty())
 { // Read key, print if not in whitelist.
 int key = StdIn.readInt();
 if (!set.contains(key))
 StdOut.println(key);
 }
 }
}

import java.util.Arrays;

public class StaticSETofInts
{
 private int[] a;

 public StaticSETofInts(int[] keys)
 {
 a = new int[keys.length];
 for (int i = 0; i < keys.length; i++)
 a[i] = keys[i]; // defensive copy
 Arrays.sort(a);
 }

 public boolean contains(int key)
 { return rank(key) != -1; }

 private int rank(int key)
 { // Binary search.
 int lo = 0;
 int hi = a.length - 1;
 while (lo <= hi)
 { // Key is in a[lo..hi] or not present.
 int mid = lo + (hi - lo) / 2;
 if (key < a[mid]) hi = mid - 1;
 else if (key > a[mid]) lo = mid + 1;
 else return mid;
 }
 return -1;
 }
}

Binary search recast as an object-oriented program (an aDt for search in a set of integers)

typical client

implementation

apI public class StaticSETofInts

StaticSETofInts(int[] a) create a set from the values in a[]
boolean contains(int key) is key in the set?

991.2 n Data Abstraction

ptg12441863

Interface inheritance Java provides language support for defining relationships
among objects, known as inheritance. These mechanisms are widely used by software
developers, so you will study them in detail if you take a course in software engineer-
ing. The first inheritance mechanism that we consider is known as subtyping, which
allows us to specify a relationship between otherwise unrelated classes by specifying in
an interface a set of common methods that each implementing class must contain. An
interface is nothing more than a list of instance methods. For example, instead of using
our informal API, we might have articulated an interface for Date:

public interface Datable
{
 int month();
 int day();
 int year();
}

and then referred to the interface in our implementation code

public class Date implements Datable
{
 // implementation code (same as before)
}

so that the Java compiler will check that it matches the interface. Adding the code
implements Datable to any class that implements month(), day(), and year() pro-
vides a guarantee to any client that an object of that class can invoke those methods.
This arrangement is known as interface inheritance—an implementing class inherits the
interface. Interface inheritance allows us to write client programs that can manipulate

objects of any type that implements
the interface (even a type to be creat-
ed in the future), by invoking meth-
ods in the interface. We might have
used interface inheritance in place of
our more informal APIs, but chose
not to do so to avoid dependence on
specific high-level language mecha-
nisms that are not critical to the
understanding of algorithms and
to avoid the extra baggage of inter-
face files. But there are a few situa-
tions where Java conventions make

interface methods section

comparison

java.lang.Comparable compareTo() 2.1

java.util.Comparator compare() 2.5

iteration

java.lang.Iterable iterator() 1.3

java.util.Iterator

hasNext()

next()

remove()
1.3

Java interfaces used in this book

100 Chapter 1 n Fundamentals

ptg12441863

it worthwhile for us to take advantage of interfaces: we use them for comparison and for
iteration, as detailed in the table at the bottom of the previous page, and will consider
them in more detail when we cover those concepts.

Implementation inheritance Java also supports another inheritence mechanism
known as subclassing, which is a powerful technique that enables a programmer to
change behavior and add functionality without rewriting an entire class from scratch.
The idea is to define a new class (subclass, or derived class) that inherits instance meth-
ods and instance variables from another class (superclass, or base class). The subclass
contains more methods than the superclass. Moreover, the subclass can redefine or
override methods in the superclass. Subclassing is widely used by systems programmers
to build so-called extensible libraries—one programmer (even you) can add methods to
a library built by another programmer (or, perhaps, a team of systems programmers),
effectively reusing the code in a potentially huge library. For example, this approach is
widely used in the development of graphical user interfaces, so that the large amount of
code required to provide all the facilities that users expect (drop-down menus, cut-and-
paste, access to files, and so forth) can be reused. The use of subclassing is controversial
among systems and applications programmers (its advantages over interface inheri-
tance are debatable), and we avoid it in this book because it generally works against
encapsulation. Certain vestiges of the approach are built into Java and therefore un-
avoidable: specifically, every class is a subtype of Java’s Object class. This structure
enables the “convention” that every class includes an implementation of getClass(),
toString(), equals(), hashCode(), and several other methods that we do not use in
this book. Actually, every class inherits these methods from Object through subclassing,
so any client can use them for any object. We usually override toString(), equals(),
hashCode() in new classes because the default Object implementation generally does
not lead to the desired behavior. We now will consider toString() and equals(); we
discuss hashCode() in Section 3.4.

method purpose section

Class getClass() what class is this object? 1.2

String toString() string representation of this object 1.1

boolean equals(Object that) is this object equal to that? 1.2

int hashCode() hash code for this object 3.4

Inherited methods from Object used in this book

1011.2 n Data Abstraction

ptg12441863

String conversion By convention, every Java type inherits toString() from Object,
so any client can invoke toString() for any object. This convention is the basis for Ja-
va’s automatic conversion of one operand of the concatenation operator + to a String
whenever the other operand is a String. If an object’s data type does not include an
implementation of toString(), then the default implementation in Object is invoked,
which is normally not helpful, since it typically returns a string representation of the
memory address of the object. Accordingly, we generally include implementations of
toString() that override the default in every class that we develop, as highlighted for
Date on the facing page. As illustrated in this code, toString() implementations are
often quite simple, implicitly (through +) using toString() for each instance variable.

Wrapper types Java supplies built-in reference types known as wrapper types, one for
each of the primitive types: Boolean, Byte, Character, Double, Float, Integer, Long,
and Short correspond to boolean, byte, char, double, float, int, long, and short,
respectively. These classes consist primarily of static methods such as parseInt() but
they also include the inherited instance methods toString(), compareTo(), equals(),
and hashCode(). Java automatically converts from primitive types to wrapper types
when warranted, as described on page 122. For example, when an int value is concat-
enated with a String, it is converted to an Integer that can invoke toString().

Equality What does it mean for two objects to be equal? If we test equality with
(a == b) where a and b are reference variables of the same type, we are testing whether
they have the same identity : whether the references are equal. Typical clients would
rather be able to test whether the data-type values (object state) are the same, or to
implement some type-specific rule. Java gives us a head start by providing implementa-
tions both for standard types such as Integer, Double, and String and for more com-
plicated types such as File and URL. When using these types of data, you can just use the
built-in implementation. For example, if x and y are String values, then x.equals(y)
is true if and only if x and y have the same length and are identical in each character
position. When we define our own data types, such as Date or Transaction, we need
to override equals(). Java’s convention is that equals() must be an equivalence rela-
tion. It must be

n	 Reflexive : x.equals(x) is true.
n	 Symmetric : x.equals(y) is true if and only if y.equals(x) is true.
n	 Transitive : if x.equals(y) and y.equals(z) are true, then so is x.equals(z).

In addition, it must take an Object as argument and satisfy the following properties.
n	 Consistent : multiple invocations of x.equals(y) consistently return the same

value, provided neither object is modified.
n	 Not null : x.equals(null) returns false.

102 Chapter 1 n Fundamentals

ptg12441863

These are natural definitions, but ensuring that these properties hold, adhering to Java
conventions, and avoiding unnecessary work in an implementation can be tricky, as il-
lustrated for Date below. It takes the following step-by-step approach:

n	 If the reference to this object is the same as the reference to the argument object,
return true. This test saves the work of doing all the other checks in this case.

n	 If the argument is null, return false, to adhere to the convention (and to avoid
following a null reference in code to follow).

n	 If the objects are not from the same class, return false. To determine an object’s
class, we use getClass(). Note that we can use == to tell us whether two objects
of type Class are equal because getClass() is guaranteed to return the same
reference for all objects in any given class.

n	 Cast the argument
from Object to Date
(this cast must succeed
because of the previous
test).

n	 Return false if any
instance variables do
not match. For other
classes, some other
definition of equality
might be appropriate.
For example, we might
regard two Counter
objects as equal if their
count instance variables
are equal.

This implementation is a
model that you can use to
implement equals() for any
type that you implement.
Once you have implemented
one equals(), you will not
find it difficult to implement
another.

public class Date
{
 private final int month;
 private final int day;
 private final int year;

 public Date(int m, int d, int y)
 { month = m; day = d; year = y; }

 public int month()
 { return month; }

 public int day()
 { return day; }

 public int year()
 { return year; }

 public String toString()
 { return month() + "/" + day() + "/" + year(); }

 public boolean equals(Object x)
 {
 if (this == x) return true;
 if (x == null) return false;
 if (this.getClass() != x.getClass()) return false;
 Date that = (Date) x;
 if (this.day != that.day) return false;
 if (this.month != that.month) return false;
 if (this.year != that.year) return false;
 return true;
 }

}

overriding toString() and equals() in a data-type definition

1031.2 n Data Abstraction

ptg12441863

Memory management The ability to assign a new value to a reference variable cre-
ates the possibility that a program may have created an object that can no longer be
referenced. For example, consider the three assignment statements in the figure at left.
After the third assignment statement, not only do a and b refer to the same Date object
(12/31/1999), but also there is no longer a reference to the Date object that was created

and used to initialize b. The only reference to that object
was in the variable b, and this reference was overwritten
by the assignment, so there is no way to refer to the object
again. Such an object is said to be orphaned. Objects are
also orphaned when they go out of scope. Java programs
tend to create huge numbers of objects (and variables that
hold primitive data-type values), but only have a need for a
small number of them at any given point in time. Accord-
ingly, programming languages and systems need mecha-
nisms to allocate memory for data-type values during the
time they are needed and to free the memory when they
are no longer needed (for an object, sometime after it is
orphaned). Memory management turns out to be easier
for primitive types because all of the information needed
for memory allocation is known at compile time. Java (and
most other systems) takes care of reserving space for vari-
ables when they are declared and freeing that space when
they go out of scope. Memory management for objects is
more complicated: the system can allocate memory for an
object when it is created, but cannot know precisely when
to free the memory associated with each object because
the dynamics of a program in execution determines when
objects are orphaned. In many languages (such as C and
C++) the programmer is responsible for both allocating
and freeing memory. Doing so is tedious and notoriously

error-prone. One of Java’s most significant features is its ability to automatically man-
age memory. The idea is to free the programmers from the responsibility of managing
memory by keeping track of orphaned objects and returning the memory they use to
a pool of free memory. Reclaiming memory in this way is known as garbage collection.
One of Java’s characteristic features is its policy that references cannot be modified.
This policy enables Java to do efficient automatic garbage collection. Programmers still
debate whether the overhead of automatic garbage collection justifies the convenience
of not having to worry about memory management.

Date a = new Date(12, 31, 1999);
Date b = new Date(1, 1, 2011);
b = a;

811 1

812 1

813 2011

 b 655

 a 655

655 12

656 31

657 1999

New Year’s
 Eve 1999

New Year’s
 Day 2011

orphaned
object

references to
same object

An orphaned object

104 Chapter 1 n Fundamentals

ptg12441863

Immutability An immutable data type, such as Date, has the property that the value
of an object never changes once constructed. By contrast, a mutable data type, such as
Counter or Accumulator, manipulates object values that are intended to change. Java’s
language support for helping to enforce immutability is the final modifier. When you
declare a variable to be final, you are promising to assign it a value only once, either
in an initializer or in the constructor. Code that could modify the value of a final
variable leads to a compile-time error. In our code, we use the modifier final with
instance variables whose values never change. This policy serves as documentation that
the value does not change, prevents accidental changes, and makes programs easier
to debug. For example, you do not have to include a final value in a trace, since you
know that its value never changes. A data type such as Date whose instance variables
are all primitive and final is immutable (in code that does not use implementation
inheritence, our convention). Whether to make a data type immutable is an important
design decision and depends on the application at hand. For data
types such as Date, the purpose of the abstraction is to encap-
sulate values that do not change so that we can use them in as-
signment statements and as arguments and return values from
functions in the same way as we use primitive types (without hav-
ing to worry about their values changing). A programmer imple-
menting a Date client might reasonably expect to write the code
d = d0 for two Date variables, in the same way as for double or
int values. But if Date were mutable and the value of d were to
change after the assignment d = d0, then the value of d0 would also change (they are
both references to the same object)! On the other hand, for data types such as Counter
and Accumulator, the very purpose of the abstraction is to encapsulate values as they
change. You have already encountered this distinction as a client programmer, when
using Java arrays (mutable) and Java’s String data type (immutable). When you pass
a String to a method, you do not worry about that method changing the sequence of
characters in the String, but when you pass an array to a method, the method is free to
change the contents of the array. String objects are immutable because we generally do
not want String values to change, and Java arrays are mutable because we generally do
want array values to change. There are also situations where we want to have mutable
strings (that is the purpose of Java’s StringBuilder class) and where we want to have
immutable arrays (that is the purpose of the Vector class that we consider later in this
section). Generally, immutable types are easier to use and harder to misuse than muta-
ble types because the scope of code that can change their values is far smaller. It is easier
to debug code that uses immutable types because it is easier to guarantee that variables
in client code that uses them remain in a consistent state. When using mutable types,

mutable immutable

Counter Date

Java arrays String

Mutable/immutable examples

1051.2 n Data Abstraction

ptg12441863

you must always be concerned about where and when their values change. The down-
side of immutability is that a new object must be created for every value. This expense is
normally manageable because Java garbage collectors are typically optimized for such
situations. Another downside of immutability stems from the fact that, unfortunately,
final guarantees immutability only when instance variables are primitive types, not
reference types. If an instance variable of a reference type has the final modifier, the
value of that instance variable (the reference to an object) will never change—it will
always refer to the same object—but the value of the object itself can change. For ex-
ample, this code does not implement an immutable type:

public class Vector
{
 private final double[] coords;

 public Vector(double[] a)
 { coords = a; }
 ...
}

A client program could create a Vector by specifying the entries in an array, and then
(bypassing the API) change the elements of the Vector after construction:

double[] a = { 3.0, 4.0 };
Vector vector = new Vector(a);
a[0] = 0.0; // Bypasses the public API.

The instance variable coords[] is private and final, but Vector is mutable because
the client holds a reference to the data. Immutability needs to be taken into account in
any data-type design, and whether a data type is immutable should be specified in the
API, so that clients know that object values will not change. In this book, our primary
interest in immutability is for use in certifying the correctness of our algorithms. For
example, if the type of data used for a binary search algorithm were mutable, then cli-
ents could invalidate our assumption that the array is sorted for binary search.

106 Chapter 1 n Fundamentals

ptg12441863

Design by contract To conclude, we briefly discuss Java language mechanisms that
enables you to verify assumptions about your program as it is running. We use two Java
language mechanisms for this purpose:

n	 Exceptions and errors, which generally handle unforeseen errors outside
our control

n	 Assertions, which verify assumptions that we make within code we develop
Liberal use of both exceptions and assertions is good programming practice. We use
them sparingly in the book for economy, but you will find them throughout the code
on the booksite. This code aligns with a substantial amount of the surrounding com-
mentary about each algorithm in the text that has to do with exceptional conditions
and with asserted invariants.

Exceptions and errors Exceptions and errors are disruptive events that occur while a
program is running, often to signal an error. The action taken is known as throwing an
exception or throwing an error. We have already encountered exceptions thrown by Java
system methods in the course of learning basic features of Java: StackOverflowError,
ArithmeticException, ArrayIndexOutOfBoundsException, OutOfMemoryError,
and NullPointerException are typical examples. You can also create your own ex-
ceptions. The simplest kind is a RuntimeException that terminates execution of the
program and prints an error message

throw new RuntimeException("Error message here.");

A general practice known as fail fast programming suggests that an error is more easily
pinpointed if an exception is thrown as soon as an error is discovered (as opposed to
ignoring the error and deferring the exception to sometime in the future).

Assertions An assertion is a boolean expression that you are affirming is true at that
point in the program. If the expression is false, the program will terminate and re-
port an error message. We use assertions both to gain confidence in the correctness of
programs and to document intent. For example, suppose that you have a computed
value that you might use to index into an array. If this value were negative, it would
cause an ArrayIndexOutOfBoundsException sometime later. But if you write the code
assert index >= 0; you can pinpoint the place where the error occurred. You can
also add an optional detail message such as

assert index >= 0 : "Negative index in method X";

to help you locate the bug. By default, assertions are disabled. You can enable them from
the command line by using the -enableassertions flag (-ea for short). Assertions are
for debugging: your program should not rely on assertions for normal operation since
they may be disabled. When you take a course in systems programming, you will learn

1071.2 n Data Abstraction

ptg12441863

to use assertions to ensure that your code never terminates in a system error or goes into
an infinite loop. One model, known as the design-by-contract model of programming
expresses the idea. The designer of a data type expresses a precondition (the condition
that the client promises to satisfy when calling a method), a postcondition (the condi-
tion that the implementation promises to achieve when returning from a method), and
side effects (any other change in state that the method could cause). During develop-
ment, these conditions can be tested with assertions.

Summary The language mechanisms discussed throughout this section illustrate that
effective data-type design leads to nontrivial issues that are not easy to resolve. Ex-
perts are still debating the best ways to support some of the design ideas that we are
discussing. Why does Java not allow functions as arguments? Why does Matlab copy
arrays passed as arguments to functions? As mentioned early in Chapter 1, it is a slip-
pery slope from complaining about features in a programming language to becoming
a programming-language designer. If you do not plan to do so, your best strategy is
to use widely available languages. Most systems have extensive libraries that you cer-
tainly should use when appropriate, but you often can simplify your client code and
protect yourself by building abstractions that can easily transport to other languages.
Your main goal is to develop data types so that most of your work is done at a level of
abstraction that is appropriate to the problem at hand.

The table on the facing page summarizes the various kinds of Java classes that we
have considered.

108 Chapter 1 n Fundamentals

ptg12441863

kind of class examples characteristics

static methods Math StdIn StdOut no instance variables

immutable
abstract data type

Date Transaction

String Integer

instance variables all private
instance variables all final

defensive copy for reference types
Note: these are necessary but not sufficient.

mutable
abstract data type

Counter Accumulator
instance variables all private

not all instance variables final

abstract data type
with I/O side effects

VisualAccumulator

In Out Draw
instance variables all private

instance methods do I/O

Java classes (data-type implementations)

1091.2 n Data Abstraction

ptg12441863

Q & A

Q. Why bother with data abstraction?

A. It helps us produce reliable and correct code. For example, in the 2000 presidential
election, Al Gore received –16,022 votes on an electronic voting machine in Volusia
County, Florida—the tally was clearly not properly encapsulated in the voting machine
software!

Q. Why the distinction between primitive and reference types? Why not just have refer-
ence types?

A. Performance. Java provides the reference types Integer, Double, and so forth that
correspond to primitive types that can be used by programmers who prefer to ignore
the distinction. Primitive types are closer to the types of data that are supported by
computer hardware, so programs that use them usually run faster than programs that
use corresponding reference types.

Q. Do data types have to be abstract?

A. No. Java also allows public and protected to allow some clients to refer directly
to instance variables. As described in the text, the advantages of allowing client code to
directly refer to data are greatly outweighed by the disadvantages of dependence on a
particular representation, so all instance variables are private in our code. We also oc-
casionally use private instance methods to share code among public methods.

Q. What happens if I forget to use new when creating an object?

A. To Java, it looks as though you want to call a static method with a return value of the
object type. Since you have not defined such a method, the error message is the same as
anytime you refer to an undefined symbol. If you compile the code

Counter c = Counter("test");

you get this error message:

cannot find symbol
symbol : method Counter(String)

You get the same kind of error message if you provide the wrong number of arguments
to a constructor.

110 Chapter 1 n Fundamentals

ptg12441863

Q. What happens if I forget to use new when creating an array of objects?

A. You need to use new for each object that you create, so when you create an array of
N objects, you need to use new N+1 times: once for the array and once for each of the
objects. If you forget to create the array:

Counter[] a;
a[0] = new Counter("test");

you get the same error message that you would get when trying to assign a value to any
uninitialized variable:

variable a might not have been initialized
 a[0] = new Counter("test");
 ^

but if you forget to use new when creating an object within the array and then try to use
it to invoke a method:

Counter[] a = new Counter[2];
a[0].increment();

you get a NullPointerException.

Q. Why not write StdOut.println(x.toString()) to print objects?

A. That code works fine, but Java saves us the trouble of writing it by automatically
invoking the toString() method for any object, since println() has a method that
takes an Object as argument.

Q. What is a pointer ?

A. Good question. Perhaps that should be NullReferenceException. Like a Java ref-
erence, you can think of a pointer as a machine address. In many programming lan-
guages, the pointer is a primitive data type that programmers can manipulate in many
ways. But programming with pointers is notoriously error-prone, so operations pro-
vided for pointers need to be carefully designed to help programmers avoid errors.
Java takes this point of view to an extreme (that is favored by many modern program-
ming-language designers). In Java, there is only one way to create a reference (new) and
only one way to change a reference (with an assignment statement). That is, the only
things that a programmer can do with references are to create them and copy them. In

1111.2 n Data Abstraction

ptg12441863

programming-language jargon, Java references are known as safe pointers, because Java
can guarantee that each reference points to an object of the specified type (and it can
determine which objects are not in use, for garbage collection). Programmers used to
writing code that directly manipulates pointers think of Java as having no pointers at
all, but people still debate whether it is really desirable to have unsafe pointers.

Q. Where can I find more details on how Java implements references and does garbage
collection?

A. One Java system might differ completely from another. For example, one natural
scheme is to use a pointer (machine address); another is to use a handle (a pointer to
a pointer). The former gives faster access to data; the latter provides for better garbage
collection.

Q. What exactly does it mean to import a name?

A. Not much: it just saves some typing. You could type java.util.Arrays instead of
Arrays everywhere in your code instead of using the import statement.

Q. What is the problem with implementation inheritance?

A. Subtyping makes modular programming more difficult for two reasons. First, any
change in the superclass affects all subclasses. The subclass cannot be developed inde-
pendently of the superclass; indeed, it is completely dependent on the superclass. This
problem is known as the fragile base class problem. Second, the subclass code, hav-
ing access to instance variables, can subvert the intention of the superclass code. For
example, the designer of a class like Counter for a voting system may take great care
to make it so that Counter can only increment the tally by one (remember Al Gore’s
problem). But a subclass, with full access to the instance variable, can change it to any
value whatever.

Q. How do I make a class immutable?

A. To ensure immutability of a data type that includes an instance variable of a mu-
table type, we need to make a local copy, known as a defensive copy. And that may not be
enough. Making the copy is one challenge; ensuring that none of the instance methods
change values is another.

Q. What is null?

Q & A (continued)

112 Chapter 1 n Fundamentals

ptg12441863

A. It is a literal value that refers to no object. Invoking a method using the null ref-
erence is meaningless and results in a NullPointerException. If you get this error
message, check to make sure that your constructor properly initializes all of its instance
variables.

Q. Can I have a static method in a class that implements a data type?

A. Of course. For example, all of our classes have main(). Also, it is natural to consider
adding static methods for operations that involve multiple objects where none of them
naturally suggests itself as the one that should invoke the method. For example, we
might define a static method like the following within Point:

public static double distance(Point a, Point b)
{
 return a.distTo(b);
}

Often, including such methods can serve to clarify client code.

Q. Are there other kinds of variables besides parameter, local, and instance variables?

A. If you include the keyword static in a class declaration (outside of any type) it
creates a completely different type of variable, known as a static variable. Like instance
variables, static variables are accessible to every method in the class; however, they are
not associated with any object. In older programming languages, such variables are
known as global variables, because of their global scope. In modern programming, we
focus on limiting scope and therefore rarely use such variables. When we do, we will call
attention to them.

Q. What is a deprecated method?

A. A method that is no longer fully supported, but kept in an API to maintain compat-
ibility. For example, Java once included a method Character.isSpace(), and pro-
grammers wrote programs that relied on using that method’s behavior. When the de-
signers of Java later wanted to support additional Unicode whitespace characters, they
could not change the behavior of isSpace() without breaking client programs, so,
instead, they added a new method, Character.isWhiteSpace(), and deprecated the
old method. As time wears on, this practice certainly complicates APIs. Sometimes, en-
tire classes are deprecated. For example, Java deprecated its java.util.Date in order
to better support internationalization.

1131.2 n Data Abstraction

ptg12441863

ExErcisEs

1.2.1 Write a Point2D client that takes an integer value N from the command line,
generates N random points in the unit square, and computes the distance separating
the closest pair of points.

1.2.2 Write an Interval1D client that takes an int value N as command-line argu-
ment, reads N intervals (each defined by a pair of double values) from standard input,
and prints all pairs that intersect.

1.2.3 Write an Interval2D client that takes command-line arguments N, min, and max
and generates N random 2D intervals whose width and height are uniformly distributed
between min and max in the unit square. Draw them on StdDraw and print the number
of pairs of intervals that intersect and the number of intervals that are contained in one
another.

1.2.4 What does the following code fragment print?

String string1 = "hello";
String string2 = string1;
string1 = "world";
StdOut.println(string1);
StdOut.println(string2);

1.2.5 What does the following code fragment print?

String s = "Hello World";
s.toUpperCase();
s.substring(6, 11);
StdOut.println(s);

Answer : "Hello World". String objects are immutable—string methods return
a new String object with the appropriate value (but they do not change the value
of the object that was used to invoke them). This code ignores the objects returned
and just prints the original string. To print "WORLD", use s = s.toUpperCase() and
s = s.substring(6, 11).

1.2.6 A string s is a circular rotation of a string t if it matches when the characters
are circularly shifted by any number of positions; e.g., ACTGACG is a circular shift of
TGACGAC, and vice versa. Detecting this condition is important in the study of genomic
sequences. Write a program that checks whether two given strings s and t are circular

114 Chapter 1 n Fundamentals

ptg12441863

shifts of one another. Hint : The solution is a one-liner with indexOf(), length(), and
string concatenation.

1.2.7 What does the following recursive function return?

public static String mystery(String s)
{
 int N = s.length();
 if (N <= 1) return s;
 String a = s.substring(0, N/2);
 String b = s.substring(N/2, N);
 return mystery(b) + mystery(a);
}

1.2.8 Suppose that a[] and b[] are each integer arrays consisting of millions of inte-
gers. What does the follow code do? Is it reasonably efficient?

int[] t = a; a = b; b = t;

Answer. It swaps them. It could hardly be more efficient because it does so by copying
references, so that it is not necessary to copy millions of elements.

1.2.9 Instrument BinarySearch (page 47) to use a Counter to count the total number
of keys examined during all searches and then print the total after all searches are com-
plete. Hint : Create a Counter in main() and pass it as an argument to rank().

1.2.10 Develop a class VisualCounter that allows both increment and decrement
operations. Take two arguments N and max in the constructor, where N specifies the
maximum number of operations and max specifies the maximum absolute value for
the counter. As a side effect, create a plot showing the value of the counter each time its
tally changes.

1.2.11 Develop an implementation SmartDate of our Date API that raises an excep-
tion if the date is not legal.

1.2.12 Add a method dayOfTheWeek() to SmartDate that returns a String value
Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, or Sunday, giving the ap-
propriate day of the week for the date. You may assume that the date is in the 21st
century.

1151.2 n Data Abstraction

ptg12441863

1.2.13 Using our implementation of Date as a model (page 91), develop an implementa-
tion of Transaction.

1.2.14 Using our implementation of equals() in Date as a model (page 103), develop an
implementation of equals() for Transaction.

ExErcisEs (continued)

116 Chapter 1 n Fundamentals

ptg12441863

crEAtivE problEms

1.2.15 File input. Develop a possible implementation of the static readInts() meth-
od from In (which we use for various test clients, such as binary search on page 47) that
is based on the split() method in String.

Solution:

public static int[] readInts(String name)
{
 In in = new In(name);
 String input = in.readAll();
 String[] words = input.split("\\s+");
 int[] ints = new int[words.length];
 for int i = 0; i < word.length; i++)
 ints[i] = Integer.parseInt(words[i]);
 return ints;
}

We will consider a different implementation in Section 1.3 (see page 126).

1.2.16 Rational numbers. Implement an immutable data type Rational for rational
numbers that supports addition, subtraction, multiplication, and division.

public class Rational

Rational(int numerator, int denominator)

Rational plus(Rational b) sum of this number and b

Rational minus(Rational b) difference of this number and b

Rational times(Rational b) product of this number and b

Rational dividedBy(Rational b) quotient of this number and b

boolean equals(Object that) is this number equal to that ?

String toString() string representation

You do not have to worry about testing for overflow (see Exercise 1.2.17), but use as
instance variables two long values that represent the numerator and denominator to
limit the possibility of overflow. Use Euclid’s algorithm (see page 4) to ensure that the
numerator and denominator never have any common factors. Include a test client that
exercises all of your methods.

1171.2 n Data Abstraction

ptg12441863

1.2.17 Robust implementation of rational numbers. Use assertions to develop an im-
plementation of Rational (see Exercise 1.2.16) that is immune to overflow.

1.2.18 Variance for accumulator. Validate that the following code, which adds the
methods var() and stddev() to Accumulator, computes both the sample mean, sam-
ple variance, and sample standard deviation of the numbers presented as arguments to
addDataValue():

public class Accumulator
{
 private double m;
 private double s;
 private int N;

 public void addDataValue(double x)
 {
 N++;
 s = s + 1.0 * (N-1) / N * (x - m) * (x - m);
 m = m + (x - m) / N;
 }

 public double mean()
 { return m; }

 public double var()
 { return s/(N - 1); }

 public double stddev()
 { return Math.sqrt(this.var()); }

}

This implementation is less susceptible to roundoff error than the straightforward im-
plementation based on saving the sum of the squares of the numbers.

crEAtivE problEms (continued)

118 Chapter 1 n Fundamentals

ptg12441863

1.2.19 Parsing. Develop the parse constructors for your Date and Transaction im-
plementations of Exercise 1.2.13 that take a single String argument to specify the
initialization values, using the formats given in the table below.

Partial solution:

public Date(String date)
{
 String[] fields = date.split("/");
 month = Integer.parseInt(fields[0]);
 day = Integer.parseInt(fields[1]);
 year = Integer.parseInt(fields[2]);
}

type format example

Date integers separated by slashes 5/22/1939

Transaction
customer, date, and amount,

separated by whitespace
Turing 5/22/1939 11.99

Formats for parsing

1191.2 n Data Abstraction

ptg12441863

1.3 BAgS, QUeUeS, AnD StACkS

Several fundamental data types involve collections of objects. Specifically, the set
of values is a collection of objects, and the operations revolve around adding, remov-
ing, or examining objects in the collection. In this section, we consider three such data
types, known as the bag, the queue, and the stack. They differ in the specification of
which object is to be removed or examined next.

Bags, queues, and stacks are fundamental and broadly useful. We use them in imple-
mentations throughout the book. Beyond this direct applicability, the client and imple-
mentation code in this section serves as an introduction to our general approach to the
development of data structures and algorithms.

One goal of this section is to emphasize the idea that the way in which we represent
the objects in the collection directly impacts the efficiency of the various operations.
For collections, we design data structures for representing the collection of objects that
can support efficient implementation of the requisite operations.

A second goal of this section is to introduce generics and iteration, basic Java con-
structs that substantially simplify client code. These are advanced programming-lan-
guage mechanisms that are not necessarily essential to the understanding of algorithms,
but their use allows us to develop client code (and implementations of algorithms) that
is more clear, compact, and elegant than would otherwise be possible.

A third goal of this section is to introduce and show the importance of linked data
structures. In particular, a classic data structure known as the linked list enables im-
plementation of bags, queues, and stacks that achieve efficiencies not otherwise pos-
sible. Understanding linked lists is a key first step to the study of algorithms and data
structures.

For each of the three types, we consider APIs and sample client programs, then
look at possible representations of the data type values and implementations of the
data-type operations. This scenario repeats (with more complicated data structures)
throughout this book. The implementations here are models of implementations later
in the book and worthy of careful study.

120

ptg12441863

APIs As usual, we begin our discussion of abstract data types for collections by de-
fining their APIs, shown below. Each contains a no-argument constructor, a method to
add an item to the collection, a method to test whether the collection is empty, and a
method that returns the size of the collection. Stack and Queue each have a method to
remove a particular item from the collection. Beyond these basics, these APIs reflect two
Java features that we will describe on the next few pages: generics and iterable collections.

apIs for fundamental generic iterable collections

public class Queue<Item> implements Iterable<Item>

Queue() create an empty queue
void enqueue(Item item) add an item
Item dequeue() remove the least recently added item

boolean isEmpty() is the queue empty?
int size() number of items in the queue

public class Stack<Item> implements Iterable<Item>

Stack() create an empty stack
void push(Item item) add an item
Item pop() remove the most recently added item

boolean isEmpty() is the stack empty?
int size() number of items in the stack

public class Bag<Item> implements Iterable<Item>

Bag() create an empty bag
void add(Item item) add an item

boolean isEmpty() is the bag empty?
int size() number of items in the bag

FIFo queue

pushdown (LIFo) stack

Bag

1211.3 n Bags, Queues, and Stacks

ptg12441863

Generics An essential characteristic of collection ADTs is that we should be able to use
them for any type of data. A specific Java mechanism known as generics, also known
as parameterized types, enables this capability. The impact of generics on the program-
ming language is sufficiently deep that they are not found in many languages (including
early versions of Java), but our use of them in the present context involves just a small
bit of extra Java syntax and is easy to understand. The notation <Item> after the class
name in each of our APIs defines the name Item as a type parameter, a symbolic place-
holder for some concrete type to be used by the client. You can read Stack<Item> as
“stack of items.” When implementing Stack, we do not know the concrete type of Item,
but a client can use our stack for any type of data, including one defined long after we
develop our implementation. The client code provides a concrete type when the stack
is created: we can replace Item with the name of any reference data type (consistently,
everywhere it appears). This provides exactly the capability that we need. For example,
you can write code such as

Stack<String> stack = new Stack<String>();
stack.push("Test");
...
String next = stack.pop();

to use a stack for String objects and code such as

Queue<Date> queue = new Queue<Date>();
queue.enqueue(new Date(12, 31, 1999));
...

Date next = queue.dequeue();

to use a queue for Date objects. If you try to add a Date (or data of any other type than
String) to stack or a String (or data of any other type than Date) to queue, you will
get a compile-time error. Without generics, we would have to define (and implement)
different APIs for each type of data we might need to collect; with generics, we can use
one API (and one implementation) for all types of data, even types that are imple-
mented in the future. As you will soon see, generic types lead to clear client code that is
easy to understand and debug, so we use them throughout this book.

Autoboxing Type parameters have to be instantiated as reference types, so Java has
special mechanisms to allow generic code to be used with primitive types. Recall that
Java’s wrapper types are reference types that correspond to primitive types: Boolean,
Byte, Character, Double, Float, Integer, Long, and Short correspond to boolean,
byte, char, double, float, int, long, and short, respectively. Java automatically con-
verts between these reference types and the corresponding primitive types—in assign-
ments, method arguments, and arithmetic/logic expressions. In the present context,

122 Chapter 1 n Fundamentals

ptg12441863

this conversion is helpful because it enables us to use generics with primitive types, as
in the following code:

Stack<Integer> stack = new Stack<Integer>();
stack.push(17); // auto-boxing (int -> Integer)
int i = stack.pop(); // auto-unboxing (Integer -> int)

Automatically casting a primitive type to a wrapper type is known as autoboxing, and
automatically casting a wrapper type to a primitive type is known as auto-unboxing.
In this example, Java automatically casts (autoboxes) the primitive value 17 to be of
type Integer when we pass it to the push() method. The pop() method returns an
Integer, which Java casts (auto-unboxes) to an int before assigning it to the variable i.

Iterable collections For many applications, the client’s requirement is just to process
each of the items in some way, or to iterate through the items in the collection. This
paradigm is so important that it has achieved first-class status in Java and many other
modern languages (the programming language itself has specific mechanisms to sup-
port it, not just the libraries). With it, we can write clear and compact code that is free
from dependence on the details of a collection’s implementation. For example, suppose
that a client maintains a collection of transactions in a Queue, as follows:

Queue<Transaction> collection = new Queue<Transaction>();

If the collection is iterable, the client can print a transaction list with a single statement:

for (Transaction t : collection)
{ StdOut.println(t); }

This construct is known as the foreach statement: you can read the for statement as for
each transaction t in the collection, execute the following block of code. This client code
does not need to know anything about the representation or the implementation of the
collection; it just wants to process each of the items in the collection. The same for loop
would work with a Bag of transactions or any other iterable collection. We could hardly
imagine client code that is more clear and compact. As you will see, supporting this
capability requires extra effort in the implementation, but this effort is well worthwhile.

It is interesting to note that the only differences between the APIs for Stack and
Queue are their names and the names of the methods. This observation highlights the
idea that we cannot easily specify all of the characteristics of a data type in a list of
method signatures. In this case, the true specification has to do with the English-lan-
guage descriptions that specify the rules by which an item is chosen to be removed (or
to be processed next in the foreach statement). Differences in these rules are profound,
part of the API, and certainly of critical importance in developing client code.

1231.3 n Bags, Queues, and Stacks

ptg12441863

Bags A bag is a collection where removing items is not supported—its purpose is to
provide clients with the ability to collect items and then to iterate through the collected
items (the client can also test if a bag is empty and find its number of items). The order
of iteration is unspecified and should be immaterial to the client. To appreciate the con-
cept, consider the idea of an avid marble collector, who might put marbles in a bag, one
at a time, and periodically process all the marbles to look
for one having some particular characteristic. With our
Bag API, a client can add items to a bag and process them
all with a foreach statement whenever needed. Such a cli-
ent could use a stack or a queue, but one way to emphasize
that the order in which items are processed is immaterial
is to use a Bag. The class Stats at right illustrates a typi-
cal Bag client. The task is simply to compute the average
and the sample standard deviation of the double values
on standard input. If there are N numbers on standard in-
put, their average is computed by adding the numbers and
dividing by N; their sample standard deviation is comput-
ed by adding the squares of the difference between each
number and the average, dividing by N–1, and taking the
square root. The order in which the numbers are consid-
ered is not relevant for either of these calculations, so we
save them in a Bag and use the foreach construct to com-
pute each sum. Note : It is possible to compute the stan-
dard deviation without saving all the numbers (as we did
for the average in Accumulator—see Exercise 1.2.18).
Keeping the numbers in a Bag is required for more com-
plicated statistics.

Operations on a bag

a bag of
marbles

process each marble m
(in any order)

add()

for (Marble m : bag)

add()

124 Chapter 1 n Fundamentals

ptg12441863

public class Stats
{
 public static void main(String[] args)
 {
 Bag<Double> numbers = new Bag<Double>();

 while (!StdIn.isEmpty())
 numbers.add(StdIn.readDouble());
 int N = numbers.size();

 double sum = 0.0;
 for (double x : numbers)
 sum += x;
 double mean = sum/N;

 sum = 0.0;
 for (double x : numbers)
 sum += (x - mean)*(x - mean);
 double std = Math.sqrt(sum/(N-1));

 StdOut.printf("Mean: %.2f\n", mean);
 StdOut.printf("Std dev: %.2f\n", std);

 }
}

% java Stats
100
99
101
120
98
107
109
81
101
90

Mean: 100.60
Std dev: 10.51

typical Bag client

application

1251.3 n Bags, Queues, and Stacks

ptg12441863

FIFO queues A FIFO queue (or just a queue) is a collection that is based on the first-
in-first-out (FIFO) policy. The policy of doing tasks in the same order that they arrive

is one that we encounter frequently in everyday life:
from people waiting in line at a theater, to cars wait-
ing in line at a toll booth, to tasks waiting to be ser-
viced by an application on your computer. One bed-
rock principle of any service policy is the perception
of fairness. The first idea that comes to mind when
most people think about fairness is that whoever has
been waiting the longest should be served first. That
is precisely the FIFO discipline. Queues are a natu-
ral model for many everyday phenomena, and they
play a central role in numerous applications. When
a client iterates through the items in a queue with
the foreach construct, the items are processed in the
order they were added to the queue. A typical reason
to use a queue in an application is to save items in
a collection while at the same time preserving their
relative order : they come out in the same order in
which they were put in. For example, the client be-
low is a possible implementation of the readInts()
static method from our In class. The problem that
this method solves for the client is that the client can
get numbers from a file into an array without know-

ing the file size ahead of time. We enqueue the numbers from the file, use the size()
method from Queue to find the size needed for the array, create the array, and then
dequeue the numbers to move
them to the array. A queue is
appropriate because it puts the
numbers into the array in the
order in which they appear in
the file (we might use a Bag
if that order is immaterial).
This code uses autoboxing and
auto-unboxing to convert be-
tween the client’s int primitive
type and the queue’s Integer
wrapper type.

A typical FIFO queue

queue of customers
server

enqueue

first in line
leaves queue

new arrival
 at the end

new arrival
at the end

next in line
leaves queue

0 1 2

0 1 2 3

3 4

4

3

enqueue

4

dequeue

0

dequeue

1

0 1 2

10

1

2 3

2 3 4

public static int[] readInts(String name)
{
 In in = new In(name);
 Queue<Integer> q = new Queue<Integer>();
 while (!in.isEmpty())
 q.enqueue(in.readInt());

 int N = q.size();
 int[] a = new int[N];
 for (int i = 0; i < N; i++)
 a[i] = q.dequeue();
 return a;
}

Sample Queue client

126 Chapter 1 n Fundamentals

ptg12441863

Pushdown stacks A pushdown stack (or just a stack) is
a collection that is based on the last-in-first-out (LIFO)
policy. When you keep your mail in a pile on your desk,
you are using a stack. You pile pieces of new mail on the
top when they arrive and take each piece of mail from
the top when you are ready to read it. People do not
process as many papers as they did in the past, but the
same organizing principle underlies several of the ap-
plications that you use regularly on your computer. For
example, many people organize their email as a stack—
they push messages on the top when they are received
and pop them from the top when they read them, with
most recently received first (last in, first out). The ad-
vantage of this strategy is that we see interesting email as
soon as possible; the disadvantage is that some old email
might never get read if we never empty the stack. You
have likely encountered another common example of a
stack when surfing the web. When you click a hyperlink,
your browser displays the new page (and pushes onto a
stack). You can keep clicking on hyperlinks to visit new
pages, but you can always revisit the previous page by
clicking the back button (popping it from the stack).
The LIFO policy offered by a stack provides just the be-
havior that you expect. When a client iterates through
the items in a stack with the foreach construct, the items
are processed in the reverse of the order in
which they were added. A typical reason to
use a stack iterator in an application is to save
items in a collection while at the same time
reversing their relative order . For example,
the client Reverse at right reverses the or-
der of the integers on standard input, again
without having to know ahead of time how
many there are. The importance of stacks in
computing is fundamental and profound,
as indicated in the detailed example that we
consider next.

Operations on a pushdown stack

a stack of
documents

new (black) one
goes on top

remove the
black one

from the top

remove the
gray one

from the top

new (gray) one
goes on toppush()

push()

 = pop()

 = pop()

public class Reverse
{
 public static void main(String[] args)
 {
 Stack<Integer> stack;
 stack = new Stack<Integer>();
 while (!StdIn.isEmpty())
 stack.push(StdIn.readInt());

 for (int i : stack)
 StdOut.println(i);
 }
}

Sample Stack client

1271.3 n Bags, Queues, and Stacks

ptg12441863

Arithmetic expression evaluation As another example of a stack client, we consider
a classic example that also demonstrates the utility of generics. Some of the first pro-
grams that we considered in Section 1.1 involved computing the value of arithmetic
expressions like this one:

(1 + ((2 + 3) * (4 * 5)))

If you multiply 4 by 5, add 3 to 2, multiply the result, and then add 1, you get the value
101. But how does the Java system do this calculation? Without going into the details of
how the Java system is built, we can address the essential ideas by writing a Java program
that can take a string as input (the expression) and produce the number represented by
the expression as output. For simplicity, we begin with the following explicit recursive
definition: an arithmetic expression is either a number, or a left parenthesis followed by
an arithmetic expression followed by an operator followed by another arithmetic ex-
pression followed by a right parenthesis. For simplicity, this definition is for fully paren-
thesized arithmetic expressions, which specify precisely which operators apply to which
operands—you are a bit more familiar with expressions such as 1 + 2 * 3, where we
often rely on precedence rules instead of parentheses. The same basic mechanisms that
we consider can handle precedence rules, but we avoid that complication. For speci-
ficity, we support the familiar binary operators *, +, -, and /, as well as a square-root
operator sqrt that takes just one argument. We could easily allow more operators and
more kinds of operators to embrace a large class of familiar mathematical expressions,
involving trigonometric, exponential, and logarithmic functions. Our focus is on un-
derstanding how to interpret the string of parentheses, operators, and numbers to en-
able performing in the proper order the low-level arithmetic operations that are avail-
able on any computer. Precisely how can we convert an arithmetic expression—a string
of characters—to the value that it represents? A remarkably simple algorithm that was
developed by E. W. Dijkstra in the 1960s uses two stacks (one for operands and one for
operators) to do this job. An expression consists of parentheses, operators, and oper-
ands (numbers). Proceeding from left to right and taking these entities one at a time,
we manipulate the stacks according to four possible cases, as follows:

n	 Push operands onto the operand stack.
n	 Push operators onto the operator stack.
n	 Ignore left parentheses.
n	 On encountering a right parenthesis, pop an operator, pop the requisite number

of operands, and push onto the operand stack the result of applying that opera-
tor to those operands.

After the final right parenthesis has been processed, there is one value on the stack,
which is the value of the expression. This method may seem mysterious at first, but it

128 Chapter 1 n Fundamentals

ptg12441863

Dijkstra’s two-Stack Algorithm for expression evaluation

public class Evaluate
{
 public static void main(String[] args)
 {
 Stack<String> ops = new Stack<String>();
 Stack<Double> vals = new Stack<Double>();
 while (!StdIn.isEmpty())
 { // Read token, push if operator.
 String s = StdIn.readString();
 if (s.equals("(")) ;
 else if (s.equals("+")) ops.push(s);
 else if (s.equals("-")) ops.push(s);
 else if (s.equals("*")) ops.push(s);
 else if (s.equals("/")) ops.push(s);
 else if (s.equals("sqrt")) ops.push(s);
 else if (s.equals(")"))
 { // Pop, evaluate, and push result if token is ")".
 String op = ops.pop();
 double v = vals.pop();
 if (op.equals("+")) v = vals.pop() + v;
 else if (op.equals("-")) v = vals.pop() - v;
 else if (op.equals("*")) v = vals.pop() * v;
 else if (op.equals("/")) v = vals.pop() / v;
 else if (op.equals("sqrt")) v = Math.sqrt(v);
 vals.push(v);
 } // Token not operator or paren: push double value.
 else vals.push(Double.parseDouble(s));
 }
 StdOut.println(vals.pop());
 }
}

This Stack client uses two stacks to evaluate arithmetic expressions, illustrating an essential compu-
tational process: interpreting a string as a program and executing that program to compute the de-
sired result. With generics, we can use the code in a single Stack implementation to implement one
stack of String values and another stack of Double
values. For simplicity, this code assumes that the expres-
sion is fully parenthesized, with numbers and characters
separated by whitespace.

% java Evaluate
(1 + ((2 + 3) * (4 * 5)))
101.0

% java Evaluate
((1 + sqrt (5.0)) / 2.0)
1.618033988749895

1291.3 n Bags, Queues, and Stacks

ptg12441863

is easy to convince yourself that it computes the proper value: any time the algorithm
encounters a subexpression consisting of two operands separated by an operator, all
surrounded by parentheses, it leaves the result of performing that operation on those
operands on the operand stack. The result is the same as if that value had appeared in
the input instead of the subexpression, so we can think of replacing the subexpression
by the value to get an expression that would yield the same result. We can apply this
argument again and again until we get a single value. For example, the algorithm com-
putes the same value for all of these expressions:

(1 + ((2 + 3) * (4 * 5)))
(1 + (5 * (4 * 5)))
(1 + (5 * 20))
(1 + 100)
101

Evaluate on the previous page is an implementation of this algorithm. This code is a
simple example of an interpreter: a program that interprets the computation specified
by a given string and performs the computation to arrive at the result.

130 Chapter 1 n Fundamentals

ptg12441863

1

 1

+

 1

 +

 1

 +

 1 2

 +

 1 2

 + +

 1 2 3

 + +

 1 5

 +

 1 5

 + *

 1 5

 + *

 1 5 4

 + *

 1 5 4

 + * *

 1 5 4 5

 + * *

 1 5 20

 + *

 1 100

 +

101

(1 + ((2 + 3) * (4 * 5)))

1 + ((2 + 3) * (4 * 5)))

+ ((2 + 3) * (4 * 5)))

((2 + 3) * (4 * 5)))

(2 + 3) * (4 * 5)))

2 + 3) * (4 * 5)))

+ 3) * (4 * 5)))

3) * (4 * 5)))

) * (4 * 5)))

* (4 * 5)))

(4 * 5)))

4 * 5)))

* 5)))

5)))

)))

))

)

Trace of Dijkstra’s two-stack arithmetic expression-evaluation algorithm

left parenthesis: ignore

operand: push onto operand stack

operator: push onto operator stack

right parenthesis: pop operator
and operands and push result

operand
stack

operator
stack

1311.3 n Bags, Queues, and Stacks

ptg12441863

Implementing collections To address the issue of implementing Bag, Stack and
Queue, we begin with a simple classic implementation, then address improvements that
lead us to implementations of the APIs articulated on page 121.

Fixed-capacity stack As a strawman, we consider an abstract data type for a fixed-
capacity stack of strings, shown on the opposite page. The API differs from our Stack
API: it works only for String values, it requires the client to specify a capacity, and it
does not support iteration. The primary choice in developing an API implementation is
to choose a representation for the data. For FixedCapacityStackOfStrings, an obvious
choice is to use an array of String values. Pursuing this choice leads to the implemen-
tation shown at the bottom on the opposite page, which could hardly be simpler (each
method is a one-liner). The instance variables are an array a[] that holds the items in
the stack and an integer N that counts the number of items in the stack. To remove an
item, we decrement N and then return a[N]; to insert a new item, we set a[N] equal to
the new item and then increment N. These operations preserve the following properties:

n	 The items in the array are in their insertion order.
n	 The stack is empty when N is 0.
n	 The top of the stack (if it is nonempty) is at a[N-1].

As usual, thinking in terms of invariants of this sort is the easiest way to verify that an
implementation operates as intended. Be sure that you fully understand this implemen-
tation. The best way to do so is to examine a trace of the stack contents for a sequence of

operations, as illustrated at left for the test client,
which reads strings from standard input and push-
es each string onto a stack, unless it is "-", when it
pops the stack and prints the result. The primary
performance characteristic of this implementation
is that the push and pop operations take time inde-
pendent of the stack size. For many applications, it
is the method of choice because of its simplicity.
But it has several drawbacks that limit its potential
applicability as a general-purpose tool, which we
now address. With a moderate amount of effort
(and some help from Java language mechanisms),
we can develop an implementation that is broadly
useful. This effort is worthwhile because the im-
plementations that we develop serve as a model for
implementations of other, more powerful, abstract
data types throughout the book.

StdIn

(push)
StdOut

(pop) N
a[]

0 1 2 3 4

0

to 1 to

be 2 to be

or 3 to be or

not 4 to be or not

to 5 to be or not to

- to 4 to be or not to

be 5 to be or not be

- be 4 to be or not be

- not 3 to be or not be

that 4 to be or that be

- that 3 to be or that be

- or 2 to be or that be

- be 1 to be or that be

is 2 to is or not to

trace of FixedCapacityStackOfStrings test client

132 Chapter 1 n Fundamentals

ptg12441863

public class FixedCapacityStackOfStrings
{
 private String[] a; // stack entries
 private int N; // size

 public FixedCapacityStackOfStrings(int cap)
 { a = new String[cap]; }

 public boolean isEmpty() { return N == 0; }
 public int size() { return N; }

 public void push(String item)
 { a[N++] = item; }

 public String pop()
 { return a[--N]; }

}

public static void main(String[] args)
{
 FixedCapacityStackOfStrings s;
 s = new FixedCapacityStackOfStrings(100);
 while (!StdIn.isEmpty())
 {
 String item = StdIn.readString();
 if (!item.equals("-"))
 s.push(item);
 else if (!s.isEmpty()) StdOut.print(s.pop() + " ");
 }

 StdOut.println("(" + s.size() + " left on stack)");
}

% more tobe.txt
to be or not to - be - - that - - - is

% java FixedCapacityStackOfStrings < tobe.txt
to be not that or be (2 left on stack)

an abstract data type for a fixed-capacity stack of strings

test client

application

implementation

apI public class FixedCapacityStackOfStrings

FixedCapacityStackOfStrings(int cap) create an empty stack of capacity cap

void push(String item) add a string

String pop() remove the most recently added string

boolean isEmpty() is the stack empty?
int size() number of strings on the stack

1331.3 n Bags, Queues, and Stacks

ptg12441863

Generics The first drawback of FixedCapacityStackOfStrings is that it works only
for String objects. If we want a stack of double values, we would need to develop
another class with similar code, essentially replacing String with double everywhere.
This is easy enough but becomes burdensome when we consider building a stack of
Transaction values or a queue of Date values, and so forth. As discussed on page 122,
Java’s parameterized types (generics) are specifically designed to address this situation,
and we saw several examples of client code (on pages 125, 126, 127, and 129). But how
do we implement a generic stack? The code on the facing page shows the details. It imple-
ments a class FixedCapacityStack that differs from FixedCapacityStackOfStrings
only in the code highlighted in red—we replace every occurrence of String with Item
(with one exception, discussed below) and declare the class with the following first line
of code:

public class FixedCapacityStack<Item>

The name Item is a type parameter, a symbolic placeholder for some concrete type to be
used by the client. You can read FixedCapacityStack<Item> as stack of items, which is
precisely what we want. When implementing FixedCapacityStack, we do not know
the actual type of Item, but a client can use our stack for any type of data by providing a
concrete type when the stack is created. Concrete types must be reference types, but cli-
ents can depend on autoboxing to convert primitive types to their corresponding wrap-
per types. Java uses the type parameter Item to check for type mismatch errors—even
though no concrete type is yet known, variables of type Item must be assigned values
of type Item, and so forth. But there is one significant hitch in this story: We would like
to implement the constructor in FixedCapacityStack with the code

a = new Item[cap];

which calls for creation of a generic array. For historical and technical reasons beyond
our scope, generic array creation is disallowed in Java. Instead, we need to use a cast:

a = (Item[]) new Object[cap];

This code produces the desired effect (though the Java compiler gives a warning, which
we can safely ignore), and we use this idiom throughout the book (the Java system li-
brary implementations of similar abstract data types use the same idiom).

134 Chapter 1 n Fundamentals

ptg12441863

public class FixedCapacityStack<Item>
{
 private Item[] a; // stack entries
 private int N; // size

 public FixedCapacityStack(int cap)
 { a = (Item[]) new Object[cap]; }

 public boolean isEmpty() { return N == 0; }
 public int size() { return N; }

 public void push(Item item)
 { a[N++] = item; }

 public Item pop()
 { return a[--N]; }

}

public static void main(String[] args)
{
 FixedCapacityStack<String> s;
 s = new FixedCapacityStack<String>(100);
 while (!StdIn.isEmpty())
 {
 String item = StdIn.readString();
 if (!item.equals("-"))
 s.push(item);
 else if (!s.isEmpty()) StdOut.print(s.pop() + " ");
 }

 StdOut.println("(" + s.size() + " left on stack)");
}

% more tobe.txt
to be or not to - be - - that - - - is

% java FixedCapacityStack < tobe.txt
to be not that or be (2 left on stack)

an abstract data type for a fixed-capacity generic stack

test client

application

implementation

apI public class FixedCapacityStack<Item>

FixedCapacityStack(int cap) create an empty stack of capacity cap

void push(Item item) add an item

Item pop() remove the most recently added item

boolean isEmpty() is the stack empty?
int size() number of items on the stack

1351.3 n Bags, Queues, and Stacks

ptg12441863

Array resizing Choosing an array to represent the stack contents implies that clients
must estimate the maximum size of the stack ahead of time. In Java, we cannot change
the size of an array once created, so the stack always uses space proportional to that
maximum. A client that chooses a large capacity risks wasting a large amount of mem-
ory at times when the collection is empty or nearly empty. For example, a transaction
system might involve billions of items and thousands of collections of them. Such a
client would have to allow for the possibility that each of those collections could hold
all of those items, even though a typical constraint in such systems is that each item
can appear in only one collection. Moreover, every client risks overflow if the collection
grows larger than the array. For this reason, push() needs code to test for a full stack,
and we should have an isFull() method in the API to allow clients to test for that
condition. We omit that code, because our desire is to relieve the client from having to
deal with the concept of a full stack, as articulated in our original Stack API. Instead,
we modify the array implementation to dynamically adjust the size of the array a[] so
that it is both sufficiently large to hold all of the items and not so large as to waste an
excessive amount of space. Achieving these goals turns out to be remarkably easy. First,
we implement a method that moves a stack into an array of a different size:

private void resize(int max)
{ // Move stack of size N <= max to a new array of size max.
 Item[] temp = (Item[]) new Object[max];
 for (int i = 0; i < N; i++)
 temp[i] = a[i];
 a = temp;
}

Now, in push(), we check whether the array is too small. In particular, we check wheth-
er there is room for the new item in the array by checking whether the stack size N is
equal to the array size a.length. If there is no room, we double the size of the array.
Then we simply insert the new item with the code a[N++] = item, as before:

public void push(Item item)
{ // Add item to top of stack.
 if (N == a.length) resize(2*a.length);
 a[N++] = item;
}

Similarly, in pop(), we begin by deleting the item, then we halve the array size if it is
too large. If you think a bit about the situation, you will see that the appropriate test
is whether the stack size is less than one-fourth the array size. After the array is halved,
it will be about half full and can accommodate a substantial number of push() and
pop() operations before having to change the size of the array again.

136 Chapter 1 n Fundamentals

ptg12441863

public Item pop()
{ // Remove item from top of stack.
 String item = a[--N];
 a[N] = null; // Avoid loitering (see text).
 if (N > 0 && N == a.length/4) resize(a.length/2);
 return item;
}

With this implementation, the stack never overflows and never becomes less than one-
quarter full (unless the stack is empty, when the array size is 2). We will address the
performance analysis of this approach in more detail in Section 1.4.

Loitering Java’s garbage collection policy is to reclaim the memory associated with
any objects that can no longer be accessed. In our pop() implementations, the reference
to the popped item remains in the array. The item is effectively an orphan—it will never
be accessed again—but the Java garbage collector has no way to know this until it is
overwritten. Even when the client is done with the item, the reference in the array may
keep it alive. This condition (holding a reference to an item that is no longer needed)
is known as loitering. In this case, loitering is easy to avoid, by setting the array entry
corresponding to the popped item to null, thus overwriting the unused reference and
making it possible for the system to reclaim the memory associated with the popped
item when the client is finished with it.

push() pop() N a.length
a[]

0 1 2 3 4 5 6 7

0 1 null

to 1 1 to

be 2 2 to be

or 3 4 to be or null

not 4 4 to be or not

to 5 8 to be or not to null null null

- to 4 8 to be or not null null null null

be 5 8 to be or not be null null null

- be 4 8 to be or not null null null null

- not 3 8 to be or null null null null null

that 4 8 to be or that null null null null

- that 3 8 to be or null null null null null

- or 2 4 to be null null

- be 1 2 to null

is 2 2 to is

trace of array resizing during a sequence of push() and pop() operations

1371.3 n Bags, Queues, and Stacks

ptg12441863

Iteration As mentioned earlier in this section, one of the fundamental operations on
collections is to process each item by iterating through the collection using Java’s foreach
statement. This paradigm leads to clear and compact code that is free from dependence
on the details of a collection’s implementation. To consider the task of implementing
iteration, we start with a snippet of client code that prints all of the items in a collection
of strings, one per line:

Stack<String> collection = new Stack<String>();
...
for (String s : collection)
 StdOut.println(s);
...

Now, this foreach statement is shorthand for a while construct (just like the for state-
ment itself). It is essentially equivalent to the following while statement:

Iterator<String> i = collection.iterator();
while (i.hasNext())
{
 String s = i.next();
 StdOut.println(s);
}

This code exposes the ingredients that we need to implement in any iterable collection:
n	 The collection must implement an iterator() method that returns an

Iterator object.
n	 The Iterator class must include two methods: hasNext() (which returns a

boolean value) and next() (which returns a generic item from the collection).
In Java, we use the interface mechanism to express the idea that a class implements
a specific method (see page 100). For iterable collections, the necessary interfaces are al-
ready defined for us in Java. To make a class iterable, the first step is to add the phrase
implements Iterable<Item> to its declaration, matching the interface

public interface Iterable<Item>
{
 Iterator<Item> iterator();
}

(which is in java.lang.Iterable), and to add a method iterator() to the class that
returns an Iterator<Item>. Iterators are generic, so we can use our parameterized
type Item to allow clients to iterate through objects of whatever type is provided by our
client. For the array representation that we have been using, we need to iterate through

138 Chapter 1 n Fundamentals

ptg12441863

an array in reverse order, so we name the iterator ReverseArrayIterator and add this
method:

public Iterator<Item> iterator()

{ return new ReverseArrayIterator(); }

What is an iterator? An object from a class that implements the methods hasNext()
and next(), as defined in the following interface (which is in java.util.Iterator):

public interface Iterator<Item>
{
 boolean hasNext();
 Item next();
 void remove();
}

Although the interface specifies a remove() method, we always use an empty method
for remove() in this book, because interleaving iteration with operations that modify
the data structure is best avoided. For ReverseArrayIterator, these methods are all
one-liners, implemented in a nested class within our stack class:

private class ReverseArrayIterator implements Iterator<Item>
{
 private int i = N;

 public boolean hasNext() { return i > 0; }
 public Item next() { return a[--i]; }
 public void remove() { }
}

Note that this nested class can access the instance variables of the enclosing class, in
this case a[] and N (this ability is the main reason we use nested classes for iterators).
Technically, to conform to the Iterator specification, we should throw exceptions
in two cases: an UnsupportedOperationException if a client calls remove() and a
NoSuchElementException if a client calls next() when i is 0. Since we only use itera-
tors in the foreach construction where these conditions do not arise, we omit this code.
One crucial detail remains: we have to include

import java.util.Iterator;

at the beginning of the program because (for historical reasons) Iterator is not part
of java.lang (even though Iterable is part of java.lang). Now a client using the
foreach statement for this class will get behavior equivalent to the common for loop for
arrays, but does not need to be aware of the array representation (an implementation

1391.3 n Bags, Queues, and Stacks

ptg12441863

detail). This arrangement is of critical importance for implementations of fundamen-
tal data types like the collections that we consider in this book and those included in
Java libraries. For example, it frees us to switch to a totally different representation
without having to change any client code. More important, taking the client’s point of
view, it allows clients to use iteration without having to know any details of the class
implementation.

Algorithm 1.1 is an implementation of our Stack API that resizes the array, allows
clients to make stacks for any type of data, and supports client use of foreach to iterate
through the stack items in LIFO order. This implementation is based on Java language
nuances involving Iterator and Iterable, but there is no need to study those nuances
in detail, as the code itself is not complicated and can be used as a template for other
collection implementations.

For example, we can implement the Queue API by maintaining two indices as in-
stance variables, a variable head for the beginning of the queue and a variable tail for
the end of the queue. To remove an item, use head to access it and then increment head;
to insert an item, use tail to store it, and then increment tail. If incrementing an
index brings it past the end of the array, reset it to 0. Developing the details of checking
when the queue is empty and when the array is full and needs resizing is an interesting
and worthwhile programming exercise (see Exercise 1.3.14).

In the context of the study of algorithms, Algorithm 1.1 is significant because
it almost (but not quite) achieves optimum performance goals for any collection
implementation:

n	 Each operation should require time independent of the collection size.
n	 The space used should always be within a constant factor of the collection size.

The flaw in ResizingArrayStack is that some push and pop operations require resiz-
ing: this takes time proportional to the size of the stack. Next, we consider a way to cor-
rect this flaw, using a fundamentally different way to structure data.

StdIn

(enqueue)
StdOut

(dequeue) N head tail
a[]

0 1 2 3 4 5 6 7

5 0 5 to be or not to

- to 4 1 5 to be or not to

be 5 1 6 to be or not to be

- be 4 2 6 to be or not to be

- or 3 3 6 to be or not to be

trace of ResizingArrayQueue test client

140 Chapter 1 n Fundamentals

ptg12441863

aLgorIthM 1.1 Pushdown (liFo) stack (resizing array implementation)

import java.util.Iterator;
public class ResizingArrayStack<Item> implements Iterable<Item>
{
 private Item[] a = (Item[]) new Object[1]; // stack items
 private int N = 0; // number of items

 public boolean isEmpty() { return N == 0; }
 public int size() { return N; }

 private void resize(int max)
 { // Move stack to a new array of size max.
 Item[] temp = (Item[]) new Object[max];
 for (int i = 0; i < N; i++)
 temp[i] = a[i];
 a = temp;
 }

 public void push(Item item)
 { // Add item to top of stack.
 if (N == a.length) resize(2*a.length);
 a[N++] = item;
 }

 public Item pop()
 { // Remove item from top of stack.
 Item item = a[--N];
 a[N] = null; // Avoid loitering (see text).
 if (N > 0 && N == a.length/4) resize(a.length/2);
 return item;
 }

 public Iterator<Item> iterator()
 { return new ReverseArrayIterator(); }

 private class ReverseArrayIterator implements Iterator<Item>
 { // Support LIFO iteration.
 private int i = N;
 public boolean hasNext() { return i > 0; }
 public Item next() { return a[--i]; }
 public void remove() { }
 }
}

This generic, iterable implementation of our Stack API is a model for collection ADTs that keep
items in an array. It resizes the array to keep the array size within a constant factor of the stack size.

1411.3 n Bags, Queues, and Stacks

ptg12441863

Linked lists Now we consider the use of a fundamental data structure that is an ap-
propriate choice for representing the data in a collection ADT implementation. This is
our first example of building a data structure that is not directly supported by the Java
language. Our implementation serves as a model for the code that we use for building
more complex data structures throughout the book, so you should read this section
carefully, even if you have experience working with linked lists.

Definition. A linked list is a recursive data structure that is either empty (null) or a
reference to a node having a generic item and a reference to a linked list.

The node in this definition is an abstract entity that might hold any kind of data, in ad-
dition to the node reference that characterizes its role in building linked lists. As with a
recursive program, the concept of a recursive data structure can be a bit mindbending
at first, but is of great value because of its simplicity.

Node record With object-oriented programming, implementing linked lists is not dif-
ficult. We start with a nested class that defines the node abstraction:

private class Node
{
 Item item;
 Node next;
}

A Node has two instance variables: an Item (a parameterized type) and a Node. We
define Node within the class where we want to use it, and make it private because it
is not for use by clients. As with any data type, we create an object of type Node by in-
voking the (no-argument) constructor with new Node(). The result is a reference to a
Node object whose instance variables are both initialized to the value null. The Item is
a placeholder for any data that we might want to structure with a linked list (we will use
Java’s generic mechanism so that it can represent any reference type); the instance vari-
able of type Node characterizes the linked nature of the data structure. To emphasize
that we are just using the Node class to structure the data, we define no methods and
we refer directly to the instance variables in code: if first is a variable associated with
an object of type Node, we can refer to the instance variables with the code first.item
and first.next. Classes of this kind are sometimes called records. They do not imple-
ment abstract data types because we refer directly to instance variables. However, Node
and its client code are in the same class in all of our implementations and not accessible
by clients of that class, so we still enjoy the benefits of data abstraction.

142 Chapter 1 n Fundamentals

ptg12441863

Building a linked list Now, from the recursive definition, we can represent a linked
list with a variable of type Node simply by ensuring that its value is either null or a ref-
erence to a Node whose next field is a reference to a linked list. For example, to build a
linked list that contains the items to, be, and or, we create a Node for each item:

Node first = new Node();
Node second = new Node();
Node third = new Node();

and set the item field in each of the nodes to the
desired value (for simplicity, these examples assume
that Item is String):

first.item = "to";
second.item = "be";
third.item = "or";

and set the next fields to build the linked list:

first.next = second;
second.next = third;

(Note that third.next remains null, the value it
was initialized to at the time of creation.) As a re-
sult, third is a linked list (it is a reference to a node
that has a reference to null, which is the null refer-
ence to an empty linked list), and second is a linked
list (it is a reference to a node that has a reference to
third, which is a linked list), and first is a linked
list (it is a reference to a node that has a reference to
second, which is a linked list). The code that we will
examine does these assignment statements in a dif-
ferent order, depicted in the diagram on this page.

A linked list represents a sequence of items. In the example just considered, first
represents the sequence to be or. We can also use an array to represent a sequence of
items. For example, we could use

String[] s = { "to", "be", "or" };

to represent the same sequence of strings. The difference is that it is easier to insert
items into the sequence and to remove items from the sequence with linked lists. Next,
we consider code to accomplish these tasks.

or

null

be

Node third = new Node();
third.item = "or";
second.next = third;

to

be

Node second = new Node();
second.item = "be";
first.next = second;

to

Node first = new Node();
first.item = "to";

to

first

secondfirst

second
third

first

null

null

Linking together a list

1431.3 n Bags, Queues, and Stacks

ptg12441863

When tracing code that uses linked lists and other linked structures, we use a visual
representation where

n	 We draw a rectangle to represent each object
n	 We put the values of instance variables within the rectangle
n	 We use arrows that point to the referenced objects to depict references

This visual representation captures the essential characteristic of linked lists. For econ-
omy, we use the term links to refer to node references. For simplicity, when item values
are strings (as in our examples), we put the string within the object rectangle rather
than the more accurate rendition depicting the string object and the character array
that we discussed in Section 1.2. This visual representation allows us to focus on the
links.

Insert at the beginning First, suppose that you want to insert a new node into a linked
list. The easiest place to do so is at the beginning of the list. For example, to insert the
string not at the beginning of a given linked list whose first node is first, we save
first in oldfirst, assign to first a new Node, and assign its item field to not and its
next field to oldfirst. This code for inserting a node at the beginning of a linked list
involves just a few assignment statements, so the amount of time that it takes is inde-
pendent of the length of the list.

or

be

Inserting a new node at the beginning of a linked list

first = new Node();

Node oldfirst = first;

tofirst

or

be

to

oldfirst

oldfirst

first

save a link to the list

create a new node for the beginning

set the instance variables in the new node

first.item = "not";
first.next = oldfirst;

or

be
to

notfirst

null

null

null

144 Chapter 1 n Fundamentals

ptg12441863

Remove from the beginning Next, suppose that you
want to remove the first node from a list. This op-
eration is even easier: simply assign to first the value
first.next. Normally, you would retrieve the value of
the item (by assigning it to some variable of type Item)
before doing this assignment, because once you change
the value of first, you may not have any access to the
node to which it was referring. Typically, the node ob-
ject becomes an orphan, and the Java memory manage-
ment system eventually reclaims the memory it occupies.
Again, this operation just involves one assignment statement, so its running time is
independent of the length of the list.

Insert at the end How do we add a node to the end of a linked list? To do so, we need
a link to the last node in the list, because that node’s link has to be changed to refer-
ence a new node containing the item to be inserted. Maintaining an extra link is not
something that should be taken lightly in linked-list code, because every method that
modifies the list needs code to check whether that variable needs to be modified (and
to make the necessary modifications). For
example, the code that we just examined for
removing the first node in the list might in-
volve changing the reference to the last node
in the list, since when there is only one node
in the list, it is both the first one and the last
one! Also, this code does not work (it follows
a null link) in the case that the list is empty.
Details like these make linked-list code noto-
riously difficult to debug.

Insert/remove at other positions In sum-
mary, we have shown that we can implement
the following operations on linked lists with
just a few instructions, provided that we have
access to both a link first to the first ele-
ment in the list and a link last to the last
element in the list:

n	 Insert at the beginning.
n	 Remove from the beginning.
n	 Insert at the end.

or

be

tofirst

first = first.next;

or

be
to

first

null

null

Removing the �rst node in a linked list

or

be

Inserting a new node at the end of a linked list

last = new Node();
last.item = "not";

Node oldlast = last;

tofirst

or

be

to

oldlast

oldlast

last

save a link to the last node

create a new node for the end

link the new node to the end of the list

oldlast.next = last;

not

not

or
be

tofirst

null

null

null

null

last

last
first

oldlast

1451.3 n Bags, Queues, and Stacks

ptg12441863

Other operations, such as the following, are not so easily handled:
n	 Remove a given node.
n	 Insert a new node before a given node.

For example, how can we remove the last node from a list? The link last is no help,
because we need to set the link in the previous node in the list (the one with the same
value as last) to null. In the absence of any other information, the only solution is to
traverse the entire list looking for the node that links to last (see below and Exercise
1.3.19). Such a solution is undesirable because it takes time proportional to the length
of the list. The standard solution to enable arbitrary insertions and deletions is to use
a doubly-linked list, where each node has two links, one in each direction. We leave the
code for these operations as an exercise (see Exercise 1.3.31). We do not need doubly
linked lists for any of our implementations.

Traversal To examine every item in an array, we use familiar code like the following
loop for processing the items in an array a[]:

for (int i = 0; i < N; i++)
{
 // Process a[i].
}

There is a corresponding idiom for examining the items in a linked list: We initialize a
loop index variable x to reference the first Node of the linked list. Then we find the item
associated with x by accessing x.item, and then update x to refer to the next Node in the
linked list, assigning to it the value of x.next and repeating this process until x is null
(which indicates that we have reached the end of the linked list). This process is known
as traversing the list and is succinctly expressed in code like the following loop for pro-
cessing the items in a linked list whose first item is associated with the variable first:

for (Node x = first; x != null; x = x.next)
{
 // Process x.item.
}

This idiom is as natural as the standard idiom for iterating through the items in an ar-
ray. In our implementations, we use it as the basis for iterators for providing client code
the capability of iterating through the items, without having to know the details of the
linked-list implementation.

146 Chapter 1 n Fundamentals

ptg12441863

Stack implementation Given these preliminaries, developing an implementation for
our Stack API is straightforward, as shown in Algorithm 1.2 on page 149. It maintains
the stack as a linked list, with the top of the stack at the beginning, referenced by an
instance variable first. Thus, to push() an item, we add it to the beginning of the
list, using the code discussed on page 144 and to pop() an item, we remove it from the
beginning of the list, using the code discussed on page 145. To implement size(), we keep
track of the number of items in an instance variable N, incrementing N when we push
and decrementing N when we pop. To implement isEmpty() we check whether first
is null (alternatively, we could check whether N is 0). The implementation uses the
generic type Item—you can think of the code <Item> after the class name as meaning
that any occurrence of Item in the implementation will be replaced by a client-supplied
data-type name (see page 134). For now, we omit the code to support iteration, which we
consider on page 155. A trace for the test client that we have been using is shown on the
next page. This use of linked lists achieves our optimum design goals:

n	 It can be used for any type of data.
n	 The space required is always proportional to the size of the collection.
n	 The time per operation is always independent of the size of the collection.

This implementation is a prototype for many algorithm implementations that we con-
sider. It defines the linked-list data structure and implements the client methods push()
and pop() that achieve the specified effect with just a few lines of code. The algorithms
and data structure go hand in hand. In this case, the code for the algorithm implemen-
tations is quite simple, but the properties of the data structure are not at all elemen-
tary, requiring explanations on the past several pages. This interaction between data
structure definition and algorithm implementation is typical and is our focus in ADT
implementations throughout this book.

public static void main(String[] args)
{ // Create a stack and push/pop strings as directed on StdIn.

 Stack<String> s = new Stack<String>();

 while (!StdIn.isEmpty())
 {
 String item = StdIn.readString();
 if (!item.equals("-"))
 s.push(item);
 else if (!s.isEmpty()) StdOut.print(s.pop() + " ");
 }

 StdOut.println("(" + s.size() + " left on stack)");
}

test client for Stack

1471.3 n Bags, Queues, and Stacks

ptg12441863

to

to

be

to

be
or

null

null

null

be

or
not

to

or

not
to

null

be

be

orto not

or

not
be

be

orbe not

to

benot

or

null

be

or
that

to

bethat or

null

toor be

be to

to

to

StdIn StdOut

be

or

not

to

-

be

-

-

that

-

-

-

is is

to
null

to
null

to
null

to
null

be
to
null

Trace of Stack development client

148 Chapter 1 n Fundamentals

ptg12441863

aLgorIthM 1.2 Pushdown stack (linked-list implementation)

public class Stack<Item> implements Iterable<Item>
{
 private Node first; // top of stack (most recently added node)
 private int N; // number of items

 private class Node
 { // nested class to define nodes
 Item item;
 Node next;
 }

 public boolean isEmpty() { return first == null; }
 public int size() { return N; }

 public void push(Item item)
 { // Add item to top of stack.
 Node oldfirst = first;
 first = new Node();
 first.item = item;
 first.next = oldfirst;
 N++;
 }

 public Item pop()
 { // Remove item from top of stack.
 Item item = first.item;
 first = first.next;
 N--;
 return item;
 }

 // See page 155 for iterator() implementation.

 // See page 147 for test client main().

}

This generic Stack implementation is based on a linked-list data structure. It can be used to create
stacks containing any type of data. To support
iteration, add the highlighted code described
for Bag on page 155. % more tobe.txt

to be or not to - be - - that - - - is

% java Stack < tobe.txt
to be not that or be (2 left on stack)

1491.3 n Bags, Queues, and Stacks

ptg12441863

Queue implementation An implementation of our Queue API based on the linked-
list data structure is also straightforward, as shown in Algorithm 1.3 on the facing
page. It maintains the queue as a linked list in order from least recently to most recently
added items, with the beginning of the queue referenced by an instance variable first
and the end of the queue referenced by an instance variable last. Thus, to enqueue()
an item, we add it to the end of the list (using the code discussed on page 145, augmented
to set both first and last to refer to the new node when the list is empty) and to
dequeue() an item, we remove it from the beginning of the list (using the same code
as for pop() in Stack, augmented to update last when the list becomes empty). The
implementations of size() and isEmpty() are the same as for Stack. As with Stack
the implementation uses the generic type parameter Item, and we omit the code to
support iteration, which we consider in our Bag implementation on page 155. A develop-
ment client similar to the one we used for Stack is shown below, and the trace for this
client is shown on the following page. This implementation uses the same data struc-
ture as does Stack—a linked list—but it implements different algorithms for adding
and removing items, which make the difference between LIFO and FIFO for the client.
Again, the use of linked lists achieves our optimum design goals: it can be used for any
type of data, the space required is proportional to the number of items in the collection,
and the time required per operation is always independent of the size of the collection.

public static void main(String[] args)
{ // Create a queue and enqueue/dequeue strings.

 Queue<String> q = new Queue<String>();

 while (!StdIn.isEmpty())
 {
 String item = StdIn.readString();
 if (!item.equals("-"))
 q.enqueue(item);
 else if (!q.isEmpty()) StdOut.print(q.dequeue() + " ");
 }

 StdOut.println("(" + q.size() + " left on queue)");
}

test client for Queue

% more tobe.txt
to be or not to - be - - that - - - is

% java Queue < tobe.txt
to be or not to be (2 left on queue)

150 Chapter 1 n Fundamentals

ptg12441863

aLgorIthM 1.3 FiFo queue

public class Queue<Item> implements Iterable<Item>
{
 private Node first; // link to least recently added node
 private Node last; // link to most recently added node
 private int N; // number of items on the queue

 private class Node
 { // nested class to define nodes
 Item item;
 Node next;
 }

 public boolean isEmpty() { return first == null; }
 public int size() { return N; }

 public void enqueue(Item item)
 { // Add item to the end of the list.
 Node oldlast = last;
 last = new Node();
 last.item = item;
 last.next = null;
 if (isEmpty()) first = last;
 else oldlast.next = last;
 N++;
 }

 public Item dequeue()
 { // Remove item from the beginning of the list.
 Item item = first.item;
 first = first.next;
 N--;
 if (isEmpty()) last = null;
 return item;
 }

 // See page 155 for iterator() implementation.

 // See page 150 for test client main().

}

This generic Queue implementation is based on a linked-list data structure. It can be used to create
queues containing any type of data. To support iteration, add the highlighted code described for Bag
on page 155.

1511.3 n Bags, Queues, and Stacks

ptg12441863

to

be

to

or

be
to

null

null

null

or

be
to

not

or

be
to

null

not

not

orto be

not

or
be

to

notbe or

be

toor not

null

be

to
not

that

benot to

null

thatto be

be that

is

to

StdIn StdOut

be

or

not

to

-

be

-

-

that

-

-

-

is that

to
null

be
null

that
null

to
null

to
be
null

null

null

null

Trace of Queue development client

152 Chapter 1 n Fundamentals

ptg12441863

Linked lists are a fundamental alternative to arrays for structuring a collection
of data. From a historical perspective, this alternative has been available to program-
mers for many decades. Indeed, a landmark in the history of programming languages
was the development of LISP by John McCarthy in the 1950s, where linked lists are the
primary structure for programs and data. Programming with linked lists presents all
sorts of challenges and is notoriously difficult to debug, as you can see in the exercises.
In modern code, the use of safe pointers, automatic garbage collection (see page 111), and
ADTs allows us to encapsulate list-processing code in just a few classes such as the ones
presented here.

1531.3 n Bags, Queues, and Stacks

ptg12441863

Bag implementation Implementing our Bag API using a linked-list data structure is
simply a matter of changing the name of push() in Stack to add() and removing the
implementation of pop(), as shown in Algorithm 1.4 on the facing page (doing the
same for Queue would also be effective but requires a bit more code). This implemen-
tation also highlights the code needed to make Stack, Queue, and Bag all iterable, by
traversing the list. For Stack the list is in LIFO order; for Queue it is in FIFO order; and
for Bag it happens to be in LIFO order, but the order is not relevant. As detailed in the
highlighted code in Algorithm 1.4, to implement iteration in a collection, the first step
is to include

import java.util.Iterator;

so that our code can refer to Java’s Iterator interface. The second step is to add

implements Iterable<Item>

to the class declaration, a promise to provide an iterator() method. The iterator()
method itself simply returns an object from a class that implements the Iterator
interface:

public Iterator<Item> iterator()
{ return new ListIterator(); }

This code is a promise to implement a class that implements the hasNext(), next(),
and remove() methods that are called when a client uses the foreach construct. To
implement these methods, the nested class ListIterator in Algorithm 1.4 maintains
an instance variable current that keeps track of the current node on the list. Then the
hasNext() method tests if current is null, and the next() method saves a reference
to the current item, updates current to refer to the next node on the list, and returns
the saved reference.

154 Chapter 1 n Fundamentals

ptg12441863

aLgorIthM 1.4 Bag

import java.util.Iterator;

public class Bag<Item> implements Iterable<Item>
{
 private Node first; // first node in list

 private class Node
 {
 Item item;
 Node next;
 }

 public void add(Item item)
 { // same as push() in Stack
 Node oldfirst = first;
 first = new Node();
 first.item = item;
 first.next = oldfirst;
 }

 public Iterator<Item> iterator()
 { return new ListIterator(); }

 private class ListIterator implements Iterator<Item>
 {
 private Node current = first;

 public boolean hasNext()
 { return current != null; }

 public void remove() { }

 public Item next()
 {
 Item item = current.item;
 current = current.next;
 return item;
 }
 }
}

This Bag implementation maintains a linked list of the items provided in calls to add(). Code for
isEmpty() and size() is the same as in Stack and is omitted. The iterator traverses the list, main-
taining the current node in current. We can make Stack and Queue iterable by adding the code
highlighted in red to Algorithms 1.2 and Algorithm 1.3, because they use the same underlying
data structure and Stack and Queue maintain the list in LIFO and FIFO order, respectively.

1551.3 n Bags, Queues, and Stacks

ptg12441863

Overview The implementations of bags, queues, and stacks that support generics
and iteration that we have considered in this section provide a level of abstraction that
allows us to write compact client programs that manipulate collections of objects. De-
tailed understanding of these ADTs is important as an introduction to the study of al-
gorithms and data structures for three reasons. First, we use these data types as building
blocks in higher-level data structures throughout this book. Second, they illustrate the
interplay between data structures and algorithms and the challenge of simultaneously
achieving natural performance goals that may conflict. Third, the focus of several of
our implementations is on ADTs that support more powerful operations on collections
of objects, and we use the implementations here as starting points.

Data structures We now have two ways to represent collections of objects, arrays and
linked lists. Arrays are built into Java; linked lists are easy to build with standard Java
records. These two alternatives, often referred to as sequential allocation and linked al-
location, are fundamental. Later in the book, we develop ADT implementations that

combine and extend these basic structures
in numerous ways. One important exten-
sion is to data structures with multiple
links. For example, our focus in Sections
3.2 and 3.3 is on data structures known as
binary trees that are built from nodes that
each have two links. Another important
extension is to compose data structures:
we can have a bag of stacks, a queue of ar-
rays, and so forth. For example, our focus
in Chapter 4 is on graphs, which we rep-

resent as arrays of bags. It is very easy to define data structures of arbitrary complexity
in this way: one important reason for our focus on abstract data types is an attempt to
control such complexity.

data structure advantage disadvantage

array
index provides

immediate access
to any item

need to know size
on initialization

linked list uses space
proportional to size

need reference to
access an item

Fundamental data structures

156 Chapter 1 n Fundamentals

ptg12441863

Our treatment of BAGS, queues, and STACKS in this section is a prototypical ex-
ample of the approach that we use throughout this book to describe data structures
and algorithms. In approaching a new applications domain, we identify computational
challenges and use data abstraction to address them, proceeding as follows:

n	 Specify an API.
n	 Develop client code with reference to specific applications.
n	 Describe a data structure (representation of the set of values) that can serve as

the basis for the instance variables in a class that will implement an ADT that
meets the specification in the API.

n	 Describe algorithms (approaches to implementing the set of operations) that
can serve as the basis for implementing the instance methods in the class.

n	 Analyze the performance characteristics of the algorithms.
In the next section, we consider this last step in detail, as it often dictates which algo-
rithms and implementations can be most useful in addressing real-world applications.

data structure section aDt representation

parent-link tree 1.5 UnionFind array of integers

binary search tree 3.2, 3.3 BST two links per node

string 5.1 String array, offset, and length

binary heap 2.4 PQ array of objects

hash table
(separate chaining) 3.4 SeparateChainingHashST arrays of linked lists

hash table
(linear probing) 3.4 LinearProbingHashST two arrays of objects

graph adjacency lists 4.1, 4.2 Graph array of Bag objects

trie 5.2 TrieST node with array of links

ternary search trie 5.3 TST three links per node

examples of data structures developed in this book

1571.3 n Bags, Queues, and Stacks

ptg12441863

Q&A

Q. Not all programming languages have generics, even early versions of Java. What are
the alternatives?

A. One alternative is to maintain a different implementation for each type of data, as
mentioned in the text. Another is to build a stack of Object values, then cast to the
desired type in client code for pop(). The problem with this approach is that type mis-
match errors cannot be detected until run time. But with generics, if you write code to
push an object of the wrong type on the stack, like this:

Stack<Apple> stack = new Stack<Apple>();
Apple a = new Apple();
...
Orange b = new Orange();
...
stack.push(a);
...
stack.push(b); // compile-time error

you will get a compile-time error:

push(Apple) in Stack<Apple> cannot be applied to (Orange)

This ability to discover such errors at compile time is reason enough to use generics.

Q. Why does Java disallow generic arrays?

A. Experts still debate this point. You might need to become one to understand it! For
starters, learn about covariant arrays and type erasure.

Q. How do I create an array of stacks of strings?

A. Use a cast, such as the following:

Stack<String>[] a = (Stack<String>[]) new Stack[N];

Warning : This cast, in client code, is different from the one described on page 134. You
might have expected to use Object instead of Stack. When using generics, Java
checks for type safety at compile time, but throws away that information at run time,
so it is left with Stack<Object>[] or just Stack[], for short, which we must cast to
Stack<String>[].

Q. What happens if my program calls pop() for an empty stack?

158 Chapter 1 n Fundamentals

ptg12441863

A. It depends on the implementation. For our implementation on page 149, you will get a
NullPointerException. In our implementations on the booksite, we throw a runtime
exception to help users pinpoint the error. Generally, including as many such checks as
possible is wise in code that is likely to be used by many people.

Q. Why do we care about resizing arrays, when we have linked lists?

A. We will see several examples of ADT implementations that need to use ar-
rays to perform other operations that are not easily supported with linked lists.
ResizingArrayStack is a model for keeping their memory usage under control.

Q. Why declare Node as a nested class? Why private?

A. By declaring the nested class Node to be private, we restrict its access only to meth-
ods and instance variables within the enclosing class. One characteristic of a private
nested class is that its instance variables can be directly accessed from within the enclos-
ing class but nowhere else, so there is no need to declare the instance variables public
or private. Note for experts : A nested class that is not static is known as an inner class,
so technically our Node classes are inner classes.

Q. When I type javac Stack.java to compile Algorithm 1.2 and similar programs,
I find Stack.class and a file Stack$Node.class. What is the purpose of that second
one?

A. That file is for the inner class Node. Java’s naming convention is to use $ to separate
the name of the outer class from the inner class.

Q. Are there Java libraries for stacks and queues?

A. Yes and no. Java has a built-in library called java.util.Stack, but you should
avoid using it when you want a stack. It has several additional operations that are not
normally associated with a stack, e.g., getting the ith element. It also allows adding an
element to the bottom of the stack (instead of the top), so it can implement a queue!
Although having such extra operations may appear to be a bonus, it is actually a curse.
We use data types not just as libraries of all the operations we can imagine, but also as
a mechanism to precisely specify the operations we need. The prime benefit of doing so
is that the system can prevent us from performing operations that we do not actually
want. The java.util.Stack API is an example of a wide interface, which we generally
strive to avoid.

1591.3 n Bags, Queues, and Stacks

ptg12441863

Q. Should a client be allowed to insert null items onto a stack or queue?

A. This question arises frequently when implementing collections in Java. Our imple-
mentation (and Java’s stack and queue libraries) do permit the insertion of null values.

Q. What should the Stack iterator do if the client calls push() or pop() during iterator?

A. Throw a java.util.ConcurrentModificationException to make it a fail-fast it-
erator. See Exercise 1.3.50.

Q. Can I use a foreach loop with arrays?

A. Yes (even though arrays do not implement the Iterable interface). The following
one-liner prints out the command-line arguments:

public static void main(String[] args)
{ for (String s : args) StdOut.println(s); }

Q. Can I use a foreach loop with strings?

A. No. String does not implement Iterable.

Q. Why not have a single Collection data type that implements methods to add items,
remove the most recently inserted, remove the least recently inserted, remove random,
iterate, return the number of items in the collection, and whatever other operations we
might desire? Then we could get them all implemented in a single class that could be
used by many clients.

A. Again, this is an example of a wide interface. Java has such implementations in its
java.util.ArrayList and java.util.LinkedList classes. One reason to avoid them
is that there is no assurance that all operations are implemented efficiently. Throughout
this book, we use APIs as starting points for designing efficient algorithms and data
structures, which is certainly easier to do for interfaces with just a few operations as
opposed to an interface with many operations. Another reason to insist on narrow in-
terfaces is that they enforce a certain discipline on client programs, which makes client
code much easier to understand. If one client uses Stack<String> and another uses
Queue<Transaction>, we have a good idea that the LIFO discipline is important to the
first and the FIFO discipline is important to the second.

Q & A (continued)

160 Chapter 1 n Fundamentals

ptg12441863

ExErcisEs

1.3.1 Add a method isFull() to FixedCapacityStackOfStrings.

1.3.2 Give the output printed by java Stack for the input

it was - the best - of times - - - it was - the - -

1.3.3 Suppose that a client performs an intermixed sequence of (stack) push and pop
operations. The push operations put the integers 0 through 9 in order onto the stack;
the pop operations print out the return values. Which of the following sequence(s)
could not occur?

a. 4 3 2 1 0 9 8 7 6 5

b. 4 6 8 7 5 3 2 9 0 1

c. 2 5 6 7 4 8 9 3 1 0

d. 4 3 2 1 0 5 6 7 8 9
e. 1 2 3 4 5 6 9 8 7 0
f. 0 4 6 5 3 8 1 7 2 9
g. 1 4 7 9 8 6 5 3 0 2
h. 2 1 4 3 6 5 8 7 9 0

1.3.4 Write a stack client Parentheses that reads in a text stream from standard input
and uses a stack to determine whether its parentheses are properly balanced. For ex-
ample, your program should print true for [()]{}{[()()]()} and false for [(]).

1.3.5 What does the following code fragment print when N is 50? Give a high-level
description of what it does when presented with a positive integer N.

Stack<Integer> stack = new Stack<Integer>();
while (N > 0)
{
 stack.push(N % 2);
 N = N / 2;
}
for (int d : stack) StdOut.print(d);
StdOut.println();

Answer : Prints the binary representation of N (110010 when N is 50).

1611.3 n Bags, Queues, and Stacks

ptg12441863

1.3.6 What does the following code fragment do to the queue q?

Stack<String> stack = new Stack<String>();
while (!q.isEmpty())
 stack.push(q.dequeue());
while (!stack.isEmpty())
 q.enqueue(stack.pop());

1.3.7 Add a method peek() to Stack that returns the most recently inserted item on
the stack (without popping it).

1.3.8 Give the contents and size of the array for ResizingArrayStackOfStrings with
the input

it was - the best - of times - - - it was - the - -

1.3.9 Write a program that takes from standard input an expression without left pa-
rentheses and prints the equivalent infix expression with the parentheses inserted. For
example, given the input:

1 + 2) * 3 - 4) * 5 - 6)))

your program should print

((1 + 2) * ((3 - 4) * (5 - 6)))

1.3.10 Write a filter InfixToPostfix that converts an arithmetic expression from in-
fix to postfix.

1.3.11 Write a program EvaluatePostfix that takes a postfix expression from stan-
dard input, evaluates it, and prints the value. (Piping the output of your program from
the previous exercise to this program gives equivalent behavior to Evaluate.)

1.3.12 Write an iterable Stack client that has a static method copy() that takes a stack
of strings as argument and returns a copy of the stack. Note : This ability is a prime
example of the value of having an iterator, because it allows development of such func-
tionality without changing the basic API.

1.3.13 Suppose that a client performs an intermixed sequence of (queue) enqueue and
dequeue operations. The enqueue operations put the integers 0 through 9 in order onto

ExErcisEs (continued)

162 Chapter 1 n Fundamentals

ptg12441863

the queue; the dequeue operations print out the return value. Which of the following
sequence(s) could not occur?

a. 0 1 2 3 4 5 6 7 8 9

b. 4 6 8 7 5 3 2 9 0 1
c. 2 5 6 7 4 8 9 3 1 0

d. 4 3 2 1 0 5 6 7 8 9

1.3.14 Develop a class ResizingArrayQueueOfStrings that implements the queue
abstraction with a fixed-size array, and then extend your implementation to use array
resizing to remove the size restriction.

1.3.15 Write a Queue client that takes a command-line argument k and prints the kth
from the last string found on standard input (assuming that standard input has k or
more strings).

1.3.16 Using readInts() on page 126 as a model, write a static method readDates() for
Date that reads dates from standard input in the format specified in the table on page 119
and returns an array containing them.

1.3.17 Do Exercise 1.3.16 for Transaction.

1631.3 n Bags, Queues, and Stacks

ptg12441863

liNkED-list ExErcisEs

This list of exercises is intended to give you experience in working with linked lists. Sugges-
tion: make drawings using the visual representation described in the text.

1.3.18 Suppose x is a linked-list node and not the last node on the list. What is the ef-
fect of the following code fragment?

x.next = x.next.next;

Answer : Deletes from the list the node immediately following x.

1.3.19 Give a code fragment that removes the last node in a linked list whose first node
is first.

1.3.20 Write a method delete() that takes an int argument k and deletes the kth ele-
ment in a linked list, if it exists.

1.3.21 Write a method find() that takes a linked list and a string key as arguments
and returns true if some node in the list has key as its item field, false otherwise.

1.3.22 Suppose that x is a linked list Node. What does the following code fragment do?

t.next = x.next;
x.next = t;

Answer : Inserts node t immediately after node x.

1.3.23 Why does the following code fragment not do the same thing as in the previous
question?

x.next = t;
t.next = x.next;

Answer : When it comes time to update t.next, x.next is no longer the original node
following x, but is instead t itself!

1.3.24 Write a method removeAfter() that takes a linked-list Node as argument and
removes the node following the given one (and does nothing if the argument or the next
field in the argument node is null).

1.3.25 Write a method insertAfter() that takes two linked-list Node arguments and
inserts the second after the first on its list (and does nothing if either argument is null).

164 Chapter 1 n Fundamentals

ptg12441863

1.3.26 Write a method remove() that takes a linked list and a string key as arguments
and removes all of the nodes in the list that have key as its item field.

1.3.27 Write a method max() that takes a reference to the first node in a linked list as
argument and returns the value of the maximum key in the list. Assume that all keys are
positive integers, and return 0 if the list is empty.

1.3.28 Develop a recursive solution to the previous question.

1.3.29 Write a Queue implementation that uses a circular linked list, which is the same
as a linked list except that no links are null and the value of last.next is first when-
ever the list is not empty. Keep only one Node instance variable (last).

1.3.30 Write a function that takes the first Node in a linked list as argument and (de-
structively) reverses the list, returning the first Node in the result.

Iterative solution : To accomplish this task, we maintain references to three consecutive
nodes in the linked list, reverse, first, and second. At each iteration, we extract the
node first from the original linked list and insert it at the beginning of the reversed
list. We maintain the invariant that first is the first node of what’s left of the original
list, second is the second node of what’s left of the original list, and reverse is the first
node of the resulting reversed list.

public Node reverse(Node x)
{
 Node first = x;
 Node reverse = null;
 while (first != null)
 {
 Node second = first.next;
 first.next = reverse;
 reverse = first;
 first = second;
 }
 return reverse;
}

When writing code involving linked lists, we must always be careful to properly handle
the exceptional cases (when the linked list is empty, when the list has only one or two

1651.3 n Bags, Queues, and Stacks

ptg12441863

nodes) and the boundary cases (dealing with the first or last items). This is usually
much trickier than handling the normal cases.

Recursive solution : Assuming the linked list has N nodes, we recursively reverse the last
N – 1 nodes, and then carefully append the first node to the end.

public Node reverse(Node first)
{
 if (first == null) return null;
 if (first.next == null) return first;
 Node second = first.next;
 Node rest = reverse(second);
 second.next = first;
 first.next = null;
 return rest;
}

1.3.31 Implement a nested class DoubleNode for building doubly-linked lists, where
each node contains a reference to the item preceding it and the item following it in the
list (null if there is no such item). Then implement static methods for the following
tasks: insert at the beginning, insert at the end, remove from the beginning, remove
from the end, insert before a given node, insert after a given node, and remove a given
node.

liNkED-list ExErcisEs (continued)

166 Chapter 1 n Fundamentals

ptg12441863

crEAtivE problEms

1.3.32 Steque. A stack-ended queue or steque is a data type that supports push, pop, and
enqueue. Articulate an API for this ADT. Develop a linked-list-based implementation.

1.3.33 Deque. A double-ended queue or deque (pronounced “deck”) is like a stack or
a queue but supports adding and removing items at both ends. A deque stores a collec-
tion of items and supports the following API:

public class Deque<Item> implements Iterable<Item>

Deque() create an empty deque

boolean isEmpty() is the deque empty?

int size() number of items in the deque

void pushLeft(Item item) add an item to the left end

void pushRight(Item item) add an item to the right end

Item popLeft() remove an item from the left end

Item popRight() remove an item from the right end

apI for a generic double-ended queue

Write a class Deque that uses a doubly-linked list to implement this API and a class
ResizingArrayDeque that uses a resizing array.

1.3.34 Random bag. A random bag stores a collection of items and supports the fol-
lowing API:

public class RandomBag<Item> implements Iterable<Item>

RandomBag() create an empty random bag

boolean isEmpty() is the bag empty?

int size() number of items in the bag

void add(Item item) add an item

apI for a generic random bag

Write a class RandomBag that implements this API. Note that this API is the same as for
Bag, except for the adjective random, which indicates that the iteration should provide

1671.3 n Bags, Queues, and Stacks

ptg12441863

the items in random order (all N ! permutations equally likely, for each iterator). Hint :
Put the items in an array and randomize their order in the iterator’s constructor.

1.3.35 Random queue. A random queue stores a collection of items and supports the
following API:

 public class RandomQueue<Item>

RandomQueue() create an empty random queue

boolean isEmpty() is the queue empty?

void enqueue(Item item) add an item

Item dequeue()
remove and return a random item
(sample without replacement)

Item sample()
return a random item, but do not remove
(sample with replacement)

apI for a generic random queue

Write a class RandomQueue that implements this API. Hint : Use an array representation
(with resizing). To remove an item, swap one at a random position (indexed 0 through
N-1) with the one at the last position (index N-1). Then delete and return the last ob-
ject, as in ResizingArrayStack. Write a client that deals bridge hands (13 cards each)
using RandomQueue<Card>.

1.3.36 Random iterator. Write an iterator for RandomQueue<Item> from the previous
exercise that returns the items in random order.

1.3.37 Josephus problem. In the Josephus problem from antiquity, N people are in dire
straits and agree to the following strategy to reduce the population. They arrange them-
selves in a circle (at positions numbered from 0 to N–1) and proceed around the circle,
eliminating every Mth person until only one person is left. Legend has it that Josephus
figured out where to sit to avoid being eliminated. Write a Queue client Josephus that
takes M and N from the command line and prints out the order in which people are
eliminated (and thus would show Josephus where to sit in the circle).

% java Josephus 2 7

1 3 5 0 4 2 6

crEAtivE problEms (continued)

168 Chapter 1 n Fundamentals

ptg12441863

1.3.38 Delete kth element. Implement a class that supports the following API:

public class GeneralizedQueue<Item>

GeneralizedQueue() create an empty queue

boolean isEmpty() is the queue empty?

void insert(Item x) add an item

Item delete(int k) delete and return the kth least recently inserted item

apI for a generic generalized queue

First, develop an implementation that uses an array implementation, and then develop
one that uses a linked-list implementation. Note : the algorithms and data structures
that we introduce in Chapter 3 make it possible to develop an implementation that
can guarantee that both insert() and delete() take time prortional to the logarithm
of the number of items in the queue—see Exercise 3.5.27.

1.3.39 Ring buffer. A ring buffer, or circular queue, is a FIFO data structure of a fixed
size N. It is useful for transferring data between asynchronous processes or for storing
log files. When the buffer is empty, the consumer waits until data is deposited; when the
buffer is full, the producer waits to deposit data. Develop an API for a RingBuffer and
an implementation that uses an array representation (with circular wrap-around).

1.3.40 Move-to-front. Read in a sequence of characters from standard input and
maintain the characters in a linked list with no duplicates. When you read in a previ-
ously unseen character, insert it at the front of the list. When you read in a duplicate
character, delete it from the list and reinsert it at the beginning. Name your program
MoveToFront: it implements the well-known move-to-front strategy, which is useful for
caching, data compression, and many other applications where items that have been
recently accessed are more likely to be reaccessed.

1.3.41 Copy a queue. Create a new constructor so that

Queue<Item> r = new Queue<Item>(q);

makes r a reference to a new and independent copy of the queue q. You should be able
to enqueue and dequeue from either q or r without influencing the other. Hint : Delete
all of the elements from q and add these elements to both q and r.

1691.3 n Bags, Queues, and Stacks

ptg12441863

1.3.42 Copy a stack. Create a new constructor for the linked-list implementation of
Stack so that

Stack<Item> t = new Stack<Item>(s);

makes t a reference to a new and independent copy of the stack s.

1.3.43 Listing files. A folder is a list of files and folders. Write a program that takes the
name of a folder as a command-line argument and prints out all of the files contained
in that folder, with the contents of each folder recursively listed (indented) under that
folder’s name. Hint : Use a queue, and see java.io.File.

1.3.44 Text editor buffer. Develop a data type for a buffer in a text editor that imple-
ments the following API:

public class Buffer

Buffer() create an empty buffer

void insert(char c) insert c at the cursor position

char get() character at the cursor position

char delete() delete and return the character at the cursor

void left(int k) move the cursor k positions to the left

void right(int k) move the cursor k positions to the right

int size() number of characters in the buffer

apI for a text buffer

Hint : Use two stacks.

1.3.45 Stack generability. Suppose that we have a sequence of intermixed push and
pop operations as with our test stack client, where the integers 0, 1, ..., N-1 in that
order (push directives) are intermixed with N minus signs (pop directives). Devise an
algorithm that determines whether the intermixed sequence causes the stack to under-
flow. (You may use only an amount of space independent of N—you cannot store the
integers in a data structure.) Devise a linear-time algorithm that determines whether a
given permutation can be generated as output by our test client (depending on where
the pop directives occur).

crEAtivE problEms (continued)

170 Chapter 1 n Fundamentals

ptg12441863

1.3.46 Forbidden triple for stack generability. Prove that a permutation can be gener-
ated by a stack (as in the previous question) if and only if it has no forbidden triple (a, b,
c) such that a < b < c with c first, a second, and b third (possibly with other intervening
integers between c and a and between a and b).

Partial solution: Suppose that there is a forbidden triple (a, b, c). Item c is popped before
a and b, but a and b are pushed before c. Thus, when c is pushed, both a and b are on
the stack. Therefore, a cannot be popped before b.

1.3.47 Catenable queues, stacks, or steques. Add an extra operation catenation that (de-
structively) concatenates two queues, stacks, or steques (see Exercise 1.3.32). Hint : Use
a circular linked list, maintaining a pointer to the last item.

1.3.48 Two stacks with a deque. Implement two stacks with a single deque so that each
operation takes a constant number of deque operations (see Exercise 1.3.33).

1.3.49 Queue with a constant number of stacks. Implement a queue with a constant
number of stacks so that each queue operation takes a constant (worst-case) number
of stack operations. Warning : high degree of difficulty.

1.3.50 Fail-fast iterator. Modify the iterator code in Stack to immediately throw a
java.util.ConcurrentModificationException if the client modifies the collection
(via push() or pop()) during iteration?

Solution: Maintain a counter that counts the number of push() and pop() operations.
When creating an iterator, store this value as an Iterator instance variable. Before
each call to hasNext() and next(), check that this value has not changed since con-
struction of the iterator; if it has, throw the exception.

1711.3 n Bags, Queues, and Stacks

ptg12441863

1.4 AnAlySiS oF AlgorithMS

AS people gain experience using computers, they use them to solve difficult prob-
lems or to process large amounts of data and are invariably led to questions like these:

How long will my program take?

Why does my program run out of memory?

You certainly have asked yourself these questions, perhaps when rebuilding a music or
photo library, installing a new application, working with a large document, or work-
ing with a large amount of experimental data. The questions are much too vague to
be answered precisely—the answers depend on many factors such as properties of the
particular computer being used, the particular data being processed, and the particular
program that is doing the job (which implements some algorithm). All of these factors
leave us with a daunting amount of information to analyze.

Despite these challenges, the path to developing useful answers to these basic ques-
tions is often remarkably straightforward, as you will see in this section. This process is
based on the scientific method, the commonly accepted body of techniques used by sci-
entists to develop knowledge about the natural world. We apply mathematical analysis
to develop concise models of costs and do experimental studies to validate these models.

Scientific method The very same approach that scientists use to understand the
natural world is effective for studying the running time of programs:

n	 Observe some feature of the natural world, generally with precise measurements.
n	 Hypothesize a model that is consistent with the observations.
n	 Predict events using the hypothesis.
n	 Verify the predictions by making further observations.
n	 Validate by repeating until the hypothesis and observations agree.

One of the key tenets of the scientific method is that the experiments we design must
be reproducible, so that others can convince themselves of the validity of the hypothesis.
Hypotheses must also be falsifiable, so that we can know for sure when a given hypoth-
esis is wrong (and thus needs revision). As Einstein famously is reported to have said
(“No amount of experimentation can ever prove me right; a single experiment can prove
me wrong”), we can never know for sure that any hypothesis is absolutely correct; we
can only validate that it is consistent with our observations.

172

ptg12441863

Observations Our first challenge is to determine how to make quantitative mea-
surements of the running time of our programs. This task is far easier than in the natu-
ral sciences. We do not have to send a rocket to Mars or kill laboratory animals or split
an atom—we can simply run the program. Indeed, every time you run a program, you
are performing a scientific experiment that relates the program to the natural world
and answers one of our core questions: How long will my program take?

Our first qualitative observation about most programs is that there is a problem size
that characterizes the difficulty of the computational task. Normally, the problem size
is either the size of the input or the value of a command-line argument. Intuitively, the
running time should increase with problem size, but the question of by how much it
increases naturally comes up every time we develop and run a program.

Another qualitative observation for many programs is that the running time is rela-
tively insensitive to the input itself; it depends primarily on the problem size. If this
relationship does not hold, we need to take steps to better understand and perhaps
better control the running time’s sensitivity to the input. But it does often hold, so we
now focus on the goal of better quantifying the relationship between problem size and
running time.

Example As a running example, we will work with the program ThreeSum shown
here, which counts the number of triples in a file of N integers that sum to 0 (assum-
ing that overflow plays no role). This
computation may seem contrived to you,
but it is deeply related to numerous fun-
damental computational tasks (for exam-
ple, see Exercise 1.4.26). As a test input,
consider the file 1Mints.txt from the
booksite, which contains 1 million ran-
domly generated int values. The second,
eighth, and tenth entries in 1Mints.txt
sum to 0. How many more such triples
are there in the file? ThreeSum can tell us,
but can it do so in a reasonable amount
of time? What is the relationship between
the problem size N and running time
for ThreeSum? As a first experiment, try
running ThreeSum on your computer
for the files 1Kints.txt, 2Kints.txt,
4Kints.txt, and 8Kints.txt on the

public class ThreeSum
{
 public static int count(int[] a)
 { // Count triples that sum to 0.
 int N = a.length;
 int cnt = 0;
 for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 for (int k = j+1; k < N; k++)
 if (a[i] + a[j] + a[k] == 0)
 cnt++;
 return cnt;
 }

 public static void main(String[] args)
 {
 int[] a = In.readInts(args[0]);
 StdOut.println(count(a));
 }
}

given n, how long will this program take?

1731.4 n Analysis of Algorithms

ptg12441863

booksite that contain the first 1,000, 2,000, 4,000, and 8,000 integers
from 1Mints.txt, respectively. You can quickly determine that there are
70 triples that sum to 0 in 1Kints.txt and that there are 528 triples that
sum to 0 in 2Kints.txt. The program takes substantially more time
to determine that there are 4,039 triples that sum to 0 in 4Kints.txt,
and as you wait for the program to finish for 8Kints.txt, you will find
yourself asking the question How long will my program take ? As you will
see, answering this question for this program turns out to be easy. In-
deed, you can often come up with
a fairly accurate prediction while
the program is running.

Stopwatch Reliably measuring
the exact running time of a given
program can be difficult. Fortu-
nately, we are usually happy with
estimates. We want to be able to
distinguish programs that will
finish in a few seconds or a few
minutes from those that might

require a few days or a few months or more, and
we want to know when one program is twice as
fast as another for the same task. Still, we need
accurate measurements to generate experimental
data that we can use to formulate and to check
the validity of hypotheses about the relationship
between running time and problem size. For this
purpose, we use the Stopwatch data type shown
on the facing page. Its elapsedTime() method
returns the elapsed time since it was created, in
seconds. The implementation is based on using
the Java system’s currentTimeMillis() method,
which gives the current time in milliseconds, to
save the time when the constructor is invoked,
then uses it again to compute the elapsed time
when elapsedTime() is invoked.

% java ThreeSum 1Kints.txt

70

% java ThreeSum 2Kints.txt

% java ThreeSum 4Kints.txt

528

4039

tick tick tick

Observing the running time of a program

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

% more 1Mints.txt
 324110
-442472
 626686
-157678
 508681
 123414
 -77867
155091
 129801
287381
 604242
 686904
-247109
 77867
 982455
-210707
-922943
-738817
 85168
 855430
 ...

174 Chapter 1 n Fundamentals

ptg12441863

public static void main(String[] args)
{
 int N = Integer.parseInt(args[0]);
 int[] a = new int[N];
 for (int i = 0; i < N; i++)
 a[i] = StdRandom.uniform(-1000000, 1000000);
 Stopwatch timer = new Stopwatch();
 int cnt = ThreeSum.count(a);
 double time = timer.elapsedTime();
 StdOut.println(cnt + " triples " + time + "seconds");
}

public class Stopwatch
{
 private final long start;

 public Stopwatch()
 { start = System.currentTimeMillis(); }

 public double elapsedTime()
 {
 long now = System.currentTimeMillis();
 return (now - start) / 1000.0;
 }

}

% java Stopwatch 1000
51 triples 0.488 seconds

% java Stopwatch 2000
516 triples 3.855 seconds

an abstract data type for a stopwatch

typical client

application

implementation

apI public class Stopwatch

Stopwatch() create a stopwatch

double elapsedTime() return elapsed time since creation

1751.4 n Analysis of Algorithms

ptg12441863

Analysis of experimental data The program DoublingTest on the facing page is a
more sophisticated Stopwatch client that produces experimental data for ThreeSum. It
generates a sequence of random input arrays, doubling the array size at each step, and
prints the running times of ThreeSum.count() for each input size. These experiments
are certainly reproducible—you can also run them on your own computer, as many
times as you like. When you run DoublingTest, you will find yourself in a prediction-
verification cycle: it prints several lines very quickly, but then slows down considerably.
Each time it prints a line, you find yourself wondering how long it will be until it prints
the next line. Of course, since you have a different computer from ours, the actual run-
ning times that you get are likely to be different from those shown for our computer.
Indeed, if your computer is twice as fast as ours, your running times will be about half
ours, which leads immediately to the well-founded hypothesis that running times on
different computers are likely to differ by a constant factor. Still, you will find yourself
asking the more detailed question How long will my program take, as a function of the
input size? To help answer this question, we plot the data. The diagrams at the bottom of
the facing page show the result of plotting the data, both on a normal and on a log-log
scale, with the problem size N on the x-axis and the running time T(N) on the y-axis.
The log-log plot immediately leads to a hypothesis about the running time—the data
fits a straight line of slope 3 on the log-log plot. The equation of such a line is

lg(T(N)) = 3 lg N + lg a

(where a is a constant) which is equivalent to

T(N) = a N 3

the running time, as a function of the input size, as desired. We can use one of our data
points to solve for a—for example, T(8000) = 51.1 = a 8000 3, so a = 9.9810 –11—and
then use the equation

T(N) = 9.9810 –11 N 3

to predict running times for large N. Informally, we are checking the hypothesis
that the data points on the log-log plot fall close to this line. Statistical methods are
available for doing a more careful analysis to find estimates of a and the exponent
b, but our quick calculations suffice to estimate running time for most purposes. For
example, we can estimate the running time on our computer for N = 16,000 to be
about 9.9810 –11 16000 3 = 408.8 seconds, or about 6.8 minutes (the actual time was
409.3 seconds). While waiting for your computer to print the line for N = 16,000 in
DoublingTest, you might use this method to predict when it will finish, then check the
result by waiting to see if your prediction is true.

176 Chapter 1 n Fundamentals

ptg12441863

1K

.1

.2

.4

.8

1.6

3.2

6.4

12.8

25.6

51.2

Analysis of experimental data (the running time of ThreeSum.count())

log-log plotstandard plot

lg Nproblem size N
2K 4K 8K

lg
(T

(N
))

ru
nn

in
g

tim
e

T(
N

)

1K

10

20

30

40

50

2K 4K 8K

straight line
of slope 3

public class DoublingTest
{
 public static double timeTrial(int N)
 { // Time ThreeSum.count() for N random 6-digit ints.
 int MAX = 1000000;
 int[] a = new int[N];
 for (int i = 0; i < N; i++)
 a[i] = StdRandom.uniform(-MAX, MAX);
 Stopwatch timer = new Stopwatch();
 int cnt = ThreeSum.count(a);
 return timer.elapsedTime();
 }

 public static void main(String[] args)
 { // Print table of running times.
 for (int N = 250; true; N += N)
 { // Print time for problem size N.
 double time = timeTrial(N);
 StdOut.printf("%7d %5.1f\n", N, time);
 }
 }
}

program to perform experiments results of experiments

% java DoublingTest
 250 0.0
 500 0.0
 1000 0.1
 2000 0.8
 4000 6.4
 8000 51.1
...

1771.4 n Analysis of Algorithms

ptg12441863

So far, this process mirrors the process scientists use when trying to understand
properties of the real world. A straight line in a log-log plot is equivalent to the hy-
pothesis that the data fits the equation T(N) = a N b . Such a fit is known as a power law.
A great many natural and synthetic phenomena are described by power laws, and it is
reasonable to hypothesize that the running time of a program does, as well. Indeed, for
the analysis of algorithms, we have mathematical models that strongly support this and
similar hypotheses, to which we now turn.

Mathematical models In the early days of computer science, D. E. Knuth postu-
lated that, despite all of the complicating factors in understanding the running times of
our programs, it is possible, in principle, to build a mathematical model to describe the
running time of any program. Knuth’s basic insight is simple: the total running time of
a program is determined by two primary factors:

n	 The cost of executing each statement
n	 The frequency of execution of each statement

The former is a property of the computer, the Java compiler and the operating system;
the latter is a property of the program and the input. If we know both for all instruc-
tions in the program, we can multiply them together and sum for all instructions in the
program to get the running time.

The primary challenge is to determine the frequency of execution of the statements.
Some statements are easy to analyze: for example, the statement that sets cnt to 0 in
ThreeSum.count() is executed exactly once. Others require higher-level reasoning: for
example, the if statement in ThreeSum.count() is executed precisely

N (N1)(N2)/6

times (the number of ways to pick three different numbers from the input array—see
Exercise 1.4.1). Others depend on the input data: for example the number of times the
instruction cnt++ in ThreeSum.count() is executed is precisely the number of triples
that sum to 0 in the input, which could range from 0 of them to all of them. In the case
of DoublingTest, where we generate the numbers randomly, it is possible to do a prob-
abilistic analysis to determine the expected value of this quantity (see Exercise 1.4.40).

Tilde approximations Frequency analyses of this sort can lead to complicated and
lengthy mathematical expressions. For example, consider the count just considered of
the number of times the if statement in ThreeSum is executed:

N (N1)(N2)/6 = N 3/6  N 2/2  N/3

178 Chapter 1 n Fundamentals

ptg12441863

As is typical in such expressions, the terms after
the leading term are relatively small (for exam-
ple, when N = 1,000 the value of  N 2/2  N/3
 499,667 is certainly insignificant by com-
parison with N 3/6  166,666,667). To allow us
to ignore insignificant terms and therefore sub-
stantially simplify the mathematical formulas
that we work with, we often use a mathemati-
cal device known as the tilde notation (~). This
notation allows us to work with tilde approxi-
mations, where we throw away low-order terms
that complicate formulas and represent a negli-
gible contribution to values of interest:

Definition. We write ~f (N) to represent
any function that, when divided by f (N),
approaches 1 as N grows, and we write
g(N) ~ f (N) to indicate that g(N)/f (N)
approaches 1 as N grows.

~For example, we use the approximation N 3/6 to de-
scribe the number of times the if statement in
ThreeSum is executed, since N 3/6  N 2/2  N/3 di-
vided by N 3/6 approaches 1 as N grows. Most of-
ten, we work with tilde approximations of the form
g (N) ~ a f (N) where f (N) = N b (log N) c with a, b, and c
constants and refer to f (N) as the order of growth of g (N).
When using the logarithm in the order of growth, we gener-
ally do not specify the base, since the constant a can absorb
that detail. This usage covers the relatively few functions
that are commonly encountered in studying the order of
growth of a program’s running time shown in the table at
left (with the exception of the exponential, which we defer
to CONTEXT). We will describe these functions in more de-
tail and briefly discuss why they appear in the analysis of
algorithms after we complete our treatment of ThreeSum.

function
tilde

approximation
order

of growth

N 3/6  N 2/2  N/3 ~ N 3/6 N 3

N 2/2  N/2 ~ N 2/2 N 2

lg N + 1 ~ lg N lg N

3 ~ 3 1

typical tilde approximations

order of growth

description function

constant 1

logarithmic log N

linear N

linearithmic N log N

quadratic N 2

cubic N 3

exponential 2 N

Commonly encountered
order-of-growth functions

Leading-term approximation

N 3/6

N NN (� 1)(� 2)/6

166,167,000

1,000

166,666,667

N

1791.4 n Analysis of Algorithms

ptg12441863

Approximate running time To follow through on Knuth’s approach to develop a
mathematical expression for the total running time of a Java program, we can (in prin-
ciple) study our Java compiler to find the number of machine instructions correspond-
ing to each Java instruction and study our machine specifications to find the time of
execution of each of the machine instructions, to produce a grand total. This process,
for ThreeSum, is briefly summarized on the facing page. We classify blocks of Java state-
ments by their frequency of execution, develop leading-term approximations for the
frequencies, determine the cost of each statement, and then compute a total. Note that
some frequencies may depend on the input. In this case, the number of times cnt++
is executed certainly depends on the input—it is the number of triples that sum to 0,
and could range from 0 to ~N 3/6. We stop short of exhibiting the details (values of the
constants) for any particular system, except to highlight that by using constant values t0,
t1, t2, ... for the time taken by the blocks of statements, we are assuming that each block
of Java statements corresponds to machine instructions that require a specified fixed
amount of time. A key observation from this exercise is to note that only the instruc-
tions that are executed the most frequently play a role in the final total—we refer to
these instructions as the inner loop of the program. For ThreeSum, the inner loop is the
statements that increment k and test that it is less than N and the statements that test
whether the sum of three given numbers is 0 (and possibly the statement that imple-
ments the count, depending on the input). This behavior is typical: the running times
of a great many programs depend only on a small subset of their instructions.

Order-of-growth hypothesis In summary, the experiments on page 177 and the math-
ematical model on page 181 both support the following hypothesis:

property A. The order of growth of the running time of ThreeSum (to compute the
number of triples that sum to 0 among N numbers) is N 3.

Evidence: Let T(N) be the running time of ThreeSum for N numbers. The math-
ematical model just described suggests that T(N) ~ aN 3 for some machine-de-
pendent constant a; experiments on many computers (including yours and ours)
validate that approximation.

Throughout this book, we use the term property to refer to a hypothesis that needs to
be validated through experimentation. The end result of our mathematical analysis is
precisely the same as the end result of our experimental analysis—the running time
of ThreeSum is ~ a N 3 for a machine-dependent constant a. This match validates both
the experiments and the mathematical model and also exhibits more insight about the

180 Chapter 1 n Fundamentals

ptg12441863

1

N

x

inner
loop

~N 2/ 2

~N 3/ 6

Anatomy of a program’s statement execution frequencies

A

B

C
D
E

bl
oc

ks
 o

f s
ta

te
m

en
ts frequencies of execution

public class ThreeSum
{
 public static int count(int[] a)
 {
 int N = a.length;
 int cnt = 0;

 for (int i = 0; i < N; i++)

 for (int j = i+1; j < N; j++)

 for (int k = j+1; k < N; k++)

 if (a[i] + a[j] + a[k] == 0)
 cnt++;

 return cnt;
 }

 public static void main(String[] args)
 {
 int[] a = In.readInts(args[0]);
 StdOut.println(count(a));
 }
}

statement
block

time in
seconds

frequency total time

e t0 x (depends on input) t0 x

D t1 N 3/6  N 2/2  N/3 t1 (N 3/6  N 2/2  N/3)

C t2 N 2/2  N/2 t2 (N 2/2  N/2)

B t3 N t3 N

A t4 1 t4

grand total

 (t1/6) N 3
  (t2/2  t1/2) N 2

  (t1/3  t2/2  t3) N

  t4  t0 x

tilde approximation ~ (t1 / 6) N 3 (assuming x is small)

order of growth N 3

analyzing the running time of a program (example)

1811.4 n Analysis of Algorithms

ptg12441863

program because it does not require experimentation to determine the exponent. With
some effort, we could validate the value of a on a particular system as well, though that
activity is generally reserved for experts in situations where performance is critical.

Analysis of algorithms Hypotheses such as Property A are significant because they
relate the abstract world of a Java program to the real world of a computer running it.
Working with the order of growth allows us to take one further step: to separate a pro-
gram from the algorithm it implements. The idea that the order of growth of the run-
ning time of ThreeSum is N 3 does not depend on the fact that it is implemented in Java
or that it is running on your laptop or someone else’s cellphone or a supercomputer; it
depends primarily on the fact that it examines all the different triples of numbers in the
input. The algorithm that you are using (and sometimes the input model) determines
the order of growth. Separating the algorithm from the implementation on a particular
computer is a powerful concept because it allows us to develop knowledge about the
performance of algorithms and then apply that knowledge to any computer. For ex-
ample, we might say that ThreeSum is an implementation of the brute-force algorithm
“compute the sum of all different triples, counting those that sum to 0”—we expect that an
implementation of this algorithm in any programming language on any computer will
lead to a running time that is proportional to N 3. In
fact, much of the knowledge about the performance
of classic algorithms was developed decades ago, but
that knowledge is still relevant to today’s computers.

Cost model We focus attention on properties of al-
gorithms by articulating a cost model that defines the
basic operations used by the algorithms we are study-
ing to solve the problem at hand. For example, an ap-
propriate cost model for the 3-sum problem, shown
at right, is the number of times we access an array
entry. With this cost model, we can make precise mathematical statements about prop-
erties of an algorithm, not just a particular implementation, as follows:

~proposition b. The brute-force 3-sum algorithm uses N 3/2 array accesses to
compute the number of triples that sum to 0 among N numbers.

proof: The algorithm accesses each of the 3 numbers for each of the ~N 3/6 triples.

We use the term proposition to refer to mathematical truths about algorithms in terms
of a cost model. Throughout this book, we study the algorithms that we consider within

3-sum cost model. When
studying algorithms to
solve the 3-sum problem,
we count array accesses
(the number of times an
array entry is accessed, for
read or write).

182 Chapter 1 n Fundamentals

ptg12441863

the framework of a specific cost model. Our intent is to articulate cost models such that
the order of growth of the running time for a given implementation is the same as the
order of growth of the cost of the underlying algorithm (in other words, the cost model
should include operations that fall within the inner loop). We seek precise mathemati-
cal results about algorithms (propositions) and also hypotheses about performance
of implementations (properties) that you can check through experimentation. In this
case, Proposition B is a mathematical truth that supports the hypothesis stated in
Property A, which we have validated with experiments, in accordance with the scien-
tific method.

1831.4 n Analysis of Algorithms

ptg12441863

Summary For many programs, developing a mathematical model of running time
reduces to the following steps:

n	 Develop an input model, including a definition of the problem size.
n	 Identify the inner loop.
n	 Define a cost model that includes operations in the inner loop.
n	 Determine the frequency of execution of those operations for the given input.

Doing so might require mathematical analysis—we will consider some examples
in the context of specific fundamental algorithms later in the book.

If a program is defined in terms of multiple methods, we normally consider the
methods separately. As an example, consider our example program of Section 1.1,
BinarySearch.

Binary search The input model is the array a[] of size N; the inner loop is the
statements in the single while loop; the cost model is the compare operation
(compare the values of two array entries); and the analysis, discussed in Section
1.1 and given in full detail in Proposition B in Section 3.1, shows that the num-
ber of compares is at most lg N  1.

Whitelist The input model is the N numbers in the whitelist and the M numbers
on standard input where we assume M >> N; the inner loop is the statements in
the single while loop; the cost model is the compare operation (inherited from
binary search); and the analysis is immediate given the analysis of binary search—
the number of compares is at most M (lg N  1).

Thus, we draw the conclusion that the order of growth of the running time of the
whitelist computation is at most M lg N , subject to the following considerations:

n	 If N is small, the input-output cost might dominate.
n	 The number of compares depends on the input—it lies between ~M and ~M

lg N, depending on how many of the numbers on standard input are in the
whitelist and on how long the binary search takes to find the ones that are (typi-
cally it is ~M lg N).

n	 We are assuming that the cost of Arrays.sort() is small compared to M lg N.
Arrays.sort() implements the mergesort algorithm, and in Section 2.2, we
will see that the order of growth of the running time of mergesort is N log N
(see Proposition G in chapter 2), so this assumption is justified.

Thus, the model supports our hypothesis from Section 1.1 that the binary search algo-
rithm makes the computation feasible when M and N are large. If we double the length
of the standard input stream, then we can expect the running time to double; if we
double the size of the whitelist, then we can expect the running time to increase only
slightly.

184 Chapter 1 n Fundamentals

ptg12441863

Developing MATHEMATICal models for the analysis of algorithms is a fruitful area
of research that is somewhat beyond the scope of this book. Still, as you will see with
binary search, mergesort, and many other algorithms, understanding certain math-
ematical models is critical to understanding the efficiency of fundamental algorithms,
so we often present details and/or quote the results of classic studies. When doing so, we
encounter various functions and approximations that are widely used in mathemati-
cal analysis. For reference, we summarize some of this information in the tables below.

description approximation

harmonic sum N HN = 1  1/2  1/3  1/4  . . .  1/ ~ ln N

triangular sum N 1  2  3  4  . . .  ~ N 2/2

geometric sum 1  2  4  8  . . .  N = 2N – 1 ~ 2N when N = 2n

Stirling’s
approximation

 N lg N ! = lg 1  lg 2  lg 3  lg 4  . . .  lg ~ N lg N

binomial
coefficients (N

k) ~ N k/k! when k is a small constant

exponential (1 – 1/x) x ~ 1/e

Useful approximations for the analysis of algorithms

description notation definition

floor ⎣x⎦ largest integer not greater than x

ceiling ⎡x⎤ smallest integer not smaller than x

natural logarithm ln N log e N (x such that e x = N)

binary logarithm lg N log 2 N (x such that 2x = N)

integer
binary logarithm

⎣lg N⎦
largest integer not greater than lg N

(# bits in binary representation of N) – 1

harmonic numbers HN 1  1/2  1/3  1/4  . . .  1/N

factorial N ! 1  2  3  4  . . .  N

Commonly encountered functions in the analysis of algorithms

1851.4 n Analysis of Algorithms

ptg12441863

Order-of-growth classifications We use just a few structural primitives (state-
ments, conditionals, loops, nesting, and method calls) to implement algorithms, so very
often the order of growth of the cost is one of just a few functions of the problem size N.
These functions are summarized in the table on the facing page, along with the names
that we use to refer to them, typical code that leads to each function, and examples.

Constant A program whose running time’s order of growth is constant executes a
fixed number of operations to finish its job; consequently its running time does not
depend on N. Most Java operations take constant time.

Logarithmic A program whose running time’s order of growth is logarithmic is barely
slower than a constant-time program. The classic example of a program whose running
time is logarithmic in the problem size is binary search (see BinarySearch on page 47).
The base of the logarithm is not relevant with respect to the order of growth (since all
logarithms with a constant base are related by a constant factor), so we use log N when
referring to order of growth.

Linear Programs that spend a constant amount of time processing each piece of input
data, or that are based on a single for loop, are quite common. The order of growth of
such a program is said to be linear —its running time is proportional to N.

Linearithmic We use the term linearithmic to describe programs whose running time
for a problem of size N has order of growth N log N. Again, the base of the logarithm
is not relevant with respect to the order of growth. The prototypical examples of lin-
earithmic algorithms are Merge.sort() (see Algorithm 2.4) and Quick.sort() (see
Algorithm 2.5).

Quadratic A typical program whose running time has order of growth N 2 has
two nested for loops, used for some calculation involving all pairs of N elements.
The elementary sorting algorithms Selection.sort() (see Algorithm 2.1) and
Insertion.sort() (see Algorithm 2.2) are prototypes of the programs in this
classification.

Cubic A typical program whose running time has order of growth N 3 has three nested
for loops, used for some calculation involving all triples of N elements. Our example
for this section, ThreeSum, is a prototype.

Exponential In ChAPter 6 (but not until then!) we will consider programs whose
running times are proportional to 2N or higher. Generally, we use the term exponential
to refer to algorithms whose order of growth is b N for any constant b > 1, even though
different values of b lead to vastly different running times. Exponential algorithms are
extremely slow—you will never run one of them to completion for a large problem.
Still, exponential algorithms play a critical role in the theory of algorithms because

186 Chapter 1 n Fundamentals

ptg12441863

description order of
growth typical code framework description example

constant 1 a = b + c; statement
add two
numbers

logarithmic log N [see page 47] divide in
half

binary
search

linear N
double max = a[0];
for (int i = 1; i < N; i++)
 if (a[i] > max) max = a[i];

loop
find the

maximum

linearithmic N log N [see Algorithm 2.4] divide and
conquer

mergesort

quadratic N 2

for (int i = 0; i < N; i++)

 for (int j = i+1; j < N; j++)

 if (a[i] + a[j] == 0)

 cnt++;

double
loop

check all
pairs

cubic N 3

for (int i = 0; i < N; i++)

 for (int j = i+1; j < N; j++)

 for (int k = j+1; k < N; k++)

 if (a[i] + a[j] + a[k] == 0)

 cnt++;

triple loop
check all
triples

exponential 2 N [see chapter 6] exhasutive
search

check all
subsets

Summary of common order-of-growth hypotheses

1871.4 n Analysis of Algorithms

ptg12441863

there exists a large class of problems for which it seems that an exponential algorithm
is the best possible choice.

These classifications are the most common, but certainly not a complete set. The
order of growth of an algorithm’s cost might be N 2 log N or N 3/2 or some similar func-

tion. Indeed, the detailed analysis of algorithms
can require the full gamut of mathematical tools
that have been developed over the centuries.

A great many of the algorithms that we con-
sider have straightforward performance charac-
teristics that can be accurately described by one
of the orders of growth that we have considered.
Accordingly, we can usually work with specific
propositions with a cost model, such as mergesort
uses between ½ N lg N and N lg N compares that
immediately imply hypotheses (properties) such
as the order of growth of mergesort’s running time
is linearithmic. For economy, we abbreviate such
a statement to just say mergesort is linearithmic.

The plots at left indicate the importance of
the order of growth in practice. The x-axis is
the problem size; the y-axis is the running time.
These charts make plain that quadratic and cubic
algorithms are not feasible for use on large prob-
lems. As it turns out, several important prob-
lems have natural solutions that are quadratic
but clever algorithms that are linearithmic. Such
algorithms (including mergesort) are critically
important in practice because they enable us to
address problem sizes far larger than could be
addressed with quadratic solutions. Naturally, we
therefore focus in this book on developing loga-
rithmic, linear, and linearithmic algorithms for
fundamental problems.

1K

T

2T

4T

8T

64T

512T

logarithmic

ex
po

ne
nt

ia
l

constant

lin
ea

rit
hm

ic

lin
ea

r

qu
ad

ra
tic

cu
bi

c

2K 4K 8K 512K

100T

200T

500T

logarithmic

exponential

constant

problem size

problem size

lin
ea

rit
hm

ic

lin
ea

r

100K 200K 500K

tim
e

tim
e

Typical orders of growth

log-log plot

standard plot

cubic
quadratic

188 Chapter 1 n Fundamentals

ptg12441863

Designing faster algorithms One of the primary reasons to study the order of
growth of a program is to help design a faster algorithm to solve the same problem. To
illustrate this point, we consider next a faster algorithm for the 3-sum problem. How
can we devise a faster algorithm, before even embarking on the study of algorithms?
The answer to this question is that we have discussed and used two classic algorithms,
mergesort and binary search, have introduced the facts that the mergesort is linearith-
mic and binary search is logarithmic. How can we take advantage of these algorithms
to solve the 3-sum problem?

Warmup: 2-sum Consider the easier problem of determining the number of pairs of
integers in an input file that sum to 0. To simplify the discussion, assume also that the
integers are distinct. This problem is easily solved in quadratic time by deleting the k
loop and a[k] from ThreeSum.count(), leaving a double loop that examines all pairs,
as shown in the quadratic entry in the table on page 187 (we refer to such an implementa-
tion as TwoSum). The implementation below shows how mergesort and binary search
(see page 47) can serve as a basis for a linearithmic solution to the 2-sum problem. The
improved algorithm is based on the fact that an entry a[i] is one of a pair that sums to
0 if and only if the value -a[i] is in the array (and a[i] is not zero). To solve the prob-
lem, we sort the array (to enable binary search) and then, for every entry a[i] in the ar-
ray, do a binary search for -a[i] with rank() in BinarySearch. If the result is an index
j with j > i, we increment the count.
This succinct test covers three cases:

n	 An unsuccessful binary search re-
turns -1, so we do not increment
the count.

n	 If the binary search re-
turns j > i, we have
a[i] + a[j] = 0, so we incre-
ment the count.

n	 If the binary search returns j
between 0 and i, we also have
a[i] + a[j] = 0 but do not
increment the count, to avoid
double counting.

The result of the computation is precise-
ly the same as the result of the quadratic
algorithm, but it takes much less time.
The running time of the mergesort is

import java.util.Arrays;

public class TwoSumFast
{
 public static int count(int[] a)
 { // Count pairs that sum to 0.
 Arrays.sort(a);
 int N = a.length;
 int cnt = 0;
 for (int i = 0; i < N; i++)
 if (BinarySearch.rank(-a[i], a) > i)
 cnt++;
 return cnt;
 }

 public static void main(String[] args)
 {
 int[] a = In.readInts(args[0]);
 StdOut.println(count(a));
 }
}

Linearithmic solution to the 2-sum problem

1891.4 n Analysis of Algorithms

ptg12441863

proportional to N log N, and the N binary searches each take time proportional to log
N, so the running time of the whole algorithm is proportional to N log N. Developing
a faster algorithm like this is not merely an academic exercise—the faster algorithm
enables us to address much larger problems. For example, you are likely to be able to
solve the 2-sum problem for 1 million integers (1Mints.txt) in a reasonable amount
of time on your computer, but you would have to wait quite a long time to do it with
the quadratic algorithm (see Exercise 1.4.41).

Fast algorithm for 3-sum The very same idea is effective for the 3-sum problem.
Again, assume also that the integers are distinct. A pair a[i] and a[j] is part of a triple
that sums to 0 if and only if the value -(a[i] + a[j]) is in the array (and not a[i] or
a[j]). The code below sorts the array, then does N (N1)/ 2 binary searches that each
take time proportional to log N, for a total running time proportional to N 2 log N. Note
that in this case the cost of the sort is insignificant. Again, this solution enables us to ad-
dress much larger problems (see Exercise 1.4.42). The plots in the figure at the bottom
of the next page show the disparity in costs among these four algorithms for problem
sizes in the range we have considered. Such differences certainly motivate the search for
faster algorithms.

Lower bounds The table on page 191 summarizes the discussion of this section. An in-
teresting question immediately arises: Can we find algorithms for the 2-sum and 3-sum

problems that are substantially
faster than TwoSumFast and
ThreeSumFast? Is there a linear
algorithm for 2-sum or a linea-
rithmic algorithm for 3-sum?
The answer to this question is no
for 2-sum (under a model that
counts and allows only compari-
sons of linear or quadratic func-
tions of the numbers) and no one
knows for 3-sum, though experts
believe that the best possible al-
gorithm for 3-sum is quadratic.
The idea of a lower bound on the
order of growth of the worst-case
running time for all possible al-
gorithms to solve a problem is a
very powerful one, which we will

import java.util.Arrays;

public class ThreeSumFast
{
 public static int count(int[] a)
 { // Count triples that sum to 0.
 Arrays.sort(a);
 int N = a.length;
 int cnt = 0;
 for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 if (BinarySearch.rank(-a[i]-a[j], a) > j)
 cnt++;
 return cnt;
 }

 public static void main(String[] args)
 {
 int[] a = In.readInts(args[0]);
 StdOut.println(count(a));
 }
}

N 2 lg N solution to the 3-sum problem

190 Chapter 1 n Fundamentals

ptg12441863

revisit in detail in Section 2.2 in the context of sorting. Non-
trivial lower bounds are difficult to establish, but very helpful
in guiding our search for efficient algorithms.

The examples in this section set the stage for our treat-
ment of algorithms in this book. Throughout the book, our
strategy for addressing new problems is the following:

n	 Implement and analyze a straighforward solution to
the problem. We usually refer to such solutions, like
ThreeSum and TwoSum, as the brute-force solution.

n	 Examine algorithmic improvements, usually designed
to reduce the order of growth of the running time, such as TwoSumFast and
ThreeSumFast.

n	 Run experiments to validate the hypotheses that the new algorithms are faster.
In many cases, we examine several algorithms for the same problem, because running
time is only one consideration when choosing an algorithm for a practical problem. We
will develop this idea in detail in the context of fundamental problems throughout the
book.

algorithm
order of growth
of running time

TwoSum N 2

TwoSumFast N log N

ThreeSum N 3

ThreeSumFast N 2 log N

Summary of running times

Costs of algorithms to solve the 2-sum and 3-sum problems

problem size N

N

3/2 N

2 lgN

ar
ra

y
ac

ce
ss

es
 (m

ill
io

ns
)

1K

200

400

600

800

1000

2K 4K 8K

ThreeSum

ThreeSumFast

problem size N

N

2

ar
ra

y
ac

ce
ss

es
 (t

ho
us

an
ds

)

1K

20

40

60

80

100

2K 4K 8K

TwoSum

4N

 lgN

TwoSumFast

1911.4 n Analysis of Algorithms

ptg12441863

Doubling ratio experiments The following is a simple and effective shortcut for
predicting performance and for determining the approximate order of growth of the
running time of any program:

n	 Develop an input generator that produces inputs that model the inputs expected
in practice (such as the random integers in timeTrial() in DoublingTest).

n	 Run the program DoublingRatio given below, a modification of DoublingTest
that calculates the ratio of each running time with the previous.

n	 Run until the ratios approach a limit 2b.
This test is not effective if the ratios do not approach a limiting value, but they do for
many, many programs, implying the following conclusions:

n	 The order of growth of the running time is approximately N b.
n	 To predict running times, multiply the last observed running time by 2b and

double N, continuing as long as desired. If you want to predict for an input size
that is not a power of 2 times N, you can adjust ratios accordingly (see Exercise
1.4.9).

As illustrated below, the ratio for ThreeSum is about 8 and we can predict the running
times for N = 16,000, 32,000, 64,000 to be 408.8, 3270.4, 26163.2 seconds, respectively,
just by successively multiplying the last time for 8,000 (51.1) by 8.

public class DoublingRatio
{
 public static double timeTrial(int N)
 // same as for DoublingTest (page 177)

 public static void main(String[] args)
 {
 double prev = timeTrial(125);
 for (int N = 250; true; N += N)
 {
 double time = timeTrial(N);
 StdOut.printf("%6d %7.1f ", N, time);
 StdOut.printf("%5.1f\n", time/prev);
 prev = time;
 }
 }
}

results of experiments

program to perform experiments

predictions

% java DoublingRatio
 250 0.0 2.7
 500 0.0 4.8
 1000 0.1 6.9
 2000 0.8 7.7
 4000 6.4 8.0
 8000 51.1 8.0

 16000 408.8 8.0
 32000 3270.4 8.0
 64000 26163.2 8.0

192 Chapter 1 n Fundamentals

ptg12441863

This test is roughly equivalent to the process described on page 176 (run experiments,
plot values on a log-log plot to develop the hypothesis that the running time is aN b,
determine the value of b from the slope of the line, then solve for a), but it is sim-
pler to apply. Indeed, you can accurately predict preformance by hand when you run
DoublingRatio. As the ratio approaches a limit, just multiply by that ratio to fill in later
values in the table. Your approximate model of the order of growth is a power law with
the binary logarithm of that ratio as the power.

Why does the ratio approach a constant? A simple mathematical calculation shows
that to be the case for all of the common orders of growth just discussed (except
exponential):

 ~ proposition c. (Doubling ratio) If T(N) a N b lg N then T(2N)/T(N) ~ 2b .

proof: Immediate from the following calculation:

T(2N)/T(N) = a (2N)b lg (2N) / a N b lg N

 = 2b (1 + lg 2 / lg N)

 ~ 2b

Generally, the logarithmic factor cannot be ignored when developing a mathematical
model, but it plays a less important role in predicting performance with a doubling
hypothesis.

You should consider running doubling ratio experiments for every program that
you write where performance matters—doing so is a very simple way to estimate the
order of growth of the running time, perhaps revealing a performance bug where a
program may turn out to be not as efficient as you might think. More generally, we can
use hypotheses about the order of growth of the running time of programs to predict
performance in one of the following ways:

Estimating the feasibility of solving large problems You need to be able to answer
this basic question for every program that you write: Will the program be able to process
this given input data in a reasonable amount of time? To address such questions for a
large amount of data, we extrapolate by a much larger factor than for doubling, say 10,
as shown in the fourth column in the table at the bottom of the next page. Whether it is
an investment banker running daily financial models or a scientist running a program
to analyze experimental data or an engineer running simulations to test a design, it is
not unusual for people to regularly run programs that take several hours to complete,

1931.4 n Analysis of Algorithms

ptg12441863

so the table focuses on that situation. Knowing the order of growth of the running time
of an algorithm provides precisely the information that you need to understand limita-
tions on the size of the problems that you can solve. Developing such understanding is
the most important reason to study performance. Without it, you are likely have no idea
how much time a program will consume; with it, you can make a back-of-the-envelope
calculation to estimate costs and proceed accordingly.

Estimating the value of using a faster computer You also may be faced with this basic
question, periodically: How much faster can I solve the problem if I get a faster computer?
Generally, if the new computer is x times faster than the old one, you can improve your
running time by a factor of x. But it is usually the case that you can address larger prob-
lems with your new computer. How will that change affect the running time? Again, the
order of growth is precisely the information needed to answer that question.

A famous rule of thumb known as Moore’s Law implies that you can expect to have a
computer with about double the speed and double the memory 18 months from now,
or a computer with about 10 times the speed and 10 times the memory in about 5 years.
The table below demonstrates that an algorithm cannot keep pace with Moore’s Law
(solving a problem that is twice as big with a computer that is twice as fast) if its run-
ning time is quadratic or cubic. You can quickly determine whether that is the case by
doing a doubling ratio test and checking that the ratio of running times as the input size
doubles approaches 2 (linear or linearithmic), not 4 (quadratic) or 8 (cubic).

order of growth of time
2x

factor
10x

factor

for a program that takes a few hours for input of size n

description function predicted time for 10N
predicted time for10N

on a 10x faster computer

linear N 2 10 a day a few hours

linearithmic N log N 2 10 a day a few hours

quadratic N 2 4 100 a few weeks a day

cubic N 3 8 1,000 several months a few weeks

exponential 2 N 2 N 2 9N never never

predictions on the basis of order-of-growth function

194 Chapter 1 n Fundamentals

ptg12441863

Caveats There are many reasons that you might get inconsistent or misleading re-
sults when trying to analyze program performance in detail. All of them have to do with
the idea that one or more of the basic assumptions underlying our hypotheses might be
not quite correct. We can develop new hypotheses based on new assumptions, but the
more details that we need to take into account, the more care is required in the analysis.

Large constants With leading-term approximations, we ignore constant coefficients
in lower-order terms, which may not be justifed. For example, when we approximate
the function 2 N 2 + c N by ~2 N 2, we are assuming that c is small. If that is not the case
(suppose that c is 10 3 or 10 6) the approximation is misleading. Thus, we have to be
sensitive to the possibility of large constants.

Nondominant inner loop The assumption that the inner loop dominates may not
always be correct. The cost model might miss the true inner loop, or the problem size
N might not be sufficiently large to make the leading term in the mathematical descrip-
tion of the frequency of execution of instructions in the inner loop so much larger
than lower-order terms that we can ignore them. Some programs have a significant
amount of code outside the inner loop that needs to be taken into consideration. In
other words, the cost model may need to be refined.

Instruction time The assumption that each instruction always takes the same amount
of time is not always correct. For example, most modern computer systems use a tech-
nique known as caching to organize memory, in which case accessing elements in huge
arrays can take much longer if they are not close together in the array. You might ob-
serve the effect of caching for ThreeSum by letting DoublingRatio run for a while.
After seeming to converge to 8, the ratio of running times may jump to a larger value
for large arrays because of caching.

System considerations Typically, there are many, many things going on in your com-
puter. Java is one application of many competing for resources, and Java itself has many
options and controls that significantly affect performance. A garbage collector or a just-
in-time compiler or a download from the internet might drastically affect the results
of experiments. Such considerations can interfere with the bedrock principle of the
scientific method that experiments should be reproducible, since what is happening at
this moment in your computer will never be reproduced again. Whatever else is going
on in your system should in principle be negligible or possible to control.

Too close to call Often, when we compare two different programs for the same task,
one might be faster in some situations, and slower in others. One or more of the consid-
erations just mentioned could make the difference. There is a natural tendency among

1951.4 n Analysis of Algorithms

ptg12441863

some programmers (and some students) to devote an extreme amount of energy run-
ning races to find the “best” implementation, but such work is best left for experts.

Strong dependence on inputs One of the first assumptions that we made in order to
determine the order of growth of the program’s running time of a program was that the
running time should be relatively insensitive to the inputs. When that is not the case, we
may get inconsistent results or be unable to validate our hypotheses. For example, sup-
pose that we modify ThreeSum to answer the question Does the input have a triple that
sums to 0 ? by changing it to return a boolean value, replacing cnt++ by return true
and adding return false as the last statement. The order of growth of the running
time of this program is constant if the first three integers sum to 0 and cubic if there are
no such triples in the input.

Multiple problem parameters We have been focusing on measuring performance as a
function of a single parameter, generally the value of a command-line argument or the
size of the input. However, it is not unusual to have several parameters. A typical ex-
ample arises when an algorithm involves building a data structure and then performing
a sequence of operations that use that data structure. Both the size of the data structure
and the number of operations are parameters for such applications. We have already
seen an example of this in our analysis of the problem of whitelisting using binary
search, where we have N numbers in the whitelist and M numbers on standard input
and a typical running time proportional to M log N.

Despite all these caveats, understanding the order of growth of the running time of
each program is valuable knowledge for any programmer, and the methods that we
have described are powerful and broadly applicable. Knuth’s insight was that we can
carry these methods through to the last detail in principle to make detailed, accurate
predictions. Typical computer systems are extremely complex and close analysis is best
left for experts, but the same methods are effective for developing approximate esti-
mates of the running time of any program. A rocket scientist needs to have some idea
of whether a test flight will land in the ocean or in a city; a medical researcher needs to
know whether a drug trial will kill or cure all the subjects; and any scientist or engineer
using a computer program needs to have some idea of whether it will run for a second
or for a year.

196 Chapter 1 n Fundamentals

ptg12441863

Coping with dependence on inputs For many problems, one of the most sig-
nificant of the caveats just mentioned is the dependence on inputs, because running
times can vary widely. The running time of the modification of ThreeSum mentioned
on the facing page ranges from constant to cubic, depending on the input, so a closer
analysis is required if we want to predict performance. We briefly consider here some of
the approaches that are effective and that we will consider for specific algorithms later
in the book.

Input models One approach is to more carefully model the kind of input to be pro-
cessed in the problems that we need to solve. For example, we might assume that the
numbers in the input to ThreeSum are random int values. This approach is challenging
for two reasons:

n	 The model may be unrealistic.
n	 The analysis may be extremely difficult, requiring mathematical skills quite be-

yond those of the typical student or programmer.
The first of these is the more significant, often because the goal of a computation is to
discover characteristics of the input. For example, if we are writing a program to process
a genome, how can we estimate its performance on a different genome? A good model
describing the genomes found in nature is precisely what scientists seek, so estimating
the running time of our programs on data found in nature actually amounts to con-
tributing to that model! The second challenge leads to a focus on mathematical results
only for our most important algorithms. We will see several examples where a simple
and tractable input model, in conjunction with classical mathematical analysis, helps
us predict performance.

Worst-case performance guarantees Some applications demand that the running
time of a program be less than a certain bound, no matter what the input. To provide
such performance guarantees, theoreticians take an extremely pessimistic view of the
performance of algorithms: what would the running time be in the worst case? For
example, such a conservative approach might be appropriate for the software that runs
a nuclear reactor or a pacemaker or the brakes in your car. We want to guarantee that
such software completes its job within the bounds that we set because the result could
be catastrophic if it does not. Scientists normally do not contemplate the worst case
when studying the natural world: in biology, the worst case might be the extinction
of the human race; in physics, the worst case might be the end of the universe. But the
worst case can be a very real concern in computer systems, where the input may be
generated by another (potentially malicious) user, rather than by nature. For example,
websites that do not use algorithms with performance guarantees are subject to denial-
of-service attacks, where hackers flood them with pathological requests that make them

1971.4 n Analysis of Algorithms

ptg12441863

run much more slowly than planned. Accordingly, many of our algorithms are designed
to provide performance guarantees, such as the following:

proposition D. In the linked-list implementations of Bag (Algorithm 1.4), Stack
(Algorithm 1.2), and Queue (Algorithm 1.3), all operations take constant time
in the worst case.

proof: Immediate from the code. The number of instructions executed for each
operation is bounded by a small constant. Caveat : This argument depends upon
the (reasonable) assumption that the Java system creates a new Node in constant
time.

Randomized algorithms One important way to provide a performance guarantee is
to introduce randomness. For example, the quicksort algorithm for sorting that we
study in Section 2.3 (perhaps the most widely used sorting algorithm) is quadratic in
the worst case, but randomly ordering the input gives a probabilistic guarantee that its
running time is linearithmic. Every time you run the algorithm, it will take a different
amount of time, but the chance that the time will not be linearithmic is so small as to be
negligible. Similarly, the hashing algorithms for symbol tables that we study in Section
3.4 (again, perhaps the most widely used approach) are linear-time in the worst case,
but constant-time under a probabilistic guarantee. These guarantees are not absolute,
but the chance that they are invalid is less than the chance your computer will be struck
by lightning. Thus, such guarantees are as useful in practice as worst-case guarantees.

Sequences of operations For many applications, the algorithm “input” might be
not just data, but the sequence of operations performed by the client. For example, a
pushdown stack where the client pushes N values, then pops them all, may have quite
different performance characteristics from one where the client issues an alternating
sequence N of push and pop operations. Our analysis has to take both situations into
account (or to include a reasonable model of the sequence of operations).

Amortized analysis Accordingly, another way to provide a performance guarantee is
to amortize the cost, by keeping track of the total cost of all operations, divided by the
number of operations. In this setting, we can allow some expensive operations, while
keeping the average cost of operations low. The prototypical example of this type of
analysis is the study of the resizing array data structure for Stack that we considered in
Section 1.3 (Algorithm 1.1 on page 141). For simplicity, suppose that N is a power of 2.
Starting with an empty structure, how many array entries are accessed for N consecu-
tive calls to push()? This quantity is easy to calculate: the number of array accesses is

198 Chapter 1 n Fundamentals

ptg12441863

N + 4 + 8 + 16 + ... + 2N = 5N  4

The first term accounts for the array access
within each of the N calls to push(); the sub-
sequent terms account for the array accesses to
initialize the data structure each time it doubles
in size. Thus the average number of array access-
es per operation is constant, even though the last
operation takes linear time. This is known as an
“amortized” analysis because we spread the cost
of the few expensive operations, by assigning a
portion of it to each of a large number of inexpensive operations. Amortized analysis
provides a worst case guarantee on any sequence of operations, starting from an empty
data structure. VisualAccumulator illustrates the process, shown above.

proposition E. In the resizing array implementation of Stack (Algorithm 1.1),
the average number of array accesses for any sequence of push and pop operations
starting from an empty data structure is constant in the worst case.

proof sketch: For each push operation that causes the array to grow (say from size
N to size 2N), consider the N/2  1 push operations that most recently caused the
stack size to grow to k, for k from N/2 + 2 to N. Averaging the 4N array accesses
to grow the array to size 2N (2N array accesses to copy the N items and 2N array
accesses to initialize an array) with N/2  1 array accesses (one for each push), we
get an average cost of 9 array accesses for each of these N/2  1 push operations.
Establishing this proposition for any sequence of push and pop operations is more
intricate (see Exercise 1.4.32)

This kind of analysis is widely applicable. In particular, we use resizing arrays as the
underlying data structure for several algorithms that we consider later in this book.

It is the task of the algorithm analyst to discover as much relevant information
about an algorithm as possible, and it is the task of the applications programmer to
apply that knowledge to develop programs that effectively solve the problems at hand.
Ideally, we want algorithms that lead to clear and compact code that provides both a
good guarantee and good performance on input values of interest. Many of the classic
algorithms that we consider in this chapter are important for a broad variety of ap-
plications precisely because they have these properties. Using them as models, you can
develop good solutions yourself for typical problems that you face while programming.

Amortized cost of adding to a RandomBag

0

0 128

256

co
st

 (a
rr

ay
 re

fe
re

nc
es

)

number of add() operations

one gray dot
for each operation

red dots give cumulative average 5

128

64

1991.4 n Analysis of Algorithms

ptg12441863

Memory As with running time, a program’s memory usage connects directly to the
physical world: a substantial amount of your computer’s circuitry enables your pro-
gram to store values and later retrieve them. The more values you need to have stored
at any given instant, the more circuitry you need. You probably are aware of limits on
memory usage on your computer (even more so than for time) because you probably
have paid extra money to get more memory.

Memory usage is well-defined for Java on your computer (every value requires pre-
cisely the same amount of memory each time that you run your program), but Java is
implemented on a very wide range of computational devices, and memory consump-
tion is implementation-dependent. For economy, we use the word typical to signal that
values are subject to machine dependencies.

One of Java’s most significant features is its memory allocation system,
which is supposed to relieve you from having to worry about memory.
Certainly, you are well-advised to take advantage of this feature when ap-
propriate. Still, it is your responsibility to know, at least approximately,
when a program’s memory requirements will prevent you from solving a
given problem.

Analyzing memory usage is much easier than analyzing running time,
primarily because not as many program statements are involved (just dec-
larations) and because the analysis reduces complex objects to the primi-
tive types, whose memory usage is well-defined and simple to understand:
we can count up the number of variables and weight them by the number
of bytes according to their type. For example, since the Java int data type
is the set of integer values between2,147,483,648 and 2,147,483,647, a
grand total of 232 different values, typical Java implementations use 32 bits

to represent int values. Similar considerations hold for other primitive types: typical
Java implementations use 8-bit bytes, representing each char value with 2 bytes (16
bits), each int value with 4 bytes (32 bits), each double and each long value with 8
bytes (64 bits), and each boolean value with 1 byte (since computers typically access
memory one byte at a time). Combined with knowledge of the amount of memory
available, you can calculate limitations from these values. For example, if you have 1GB
of memory on your computer (1 billion or 230 bytes), you cannot fit more than about
256 million int values or 128 million double values in memory at any one time.

On the other hand, analyzing memory usage is subject to various differences in ma-
chine hardware and in Java implementations, so you should consider the specific ex-
amples that we give as indicative of how you might go about determining memory
usage when warranted, not the final word for your computer. For example, many data
structures involve representation of machine addresses, and the amount of memory

type bytes

boolean 1

byte 1

char 2

int 4

float 4

long 8

double 8

typical memory
requirements for
primitive types

200 Chapter 1 n Fundamentals

ptg12441863

needed for a machine address varies from machine to
machine. For consistency, we assume that 8 bytes are
needed to represent addresses, as is typical for 64-bit
architectures that are now widely used, recognizing
that many older machines use a 32-bit architecture that
would involve just 4 bytes per machine address.

Objects To determine the memory usage of an object,
we add the amount of memory used by each instance
variable to the overhead associated with each object,
typically 16 bytes. The overhead includes a reference to
the object’s class, garbage collection information, and
synchronization information. Moreover, the memory
usage is typically padded to be a multiple of 8 bytes
(machine words, on a 64-bit machine). For example,
an Integer object uses 24 bytes (16 bytes of overhead,
4 bytes for its int instance variable, and 4 bytes of
padding). Similarly, a Date (page 91) object also uses 32
bytes: 16 bytes of overhead, 4 bytes for each of its three
int instance variables, and 4 bytes of padding. A ref-
erence to an object typically is a memory address and
thus uses 8 bytes of memory. For example, a Counter
(page 89) object uses 32 bytes: 16 bytes of overhead, 8
bytes for its String instance variable (a reference), 4
bytes for its int instance variable, and 4 bytes of pad-
ding. When we account for the memory for a reference,
we account separately for the memory for the object
itself, so this total does not count the memory for the
String value.

Linked lists A nested non-static (inner) class such
as our Node class (page 142) requires an extra 8 bytes of
overhead (for a reference to the enclosing instance). Thus, a Node object uses 40 bytes
(16 bytes of object overhead, 8 bytes each for the references to the Item and Node ob-
jects, and 8 bytes for the extra overhead). Thus, since an Integer object uses 24 bytes, a
stack with N integers built with a linked-list representation (Algorithm 1.2) uses 32 +
64N bytes, the usual 16 for object overhead for Stack, 8 for its reference instance vari-
able, 4 for its int instance variable, 4 for padding, and 64 for each entry, 40 for a Node
and 24 for an Integer.

public class Integer
{
 private int x;
...
}

Typical object memory requirements

object
overhead

private class Node
{
 Item item;
 Node next;
...
}

public class Counter
{
 private String name;
 private int count;
...
}

24 bytesinteger wrapper object

counter object

node object (inner class)

32 bytes

int
value

int
value

String
reference

public class Date
{
 private int day;
 private int month;
 private int year;
...
}

date object

x

object
overhead

name

count

40 bytes

references

object
overhead

extra
overhead

item

next

32 bytes

int
values

object
overhead

year
month
day

padding

padding

padding

2011.4 n Analysis of Algorithms

ptg12441863

Arrays Typical memory requirements for various types of arrays in Java are summa-
rized in the diagrams on the facing page. Arrays in Java are implemented as objects,
typically with extra overhead for the length. An array of primitive-type values typically
requires 24 bytes of header information (16 bytes of object overhead, 4 bytes for the
length, and 4 bytes of padding) plus the memory needed to store the values. For ex-
ample, an array of N int values uses 24  4N bytes (rounded up to be a multiple of
8), and an array of N double values uses 24  8N bytes. An array of objects is an array
of references to the objects, so we need to add the space for the references to the space
required for the objects. For example, an array of N Date objects (page 91) uses 24 bytes
(array overhead) plus 8N bytes (references) plus 32 bytes for each object, for a grand
total of 24 + 40N bytes. A two-dimensional array is an array of arrays (each array is an
object). For example, a two-dimensional M-by-N array of double values uses 24 bytes
(overhead for the array of arrays) plus 8 M bytes (references to the row arrays) plus M
times 24 bytes (overhead from the row arrays) plus M times N times 8 bytes (for the N
double values in each of the M rows) for a grand total of 8NM  32M  24 ~ 8NM
bytes. When array entries are objects, a similar accounting leads to a total of 8NM 
32M  24 ~ 8NM bytes for the array of arrays filled with references to objects, plus the
memory for the objects themselves.

String objects (Java 7 and later) The standard String representation (used in typi-
cal Java 7 implementitons) has two instance variables: a reference to a character array
value[] that stores the sequence of characters and an int value hash (that stores a
hash code that saves recomputation in certain circumstances that need not concern us
now). Therefore, a String of length N typically uses 40 bytes for the String object (16
bytes for object overhead plus 8 bytes for the array reference plus 4 bytes for the int
instance variables plus 4 bytes of padding) plus 24  2N bytes for the character array
for a total of 56 + 2N bytes.

String objects (Java 6 and earlier) An alternate String representation (used in
typical Java 6 implementations) maintains two extra int instance variables (offset
and count) and represents the sequence of characters value[offset] through
value[offset + count - 1]. Now, a String of length N typically uses 40 bytes (for the
String object) plus 24  2N bytes (for the character array) for a total of 64 + 2N bytes.
This representation saves memory when extracting substrings because two String ob-
jects can share the same underlying character array.

Substring extraction When using the Java 7 representation to implement the
substring() method, we must create a new character array, so substring extraction
takes linear time and linear space (in the length of the resulting substring). When

202 Chapter 1 n Fundamentals

ptg12441863
int value
(4 bytes)

 length

object
overhead

d

Typical memory requirements for arrays of int values, double values, objects, and arrays

N references
(8N bytes)

Total: 24 + 8N + N�32 = 24 + 40N

Date[] d;
d = new Date[N];
for (int k = 0; k < N; k++)
{
 ...
 a[k] = new Date (...);
}

32 bytes

...

day
month
year

padding

padding

Total: 24 + 8M + M�(24 + 8N) = 24 + 32M + 8MN

double[][] t;
t = new double[M][N];

.

.

.

24 + 8N bytes

array of objects array of arrays (two-dimensional array)

int[] a = new int[N];

 N

object
overhead

16 bytes

array of int values array of double values

Total: 24 + 4N (N even)

16 bytes

int value
(4 bytes)

int value
(4 bytes)

N int values
(4N bytes)

double[] c = new double[N];

 N

object
overhead

object
overhead

Total: 24 + 8N

a c

N double values
(8N bytes)

16 bytes

4 bytes N

object
overhead

N double
values

(8N bytes)

 N

object
overhead

 N

object
overhead

16 bytes
int value
(4 bytes)

 M

object
overhead

t

M references
(8M bytes)

16 bytes

padding padding

padding

padding

padding

padding

summary

type bytes

int[] ~4N

double[] ~8N

Date[] ~40N

double[][] ~8NM

2031.4 n Analysis of Algorithms

ptg12441863

using the Java 6 representation, we can implement the
substring() method without having to make copies
of the string’s characters: the character array contain-
ing the original string is aliased in the object for the
substring; the offset and count fields identify the sub-
string. Thus, a substring of an existing string takes just
40 bytes. In summary, extracting a substring takes either
constant extra memory or linear extra memory depend-
ing on the underlying implementation. We will assume
the Java 7 representation in this book.

These basic mechanisms are effective for esti-
mating the memory usage of a great many programs,
but there are numerous complicating factors that can
make the task significantly more difficult. We have
already noted the potential effect of aliasing. More-
over, memory consumption is a complicated dynamic
process when function calls are involved because the
system memory allocation mechanism plays a more
important role, with more system dependencies. For
example, when your program calls a method, the sys-
tem allocates the memory needed for the method (for
its local variables) from a special area of memory called
the stack (a system pushdown stack), and when the
method returns to the caller, the memory is returned to
the stack. For this reason, creating arrays or other large
objects in recursive programs is dangerous, since each
recursive call implies significant memory usage. When
you create an object with new, the system allocates the
memory needed for the object from another special
area of memory known as the heap (not the same as
the binary heap data structure we consider in Sec-
tion 2.4), and you must remember that every object
lives until no references to it remain, at which point
a system process known as garbage collection reclaims
its memory for the heap. Such dynamics can make the
task of precisely estimating memory usage of a pro-
gram challenging.A String and a substring

String genome = "CGCCTGGCGTCTGTAC";
String codon = genome.substring(6, 9);

 16

object
overhead

char
values

C G
C C
T G
G C
G T
C T
G T
A C

 0

16

object
overhead

genome

 6

3

object
overhead

 codon

hash

hash

...

 value

public class String
{
 private char[] value;
 private int offset;
 private int count;
 private int hash;
...
} offset

 count

 hash

object
overhead

40 bytes + char array

40 bytes

40 bytes

56 bytes

String object (Java 6 library)

substring example (Java 6 aliasing)

reference

int
values

padding

padding

padding

 value

 value

padding

 value

public class String
{
 private char[] value;
 private int hash;
...
} hash

 padding

object
overhead

32 bytes + char arrayString object (Java 7 library)

reference

int
value

204 Chapter 1 n Fundamentals

ptg12441863

Perspective Good performance is important. An impossibly slow program is al-
most as useless as an incorrect one, so it is certainly worthwhile to pay attention to the
cost at the outset, to have some idea of which kinds of problems you might feasibly
address. In particular, it is always wise to have some idea of which code constitutes the
inner loop of your programs.

Perhaps the most common mistake made in programming is to pay too much at-
tention to performance characteristics. Your first priority is to make your code clear
and correct. Modifying a program for the sole purpose of speeding it up is best left for
experts. Indeed, doing so is often counterproductive, as it tends to create code that is
complicated and difficult to understand. C. A. R. Hoare (the inventor of quicksort and
a leading proponent of writing clear and correct code) once summarized this idea by
saying that “premature optimization is the root of all evil, ” to which Knuth added the
qualifier “(or at least most of it) in programming.” Beyond that, improving the running
time is not worthwhile if the available cost benefits are insignificant. For example, im-
proving the running time of a program by a factor of 10 is inconsequential if the run-
ning time is only an instant. Even when a program takes a few minutes to run, the total
time required to implement and debug an improved algorithm might be substantially
more than the time required simply to run a slightly slower one—you may as well let
the computer do the work. Worse, you might spend a considerable amount of time and
effort implementing ideas that should in theory improve a program but do not do so
in practice.

Perhaps the second most common mistake made in programming is to ignore per-
formance characteristics. Faster algorithms are often more complicated than brute-
force ones, so you might be tempted to accept a slower algorithm to avoid having to
deal with more complicated code. However, you can sometimes reap huge savings with
just a few lines of good code. Users of a surprising number of computer systems lose
substantial time unknowingly waiting for brute-force quadratic algorithms to finish
solving a problem, when linear or linearithmic algorithms are available that could solve
the problem in a fraction of the time. When we are dealing with huge problem sizes, we
often have no choice but to seek better algorithms.

We generally take as implicit the methodology described in this section to estimate
memory usage and to develop an order-of-growth hypothesis of the running time from
a tilde approximation resulting from a mathematical analysis within a cost model, and
to check those hypotheses with experiments. Improving a program to make it more
clear, efficient, and elegant should be your goal every time that you work on it. If you
pay attention to the cost all the way through the development of a program, you will
reap the benefits every time you use it.

2051.4 n Analysis of Algorithms

ptg12441863

Q&A

 ~

Q. Why not use StdRandom to generate random values instead of maintaining the file
1Mints.txt ?

A. It is easier to debug code in development and to reproduce experiments. StdRandom
produces different values each time it is called, so running a program after fixing a bug
may not test the fix! You could use StdRandom.setSeed() to address this problem, but
a reference file such as 1Mints.txt makes it easier to add test cases while debugging.
Also, different programmers can compare performance on different systems, without
worrying about the input model. Once you have debugged a program and have a good
idea of how it performs, it is certainly worthwhile to test it on random data. For ex-
ample, DoublingTest and DoublingRatio take this approach.

Q. I ran DoublingRatio on my computer, but the results were not as consistent as in
the book. Some of the ratios were not close to 8. Why?

A. That is why we discussed “caveats” on page 195. Most likely, your computer’s operating
system decided to do something else during the experiment. One way to mitigate such
problems is to invest more time in more experiments. For example, you could change
DoublingTest to run the experiments 1,000 times for each N, giving a much more ac-
curate estimate for the running time for each size (see Exercise 1.4.39).

Q. What, exactly, does “as N grows” mean in the definition of the tilde notation?

A. The formal definition of f(N) g(N) is limN→∞ f (N)/g (N) = 1.

Q. I’ve seen other notations for describing order of growth. What’s the story?

A. The “big-Oh” notation is widely used: we say that f (N) is O(g (N)) if there exist
constants c and N0 such that | f (N)| ≤ c | g (N) | for all N > N0. This notation is very use-
ful in providing asymptotic upper bounds on the performance of algorithms, which is
important in the theory of algorithms. But it is not useful for predicting performance
or for comparing algorithms.

Q. Why not?

A. The primary reason is that it describes only an upper bound on the running time.
Actual performance might be much better. The running time of an algorithm might
be both O (N 2) and ~ a N log N. As a result, it cannot be used to justify tests like our
doubling ratio test (see Proposition C on page 193).

206 Chapter 1 n Fundamentals

ptg12441863

~

Q. So why is the big-Oh notation so widely used?

A. It facilitates development of bounds on the order of growth, even for complicated
algorithms for which more precise analysis might not be feasible. Moreover, it is com-
patible with the “big-Omega” and “big-Theta” notations that theoretical computer sci-
entists use to classify algorithms by bounding their worst-case performance. We say
that f (N) is (g (N)) if there exist constants c and N0 such that | f (N)| ≥ c | g (N) | for
N > N0; and if f (N) is O(g (N)) and (g (N)), we say that f (N) is (g (N)). The “big-
Omega” notation is typically used to describe a lower bound on the worst case, and the
“big-Theta” notation is typically used to describe the performance of algorithms that
are optimal in the sense that no algorithm can have better asymptotic worst-case order
of growth. Optimal algorithms are certainly worth considering in practical applica-
tions, but there are many other considerations, as you will see.

Q. Aren’t upper bounds on asymptotic performance important?

A. Yes, but we prefer to discuss precise results in terms of frequency of statement ex-
ceution with respect to cost models, because they provide more information about
algorithm performance and because deriving such results is feasible for the algorithms
that we discuss. For example, we say “ThreeSum uses N 3/2 array accesses” and “the
number of times cnt++ is executed in ThreeSum is ~N 3/6 in the worst case,” which is a
bit more verbose but much more informative than the statement “the running time of
ThreeSum is O (N 3).”

Q. When the order of growth of the running time of an algorithm is N log N, the dou-
bling test will lead to the hypothesis that the running time is ~ a N for a constant a. Isn’t
that a problem?

A. We have to be careful not to try to infer that the experimental data implies a par-
ticular mathematical model, but when we are just predicting performance, this is not
really a problem. For example, when N is between 16,000 and 32,000, the plots of 14N
and N lg N are very close to one another. The data fits both curves. As N increases, the
curves become closer together. It actually requires some care to experimentally check
the hypothesis that an algorithm’s running time is linearithmic but not linear.

Q. Does int[] a = new int[N] count as N array accesses (to initialize entries to 0)?

A. Most likely yes, so we make that assumption in this book, though a sophisticated
compiler implementation might try to avoid this cost for huge sparse arrays.

2071.4 n Analysis of Algorithms

ptg12441863

ExErcisEs

1.4.1 Show that the number of different triples that can be chosen from N items is pre-
cisely N (N1)(N2)/6. Hint : Use mathematical induction or a counting argument.

1.4.2 Modify ThreeSum to work properly even when the int values are so large that
adding two of them might cause overflow.

1.4.3 Modify DoublingTest to use StdDraw to produce plots like the standard and
log-log plots in the text, rescaling as necessary so that the plot always fills a substantial
portion of the window.

1.4.4 Develop a table like the one on page 181 for TwoSum.

1.4.5 Give tilde approximations for the following quantities:

a. N  1

b. 1  1/N

c. (1  1/N) (1  2/N)

d. 2N 3 15 N 2  N

e. lg(2N) / lg N

f. lg(N 2 + 1) / lg N

g. N 100 / 2N

1.4.6 Give the order of growth (as a function of N) of the running times of each of the
following code fragments:

a. int sum = 0;
 for (int n = N; n > 0; n /= 2)

 for(int i = 0; i < n; i++)

 sum++;

b. int sum = 0;
 for (int i = 1; i < N; i *= 2)

 for (int j = 0; j < i; j++)

 sum++;

208 Chapter 1 n Fundamentals

ptg12441863

c. int sum = 0;
 for (int i = 1; i < N; i *= 2)

 for (int j = 0; j < N; j++)

 sum++;

1.4.7 Analyze ThreeSum under a cost model that counts arithmetic operations (and
comparisons) involving the input numbers.

1.4.8 Write a program to determine the number pairs of values in an input file that
are equal. If your first try is quadratic, think again and use Arrays.sort() to develop
a linearithmic solution.

1.4.9 Give a formula to predict the running time of a program for a problem of size N
when doubling experiments have shown that the doubling factor is 2b and the running
time for problems of size N0 is T.

1.4.10 Modify binary search so that it always returns the element with the smallest
index that matches the search element (and still guarantees logarithmic running time).

1.4.11 Add an instance method howMany() to StaticSETofInts (page 99) that finds the
number of occurrences of a given key in time proportional to log N in the worst case.

1.4.12 Write a program that, given two sorted arrays of N int values, prints all ele-
ments that appear in both arrays, in sorted order. The running time of your program
should be proportional to N in the worst case.

1.4.13 Using the assumptions developed in the text, give the amount of memory need-
ed to represent an object of each of the following types:

a. Accumulator

b. Transaction

c. FixedCapacityStackOfStrings with capacity C and N entries

d. Point2D

e. Interval1D

f. Interval2D

g. Double

2091.4 n Analysis of Algorithms

ptg12441863

crEAtivE problEms

1.4.14 4-sum. Develop an algorithm for the 4-sum problem.

1.4.15 Faster 3-sum. As a warmup, develop an implementation TwoSumFaster that
uses a linear algorithm to count the pairs that sum to zero after the array is sorted (in-
stead of the binary-search-based linearithmic algorithm). Then apply a similar idea to
develop a quadratic algorithm for the 3-sum problem.

1.4.16 Closest pair (in one dimension). Write a program that, given an array a[] of N
double values, finds a closest pair : two values whose difference is no greater than the
the difference of any other pair (in absolute value). The running time of your program
should be linearithmic in the worst case.

1.4.17 Farthest pair (in one dimension). Write a program that, given an array a[] of N
double values, finds a farthest pair : two values whose difference is no smaller than the
the difference of any other pair (in absolute value). The running time of your program
should be linear in the worst case.

1.4.18 Local minimum of an array. Write a program that, given an array a[] of N
distinct integers, finds a local minimum: an entry a[i] that is strictly less than its neigh-
bors. Each internal entry (other than a[0] and a[N-1]) has 2 neighbors. Your program
should use ~2 lg N compares in the worst case.

1.4.19 Local minimum of a matrix. Given an N-by-N array a[] of N 2 distinct integers,
design an algorithm that finds a local minimum: an entry a[i][j] that is strictly less
than its neighbors. Internal entries have 4 neighbors; entries on an edge have 3 neigh-
bors; entries on a corner have 2 neighbors. The running time of your program should
be proportional to N in the worst case, which means that you cannot afford to examine
all N 2 entries.

1.4.20 Bitonic search. An array is bitonic if it is comprised of an increasing sequence
of integers followed immediately by a decreasing sequence of integers. Write a program
that, given a bitonic array of N distinct int values, determines whether a given integer is
in the array. Your program should use ~3 lg N compares in the worst case. Extra credit:
use only ~2 lg N compares in the worst case.

1.4.21 Binary search on distinct values. Develop an implementation of binary search
for StaticSETofInts (see page 99) where the running time of contains() is guar-
anteed to be ~ lg R, where R is the number of different integers in the array given as

210 Chapter 1 n Fundamentals

ptg12441863

argument to the constructor.

1.4.22 Binary search with only addition and subtraction. [Mihai Patrascu] Write a
program that, given an array of N distinct int values in ascending order, determines
whether a given integer is in the array. You may use only additions and subtractions
and a constant amount of extra memory. The running time of your program should be
proportional to log N in the worst case.

1.4.23 Binary search for a fraction. Devise a method that uses a logarithmic number of
compares of the form Is the number less than x? to find a rational number p/q such that
0 < p < q < N. Hint : Two different fractions with denominators less than N must differ
by at least 1/N 2.

1.4.24 Throwing eggs from a building. Suppose that you have an N-story building and
plenty of eggs. Suppose also that an egg is broken if it is thrown off floor F or higher,
and intact otherwise. First, devise a strategy to determine the value of F such that the
number of broken eggs is ~lg N when using ~lg N throws, then find a way to reduce the
cost to ~2 lg F.

1.4.25 Throwing two eggs from a building. Consider the previous question, but now
suppose you only have two eggs, and your cost model is the number of throws. Devise a
strategy to determine F such that the number of throws is at most 2√N, then find a way
to reduce the cost to ~c √F for some constant c. This is analogous to a situation where
search hits (egg intact) are much cheaper than misses (egg broken).

1.4.26 3-collinearity. Suppose that you have an algorithm that takes as input N dis-
tinct points in the plane and can return the number of triples that fall on the same line.
Show that you can use this algorithm to solve the 3-sum problem. Strong hint : Use
algebra to show that (a, a3), (b, b3), and (c, c3) are collinear if and only if a + b + c = 0.

2111.4 n Analysis of Algorithms

ptg12441863

1.4.27 Queue with two stacks. Implement a queue with two stacks so that each queue
operation takes a constant amortized number of stack operations. Hint : If you push
elements onto a stack and then pop them all, they appear in reverse order. If you repeat
this process, they’re now back in order.

1.4.28 Stack with a queue. Implement a stack with a single queue so that each stack
operations takes a linear number of queue operations. Hint : To delete an item, get all
of the elements on the queue one at a time, and put them at the end, except for the last
one which you should delete and return. (This solution is admittedly very inefficient.)

1.4.29 Steque with two stacks. Implement a steque with two stacks so that each steque
operation (see Exercise 1.3.32) takes a constant amortized number of stack operations.

1.4.30 Deque with a stack and a steque. Implement a deque with a stack and a steque
(see Exercise 1.3.32) so that each deque operation takes a constant amortized number
of stack and steque operations.

1.4.31 Deque with three stacks. Implement a deque with three stacks so that each
deque operation takes a constant amortized number of stack operations.

1.4.32 Amortized analysis. Prove that, starting from an empty stack, the number of ar-
ray accesses used by any sequence of M operations in the resizing array implementation
of Stack is proportional to M.

1.4.33 Memory requirements on a 32-bit machine. Give the memory requirements
for Integer, Date, Counter, int[], double[], double[][], String, Node, and Stack
(linked-list representation) for a 32-bit machine. Assume that references are 4 bytes,
object overhead is 8 bytes, and padding is to a multiple of 4 bytes.

1.4.34 Hot or cold. Your goal is to guess a secret integer between 1 and N. You repeat-
edly guess integers between 1 and N. After each guess you learn if your guess equals the
secret integer (and the game stops). Otherwise, you learn if the guess is hotter (closer to)
or colder (farther from) the secret number than your previous guess. Design an algo-
rithm that finds the secret number in at most ~2 lg N guesses. Then design an algorithm
that finds the secret number in at most ~ 1 lg N guesses.

crEAtivE problEms (continued)

212 Chapter 1 n Fundamentals

ptg12441863

1.4.35 Time costs for pushdown stacks. Justify the entries in the table below, which
shows typical time costs for various pushdown stack implementations, using a cost
model that counts both data references (references to data pushed onto the stack, either
an array reference or a reference to an object’s instance variable) and objects created. As-
sume that the Integer objects are not cached (so they must be created for each push).

1.4.36 Space usage for pushdown stacks. Justify the entries in the table below, which
shows typical space usage for various pushdown stack implementations. Use a static
nested class for linked-list nodes to avoid the non-static nested class overhead. Assume
that the Integer objects are not cached (so they must be created for each push).

data structure item type
cost to push N int values

data references objects created

linked list
int 2 N N

Integer 3 N 2N

resizing array
int ~5 N lg N

Integer ~5 N ~N

time costs for pushdown stacks (various implementations)

data structure item type space usage for N int values (bytes)

linked list
int ~ 32 N

Integer ~ 56 N

resizing array
int

between
~4 N and ~16 N

Integer
between

~32 N and ~56 N

Space usage in pushdown stacks (various implementations)

2131.4 n Analysis of Algorithms

ptg12441863

ExpErimENts

1.4.37 Autoboxing performance penalty. Run experiments to determine the perfor-
mance penalty on your machine for using autoboxing and auto-unboxing. Develop an
implementation FixedCapacityStackOfInts and use a client such as DoublingRatio
to compare its performance with the generic FixedCapacityStack<Integer>, for a
large number of push() and pop() operations.

1.4.38 Naive 3-sum implementation. Run experiments to evaluate the following im-
plementation of the inner loop of ThreeSum:

 for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)
 for (int k = 0; k < N; k++)
 if (i < j && j < k)
 if (a[i] + a[j] + a[k] == 0)
 cnt++;

Do so by developing a version of DoublingTest that computes the ratio of the running
times of this program and ThreeSum.

1.4.39 Improved accuracy for doubling test. Modify DoublingRatio to take a second
command-line argument that specifies the number of calls to make to timeTrial() for
each value of N. Run your program for 10, 100, and 1,000 trials and comment on the
precision of the results.

1.4.40 3-sum for random values. Formulate and validate a hypothesis describing the
number of triples of N random int values that sum to 0. If you are skilled in math-
ematical analysis, develop an appropriate mathematical model for this problem, where
the values are uniformly distributed between –M and M, where M is not small.

1.4.41 Running times. Estimate the amount of time it would take to run TwoSumFast,
TwoSum, ThreeSumFast and ThreeSum on your computer to solve the problems for a file
of 1 million numbers. Use DoublingRatio to do so.

1.4.42 Problem sizes. Estimate the size of the largest value of P for which you can run
TwoSumFast, TwoSum, ThreeSumFast, and ThreeSum on your computer to solve the
problems for a file of 2P thousand numbers. Use DoublingRatio to do so.

1.4.43 Resizing arrays versus linked lists. Run experiments to validate the hypothesis
that resizing arrays are faster than linked lists for stacks (see Exercise 1.4.35 and Exer-
cise 1.4.36). Do so by developing a version of DoublingRatio that computes the ratio

214 Chapter 1 n Fundamentals

ptg12441863

of the running times of the two programs.

1.4.44 Birthday problem. Write a program that takes an integer N from the command
line and uses StdRandom.uniform() to generate a random sequence of integers be-
tween 0 and N – 1. Run experiments to validate the hypothesis that the number of
integers generated before the first repeated value is found is ~√N/2.

1.4.45 Coupon collector problem. Generating random integers as in the previous exer-
cise, run experiments to validate the hypothesis that the number of integers generated
before all possible values are generated is ~N HN.

2151.4 n Analysis of Algorithms

ptg12441863

1.5 CASe StUDy: Union-FinD

To illustrate our basic approach to developing and analyzing algorithms, we now
consider a detailed example. Our purpose is to emphasize the following themes.

n	 Good algorithms can make the difference between being able to solve a practical
problem and not being able to address it at all.

n	 An efficient algorithm can be as simple to code as an inefficient one.
n	 Understanding the performance characteristics of an implementation can be an

interesting and satisfying intellectual challenge.
n	 The scientific method is an important tool in helping us choose among different

methods for solving the same problem.
n	 An iterative refinement process can lead to increasingly efficient algorithms.

These themes are reinforced throughout the book. This prototypical example sets the
stage for our use of the same general methodology for many other problems.

The problem that we consider is not a toy problem; it is a fundamental compu-
tational task, and the solution that we develop is of use in a variety of applications,
from percolation in physical chemistry to connectivity in communications networks.
We start with a simple solution, then seek to understand that solution’s performance
characteristics, which help us to see how to improve the algorithm.

Dynamic connectivity We start with the following problem specification: The
input is a sequence of pairs of integers, where each integer represents an object of some
type and we are to interpret the pair p q as meaning “p is connected to q.” We assume
that “is connected to” is an equivalence relation, which means that it is

n	 Reflexive : p is connected to p.
n	 Symmetric : If p is connected to q, then q is connected to p.
n	 Transitive : If p is connected to q and q is connected to r, then p is connected to r.

An equivalence relation partitions the objects into equivalence classes. In this case, two
objects are in the same equivalence class if and only if they are connected. Our goal is
to write a program to filter out extraneous pairs (pairs where both objects are in the
same equivalence class) from the sequence. In other words, when the program reads a
pair p q from the input, it should write the pair to the output only if the pairs it has
seen to that point do not imply that p is connected to q. If the previous pairs do imply
that p is connected to q, then the program should ignore the pair p q and proceed to
read in the next pair. The figure on the facing page gives an example of this process. To
achieve the desired goal, we need to devise a data structure that can remember sufficient

216

ptg12441863

information about the pairs it has seen to be able to decide whether or not a new pair of
objects is connected. Informally, we refer to the task of designing such a method as the
dynamic connectivity problem. This problem arises applications such as the following:

Networks The integers might represent computers in a large network, and the pairs
might represent connections in the network. Then, our program determines whether
we need to establish a new direct connection for p and q to be able
to communicate or whether we can use existing connections to
set up a communications path. Or, the integers might represent
contact sites in an electrical circuit, and the pairs might represent
wires connecting the sites. Or, the integers might represent people
in a social network, and the pairs might represent friendships. In
such applications, we might need to process millions of objects
and billions of connections.

Variable-name equivalence In certain programming environ-
ments, it is possible to declare two variable names as being equiv-
alent (references to the same object). After a sequence of such dec-
larations, the system needs to be able to determine whether two
given names are equivalent. This application is an early one (for
the FORTRAN programming language) that motivated the devel-
opment of the algorithms that we are about to consider.

Mathematical sets On a more abstract level, you can think of
the integers as belonging to mathematical sets. When we process a
pair p q, we are asking whether they belong to the same set. If not,
we unite p’s set and q’s set, putting them in the same set.

To fix ideas, we will use networking terminology for the rest of
this section and refer to the objects as sites, the pairs as connec-
tions, and the equivalence classes as connected components, or just
components for short. For simplicity, we assume that we have N
sites with integer names, from 0 to N-1. We do so without loss of
generality because we shall be considering a host of algorithms in
Chapter 3 that can associate arbitrary names with such integer
identifiers in an efficient manner.

A larger example that gives some indication of the difficulty of the connectivity
problem is depicted in the figure at the top of the next page. You can quickly identify
the component consisting of a single site in the left middle of the diagram and the

Dynamic connectivity example

0 1 2 3 4

5 6 7 8 9

4 3

3 8

6 5

9 4

2 1

8 9

5 0

7 2

6 1

1 0

6 7

2 components

don’t print
pairs that

are already
connected

2171.5 n Case Study: Union-Find

ptg12441863

component consisting of five sites at the bottom left, but you might have difficulty veri-
fying that all of the other sites are connected to one another. For a program, the task is
even more difficult, because it has to work just with site names and connections and has
no access to the geometric placement of sites in the diagram. How can we tell quickly
whether or not any given two sites in such a network are connected?

The first task that we face in developing an algorithm is to specify the problem in a
precise manner. The more we require of an algorithm, the more time and space we may
expect it to need to finish the job. It is impossible to quantify this relationship a priori,
and we often modify a problem specification on finding that it is difficult or expensive
to solve or, in happy circumstances, on finding that an algorithm can provide informa-
tion more useful than what was called for in the original specification. For example, our

Medium connectivity example (625 sites, 900 edges, 3 connected components)

connected
component

218 Chapter 1 n Fundamentals

ptg12441863

connectivity problem specification requires only that our program be able to determine
whether or not any given pair p q is connected, and not that it be able to demonstrate a
set of connections that connect that pair. Such a requirement makes the problem more
difficult and leads us to a different family of algorithms, which we consider in Section
4.1.

To specify the problem, we develop an API that encapsulates the basic operations
that we need: initialize, add a connection between two sites, identify the component
containing a site, determine whether two sites are in the same component, and count
the number of components. Thus, we articulate the following API:

public class UF

UF(int N) initialize N sites with integer names (0 to N-1)

void union(int p, int q) add connection between p and q

int find(int p) component identifier for p (0 to N-1)

boolean connected(int p, int q) return true if p and q are in the same component

int count() number of components

Union-find apI

The union() operation merges two components if the two sites are in different com-
ponents, the find() operation returns an integer component identifier for a given site,
the connected() operation determines whether two sites are in the same component,
and the count() method returns the number of components. We start with N compo-
nents, and each union() that merges two different components decrements the num-
ber of components by 1.

As we shall soon see, the development of an algorithmic solution for dynamic con-
nectivity thus reduces to the task of developing an implementation of this API. Every
implementation has to

n Define a data structure to represent the known connections
n Develop efficient union(), find(), connected(), and count() implementa-

tions that are based on that data structure
As usual, the nature of the data structure has a direct impact on the efficiency of the
algorithms, so data structure and algorithm design go hand in hand. The API already
specifies the convention that both sites and components will be identified by int val-
ues between 0 and N-1, so it makes sense to use a site-indexed array id[] as our basic

2191.5 n Case Study: Union-Find

ptg12441863

data structure to represent the components. We always use the name of one of the sites
in a component as the component identifier, so you can think of each component as
being represented by one of its sites. Initially, we start with N components, each site in
its own component, so we initialize id[i] to i for all i from 0 to N-1. For each site
i, we keep the information needed by find() to determine the component contain-
ing i in id[i], using various algorithm-dependent strategies. All of our implementa-
tions use a one-line implementation of connected() that returns the boolean value
find(p) == find(q).

In summary, our starting point is Algorithm 1.5 on the facing
page. We maintain two instance variables, the count of components
and the array id[]. Implementations of find() and union() are
the topic of the remainder of this section.

To test the utility of the API and to provide a basis for develop-
ment, we include a client in main() that uses it to solve the dy-
namic connectivity problem. It reads the value of N followed by a
sequence of pairs of integers (each in the range 0 to N-1), calling
connected() for each pair: If the two sites in the pair are already
connected, it moves on to the next pair; if they are not, it calls
union() and prints the pair. Before considering implementations,
we also prepare test data: the file tinyUF.txt contains the 11 con-
nections among 10 sites used in the small example illustrated on
page 217, the file mediumUF.txt contains the 900 connections
among 625 sites illustrated on page 218, and the file largeUF.txt
is an example with 2 million connections among 1 millions sites.
Our goal is to be able to handle inputs such as largeUF.txt in a
reasonable amount of time.

To analyze the algorithms, we focus on the number of times each
algorithm accesses an array entry. By doing so, we are implicitly for-
mulating the hypothesis that the running times of the algorithms
on a particular machine are
within a constant factor of

this quantity. This hypothesis is immediate from
the code, is not difficult to validate through ex-
perimentation, and provides a useful starting
point for comparing algorithms, as we will see.

% more tinyUF.txt
10
4 3
3 8
6 5
9 4
2 1
8 9
5 0
7 2
6 1
1 0
6 7

% more mediumUF.txt
625
528 503
548 523
...
[900 connections]

% more largeUF.txt
1000000
786321 134521
696834 98245
...
[2000000 connections]

Union-find cost model. When
studying algorithms to imple-
ment the union-find API, we
count array accesses (the num-
ber of times an array entry is
accessed, for read or write).

220 Chapter 1 n Fundamentals

ptg12441863

aLgorIthM 1.5 Union-find implementation

public class UF
{
 private int[] id; // access to component id (site indexed)
 private int count; // number of components

 public UF(int N)
 { // Initialize component id array.
 count = N;
 id = new int[N];
 for (int i = 0; i < N; i++)
 id[i] = i;
 }

 public int count()
 { return count; }

 public boolean connected(int p, int q)
 { return find(p) == find(q); }

 public int find(int p)
 public void union(int p, int q)
 // See page 222 (quick-find),page 224 (quick-union) andpage 228 (weighted).

 public static void main(String[] args)
 { // Solve dynamic connectivity problem on StdIn.
 int N = StdIn.readInt(); // Read number of sites.
 UF uf = new UF(N); // Initialize N components.
 while (!StdIn.isEmpty())
 {
 int p = StdIn.readInt();
 int q = StdIn.readInt(); // Read pair to connect.
 if (uf.connected(p, q)) continue; // Ignore if connected.
 uf.union(p, q); // Combine components
 StdOut.println(p + " " + q); // and print connection.
 }
 StdOut.println(uf.count() + " components");
 }

}

Our UF implementations are based on this code, which maintains an array of integers id[] such
that the find() method returns the same integer for every site in each connected component. The
union() method must maintain this invariant.

% java UF < tinyUF.txt
4 3
3 8
6 5
9 4
2 1
5 0
7 2
6 1
2 components

2211.5 n Case Study: Union-Find

ptg12441863

Implementations We shall consider three different implementations, all based on
using the site-indexed id[] array, to determine whether two sites are in the same con-
nected component.

Quick-find One approach is to maintain the invariant that p and q are connected
if and only if id[p] is equal to id[q]. In other words, all sites in a component must
have the same value in id[]. This method is called quick-find because find(p) just
returns id[p], which immediately implies that connected(p, q) reduces to just the
test id[p] == id[q] and returns true if and only
if p and q are in the same component. To maintain
the invariant for the call union(p, q), we first check
whether they are already in the same component, in
which case there is nothing to do. Otherwise, we are
faced with the situation that all of the id[] entries
corresponding to sites in the same component as p
have one value and all of the id[] entries correspond-
ing to sites in the same component as q have another
value. To combine the two components into one, we
have to make all of the id[] entries corresponding
to both sets of sites the same value, as shown in the
example at right. To do so, we go through the array, changing all the entries with values
equal to id[p] to the value id[q]. We could have decided to change all the entries equal
to id[q] to the value id[p]—the choice between these two alternatives is arbitrary. The

code for find() and union() based
on these descriptions, given at left, is
straightforward. A full trace for our
development client with our sample
test data tinyUF.txt is shown on
the next page.

public int find(int p)
{ return id[p]; }

public void union(int p, int q)
{ // Put p and q into the same component.
 int pID = find(p);
 int qID = find(q);

 // Nothing to do if p and q are already
 in the same component.
 if (pID == qID) return;

 // Change values from id[p] to id[q].
 for (int i = 0; i < id.length; i++)
 if (id[i] == pID) id[i] = qID;
 count--;
}

Quick-find

Quick-�nd overview

find examines id[5] and id[9]

p q 0 1 2 3 4 5 6 7 8 9

5 9 1 1 1 8 8 1 1 1 8 8

p q 0 1 2 3 4 5 6 7 8 9

5 9 1 1 1 8 8 1 1 1 8 8

 8 8 8 8 8 8 8 8 8 8

union has to change all 1s to 8s

222 Chapter 1 n Fundamentals

ptg12441863

Quick-find analysis The find() operation is certainly quick, as it only accesses the
id[] array once in order to complete the operation. But quick-find is typically not use-
ful for large problems because union() needs to scan through the whole id[] array for
each input pair.

proposition F. The quick-find algorithm uses one array access for each call to
find(), two array accesses for each call to connected(), and between N + 3 and
2N + 1 array accesses for each call to union() that combines two components.

proof: Immediate from the code. Each call to connected() tests two entries in the
id[] array, one for each of the two calls to find(). Each call to union() that com-
bines two components does so by making two calls to find(), testing each of the N
entries in the id[] array, and changing between 1 and N  1 of them.

In particular, suppose that we use quick-find for the
dynamic connectivity problem and wind up with a
single component. This requires at least N1 calls to
union(), and, consequently, at least (N3)(N1) ~
N 2 array accesses—we are led immediately to the hy-
pothesis that dynamic connectivity with quick-find
can be a quadratic-time process. This analysis gener-
alizes to say that quick-find is quadratic for typical
applications where we end up with a small number of
components. You can easily validate this hypothesis
on your computer with a doubling test (see Exercise
1.5.23 for an instructive example). Modern comput-
ers can execute hundreds of millions or billions of in-
structions per second, so this cost is not noticeable if
N is small, but we also might find ourselves with mil-
lions or billions of sites and connections to process in
a modern application, as represented by our test file
largeUF.txt. If you are still not convinced and feel
that you have a particularly fast computer, try using
quick-find to determine the number of components
implied by the pairs in largeUF.txt. The inescap-
able conclusion is that we cannot feasibly solve such
a problem using the quick-find algorithm, so we seek
better algorithms.Quick-�nd trace

 id[]

p q 0 1 2 3 4 5 6 7 8 9

4 3 0 1 2 3 4 5 6 7 8 9

 0 1 2 3 3 5 6 7 8 9

3 8 0 1 2 3 3 5 6 7 8 9

 0 1 2 8 8 5 6 7 8 9

6 5 0 1 2 8 8 5 6 7 8 9

 0 1 2 8 8 5 5 7 8 9

9 4 0 1 2 8 8 5 5 7 8 9

 0 1 2 8 8 5 5 7 8 8

2 1 0 1 2 8 8 5 5 7 8 8

 0 1 1 8 8 5 5 7 8 8

8 9 0 1 1 8 8 5 5 7 8 8

5 0 0 1 1 8 8 5 5 7 8 8

 0 1 1 8 8 0 0 7 8 8

7 2 0 1 1 8 8 0 0 7 8 8

 0 1 1 8 8 0 0 1 8 8

6 1 0 1 1 8 8 0 0 1 8 8

 1 1 1 8 8 1 1 1 8 8

1 0 1 1 1 8 8 1 1 1 8 8

6 7 1 1 1 8 8 1 1 1 8 8

id[p] and id[q]
match, so no change

 id[p] and id[q] differ, so
union() changes entries equal

to id[p] to id[q] (in red)

2231.5 n Case Study: Union-Find

ptg12441863

Quick-union The next algorithm that we consider is a complementary method that
concentrates on speeding up the union() operation. It is based on the same data
structure—the site-indexed id[] ar-
ray—but we interpret the values dif-
ferently, to define more complicated
structures. Specifically, the id[] entry
for each site is the name of another
site in the same component (possibly
itself)—we refer to this connection as
a link. To implement find(), we start
at the given site, follow its link to an-
other site, follow that site’s link to yet
another site, and so forth, following
links until reaching a root, a site that
has a link to itself (which is guaran-
teed to happen, as you will see). Two
sites are in the same component if and
only if this process leads them to the
same root. To validate this process, we need union(p, q) to maintain this invariant,
which is easily arranged: we follow links to find the roots associated with p and q, then
rename one of the components by linking one of these roots to the other; hence the
name quick-union. Again, we have an arbitrary choice of whether to rename the com-
ponent containing p or the component containing q; the implementation above re-

names the one containing p. The
figure on the next page shows a
trace of the quick-union algo-
rithm for tinyUF.txt. This trace
is best understood in terms of the
graphical representation depict-
ed at left, which we consider next.

Quick-union overview

p q 0 1 2 3 4 5 6 7 8 9

5 9 1 1 1 8 3 0 5 1 8 8

p q 0 1 2 3 4 5 6 7 8 9

5 9 1 1 1 8 3 0 5 1 8 8

 1 8 1 8 3 0 5 1 8 8

0

5 4

1 8

6

2 7 3 9

0

5

4

1

8

6

2 7

3 9

find(5) is
id[id[id[5]]]

find(9) is
id[id[9]]

find has to follow links to the root

union changes just one link

id[] is parent-link representation
of a forest of trees

root

8 becomes parent of 1

public int find(int p)
{ // Find component name.
 while (p != id[p]) p = id[p];
 return p;
}

public void union(int p, int q)
{ // Give p and q the same root.
 int i = find(p);
 int j = find(q);
 if (i == j) return;

 id[i] = j;

 count--;
}

Quick-union

224 Chapter 1 n Fundamentals

ptg12441863

Forest-of-trees representation The code for quick-union is compact, but a bit opaque.
Representing sites as nodes (labeled circles) and links as arrows from one node to an-
other gives a graphical representation of the data structure that makes it relatively easy
to understand the operation of the algorithm. The resulting structures are trees—in
technical terms, our id[] array
is a parent-link representation
of a forest (set) of trees. To sim-
plify the diagrams, we often omit
both the arrowheads in the links
(because they all point upwards)
and the self-links in the roots
of the trees. The forests corre-
sponding to the id[] array for
tinyUF.txt are shown at right.
When we start at the node cor-
responding to any site and follow
links, we eventually end up at the
root of the tree containing that
node. We can prove this prop-
erty to be true by induction: It is
true after the array is initialized
to have every node link to itself,
and if it is true before a given
union() operation, it is certainly
true afterward. Thus, the find()
method on page 224 returns the
name of the site at the root (so
that connected() checks wheth-
er two sites are in the same tree).
This representation is useful for
this problem because the nodes
corresponding to two sites are in
the same tree if and only if the
sites are in the same component.
Moreover, the trees are not difficult to build: the union() implementation on page 224
combines two trees into one in a single statement, by making the root of one the parent
of the other.

Quick-union trace (with corresponding forests of trees)

 id[]

p q 0 1 2 3 4 5 6 7 8 9

4 3 0 1 2 3 4 5 6 7 8 9

 0 1 2 3 3 5 6 7 8 9

3 8 0 1 2 3 3 5 6 7 8 9

 0 1 2 8 3 5 6 7 8 9

6 5 0 1 2 8 3 5 6 7 8 9

 0 1 2 8 3 5 5 7 8 9

9 4 0 1 2 8 3 5 5 7 8 9

 0 1 2 8 3 5 5 7 8 8

2 1 0 1 2 8 3 5 5 7 8 8

 0 1 1 8 3 5 5 7 8 8

8 9 0 1 1 8 3 5 5 7 8 8

5 0 0 1 1 8 3 5 5 7 8 8

 0 1 1 8 3 0 5 7 8 8

7 2 0 1 1 8 3 0 5 7 8 8

 0 1 1 8 3 0 5 1 8 8

6 1 0 1 1 8 3 0 5 1 8 8

 1 1 1 8 3 0 5 1 8 8

1 0 1 1 1 8 3 0 5 1 8 8

6 7 1 1 1 8 3 0 5 1 8 8

2251.5 n Case Study: Union-Find

ptg12441863

Quick-union analysis The quick-union algorithm would seem to be faster than the
quick-find algorithm, because it does not have to go through the entire array for each

input pair; but how much faster is it? Analyzing the
cost of quick-union is more difficult than it was for
quick-find, because the cost is more dependent on
the nature of the input. In the best case, find() just
needs one array access to find the identifier associ-
ated with a site, as in quick-find; in the worst case, it
needs 2N  1 array accesses, as for 0 in the example
at left (this count is conservative since compiled
code will typically not do an array access for the
second reference to id[p] in the while loop). Ac-
cordingly, it is not difficult to construct a best-case
input for which the running time of our dynamic
connectivity client is linear; on the other hand it is
also not difficult to construct a worst-case input for
which the running time is quadratic (see the dia-
gram at left and Proposition G below). Fortunate-
ly, we do not need to face the problem of analyzing
quick union and we will not dwell on comparative
performance of quick-find and quick-union be-

cause we will next examine another variant that is far more efficient than either. For the
moment, you can regard quick-union as an improvement over quick-find because it
removes quick-find’s main liability (that union() always takes linear time). This differ-
ence certainly represents an improvement for typical data, but quick-union still has the
liability that we cannot guarantee it to be substantially faster than quick-find in every
case (for certain input data, quick-union is no faster than quick-find).

Definition. The size of a tree is its number of nodes. The depth of a node in a tree
is the number of links on the path from it to the root. The height of a tree is the
maximum depth among its nodes.

proposition G. The number of array accesses used by find() in quick-union is 1
plus the twice the depth of the node corresponding to the given site. The number
of array accesses used by union() and connected() is the cost of the two find()
operations (plus 1 for union() if the given sites are in different trees).

proof: Immediate from the code.

Quick-union worst case

 id[]

p q 0 1 2 3 4 ...

0 1 0 1 2 3 4 ...

 1 1 2 3 4 ...

0 2 0 1 2 3 4 ...

 1 2 2 3 4 ...

0 3 0 1 2 3 4 ...

 1 2 3 3 4 ...

0 4 0 1 2 3 4 ...

 1 2 3 4 4 ...

 .

 .

 .

...

...

...

...

...

0 1 2 3 4

0

1 2 3 4

0

1

2 3 4

0

1

2

3 4

0

1

2

3

4

depth 4

226 Chapter 1 n Fundamentals

ptg12441863

Again, suppose that we use quick-union for the dynamic connectivity problem and
wind up with a single component. An immediate implication of Proposition G is that
the running time is quadratic, in the worst case. Suppose that the input pairs come
in the order 0-1, then 0-2, then 0-3, and so forth. After N  1 such pairs, we have N
sites all in the same set, and the tree that is formed by the quick-union algorithm has
height N  1, with 0 linking to 1, which links to 2, which links to 3, and so forth (see
the diagram on the facing page). By Proposition G, the number of array accesses for
the union() operation for the pair 0 i is exactly 2i + 3 (site 0 is at depth i and site i at
depth 0). Thus, the total number of array accesses for the find() operations for these
N pairs is (3 + 5 + 7 + . . . + 2N+ 1) ~N 2.

Weighted quick-union Fortunately, there is an
easy modification to quick-union that allows us
to guarantee that bad cases such as this one do
not occur. Rather than arbitrarily connecting the
second tree to the first for union(), we keep track
of the size of each tree and always connect the
smaller tree to the larger. This change requires
slightly more code and another array to hold the
node counts, as shown on page 228, but it leads
to substantial improvements in efficiency. We re-
fer to this algorithm as the weighted quick-union
algorithm. The forest of trees constructed by this
algorithm for tinyUF.txt is shown in the figure
at left on the top of page 229. Even for this small example, the tree height is substan-
tially smaller than the height for the unweighted version.

Weighted quick-union analysis The figure at right on the top of page 229 illustrates
the worst case for weighted quick union, when the sizes of the trees to be merged by
union() are always equal (and a power
of 2). These tree structures look complex,
but they have the simple property that
the height of a tree of 2n nodes is n. Fur-
thermore, when we merge two trees of 2n
nodes, we get a tree of 2n1 nodes, and we
increase the height of the tree to n1. This
observation generalizes to provide a proof
that the weighted algorithm can guarantee
logarithmic performance.

smaller
tree

larger
tree

q

p

smaller
tree

larger
tree

q

p

smaller
tree

larger
tree

q

p

smaller
tree

larger
tree

q

p

Weighted quick-union

weighted

quick-union

always chooses the
better alternative

might put the
larger tree lower

% java WeightedQuickUnionUF < mediumUF.txt
528 503
548 523
...
3 components

% java WeightedQuickUnionUF < largeUF.txt
786321 134521
696834 98245
...
6 components

2271.5 n Case Study: Union-Find

ptg12441863

aLgorIthM 1.5 (continued) Union-find implementation (weighted quick-union)

public class WeightedQuickUnionUF
{
 private int[] id; // parent link (site indexed)
 private int[] sz; // size of component for roots (site indexed)
 private int count; // number of components

 public WeightedQuickUnionUF(int N)
 {
 count = N;
 id = new int[N];
 for (int i = 0; i < N; i++) id[i] = i;
 sz = new int[N];
 for (int i = 0; i < N; i++) sz[i] = 1;

 }

 public int count()
 { return count; }

 public boolean connected(int p, int q)
 { return find(p) == find(q); }

 public int find(int p)
 { // Follow links to find a root.
 while (p != id[p]) p = id[p];
 return p;
 }

 public void union(int p, int q)
 {
 int i = find(p);
 int j = find(q);
 if (i == j) return;

 // Make smaller root point to larger one.
 if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }
 else { id[j] = i; sz[i] += sz[j]; }
 count--;
 }
}

This code is best understood in terms of the forest-of-trees representation described in the text. We
add a site-indexed array sz[] as an instance variable so that union() can link the root of the smaller
tree to the root of the larger tree. This addition makes it feasible to address large problems.

228 Chapter 1 n Fundamentals

ptg12441863

Weighted quick-union traces (forests of trees)

reference input

p q

4 3

3 8

6 5

9 4

2 1

8 9

5 0

7 2

6 1

1 0

6 7

worst-case input

p q

0 1

2 3

4 5

6 7

0 2

4 6

0 4

proposition H. The depth of any node in a forest built by weighted quick-union for
N sites is at most lg N.

proof: We prove a stronger fact by (strong) induction: The height of every tree of
size k in the forest is at most lg k. The base case follows from the fact that the tree
height is 0 when k is 1. By the inductive hypothesis, assume that the tree height of a
tree of size i is at most lg i for all i < k. When we combine a tree of size i with a tree
of size j with i  j and i  j = k, we increase the depth of each node in the smaller set
by 1, but they are now in a tree of size i  j = k, so the property is preserved because
1+ lg i = lg(i  i)  lg(i  j) = lg k.

2291.5 n Case Study: Union-Find

ptg12441863

corollary. For weighted quick-union with N sites, the worst-case order of growth
of the cost of find(), connected(), and union() is log N.

proof. Each operation does at most a constant number of array accesses for each
node on the path from a node to a root in the forest.

For dynamic connectivity, the practical implication of Proposition H and its corollary
is that weighted quick-union is the only one of the three algorithms that can feasibly
be used for huge practical problems. The weighted quick-union algorithm uses at most
c M lg N array accesses to process M connections among N sites for a small constant c.
This result is in stark contrast to our finding that quick-find always (and quick-union
sometimes) uses at least MN array accesses. Thus, with weighted quick-union, we can
guarantee that we can solve huge practical dynamic connectivity problems in a reason-
able amount of time. For the price of a few extra lines of code, we get a program that
can be millions of times faster than the simpler algorithms for the huge dynamic con-
nectivity problems that we might encounter in practical applications.

A 100-site example is shown on the top of this page. It is evident from this diagram
that relatively few nodes fall far from the root with weighted quick-union. Indeed it is
frequently the case that a 1-node tree is merged with a larger tree, which puts the node
just one link from the root. Empirical studies on huge problems tell us that weighted
quick-union typically solves practical problems in constant time per operation. We
could hardly expect to find a more efficient algorithm.

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average depth: 1.52

average depth: 5.11

230 Chapter 1 n Fundamentals

ptg12441863

Optimal algorithms Can we find an algorithm that has guaranteed constant-time-
per-operation performance? This question is an extremely difficult one that plagued
researchers for many years. In pursuit of an answer, a number of variations of quick-
union and weighted quick-union have been studied. For example, the following meth-
od, known as path compression, is easy to implement. Ideally, we would like every node
to link directly to the root of its tree, but we do not want to pay the price of changing a
large number of links, as we did in the quick-find algorithm. We can approach the ideal
simply by making all the nodes that we do examine directly link to the root. This step
seems drastic at first blush, but it is easy to implement, and there is nothing sacrosanct
about the structure of these trees: if we can modify them to make the algorithm more
efficient, we should do so. To implement path compression, we just add another loop to
find() that sets the id[] entry corresponding to each node encountered along the way
to link directly to the root. The net result is to flatten the trees almost completely, ap-
proximating the ideal achieved by the quick-find algorithm. The method is simple and
effective, but you are not likely to be able to discern any improvement over weighted
quick-union in a practical situation (see Exercise 1.5.24). Theoretical results about
the situation are extremely complicated and quite remarkable. Weighted quick union
with path compression is optimal but not quite constant-time per operation. That is, not
only is weighted quick-union with path compression not constant-time per operation
in the worst case (amortized), but also there exists no algorithm that can guarantee to
perform each union-find operation in amortized constant time (under the very general
“cell probe” model of computation). Weighted quick-union with path compression is
very close to the best that we can do for this problem.

algorithm
order of growth for N sites (worst case)

constructor union find

quick-find N N 1

quick-union N tree height tree height

weighted quick-union N lg N lg N

weighted quick-union with
path compresson N

very, very nearly, but not quite 1 (amortized)
(see Exercise 1.5.13)

impossible N 1 1

performance characteristics of union-find algorithms

2311.5 n Case Study: Union-Find

ptg12441863

Amortized cost plots As with any data type implementation, it is worthwhile to run
experiments to test the validity of our performance hypotheses for typical clients, as dis-

cussion in Section 1.4. The figure at left shows
details of the performance of the algorithms for
our dynamic connectivity development client
when solving our 625-site connectivity example
(mediumUF.txt). Such diagrams are easy to pro-
duce (see Exercise 1.5.16): For the i th connec-
tion processed, we maintain a variable cost that
counts the number of array accesses (to id[] or
sz[]) and a variable total that is the sum of
the total number of array accesses so far. Then
we plot a gray dot at (i, cost) and a red dot
at (i, total/i). The red dots are the average
cost per operation, or amortized cost. These
plots provide good insights into algorithm be-
havior. For quick-find, every union() opera-
tion uses at least 625 accesses (plus 1 for each
component merged, up to another 625) and
every connected() operation uses 2 accesses.
Initially, most of the connections lead to a call
on union(), so the cumulative average hovers
around 625; later, most connections are calls to
connected() that cause the call to union() to
be skipped, so the cumulative average decreas-
es, but still remains relatively high. (Inputs that
lead to a large number of connected() calls that
cause union() to be skipped will exhibit signifi-
cantly better performance—see Exercise 1.5.23
for an example). For quick-union, all operations
initially require only a few array accesses; eventu-
ally, the height of the trees becomes a significant
factor and the amortized cost grows noticably.
For weighted quick-union, the tree height stays
small, none of the operations are expensive, and
the amortized cost is low. These experiments

validate our conclusion that weighted quick-union is certainly worth implementing
and that there is not much further room for improvement for practical problems.

Cost of all operations (625 sites)

quick-�nd

quick-union

weighted quick-union

0

0 900

1300

458

nu
m

be
r o

f a
rr

ay
 a

cc
es

se
s

number of connections

0

100

0
20

one gray dot
for each connection
processed by client

red dots give
cumulative average

union() operations
use at least 625 references

connected() operations
use exactly 2 array accesses

find() operations
become expensive

no expensive operations

20

8

232 Chapter 1 n Fundamentals

ptg12441863

Perspective Each of the UF implementations that we considered is an improvement
over the previous in some intuitive sense, but the process is artificially smooth because
we have the benefit of hindsight in looking over the development of the algorithms as
they were studied by researchers over the years. The implementations are simple and
the problem is well specified, so we can evaluate the various algorithms directly by run-
ning empirical studies. Furthermore, we can use these studies to validate mathematical
results that quantify the performance of these algorithms. When possible, we follow the
same basic steps for fundamental problems throughout the book that we have taken for
union–find algorithms in this section, some of which are highlighted in this list:

n Decide on a complete and specific problem statement, including identifying
fundamental abstract operations that are intrinsic to the problem and an API.

n Carefully develop a succinct implementation for a straightforward algorithm,
using a well-thought-out development client and realistic input data.

n Know when an implementation could not possibly be used to solve problems on
the scale contemplated and must be improved or abandoned.

n Develop improved implementations through a process of stepwise refinement,
validating the efficacy of ideas for improvement through empirical analysis,
mathematical analysis, or both.

n Find high-level abstract representations of data structures or algorithms in op-
eration that enable effective high-level design of improved versions.

n Strive for worst-case performance guarantees when possible, but accept good
performance on typical data when available.

n Know when to leave further improvements for detailed in-depth study to skilled
researchers and move on to the next problem.

The potential for spectacular performance improvements for practical problems such
as those that we saw for union–find makes algorithm design a compelling field of study.
What other design activities hold the potential to reap savings factors of millions or
billions, or more?

Developing an efficient algorithm is an intellectually satisfying activity that can have
direct practical payoff. As the dynamic connectivity problem indicates, a simply stated
problem can lead us to study numerous algorithms that are not only both useful and
interesting, but also intricate and challenging to understand. We shall encounter many
ingenious algorithms that have been developed over the years for a host of practical
problems. As the scope of applicability of computational solutions to scientific and
commercial problems widens, so also grows the importance of being able to use ef-
ficient algorithms to solve known problems and of being able to develop efficient solu-
tions to new problems.

2331.5 n Case Study: Union-Find

ptg12441863

Q&A

Q. I’d like to add a delete() method to the API that allows clients to delete connec-
tions. Any advice on how to proceed?

A. No one has devised an algorithm as simple and efficient as the ones in this section
that can handle deletions. This theme recurs throughout this book. Several of the data
structures that we consider have the property that deleting something is much more
difficult than adding something.

Q. What is the cell-probe model?

A. A model of computation where we only count accesses to a random-access memory
large enough to hold the input and consider all other operations to be free.

234 Chapter 1 n Fundamentals

ptg12441863

ExErcisEs

1.5.1 Show the contents of the id[] array and the number of times the ar-
ray is accessed for each input pair when you use quick-find for the sequence
9-0 3-4 5-8 7-2 2-1 5-7 0-3 4-2.

1.5.2 Do Exercise 1.5.1, but use quick-union (page 224). In addition, draw the forest of
trees represented by the id[] array after each input pair is processed.

1.5.3 Do Exercise 1.5.1, but use weighted quick-union (page 228).

1.5.4 Show the contents of the sz[] and id[] arrays and the number of array accesses
for each input pair corresponding to the weighted quick-union examples in the text
(both the reference input and the worst-case input).

1.5.5 Estimate the minimum amount of time (in days) that would be required for
quick-find to solve a dynamic connectivity problem with 109 sites and 106 input pairs,
on a computer capable of executing 109 instructions per second. Assume that each itera-
tion of the inner for loop requires 10 machine instructions.

1.5.6 Repeat Exercise 1.5.5 for weighted quick-union.

1.5.7 Develop classes QuickUnionUF and QuickFindUF that implement quick-union
and quick-find, respectively.

1.5.8 Give a counterexample that shows why this intuitive implementation of union()
for quick-find is not correct:

public void union(int p, int q)
{
 if (connected(p, q)) return;

 // Rename p’s component to q’s name.
 for (int i = 0; i < id.length; i++)
 if (id[i] == id[p]) id[i] = id[q];
 count--;
}

1.5.9 Draw the tree corresponding to the id[] array depicted at
right. Can this be the result of running weighted quick-union?
Explain why this is impossible or give a sequence of operations
that results in this array.

i 0 1 2 3 4 5 6 7 8 9

id[i] 1 1 3 1 5 6 1 3 4 5

2351.5 n Case Study: Union-Find

ptg12441863

1.5.10 In the weighted quick-union algorithm, suppose that we set id[find(p)] to q
instead of to id[find(q)]. Would the resulting algorithm be correct?

Answer : Yes, but it would increase the tree height, so the performance guarantee would
be invalid.

1.5.11 Implement weighted quick-find, where you always change the id[] entries of
the smaller component to the identifier of the larger component. How does this change
affect performance?

ExErcisEs (continued)

236 Chapter 1 n Fundamentals

ptg12441863

crEAtivE problEms

1.5.12 Quick-union with path compression. Modify quick-union (page 224) to in-
clude path compression, by adding a loop to find() that links every site on the path
from p to the root. Give a sequence of input pairs that causes this method to produce a
path of length 4. Note : The amortized cost per operation for this algorithm is known to
be logarithmic.

1.5.13 Weighted quick-union with path compression. Modify weighted quick-union
(Algorithm 1.5) to implement path compression, as described in Exercise 1.5.12.
Give a sequence of input pairs that causes this method to produce a tree of height 4.
Note : The amortized cost per operation for this algorithm is known to be bounded by a
function known as the inverse Ackermann function and is less than 5 for any conceivable
practical value of N.

1.5.14 Weighted quick-union by height. Develop a UF implementation that uses the
same basic strategy as weighted quick-union but keeps track of tree height and always
links the shorter tree to the taller one. Prove a logarithmic upper bound on the height
of the trees for N sites with your algorithm.

1.5.15 Binomial trees. Show that the number of nodes at each level in the worst-case
trees for weighted quick-union are binomial coefficients. Compute the average depth of
a node in a worst-case tree with N = 2n nodes.

1.5.16 Amortized costs plots. Instrument your implementations from Exercise 1.5.7
to make amortized costs plots like those in the text.

1.5.17 Random connections. Develop a UF client ErdosRenyi that takes an integer
value N from the command line, generates random pairs of integers between 0 and N-1,
calling connected() to determine if they are connected and then union() if not (as in
our development client), looping until all sites are connected, and printing the number
of connections generated. Package your program as a static method count() that takes
N as argument and returns the number of connections and a main() that takes N from
the command line, calls count(), and prints the returned value.

1.5.18 Random grid generator. Write a program RandomGrid that takes an int value
N from the command line, generates all the connections in an N-by-N grid, puts them
in random order, randomly orients them (so that p q and q p are equally likely to oc-
cur), and prints the result to standard output. To randomly order the connections, use
a RandomBag (see Exercise 1.3.34 on page 167). To encapsulate p and q in a single object,

2371.5 n Case Study: Union-Find

ptg12441863

use the Connection nested class shown below. Package your program as two static
methods: generate(), which takes N as argument and returns an array of connec-
tions, and main(), which takes N from the command line, calls generate(), and iterates
through the returned array to print the connections.

1.5.19 Animation. Write a RandomGrid client (see Exercise 1.5.18) that uses
UnionFind as in our development client to check connectivity and uses StdDraw to
draw the connections as they are processed.

1.5.20 Dynamic growth. Using linked lists or a resizing array, develop a weighted
quick-union implementation that removes the restriction on needing the number of
objects ahead of time. Add a method newSite() to the API, which returns an int
identifier.

private class Connection
{
 int p;
 int q;

 public Connection(int p, int q)
 { this.p = p; this.q = q; }
}

record to encapsulate connections

crEAtivE problEms (continued)

238 Chapter 1 n Fundamentals

ptg12441863

ExpErimENts

1.5.21 Erdös-Renyi model. Use your client from Exercise 1.5.17 to test the hypothesis
that the number of pairs generated to get one component is ~ ½N ln N.

1.5.22 Doubling test for Erdös-Renyi model. Develop a performance-testing client that
takes an int value T from the command line and performs T trials of the following ex-
periment: Use your client from Exercise 1.5.17 to generate random connections, using
UnionFind to determine connectivity as in our development client, looping until all
sites are connected. For each N, print the value of N, the average number of connections
processed, and the ratio of the running time to the previous. Use your program to vali-
date the hypotheses in the text that the running times for quick-find and quick-union
are quadratic and weighted quick-union is near-linear.

1.5.23 Compare quick-find with quick-union for Erdös-Renyi model. Develop a perfor-
mance-testing client that takes an int value T from the command line and performs
T trials of the following experiment: Use your client from Exercise 1.5.17 to generate
random connections. Save the connections, so that you can use both quick-union and
quick-find to determine connectivity as in our development client, looping until all
sites are connected. For each N, print the value of N and the ratio of the two running
times.

1.5.24 Fast algorithms for Erdös-Renyi model. Add weighted quick-union and weight-
ed quick-union with path compression to your tests from Exercise 1.5.23 . Can you
discern a difference between these two algorithms?

1.5.25 Doubling test for random grids. Develop a performance-testing client that takes
an int value T from the command line and performs T trials of the following experie-
ment: Use your client from Exercise 1.5.18 to generate the connections in an N-by-N
square grid, randomly oriented and in random order, then use UnionFind to determine
connectivity as in our development client, looping until all sites are connected. For each
N, print the value of N, the average number of connections processed, and the ratio of
the running time to the previous. Use your program to validate the hypotheses in the
text that the running times for quick-find and quick-union are quadratic and weighted
quick-union is near-linear. Note : As N doubles, the number of sites in the grid increases
by a factor of 4, so expect a doubling factor of 16 for quadratic and 4 for linear.

2391.5 n Case Study: Union-Find

ptg12441863

1.5.26 Amortized plot for Erdös-Renyi. Develop a client that takes an int value N from
the command line and does an amortized plot of the cost of all operations in the style
of the plots in the text for the process of generating random pairs of integers between 0
and N-1, calling connected() to determine if they are connected and then union() if
not (as in our development client), looping until all sites are connected.

ExpErimENts (continued)

240 Chapter 1 n Fundamentals

ptg12441863

This page intentionally left blank

ptg12441863

2.1 elementary Sorts 244

2.2 Mergesort 270

2.3 Quicksort 288

2.4 Priority Queues 308

2.5 Applications 336

t Wo

Sorting

ptg12441863

Sorting is the process of rearranging a sequence of objects so as to put them in
some logical order. For example, your credit card bill presents transactions in
order by date—they were likely put into that order by a sorting algorithm. In the

early days of computing, the common wisdom was that up to 30 percent of all com-
puting cycles was spent sorting. If that fraction is lower today, one likely reason is that
sorting algorithms are relatively efficient, not that sorting has diminished in relative
importance. Indeed, the ubiquity of computer usage has put us awash in data, and the
first step to organizing data is often to sort it. All computer systems have implementa-
tions of sorting algorithms, for use by the system and by users.

There are three practical reasons for you to study sorting algorithms, even though
you might just use a system sort:

n	 Analyzing sorting algorithms is a thorough introduction to the approach that we
use to compare algorithm performance throughout the book.

n	 Similar techniques are effective in addressing other problems.
n	 We often use sorting algorithms as a starting point to solve other problems.

More important than these practical reasons is that the algorithms are elegant, classic,
and effective.

Sorting plays a major role in commercial data processing and in modern scientific
computing. Applications abound in transaction processing, combinatorial optimiza-
tion, astrophysics, molecular dynamics, linguistics, genomics, weather prediction, and
many other fields. Indeed, a sorting algorithm (quicksort, in Section 2.3) was named
as one of the top ten algorithms for science and engineering of the 20th century.

In this chapter, we consider several classical sorting methods and an efficient imple-
mentation of a fundamental data type known as the priority queue. We discuss the
theoretical basis for comparing sorting algorithms and conclude the chapter with a
survey of applications of sorting and priority queues.

243

ptg12441863

2.1 eleMentAry SortS

For our first excursion into the area of sorting algorithms, we shall study two ele-
mentary sorting methods and a variation of one of them. Among the reasons for study-
ing these relatively simple algorithms in detail are the following: First, they provide
context in which we can learn terminology and basic mechanisms. Second, these simple
algorithms are more effective in some applications than the sophisticated algorithms
that we shall discuss later. Third, they are useful in improving the efficiency of more
sophisticated algorithms, as we will see.

Rules of the game Our primary concern is algorithms for rearranging arrays of
items where each item contains a key. The objective of the sorting algorithm is to rear-
range the items such that their keys are ordered according to some well-defined order-
ing rule (usually numerical or alphabetical order). We want to rearrange the array so
that each entry’s key is no smaller than the key in each entry with a lower index and
no larger than the key in each entry with a larger index. Specific characteristics of the
keys and the items can vary widely across applications. In Java, items are just objects,
and the abstract notion of a key is captured in a built-in mechanism—the Comparable
interface—that is described on page 247.

The class Example on the facing page illustrates the conventions that we shall use:
we put our sort code in a sort() method within a single class along with private helper
functions less() and exch() (and perhaps some others) and a sample client main().
Example also illustrates code that might be useful for initial debugging: its test client
main() sorts strings from standard input using the private method show() to print the
contents of the array. Later in this chapter, we will examine various test clients for com-
paring algorithms and for studying their performance. To differentiate sorting meth-
ods, we give our various sort classes different names. Clients can call different imple-
mentations by name: Insertion.sort(), Merge.sort(), Quick.sort(), and so forth.

With but a few exceptions, our sort code refers to the data only through two opera-
tions: the method less() that compares items and the method exch() that exchanges
them. The exch() method is easy to implement, and the Comparable interface makes
it easy to implement less(). Restricting data access to these two operations makes our
code readable and portable, and makes it easier for us certify that algorithms are cor-
rect, to study performance and to compare algorithms. Before proceeding to consider
sort implementations, we discuss a number of important issues that need to be care-
fully considered for every sort.

244

ptg12441863

% more tiny.txt
S O R T E X A M P L E

% java Example < tiny.txt
A E E L M O P R S T X

template for sort classes

public class Example
{
 public static void sort(Comparable[] a)
 { /* See Algorithms 2.1, 2.2, 2.3, 2.4, 2.5, or 2.7. */ }

 private static boolean less(Comparable v, Comparable w)
 { return v.compareTo(w) < 0; }

 private static void exch(Comparable[] a, int i, int j)
 { Comparable t = a[i]; a[i] = a[j]; a[j] = t; }

 private static void show(Comparable[] a)
 { // Print the array, on a single line.
 for (int i = 0; i < a.length; i++)
 StdOut.print(a[i] + " ");
 StdOut.println();
 }

 public static boolean isSorted(Comparable[] a)
 { // Test whether the array entries are in order.
 for (int i = 1; i < a.length; i++)
 if (less(a[i], a[i-1])) return false;
 return true;
 }

 public static void main(String[] args)
 { // Read strings from standard input, sort them, and print.
 String[] a = In.readStrings();
 sort(a);
 assert isSorted(a);
 show(a);
 }
}

This class illustrates our conventions for imple-
menting array sorts. For each sorting algorithm
that we consider, we present a sort() method for
a class like this with Example changed to a name
that corresponds to the algorithm. The test client
sorts strings taken from standard input, but, with
this code, our sort methods are effective for any
type of data that implements Comparable.

% more words3.txt
bed bug dad yes zoo ... all bad yet

% java Example < words3.txt
all bad bed bug dad ... yes yet zoo

2452.1 n Elementary Sorts

ptg12441863

Certification Does the sort implementation always put the array in order, no mat-
ter what the initial order? As a conservative practice, we include the statement
assert isSorted(a); in our test client to certify that array entries are in order after
the sort. It is reasonable to include this statement in every sort implementation, even
though we normally test our code and develop mathematical arguments that our al-
gorithms are correct. Note that this test is sufficient only if we use exch() exclusively
to change array entries. When we use code that stores values into the array directly, we
do not have full assurance (for example, code that destroys the original input array by
setting all values to be the same would pass this test).

Running time We also test algorithm performance. We start by
proving facts about the number of basic operations (compares
and exchanges, or perhaps the number of times the array is ac-
cessed, for read or write) that the various sorting algorithms per-
form for various natural input models. Then we use these facts
to develop hypotheses about the comparative performance of the
algorithms and present tools that you can use to experimentally
check the validity of such hypotheses. We use a consistent coding
style to facilitate the development of valid hypotheses about per-
formance that will hold true for typical implementations.

Extra memory The amount of extra memory used by a sorting algorithm is often as
important a factor as running time. The sorting algorithms divide into two basic types:
those that sort in place and use no extra memory except perhaps for a small function-
call stack or a constant number of instance variables, and those that need enough extra
memory to hold another copy of the array to be sorted.

Types of data Our sort code is effective for any item type that implements the
Comparable interface. Adhering to Java’s convention in this way is convenient be-
cause many of the types of data that you might want to sort implement Comparable.
For example, Java’s numeric wrapper types such as Integer and Double implement
Comparable, as do String and various advanced types such as File or URL. Thus,
you can just call one of our sort methods with an array of any of these types as argu-
ment. For example, the code at right uses quicksort (see Section 2.3) to sort N random
Double values. When we create types of our
own, we can enable client code to sort that type
of data by implementing the Comparable in-
terface. To do so, we just need to implement a
compareTo() method that defines an ordering
on objects of that type known as the natural

Double a[] = new Double[N];
for (int i = 0; i < N; i++)
 a[i] = StdRandom.uniform();
Quick.sort(a);

Sorting an array of random values

sorting cost model.
When studying sorting
algorithms, we count
compares and exchanges.
For algorithms that do
not use exchanges, we
count array accesses.

246 Chapter 2 n Sorting

ptg12441863

order for that type, as shown here for our Date data type (see page 91). Java’s convention
is that the call v.compareTo(w) returns an integer that is negative, zero, or positive
(usually -1, 0, or +1) when v < w, v = w,
or v > w, respectively. For economy, we
use standard notation like v>w as short-
hand for code like v.compareTo(w)>0
for the remainder of this paragraph. By
convention, v.compareTo(w) throws
an exception if v and w are incompatible
types or either is null. Furthermore,
compareTo() must implement a total
order: it must be

n	 Reflexive (for all v, v = v)
n	 Antisymmetric (for all v and w, if

v < w then w > v and if v = w then
w = v)

n	 Transitive (for all v, w, and x, if
v <= w and w <= x then v <=x)

These rules are intuitive and standard
in mathematics—you will have little
difficulty adhering to them. In short,
compareTo() implements our key ab-
straction—it defines the ordering of
the items (objects) to be sorted, which
can be any type of data that implements
Comparable. Note that compareTo() need not use all of the instance variables. Indeed,
the key might be a small part of each item.

For the remainder of this chapter, we shall address numerous algorithms for sort-
ing arrays of objects having a natural order. To compare and contrast the algorithms,
we shall examine a number of their properties, including the number of compares and
exchanges that they use for various types of inputs and the amount of extra memory
that they use. These properties lead to the development of hypotheses about perfor-
mance properties, many of which have been validated on countless computers over the
past several decades. Specific implementations always need to be checked, so we also
consider tools for doing so. After considering the classic selection sort, insertion sort,
shellsort, mergesort, quicksort, and heapsort algorithms, we will consider practical is-
sues and applications, in Section 2.5.

public class Date implements Comparable<Date>
{
 private final int day;
 private final int month;
 private final int year;

 public Date(int d, int m, int y)
 { day = d; month = m; year = y; }

 public int day() { return day; }
 public int month() { return month; }
 public int year() { return year; }

 public int compareTo(Date that)
 {
 if (this.year > that.year) return +1;
 if (this.year < that.year) return -1;
 if (this.month > that.month) return +1;
 if (this.month < that.month) return -1;
 if (this.day > that.day) return +1;
 if (this.day < that.day) return -1;
 return 0;
 }

 public String toString()
 { return month + "/" + day + "/" + year; }
}

Defining a comparable type

2472.1 n Elementary Sorts

ptg12441863

Selection sort One of the simplest sorting algorithms works as follows: First, find
the smallest item in the array and exchange it with the first entry (itself if the first entry
is already the smallest). Then, find the next smallest item and exchange it with the sec-
ond entry. Continue in this way until the entire array is sorted. This method is called
selection sort because it works by repeatedly selecting the smallest remaining item.

As you can see from the implementation in Algorithm 2.1, the inner loop of selec-
tion sort is just a compare to test a current item against the smallest item found so far
(plus the code necessary to increment the current index and to check that it does not
exceed the array bounds); it could hardly be simpler. The work of moving the items
around falls outside the inner loop: each exchange puts an item into its final position,
so the number of exchanges is N. Thus, the running time is dominated by the number
of compares.

proposition A. Selection sort uses N 2/2 compares and N exchanges to sort an
array of length N.

proof: You can prove this fact by examining the trace, which is an N-by-N table
in which unshaded letters correspond to compares. About one-half of the entries
in the table are unshaded—those on and above the diagonal. The entries on the
diagonal each correspond to an exchange. More precisely, examination of the code
reveals that, for each i from 0 to N  1, there is one exchange and N  1  i com-
pares, so the totals are N exchanges and (N  1) + (N  2) + . . . + 2 + 1+ 0 = N(N
 1) / 2  N 2 / 2 compares.

In summary, selection sort is a simple sorting method that is easy to understand and to
implement and is characterized by the following two signature properties:

Running time is insensitive to input The process of finding the smallest item on one
pass through the array does not give much information about where the smallest item
might be on the next pass. This property can be disadvantageous in some situations.
For example, the person using the sort client might be surprised to realize that it takes
about as long to run selection sort for an array that is already in order or for an array
with all keys equal as it does for a randomly-ordered array! As we shall see, other algo-
rithms are better able to take advantage of initial order in the input.

Data movement is minimal Each of the N exchanges changes the value of two array
entries, so selection sort uses N exchanges—the number of exchanges is a linear func-
tion of the array size. None of the other sorting algorithms that we consider have this
property (most involve linearithmic or quadratic growth).

248 Chapter 2 n Sorting

ptg12441863

aLgorIthM 2.1 Selection sort

public class Selection
{
 public static void sort(Comparable[] a)
 { // Sort a[] into increasing order.
 int N = a.length; // array length
 for (int i = 0; i < N; i++)
 { // Exchange a[i] with smallest entry in a[i+1...N).
 int min = i; // index of a minimal entry.
 for (int j = i+1; j < N; j++)
 if (less(a[j], a[min])) min = j;
 exch(a, i, min);
 }
 }
 // See page 245 for less(), exch(), isSorted(), and main().
}

For each i, this implementation puts the ith smallest item in a[i]. The entries to the left of position
i are the i smallest items in the array and are not examined again.

Trace of selection sort (array contents just after each exchange)

 a[]

 i min 0 1 2 3 4 5 6 7 8 9 10

 S O R T E X A M P L E

 0 6 S O R T E X A M P L E

 1 4 A O R T E X S M P L E

 2 10 A E R T O X S M P L E

 3 9 A E E T O X S M P L R

 4 7 A E E L O X S M P T R

 5 7 A E E L M X S O P T R

 6 8 A E E L M O S X P T R

 7 10 A E E L M O P X S T R

 8 8 A E E L M O P R S T X

 9 9 A E E L M O P R S T X

10 10 A E E L M O P R S T X

 A E E L M O P R S T X

entries in gray are
in final position

entries in black
are examined to find

the minimum

entries in red
are a[min]

2492.1 n Elementary Sorts

ptg12441863

Insertion sort The algorithm that people often use to sort bridge hands is to con-
sider the cards one at a time, inserting each into its proper place among those already
considered (keeping them sorted). In a computer implementation, we need to make
space to insert the current item by moving larger items one position to the right, before
inserting the current item into the vacated position. Algorithm 2.2 is an implementa-
tion of this method, which is called insertion sort.

As in selection sort, the items to the left of the current index are in sorted order dur-
ing the sort, but they are not in their final position, as they may have to be moved to
make room for smaller items encountered later. The array is, however, fully sorted when
the index reaches the right end.

Unlike that of selection sort, the running time of insertion sort depends on the ini-
tial order of the items in the input. For example, if the array is large and its entries are
already in order (or nearly in order), then insertion sort is much, much faster than if
the entries are randomly ordered or in reverse order.

proposition b. Insertion sort uses N 2/4 compares and N 2/4 exchanges to sort
a randomly ordered array of length N with distinct keys, on the average. The worst
case is N 2/2 compares and N 2/2 exchanges and the best case is N  1 compares
and 0 exchanges.

proof: Just as for Proposition A, the number of compares and exchanges is easy to
visualize in the N-by-N diagram that we use to illustrate the sort. We count entries
below the diagonal—all of them, in the worst case, and none of them, in the best
case. For randomly ordered arrays, we expect each item to go about halfway back,
on the average, so we count one-half of the entries below the diagonal.

The number of compares is the number of exchanges plus an additional term
equal to N minus the number of times the item inserted is the smallest so far. In the
worst case (array in reverse order), this term is negligible in relation to the total; in
the best case (array in order) it is equal to N  1.

Insertion sort works well for certain types of nonrandom arrays that often arise in
practice, even if they are huge. For example, as just mentioned, consider what happens
when you use insertion sort on an array that is already sorted. Each item is immediately
determined to be in its proper place in the array, and the total running time is linear.
(The running time of selection sort is quadratic for such an array.) The same is true
for arrays whose keys are all equal (hence the condition in Proposition B that the keys
must be distinct).

250 Chapter 2 n Sorting

ptg12441863

aLgorIthM 2.2 insertion sort

public class Insertion
{
 public static void sort(Comparable[] a)
 { // Sort a[] into increasing order.
 int N = a.length;
 for (int i = 1; i < N; i++)
 { // Insert a[i] among a[i-1], a[i-2], a[i-3]....
 for (int j = i; j > 0 && less(a[j], a[j-1]); j--)
 exch(a, j, j-1);
 }
 }
 // See page 245 for less(), exch(), isSorted(), and main().
}

For each i from 1 to N-1, exchange a[i] with the entries that are larger in a[0] through a[i-1]. As
the index i travels from left to right, the entries to its left are in sorted order in the array, so the array
is fully sorted when i reaches the right end.

Trace of insertion sort (array contents just after each insertion)

 a[]

 i j 0 1 2 3 4 5 6 7 8 9 10

 S O R T E X A M P L E

 1 0 O S R T E X A M P L E

 2 1 O R S T E X A M P L E

 3 3 O R S T E X A M P L E

 4 0 E O R S T X A M P L E

 5 5 E O R S T X A M P L E

 6 0 A E O R S T X M P L E

 7 2 A E M O R S T X P L E

 8 4 A E M O P R S T X L E

 9 2 A E L M O P R S T X E

10 2 A E E L M O P R S T X

 A E E L M O P R S T X

entries in black
moved one position
right for insertion

entries in gray
do not move

entry in red
is a[j]

2512.1 n Elementary Sorts

ptg12441863

More generally, we consider the concept of a partially sorted array, as follows: An in-
version is a pair of entries that are out of order in the array. For instance, E X A M P L E
has 11 inversions: E-A, X-A, X-M, X-P, X-L, X-E, M-L, M-E, P-L, P-E, and L-E. If the
number of inversions in an array is less than a constant multiple of the array size, we
say that the array is partially sorted. Typical examples of partially sorted arrays are the
following:

n	 An array where each entry is not far from its final position
n	 A small array appended to a large sorted array
n	 An array with only a few entries that are not in place

Insertion sort is an efficient method for such arrays; selection sort is not. Indeed, when
the number of inversions is low, insertion sort is likely to be faster than any sorting
method that we consider in this chapter.

proposition c. The number of exchanges used by insertion sort is equal to the
number of inversions in the array, and the number of compares is at least equal to
the number of inversions and at most equal to the number of inversions plus the
array size minus 1.

proof: Every exchange involves two inverted adjacent entries and thus reduces the
number of inversions by one, and the array is sorted when the number of inver-
sions reaches zero. Every exchange corresponds to a compare, and an additional
compare might happen for each value of i from 1 to N-1 (when a[i] does not
reach the left end of the array).

It is not difficult to speed up insertion sort substantially, by shortening its inner loop to
move the larger entries to the right one position rather than doing full exchanges (thus
cutting the number of array accesses in half). We leave this improvement for an exercise
(see Exercise 2.1.25).

In summary, insertion sort is an excellent method for partially sorted arrays and is also
a fine method for tiny arrays. These facts are important not just because such arrays
frequently arise in practice, but also because both types of arrays arise in intermediate
stages of advanced sorting algorithms, so we will be considering insertion sort again in
relation to such algorithms.

252 Chapter 2 n Sorting

ptg12441863

Visualizing sorting algorithms Throughout this chapter, we will be using
a simple visual representation to help describe the properties of sorting algorithms.
Rather than tracing the progress of a sort with key values such as letters, numbers,
or words, we use vertical bars, to be sorted by their
heights. The advantage of such a representation is
that it can give insights into the behavior of a sort-
ing method.

For example, you can see at a glance on the visual
traces at right that insertion sort does not touch
entries to the right of the scan pointer and selec-
tion sort does not touch entries to the left of the
scan pointer. Moreover, it is clear from the visual
traces that, since insertion sort also does not touch
entries smaller than the inserted item, it uses about
half the number of compares as selection sort, on
the average.

With our StdDraw library, developing a visual
trace is not much more difficult than doing a stan-
dard trace. We sort Double values, instrument the
algorithm to call show() as appropriate (just as we
do for a standard trace), and develop a version of
show() that uses StdDraw to draw the bars instead
of printing the results. The most complicated task
is setting the scale for the y-axis so that the lines of
the trace appear in the expected order. You are en-
couraged to work Exercise 2.1.18 in order to gain a
better appreciation of the value of visual traces and
the ease of creating them.

An even simpler task is to animate the trace so
that you can see the array dynamically evolve to
the sorted result. Developing an animated trace in-
volves essentially the same process described in the previous paragraph, but without
having to worry about the y-axis (just clear the window and redraw the bars each time).
Though we cannot make the case on the printed page, such animated representations
are also effective in gaining insight into how an algorithm works. You are also encour-
aged to work Exercise 2.1.17 to see for yourself.

black entries
are involved
in compares

gray entries
are untouched

Visual traces of elementary sorting algorithms

insertion sort selection sort

2532.1 n Elementary Sorts

ptg12441863

Comparing two sorting algorithms Now that we have two implementations,
we are naturally interested in knowing which one is faster: selection sort (Algorithm
2.1) or insertion sort (Algorithm 2.2). Questions like this arise again and again and
again in the study of algorithms and are a major focus throughout this book. We have
discussed some fundamental ideas in Chapter 1, but we use this first case in point to
illustrate our basic approach to answering such questions. Generally, following the ap-
proach introduced in Section 1.4, we compare algorithms by

n	 Implementing and debugging them
n	 Analyzing their basic properties
n	 Formulating a hypothesis about comparative performance
n	 Running experiments to validate the hypothesis

These steps are nothing more than the time-honored scientific method, applied to the
study of algorithms.

In the present context, Algorithm 2.1 and Algorithm 2.2 are evidence of the
first step; Propositions A, B, and C constitute the second step; Property D on page 255
constitutes the third step; and the class SortCompare on page 256 enables the fourth step.
These activities are all interrelated.

Our brief descriptions mask a substantial amount of effort that is required to prop-
erly implement, analyze, and test algorithms. Every programmer knows that such code
is the product of a long round of debugging and refinement, every mathematician
knows that proper analysis can be very difficult, and every scientist knows that formu-
lating hypotheses and designing and executing experiments to validate them require
great care. Full development of such results is reserved for experts studying our most
important algorithms, but every programmer using an algorithm should be aware of
the scientific context underlying its performance properties.

Having developed implementations, our next choice is to settle on an appropriate
model for the input. For sorting, a natural model, which we have used for Proposi-
tions A, B, and C, is to assume that the arrays are randomly ordered and that the key
values are distinct. In applications where significant numbers of equal key values are
present we will need a more complicated model.

How do we formulate a hypothesis about the running times of insertion sort and
selection sort for randomly ordered arrays? Examining Algorithms 2.1 and 2.2 and
Propositions A and B, it follows immediately that the running time of both algorithms
should be quadratic for randomly ordered arrays. That is, the running time of insertion
sort for such an input is proportional to some small constant times N 2 and the running
time of selection sort is proportional to some other small constant times N 2. The values
of the two constants depend on the cost of compares and exchanges on the particular
computer being used. For many types of data and for typical computers, it is reasonable

254 Chapter 2 n Sorting

ptg12441863

to assume that these costs are similar (though we will see a few significant exceptions).
The following hypothesis follows directly:

property D. The running times of insertion sort and selection sort are quadratic
and within a small constant factor of one another for randomly ordered arrays of
distinct values.

Evidence: This statement has been validated on many different computers over
the past half-century. Insertion sort was about twice as fast as selection sort when
the first edition of this book was written in 1980 and it still is today, even though it
took several hours to sort 100,000 items with these algorithms then and just several
seconds today. Is insertion sort a bit faster than selection sort on your computer?
To find out, you can use the class SortCompare on the next page, which uses the
sort() methods in the classes named as command-line arguments to perform the
given number of experiments (sorting arrays of the given size) and prints the ratio
of the observed running times of the algorithms.

To validate this hypothesis, we use SortCompare (see page 256) to perform the experi-
ments. As usual, we use Stopwatch to compute the running time. The implementation
of time() shown here does the job for the basic sorts in this chapter. The “randomly or-
dered” input model is embedded in the timeRandomInput() method in SortCompare,
which generates random Double values, sorts them, and returns the total measured
time of the sort for the given
number of trials. Using ran-
dom Double values between
0.0 and 1.0 is much simpler
than the alternative of us-
ing a library function such
as StdRandom.shuffle()
and is effective because equal
key values are very unlikely
(see Exercise 2.5.31). As
discussed in Chapter 1, the
number of trials is taken as an
argument both to take advan-
tage of the law of large numbers (the more trials, the total running time divided by the
number of trials is a more accurate estimate of the true average running time) and to
help damp out system effects. You are encouraged to experiment with SortCompare

public static double time(String alg, Comparable[] a)
{
 Stopwatch timer = new Stopwatch();
 if (alg.equals("Insertion")) Insertion.sort(a);
 if (alg.equals("Selection")) Selection.sort(a);
 if (alg.equals("Shell")) Shell.sort(a);
 if (alg.equals("Merge")) Merge.sort(a);
 if (alg.equals("Quick")) Quick.sort(a);
 if (alg.equals("Heap")) Heap.sort(a);
 return timer.elapsedTime();
}

timing one of the sort algorithms in this chapter on a given input

2552.1 n Elementary Sorts

ptg12441863

Comparing two sorting algorithms

public class SortCompare
{
 public static double time(String alg, Double[] a)
 { /* See text. */ }

 public static double timeRandomInput(String alg, int N, int T)
 { // Use alg to sort T random arrays of length N.
 double total = 0.0;
 Double[] a = new Double[N];
 for (int t = 0; t < T; t++)
 { // Perform one experiment (generate and sort an array).
 for (int i = 0; i < N; i++)
 a[i] = StdRandom.uniform();
 total += time(alg, a);
 }
 return total;
 }

 public static void main(String[] args)
 {
 String alg1 = args[0];
 String alg2 = args[1];
 int N = Integer.parseInt(args[2]);
 int T = Integer.parseInt(args[3]);
 double t1 = timeRandomInput(alg1, N, T); // total for alg1
 double t2 = timeRandomInput(alg2, N, T); // total for alg2
 StdOut.printf("For %d random Doubles\n %s is", N, alg1);
 StdOut.printf(" %.1f times faster than %s\n", t2/t1, alg2);
 }
}

This client runs the two sorts named in the first two command-line arguments on arrays of N (the

third command-line argument) random Double values between 0.0 and 1.0, repeating the experi-
ment T (the fourth command-line argument) times, then prints the ratio of the total running times.

% java SortCompare Insertion Selection 1000 100
For 1000 random Doubles
 Insertion is 1.7 times faster than Selection

256 Chapter 2 n Sorting

ptg12441863

on your computer to learn the extent to which its conclusion about insertion sort and
selection sort is robust.

Property D is intentionally a bit vague—the value of the small constant factor is left
unstated and the assumption that the costs of compares and exchanges are similar is left
unstated—so that it can apply in a broad variety of situations. When possible, we try to
capture essential aspects of the performance of each of the algorithms that we study in
statements like this. As discussed in Chapter 1, each Property that we consider needs to
be tested scientifically in a given situation, perhaps supplemented with a more refined
hypothesis based upon a related Proposition (mathematical truth).

For practical applications, there is one further step, which is crucial: run experiments
to validate the hypothesis on the data at hand. We defer consideration of this step to
Section 2.5 and the exercises. In this case, if your sort keys are not distinct and/or
not randomly ordered, Property D might not hold. You can randomly order an array
with StdRandom.shuffle(), but applications with significant numbers of equal keys
involve more careful analysis.

Our discussions of the analyses of algorithms are intended to be starting points, not
final conclusions. If some other question about performance of the algorithms comes
to mind, you can study it with a tool like SortCompare. Many opportunities to do so
are presented in the exercises.

We do not dwell further on the comparative performance of insertion sort and selec-
tion sort because we are much more interested in algorithms that can run a hundred or
a thousand or a million times faster than either. Still, understanding these elementary
algorithms is worthwhile for several reasons:

n	 They help us work out the ground rules.
n	 They provide performance benchmarks.
n	 They often are the method of choice in some specialized situations.
n	 They can serve as the basis for developing better algorithms.

For these reasons, we will use the same basic approach and consider elementary algo-
rithms for every problem that we study throughout this book, not just sorting. Pro-
grams like SortCompare play a critical role in this incremental approach to algorithm
development. At every step along the way, we can use such a program to help evaluate
whether a new algorithm or an improved version of a known algorithm provides the
performance gains that we expect.

2572.1 n Elementary Sorts

ptg12441863

Shellsort To exhibit the value of knowing properties of elementary sorts, we next
consider a fast algorithm based on insertion sort. Insertion sort is slow for large un-
ordered arrays because the only exchanges it does involve adjacent entries, so items
can move through the array only one place at a time. For example, if the item with the
smallest key happens to be at the end of the array, N1 exchanges are needed to get that
one item where it belongs. Shellsort is a simple extension of insertion sort that gains
speed by allowing exchanges of array entries that are far apart, to produce partially
sorted arrays that can be efficiently sorted, eventually by insertion sort.

The idea is to rearrange the array to give it the property that taking every hth entry
(starting anywhere) yields a sorted subsequence. Such an array is said to be h-sorted. Put

another way, an h-sorted array is h inde-
pendent sorted subsequences, interleaved
together. By h-sorting for some large val-
ues of h, we can move items in the array
long distances and thus make it easier to
h-sort for smaller values of h. Using such
a procedure for any sequence of values of
h that ends in 1 will produce a sorted ar-
ray: that is shellsort. The implementation

in Algorithm 2.3 on the facing page uses the sequence of decreasing values ½(3k1),
starting at the smallest increment greater than or equal to ⎣N/3⎦ and decreasing to 1.
We refer to such a sequence as an increment sequence. Algorithm 2.3 computes its
increment sequence; another alternative is to store an increment sequence in an array.

One way to implement shellsort would be, for each h, to use insertion sort indepen-
dently on each of the h subsequences. Because the subsequences are independent, we
can use an even simpler approach: when h-sorting the array, we insert each item among
the previous items in its h-subsequence by exchanging it with those that have larger
keys (moving them each one position to the right in the subsequence). We accomplish
this task by using the insertion-sort code, but modified to decrement by h instead of 1
when moving through the array. This observation reduces the shellsort implementa-
tion to an insertion-sort-like pass through the array for each increment.

Shellsort gains efficiency by making a tradeoff between size and partial order in the
subsequences. At the beginning, the subsequences are short; later in the sort, the subse-
quences are partially sorted. In both cases, insertion sort is the method of choice. The
extent to which the subsequences are partially sorted is a variable factor that depends
strongly on the increment sequence. Understanding shellsort’s performance is a chal-
lenge. Indeed, Algorithm 2.3 is the only sorting method we consider whose perfor-
mance on randomly ordered arrays has not been precisely characterized.

L E E A M H L E P S O L T S X R

L M P T

 E H S S

 E L O X

 A E L R

h = 4

An h-sorted sequence is h interleaved sorted subsequences

258 Chapter 2 n Sorting

ptg12441863

aLgorIthM 2.3 Shellsort

public class Shell
{
 public static void sort(Comparable[] a)
 { // Sort a[] into increasing order.
 int N = a.length;
 int h = 1;
 while (h < N/3) h = 3*h + 1; // 1, 4, 13, 40, 121, 364, 1093, ...
 while (h >= 1)
 { // h-sort the array.
 for (int i = h; i < N; i++)
 { // Insert a[i] among a[i-h], a[i-2*h], a[i-3*h]... .
 for (int j = i; j >= h && less(a[j], a[j-h]); j -= h)
 exch(a, j, j-h);
 }
 h = h/3;
 }
 }

 // See page 245 for less(), exch(), isSorted(), and main().

}

If we modify insertion sort (Algorithm 2.2) to h-sort the array and add an outer loop to decrease
h through a sequence of increments starting at an increment as large as a constant fraction of the ar-
ray length and ending at 1, we are led to this compact shellsort implementation.

% java SortCompare Shell Insertion 100000 100
For 100000 random Doubles
 Shell is 600 times faster than Insertion

Shellsort trace (array contents after each pass)

P H E L L S O R T E X A M S L E

A E E E H L L L M O P R S S T X

L E E A M H L E P S O L T S X R

S H E L L S O R T E X A M P L Einput

13-sort

4-sort

1-sort

2592.1 n Elementary Sorts

ptg12441863

How do we decide what increment sequence to use? In general, this question is a dif-
ficult one to answer. The performance of the algorithm depends not just on the num-
ber of increments, but also on arithmetical interactions among the increments such as

the size of their common divi-
sors and other properties. Many
different increment sequences
have been studied in the lit-
erature, but no provably best
sequence has been found. The
increment sequence that is used
in Algorithm 2.3 is easy to
compute and use, and performs
nearly as well as more sophisti-
cated increment sequences that
have been discovered that have
provably better worst-case per-
formance. Increment sequences
that are substantially better still
may be waiting to be discovered.

Shellsort is useful even for
large arrays, particularly by
contrast with selection sort and
insertion sort. It also performs
well on arrays that are in arbi-
trary order (not necessarily ran-
dom). Indeed, constructing an
array for which shellsort runs
slowly for a particular incre-
ment sequence is usually a chal-
lenging exercise.

As you can learn with
SortCompare, shellsort is much
faster than insertion sort and
selection sort, and its speed ad-
vantage increases with the array

size. Before reading further, try using SortCompare to compare shellsort with insertion
sort and selection sort for array sizes that are increasing powers of 2 on your computer
(see Exercise 2.1.27). You will see that shellsort makes it possible to address sorting

Detailed trace of shellsort (insertions)

13-sort

input

result

4-sort

1-sort

S H E L L S O R T E X A M P L E

E L E A M H L E P S O L T S X R

E E L A M H L E P S O L T S X R

A E E L M H L E P S O L T S X R

A E E L M H L E P S O L T S X R

A E E H L M L E P S O L T S X R

A E E H L L M E P S O L T S X R

A E E E H L L M P S O L T S X R

A E E E H L L M P S O L T S X R

A E E E H L L M P S O L T S X R

A E E E H L L M O P S L T S X R

A E E E H L L L M O P S T S X R

A E E E H L L L M O P S T S X R

A E E E H L L L M O P S S T X R

A E E E H L L L M O P S S T X R

A E E E H L L L M O P R S S T X

L H E L P S O R T E X A M S L E

L H E L P S O R T E X A M S L E

L H E L P S O R T E X A M S L E

L H E L P S O R T E X A M S L E

L H E L P S O R T E X A M S L E

L E E L P H O R T S X A M S L E

L E E L P H O R T S X A M S L E

L E E A P H O L T S X R M S L E

L E E A M H O L P S X R T S L E

L E E A M H O L P S X R T S L E

L E E A M H L L P S O R T S X E

L E E A M H L E P S O L T S X R

P H E L L S O R T E X A M S L E

P H E L L S O R T E X A M S L E

P H E L L S O R T E X A M S L E

A E E E H L L L M O P R S S T X

260 Chapter 2 n Sorting

ptg12441863

Visual trace of shellsort

input

40-sorted

13-sorted

4-sorted

result

problems that could not be addressed with the more elementary algorithms. This ex-
ample is our first practical illustration of an important principle that pervades this
book: achieving speedups that enable the solution of problems that could not otherwise be
solved is one of the prime reasons to study algorithm performance and design.

The study of the performance characteristics of shellsort requires mathematical ar-
guments that are beyond the scope of this book. If you want to be convinced, start
by thinking about how you would prove the following fact: when an h-sorted array is
k-sorted, it remains h-sorted. As for the performance of Algorithm 2.3, the most im-
portant result in the present context is the knowledge that the running time of shellsort
is not necessarily quadratic—for example, it is known that the worst-case number of
compares for Algorithm 2.3 is proportional to N 3/2. That such a simple modification

2612.1 n Elementary Sorts

ptg12441863

can break the quadratic-running-time barrier is quite interesting, as doing so is a prime
goal for many algorithm design problems.

No mathematical results are available about the average-case number of compares
for shellsort for randomly ordered input. Increment sequences have been devised that
drive the asymptotic growth of the worst-case number of compares down to N 4/3, N 5/4,
N 6/5, . . . , but many of these results are primarily of academic interest because these
functions are hard to distinguish from one another (and from a constant factor of N)
for practical values of N.

In practice, you can safely take advantage of the past scientific study of shellsort just
by using the increment sequence in Algorithm 2.3 (or one of the increment sequences
in the exercises at the end of this section, which may improve performance by 20 to 40
percent). Moreover, you can easily validate the following hypothesis:

property E. The number of compares used by shellsort with the increments 1, 4,
13, 40, 121, 364, . . . is bounded by a small multiple of N times the number of incre-
ments used.

Evidence: Instrumenting Algorithm 2.3 to count compares and divide by the
number of increments used is a straightforward exercise (see Exercise 2.1.12). Ex-
tensive experiments suggest that the average number of compares per increment
might be N 1/5, but it is quite difficult to discern the growth in that function unless
N is huge. This property also seems to be rather insensitive to the input model.

Experienced programmers sometimes choose shellsort because it has acceptable
running time even for moderately large arrays; it requires a small amount of code; and
it uses no extra space. In the next few sections, we shall see methods that are more ef-
ficient, but they are perhaps only twice as fast (if that much) except for very large N, and
they are more complicated. If you need a solution to a sorting problem, and are work-
ing in a situation where a system sort may not be available (for example, code destined
for hardware or an embedded system), you can safely use shellsort, then determine
sometime later whether it will be worthwhile to replace it with a more sophisticated
method.

262 Chapter 2 n Sorting

ptg12441863

Q&A

Q. Sorting seems like a toy problem. Aren’t many of the other things that we do with
computers much more interesting?

A. Perhaps, but many of those interesting things are made possible by fast sorting al-
gorithms. You will find many examples in Section 2.5 and throughout the rest of the
book. Sorting is worth studying now because the problem is easy to understand, and
you can appreciate the ingenuity behind the faster algorithms.

Q. Why so many sorting algorithms?

A. One reason is that the performance of many algorithms depends on the input val-
ues, so different algorithms might be appropriate for different applications having dif-
ferent kinds of input. For example, insertion sort is the method of choice for partially
sorted or tiny arrays. Other constraints, such as space and treatment of equal keys, also
come into play. We will revisit this question in Section 2.5.

Q. Why bother using the tiny helper methods less() and exch()?

A. They are basic abstract operations needed by any sort algorithm, and the code is
easier to understand in terms of these abstractions. Moreover, they make the code di-
rectly portable to other settings. For example, much of the code in Algorithms 2.1
and 2.2 is legal code in several other programming languages. Even in Java, we can use
this code as the basis for sorting primitive types (which are not Comparable): simply
implement less() with the code v < w.

Q. When I run SortCompare, I get different values each time that I run it (and those
are different from the values in the book). Why?

A. For starters, you have a different computer from the one we used, not to mention
a different operating system, Java runtime, and so forth. All of these differences might
lead to slight differences in the machine code for the algorithms. Differences each time
that you run it on your computer might be due to other applications that you are run-
ning or various other conditions. Running a very large number of trials should dampen
the effect. The lesson is that small differences in algorithm performance are difficult to
notice nowadays. That is a primary reason that we focus on large ones!

2632.1 n Elementary Sorts

ptg12441863

ExErcisEs

2.1.1 Show, in the style of the example trace with Algorithm 2.1, how selection sort
sorts the array E A S Y Q U E S T I O N.

2.1.2 What is the maximum number of exchanges involving any particular item during
selection sort? What is the average number of exchanges involving an item?

2.1.3 Give an example of an array of N items that maximizes the number of times the
test a[j] < a[min] succeeds (and, therefore, min gets updated) during the operation
of selection sort (Algorithm 2.1).

2.1.4 Show, in the style of the example trace with Algorithm 2.2, how insertion sort
sorts the array E A S Y Q U E S T I O N.

2.1.5 For each of the two conditions in the inner for loop in insertion sort (Algo-
rithm 2.2), describe an array of N items where that condition is always false when the
loop terminates.

2.1.6 Which method runs faster for an array with all keys identical, selection sort or
insertion sort?

2.1.7 Which method runs faster for an array in reverse order, selection sort or inser-
tion sort?

2.1.8 Suppose that we use insertion sort on a randomly ordered array where items have
only one of three values. Is the running time linear, quadratic, or something in between?

2.1.9 Show, in the style of the example trace with Algorithm 2.3, how shellsort sorts
the array E A S Y S H E L L S O R T Q U E S T I O N.

2.1.10 Why not use selection sort for h-sorting in shellsort?

2.1.11 Implement a version of shellsort that keeps the increment sequence in an array,
rather than computing it.

2.1.12 Instrument shellsort to print the number of compares divided by the array size
for each increment. Write a test client that tests the hypothesis that this number is a
small constant, by sorting arrays of random Double values, using array sizes that are
increasing powers of 10, starting at 100.

264 Chapter 2 n Sorting

ptg12441863

crEAtivE problEms

2.1.13 Deck sort. Explain how you would put a deck of cards in order by suit (in the
order spades, hearts, clubs, diamonds) and by rank within each suit, with the restriction
that the cards must be laid out face down in a row, and the only allowed operations are
to check the values of two cards and to exchange two cards (keeping them face down).

2.1.14 Dequeue sort. Explain how you would sort a deck of cards, with the restric-
tion that the only allowed operations are to look at the values of the top two cards, to
exchange the top two cards, and to move the top card to the bottom of the deck.

2.1.15 Expensive exchange. A clerk at a shipping company is charged with the task of
rearranging a number of large crates in order of the time they are to be shipped out.
Thus, the cost of compares is very low (just look at the labels) relative to the cost of ex-
changes (move the crates). The warehouse is nearly full—there is extra space sufficient
to hold any one of the crates, but not two. What sorting method should the clerk use?

2.1.16 Certification. Write a check() method that calls sort() for a given array and
returns true if sort() puts the array in order and leaves the same set of objects in the
array as were there initially, false otherwise. Do not assume that sort() is restricted to
move data only with exch(). You may use Arrays.sort() and assume that it is correct.

2.1.17 Animation. Add code to Insertion, Selection and Shell to make them
draw the array contents as vertical bars like the visual traces in this section, redrawing
the bars after each pass, to produce an animated effect, ending in a “sorted” picture
where the bars appear in order of their height. Hint : Use a client like the one in the text
that generates random Double values, insert calls to show() as appropriate in the sort
code, and implement a show() method that clears the canvas and draws the bars.

2.1.18 Visual trace. Modify your solution to the previous exercise to make Insertion,
Selection and Shell produce visual traces such as those depicted in this section. Hint :
Judicious use of setYscale() makes this problem easy. Extra credit : Add the code nec-
essary to produce red and gray color accents such as those in our figures.

2.1.19 Shellsort worst case. Construct an array of 100 elements containing the num-
bers 1 through 100 for which shellsort, with the increments 1 4 13 40, uses as large a
number of compares as you can find.

2.1.20 Shellsort best case. What is the best case for shellsort? Justify your answer.

2652.1 n Elementary Sorts

ptg12441863

2.1.21 Comparable transactions. Using our code for Date (page 247) as a model, ex-
pand your implementation of Transaction (Exercise 1.2.13) so that it implements
Comparable, such that transactions are kept in order by amount.

Solution :

public class Transaction implements Comparable<Transaction>
{
 ...
 private final double amount;
 ...
 public int compareTo(Transaction that)
 {
 if (this.amount > that.amount) return +1;
 if (this.amount < that.amount) return -1;
 return 0;
 }
 ...
}

2.1.22 Transaction sort test client. Write a class SortTransactions that consists of a
static method main() that reads a sequence of transactions from standard input, sorts
them, and prints the result on standard output (see Exercise 1.3.17).

Solution :

public class SortTransactions
{
 public static Transaction[] readTransactions()

 { /* See Exercise 1.3.17 */ }

 public static void main(String[] args)
 {
 Transaction[] transactions = readTransactions();
 Shell.sort(transactions);
 for (Transaction t : transactions)
 StdOut.println(t);
 }

}

crEAtivE problEms (continued)

266 Chapter 2 n Sorting

ptg12441863

ExpErimENts

2.1.23 Deck sort. Ask a few friends to sort a deck of cards (see Exercise 2.1.13). Ob-
serve them carefully and write down the method(s) that they use.

2.1.24 Insertion sort with sentinel. Develop an implementation of insertion sort that
eliminates the j>0 test in the inner loop by first putting the smallest item into position.
Use SortCompare to evaluate the effectiveness of doing so. Note : It is often possible to
avoid an index-out-of-bounds test in this way—the element that enables the test to be
eliminated is known as a sentinel.

2.1.25 Insertion sort without exchanges. Develop an implementation of insertion sort
that moves larger elements to the right one position with one array access per entry,
rather than using exch(). Use SortCompare to evaluate the effectiveness of doing so.

2.1.26 Primitive types. Develop a version of insertion sort that sorts arrays of int
values and compare its performance with the implementation given in the text (which
sorts Integer values and implicitly uses autoboxing and auto-unboxing to convert).

2.1.27 Shellsort is subquadratic. Use SortCompare to compare shellsort with insertion
sort and selection sort on your computer. Use array sizes that are increasing powers of
2, starting at 128.

2.1.28 Equal keys. Formulate and validate hypotheses about the running time of in-
sertion sort and selection sort for arrays that contain just two key values, assuming that
the values are equally likely to occur.

2.1.29 Shellsort increments. Run experiments to compare the increment sequence in
Algorithm 2.3 with the sequence 1, 5, 19, 41, 109, 209, 505, 929, 2161, 3905, 8929,
16001, 36289, 64769, 146305, 260609 (which is formed by merging together the se-
quences 9·4k 9·2k 1 and 4k 3·2k 1). See Exercise 2.1.11.

2.1.30 Geometric increments. Run experiments to determine a value of t that leads to
the lowest running time of shellsort for random arrays for the increment sequence 1,
⎣t⎦, ⎣t 2⎦, ⎣t 3⎦, ⎣t 4⎦, . . . for N = 10 6. Give the values of t and the increment sequences for
the best three values that you find.

2672.1 n Elementary Sorts

ptg12441863

ExpErimENts (continued)

The following exercises describe various clients for helping to evaluate sorting methods. They
are intended as starting points for helping to understand performance properties, using ran-
dom data. In all of them, use time(), as in SortCompare, so that you can get more accurate
results by specifying more trials in the second command-line argument. We refer back to these
exercises in later sections when evaluating more sophisticated methods.

2.1.31 Doubling test. Write a client that performs a doubling test for sort algorithms.
Start at N equal to 1000, and print N, the predicted number of seconds, the actual num-
ber of seconds, and the ratio as N doubles. Use your program to validate that insertion
sort and selection sort are quadratic for random inputs, and formulate and test a hy-
pothesis for shellsort.

2.1.32 Plot running times. Write a client that uses StdDraw to plot the average running
times of the algorithm for random inputs and various values of the array size. You may
add one or two more command-line arguments. Strive to design a useful tool.

2.1.33 Distribution. Write a client that enters into an infinite loop running sort() on
arrays of the size given as the third command-line argument, measures the time taken
for each run, and uses StdDraw to plot the average running times. A picture of the dis-
tribution of the running times should emerge.

2.1.34 Corner cases. Write a client that runs sort() on difficult or pathological cases
that might turn up in practical applications. Examples include arrays that are already
in order, arrays in reverse order, arrays where all keys are the same, arrays consisting of
only two distinct values, and arrays of size 0 or 1.

2.1.35 Nonuniform distributions. Write a client that generates test data by randomly
ordering objects using other distributions than uniform, including the following:

n	 Gaussian
n	 Poisson
n	 Geometric
n	 Discrete (see Exercise 2.1.28 for a special case)

Develop and test hypotheses about the effect of such input on the performance of the
algorithms in this section.

268 Chapter 2 n Sorting

ptg12441863

2.1.36 Nonuniform data. Write a client that generates test data that is not uniform,
including the following:

n	 Half the data is 0s, half 1s.
n	 Half the data is 0s, half the remainder is 1s, half the remainder is 2s, and so forth.
n	 Half the data is 0s, half random int values.

Develop and test hypotheses about the effect of such input on the performance of the
algorithms in this section.

2.1.37 Partially sorted. Write a client that generates partially sorted arrays, including
the following:

n	 95 percent sorted, last percent random values
n	 All entries within 10 positions of their final place in the array
n	 Sorted except for 5 percent of the entries randomly dispersed throughout the

array
Develop and test hypotheses about the effect of such input on the performance of the
algorithms in this section.

2.1.38 Various types of items. Write a client that generates arrays of items of various
types with random key values, including the following:

n	 String key (at least ten characters), one double value
n	 double key, ten String values (all at least ten characters)
n	 int key, one int[20] value

Develop and test hypotheses about the effect of such input on the performance of the
algorithms in this section.

2692.1 n Elementary Sorts

ptg12441863

2.2 MergeSort

The algorithms that we consider in this section are based on a simple operation
known as merging : combining two ordered arrays to make one larger ordered array.
This operation immediately leads to a simple recursive sort method known as merge-
sort : to sort an array, divide it into two halves, sort the two halves (recursively), and
then merge the results. As you will see, one of mergesort’s most attractive properties is
that it guarantees to sort any array of N items in time proportional to N log N. Its prime
disadvantage is that it uses extra space proportional to N.

Abstract in-place merge The straightforward approach to implementing merg-
ing is to design a method that merges two disjoint ordered arrays of Comparable ob-
jects into a third array. This strategy is easy to implement: create an output array of the
requisite size and then choose successively the smallest remaining item from the two
input arrays to be the next item added to the output array.

However, when we mergesort a large array, we are doing a huge number of merges,
so the cost of creating a new array to hold the output every time that we do a merge is
problematic. It would be much more desirable to have an in-place method so that we
could sort the first half of the array in place, then sort the second half of the array in
place, then do the merge of the two halves by moving the items around within the ar-
ray, without using a significant amount of other extra space. It is worthwhile to pause
momentarily to consider how you might do that. At first blush, this problem seems to
be one that must be simple to solve, but solutions that are known are quite complicated,
especially by comparison to alternatives that use extra space.

Still, the abstraction of an in-place merge is useful. Accordingly, we use the method
signature merge(a, lo, mid, hi) to specify a merge method that puts the result of
merging the subarrays a[lo..mid] with a[mid+1..hi] into a single ordered array,
leaving the result in a[lo..hi]. The code on the next page implements this merge
method in just a few lines by copying everything to an auxiliary array and then merging
back to the original. Another approach is described in Exercise 2.2.9.

M E R G E S O R T E X A M P L E

E E G M O R R S T E X A M P L E

E E G M O R R S A E E L M P T X

A E E E E G L M M O P R R S T X

input

sort left half

sort right half

merge results

Mergesort overview

270

ptg12441863

Abstract in-place merge

public static void merge(Comparable[] a, int lo, int mid, int hi)
{ // Merge a[lo..mid] with a[mid+1..hi].
 int i = lo, j = mid+1;

 for (int k = lo; k <= hi; k++) // Copy a[lo..hi] to aux[lo..hi].
 aux[k] = a[k];

 for (int k = lo; k <= hi; k++) // Merge back to a[lo..hi].
 if (i > mid) a[k] = aux[j++];
 else if (j > hi) a[k] = aux[i++];
 else if (less(aux[j], aux[i])) a[k] = aux[j++];
 else a[k] = aux[i++];
}

This method merges by first copying into the auxiliary array aux[] then merging back to a[]. In the
merge (the second for loop), there are four conditions: left half exhausted (take from the right), right
half exhausted (take from the left), current key on right less than current key on left (take from the
right), and current key on right greater than or equal to current key on left (take from the left).

 a[] aux[]

k 0 1 2 3 4 5 6 7 8 9 i j 0 1 2 3 4 5 6 7 8 9

 E E G M R A C E R T - - - - - - - - - -

 E E G M R A C E R T E E G M R A C E R T

 0 5

0 A 0 6 E E G M R A C E R T

1 A C 0 7 E E G M R C E R T

2 A C E 1 7 E E G M R E R T

3 A C E E 2 7 E G M R E R T

4 A C E E E 2 8 G M R E R T

5 A C E E E G 3 8 G M R R T

6 A C E E E G M 4 8 M R R T

7 A C E E E G M R 5 8 R R T

8 A C E E E G M R R 5 9 R T

9 A C E E E G M R R T 6 10 T

 A C E E E G M R R T

input

copy

Abstract in-place merge trace

merged result

2712.2 n Mergesort

ptg12441863

Top-down mergesort Algorithm 2.4 is a recur-
sive mergesort implementation based on this abstract in-
place merge. It is one of the best-known examples of the
utility of the divide-and-conquer paradigm for efficient
algorithm design. This recursive code is the basis for an
inductive proof that the algorithm sorts the array: if it
sorts the two subarrays, it sorts the whole array, by merg-
ing together the subarrays.

To understand mergesort, it is worthwhile to consider
carefully the dynamics of the method calls, shown in the
trace at right. To sort a[0..15], the sort() method calls
itself to sort a[0..7] then calls itself to sort a[0..3]
and a[0..1] before finally doing the first merge of a[0]
with a[1] after calling itself to sort a[0] and then a[1]
(for brevity, we omit the calls for the base-case 1-entry
sorts in the trace). Then the next merge is a[2] with a[3]
and then a[0..1] with a[2..3] and so forth. From this
trace, we see that the sort code simply provides an orga-
nized way to sequence the calls to the merge() method.
This insight will be useful later in this section.

The recursive code also provides us with the basis for
analyzing mergesort’s running time. Because mergesort
is a prototype of the divide-and-conquer algorithm de-
sign paradigm, we will consider this analysis in detail.

proposition F. Top-down mergesort uses between ½ N lg N and N lg N compares to
sort any array of length N.

proof: Let C(N) be the number of compares needed to sort an array of length N.
We have C(0) = C(1) = 0 and for N > 0 we can write a recurrence relationship that
directly mirrors the recursive sort() method to establish an upper bound:

C(N)  C (⎡N/2⎤)  C (⎣N/2⎦)  N.

The first term on the right is the number of compares to sort the left half of the ar-
ray, the second term is the number of compares to sort the right half, and the third

sort(a, 0, 15)
 sort(a, 0, 7)
 sort(a, 0, 3)
 sort(a, 0, 1)
 merge(a, 0, 0, 1)
 sort(a, 2, 3)
 merge(a, 2, 2, 3)
 merge(a, 0, 1, 3)
 sort(a, 4, 7)
 sort(a, 4, 5)
 merge(a, 4, 4, 5)
 sort(a, 6, 7)
 merge(a, 6, 6, 7)
 merge(a, 4, 5, 7)
 merge(a, 0, 3, 7)
 sort(a, 8, 15)
 sort(a, 8, 11)
 sort(a, 8, 9)
 merge(a, 8, 8, 9)
 sort(a, 10, 11)
 merge(a, 10, 10, 11)
 merge(a, 8, 9, 11)
 sort(a, 12, 15)
 sort(a, 12, 13)
 merge(a, 12, 12, 13)
 sort(a, 14, 15)
 merge(a, 14, 14,15)
 merge(a, 12, 13, 15)
 merge(a, 8, 11, 15)
 merge(a, 0, 7, 15)

Top-down mergesort call trace

sort
left half

sort
right half

merge
results

272 Chapter 2 n Sorting

ptg12441863

aLgorIthM 2.4 top-down mergesort

public class Merge
{
 private static Comparable[] aux; // auxiliary array for merges

 public static void sort(Comparable[] a)
 {
 aux = new Comparable[a.length]; // Allocate space just once.
 sort(a, 0, a.length - 1);
 }

 private static void sort(Comparable[] a, int lo, int hi)
 { // Sort a[lo..hi].
 if (hi <= lo) return;
 int mid = lo + (hi - lo)/2;
 sort(a, lo, mid); // Sort left half.
 sort(a, mid+1, hi); // Sort right half.
 merge(a, lo, mid, hi); // Merge results (code on page 271).
 }
}

To sort a subarray a[lo..hi] we divide it into two parts: a[lo..mid] and a[mid+1..hi], sort them
independently (via recursive calls), and merge the resulting ordered subarrays to produce the result.

Trace of merge results for top-down mergesort

 a[]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, 0, 1, 3) E G M R E S O R T E X A M P L E
 merge(a, 4, 4, 5) E G M R E S O R T E X A M P L E
 merge(a, 6, 6, 7) E G M R E S O R T E X A M P L E
 merge(a, 4, 5, 7) E G M R E O R S T E X A M P L E
 merge(a, 0, 3, 7) E E G M O R R S T E X A M P L E
 merge(a, 8, 8, 9) E E G M O R R S E T X A M P L E
 merge(a, 10, 10, 11) E E G M O R R S E T A X M P L E
 merge(a, 8, 9, 11) E E G M O R R S A E T X M P L E
 merge(a, 12, 12, 13) E E G M O R R S A E T X M P L E
 merge(a, 14, 14, 15) E E G M O R R S A E T X M P E L
 merge(a, 12, 13, 15) E E G M O R R S A E T X E L M P
 merge(a, 8, 11, 15) E E G M O R R S A E E L M P T X
 merge(a, 0, 7, 15) A E E E E G L M M O P R R S T X

lo hi

2732.2 n Mergesort

ptg12441863

term is the number of compares for the merge. The lower bound

C(N)  C (⎡N/2⎤)  C(⎣N/2⎦)  ⎣N/2⎦

follows because the number of compares for the merge is at least ⎣N/2⎦ .
We derive an exact solution to the recurrence when equality holds and N is a

power of 2 (say N = 2n). First, since ⎣N/2⎦ = ⎡N/2⎤ = 2n1, we have

C(2n) = 2C(2n1)  2n.

Dividing both sides by 2n gives

C(2n)/2n = C(2n1)/2n1  1.

Applying the same equation to the first term on the right, we have

C(2n)/2n = C(2n2)/2n2  1  1.

Repeating the previous step n  1 additional times gives

C(2n)/2n =C(20)/20  n.

which, after multiplying both sides by 2n, leaves us with the solution

C(N) = C(2n) = n 2n
 = N lg N.

Exact solutions for general N are more complicated, but it is not difficult to apply
the same argument to the inequalities describing the bounds on the number of
compares to prove the stated result for all values of N. This proof is valid no matter
what the input values are and no matter in what order they appear.

Another way to understand Proposition F is to examine the tree drawn below, where
each node depicts a subarray for which sort() does a merge(). The tree has precisely
n levels. For k from 0 to n  1, the kth level from the top depicts 2k subarrays, each of
length 2nk, each of which thus requires at most 2nk compares for the merge. Thus we
have 2k · 2nk = 2n

 total cost for each of the n levels, for a total of n 2n
 = N lgN.

Mergesort subarray dependence tree for N = 16

a[0..1] a[2..3] a[4..5] a[6..7] a[8..9] a[10..11] a[12..13] a[14..15]

a[0..3]

a[0..7]

a[4..7]

a[0..15]

a[8..11]

a[8..15]

a[12..15]

lg N

274 Chapter 2 n Sorting

ptg12441863

proposition G. Top-down mergesort uses at most 6N lg N array accesses to sort an
array of length N.

proof: Each merge uses at most 6N array accesses (2N for the copy, 2N for the
move back, and at most 2N for compares). The result follows from the same argu-
ment as for Proposition F.

PropositionS F and G tell us that we can expect the time required by mergesort to be
proportional to N log N. That fact brings us to a different level from the elementary
methods in Section 2.1 because it tells us that we can sort huge arrays using just a
logarithmic factor more time than it takes to examine every entry. You can sort millions
of items (or more) with mergesort, but not with insertion sort or selection sort. The
primary drawback of mergesort is that it requires extra space proportional to N, for
the auxiliary array for merging. If space is at a premium, we need to consider another
method. On the other hand, we can cut the running time of mergesort substantially
with some carefully considered modifications to the implementation.

Use insertion sort for small subarrays We can improve most recursive algorithms by
handling small cases differently, because the recursion guarantees that the method will
be used often for small cases, so improvements in handling them lead to improvements
in the whole algorithm. In the case of sorting, we know that insertion sort (or selection
sort) is simple and therefore likely to be faster than mergesort for tiny subarrays. As
usual, a visual trace provides insight into the operation of mergesort. The visual trace
on the next page shows the operation of a mergesort implementation with a cutoff for
small subarrays. Switching to insertion sort for small subarrays (length 15 or less, say)
will improve the running time of a typical mergesort implementation by 10 to 15 per-
cent (see Exercise 2.2.23).

Test whether the array is already in order We can reduce the running time to be
linear for arrays that are already in order by adding a test to skip the call to merge() if
a[mid] is less than or equal to a[mid+1]. With this change, we still do all the recursive
calls, but the running time for any sorted subarray is linear (see Exercise 2.2.8).

Eliminate the copy to the auxiliary array It is possible to eliminate the time (but not
the space) taken to copy to the auxiliary array used for merging. To do so, we use two
invocations of the sort method: one takes its input from the given array and puts the
sorted output in the auxiliary array; the other takes its input from the auxiliary array
and puts the sorted output in the given array. With this approach, in a bit of recursive
trickery, we can arrange the recursive calls such that the computation switches the roles
of the input array and the auxiliary array at each level (see Exercise 2.2.11).

2752.2 n Mergesort

ptg12441863

Visual trace of top-down mergesort with cuto� for small subarrays

�rst subarray

second subarray

�rst merge

�rst half sorted

second half sorted

result

276 Chapter 2 n Sorting

ptg12441863

It is appropriate to repeat here a point raised in Chapter 1 that is easily forgotten and
needs reemphasis. Locally, we treat each algorithm in this book as if it were critical in
some application. Globally, we try to reach general conclusions about which approach
to recommend. Our discussion of such improvements is not necessarily a recommen-
dation to always implement them, rather a warning not to draw absolute conclusions
about performance from initial implementations. When addressing a new problem,
your best bet is to use the simplest implementation with which you are comfortable
and then refine it if it becomes a bottleneck. Addressing improvements that decrease
running time just by a constant factor may not otherwise be worthwhile. You need to
test the effectiveness of specific improvements by running experiments, as we indicate
in exercises throughout.

In the case of mergesort, the three improvements just listed are simple to implement
and are of interest when mergesort is the method of choice—for example, in situations
discussed at the end of this chapter.

Bottom-up mergesort The recursive implementation of mergesort is prototypi-
cal of the divide-and-conquer algorithm design paradigm, where we solve a large prob-
lem by dividing it into pieces, solving the subproblems, then using the solutions for the
pieces to solve the whole problem. Even though we are thinking in terms of merging
together two large subarrays, the fact is that most merges are merging together tiny
subarrays. Another way to implement mergesort is to organize the merges so that we do
all the merges of tiny subarrays on one pass, then do a second pass to merge those sub-
arrays in pairs, and so forth, continuing until we
do a merge that encompasses the whole array. This
method requires even less code than the standard
recursive implementation. We start by doing a pass
of 1-by-1 merges (considering individual items as
subarrays of size 1), then a pass of 2-by-2 merges
(merge subarrays of size 2 to make subarrays of
size 4), then 4-by-4 merges, and so forth. The sec-
ond subarray may be smaller than the first in the
last merge on each pass (which is no problem for
merge()), but otherwise all merges involve subar-
rays of equal size, doubling the sorted subarray size
for the next pass.

sz = 1

2

4

 8

16

Visual trace of bottom-up mergesort

2772.2 n Mergesort

ptg12441863

Bottom-up mergesort

public class MergeBU
{
 private static Comparable[] aux; // auxiliary array for merges

 // See page 271 for merge() code.

 public static void sort(Comparable[] a)
 { // Do lg N passes of pairwise merges.
 int N = a.length;
 aux = new Comparable[N];
 for (int sz = 1; sz < N; sz = sz+sz) // sz: subarray size
 for (int lo = 0; lo < N-sz; lo += sz+sz) // lo: subarray index
 merge(a, lo, lo+sz-1, Math.min(lo+sz+sz-1, N-1));
 }
}

Bottom-up mergesort consists of a sequence of passes over the whole array, doing sz-by-sz merges,
starting with sz equal to 1 and doubling sz on each pass. The final subarray is of size sz only when
the array size is an even multiple of sz (otherwise it is less than sz).

Trace of merge results for bottom-up mergesort

 a[i]
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 M E R G E S O R T E X A M P L E
 merge(a, 0, 0, 1) E M R G E S O R T E X A M P L E
 merge(a, 2, 2, 3) E M G R E S O R T E X A M P L E
 merge(a, 4, 4, 5) E M G R E S O R T E X A M P L E
 merge(a, 6, 6, 7) E M G R E S O R T E X A M P L E
 merge(a, 8, 8, 9) E M G R E S O R E T X A M P L E
 merge(a, 10, 10, 11) E M G R E S O R E T A X M P L E
 merge(a, 12, 12, 13) E M G R E S O R E T A X M P L E
 merge(a, 14, 14, 15) E M G R E S O R E T A X M P E L

 merge(a, 0, 1, 3) E G M R E S O R E T A X M P E L
 merge(a, 4, 5, 7) E G M R E O R S E T A X M P E L
 merge(a, 8, 9, 11) E G M R E O R S A E T X M P E L
 merge(a, 12, 13, 15) E G M R E O R S A E T X E L M P

 merge(a, 0, 3, 7) E E G M O R R S A E T X E L M P
 merge(a, 8, 11, 15) E E G M O R R S A E E L M P T X

 merge(a, 0, 7, 15) A E E E E G L M M O P R R S T X

sz = 1

sz = 2

sz = 4

sz = 8

278 Chapter 2 n Sorting

ptg12441863

proposition H. Bottom-up mergesort uses between ½ N lg N and N lg N compares
and at most 6N lg N array accesses to sort an array of length N.

proof: The number of passes through the array is precisely ⎡lg N⎤ (that is precisely
the value of n such that 2n – 1 < N  2n). For each pass, the number of array accesses
is exactly 6N and the number of compares is at most N and no less than N/ 2.

When the array length is a power of 2, top-down and bottom-up mergesort per-
form precisely the same compares and array accesses, just in a different order. When the
array length is not a power of 2, the sequence of compares and array accesses for the two
algorithms will be different (see Exercise 2.2.5).

A version of bottom-up mergesort is the method of choice for sorting data orga-
nized in a linked list. Consider the list to be sorted sublists of size 1, then pass through
to make sorted sublists of size 2 linked together, then size 4, and so forth. This method
rearranges the links to sort the list in place (without creating any new list nodes).

Both the top-down and bottom-up approaches to implementing a divide-and-
conquer algorithm are intuitive. The lesson that you can take from mergesort is this:
Whenever you encounter an algorithm based on one of these approaches, it is worth
considering the other. Do you want to solve the problem by breaking it up into smaller
problems (and solving them recursively) as in Merge.sort() or by building small solu-
tions into larger ones as in MergeBU.sort()?

The complexity of sorting One important reason to know about mergesort is
that we use it as the basis for proving a fundamental result in the field of computational
complexity that helps us understand the intrinsic difficulty of sorting. In general, com-
putational complexity plays an important role in the design of algorithms, and this
result in particular is directly relevant to the design of sorting algorithms, so we next
consider it in detail.

The first step in a study of complexity is to establish a model of computation. Gen-
erally, researchers strive to understand the simplest model relevant to a problem. For
sorting, we study the class of compare-based algorithms that make their decisions about
items only on the basis of comparing keys. A compare-based algorithm can do an ar-
bitrary amount of computation between compares, but cannot get any information
about a key except by comparing it with another one. Because of our restriction to the
Comparable API, all of the algorithms in this chapter are in this class (note that we are
ignoring the cost of array accesses), as are many algorithms that we might imagine. In
Chapter 5, we consider algorithms that are not restricted to Comparable items.

2792.2 n Mergesort

ptg12441863

proposition i. No compare-based sorting algorithm can guarantee to sort N items
with fewer than lg(N !) ~ N lg N compares.

proof: First, we assume that the keys are all distinct, since any algorithm must be
able to sort such inputs. Now, we use a binary tree to describe the sequence of com-
pares. Each node in the tree is either a leaf i0 i1 i2 ... iN-1 that indicates that the
sort is complete and has discovered that the original inputs were in the order
a[i0], a[i1], ...a[iN-1], or an internal node i:j that corresponds to a com-
pare operation between a[i] and a[j], with a left subtree corresponding to the
sequence of compares in the case that a[i] is less than a[j], and a right subtree
corresponding to what happens if a[i] is greater than a[j]. Each path from the
root to a leaf corresponds to the sequence of compares that the algorithm uses to
establish the ordering given in the leaf. For example, here is a compare tree for
N = 3:

0 1 2 1 0 2

0 2 1 2 0 1 1 2 0 2 1 0

0:1

0:2

1:2

1:2

0:2

We never explicitly construct such a tree—it is a mathematical device for describ-
ing the compares used by any algorithm.

The first key observation in the proof is that the tree must have at least N ! leaves
because there are N ! different permutations of N distinct keys. If there are fewer
than N ! leaves, then some permutation is missing from the leaves, and the algo-
rithm would fail for that permutation.

The number of internal nodes on a path from the root to a leaf in the tree is the
number of compares used by the algorithm for some input. We are interested in the
length of the longest such path in the tree (known as the tree height) since it mea-
sures the worst-case number of compares used by the algorithm. Now, it is a basic
combinatorial property of binary trees that a tree of height h has no more than 2h
leaves—the tree of height h with the maximum number of leaves is perfectly bal-
anced, or complete. An example for h = 4 is diagrammed on the next page.

280 Chapter 2 n Sorting

ptg12441863

complete tree of
height 4 (gray) has

24 = 16 leaves

any other tree of
height 4 (black) has
fewer than 16 leaves

Combining the previous two paragraphs, we have shown that any compare-based
sorting algorithm corresponds to a compare tree of height h with

N !  number of leaves  2h

at least N! leaves no more than 2h leaves

h

The value of h is precisely the worst-case number of compares, so we can take the
logarithm (base 2) of both sides of this equation and conclude that the number
of compares used by any algorithm must be at least lg (N !). The approximation
lg (N !) ~ N lg N follows immediately from Stirling’s approximation to the factorial
function (see page 185).

This result serves as a guide for us to know, when designing a sorting algorithm, how
well we can expect to do. For example, without such a result, one might set out to try
to design a compare-based sorting algorithm that uses half as many compares as does
mergesort, in the worst case. The lower bound in Proposition I says that such an effort
is futile—no such algorithm exists. It is an extremely strong statement that applies to any
conceivable compare-based algorithm.

Proposition H asserts that the number of compares used by mergesort in the worst
case is ~ N lg N. This result is an upper bound on the difficulty of the sorting problem
in the sense that a better algorithm would have to guarantee to use a smaller number of
compares. Proposition I asserts that no sorting algorithm can guarantee to use fewer

2812.2 n Mergesort

ptg12441863

than ~ N lg N compares. It is a lower bound on the difficulty of the sorting problem in
the sense that even the best possible algorithm must use at least that many compares in
the worst case. Together, they imply:

 ~

proposition J. Mergesort is an asymptotically optimal compare-based sorting
algorithm.

proof: Precisely, we mean by this statement that both the number of compares used
by mergesort in the worst case and the minimum number of compares that any com-
pare-based sorting algorithm can guarantee are N lg N. Propositions H and I es-
tablish these facts.

It is important to note that, like the model of computation, we need to precisely define
what we mean by an optimal algorithm. For example, we might tighten the definition
of optimality and insist that an optimal algorithm for sorting is one that uses precisely
lg (N !) compares. We do not do so because we could not notice the difference between
such an algorithm and (for example) mergesort for large N. Or, we might broaden the
definition of optimality to include any sorting algorithm whose worst-case number of
compares is within a constant factor of N lg N. We do not do so because we might very
well notice the difference between such an algorithm and mergesort for large N.

Computational complexity may seem rather abstract, but fundamental re-
search on the intrinsic difficulty of solving computational problems hardly needs jus-
tification. Moreover, when it does apply, it is emphatically the case that computational
complexity affects the development of good software. First, good upper bounds allow
software engineers to provide performance guarantees; there are many documented
instances where poor performance has been traced to someone using a quadratic sort
instead of a linearithmic one. Second, good lower bounds spare us the effort of search-
ing for performance improvements that are not attainable.

But the optimality of mergesort is not the end of the story and should not be mis-
used to indicate that we need not consider other methods for practical applications.
That is not the case because the theory in this section has a number of limitations. For
example:

n	 Mergesort is not optimal with respect to space usage.
n	 The worst case may not be likely in practice.
n	 Operations other than compares (such as array accesses) may be important.
n	 One can sort certain data without using any compares.

Thus, we shall be considering several other sorting methods in this book.

282 Chapter 2 n Sorting

ptg12441863

Q&A

Q. Is mergesort faster than shellsort?

A. In practice, their running times are within a small constant factor of one another
(when shellsort is using a well-tested increment sequence like the one in Algorithm
2.3), so comparative performance depends on the implementations.

% java SortCompare Merge Shell 100000
For 100000 random Double values
 Merge is 1.2 times faster than Shell

In theory, no one has been able to prove that shellsort is linearithmic for random data,
so there remains the possibility that the asymptotic growth of the average-case perfor-
mance of shellsort is higher. Such a gap has been proven for worst-case performance,
but it is not relevant in practice.

Q. Why not make the aux[] array local to merge()?

A. To avoid the overhead of creating an array for every merge, even the tiny ones. This
cost would dominate the running time of mergesort (see Exercise 2.2.26). A more
proper solution (which we avoid in the text to reduce clutter in the code) is to make
aux[] local to sort() and pass it as an argument to merge() (see Exercise 2.2.9).

Q. How does mergesort fare when there are duplicate values in the array?

A. If all the items have the same value, the running time is linear (with the extra test to
skip the merge when the array is sorted), but if there is more than one duplicate value,
this performance gain is not necessarily realized. For example, suppose that the input
array consists of N items with one value in odd positions and N items with another
value in even positions. The running time is linearithmic for such an array (it satisfies
the same recurrence as for items with distinct values), not linear.

2832.2 n Mergesort

ptg12441863

ExErcisEs

2.2.1 Give a trace, in the style of the trace given at the beginning of this section, show-
ing how the keys A E Q S U Y E I N O S T are merged with the abstract in-place
merge() method.

2.2.2 Give traces, in the style of the trace given with Algorithm 2.4, showing how the
keys E A S Y Q U E S T I O N are sorted with top-down mergesort.

2.2.3 Answer Exercise 2.2.2 for bottom-up mergesort.

2.2.4 Does the abstract in-place merge produce proper output if and only if the two
input subarrays are in sorted order? Prove your answer, or provide a counterexample.

2.2.5 Give the sequence of subarray sizes in the merges performed by both the top-
down and the bottom-up mergesort algorithms, for N = 39.

2.2.6 Write a program to compute the exact value of the number of array accesses used
by top-down mergesort and by bottom-up mergesort. Use your program to plot the val-
ues for N from 1 to 512, and to compare the exact values with the upper bound 6N lg N.

2.2.7 Show that the number of compares used by mergesort is monotonically increas-
ing (C(N+1) > C(N) for all N > 0).

2.2.8 Suppose that Algorithm 2.4 is modified to skip the call on merge() whenever
a[mid] <= a[mid+1]. Prove that the number of compares used to mergesort a sorted
array is linear.

2.2.9 Use of a static array like aux[] is inadvisable in library software because multiple
clients might use the class concurrently. Give an implementation of Merge that does not
use a static array. Do not make aux[] local to merge() (see the Q&A for this section).
Hint : Pass the auxiliary array as an argument to the recursive sort().

284 Chapter 2 n Sorting

ptg12441863

crEAtivE problEms

~

2.2.10 Faster merge. Implement a version of merge() that copies the second half of
a[] to aux[] in decreasing order and then does the merge back to a[]. This change al-
lows you to remove the code to test that each of the halves has been exhausted from the
inner loop. Note: The resulting sort is not stable (see page 341).

2.2.11 Improvements. Implement the three improvements to mergesort that are de-
scribed in the text on page 275: Add a cutoff for small subarrays, test whether the array is
already in order, and avoid the copy by switching arguments in the recursive code.

2.2.12 Sublinear extra space. Develop a merge implementation that reduces the extra
space requirement to max(M, N/M), based on the following idea: Divide the array into
N/M blocks of size M (for simplicity in this description, assume that N is a multiple
of M). Then, (i) considering the blocks as items with their first key as the sort key, sort
them using selection sort; and (ii) run through the array merging the first block with
the second, then the second block with the third, and so forth.

2.2.13 Lower bound for average case. Prove that the expected number of compares used
by any compare-based sorting algorithm must be at least N lg N (assuming that all
possible orderings of the input are equally likely). Hint: The expected number of com-
pares is at least the external path length of the compare tree (the sum of the lengths of
the paths from the root to all leaves), which is minimized when it is balanced.

2.2.14 Merging sorted queues. Develop a static method that takes two queues of sorted
items as arguments and returns a queue that results from merging the queues into
sorted order.

2.2.15 Bottom-up queue mergesort. Develop a bottom-up mergesort implementation
based on the following approach: Given N items, create N queues, each containing one
of the items. Create a queue of the N queues. Then repeatedly apply the merging opera-
tion of Exercise 2.2.14 to the first two queues and reinsert the merged queue at the end.
Repeat until the queue of queues contains only one queue.

2.2.16 Natural mergesort. Write a version of bottom-up mergesort that takes advan-
tage of order in the array by proceeding as follows each time it needs to find two arrays
to merge: find a sorted subarray (by incrementing a pointer until finding an entry that
is smaller than its predecessor in the array), then find the next, then merge them. Ana-
lyze the running time of this algorithm in terms of the array size and the number of

2852.2 n Mergesort

ptg12441863

maximal increasing sequences in the array.

2.2.17 Linked-list sort. Implement a natural mergesort for linked lists. (This is the
method of choice for sorting linked lists because it uses no extra space and is guaranteed
to be linearithmic.)

2.2.18 Shuffling a linked list. Develop and implement a divide-and-conquer algo-
rithm that randomly shuffles a linked list in linearithmic time and logarithmic extra
space.

2.2.19 Inversions. Develop and implement a linearithmic algorithm for computing
the number of inversions in a given array (the number of exchanges that would be
performed by insertion sort for that array—see Section 2.1). This quantity is related
to the Kendall tau distance; see Section 2.5.

2.2.20 Index sort. Develop and implement a version of mergesort that does not rear-
range the array, but returns an int[] array perm such that perm[i] is the index of the
i th smallest entry in the array.

2.2.21 Triplicates. Given three lists of N names each, devise a linearithmic algorithm
to determine if there is any name common to all three lists, and if so, return the lexico-
graphically first such name.

2.2.22 3-way mergesort. Suppose instead of dividing in half at each step, you divide
into thirds, sort each third, and combine using a 3-way merge. What is the order of
growth of the overall running time of this algorithm?

crEAtivE problEms (continued)

286 Chapter 2 n Sorting

ptg12441863

ExpErimENts

2.2.23 Improvements. Run empirical studies to evaluate the effectiveness of each of the
three improvements to mergesort that are described in the text (see Exercise 2.2.11).
Also, compare the performance of the merge implementation given in the text with the
merge described in Exercise 2.2.10. In particular, empirically determine the best value
of the parameter that decides when to switch to insertion sort for small subarrays.

2.2.24 Sort-test improvement. Run empirical studies for large randomly ordered ar-
rays to study the effectiveness of the modification described in Exercise 2.2.8 for ran-
dom data. In particular, develop a hypothesis about the average number of times the
test (whether an array is sorted) succeeds, as a function of N (the original array size for
the sort).

2.2.25 Multiway mergesort. Develop a mergesort implementation based on the idea of
doing k-way merges (rather than 2-way merges). Analyze your algorithm, develop a hy-
pothesis regarding the best value of k, and run experiments to validate your hypothesis.

2.2.26 Array creation. Use SortCompare to get a rough idea of the effect on perfor-
mance on your machine of creating aux[] in merge() rather than in sort().

2.2.27 Subarray lengths. Run mergesort for large random arrays, and make an empiri-
cal determination of the average length of the other subarray when the first subarray
exhausts, as a function of N (the sum of the two subarray sizes for a given merge).

2.2.28 Top-down versus bottom-up. Use SortCompare to compare top-down and bot-
tom-up mergesort for N=103, 104, 105, and 106.

2.2.29 Natural mergesort. Determine empirically the number of passes needed in a
natural mergesort (see Exercise 2.2.16) for random Long keys with N=103, 106, and
109. Hint: You do not need to implement a sort (or even generate full 64-bit keys) to
complete this exercise.

2872.2 n Mergesort

ptg12441863

2.3 QUiCkSort

The subject of this section is the sorting algorithm that is probably used more
widely than any other, quicksort. Quicksort is popular because it is not difficult to
implement, works well for a variety of different kinds of input data, and is substantially
faster than any other sorting method in typical applications. The quicksort algorithm’s
desirable features are that it is in-place (uses only a small auxiliary stack) and that
it requires time proportional to N log N on the average to sort an array of length N.
None of the algorithms that we have so far considered combine these two properties.
Furthermore, quicksort has a shorter inner loop than most other sorting algorithms,
which means that it is fast in practice as well as in theory. Its primary drawback is that
it is fragile in the sense that some care is involved in the implementation to be sure to
avoid bad performance. Numerous examples of mistakes leading to quadratic perfor-
mance in practice are documented in the literature. Fortunately, the lessons learned
from these mistakes have led to various improvements to the algorithm that make it of
even broader utility, as we shall see.

The basic algorithm Quicksort is a divide-and-conquer method for sorting. It
works by partitioning an array into two subarrays, then sorting the subarrays indepen-
dently. Quicksort is complementary to mergesort: for mergesort, we break the array
into two subarrays to be sorted and then combine the ordered subarrays to make the
whole ordered array; for quicksort, we rearrange the array such that, when the two
subarrays are sorted, the whole array is ordered. In the first instance, we do the two
recursive calls before working on the whole array; in the second instance, we do the two
recursive calls after working on the whole array. For mergesort, the array is divided in
half; for quicksort, the position of the partition depends on the contents of the array.

Q U I C K S O R T E X A M P L E

K R A T E L E P U I M Q C X O S

E C A I E K L P U T M Q R X O S

A C E E I K L P U T M Q R X O S

A C E E I K L M O P Q R S T U X

A C E E I K L M O P Q R S T U X

not greater not less

partitioning item

input

shu�e

partition

sort left

sort right

result

Quicksort overview

288

ptg12441863

aLgorIthM 2.5 Quicksort

public class Quick
{
 public static void sort(Comparable[] a)
 {
 StdRandom.shuffle(a); // Eliminate dependence on input.
 sort(a, 0, a.length - 1);
 }

 private static void sort(Comparable[] a, int lo, int hi)
 {
 if (hi <= lo) return;
 int j = partition(a, lo, hi); // Partition (see page 291).
 sort(a, lo, j-1); // Sort left part a[lo .. j-1].
 sort(a, j+1, hi); // Sort right part a[j+1 .. hi].
 }
}

Quicksort is a recursive program that sorts a subarray a[lo..hi] by using a partition() method
that puts a[j] into position and arranges the rest of the entries such that the recursive calls finish
the sort.

 lo j hi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 Q U I C K S O R T E X A M P L E
 K R A T E L E P U I M Q C X O S
 0 5 15 E C A I E K L P U T M Q R X O S
 0 3 4 E C A E I K L P U T M Q R X O S
 0 2 2 A C E E I K L P U T M Q R X O S
 0 0 1 A C E E I K L P U T M Q R X O S
 1 1 A C E E I K L P U T M Q R X O S
 4 4 A C E E I K L P U T M Q R X O S
 6 6 15 A C E E I K L P U T M Q R X O S
 7 9 15 A C E E I K L M O P T Q R X U S
 7 7 8 A C E E I K L M O P T Q R X U S
 8 8 A C E E I K L M O P T Q R X U S
10 13 15 A C E E I K L M O P S Q R T U X
10 12 12 A C E E I K L M O P R Q S T U X
10 11 11 A C E E I K L M O P Q R S T U X

 10 10 A C E E I K L M O P Q R S T U X
14 14 15 A C E E I K L M O P Q R S T U X

 15 15 A C E E I K L M O P Q R S T U X

 A C E E I K L M O P Q R S T U X

no partition
 for subarrays

 of size 1

initial values

random shu�e

result

Quicksort trace (array contents after each partition)

2892.3 n Quicksort

ptg12441863

The crux of the method is the partitioning process, which rearranges the array to
make the following three conditions hold:

n	 The entry a[j] is in its final place in the array, for some j.
n	 No entry in a[lo] through a[j-1] is greater than a[j].
n	 No entry in a[j+1] through a[hi] is less than a[j].

We achieve a complete sort by partitioning, then recursively applying the method.
Because the partitioning process always fixes one item into its position, a formal

proof by induction that the recursive method constitutes a proper sort is not difficult
to develop: if the left subarray and the right subarray are both properly sorted, then the
result array, made up of the left subarray (in order, with no entry larger than the par-
titioning item), the partitioning item, and the right subarray (in order, with no entry
smaller that the partitioning item), is in order. Algorithm 2.5 is a recursive program

that implements this idea. It is a randomized algorithm, be-
cause it randomly shuffles the array before sorting it. Our
reason for doing so is to be able to predict (and depend
upon) its performance characteristics, as discussed below.

To complete the implementation, we need to implement
the partitioning method. We use the following general strat-
egy: First, we arbitrarily choose a[lo] to be the partitioning
item—the one that will go into its final position. Next, we
scan from the left end of the array until we find an entry
greater than (or equal to) the partitioning item, and we scan
from the right end of the array until we find an entry less
than (or equal to) the partitioning item. The two items that

stopped the scans are out of place in the final partitioned array, so we exchange them.
Continuing in this way, we ensure that no array entries to the left of the left index i are
greater than the partitioning item, and no array entries to the right of the right index j
are less than the partitioning item. When the scan indices cross, all that we need to do to
complete the partitioning process is to exchange the partitioning item a[lo] with the
rightmost entry of the left subarray (a[j]) and return its index j.

There are several subtle issues with respect to implementing quicksort that are re-
flected in this code and worthy of mention, because each either can lead to incorrect
code or can significantly impact performance. Next, we discuss several of these is-
sues. Later in this section, we will consider three important higher-level algorithmic
improvements.

i

� v� v

j

v

v

lo hi

lo hi

v

� v� v

j

before

during

after

Quicksort partitioning overview

290 Chapter 2 n Sorting

ptg12441863

Quicksort partitioning

private static int partition(Comparable[] a, int lo, int hi)
{ // Partition into a[lo..i-1], a[i], a[i+1..hi].
 int i = lo, j = hi+1; // left and right scan indices
 Comparable v = a[lo]; // partitioning item
 while (true)
 { // Scan right, scan left, check for scan complete, and exchange.
 while (less(a[++i], v)) if (i == hi) break;
 while (less(v, a[--j])) if (j == lo) break;
 if (i >= j) break;
 exch(a, i, j);
 }
 exch(a, lo, j); // Put v = a[j] into position
 return j; // with a[lo..j-1] <= a[j] <= a[j+1..hi].
}

This code partitions on the item v in a[lo]. The main loop exits when the scan indices i and j cross.
Within the loop, we increment i while a[i] is less than v and decrement j while a[j] is greater than
v, then do an exchange to maintain the invariant property that no entries to the left of i are greater
than v and no entries to the right of j are smaller than v. Once the indices meet, we complete the
partitioning by exchanging a[lo] with a[j] (thus leaving the partitioning value in a[j]).

 a[]

 i j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 0 16 K R A T E L E P U I M Q C X O S

 1 12 K R A T E L E P U I M Q C X O S

1 12 K C A T E L E P U I M Q R X O S

 3 9 K C A T E L E P U I M Q R X O S

3 9 K C A I E L E P U T M Q R X O S

 5 6 K C A I E L E P U T M Q R X O S

5 6 K C A I E E L P U T M Q R X O S

 6 5 K C A I E E L P U T M Q R X O S

6 5 E C A I E K L P U T M Q R X O S

 5 E C A I E K L P U T M Q R X O S

Partitioning trace (array contents before and after each exchange)

initial values

scan left, scan right

exchange

scan left, scan right

exchange

scan left, scan right

exchange

scan left, scan right

�nal exchange

result

v

2912.3 n Quicksort

ptg12441863

Partitioning in place If we use an extra array, partitioning is easy to implement, but
not so much easier that it is worth the extra cost of copying the partitioned version back
into the original. A novice Java programmer might even create a new spare array within
the recursive method, for each partition, which would drastically slow down the sort.

Staying in bounds If the smallest item or the largest item in the array is the partition-
ing item, we have to take care that the pointers do not run off the left or right ends of
the array, respectively. Our partition() implementation has explicit tests to guard
against this circumstance. The test (j == lo) is redundant, since the partitioning item
is at a[lo] and not less than itself. With a similar technique on the right it is not dif-
ficult to eliminate both tests (see Exercise 2.3.17).

Preserving randomness The random shuffle puts the array in random order. Since it
treats all items in the subarrays uniformly, Algorithm 2.5 has the property that its two
subarrays are also in random order. This fact is crucial to the predictability of the algo-
rithm’s running time. An alternate way to preserve randomness is to choose a random
item for partitioning within partition().

Terminating the loop Experienced programmers know to take special care to ensure
that any loop must always terminate, and the partitioning loop for quicksort is no ex-
ception. Properly testing whether the pointers have crossed is a bit trickier than it might
seem at first glance. A common error is to fail to take into account that the array might
contain other items with the same key value as the partitioning item.

Handling items with keys equal to the partitioning item’s key It is best to stop the
left scan for items with keys greater than or equal to the partitioning item’s key and
the right scan for items with key less than or equal to the partitioning item’s key, as in
Algorithm 2.5. Even though this policy might seem to create unnecessary exchanges
involving items with keys equal to the partitioning item’s key, it is crucial to avoiding
quadratic running time in certain typical applications (see Exercise 2.3.11). Later, we
discuss a better strategy for the case when the array contains a large number of items
with equal keys.

Terminating the recursion Experienced programmers also know to take special care
to ensure that any recursive method must always terminate, and quicksort is again no
exception. For instance, a common mistake in implementing quicksort involves not
ensuring that one item is always put into position, then falling into an infinite recursive
loop when the partitioning item happens to be the largest or smallest item in the array.

292 Chapter 2 n Sorting

ptg12441863

Performance characteristics Quicksort has been subjected to very thorough
mathematical analysis, so that we can make precise statements about its performance.
The analysis has been validated through extensive empirical experience, and is a useful
tool in tuning the algorithm for optimum performance.

The inner loop of quicksort (in the partitioning method) increments an index and
compares an array entry against a fixed value. This simplicity is one factor that makes
quicksort quick: it is hard to envision a shorter inner loop in a sorting algorithm. For
example, mergesort and shellshort are typically slower than quicksort because they also
do data movement within their inner loops.

The second factor that makes quicksort quick is that it uses few compares. Ulti-
mately, the efficiency of the sort depends on how well the partitioning divides the array,
which in turn depends on the value of the partitioning item’s key. Partitioning divides
a large randomly ordered array into two smaller randomly ordered subarrays, but the
actual split is equally likely (for distinct keys) to be anywhere in the array. Next, we
consider the analysis of the algorithm, which allows us to see how this choice compares
to the ideal choice.

The best case for quicksort is when each partitioning stage divides the array exactly
in half. This circumstance would make the number of compares used by quicksort
satisfy the divide-and-conquer recurrence CN = 2CN/2 + N. The 2CN/2 term covers the
cost of sorting the two subarrays; the N is the cost of examining each entry, using one
partitioning index or the other. As in the proof of Proposition F for mergesort, we
know that this recurrence has the solution CN ~ N lg N. Although things do not always
go this well, it is true that the partition falls in the middle on the average. Taking into
account the precise probability of each partition position makes the recurrence more
complicated and more difficult to solve, but the final result is similar. The proof of
this result is the basis for our confidence in quicksort. If you are not mathematically
inclined, you may wish to skip (and trust) it; if you are mathematically inclined, you
may find it intriguing.

proposition k. Quicksort uses ~ 2N ln N compares (and one-sixth that many ex-
changes) on the average to sort an array of length N with distinct keys.

proof: Let CN be the average number of compares needed to sort N items with
distinct values. We have C0 = C1 = 0 and for N > 1 we can write a recurrence relation-
ship that directly mirrors the recursive program:

2932.3 n Quicksort

ptg12441863

CN = N  1  (C0  C1 . . . CN2  CN1) / N + (CN1  CN2 . . . C0)/N

The first term is the cost of partitioning (always N  1), the second term is the
average cost of sorting the left subarray (which is equally likely to be any size from
0 to N  1), and the third term is the average cost for the right subarray (which is
the same as for the left subarray). Multiplying by N and collecting terms transforms
this equation to

NCN = N(N  1) + 2(C0 + C1+ . . .+CN2+CN1)

Subtracting the same equation for N  1 from this equation gives

NCN  (N  1)CN1= 2N + 2CN1

Rearranging terms and dividing by N(N  1) leaves

CN /(N  1) = CN1 /N  2 /(N  1)

which telescopes to give the result

CN ~ 2 (N  1)(1/3  1/4  . . .  1/(N  1))

The parenthesized quantity is the discrete estimate of the area under the curve 1 /x
from 3 to N  1 and CN ~ 2N lnN by integration. Note that 2N ln N  1.39N lg N,
so the average number of compares is only about 39 percent higher than in the best
case.

A similar (but much more complicated) analysis is needed to establish the stated
result for exchanges.

When keys may not be distinct, as is typical in practical applications, precise analysis is
considerably more complicated, but it is not difficult to show that the average number
of compares is no greater than CN , even when duplicate keys may be present (on page
296, we will look at a way to improve quicksort in this case).

Despite its many assets, the basic quicksort program has one potential liability: it
can be extremely inefficient if the partitions are unbalanced. For example, it could be
the case that the first partition is on the smallest item, the second partition on the next
smallest item, and so forth, so that the program will remove just one item for each call,
leading to an excessive number of partitions of large subarrays. Avoiding this situation
is the primary reason that we randomly shuffle the array before using quicksort. This
action makes it so unlikely that bad partitions will happen consistently that we need not
worry about the possibility.

294 Chapter 2 n Sorting

ptg12441863

proposition l. Quicksort uses ~ N 2/2 compares in the worst case, but random
shuffling protects against this case.

proof: By the argument just given, the number of compares used when one of the
subarrays is empty for every partition is

N  (N  1) + (N  2)  . . .  2  1 = (N  1) N / 2

This behavior means not only that the time required will be quadratic but also that
the space required to handle the recursion will be linear, which is unacceptable for
large arrays. But (with quite a bit more work) it is possible to extend the analysis
that we did for the average to find that the standard deviation of the number of
compares is about .65 N, so the running time tends to the average as N grows and is
unlikely to be far from the average. For example, even the rough estimate provided
by Chebyshev’s inequality says that the probability that the running time is more
than ten times the average for an array with a million elements is less than .00001
(and the true probability is far smaller). The probability that the running time for
a large array is close to quadratic is so remote that we can safely ignore the pos-
sibility (see Exercise 2.3.10). For example, the probability that quicksort will use
as many compares as insertion sort or selection sort when sorting a large array on
your computer is much less than the probability that your computer will be struck
by lightning during the sort!

In summary, you can be sure that the running time of Algorithm 2.5 will be within
a constant factor of 1.39N lg N whenever it is used to sort N items. The same is true
of mergesort, but quicksort is typically faster because (even though it does 39 per-
cent more compares) it does much less data movement. This mathematical assurance is
probabilistic, but you can certainly rely upon it.

Algorithmic improvements Quicksort was invented in 1960 by C. A. R. Hoare,
and many people have studied and refined it since that time. It is tempting to try to
develop ways to improve quicksort: a faster sorting algorithm is computer science’s
“better mousetrap,” and quicksort is a venerable method that seems to invite tinkering.
Almost from the moment Hoare first published the algorithm, people began proposing
ways to improve the algorithm. Not all of these ideas are fully successful, because the al-
gorithm is so well-balanced that the effects of improvements can be more than offset by
unexpected side effects, but a few of them, which we now consider, are quite effective.

2952.3 n Quicksort

ptg12441863

If your sort code is to be used a great many times or to sort a huge array (or, in par-
ticular, if it is to be used as a library sort that will be used to sort arrays of unknown
characteristics), then it is worthwhile to consider the improvements that are discussed
in the next few paragraphs. As noted, you need to run experiments to determine the
effectiveness of these improvements and to determine the best choice of parameters for
your implementation. Typically, improvements of 20 to 30 percent are available.

Cutoff to insertion sort As with most recursive algorithms, an easy way to improve
the performance of quicksort is based on the following two observations:

n	 Quicksort is slower than insertion sort for tiny subarrays.
n	 Being recursive, quicksort’s sort() is certain to call itself for tiny subarrays.

Accordingly, it pays to switch to insertion sort for tiny subarrays. A simple change to
Algorithm 2.5 accomplishes this improvement: replace the statement

if (hi <= lo) return;

 in sort() with a statement that invokes insertion sort for small subarrays:

if (hi <= lo + M) { Insertion.sort(a, lo, hi); return; }

The optimum value of the cutoff M is system-dependent, but any value between 5 and
15 is likely to work well in most situations (see Exercise 2.3.25).

Median-of-three partitioning A second easy way to improve the performance of
quicksort is to use the median of a small sample of items taken from the subarray as the
partitioning item. Doing so will give a slightly better partition, but at the cost of com-
puting the median. It turns out that most of the available improvement comes from
choosing a sample of size 3 and then partitioning on the middle item (see Exercises
2.3.18 and 2.3.19). As a bonus, we can use the sample items as sentinels at the ends of
the array and remove both array bounds tests in partition().

Entropy-optimal sorting Arrays with large numbers of duplicate keys arise fre-
quently in applications. For example, we might wish to sort a large personnel file
by year of birth, or perhaps to separate females from males. In such situations, the
quicksort implementation that we have considered has acceptable performance,
but it can be substantially improved. For example, a subarray that consists solely of
items that are equal (just one key value) does not need to be processed further, but
our implementation keeps partitioning down to small subarrays. In a situation where
there are large numbers of duplicate keys in the input array, the recursive nature of
quicksort ensures that subarrays consisting solely of items with keys that are equal will
occur often. There is potential for significant improvement, from the linearithmic-time
performance of the implementations seen so far to linear-time performance.

296 Chapter 2 n Sorting

ptg12441863

partitioning element

Quicksort with median-of-3 partitioning and cuto� for small subarrays

input

result

result of
�rst partition

left subarray
partially sorted

both subarrays
partially sorted

2972.3 n Quicksort

ptg12441863

One straightforward idea is to partition the array into three parts, one each for
items with keys smaller than, equal to, and larger than the partitioning item’s key.
Accomplishing this partitioning is more complicated than the 2-way partitioning that
we have been using, and various different methods have been suggested for the task.
It was a classical programming exercise popularized by E. W. Dijkstra as the Dutch
National Flag problem, because it is like sorting an array with three possible key values,
which might correspond to the three colors on the flag.

Dijkstra’s solution to this problem leads to the remarkably simple partition code
shown on the next page. It is based on a single left-to-right pass through the array that
maintains a pointer lt such that a[lo..lt-1] is less than v, a pointer gt such that
a[gt+1, hi] is greater than v, and a pointer i such that a[lt..i-1] are equal to v
and a[i..gt] are not yet examined. Starting with i equal to lo, we process a[i] using
the 3-way comparison given by the Comparable interface (instead of using less()) to
directly handle the three possible cases:

n	 a[i] less than v: exchange a[lt] with a[i] and increment both lt and i
n	 a[i] greater than v: exchange a[i] with a[gt] and decrement gt
n	 a[i] equal to v: increment i

Each of these operations both maintains the invariant and decreases the value of
gt-i (so that the loop terminates). Furthermore, every item encountered leads to an
exchange except for those items with keys equal to the partitioning item’s key.

Though this code was developed not long after quicksort in the 1970s, it fell out of
favor because it uses many more exchanges
than the standard 2-way partitioning method
for the common case when the number of
duplicate keys in the array is not high. In the
1990s J. Bentley and D. McIlroy developed a
clever implementation that overcomes this
problem (see Exercise 2.3.22), and observed
that 3-way partitioning makes quicksort
asymptotically faster than mergesort and
other methods in practical situations
involving large numbers of equal keys. Later,
J. Bentley and R. Sedgewick developed a proof of this fact, which we discuss next.

But we proved that mergesort is optimal. How have we defeated that lower bound?
The answer to this question is that Proposition I in Section 2.2 addresses worst-
case performance over all possible inputs, while now we are looking at worst-case
performance with some information about the key values at hand. Mergesort does not
guarantee optimal performance for any given distribution of duplicates in the input:

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning overview

298 Chapter 2 n Sorting

ptg12441863

Quicksort with 3-way partitioning

public class Quick3way
{

 private static void sort(Comparable[] a, int lo, int hi)
 { // See page 289 for public sort() that calls this method.
 if (hi <= lo) return;
 int lt = lo, i = lo+1, gt = hi;
 Comparable v = a[lo];
 while (i <= gt)
 {
 int cmp = a[i].compareTo(v);
 if (cmp < 0) exch(a, lt++, i++);
 else if (cmp > 0) exch(a, i, gt--);
 else i++;
 } // Now a[lo..lt-1] < v = a[lt..gt] < a[gt+1..hi].
 sort(a, lo, lt - 1);
 sort(a, gt + 1, hi);
 }
}

This sort code partitions to put keys equal to the partitioning element in place and thus does not have
to include those keys in the subarrays for the recursive calls. It is far more efficient than the standard
quicksort implementation for arrays with large numbers of duplicate keys (see text).

 a[]

lt i gt 0 1 2 3 4 5 6 7 8 9 10 11

 0 0 11 R B W W R W B R R W B R

 0 1 11 R B W W R W B R R W B R

1 2 11 B R W W R W B R R W B R

 1 2 10 B R R W R W B R R W B W

 1 3 10 B R R W R W B R R W B W

 1 3 9 B R R B R W B R R W W W

 2 4 9 B B R R R W B R R W W W

 2 5 9 B B R R R W B R R W W W

 2 5 8 B B R R R W B R R W W W

 2 5 7 B B R R R R B R W W W W

 2 6 7 B B R R R R B R W W W W

 3 7 7 B B B R R R R R W W W W

 3 8 7 B B B R R R R R W W W W

3 8 7 B B B R R R R R W W W W

v

3-way partitioning trace (array contents after each loop iteration)

2992.3 n Quicksort

ptg12441863

for example, mergesort is linearithmic for a randomly ordered array that has only a
constant number of distinct key values, but quicksort with 3-way partitioning is linear
for such an array. Indeed, by examining the visual trace above, you can see that N times
the number of key values is a conservative bound on the running time.

The analysis that makes these notions precise takes the distribution of key values
into account. Given N keys with k distinct key values, for each i from 1 to k define fi to
be frequency of occurrence of the i th key value and pi to be fi / N, the probability that
the i th key value is found when a random entry of the array is sampled. The Shannon
entropy of the keys (a classic measure of their information content) is defined as

H =  (p1 lg p1  p2 lg p2  . . .  pk lg pk).

Given any array of items to be sorted, we can calculate its entropy by counting the fre-
quency of each key value. Remarkably, we can also derive from the entropy both a lower
bound on the number of compares and an upper bound on the number of compares
used by quicksort with 3-way partitioning.

proposition m. No compare-based sorting algorithm can guarantee to sort N items
with fewer than NH  N compares, where H is the Shannon entropy, defined from
the frequencies of key values.

proof sketch: This result follows from a (relatively easy) generalization of the low-
er bound proof of Proposition I in Section 2.2.

equal to partitioning element

Visual trace of quicksort with 3-way partitioning

300 Chapter 2 n Sorting

ptg12441863

proposition N. Quicksort with 3-way partitioning uses ~ (2ln 2) N H compares to
sort N items, where H is the Shannon entropy, defined from the frequencies of key
values.

proof sketch: This result follows from a (relatively difficult) generalization of the
average-case analysis of quicksort in Proposition K. As with distinct keys, this
costs about 39 percent more than the optimum (but within a constant factor).

Note that H = lg N when the keys are all distinct (all the probabilities are 1/N), which
is consistent with Proposition I in Section 2.2 and Proposition K. The worst case
for 3-way partitioning happens when the keys are distinct; when duplicate keys are
present, it can do much better than mergesort. More important, these two properties
together imply that quicksort with 3-way partitioning is entropy-optimal, in the sense
that the average number of compares used by the best possible compare-based sorting
algorithm and the average number of compares used by 3-way quicksort are within a
constant factor of one another, for any given distribution of input key values.

As with standard quicksort, the running time tends to the average as the array size
grows, and large deviations from the average are extremely unlikely, so that you can
depend on 3-way quicksort’s running time to be proportional to N times the entropy
of the distribution of input key values. This property of the algorithm is important in
practice because it reduces the time of the sort from linearithmic to linear for arrays with
large numbers of duplicate keys. The order of the keys is immaterial, because the algo-
rithm shuffles them to protect against the worst case. The distribution of keys defines
the entropy and no compare-based algorithm can use fewer compares than defined by
the entropy. This ability to adapt to duplicates in the input makes 3-way quicksort the
algorithm of choice for a library sort—clients that sort arrays containing large numbers
of duplicate keys are not unusual.

A carefully tuned version of quicksort is likely to run significantly faster on most
computers for most applications than will any other compare-based sorting method.
Quicksort is widely used throughout today’s computational infrastructure because
the mathematical models that we have discussed suggest that it will outperform other
methods in practical applications, and extensive experiments and experience over the
past several decades have validated that conclusion.

We will see in Chapter 5 that this is not quite the end of the story in the development
of sorting algorithms, because it is possible to develop algorithms that do not use
compares at all! But a version of quicksort turns out to be best in that situation, as well.

3012.3 n Quicksort

ptg12441863

Q & A

Q. Is there some way to just divide the array into two halves, rather than letting the
partitioning element fall where it may?

A. That is a question that stumped experts for over a decade. It is tantamount to find-
ing the median key value in the array and then partitioning on that value. We discuss
the problem of finding the median on page 346. It is possible to do so in linear time, but
the cost of doing so with known algorithms (which are based on quicksort partition-
ing!) far exceeds the 39 percent savings available from splitting the array into equal
parts.

Q. Randomly shuffling the array seems to take a significant fraction of the total time
for the sort. Is doing so really worthwhile?

A. Yes. It protects against the worst case and makes the running time predictable. Hoare
proposed this approach when he presented the algorithm in 1960—it is a prototypical
(and among the first) randomized algorithm.

Q. Why all the focus on items with equal keys?

A. The issue directly impacts performance in practical situations. It was overlooked by
many for decades, with the result that some older implementations of quicksort take
quadratic time for arrays with large numbers of items with equal keys, which certainly
do arise in applications. Better implementations such as Algorithm 2.5 take linearith-
mic time for such arrays, but improving that to linear-time as in the entropy-optimal
sort at the end of this section is worthwhile in many situations.

302 Chapter 2 n Sorting

ptg12441863

ExErcisEs

2.3.1 Show, in the style of the trace given with partition(), how that method parti-
tions the array E A S Y Q U E S T I O N.

2.3.2 Show, in the style of the quicksort trace given in this section, how quicksort sorts
the array E A S Y Q U E S T I O N (for the purposes of this exercise, ignore the
initial shuffle).

2.3.3 What is the maximum number of times during the execution of Quick.sort()
that the largest item can be exchanged, for an array of length N ?

2.3.4 Suppose that the initial random shuffle is omitted. Give six arrays of ten elements
for which Quick.sort() uses the worst-case number of compares.

2.3.5 Give a code fragment that sorts an array that is known to consist of items having
just two distinct keys.

2.3.6 Write a program to compute the exact value of CN, and compare the exact value
with the approximation 2N ln N, for N = 100, 1,000, and 10,000.

2.3.7 Find the expected number of subarrays of size 0, 1, and 2 when quicksort is used
to sort an array of N items with distinct keys. If you are mathematically inclined, do the
math; if not, run some experiments to develop hypotheses.

2.3.8 About how many compares will Quick.sort() make when sorting an array of
N items that are all equal?

2.3.9 Explain what happens when Quick.sort() is run on an array having items with
just two distinct keys, and then explain what happens when it is run on an array having
just three distinct keys.

2.3.10 Chebyshev’s inequality says that the probability that a random variable is more
than k standard deviations away from the mean is less than 1/k 2. For N = 1 million, use
Chebyshev’s inequality to bound the probability that the number of compares used by
quicksort is more than 100 billion (.1 N 2).

2.3.11 Suppose that we scan over items with keys equal to the partitioning item’s key
instead of stopping the scans when we encounter them. Show that the running time
of this version of quicksort is quadratic for all arrays with just a constant number of
distinct keys.

3032.3 n Quicksort

ptg12441863

2.3.12 Show, in the style of the trace given with the code, how the 3-way quicksort first
partitions the array B A B A B A B A C A D A B R A.

2.3.13 What is the recursive depth of quicksort, in the best, worst, and average cases?
This is the size of the stack that the system needs to keep track of the recursive calls. See
Exercise 2.3.20 for a way to guarantee that the recursive depth is logarithmic in the
worst case.

2.3.14 Prove that when running quicksort on an array with N distinct items, the prob-
ability of comparing the i th and j th smallest items is 2 / (j  i  1). Then use this result
to prove Proposition K.

ExErcisEs (continued)

304 Chapter 2 n Sorting

ptg12441863

crEAtivE problEms

2.3.15 Nuts and bolts. (G. J. E. Rawlins) You have a mixed pile of N nuts and N bolts
and need to quickly find the corresponding pairs of nuts and bolts. Each nut matches
exactly one bolt, and each bolt matches exactly one nut. By fitting a nut and bolt to-
gether, you can see which is bigger, but it is not possible to directly compare two nuts or
two bolts. Give an efficient method for solving the problem.

2.3.16 Best case. Write a program that produces a best-case array (with no duplicates)
for sort() in Algorithm 2.5: an array of N items with distinct keys having the prop-
erty that every partition will produce subarrays that differ in size by at most 1 (the same
subarray sizes that would happen for an array of N equal keys). (For the purposes of this
exercise, ignore the initial shuffle.)

The following exercises describe variants of quicksort. Each of them calls for an implementa-
tion, but naturally you will also want to use SortCompare for experiments to evaluate the
effectiveness of each suggested modification.

2.3.17 Sentinels. Modify the code in Algorithm 2.5 to remove both bounds checks
in the inner while loops. The test against the left end of the subarray is redundant since
the partitioning item acts as a sentinel (v is never less than a[lo]). To enable removal of
the other test, put an item whose key is the largest in the whole array into a[length-1]
just after the shuffle. This item will never move (except possibly to be swapped with an
item having the same key) and will serve as a sentinel in all subarrays involving the end
of the array. Note : For a subarray that does not involve the end of the array, the leftmost
entry to its right serves as a sentinel for the right end of the subarray.

2.3.18 Median-of-3 partitioning. Add median-of-3 partitioning to quicksort, as de-
scribed in the text (see page 296). Run doubling tests to determine the effectiveness of
the change.

2.3.19 Median-of-5 partitioning. Implement a quicksort based on partitioning on the
median of a random sample of five items from the subarray. Put the items of the sample
at the appropriate ends of the array so that only the median participates in partitioning.
Run doubling tests to determine the effectiveness of the change, in comparison both
to the standard algorithm and to median-of-3 partitioning (see the previous exercise).
Extra credit : Devise a median-of-5 algorithm that uses fewer than seven compares on
any input.

3052.3 n Quicksort

ptg12441863

2.3.20 Nonrecursive quicksort. Implement a nonrecursive version of quicksort based
on a main loop where a subarray is popped from a stack to be partitioned, and the re-
sulting subarrays are pushed onto the stack. Note : Push the larger of the subarrays onto
the stack first, which guarantees that the stack will have at most lg N entries.

2.3.21 Lower bound for sorting with equal keys. Complete the first part of the proof
of Proposition M by following the logic in the proof of Proposition I and using the
observation that there are N! / f1!f2! . . . fk! different ways to arrange keys with k different
values, where the i th value appears with frequency fi (= Npi , in the notation of Proposi-
tion M), with f1+. . . +fk = N.

2.3.22 Fast 3-way partitioning. (J. Bentley and D. McIlroy) Implement an entropy-
optimal sort based on keeping items with equal keys at both the left and right ends

of the subarray. Maintain indices p and q such that
a[lo..p-1] and a[q+1..hi] are all equal to a[lo],
an index i such that a[p..i-1] are all less than a[lo],
and an index j such that a[j+1..q] are all greater than
a[lo]. Add to the inner partitioning loop code to swap
a[i] with a[p] (and increment p) if it is equal to v and
to swap a[j] with a[q] (and decrement q) if it is equal
to v before the usual comparisons of a[i] and a[j]
with v. After the partitioning loop has terminated, add
code to swap the items with equal keys into position.
Note : This code complements the code given in the

text, in the sense that it does extra swaps for keys equal to the partitioning item’s key,
while the code in the text does extra swaps for keys that are not equal to the partitioning
item’s key.

2.3.23 Tukey's ninther. Add to your implementation from Exercise 2.3.22 code to use
the Tukey ninther to compute the partitioning item—choose three sets of three items,
take the median of each, then use the median of the three medians as the partitioning
item. Also, add a cutoff to insertion sort for small subarrays.

2.3.24 Samplesort. (W. Frazer and A. McKellar) Implement a quicksort based on us-
ing a sample of size 2k  1. First, sort the sample, then arrange to have the recursive
routine partition on the median of the sample and to move the two halves of the rest of
the sample to each subarray, such that they can be used in the subarrays, without having
to be sorted again. This algorithm is called samplesort.

i

=v=v <v >v

jp q

v

j

>v<v =v

i

lo

lo

lo

hi

hi

hi

before

during

after

Bentley-McIlroy 3-way partitioning

crEAtivE problEms (continued)

306 Chapter 2 n Sorting

ptg12441863

ExpErimENts

2.3.25 Cutoff to insertion sort. Implement quicksort with a cutoff to insertion sort
for subarrays with less than M elements, and empirically determine the value of M for
which quicksort runs fastest in your computing environment to sort random arrays
of N doubles, for N = 103, 104, 105, and 106. Plot average running times for M from 0
to 30 for each value of M. Note : You need to add a three-argument sort() method to
Algorithm 2.2 for sorting subarrays such that the call Insertion.sort(a, lo, hi)
sorts the subarray a[lo..hi].

2.3.26 Subarray sizes. Write a program that plots a histogram of the subarray sizes left
for insertion sort when you run quicksort for an array of size N with a cutoff for subar-
rays of size less than M. Run your program for M=10, 20, and 50 and N = 105.

2.3.27 Ignore small subarrays. Run experiments to compare the following strategy for
dealing with small subarrays with the approach described in Exercise 2.3.25: Simply
ignore the small subarrays in quicksort, then run a single insertion sort after the quick-
sort completes. Note : You may be able to estimate the size of your computer’s cache
memory with these experiments, as the performance of this method is likely to degrade
when the array does not fit in the cache.

2.3.28 Recursion depth. Run empirical studies to determine the average recursive
depth used by quicksort with cutoff for arrays of size M, when sorting arrays of N
distinct elements, for M=10, 20, and 50 and N = 103, 104, 105, and 106.

2.3.29 Randomization. Run empirical studies to compare the effectiveness of
the strategy of choosing a random partitioning item with the strategy of initially
randomizing the array (as in the text). Use a cutoff for arrays of size M, and sort arrays
of N distinct elements, for M=10, 20, and 50 and N = 103, 104, 105, and 106.

2.3.30 Corner cases. Test quicksort on large nonrandom arrays of the kind described
in Exercises 2.1.35 and 2.1.36 both with and without the initial random shuffle. How
does shuffling affect its performance for these arrays?

2.3.31 Histogram of running times. Write a program that takes command-line argu-
ments N and T, does T trials of the experiment of running quicksort on an array of
N random Double values, and plots a histogram of the observed running times. Run
your program for N = 103, 104, 105, and 106, with T as large as you can afford to make
the curves smooth. Your main challenge for this exercise is to appropriately scale the
experimental results.

3072.3 n Quicksort

ptg12441863

2.4 Priority QUeUeS

Many applications require that we process items having keys in order, but not nec-
essarily in full sorted order and not necessarily all at once. Often, we collect a set of
items, then process the one with the largest key, then perhaps collect more items, then
process the one with the current largest key, and so forth. For example, you are likely to
have a computer (or a cellphone) that is capable of running several applications at the
same time. This effect is typically achieved by assigning a priority to events associated
with applications, then always choosing to process next the highest-priority event. For
example, most cellphones are likely to process an incoming call with higher priority
than a game application.

An appropriate data type in such an environment supports two operations: remove
the maximum and insert. Such a data type is called a priority queue. Using priority
queues is similar to using queues (remove the oldest) and stacks (remove the newest),
but implementing them efficiently is more challenging.

In this section, after a short discussion of elementary representations where one or
both of the operations take linear time, we consider a classic priority-queue implemen-
tation based on the binary heap data structure, where items are kept in an array, subject
to certain ordering constraints that allow for efficient (logarithmic-time) implementa-
tions of remove the maximum and insert.

Some important applications of priority queues include simulation systems, where
the keys correspond to event times, to be processed in chronological order; job schedul-
ing, where the keys correspond to priorities indicating which tasks are to be performed
first; and numerical computations, where the keys represent computational errors, in-
dicating in which order we should deal with them. We consider in Chapter 6 a detailed
case study showing the use of priority queues in a particle-collision simulation.

We can use any priority queue as the basis for a sorting algorithm by inserting a se-
quence of items, then successively removing the smallest to get them out, in order. An
important sorting algorithm known as heapsort also follows naturally from our heap-
based priority-queue implementations. Later on in this book, we shall see how to use
priority queues as building blocks for other algorithms. In Chapter 4, we shall see how
priority queues are an appropriate abstraction for implementing several fundamental
graph-searching algorithms; in Chapter 5, we shall develop a data-compression algo-
rithm using methods from this section. These are but a few examples of the important
role played by the priority queue as a tool in algorithm design.

308

ptg12441863

API The priority queue is a prototypical abstract data type (see Section 1.2): it rep-
resents a set of values and operations on those values, and it provides a convenient ab-
straction that allows us to separate application programs (clients) from various imple-
mentations that we will consider in this section. As in Section 1.2, we precisely define
the operations by specifying an applications programming interface (API) that provides
the information needed by clients. Priority queues are characterized by the remove the
maximum and insert operations, so we shall focus on them. We use the method names
delMax() for remove the maximum and insert() for insert. By convention, we will
compare keys only with a helper less() method, as we have been doing for sorting.
Thus, if items can have duplicate keys, maximum means any item with the largest key
value. To complete the API, we also need to add constructors (like the ones we used for
stacks and queues) and a test if empty operation. For flexibility, we use a generic imple-
mentation with a parameterized type Key that implements the Comparable interface.
This choice eliminates our distinction between items and keys and enables clearer and
more compact descriptions of data structures and algorithms. For example, we refer to
the “largest key” instead of the “largest item” or the “item with the largest key.”

For convenience in client code, the API includes three constructors, which enable
clients to build priority queues of an initial fixed size (perhaps initialized with a given
array of keys). To clarify client code, we will use a separate class MinPQ whenever ap-
propriate, which is the same as MaxPQ except that it has a delMin() method that deletes
and returns an item with the smallest key in the queue. Any MaxPQ implementation is
easily converted into a MinPQ implementation and vice versa, simply by reversing the
sense of the comparison in less().

public class MaxPQ<Key extends Comparable<Key>>

MaxPQ() create a priority queue

MaxPQ(int max) create a priority queue of initial capacity max

MaxPQ(Key[] a) create a priority queue from the keys in a[]

void insert(Key v) insert a key into the priority queue

Key max() return the largest key

Key delMax() return and remove the largest key

boolean isEmpty() is the priority queue empty?

int size() number of keys in the priority queue

apI for a generic priority queue

3092.4 n Priority Queues

ptg12441863

A priority-queue client To appreciate the
value of the priority-queue abstraction, con-
sider the following problem: You have a huge
input stream of N strings and associated inte-
ger values, and your task is to find the largest
or smallest M integers (and associated strings)
in the input stream. You might imagine the
stream to be financial transactions, where
your interest is to find the big ones, or pesti-
cide levels in an agricultural product, where
your interest is to find the small ones, or re-
quests for service, or results from a scientific
experiment, or whatever. In some applications, the size of the input stream is so huge
that it is best to consider it to be unbounded. One way to address this problem would
be to sort the input stream and take the M largest keys from the result, but we have
just stipulated that the input stream is too large for that. Another approach would be
to compare each new key against the M largest seen so far, but that is also likely to be
prohibitively expensive unless M is small. With priority queues, we can solve the prob-
lem with the MinPQ client TopM on the next page provided that we can develop efficient
implementations of both insert() and delMin(). That is precisely our aim in this sec-
tion. For the huge values of N that are likely to be encountered in our modern compu-
tational infrastructure, these implementations can make the difference between being
able to address such a problem and not having the resources to do it at all.

Elementary implementations The basic data structures that we discussed in
Chapter 1 provide us with four immediate starting points for implementing priority
queues. We can use an array or a linked list, kept in order or unordered. These imple-
mentations are useful for small priority queues, situations where one of the two opera-
tions are predominant, or situations where some assumptions can be made about the
order of the keys involved in the operations. Since these implementations are elemen-
tary, we will be content with brief descriptions here in the text and leave the code for
exercises (see Exercise 2.4.3).

Array representation (unordered) Perhaps the simplest priority-queue implementa-
tion is based on our code for pushdown stacks in Section 1.3. The code for insert in the
priority queue is the same as for push in the stack. To implement remove the maximum,
we can add code like the inner loop of selection sort to exchange the maximum item
with the item at the end and then delete that one, as we did with pop() for stacks. As
with stacks, we can add resizing-array code to ensure that the data structure is always at
least one-quarter full and never overflows.

client
order of growth

time space

sort client N log N N

PQ client using
elementary implementation NM M

PQ client using
heap-based implementation N log M M

Costs of finding the largest M in a stream of N items

310 Chapter 2 n Sorting

ptg12441863

A priority-queue client

public class TopM
{
 public static void main(String[] args)
 { // Print the top M lines in the input stream.
 int M = Integer.parseInt(args[0]);
 MinPQ<Transaction> pq = new MinPQ<Transaction>(M+1);
 while (StdIn.hasNextLine())
 { // Create an entry from the next line and put on the PQ.
 pq.insert(new Transaction(StdIn.readLine()));
 if (pq.size() > M)
 pq.delMin(); // Remove minimum if M+1 entries on the PQ.
 } // Top M entries are on the PQ.

 Stack<Transaction> stack = new Stack<Transaction>();
 while (!pq.isEmpty()) stack.push(pq.delMin());
 for (Transaction t : stack) StdOut.println(t);
 }
}

Given an integer M from the command line and an input stream where each line contains a trans-
action, this MinPQ client prints the M lines whose numbers are the highest. It does so by using our
Transaction class (see page 79, Exercise 1.2.19, and Exercise 2.1.21) to build a priority queue using

the numbers as keys, deleting the minimum after each
insertion once the size of the priority queue reaches M.
Once all the transactions have been processed, the top M
come off the priority queue in increasing order, so this
code puts them on a stack, then iterates through the
stack to reverse the order and print them in decreasing
order.

% more tinyBatch.txt
Turing 6/17/1990 644.08
vonNeumann 3/26/2002 4121.85
Dijkstra 8/22/2007 2678.40
vonNeumann 1/11/1999 4409.74
Dijkstra 11/18/1995 837.42
Hoare 5/10/1993 3229.27
vonNeumann 2/12/1994 4732.35
Hoare 8/18/1992 4381.21
Turing 1/11/2002 66.10
Thompson 2/27/2000 4747.08
Turing 2/11/1991 2156.86
Hoare 8/12/2003 1025.70
vonNeumann 10/13/1993 2520.97
Dijkstra 9/10/2000 708.95
Turing 10/12/1993 3532.36
Hoare 2/10/2005 4050.20

% java TopM 5 < tinyBatch.txt
Thompson 2/27/2000 4747.08
vonNeumann 2/12/1994 4732.35
vonNeumann 1/11/1999 4409.74
Hoare 8/18/1992 4381.21
vonNeumann 3/26/2002 4121.85

3112.4 n Priority Queues

ptg12441863

Array representation (ordered) Another approach is to add code for insert to move
larger entries one position to the right, thus keeping the keys in the array in order (as in
insertion sort). Thus, the largest entry is always at the end, and the code for remove the
maximum in the priority queue is the same as for pop in the stack.

Linked-list representations Similarly, we can start with our linked-list code for push-
down stacks, modifying either the code for pop() to find and return the maximum or
the code for push() to keep keys in reverse order and the code for pop() to unlink and
return the first (maximum) item on the list.

Using unordered sequences is the prototypical lazy
approach to this problem, where we defer doing
work until necessary (to find the maximum); us-
ing ordered sequences is the prototypical eager ap-
proach to the problem, where we do as much work
as we can up front (keep the list sorted on insertion)
to make later operations efficient.

The significant difference between implementing
stacks or queues and implementing priority queues
has to do with performance. For stacks and queues,
we were able to develop implementations of all the

operations that take constant time; for priority queues, all of the elementary imple-
mentations just discussed have the property that either the insert or the remove the
maximum operation takes linear time in the worst case. The heap data structure that we
consider next enables implementations where both operations are guaranteed to be fast.

P 1 P P
Q 2 P Q P Q
E 3 P Q E E P Q
 Q 2 P E E P
X 3 P E X E P X
A 4 P E X A A E P X
M 5 P E X A M A E M P X
 X 4 P E M A A E M P
P 5 P E M A P A E M P P
L 6 P E M A P L A E L M P P
E 7 P E M A P L E A E E L M P P
 P 6 E E M A P L A E E L M P

insert
insert
insert

remove max
insert
insert
insert

remove max
insert
insert
insert

remove max

operation argument return value contents (unordered) contents (ordered)size

A sequence of operations on a priority queue

data structure insert remove
maximum

ordered array N 1

unordered array 1 N

heap log N log N

impossible 1 1

order of growth of worst-case running time
for priority-queue implementations

312 Chapter 2 n Sorting

ptg12441863

Heap definitions The binary heap is a data structure that can efficiently support
the basic priority-queue operations. In a binary heap, the keys are stored in an array
such that each key is guaranteed to be larger than (or equal to) the keys at two other
specific positions. In turn, each of those keys must be larger than (or equal to) two ad-
ditional keys, and so forth. This ordering is easy to see if we view the keys as being in
a binary tree structure with edges from each key to the two keys known to be smaller.

Definition. A binary tree is heap-ordered if the key in each node is larger than or
equal to the keys in that node’s two children (if any).

Equivalently, the key in each node of a heap-ordered binary tree is smaller than or
equal to the key in that node’s parent (if any). Moving up from any node, we get a
nondecreasing sequence of keys; moving down from any node, we get a nonincreasing
sequence of keys. In particular:

proposition o. The largest key in a heap-ordered binary tree is found at the root.

proof: By induction on the size of the tree.

Binary heap representation If we use a linked representation for heap-ordered binary
trees, we would need to have three links associated with each key to allow travel up and
down the tree (each node would have one pointer to its parent and one to each child).
It is particularly convenient, instead, to use a complete binary tree like the one drawn at
right. We draw such a structure by placing the root node
and then proceeding down the page and from left to right,
drawing and connecting two nodes beneath each node on
the previous level until we have drawn N nodes. Complete
trees provide the opportunity to use a compact array rep-
resentation that does not involve explicit links. Specifically,
we represent complete binary trees sequentially within an
array by putting the nodes in level order, with the root at
position 1, its children at positions 2 and 3, their children
in positions 4, 5, 6, and 7, and so on.

E

P

I

S

H

N

G

T

O

R

A

A heap-ordered complete binary tree

3132.4 n Priority Queues

ptg12441863

Definition. A binary heap is a collection of keys arranged in a complete heap-or-
dered binary tree, represented in level order in an array (not using the first entry).

(For brevity, from now on we drop the “binary”
modifier and use the term heap when referring
to a binary heap.) In a heap, the parent of the
node in position k is in position ⎣k /2⎦ and, con-
versely, the two children of the node in position
k are in positions 2k and 2k + 1. Instead of using
explicit links (as in the binary tree structures that
we will consider in Chapter 3), we can travel up
and down by doing simple arithmetic on array
indices: to move up the tree from a[k] we set k
to k/2; to move down the tree we set k to 2*k or
2*k+1.

Complete binary trees represented as arrays
(heaps) are rigid structures, but they have just
enough flexibility to allow us to implement effi-
cient priority-queue operations. Specifically, we

will use them to develop logarithmic-time insert and remove the maximum implemen-
tations. These algorithms take advantage of the capability to move up and down paths
in the tree without pointers and have guaranteed logarithmic performance because of
the following property of complete binary trees:

proposition p. The height of a complete binary tree of size N is ⎣ lg N ⎦ .

proof: The stated result is easy to prove by induction or by noting that the height
increases by 1 only when N is incremented to become a power of 2.

 i 0 1 2 3 4 5 6 7 8 9 10 11
a[i] - T S R P N O A E I H G

 E I H G

P N O A

S R
T

1

2

4 5 6 7

10 118 9

3

E

P

I

S

H

N

G

T

O

R

A

Heap representations

314 Chapter 2 n Sorting

ptg12441863

Algorithms on heaps We represent a heap of size N in private array pq[] of
length N + 1, with pq[0] unused and the heap in pq[1] through pq[N]. As for sort-
ing algorithms, we access keys only through private helper functions less() and
exch(), but since all items are in
the instance variable pq[], we use
the more compact implementations
that do not involve passing the ar-
ray name as a parameter. The heap
operations that we consider work by
first making a simple modification
that could violate the heap condi-
tion, then traveling through the heap, modifying the heap as required to ensure that
the heap condition is satisfied everywhere. We refer to this process as reheapifying, or
restoring heap order.

There are two cases. When the priority of some node is increased (or a new node is
added at the bottom of a heap), we have to travel up the heap to restore the heap order.
When the priority of some node is decreased (for example, if we replace the node at
the root with a new node that has a smaller key), we have to travel down the heap to
restore the heap order. First, we will consider how to implement these two basic auxil-
iary operations; then, we shall see how to use them to implement insert and remove the
maximum.

Bottom-up reheapify (swim) If the heap order is violated because a node’s key be-
comes larger than that node’s parent’s key, then we can make progress toward fixing

the violation by exchanging the node with
its parent. After the exchange, the node is
larger than both its children (one is the old
parent, and the other is smaller than the old
parent because it was a child of that node)
but the node may still be larger than its par-
ent. We can fix that violation in the same
way, and so forth, moving up the heap until
we reach a node with a larger key, or the
root. Coding this process is straightforward
when you keep in mind that the parent of
the node at position k in a heap is at po-
sition k/2. The loop in swim() preserves
the invariant that the only place the heap

5

E

N

I

P

H

T

G

S

O

R

A

violates heap order
(larger key than parent)

E

N

I

S

H

P

G

T

O

R

A5

2

1

Bottom-up reheapify (swim)

private boolean less(int i, int j)
{ return pq[i].compareTo(pq[j]) < 0; }

private void exch(int i, int j)
{ Key t = pq[i]; pq[i] = pq[j]; pq[j] = t; }

Compare and exchange methods for heap implementations

3152.4 n Priority Queues

ptg12441863

order could be violated is when the node at
position k might be larger than its parent.
Therefore, when we get to a place where that
node is not larger than its parent, we know
that the heap order is satisfied throughout

the heap. To jus-
tify the method’s
name, we think
of the new node,
having too large a
key, as having to swim to a higher level in the heap.

Top-down reheapify (sink) If the heap order is violated be-
cause a node’s key becomes smaller than one or both of that
node’s children’s keys, then we can make progress toward fix-
ing the violation by exchanging the node with the larger of its
two children. This switch may cause a violation at the child;
we fix that violation in the same way, and so forth, moving
down the heap until we reach a node with both children
smaller (or equal), or the bottom. The code again follows di-
rectly from
the fact that

the children of the node at position
k in a heap are at positions 2k and
2k+1. To justify the method’s name,
we think about the node, having too
small a key, as having to sink to a low-
er level in the heap.

If we imagine the heap to represent
a cutthroat corporate hierarchy, with
each of the children of a node repre-
senting subordinates (and the parent
representing the immediate superior), then these operations have amusing interpreta-
tions. The swim() operation corresponds to a promising new manager arriving on the
scene, being promoted up the chain of command (by exchanging jobs with any lower-
qualified boss) until the new person encounters a higher-qualified boss. The sink()
operation is analogous to the situation when the president of the company resigns and
is replaced by someone from the outside. If the president’s most powerful subordinate

5

E

P

I

H

N

S

G

T

O

R

A

violates heap order
(smaller than a child)

E

P

I

S

H

N

G

T

O

R

A5

10

2

2

Top-down reheapify (sink)

private void sink(int k)
{
 while (2*k <= N)
 {
 int j = 2*k;
 if (j < N && less(j, j+1)) j++;
 if (!less(k, j)) break;
 exch(k, j);
 k = j;
 }
}

top-down reheapify (sink) implementation

private void swim(int k)
{
 while (k > 1 && less(k/2, k))
 {
 exch(k/2, k);
 k = k/2;
 }
}

Bottom-up reheapify (swim) implementation

316 Chapter 2 n Sorting

ptg12441863

is stronger than the new person, they exchange jobs, and we move down the chain of
command, demoting the new person and promoting others until the level of compe-
tence of the new person is reached, where there is no higher-qualified subordinate.
These idealized scenarios may rarely be seen in the real world, but they may help you
better understand basic operation on heaps.

These sink() and swim() operations provide the basis for efficient implementation
of the priority-queue API, as diagrammed below and implemented in Algorithm 2.6.

Insert We add the new key at the end of the array, increment the size of the heap,
and then swim up through the heap with that key to restore the heap condition.

Remove the maximum. We take the largest item off the top, put the item from
the end of the heap at the top, decrement the size of the heap, and then sink down
through the heap with that key to restore the heap condition.

Algorithm 2.6 solves the basic problem that we posed at the beginning of this section:
it is a priority-queue API implementation for which both insert and delete the maxi-
mum are guaranteed to take time logarithmic in the size of the queue.

Heap operations

E

N

I

P

G

H

S

T

O

R

A

key to insert

E

N

I

P

G

H

S

T

O

R

A

add key to heap
violates heap order

E

N

I

S

G

P

H

T

O

R

A

swim up

E

N

I

S

G

P

H

T

O

R

A

key to remove

violates
heap order

exchange key
with root

E

N

I

S

G

P

T

H

O

R

A

remove node
from heap

E

N

I

P

G

H

S

O

R

A

sink down

insert remove the maximum

3172.4 n Priority Queues

ptg12441863

aLgorIthM 2.6 heap priority queue

public class MaxPQ<Key extends Comparable<Key>>
{
 private Key[] pq; // heap-ordered complete binary tree
 private int N = 0; // in pq[1..N] with pq[0] unused

 public MaxPQ(int maxN)
 { pq = (Key[]) new Comparable[maxN+1]; }

 public boolean isEmpty()
 { return N == 0; }

 public int size()
 { return N; }

 public void insert(Key v)
 {
 pq[++N] = v;
 swim(N);
 }

 public Key delMax()
 {
 Key max = pq[1]; // Retrieve max key from top.
 exch(1, N--); // Exchange with last item.
 pq[N+1] = null; // Avoid loitering.
 sink(1); // Restore heap property.
 return max;
 }

 // See pages 315-316 for implementations of these helper methods.
 private boolean less(int i, int j)
 private void exch(int i, int j)
 private void swim(int k)
 private void sink(int k)
}

The priority queue is maintained in a heap-ordered complete binary tree in the array pq[] with
pq[0] unused and the N keys in the priority queue in pq[1] through pq[N]. To implement insert(),
we increment N, add the new element at the end, then use swim() to restore the heap order. For
delMax(), we take the value to be returned from pq[1], then move pq[N] to pq[1], decrement the
size of the heap, and use sink() to restore the heap condition. We also set the now-unused position
pq[N+1] to null to allow the system to reclaim the memory associated with it. Code for dynamic
array resizing is omitted, as usual (see Section 1.3). See Exercise 2.4.19 for the other constructors.

318 Chapter 2 n Sorting

ptg12441863

proposition Q. In an N-key priority queue, the heap al-
gorithms require no more than 1 + lg N compares for in-
sert and no more than 2 lg N compares for remove the
maximum.

proof: By Proposition P, both operations involve mov-
ing along a path between the root and the bottom of the
heap whose number of links is no more than lg N. The
remove the maximum operation requires two compares
for each node on the path (except at the bottom): one
to find the child with the larger key, the other to decide
whether that child needs to be promoted.

For typical applications that require a large number of inter-
mixed insert and remove the maximum operations in a large
priority queue, Proposition Q represents an important per-
formance breakthrough, summarized in the table shown on
page 312. Where elementary implementations using an or-
dered array or an unordered array require linear time for one
of the operations, a heap-based implementation provides a
guarantee that both operations complete in logarithmic time.
This improvement can make the difference between solving a
problem and not being able to address it at all.

Multiway heaps It is not difficult to modify our code to
build heaps based on an array representation of complete
heap-ordered ternary trees, with an entry at position k larger
than or equal to entries at positions 3k1, 3k, and 3k1 and
smaller than or equal to entries at position ⎣(k+1)  3⎦, for all
indices between 1 and N in an array of N items, and not much
more difficult to use d-ary heaps for any given d. There is a
tradeoff between the lower cost from the reduced tree height
(log d N) and the higher cost of finding the largest of the d
children at each node. This tradeoff is dependent on details
of the implementation and the expected relative frequency of
operations.

P

Q

P

Q

E

P

E

X

P

A

M

E

X

P

A

M

P

E

A

P

M

P

E

A

P

M

P

E

L

A

P

M

P

E

L

E

A

M

E

P

E

L

P

E

E

X

P

A

Priority queue operations in a heap

insert P

insert Q

insert E

remove max (Q)

insert X

insert A

insert M

remove max (X)

insert P

insert L

insert E

remove max (P)

3192.4 n Priority Queues

ptg12441863

Array resizing We can add a no-argument constructor, code for array doubling in
insert(), and code for array halving in delMax(), just as we did for stacks in Section
1.3. Thus, clients need not be concerned about arbitrary size restrictions. The logarith-
mic time bounds implied by PROPOSITION Q are amortized when the size of the priority
queue is arbitrary and the arrays are resized (see Exercise 2.4.22).

Immutability of keys The priority queue contains objects that are created by clients
but assumes that client code does not change the keys (which might invalidate the
heap-order invariant). It is possible to develop mechanisms to enforce this assumption,
but programmers typically do not do so because they complicate the code and are likely
to degrade performance.

Index priority queue In many applications, it makes sense to allow clients to refer
to items that are already on the priority queue. One easy way to do so is to associate
a unique integer index with each item. Moreover, it is often the case that clients have
a universe of items of a known size N and perhaps are using (parallel) arrays to store
information about the items, so other unrelated client code might already be using an
integer index to refer to items. These considerations lead us to the following API:

public class IndexMinPQ<Key extends Comparable<Key>>

IndexMinPQ(int maxN)
create a priority queue of capacity maxN
with possible indices between 0 and maxN-1

void insert(int i, Key key) insert key ; associate it with index i

void changeKey(int k, Key key) change the key associated with i to key

boolean contains(int i) is index i associated with some key?

void delete(int i) remove i and its associated key

Key minKey() return a minimal key

int minIndex() return a minimal key’s index

int delMin() remove a minimal key and return its index

boolean isEmpty() is the priority queue empty?

int size() number of keys in the priority queue

Key keyOf(int i) return key associated with index i

apI for a generic priority queue with associated indices

320 Chapter 2 n Sorting

ptg12441863

A useful way of thinking of this data type is as implementing an array, but with fast ac-
cess to the smallest entry in the array. Actually it does even better—it gives fast access
to the minimum entry in a specified subset of an array’s entries (the ones that have been
inserted). In other words, you can think of an IndexMinPQ named pq as representing a
subset of an array pq[0..N-1] of items. Think of the call pq.insert(i, key) as add-
ing i to the subset and setting pq[i] = key and the call pq.changeKey(i, key) as
setting pq[i] = key, both also maintaining data structures needed to support the other
operations, most importantly delMin() (remove and return the index of the minimum
key) and changeKey() (change the item associated with an index that is already in the
data structure—just as in pq[i] = key). These operations are im-
portant in many applications and are enabled by our ability to refer
to the key (with the index). Exercise 2.4.33 describes how to extend
Algorithm 2.6 to implement index priority queues with remarkable
efficiency and with remarkably little code. Intuitively, when an item
in the heap changes, we can restore the heap invariant with a sink
operation (if the key decreases) and a swim operation (if the key in-
creases). To perform the operations, we use the index to find the item
in the heap. The ability to locate an item in the heap also allows us to
add the delete() operation to the API.

proposition Q (continued). In an index priority queue of size N,
the number of compares required is proportional to at most log N
for insert, change priority, delete, and remove the minimum.

proof: Immediate from inspection of the code and the fact that all
paths in a heap are of length at most ~lg N.

This discussion is for a minimum-oriented queue; as usual, we also im-
plement on the booksite a maximum-oriented version IndexMaxPQ.

Index priority-queue client The IndexMinPQ client Multiway on page 322 solves
the multiway merge problem: it merges together several sorted input streams into one
sorted output stream. This problem arises in many applications: the streams might
be the output of scientific instruments (sorted by time), lists of information from the
web such as music or movies (sorted by title or artist name), commercial transactions
(sorted by account number or time), or whatever. If you have the space, you might just
read them all into an array and sort them, but with a priority queue, you can read input
streams and put them in sorted order on the output no matter how long they are.

operation

order of
growth of
number of
compares

insert() log N

changeKey() log N

contains() 1

delete() log N

minKey() 1

minIndex() 1

delMin() log N

Worst-case costs for an
N-item heap-based indexed

priority queue

3212.4 n Priority Queues

ptg12441863

Multiway merge priority-queue client

public class Multiway
{
 public static void merge(In[] streams)
 {
 int N = streams.length;
 IndexMinPQ<String> pq = new IndexMinPQ<String>(N);

 for (int i = 0; i < N; i++)
 if (!streams[i].isEmpty())
 pq.insert(i, streams[i].readString());

 while (!pq.isEmpty())
 {
 StdOut.println(pq.minKey());
 int i = pq.delMin();
 if (!streams[i].isEmpty())
 pq.insert(i, streams[i].readString());
 }
 }

 public static void main(String[] args)
 {
 int N = args.length;
 In[] streams = new In[N];
 for (int i = 0; i < N; i++)
 streams[i] = new In(args[i]);
 merge(streams);
 }
}

This IndexMinPQ client merges together the sorted input streams given as command-line arguments
into a single sorted output stream on standard output (see text). Each stream index is associated with
a key (the next string in the stream). After initialization, it enters a loop that prints the smallest string
in the queue and removes the corresponding entry, then adds a new entry for the next string in that
stream. For economy, the output is shown on one line below—the actual output is one string per line.

% more m1.txt
A B C F G I I Z
% more m2.txt
B D H P Q Q
% more m3.txt
A B E F J N

% java Multiway m1.txt m2.txt m3.txt
A A B B B C D E F F G H I I J N P Q Q Z

322 Chapter 2 n Sorting

ptg12441863

Heapsort We can use any priority queue to develop a sorting method. We insert
all the items to be sorted into a minimum-oriented priority queue, then repeatedly use
remove the minimum to remove them all in order. Using a priority queue represented as
an unordered array in this way corresponds to doing a selection sort; using an ordered
array corresponds to doing an insertion sort. What sorting method do we get if we use
a heap? An entirely different one! Next, we use the heap to develop a classic elegant sort-
ing algorithm known as heapsort.

Heapsort breaks into two phases: heap construction, where we reorganize the original
array into a heap, and the sortdown, where we pull the items out of the heap in decreas-
ing order to build the sorted result. For consistency with the code we have studied, we
use a maximum-oriented priority queue and repeatedly remove the maximum. Focus-
ing on the task of sorting, we abandon the notion of hiding the representation of the
priority queue and use swim() and sink() directly. Doing so allows us to sort an array
without needing any extra space, by maintaining the heap within the array to be sorted.

Heap construction How difficult is the process of building a heap from N given items?
Certainly we can accomplish this task in time proportional to N log N, by proceeding
from left to right through the array, using swim() to ensure that the items to the left of
the scanning pointer make up a heap-ordered complete tree, like successive priority-
queue insertions. A clever method that is much more efficient is to proceed from right
to left, using sink() to make subheaps as we go. Every position in the array is the root
of a small subheap; sink() works for such subheaps, as well. If the two children of a
node are heaps, then calling sink() on that node makes the subtree rooted at the par-
ent a heap. This process establishes the heap order inductively. The scan starts halfway
back through the array because we can skip the subheaps of size 1. The scan ends at
position 1, when we finish building the heap with one call to sink(). As the first phase
of a sort, heap construction is a bit counterintuitive, because its goal is to produce a
heap-ordered result, which has the largest item first in the array (and other larger items
near the beginning), not at the end, where it is destined to finish.

proposition r. Sink-based heap construction uses fewer than 2N compares and
fewer than N exchanges to construct a heap from N items.

proof: This fact follows from the observation that most of the heaps processed are
small. For example, to build a heap of 127 items, we process 32 heaps of size 3, 16
heaps of size 7, 8 heaps of size 15, 4 heaps of size 31, 2 heaps of size 63, and 1 heap
of size 127, so 32·1 + 16·2 + 8·3 + 4·4 + 2·5 + 1·6 = 120 exchanges (twice as many
compares) are required (at worst). See Exercise 2.4.20 for a complete proof.

3232.4 n Priority Queues

ptg12441863

aLgorIthM 2.7 heapsort

public static void sort(Comparable[] a)
{
 int N = a.length;
 for (int k = N/2; k >= 1; k--)
 sink(a, k, N);
 while (N > 1)
 {
 exch(a, 1, N--);
 sink(a, 1, N);
 }
}

This code sorts a[1] through a[N] using the sink() method (modified to take a[] and N as argu-
ments). The for loop constructs the heap; then the while loop exchanges the largest element a[1]
with a[N] and then repairs the heap, continuing until the heap is empty. Decrementing the array in-
dices in the implementations of exch() and less() gives an implementation that sorts a[0] through
a[N-1], consistent with our other sorts.

 a[i]

 N k 0 1 2 3 4 5 6 7 8 9 10 11

 S O R T E X A M P L E

 11 5 S O R T L X A M P E E

 11 4 S O R T L X A M P E E

 11 3 S O X T L R A M P E E

 11 2 S T X P L R A M O E E

 11 1 X T S P L R A M O E E

 X T S P L R A M O E E

 10 1 T P S O L R A M E E X

 9 1 S P R O L E A M E T X

 8 1 R P E O L E A M S T X

 7 1 P O E M L E A R S T X

 6 1 O M E A L E P R S T X

 5 1 M L E A E O P R S T X

 4 1 L E E A M O P R S T X

 3 1 E A E L M O P R S T X

 2 1 E A E L M O P R S T X

 1 1 A E E L M O P R S T X

 A E E L M O P R S T X

initial values

heap-ordered

sorted result

Heapsort trace (array contents just after each sink)

324 Chapter 2 n Sorting

ptg12441863

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap

M

T

P

O

L

E

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

R

X

A

M

P

O

T

E

L

E

S

R

X

A

M

P

O

T

E

L

E

X

R

S

A

R

A

S

L

T

E

X

M

O

E

P

R

A

S

E

T

M

X

L

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

E

T

M

X

A

O

E

P

R

L

S

E

T

M

X

A

O

E

P

M

P

O

T

E

L

E

X

R

S

A

M

O

E

P

E

L

X

T

R

S

A

M

O

E

P

T

L

X

S

E

R

A

M

O

S

P

T

L

X

R

E

E

A

R

M

S

O

T

L

X

P

E

E

A

R

A

S

M

T

L

X

O

E

E

P

1

2

4 5 6 7

8 9 10 11

3

1

2

4 5 6 7

8 9 10 11

3

heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

3252.4 n Priority Queues

ptg12441863

Sortdown Most of the work during heapsort is done during
the second phase, where we remove the largest remaining item
from the heap and put it into the array position vacated as the
heap shrinks. This process is a bit like selection sort (taking the
items in decreasing order instead of in increasing order), but it
uses many fewer compares because the heap provides a much
more efficient way to find the largest item in the unsorted part
of the array.

proposition s. Heapsort uses fewer than 2N lg N + 2N
compares (and half that many exchanges) to sort N items.

proof: The 2 N term covers the cost of heap construc-
tion (see Proposition R). The 2 N lg N term follows from
bounding the cost of each sink operation during the sort-
down by 2lg N (see Proposition Q).

Algorithm 2.7 is a full implementation based on these ideas,
the classical heapsort algorithm, which was invented by J. W.
J. Williams and refined by R. W. Floyd in 1964. Although the
loops in this program seem to do different tasks (the first
constructs the heap, and the second destroys the heap for the
sortdown), they are both built around the sink() method. We
provide an implementation outside of our priority-queue API
to highlight the simplicity of the sorting algorithm (eight lines
of code for sort() and another eight lines of code for sink())
and to make it an in-place sort.

As usual, you can gain some insight into the operation of the
algorithm by studying a visual trace. At first, the process seems
to do anything but sort, because large items are moving to the
beginning of the array as the heap is being constructed. But
then the method looks more like a mirror image of selection
sort (except that it uses far fewer compares).

As for all of the other methods that we have studied, various
people have investigated ways to improve heap-based priority-
queue implementations and heapsort. We now briefly consider
one of them.

input

sorted
result

heap-
ordered

red entries are
items that sank

gray entries
do not move

black entries
are involved
in exchanges

Visual trace of heapsort

326 Chapter 2 n Sorting

ptg12441863

Sink to the bottom, then swim Most items reinserted into the heap during sortdown
go all the way to the bottom. Floyd observed in 1964 that we can thus save time by
avoiding the check for whether the item has reached its position, simply promoting
the larger of the two children until the bottom is reached, then moving back up the
heap to the proper position. This idea cuts the number of compares by a factor of 2 as-
ymptotically—close to the number used by mergesort (for a randomly-ordered array).
The method requires extra bookkeeping, and it is useful in practice only when the cost
of compares is relatively high (for example, when we are sorting items with strings or
other types of long keys).

Heapsort is significant in the study of the complexity of sorting (see page 279) because
it is the only method that we have seen that is optimal (within a constant factor) in its
use of both time and space—it is guaranteed to use ~2N lg N compares and constant
extra space in the worst case. When space is very tight (for example, in an embedded
system or on a low-cost mobile device) it is popular because it can be implemented
with just a few dozen lines (even in machine code) while still providing optimal per-
formance. However, it is rarely used in typical applications on modern systems because
it has poor cache performance: array entries are rarely compared with nearby array
entries, so the number of cache misses is far higher than for quicksort, mergesort, and
even shellsort, where most compares are with nearby entries.

On the other hand, the use of heaps to implement priority queues plays an increas-
ingly important role in modern applications, because it provides an easy way to guar-
antee logarithmic running time for dynamic situations where large numbers of insert
and remove the maximum operations are intermixed. We will encounter several ex-
amples later in this book.

3272.4 n Priority Queues

ptg12441863

Q&A

Q. I’m still not clear on the purpose of priority queues. Why exactly don’t we just sort
and then consider the items in increasing order in the sorted array?

A. In some data-processing examples such as TopM and Multiway, the total amount of
data is far too large to consider sorting (or even storing in memory). If you are looking
for the top ten entries among a billion items, do you really want to sort a billion-entry
array? With a priority queue, you can do it with a ten-entry priority queue. In other ex-
amples, all the data does not even exist together at any point in time: we take something
from the priority queue, process it, and as a result of processing it perhaps add some
more things to the priority queue.

Q. Why not use Comparable, as we do for sorts, instead of the generic Item in MaxPQ?

A. Doing so would require the client to cast the return value of delMax() to an actual
type, such as String. Generally, casts in client code are to be avoided.

Q. Why not use a[0] in the heap representation?

A. Doing so simplifies the arithmetic a bit. It is not difficult to implement the heap
methods based on a 0-based heap where the children of a[0] are a[1] and a[2], the
children of a[1] are a[3] and a[4], the children of a[2] are a[5] and a[6], and
so forth, but most programmers prefer the simpler arithmetic that we use. Also, us-
ing a[0] as a sentinel value (in the parent of a[1]) is useful in some heap applications.

Q. Building a heap in heapsort by inserting items one by one seems simpler to me than
the tricky bottom-up method described on page 323 in the text. Why bother?

A. For a sort implementation, it is 20 percent faster and requires half as much tricky
code (no swim() needed). The difficulty of understanding an algorithm has not neces-
sarily much to do with its simplicity, or its efficiency.

Q. What happens if I leave off the extends Comparable<Key> phrase in an implemen-
tation like MaxPQ ?

A. As usual, the easiest way for you to answer a question of this sort for yourself is to
simply try it. If you do so for MaxPQ you will get a compile-time error:

MaxPQ.java:21: cannot find symbol
symbol : method compareTo(Key)

which is Java’s way of telling you that it does not know about compareTo() in Item
because you neglected to declare that Key extends Comparable<Key>.

328 Chapter 2 n Sorting

ptg12441863

ExErcisEs

2.4.1 Suppose that the sequence P R I O * R * * I * T * Y * * * Q U E * * *
U * E (where a letter means insert and an asterisk means remove the maximum) is ap-
plied to an initially empty priority queue. Give the sequence of letters returned by the
remove the maximum operations.

2.4.2 Criticize the following idea: To implement find the maximum in constant time,
why not use a stack or a queue, but keep track of the maximum value inserted so far,
then return that value for find the maximum?

2.4.3 Provide priority-queue implementations that support insert and remove the
maximum, one for each of the following underlying data structures: unordered array,
ordered array, unordered linked list, and ordered linked list. Give a table of the worst-
case bounds for each operation for each of your four implementations.

2.4.4 Is an array that is sorted in decreasing order a max-oriented heap?

2.4.5 Give the heap that results when the keys E A S Y Q U E S T I O N are inserted
in that order into an initially empty max-oriented heap.

2.4.6 Using the conventions of Exercise 2.4.1, give the sequence of heaps produced
when the operations P R I O * R * * I * T * Y * * * Q U E * * * U * E are
performed on an initially empty max-oriented heap.

2.4.7 The largest item in a heap must appear in position 1, and the second largest must
be in position 2 or position 3. Give the list of positions in a heap of size 31 where the
kth largest (i) can appear, and (ii) cannot appear, for k=2, 3, 4 (assuming the values to
be distinct).

2.4.8 Answer the previous exercise for the kth smallest item.

2.4.9 Draw all of the different heaps that can be made from the five keys A B C D E,
then draw all of the different heaps that can be made from the five keys A A A B B.

2.4.10 Suppose that we wish to avoid wasting one position in a heap-ordered array
pq[], putting the largest value in pq[0], its children in pq[1] and pq[2], and so forth,
proceeding in level order. Where are the parents and children of pq[k]?

2.4.11 Suppose that your application will have a huge number of insert operations, but
only a few remove the maximum operations. Which priority-queue implementation do
you think would be most effective: heap, unordered array, or ordered array?

3292.4 n Priority Queues

ptg12441863

2.4.12 Suppose that your application will have a huge number of find the maximum
operations, but a relatively small number of insert and remove the maximum operations.
Which priority-queue implementation do you think would be most effective: heap,
unordered array, or ordered array?

2.4.13 Describe a way to avoid the j < N test in sink().

2.4.14 What is the minimum number of items that must be exchanged during a re-
move the maximum operation in a heap of size N with no duplicate keys? Give a heap
of size 15 for which the minimum is achieved. Answer the same questions for two and
three successive remove the maximum operations.

2.4.15 Design a linear-time certification algorithm to check whether an array pq[] is
a min-oriented heap.

2.4.16 For N=32, give arrays of items that make heapsort use as many and as few com-
pares as possible.

2.4.17 Prove that building a minimum-oriented priority queue of size k then doing
N  k replace the minimum (insert followed by remove the minimum) operations leaves
the k largest of the N items in the priority queue.

2.4.18 In MaxPQ, suppose that a client calls insert() with an item that is larger than
all items in the queue, and then immediately calls delMax(). Assume that there are
no duplicate keys. Is the resulting heap identical to the heap as it was before these op-
erations? Answer the same question for two insert() operations (the first with a key
larger than all keys in the queue and the second for a key larger than that one) followed
by two delMax() operations.

2.4.19 Implement the constructor for MaxPQ that takes an array of items as argument,
using the bottom-up heap construction method described on page 323 in the text.

2.4.20 Prove that sink-based heap construction uses fewer than 2N compares and
fewer than N exchanges.

ExErcisEs (continued)

330 Chapter 2 n Sorting

ptg12441863

crEAtivE problEms

2.4.21 Elementary data structures. Explain how to use a priority queue to implement
the stack, queue, and randomized queue data types from Section 1.3 and Exercise
1.3.35.

2.4.22 Array resizing. Add array resizing to MaxPQ, and prove bounds like those of
Proposition Q for array accesses, in an amortized sense.

2.4.23 Multiway heaps. Considering the cost of compares only, and assuming that
it takes t compares to find the largest of t items, find the value of t that minimizes the
coefficient of N lg N in the compare count when a t-ary heap is used in heapsort. First,
assume a straightforward generalization of sink(); then, assume that Floyd’s method
can save one compare in the inner loop.

2.4.24 Priority queue with explicit links. Implement a priority queue using a heap-
ordered binary tree, but use a triply linked structure instead of an array. You will need
three links per node: two to traverse down the tree and one to traverse up the tree. Your
implementation should guarantee logarithmic running time per operation, even if no
maximum priority-queue size is known ahead of time.

2.4.25 Computational number theory. Write a program that prints out all integers of
the form a3 + b3 where a and b are integers between 0 and N in sorted order, without
using excessive space. That is, instead of computing an array of the N2 sums and sorting
them, build a minimum-oriented priority queue, initially containing (03, 0, 0), (13, 1,
0), (23, 2, 0), . . . , (N3, N, 0). Then, while the priority queue is nonempty, remove the
smallest item(i3 + j3, i, j), print it, and then, if j < N, insert the item (i3 + (j+1)3, i, j+1).
Use this program to find all distinct integers a, b, c, and d between 0 and 106 such that
a3 + b3 = c3 + d3.

2.4.26 Heap without exchanges. Because the exch() primitive is used in the sink()
and swim() operations, the items are loaded and stored twice as often as necessary.
Give more efficient implementations that avoid this inefficiency, a la insertion sort (see
Exercise 2.1.25).

2.4.27 Find the minimum. Add a min() method to MaxPQ. Your implementation
should use constant time and constant extra space.

2.4.28 Selection filter. Write a program similar to TopM that reads points (x, y, z) from
standard input, takes a value M from the command line, and prints the M points that

3312.4 n Priority Queues

ptg12441863

are closest to the origin in Euclidean distance. Estimate the running time of your client
for N = 108 and M = 104.

2.4.29 Min/max priority queue. Design a data type that supports the following opera-
tions: insert, delete the maximum, and delete the minimum (all in logarithmic time); and
find the maximum and find the minimum (both in constant time). Hint: Use two heaps.

2.4.30 Dynamic median-finding. Design a data type that supports insert in logarith-
mic time, find the median in constant time, and delete the median in logarithmic time.
Hint: Use a min-heap and a max-heap.

2.4.31 Fast insert. Develop a compare-based implementation of the MinPQ API such
that insert uses ~ log log N compares and delete the minimum uses ~2 log N compares.
Hint : Use binary search on parent pointers to find the ancestor in swim().

2.4.32 Lower bound. Prove that it is impossible to develop a compare-based imple-
mentation of the MinPQ API such that both insert and delete the minimum guarantee to
use ~log log N compares per operation.

2.4.33 Index priority-queue implementation. Implement the basic operations in the
index priority-queue API on page 320 by modifying Algorithm 2.6 as follows: Change
pq[] to hold indices, add an array keys[] to hold the key values, and add an array qp[]
that is the inverse of pq[] — qp[i] gives the position of i in pq[] (the index j such that
pq[j] is i). Then modify the code in Algorithm 2.6 to maintain these data structures.
Use the convention that qp[i] = -1 if i is not on the queue, and include a method
contains() that tests this condition. You need to modify the helper methods exch()
and less() but not sink() or swim().

crEAtivE problEms (continued)

332 Chapter 2 n Sorting

ptg12441863

Partial solution :

public class IndexMinPQ<Key extends Comparable<Key>>
{
 private int N; // number of elements on PQ
 private int[] pq; // binary heap using 1-based indexing
 private int[] qp; // inverse: qp[pq[i]] = pq[qp[i]] = i
 private Key[] keys; // items with priorities
 public IndexMinPQ(int maxN)
 {
 keys = (Key[]) new Comparable[maxN + 1];
 pq = new int[maxN + 1];
 qp = new int[maxN + 1];
 for (int i = 0; i <= maxN; i++) qp[i] = -1;
 }

 public boolean isEmpty()
 { return N == 0; }

 public boolean contains(int i)
 { return qp[i] != -1; }

 public void insert(int i, Key key)
 {
 N++;
 qp[i] = N;
 pq[N] = i;
 keys[i] = key;
 swim(N);

 }

 public Key minKey()
 { return keys[pq[1]]; }

 public int delMin()
 {
 int indexOfMin = pq[1];
 exch(1, N--);
 sink(1);
 keys[pq[N+1]] = null;
 qp[pq[N+1]] = -1;
 return indexOfMin;
 }

}

3332.4 n Priority Queues

ptg12441863

2.4.34 Index priority-queue implementation (additional operations). Add minIndex(),
changeKey(), and delete() to your implementation of Exercise 2.4.33.

Solution :

 public int minIndex()
 { return pq[1]; }

 public void changeKey(int i, Key key)
 {
 keys[i] = key;
 swim(qp[i]);
 sink(qp[i]);
 }

 public void delete(int i)
 {
 int index = qp[i];
 exch(index, N--);
 swim(index);
 sink(index);
 keys[i] = null;
 qp[i] = -1;
 }

2.4.35 Sampling from a discrete probability distribution. Write a class Sample with a
constructor that takes an array p[] of double values as argument and supports the fol-
lowing two operations: random()—return an index i with probability p[i]/T (where
T is the sum of the numbers in p[])—and changeKey(i, v)—change the value of
p[i] to v. Hint: Use a complete binary tree where each node has implied weight p[i].
Store in each node the cumulative weight of all the nodes in its subtree. To generate a
random index, pick a random number between 0 and T and use the cumulative weights
to determine which branch of the subtree to explore. When updating p[i], change all
of the weights of the nodes on the path from the root to i. Avoid explicit pointers, as we
do for heaps.

crEAtivE problEms (continued)

334 Chapter 2 n Sorting

ptg12441863

ExpErimENts

2.4.36 Performance driver I. Write a performance driver client program that uses in-
sert to fill a priority queue, then uses remove the maximum to remove half the keys, then
uses insert to fill it up again, then uses remove the maximum to remove all the keys, doing
so multiple times on random sequences of keys of various lengths ranging from small to
large; measures the time taken for each run; and prints out or plots the average running
times.

2.4.37 Performance driver II. Write a performance driver client program that uses in-
sert to fill a priority queue, then does as many remove the maximum and insert opera-
tions as it can do in 1 second, doing so multiple times on random sequences of keys of
various lengths ranging from small to large; and prints out or plots the average number
of remove the maximum operations it was able to do.

2.4.38 Exercise driver. Write an exercise driver client program that uses the methods
in our priority-queue interface of Algorithm 2.6 on difficult or pathological cases that
might turn up in practical applications. Simple examples include keys that are already
in order, keys in reverse order, all keys the same, and sequences of keys having only two
distinct values.

2.4.39 Cost of construction. Determine empirically the percentage of time heapsort
spends in the construction phase for N = 103, 106, and 109.

2.4.40 Floyd’s method. Implement a version of heapsort based on Floyd’s sink-to-the-
bottom-and-then-swim idea, as described in the text. Count the number of compares
used by your program and the number of compares used by the standard implementa-
tion, for randomly ordered distinct keys with N = 103, 106, and 109.

2.4.41 Multiway heaps. Implement a version of heapsort based on complete heap-
ordered 3-ary and 4-ary trees, as described in the text. Count the number of compares
used by each and the number of compares used by the standard implementation, for
randomly ordered distinct keys with N = 103, 106, and 109.

2.4.42 Preorder heaps. Implement a version of heapsort based on the idea of repre-
senting the heap-ordered tree in preorder rather than in level order. Count the number
of compares used by your program and the number of compares used by the standard
implementation, for randomly ordered keys with N = 103, 106, and 109.

3352.4 n Priority Queues

ptg12441863

2.5 APPliCAtionS

Sorting algorithms and priority queues are widely used in a broad variety of ap-
plications. Our purpose in this section is to briefly survey some of these applications,
consider ways in which the efficient methods that we have considered play a critical role
in such applications, and discuss some of the steps needed to make use of our sort and
priority-queue code.

A prime reason why sorting is so useful is that it is much easier to search for an item
in a sorted array than in an unsorted one. For over a century, people found it easy to
look up someone’s phone number in a phone book where items are sorted by last name.
Now digital music players organize song files by artist name or song title; search engines
display search results in descending order of importance; spreadsheets display columns
sorted by a particular field; matrix-processing packages sort the real eigenvalues of a
symmetric matrix in descending order; and so forth. Other tasks are also made easier
once an array is in sorted order: from looking up an item in the sorted index in the back
of this book; to removing duplicates from a long list such as a mailing list, a list of vot-
ers, or a list of websites; to performing statistical calculations such as removing outliers,
finding the median, or computing percentiles.

Sorting also arises as a critical subproblem in many applications that appear to have
nothing to do with sorting at all. Data compression, computer graphics, computational
biology, supply-chain management, combinatorial optimization, social choice, and
voting are but a few of many examples. The algorithms that we have considered in this
chapter play a critical role in the development of effective algorithms in each of the later
chapters in this book.

Most important is the system sort, so we begin by considering a number of practical
considerations that come into play when building a sort for use by a broad variety of
clients. While some of these topics are specific to Java, they each reflect challenges that
need to be met in any system.

Our primary purpose is to demonstrate that, even though we have used mechanisms
that are relatively simple, the sorting implementations that we are studying are widely
applicable. The list of proven applications of fast sorting algorithms is vast, so we can
consider just a small fraction of them: some scientific, some algorithmic, and some
commercial. You will find many more examples in the exercises, and many more than
that on the booksite. Moreover, we will often refer back to this chapter to effectively ad-
dress the problems that we later consider in this book!

336

ptg12441863

Sorting various types of data Our implementations sort arrays of Comparable
objects. This Java convention allows us to use Java’s callback mechanism to sort arrays
of objects of any type that implements the Comparable interface. As described in
Section 2.1, implementing Comparable amounts to defining a compareTo() method
that implements a natural ordering for the type. We can use our code immediately to
sort arrays of type String, Integer, Double, and other types such as File and URL,
because these data types all implement Comparable. Being able to use the same code
for all of those types is convenient, but typical applications involve working with data
types that are defined for use within the application. Accordingly it is common to im-
plement a compareTo() method for user-defined data types, so that they implement
Comparable, thus enabling client code to sort arrays of that type (and build priority
queues of values of that type).

Transaction example A prototypical breeding ground for sorting applications is
commercial data processing. For example, imagine that a company engaged in internet
commerce maintains a record for each transaction involving a customer account that
contains all of the pertinent information, such as the customer name, date, amount,
and so forth. Nowadays, a successful company needs to be able to handle millions and
millions of such transactions. As we saw in Exercise 2.1.21, it is reasonable to decide
that a natural ordering of such transactions is that they be ordered by amount, which
we can implement by adding an appropriate compareTo() method in the class defini-
tion. With such a definition, we could process an array a[] of Transactions by, for ex-
ample, first sorting it with the call Quick.sort(a). Our sorting methods know nothing
about our Transaction data type, but Java’s Comparable interface allows us to define
a natural ordering so that we can use any of our methods to sort Transaction objects.
Alternatively, we might specify that Transaction objects are to be ordered by date by
implementing compareTo() to compare the Date fields. Since Date objects are them-
selves Comparable, we can just invoke the compareTo() method in Date rather than
having to implement it from scratch. It is also reasonable to consider ordering this data
by its customer field; arranging to allow clients the flexibility to switch among multiple
different orders is an interesting challenge that we will soon consider.

public int compareTo(Transaction that)
{ return this.when.compareTo(that.when); }

alternate compareTo() implementation for sorting transactions by date

3372.5 n Applications

ptg12441863

Pointer sorting The approach we are using is known in the classical literature as
pointer sorting, so called because we process references to items and do not move the
data itself. In programming languages such as C and C++, programmers explicitly de-
cide whether to manipulate data or pointers to data; in Java, pointer manipulation is
implicit. Except for primitive numeric types, we always manipulate references to ob-
jects (pointers), not the objects themselves. Pointer sorting adds a level of indirection:
the array contains references to the objects to be sorted, not the objects themselves. We
briefly consider some associated issues, in the context of sorting. With multiple refer-
ence arrays, we can have multiple different sorted representations of different parts of a
single body of data (perhaps using multiple keys, as described below).

Keys are immutable It stands to reason that an array might not remain sorted if a
client is allowed to change the values of keys after the sort. Similarly, a priority queue
can hardly be expected to operate properly if the client can change the values of keys
between operations. In Java, it is wise to ensure that key values do not change by using
immutable keys. Most of the standard data types that you are likely to use as keys, such
as String, Integer, Double, and File, are immutable.

Exchanges are inexpensive Another advantage of using references is that we avoid the
cost of moving full items. The cost saving is significant for arrays with large items (and
small keys) because the compare needs to access just a small part of the item, and most
of the item is not even touched during the sort. The reference approach makes the cost
of an exchange roughly equal to the cost of a compare for general situations involving
arbitrarily large items (at the cost of the extra space for the references). Indeed, if the
keys are long, the exchanges might even wind up being less costly than the compare.
One way to study the performance of algorithms that sort arrays of numbers is to sim-
ply look at the total number of compares and exchanges they use, implicitly making the
assumption that the cost of exchanges is the same as the cost of compares. Conclusions
based on this assumption are likely to apply to a broad class of applications in Java,
because we are sorting reference objects.

Alternate orderings There are many applications where we want to use differ-
ent orders for the objects that we are sorting, depending on the situation. The Java
Comparator interface allows us to build multiple orders within a single class. It has
a single public method compare() that compares two objects. If we have a data type
that implements this interface, we can pass a Comparator to sort() (which passes it to
less()) as in the example on the next page. The Comparator mechanism allows us to
sort arrays of any type of object, using any total order that we wish to define for them.
Using a Comparator instead of working with Comparable types better separates the
definition of the type from the definition of what it means to compare two objects of

338 Chapter 2 n Sorting

ptg12441863

that type. Indeed, there are typically many possible ways to compare objects, and the
Comparator mechanism allows us to choose among them. For instance, to sort an ar-
ray a[] of strings without regard to whether characters are uppercase or lowercase you
can just call Insertion.sort(a, String.CASE_INSENSITIVE_ORDER) which makes
use of the CASE_INSENSITIVE_ORDER comparator defined in Java’s String class. As
you can imagine, the precise rules for ordering strings are complicated and quite differ-
ent for various natural languages, so Java has many String comparators.

Items with multiple keys In typical applications, items have multiple instance variables
that might need to serve as sort keys. In our transaction example, one client may need
to sort the transaction list by customer (for example, to bring together all transactions
involving each customer); another client might need to sort the list by amount (for
example, to identify high-value transactions); and other clients might need to use other
fields as sort keys. The Comparator mechanism is precisely what we need to allow this
flexibility. We can define multiple comparators, as in the alternate implementation of
Transaction shown on the bottom of the next page. With this definition, a client can
sort an array of Transaction objects by time with the call

Insertion.sort(a, new Transaction.WhenOrder())

or by amount with the call

Insertion.sort(a, new Transaction.HowMuchOrder()).

The sort does each compare through a callback to the compare() method in
Transaction that is specified by the client code. To avoid the cost of making a new
Comparator object for each sort, we could use public static final instance variables
to define the comparators (as Java does for CASE_INSENSITIVE_ORDER).

public static void sort(Object[] a, Comparator c)
{
 int N = a.length;
 for (int i = 1; i < N; i++)
 for (int j = i; j > 0 && less(c, a[j], a[j-1]); j--)
 exch(a, j, j-1);
}

private static boolean less(Comparator c, Object v, Object w)
{ return c.compare(v, w) < 0; }

private static void exch(Object[] a, int i, int j)
{ Object t = a[i]; a[i] = a[j]; a[j] = t; }

Insertion sorting with a Comparator

3392.5 n Applications

ptg12441863

Priority queues with comparators The same flexibility to use comparators is also
useful for priority queues. Extending our standard implementation in Algorithm 2.6
to support comparators involves the following steps:

n	 Import java.util.Comparator.
n	 Add to MaxPQ an instance variable comparator and a constructor that takes a

comparator as argument and initializes comparator to that value.
n	 Add code to less() that checks whether comparator is null (and uses it if it is

not null).
For example, with these changes, you could build different priority queues with
Transaction keys, using the time, place, or account number for the ordering. If you
remove the Key extends Comparable<Key> phrase from MinPQ, you even can support
keys with no natural order.

import java.util.Comparator;

public class Transaction
{
 ...
 private final String who;
 private final Date when;
 private final double amount;
 ...
 public static class WhoOrder implements Comparator<Transaction>
 {
 public int compare(Transaction v, Transaction w)
 { return v.who.compareTo(w.who); }
 }

 public static class WhenOrder implements Comparator<Transaction>
 {
 public int compare(Transaction v, Transaction w)
 { return v.when.compareTo(w.when); }
 }

 public static class HowMuchOrder implements Comparator<Transaction>
 {
 public int compare(Transaction v, Transaction w)
 {
 if (v.amount < w.amount) return -1;
 if (v.amount > w.amount) return +1;
 return 0;
 }
 }
}

Comparator implementation for Transaction data type

340 Chapter 2 n Sorting

ptg12441863

Stability A sorting method is stable if it preserves the relative order of equal keys in the
array. This property is frequently important. For example, consider an internet com-
merce application where we have to process a large number of events that have loca-
tions and timestamps. To begin, suppose that we store events in an array as they arrive,
so they are in order of the timestamp in the array. Now suppose that the application
requires that the transactions be separated out by location for further processing. One
easy way to do so is to sort the array by location. If the sort is unstable, the transac-
tions for each city may not necessarily be in order by timestamp after the sort. Often,
programmers who are unfamiliar with stability are surprised, when they first encounter
the situation, by the way an unstable algorithm seems to scramble the data. Some of
the sorting methods that we have considered in this chapter are stable (insertion sort
and mergesort); many are not (selection sort, shellsort, quicksort, and heapsort). There
are ways to trick any sort into stable behavior (see Exercise 2.5.18), but using a stable
algorithm is generally preferable when stability is an essential requirement. It is easy
to take stability for granted; actually, no practical method in common use achieves
stability without using significant extra time or space (researchers have developed al-
gorithms that do so, but applications programmers have judged them too complicated
to be useful).

Chicago 09:00:00
Phoenix 09:00:03
Houston 09:00:13
Chicago 09:00:59
Houston 09:01:10
Chicago 09:03:13
Seattle 09:10:11
Seattle 09:10:25
Phoenix 09:14:25
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Seattle 09:22:43
Seattle 09:22:54
Chicago 09:25:52
Chicago 09:35:21
Seattle 09:36:14
Phoenix 09:37:44

Chicago 09:00:00
Chicago 09:00:59
Chicago 09:03:13
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Chicago 09:25:52
Chicago 09:35:21
Houston 09:00:13
Houston 09:01:10
Phoenix 09:00:03
Phoenix 09:14:25
Phoenix 09:37:44
Seattle 09:10:11
Seattle 09:10:25
Seattle 09:22:43
Seattle 09:22:54
Seattle 09:36:14

Chicago 09:25:52
Chicago 09:03:13
Chicago 09:21:05
Chicago 09:19:46
Chicago 09:19:32
Chicago 09:00:00
Chicago 09:35:21
Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54

sorted by time sorted by location (not stable) sorted by location (stable)

no
longer
sorted

by time

still
sorted

by time

Stability when sorting on a second key

3412.5 n Applications

ptg12441863

Which sorting algorithm should I use? We have considered numerous sorting
algorithms in this chapter, so this question is natural. Knowing which algorithm is best
possible depends heavily on details of the application and implementation, but we
have studied some general-purpose methods that can be nearly as effective as the best
possible for a wide variety of applications.

The table at the bottom of this page is a general guide that summarizes the impor-
tant characteristics of the sort algorithms that we have studied in this chapter. In all
cases but shellsort (where the growth rate is only an estimate), insertion sort (where
the growth rate depends on the order of the input keys), and both versions of quicksort
(where the growth rate is probabilistic and may depend on the distribution of input key
values), multiplying these growth rates by appropriate constants gives an effective way
to predict running time. The constants involved are partly algorithm-dependent (for
example, heapsort uses twice the number of compares as mergesort and both do many
more array accesses than quicksort) but are primarily dependent on the implementa-
tion, the Java compiler, and your computer, which determine the number of machine
instructions that are executed and the time that each requires. Most important, since
they are constants, you can generally predict the running time for large N by running
experiments for smaller N and extrapolating, using our standard doubling protocol.

algorithm stable? in place?
order of growth to sort N items

notes
running time extra space

selection sort no yes N 2 1

insertion sort yes yes
between

N and N 2
1 depends on order

of items

shellsort no yes N log N ?
N 6/5 ?

1

quicksort no yes N log N lg N probabilistic
guarantee

3-way quicksort no yes between
N and N log N lg N

probabilistic,
also depends on
distribution of

input keys

mergesort yes no N log N N

heapsort no yes N log N 1

performance characteristics of sorting algorithms

342 Chapter 2 n Sorting

ptg12441863

property t. Quicksort is the fastest general-purpose sort.

Evidence: This hypothesis is supported by countless implementations of quick-
sort on countless computer systems since its invention decades ago. Generally, the
reason that quicksort is fastest is that it has only a few instructions in its inner
loop (and it does well with cache memories because it most often references data
sequentially) so that its running time is ~c N lg N with the value of c smaller than
the corresponding constants for other linearithmic sorts. With 3-way partitioning,
quicksort becomes linear for certain key distributions likely to arise in practice,
where other sorts are linearithmic.

Thus, in most practical situations, quicksort is the method of choice. Still, given the
broad reach of sorting and the broad variety of computers and systems, a flat statement
like this is difficult to justify. For example, we have already seen one notable exception:
if stability is important and space is available, mergesort might be best. We will see oth-
er exceptions in Chapter 5. With tools like SortCompare and a considerable amount of
time and effort, you can do a more detailed study of comparative performance of these
algorithms and the refinements that we have discussed for your computer, as discussed
in several exercises at the end of this section. Perhaps the best way to interpret Prop-
erty T is as saying that you certainly should seriously consider using quicksort in any
sort application where running time is important.

Sorting primitive types In some performance-critical applications, the focus may be
on sorting numbers, so it is reasonable to avoid the costs of using references and sort
primitive types instead. For example, consider the difference between sorting an array
of int values and sorting an array of Integer values. In the former case, we exchange
the numbers themselves and put them in order in the array; in the latter, we exchange
references to Integer objects, which contain the numbers. If we are doing nothing
more than sorting a huge array of numbers, we avoid paying the cost of storing an equal
number of references plus the extra cost of accessing the numbers through the refer-
ences, not to mention the cost of invoking compareTo() and less() methods. We can
develop efficient versions of our sort codes for such purposes by replacing Comparable
with the primitive type name, and redefining less() or just replacing calls to less()
with code like a[i] < a[j] (see Exercise 2.1.26).

Java system sort As an example of applying the information given in the table on
page 342, consider Java’s primary system sort method, java.util.Arrays.sort().
With overloading of argument types, this name actually represents a collection of
methods:

3432.5 n Applications

ptg12441863

n	 A different method for each primitive type
n	 A method for data types that implement Comparable
n	 A method that uses a Comparator

Java’s systems programmers have chosen to use quicksort (with 3-way partitioning)
to implement the primitive-type methods, and mergesort for reference-type methods.
The primary practical implications of these choices are, as just discussed, to trade speed
and memory usage (for primitive types) for guaranteed performance and stability (for
reference types).

The algorithms and ideas that we have been considering are an essential part of
many modern systems, including Java. When developing Java programs to address an
application, you are likely to find that Java’s Arrays.sort() implementations (perhaps
supplemented by your own implementation(s) of compareTo() and/or compare())
will meet your needs, because you will be using 3-way quicksort or mergesort, both
proven classic algorithms.

In this book, we generally will use our own Quick.sort() (usually) or Merge.sort()
(when stability is important and space is not) in sort clients. You may feel free to use
Arrays.sort() unless you have a good reason to use another specific method.

Reductions The idea that we can use sorting algorithms to solve other problems
is an example of a basic technique in algorithm design known as reduction. We con-
sider reduction in detail in Chapter 6 because of its importance in the theory of al-
gorithms—in the meantime, we will consider several practical examples. A reduction
is a situation where an algorithm developed for one problem is used to solve another.
Applications programmers are quite used to the concept of reduction (whether or not
it is explicitly articulated)—every time you make use of a method that solves problem
B in order to solve problem A, you are doing a reduction from A to B. Indeed, one goal
in implementing algorithms is to facilitate reductions by making the algorithms useful
for as wide a variety as possible of applications. We begin with a few elementary exam-
ples for sorting. Many of these take the form of algorithmic puzzles where a quadratic
brute-force algorithm is immediate. It is often the case that sorting the data first makes
it easy to finish solving the problem in linear additional time, thus reducing the total
cost from quadratic to linearithmic.

Duplicates Are there any duplicate keys in an array of Comparable objects? How many
distinct keys are there? Which value appears most frequently? For small arrays, these
kinds of questions are easy to answer with a quadratic algorithm that compares each
array entry with each other array entry. For large arrays, using a quadratic algorithm

344 Chapter 2 n Sorting

ptg12441863

is not feasible. With sorting, you can answer these questions in linearithmic time: first
sort the array, then make a pass through the sorted array, taking note of duplicate keys
that appear consecutively in the ordered array. For example, the code fragment at right
counts the distinct keys in an array. With simple modifications to this code, you can
answer the questions above and perform tasks such as printing all the distinct values,
all the values that are duplicated, and so forth, even for huge arrays.

Rankings A permutation (or ranking) is an
array of N integers where each of the integers
between 0 and N 1 appears exactly once. The
Kendall tau distance between two rankings is
the number of pairs that are in different order
in the two rankings. For example, the Kendall
tau distance between 0 3 1 6 2 5 4 and
1 0 3 6 4 2 5 is four because the pairs
0-1, 3-1, 2-4, 5-4 are in different relative order in the two rankings, but all other pairs
are in the same relative order. This statistic is widely used: in sociology to study social
choice and voting theory, in molecular biology to compare genes using expression pro-
files, and in ranking search engine results on the web, among many other applications.
The Kendall tau distance between a permutation and the identity permutation (where
each entry is equal to its index) is the number of inversions in the permutation, and a
quadratic algorithm based on insertion sort to compute the distance is not difficult to
devise (recall Proposition C in Section 2.1). Efficiently computing the Kendall tau
distance is an interesting exercise for a programmer (or a student!) who is familiar with
the classical sorting algorithms that we have studied (see Exercise 2.5.19).

Priority-queue reductions In Section 2.4, we considered two examples of problems
that reduce to a sequence of operations on priority queues. TopM, on page 311, finds
the M items in an input stream with the highest keys. Multiway, on page 322, merges
M sorted input streams together to make a sorted output stream. Both of these prob-
lems are easily addressed with a priority queue of size M.

Median and order statistics An important application related to sorting but for
which a full sort is not required is the operation of finding the median of a collection
of keys (the value with the property that half the keys are no larger and half the keys
are no smaller). This operation is a common computation in statistics and in various
other data-processing applications. Finding the median is a special case of selection:
finding the k th smallest of a collection of numbers. Selection has many applications in
the processing of experimental and other data. The use of the median and other order

Quick.sort(a);
int count = 1; // Assume a.length > 0.
for (int i = 1; i < a.length; i++)
 if (a[i].compareTo(a[i-1]) != 0)
 count++;

Counting the distinct keys in a[]

3452.5 n Applications

ptg12441863

statistics to divide an array into smaller groups is common. Often, only a small part
of a large array is to be saved for further processing; in such cases, a program that can
select, say, the top 10 percent of the items of the array might be more appropriate than
a full sort. Our TopM application of Sec-
tion 2.4 solves this problem for an un-
bounded input stream, using a priority
queue. An effective alternative to TopM
when you have the items in an array is to
just sort it: after the call Quick.sort(a)
the k smallest items in the array are in
the first k array positions for all k less
than the array length. But this approach
involves a sort, so the running time is
linearithmic. Can we do better? Finding
the k smallest items in an array is easy

when k is very
small or very
large, but more
challenging when k is a constant fraction of the array size,
such as finding the median (k = N/2). You might be surprised
to learn that it is possible to solve this problem in linear time,
as in the select() method above (this implementation re-
quires a client cast; for the more pedantic code needed to avoid
this requirement, see the booksite). To do the job, select()
maintains the variables lo and hi to delimit the subarray that
contains the index k of the item to be selected and uses quick-
sort partitioning to shrink the size of the subarray. Recall that
partition() rearranges an array a[lo] through a[hi] and
returns an integer j such that a[lo] through a[j-1] are less
than or equal to a[j], and a[j+1] through a[hi] are greater
than or equal to a[j]. Now, if k is equal to j, then we are done.
Otherwise, if k < j, then we need to continue working in the
left subarray (by changing the value of hi to j-1); if k > j,
then we need to continue working in the right subarray (by
changing lo to j+1). The loop maintains the invariant that no
entry to the left of lo is larger and no entry to the right of hi
is smaller than any element within a[lo..hi]. After partition-
ing, we preserve this invariant and shrink the interval until it

public static Comparable
select(Comparable[] a, int k)
{
 StdRandom.shuffle(a);
 int lo = 0, hi = a.length - 1;
 while (hi > lo)
 {
 int j = partition(a, lo, hi);
 if (j == k) return a[k];
 else if (j > k) hi = j - 1;
 else if (j < k) lo = j + 1;
 }
 return a[k];
}

Selecting the k smallest items in a[]

median

lo j hi

Partitioning to �nd the median

346 Chapter 2 n Sorting

ptg12441863

consists just of k. Upon termination, a[k] contains the (k +1)st smallest entry, a[0]
through a[k-1] are all smaller than (or equal to) a[k], and a[k+1] through the end of
the array are all greater than (or equal to) a[k]. To gain some insight into why this is a
linear-time algorithm, suppose that partitioning divides the array exactly in half each
time. Then the number of compares is N  N/2  N/4  N/8  . . . , terminating when
the k th smallest item is found. This sum is less than 2 N. As with quicksort, it takes a bit
of math to find the true bound, which is a bit higher. Also as with quicksort, the analysis
depends on partitioning on a random item, so that the guarantee is probabilistic.

proposition U. Partitioning-based selection is a linear-time algorithm, on average.

proof: An analysis similar to, but significantly more complex than, the proof of
Proposition K for quicksort leads to the result that the average number of com-
pares is ~ 2N  2k ln(N/k)  2(N  k) ln(N/(N  k)), which is linear for any
allowed value of k. For example, this formula says that finding the median (k =
N/2) requires ~ (2  2 ln 2)N compares, on the average. Note that the worst case
is quadratic but randomization protects against that possibility, as with quicksort.

Designing a selection algorithm that is guaranteed to use a linear number of compares
in the worst case is a classic result in computational complexity, but it has not yet led to
a useful practical algorithm.

3472.5 n Applications

ptg12441863

A brief survey of sorting applications Direct applications of sorting are fa-
miliar, ubiquitous, and far too numerous for us to list them all. You sort your music by
song title or by artist name, your email or phone calls by time or origin, and your pho-
tos by date. Universities sort student accounts by name or ID. Credit card companies
sort millions or even billions of transactions by date or amount. Scientists sort not only
experimental data by time or other identifier but also to enable detailed simulations
of the natural world, from the motion of particles or heavenly bodies to the structure
of materials to social interactions and relationships. Indeed, it is difficult to identify a
computational application that does not involve sorting! To elaborate upon this point,
we describe in this section examples of applications that are more complicated than the
reductions just considered, including several that we will examine in detail later in this
book.

Commercial computing The world is awash in information. Government organiza-
tions, financial institutions, and commercial enterprises organize much of this infor-
mation by sorting it. Whether the information is accounts to be sorted by name or
number, transactions to be sorted by date or amount, mail to be sorted by postal code
or address, files to be sorted by name or date, or whatever, processing such data is sure
to involve a sorting algorithm somewhere along the way. Typically, such information
is organized in huge databases, sorted by multiple keys for efficient search. An effective
strategy that is widely used is to collect new information, add it to the database, sort it
on the keys of interest, and merge the sorted result for each key into the existing data-
base. The methods that we have discussed have been used effectively since the early days
of computing to build a huge infrastructure of sorted data and methods for processing
it that serve as the basis for all of this commercial activity. Arrays having millions or
even billions of entries are routinely processed today—without linearithmic sorting
algorithms, such arrays could not be sorted, making such processing extremely difficult
or impossible.

Search for information Keeping data in sorted order makes it possible to efficiently
search through it using the classic binary search algorithm (see Chapter 1). You will
also see that the same scheme makes it easy to quickly handle many other kinds of
queries. How many items are smaller than a given item? Which items fall within a given
range? In Chapter 3, we consider such questions. We also consider in detail various
extensions to sorting and binary search that allow us to intermix such queries with
operations that insert and remove objects from the set, still guaranteeing logarithmic
performance for all operations.

348 Chapter 2 n Sorting

ptg12441863

Operations research The field of operations research (OR) develops and applies math-
ematical models for problem-solving and decision-making. We will see several exam-
ples in this book of relationships between OR and the study of algorithms, beginning
here with the use of sorting in a classic OR problem known as scheduling. Suppose that
we have N jobs to complete, where job j requires tj seconds of processing time. We need
to complete all of the jobs but want to maximize customer satisfaction by minimizing
the average completion time of the jobs. The shortest processing time first rule, where we
schedule the jobs in increasing order of processing time, is known to accomplish this
goal. Therefore we can sort the jobs by processing time or put them on a minimum-
oriented priority queue. With various other constraints and restrictions, we get various
other scheduling problems, which frequently arise in industrial applications and are
well-studied. As another example, consider the load-balancing problem, where we have
M identical processors and N jobs to complete, and our goal is to schedule all of the
jobs on the processors so that the time at which the last job completes is as early as pos-
sible. This specific problem is NP-hard (see Chapter 6) so we do not expect to find a
practical way to compute an optimal schedule. One method that is known to produce
a good schedule is the longest processing time first rule, where we consider the jobs in
descending order of processing time, assigning each job to the processor that becomes
available first. To implement this algorithm, we first sort the jobs in reverse order. Then
we maintain a priority queue of M processors, where the priority is the sum of the pro-
cessing times of its jobs. At each step, we delete the processor with the minimum prior-
ity, add the next job to the processor, and reinsert that processor into the priority queue.

Event-driven simulation Many scientific applications involve simulation, where the
point of the computation is to model some aspect of the real world in order to be able to
better understand it. Before the advent of computing, scientists had little choice but to
build mathematical models for this purpose; such models are now well-complemented
by computational models. Doing such simulations efficiently can be challenging, and
use of appropriate algorithms certainly can make the difference between being able
to complete the simulation in a reasonable amount of time and being stuck with the
choice of accepting inaccurate results or waiting for the simulation to do the computa-
tion necessary to get accurate results. We will consider in Chapter 6 a detailed example
that illustrates this point.

Numerical computations Scientific computing is often concerned with accuracy
(how close are we to the true answer?). Accuracy is extremely important when we are
performing millions of computations with estimated values such as the floating-point
representation of real numbers that we commonly use on computers. Some numeri-
cal algorithms use priority queues and sorting to control accuracy in calculations. For

3492.5 n Applications

ptg12441863

example, one way to do numerical integration (quadrature), where the goal is to esti-
mate the area under a curve, is to maintain a priority queue with accuracy estimates for
a set of subintervals that comprise the whole interval. The process is to remove the least
accurate subinterval, split it in half (thus achieving better accuracy for the two halves),
and put the two halves back onto the priority queue, continuing until a desired toler-
ance is reached.

Combinatorial search A classic paradigm in artificial intelligence and in coping with
intractable problems is to define a set of configurations with well-defined moves from
one configuration to the next and a priority associated with each move. Also defined
is a start configuration and a goal configuration (which corresponds to having solved
the problem). The well-known A* algorithm is a problem-solving process where we put
the start configuration on the priority queue, then do the following until reaching the
goal: remove the highest-priority configuration and add to the queue all configurations
that can be reached from that with one move (excluding the one just removed). As with
event-driven simulation, this process is tailor-made for priority queues. It reduces solv-
ing the problem to defining an effective priority function. See Exercise 2.5.32 for an
example.

Beyond such direct applications (and we have only indicated a small fraction of
those), sorting and priority queues are an essential abstraction in algorithm design,
so they will surface frequently throughout this book. We next list some examples of
applications from later in the book. All of these applications depend upon the efficient
implementations of sorting algorithms and the priority-queue data type that we have
considered in this chapter.

Prim’s algorithm and Dijkstra’s algorithm are classical algorithms from Chapter 4.
That chapter is about algorithms that process graphs, a fundamental model for items
and edges that connect pairs of items. The basis for these and several other algorithms
is graph search, where we proceed from item to item along edges. Priority queues play a
fundamental role in organizing graph searches, enabling efficient algorithms.

Kruskal’s algorithm is another classic algorithm for graphs whose edges have weights
that depends upon processing the edges in order of their weight. Its running time is
dominated by the cost of the sort.

Huffman compression is a classic data compression algorithm that depends upon pro-
cessing a set of items with integer weights by combining the two smallest to produce
a new one whose weight is the sum of its two constituents. Implementing this opera-

350 Chapter 2 n Sorting

ptg12441863

tion is immediate, using a priority queue. Several other data-compression schemes are
based upon sorting.

String-processing algorithms, which are of critical importance in modern applica-
tions in cryptology and in genomics, are often based on sorting (generally using one
of the specialized string sorts discussed in Chapter 5). For example, we will discuss in
Chapter 6 algorithms for finding the longest repeated substring in a given string that is
based on first sorting suffixes of the strings.

3512.5 n Applications

ptg12441863

 Q & A

Q. Is there a priority-queue data type in the Java library?

A. Yes, see java.util.PriorityQueue.

Q. Does stability matter when sorting arrays primitive types in Java?

A. Stability is a (mostly) meaningless concept when applied to primitive types because
you cannot distinguish between two equal int or double values. There is one exotic
exception that arises because there are multiple representations of NaN but they are
considered equal when sorting.

352 Chapter 2 n Sorting

ptg12441863

ExErcisEs

2.5.1 Consider the following implementation of the compareTo() method for String.
How does the third line help with efficiency?

public int compareTo(String that)
{
 if (this == that) return 0; // this line
 int n = Math.min(this.length(), that.length());
 for (int i = 0; i < n; i++)
 {
 if (this.charAt(i) < that.charAt(i)) return -1;
 else if (this.charAt(i) > that.charAt(i)) return +1;
 }
 return this.length() - that.length();
}

2.5.2 Write a program that reads a list of words from standard input and prints all two-
word compound words in the list. For example, if after, thought, and afterthought
are in the list, then afterthought is a compound word.

2.5.3 Criticize the following implementation of a class intended to represent account
balances. Why is compareTo() a flawed implementation of the Comparable interface?

public class Balance implements Comparable<Balance>
{
 ...
 private double amount;
 public int compareTo(Balance that)
 {
 if (this.amount < that.amount - 0.005) return -1;
 if (this.amount > that.amount + 0.005) return +1;
 return 0;
 }
 ...
}

Describe a way to fix this problem.

2.5.4 Implement a method String[] dedup(String[] a) that returns the objects in
a[] in sorted order, with duplicates removed.

2.5.5 Explain why selection sort is not stable.

3532.5 n Applications

ptg12441863

2.5.6 Implement a recursive version of select().

2.5.7 About how many compares are required, on the average, to find the smallest of
N items using select()?

2.5.8 Write a program Frequency that reads strings from standard input and prints
the number of times each string occurs, in descending order of frequency.

2.5.9 Develop a data type that allows you to write a client that can sort a file such as the
one shown at right.

2.5.10 Create a data type Version that represents a
software version number, such as 115.1.1, 115.10.1,
115.10.2. Implement the Comparable interface so
that 115.1.1 is less than 115.10.1, and so forth.

2.5.11 One way to describe the result of a sorting al-
gorithm is to specify a permutation p[] of the num-
bers 0 to a.length-1, such that p[i] specifies where
the key originally in a[i] ends up. Give the permuta-
tions that describe the results of insertion sort, selec-
tion sort, shellsort, mergesort, quicksort, and heapsort
for an array of seven equal keys.

ExErcisEs (continued)

input (DJi A volumes for each day)

 1-Oct-28 3500000
 2-Oct-28 3850000
 3-Oct-28 4060000
 4-Oct-28 4330000
 5-Oct-28 4360000
 ...
 30-Dec-99 554680000
 31-Dec-99 374049984
 3-Jan-00 931800000
 4-Jan-00 1009000000
 5-Jan-00 1085500032
 ...

output

 19-Aug-40 130000
 26-Aug-40 160000
 24-Jul-40 200000
 10-Aug-42 210000
 23-Jun-42 210000
 ...
 23-Jul-02 2441019904
 17-Jul-02 2566500096
 15-Jul-02 2574799872
 19-Jul-02 2654099968
 24-Jul-02 2775559936

354 Chapter 2 n Sorting

ptg12441863

crEAtivE problEms

2.5.12 Scheduling. Write a program SPT.java that reads job names and processing
times from standard input and prints a schedule that minimizes average completion
time using the shortest processing time first rule, as described on page 349.

2.5.13 Load balancing. Write a program LPT.java that takes an integer M as a com-
mand-line argument, reads job names and processing times from standard input and
prints a schedule assigning the jobs to M processors that approximately minimizes the
time when the last job completes using the longest processing time first rule, as de-
scribed on page 349.

2.5.14 Sort by reverse domain. Write a data type Domain that represents domain names,
including an appropriate compareTo() method where the natural order is in order of
the reverse domain name. For example, the reverse domain of cs.princeton.edu is
edu.princeton.cs. This is useful for web log analysis. Hint: Use s.split("\\.") to
split the string s into tokens, delimited by dots. Write a client that reads domain names
from standard input and prints the reverse domains in sorted order.

2.5.15 Spam campaign. To initiate an illegal spam campaign, you have a list of email
addresses from various domains (the part of the email address that follows the @
symbol). To better forge the return addresses, you want to send the email from an-
other user at the same domain. For example, you might want to forge an email from
wayne@princeton.edu to rs@princeton.edu. How would you process the email list
to make this an efficient task?

2.5.16 Unbiased election. In order to thwart bias against candidates whose names ap-
pear toward the end of the alphabet, California sorted the candidates appearing on its
2003 gubernatorial ballot by using the following order of characters:

R W Q O J M V A H B S G Z X N T C I E K U P D Y F L

Create a data type where this is the natural order and write a client California with a
single static method main() that sorts strings according to this ordering. Assume that
each string is composed solely of uppercase letters.

2.5.17 Check stability. Extend your check() method from Exercise 2.1.16 to call
sort() for a given array and return true if sort() sorts the array in order in a stable
manner, false otherwise. Do not assume that sort() is restricted to move data only
with exch().

3552.5 n Applications

ptg12441863

2.5.18 Force stability. Write a wrapper method that makes any sort stable by creating
a new key type that allows you to append each key’s index to the key, call sort(), then
restore the original key after the sort.

2.5.19 Kendall tau distance. Write a program KendallTau.java that computes the
Kendall tau distance between two permutations in linearithmic time.

2.5.20 Idle time. Suppose that a machine processes N jobs. Write a program that, giv-
en the list of job start and finish times, finds the largest interval where the machine is
idle and the largest interval where the machine is not idle.

2.5.21 Multidimensional sort. Write a Vector data type for use in having the sort-
ing methods sort multidimensional vectors of d integers, putting the vectors in order
by first component, those with equal first component in order by second component,
those with equal first and second components in order by third component, and so
forth.

2.5.22 Stock market trading. Investors place buy and sell orders for a particular stock
on an electronic exchange, specifying a maximum buy or minimum sell price that they
are willing to pay, and how many shares they wish to trade at that price. Develop a
program that uses priority queues to match up buyers and sellers and test it through
simulation. Maintain two priority queues, one for buyers and one for sellers, executing
trades whenever a new order can be matched with an existing order or orders.

2.5.23 Sampling for selection. Investigate the idea of using sampling to improve selec-
tion. Hint: Using the median may not always be helpful.

2.5.24 Stable priority queue. Develop a stable priority-queue implementation (which
returns duplicate keys in the same order in which they were inserted).

2.5.25 Points in the plane. Write three static comparators for the Point2D data type
of page 77, one that compares points by their x coordinate, one that compares them by
their y coordinate, and one that compares them by their distance from the origin. Write
two non-static comparators for the Point2D data type, one that compares them by
their distance to a specified point and one that compares them by their polar angle with
respect to a specified point.

2.5.26 Simple polygon. Given N points in the plane, draw a simple polygon with the

crEAtivE problEms (continued)

356 Chapter 2 n Sorting

ptg12441863

N points as vertices. Hint : Find the point p with the smallest y coordinate, breaking ties
with the smallest x coordinate. Connect the points in increasing order of the polar angle
they make with p.

2.5.27 One-dimensional intervals. Write three comparators for the Interval1D data
type of page 77, one that compares intervals by their left endpoint, one that compares
intervals by their right endpoint, and one that compares intervals by their length.

2.5.28 Sort files by name. Write a program FileSorter that takes the name of a
directory as a command-line argument and prints out all of the files in that directory,
sorted by file name. Hint : Use the File data type.

2.5.29 Sort files by size and date of last modification. Write comparators for the type
File to order by increasing/decreasing order of file size, ascending/descending order
of file name, and ascending/descending order of last modification date. Use these
comparators in a program LS that takes a command-line argument and lists the files
in the current directory according to a specified order, e.g., "-t" to sort by timestamp.
Support multiple flags to break ties. Be sure to use a stable sort.

2.5.30 Boerner’s theorem. True or false: If you sort each column of a matrix, then sort
each row, the columns are still sorted. Justify your answer.

3572.5 n Applications

ptg12441863

ExpErimENts

2.5.31 Distinct values. Write a client that takes integers M, N, and T as command-line
arguments, then uses the code given in the text to perform T trials of the following ex-
periment: Generate N random int values between 0 and M – 1 and count the number
of distinct values. Run your program for T = 10 and N = 10 3, 10 4, 10 5, and 10 6, with
M = N  2, and N, and 2N. Probability theory says that the number of distinct values
should be about M (1 – e –a) where a  N  M—print a table to help you confirm that
your experiments validate that formula.

2.5.32 8 puzzle. The 8 puzzle is a game invented and popularized by Noyes Palmer
Chapman in the 1870s. It is played on a 3-by-3 grid with 8 tiles labeled 1 through 8 and a
blank square. Your goal is to rearrange the tiles so that they are in order. You are permit-
ted to slide one of the available tiles horizontally or vertically (but not diagonally) into
the blank square. Write a program that solves the puzzle using the A* algorithm. Start
by using as priority the sum of the number of moves made to get to this board posi-
tion plus the number of tiles in the wrong position. (Note that the number of moves
you must make from a given board position is at least as big as the number of tiles in
the wrong place.) Investigate substituting other functions for the number of tiles in the
wrong position, such as the sum of the Manhattan distance from each tile to its correct
position, or the sums of the squares of these distances.

2.5.33 Random transactions. Develop a generator that takes an argument N, generates
N random Transaction objects (see Exercises 2.1.21 and 2.1.22), using assumptions
about the transactions that you can defend. Then compare the performance of shellsort,
mergesort, quicksort, and heapsort for sorting N transactions, for N=103, 104, 105, and
106.

358 Chapter 2 n Sorting

ptg12441863

This page intentionally left blank

ptg12441863

3.1 Symbol tables 362

3.2 Binary Search trees 396

3.3 Balanced Search trees 424

3.4 hash tables 458

3.5 Applications 486

three

Searching

ptg12441863

Modern computing and the internet have made accessible a vast amount of
information. The ability to efficiently search through this information is
fundamental to processing it. This chapter describes classical searching algo-

rithms that have proven to be effective in numerous diverse applications for decades.
Without algorithms like these, the development of the computational infrastructure
that we enjoy in the modern world would not have been possible.

We use the term symbol table to describe an abstract mechanism where we save in-
formation (a value) that we can later search for and retrieve by specifying a key. The
nature of the keys and the values depends upon the application. There can be a huge
number of keys and a huge amount of information, so implementing an efficient sym-
bol table is a significant computational challenge.

Symbol tables are sometimes called dictionaries, by analogy with the time-honored
system of providing definitions for words by listing them alphabetically in a reference
book. In an English-language dictionary, a key is a word and its value is the entry as-
sociated with the word that contains the definition, pronunciation, and etymology.
Symbol tables are also sometimes called indices, by analogy with another time-honored
system of providing access to terms by listing them alphabetically at the end of a book
such as a textbook. In a book index, a key is a term of interest and its value is the list of
page numbers that tell readers where to find that term in the book.

After describing the basic APIs and two fundamental implementations, we consider
three classic data structures that can support efficient symbol-table implementations:
binary search trees, red-black trees, and hash tables. We conclude with several exten-
sions and applications, many of which would not be feasible without the efficient algo-
rithms that you will learn about in this chapter.

361

ptg12441863

3.1 SyMBol tABleS

The primary purpose of a symbol table is to associate a value with a key. The client can
insert key-value pairs into the symbol table with the expectation of later being able to
search for the value associated with a given key, from among all of the key-value pairs
that have been put into the table. This chapter describes several ways to structure this
data so as to make efficient not just the insert and search operations, but several other
convenient operations as well. To implement a symbol table, we need to define an un-
derlying data structure and then specify algorithms for insert, search, and other opera-
tions that create and manipulate the data structure.

Search is so important to so many computer applications that symbol tables are
available as high-level abstractions in many programming environments, including
Java—we shall discuss Java’s symbol-table implementations in Section 3.5. The table
below gives some examples of keys and values that you might use in typical applica-
tions. We consider some illustrative reference clients soon, and Section 3.5 is devoted
to showing you how to use symbol tables effectively in your own clients. We also use
symbol tables in developing other algorithms throughout the book.

Definition. A symbol table is a data structure for key-value pairs that supports two
operations: insert (put) a new pair into the table and search for (get) the value as-
sociated with a given key.

application purpose of search key value

dictionary find definition word definition

book index find relevant pages term list of page numbers

file share find song to download name of song computer ID

account management process transactions account number transaction details

web search find relevant web pages keyword list of page names

compiler find type and value variable name type and value

typical symbol-table applications

362

ptg12441863

API The symbol table is a prototypical abstract data type (see Chapter 1): it repre-
sents a well-defined set of values and operations on those values, enabling us to develop
clients and implementations separately. As usual, we precisely define the operations
by specifying an applications programming interface (API) that provides the contract
between client and implementation:

 public class ST<Key, Value>

ST() create a symbol table

void put(Key key, Value val)
put key-value pair into the table
(remove key from table if value is null)

Value get(Key key)
value paired with key
(null if key is absent)

void delete(Key key) remove key (and its value) from table
boolean contains(Key key) is there a value paired with key?
boolean isEmpty() is the table empty?

int size() number of key-value pairs in the table

Iterable<Key> keys() all the keys in the table

apI for a generic basic symbol table

Before examining client code, we consider several design choices for our implementa-
tions to make our code consistent, compact, and useful.

Generics As we did with sorting, we will consider the methods without specifying the
types of the items being processed, using generics. For symbol tables, we emphasize the
separate roles played by keys and values in search by specifying the key and value types
explicitly instead of viewing keys as implicit in items as we did for priority queues in
Section 2.4. After we have considered some of the characteristics of this basic API (for
example, note that there is no mention of order among the keys), we will consider an
extension for the typical case when keys are Comparable, which enables numerous ad-
ditional methods.

Duplicate keys We adopt the following conventions in all of our implementations:
n	 Only one value is associated with each key (no duplicate keys in a table).
n	 When a client puts a key-value pair into a table already containing that key (and

an associated value), the new value replaces the old one.
These conventions define the associative array abstraction, where you can think of a
symbol table as being just like an array, where keys are indices and values are array

3633.1 n Symbol Tables

ptg12441863

entries. In a conventional array, keys are integer indices that we use to quickly access ar-
ray values; in an associative array (symbol table), keys are of arbitrary type, but we can
still use them to quickly access values. Some programming languages (not Java) provide
special support that allows programmers to use code such as st[key] for st.get(key)
and st[key] = val for st.put(key, val) where key and val are objects of arbitrary
type.

Null keys Keys must not be null. As with many mechanisms in Java, use of a null key
results in an exception at runtime (see the third Q&A on page 387).

Null values We also adopt the convention that no key can be associated with the value
null. This convention is directly tied to our specification in the API that get() should
return null for keys not in the table, effectively associating the value null with every
key not in the table. This convention has two (intended) consequences: First, we can
test whether or not the symbol table defines a value associated with a given key by test-
ing whether get() returns null. Second, we can use the operation of calling put()
with null as its second (value) argument to implement deletion, as described in the
next paragraph.

Deletion Deletion in symbol tables generally involves one of two strategies: lazy dele-
tion, where we associate keys in the table with null, then perhaps remove all such keys
at some later time; and eager deletion, where we remove the key from the table imme-
diately. As just discussed, the code put(key, null) is an easy (lazy) implementation
of delete(key). When we give an (eager) implementation of delete(), it is intended
to replace this default. In our symbol-table implementations that do not use the default
delete(), the put() implementations on the booksite begin with the defensive code

if (val == null) { delete(key); return; }

to ensure that no key in the table is associated with null. For economy, we do not in-
clude this code in the book (and we do not call put() with a null value in client code).

Shorthand methods For clarity in client code, we include the methods contains()
and isEmpty() in the API, with the default one-line implementations shown here.
For economy, we do not
repeat this code, but we
assume it to be present
in all implementations of
the symbol-table API and
use these methods freely
in client code.

method default implementation

 void delete(Key key) put(key, null);

boolean contains(Key key) return get(key) != null;

boolean isEmpty() return size() == 0;

Default implementations

364 Chapter 3 n Searching

ptg12441863

Iteration To enable clients to process all the keys and values in the table, we might
add the phrase implements Iterable<Key> to the first line of the API to specify that
every implementation must implement an iterator() method that returns an iterator
having appropriate implementations of hasNext() and next(), as described for stacks
and queues in Section 1.3. For symbol tables, we adopt a simpler alternative approach,
where we specify a keys() method that returns an Iterable<Key> object for clients
to use to iterate through the keys. Our reason for doing so is to maintain consistency
with methods that we will define for ordered symbol tables that allow clients to iterate
through a specified subset of keys in the table.

Key equality Determining whether or not a given key is in a symbol table is based on
the concept of object equality, which we discussed at length in Section 1.2 (see page
102). Java’s convention that all objects inherit an equals() method and its implemen-
tation of equals() both for standard types such as Integer, Double, and String and
for more complicated types such as File and URL is a head start—when using these
types of data, you can just use the built-in implementation. For example, if x and y are
String values, then x.equals(y) is true if and only if x and y have the same length
and are identical in each character position. For such client-defined keys, you need to
override equals(), as discussed in Section 1.2. You can use our implementation of
equals() for Date (page 103) as a template to develop equals() for a type of your
own. As discussed for priority queues on page 320, a best practice is to make Key types
immutable, because consistency cannot otherwise be guaranteed.

3653.1 n Symbol Tables

ptg12441863

Ordered symbol tables In typical applications, keys are Comparable objects, so
the option exists of using the code a.compareTo(b) to compare two keys a and b.
Several symbol-table implementations take advantage of order among the keys that is
implied by Comparable to provide efficient implementations of the put() and get()
operations. More important, in such implementations, we can think of the symbol ta-
ble as keeping the keys in order and consider a significantly expanded API that defines
numerous natural and useful operations involving relative key order. For example, sup-
pose that your keys are times of the day. You might be interested in knowing the earliest
or the latest time, the set of keys that fall between two given times, and so forth. In most
cases, such operations are not difficult to implement with the same data structures and
methods underlying the put() and get() implementations. Specifically, for applica-
tions where keys are Comparable, we implement in this chapter the following API:

 public class ST<Key extends Comparable<Key>, Value>

ST() create an ordered symbol table

void put(Key key, Value val)
put key-value pair into the table
(remove key from table if value is null)

Value get(Key key)
value paired with key
(null if key is absent)

void delete(Key key) remove key (and its value) from table
boolean contains(Key key) is there a value paired with key?
boolean isEmpty() is the table empty?

int size() number of key-value pairs
Key min() smallest key
Key max() largest key
Key floor(Key key) largest key less than or equal to key
Key ceiling(Key key) smallest key greater than or equal to key
int rank(Key key) number of keys less than key
Key select(int k) key of rank k
void deleteMin() delete smallest key
void deleteMax() delete largest key
int size(Key lo, Key hi) number of keys in [lo..hi]

Iterable<Key> keys(Key lo, Key hi) keys in [lo..hi], in sorted order
Iterable<Key> keys() all keys in the table, in sorted order

apI for a generic ordered symbol table

366 Chapter 3 n Searching

ptg12441863

Your signal that one of our programs is implementing this API is the presence of the
Key extends Comparable<Key> generic type variable in the class declaration, which
specifies that the code depends upon the keys being Comparable and implements the
richer set of operations. Together, these operations define for client programs an or-
dered symbol table.

Minimum and maximum Perhaps the most natural queries for a set of ordered keys
are to ask for the smallest and largest keys. We have already encountered these opera-
tions, in our discussion of priority queues in Section 2.4. In ordered symbol tables,
we also have methods to delete the maximum
and minimum keys (and their associated val-
ues). With this capability, the symbol table can
operate like the IndexMinPQ() class that we
discussed in Section 2.4. The primary differ-
ences are that equal keys are allowed in prior-
ity queues but not in symbol tables and that
ordered symbol tables support a much larger
set of operations.

Floor and ceiling Given a key, it is often use-
ful to be able to perform the floor operation
(find the largest key that is less than or equal to
the given key) and the ceiling operation (find
the smallest key that is greater than or equal to
the given key). The nomenclature comes from
functions defined on real numbers (the floor
of a real number x is the largest integer that is
smaller than or equal to x and the ceiling of
a real number x is the smallest integer that is
greater than or equal to x).

Rank and selection The basic operations for determining where a new key fits in the
order are the rank operation (find the number of keys less than a given key) and the
select operation (find the key with a given rank). To test your understanding of their
meaning, confirm for yourself that both i == rank(select(i)) for all i between 0
and size()-1 and all keys in the table satisfy key == select(rank(key)). We have
already encountered the need for these operations, in our discussion of sort applica-
tions in Section 2.5. For symbol tables, our challenge is to perform these operations
quickly, intermixed with insertions, deletions, and searches.

09:00:00 Chicago
09:00:03 Phoenix
09:00:13 Houston
09:00:59 Chicago
09:01:10 Houston
09:03:13 Chicago
09:10:11 Seattle
09:10:25 Seattle
09:14:25 Phoenix
09:19:32 Chicago
09:19:46 Chicago
09:21:05 Chicago
09:22:43 Seattle
09:22:54 Seattle
09:25:52 Chicago
09:35:21 Chicago
09:36:14 Seattle
09:37:44 Phoenix

keys values

get(09:00:13)

ceiling(09:30:00)

keys(09:15:00, 09:25:00)

size(09:15:00, 09:25:00) is 5
rank(09:10:25) is 7

floor(09:05:00)

min()

select(7)

max()

Examples of ordered symbol-table operations

3673.1 n Symbol Tables

ptg12441863

Range queries How many keys fall within a given range (between two given keys)?
Which keys fall in a given range? The two-argument size() and keys() methods that
answer these questions are useful in many applications, particularly in large databases.
The capability to handle such queries is one prime reason that ordered symbol tables
are so widely used in practice.

Exceptional cases When a method is to return a key and there is no key fitting the de-
scription in the table, our convention is to throw an exception (an alternate approach,
which is also reasonable, would be to return null in such cases). For example, min(),
max(), deleteMin(), deleteMax(), floor(), and ceiling() all throw exceptions if
the table is empty, as does select(k) if k is less than 0 or not less than size().

Shorthand methods As we have already seen with isEmpty() and contains() in our
basic API, we keep some redundant methods in the API for clarity in client code. For
economy in the text, we assume that the following default implementations are includ-
ed in any implementation of the ordered symbol-table API unless otherwise specified:

method default implementation

 void deleteMin() delete(min());

 void deleteMax() delete(max());

 int size(Key lo, Key hi) if (hi.compareTo(lo) < 0)
 return 0;
else if (contains(hi))
 return rank(hi) - rank(lo) + 1;
else
 return rank(hi) - rank(lo);

Iterable<Key> keys() return keys(min(), max());

Default implementations of redundant order-based symbol-table methods

Key equality (revisited) The best practice in Java is to make compareTo() consistent
with equals() in all Comparable types. That is, for every pair of values a and b in
any given Comparable type, it should be the case that (a.compareTo(b) == 0) and
a.equals(b) have the same value. To avoid any potential ambiguities, we avoid the use
of equals() in ordered symbol-table implementations. Instead, we use compareTo()
exclusively to compare keys: we take the boolean expression a.compareTo(b) == 0 to

368 Chapter 3 n Searching

ptg12441863

mean “Are a and b equal ?” Typically, such a test marks the successful end of a search for
a in the symbol table (by finding b). As you saw with sorting algorithms, Java provides
standard implementations of compareTo() for many commonly used types of keys,
and it is not difficult to develop a compareTo() implementation for your own data
types (see Section 2.5).

Cost model Whether we use equals() (for symbol tables
where keys are not Comparable) or compareTo() (for or-
dered symbol tables with Comparable keys), we use the term
compare to refer to the operation of comparing a symbol-
table entry against a search key. In most symbol-table imple-
mentations, this operation is in the inner loop. In the few
cases where that is not the case, we also count array accesses.

Symbol-table implementations are generally character-
ized by their underlying data structures and their implemen-
tations of get() and put(). We do not always provide im-
plementations of all of the other methods in the text because
many of them make good exercises to test your understanding of the underlying data
structures. To distinguish implementations, we add a descriptive prefix to ST that refers
to the implementation in the class name of symbol-table implementations. In clients,
we use ST to call on a reference implementation unless we wish to refer to a specific
implementation. You will gradually develop a better feeling for the rationale behind the
methods in the APIs in the context of the numerous clients and symbol-table imple-
mentations that we present and discuss throughout this chapter and throughout the
rest of this book. We also discuss alternatives to the various design choices that we have
described here in the Q&A and exercises.

searching cost model.
When studying symbol-table
implementations, we count
compares (equality tests or
key comparisons). In (rare)
cases where compares are not
in the inner loop, we count
array accesses.

3693.1 n Symbol Tables

ptg12441863

Sample clients While we defer detailed consideration of applications to Section
3.5, it is worthwhile to consider some client code before considering implementations.
Accordingly, we now consider two clients: a test client that we use to trace algorithm
behavior on small inputs and a performance client that we use to motivate the develop-
ment of efficient implementations.

Test client For tracing our algorithms on small inputs we assume that all of our im-
plementations use the test client below, which takes a sequence of strings from standard
input, builds a symbol table that associates the value i with the ith string in the input,
and then prints the table. In the traces in the text, we assume that the input is a sequence

of single-character strings. Most often, we
use the string "S E A R C H E X A M P L E".
By our conventions, this client associates
the key S with the value 0, the key R with
the value 3, and so forth. But E is associated
with the value 12 (not 1 or 6) and A with
the value 8 (not 2) because our associative-
array convention implies that each key is
associated with the value used in the most
recent call to put(). For basic (unordered)
implementations, the order of the keys in
the output of this test client is not specified
(it depends on characteristics of the imple-
mentation); for an ordered symbol table
the test client prints the keys in sorted order.
This client is an example of an indexing cli-
ent, a special case of a fundamental symbol-
table application that we discuss in Section
3.5.

keys

values

S E A R C H E X A M P L E

0 1 2 3 4 5 6 7 8 9 10 11 12

output for
basic symbol table

(one possibility)

L 11

P 10

M 9

X 7

H 5

C 4

R 3

A 8

E 12

S 0

output for
ordered

symbol table

A 8

C 4

E 12

H 5

L 11

M 9

P 10

R 3

S 0

X 7

Keys, values, and output for test client

public static void main(String[] args)
{
 ST<String, Integer> st;
 st = new ST<String, Integer>();

 for (int i = 0; !StdIn.isEmpty(); i++)
 {
 String key = StdIn.readString();
 st.put(key, i);
 }

 for (String s : st.keys())
 StdOut.println(s + " " + st.get(s));
}

Basic symbol-table test client

370 Chapter 3 n Searching

ptg12441863

Performance client FrequencyCounter (on the next page) is a symbol-table client
that finds the number of occurrences of each string (having at least as many characters
as a given threshold length) in a sequence of strings from standard input, then iterates
through the keys to find the one that occurs the most frequently. This client is an exam-
ple of a dictionary client, an application that we discuss in more detail in Section 3.5.
This client answers a simple question: Which word (no shorter than a given length) oc-
curs most frequently in a given text? Throughout this chapter, we measure performance
of this client with three reference inputs: the first five lines of C. Dickens’s Tale of Two
Cities (tinyTale.txt), the full text of the book (tale.txt), and a popular database of
1 million sentences taken at random from the web that is known as the Leipzig Corpora
Collection (leipzig1M.txt). For example, here is the content of tinyTale.txt:

% more tinyTale.txt
it was the best of times it was the worst of times
it was the age of wisdom it was the age of foolishness
it was the epoch of belief it was the epoch of incredulity
it was the season of light it was the season of darkness
it was the spring of hope it was the winter of despair

Small test input

This text has 60 words taken from 20 distinct words, four of which occur ten times (the
highest frequency). Given this input, FrequencyCounter will print out any of it, was,
the, or of (the one chosen may vary, depending upon characteristics of the symbol-
table implementation), followed by the frequency, 10.

To study performance for the larger inputs, it is clear that two measures are of inter-
est: Each word in the input is used as a search key once, so the total number of words
in the text is certainly relevant. Second, each distinct word in the input is put into the

tinyTale.txt tale.txt leipzig1M.txt

words distinct words distinct words distinct

all words 60 20 135,635 10,679 21,191,455 534,580

at least 8 letters 3 3 14,350 5,737 4,239,597 299,593

at least 10 letters 2 2 4,582 2,260 1,610,829 165,555

Characteristics of larger test input streams

3713.1 n Symbol Tables

ptg12441863

A symbol-table client

public class FrequencyCounter
{
 public static void main(String[] args)
 {
 int minlen = Integer.parseInt(args[0]); // key-length cutoff
 ST<String, Integer> st = new ST<String, Integer>();
 while (!StdIn.isEmpty())
 { // Build symbol table and count frequencies.
 String word = StdIn.readString();
 if (word.length() < minlen) continue; // Ignore short keys.
 if (!st.contains(word)) st.put(word, 1);
 else st.put(word, st.get(word) + 1);
 }
 // Find a key with the highest frequency count.
 String max = "";
 st.put(max, 0);
 for (String word : st.keys())
 if (st.get(word) > st.get(max))
 max = word;
 StdOut.println(max + " " + st.get(max));
 }
}

This ST client counts the frequency of occurrence of the strings in standard input, then prints out
one that occurs with highest frequency. The command-line argument specifies a lower bound on the
length of keys considered.

% java FrequencyCounter 1 < tinyTale.txt
it 10

% java FrequencyCounter 8 < tale.txt
business 122

% java FrequencyCounter 10 < leipzig1M.txt
government 24763

372 Chapter 3 n Searching

ptg12441863

symbol table (and the total number of distinct words in the input gives the size of the
table after all keys have been inserted), so the total number of distinct words in the
input stream is certainly relevant. We need to know both of these quantities in order
to estimate the running time of FrequencyCounter (for a start, see Exercise 3.1.6).
We defer details until we consider some algorithms, but you should have in mind a
general idea of the needs of typical applications like this one. For example, running
FrequencyCounter on leipzig1M.txt for words of length 8 or more involves millions
of searches in a table with hundreds of thousands of keys and values. A server on the
web might need to handle billions of transactions on tables with millions of keys and
values.

The basic question that this client and these examples raise is the following: Can
we develop a symbol-table implementation that can handle a huge number of get()
operations on a large table, which itself was built with a large number of intermixed
get() and put() operations? If you are only doing a few searches, any implementation
will do, but you cannot make use of a client like FrequencyCounter for large prob-
lems without a good symbol-table implementation. FrequencyCounter is surrogate
for a very common situation. Specifically, it has the following characteristics, which are
shared by many other symbol-table clients:

n	 Search and insert operations are intermixed.
n	 The number of distinct keys is not small.
n	 Substantially more searches than inserts are likely.
n	 Search and insert patterns, though unpredictable, are not random.

Our goal is to develop symbol-table implementations that make it feasible to use such
clients to solve typical practical problems.

Next, we consider two elementary implementations and their performance for
FrequencyCounter. Then, in the next several sections, you will learn classic imple-
mentations that can achieve excellent performance for such clients, even for huge input
streams and tables.

3733.1 n Symbol Tables

ptg12441863

Sequential search in an unordered linked list One straightforward option
for the underlying data structure for a symbol table is a linked list of nodes that contain
keys and values, as in the code on the facing page. To implement get(), we scan through
the list, using equals() to compare the search key with the key in each node in the list.
If we find the match, we return the associated value; if not, we return null. To imple-
ment put(), we also scan through the list, using equals() to compare the client key
with the key in each node in the list. If we find the match, we update the value associ-
ated with that key to be the value given in the second argument; if not, we create a new
node with the given key and value and insert it at the beginning of the list. This method
is known as sequential search: we search by considering the keys in the table one after
another, using equals() to test for a match with our search key.

Algorithm 3.1 (SequentialSearchST) is an implementation of our basic symbol-
table API that uses standard list-processing mechanisms, which we have used for el-
ementary data structures in Chapter 1. We have left the implementations of size(),
keys(), and eager delete() for exercises. You are encouraged to work these exercises
to cement your understanding of the linked-list data structure and the basic symbol-
table API.

Can this linked-list-based implementation handle applications that need large ta-
bles, such as our sample clients? As we have noted, analyzing symbol-table algorithms
is more complicated than analyzing sorting algorithms because of the difficulty of

Trace of linked-list ST implementation for standard indexing client

red nodes
are new

black nodes
are accessed

in search

first

S 0

S 0E 1

S 0E 1A 2

S 0E 1A 2R 3

S 0E 1A 2R 3C 4

S 0E 1A 2R 3C 4H 5

S 0E 6A 2R 3C 4H 5

S 0E 6A 2R 3C 4H 5

S 0E 6A 8R 3C 4H 5

X 7

X 7

M 9

P 10

L 11

L 11

circled entries are
changed values

gray nodes
are untouched

S 0E 6A 8R 3C 4H 5X 7

M 9 S 0E 6A 8R 3C 4H 5X 7

P 10 M 9 S 0E 6A 8R 3C 4H 5X 7

P 10 M 9 S 0E 12A 8R 3C 4H 5X 7

key value

S 0

E 1

A 2

R 3

C 4

H 5

E 6

X 7

A 8

M 9

P 10

L 11

E 12

374 Chapter 3 n Searching

ptg12441863

aLgorIthM 3.1 Sequential search (in an unordered linked list)

public class SequentialSearchST<Key, Value>
{
 private Node first; // first node in the linked list

 private class Node
 { // linked-list node
 Key key;
 Value val;
 Node next;
 public Node(Key key, Value val, Node next)
 {
 this.key = key;
 this.val = val;
 this.next = next;
 }
 }

 public Value get(Key key)
 { // Search for key, return associated value.
 for (Node x = first; x != null; x = x.next)
 if (key.equals(x.key))
 return x.val; // search hit
 return null; // search miss
 }

 public void put(Key key, Value val)
 { // Search for key. Update value if found; grow table if new.
 for (Node x = first; x != null; x = x.next)
 if (key.equals(x.key))
 { x.val = val; return; } // Search hit: update val.
 first = new Node(key, val, first); // Search miss: add new node.
 }
}

This ST implementation uses a private Node inner class to keep the keys and values in an unordered
linked list. The get() implementation searches the list sequentially to find whether the key is in the
table (and returns the associated value if so). The put() implementation also searches the list sequen-
tially to check whether the key is in the table. If so, it updates the associated value; if not, it creates a
new node with the given key and value and inserts it at the beginning of the list. Implementations of
size(), keys(), and eager delete() are left for exercises.

3753.1 n Symbol Tables

ptg12441863

characterizing the sequence of operations that might be invoked by a given client. As
noted for FrequencyCounter, the most common situation is that, while search and
insert patterns are unpredictable, they certainly are not random. For this reason, we pay
careful attention to worst-case performance. For economy, we use the term search hit to
refer to a successful search and search miss to refer to an unsuccessful search.

proposition A. Search misses and insertions in an (unordered) linked-list symbol
table having N key-value pairs both require N compares, and search hits N com-
pares in the worst case.

proof: When searching for a key that is not in the list, we test every key in the table
against the search key. Because of our policy of disallowing duplicate keys, we need
to do such a search before each insertion.

corollary. Inserting N distinct keys into an initially empty linked-list symbol table
uses ~N 2/2 compares.

It is true that searches for keys that are in the table need not take linear time. One useful
measure is to compute the total cost of searching for all of the keys in the table, divided
by N. This quantity is precisely the expected number of compares required for a search
under the condition that searches for each key in the table are equally likely. We refer to
such a search as a random search hit. Though client search patterns are not likely to be
random, they often are well-described by this model. It is easy to show that the average
number of compares for a random search hit is ~ N/2: the get() method in Algo-
rithm 3.1 uses 1 compare to find the first key, 2 compares to find the second key, and
so forth, for an average cost of (1 + 2 + ... + N)/ N = (N  1)/2 ~ N/2.

This analysis strongly indicates that a linked-list implementation with sequential
search is too slow for it to be used to solve huge problems such as our reference inputs
with clients like FrequencyCounter. The total number of compares is proportional to
the product of the number of searches and the number of inserts, which is more than
10 9 for Tale of Two Cities and more than 1014 for the Leipzig Corpora.

As usual, to validate analytic results, we need to run experiments. As an example,
we study the operation of FrequencyCounter with command-line argument 8 for
tale.txt, which involves 14,350 put() operations (recall that every word in the in-
put leads to a put(), to update its frequency, and we ignore the cost of easily avoided
calls to contains()). The symbol table grows to 5,737 keys, so about one-third of the

376 Chapter 3 n Searching

ptg12441863

operations increase the size of the table; the rest are searches. To visualize the perfor-
mance, we use VisualAccumulator (see page 95) to plot two points corresponding
to each put() operation as follows: for the i th put() operation we plot a gray point
with x coordinate i and y coordinate the number of key compares it uses and a red point
with x coordinate i and y coordinate the cumulative average number of key compares
used for the first i put() operations. As with any scientific data, there is a great deal
of information in this data for us to investigate (this plot has 14,350 gray points and
14,350 red points). In this context, our primary interest is that the plot validates our
hypothesis that about half the list is accessed for the average put() operation. The ac-
tual total is slightly lower than half, but this fact (and the precise shape of the curves)
is perhaps best explained by characteristics of the application, not our algorithms (see
Exercise 3.1.36).

While detailed characterization of performance for particular clients can be com-
plicated, specific hypotheses are easy to formulate and to test for FrequencyCounter
with our reference inputs or with randomly ordered inputs, using a client like the
DoublingTest client that we introduced in Chapter 1. We will reserve such testing
for exercises and for the more sophisticated implementations that follow. If you are not
already convinced that we need faster implementations, be sure to work these exercises
(or just run FrequencyCounter with SequentialSearchST on leipzig1M.txt!).

Costs for java FrequencyCounter 8 < tale.txt using SequentialSearchST

5737

0

0 14350
operations

co
m

pa
re

s

2246

3773.1 n Symbol Tables

ptg12441863

Binary search in an ordered array Next, we consider a full implementation
of our ordered symbol-table API. The underlying data structure is a pair of parallel
arrays, one for the keys and one for the values. Algorithm 3.2 (BinarySearchST) on
the facing page keeps Comparable keys in order in the array, then uses array indexing
to enable fast implementation of get() and other operations.

The heart of the implementation is the rank() method, which returns the number
of keys smaller than a given key. For get(), the rank tells us precisely where the key is
to be found if it is in the table (and, if it is not there, that it is not in the table).

For put(), the rank tells us precisely where to update the value when the key is in the
table, and precisely where to put the key when the key is not in the table. We move all
larger keys over one position to make room (working from back to front) and insert the
given key and value into the proper positions in their respective arrays. Again, studying
BinarySearchST in conjunction with a trace of our test client is an instructive intro-
duction to this data structure.

This code maintains parallel arrays of keys and values (see Exercise 3.1.12 for an
alternative). As with our implementations of generic stacks and queues in Chapter 1,
this code carries the inconvenience of having to create a Key array of type Comparable
and a Value array of type Object, and to cast them back to Key[] and Value[] in the
constructor. As usual, we can use array resizing so that clients do not have to be con-
cerned with the size of the array (noting, as you shall see, that this method is too slow
to use with large arrays).

Trace of ordered-array ST implementation for standard indexing client

 keys[] vals[]

 0 1 2 3 4 5 6 7 8 9 N 0 1 2 3 4 5 6 7 8 9

 S 0 S 1 0

 E 1 E S 2 1 0

 A 2 A E S 3 2 1 0

 R 3 A E R S 4 2 1 3 0

 C 4 A C E R S 5 2 4 1 3 0

 H 5 A C E H R S 6 2 4 1 5 3 0

 E 6 A C E H R S 6 2 4 6 5 3 0

 X 7 A C E H R S X 7 2 4 6 5 3 0 7

 A 8 A C E H R S X 7 8 4 6 5 3 0 7

 M 9 A C E H M R S X 8 8 4 6 5 9 3 0 7

 P 10 A C E H M P R S X 9 8 4 6 5 9 10 3 0 7

 L 11 A C E H L M P R S X 10 8 4 6 5 11 9 10 3 0 7

 E 12 A C E H L M P R S X 10 8 4 12 5 11 9 10 3 0 7

 A C E H L M P R S X 8 4 12 5 11 9 10 3 0 7

entries in gray
did not move circled entries are

changed values

entries in black
moved to the rightentries in red

were inserted

key value

378 Chapter 3 n Searching

ptg12441863

aLgorIthM 3.2 Binary search (in an ordered array)

public class BinarySearchST<Key extends Comparable<Key>, Value>
{
 private Key[] keys;
 private Value[] vals;
 private int N;

 public BinarySearchST(int capacity)
 { // See Algorithm 1.1 for standard array-resizing code.
 keys = (Key[]) new Comparable[capacity];
 vals = (Value[]) new Object[capacity];
 }

 public int size()
 { return N; }

 public Value get(Key key)
 {
 if (isEmpty()) return null;
 int i = rank(key);
 if (i < N && keys[i].compareTo(key) == 0) return vals[i];
 else return null;
 }

 public int rank(Key key)
 // See page 381.

 public void put(Key key, Value val)
 { // Search for key. Update value if found; grow table if new.
 int i = rank(key);
 if (i < N && keys[i].compareTo(key) == 0)
 { vals[i] = val; return; }
 for (int j = N; j > i; j--)
 { keys[j] = keys[j-1]; vals[j] = vals[j-1]; }
 keys[i] = key; vals[i] = val;
 N++;
 }

 public void delete(Key key)
 // See Exercise 3.1.16 for this method.

}

This ST implementation keeps the keys and values in parallel arrays. The put() implementation
moves larger keys one position to the right before growing the table as in the array-based stack imple-
mentation in Section 1.3. Array-resizing code is omitted here.

3793.1 n Symbol Tables

ptg12441863

public int rank(Key key, int lo, int hi)
{
 if (hi < lo) return lo;
 int mid = lo + (hi - lo) / 2;
 int cmp = key.compareTo(keys[mid]);
 if (cmp < 0)
 return rank(key, lo, mid-1);
 else if (cmp > 0)
 return rank(key, mid+1, hi);
 else return mid;
}

recursive binary search

Binary search The reason that we keep keys in an ordered array is so that we can
use array indexing to dramatically reduce the number of compares required for each
search, using the classic and venerable binary search algorithm that we used as an exam-

ple in Chapter 1. We maintain indices into
the sorted key array that delimit the subar-
ray that might contain the search key. To
search, we compare the search key against
the key in the middle of the subarray. If the
search key is less than the key in the middle,
we search in the left half of the subarray; if
the search key is greater than the key in the
middle, we search in the right half of the
subarray; otherwise the key in the middle is
equal to the search key. The rank() code on
the facing page uses binary search to com-

plete the symbol-table implementation just discussed. This implementation is worthy
of careful study. To study it, we start with the equivalent recursive code at left. A call to
rank(key, 0, N-1) does the same sequence of compares as a call to the nonrecursive
implementation in Algorithm 3.2, but this alternate version better exposes the struc-
ture of the algorithm, as discussed in Section 1.1. This recursive rank() preserves the
following properties:

n	 If key is in the table, rank() returns its index in the table, which is the same as
the number of keys in the table that are smaller than key.

n	 If key is not in the table, rank() also returns the number of keys in the table
that are smaller than key.

Taking the time to convince yourself that the nonrecursive rank() in Algorithm 3.2
operates as expected (either by proving that it is equivalent to the recursive version or
by proving directly that the loop always terminates with the value of lo precisely equal
to the number of keys in the table that are smaller than key) is a worthwhile exercise for
any programmer. (Hint : Note that lo starts at 0 and never decreases.)

Other operations Since the keys are kept in an ordered array, most of the order-based
operations are compact and straightforward, as you can see from the code on page 382. For
example, a call to select(k) just returns keys[k].We have left delete() and floor()
as exercises. You are encouraged to study the implementation of ceiling() and the
two-argument keys() and to work these exercises to cement your understanding of the
ordered symbol-table API and this implementation.

380 Chapter 3 n Searching

ptg12441863

aLgorIthM 3.2 (continued) Binary search in an ordered array (iterative)

public int rank(Key key)
{
 int lo = 0, hi = N-1;
 while (lo <= hi)
 {
 int mid = lo + (hi - lo) / 2;
 int cmp = key.compareTo(keys[mid]);
 if (cmp < 0) hi = mid - 1;
 else if (cmp > 0) lo = mid + 1;
 else return mid;

 }
 return lo;
}

This method uses the classic method described in the text to compute the number of keys in the table
that are smaller than key. Compare key with the key in the middle: if it is equal, return its index; if it
is less, look in the left half; if it is greater, look in the right half.

loop exits with lo > hi: return 7

entries in black
are a[lo..hi]

entry in red is a[mid]

successful search for P

loop exits with keys[mid] = P: return 6

lo hi mid

unsuccessful search for Q

lo hi mid

 keys[]

 0 1 2 3 4 5 6 7 8 9

0 9 4 A C E H L M P R S X

5 9 7 A C E H L M P R S X

5 6 5 A C E H L M P R S X

6 6 6 A C E H L M P R S X

0 9 4 A C E H L M P R S X

5 9 7 A C E H L M P R S X

5 6 5 A C E H L M P R S X

7 6 6 A C E H L M P R S X

Trace of binary search for rank in an ordered array

3813.1 n Symbol Tables

ptg12441863

aLgorIthM 3.2 (continued) ordered symbol-table operations for binary search

public Key min()
{ return keys[0]; }

public Key max()
{ return keys[N-1]; }

public Key select(int k)
{ return keys[k]; }

public Key ceiling(Key key)
{
 int i = rank(key);
 return keys[i];
}

public Key floor(Key key)
// See Exercise 3.1.17.

public Key delete(Key key)
// See Exercise 3.1.16.

public Iterable<Key> keys(Key lo, Key hi)
{
 Queue<Key> q = new Queue<Key>();
 for (int i = rank(lo); i < rank(hi); i++)
 q.enqueue(keys[i]);
 if (contains(hi))
 q.enqueue(keys[rank(hi)]);
 return q;
}

These methods, along with the methods of Exercise 3.1.16 and Exercise 3.1.17, complete the imple-
mentation of our (ordered) symbol-table API using binary search in an ordered array. The min(),
max(), and select() methods are trivial, just amounting to returning the appropriate key from its
known position in the array. The rank() method, which is the basis of binary search, plays a central
role in the others. The floor() and delete() implementations, left for exercises, are more compli-
cated, but still straightforward.

382 Chapter 3 n Searching

ptg12441863

Analysis of binary search The recursive implementation of rank() also leads
to an immediate argument that binary search guarantees fast search, because it cor-
responds to a recurrence relation that describes an upper bound on the number of
compares.

proposition b. Binary search in an ordered array with N keys uses no more than
lg N  1 compares for a search (successful or unsuccessful).

proof: This analysis is similar to (but simpler than) the analysis of mergesort
(Proposition F in Chapter 2). Let C(N) be the number of compares to search for
a key in a symbol table of size N. We have C(0) = 0, C(1) = 1, and for N > 0 we can
write a recurrence relationship that directly mirrors the recursive method:

C(N)  C(⎣N/2⎦)  1.

Whether the search goes to the left or to the right, the size of the subarray is no
more than ⎣N/2⎦, and we use one compare to check for equality and to choose
whether to go left or right. When N is one less than a power of 2 (say N = 2n1),
this recurrence is not difficult to solve. First, since ⎣N/2⎦ = 2n11, we have

C(2n 1)  C(2n11)  1.

Applying the same equation to the first term on the right, we have

C(2n 1)  C(2n21)  1  1.

Repeating the previous step n  2 additional times gives

C(2n 1)  C(20)  n

which leaves us with the solution

C(N) = C(2n 1)  n  1 < lg N  1.

Exact solutions for general N are more complicated, but it is not difficult to extend
this argument to establish the stated property for all values of N (see Exercise
3.1.20). With binary search, we achieve a logarithmic-time search guarantee.

The implementation just given for ceiling() is based on a single call to rank(), and
the default two-argument size() implementation calls rank() twice, so this proof also
establishes that these operations (and floor()) are supported in guaranteed logarith-
mic time (min(), max(), and select() are constant-time operations).

3833.1 n Symbol Tables

ptg12441863

Despite its guaranteed logarithmic search, BinarySearchST
still does not enable us to use clients like FrequencyCounter to
solve huge problems, because the put() method is too slow. Bi-
nary search reduces the number of compares, but not the running
time, because its use does not change the fact that the number of
array accesses required to build a symbol table in an ordered ar-
ray is quadratic in the size of the array when keys are randomly
ordered (and in typical practical situations where the keys, while
not random, are well-described by this model).

proposition b (continued). Inserting a new key into an or-
dered array of size N uses ~ 2N array accesses in the worst
case, so inserting N keys into an initially empty table uses ~
N 2 array accesses in the worst case.

proof: Same as for Proposition A.

For Tale of Two Cities, with over 10 4 distinct keys, the cost to build
the table is nearly 10 8 array accesses, and for the Leipzig project,
with over 106 distinct keys, the cost to build the table is over 10 11

array accesses. While not quite prohibitive on modern computers, these costs are ex-
tremely (and unnecessarily) high.

Returning to the cost of the put() operations for FrequencyCounter for words of
length 8 or more, we see a reduction in the average cost from 2,246 compares (plus
array accesses) per operation for SequentialSearchST to 484 for BinarySearchST.
As before, this cost is even better than would be predicted by analysis, and the extra
improvement is likely again explained by properties of the application (see Exercise
3.1.36). This improvement is impressive, but we can do much better, as you shall see.

method order of growth
of running time

put() N

get() log N
delete() N

contains() log N

size() 1

min() 1

max() 1

floor() log N

ceiling() log N

rank() log N

select() 1

deleteMin() N

deleteMax() 1

BinarySearchST costs

Costs for java FrequencyCounter 8 < tale.txt using BinarySearchST

5737

0

0 14350
operations

co
st

484

384 Chapter 3 n Searching

ptg12441863

Preview Binary search is typically far better than sequential search and is the meth-
od of choice in numerous practical applications. For a static table (with no insert op-
erations allowed), it is worthwhile to initialize and sort the table, as in the version of
binary search that we considered in Chapter 1 (see page 99). Even when the bulk of
the key-value pairs is known before the bulk of the searches (a common situation in
applications), it is worthwhile to add to BinarySearchST a constructor that initial-
izes and sorts the table (see Exercise 3.1.12). Still, binary search is infeasible for use
in many other applications. For example, it fails for our Leipzig Corpora application
because searches and inserts are intermixed and the table size is too large. As we have
emphasized, typical modern search clients require symbol tables that can support fast
implementations of both search and insert. That is, we need to be able to build huge
tables where we can insert (and perhaps remove) key-value pairs in unpredictable pat-
terns, intermixed with searches.

The table below summarizes performance characteristics for the elementary sym-
bol-table implementations considered in this section. The table entries give the leading
term of the cost (number of array accesses for binary search, number of compares for
the others), which implies the order of growth of the running time.

The central question is whether we can devise algorithms and data structures that
achieve logarithmic performance for both search and insert. The answer is a resound-
ing yes! Providing that answer is the main thrust of this chapter. Along with the fast sort
capability discussed in Chapter 2, fast symbol-table search/insert is one of the most
important contributions of algorithmics and one of the most important steps toward
the development of the rich computational infrastructure that we now enjoy.

How can we achieve this goal? To support efficient insertion, it seems that we need a
linked structure. But a singly linked list forecloses the use of binary search, because the
efficiency of binary search depends on our ability to get to the middle of any subarray

algorithm
(data structure)

worst-case cost
(after n inserts)

average-case cost
(after n random inserts)

efficiently
support ordered

operations?search insert search hit insert

sequential search
(unordered linked list) N N N/2 N no

binary search
(ordered array) lg N 2N lg N N yes

Cost summary for basic symbol-table implementations

3853.1 n Symbol Tables

ptg12441863

quickly via indexing (and the only way to get to the middle of a singly linked list is to
follow links). To combine the efficiency of binary search with the flexibility of linked
structures, we need more complicated data structures. That combination is provided
both by binary search trees, the subject of the next two sections, and by hash tables, the
subject of Section 3.4.

We consider six symbol-table implementations in this chapter, so a brief preview is
in order. The table below is a list of the data structures, along with the primary reasons
in favor of and against using each for an application. They appear in the order in which
we consider them.

We will get into more detail on properties of the algorithms and implementations
as we discuss them, but the brief characterizations in this table will help you keep them
in a broader context as you learn them. The bottom line is that we have several fast
symbol-table implementations that can be and are used to great effect in countless
applications.

underlying
data structure implementation pros cons

linked list
(sequential

search)
SequentialSearchST best for tiny STs slow for large STs

ordered array
(binary search) BinarySearchST

optimal search
and space,
order-based ops

slow insert

binary
search tree

BST
easy to
implement,
order-based ops

no guarantees
space for links

balanced
BST

RedBlackBST
optimal search
and insert,
order-based ops

space for links

hash table SeparateChainingHashST

LinearProbingHashST

fast search/insert
for common types
of data

need hash for each type
no order-based ops
space for links/empty

pros and cons of symbol-table implementations

386 Chapter 3 n Searching

ptg12441863

Q&A

Q. Why not use an Item type that implements Comparable for symbol tables, in the
same way as we did for priority queues in Section 2.4, instead of having separate keys
and values ?

A. That is also a reasonable option. These two approaches illustrate two different ways
to associate information with keys—we can do so implicitly by building a data type that
includes the key or explicitly by separating keys from values. For symbol tables, we have
chosen to highlight the associative array abstraction. Note also that a client specifies just
a key in search, not a key-value aggregation.

Q. Why bother with equals() ? Why not just use compareTo() throughout?

A. Not all data types lead to key values that are easy to compare, even though having a
symbol table still might make sense. To take an extreme example, you may wish to use
pictures or songs as keys. There is no natural way to compare them, but we can certainly
test equality (with some work).

Q. Why not allow keys to take the value null?

A. We assume that Key is an Object because we use it to invoke compareTo() or
equals(). But a call like a.compareTo(b) would cause a null pointer exception if a is
null. By ruling out this possibility, we allow for simpler client code.

Q. Why not use a method like the less() method that we used for sorting?

A. Equality plays a special role in symbol tables, so we also would need a method for
testing equality. To avoid proliferation of methods that have essentially the same func-
tion, we adopt the built-in Java methods equals() and compareTo().

Q. Why not declare key[] as Object[] (instead of Comparable[]) in BinarySearchST
before casting, in the same way that val[] is declared as Object?

A. Good question. If you do so, you will get a ClassCastException because keys need
to be Comparable (to ensure that entries in key[] have a compareTo() method). Thus,
declaring key[] as Comparable[] is required. Delving into the details of program-
ming-language design to explain the reasons would take us somewhat off topic. We use
precisely this idiom (and nothing more complicated) in any code that uses Comparable
generics and arrays throughout this book.

3873.1 n Symbol Tables

ptg12441863

Q. What if we need to associate multiple values with the same key? For example, if we
use Date as a key in an application, wouldn’t we have to process equal keys?

A. Maybe, maybe not. For example, you can’t have two trains arrive at the station on
the same track at the same time (but they could arrive on different tracks at the same
time). There are two ways to handle the situation: use some other information to dis-
ambiguate or make the value a Queue of values having the same key. We consider ap-
plications in detail in Section 3.5.

Q. Presorting the table as discussed on page 385 seems like a good idea. Why relegate
that to an exercise (see Exercise 3.1.12)?

A. Indeed, this may be the method of choice in some applications. But adding a slow
insert method to a data structure designed for fast search “for convenience” is a per-
formance trap, because an unsuspecting client might intermix searches and inserts in
a huge table and experience quadratic performance. Such traps are all too common,
so that “buyer beware” is certainly appropriate when using software developed by oth-
ers, particularly when interfaces are too wide. This problem becomes acute when a
large number of methods are included “for convenience” leaving performance traps
throughout, while a client might expect efficient implementations of all methods. Java’s
ArrayList class is an example (see Exercise 3.5.27).

Q&A (continued)

388 Chapter 3 n Searching

ptg12441863

ExErcisEs

3.1.1 Write a client that creates a symbol table mapping letter grades to numerical
scores, as in the table below, then reads from standard input a list of letter grades and
computes and prints the GPA (the average of the numbers corresponding to the grades).

A+ A A- B+ B B- C+ C C- D F

4.33 4.00 3.67 3.33 3.00 2.67 2.33 2.00 1.67 1.00 0.00

3.1.2 Develop a symbol-table implementation ArrayST that uses an (unordered) array
as the underlying data structure to implement our basic symbol-table API.

3.1.3 Develop a symbol-table implementation OrderedSequentialSearchST that
uses an ordered linked list as the underlying data structure to implement our ordered
symbol-table API.

3.1.4 Develop Time and Event ADTs that allow processing of data as in the example
illustrated on page 367.

3.1.5 Implement size(), delete(), and keys() for SequentialSearchST.

3.1.6 Give the number of calls to put() and get() issued by FrequencyCounter, as a
function of the number W of words and the number D of distinct words in the input.

3.1.7 What is the average number of distinct keys that FrequencyCounter will find
among N random nonnegative integers less than 1,000, for N=10, 102, 103, 104, 105, and
106?

3.1.8 What is the most frequently used word of ten letters or more in Tale of Two Cities?

3.1.9 Add code to FrequencyCounter to keep track of the last call to put(). Print the
last word inserted and the number of words that were processed in the input stream
prior to this insertion. Run your program for tale.txt with length cutoffs 1, 8, and 10.

3.1.10 Give a trace of the process of inserting the keys E A S Y Q U E S T I O N into an
initially empty table using SequentialSearchST. How many compares are involved?

3.1.11 Give a trace of the process of inserting the keys E A S Y Q U E S T I O N into
an initially empty table using BinarySearchST. How many compares are involved?

3.1.12 Modify BinarySearchST to maintain one array of Item objects that contain
keys and values, rather than two parallel arrays. Add a constructor that takes an array of

3893.1 n Symbol Tables

ptg12441863

Item values as argument and uses mergesort to sort the array.

3.1.13 Which of the symbol-table implementations in this section would you use for
an application that does 10 3 put() operations and 10 6 get() operations, randomly
intermixed? Justify your answer.

3.1.14 Which of the symbol-table implementations in this section would you use for
an application that does 10 6 put() operations and 10 3 get() operations, randomly
intermixed? Justify your answer.

3.1.15 Assume that searches are 1,000 times more frequent than insertions for a
BinarySearchST client. Estimate the percentage of the total time that is devoted to
insertions, when the number of searches is 103, 10 6, and 10 9.

3.1.16 Implement the delete() method for BinarySearchST.

3.1.17 Implement the floor() method for BinarySearchST.

3.1.18 Prove that the rank() method in BinarySearchST is correct.

3.1.19 Modify FrequencyCounter to print all of the values having the highest fre-
quency of occurrence, not just one of them. Hint : Use a Queue.

3.1.20 Complete the proof of Proposition B (show that it holds for all values of N).
Hint : Start by showing that C(N) is monotonic: C(N)  C(N+1) for all N > 0.

ExErcisEs (continued)

390 Chapter 3 n Searching

ptg12441863

crEAtivE problEms

3.1.21 Memory usage. Compare the memory usage of BinarySearchST with that of
SequentialSearchST for N key-value pairs, under the assumptions described in Sec-
tion 1.4. Do not count the memory for the keys and values themselves, but do count
references to them. For BinarySearchST, assume that array resizing is used, so that the
array is between 25 percent and 100 percent full.

3.1.22 Self-organizing search. A self-organizing search algorithm is one that rearrang-
es items to make those that are accessed frequently likely to be found early in the search.
Modify your search implementation for Exercise 3.1.2 to perform the following action
on every search hit: move the key-value pair found to the beginning of the list, moving
all pairs between the beginning of the list and the vacated position to the right one posi-
tion. This procedure is called the move-to-front heuristic.

3.1.23 Analysis of binary search. Prove that the maximum number of compares used
for a binary search in a table of size N is precisely the number of bits in the binary rep-
resentation of N, because the operation of shifting 1 bit to the right converts the binary
representation of N into the binary representation of ⎣N/2⎦.

3.1.24 Interpolation search. Suppose that arithmetic operations are allowed on keys
(for example, they may be Double or Integer values). Write a version of binary search
that mimics the process of looking near the beginning of a dictionary when the word
begins with a letter near the beginning of the alphabet. Specifically, if kx is the key value
sought, klo is the key value of the first key in the table, and khi is the key value of the last
key in the table, look first ⎣(kx  klo)/(khi  klo)⎦-way through the table, not half-way.
Test your implementation against BinarySearchST for FrequencyCounter.

3.1.25 Software caching. Since the default implementation of contains() calls get(),
the inner loop of FrequencyCounter

if (!st.contains(word)) st.put(word, 1);
else st.put(word, st.get(word) + 1);

leads to two or three searches for the same key. To enable clear client code like this
without sacrificing efficiency, we can use a technique known as software caching, where
we save the location of the most recently accessed key in an instance variable. Modify
SequentialSearchST and BinarySearchST to take advantage of this idea.

3913.1 n Symbol Tables

ptg12441863

3.1.26 Frequency count from a dictionary. Modify FrequencyCounter to take the
name of a dictionary file as its argument, count frequencies of the words from standard
input that are also in that file, and print two tables of the words with their frequencies,
one sorted by frequency, the other sorted in the order found in the dictionary file.

3.1.27 Small tables. Suppose that a BinarySearchST client has S search operations
and N distinct keys. Give the order of growth of S such that the cost of building the table
is the same as the cost of all the searches.

3.1.28 Ordered insertions. Modify BinarySearchST so that inserting a key that is larg-
er than all keys in the table takes constant time (so that building a table by calling put()
for keys that are in order takes linear time).

3.1.29 Test client. Write a test client for BinarySearchST that tests the implemen-
tations of min(), max(), floor(), ceiling(), select(), rank(), deleteMin(),
deleteMax(), and keys() that are given in the text. Start with the standard index-
ing client given on page 370. Add code to take additional command-line arguments, as
appropriate.

3.1.30 Certification. Add assert statements to BinarySearchST to check algorithm
invariants and data structure integrity after every insertion and deletion. For example,
every index i should always be equal to rank(select(i)) and the array should always
be in order.

crEAtivE problEms (continued)

392 Chapter 3 n Searching

ptg12441863

ExpErimENts

3.1.31 Performance driver. Write a performance driver program that uses put() to
fill a symbol table, then uses get() such that each key in the table is hit an average of
ten times and there is about the same number of misses, doing so multiple times on
random sequences of string keys of various lengths ranging from 2 to 50 characters;
measures the time taken for each run; and prints out or plots the average running times.

3.1.32 Exercise driver. Write an exercise driver program that uses the methods in our
ordered symbol-table API on difficult or pathological cases that might turn up in prac-
tical applications. Simple examples include key sequences that are already in order, key
sequences in reverse order, key sequences where all keys are the same, and keys consist-
ing of only two distinct values.

3.1.33 Driver for self-organizing search. Write a driver program for self-organizing
search implementations (see Exercise 3.1.22) that uses put() to fill a symbol table
with N keys, then does 10 N successful searches according to a predefined probability
distribution. Use this driver to compare the running time of your implementation from
Exercise 3.1.22 with BinarySearchST for N = 103, 104, 105, and 106 using the prob-
ability distribution where search hits the i th smallest key with probability 1/2 i .

3.1.34 Zipf ’s law. Do the previous exercise for the probability distribution where
search hits the i th smallest key with probability 1/(i HN) where HN is a Harmonic num-
ber (see page 185). This distribution is called Zipf ’s law. Compare the move-to-front heu-
ristic with the optimal arrangement for the distributions in the previous exercise, which
is to keep the keys in increasing order (decreasing order of their expected frequency).

3.1.35 Performance validation I. Run doubling tests that use the first N words of Tale
of Two Cities for various values of N to test the hypothesis that the running time of
FrequencyCounter is quadratic when it uses SequentialSearchST for its symbol
table.

3.1.36 Performance validation II. Explain why the performance of BinarySearchST
and SequentialSearchST for FrequencyCounter is even better than predicted by
analysis.

3.1.37 Put/get ratio. Determine empirically the ratio of the amount of time that
BinarySearchST spends on put() operations to the time that it spends on get() op-
erations when FrequencyCounter is used to find the frequency of occurrence of values

3933.1 n Symbol Tables

ptg12441863

in 1 million random M-bit int values, for M = 10, 20, and 30. Answer the same question
for tale.txt and compare the results.

3.1.38 Amortized cost plots. Develop instrumentation for FrequencyCounter,
SequentialSearchST, and BinarySearchST so that you can produce plots like the
ones in this section showing the cost of each put() operation during the computation.

3.1.39 Actual timings. Instrument FrequencyCounter to use Stopwatch and StdDraw
to make a plot where the x-axis is the number of calls on get() or put() and the y-axis
is the total running time, with a point plotted of the cumulative time after each call.
Run your program for Tale of Two Cities using SequentialSearchST and again using
BinarySearchST and discuss the results. Note : Sharp jumps in the curve may be ex-
plained by caching, which is beyond the scope of this question.

3.1.40 Crossover to binary search. Find the values of N for which binary search in a
symbol table of size N becomes 10, 100, and 1,000 times faster than sequential search.
Predict the values with analysis and verify them experimentally.

3.1.41 Crossover to interpolation search. Find the values of N for which interpolation
search in a symbol table of size N becomes 1, 2, and 10 times faster than binary search,
assuming the keys to be random 32-bit integers (see Exercise 3.1.24). Predict the values
with analysis, and verify them experimentally.

ExpErimENts (continued)

394 Chapter 3 n Searching

ptg12441863

This page intentionally left blank

ptg12441863

3.2 BinAry SeArCh treeS

In this section, we will examine a symbol-table implementation that combines the
flexibility of insertion in a linked list with the efficiency of search in an ordered array.
Specifically, using two links per node (instead of the one link per node found in linked
lists) leads to an efficient symbol-table implementation based on the binary search tree

data structure, which qualifies as one of the most fundamental al-
gorithms in computer science.

To begin, we define basic terminology. We are working with data
structures made up of nodes that contain links that are either null
or references to other nodes. In a binary tree, we have the restric-
tion that every node is pointed to by just one other node, which is
called its parent (except for one node, the root, which has no nodes
pointing to it), and that each node has exactly two links, which are
called its left and right links, that point to nodes called its left child
and right child, respectively. Although links point to nodes, we can

view each link as pointing to a binary tree, the tree whose root is the referenced node.
Thus, we can define a binary tree as either a null link or a node with a left link and a
right link, each references to (disjoint) subtrees that are themselves binary trees. In a
binary search tree, each node also has a key and a value, with an ordering restriction to
support efficient search.

Definition. A binary search tree (BST) is a binary tree where each node has a
Comparable key (and an associated value) and satisfies the restriction that the key
in any node is larger than the keys in all nodes in that node’s left subtree and small-
er than the keys in all nodes in that node’s right subtree.

We draw BSTs with keys in the nodes and use terminology
such as “A is the left child of E” that associates nodes with keys.
Lines connecting the nodes represent links, and we give the
value associated with a key in black, beside the nodes (sup-
pressing the value as dictated by context). Each node’s links
connect it to nodes below it on the page, except for null links,
which are short segments at the bottom. As usual, our exam-
ples use the single-letter keys that are generated by our index-
ing test client.

right child
of root

a left link

a subtree

root

null links

Anatomy of a binary tree

value
associated

with R

parent of A and R

left link
of E

keys smaller than E keys larger than E

key

A

C

E

H

R

S

X
9

Anatomy of a binary search tree

396

ptg12441863

Basic implementation Algorithm 3.3 defines the BST data structure that we
use throughout this section to implement the ordered symbol-table API. We begin by
considering this classic data structure definition and the characteristic associated im-
plementations of the get() (search) and put() (insert) methods.

Representation We define a private nested class to define nodes in BSTs, just as we
did for linked lists. Each node contains a key, a value, a left link, a right link, and a node
count (when relevant, we include node counts in red above the node
in our drawings). The left link points to a BST for items with smaller
keys, and the right link points to a BST for items with larger keys.
The instance variable N gives the node count in the subtree rooted at
the node. This field facilitates the implementation of various ordered
symbol-table operations, as you will see. The private size() method
in Algorithm 3.3 is implemented to assign the value 0 to null links,
so that we can maintain this field by making sure that the invariant

size(x) = size(x.left) + size(x.right) + 1

holds for every node x in the tree.
A BST represents a set of keys (and associated values), and there

are many different BSTs that represent the same set. If we project the
keys in a BST such that all keys in each node’s left subtree appear to
the left of the key in the node and all keys in each node’s right subtree
appear to the right of the key in the node, then we always get the keys
in sorted order. We take advantage of the flexibility inherent in having
many BSTs represent this sorted order to develop efficient algorithms
for building and using BSTs.

Search As usual, when we search for a key in a symbol table, we have one of two
possible outcomes. If a node containing the key is in the table, we have a search hit, so
we return the associated value. Otherwise, we have a search miss (and return null). A
recursive algorithm to search for a key in a BST follows immediately from the recursive
structure: if the tree is empty, we have a search miss; if the search key is equal to the key
at the root, we have a search hit. Otherwise, we search (recursively) in the appropriate
subtree, moving left if the search key is smaller, right if it is larger. The recursive get()
method on page 399 implements this algorithm directly. It takes a node (root of a subtree)
as first argument and a key as second argument, starting with the root of the tree and
the search key. The code maintains the invariant that no parts of the tree other than the
subtree rooted at the current node can have a node whose key is equal to the search key.
Just as the size of the interval in binary search shrinks by about half on each iteration,

A

A C E H M R S X

C

E

H

M

R

S

X

A

A C E H M R S X

C
E

H

M

R

S

X

2

6

5

8

8

1

1

1

1

1 1

3

2

22

2

node count N

Two BSTs that represent
the same set of keys

3973.2 n Binary Search Trees

ptg12441863

aLgorIthM 3.3 Binary search tree symbol table

public class BST<Key extends Comparable<Key>, Value>
{
 private Node root; // root of BST

 private class Node
 {
 private Key key; // key
 private Value val; // associated value
 private Node left, right; // links to subtrees
 private int N; // # nodes in subtree rooted here

 public Node(Key key, Value val, int N)
 { this.key = key; this.val = val; this.N = N; }
 }

 public int size()
 { return size(root); }

 private int size(Node x)
 {
 if (x == null) return 0;
 else return x.N;
 }

 public Value get(Key key)
 // See page 399.

 public void put(Key key, Value val)
 // See page 399.

 // See page 407 for min(), max(), floor(), and ceiling().
 // See page 409 for select() and rank().
 // See page 411 for delete(), deleteMin(), and deleteMax().
 // See page 413 for keys().

}

This implementation of the ordered symbol-table API uses a binary search tree built from Node ob-
jects that each contain a key, associated value, two links, and a node count N. Each Node is the root
of a subtree containing N nodes, with its left link pointing to a Node that is the root of a subtree with
smaller keys and its right link pointing to a Node that is the root of a subtree with larger keys. The
instance variable root points to the Node at the root of the BST (which has all the keys and associ-
ated values in the symbol table). Implementations of other methods appear throughout this section.

398 Chapter 3 n Searching

ptg12441863

aLgorIthM 3.3 (continued) Search and insert for BSts

public Value get(Key key)
{ return get(root, key); }

private Value get(Node x, Key key)
{ // Return value associated with key in the subtree rooted at x;
 // return null if key not present in subtree rooted at x.
 if (x == null) return null;
 int cmp = key.compareTo(x.key);
 if (cmp < 0) return get(x.left, key);
 else if (cmp > 0) return get(x.right, key);
 else return x.val;
}

public void put(Key key, Value val)
{ // Search for key. Update value if found; grow table if new.
 root = put(root, key, val);
}

private Node put(Node x, Key key, Value val)
{
 // Change key’s value to val if key in subtree rooted at x.
 // Otherwise, add new node to subtree associating key with val.
 if (x == null) return new Node(key, val, 1);
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x.left = put(x.left, key, val);
 else if (cmp > 0) x.right = put(x.right, key, val);
 else x.val = val;
 x.N = size(x.left) + size(x.right) + 1;
 return x;
}

These implementations of get() and put() for the symbol-table API are characteristic recursive
BST methods that also serve as models for several other implementations that we consider later in
the chapter. Each method can be understood as both working code and a proof by induction of the
inductive hypothesis in the opening comment.

3993.2 n Binary Search Trees

ptg12441863
the size of the subtree rooted at the current node when searching in a BST shrinks when
we go down the tree (by about half, ideally, but at least by one). The procedure stops
either when a node containing the search key is found (search hit) or when the current
subtree becomes empty (search miss). Starting at the top, the search procedure at each
node involves a recursive invocation for one of that node’s children, so the search de-
fines a path through the tree. For a search hit, the path terminates at the node contain-
ing the key. For a search miss, the path terminates at a null link.

Insert The search code in Algorithm 3.3 is almost as simple as binary search; that
simplicity is an essential feature of BSTs. A more important essential feature of BSTs is
that insert is not much more difficult to implement than search. Indeed, a search for a
key not in the tree ends at a null link, and all that we need to do is replace that link with
a new node containing the key (see the diagram on the next page). The recursive put()
method in Algorithm 3.3 accomplishes this task using logic similar to that we used for
the recursive search: if the tree is empty, we return a new node containing the key and
value; if the search key is less than the key at the root, we set the left link to the result
of inserting the key into the left subtree; otherwise, we set the right link to the result of
inserting the key into the right subtree.

R is less than S
so look to the left

black nodes could
match the search key

gray nodes cannot
match the search key

found R
(search hit)

so return value

R is greater than E
so look to the right

A

C

E

H

M

R

S

X

A

C

E

H

M

R

S

X

A

C

E

H

M

R

S

X

T is less than X
so look to the left

link is null
so T is not in tree

(search miss)

T is greater than S
so look to the right

A

C

E

H

M

R

S

X

A

C

E

H

M

R

S

X

Search hit (left) and search miss (right) in a BST

successful search for R unsuccessful search for T

400 Chapter 3 n Searching

ptg12441863

Recursion It is worthwhile to take the time to
understand the dynamics of these recursive im-
plementations. You can think of the code before
the recursive calls as happening on the way down
the tree: it compares the given key against the
key at each node and moves right or left accord-
ingly. Then, think of the code after the recursive
calls as happening on the way up the tree. For
get() this amounts to a series of return state-
ments, but for put(), it corresponds to resetting
the link of each parent to its child on the search
path and to incrementing the counts on the way
up the path. In simple BSTs, the only new link
is the one at the bottom, but resetting the links
higher up on the path is as easy as the test to
avoid setting them. Also, we just need to incre-
ment the node count on each node on the path,
but we use more general code that sets each to
one plus the sum of the counts in its subtrees.
Later in this section and in the next section, we
shall study more advanced algorithms that are
naturally expressed with this same recursive
scheme but that can change more links on the search paths and need the more general
node-count-update code. Elementary BSTs are often implemented with nonrecursive
code (see Exercise 3.2.13)—we use recursion in our implementations both to make it
easy for you to convince yourself that the code is operating as described and to prepare
the groundwork for more sophisticated algorithms.

A careful study of the trace for our standard indexing client that is shown on the
next page will give you a feeling for the way in which binary search trees grow. New
nodes are attached to null links at the bottom of the tree; the tree structure is not oth-
erwise changed. For example, the root has the first key inserted, one of the children of
the root has the second key inserted, and so forth. Because each node has two links, the
tree tends to grow out, rather than just down. Moreover, only the keys on the path from
the root to the sought or inserted key are examined, so the number of keys examined
becomes a smaller and smaller fraction of the number of keys in the tree as the tree size
increases.

search for L ends
at this null link

reset links and
increment counts

on the way up

create new node
1

3

2

4

3

5

4

8

7

10

9

A

C

E

H

M

P

R

S

X

A

C

E

H

L

M

P

R

S

X

A

C

E

H

L

M

P

R

S

X

Insertion into a BST

inserting L

4013.2 n Binary Search Trees

ptg12441863

S

A

C

E

H

R

S

X

A

C

E

H

R

S

A

C

E

H

R

S

A

C

E

R

S

A

E

R

A

E

S

S

E

S

S

6

S 0

E 1

A 2

R 3

C 4

H 5

E 6

X 7

red nodes
are new

black nodes
are accessed

in search

changed
value

changed
value

changed
value

gray nodes
are untouched

A

C

E

H

M

P

R

S

X

A

C

E

H

M

R

S

X

A

C

E

H

R

S

X

A

C

E

H

L

M

P

R

S

X

A

C

E

H

L

M

P

R

S

X12

8

A 8

M 9

P 10

L 11

E 12

BST trace for standard indexing client

key value key value

402 Chapter 3 n Searching

ptg12441863

Analysis The running times of algorithms on binary
search trees depend on the shapes of the trees, which, in turn,
depend on the order in which keys are inserted. In the best
case, a tree with N nodes could be perfectly balanced, with
~ lg N nodes between the root and each null link. In the worst
case there could be N nodes on the search path. The balance in
typical trees turns out to be much closer to the best case than
the worst case.

For many applications, the following simple model is rea-
sonable: We assume that the keys are (uniformly) random, or,
equivalently, that they are inserted in random order. Analysis
of this model stems from the observation that BSTs are dual
to quicksort. The node at the root of the tree corresponds to
the first partitioning item in quicksort (no keys to the left are
larger, and no keys to the right are smaller) and the subtrees are
built recursively, corresponding to quicksort’s recursive subar-
ray sorts. This observation leads us to the analysis of properties
of the trees.

proposition c. Search hits in a BST built from N random keys require ~ 2 ln N
(about 1.39 lg N) compares, on the average.

proof: The number of compares used for a search hit ending at a given node is 1
plus the depth. Adding the depths of all nodes, we get a quantity known as the in-
ternal path length of the tree. Thus, the desired quantity is 1 plus the average inter-
nal path length of the BST, which we can analyze with the same argument that we
used for Proposition K in Section 2.3: Let CN be the internal path length of a BST
built from inserting N randomly ordered distinct keys, so that the average cost of a
search hit is 1 CN / N. We have C0 = C1 = 0 and for N > 1 we can write a recurrence
relationship that directly mirrors the recursive BST structure:

CN = N  1  (C0  CN1) / N + (C1  CN2)/N  . . . (CN1  C0)/N

The N  1 term takes into account that the root contributes 1 to the path length
of each of the other N  1 nodes in the tree; the rest of the expression accounts
for the subtrees, which are equally likely to be any of the N sizes. After rearranging
terms, this recurrence is nearly identical to the one that we solved in Section 2.3
for quicksort, and we can derive the approximation CN ~ 2N ln N.

A

H

S
R

X

C
E

X

S

R
C

E

H

A

A

C

E

H

R

S

X

BST possibilities

best case

typical case

worst case

4033.2 n Binary Search Trees

ptg12441863

proposition D. Insertions and search misses in a BST built from N random keys
require ~ 2 ln N (about 1.39 lg N) compares, on the average.

proof: Insertions and search misses take one more compare, on the average, than
search hits. This fact is not difficult to establish by induction (see Exercise 3.2.16).

Proposition C says that we should expect the BST search cost for random keys to be
about 39 percent higher than that for binary search. Proposition D says that the extra
cost is well worthwhile, because the cost of inserting a new key is also expected to be
logarithmic—flexibility not available with binary search in an ordered array, where the
number of array accesses required for an insertion is typically linear. As with quicksort,
the standard deviation of the number of compares is known to be low, so that these
formulas become increasingly accurate as N increases.

Experiments How well does our random-key model match what is found in typical
symbol-table clients? As usual, this question has to be studied carefully for particular
practical applications, because of the large potential variation in performance. Fortu-
nately, for many clients, the model is quite good for BSTs.

For our example study of the cost of the put() operations for FrequencyCounter
for words of length 8 or more, we see a reduction in the average cost from 484 array
accesses or compares per operation for BinarySearchST to 13 for BST, again providing
a quick validation of the logarithmic performance predicted by the theoretical model.
More extensive experiments for larger inputs are illustrated in the table on the next
page. On the basis of Propositions C and D, it is reasonable to predict that this number
should be about twice the natural logarithm of the table size, because the preponder-
ance of operations are searches in a nearly full table. This prediction has at least the
following inherent inaccuracies:

n	 Many operations are for smaller tables.
n	 The keys are not random.
n	 The table size may be too small for the approximation 2 ln N to be accurate.

Nevertheless, as you can see in the table, this prediction is accurate for our
FrequencyCounter test cases to within a few compares. Actually, most of the differ-
ence can be explained by refining the mathematics in the approximation (see Exercise
3.2.35).

404 Chapter 3 n Searching

ptg12441863

tale.txt leipzig1M.txt

words distinct
compares

words distinct
compares

model actual model actual

all words 135,635 10,679 18.6 17.5 21,191,455 534,580 23.4 22.1

8+ letters 14,350 5,737 17.6 13.9 4,239,597 299,593 22.7 21.4

10+ letters 4,582 2,260 15.4 13.1 1,610,829 165,555 20.5 19.3

average number of compares per put() for FrequencyCounter using BST

Costs for java FrequencyCounter 8 < tale.txt using BST

20

0

0 14350
operations

co
st

13.9

scale magnified by a factor of 250
 compared to previous figures

Typical BST, built from 256 random keys

4053.2 n Binary Search Trees

ptg12441863

Order-based methods and deletion An important reason that BSTs are widely
used is that they allow us to keep the keys in order. As such, they can serve as the basis
for implementing the numerous methods in our ordered symbol-table API (see page
366) that allow clients to access key-value pairs not just by providing the key, but also by
relative key order. Next, we consider implementations of the various methods in our
ordered symbol-table API.

Minimum and maximum If the left link of the root is null, the smallest key in a BST
is the key at the root; if the left link is not null, the smallest key in the BST is the smallest
key in the subtree rooted at the node referenced by the left link. This statement is both
a description of the recursive min() method on page 407 and an inductive proof that it
finds the smallest key in the BST. The computation is equivalent to a simple iteration
(move left until finding a null link), but we use recursion for consistency. We might
have the recursive method return a Key instead of a Node, but we will later have a need
to use this method to access the Node containing
the minimum key. Finding the maximum key is
similar, moving to the right instead of to the left.

Floor and ceiling If a given key key is less than
the key at the root of a BST, then the floor of key
(the largest key in the BST less than or equal to
key) must be in the left subtree. If key is greater
than the key at the root, then the floor of key
could be in the right subtree, but only if there is
a key smaller than or equal to key in the right
subtree; if not (or if key is equal to the key at the
root), then the key at the root is the floor of key.
Again, this description serves both as the basis
for the recursive floor() method and for an in-
ductive proof that it computes the desired result.
Interchanging right and left (and less and greater)
gives ceiling().

Selection Selection in a BST works in a man-
ner analogous to the partition-based method of
selection in an array that we studied in Section
2.5. We maintain in BST nodes the variable N that
counts the number of keys in the subtree rooted
at that node precisely to support this operation.

left subtree
is null

result

�nding floor(G)

G is greater than E so
floor(G) could be

on the right

G is less than S so
floor(G) must be

on the left

A

C

E

H

M

R

S

X

A

C

E

H

M

R

S

X

A

C

E

H

M

R

S

X

A

C

E

H

M

R

S

X

Computing the �oor function

406 Chapter 3 n Searching

ptg12441863

aLgorIthM 3.3 (continued) Min, max, floor, and ceiling in BSts

public Key min()
{
 return min(root).key;
}

private Node min(Node x)
{
 if (x.left == null) return x;
 return min(x.left);
}

public Key floor(Key key)
{
 Node x = floor(root, key);
 if (x == null) return null;
 return x.key;
}

private Node floor(Node x, Key key)
{
 if (x == null) return null;
 int cmp = key.compareTo(x.key);
 if (cmp == 0) return x;
 if (cmp < 0) return floor(x.left, key);
 Node t = floor(x.right, key);
 if (t != null) return t;
 else return x;
}

Each client method calls a corresponding private method that takes an additional link (to a Node)
as argument and returns null or a Node containing the desired Key via the recursive procedure de-
scribed in the text. The max() and ceiling() methods are the same as min() and floor() (respec-
tively) with right and left (and < and >) interchanged.

4073.2 n Binary Search Trees

ptg12441863

Suppose that we seek the key of rank k (the key
such that precisely k other keys in the BST are
smaller). If the number of keys t in the left sub-
tree is larger than k, we look (recursively) for the
key of rank k in the left subtree; if t is equal to k,
we return the key at the root; and if t is smaller
than k, we look (recursively) for the key of rank
k  t  1 in the right subtree. As usual, this de-
scription serves both as the basis for the recursive
select() method on the facing page and for a
proof by induction that it works as expected.

Rank The inverse method rank() that returns
the rank of a given key is similar: if the given
key is equal to the key at the root, we return the
number of keys t in the left subtree; if the given
key is less than the key at the root, we return the
rank of the key in the left subtree (recursively

computed); and if the
given key is larger than
the key at the root, we re-
turn t plus one (to count
the key at the root) plus
the rank of the key in the
right subtree (recursively
computed).

Delete the minimum/maximum The most difficult BST op-
eration to implement is the delete() method that removes a
key-value pair from the symbol table. As a warmup, consider
deleteMin() (remove the key-value pair with the smallest key).
As with put() we write a recursive method that takes a link to
a Node as argument and returns a link to a Node, so that we can
reflect changes to the tree by assigning the result to the link used
as argument. For deleteMin() we go left until finding a Node
that has a null left link and then replace the link to that node by
its right link (simply by returning the right link in the recursive
method). The deleted node, with no link now pointing to it, is

6 keys in left subtree
so search for key of
rank 3 on the left

count N
6

2 keys in left subtree so
search for key of rank

3-2-1 = 0 on the right

2

0 keys in left subtree
and searching for

key of rank 0
so return H

2 keys in left subtree
so search for key of
rank 0 on the left

2

A

C

E

H

M

R

S

X

A

C

E

H

M

R

S

X

A

C

E

H

M

R

S

X

A

C

E

H

M

R

S

X

�nding select(3)
the key of rank 3

Selection in a BST

go left until
reaching null

left link

return that
node’s right link

available for
garbage collection

5

7

update links and node counts
after recursive calls

A

C

E

H

M

R

S

X

A

C

E

H

M

R

S

X

C

E

H

M

R

S

X

Deleting the minimum in a BST

408 Chapter 3 n Searching

ptg12441863

aLgorIthM 3.3 (continued) Selection and rank in BSts

public Key select(int k)
{
 return select(root, k).key;
}

private Node select(Node x, int k)
{ // Return Node containing key of rank k.
 if (x == null) return null;
 int t = size(x.left);
 if (t > k) return select(x.left, k);
 else if (t < k) return select(x.right, k-t-1);
 else return x;
}

public int rank(Key key)
{ return rank(key, root); }

private int rank(Key key, Node x)
{ // Return number of keys less than key in the subtree rooted at x.
 if (x == null) return 0;
 int cmp = key.compareTo(x.key);
 if (cmp < 0) return rank(key, x.left);
 else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
 else return size(x.left);
}

This code uses the same recursive scheme that we have been using throughout this chapter to imple-
ment the select() and rank() methods. It depends on using the private size() method given at the
beginning of this section that returns the number of nodes in the subtree rooted at a node.

4093.2 n Binary Search Trees

ptg12441863

available for garbage collection. Our standard recursive setup accomplishes, after the
deletion, the task of setting the appropriate link in the parent and updating the counts
in all nodes in the path to the root. The symmetric method works for deleteMax().

Delete We can proceed in a similar manner to de-
lete any node that has one child (or no children), but
what can we do to delete a node that has two chil-
dren? We are left with two links, but have a place in
the parent node for only one of them. An answer to
this dilemma, first proposed by T. Hibbard in 1962,
is to delete a node x by replacing it with its successor.
Because x has a right child, its successor is the node
with the smallest key in its right subtree. The replace-
ment preserves order in the tree because there are no
keys between x.key and the successor’s key. We can
accomplish the task of replacing x by its successor in
four (!) easy steps:

n	 Save a link to the node to be deleted in t.
n	 Set x to point to its successor min(t.right).
n	 Set the right link of x (which is supposed to

point to the BST containing all the keys larger
than x.key) to deleteMin(t.right), the link
to the BST containing all the keys that are larger
than x.key after the deletion.

n	 Set the left link of x (which was null) to t.left
(all the keys that are less than both the deleted
key and its successor).

Our standard recursive setup accomplishes, after the
recursive calls, the task of setting the appropriate link
in the parent and decrementing the node counts in
the nodes on the path to the root (again, we accom-
plish the task of updating the counts by setting the counts in each node on the search
path to be one plus the sum of the counts in its children). While this method does the
job, it has a flaw that might cause performance problems in some practical situations.
The problem is that the choice of using the successor is arbitrary and not symmetric.
Why not use the predecessor? In practice, it is worthwhile to choose at random between
the predecessor and the successor. See Exercise 3.2.42 for details.

search for key E

node to delete

deleteMin(t.right)

t

5

7

x

successor
min(t.right)

t.left

x

update links and
node counts after

recursive calls

A

C

E

H

M

R

S

X

A

C

E

H

M

R

S

X

A

C

H

A

C

H

M

R

M

R

S

X

E

S

X

deleting E

Deletion in a BST

go right, then
go left until

reaching null
left link

410 Chapter 3 n Searching

ptg12441863

aLgorIthM 3.3 (continued) Deletion in BSts

public void deleteMin()
{
 root = deleteMin(root);
}

private Node deleteMin(Node x)
{
 if (x.left == null) return x.right;
 x.left = deleteMin(x.left);
 x.N = size(x.left) + size(x.right) + 1;
 return x;
}

public void delete(Key key)
{ root = delete(root, key); }

private Node delete(Node x, Key key)
{
 if (x == null) return null;
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x.left = delete(x.left, key);
 else if (cmp > 0) x.right = delete(x.right, key);
 else
 {
 if (x.right == null) return x.left;
 if (x.left == null) return x.right;
 Node t = x;
 x = min(t.right); // See page 407.
 x.right = deleteMin(t.right);
 x.left = t.left;
 }
 x.N = size(x.left) + size(x.right) + 1;
 return x;
}

These methods implement eager Hibbard deletion in BSTs, as described in the text on the facing
page. The delete() code is compact, but tricky. Perhaps the best way to understand it is to read
the description at left, try to write the code yourself on the basis of the description, then compare
your code with this code. This method is typically effective, but performance in large-scale applica-

tions can become a bit problematic (see Exercise 3.2.42). The deleteMax() method is the same as
deleteMin() with right and left interchanged.

4113.2 n Binary Search Trees

ptg12441863

Range queries To implement the keys() method that returns the keys in a given
range, we begin with a basic recursive BST traversal method, known as inorder traversal.
To illustrate the method, we consider the task of printing all the keys in a BST in order.
To do so, print all the keys in the left subtree (which are less than the key at the root by

definition of BSTs), then print the key at the root, then
print all the keys in the right subtree (which are greater
than the key at the root by definition of BSTs), as in the
code at left. As usual, the description serves as an argu-
ment by induction that this code prints the keys in order.
To implement the two-argument keys() method that re-
turns to a client all the keys in a specified range, we modi-
fy this code to add each key that is in the range to a Queue,
and to skip the recursive calls for subtrees that cannot
contain keys in the range. As with BinarySearchST, the

fact that we gather the keys in a Queue is hidden from the client. The intention is that
clients should process all the keys in the range of interest using Java’s foreach construct
rather than needing to know what data structure we use to implement Iterable<Key>.

Analysis How efficient are the order-based operations in BSTs? To study this question,
we consider the tree height (the maximum depth of any node in the tree). Given a tree,
its height determines the worst-case cost of all BST operations (except for range search
which incurs additional cost proportional to the number of keys returned).

proposition E. In a BST, all operations take time proportional to the height of the
tree, in the worst case.

proof: All of these methods go down one or two paths in the tree. The length of
any path is no more than the height, by definition.

We expect the tree height (the worst-case cost) to be higher than the average internal
path length that we defined on page 403 (which averages in the short paths as well), but
how much higher? This question may seem to you to be similar to the questions an-
swered by Proposition C and Proposition D, but it is far more difficult to answer,
certainly beyond the scope of this book. The average height of a BST built from random
keys was shown to be logarithmic by J. Robson in 1979, and L. Devroye later showed
that the value approaches 2.99 lg N for large N. Thus, if the insertions in our applica-
tion are well-described by the random-key model, we are well on the way toward our
goal of developing a symbol-table implementation that supports all of these operations

private void print(Node x)
{
 if (x == null) return;
 print(x.left);
 StdOut.println(x.key);
 print(x.right);
}

printing the keys in a BSt in order

412 Chapter 3 n Searching

ptg12441863

aLgorIthM 3.3 (continued) range searching in BSts

public Iterable<Key> keys()
{ return keys(min(), max()); }

public Iterable<Key> keys(Key lo, Key hi)
{
 Queue<Key> queue = new Queue<Key>();
 keys(root, queue, lo, hi);
 return queue;
}

private void keys(Node x, Queue<Key> queue, Key lo, Key hi)
{
 if (x == null) return;
 int cmplo = lo.compareTo(x.key);
 int cmphi = hi.compareTo(x.key);
 if (cmplo < 0) keys(x.left, queue, lo, hi);
 if (cmplo <= 0 && cmphi >= 0) queue.enqueue(x.key);
 if (cmphi > 0) keys(x.right, queue, lo, hi);
}

To enqueue all the keys from the tree rooted at a given node that fall in a given range onto a queue, we
(recursively) enqueue all the keys from the left subtree (if any of them could fall in the range), then
enqueue the node at the root (if it falls in the range), then (recursively) enqueue all the keys from the
right subtree (if any of them could fall in the range).

black keys are
in the range

red keys are used in compares
but are not in the range

A

C

E

H

L

M

P

R

S

X

searching in the range [F..T]

Range search in a BST

4133.2 n Binary Search Trees

ptg12441863

in logarithmic time. We can expect that no path in a tree built from random keys is
longer than 3 lg N, but what can we expect if the keys are not random? In the next sec-
tion, you will see why this question is moot in practice because of balanced BSTs, which
guarantee that the BST height will be logarithmic regardless of the order in which keys
are inserted.

In summary, BSTs are not difficult to implement and can provide fast search and insert
for practical applications of all kinds if the key insertions are well-approximated by the
random-key model. For our examples (and for many practical applications) BSTs make
the difference between being able to accomplish the task at hand and not being able to
do so. Moreover, many programmers choose BSTs for symbol-table implementations
because they also support fast rank, select, delete, and range query operations. Still, as
we have emphasized, the bad worst-case performance of BSTs may not be tolerable in
some situations. Good performance of the basic BST implementation is dependent on
the keys being sufficiently similar to random keys that the tree is not likely to contain
many long paths. With quicksort, we were able to randomize; with a symbol-table API,
we do not have that freedom, because the client controls the mix of operations. Indeed,
the worst-case behavior is not unlikely in practice—it arises when a client inserts keys
in order or in reverse order, a sequence of operations that some client certainly might
attempt in the absence of any explicit warnings to avoid doing so. This possibility is a
primary reason to seek better algorithms and data structures, which we consider next.

algorithm
(data structure)

worst-case cost
(after n inserts)

average-case cost
(after n random inserts) efficiently

support ordered
operations?search insert search hit insert

sequential search
(unordered linked list) N N N/2 N no

binary search
(ordered array) lg N N lg N N/2 yes

binary tree search
(BST) N N 1.39 lg N 1.39 lg N yes

Cost summary for basic symbol-table implementations (updated)

414 Chapter 3 n Searching

ptg12441863

Q&A

Q. I’ve seen BSTs before, but not using recursion. What are the tradeoffs?

A. Generally, recursive implementations are a bit easier to verify for correctness; non-
recursive implementations are a bit more efficient. See Exercise 3.2.13 for an imple-
mentation of get(), the one case where you might notice the improved efficiency. If
trees are unbalanced, the depth of the function-call stack could be a problem in a recur-
sive implementation. Our primary reason for using recursion is to ease the transition
to the balanced BST implementations of the next section, which definitely are easier to
implement and debug with recursion.

Q. Maintaining the node count field in Node seems to require a lot of code. Is it really
necessary? Why not maintain a single instance variable containing the number of nodes
in the tree to implement the size() client method?

A. The rank() and select() methods need to have the size of the subtree rooted at
each node. If you are not using these ordered operations, you can streamline the code
by eliminating this field (see Exercise 3.2.12). Keeping the node count correct for all
nodes is admittedly error-prone, but also a good check for debugging. You might also
use a recursive method to implement size() for clients, but that would take linear
time to count all the nodes and is a dangerous choice because you might experience
poor performance in a client program, not realizing that such a simple operation is so
expensive.

4153.2 n Binary Search Trees

ptg12441863

ExErcisEs

3.2.1 Draw the BST that results when you insert the keys E A S Y Q U E S T I O N,
in that order (associating the value i with the ith key, as per the convention in the text)
into an initially empty tree. How many compares are needed to build the tree?

3.2.2 Inserting the keys in the order A X C S E R H into an initially empty BST gives
a worst-case tree where every node has one null link, except one at the bottom, which
has two null links. Give five other orderings of these keys that produce worst-case trees.

3.2.3 Give five orderings of the keys A X C S E R H that, when inserted into an initially
empty BST, produce the best-case tree.

3.2.4 Suppose that a certain BST has keys that are integers between 1 and 10, and we
search for 5. Which sequence below cannot be the sequence of keys examined?

a. 10, 9, 8, 7, 6, 5
b. 4, 10, 8, 6, 5
c. 1, 10, 2, 9, 3, 8, 4, 7, 6, 5
d. 2, 7, 3, 8, 4, 5
e. 1, 2, 10, 4, 8, 5

3.2.5 Suppose that we have an estimate ahead of time of how often search keys are
to be accessed in a BST, and the freedom to insert them in any order that we desire.
Should the keys be inserted into the tree in increasing order, decreasing order of likely
frequency of access, or some other order? Explain your answer.

3.2.6 Add to BST a method height() that computes the height of the tree. Develop two
implementations: a recursive method (which takes linear time and space proportional
to the height), and a method like size() that adds a field to each node in the tree (and
takes linear space and constant time per query).

3.2.7 Add to BST a recursive method avgCompares() that computes the average num-
ber of compares required by a random search hit in a given BST (the internal path
length of the tree divided by its size, plus one). Develop two implementations: a re-
cursive method (which takes linear time and space proportional to the height), and a
method like size() that adds a field to each node in the tree (and takes linear space and
constant time per query).

3.2.8 Write a static method optCompares() that takes an integer argument N and com-
putes the number of compares required by a random search hit in an optimal (perfectly

416 Chapter 3 n Searching

ptg12441863

balanced) BST with N nodes, where all the null links are on the same level if the number
of links is a power of 2 or on one of two levels otherwise.

3.2.9 Draw all the different BST shapes that can result when N keys are inserted into an
initially empty tree, for N = 2, 3, 4, 5, and 6.

3.2.10 Write a test client for BST that tests the implementations of min(), max(),
floor(), ceiling(), select(), rank(), delete(), deleteMin(), deleteMax(), and
keys() that are given in the text. Start with the standard indexing client given on page
370. Add code to take additional command-line arguments, as appropriate.

3.2.11 How many binary tree shapes of N nodes are there with height N? How many
different ways are there to insert N distinct keys into an initially empty BST that result
in a tree of height N? (See Exercise 3.2.2.)

3.2.12 Develop a BST implementation that omits rank() and select() and does not
use a count field in Node.

3.2.13 Give nonrecursive implementations of get() and put() for BST.

Partial solution : Here is an implementation of get():

public Value get(Key key)
{
 Node x = root;
 while (x != null)
 {
 int cmp = key.compareTo(x.key);
 if (cmp == 0) return x.val;
 else if (cmp < 0) x = x.left;
 else if (cmp > 0) x = x.right;
 }
 return null;
}

The implementation of put() is more complicated because of the need to save a point-
er to the parent node to link in the new node at the bottom. Also, you need a separate
pass to check whether the key is already in the table because of the need to update the
counts. Since there are many more searches than inserts in performance-critical imple-
mentations, using this code for get() is justified; the corresponding change for put()
might not be noticed.

4173.2 n Binary Search Trees

ptg12441863

3.2.14 Give nonrecursive implementations of min(), max(), floor(), ceiling(),
rank(), and select().

3.2.15 Give the sequences of nodes examined when the methods in BST are used to
compute each of the following quantities for the tree drawn at right.

a. floor("Q")
b. select(5)
c. ceiling("Q")
d. rank("J")
e. size("D", "T")
 f. keys("D", "T")

3.2.16 Define the external path length of a tree to be the sum of the number of nodes on
the paths from the root to all null links. Prove that the difference between the external
and internal path lengths in any binary tree with N nodes is 2N (see Proposition C).

3.2.17 Draw the sequence of BSTs that results when you delete the keys from the tree
of Exercise 3.2.1, one by one, in the order they were inserted.

3.2.18 Draw the sequence of BSTs that results when you delete the keys from the tree
of Exercise 3.2.1, one by one, in alphabetical order.

3.2.19 Draw the sequence of BSTs that results when you delete the keys from the tree
of Exercise 3.2.1, one by one, by successively deleting the key at the root.

3.2.20 Prove that the running time of the two-argument keys() in a BST is at most
proportional to the tree height plus the number of keys in the range.

3.2.21 Add a BST method randomKey() that returns a random key from the symbol
table in time proportional to the tree height, in the worst case.

3.2.22 Prove that if a node in a BST has two children, its successor has no left child and
its predecessor has no right child.

3.2.23 Is delete() commutative? (Does deleting x, then y give the same result as de-
leting y, then x?)

3.2.24 Prove that no compare-based algorithm can build a BST using fewer than
lg(N !) ~ N lg N compares.

ExErcisEs (continued)

A

D
E

J

M

Q

S

T

418 Chapter 3 n Searching

ptg12441863

crEAtivE problEms

3.2.25 Perfect balance. Write a program that inserts a set of keys into an initially emp-
ty BST such that the tree produced is equivalent to binary search, in the sense that the
sequence of compares done in the search for any key in the BST is the same as the se-
quence of compares used by binary search for the same key.

3.2.26 Exact probabilities. Find the probability that each of the trees in Exercise 3.2.9
is the result of inserting N random distinct elements into an initially empty tree.

3.2.27 Memory usage. Compare the memory usage of BST with the memory usage of
BinarySearchST and SequentialSearchST for N key-value pairs, under the assump-
tions described in Section 1.4 (see Exercise 3.1.21). Do not count the memory for
the keys and values themselves, but do count references to them. Then draw a diagram
that depicts the precise memory usage of a BST with String keys and Integer values
(such as the ones built by FrequencyCounter), and then estimate the memory usage
(in bytes) for the BST built when FrequencyCounter uses BST for Tale of Two Cities.

3.2.28 Sofware caching. Modify BST to keep the most recently accessed Node in an
instance variable so that it can be accessed in constant time if the next put() or get()
uses the same key (see Exercise 3.1.25).

3.2.29 Tree traversal with constant extra memory. Design an algorithm that performs
an inorder tree traversal of a BST using only a constant amount of extra memory. Hint :
On the way down the tree, make the child point to the parent and reverse it on the way
back up the tree.

3.2.30 BST reconstruction. Given the preorder (or postorder) traversal of a BST (not
including null nodes), design an algorithm to reconstruct the BST.

4193.2 n Binary Search Trees

ptg12441863

3.2.31 Certification. Write a method isBST() that takes a Node as argument and re-
turns true if the argument node is the root of a binary search tree, false otherwise.
Hint : Write a helper method that takes a Node and two Keys as arguments and returns
true if the argument node is the root of a binary search tree with all keys strictly be-
tween the two argument keys, false otherwise.

Solution :

private boolean isBST()
{ return isBST(root, null, null) }

private boolean isBST(Node x, Key min, Key max)
{
 if (x == null) return true;
 if (min != null && x.key.compareTo(min) <= 0) return false;
 if (max != null && x.key.compareTo(max) >= 0) return false;
 return isBST(x.left, min, x.key)
 && isBST(x.right, x.key, max);
}

3.2.32 Subtree count check. Write a recursive method that takes a Node as argument
and returns true if the subtree count field N is consistent in the data structure rooted at
that node, false otherwise.

3.2.33 Select/rank check. Write a method that checks, for all i from 0 to size()-1,
whether i is equal to rank(select(i)) and, for all keys in the BST, whether key is
equal to select(rank(key)).

3.2.34 Threading. Your goal is to support an extended API DoublyThreadedBST that
supports the following additional operations in constant time:

Key next(Key key) key that follows key (null if key is the maximum)

Key prev(Key key) key that precedes key (null if key is the minimum)

To do so, add fields pred and succ to Node that contain links to the predecessor and
successor nodes, and modify put(), deleteMin(), deleteMax(), and delete() to
maintain these fields.

crEAtivE problEms (continued)

420 Chapter 3 n Searching

ptg12441863

3.2.35 Refined analysis. Refine the mathematical model to better explain the experi-
mental results in the table given in the text. Specifically, show that the average number
of compares for a successful search in a tree built from random keys approaches the
limit 2 ln N  2 – 3  1.39 lg N – 1.85 as N increases, where   .57721... is Euler’s
constant. Hint : Referring to the quicksort analysis in Section 2.3, use the fact that the
integral of 1/x approaches ln N  .

3.2.36 Iterator. Is it possible to write a nonrecursive version of keys() that uses space
proportional to the tree height (independent of the number of keys in the range)?

3.2.37 Level-order traversal. Write a method printLevel() that takes a Node as argu-
ment and prints the keys in the subtree rooted at that node in level order (in order of
their distance from the root, with nodes on each level in order from left to right). Hint :
Use a Queue.

3.2.38 Tree drawing. Add a method draw() to BST that draws BST figures in the style
of the text. Hint : Use instance variables to hold node coordinates, and use a recursive
method to set the values of these variables.

4213.2 n Binary Search Trees

ptg12441863

ExpErimENts

3.2.39 Average case. Run empirical studies to estimate the average and standard de-
viation of the number of compares used for search hits and for search misses in a BST
built by running 100 trials of the experiment of inserting N random keys into an ini-
tially empty tree, for N = 10 4, 10 5, and 10 6. Compare your results against the formula
for the average given in Exercise 3.2.35.

3.2.40 Height. Run empirical studies to estimate average BST height by running 100
trials of the experiment of inserting N random keys into an initially empty tree, for N =
104, 105, and 10 6. Compare your results against the 2.99 lg N estimate that is described
in the text.

3.2.41 Array representation. Develop a BST implementation that represents the BST
with three arrays (preallocated to the maximum size given in the constructor): one with
the keys, one with array indices corresponding to left links, and one with array indices
corresponding to right links. Compare the performance of your program with that of
the standard implementation.

3.2.42 Hibbard deletion degradation. Write a program that takes an integer N from the
command line, builds a random BST of size N, then enters into a loop where it deletes
a random key (using the code delete(select(StdRandom.uniform(N)))) and then
inserts a random key, iterating the loop N 2 times. After the loop, measure and print the
average length of a path in the tree (the internal path length divided by N, plus 1). Run
your program for N = 102, 103, and 10 4 to test the somewhat counterintuitive hypoth-
esis that this process increases the average path length of the tree to be proportional to
the square root of N. Run the same experiments for a delete() implementation that
makes a random choice whether to use the predecessor or the successor node.

3.2.43 Put/get ratio. Determine empirically the ratio of the amount of time that
BST spends on put() operations to the time that it spends on get() operations when
FrequencyCounter is used to find the frequency of occurrence of values in 1 million
randomly-generated integers.

3.2.44 Cost plots. Instrument BST so that you can produce plots like the ones in this
section showing the cost of each put() operation during the computation (see Exer-
cise 3.1.38).

3.2.45 Actual timings. Instrument FrequencyCounter to use Stopwatch and StdDraw
to make a plot where the x axis is the number of calls on get() or put() and the y axis

422 Chapter 3 n Searching

ptg12441863

is the total running time, with a point plotted of the cumulative time after each call.
Run your program for Tale of Two Cities using SequentialSearchST and again using
BinarySearchST and again using BST and discuss the results. Note : Sharp jumps in
the curve may be explained by caching, which is beyond the scope of this question (see
Exercise 3.1.39).

3.2.46 Crossover to binary search trees. Find the values of N for which using a binary
search tree to build a symbol table of N random double keys becomes 10, 100, and
1,000 times faster than binary search. Predict the values with analysis and verify them
experimentally.

3.2.47 Average search time. Run empirical studies to compute the average and stan-
dard deviation of the average length of a path to a random node (internal path length
divided by tree size, plus 1) in a BST built by insertion of N random keys into an initially
empty tree, for N from 100 to 10,000. Do 1,000 trials for each tree size. Plot the results in
a Tufte plot, like the one at the bottom of this page, fit with a curve plotting the function
1.39 lg N – 1.85 (see Exercise 3.2.35 and Exercise 3.2.39).

1.39 lg N − 1.85

Average path length to a random node in a BST built from random keys

20

0

10000
number of keys N

co
m

pa
re

s

16

100

4233.2 n Binary Search Trees

ptg12441863

3.3 BAlAnCeD SeArCh treeS

The algorithms in the previous section work well for a wide variety of applications, but
they have poor worst-case performance. We introduce in this section a type of binary
search tree where costs are guaranteed to be logarithmic, no matter what sequence of
keys is used to construct them. Ideally, we would like to keep our binary search trees
perfectly balanced. In an N-node tree, we would like the height to be ~lg N so that we
can guarantee that all searches can be completed in ~lg N compares, just as for binary
search (see Proposition B). Unfortunately, maintaining perfect balance for dynamic
insertions is too expensive. In this section, we consider a data structure that slightly re-
laxes the perfect balance requirement to provide guaranteed logarithmic performance
not just for the insert and search operations in our symbol-table API but also for all of
the ordered operations (except range search).

2-3 search trees The primary step to get the flexibility that we need to guarantee
balance in search trees is to allow the nodes in our trees to hold more than one key. Spe-
cifically, referring to the nodes in a standard BST as 2-nodes (they hold two links and
one key), we now also allow 3-nodes, which hold three links and two keys. Both 2-nodes
and 3-nodes have one link for each of the intervals subtended by its keys.

Definition. A 2-3 search tree is a tree that is either empty or
n	 A 2-node, with one key (and associated value) and two links,

a left link to a 2-3 search tree with smaller keys, and a right
link to a 2-3 search tree with larger keys

n	 A 3-node, with two keys (and associated values) and three
links, a left link to a 2-3 search tree with smaller keys, a mid-
dle link to a 2-3 search tree with keys between the node’s
keys, and a right link to a 2-3 search tree with larger keys

As usual, we refer to a link to an empty tree as a null link.

A perfectly balanced 2-3 search tree is one whose null links are all the same distance
from the root. To be concise, we use the term 2-3 tree to refer to a perfectly balanced 2-3
search tree (the term denotes a more general structure in other contexts). Later, we shall
see efficient ways to define and implement the basic operations on 2-nodes, 3-nodes,
and 2-3 trees; for now, let us assume that we can manipulate them conveniently and see
how we can use them as search trees.

E J

H L

2-node3-node

null link

M

R

P S XA C

Anatomy of a 2-3 search tree

424

ptg12441863Search The search algorithm for keys in a 2-3 tree directly generalizes the search al-
gorithm for BSTs. To determine whether a key is in the tree, we compare it against the
keys at the root. If it is equal to any of them, we have a search hit; otherwise, we follow
the link from the root to the subtree corresponding to the interval of key values that
could contain the search key. If that link is null, we have a search miss; otherwise we
recursively search in that subtree.

Insert into a 2-node To insert a new key in a 2-3
tree, we might do an unsuccessful search and then
hook on a new node with the key at the bottom, as
we did with BSTs, but the new tree would not re-
main perfectly balanced. The primary reason that
2-3 trees are useful is that we can do insertions and
still maintain perfect balance. It is easy to accom-
plish this task if the node at which the search ter-
minates is a 2-node: we just replace the node with
a 3-node containing its key and the new key to be
inserted. If the node where the search terminates is
a 3-node, we have more work to do.

search for K ends here

replace 2-node with
new 3-node containing K

E J

H L

M

R

P S XA C

E J

H

M

R

P S XK LA C

inserting K

Insert into a 2-node

found H so return value (search hit)

H is less than M so
look to the left

H is between E and J so
look in the middle

B is between A and C so look in the middle

B is less than M so
look to the left

B is less than E
so look to the left

link is null so B is not in the tree (search miss)

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

successful search for H unsuccessful search for B

Search hit (left) and search miss (right) in a 2-3 tree

4253.3 n Balanced Search Trees

ptg12441863

Insert into a tree consisting of a single 3-node As a first warmup before considering
the general case, suppose that we want to insert into a tiny 2-3 tree consisting of just a
single 3-node. Such a tree has two keys, but no room for a new key in its one node. To be
able to perform the insertion, we temporarily put the new key into a 4-node, a natural
extension of our node type that has three keys and four links. Creating the 4-node is
convenient because it is easy to convert it into a 2-3 tree made up of three 2-nodes, one
with the middle key (at the root), one with the smallest of
the three keys (pointed to by the left link of the root), and
one with the largest of the three keys (pointed to by the
right link of the root). Such a tree is a 3-node BST and also
a perfectly balanced 2-3 search tree, with all the null links
at the same distance from the root. Before the insertion, the
height of the tree is 0; after the insertion, the height of the
tree is 1. This case is simple, but it is worth considering be-
cause it illustrates height growth in 2-3 trees.

Insert into a 3-node whose parent is a 2-node As a second warmup, suppose that the
search ends at a 3-node at the bottom whose parent is a 2-node. In this case, we can still
make room for the new key while maintaining perfect balance in the tree, by making a

temporary 4-node as just described, then splitting the
4-node as just described, but then, instead of creat-
ing a new node to hold the middle key, moving the
middle key to the node’s parent. You can think of the
transformation as replacing the link to the old 3-node
in the parent by the middle key with links on either
side to the new 2-nodes. By our assumption, there
is room for doing so in the parent: the parent was a
2-node (with one key and two links) and becomes
a 3-node (with two keys and three links). Also, this
transformation does not affect the defining properties
of (perfectly balanced) 2-3 trees. The tree remains or-
dered because the middle key is moved to the parent,
and it remains perfectly balanced: if all null links are
the same distance from the root before the insertion,
they are all the same distance from the root after the
insertion. Be certain that you understand this trans-
formation—it is the crux of 2-3 tree dynamics.

make a 4-node

no room for S

split 4-node into
this 2-3 tree

A E

 A E S

A

E

S

inserting S

Insert into a single 3-node

split 4-node into two 2-nodes
pass middle key to parent

replace 3-node with
temporary 4-node

containing Z

replace 2-node
with new 3-node

containing
middle key

S X Z

S Z

E J

H L

L

M

R

PA C

search for Z ends
at this 3-nodeE J

H L

M

R

P S XA C

E J

H

M

P

R X

A C

inserting Z

Insert into a 3-node whose parent is a 2-node

426 Chapter 3 n Searching

ptg12441863

Insert into a 3-node whose parent is a 3-node Now
suppose that the search ends at a node whose parent is
a 3-node. Again, we make a temporary 4-node as just
described, then split it and insert its middle key into
the parent. The parent was a 3-node, so we replace it
with a temporary new 4-node containing the middle
key from the 4-node split. Then, we perform precisely
the same transformation on that node. That is, we split
the new 4-node and insert its middle key into its par-
ent. Extending to the general case is clear: we con-
tinue up the tree, splitting 4-nodes and inserting their
middle keys in their parents until reaching a 2-node,
which we replace with a 3-node that does not need to
be further split, or until reaching a 3-node at the root.

Splitting the root If we have 3-nodes along the
whole path from the insertion point to the root, we

end up with a tempo-
rary 4-node at the root.
In this case we can pro-
ceed in precisely the
same way as for inser-
tion into a tree consist-
ing of a single 3-node.
We split the tempo-
rary 4-node into three
2-nodes, increasing the height of the tree by 1. Note that
this last transformation preserves perfect balance be-
cause it is performed at the root.

Local transformations Splitting a temporary 4-node
in a 2-3 tree involves one of six transformations, sum-
marized at the bottom of the next page. The 4-node may
be the root; it may be the left child or the right child of a
2-node; or it may be the left child, middle child, or right
child of a 3-node. The basis of the 2-3 tree insertion al-
gorithm is that all of these transformations are purely lo-
cal: no part of the tree needs to be examined or modified
other than the specified nodes and links. The number of

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into two 2-nodes
pass middle key to parent

add middle key E to 2-node
to make new 3-node

add middle key C to 3-node
to make temporary 4-node

add new key D to 3-node
to make temporary 4-node

A C D

A D

search for D ends
at this 3-node E J

H L

M

R

P S XA C

E J

H L

M

R

P S X

C E J

H L

M

R

P S X

A D H L

C J R

P S X

E M

inserting D

Insert into a 3-node whose parent is a 3-node

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into
three 2-nodes
increasing tree

height by 1

add middle key C to 3-node
to make temporary 4-node

A C D

A D

search for D ends
at this 3-node E J

H LA C

E J

H L

C E J

H L

A D H L

C J

E

add new key D to 3-node
to make temporary 4-node

inserting D

Splitting the root

4273.3 n Balanced Search Trees

ptg12441863

links changed for each trans-
formation is bounded by a
small constant. In particular,
the transformations are effec-
tive when we find the specified
patterns anywhere in the tree,
not just at the bottom. Each of
the transformations passes up
one of the keys from a 4-node
to that node’s parent in the tree
and then restructures links ac-
cordingly, without touching
any other part of the tree.

Global properties Moreover,
these local transformations
preserve the global properties that the tree is ordered and perfectly balanced: the num-
ber of links on the path from the root to any null link is the same. For reference, a com-
plete diagram illustrating this point for the case that the 4-node is the middle child of a
3-node is shown above. If the length of every path from a root to a null link is h before
the transformation, then it is h after the transformation. Each transformation preserves
this property, even while splitting the 4-node into two 2-nodes and while changing the
parent from a 2-node to a 3-node or from a 3-node into a temporary 4-node. When
the root splits into three 2-nodes, the length of every path from the root to a null link
increases by 1. If you are not fully convinced, work Exercise 3.3.7, which asks you to

...

...

b c d

a e

between
a and b

less
than a

between
b and c

between
d and e

greater
than e

between
c and d

between
a and b

less
than a

between
b and c

between
d and e

greater
than e

between
c and d

b

...

d

a c e

Splitting a 4-node is a local transformation
that preserves order and perfect balance

b

right

middle

left

right

left

b db c d

a ca

a b c

d

ca

b d

a b c
ca

root

parent is a 2-node

parent is a 3-node

Splitting a temporary 4-node in a 2-3 tree (summary)

c e

b d

c d e

a b

b c d

a e

a b d

a c e

a b c

d e

ca

b d e

428 Chapter 3 n Searching

ptg12441863

extend the diagrams at the top of the previous page for the other five cases to illustrate
the same point. Understanding that every local transformation preserves order and
perfect balance in the whole tree is the key to understanding the algorithm.

Unlike standard BSTs, which grow down from the top, 2-3 trees grow up from the
bottom. If you take the time to carefully study the figure on the next page, which gives
the sequence of 2-3 trees that is produced by our standard indexing test client and the
sequence of 2-3 trees that is produced when the same keys are inserted in increasing or-
der, you will have a good understanding of the way that 2-3 trees are built. Recall that in
a BST, the increasing-order sequence for 10 keys results in a worst-case tree of height 9.
In the 2-3 trees, the height is 2.

The preceding description is sufficient to define a symbol-table implementation
with 2-3 trees as the underlying data structure. Analyzing 2-3 trees is different from
analyzing BSTs because our primary interest is in worst-case performance, as opposed
to average-case performance (where we analyze expected performance under the ran-
dom-key model). In symbol-table implementations, we normally have no control over
the order in which clients insert keys into the table and worst-case analysis is one way
to provide performance guarantees.

proposition F. Search and insert operations in a 2-3 tree with N keys are guaran-
teed to visit at most lg N nodes.

proof: The height of an N-node 2-3 tree is between ⎣log3 N⎦ = ⎣(lg N)/(lg 3)⎦ (if
the tree is all 3-nodes) and ⎣lg N⎦ (if the tree is all 2-nodes) (see Exercise 3.3.4).

Thus, we can guarantee good worst-case performance with 2-3 trees. The amount of
time required at each node by each of the operations is bounded by a constant, and
both operations examine nodes on just one path, so the total cost of any search or insert
is guaranteed to be logarithmic. As you can see from comparing the 2-3 tree depicted
at the bottom of page 431 with the BST formed from the same keys on page 405, a perfectly
balanced 2-3 tree strikes a remarkably flat posture. For example, the height of a 2-3
tree that contains 1 billion keys is between 19 and 30. It is quite remarkable that we can
guarantee to perform arbitrary search and insertion operations among 1 billion keys by
examining at most 30 nodes.

However, we are only part of the way to an implementation. Although it is possible
to write code that performs transformations on distinct data types representing 2- and
3-nodes, most of the tasks that we have described are inconvenient to implement in

4293.3 n Balanced Search Trees

ptg12441863

S

S

S

PA

E

A

E S

R S

E

A S

C

A E

M

E R

H P

H

E

R S

S X

A C

E R

A C

H

E R

A C

A

L

C

A

A C

E H

S X

E R

A C H M

S XA C

H

C M

E L

A

H

C M

E L

M

E R

P S XA C H L

A E L M

P R

P S X

C H

A E

C H

M R

H

C

LA E

P

M R

H

C

LA E

 standard indexing client same keys in increasing order

E

A

R

C

H

X

M

P

L

C

E

H

L

M

P

R

S

X

insert S insert A

2-3 construction traces

430 Chapter 3 n Searching

ptg12441863

this direct representation because there are numerous different cases to be handled.
We would need to maintain two different types of nodes, compare search keys against
each of the keys in the nodes, copy links and other information from one type of node
to another, convert nodes from one type to another, and so forth. Not only is there a
substantial amount of code involved, but the overhead incurred could make the algo-
rithms slower than standard BST search and insert. The primary purpose of balancing
is to provide insurance against a bad worst case, but we would prefer the overhead cost
for that insurance to be low. Fortunately, as you will see, we can do the transformations
in a uniform way using little overhead.

Typical 2-3 tree built from random keys

4313.3 n Balanced Search Trees

ptg12441863

Red-black BSTs The insertion algorithm for 2-3 trees just described is not difficult
to understand; now, we will see that it is also not difficult to implement. We will con-
sider a simple representation known as a red-black BST that leads to a natural imple-
mentation. In the end, not much code is required, but understanding how and why the
code gets the job done requires a careful look.

Encoding 3-nodes The basic idea behind red-black
BSTs is to encode 2-3 trees by starting with standard
BSTs (which are made up of 2-nodes) and adding extra
information to encode 3-nodes. We think of the links
as being of two different types: red links, which bind
together two 2-nodes to represent 3-nodes, and black
links, which bind together the 2-3 tree. Specifically,
we represent 3-nodes as two 2-nodes connected by a
single red link that leans left (one of the 2-nodes is the
left child of the other). One advantage of using such a
representation is that it allows us to use our get() code
for standard BST search without modification. Given
any 2-3 tree, we can immediately derive a corresponding BST, just by converting each
node as specified. We refer to BSTs that represent 2-3 trees in this way as red-black BSTs.

An equivalent definition Another way to proceed is to define red-black BSTs as BSTs
having red and black links and satisfying the following three restrictions:

n	 Red links lean left.
n	 No node has two red links connected to it.
n	 The tree has perfect black balance : every path from the root to a null link has the

same number of black links—we refer to this number as the tree’s black height.
There is a 1-1 correspondence between red-black BSTs defined in this way and 2-3 trees.

A 1-1 correspondence If we draw the red links horizontally in a red-black BST, all of
the null links are the same distance from the root, and if we then collapse together the
nodes connected by red links, the result is a 2-3 tree. Conversely, if we draw 3-nodes in

A red-black tree with horizontal red links is a 2-3 tree

...

... ...

...

Encoding a 3-node with two 2-nodes
 connected by a left-leaning red link

a b3-node

between
a and b

less
than a

greater
than b

a

b

between
a and b

less
than a

greater
than b

432 Chapter 3 n Searching

ptg12441863

a 2-3 tree as two 2-nodes connected by
a red link that leans left, then no node
has two red links connected to it, and
the tree has perfect black balance, since
the black links correspond to the 2-3
tree links, which are perfectly balanced
by definition. Whichever way we choose
to define them, red-black BSTs are both
BSTs and 2-3 trees. Thus, if we can im-
plement the 2-3 tree insertion algorithm
by maintaining the 1-1 correspondence,
then we get the best of both worlds: the
simple and efficient search method from
standard BSTs and the efficient inser-
tion-balancing method from 2-3 trees.

Color representation For convenience, since
each node is pointed to by precisely one link
(from its parent), we encode the color of links
in nodes, by adding a boolean instance variable
color to our Node data type, which is true if
the link from the parent is red and false if it
is black. By convention, null links are black.
For clarity in our code, we define constants
RED and BLACK for use in setting and testing
this variable. We use a private method isRed()
to test the color of a node’s link to its parent.
When we refer to the color of a node, we are
referring to the color of the link pointing to it,
and vice versa.

Rotations The implementation that we will
consider might allow right-leaning red links or
two red links in a row during an operation, but
it always corrects these conditions before com-
pletion, through judicious use of an operation
called rotation that switches the orientation of

1-1 correspondence between red-black BSTs and 2-3 trees

X

SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red-black BST

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

private static final boolean RED = true;
private static final boolean BLACK = false;

private class Node
{
 Key key; // key
 Value val; // associated data
 Node left, right; // subtrees
 int N; // # nodes in this subtree
 boolean color; // color of link from
 // parent to this node

 Node(Key key, Value val, int N, boolean color)
 {
 this.key = key;
 this.val = val;
 this.N = N;
 this.color = color;
 }
}

private boolean isRed(Node x)
{
 if (x == null) return false;
 return x.color == RED;
}

J

G

E

A D

C

Node representation for red-black BSTs

h
h.left.color

is RED
h.right.color

is BLACK

4333.3 n Balanced Search Trees

ptg12441863

red links. First, suppose that we have a right-leaning red link that
needs to be rotated to lean to the left (see the diagram at left). This
operation is called a left rotation. We organize the computation as
a method that takes a link to a red-black BST as argument and, as-
suming that link to be to a Node h whose right link is red, makes the
necessary adjustments and returns a link to a node that is the root of
a red-black BST for the same set of keys whose left link is red. If you
check each of the lines of code against the before/after drawings in
the diagram, you will find this operation is easy to understand: we
are switching from having the smaller of the two keys at the root to
having the larger of the two keys at the root. Implementing a right
rotation that converts a left-leaning red link to a right-leaning one
amounts to the same code, with left and right interchanged (see the
diagram at right below).

Resetting the link in the parent after a rotation Whether left or
right, every rotation leaves us with a link. We always use the link
returned by rotateRight() or rotateLeft() to reset the appro-
priate link in the parent (or the root of
the tree). That may be a right or a left
link, but we can always use it to reset
the link in the parent. This link may be
red or black—both rotateLeft() and

rotateRight() preserve its color by setting x.color to
h.color. This might allow two red links in a row to occur
within the tree, but our algorithms will also use rotations
to correct this condition when it arises. For example, the
code

h = rotateLeft(h);

rotates left a right-leaning red link that is to the right of
node h, setting h to point to the root of the resulting sub-
tree (which contains all the same nodes as the subtree
pointed to by h before the rotation, but a different root).
The ease of writing this type of code is the primary reason
we use recursive implementations of BST methods, as it
makes doing rotations an easy supplement to normal in-
sertion, as you will see.

Left rotate (right link of h)

Node rotateLeft(Node h)
{
 Node x = h.right;
 h.right = x.left;
 x.left = h;
 x.color = h.color;
 h.color = RED;
 x.N = h.N;
 h.N = 1 + size(h.left)
 + size(h.right);
 return x;
}

h

x

x

h

E

S

between
E and S

less
than E

greater
than S

E

S

between
E and S

could be right or left,
red or black

less
than E

greater
than S

Node rotateRight(Node h)
{
 Node x = h.left;
 h.left = x.right;
 x.right = h;
 x.color = h.color;
 h.color = RED;
 x.N = h.N;
 h.N = 1 + size(h.left)
 + size(h.right);
 return x;
}

x

h

h

x

E

S

between
E and S

less
than E

greater
than S

E

S

between
E and S

less
than E

greater
than S

Right rotate (left link of h)

434 Chapter 3 n Searching

ptg12441863

We can use rotations to help maintain the 1-1 correspondence between
2-3 trees and red-black BSTs as new keys are inserted because they pre-
serve the two defining properties of red-black BSTs: order and perfect black
balance. That is, we can use rotations on a red-black BST without having
to worry about losing its order or its perfect black balance. Next, we see
how to use rotations to preserve the other two defining properties of red-
black BSTs (no consecutive red links on any path and no right-leaning red
links). We warm up with some easy cases.

Insert into a single 2-node A red-black BST with 1 key is just a single
2-node. Inserting the second key immediately shows the need for having
a rotation operation. If the new key is smaller than the key in the tree, we
just make a new (red) node with the new key and we are done: we have
a red-black BST that is equivalent to a single 3-node. But if the new key
is larger than the key in the tree, then attaching a new (red) node gives a
right-leaning red link, and the code root = rotateLeft(root); com-
pletes the insertion by rotating the red link to the left and updating the
tree root link. The result in both cases is the red-black representation of a
single 3-node, with two keys, one left-leaning red link, and black height 0.

Insert into a 2-node at the bottom We insert keys into a red-black BST
as usual into a BST, adding a new node at the bottom (respecting the or-
der), but always connected to its parent with a red link. If the parent is a
2-node, then the same two cases just discussed are effective. If the new node
is attached to the left link, the parent simply becomes a 3-node; if it is at-
tached to a right link, we have a 3-node leaning the wrong way, but a left
rotation finishes the job.

Insert into a tree with two keys (in a 3-node) This case reduces to three
subcases: the new key is either less than both keys in the tree, between them,
or greater than both of them. Each of the cases introduces a node with two
red links connected to it; our goal is to correct this condition.

n	 The simplest of the three cases is when the new key is larger than
the two in the tree and is therefore attached on the rightmost link of
the 3-node, making a balanced tree with the middle key at the root,
connected with red links to nodes containing a smaller and a larger
key. If we flip the colors of those two links from red to black, then
we have a balanced tree of (black) height 1 with three nodes, exactly
what we need to maintain our 1-1 correspondence to 2-3 trees. The
other two cases eventually reduce to this case.

search ends
at this null link

red link to
 new node

containing a
converts 2-node

to 3-node

search ends
at this null link

attached new node
with red link

rotated left
to make a

legal 3-node

a

b

a

a

b

b

a

b

root

root

root

root

left

right

Insert into a single
2-node (two cases)

E

A

E

R

S

R

S

A

C

E

R

S
C

A

add new
node here

right link red
so rotate left

insert C

Insert into a 2-node
at the bottom

4353.3 n Balanced Search Trees

ptg12441863

n	 If the new key is
smaller than the two
keys in the tree and
goes on the left link,
then we have two
red links in a row,
both leaning to the
left, which we can
reduce to the previ-
ous case (middle
key at the root, con-
nected to the others
by two red links) by
rotating the top link
to the right.

n	 If the new key goes
between the two
keys in the tree, we

again have two red links in a row, a right-leaning one below
a left-leaning one, which we can reduce to the previous case
(two red links in a row, to the left) by rotating left the bot-
tom link.
In summary, we achieve the desired result by doing zero,
one, or two rotations followed by flipping the colors of the
two children of the root. As with 2-3 trees, be certain that
you understand these transformations, as they are the key to
red-black tree dynamics.

Flipping colors To flip the colors of the two red children
of a node, we use a method flipColors(), shown at left. In
addition to flipping the colors of the children from red to
black, we also flip the color of the parent from black to red.
A critically important characteristic of this operation is that,
like rotations, it is a local transformation that preserves per-
fect black balance in the tree. Moreover, this convention im-
mediately leads us to a full implementation, as we describe
next.

search ends
at this null link

search ends
at this null link

attached new
node with
red link

a

c

b

attached new
node with
red link

rotated left

rotated
right

rotated
right

colors flipped
to black

colors flipped
to black

search ends
at this

null link

attached new
node with
red link

colors flipped
to black

a

c

b

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

c

a

c

b

smaller between

a

b

a

b

c

a

b

c

larger

Insert into a single 3-node (three cases)

void flipColors(Node h)
{
 h.color = RED;
 h.left.color = BLACK;
 h.right.color = BLACK;
}

h

A

E

between
A and E

less
than A

S

between
E and S

could be left
or right link

red link attaches
middle node

to parent

black links split
to 2-nodes

greater
than S

A

E

between
A and E

less
than A

S

between
E and S

greater
than S

Flipping colors to split a 4-node

436 Chapter 3 n Searching

ptg12441863

Keeping the root black In the case just considered (insert into a single 3-node), the
color flip will color the root red. This can also happen in larger trees. Strictly speaking,
a red root implies that the root is part of a 3-node, but that is not the case, so we color
the root black after each insertion. Note that the black
height of the tree increases by 1 whenever the root is
involved in a color flip, where its childrens’ colors are
both flipped from red to black.

Insert into a 3-node at the bottom Now suppose that
we add a new node at the bottom that is connected to a
3-node. The same three cases just discussed arise. Either
the new link is connected to the right link of the 3-node
(in which case we just flip colors) or to the left link of
the 3-node (in which case we need to rotate the top link
right and flip colors) or to the middle link of the 3-node
(in which case we rotate left the bottom link, then rotate
right the top link, then flip colors). Flipping the colors
makes the link to the middle node red, which amounts
to passing it up to its parent, putting us back in the same
situation with respect to the parent, which we can fix by
moving up the tree.

Passing a red link up the tree The 2-3 tree insertion
algorithm calls for us to split the 3-node, passing the
middle key up to be inserted into its parent, continuing
until encountering a 2-node or the root. In every case
we have considered, we precisely accomplish this objec-
tive: after doing any necessary rotations, we flip colors,
which turns the middle node to red. From the point of
view of the parent of that node, that link becoming red
can be handled in precisely the same manner as if the
red link came from attaching a new node: we pass up
a red link to the middle node. The three cases sum-
marized in the diagram on the next page precisely capture the operations necessary in
a red-black tree to implement the key operation in 2-3 tree insertion: to insert into a
3-node, create a temporary 4-node, split it, and pass a red link to the middle key up to
its parent. Continuing the same process, we pass a red link up the tree until reaching a
2-node or the root.

H

E

R

S
A

C

S

S

R

E

H

add new
node here

E

R

S
A

C

right link red
so rotate left

two lefts in a row
so rotate right

E

H

R
A

C

both children red
so flip colors

S

E

H

R
A

C

A

C

inserting H

Insert into a 3-node at the bottom

E

R SA C

E

H R SA C

SH

E R

A C

4373.3 n Balanced Search Trees

ptg12441863

In summary, we can maintain our 1-1
correspondence between 2-3 trees and
red-black BSTs during insertion by judi-
cious use of three simple operations: left
rotate, right rotate, and color flip. We can
accomplish the insertion by performing
the following operations, one after the
other, on each node as we pass up the tree
from the point of insertion:

n	 If the right child is red and the left
child is black, rotate left.

n	 If both the left child and its left
child are red, rotate right.

n	 If both children are red, flip colors.
It certainly is worth your while to check that this sequence handles each of the cases
just described. Note that the first operation handles both the rotation necessary to lean
the 3-node to the left when the parent is a 2-node and the rotation necessary to lean the
bottom link to the left when the new red link is the middle link in a 3-node.

Implementation Since the balancing operations are to be performed on the way
up the tree from the point of insertion, implementing them is easy in our standard
recursive implementation: we just do them after the recursive calls, as shown in Algo-
rithm 3.4. The three operations listed in the previous paragraph each can be accom-
plished with a single if statement that tests the colors of two nodes in the tree. Even
though it involves a small amount of code, this implementation would be quite difficult
to understand without the two layers of abstraction that we have developed (2-3 trees
and red-black BSTs) to implement it. At a cost of testing three to five node colors (and
perhaps doing a rotation or two or flipping colors when a test succeeds), we get BSTs
that have nearly perfect balance.

The traces for our standard indexing client and for the same keys inserted in increas-
ing order are given on page 440. Considering these examples simply in terms of our
three operations on red-black trees, as we have been doing, is an instructive exercise.
Another instructive exercise is to check the correspondence with 2-3 trees that the algo-
rithm maintains (using the figure for the same keys given on page 430). In both cases,
you can test your understanding of the algorithm by considering the transformations
(two color flips and two rotations) that are needed when P is inserted into the red-black
BST (see Exercise 3.3.12).

flip
colors

right
rotate

left
rotate

Passing a red link up a red-black BST

h

h
h

438 Chapter 3 n Searching

ptg12441863

aLgorIthM 3.4 insert for red-black BSts

public class RedBlackBST<Key extends Comparable<Key>, Value>
{

 private Node root;

 private class Node // BST node with color bit (see page 433)

 private boolean isRed(Node h) // See page 433.
 private Node rotateLeft(Node h) // See page 434.
 private Node rotateRight(Node h) // See page 434.
 private void flipColors(Node h) // See page 436.

 private int size() // See page 398.

 public void put(Key key, Value val)
 { // Search for key. Update value if found; grow table if new.
 root = put(root, key, val);
 root.color = BLACK;
 }

 private Node put(Node h, Key key, Value val)
 {
 if (h == null) // Do standard insert, with red link to parent.
 return new Node(key, val, 1, RED);

 int cmp = key.compareTo(h.key);
 if (cmp < 0) h.left = put(h.left, key, val);
 else if (cmp > 0) h.right = put(h.right, key, val);
 else h.val = val;

 if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h);
 if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
 if (isRed(h.left) && isRed(h.right)) flipColors(h);

 h.N = size(h.left) + size(h.right) + 1;
 return h;
 }
}

The code for the recursive put() for red-black BSTs is identical to put() in elementary BSTs except
for the three if statements after the recursive calls, which provide near-perfect balance in the tree
by maintaining a 1-1 correspondence with 2-3 trees, on the way up the search path. The first rotates
left any right-leaning 3-node (or a right-leaning red link at the bottom of a temporary 4-node); the
second rotates right the top link in a temporary 4-node with two left-leaning red links; and the third
flips colors to pass a red link up the tree (see text).

4393.3 n Balanced Search Trees

ptg12441863

S

E

A S

E

A

PA

H

C M

E L

A

H

C M

E L

E

A

R

C

H

X

M

P

L

C

E

H

L

M

P

R

S

X

E

R

S

L

M

P

R

S

X

A

H

C

E

R

S

C

A

E

H

A

C

E

S

A

C

A E

A

C

S

X

M

R

E

A H

C

S

X

R

E

A

C H

P

R

S

X

M

E

A

C H

P

R

SH
X

M

E

A

C L

S

R

E

A

C H

L

H

C
A E

S

R

M
L P

A

H

C

E

R

M
L P

H

C
A E

Red-black BST construction traces

 standard indexing client same keys in increasing order

insert S insert A

440 Chapter 3 n Searching

ptg12441863

Deletion Since put() in Algorithm 3.4 is already one of the most intricate
methods that we consider in this book, and the implementations of deleteMin(),
deleteMax(), and delete() for red-black BSTs are a bit more complicated, we defer
their full implementations to exercises. Still, the basic approach is worthy of study. To
describe it, we begin by returning to 2-3 trees. As with insertion, we can define a se-
quence of local transformations that allow us to delete a node while still maintaining
perfect balance. The process is somewhat more complicated than for insertion, because
we do the transformations both on the way down the search path,
when we introduce temporary 4-nodes (to allow for a node to be
deleted), and also on the way up the search path, where we split any
leftover 4-nodes (in the same manner as for insertion).

Top-down 2-3-4 trees As a first warmup for deletion, we con-
sider a simpler algorithm that does transformations both on the
way down the path and on the way up the path: an insertion algo-
rithm for 2-3-4 trees, where the temporary 4-nodes that we saw in
2-3 trees can persist in the tree. The insertion algorithm is based on
doing transformations on the way down the path to maintain the
invariant that the current node is not a 4-node (so we are assured
that there will be room to insert the new key at the bottom) and
transformations on the way up the path to balance any 4-nodes
that may have been created. The transformations on the way down
are precisely the same transformations that we used for splitting
4-nodes in 2-3 trees. If the root is a 4-node, we split it into three
2-nodes, increasing the height of the tree by 1. On the way down
the tree, if we encounter a 4-node with a 2-node as parent, we split
the 4-node into two 2-nodes and pass the middle key to the par-
ent, making it a 3-node; if we encounter a 4-node with a 3-node as
parent, we split the 4-node into two 2-nodes and pass the middle
key to the parent, making it a 4-node. We do not need to worry
about encountering a 4-node with a 4-node as parent by virtue of
the invariant. At the bottom, we have, again by virtue of the invariant, a 2-node or a
3-node, so we have room to insert the new key. To implement this algorithm with red-
black BSTs, we

n	 Represent 4-nodes as a balanced subtree of three 2-nodes, with both the left and
right child connected to the parent with a red link

n	 Split 4-nodes on the way down the tree with color flips
n	 Balance 4-nodes on the way up the tree with rotations, as for insertion

at the root

on the way down

at the bottom

Transformations for insert
in top-down 2-3-4 trees

4413.3 n Balanced Search Trees

ptg12441863

Remarkably, you can implement top-down 2-3-4 trees by moving one line of code in
put() in Algorithm 3.4: move the colorFlip() call (and accompanying test) to be-
fore the recursive calls (between the test for null and the comparison). This algorithm
has some advantages over 2-3 trees in applications where multiple processes have access
to the same tree, because it always is operating within a link or two of the current node.
The deletion algorithms that we describe next are based on a similar scheme and are
effective for these trees as well as for 2-3 trees.

Delete the minimum As a second warmup
for deletion, we consider the operation of
deleting the minimum from a 2-3 tree. The
basic idea is based on the observation that we
can easily delete a key from a 3-node at the
bottom of the tree, but not from a 2-node.
Deleting the key from a 2-node leaves a node
with no keys; the natural thing to do would
be to replace the node with a null link, but
that operation would violate the perfect bal-
ance condition. So, we adopt the following
approach: to ensure that we do not end up on
a 2-node, we perform appropriate transfor-
mations on the way down the tree to preserve
the invariant that the current node is not a
2-node (it might be a 3-node or a tempo-
rary 4-node). First, at the root, there are two
possibilities: if the root is a 2-node and both
children are 2-nodes, we can just convert the
three nodes to a 4-node; otherwise we can
borrow from the right sibling if necessary to ensure that the left child of the root is not
a 2-node. Then, on the way down the tree, one of the following cases must hold:

n	 If the left child of the current node is not a 2-node, there is nothing to do.
n	 If the left child is a 2-node and its immediate sibling is not a 2-node, move a key

from the sibling to the left child.
n	 If the left child and its immediate sibling are 2-nodes, then combine them with

the smallest key in the parent to make a 4-node, changing the parent from a
3-node to a 2-node or from a 4-node to a 3-node.

Following this process as we traverse left links to the bottom, we wind up on a 3-node
or a 4-node with the smallest key, so we can just remove it, converting the 3-node to a

a b c
b

ca

c

a b d e

b

a

b c

a b d ea

c d e

b f g c f g

c d e

at the root

on the way down

at the bottom

Transformations for delete the minimum

a b c

a b c

d e

ca

b d e

442 Chapter 3 n Searching

ptg12441863

2-node or the 4-node to a 3-node. Then, on the way up the tree, we split any unused
temporary 4-nodes.

Delete The same transformations along the search path just described for deleting the
minimum are effective to ensure that the current node is not a 2-node during a search
for any key. If the search key is at the bottom, we can just remove it. If the key is not
at the bottom, then we have to exchange it with its successor as in regular BSTs. Then,
since the current node is not a 2-node, we have reduced the problem to deleting the
minimum in a subtree whose root is not a 2-node, and we can use the procedure just
described for that subtree. After the deletion, as usual, we split any remaining 4-nodes
on the search path on the way up the tree.

Several of the exercises at the end of this section are devoted to examples and
implementations related to these deletion algorithms. People with an interest in devel-
oping or understanding implementations need to master the details covered in these
exercises. People with a general interest in the study of algorithms need to recognize
that these methods are important because they represent the first symbol-table imple-
mentation that we have seen where search, insert, and delete are all guaranteed to be
efficient, as we will establish next.

4433.3 n Balanced Search Trees

ptg12441863

Properties of red-black BSTs Studying the properties of red-black BSTs is a
matter of checking the correspondence with 2-3 trees and then applying the analysis of
2-3 trees. The end result is that all symbol-table operations in red-black BSTs are guaran-
teed to be logarithmic in the size of the tree (except for range search, which additionally
costs time proportional to the number of keys returned). We repeat and emphasize this
point because of its importance.

Analysis First, we establish that red-black BSTs, while not perfectly balanced, are al-
ways nearly so, regardless of the order in which the keys are inserted. This fact immedi-
ately follows from the 1-1 correspondence with 2-3 trees and the defining property of
2-3 trees (perfect balance).

proposition G. The height of a red-black BST with N nodes is no more than 2 lg N.

proof sketch: The worst case is a 2-3 tree that is all 2-nodes except that the leftmost
path is made up of 3-nodes. The path taking left links from the root is twice as long
as the paths of length ~ lg N that involve just 2-nodes. It is possible, but not easy, to
develop key sequences that cause the construction of red-black BSTs whose average
path length is the worst-case 2 lg N. If you are mathematically inclined, you might
enjoy exploring this issue by working Exercise 3.3.24.

This upper bound is conservative: experiments involving both random insertions and
insertion sequences found in typical applications support the hypothesis that each
search in a red-black BST of N nodes uses about 1.0 lg N – 0.5 compares, on the aver-
age. Moreover, you are not likely to encounter a substantially higher average number of
compares in practice.

Typical red-black BST built from random keys (null links omitted)

444 Chapter 3 n Searching

ptg12441863

property H. The average length of a path from the root to a node in a red-black
BST with N nodes is ~1.00 lg N.

Evidence: Typical trees, such as the one at the bottom of the previous page (and
even the one built by inserting keys in increasing order at the bottom of this page)
are quite well-balanced, by comparison with typical BSTs (such as the tree depicted
on page 405). The table at the top of this page shows that path lengths (search costs)
for our FrequencyCounter application are about 40 percent lower than from el-
ementary BSTs, as expected. This performance has been observed in countless ap-
plications and experiments since the invention of red-black BSTs.

For our example study of the cost of the put() operations for FrequencyCounter for
words of length 8 or more, we see a further reduction in the average cost, again pro-
viding a quick validation of the logarithmic performance predicted by the theoretical
model, though this validation is less surprising than for BSTs because of the guarantee
provided by proposition G. The total savings is less than the 40 per cent savings in the
search cost because we count rotations and color flips as well as compares.

tale.txt leipzig1M.txt

words distinct compares words distinct compares
model actual model actual

all words 135,635 10,679 13.6 13.5 21,191,455 534,580 19.4 19.1

8+ letters 14,350 5,737 12.6 12.1 4,239,597 299,593 18.7 18.4

10+ letters 4,582 2,260 11.4 11.5 1,610,829 165,555 17.5 17.3

average number of compares per put() for FrequencyCounter using RedBlackBST

Red-black BST built from ascending keys (null links omitted)

4453.3 n Balanced Search Trees

ptg12441863

The get() method in red-black BSTs does not examine the node color, so the balanc-
ing mechanism adds no overhead; search is faster than in elementary BSTs because
the tree is balanced. Each key is inserted just once, but may be involved in many, many
search operations, so the end result is that we get search times that are close to optimal
(because the trees are nearly balanced and no work for balancing is done during the
searches) at relatively little cost (unlike binary search, insertions are guaranteed to be
logarithmic). The inner loop of the search is a compare followed by updating a link,
which is quite short, like the inner loop of binary search (compare and index arithme-
tic). This implementation is the first we have seen with logarithmic guarantees for both
search and insert, and it has a tight inner loop, so its use is justified in a broad variety of
applications, including library implementations.

Ordered symbol-table API One of the most appealing features of red-black BSTs is
that the complicated code is limited to the put() (and deletion) methods. Our code for
the minimum/maximum, select, rank, floor, ceiling and range queries in standard BSTs
can be used without any change, since it operates on BSTs and has no need to refer to the
node color. Algorithm 3.4, together with these methods (and the deletion methods),
leads to a complete implementation of our ordered symbol-table API. Moreover, all of
the methods benefit from the near-perfect balance in the tree because they all require
time proportional to the tree height, at most. Thus Proposition G, in combination
with Proposition E, suffices to establish a logarithmic performance guarantee for all
of them.

Costs for java FrequencyCounter 8 < tale.txt using RedBlackBST

20

0

0 14350
operations

co
m

pa
re

s

12

446 Chapter 3 n Searching

ptg12441863

proposition i. In a red-black BST, the following operations take logarithmic time
in the worst case: search, insertion, finding the minimum, finding the maximum,
floor, ceiling, rank, select, delete the minimum, delete the maximum, delete, and
range count.

proof: We have just discussed get(), put(), and the deletion operations. For the
others, the code from Section 3.2 can be used verbatim (it just ignores the node
color). Guaranteed logarithmic performance follows from Propositions E and G,
and the fact that each algorithm performs a constant number of operations on each
node examined.

On reflection, it is quite remarkable that we are able to achieve such guarantees. In a
world awash with information, where people maintain tables with trillions or quadril-
lions of entries, the fact is that we can guarantee to complete any one of these opera-
tions in such tables with just a few dozen compares.

algorithm
(data structure)

worst-case cost
(after n inserts)

average-case cost
(after n random inserts)

efficiently
support ordered

operations?search insert search hit insert

sequential search
(unordered linked list) N N N/2 N no

binary search
(ordered array) lg N N lg N N/2 yes

binary tree search
(BST) N N 1.39 lg N 1.39 lg N yes

2-3 tree search
(red-black BST) 2 lg N 2 lg N 1.00 lg N 1.00 lg N yes

Cost summary for symbol-table implementations (updated)

4473.3 n Balanced Search Trees

ptg12441863

Q&A

Q. Why not let the 3-nodes lean either way and also allow 4-nodes in the trees?

A. Those are fine alternatives, used by many for decades. You can learn about several of
these alternatives in the exercises. The left-leaning convention reduces the number of
cases and therefore requires substantially less code.

Q. Why not use an array of Key values to represent 2-, 3-, and 4-nodes with a single
Node type?

A. Good question. That is precisely what we do for B-trees (see Chapter 6), where we
allow many more keys per node. For the small nodes in 2-3 trees, the overhead for the
array is too high a price to pay.

Q. When we split a 4-node, we sometimes set the color of the right node to RED in
rotateRight() and then immediately set it to BLACK in flipColors(). Isn’t that
wasteful?

A. Yes, and we also sometimes unnecessarily recolor the middle node. In the grand
scheme of things, resetting a few extra bits is not in the same league with the improve-
ment from linear to logarithmic that we get for all operations, but in performance-crit-
ical applications, you can put the code for rotateRight() and flipColors() inline
and eliminate those extra tests. We use those methods for deletion, as well, and find
them slightly easier to use, understand, and maintain by making sure that they preserve
perfect black balance.

448 Chapter 3 n Searching

ptg12441863

ExErcisEs

3.3.1 Draw the 2-3 tree that results when you insert the keys E A S Y Q U T I O N in
that order into an initially empty tree.

3.3.2 Draw the 2-3 tree that results when you insert the keys Y L P M X H C R A E S
in that order into an initially empty tree.

3.3.3 Find an insertion order for the keys S E A R C H X M that leads to a 2-3 tree
of height 1.

3.3.4 Prove that the height of a 2-3 tree with N keys is between ~ log3 N
 .63 lg N (for a tree that is all 3-nodes) and ~ lg N (for a tree that is all
2-nodes).

3.3.5 The figure at right shows all the structurally different 2-3 trees with N
keys, for N from 1 up to 6 (ignore the order of the subtrees). Draw all the
structurally different trees for N = 7, 8, 9, and 10.

3.3.6 Find the probability that each of the 2-3 trees in Exercise 3.3.5 is the
result of the insertion of N random distinct keys into an initially empty tree.

3.3.7 Draw diagrams like the one at the top of page 428 for the other five
cases in the diagram at the bottom of that page.

3.3.8 Show all possible ways that one might represent a 4-node with three
2-nodes bound together with red links (not necessarily left-leaning).

3.3.9 Which of the following are red-black BSTs?

3.3.10 Draw the red-black BST that results when you insert items with the keys
E A S Y Q U T I O N in that order into an initially empty tree.

3.3.11 Draw the red-black BST that results when you insert items with the keys
Y L P M X H C R A E S in that order into an initially empty tree.

D

Y

H

A

C

F

H

G Z

A

C

D

E

D

Y

H ZA

B

E

Y

TA

C

H
(i) (ii) (iii) (iv)

4493.3 n Balanced Search Trees

ptg12441863

3.3.12 Draw the red-black BST that results after each transformation (color flip or
rotation) during the insertion of P for our standard indexing client.

3.3.13 True or false: If you insert keys in increasing order into a red-black BST, the tree
height is monotonically increasing.

3.3.14 Draw the red-black BST that results when you insert letters A through K in order
into an initially empty tree, then describe what happens in general when trees are built
by insertion of keys in ascending order (see also the figure in the text).

3.3.15 Answer the previous two questions
for the case when the keys are inserted in de-
scending order.

3.3.16 Show the result of inserting n into the
red-black BST drawn at right (only the search
path is shown, and you need to include only
these nodes in your answer).

3.3.17 Generate two random 16-node red-
black BSTs. Draw them (either by hand or
with a program). Compare them with the
(unbalanced) BSTs built with the same keys.

3.3.18 Draw all the structurally different red-black BSTs with N keys, for N from 2 up
to 10 (see Exercise 3.3.5).

3.3.19 With 1 bit per node for color, we can represent 2-, 3-, and 4-nodes. How many
bits per node would we need to represent 5-, 6-, 7-, and 8-nodes with a binary tree?

3.3.20 Compute the internal path length in a perfectly balanced BST of N nodes, when
N is a power of 2 minus 1.

3.3.21 Create a test client for RedBlackBST, based on your solution to Exercise 3.2.10.

3.3.22 Find a sequence of keys to insert into a BST and into a red-black BST such that
the height of the BST is less than the height of the red-black BST, or prove that no such
sequence is possible.

j

t
s

q

u

r

o

m

p

k

l

ExErcisEs (continued)

450 Chapter 3 n Searching

ptg12441863

crEAtivE problEms

3.3.23 2-3 trees without balance restriction. Develop an implementation of the basic
symbol-table API that uses 2-3 trees that are not necessarily balanced as the underlying
data structure. Allow 3-nodes to lean either way. Hook the new node onto the bottom
with a black link when inserting into a 3-node at the bottom. Run experiments to de-
velop a hypothesis estimating the average path length in a tree built from N random
insertions.

3.3.24 Worst case for red-black BSTs. Show how to construct a red-black BST dem-
onstrating that, in the worst case, almost all the paths from the root to a null link in a
red-black BST of N nodes are of length 2 lg N.

3.3.25 Top-down 2-3-4 trees. Develop an implementation of the basic symbol-table
API that uses balanced 2-3-4 trees as the underlying data structure, using the red-black
representation and the insertion method described in the text, where 4-nodes are split
by flipping colors on the way down the search path and balancing on the way up.

3.3.26 Single top-down pass. Develop a modified version of your solution to Exer-
cise 3.3.25 that does not use recursion. Complete all the work splitting and balancing
4-nodes (and balancing 3-nodes) on the way down the tree, finishing with an insertion
at the bottom.

3.3.27 Allow right-leaning red links. Develop a modified version of your solution to
Exercise 3.3.25 that allows right-leaning red links in the tree.

3.3.28 Bottom-up 2-3-4 trees. Develop an implementation of the basic symbol-table
API that uses balanced 2-3-4 trees as the underlying data structure, using the red-black
representation and a bottom-up insertion method based on the same recursive approach
as Algorithm 3.4. Your insertion method should split only the sequence of 4-nodes (if
any) on the bottom of the search path.

3.3.29 Optimal storage. Modify RedBlackBST so that it does not use any extra storage
for the color bit, based on the following trick: To color a node red, swap its two links.
Then, to test whether a node is red, test whether its left child is larger than its right child.
You have to modify the compares to accommodate the possible link swap, and this trick
replaces bit compares with key compares that are presumably more expensive, but it
shows that the bit in the nodes can be eliminated, if necessary.

3.3.30 Sofware caching. Modify RedBlackBST to keep the most recently accessed Node
in an instance variable so that it can be accessed in constant time if the next put() or

4513.3 n Balanced Search Trees

ptg12441863

get() uses the same key (see Exercise 3.1.25).

3.3.31 Tree drawing. Add a method draw() to RedBlackBST that draws red-black
BST figures in the style of the text (see Exercise 3.2.38)

3.3.32 AVL trees. An AVL tree is a BST where the height of every node and that of
its sibling differ by at most 1. (The oldest balanced tree algorithms are based on using
rotations to maintain height balance in AVL trees.) Show that coloring red links that
go from nodes of even height to nodes of odd height in an AVL tree gives a (perfectly
balanced) 2-3-4 tree, where red links are not necessarily left-leaning. Extra credit : De-
velop an implementation of the symbol-table API that uses this as the underlying data
structure. One approach is to keep a height field in each node, using rotations after the
recursive calls to adjust the height as necessary; another is to use the red-black represen-
tation and use methods like moveRedLeft() and moveRedRight() in Exercise 3.3.39
and Exercise 3.3.40.

3.3.33 Certification. Add to RedBlackBST a method is23() to check that no node is
connected to two red links and that there are no right-leaning red links and a method
isBalanced() to check that all paths from the root to a null link have the same number
of black links. Combine these methods with code from isBST() in Exercise 3.2.31 to
create a method isRedBlackBST() that checks that the tree is a red-black BST.

3.3.34 All 2-3 trees. Write code to generate all structurally different 2-3 trees of height
2, 3, and 4. There are 2, 7, and 122 such trees, respectively. (Hint : Use a symbol table.)

3.3.35 2-3 trees. Write a program TwoThreeST.java that uses two node types to im-
plement 2-3 search trees directly.

3.3.36 2-3-4-5-6-7-8 trees. Describe algorithms for search and insertion in balanced
2-3-4-5-6-7-8 search trees.

3.3.37 Memoryless. Show that red-black BSTs are not memoryless: for example, if you
insert a key that is smaller than all the keys in the tree and then immediately delete the
minimum, you may get a different tree.

3.3.38 Fundamental theorem of rotations. Show that any BST can be transformed into
any other BST on the same set of keys by a sequence of left and right rotations.

crEAtivE problEms (continued)

452 Chapter 3 n Searching

ptg12441863

3.3.39 Delete the minimum. Implement the deleteMin() operation for red-black
BSTs by maintaining the correspondence with the transformations given in the text for
moving down the left spine of the tree while maintaining the invariant that the current
node is not a 2-node.

Solution:

 private Node moveRedLeft(Node h)
 { // Assuming that h is red and both h.left and h.left.left
 // are black, make h.left or one of its children red.
 flipColors(h);
 if (isRed(h.right.left))
 {
 h.right = rotateRight(h.right);
 h = rotateLeft(h);
 }
 return h;
 }

 public void deleteMin()
 {
 if (!isRed(root.left) && !isRed(root.right))
 root.color = RED;
 root = deleteMin(root);
 if (!isEmpty()) root.color = BLACK;
 }

 private Node deleteMin(Node h)
 {
 if (h.left == null)
 return null;
 if (!isRed(h.left) && !isRed(h.left.left))
 h = moveRedLeft(h);
 h.left = deleteMin(h.left);
 return balance(h);
 }

This code assumes a balance() method that consists of the line of code

if (isRed(h.right)) h = rotateLeft(h);

4533.3 n Balanced Search Trees

ptg12441863

followed by the last five lines of the recursive put() in Algorithm 3.4 and a
flipColors() implementation that complements the three colors, instead of the
method given in the text for insertion. For deletion, we set the parent to BLACK and the
two children to RED.

3.3.40 Delete the maximum. Implement the deleteMax() operation for red-black
BSTs. Note that the transformations involved differ slightly from those in the previous
exercise because red links are left-leaning.

Solution:

 private Node moveRedRight(Node h)
 { // Assuming that h is red and both h.right and h.right.left
 // are black, make h.right or one of its children red.
 flipColors(h)
 if (isRed(h.left.left))
 h = rotateRight(h);
 return h;
 }

 public void deleteMax()
 {
 if (!isRed(root.left) && !isRed(root.right))
 root.color = RED;
 root = deleteMax(root);
 if (!isEmpty()) root.color = BLACK;
 }

 private Node deleteMax(Node h)
 {
 if (isRed(h.left))
 h = rotateRight(h);
 if (h.right == null)
 return null;
 if (!isRed(h.right) && !isRed(h.right.left))
 h = moveRedRight(h);
 h.right = deleteMax(h.right);
 return balance(h);

 }

crEAtivE problEms (continued)

454 Chapter 3 n Searching

ptg12441863

3.3.41 Delete. Implement the delete() operation for red-black BSTs, combining the
methods of the previous two exercises with the delete() operation for BSTs.

Solution :

 public void delete(Key key)
 {
 if (!isRed(root.left) && !isRed(root.right))
 root.color = RED;
 root = delete(root, key);
 if (!isEmpty()) root.color = BLACK;
 }

 private Node delete(Node h, Key key)
 {
 if (key.compareTo(h.key) < 0)
 {
 if (!isRed(h.left) && !isRed(h.left.left))
 h = moveRedLeft(h);
 h.left = delete(h.left, key);
 }
 else
 {
 if (isRed(h.left))
 h = rotateRight(h);
 if (key.compareTo(h.key) == 0 && (h.right == null))
 return null;
 if (!isRed(h.right) && !isRed(h.right.left))
 h = moveRedRight(h);
 if (key.compareTo(h.key) == 0)
 {
 Node x = min(h.right);
 h.key = x.key;
 h.val = x.val;
 h.right = deleteMin(h.right);
 }
 else h.right = delete(h.right, key);
 }

 return balance(h);

 }

4553.3 n Balanced Search Trees

ptg12441863

ExpErimENts

3.3.42 Count red nodes. Write a program that computes the percentage of red nodes
in a given red-black BST. Test your program by running at least 100 trials of the experi-
ment of inserting N random keys into an initially empty tree, for N = 10 4, 10 5, and 10 6,
and formulate an hypothesis.

3.3.43 Cost plots. Instrument RedBlackBST so that you can produce plots like the
ones in this section showing the cost of each put() operation during the computation
(see Exercise 3.1.38).

3.3.44 Average search time. Run empirical studies to compute the average and stan-
dard deviation of the average length of a path to a random node (internal path length
divided by tree size, plus 1) in a red-black BST built by insertion of N random keys into
an initially empty tree, for N from 1 to 10,000. Do at least 1,000 trials for each tree size.
Plot the results in a Tufte plot, like the one at the bottom of this page, fit with a curve
plotting the function lg N – .5.

3.3.45 Count rotations. Instrument your program for Exercise 3.3.43 to plot the
number of rotations and node splits that are used to build the trees. Discuss the results.

3.3.46 Height. Instrument your program for Exercise 3.3.43 to plot the height of
red-black BSTs. Discuss the results.

Average path length to a random node in a red-black BST built from random keys

lg N − .5

20

0

10000
number of keys N

co
m

pa
re

s

13

100

456 Chapter 3 n Searching

ptg12441863

This page intentionally left blank

ptg12441863

3.4 hASh tABleS

If keys are small integers, we can use an array to implement an unordered symbol table,
by interpreting the key as an array index so that we can store the value associated with
key i in array entry i, ready for immediate access. In this section, we consider hashing,
an extension of this simple method that handles more complicated types of keys. We
reference key-value pairs using arrays by doing arithmetic operations to transform keys
into array indices.

Search algorithms that use hashing consist of two separate parts. The first part is
to compute a hash function that transforms the search key into an array index. Ide-

ally, different keys would map to different indices. This ideal is
generally beyond our reach, so we have to face the possibility
that two or more different keys may hash to the same array
index. Thus, the second part of a hashing search is a collision-
resolution process that deals with this situation. After describ-
ing ways to compute hash functions, we shall consider two dif-
ferent approaches to collision resolution: separate chaining and
linear probing.

Hashing is a classic example of a time-space tradeoff. If there
were no memory limitation, then we could do any search with
only one memory access by simply using the key as an index in
a (potentially huge) array. This ideal often cannot be achieved,
however, because the amount of memory required is prohibi-
tive when the number of possible key values is huge. On the
other hand, if there were no time limitation, then we can get by
with only a minimum amount of memory by using sequential
search in an unordered array. Hashing provides a way to use a
reasonable amount of both memory and time to strike a bal-

ance between these two extremes. Indeed, it turns out that we can trade off time and
memory in hashing algorithms by adjusting parameters, not by rewriting code. To help
choose values of the parameters, we use classical results from probability theory.

Probability theory is a triumph of mathematical analysis that is beyond the scope of
this book, but the hashing algorithms we consider that take advantage of the knowl-
edge gained from that theory are quite simple, and widely used. With hashing, you can
implement search and insert for symbol tables that require constant (amortized) time
per operation in typical applications, making it the method of choice for implementing
basic symbol tables in many situations.

0

1

2

3

M-1

b pqr

a xyz
d uvw

c ijk
collision

key hash

a 2 xyz
b 0 pqr
c 3 ijk
d 2 uvw

.

.

.

value

Hashing: the crux of the problem

458

ptg12441863

Hash functions The first problem that we face is the computation of the hash
function, which transforms keys into array indices. If we have an array that can hold M
key-value pairs, then we need a hash function that can transform any given key into an
index into that array: an integer in the range [0, M – 1]. We seek a hash function that
both is easy to compute and uniformly distributes the keys: for each key, every integer
between 0 and M – 1 should be equally likely (independently for every
key). This ideal is somewhat mysterious; to understand hashing, we be-
gin by thinking carefully about how to implement such a function.

In principle, any key can be represented as a sequence of bits, so we
might design a generic hash function that maps sequences of bits to in-
tegers in the desired range. In practice, programmers implement hash
functions based on higher-level representations. For example, if the key
involves a number, such as a social security number, we could start with
that number; if the key involves a string, such as a person’s name, we need
to convert the string into a number; and if the key has multiple parts,
such as a mailing address, we need to combine the parts somehow. For
many common types of keys, we can make use of default implementa-
tions provided by Java. We briefly discuss potential implementations for
various types of keys so that you can see what is involved because you do
need to provide implementations for key types that you create.

Typical example Suppose that we have an application where the keys
are U.S. social security numbers. A social security number such as
123-45-6789 is a nine-digit number divided into three fields. The first
field identifies the geographical area where the number was issued (for
example, social security numbers whose first field is 035 are from Rhode
Island and numbers whose first field is 214 are from Maryland) and the
other two fields identify the individual. There are a billion (109) different
social security numbers, but suppose that our application will need to
process just a few hundred keys, so that we could use a hash table of size
M = 1,000. One possible approach to implementing a hash function is to
use three digits from the key. Using three digits from the third field is likely to be pref-
erable to using the three digits in the first field (since customers may not be uniformly
dispersed over geographic areas), but a better approach is to use all nine digits to make
an int value, then consider hash functions for integers, described next.

Positive integers The most commonly used method for hashing integers is called
modular hashing : we choose the array size M to be prime and, for any positive inte-
ger key k, compute the remainder when dividing k by M. This function is very easy to
compute (k % M, in Java) and is effective in dispersing the keys evenly between 0 and

212 12 18
618 18 36
302 2 11
940 40 67
702 2 23
704 4 25
612 12 30
606 6 24
772 72 93
510 10 25
423 23 35
650 50 68
317 17 26
907 7 34
507 7 22
304 4 13
714 14 35
857 57 81
801 1 25
900 0 27
413 13 25
701 1 22
418 18 30
601 1 19

key hash
(M = 100)

hash
(M = 97)

Modular hashing

4593.4 n Hash Tables

ptg12441863

M – 1. If M is not prime, it may be the case that not all of the bits of the key play a role,
which amounts to missing an opportunity to disperse the values evenly. For example,
if the keys are base-10 numbers and M is 10 k, then only the k least significant digits are
used. As a simple example where such a choice might be problematic, suppose that the
keys are telephone area codes and M = 100. For historical reasons, most area codes in
the United States have middle digit 0 or 1, so this choice strongly favors the values less
than 20, where the use of the prime value 97 better disperses them (a prime value not
close to 100 would do even better). Similarly, IP addresses that are used in the internet
are binary numbers that are not random for similar historical reasons as for telephone
area codes, so we need to use a table size that is a prime (in particular, not a power of 2)
if we want to use modular hashing to disperse them.

Floating-point numbers If the keys are real numbers between 0 and 1, we might just
multiply by M and round off to the nearest integer to get an index between 0 and M – 1.
Although this approach is intuitive, it is defective because it gives more weight to the
most significant bits of the keys; the least significant bits play no role. One way to ad-
dress this situation is to use modular hashing on the binary representation of the key
(this is what Java does).

Strings Modular hashing works for long keys such as strings, too: we simply treat
them as huge integers. For example, the code at left computes a modular hash func-
tion for a String s: recall that charAt() returns a char value in Java, which is a 16-bit
nonnegative integer. If R is greater than any character value, this computation would

be equivalent to treating the String as
an N-digit base-R integer, computing the
remainder that results when dividing that
number by M. A classic algorithm known
as Horner’s method gets the job done with
N multiplications, additions, and remain-
der operations. If the value of R is suffi-

ciently small that no overflow occurs, the result is an integer between 0 and M – 1, as
desired. The use of a small prime integer such as 31 ensures that the bits of all the
characters play a role. Java’s default implementation for String uses a method like this.

Compound keys If the key type has multiple integer fields, we can typically mix them
together in the way just described for String values. For example, suppose that search
keys are of type Date, which has three integer fields: day (two-digit day), month (two-
digit month), and year (four-digit year).We compute the number

int hash = (((day * R + month) % M) * R + year) % M;

int hash = 0;
for (int i = 0; i < s.length(); i++)
 hash = (R * hash + s.charAt(i)) % M;

hashing a string key

460 Chapter 3 n Searching

ptg12441863

which, if the value of R is sufficiently small that no overflow occurs, is an integer be-
tween 0 and M – 1, as desired. In this case, we could save the cost of the inner % M opera-
tion by choosing a moderate prime value such as 31 for R. As with strings, this method
generalizes to handle any number of fields.

Java conventions Java helps us address the basic problem that every type of data needs
a hash function by ensuring that every data type inherits a method called hashCode()
that returns a 32-bit integer. The implementation of hashCode() for a data type must
be consistent with equals. That is, if a.equals(b) is true, then a.hashCode() must have
the same numerical value as b.hashCode(). Conversely, if the hashCode() values are
different, then we know that the objects are not equal. If the hashCode() values are
the same, the objects may or may not be equal, and we must use equals() to decide
which condition holds. This convention is a basic requirement for clients to be able to
use hashCode() for symbol tables. Note that it implies that you must override both
hashCode() and equals() if you need to hash with a user-defined type. The default
implementation returns the machine address of the key object, which is seldom what
you want. Java provides hashCode() implementations that override the defaults for
many common types (including String, Integer, Double, File, and URL).

Converting a hashCode() to an array index Since our goal is an array index, not a
32-bit integer, we combine hashCode() with modular hashing in our implementations
to produce integers between 0 and M – 1, as follows:

private int hash(Key x)
{ return (x.hashCode() & 0x7fffffff) % M; }

This code masks off the sign bit (to turn the 32-bit number into a 31-bit nonnegative
integer) and then computes the remainder when dividing by M, as in modular hashing.
Programmers commonly use a prime number for the hash table size M when using code
like this, to attempt to make use of all the
bits of the hash code. Note: To avoid con-
fusion, we omit all of these calculations in
our hashing examples and use instead the
hash values in the table at right.

User-defined hashCode() Client code expects that hashCode() disperses the keys
uniformly among the possible 32-bit result values. That is, for any object x, you can
write x.hashCode() and, in principle, expect to get any one of the 232 possible 32-bit
values with equal likelihood. Java’s hashCode() implementations for String, Integer,
Double, File, and URL aspire to this functionality; for your own type, you have to
try to do it on your own. The Date example that we considered on page 460 illustrates

 Hash values for keys in examples

S E A R C H X M P L

2 0 0 4 4 4 2 4 3 3

6 10 4 14 5 4 15 1 14 6

key

hash (M = 5)

hash (M = 16)

4613.4 n Hash Tables

ptg12441863

one way to proceed: make integers from
the instance variables and use modular
hashing. In Java, the convention that all
data types inherit a hashCode() method
enables an even simpler approach: use the
hashCode() method for the instance vari-
ables to convert each to a 32-bit int value
and then do the arithmetic, as illustrated
at left for Transaction. For primitive-
type instance variables, note that a cast to
a wrapper type is necessary to access the
hashCode() method. Again, the precise
values of the multiplier (31 in our exam-
ple) is not particularly important.

Software caching If computing the hash
code is expensive, it may be worthwhile to

cache the hash for each key. That is, we maintain an instance variable hash in the key
type that contains the value of hashCode() for each key object (see Exercise 3.4.25).
On the first call to hashCode(), we have to compute the full hash code (and set the val-
ue of hash), but subsequent calls on hashCode() simply return the value of hash. Java
uses this technique to reduce the cost of computing hashCode() for String objects.

In summary, we have three primary requirements in implementing a good hash
function for a given data type:

n	 It should be consistent—equal keys must produce the same hash value.
n	 It should be efficient to compute.
n	 It should uniformly distribute the set of keys.

Satisfying these requirements simultaneously in Java is a job for experts. As with many
built-in capabilities, Java programmers who use hashing assume that hashCode() does
the job, absent any evidence to the contrary.

Still, you should be vigilant whenever using hashing in situations where good perfor-
mance is critical, because a bad hash function is a classic example of a performance bug:
everything will work properly, but much more slowly than expected. Perhaps the easiest
way to ensure uniformity is to make sure that all the bits of the key play an equal role in
computing every hash value; perhaps the most common mistake in implementing hash
functions is to ignore significant numbers of the key bits. Whatever the implementa-
tion, it is wise to test any hash function that you use, when performance is important.
Which takes more time: computing a hash function or comparing two keys? Does your

public class Transaction
{
 ...
 private final String who;
 private final Date when;
 private final double amount;

 public int hashCode()
 {
 int hash = 17;
 hash = 31 * hash + who.hashCode();
 hash = 31 * hash + when.hashCode();
 hash = 31 * hash
 + ((Double) amount).hashCode();
 return hash;
 }
 ...
}

Implementing hashCode() in a user-defined type

462 Chapter 3 n Searching

ptg12441863

hash function spread a typical set of keys uniformly among the values between 0 and
M – 1? Doing simple experiments that answer these questions can protect future clients
from unfortunate surprises. For example, the histogram above shows that our hash()
implementation using the hashCode() from Java’s String data type produces a rea-
sonable dispersion of the words for our Tale of Two Cities example.

Underlying this discussion is a fundamental assumption that we make when using
hashing; it is an idealized model that we do not actually expect to achieve, but it guides
our thinking when implementing hashing algorithms and facilitates their analyses:

Assumption J (uniform hashing assumption). The hash functions that we use uni-
formly and independently distribute keys among the integer values between 0 and
M – 1.

Discussion: With all of the arbitrary choices we have made, the Java hash functions
that we have considered do not satisfy these conditions; nor can any deterministic
hash function. The idea of constructing hash functions that uniformly and inde-
pendently distribute keys leads to deep issues in theoretical computer science. In
1977, L. Carter and M. Wegman described how to construct a universal family of
hash functions. If a hash function is chosen at random from a universal family, the
hash function uniformly distributes the keys, but only with partial independence.
Although weaker than full independence, the partial independence is sufficient to
establish performance guarantees similar to those stated in Propositions K and M.

Assumption J is a useful way to think about hashing for two primary reasons. First,
it is a worthy goal when designing hash functions that guides us away from making
arbitrary decisions that might lead to an excessive number of collisions. Second, we will
use it to develop hypotheses about the performance of hashing algorithms—even when
hash functions are not known to satisfy Assumption J, we can perform computational
experiments and validate that they achieve the predicted performance.

Hash value frequencies for words in Tale of Two Cities (10,679 keys, M = 97)

0 96

fr
eq

ue
nc

y

key value

110 � 10679/97

4633.4 n Hash Tables

ptg12441863

Hashing with separate chaining A hash function converts keys into array in-
dices. The second component of a hashing algorithm is collision resolution: a strategy
for handling the case when two or more keys to be inserted hash to the same index. A
straightforward and general approach to collision resolution is to build, for each of the
M array indices, a linked list of the key-value pairs whose keys hash to that index. This
method is known as separate chaining because items that collide are chained together
in separate linked lists. The basic idea is to choose M to be sufficiently large that the lists
are sufficiently short to enable efficient search through a two-step process: hash to find
the list that could contain the key, then sequentially search through that list for the key.

One way to proceed is to ex-
pand SequentialSearchST (Al-
gorithm 3.1) to implement sep-
arate chaining using linked-list
primitives (see Exercise 3.4.2).
A simpler (though slightly less
efficient) way to proceed is to
adopt a more general approach:
we build, for each of the M ar-
ray indices, a symbol table of the
keys that hash to that index, thus
reusing code that we have already
developed. The implementa-
tion SeparateChainingHashST
in Algorithm 3.5 maintains an
array of SequentialSearchST
objects and implements get()
and put() by computing a
hash function to choose which

SequentialSearchST object can contain the key and then using get() and put() (re-
spectively) from SequentialSearchST to complete the job.

Since we have M lists and N keys, the average length of the lists is always N  M, no
matter how the keys are distributed among the lists. For example, suppose that all the
items fall onto the first list—the average length of the lists is (N + 0 + 0 + 0 +. . . + 0)/M =
N  M. However the keys are distributed on the lists, the sum of the list lengths is N and
the average is N  M. Separate chaining is useful in practice because each list is extremely
likely to have about N  M key-value pairs. In typical situations, we can verify this con-
sequence of Assumption J and count on fast search and insert.

Hashing with separate chaining for standard indexing client

st

first

0

1

2

3

4

S 0X 7

E 12

first

first

first

first

A 8

P 10L 11

R 3C 4H 5M 9

independent
SequentialSearchST

objects

S 2 0

E 0 1

A 0 2

R 4 3

C 4 4

H 4 5

E 0 6

X 2 7

A 0 8

M 4 9

P 3 10

L 3 11

E 0 12

null

key hash value

464 Chapter 3 n Searching

ptg12441863

aLgorIthM 3.5 hashing with separate chaining

public class SeparateChainingHashST<Key, Value>
{
 private int M; // hash table size
 private SequentialSearchST<Key, Value>[] st; // array of ST objects

 public SeparateChainingHashST()
 { this(997); }

 public SeparateChainingHashST(int M)
 { // Create M linked lists.
 this.M = M;
 st = (SequentialSearchST<Key, Value>[]) new SequentialSearchST[M];
 for (int i = 0; i < M; i++)
 st[i] = new SequentialSearchST();
 }

 private int hash(Key key)
 { return (key.hashCode() & 0x7fffffff) % M; }

 public Value get(Key key)
 { return (Value) st[hash(key)].get(key); }

 public void put(Key key, Value val)
 { st[hash(key)].put(key, val); }

 public Iterable<Key> keys()
 // See Exercise 3.4.19.

}

This basic symbol-table implementation maintains an array of linked lists, using a hash function to
choose a list for each key. For simplicity, we use SequentialSearchST methods. We need a cast when
creating st[] because Java prohibits arrays with generics. The default constructor specifies 997 lists,
so that for large tables, this code is about a factor of 1,000 faster than SequentialSearchST. This
quick solution is an easy way to get good performance when you have some idea of the number of
key-value pairs to be put() by a client. A more robust solution is to use array resizing to make sure
that the lists are short no matter how many key-value pairs are in the table (see page 474 and Exercise
3.4.18).

4653.4 n Hash Tables

ptg12441863

proposition k. In a separate-chaining hash table with M lists and N keys, the prob-
ability (under Assumption J) that the number of keys in a list is within a small
constant factor of N/M is extremely close to 1.

proof sketch: Assumption J makes this an application of classical probability
theory. We sketch the proof, for readers who are familiar with basic probabilistic
analysis. The probability that a given list will contain exactly k keys is given by the
binomial distribution

 

N
k  1

M 

M − 1
M

k N − k

   

by the following argument: Choose k out of the N keys. Those k keys hash to the
given list with probability 1  M, and the other N – k keys do not hash to the given
list with probability 1 – (1  M). In terms of a  N  M, we can rewrite this expres-
sion as

N
k  

N

N

k N − k

1 −

which (for small a) is closely
approximated by the classical
Poisson distribution

ke −

k!

It follows that the probability that a list has more than t a keys on it is bounded
by the quantity (a e/t)t e –a. This probability is extremely small for practical ranges
of the parameters. For example, if the average length of the lists is 10, the prob-
ability that we will hash to some list with more than 20 keys on it is less than (10
e/2)2 e –10  0.0084, and if the average length of the lists is 20, the probability that
we will hash to some list with more than 40 keys on it is less than (20 e/2)2 e –20
 0.0000016. This concentration result does not guarantee that every list will be
short. Indeed it is known that, if a is a constant, the average length of the longest
list grows with log N / log log N.

.125

0

0 10 20 30

(10, .12572...)

Poisson distribution (N = 104 , M = 103 , � = 10)

Binomial distribution (N = 104 , M = 103 , � = 10)

.125

0

0 10 20 30

(10, .12511...)

466 Chapter 3 n Searching

ptg12441863

This classical mathematical analysis is compelling, but it is important to note that
it completely depends on Assumption J. If the hash function is not uniform and inde-
pendent, the search and insert cost could be proportional to N, no better than with
sequential search. Assumption J is much stronger than the corresponding assumption
for other probabilistic algorithms that we have seen, and much more difficult to verify.
With hashing, we are assuming that each and every key, no matter how complex, is
equally likely to be hashed to one of M indices. We cannot afford to run experiments
to test every possible key, so we would have to do more sophisticated experiments in-
volving random sampling from the set of possible keys used in an application, followed
by statistical analysis. Better still, we can use the algorithm itself as part of the test, to
validate both Assumption J and the mathematical results that we derive from it.

property l. In a separate-chaining hash table with M lists and N keys, the number
of compares (equality tests) for search miss and insert is ~N/M.

Evidence: Countless programmers since the 1950s have seen the speedups for sep-
arate-chaining hash tables predicted by Proposition K, even for hash functions
that clearly do not satisfy Assumption J. For example, the diagram on page 468
shows that list length distribution for our FrequencyCounter example (using our
hash() implementation based on the hashCode() from Java’s String data type)
precisely matches the theoretical model. One exception that has been documented
on numerous occasions is poor performance due to hash functions not taking all
of the bits of the keys into account. Otherwise, the preponderance of the evidence
from the experience of practical programmers puts us on solid ground in stating
that hashing with separate chaining using an array of size M speeds up search and
insert in a symbol table by a factor of M.

Table size In a separate-chaining implementation, our goal is to choose the table size
M to be sufficiently small that we do not waste a huge area of contiguous memory
with empty chains but sufficiently large that we do not waste time searching through
long chains. One of the virtues of separate chaining is that this decision is not critical:
if more keys arrive than expected, then searches will take a little longer than if we had
chosen a bigger table size ahead of time; if fewer keys are in the table, then we have ex-
tra-fast search with some wasted space. When space is not a critical resource, M can be
chosen sufficiently large that search time is constant; when space is a critical resource,
we still can get a factor of M improvement in performance by choosing M to be as

4673.4 n Hash Tables

ptg12441863

large as we can afford. For our example FrequencyCounter study, we see in the figure
below a reduction in the average cost from thousands of compares per operation for
SequentialSearchST to a small constant for SeparateChainingHashST, as expected.
Another option is to use array resizing to keep the lists short (see Exercise 3.4.18).

Deletion To delete a key-value pair, simply hash to find the SequentialSearchST
containing the key, then invoke the delete() method for that table (see Exercise
3.1.5). Reusing code in this way is preferable to reimplementing this basic operation
on linked lists.

Ordered operations The whole point of hashing is to uniformly disperse the keys, so
any order in the keys is lost when hashing. If you need to quickly find the maximum
or minimum key, find keys in a given range, or implement any of the other operations
in the ordered symbol-table API on page 366, then hashing is not appropriate, since these
operations will all take linear time.

Hashing with separate chaining is easy to implement and probably the fastest (and
most widely used) symbol-table implementation for applications where key order is
not important. When your keys are built-in Java types or your own type with well-
tested implementations of hashCode(), Algorithm 3.5 provides a quick and easy path
to fast search and insert. Next, we consider an alternative scheme for collision resolu-
tion that is also effective.

125

0
0 10 20 30

� = 10.711...)

�ke −�

k!

List lengths for java FrequencyCounter 8 < tale.txt using SeparateChainingHashST
list lengths (10,679 keys, M = 997)

fr
eq

ue
nc

y

Costs for java FrequencyCounter 8 < tale.txt using SeparateChainingHashST (M = 997)

3.9

10

0

0 14350
operations

eq
ua

lit
y

te
st

s cumulative
average

468 Chapter 3 n Searching

ptg12441863

Hashing with linear probing Another approach to implementing hashing is to
store N key-value pairs in a hash table of size M > N, relying on empty entries in the
table to help with collision resolution. Such methods are called open-addressing hashing
methods.

The simplest open-addressing method is called linear probing: when there is a colli-
sion (when we hash to a table index that is already occupied with a key different from
the search key), then we just check the next entry in the table (by incrementing the
index). Linear probing is characterized by identifying three possible outcomes:

n	 Key equal to search key: search hit
n	 Empty position (null key at indexed position): search miss
n	 Key not equal to search key: try next entry

We hash the key to a table index, check whether the search key matches the key there,
and continue (incrementing the index, wrapping back to the beginning of the table
if we reach the end) until finding either the search key or an empty table entry. It is
customary to refer to the operation of determining whether or not a given table entry

0 1 2 3 4 5 6 7 8 9
 S
 0
 S E
 0 1
 A S E
 2 0 1
 A S E R
 2 0 1 3

 A C S E R
 2 4 0 1 3
 A C S H E R
 2 4 0 5 1 3
 A C S H E R
 2 4 0 5 6 3
 A C S H E R X
 2 4 0 5 6 3 7

 A C S H E R X
 8 4 0 5 6 3 7
 M A C S H E R X
 9 8 4 0 5 6 3 7

P M A C S H E R X
 9 8 4 0 5 6 3 7
P M A C S H L E R X
 9 8 4 0 5 6 3 7
P M A C S H L E R X
 9 8 4 0 5 3 7

10 11 12 13 14 15

11 12

1110

10

10

Trace of linear-probing ST implementation for standard indexing client

entries in gray
are untouched

probe sequence
wraps to 0

entries in red
are new

keys in black
are probes

S 6 0

E 10 1

A 4 2

R 14 3

C 5 4

H 4 5

E 10 6

X 15 7

A 4 8

M 1 9

P 14 10

L 6 11

E 10 12 keys[]
vals[]

key hash value

4693.4 n Hash Tables

ptg12441863

aLgorIthM 3.6 hashing with linear probing

public class LinearProbingHashST<Key, Value>
{
 private int N; // number of key-value pairs in the table
 private int M = 16; // size of linear-probing table
 private Key[] keys; // the keys
 private Value[] vals; // the values

 public LinearProbingHashST()
 {
 keys = (Key[]) new Object[M];
 vals = (Value[]) new Object[M];
 }

 private int hash(Key key)
 { return (key.hashCode() & 0x7fffffff) % M; }

 private void resize() // See page 474.

 public void put(Key key, Value val)
 {
 if (N >= M/2) resize(2*M); // double M (see text)

 int i;
 for (i = hash(key); keys[i] != null; i = (i + 1) % M)
 if (keys[i].equals(key)) { vals[i] = val; return; }
 keys[i] = key;
 vals[i] = val;
 N++;
 }

 public Value get(Key key)
 {
 for (int i = hash(key); keys[i] != null; i = (i + 1) % M)
 if (keys[i].equals(key))
 return vals[i];
 return null;
 }
}

This symbol-table implementation keeps keys and values in parallel arrays (as in BinarySearchST)
but uses empty spaces (marked by null) to terminate clusters of keys. If a new key hashes to an empty
entry, it is stored there; if not, we scan sequentially to find an empty position. To search for a key, we
scan sequentially starting at its hash index until finding null (search miss) or the key (search hit).
Implementation of keys() is left as Exercise 3.4.19.

470 Chapter 3 n Searching

ptg12441863

holds an item whose key is equal to the search key as a probe. We use the term inter-
changeably with the term compare that we have been using, even though some probes
are tests for null.

The essential idea behind hashing with open addressing is this: rather than using mem-
ory space for references in linked lists, we use it for the empty entries in the hash table,
which mark the ends of probe sequences. As you can see from LinearProbingHashST
(Algorithm 3.6), applying this idea to implement the symbol-table API is quite
straightforward. We implement the table with parallel arrays, one for the keys and one
for the values, and use the hash function as an index to access the data as just discussed.

Deletion How do we delete a key-value pair from a linear-probing table? If you think
about the situation for a moment, you will see that setting the key’s table position to
null will not work, because that might prematurely terminate the search for a key that
was inserted into the table later. As an example, sup-
pose that we try to delete C in this way in our trace
example, then search for H. The hash value for H is 4,
but it sits at the end of the cluster, in position 7. If we
set position 5 to null, then get() will not find H. As
a consequence, we need to reinsert into the table all
of the keys in the cluster to the right of the deleted
key. This process is trickier than it might seem, so
you are encouraged to trace through the code at right
(see Exercise 3.4.17).

As with separate chaining, the performance of
hashing with open addressing depends on the ratio
a  N  M, but we interpret it differently. We re-
fer to a as the load factor of a hash table. For sepa-
rate chaining, a is the average number of keys per
list and is often larger than 1; for linear probing, a
is the percentage of table entries that are occupied;
it cannot be greater than 1. In fact, we cannot let
the load factor reach 1 (completely full table) in
LinearProbingHashST because a search miss would
go into an infinite loop in a full table. Indeed, for the
sake of good performance, we use array resizing to guarantee that the load factor is
between one-eighth and one-half. This strategy is validated by mathematical analysis,
which we consider before we discuss implementation details.

public void delete(Key key)
{
 if (!contains(key)) return;
 int i = hash(key);
 while (!key.equals(keys[i]))
 i = (i + 1) % M;
 keys[i] = null;
 vals[i] = null;
 i = (i + 1) % M;
 while (keys[i] != null)
 {
 Key keyToRedo = keys[i];
 Value valToRedo = vals[i];
 keys[i] = null;
 vals[i] = null;
 N--;
 put(keyToRedo, valToRedo);
 i = (i + 1) % M;
 }
 N--;
 if (N > 0 && N == M/8)
 resize(M/2);
}

Deletion for linear probing

4713.4 n Hash Tables

ptg12441863

Clustering The average cost of linear probing depends on the way in which the entries
clump together into contiguous groups of occupied table entries, called clusters, when

they are inserted. For example, when the key C is inserted
in our example, the result is a cluster (A C S) of length
3, which means that four probes are needed to insert H
because H hashes to the first position in the cluster. Short
clusters are certainly a requirement for efficient perfor-
mance. This requirement can be problematic as the table
fills, because long clusters are common. Moreover, since
all table positions are equally likely to be the hash value
of the next key to be inserted (under the uniform hash-
ing assumption), long clusters are more likely to increase
in length than short ones, because a new key hashing to
any entry in the cluster will cause the cluster to increase

in length by 1 (and possibly much more, if there is just one table entry separating the
cluster from the next one). Next, we turn to the challenge of quantifying the effect of
clustering to predict performance in linear probing, and using that knowledge to set
design parameters in our implementations.

Table occupancy patterns (2,048 keys, tables laid out in 128-position rows)

long clusters are common

� = 1/2

� = 1/4

keys[0..127]

keys[8064..8192]

linear probing random

9/64 chance of new key
hitting this cluster

key lands here
in that event

and forms a much
longer cluster

Clustering in linear probing (M = 64)

before

after

472 Chapter 3 n Searching

ptg12441863

Analysis of linear probing Despite the relatively simple form of the results, precise
analysis of linear probing is a very challenging task. Knuth’s derivation of the following
formulas in 1962 was a landmark in the analysis of algorithms:

proposition m. In a linear-probing hash table of size M and N = a M keys, the
average number of probes (under Assumption J) required is

 

1
2 1 − 

1
1 +  1

2
1

(1 − )21 + and~ ~

for search hits and search misses (or inserts), respectively. In particular, when a
is about 1/2, the average number of probes for a search hit is about 3/2 and for a
search miss is about 5/2. These estimates lose a bit of precision as a approaches 1,
but we do not need them for that case, because we will only use linear probing for
a less than one-half.

Discussion: We compute the average by computing the cost of a search miss start-
ing at each position in the table, then dividing the total by M. All search misses
take at least 1 probe, so we count the number of probes after the first. Consider the
following two extremes in a linear-probing table that is half full (M = 2N): In the
best case, table positions with even indices could be empty, and table positions with
odd indices could be occupied. In the worst case, the first half of the table positions
could be empty, and the second half occupied. The average length of the clusters
in both cases is N/(2N) = 1/2, but the average number of probes for a search miss
is 1 (all searches take at least 1 probe) plus (0 + 1 + 0 + 1 +. . .)/(2 N) = 1/2 in the
best case, and is 1 plus (N + (N – 1) + . . .)  (2 N) ~ N/4 in the worst case. This
argument generalizes to show that the average number of probes for a search miss
is proportional to the squares of the lengths of the clusters: If a cluster is of length t,
then the expression (t + (t – 1) + . . . + 2 + 1) / M = t(t + 1)/(2M) counts the con-
tribution of that cluster to the grand total. The sum of the cluster lengths is N, so,
adding this cost for all entries in the table, we find that the total average cost for a
search miss is 1 + N  (2M) plus the sum of the squares of the lengths of the clusters,
divided by 2M. Thus, given a table, we can quickly compute the average cost of a
search miss in that table (see Exercise 3.4.21). In general, the clusters are formed
by a complicated dynamic process (the linear-probing algorithm) that is difficult to
characterize analytically, and quite beyond the scope of this book.

4733.4 n Hash Tables

ptg12441863

Proposition M tells us (under our usual Assumption J) that we can expect a search to
require a huge number of probes in a nearly full table (as a approaches 1 the values of
the formulas describing the number of probes grow very large) but that the expected
number of probes is between 1.5 and 2.5 if we can ensure that the load factor a is less
than 1/2. Next, we consider the use of array resizing for this purpose.

Array resizing We can use our standard array-resizing technique from Chapter
1 to ensure that the load factor never exceeds one-half. First, we need a new construc-
tor for LinearProbingHashST that takes a fixed capacity as argument (add a line to

the constructor in Algorithm
3.6 that sets M to the given value
before creating the arrays). Next,
we need the resize() method
given at left, which creates a new
LinearProbingHashST of the giv-
en size and puts all the key-value
pairs from the old table into the
new one by rehashing all the keys.
These additions allow us to imple-
ment array doubling. The call to
resize() in the first statement in
put() ensures that the table is at

most one-half full. This code builds a hash table twice the size with the same keys, thus
halving the value of a. As in other applications of array resizing, we also need to add

 if (N > 0 && N <= M/8) resize(M/2);

as the last statement in delete() to ensure that the table is at least one-eighth full.
This ensures that the amount of memory used is always within a constant factor of the
number of key-value pairs in the table. With array resizing, we are assured that a  1/2.

Separate chaining The same method works to keep lists short (of average
length between 2 and 8) in separate chaining: replace LinearProbingHashST by
SeparateChainingHashST in resize(), call resize(2*M) when (N >= M/2) in put(),
and call resize(M/2) when (N > 0 && N <= M/8) in delete(). For separate chain-
ing, array resizing is optional and not worth your trouble if you have a decent estimate
of the client’s N: just pick a table size M based on the knowledge that search times are
proportional to 1+ N/M. For linear probing, array resizing is necessary. A client that
inserts more key-value pairs than you expect will encounter not just excessively long
search times, but an infinite loop when the table fills.

private void resize(int cap)
{
 LinearProbingHashST<Key, Value> t;
 t = new LinearProbingHashST<Key, Value>(cap);
 for (int i = 0; i < M; i++)
 if (keys[i] != null)
 t.put(keys[i], vals[i]);
 keys = t.keys;
 vals = t.vals;
 M = t.M;
}

resizing a linear-probing hash table

474 Chapter 3 n Searching

ptg12441863

Amortized analysis From a theoretical standpoint, when we use array resizing, we
must settle for an amortized bound, since we know that those insertions that cause the
table to double will require a large number of probes.

proposition N. Suppose a hash table is built with array resizing, starting with
an empty table. Under Assumption J, any sequence of t search, insert, and delete
symbol-table operations is executed in expected time proportional to t and with
memory usage always within a constant factor of the number of keys in the table.

proof: For both separate chaining and linear probing, this fact follows from a sim-
ple restatement of the amortized analysis for array growth that we first discussed in
Chapter 1, coupled with Proposition K and Proposition M.

10

0

0 14350

4.2

cumulative
average

Costs for java FrequencyCounter 8 < tale.txt using SeparateChainingHashST (with doubling)

operations

eq
ua

lit
y

te
st

s

10

0

0 14350
operations

eq
ua

lit
y

te
st

s

3.2

cumulative
average

Costs for java FrequencyCounter 8 < tale.txt using LinearProbingHashST (with doubling)

4753.4 n Hash Tables

ptg12441863

The plots of the cumulative averages for our FrequencyCounter example (shown at
the bottom of the previous page) nicely illustrate the dynamic behavior of array resiz-
ing in hashing. Each time the array doubles, the cumulative average increases by about
1, because each key in the table needs to be rehashed; then it decreases because about
half as many keys hash to each table position, with the rate of decrease slowing as the
table fills again.

Memory As we have indicated, understanding memory usage is an important factor
if we want to tune hashing algorithms for optimum performance. While such tuning
is for experts, it is a worthwhile exercise to calculate a rough estimate of the amount of
memory required, by estimating the number of references used, as follows: Not counting
the memory for keys and values, our implementation SeparateChainingHashST uses
memory for M references to SequentialSearchST objects plus M SequentialSearchST
objects. Each SequentialSearchST object has the usual 16 bytes of object overhead
plus one 8-byte reference (first), and there are a total of N Node objects, each with 24
bytes of object overhead plus 3 references (key, value, and next). This compares with
an extra reference per node for binary search trees. With array resizing to ensure that
the table is between one-eighth and one-half full, linear probing uses between 4N and
16N references. Thus, choosing hashing on the basis of memory usage is not normally
justified. The calculation is a bit different for primitive types (see Exercise 3.4.24)

method space usage for N items
(reference types)

separate chaining ~ 48 N + 32 M

linear probing between
~32 N and ~128 N

BSTs ~56 N

Space usage in symbol tables

476 Chapter 3 n Searching

ptg12441863

Since the earliest days of computing, researchers have studied (and are study-
ing) hashing and have found many ways to improve the basic algorithms that we have
discussed. You can find a huge literature on the subject. Most of the improvements
push down the space-time curve: you can get the same running time for searches using
less space or get faster searches using the same amount of space. Other improvements
involve better guarantees, on the expected worst-case cost of a search. Others involve
improved hash-function designs. Some of these methods are addressed in the exercises.

Detailed comparison of separate chaining and linear probing depends on myriad
implementation details and on client space and time requirements. It is not normally
justified to choose separate chaining over linear probing on the basis of performance
(see Exercise 3.5.31). In practice, the primary performance difference between the two
methods has to do with the fact that separate chaining uses a small block of memory
for each key-value pair, while linear probing uses two large arrays for the whole table.
For huge tables, these needs place quite different burdens on the memory management
system. In modern systems, this sort of tradeoff is best addressed by experts in extreme
performance-critical situations.

With hashing, under generous assumptions, it is not unreasonable to expect to
support the search and insert symbol-table operations in constant time, independent
of the size of the table. This expectation is the theoretical optimum performance for
any symbol-table implementation. Still, hashing is not a panacea, for several reasons,
including:

n	 A good hash function for each type of key is required.
n	 The performance guarantee depends on the quality of the hash function.
n	 Hash functions can be difficult and expensive to compute.
n	 Ordered symbol-table operations are not easily supported.

Beyond these basic considerations, we defer the comparison of hashing with the other
symbol-table methods that we have studied to the beginning of Section 3.5.

4773.4 n Hash Tables

ptg12441863

Q&A

Q. How does Java implement hashCode() for Integer, Double, and Long?

A. For Integer it just returns the 32-bit value. For Double and Long it returns the ex-
clusive or of the first 32 bits with the second 32 bits of the standard machine representa-
tion of the number. These choices may not seem to be very
random, but they do serve the purpose of spreading out the
values.

Q. When using array resizing, the size M of the table is al-
ways a power of 2. Isn’t that a potential problem, because it
only uses the least significant bits of hashCode()?

A. Yes, particularly with the default implementations. One
way to address this problem is to first distribute the key val-
ues using a prime larger than M, as in the following example:

private int hash(Key x)
{
 int t = x.hashCode() & 0x7fffffff;
 if (lgM < 26) t = t % primes[lgM+5];
 return t % M;
}

This code assumes that we maintain an instance variable
lgM that is equal to lg M (by initializing to the appropri-
ate value, incrementing when doubling, and decrementing
when halving) and an array primes[] of the largest prime
less than each power of 2 (see the table at right). The con-
stant 5 is an arbitrary choice—we expect the first % to dis-
tribute the values equally among the values less than the
prime and the second to map about 25 of those values to
each value less than M. Note that the point is moot for large
M.

Q. I’ve forgotten. Why don’t we implement hash(x) by returning x.hashCode() % M?

A. We need a result between 0 and M-1, but in Java, the % function may be negative.

Q. So, why not implement hash(x) by returning Math.abs(x.hashcode()) % M?

Primes for hash table sizes

k �k (2k − �k)

 5 1 31
 6 3 61
 7 1 127
 8 5 251
 9 3 509
10 3 1021
11 9 2039
12 3 4093
13 1 8191
14 3 16381
15 19 32749
16 15 65521
17 1 131071
18 5 262139
19 1 524287
20 3 1048573
21 9 2097143
22 3 4194301
23 15 8388593
24 3 16777213
25 39 33554393
26 5 67108859
27 39 134217689
28 57 268435399
29 3 536870909
30 35 1073741789
31 1 2147483647

primes[k]

478 Chapter 3 n Searching

ptg12441863

A. Nice try. Unfortunately, Math.abs() returns a negative result for the largest nega-
tive number. For many typical calculations, this overflow presents no real problem,
but for hashing it would leave you with a program that is likely to crash after a few bil-
lion inserts, an unsettling possibility. For example, s.hashCode() is 231 for the Java
String value "polygenelubricants". Finding other strings that hash to this value
(and to 0) has turned into an amusing algorithm-puzzle pastime.

Q. Do Java library hash functions satisfy Assumption J?

A. No. For example, the hashCode() implementation in the String data type is not
only deterministic but it is specified in the API.

Q. Why not use BinarySearchST or RedBlackBST instead of SequentialSearchST in
Algorithm 3.5?

A. Generally, we set parameters so as to make the number of keys hashing to each value
small, and elementary symbol tables are generally better for the small tables. In certain
situations, slight performance gains may be achieved with such hybrid methods, but
such tuning is best left for experts.

Q. Is hashing faster than searching in red-black BSTs?

A. It depends on the type of the key, which determines the cost of computing
hashCode() versus the cost of compareTo(). For typical key types and for Java default
implementations, these costs are similar, so hashing will be significantly faster, since it
uses only a constant number of operations. But it is important to remember that this
question is moot if you need ordered operations, which are not efficiently supported in
hash tables. See Section 3.5 for further discussion.

Q. Why not let the linear probing table get, say, three-quarters full?

A. No particular reason. You can choose any value of a, using Proposition M to esti-
mate search costs. For a = 3/4, the average cost of search hits is 2.5 and search misses is
8.5, but if you let a grow to 7/8, the average cost of a search miss is 32.5, perhaps more
than you want to pay. As a gets close to 1, the estimate in Proposition M becomes in-
valid, but you don’t want your table to get that close to being full.

4793.4 n Hash Tables

ptg12441863

ExErcisEs

3.4.1 Insert the keys E A S Y Q U T I O N in that order into an initially empty table
of M = 5 lists, using separate chaining. Use the hash function 11 k % M to transform
the kth letter of the alphabet into a table index.

3.4.2 Develop an alternate implementation of SeparateChainingHashST that directly
uses the linked-list code from SequentialSearchST.

3.4.3 Modify your implementation of the previous exercise to include an integer field
for each key-value pair that is set to the number of entries in the table at the time that
pair is inserted. Then implement a method that deletes all keys (and associated values)
for which the field is greater than a given integer k. Note : This extra functionality is use-
ful in implementing the symbol table for a compiler.

3.4.4 Write a program to find values of a and M, with M as small as possible, such that
the hash function (a * k) % M for transforming the kth letter of the alphabet into a
table index produces distinct values (no collisions) for the keys S E A R C H X M P L.
The result is known as a perfect hash function.

3.4.5 Is the following implementation of hashCode() legal?

public int hashCode()
{ return 17; }

If so, describe the effect of using it. If not, explain why.

3.4.6 Suppose that keys are t-bit integers. For a modular hash function with prime M,
prove that each key bit has the property that there exist two keys differing only in that
bit that have different hash values.

3.4.7 Consider the idea of implementing modular hashing for integer keys with the
code (a * k) % M , where a is an arbitrary fixed prime. Does this change mix up the
bits sufficiently well that you can use nonprime M?

3.4.8 How many empty lists do you expect to see when you insert N keys into a hash
table with SeparateChainingHashST, for N=10, 102, 103, 104, 105, and 106? Hint : See
Exercise 2.5.31.

3.4.9 Implement an eager delete() method for SeparateChainingHashST.

3.4.10 Insert the keys E A S Y Q U T I O N in that order into an initially empty table

480 Chapter 3 n Searching

ptg12441863

of size M =16 using linear probing. Use the hash function 11 k % M to transform the
kth letter of the alphabet into a table index. Redo this exercise for M = 10.

3.4.11 Give the contents of a linear-probing hash table that results when you insert the
keys E A S Y Q U T I O N in that order into an initially empty table of initial size M
= 4 that is expanded with doubling whenever half full. Use the hash function 11 k % M
to transform the kth letter of the alphabet into a table index.

3.4.12 Suppose that the keys A through G, with the hash values given below, are inserted
in some order into an initially empty table of size 7 using a linear-probing table (with
no resizing for this problem).

A B C D E F G

2 0 0 4 4 4 2

key

hash (M = 7)

Which of the following could not possibly result from inserting these keys?
a. E F G A C B D
b. C E B G F D A
c. B D F A C E G
d. C G B A D E F
e. F G B D A C E
f. G E C A D B F

Give the minimum and the maximum number of probes that could be required to
build a table of size 7 with these keys, and an insertion order that justifies your answer.

3.4.13 Which of the following scenarios leads to expected linear running time for a
random search hit in a linear-probing hash table?

a. All keys hash to the same index.
b. All keys hash to different indices.
c. All keys hash to an even-numbered index.
d. All keys hash to different even-numbered indices.

3.4.14 Answer the previous question for search miss, assuming the search key is equally
likely to hash to each table position.

3.4.15 How many compares could it take, in the worst case, to insert N keys into an
initially empty table, using linear probing with array resizing?

4813.4 n Hash Tables

ptg12441863

3.4.16 Suppose that a linear-probing table of size 106 is half full, with occupied posi-
tions chosen at random. Estimate the probability that all positions with indices divisible
by 100 are occupied.

3.4.17 Show the result of using the delete() method on page 471 to delete C from the
table resulting from using LinearProbingHashST with our standard indexing client
(shown on page 469).

3.4.18 Add a constructor to SeparateChainingHashST that gives the client the ability
to specify the average number of probes to be tolerated for searches. Use array resizing
to keep the average list size less than the specified value, and use the technique described
on page 478 to ensure that the modulus for hash() is prime.

3.4.19 Implement keys() for SeparateChainingHashST and LinearProbingHashST.

3.4.20 Add a method to LinearProbingHashST that computes the average cost of a
search hit in the table, assuming that each key in the table is equally likely to be sought.

3.4.21 Add a method to LinearProbingHashST that computes the average cost of a
search miss in the table, assuming a random hash function. Note : You do not have to
compute any hash functions to solve this problem.

3.4.22 Implement hashCode() for various types: Point2D, Interval, Interval2D,
and Date.

3.4.23 Consider modular hashing for string keys with R = 256 and M = 255. Show
that this is a bad choice because any permutation of letters within a string hashes to the
same value.

3.4.24 Analyze the space usage of separate chaining, linear probing, and BSTs for
double keys. Present your results in a table like the one on page 476.

ExErcisEs (continued)

482 Chapter 3 n Searching

ptg12441863

crEAtivE problEms

3.4.25 Hash cache. Modify Transaction on page 462 to maintain an instance variable
hash, so that hashCode() can save the hash value the first time it is called for each object
and does not have to recompute it on subsequent calls. Note : This idea works only for
immutable types.

3.4.26 Lazy delete for linear probing. Add to LinearProbingHashST a delete()
method that deletes a key-value pair by setting the value to null (but not removing
the key) and later removing the pair from the table in resize(). Your primary chal-
lenge is to decide when to call resize(). Note : You should overwrite the null value if
a subsequent put() operation associates a new value with the key. Make sure that your
program takes into account the number of such tombstone items, as well as the number
of empty positions, in making the decision whether to expand or contract the table.

3.4.27 Double probing. Modify SeparateChainingHashST to use a second hash func-
tion and pick the shorter of the two lists. Give a trace of the process of inserting the keys
E A S Y Q U T I O N in that order into an initially empty table of size M =3 using
the function 11 k % M (for the kth letter) as the first hash function and the function
17 k % M (for the kth letter) as the second hash function. Give the average number of
probes for random search hit and search miss in this table.

3.4.28 Double hashing. Modify LinearProbingHashST to use a second hash function
to define the probe sequence. Specifically, replace (i + 1) % M (both occurrences) by
(i + k) % M where k is a nonzero key-dependent integer that is relatively prime to M.
Note : You may meet the last condition by assuming that M is prime. Give a trace of the
process of inserting the keys E A S Y Q U T I O N in that order into an initially empty
table of size M =11, using the hash functions described in the previous exercise. Give
the average number of probes for random search hit and search miss in this table.

3.4.29 Deletion. Implement an eager delete() method for the methods described in
each of the previous two exercises.

3.4.30 Chi-square statistic. Add a method to SeparateChainingHashST to compute
the  2 statistic for the hash table. With N keys and table size M, this number is defined
by the equation

 2
 = (M/N) ((f0  N/M)2 + (f1  N/M)2  . . .  (fM  1 N/M)2)

4833.4 n Hash Tables

ptg12441863

where fi is the number of keys with hash value i. This statistic is one way of checking our
assumption that the hash function produces random values. If so, this statistic, for N >
cM, should be between M   M and M +  M with probability 1  1/c.

3.4.31 Cuckoo hashing. Develop a symbol-table implementation that maintains two
hash tables and two hash functions. Any given key is in one of the tables, but not both.
When inserting a new key, hash to one of the tables; if the table position is occupied,
replace that key with the new key and hash the old key into the other table (again kick-
ing out a key that might reside there). If this process cycles, restart. Keep the tables less
than half full. This method uses a constant number of equality tests in the worst case
for search (trivial) and amortized constant time for insert.

3.4.32 Hash attack. Find 2N strings, each of length 2N, that have the same hashCode()
value, supposing that the hashCode() implementation for String is the following:

public int hashCode()
{
 int hash = 0;
 for (int i = 0; i < length(); i ++)
 hash = (hash * 31) + charAt(i);
 return hash;
}

Strong hint : Aa and BB have the same value.

3.4.33 Bad hash function. Consider the following hashCode() implementation for
String, which was used in early versions of Java:

public int hashCode()
{
 int hash = 0;
 int skip = Math.max(1, length()/8);
 for (int i = 0; i < length(); i += skip)
 hash = (hash * 37) + charAt(i);
 return hash;
}

Explain why you think the designers chose this implementation and then why you
think it was abandoned in favor of the one in the previous exercise.

crEAtivE problEms (continued)

484 Chapter 3 n Searching

ptg12441863

ExpErimENts

3.4.34 Hash cost. Determine empirically the ratio of the time required for hash()
to the time required for compareTo(), for as many commonly-used types of keys for
which you can get meaningful results.

3.4.35 Chi-square test. Use your solution from Exercise 3.4.30 to check the assump-
tion that the hash functions for commonly-used key types produce random values.

3.4.36 List length range. Write a program that inserts N random int keys into a table
of size N / 100 using separate chaining, then finds the length of the shortest and longest
lists, for N = 10 3, 10 4, 10 5, 10 6.

3.4.37 Hybrid. Run experimental studies to determine the effect of using RedBlackBST
instead of SequentialSearchST to handle collisions in SeparateChainingHashST.
This solution carries the advantage of guaranteeing logarithmic performance even for
a bad hash function and the disadvantage of necessitating maintenance of two different
symbol-table implementations. What are the practical effects?

3.4.38 Separate-chaining distribution. Write a program that inserts 10 5 random non-
negative integers less than 10 6 into a table of size 10 5 using separate chaining, and that
plots the total cost for each 10 3 consecutive insertions. Discuss the extent to which your
results validate Proposition K.

3.4.39 Linear-probing distribution. Write a program that inserts N/2 random int keys
into a table of size N using linear probing, then computes the average cost of a search
miss in the resulting table from the cluster lengths, for N = 10 3, 10 4, 10 5, 10 6. Discuss
the extent to which your results validate Proposition M.

3.4.40 Plots. Instrument LinearProbingHashST and SeparateChainingHashST to
produce plots like the ones shown in the text.

3.4.41 Double probing. Run experimental studies to evaluate the effectiveness of dou-
ble probing (see Exercise 3.4.27).

3.4.42 Double hashing. Run experimental studies to evaluate the effectiveness of dou-
ble hashing (see Exercise 3.4.28).

3.4.43 Parking problem. (D. Knuth) Run experimental studies to validate the hypoth-
esis that the number of compares needed to insert M random keys into a linear-probing
hash table of size M is ~cM 3/2, where c = /2.

4853.4 n Hash Tables

ptg12441863

3.5 APPliCAtionS

From the early days of computing, when symbol tables allowed programmers to
progress from using numeric addresses in machine language to using symbolic names
in assembly language, to modern applications of the new millennium, when symbolic
names have meaning across worldwide computer networks, fast search algorithms have
played and continue to play an essential role in computation. Modern applications for
symbol tables include organization of scientific data, from searching for markers or
patterns in genomic data to mapping the universe; organization of knowledge on the
web, from searching in online commerce to putting libraries online; and implement-
ing the internet infrastructure, from routing packets among machines on the web to
shared file systems and video streaming. Efficient search algorithms have enabled these
and countless other important applications. We will consider several representative ex-
amples in this section:

n	 A dictionary client and an indexing client that enable fast and flexible access to
information in comma-separated-value files (and similar formats), which are
widely used to store data on the web

n	 An indexing client for building an inverted index of a set of files
n	 A sparse-matrix data type that uses a symbol table to address problem sizes far

beyond what is possible with the standard implementation
In Chapter 6, we consider a symbol table that is appropriate for tables such as data-
bases and file systems that contain a vast number of keys, as large as can be reasonably
contemplated.

Symbol tables also play a critical role in algorithms that we consider throughout the
rest of the book. For example, we use symbol tables to represent graphs (Chapter 4)
and to process strings (Chapter 5).

As we have seen throughout this chapter, developing symbol-table implementations
that can guarantee fast performance for all operations is certainly a challenging task.
On the other hand, the implementations that we have considered are well-studied,
widely used, and available in many software environments (including Java libraries).
From this point forward, you certainly should consider the symbol-table abstraction to
be a key component in your programmer’s toolbox.

486

ptg12441863

Which symbol-table implementation should I use? The table at the bottom
of this page summarizes the performance characteristics of the algorithms that we have
considered in propositions and properties in this chapter (with the exception of the
worst-case results for hashing, which are from the research literature and unlikely to
be experienced in practice). It is clear from the table that, for typical applications, your
decision comes down to a choice between hash tables and binary search trees.

The advantages of hashing over BST implementations are that the code is simpler
and search times are optimal (constant), if the keys are of a standard type or are suf-
ficiently simple that we can be confident of developing an efficient hash function for
them that (approximately) satisfies the uniform hashing assumption. The advantages
of BSTs over hashing are that they are based on a simpler abstract interface (no hash
function need be designed); red-black BSTs can provide guaranteed worst-case perfor-
mance; and they support a wider range of operations (such as rank, select, sort, and
range search). As a rule of thumb, most programmers will use hashing except when
one or more of these factors is important, when red-black BSTs are called for. In Chap-
ter 5, we will study one exception to this rule of thumb: when keys are long strings,
we can build data structures that are even more flexible than red-black BSTs and even
faster than hashing.

algorithm
(data structure)

worst-case cost
(after n inserts)

average-case cost
(after n random inserts) key

interface
memory
(bytes)

search insert search hit insert

sequential search
(unordered list) N N N/2 N equals() 48 N

binary search
(ordered array) lg N N lg N N/2 compareTo() 16 N

binary tree search
(BST) N N 1.39 lg N 1.39 lg N compareTo() 64 N

2-3 tree search
(red-black BST) 2 lg N 2 lg N 1.00 lg N 1.00 lg N compareTo() 64 N

separate chaining†

(array of lists) < lg N < lg N N / (2M) N / M
equals()

hashCode()
48 N + 32 M

linear probing†

(parallel arrays) c lg N c lg N < 1.50 < 2.50
equals()

hashCode()
between

32 N and 128 N

† under uniform hashing assumption

asymptotic cost summary for symbol-table implementations

4873.5 n Applications

ptg12441863

Our symbol-table implementations are useful for a wide range of applications, but
our algorithms are easily adapted to support several other options that are widely used
and worth considering.

Primitive types Suppose that we have a symbol table with integer keys and associ-
ated floating-point numbers. When we use our standard setup, the keys and values
are stored as Integer and Double wrapper-type values, so we need two extra memory
references to access each key-value pair. These references may be no problem in an ap-
plication that involves thousands of searches on thousands of keys but may represent
excessive cost in an application that involves billions of searches on millions of keys. Us-
ing a primitive type instead of Key would save one reference per key-value pair. When
the associated value is also primitive, we can eliminate another reference. The situation
is diagrammed at right for separate chaining; the
same tradeoffs hold for other implementations. For
performance-critical applications, it is worthwhile
and not difficult to develop versions of our imple-
mentations along these lines (see Exercise 3.5.4).

Duplicate keys The possibility of duplicate keys
sometimes needs special consideration in symbol-
table implementations. In many applications, it is
desirable to associate multiple values with the same
key. For example, in a transaction-processing sys-
tem, numerous transactions may have the same
customer key value. Our convention to disallow
duplicate keys amounts to leaving duplicate-key
management to the client. We will consider an ex-
ample of such a client later in this section. In many
of our implementations, we could consider the al-
ternative of leaving key-value pairs with duplicate
keys in the primary search data structure and to return any value with the given key for
a search. We might also add methods to return all values with the given key. Our BST
and hashing implementations are not difficult to adapt to keep duplicate keys within
the data structure; doing so for red-black BSTs is just slightly more challenging (see Ex-
ercise 3.5.9 and Exercise 3.5.10). Such implementations are common in the literature
(including earlier editions of this book).

Memory usage for separate chaining

data is stored in
Key and Value objects

data is stored in
linked-list nodes

standard implementation

primitive-type implementation

488 Chapter 3 n Searching

ptg12441863

Java libraries Java’s java.util.TreeMap and java.util.HashMap libraries are
symbol-table implementations based on red-black BSTs and hashing with separate
chaining respectively. TreeMap does not directly support rank(), select(), and
other operations in our ordered symbol-table API, but it does support operations
that enable efficient implementation of these. HashMap is roughly equivalent to our
SeparateChaingingHashST implementation—it uses array resizing to enforce a load
factor of about 75 percent. Java’s java.util.IdentityHashMap library is a symbol-ta-
ble implementation that uses reference-equality in place of object-equality; it is roughly
equivalent to our LinearProbingHashST with a load factor of 2/3.

To be consistent and specific, we use in this book the symbol-table implementation
based on red-black BSTs from Section 3.3 or the one based on linear-probing hashing
from Section 3.4. For economy and to emphasize client independence from specific
implementations, we use the name ST as shorthand for RedBlackBST for ordered sym-
bol tables in client code and the name HashST as shorthand for LinearProbingHashST
when order is not important and hash functions are available. We adopt these conven-
tions with full knowledge that specific applications might have demands that could call
for some variation or extension of one of these algorithms and data structures. Which
symbol table should you use? Whatever you decide, test your choice to be sure that it is
delivering the performance that you expect.

Set APIs Some symbol-table clients do not need the values, just the ability to insert
keys into a table and to test whether a key is in the table. Because we disallow duplicate
keys, these operations correspond to the following API where we are just interested in
the set of keys in the table, not any associated values:

public class SET<Key>

SET() create an empty set

void add(Key key) add key into the set

void delete(Key key) remove key from the set

boolean contains(Key key) is key in the set?

boolean isEmpty() is the set empty?

int size() number of keys in the set

String toString() string representation of the set

apI for a basic set data type

4893.5 n Applications

ptg12441863

You can turn any symbol-table implementation into a SET implementation by ignoring
values or by using a simple wrapper class (see Exercises 3.5.1 through 3.5.3).

Extending SET to include union, intersection, complement, and other common math-
ematical set operations requires a more sophisticated API (for example, the comple-
ment operation requires some mechanism for specifying a universe of all possible keys)
and provides a number of interesting algorithmic challenges, as discussed in Exercise
3.5.17.

As with ST, we have unordered and ordered versions of SET. If keys are Comparable,
we can include min(), max(), floor(), ceiling(), deleteMin(), deleteMax(),
rank(), select(), and the two-argument versions of size() and get() to define a
full API for ordered keys. To match our ST conventions, we use the name SET in client
code for ordered sets and the name HashSET when order is not important.

To illustrate uses of SET, we consider filter clients that read a sequence of strings
from standard input and write some of them to standard output. Such clients have their
origin in early systems where main memory was far too small to hold all the data, and
they are still relevant today, when we write programs that take their input from the web.
As example input, we use tinyTale.txt (see page 371). For readability, we preserve
newlines from the input to the output in examples, even though the code does not do
so.

Dedup The prototypical filter
example is a SET or HashSET cli-
ent that removes duplicates in
the input stream. It is custom-
ary to refer to this operation as
dedup. We maintain a set of the
string keys seen so far. If the next
key is in the set, ignore it; if it is
not in the set, add it to the set and
print it. The keys appear on stan-
dard output in the order they
appear on standard input, with
duplicates removed. This process
takes space proportional to the
number of distinct keys in the
input stream (which is typically
far smaller than the total number
of keys).

public class DeDup
{
 public static void main(String[] args)
 {
 HashSET<String> set;
 set = new HashSET<String>();
 while (!StdIn.isEmpty())
 {
 String key = StdIn.readString();
 if (!set.contains(key))
 {
 set.add(key);
 StdOut.println(key);
 }
 }
 }
}

Dedup filter

% java DeDup < tinyTale.txt
it was the best of times worst
age wisdom foolishness
epoch belief incredulity
season light darkness
spring hope winter despair

490 Chapter 3 n Searching

ptg12441863

Whitelist and blacklist Another classic filter uses keys in a separate file to decide
which keys from the input stream are passed to the output stream. This general process
has many natural applications. The simplest example is a whitelist, where any key that
is in the file is identified as “good.” The client might choose to pass through to standard
output any key that is not in the whitelist and to ignore any key that is in the whitelist
(as in the example considered in our first program in Chapter 1); another client might
choose to pass through to standard output any key that is in the whitelist and to ig-
nore any key that is not in the whitelist (as
shown in the HashSET client WhiteFilter
at right). For example, your email applica-
tion might use such a filter to allow you to
specify the addresses of your friends and
to direct it to consider emails from any-
one else as spam. We build a HashSET of
the keys in the specified list, then read the
keys from standard input. If the next key
is in the set, print it; if it is not in the set,
ignore it. A blacklist is the opposite, where
any key that is in the file is identified as
“bad.” Again, there are two natural filters
for clients using a blacklist. In our email
example, you might specify the addresses
of known spammers and direct the email
application to let through all mail not
from one of those addresses. We can im-
plement a HashSET client BlackFilter
that implements this filter by negating the
filter test in WhiteFilter. Typical practi-
cal situations such as a credit card com-
pany using a blacklist to filter out stolen
card numbers or an internet router using a
whitelist to implement a firewall are likely
to involve huge lists, unbounded input
streams, and strict response requirements.
The sorts of symbol-table implementa-
tions that we have considered enable such
challenges to easily be met.

public class WhiteFilter
{
 public static void main(String[] args)
 {
 HashSET<String> set;
 set = new HashSET<String>();
 In in = new In(args[0]);
 while (!in.isEmpty())
 set.add(in.readString());
 while (!StdIn.isEmpty())
 {
 String word = StdIn.readString();
 if (set.contains(word))
 StdOut.println(word);
 }
 }
}

Whitelist filter

% more list.txt
was it the of

% java WhiteFilter list.txt < tinyTale.txt
it was the of it was the of
it was the of it was the of
it was the of it was the of
it was the of it was the of
it was the of it was the of

% java BlackFilter list.txt < tinyTale.txt
best times worst times
age wisdom age foolishness
epoch belief epoch incredulity
season light season darkness
spring hope winter despair

4913.5 n Applications

ptg12441863

Dictionary clients The most basic kind of symbol-table client builds a symbol
table with successive put operations in order to support get requests. Many applications
also take advantage of the idea that a symbol table is a dynamic dictionary, where it is
easy to look up information and to update the information in the table. The following
list of familiar examples illustrates the utility of this approach:

n	 Phone book. When keys are people’s names and values are their phone num-
bers, a symbol table models a phone book. A very significant difference from
a printed phone book is that we can add new names or change existing phone
numbers. We could also use the phone number as the key and the name as the
value—if you have never done so, try typing your phone number (with area
code) into the search field in your browser.

n	 Dictionary. Associating a word with its definition is a familiar concept that
gives us the name “dictionary.” For centuries people kept printed dictionaries in
their homes and offices in order to check the definitions and spellings (values)
of words (keys). Now, because of good symbol-table implementations, people
expect built-in spell checkers and immediate access to word definitions on their
computers.

n	 Account information. People who own stock now regularly check the current
price on the web. Several services on the web associate a ticker symbol (key) with
the current price (value), usually along with a great deal of other information.
Commercial applications of this sort abound, including financial institutions
associating account information with a name or account number or educational
institutions associating grades with a student name or identification number.

n	 Genomics. Symbols play a central role in modern genomics. The simplest ex-
ample is the use of the letters A, C, T, and G to represent the nucleotides found in
the DNA of living organisms. The next simplest is the correspondence between
codons (nucleotide triplets) and amino acids (TTA corresponds to leucine, TCT
to serine, and so forth), then the correspondence between sequences of amino
acids and proteins, and so forth. Researchers in genomics routinely use various
types of symbol tables to organize this knowledge.

n	 Experimental data. From astrophysics to zoology, modern scientists are awash in
experimental data, and organizing and efficiently accessing this data are vital to
understanding what it means. Symbol tables are a critical starting point, and ad-
vanced data structures and algorithms that are based on symbol tables are now
an important part of scientific research.

n	 Compilers. One of the earliest uses of symbol tables was to organize information
for programming. At first, programs were simply sequences of numbers, but
programmers very quickly found that using symbolic names for operations and

492 Chapter 3 n Searching

ptg12441863

memory locations (variable names) was far more convenient. Associating the
names with the numbers requires a symbol table. As the size of programs grew,
the cost of the symbol-table operations became a bottleneck in program devel-
opment time, which led to the development of data structures and algorithms
like the ones we consider in this chapter.

n	 File systems. We use symbol tables regularly to
organize data on computer systems. Perhaps the
most prominent example is the file system, where
we associate a file name (key) with the location
of its contents (value). Your music player uses the
same system to associate song titles (keys) with
the location of the music itself (value).

n	 Internet DNS. The domain name system (DNS)
that is the basis for organizing information on
the internet associates URLs (keys) that humans
understand (such as www.princeton.edu or
www.wikipedia.org) with IP addresses (values)
that computer network routers understand (such
as 208.216.181.15 or 207.142.131.206). This
system is the next-generation “phone book.”
Thus, humans can use names that are easy to re-
member and machines can efficiently process the
numbers. The number of symbol-table lookups
done each second for this purpose on internet
routers around the world is huge, so perfor-
mance is of obvious importance. Millions of new computers and other devices
are put onto the internet each year, so these symbol tables on internet routers
need to be dynamic.

Despite its scope, this list is still just a representative sample, intended to give you a fla-
vor of the scope of applicability of the symbol-table abstraction. Whenever you specify
something by name, there is a symbol table at work. Your computer’s file system or the
web might do the work for you, but there is still a symbol table there somewhere.

As a specific example, we consider a symbol-table client that you can use to look up
information that is kept in a table on a file or a web page using the comma-separated-
value (.csv) file format. This simple format achieves the (admittedly modest) goal of
keeping tabular data in a form that anyone can read (and is likely to be able to read in
the future) without needing to use a particular application: the data is in text form,
one row per line, with entries separated by commas. You can find on the booksite

domain key value

phone
book name phone

number

dictionary word definition

account account
number balance

genomics codon amino acid

data data/time results

compiler variable
name

memory
location

file share song name machine

internet website IP address

typical dictionary applications

4933.5 n Applications

ptg12441863

numerous .csv files that are related to vari-
ous applications that we have described,
including amino.csv (codon-to-amino-
acid encodings), DJIA.csv (opening price,
volume, and closing price of the Dow Jones
Industrial Average, for every day in its his-
tory), ip.csv (a selection of entries from
the DNS database), and upc.csv (the Uni-
form Product Code bar codes that are wide-
ly used to identify consumer products).
Spreadsheet and other data-processing
applications programs can read and write
.csv files, and our example illustrates that
you can also write a Java program to process
the data any way that you would like.

LookupCSV (on the facing page) builds a
set of key-value pairs from a file of comma-
separated values as specified on the com-
mand line and then prints out values corre-
sponding to keys read from standard input.
The command-line arguments are the file
name and two integers, one specifying the
field to serve as the key and the other speci-
fying the field to serve as the value.

The purpose of this example is to il-
lustrate the utility and flexibility of the
symbol-table abstraction. What website
has IP address 128.112.136.35? (www.
cs.princeton.edu) What amino acid cor-
responds to the codon TCC ? (Serine) What
was the DJIA on October 29, 1929? (230.07)
What product has UPC 0002100001086?
(Kraft Parmesan) You can easily look up
the answers to questions like these with
LookupCSV and the appropriate .csv files.

Performance is not much of an issue
when handling interactive queries (since
your computer can look through millions

% more amino.csv
TTT,Phe,F,Phenylalanine
TTC,Phe,F,Phenylalanine
TTA,Leu,L,Leucine
TTG,Leu,L,Leucine
TCT,Ser,S,Serine
TCC,Ser,S,Serine
...
GAA,Gly,G,Glutamic Acid
GAG,Gly,G,Glutamic Acid
GGT,Gly,G,Glycine
GGC,Gly,G,Glycine
GGA,Gly,G,Glycine
GGG,Gly,G,Glycine

% more DJIA.csv
...
20-Oct-87,1738.74,608099968,1841.01
19-Oct-87,2164.16,604300032,1738.74
16-Oct-87,2355.09,338500000,2246.73
15-Oct-87,2412.70,263200000,2355.09
...
30-Oct-29,230.98,10730000,258.47
29-Oct-29,252.38,16410000,230.07
28-Oct-29,295.18,9210000,260.64
25-Oct-29,299.47,5920000,301.22
...

% more ip.csv
...
www.ebay.com,66.135.192.87
www.princeton.edu,128.112.128.15
www.cs.princeton.edu,128.112.136.35
www.harvard.edu,128.103.60.24
www.yale.edu,130.132.51.8
www.cnn.com,64.236.16.20
www.google.com,216.239.41.99
www.nytimes.com,199.239.136.200
www.apple.com,17.112.152.32
www.slashdot.org,66.35.250.151
www.espn.com,199.181.135.201
www.weather.com,63.111.66.11
www.yahoo.com,216.109.118.65
...

% more UPC.csv
...
0002058102040,,"1 1/4"" STANDARD STORM DOOR"
0002058102057,,"1 1/4"" STANDARD STORM DOOR"
0002058102125,,"DELUXE STORM DOOR UNIT"
0002082012728,"100/ per box","12 gauge shells"
0002083110812,"Classical CD","'Bits and Pieces'"
002083142882,CD,"Garth Brooks - Ropin' The Wind"
0002094000003,LB,"PATE PARISIEN"
0002098000009,LB,"PATE TRUFFLE COGNAC-M&H 8Z RW"
0002100001086,"16 oz","Kraft Parmesan"
0002100002090,"15 pieces","Wrigley's Gum"
0002100002434,"One pint","Trader Joe's milk"
...

typical comma-separated-value (.csv) files

494 Chapter 3 n Searching

ptg12441863

Dictionary lookup

public class LookupCSV
{
 public static void main(String[] args)
 {
 In in = new In(args[0]);
 int keyField = Integer.parseInt(args[1]);
 int valField = Integer.parseInt(args[2]);

 ST<String, String> st = new ST<String, String>();

 while (in.hasNextLine())
 {
 String line = in.readLine();
 String[] tokens = line.split(",");
 String key = tokens[keyField];
 String val = tokens[valField];
 st.put(key, val);
 }

 while (!StdIn.isEmpty())
 {
 String query = StdIn.readString();
 if (st.contains(query))
 StdOut.println(st.get(query));
 }
 }
}

This data-driven symbol-table client reads key-value pairs from a file, then prints the values corre-
sponding to the keys found on standard input. Both keys and values are strings. The fields to serve as
the key and value are taken as command-line arguments.

% java LookupCSV ip.csv 1 0
128.112.136.35
www.cs.princeton.edu

% java LookupCSV DJIA.csv 0 3
29-Oct-29
230.07

% java LookupCSV UPC.csv 0 2
0002100001086
Kraft Parmesan

% java LookupCSV amino.csv 0 3
TCC
Serine

4953.5 n Applications

ptg12441863

of things in the time it takes to type a query), so fast implementations of ST are not no-
ticeable when you use LookupCSV. However, when a program is doing the lookups (and
a huge number of them), performance matters. For example, an internet router might
need to look up millions of IP addresses per second. In this book, we have already seen
the need for good performance with FrequencyCounter, and we will see several other
examples in this section.

Examples of similar but more sophisticated test clients for .csv files are described
in the exercises. For instance, we could make the dictionary dynamic by also allowing
standard-input commands to change the value associated with a key, or we could allow
range searching, or we could build multiple dictionaries for the same file.

Indexing clients Dictionaries are char-
acterized by the idea that there is one value
associated with each key, so the direct use of
our ST data type, which is based on the asso-
ciative-array abstraction that assigns one value
to each key, is appropriate. Each account num-
ber uniquely identifies a customer, each UPC
uniquely identifies a product, and so forth. In
general, of course, there may be multiple val-
ues associated with a given key. For example, in
our amino.csv example, each codon identifies
one amino acid, but each amino acid is asso-
ciated with a list of codons, as in the example
aminoI.csv at right, where each line contains
an amino acid and the list of codons associated
with it. We use the term index to describe sym-
bol tables that associate multiple values with
each key. Here are some more examples:

n	 Commercial transactions. One way for
a company that maintains customer
accounts to keep track of a day’s transactions is to keep an index of the day’s
transactions. The key is the account number; the value is the list of occurrences
of that account number in the transaction list.

n	 Web search. When you type a keyword and get a list of websites containing that
keyword, you are using an index created by your web search engine. There is one
value (the set of pages) associated with each key (the query), although the reality
is a bit more complicated because we often specify multiple keys.

A small index �le (20 lines)

Alanine,AAT,AAC,GCT,GCC,GCA,GCG
Arginine,CGT,CGC,CGA,CGG,AGA,AGG
Aspartic Acid,GAT,GAC
Cysteine,TGT,TGC
Glutamic Acid,GAA,GAG
Glutamine,CAA,CAG
Glycine,GGT,GGC,GGA,GGG
Histidine,CAT,CAC
Isoleucine,ATT,ATC,ATA
Leucine,TTA,TTG,CTT,CTC,CTA,CTG
Lysine,AAA,AAG
Methionine,ATG
Phenylalanine,TTT,TTC
Proline,CCT,CCC,CCA,CCG
Serine,TCT,TCA,TCG,AGT,AGC
Stop,TAA,TAG,TGA
Threonine,ACT,ACC,ACA,ACG
Tyrosine,TAT,TAC
Tryptophan,TGG
Valine,GTT,GTC,GTA,GTG

aminoI.csv

valueskey

"," separator

496 Chapter 3 n Searching

ptg12441863

n	 Movies and performers. The file movies.txt on the booksite (excerpted below)
is taken from the Internet Movie Database (IMDB). Each line has a movie name
(the key), followed by a list of performers in that movie (the value), separated by
slashes.

We can easily build an index by putting the values to be associated with each key into a
single data structure (a Queue, say) and then associating that key with that data struc-
ture as value. Extending LookupCSV along these lines is straightforward, but we leave
that as an exercise (see Exercise 3.5.12)
and consider instead LookupIndex on
page 499, which uses a symbol table to
build an index from files like aminoI.txt
and movies.txt (where the separator
character need not be a comma, as in a
.csv file, but can be specified on the com-
mand line). After building the index,
LookupIndex then takes key queries and
prints the values associated with each key.
More interesting, LookupIndex also builds
an inverted index associated with each file, where values and keys switch roles. In the
amino acid example, this gives the same functionality as Lookup (find the amino acid
associated with a given codon); in the movie-performer example it adds the ability to
find the movies associated with any given performer, which is implicit in the data but
would be difficult to produce without a symbol table. Study this example carefully, as it
provides good insight into the essential nature of symbol tables.

Small portion of a large index �le (250,000+ lines)

...
Tin Men (1987)/DeBoy, David/Blumenfeld, Alan/...
Tirez sur le pianiste (1960)/Heymann, Claude/...
Titanic (1997)/Mazin, Stan/...DiCaprio, Leonardo/...
Titus (1999)/Weisskopf, Hermann/Rhys, Matthew/...
To Be or Not to Be (1942)/Verebes, Ernö (I)/...
To Be or Not to Be (1983)/.../Brooks, Mel (I)/...
To Catch a Thief (1955)/París, Manuel/...
To Die For (1995)/Smith, Kurtwood/.../Kidman, Nicole/...
...

movies.txt

valueskey

"/" separator

domain key value

genomics amino acid list of codons

commercial account number list of transactions

web search search key list of web pages

IMDB movie list of performers

typical indexing applications

4973.5 n Applications

ptg12441863

Inverted index The term inverted index is normally applied to a situation where values
are used to locate keys. We have a large amount of data and want to know where certain
keys of interest occur. This application is another prototypical example of a symbol-
table client that uses an intermixed sequence of calls to get() and put(). Again, we as-
sociate each key with a SET of locations, where the occurrences of the key can be found.
The nature and use of the location depend on the application: in a book, a location
might be a page number; in a program, a location might be a line number; in genomics,
a location might be a position in a genetic sequence; and so forth:

n	 Internet Movie DataBase (IMDB). In the example just considered, the input is
an index that associates each movie with a list of performers. The inverted index
associates each performer with a list of movies.

n	 Book index. Every textbook has an index where you look up a term and get
the page numbers containing that term. While creating a good index generally
involves work by the book author to eliminate common and irrelevant words,
a document preparation
system will certainly use a
symbol table to help auto-
mate the process. An interest-
ing special case is known as a
concordance, which associates
each word in a text with the
set of positions in the text
where that word occurs (see
Exercise 3.5.20).

n	 Compiler. In a large program
that uses a large number of symbols, it is useful to know where each name is
used. Historically, an explicit printed symbol table was one of the most impor-
tant tools used by programmers to keep track of where symbols are used in their
programs. In modern systems, symbol tables are the basis of software tools that
programmers use to manage names.

n	 File search. Modern operating systems provide you with the ability to type a term
and to learn the names of files containing that term. The key is the term; the
value is the set of files containing that term.

n	 Genomics. In a typical (if oversimplified) scenario in genomics research, a
scientist wants to know the positions of a given genetic sequence in an existing
genome or set of genomes. Existence or proximity of certain sequences may be
of scientific significance. The starting point for such research is an index like a
concordance, but modified to take into account the fact that genomes are not
separated into words (see Exercise 3.5.15).

domain key value

IMDB performer set of movies

book term set of pages

compiler identifier set of places used

file search search term set of files

genomics subsequence set of locations

typical inverted indices

498 Chapter 3 n Searching

ptg12441863

index (and inverted index) lookup

public class LookupIndex
{
 public static void main(String[] args)
 {
 In in = new In(args[0]); // index database
 String sp = args[1]; // separator

 ST<String, Queue<String>> st = new ST<String, Queue<String>>();
 ST<String, Queue<String>> ts = new ST<String, Queue<String>>();

 while (in.hasNextLine())
 {
 String[] a = in.readLine().split(sp);
 String key = a[0];
 for (int i = 1; i < a.length; i++)
 {
 String val = a[i];
 if (!st.contains(key)) st.put(key, new Queue<String>());
 if (!ts.contains(val)) ts.put(val, new Queue<String>());
 st.get(key).enqueue(val);
 ts.get(val).enqueue(key);
 }
 }

 while (!StdIn.isEmpty())
 {
 String query = StdIn.readLine();
 if (st.contains(query))
 for (String s : st.get(query))
 StdOut.println(" " + s);

 if (ts.contains(query))
 for (String s : ts.get(query))
 StdOut.println(" " + s);
 }
 }
}

This data-driven symbol-table client reads key-value pairs
from a file, then prints the values corresponding to the keys
found on standard input. Keys are strings; values are lists
of strings. The separating delimiter is taken as a command-
line argument.

% java LookupIndex aminoI.csv ","
Serine
 TCT
 TCA
 TCG
 AGT
 AGC
TCG
 Serine

% java LookupIndex movies.txt "/"
Bacon, Kevin
 Animal House (1978)
 Apollo 13 (1995)
 Beauty Shop (2005)
 Diner (1982)
 ...
Tin Men (1987)
 DeBoy, David
 Blumenfeld, Alan
 ...

4993.5 n Applications

ptg12441863

FileIndex (on the facing page) takes file names from the command line and uses a
symbol table to build an inverted index associating every word in any of the files with
a SET of file names where the word can be found, then takes keyword queries from
standard input, and produces its associated list of files. This process is similar to that
used by familiar software tools for searching the web or for searching for information
on your computer; you type a keyword to get a list of places where that keyword occurs.
Developers of such tools typically embellish the process by paying careful attention to

n	 The form of the query
n	 The set of files/pages that are indexed
n	 The order in which files are listed in the response

For example, you are certainly used to typing queries that contain multiple keywords
to a web search engine (which is based on indexing a large fraction of the pages on the
web) that provides answers in order of relevance or importance (to you or to an adver-
tiser). The exercises at the end of this section address some of these embellishments. We
will consider various algorithmic issues related to web search later, but the symbol table
is certainly at the heart of the process.

As with LookupIndex, you are certainly encouraged to download FileIndex from
the booksite and use it to index some text files on your computer or some websites of
interest, to gain further appreciation for the utility of symbol tables. If you do so, you
will find that it can build large indices for huge files with little delay, because each put
operation and get request is taken care of immediately. Providing this immediate re-
sponse for huge dynamic tables is one of the classic triumphs of algorithmic technology.

500 Chapter 3 n Searching

ptg12441863

File indexing

import java.io.File;

public class FileIndex
{
 public static void main(String[] args)
 {
 ST<String, SET<File>> st = new ST<String, SET<File>>();

 for (String filename : args)
 {
 File file = new File(filename);
 In in = new In(file);
 while (!in.isEmpty())
 {
 String word = in.readString();
 if (!st.contains(word)) st.put(word, new SET<File>());
 SET<File> set = st.get(word);
 set.add(file);
 }
 }

 while (!StdIn.isEmpty())
 {
 String query = StdIn.readString();
 if (st.contains(query))
 for (File file : st.get(query))
 StdOut.println(" " + file.getName());
 }
 }
}

This symbol-table client indexes a set of files. We search for each word in each file in a symbol table,
maintaining a SET of file names that contain the word. Names for In can also refer to web pages, so
this code can also be used to build an inverted index of web pages.

% more ex1.txt
it was the best of times

% more ex2.txt
it was the worst of times

% more ex3.txt
it was the age of wisdom

% more ex4.txt
it was the age of foolishness

% java FileIndex ex*.txt
age
 ex3.txt
 ex4.txt
best
 ex1.txt
was
 ex1.txt
 ex2.txt
 ex3.txt
 ex4.txt

5013.5 n Applications

ptg12441863

Sparse vectors Our next example illustrates the importance of symbol tables in sci-
entific and mathematical calculations. We describe a fundamental and familiar calcula-
tion that becomes a bottleneck in typical practical applications, then show how using a
symbol table can remove the bottleneck and enable solution of vastly larger problems.
Indeed, this particular calculation was at the core of the PageRank algorithm that was
developed by S. Brin and L. Page and led to the emergence of Google in the early 2000s

(and is a well-known mathematical abstraction
that is useful in many other contexts).

The basic calculation that we consider is ma-
trix-vector multiplication : given a matrix and a
vector, compute a result vector whose i th entry
is the dot product of the given vector and the i th
row of the matrix. For simplicity, we consider the
case when the matrix is square with N rows and
N columns and the vectors are of size N. This
operation is elementary to code in Java, requir-
ing time proportional to N 2, for the N multipli-
cations to compute each of the N entries in the

result vector, which also matches the space proportional to N 2 that is required to store
the matrix.

In practice, it is very often the case that N is huge. For example, in the Google appli-
cation cited above, N is the number of pages on the web. At the time PageRank was de-
veloped, that was in the tens or hundreds of billions and it has skyrocketed since, so the
value of N 2 would be far more than 10 20. No one can afford that much time or space, so
a better algorithm is needed.

Fortunately, it is also often the
case that the matrix is sparse: a huge
number of its entries are 0. Indeed,
for the Google application, the av-
erage number of nonzero entries
per row is a small constant: virtual-
ly all web pages have links to only a
few others (not all the pages on the
web). Accordingly, we can represent
the matrix as an array of sparse vec-
tors, using a SparseVector imple-
mentation like the HashST client on
the facing page. Instead of using the

 0 .90 0 0 0

 0 0 .36 .36 .18

 0 0 0 .90 0

.90 0 0 0 0

.47 0 .47 0 0

.05

.04

.36

.37

.19

a[][] x[] b[]

.036

.297

.333

.045

.1927

=

Matrix-vector multiplication

...
double[][] a = new double[N][N];
double[] x = new double[N];
double[] b = new double[N];
...
// Initialize a[][] and x[].
...
for (int i = 0; i < N; i++)
{
 sum = 0.0;
 for (int j = 0; j < N; j++)
 sum += a[i][j]*x[j];
 b[i] = sum;
}

Standard implementation of matrix-vector multiplication

502 Chapter 3 n Searching

ptg12441863

Sparse vector with dot product

public class SparseVector
{
 private HashST<Integer, Double> st;

 public SparseVector()
 { st = new HashST<Integer, Double>(); }

 public int size()
 { return st.size(); }

 public void put(int i, double x)
 { st.put(i, x); }

 public double get(int i)
 {
 if (!st.contains(i)) return 0.0;
 else return st.get(i);
 }

 public double dot(double[] that)
 {
 double sum = 0.0;
 for (int i : st.keys())
 sum += that[i]*this.get(i);
 return sum;
 }

}

This symbol-table client is a bare-bones sparse vector implementation that illustrates an efficient
dot product for sparse vectors. We multiply each entry by its counterpart in the other operand and
add the result to a running sum. The number of multiplications required is equal to the number of
nonzero entries in the sparse vector.

5033.5 n Applications

ptg12441863

code a[i][j] to refer to the element in row i and column j, we use a[i].put(j, val)
to set a value in the matrix and a[i].get(j) to retrieve a value. As you can see from the
code below, matrix-vector multiplication using this class is even simpler than with the
array representation (and it more clearly describes the computation). More important,
it only requires time proportional to N plus the number of nonzero elements in the
matrix.

For small matrices or matrices that are not sparse, the overhead for maintaining
symbol tables can be substantial, but it is worth your while to be sure to understand
the ramifications of using symbol tables for huge sparse matrices. To fix ideas, consider
a huge application (like the one faced by Brin and
Page) where N is 10 billion or 100 billion, but the
average number of nonzero elements per row is
less than 10 . For such an application, using sym-
bol tables speeds up matrix-vector multiplication by
a factor of a billion or more. The elementary na-
ture of this application should not detract from
its importance: programmers who do not take
advantage of the potential to save time and space
in this way severely limit their potential to solve
practical problems, while programmers who do

a

0

1

2

3

4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

a

0

1

2

3

4

array of double[]objects array of SparseVector objects

st

0.0 .90 0.0 0.0 0.0

0.0 0.0 .36 .36 .18

0.0 0.0 0.0 .90 0.0

.90 0.0 0.0 0.0 0.0

.45 0.0 .45 0.0 0.0
.452

.363 .184.362

st
.903

st
.900

st
.450

st
.901

independent
symbol-table

objects

key value

a[4][2]

Sparse matrix representations

..
SparseVector[] a;
a = new SparseVector[N];
double[] x = new double[N];
double[] b = new double[N];
...
// Initialize a[] and x[].
...
for (int i = 0; i < N; i++)
 b[i] = a[i].dot(x);

Sparse matrix-vector multiplication

504 Chapter 3 n Searching

ptg12441863

take factor-of-a-billion speedups when they are available are likely to be able to address
problems that could not otherwise be contemplated.

Building the matrix for the Google application is a graph-processing application
(and a symbol-table client!), albeit for a huge sparse matrix. Given the matrix, the Page-
Rank calculation is nothing more than doing a matrix-vector multiplication, replacing
the source vector with the result vector, and iterating the process until it converges (as
guaranteed by fundamental theorems in probability theory). Thus, the use of a class
like SparseVector can improve the time and space usage for this application by a fac-
tor of 10 billion or 100 billion or more.

Similar savings are possible in many scientific calculations, so sparse vectors and ma-
trices are widely used and typically incorporated into specialized systems for scientific
computing. When working with huge vectors and matrices, it is wise to run simple per-
formance tests to be sure that the kinds of performance gains that we have illustrated
here are not being missed. On the other hand, array processing for primitive types of
data is built into most programming languages, so using arrays for vectors that are
not sparse, as we did in this example, may offer further speedups. Developing a good
understanding of the underlying costs and making the appropriate implementation
decisions is certainly worthwhile for such applications.

Symbol tables are a primary contribution of algorithmic technology to the
development of our modern computational infrastructure because of their ability to
deliver savings on a huge scale in a vast array of practical applications, making the dif-
ference between providing solutions to a wide range of problems and not being able
to address them at all. Few fields of science or engineering involve studying the effects
of an invention that improves costs by factors of 100 billion—symbol-table applica-
tions put us in just that position, as we have just seen in several examples, and these
improvements have had profound effects. The data structures and algorithms that we
have considered are certainly not the final word: they were all developed in just a few
decades, and their properties are not fully understood. Because of their importance,
symbol-table implementations continue to be studied intensely by researchers around
the world, and we can look forward to new developments on many fronts as the scale
and scope of the applications they address continue to expand.

5053.5 n Applications

ptg12441863

Q&A

Q. Can a SET contain null?

A. No. As with symbol tables, keys are non-null objects.

Q. Can a SET be null?

A. No. A SET can be empty (contain no objects), but not null. As with any Java data
type, a variable of type SET can have the value null, but that just indicates that it does
not reference any SET. The result of using new to create a SET is always an object that is
not null.

Q. If all my data is in memory, there is no real reason to use a filter, right?

A. Right. Filtering really shines in the case when you have no idea how much data to
expect. Otherwise, it may be a useful way of thinking, but not a cure-all.

Q. I have data in a spreadsheet. Can I develop something like LookupCSV to search
through it?

A. Your spreadsheet application probably has an option to export to a .csv file, so you
can use LookupCSV directly.

Q. Why would I need FileIndex? Doesn’t my operating system solve this problem?

A. If you are using an OS that meets your needs, continue to do so, by all means. As
with many of our programs, FileIndex is intended to show you the basic underlying
mechanisms of such applications and to suggest possibilities to you.

Q. Why not have the dot() method in SparseVector take a SparseVector object as
argument and return a SparseVector object?

A. That is a fine alternate design and a nice programming exercise that requires code
that is a bit more intricate than for our design (see Exercise 3.5.16). For general matrix
processing, it might be worthwhile to also add a SparseMatrix type.

506 Chapter 3 n Searching

ptg12441863

ExErcisEs

3.5.1 Implement SET and HashSET as “wrapper class” clients of ST and HashST, respec-
tively (provide dummy values and ignore them).

3.5.2 Develop a SET implementation SequentialSearchSET by starting with the code
for SequentialSearchST and eliminating all of the code involving values.

3.5.3 Develop a SET implementation BinarySearchSET by starting with the code for
BinarySearchST and eliminating all of the code involving values.

3.5.4 Develop classes HashSTint and HashSTdouble for maintaining sets of keys of
primitive int and double types, respectively. (Convert generics to primitive types in
the code of LinearProbingHashST.)

3.5.5 Develop classes STint and STdouble for maintaining ordered symbol ta-
bles where keys are primitive int and double types, respectively. (Convert generics
to primitive types in the code of RedBlackBST.) Test your solution with a version of
SparseVector as a client.

3.5.6 Develop classes HashSETint and HashSETdouble for maintaining sets of keys of
primitive int and double types, respectively. (Eliminate code involving values in your
solution to Exercise 3.5.4.)

3.5.7 Develop classes SETint and SETdouble for maintaining ordered sets of keys of
primitive int and double types, respectively. (Eliminate code involving values in your
solution to Exercise 3.5.5.)

3.5.8 Modify LinearProbingHashST to keep duplicate keys in the table. Return any
value associated with the given key for get(), and remove all items in the table that have
keys equal to the given key for delete().

3.5.9 Modify BST to keep duplicate keys in the tree. Return any value associated with
the given key for get(), and remove all nodes in the tree that have keys equal to the
given key for delete().

3.5.10 Modify RedBlackBST to keep duplicate keys in the tree. Return any value associ-
ated with the given key for get(), and remove all nodes in the tree that have keys equal
to the given key for delete().

5073.5 n Applications

ptg12441863

3.5.11 Develop a MultiSET class that is like SET, but allows equal keys and thus imple-
ments a mathematical multiset.

3.5.12 Modify LookupCSV to associate with each key all values that appear in a key-
value pair with that key in the input (not just the most recent, as in the associative-array
abstraction).

3.5.13 Modify LookupCSV to make a program RangeLookupCSV that takes two key val-
ues from the standard input and prints all key-value pairs in the .csv file such that the
key falls within the range specified.

3.5.14 Develop and test a static method invert() that takes as argument an
ST<String, Bag<String>> and produces as return value the inverse of the given sym-
bol table (a symbol table of the same type).

3.5.15 Write a program that takes a string on standard input and an integer k as com-
mand-line argument and puts on standard output a sorted list of the k-grams (sub-
strings of length k) found in the string, each followed by its index in the string.

3.5.16 Add a method sum() to SparseVector that takes a SparseVector as argument
and returns a SparseVector that is the term-by-term sum of this vector and the argu-
ment vector. Note: You need delete() (and special attention to precision) to handle the
case where an entry becomes 0.

ExErcisEs (continued)

508 Chapter 3 n Searching

ptg12441863

crEAtivE problEms

3.5.17 Finite mathematical sets. Your goal is to develop an implementation of the fol-
lowing API for processing finite mathematical sets:

3.5.18

public class MathSET<Key>

MathSET(Key[] universe) create the empty set
(using given universe)

void add(Key key) put key into the set

MathSET<Key> complement()
set of keys in the universe that
are not in this set

void union(MathSET<Key> a)
put any keys from a into the
set that are not already there

void intersection(MathSET<Key> a)
remove any keys from this set
that are not in a

void delete(Key key) remove key from the set

boolean contains(Key key) is key in the set?

boolean isEmpty() is the set empty?

int size() number of keys in the set

apI for a basic finite set data type

Multisets. After referring to Exercises 3.5.2 and 3.5.3 and the previous exer-
cise, develop APIs MultiHashSET and MultiSET for multisets (sets that can have equal
keys) and implementations SeparateChainingMultiSET and BinarySearchMultiSET
for multisets and ordered multisets, respectively.

3.5.19 Equal keys in symbol tables. Consider the API MultiST (unordered or ordered)
to be the same as our symbol-table APIs defined on page 363 and page 366, but with
equal keys allowed, so that the semantics of get() is to return any value associated with
the given key, and we add a new method

Iterable<Value> getAll(Key key)

5093.5 n Applications

ptg12441863

that returns all values associated with the given key. Using our code for
SeparateChainingHashST and BinarySearchST as a starting point, develop imple-
mentations BinarySearchMultiST and SeparateChainingMultiST for these APIs.

3.5.20 Concordance. Write an ST client Concordance that puts on standard output a
concordance of the strings in the standard input stream (see page 498).

3.5.21 Inverted concordance. Write a program InvertedConcordance that takes a
concordance on standard input and puts the original string on standard output stream.
Note : This computation is associated with a famous story having to do with the Dead
Sea Scrolls. The team that discovered the original tablets enforced a secrecy rule that
essentially resulted in their making public only a concordance. After a while, other re-
searchers figured out how to invert the concordance, and the full text was eventually
made public.

3.5.22 Fully indexed CSV. Implement an ST client FullLookupCSV that builds an ar-
ray of ST objects (one for each field), with a test client that allows the user to specify the
key and value fields in each query.

3.5.23 Sparse matrices. Develop an API and an implementation for sparse 2D matri-
ces. Support matrix addition and matrix multiplication. Include constructors for row
and column vectors.

3.5.24 Non-overlapping interval search. Given a list of non-overlapping intervals of
items, write a function that takes an item as argument and determines in which, if
any, interval that item lies. For example, if the items are integers and the intervals are
1643-2033, 5532-7643, 8999-10332, 5666653-5669321, then the query point 9122
lies in the third interval and 8122 lies in no interval.

3.5.25 Registrar scheduling. The registrar at a prominent northeastern University re-
cently scheduled an instructor to teach two different classes at the same exact time. Help
the registrar prevent future mistakes by describing a method to check for such conflicts.
For simplicity, assume all classes run for 50 minutes starting at 9:00, 10:00, 11:00, 1:00,
2:00, or 3:00.

3.5.26 LRU cache. Create a data structure that supports the following operations: ac-
cess and remove. The access operation inserts the item onto the data structure if it’s
not already present. The remove operation deletes and returns the item that was least

crEAtivE problEms (continued)

510 Chapter 3 n Searching

ptg12441863

recently accessed. Hint : Maintain the items in order of access in a doubly linked list,
along with pointers to the first and last nodes. Use a symbol table with keys = items,
values = location in linked list. When you access an element, delete it from the linked
list and reinsert it at the beginning. When you remove an element, delete it from the end
and remove it from the symbol table.

3.5.27 List. Develop an implementation of the following API:

public class List<Item> implements Iterable<Item>

List() create a list

void addFront(Item item) add item to the front

void addBack(Item item) add item to the back

Item deleteFront() remove from the front

Item deleteBack() remove from the back

void delete(Item item) remove item from the list

void add(int i, Item item) add item as the ith in the list

Item delete(int i) remove the ith item from the list

boolean contains(Item item) is item in the list?

boolean isEmpty() is the list empty?

int size() number of items in the list

apI for a list data type

Hint : Use two symbol tables, one to find the ith item in the list efficiently, and the other
to efficiently search by item. (Java’s java.util.List interface contains methods like
these but does not supply any implementation that efficiently supports all
operations.)

3.5.28 UniQueue. Create a data type that is a queue, except that an element may only
be inserted the queue once. Use an existence symbol table to keep track of all elements
that have ever been inserted and ignore requests to re-insert such items.

5113.5 n Applications

ptg12441863

3.5.29 Symbol table with random access. Create a data type that supports inserting a
key-value pair, searching for a key and returning the associated value, and deleting and
returning a random key. Hint : Combine a symbol table and a randomized queue (see
Exercise 1.3.35).

crEAtivE problEms (continued)

512 Chapter 3 n Searching

ptg12441863

ExpErimENts

3.5.30 Duplicates (revisited). Redo Exercise 2.5.31 using the Dedup filter given on
page 490. Compare the running times of the two approaches. Then use Dedup to run the
experiments for N = 10 7, 10 8, and10 9, repeat the experiments for random long values
and discuss the results.

3.5.31 Spell checker. With the file dictionary.txt from the booksite as command-
line argument, the BlackFilter client described on page 491 prints all misspelled words
in a text file taken from standard input. Compare the performance of RedBlackBST,
SeparateChainingHashST, and LinearProbingHashST for the file WarAndPeace.txt
(available on the booksite) with this client and discuss the results.

3.5.32 Dictionary. Study the performance of a client like LookupCSV in a scenario
where performance matters. Specifically, design a query-generation scenario instead of
taking commands from standard input, and run performance tests for large inputs and
large numbers of queries.

3.5.33 Indexing. Study a client like LookupIndex in a scenario where performance
matters. Specifically, design a query-generation scenario instead of taking commands
from standard input, and run performance tests for large inputs and large numbers of
queries.

3.5.34 Sparse vector. Run experiments to compare the performance of matrix-vector
multiplication using SparseVector to the standard implementation using arrays.

3.5.35 Primitive types. Evaluate the utility of using primitive types for Integer and
Double values, for LinearProbingHashST and RedBlackBST. How much space and
time are saved, for large numbers of searches in large tables?

5133.5 n Applications

ptg12441863

This page intentionally left blank

ptg12441863

Introduction to Programming in Java:
An Interdisciplinary Approach
Robert Sedgewick/Kevin Wayne
©2008 • 736 pp • ISBN: 0-321-49805-4

Introduction to Programming in Java takes an inter-
disciplinary approach to teaching programming
with the Java programming language.

Features
This book thoroughly covers the field and is ideal
for introductory programming courses. It can also
be used for courses that integrate programming
with mathematics, science, or engineering.

Students learn basic computer science concepts in
the context of interesting applications in science,
engineering, and commercial computing, leveraging
familiar science and math while preparing students
to use computers effectively in later courses. This
serves to demonstrate that computation is not
merely a tool, but an integral part of the modern
world that pervades scientific inquiry and commercial
development.

The book takes an “objects in the middle” approach
where students learn basic control structures and
functions, then how to use, create, and design
classes.

A full programming model includes standard libraries
for input, graphics, sound, and image processing
that students can immediately put to use.

An integrated Companion Website features
extensive Java coding examples, additional
exercises, and Web links.

Instructors, contact your Pearson representative
to receive an exam copy,

or email PearsonEd.CS@Pearson.com.

ptg12441863

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefits.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefits:

• Access to supplemental content,
including bonus chapters,
source code, or project files.

• A coupon to be used on your
next purchase.

Registration benefits vary by product.
Benefits will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

ptg12441863

InformIT is a brand of Pearson and the online presence
for the world’s leading technology publishers. It’s your source
for reliable and qualified content and knowledge, providing
access to the top brands, authors, and contributors from
the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seeking
timely and relevant information and tutorials? Looking for expert opinions,
advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at
informit.com/articles.

• Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?
Connect with Pearson authors and editors via RSS feeds, Facebook,

Twitter, YouTube, and more! Visit informit.com/socialconnect.

ptg12441863

Try Safari Books Online FREE
Get online access to 5,000+ Books and Videos

Find trusted answers, fast
Only Safari lets you search across thousands of best-selling books from the top
technology publishers, including Addison-Wesley Professional, Cisco Press,
O’Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques
In addition to gaining access to an incredible inventory of technical books,
Safari’s extensive collection of video tutorials lets you learn from the leading
video training experts.

WAIT, THERE’S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the first
to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content
created to get you up-to-speed quickly on new and cutting-edge technologies.

FREE TRIAL—GET STARTED TODAY!

www.informit.com/safaritrial

