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In memory of John von Neumann, 
who taught us 

that a few elegant concepts 
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Preface 

7{ began a journey in July, 1986, that continues to this day. That month 
.:.nmarks the first installment of my column "Programming on Purpose" 
in the magazine Computer Language. Many years and many issues later, I 
find myself still writing those monthly columns. And, mirabile dictu, I have 
yet to miss an issue. 

Do something every month for six or more years and material accumu­
lates. I have been asked repeatedly by readers to make some of that 
accumulated material more widely available. For many years my excuse 
was that I was too busy to do so. I was president of my own software 
company, Whitesmiths, Ltd. Then I sold the company to become a full-time 
writer. Packaging these essays has at last risen to the top of the queue. 

This particular collection concerns itself with software design. That's 
been a preoccupation of mine for decades. (Indeed, my original motivation 
in writing a monthly column was to exercise material I had accumulated 
on software design methods. As a book project, it repeatedly took a back 
seat to running the company.) Brian Kernighan and I wrote our first two 
books on the subject- The Elements of Programming Style and Software Tools. 
I even preached the gospel for several years as a Vice President at Yourdon 
inc. For many years, Yourdon inc. was an incubator for innovators of 
software design methods. 

This particular offering is much more cohesive than a collection of essays 
might impl)i Because they were originally intended as chapters in a text­
book, the essays are highly interrelated. (I provided cross references and a 
unified bibliography at the end of the book) As a principal textbook in 
design methods, this book lacks exercises and thorough coverage of fringe 
topics. But as a source book for design approaches, I think it is uniquely 
catholic in scope. 

Thus, this collection is suitable for supplemental reading in an interme­
diate or advanced course on software design methods or software engi­
neering. For "remedial software engineering," it can be quite useful. The 
independent reader can use it to gain a broader knowledge of the some­
times Balkanized field of design methods. 

I follow each essay with a brief Afterword. That gives me the opportunity 
to fill in historical context where necessary. It also lets me excuse away the 
worst naivetes. I chose to present these notes as Afterwords rather than 
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viii Programming on Purpose 

Forewords so as not to bias the reader up front. Mostly, the essays speak for 
themselves. 

Other collections from "Programming on Purpose" deal with other 
themes. Besides program design, I have written essays on (among other 
things): programming technology, software standards development, the 
business of software, and the people who love and write computer soft­
ware. Some essays are humorous, some are deadly serious. A few are gems, 
but I like to think that all are worth reading. If you enjoy what you find 
here, please consider the other collections as well. 
11r'he magazine business sees considerable turnover of editorial staff. 
~Miller Freeman, the publisher of Computer Language, is no exception. I 
have thus enjoyed the services of many editors over the years. All have 
worked hard to rescue my prose from its more florid excursions. They have 
nevertheless permitted me to retain a certain colloquial illiteracy that I find 
comfortable. I thank all the people at Miller Freeman who, over the years, 
have helped make these essays more readable. You should too. 

Two people in particular deserve oak-leaf clusters. Regina Starr Ridley, 
now a publisher at Miller Freeman, was one of my earliest editors. And 
Nicole Freeman, now a managing editor there, has cheerfully haunted my 
career in many editorial guises. I am happy to acknowledge their continu­
ing assistance in making "Programming on Purpose" better. I am also 
happy to count both as good friends. 

Having given credit where it is due, I must issue a warning. I re-edited 
these essays from the original machine readable. I certainly strove to 
recapture the spirit of Computer Language edits, but I make no pretense at 
following them to the letter. If any have lost ground as a result, you can 
blame me. 

P.J. Plauger 
Concord, Massachusetts 



1 Which Tool is Best? 

7{f you had to build a wooden table, which tool would you use? A saw 
.:ngets you off to a good start, but it's lousy for shaping round legs and for 
driving screws. It also leaves much to be desired when it comes to finishing 
the surface and applying paint. With a lathe, you can do a great job of 
turning those legs. But I leave it to your comic imagination to envision how 
you would use it on the other jobs. And if those images don't brighten your 
day, replay the scenes with, in tum: a hammer, a screw driver, and a pair of 
pliers. The best compromise might be the proverbial Swiss Army Knife, 
which is equally poor at all operations. 

It is ridiculous, of course, to even think of building something as elabo­
rate as a table with just one tool. Try to convince a practicing carpenter to 
do so and you'll be dismissed as daft. Yet this is exactly what goes on in the 
programming profession every day. A handful of tool sellers keep trying to 
convince us that there is one right tool for developing software. 

Speaking as someone who spent years selling programming develop­
ment methods (read: Snake Oil Miracle Cure) with the best of them, I can 
tell you that life ain't that simple. I have since done ten years' penance for 
my sins, by writing hundreds of thousands of lines of commercial software. 
Most of that has been for my company, Whitesmiths, Ltd. More recently, 
I've watched others write still more. The experience has been humbling. 

What we have learned collectively is that there are many good tech­
niques for building software, but no one is ''best." No one technique is even 
adequate when taken alone. We follow all the rules of The Elements of 
Programming Style (K&P74, K&P78), and then some. We write structured 
code, nearly all the time, and practice top-down design as much as possible. 
We use the latest program-development software as described in Software 
Tools (K&P76, K&P81), and then some. In short, we practice what I've 
preached for years. But that isn't enough. 

11rhere is the apocryphal story of the famous mathematician giving a 
~lecture. He fills board after board with abstruse formulae, his audience 
slaving furiously to keep up with his leaps of logic. A few less hardy souls 
cringe when, for the sixth time, he begins a sentence with, "It is obvious 
that ... " But this time he hesitates. He repeats the dread phrase and hesitates 
again. Then he walks out of the room! Ten minutes later, just as the audience 
is getting restless, he returns. He picks up the chalk, says, "It is obvious." 
And continues with his lecture. 
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That's how we found that top-down design works much of the time. 
Once you have composed a program, it is easy to look at it and see how 
you should have arrived at it by the orderly process of stepwise refinement 
from a global statement of purpose. Getting there from a standing start is 
a different matter entirely. For a test tube sized problem, you can almost 
always succeed. For a problem whose "shape" is familiar, you just build a 
structure of similar shape and you have a good chance of getting to the 
bottom without going astray. But for something big enough (by the stand­
ards of your experience) and new enough (ditto), you can get just as lost 
starting at the top as you can at the bottom. 

To put it crassly, top-down design is a great way to redesign a program 
you already know how to write. 

Does that make it wrong to teach top-down design to programmers? Not 
at all. As you acquire experience, you get better and better at making good 
programs top down. And if you can succeed by stepwise refinement, you 
almost always get a better product than with the undisciplined approach 
most programmers adopted in the past. It wasn't even that programmers 
coded bottom up instead, for bottom-up design is a perfectly good disci­
pline that also has its arena of applicability. No, most programmers of my 
acquaintance just started writing code, following no discipline whatsoever. 
And that is a technique that works well only for people with lots of 
experience. 
7{ have a brother-in-law who is a skilled cartoonist. He can start in the 
;.n upper left comer of a sheet of paper and elaborate a brilliant drawing. 
All the proportions are right and everything is in proper perspective. Us 
mortals must follow the usual art-school rules (see back of match cover for 
advertisement), block out the shapes, then fill in the detail. Ken Thompson, 
the originator of the UNIX operating system, has a similar skill with 
programming. He can write a chunk of code in assembly language that is half 
again more complex than you or I would tackle in C or Pascal, and get it 
right on the first draft. People like him give top-down design a bad name. 

It is more fair to say that top-down design has not been practiced nearly 
enough, by every day programmers, unless it's really pushed. Now it has 
been oversold, in some circles, to the point that people feel obliged to use 
it even when it is not the best technique. 

I had to write my third C compiler before I began to see how to design 
the whole thing from the top down. Don't misunderstand - great chunks 
of parsing code and symbol table management were designed top down 
from the outset. But then I'd done that sort of thing for various assemblers 
and editors in the past. The compiler as a whole did not make sense until I 
figured out that it had at least three "tops." And that insight I got from 
applying data-flow analysis, which is nominally a tool of structured analy­
sis. (See deM79.) 
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Figure 1.1 A typical (small) structure chart. 

14very method for designing software that's worth its salt comes with 
~some way to document your design. For top-down design, the ultimate 
goal is to produce a structure chart or, as IBM commercialized it, a HIPO 
Chart. HIPO stands for Hierarchy with Input, Process, and Output. 

What it is is an upside down tree (root at the top) of boxes. Each box is 
a subroutine and all its subordinates in the tree are the subroutines that it 
calls. You can even document the passing of arguments up and down the 
tree by drawing little arrows with names on them, beside the bigger arrows 
connecting the boxes. (See Figure 1.1.) A structure chart reflects the funda­
mental belief of top-down design that you design a program by decompos­
ing it into successively less abstract subroutines. When you get down to 
subroutines that do atomic operations, such as READ and WRITE statements 
or simple calculations, you are done. 

There are some fundamentalist sects in top-down design. Those who 
take the acronym HIPO seriously insist that every box should have exactly 
three subordinates, one to get Input, one to do the Process, and one to emit 
the Output. (See Figure 1.2.) This Procrustean attitude reminds me of 
Frederic the Great's reputed approach to organizing the Prussian Army, 
which can be overstated as three principles: 
1. Any officer who has fewer than seven subordinates hasn't delegated 

enough responsibility. Get rid of him. 
2. Any officer who has more than seven subordinates can't keep track of 

them all. Get rid of him. 
3. Any officer who can't guess the first two rules doesn't know how to 

organize an army. Get rid of him. 
The result is obvious. 
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Figure 1.2 A purist's HIPO chart. 

mnother fundamentalist sect has it that each of the lower level boxes is 
.:cl.called by only one superior, at the next level up. (See Figure 1.3.) This 
is the pure "stepwise refinement" approach that shuns any attempt to 
identify common subroutines and use them to advantage. In sooth, such 
attempts are akin to library building, which is one of the principal activities 
in bottom-up design. 

In bottom-up design, the approach is to try to guess all of the low level 
routines you are going to need, then stockpile them. Build enough of them 
and you can see how to write fancier routines that call on the ones you wrote 
earlier. If you guess right, eventually you will be able to write a main routine 
that calls on your library of lower-level routines to do all the hard stuff. You 
have reached the top. 

In real life, you do both top-down and bottom-up design on any non­
trivial program. You practice stepwise refinement for a spell, until you start 

Figure 1.3 A purist's stepwise refinement. 
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Figure 1.4 A mosque-shaped structure chart. 

to notice that different parts of the program need to call upon the environ­
ment in similar ways. You then begin to compromise among various needs 
for, say, opening files or allocating chunks of memory, until you end up with 
a dozen or so primitives that perform all interactions with the environment. 
These dozen-odd primitives form the bottom level of a structure chart that 
may fan out to several times as many functions part way down. 

So instead of ending up with a pyramid-shaped structure chart, as the 
stepwise-refinement purists would have it, you get a "mosque." (See Figure 
1.4.) Like the turrets in Arabian architecture, your chart flares out from a 
point at the top, then necks back in at the bottom. Larry Constantine was 
the first person I know to describe mosque-shaped structure charts, and the 
forces that bring them into existence. (See Y &C89 for some practical tech­
niques for building programs.) 
7{n summary, you judge a design method by the documentation it pro­
.:.n duces. For top-down design, you look at structure charts. The more 
dogmatic you are about applying a design method, the fewer real-life 
problems you are going to solve. I have never seen a real-life structure chart, 
for a program of significant size, that follows the HIPO "rule of three" or 
the stepwise refinement "fan-out-only rule." People who are best at doing 
what they call top-down design have a wealth of experience to draw upon. 
Part of this wealth is skill in one or more other design techniques, which 
they apply almost subconsciously. 

With that as a preamble, I can now tell you where top-down design really 
falls down. 

I drew a structure chart of the first C compiler I wrote. It was a clean, 
well organized program (as compilers go), but the structure chart was a 
mess. Why? Because of a little design choice I made. It was one that no 
COBOL programmer ever had to make, a design choice that is almost not 
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a choice at all for any writer of modern compilers. I made heavy use of 
recursion. Consider the simple grammar for an arithmetic expression: 

expr := term I expr BINOP term 
term : = NUMBER I UNOP term I ( expr ) 

This defines an expression as either a term or (recursively) an expression 
followed by a binary operator (BINOP) and a term. A term is some NUMBER, 

or a unary operator (UNOP) followed (recursively) by a term, or a parenthe­
sized expression. 

The last item brings the recursion full circle. You can (and should) 
express this as two functions: 
• qet _ expr - which obtains an expression, by calling itself and 

qet_term 
• qet_term-which obtains a term, by calling itself and qet_expr 

The structure chart consists of two boxes, each of which points at the other. 
(See Figure 1.5.) You write qet _ expr as the higher-level function, because 
the rest of your program will always be looking for expressions, never 
terms. But this little loop back creates a tangle unanticipated by the devel­
opers of structure charts. There were few widely used recursive languages 
in those days. 

Now imagine a C compiler with a much more elaborate subtree of 
functions for computing expressions. It has a few back loops in its structure 
chart, including at least one back to the top. That compiler also has a fairly 
complex subtree of functions for parsing types. These types are also recur­
sively defined, so the structure chart for that part also has one or more 
backloops. And now for the fun part: C uses expressions in defining types, 
such as the values of enumeration constants, the size of bit fields, and the 
size of arrays. C also uses types in defining expressions, for writing type 
cast operators! 

The structure chart for the whole works looks like the New York City 
subway system. (No figure attempted.) 
~ne of the strong selling points for structured programming is that it 
~makes for more readable flow charts. You use a flow chart to document 
the control flow within a routine much as you use a structure chart to 
document the control flow among separate routines. Unstructured routines 
were rightly accused of resembling a bowl of spaghetti, because their flow 
charts sprawled seemingly at random. Tracing one strand was an exercise 
in despair. 

If a document doesn't help you control complexity by partitioning it into 
manageable chunks, it is not pulling its weight. It also makes you suspect 
the utility of the design strategy that leads to a document you find hard to 
understand. In this example, I see failure at two extremes. The simple 
grammar has a structure chart that is trivial, and captures almost none of 
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Figure 1.5 Structure chart for the expression parser. 

the complexity of the problem. The original grammar was best at doing 
that. And the complex C compiler has a structure chart which is as tangled 
as many an unstructured program. Perhaps structure charts are not appro­
priate for documenting certain programs. 

I have picked on top-down design at length because it is best entrenched 
as the Right Way to do things. If you have your own favorite design method, 
I can assure you that there are practical situations where it breaks down as 
well. Do you believe in data-structured design, as taught by Jean 
Dominique Wamier and/ or Ken Orr(War78, Orr77)? Try it on a sort module 
and see how far you get. Do you believe that data-flow design, mentioned 
earlier, is best? See how much it helps you write a fast Fourier transform. 

It is only natural that, when you discover a technique that helps you 
solve an interesting class of problems, you focus on the arena where you 
get successes, to the exclusion of others. It is also only natural for someone 
selling books or training on a given design method to play down its 
limitations. But neither of these tendencies is an excuse for misapplying a 
technique where it is useless at best and harmful at worst. As a colleague 
of mine likes to say, to a five-year-old with a hammer, everything looks like 
a nail. 
.JflltY goal in writing this premiere essay is to convince you that no one 
.JI iii.tool is best for developing computer programs. My goal in coming 
essays is to introduce you to the many tools that I have added to my 
carpenter's bench over the years. For each I will show where you can use 
it, how it works, and how you know when you are done with it. I will also 
show you where it is not at its best, or where you should not use it at all. 

I have chosen the title "Programming on Purpose" for two reasons. First, 
I want to contrast the methods described here with the programming by 
accident that happens altogether too often. And second, I intend to address 
my remarks to the serious, goal-oriented programmer. If you haven't got a 
clear purpose in writing code, then you are "hacking" in the worst sense of 
that word. I personally have little interest in that pastime. 
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In the near quarter century since I started programming for a living, I 
have seen the profession change dramatically. What was once regarded as 
a black art became in time an art form that many could master. It is now 
changing from an art to a craft, a trade that can be mastered by almost 
anyone with the proper patience and motivation. (The term "craft" also has 
overtones of producing something useful, not merely decorative.) Only 
parts of computer programming have become an engineering discipline, 
and fewer parts still have matured to a science. Like any earnest craftsman, 
I borrow freely from engineering and science where they help get a job 
done. I make no pretense at being either a software engineer or a computer 
scientist. 

Several years ago, I gave a series of ACM lectures in New York City 
under the title, ''Methods of System Design." Despite the dry title, the 
lectures were well received (or so it appeared to me). These essays draw 
upon that material, plus the experience I have acquired since then. I hope 
you find them useful. o 

mfterword: This, obviously, was my premiere column. My fear as I was writing 
.:cl.it was that I was out of touch with the business of software-design methodolo­
gies. All my references were old! It took a bit of hurried reading for me to learn that 
those old references were still current. Few books were published on the business 
of software design in the early 1980s. (The trade has since picked up, but still not 
to the level of the late 1970s.) 

I find this essay to be a good overview of software-design methods. It also gives 
a succinct statement of intent for the columns that follow. 
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METHOD: Inside-out design. 
DESCRIPTION: Inside-out design focuses on the actual expression of a 
module. It is invariably the last stage in the process of capturing an algo­
rithm in executable code. The name suggests that you are working from 
the middle of a program (the processing of data) out to the edges (the in­
put/ output interface). 

Since all programs deal with conditional logic, or predicates, the princi­
pal technology of inside-out design is aimed at getting predicates correct, 
readable, and efficient (in that order). Completeness checks, de Morgan's 
Rules, decision tables, and Karnaugh maps all serve this end. 
DOCUMENTATION: Decision tables best capture the logic of a complex 
predicate, at a level that permits of multiple implementations and that 
serves as a more readable rendition of a given implementation. 
LIMITATIONS: Inside-out design involves you in the full complexity of a 
program at the most detailed level. To apply it before a program has been 
reduced, by other methods, to a set of functionally cohesive modules is to 
invite confusion and disaster. 
!'?I' predicate is that Boolean expression you write following a WHILE or 
.a.IF to determine which statement gets executed next. Whatever disci­
pline you use to elaborate the structure of your program, in the end you 
must get all the predicates right to have a working product. There's lots of 
technology you can bring to bear on getting predicates right, but I have 
never seen it put in one place before. This essay is my attempt at summa­
rizing most of the techniques I see good programmers use every day in 
writing and debugging control-flow logic. 

The preamble to this essay is the first in a series of manual pages covering 
various aspects of designing computer software. It may seem rather pon­
derous for a topic so mundane as expressing WHILE and IF statements 
correctly, but I believe that it contains several important reminders, particu­
larly on the topic of limitations. In the company of its siblings, appearing 
in subsequent essays, it should appear somewhat less pompous. 

To begin with a concrete example, consider the classic algorithm for 
computing the greatest common divisor, or GCD, of two integers. It has 
been a favorite of computer textbook writers for years, because it is elegant 
and compact. Or at least it can be. The basic idea is to divide the smaller 
integer into the larger and keep the remainder. If the remainder is zero, the 

9 



10 Programming on Purpose 

divisor is the GCD. Otherwise, you replace the dividend with the divisor 
and the divisor with the remainder, then loop. Eventually, you must con­
verge to the proper answer. All you should have to worry about at the outset 
is dividing by zero. 

So you might write, in pseudo code: 
gcd(m, n) 

m := abs(m) 
n := abs(n) 
IF (m <= n) 

temp := m 
m := n 
n := temp 

IF (n = 0) 
RETURN (m) 

WHILE (TRUE) 
temp := m REM n 
IF (temp = 0) 

RETURN (n) 
m := n 
n := temp 

Here m REM n is the remainder after dividing m by n. Some languages 
offer a MOD operator, for "modulus," which is close enough to the remainder 
operator if you avoid negative values. There are enough interesting vari­
ations in how machines divide with negative operands that you should 
avoid such cases as a matter of habit anyway. If either of the arguments is 
zero, the GCD is the magnitude of the other operand. 
11r'he algorithm is correctly captured in this pseudo code, as far as I can 
~tell. Moreover, it closely parallels the presentation I have seen in several 
publications. It contains four predicates, m <= n, n = 0, TRUE, and temp 
= 0. Can you find anything to improve on any of them? 

If your response is to change m <= n tom < n, give yourself two points 
(out of a possible ten). There is no need to exchange the two operands if 
they are equal, so the code is improved by altering the predicate. If your 
reason for changing the predicate was just to make the code faster, however, 
you should take away one point. Readability is at least as important as any 
efficiency gains to be had by this change. You don't want to suggest to 
readers that something must be done when the two operands are equal, 
when that is not truly the case. 

You get six points if you observe that the first IF is completely unneces­
sary. Walk through the loop with a case where mis less than n. The values 
of m and n are exchanged on the first iteration. Since the only reason for the 
first IF is to enforce an assertion that doesn't have to be enforced, you 
should get rid of it. 
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There are three predicates left. One causes a return if n is zero. Another 
causes a return if n is about to become zero. Any time you see almost the 
same code before the start of a loop and at the bottom of the loop, you 
should be suspicious. At best, it indicates that the programming language 
you are using won't let you express the test controlling the loop the way 
you need to. You may have to perform a computation or obtain some input 
as part of the test, and you cannot combine this with the test expression 
proper. At worst, you have written the test controlling the loop incorrectly. 

Here, you should assume the worst, because none of the three predicates 
are at all complicated. Give yourself four points if you revised the loop 
predicate. Correcting the predicate controlling the WHILE makes the others 
go away: 

qcd(m, n) 
m := abs (m) 
n := abs (n) 
WHILE (n <> 0) 

temp := m REM n 
m := n 
n := temp 

RETURN (m) 

The end result is smaller, cleaner, and more elegant. It is probably even 
more efficient. It eliminates the return from the middle of a loop, which is 
hard to express in languages such as Pascal. 

And it contains none of the original four predicates. 
An important lesson to be learned from this example is that a program 

is not finished just because you have captured the algorithm correctly and 
readably. It is more cost effective in the long run to spend time revising code 
when you first write it, while the algorithm is fresh in your mind. Until the 
code is shorn of all fat, until it has a compelling simplicity, you haven't 
distilled out the excess complexity. Since the essence of programming is 
controlling complexity, nothing lowers the cost of debugging and maintain­
ing code so much as eliminating unnecessary logic as early as possible. 
?11?11tith this example in mind, we can now look at a few check lists for 
~reviewing predicates. The simplest predicate is a single Boolean 
term, like the TRUE that controlled the original WHILE loop in the example. 
You must sometimes compute your condition in advance and store it in a 
Boolean variable. You then write the test as a single term such as DONE or 
END_ OF _FILE. If the variable OK has the answer, you'd think your job is 
nearly done. But you still have four choices! You can perform the controlled 
statement: 

never always 
if OK is false if OK is true 
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You should consider every one of these possibilities before you choose. 
The next simplest predicate you can write performs an arithmetic com­

parison. Here you have ten possibilities. You can perform the controlled 
statement: 

never 
if equal 
if less 
if qreater 
if ordered 

always 
if not equal 
if qreater or equal 
if less or equal 
if unordered 

The unordered/ ordered cases arise mostly with floating-point arith­
metic schemes that support one or more NaN (not a number) codes. If you 
divide by zero, for instance, the result can be represented as a NaN, so you 
can keep going. But it's hard to say whether a NaN is less than or greater 
than, say, 5.3. Even if you deal only with conventional wraparound integer 
arithmetic, you should consider whether any result values represent the 
unordered state. If an integer must be positive, for instance, but has 
overflowed, then a negative integer may be a NaN in your algorithm. 

The classic oversight in choosing which arithmetic comparison to write 
is to branch the wrong way on equality. In the first GCD example, choosing 
m <= n rather than m < n caused a performance bug, but gave the correct 
result. A similar error in a WHILE predicate causes an off-by-one error, 
which seldom gives acceptable behavior. 

Most (unplanned) infinite loops result from a failure to consider the 
arithmetic branch that "can't happen." A good rule of thumb for WHILE 

predicates is to end the loop at the least excuse. If you write WHILE (m <> 
0) instead of WHILE (0 < m), your program won't loop should you 
eventually decrement m twice and skip past the zero test. 
311rogrammers often fail to consider the never/always cases properly. 
-iFJThe GCD example had a predicate m <= n which was better written 
as never. It also had a predicate TRUE (always) that was better written as 
n <> 0. You might remember to reconsider the never I always choice in 
terms of two precepts: 
• If you've gone to the trouble of computing things to test, you should 

remember to test them. 
• Just because there are things to test, that doesn't mean you should test 

them. 
The beauty of these precepts is they appear to be mutually contradictory. 
Many Truths come packaged this way. 

Storing the result of a test in a Boolean variable is something you should 
avoid as much as possible, by the way. Between the time you store it and 
test it, opportunities abound for the predicate to get out of phase with 
reality. Programs with lots of flags are just like programs with lots of GOTO 
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statements-it's next to impossible to determine the state of a computation 
just from the lexical position of the program counter in the program text. 
Some languages require flags to make up for a lack of expressiveness, so 
you can't always avoid them. Remember that every flag must be set, tested, 
and cleared somewhere in your program. The closer together these actions 
occur, the more likely you will detect any omitted actions or inconsistent 
states. 

One final small point about writing simple predicates: I personally never 
write the operators > or >=. Being a mechanistic soul, I have to envision 
values along the x-axis to determine what a predicate is saying. I can tell at 
a glance that 

0 <= c AND c < 256 

tests whether c is within the half-open interval [O, 256), or that 

x < '0' OR '9' < x 

tests whether x is outside the closed interval [' O', ' 9']. I make too many 
mistakes mentally flipping operands about with the other two operators. 
~ow let's look at complex predicates. There are sixteen ways to combine 

,,j[J.two predicates, A and B. No, I'm not going to list them all. Six of them 
are various ways of ignoring one or both of A and B. The remaining ten are 
almost always written using the Boolean operators NOT, AND, and OR. You 
might try to write out all sixteen ways, after you read the rest of this essay. 

It is easy to get tangled up in complex Boolean expressions. I have for 
years preached the importance of the "telephone test" (K&P78) - if you 
cannot understand a Boolean expression when spoken over a telephone, 
keep rewriting it until you can. If you can't find a rewriting that makes 
sense, there is a good chance that the predicate is wrong to begin with. 

How do you rewrite predicates? The workhorse transformations are the 
two identities known as deMorgan's Rules: 

or 

A AND B = NOT {NOT A OR NOT B) 
A OR B = NOT (NOT A AND NOT B) 

So you can skip processing the digits 0 and 1 by writing 

IF {NOT (x = '0' OR x = '1')) 

IF (x <> '0' AND x <> '1') 

I prefer the latter version, for readability. 
The order in which you evaluate terms of a Boolean expression is often 

important. It does you no good to write a test such as, "If i is a valid 
subscript and a [ i] has the value I seek," unless you are sure that the tests 
are performed in the stated order. The C language has a version of AND, 
written &&, and OR, written I I, that guarantee left-to-right evaluation. In 
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Pascal, you may have to write THEN IF for AND, or ELSE IF for OR, to 
guarantee ordering. You can also use a Boolean variable whose value is 
accumulated in stages; but see the warning above about using Boolean 
variables. 
11rhe hardest part of writing a complex predicate, however, is making sure 
\Ulyou consider all the cases. You should learn to write decision tables, when 
you first code a complex predicate, to be sure you exhaust all combinations 
of input variables. Your loan-approval program may overlook people 
under 17 who own their own homes and have an income of greater than 
$100,000 per year - and you will lose the business of an up-and-coming 
teenage rock star. 

For each input variable, write down all the predicates affected by it. Are 
there five age groups? Then be sure you know the desired outcome for 
every combination of other factors in each of the age groups. Don't worry 
about writing down cases that "can't happen." Just put a big I, for "I don't 
care" in that box, and let your program logic group it with whatever 
reasonable cases it happens to fall in with. I never fail to be educated about 
a problem when I write out a complex Boolean expression in decision-table 
form. 

The most orderly way to process decision tables is to reduce all your 
simple tests to a set of disjoint predicates. Your five age groups reduce to 
three predicates: 
• in groups 0, 1, 2, or 3 
• in groups 0, l, or 4 
• in groups 0, 2, or 4 
(These are just the three bits of the group number, if you think about it.) If 
you end up with four predicates, there are sixteen possibilities; if five pre­
dicates, then 32; and so on. 

You can write such a pure binary decision table as a Karnaugh map, which 
groups terms in such a way that it is easy to identify the simplest Boolean 
expression that captures the complex decision. Karna ugh maps are used by 
circuit designers for minimizing the number of AND and OR gates needed 
to generate a logic term. They are also useful in writing computer programs. 
The trick is to order your tests so that adjacent entries in the map always 
group to advantage. 

For a nontrivial example, consider the following problem. The latest 
all-purpose PC product you are working on is to display the time of day in 
one corner of the screen. To make it easily visible across the room, you must 
mimic a seven-bar display, like in all the digital read-outs that abound these 
days. Instead of merely displaying 12: 37, your program must produce 
something like: 
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)!lour mission, should you decide to accept it, is to write a function that 
~takes as input a decimal digit and produces as output the seven bars 
that display that digit. The choice of input and output data encoding is 
open. Try your hand at writing the function before you read on. You can 
use the following patterns for the ten digits: 

***** * ***** ***** * * 
* * * * * * * 
* * * ***** ***** ***** 
* * * * * * 
***** * ***** ***** * 

***** ***** ***** **A** ***** 
* * * B c * * 
***** ***** * **D** ***** 

* * * * E F * 
***** ***** * **G** ***** 

The pattern for digit B shows the letter names I chose for each of the seven 
bars. The input is a four-bit number, which can be represented as four pre­
dicates. Each of the bit names gives its numerical weight in the digit. 

BB is on 
B2 is on 

B4 is on 
Bl is on 

Table 2.1 shows how you write out the decisions. The funny ordering of 
values is just that of the Gray code, which changes by only one bit as you 
increment the value represented. Gray code is used in laying out the tracks 
on rotational angle sensors, since a small error in pickup alignment doesn't 

--

I 
: 

I 

I 
Ii 

NOT B2 ANDI NOT B2 I B2 AND B2 AND 

INOT 

NOT Bl AND Bl i Bl NOT Bl 
I 1: 

BB AND " I 

!! 0 1 I 3 2 NOT B4 i 

NOT BB I 
6 4 5 I 7 

~~. B4 

BB AND 12 13 15 14 B4 

BB AND 
B 9 11 10 NOT B4 

Table 2.1 Karnaugh map showing digit values. 
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NOT B2 AND NOT B2 I B2 AND 

' 

B2 AND 
I NOT Bl AND Bl Bl NOT Bl 

~- --- --------- ----- ---- --- ----1 

r 
r- - -------

NOT BS AND _J i I L 
NOT B4 

ON OFF OFF noa 
NOT BS OFF 

r~ 
OFF I ON 

AND B4 

BS AND 
I I i I 

I 

B4 
---r-----------~~ 

I BS AND ! 

r1 ON I OFF I 
~ I r NOT B4 -

Table 2.2 Decision table for bar e. 

lead to disastrous jumps in numeric value. The read-out doesn't have to 
handle hexadecimal digits, so values above nine are shaded and will 
become I-don't-care states for each of the seven bars. 

Now look at Table 2.2, which is the decision table for the bare. It is OFF 
for six digits and ON for four digits. Yet you can test if it should be ON by 
the predicate: 

(B2 AND NOT Bl) OR 
(NOT B4 AND NOT Bl) 

Each term represents a different shaded area of the Kamaugh map. (The 
map wraps around in both directions, like an early video-game screen.) 

For any two adjacent terms, you can ignore one of the basic predicates. 
For any four in a square or a rectangle, you can ignore two predicates. (Note 
that in this example, the four comers constitute a handy "square.") For any 
eight in a rectangle, you can ignore three. And so on. I call the process of 
covering all cases in the same group "painting the Kamaugh map." 
11rhe fun comes in finding the largest possible brush strokes that cover the 
"1tgroup you want. I-don't-care cases are invaluable in helping you form 
larger brush strokes. But even if there are no groupings, you have the 
satisfaction of knowing that you need to write fully qualified terms to get 
the right answer. And you are much more likely to write a correct predicate. 

You should write the Kamaugh maps for the other six bars, then write 
the expressions for ON as well as OFF. The ON expression for a given bar 
may not be the NOT of the OFF expression for that bar. (Why?) If you are 
still eager after that, extend the display to handle all sixteen hexadecimal 
digits. You will have to use lowercase Band D, and your I-don't-care states 
go out the window. But the result is interesting. 

With just a little practice like this, you can get the hang of writing 
Kamaugh maps and painting them. Then you will wonder how you ever 
programmed correctly without them. 
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You shouldn't assume, however, that every logic problem is best handled 
by writing a Karnaugh map. Often the best way to capture a decision is to 
store it in a table, then use the predicates to form an index and look up the 
answer. Those of you who solved the seven-bar problem this way get high 
marks. The decimal digit is a natural index, and the bar patterns require 
just a few bytes of data tables. 

Top marks go to people who wrote tables like: 

char diq2[5] [5] = { 
,, xxxxx. '' , 

X"' 
''XXXXX.'' I 

"X "I 

"XXXXX."}; 

You can tell at a glance whether the table is correct for that digit, because 
you can see the final output in the data. 
ms a final footnote, it took me much longer than I had expected to write 
.a.this essay. One reason was that my company is in the middle of a major 
development project. The other was that I suffered from the repeated fear 
that this material was too basic for its audience. (That's you.) I was continu­
ally bemused to find, however, that I was applying every one of the 
principles outlined here in the pursuit of that project. Some of the tech­
niques proved invaluable several times a day in sorting out logic gaffes and 
crafting small chunks of code. If professional programmers need to be 
reminded of this stuff on a regular basis, it doesn't hurt to write some of it 
down.o 

mfterword: It was probably a stupid idea to dream up cute names like "inside-out 
.a.design." Nevertheless, I persisted with these and a dozen more. Those that 
weren't cute inventions were existing names that I chose to recycle, often with 
slightly different meaning from the conventional. That practice is probably at least 
as dangerous as appearing too cutesy. 

Still, there's good stuff here. You won't find it in most programming language 
texts - it's too general. Nor will you find it in most program design texts - it's 
too low level. It just happens to be the stuff of most pedestrian design decisions you 
make when writing code. 

I wish I could have come up with a more compelling example than the seven-bar 
display. It illustrates all the necessary points, but it's a straw man. I like to think 
that most practicing programmers would gravitate quickly to the table-driven 
approach that I described last. 
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METHOD: Right-to-left design. 
DESCRIPTION: Right-to-left design focuses on the structure of the data 
being generated by a module. It is based on the premise that the structure 
of a program should closely model that of the generated data. The name 
derives from the convention of drawing data-flow diagrams from inputs 
on the left to outputs on the right. 

Since most data structures can be effectively composed from primitive 
forms by concatenation, alternation, and repetition, right-to-left design 
naturally leads to structured programs (in the traditional sense of the term). 
Thus, indented pseudo code and Warnier-Orr diagrams (Orr77, War78) can 
be used in conjunction with this discipline. 
DOCUMENTATION: Data-structure diagrams best capture the format of 
a generated file. Procedural representations, such as structured pseudo 
code or structured flow charts, may capture additional information such as 
read-ahead logic or running-sum formation. 
LIMITATIONS: Right-to-left design is an effective organizing principle 
only if the structure of the output dominates the problem. If the output is 
trivial, particularly compared to the calculations involved or the structure 
of the input data, this approach is not fruitful. If both input and output data 
structures are nontrivial, you need to apply outside-in design. (See Essay 
9: Marrying Data Structures and Essay 10: Divorcing Data Structures.) 
]'{f you cut your teeth on BASIC, assembly language, or even FORTRAN, 
..lJyou tend to forget that data comes in different types. And even Pascal 
and C programmers have trouble remembering that data has structure as 
well as type. Once you learn to impose as much structure as possible on the 
data your program manipulates, many common sources of coding error 
disappear. And once you learn to reflect that data structure as closely as 
possible in the structure of your code, many maintenance problems also 
disappear. 

The most aggressive practitioner of this approach that I ever met was 
A.G. (Sandy) Fraser, at Bell Laboratories. He began each programming task 
by generating pages of data declarations and accompanying commentary. 
The comments described what values each data type could assume, the 
obvious and subtle relationships between different data, and permissible 
state transitions among data values. By the time Sandy had finished this 
exercise, all the procedures needed to manipulate the data were easily 
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tacked onto the end of the listing. The code was obvious, barely in need of 
additional commentary, and easily inherited by more pedestrian program­
mers like me. 

To see how the data structuring approach pays off, let's look at a small 
example of a data-generating program. The shape of it is likely to be 
familiar to you, in one guise or another. 
11rhe problem is to generate a report showing a batch of transactions 
\Ulinvolving different customer accounts. Transactions are already sorted 
by customer account number, so transactions for the same account are 
grouped and the groups are in proper order. Your program must print one 
or more pages for each customer. At the top of each page is the customer 
account number and various column headings. Up to 40 transactions 
follow, one per line. At the bottom of each page is a page total. If there are 
more than 40 transactions for one account number, you must print addi­
tional pages for that customer. Following the page total at the bottom of 
each page is either an indication that more pages follow for that account 
number or a grand total for all pages. 

Do you recognize the shape? Here is a program that reads lines of text 
from its input, one at a time in sequence. It uses that input to generate lines 
of text to its output, in the same sequence that the input is presented. The 
program is a classic filter that maps input to output in one sequential pass. 

If you recognize the shape, then you may also recognize the commonest 
bugs that you must avoid in crafting the control logic: 
• The program must produce no output if there is no input. 
• The program must produce no output for a skipped account number. 
• The program must always produce an integral number of pages. 
• The program must not produce an empty second page if there are exactly 

40 transactions for one customer account. 
• The program should not terminate early if a numeric input field is ill 

formed. 
• The program should not terminate early if arithmetic overflow occurs 

in computing the totals. 
• The program should indicate on the output any ill-formed fields or 

totals. 
These last three potential bugs are listed as "shoulds" because some pro­
gramming languages make life difficult for you in these areas. Lapses here 
are more forgivable. 

In the previous essay (Essay 2: Writing Predicates), I discussed inside­
out design. If we apply that approach here, then the next thing to do is look 
at all the predicates we will need to express the control flow of the program. 
Four conditions spring to mind: 
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more_input 
paqe_full 

new account 
paqe_empty 
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The exact expression of these conditions can be deferred until after we ex­
press the overall logic. In pseudo code, 

WHILE (more_input) 
IF (new_account OR paqe_full) 

<skip to bottom> 
<put footer sums> 
<set paqe_empty> 

IF (paqe_empty) 
<put header> 
<initialize sums> 

<put transaction line> 
<accumulate sums> 
<clear paqe empty> 

IF (NOT paqe_empty) 
<skip to bottom> 
<put footer sums> 

11rhe next step is to refine each of the terms to make actual executable code. 
\U.-You clearly need an index that can express line numbers between zero 
and 40. So paqe_empty becomes i = 0, paqe_full becomes i = 40 
and <skip to bottom> can be written 

WHILE (NOT paqe_full) 
<put empty line> 
i := i + 1 

Refining the other two predicates is messier, because that involves 
reading input. Aside from the usual worries about handling end-of-file, 
ill-formed input lines, and possibly even read errors, here you must also 
perform a classic look ahead. You don't know that you have read all of the 
transactions for one account number until you have encountered end-of­
file or read the first transaction for the next account number that is present. 
You must look ahead to the next transaction to know how to finish up the 
output that goes with this one. 

We can stuff all these problems into a function that can access the input 
line buffer, line_ buf, and the previous account number, acct_ no. It will 
read the next line, if present, into line_buf, and unpack the account 
number into acct no. The value of the function is one of the enumerated 
values: 
• end_ of_ file - if the input is exhausted 
• new_ account - if acct_ no changed value 
• same_ account - if acct_ no did not change value 
If read errors occur, the function will either terminate the program or pass 
back a laundered value, depending upon the severity of the error. 
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To prime this machinery, you must initialize acct_ no to a value that 
matches no possible input value. (This is always possible, by the way. If all 
states of acct_ no are valid account numbers, you just add a second 
component to the stored account number. The Boolean component 
qood _acct is FALSE initially, and is made TRUE whenever you store a 
valid account number in acct_ no. If this smacks of being a first-time 
switch, well it is, in some ways. But it is a clean one.) 

You should now be able to write executable code for the entire program, 
except for formatting details that have been glossed over. I will leave it as 
an exercise, since this essay has certain space restrictions. Aside from the 
input function described above, you will probably feel moved to make a 
separate module to put out the footer, since that must occur in two places. 

Assuming you refine each of these terms properly, you can count on this 
structure to do the job. Indeed, I have seen programs just like this on 
fifty-odd occasions over the last quarter century. I have also seen all the 
bugs mentioned earlier. That wouldn't be so bad, except that often the bugs 
were introduced during refinement of the predicates. (What does the read 
function return for the very first record? If you answered new_ account, 
you have thirty seconds to find the bug.) Worse still, it's easy to add such 
bugs during maintenance. (The boss just asked that each customer get an 
even number of pages. Try it!) This is not a robust solution. 
11r'he failure here is that we applied inside-out design too early. If you 
~recall, I warned about that danger in the previous essay. (See Essay 2: 
Writing Predicates.) You see, inside-out design helps you get your predi­
cates right, but it doesn't tell you in what order to write them. 

In the absence of any other direction, we fell naturally into writing an 
input-driven program. That is often a good idea, particularly in the pres­
ence of look-ahead problems such as we have here. But even as an input­
driven program, this one fails to reflect fully the structure of the input. The 
main loop tells the world that the input consists of zero or more 
transactions but the full structure is 

zero or more qroups, each with 
one or more transactions 

Does that seem like a small thing to you? I believe Einstein once said 
something like, "A physical theory of the real world should have no more 
complexity than the real world, and no less." In the simpler world of 
programming, that means you had better not write programs with more 
structure than needed. And you had better not write them with less 
structure than needed either. 

It might be more enlightening to compare different ways of writing 
loops. Let's say you need a double loop over the indices of a two-dimen­
sional array. In C, you might write something like: 
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for (i = 0; i < I MAX; ++i) 
for (j = O; j < J_MAX; ++j) 

But you could also write it as a single loop: 

for (i = 0, j = O; j < J_MAX; ++j) 
{ 
if (j == J_MAX) 

{ 

} 

j = 0; 
if (I_MAX <= ++i) 

break; 
} 
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You've seen it done. You may even have done it yourself from time to 
time. Not nearly as readable, is it? Believe it or not, I have even seen the 
same control written as three loops which disguise the structure: 

for (i = 0; i < I_MAX; ++i) 
for (k = O; k < J MAX; ++k) 

for (j = 0; j < J_MAX; ++j) 
if (j == k) 

So there are countless ways to obscure the intent of a program and still 
do the job, at least until the next poor sucker has to inherit the clever riddles 
you have posed. 
)QOU can make this report generator program noticeably easier to under­
~ stand just by restructuring it as a double loop on input, since that is the 
actual structure of the input file. You can make it even easier to understand, 
however, by constructing it around the more complex structure of the 
output file that it must generate. This structure can be written as: 

zero or more paqe qroups, each consistinq of 
one or more paqes, each consistinq of 

a header, followed by 
1 to 40 transaction lines, followed by 
0 to 39 empty lines, followed by 
a footer, consistinq of 

a paqe total, followed by 
either 

"more to come", or 
an account total 

The pseudo code for this approach is shown in Figure 3.1. 
I used a REPEAT . . . UNTIL loop in this example, because the specifi­

cation assures us that the loop must execute one or more times. The vast 
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status := read_line() 
WHILE (status <> end_of _file) 

<initialize account sums> 
REPEAT 

<put header> 
i := 0 

Programming on Purpose 

<initialize paqe sums> 
WHILE (status = same account 

AND i < 40) -
<put transaction line> 
<accumulate sums> 
i := i + 1 

WHILE (i < 40) 
<put empty line> 
i := i + 1 

<put footer sums> 
status := read_line() 
IF (status = same_account) 

<put "more to come"> 
ELSE 

<put qrand total> 
UNTIL (status <> same_account) 

Figure 3.1 Pseudo code for report generator. 

majority of loops are better written as WHILE statements, because looping 
zero times happens more often than you can possibly imagine. 

Notice that the only things in bizarre places in this structure are the calls 
to read_line to keep some of the predicates current. This is to be ex­
pected, since the structure reflects that of the output file, not the input. 
Many of you would have written this program without the outer loop, on 
groups of pages. Had you done so, then the code for <initialize 
account sums> also becomes orphaned from the control structure. In­
stead of having one right place to abide, at the top of the loop on pages 
within an account group, it must be replicated at the top of the program 
and in the footer code, where you discover that an account group has come 
to an end. That isn't bad, but it's not as good as it can be either. 
~lease understand, it is not the replication of code that I care about. That 
...fFJ'is either a good idea anyway, because different instantiations of it 
should evolve independently, or easily recast as multiple calls to a common 
function. My major concern here is the Principle of One Right Place - there 
should be One Right Place to look for any nontrivial piece of code, and One 
Right Place to make a likely maintenance change. Right-to-left design 
dramatically increases the chances that any changes related to the structure 
of the output file will be located in One Right Place within the program. 
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With that concrete example under our belts, we can now wax a bit more 
abstract. What I am talking about here is not structured programming, at 
least not exactly. Rather, right-to-left design tells you to look at the data that 
a program is to generate. Describe its structure in terms of a few basic 
primitive forms, recursively applied. Then write your program to reflect 
closely the structure you imposed on the data. If the structure of the output 
data is at all interesting, then you will have published an important account 
of it in the indentation of your source code. 

The three basic structures that you should use are: 
• sequence - one thing after another 
• repetition - zero or more instances of the same sort of thing, the count 

being determined by some predicate 
• alternation - exactly one of a choice of alternatives, the choice being 

determined by some predicate. 
It has been proved, I believe, that any data structure can be composed 

from these three structures. I've never bothered to memorize the proof, or 
even the reference, because it is of no practical import whether the three 
structures are sufficient or not. I believe with equal faith that you can 
compute anything on a Turing machine, but nobody has ever offered 
Whitesmiths money to write a C compiler for one. 
7fitack in the days when Dijkstra's diatribe against the GOTO statement 
?JiJwas still a fresh topic of conversation (Dij68), completeness was an 
important issue. Bohm and Jacopini had proved long ago (B&J66) that you 
could model any computer program by using just three control-flow struc­
tures, and a bushel basket full of Boolean flags. Us converts waved this 
interesting bit of news under the noses of the unreconstructed assembly­
language programmers who kept trotting forth twisty bits of logic and 
saying, "I betcha you can't structure this." Neither the proof by Bohm and 
Jacopini nor our repeated successes at writing structured code brought 
them around one day sooner than they were ready to convince themselves. 
But those were the good old days. 

Now all I care about is how often it enhances readability to express data 
in terms of these three basic structures. I know there are some cases where 
the result just isn't worth the bother. I know also that most of the time the 
result is just fine. 

And in case you haven't guessed by now, the program that generates 
structured data is a structured program. This is because you use: 
• a sequence of statements - to generate a sequence of data 
• a WHILE loop - to generate a repetition of data 
• an IF-ELSE to generate an alternation of data 

So you see, structured programming is a side effect of structuring data, 
in this case. And structuring data is not something you have to do only 
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when generating reports. Look at the data-structuring capabilities of C (and 
Pascal): 
• structs (records) - let you specify a sequence of related fields 
• arrays (arrays) - let you specify a repetition of objects of the same type 
• unions (variant records)- let you specify an alternation of fields 
311rogrammers tend to be more haphazard in computing values stored in 
..fiiiJmemory that when computing output. We take it for granted that 
memory is random access, while output can be so arbitrarily large that we'd 
better generate it in just the right order and get it off our hands quickly. I 
personally am growing progressively more pedantic about assigning to the 
fields of a record in the order in which they are declared, and looping over 
the objects in an array in order of increasing index. Why? Partly so that I 
can turn stores into writes to a file at a later date, should the need arise. But 
mostly so that I can convince myself that I haven't missed anything, just by 
a casual reading of the code. 

I have focused primarily on the structure of generated data, because that 
is the simpler case. The predicates are usually the most obvious. You can 
also work out the structure of your input data, of course, as we did earlier. 
Input is fraught with an additional host of problems, however. Aside from 
end-of-file and read-error detection, mentioned earlier, there is the general 
problem of parsing the input to determine where it fits in the structure you 
have ascribed to it. That's where look ahead comes in, as well as other 
complexities such as backtracking, error recovery, and resolving ambigui­
ties. Parsing input is the topic of a later essay. (See Essay 5: Recognizing 
Input.) 

The example program I gave was not a pure example of generating data, 
of course. Unless you are generating a table of haversines, this is usually 
the case. As a matter of fact, both the input and the output to the example 
program contributed structure that had to be accommodated by the con­
trol-flow logic of the program. I intentionally kept the structure of the input 
simple enough that it mostly got lost within the structure of the output, 
aside from a few look-ahead reads that were hard to excuse away. When 
both the input and the output have nontrivial structure, however, you have 
quite a different kettle of fish. Then you must make a concerted effort to 
marry the two structures, or divorce them completely. That too is the topic 
of future essays. (See Essay 9: Marrying Data Structures and Essay 10: 
Divorcing Data Structures.) 
11ro give credit where it is due, I should point out that there are several 
\Uleloquent spokesmen for the need to structure data. Jean Dominique 
Warnier was perhaps the earliest to write on the subject, originally in French 
then later in English (War74, War78). His message was brought to the 
English-speaking world by Ken Orr (0rr77). The Warnier-Orr diagrams 
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mentioned at the outset of this essay are a graphic way to represent 
structured data. (I'm a firm believer in indented pseudo code to represent 
anything structured, so I've chosen not to show them here.) Still another 
proponent of data structuring is Michael Jackson (not the singer). He has 
written quite a bit, in British, on the problems of clashes between input and 
output data structure (Jac75). 

All of my references for them are fairly old now, since I have been off the 
lecture circuit for eight years. I know they have been writing fresher 
material, so you should read their latest stuff if you want to learn more. 
Having the privilege of the last word in this essay, however, I warn you to 
stay alert to where the data-structuring techniques that they describe do 
not work, as you read about the cases when they do. o 

mfterword: This is my favorite way to justify structured programming. I find 
x:::ithat data structure offers much more guidance than a simple faith in GOTO-less 
programming. Even so, you can see that the best way to structure data does not 
always leap out at you. The process is guided, but iterative. 

You should also note my ongoing concern about staying current with the 
literature. (See previous Afterword.) There wasn't nearly as much new material as 
I presumed, but there was some (for example, Jac83). 





4 Finite-State Machines 

METHOD: Bottom-up design. 
DESCRIPTION: Bottom-up design focuses on the low-level operations 
needed to cause transitions from one remembered state to another. It can 
be viewed as a language-building process - a vocabulary of basic opera­
tions is first built, then used to express higher-level modules that achieve 
the overall result. It can also be viewed as the construction of a finite-state 
machine - a finite number of remembered states are identified and the 
rules for making state transitions form the meat of the module. The name 
derives from the convention of drawing hierarchical decompositions of 
functions with the most-general modules (the root of the tree) at the top 
and the most-detailed modules (the leaves) at the bottom. 

Any module expressible as a structured program, and hence any module 
that recognizes or produces structured data, can be expressed as a finite­
state machine. Hence, bottom-up design can be used in a very broad class 
of situations. It is most useful, however, when encapsulating some of the 
state memory simplifies the larger structure of the program. 
DOCUMENTATION: A state diagram with transitions best captures the 
behavior of a finite-state machine. Unstructured flow charts and transac­
tion lists can reflect the procedural aspects. 
LIMITATIONS: Bottom-up design contributes little when there is no state 
memory, which is true for the great majority of modules. And if there are 
too many states (more than about seven) it can only be safely applied by 
automated techniques, such as parser generators. Otherwise the complex­
ity quickly overwhelms you, and the resultant code looks like spaghetti. 
11rhe stored-program digital computer has three major attributes: it is fast, 
~it is accurate, and it is stupid. The first two attributes are often used to 
disguise the third. Because computers can correct your spelling, beat you 
at chess, or compute your air fare to Toledo, many people believe that the 
machines know what they are doing. Those of us in the business of 
programming computers certainly know better. But, those of us in the 
business often forget that stupidity is also a virtue. 

Consider the lowly program counter. It lies at the core of every central 
processing unit (CPU), be it on a chip or crammed into an oversize refrig­
erator. All the program counter does is tell the CPU where to find the next 
instruction in main memory. All the CPU knows about the next instruction 
is that it is wherever the program counter tells it to look. 

29 



30 Programming on Purpose 

Most instructions simply increment the program counter to point to the 
next instruction in sequence. But branch instructions can start a new code 
sequence by loading a new address into the program counter before the 
next instruction is fetched. And an interrupt can seize control from a 
running program for a millisecond or for a week, simply by saving the old 
program counter and loading up a fresh one of its own devising. When an 
interrupt sequence completes by reloading the old program counter, the 
interrupted program continues with no knowledge that it was in limbo. 

Given a basic engine for executing instructions, built around a program 
counter, you can then proceed to make up instructions one at a time and 
add them to the repertoire of your CPU. You use the inherent stupidity of 
the CPU as an opportunity to divide and conquer. The fun comes in 
guessing which instructions are absolutely necessary, which are useful 
enough to include, and which are best left out. The last group must, of 
course, be adequately expressible in terms of the instructions you choose 
to implement, or you have a crippled CPU on your hands. 
7having personally programmed dozens of different computers, de­
Rsigned over a span of several decades, I can testify that many of the 
instruction sets chosen for commercially successful computers are difficult 
to live with. Millions of years of programmer time have been spent doing 
battle with one or two widely used computers (which shall remain name­
less here), instead of solving the problems at hand. Indeed, a major reason 
why us compiler writers are in business is that so many computers need to 
be paved over with a better instruction set for solving certain problems. 
Some of those better instruction sets are called FORTRAN, Pascal, and C. 

Having also personally designed a few instruction sets, I can also testify 
that it is not an easy thing to get right. You have to guess the proper set of 
primitive operations (the instructions) for expressing a broad class of 
applications, most of which you certainly have not seen in any detail. You 
have to be ruthless in trimming little-used features, lest you use so many 
bits for identifying instructions and operands that even simple programs 
take too long to read out of memory and occupy too much space. In short, 
you need more experience than the vast majority of practicing program­
mers, coupled with an aesthetic sense that is far more art than science. 

Designing programming languages is much like designing computers. 
You don't count gate delays or square microns of silicon, but you do worry 
about compiler complexity and learnability. If you include too many "in­
structions," as in COBOL or PL/I, the language pre-empts much of the 
vocabulary you'd like to use to express your program, and you never feel 
you understand large parts of it. If your language is too spare, as in APL or 
Forth, it may be difficult to express programs that can be read by others. 
Even if you push many of your problems out to libraries, as in FORTRAN 
and C, they don't go away. They simply change shape. 
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?ll?lll'hat does computer or language design have to do with program 
~design? Plenty. Most of us apply the same paradigm to constructing 
our programs as is used in designing CPUs. We start with a program 
counter, build a stupid engine around it, then proceed to hang instructions 
on it. This is called bottom-up design. 

I know you have been told in school that this is not The Way to Do Things. 
You must first identify the overall goal of your program, express that in a 
page or less of pseudo code, then proceed to refine the pseudo code by 
repeating the process for a hierarchy of ever more detailed modules called 
from the higher levels. This approach is called top-down design, and is well 
taught by such luminaries as Edsger Dijkstra, C.A.R. Hoare, and N. Wirth, 
to name a few (Hoa69, WirG, Dij72, DDJ72, Wir73). I'm all in favor of this 
approach, and plan to devote a future essay to it (Essay 11: Who's the 
Boss?). But you might also go back and read my first essay (Essay 1: Which 
Tool is Best?) concerning its limitations. 

One virtue of bottom-up design is that it often works. If the problem you 
are trying to solve is not too complex, you can home in on a working 
program pretty quickly. Expressing that as structured code that is readable 
and maintainable requires little additional effort. 

You are led naturally to bottom-up design when you start listing all the 
atomic operations that you must perform to solve a given problem. You 
also drift into this approach when you list all the variables needed to 
capture the state of a computation, and write down all the consistent sets 
of values the variables can assume. Whichever you do first, the other must 
follow. What you end up with is the design of a finite-state machine. 

A finite-state machine is characterized by a limited amount of internal 
memory (the finite state), and a set of rules for making transitions from one 
state to another (the machine). You can think of the internal memory as an 
elaborate program counter, and the transition rules as the instructions, for 
a custom-built computer designed to solve the problem at hand. Chances 
are, you won't build hardware out of gates and memory chips to do the job. 
Instead, you will simulate this finite-state machine by writing a program 
in a higher-level language. There are a thousand disguises for a finite-state 
machine simulator, but all have the same essential shape: 

state := STATEl 
WHILE (true) 

IF (state = STATEl) 
<action #1> 

ELSE IF (state = STATE2) 
<action #2> 

The various actions include logic that assigns new values to the variable 
state, from time to time, to put the machine through its paces. 
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state = 0 
WHILE {TRUE) 

IF (state = 0) 
c := qetchar() 
IF (c = '/') 

state := 1 
ELSE IF (c = EOF) 

<exit> 
ELSE 

putchar(c) 
ELSE IF (state = 1) 

c = qetchar () 
IF (c = '*') 

state := 2 
ELSE 

putchar ( ' I ' ) 
putchar(c) 

state := 0 
ELSE IF (state = 2) 

c = qetchar () 
IF (c = '*') 

state := 3 
ELSE 

c = qetchar () 
IF (c = '/') 

state .- 0 
ELSE 

state .- 2 

Figure 4.1 Pseudo code for comment stripper. 

Programming on Purpose 

7& ere is a concrete, if frivolous, example. Say you want a program to 
Rremove all of the PL/I- or C-style comments from a text file. That is, 
the sequence/* begins a comment, and the sequence* I ends it. You want 
all such sequences to be dropped while you copy everything else. (This 
might be a useful way to process C programs whose comments are mis­
leading.) We can identify four distinct processing states: 
0) outside a comment 
1) seen a I outside a comment 
2) inside a comment 
3) seen a * inside a comment 
The pseudo code then can be written as shown in Figure 4.1. 

This code assumes the existence of the C-style primitives qetchar and 
putchar, which have special character codes for end-of-line and end-of­
file. Since line structure is ignored in PL/I-style comments, end-of-line calls 
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Figure 4.2 State diagram for comment stripper. 

for no special processing here. End-of-file is represented in the program by 
the symbolic value EOF. 

The only way I know to understand code like this is to trace through 
enough cases to convince myself that it handles everything correctly. A very 
useful aid is the state diagram shown in Figure 4.2. The circles represent the 
different states, and the arcs the rules for changing states. In this example, 
one character of input is consumed on each state transition. A state transi­
tion is thus a function of the current state and the next input character. You 
can also draw the state diagram first, then write the code to match. Assum­
ing you have labeled the transitions carefully, the coding is a straightfor­
ward application of inside-out design (Essay 2: Writing Predicates). 
ms an important aside, I would like to acknowledge that the pseudo code 
.:cl.shown above is unnecessarily stylized. It is silly to set a state variable 
for the sole purpose of ensuring that the next time around the loop your 
program will select the proper choice. I am less concerned about the extra 
microseconds consumed by this machinery than I am about its readability. 
It looks at first glance as if far more is going on than there really is. 

Here is the one place in all of programming where I think you can make 
an honest case for using GOTO statements. They do exactly what is needed. 
Consider the revised version shown in Figure 4.3. 

I personally find this much easier to read, and much closer to the state 
diagram it is intended to model, than any contrivance that avoids the use 
of GOTO statements. Indeed, the one place we tolerate GOTO statements at 
Whitesmiths, Ltd. is in the device handlers for the Idris operating system. 
A device handler must typically track the state transitions of the piece of 
hardware it is trying to control. Hence it is written using bottom-up design 
and expressed as patches of code connected by GOTO statements. Using any 
other style would be dishonest and misleading. 
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NOT IN COMMENT: 
c := qetchar() 
IF (c = '/') 

GOTO SEEN SLASH 
ELSE IF (c = EOF) 

<exit> 
ELSE 

putchar(c) 
GOTO NOT IN COMMENT 

SEEN SLASH: 
c = qetchar () 
IF (c = '*') 

GOTO IN COMMENT 
ELSE 

putchar ( ' I' ) 
putchar(c) 

GOTO NOT IN COMMENT 
IN COMMENT: 

c = qetchar () 
IF (c = '*') 

GOTO SEEN STAR 
ELSE 

GOTO IN COMMENT 
SEEN STAR: 

c = qetchar () 
IF (c = '/') 

GOTO NOT IN COMMENT 
ELSE 

GOTO IN COMMENT 

Figure 4.3 Revised pseudo code for comment stripper. 

Programming on Purpose 

7{t is, of course, quite possible to write the comment stripper without 
;JJ resorting to state variables. As an exercise, you should recast the pseudo 
code above to eliminate the variable state (without using GOTO state­
ments). Even though the grammar of PL/I-style comments is particularly 
nasty, you can still write fairly readable structured code to recognize it. 

As a general rule, in fact, it is a good idea to eliminate as many switches 
and flags as possible from your code. Why? One of the great virtues of 
structured code is that you can tell a lot about the state of a computation 
just by knowing its textual position within your program. Instead of tracing 
your way through an unstructured flow chart that must be spread out over 
two (or more) dimensions, you have an indented listing that has only "one 
and a half" dimensions, so to speak. The program itself reflects a structure 
that closely models the structure of the problem you are solving. 
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But once you introduce even a single Boolean flag, the state of the 
computation at any point is twice as complex. It depends both upon the 
textual position within the program and the value stored in the flag. You 
have two program counters, and one of them is not so easy to inspect. 

Now you see how bottom-up design earned its bad reputation. It en­
courages the use of redundant program counters, and/ or unstructured 
programs, and/ or GOTO statements. Small wonder that it has fallen out of 
favor. And if its only virtue is that it often works for programs that are small 
enough, that is certainly damning bottom-up design with faint praise. 

There is, however, an important reason for using this approach. Some­
times you need two program counters. 
711?1\te wrote the comment stripper as a stand-alone program, and ac­
~knowledged that it was of limited usefulness. There are, however, 
real life programs other than compilers that manipulate PL/I or C source 
code. They must strip comments very much as is done in this example. An 
important real-life difference is that comment stripping is just one of several 
transformations that the input must undergo, and probably one of the 
simplest transformations. 

If performance were not an issue, and if you had a UNIX-like system at 
your disposal, you could use the comment stripper above as just one stage 
of a pipeline. Subsequent programs in the pipeline could be written to 
process only programs that had no comments, and each could be structured 
around one and only one transformation. But performance is always an 
issue, at some point, and few programs can be kept simple enough to 
devote all of their logic to one aspect of a problem. 

Most programs are chock full of little finite-state machines, each keeping 
track of a bit of local structure, so that your program need not be polluted 
with all the details. Consider the primitive function getchar, for instance. 
Somewhere in the bowels of the getchar function, or the system facilities 
it draws upon, must be retained a rich assortment of knowledge about: 
• which file is currently opened as the standard input 
• which block within the file is being read 
• which character within the block or record is the next one to read 
• whether end-of-file has been encountered 
and so on. We talk about FILE variables, about buffering, about unblock­
ing or blocking, about queuing exception handlers, about allocating stor­
age on a heap - all without a conscious awareness that each requires a 
finite-state machine with its own private state memory. 

When you add a comment stripper to your program, chances are it's not 
as the main control module. More likely, it is an input module that you call 
to deliver up the next character not inside a comment. It probably looks 
something like the code in Figure 4.4. 



36 

FUNCTION qet non comment char() 
STATIC state-= 0- -
STATIC c 

WHILE (TRUE) 
IF (state = 0) 

c : = qetchar () 
IF (c = '/') 

state := 1 
ELSE IF (c = EOF) 

state := 4 
ELSE 

RETURN (c) 
ELSE IF (state = 1) 

c = qetchar () 
IF (c = '*') 

state .- 2 
ELSE 

state .- 4 
return (' /') 

ELSE IF (state = 2) 
c = qetchar () 
IF (c = '*') 

state := 3 
ELSE IF (state = 3) 

c = qetchar () 
IF (c = '/') 

state .- 0 
ELSE 

state .- 2 
ELSE 

IF (c <> EOF) 
state := 0 

RETURN (c) 

Figure 4.4 Pseudo code for comment stripper function. 

Programming on Purpose 

1{ have added another state which is entered whenever a subsequent call 
.:nshould return the character stored in the variable c. Note that this 
function requires private memory, for the variables state and c, which is 
retained between calls to the function. It must also be possible to initialize 
the variable state to a known value at program startup. Programming 
languages that lack this form of private memory must expose such vari­
ables to functions that have no business looking at them. And programming 
languages that cannot initialize private memory via static declarations 
must perform explicit initializations at program startup, usually in places 
far removed from the function that uses the variables. Both of these defi-
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ciencies lead to program maintenance problems that make private memory 
deservedly unpopular among conscientious designers. 

So to summarize: 
• You write modules with private memory for one purpose only, to 

memorize where the module left off in processing some data structure 
when it returned control to the module that called it. 

• The virtue of this practice is that it hides information about some data 
structure from the rest of the program, when the rest of the program has 
no business knowing about the hidden structure. 

• The price you pay with this practice is that you are adding hidden 
program counters to your program, which makes it harder to read, 
debug, and maintain. 

• If you are indeed hiding structure with private memory, the price is 
worth it. 

• If you are not, get rid of the private memory. 
11rhe vast majority of modules you write can and should have no private 
~memory. They should not even access global variables, if at all possible, 
since these merely constitute a form of private memory that is shared 
among several modules. (Global variables that are constant, such as read­
only tables or flags altered only at program startup, are possible exceptions 
to this rule.) A pair of functions called push and pop can usefully hide 
information about the state of their stack. An arcsine function, on the 
other hand, has no business altering anything but dynamic memory that is 
allocated upon each invocation of the function. 

When you must write a module, or group of modules, with private 
memory, you should use the techniques of bottom-up design to make sure 
you have accounted for all states and all state transitions in the cleanest 
possible manner. About the only thing worse than designing bottom up 
when you should be designing top down is designing top down when you 
should be designing bottom up. o 

f?tfterword: In my lecturing days, I found it hard to convince people that opposite 
~esign approaches could be compatible. Converts to top-down design shunned 
any bottom-up approach. Those still wedded to bottom-up design were convinced 
that top-down design was slow and led to inefficient designs. I seized on the concept 
of "redeeming social value" as a way to sell an unpopular technique. Any approach 
with drawbacks must pay its way by simplifying a design in some other important 
dimension. Of course, all design methods have both advantages and drawbacks. 
Accept that about one design method and it is easier to accept it about others. Thus, 
I use bottom-up design as a kind of Judas goat. (My goal is to slaughter rigid ideas, 
not useful approaches.) 
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METHOD: Left-to-right design. 
DESCRIPTION: Left-to-right design focuses on the structure of the data 
being input to a module. It is based on the premise that the structure of a 
program should closely model that of its input data. The name derives 
from the convention of drawing data flow from inputs on the left to out­
puts on the right. 

The fundamental difference from right-to-left design is that input data 
must be recognized as valid sequences of primitive forms, which is sub­
stantially harder than generating output data as sequences of primitive 
forms. Moreover, every responsible module must be prepared to deal with 
arbitrary sequences of input, many of which are invalid. Thus, input data 
structure is generally represented as a grammar (a set of rules for compos­
ing valid input sequences) over a finite set of tokens (a set of primitive 
forms). 

Numerous techniques have been developed for automatic generation of 
bottom-up parsers. Ad hoc input recognizers are generally hand crafted as 
recursive structured programs whose organization closely parallels the 
input data structure. 
DOCUMENTATION: A grammatical description of the input, with a lexi­
cal definition of valid tokens, best captures the linguistic nature of the in­
put. Data structure diagrams are effective as well, if error handling does 
not obscure the structure of valid input. Procedural representations, such 
as structured pseudo code or structured flow charts, may capture addi­
tional implementation information. 
LIMITATIONS: Left-to-right design is an effective organizing principle 
only if the structure of the input dominates the problem. If the input struc­
ture is trivial, particularly compared to the calculations involved or the 
structure of output data, this approach is not fruitful. If the output struc­
ture is nontrivial as well, see outside-in design. 
~nee upon a time, reading input was an easy job, at least for the 
~programmer. You simply required each user to punch a card giving the 
number of input cases that followed. Your program read that card first, then 
processed the number of cases specified, then terminated execution. If there 
were extra cases, the batch monitor skipped over them before processing 
the next job. If there were too few cases (possibly because your poor user 
failed to right justify the count in its field) your program either gobbled up 
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part of the next job and tried to digest it, or it encountered a condition called 
end-of-file. 

End-of-file in those days was a fatal error. The prevailing viewpoint 
among writers of operating systems was that no self-respecting program 
should ever attempt to read input data that wasn't there. Reading end-of­
file was such an obvious sign of incompetence that the system wouldn't 
even give control back to the running program through an error handler. 
It was quitting time. Much the same attitude surrounded attempts to open 
files that did not exist, or to write on protected tapes. Anything other than 
complete success was classified as a disaster. 

The programmer, freed of any responsibility for handling end-of-file or 
open failures, felt equally irresponsible about other errors. If the next input 
card should have two positive numbers in ten-column fields, you just tried 
to read it with that format. If the formatted read didn't complain, your 
program just bulled ahead with whatever values got stored. Never mind 
range or validity checks, the system will shut you down if things get too 
out of hand. 

Thus was born the pithy dictum: "Garbage in, garbage out." 
In time, this approach became less acceptable. No longer were your users 

so pleased to have a program that worked (sometimes) that they were 
willing to put up with tiresome restrictions and undiagnosed craziness. 
11r'he first thing to go, as I recall, was the practice of requiring input counts. 
~Most users can slap a special card on the end of each data deck without 
feeling put out. Programmers learned a variety of ruses for marking the 
end of input. An input case with a well placed zero value, where a zero 
value did not otherwise make sense, is still one of the commonest end-of­
file sentinels. Programs advanced enough to accept text input, usually as 
human-readable titles for cases, learned to set aside special names such as 
END or DONE to signal end-of-file. 

(As an aside, one of my favorite stories concerns the transaction-proc­
essing system that worked beautifully for years processing domestic data 
within the United States. Pressed into international service, it began shut­
ting down unexpectedly at random times. A programmer finally figured 
out that transactions from "Quito, Ecuador," were being taken as instruc­
tions to "Quit." Permitting abbreviations is not always user friendly.) 

Operating systems eventually changed their attitude about end-of-file. 
FORTRAN IV got an END= qualifier for READ statements. COBOL had the 
AT END clause in its READ verb. And PL/I, from its outset, let you specify 
an ON-unit for ENDFILE. Note that end-of-file was still considered some 
undesirable aberration, but now it was one you could trust a user program 
to deal with. 
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The problem of signaling end-of-file in a stack of card decks still re­
mained. It just got pushed out one level further from programmer control. 
The net effect was to add even stranger sentinels such as $EOJ to the users' 
vocabulary of required esoteric knowledge. 

If you think we've made any progress in this area, look again. How do 
you signal end-of-file at your terminal? Do you type control-0, control-Z, 
I*, or something weirder? Is it the same for all programs you use every 
day? Is there some way of crafting an input line that looks to your program 
like the input sentinel but is not reported to it as end-of-file? Having a 
standard notation for end-of-file on an interactive channel is important if 
you shift among several systems, or if you write programs that talk to other 
computers via interactive ports. Having a way of quoting the end-of-file 
sentinel is important in achieving transparency. 
?ll?llt hat is transparency? It is the ability to send an arbitrary message 
~along some channel, without fear that certain messages will get lost 
or cause undesirable side effects. You can have a channel that treats certain 
input as special, yet can still be made transparent, provided there is an 
alternate way to spell any special input. An alternate spelling is called a 
quoted message or an escape sequence. The C language, for instance, makes 
extensive use of the backslash character within string and character con­
stants to achieve transparency. You may not type a newline character within 
a string constant, but you can spell one with a backslash and a lowercase 
n, as in "\n". And you can spell a backslash as two backslashes, as in "\ \ ", 
so that character is not lost to you either. 

Most people are not sensitive to the need for transparency until its lack 
gets in their way. You know those plastic bars that supermarkets provide 
to separate your groceries from your neighbors in the check-out line? They 
make first rate, unambiguous delimiters. Now suppose you are seized with 
an urgent desire to buy one of them along with the rest of your groceries. 
And you have laryngitis. And no pencil or paper. The "escape sequence" 
you would have to contrive by pointing and grunting would certainly 
attract a crowd, and annoy the person behind you in the check-out line. Too 
bad you can't just put a backslash in front of it, on the conveyor belt. 

The point is, that us humans can always pop up one level of metalan­
guage to deal with a communications impasse, but a computer program 
cannot. You can avoid transparency problems by ruling out only the most 
esoteric input, but sooner or later it will bite unless you plan properly from 
the start. 

And the higher-level point is, once your program starts reading input 
until end-of-file, you are in the business of recognizing an input language. 
You can often keep that language simple, such as: 

zero or more text lines, followed by 
end-of-file 
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but it is a language nevertheless. 
More likely, your input has at least some structure that your program 

must recognize in order to handle each case properly. A text editor, desk 
calculator, or most transaction-processing programs fall into this category. 
Possibly, your program imposes a nontrivial structure on its input, so that 
you or anybody else would call it a language processor. Then you're in the 
big leagues of input recognition. 
,.ff:'I'Om those primitive early days I described above, there has been a 

,.JJ steady trend in the direction of requiring programs to recognize ever 
more elaborate input structure. If you've avoided thinking about this area 
so far, you probably won't be able to stay innocent much longer and remain 
a working programmer. 

Once you know the shape of a problem, then you should look at the 
shape of known solutions for guidance in designing the program that 
addresses that problem. Left-to-right design says that any program that 
must read input is a language recognizer. You must write a grammar for 
the input language, then reflect the structure of that grammar in the 
structure of the program you write. The difficulty of this exercise is deter­
mined by the properties of the grammar you end up with. 

As part of right-to-left design (Essay 3: Generating Data), I described 
the basic building blocks for structuring data. What is normally called an 
input record is just a sequence of related data fields of various types. Certain 
fields can have alternate formats, or interpretations, based on some predi­
cate - usually determined by earlier fields in the record. And certain fields 
can be repeated within a record, the number of repetitions being based on 
some predicate - usually determined by earlier fields in the record (or a 
special end marker). Indeed, a typical input file is a repetition of zero or 
more identical records, so the outermost structure of many files is similar 
to the text file structure shown above. The Pascal data type FILE takes this 
repetition for granted. 

These building blocks of sequence, alternation, and repetition can be 
used to structure any data, in principle. They are useful for structuring most 
data, in practice. It is the predicates for alternation and repetition that reveal 
how useful a given data structure is for recognizing input. 

In the simplest case of reading until end-of-file, the predicate is just a 
little tricky: 

WHILE (when I attempt to read input, 
I do not encounter end-of-file) 
<process the input I read> 

Many languages do not permit you to attempt a read, store the input 
data if successful, and obtain a value suitable for end-of-file testing - all 
within the test portion of a WHILE statement. (C programmers delight in 
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antics such as this.) Indeed, there is a strong school that finds offensive the 
calling of any function that has side effects from within a predicate. Be that 
as it may, it's something you have to do all the time. I always concoct 
read-and-test functions for any language that doesn't provide them. I find 
side effects within predicates far preferable to contorted control flow. Given 
such a function, you can write your generic input driven program as: 

WHILE (qet_input(record) <>end-of-file) 
process_record(record) 

...i:-rom these simple beginnings, you can build up most simple transac­
,,JJ tion-processing programs. Jean-Dominique Warnier (War78), Ken Orr 
(Orr77), and Michael Jackson (Jac83) all give numerous examples of how 
to structure input data and write programs that recognize that structure. 
Indeed, there are lots of simple examples of input data structure from the 
world of commercial data processing. 

There are also lots of complex examples from the world of language 
translation. If you want to learn more than you should ever need to know 
about parsing complex grammars, read any of the several excellent books 
by Al Aho and Jeff Ullman (A&U72, A&U77, A&U86). They focus heavily 
on automatic generation of bottom-up parsers. (Steve Johnson's yacc, that 
comes with UNIX, is a famous example of this technology.) I think, how­
ever, that most of your input parsing needs can be met quite adequately by 
hand crafting top down parsers. Such techniques are also nicely covered 
by Aho and Ullman. 

Here is a middle-of-the-road example that should illustrate several 
important issues in writing top-down parsers. Let's say you wish to write 
a simple desk-calculator program, one that performs the four arithmetic 
operations on numbers and parenthesized subexpressions. Each expres­
sion must be written alone on a line. For each input line, the program reads 
an expression, parses it, evaluates it, and prints the numeric value. You can 
write the input grammar as: 

zero or more text lines, consistinq of 
an expression, followed by 
an end-of-line, all followed by 

an end-of-file 

The grammar for an expression is recursive, as shown in Figure 5.1. 
In the jargon of parsing technology, this is a recursive grammar with 

seven terminal symbols. A terminal symbol such as ' +' is represented in 
the input as the literal character +, just as the terminal symbol ' - ' is 
represented by - , and so on. The terminal symbol NUMBER has its own mini 
grammar, enforcing the usual rules for writing decimal points and trailing 
exponents. 
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an expression is 
a factor, or 
an expression 
an expression 

, +' 
, - , 

a factor, or 
a factor 

a factor is 
a term, or 
a factor '*' a term, or 
a factor'/' a term 

a term is 
a NUMBER, or 
a '+' term, or 
a '-' term, or 
a ' (' expression ' ) ' 

Figure 5.1 Recursive grammar for an expression. 

For practice, you might try writing a grammar that tolerates all of the 
forms: 

1 
12 

1.0 
12. 

leO 
0.12E+02 

11r'he first lesson you learn when a grammar gets even this complicated is 
~that you want to do your parsing in at least two stages. First you deal 
at the character-by-character level, to group the input into a sequence of 
tokens. This is called lexical analysis. Here is where things like white space, 
comments, and other formatting niceties are made to disappear before they 
confuse the higher-level grammar unnecessarily. Then you endeavor to 
parse the sequence of tokens, which means you try to guess what the 
structure of the input must be and where each token fits in the structure. In 
this example, you could define the tokens: 

number (with a value) 
add-op 
sub-op 
mul-op 
div-op 
left-paren 
right-paren 
end-of-line 
end-of-file 

The second lesson you learn is that you can't always just write a struc­
tured program modeled after the grammar. For the simple, non-recursive 
grammars that describe a sequence of input records, you should expect few 
problems. Even most forms of recursion cause no problem, assuming you 
are programming in a language that supports recursive function calls, such 
as PL/I, Pascal, or C. But when you encounter left recursion, as in this 
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example, you have to rewrite the grammar a bit. Otherwise, you end up 
writing code that recurses to death. 

So we change the grammar for an expression to be: 

an expression is 
a factor, followed by 
zero or more occurrences of either 

a '+' followed by a factor, or 
a '-' followed by a factor 

And the code for parsing functions looks something like: 

qet_expr() 
tree := qet_factor() 
WHILE (can_eat(add-op) OR can_eat(sub-op)) 

op := qet_token() 
tree := make_tree(tree, op, qet_expr()) 

return (tree) 

If that transformation looks like magic to you, well it isn't. You can 
always take a left-recursive grammar and eliminate the left recursion pretty 
mechanically. And the result is still a structured program that does a pretty 
good job of capturing the input structure in the program indentation. 
Mostly it takes practice. 

This is not to say that I have indulged in no magic here. After decades 
of writing parsers, I have learned the kind of primitive functions that give 
the biggest payback. Those little gems with names like can_ eat, qet _to­
ken, and make_ tree make all the difference when it comes to decorating 
the basic program structure with nitty gritty details. I won't go into their 
details here, but the names should suggest much of their operation. 
?11?11.thich leads to the third lesson. Even if the structure of the input 
~dominates the design, you must still know what your output looks 
like before you can get on with writing code. In this case, the grammar and 
experience tell us that you can represent an arbitrary expression by a data 
structure called a binary tree. The leaves of the tree hold NUMBERs, each of 
which has a value. A node with one descendant is a unary operator ( +5 or 
-3). Anode with two descendants is one of the four binary operators (3+2, 
3-2, 3*2, or 3/2). There is no need to add any additional structure to 
represent parentheses. (Why?) 

So each of the functions qet _ expr, qet _factor, and qet _term 
should return a pointer to an allocated data structure. The data structure 
must contain at least the fields shown in Figure 5.2. 

Note that this data structure is once again composed by applying se­
quence, alternation, and repetition. Note also that the output of the expres­
sion parser is a data structure that exactly captures the structure of the 
input. There is no dash of structures. Thus, the structure of the input 
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an expression element is characterized by 
a discriminant, siqnalinq either 

a leaf, havinq 
a value; or 

a unary operator, havinq 
an operator type, followed by 
an operand pointer; or 

a binary operator, havinq 
an operator type, followed by 
a left operand pointer, followed by 
a riqht operand pointer 

Figure 5.2 Data structure for an expression parser. 

dominates the problem and there are no additional structuring considera­
tions in shaping the program. (This is a partial lie, which I will address 
below.) 

So, to summarize how far we've gotten so far: 
• Left-to-right design tells you that nontrivial input data structure is a 

parsing problem. 
• You must write a grammar that captures the structure of the input data. 
• For complex input, you should identify a lexical grammar, over individ­

ual characters, and a higher-level grammar over the tokens you con­
struct with your lexical grammar. 

• If you use the three building-block forms, then you can write a struc­
tured program that recognizes the input and neatly documents the input 
data structure in the indentation of the code. 

• You may have to modify your grammar, in a straightforward fashion, if 
it involves left recursion. 

• You will probably have to build a nontrivial internal data structure to 
capture a nontrivial input data structure. 

• It is important to define your internal data structure before you attempt 
to write detailed code from the grammar. 

~ow let's look at all the things that can go wrong when you attempt to 
»structure your programs around recognizing input. As before, I am 
assuming that your goal is to produce an ad hoc recognizer that is organized 
as a collection of mutually recursive functions that parse top down. If you 
want to use one of the several parser generators (such as yacc under UNIX) 
that are widely available, please feel free to do so. You will not avoid the 
issues presented here, they just pop up in different places. 

The first issue is ambiguity. Earlier, I gave an example of a grammar for 
recognizing simple expressions, the kind you might type into a pocket 
calculator that accepts parentheses and the four basic arithmetic operators. 
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When the time came to write code that implemented the grammar, I found 
it necessary to change the grammar to eliminate left recursion. The resultant 
grammar was a simple transformation of the original and, as far as I know, 
accepts the same input language. 

What I was careful not to point out, however, was that I could have 
written quite a number of different grammars to satisfy the verbal descrip­
tion of the problem to be solved. Let's now consider a few variations. 

First of all, I could have written a right-recursive grammar instead. The 
definitions of expression and factor would then be: 

an expression is 
a factor, or 
a factor , +' an expression, 
a factor , _, an expression 

a factor is 
a term, or 
a term '*' a factor, or 
a term'/' a factor 

or 

This recognizes the same input language as the left-recursive grammar 
I chose to present. It does, however, ascribe a slightly different meaning to 
certain sentences in the language. For example, the expression: 

6 I 2 * 3 

is effectively parenthesized by the left-recursive grammar as: 

(6 I 2) * 3 

so the value is 9. The right-recursive grammar parenthesizes as: 

6 I (2 * 3) 

so the value is 1. 

7{ know that common usage favors the first interpretation, but that doesn't 
.:.nmake the second form wrong. In the first place, I forgot to specify 
anything about common usage in my verbal description of the problem. 
Any programmer would have a legitimate gripe about an analyst who 
forgot to write down a constraint that might be obvious to the analyst but 
not to the programmer. In the second place, I could have fixed up the 
problem in the semantic phase of input recognition. After all, right recursion 
avoids the restructuring problem that I had to deal with given the left-re­
cursive grammar as a starting point. It's arguably no messier to rewrite the 
parse tree as it is formed, and stay closer to the original grammar. 

With either grammar, I have put off some important constraints to the 
semantic phase anyway. For instance, any mathematician will be quick to 
tell you that the sentence: 

s I o 
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is not valid in the language of mathematical expressions. Division by zero 
is just plain undefined. We could try to handle this by introducing a dis­
tinction in the lexical category NUMBER: 

a NUMBER is either 
a NONZERO, or 
a ZERO 

Then we could rewrite the grammar to restrict obvious division by zero. 
You just couldn't say it anymore. 

There are problems with this approach. One is that your customer would 
probably prefer to have division by zero reported as, "You can't divide by 
zero, turkey," rather than the laconic, "Syntax error." The second is that you 
still haven't solved the whole problem in the syntax. Consider: 

or: 

s I (6 - 6) 

s I (((3 + 7 + 10) 
* (1000 - 8) I 992) 
- 17 - 3) 

(Can you spot the literary reference in this example?) 
You might catch the first form by introducing the nonterminals 

zero_ term and zero_ factor, but after awhile the exercise gets tire­
some. Even if you do detect syntactically that the second form is undefined, 
the victory is Pyrrhic. Your grammar has become so ornate that it no longer 
clearly documents the problem you intended to solve. 
7{f you are going to push part of the recognition process into semantics, 
;JJ where do you stop? The distinction between a factor and a term is 
necessary to capture the difference in binding strength of the additive 
operators + and - versus the multiplicative operators * and I. This is not 
so bad, particularly since at least some people may remember those con­
cepts from their early training in algebra. But what happens if you start 
introducing additional operators, with different binding strengths and 
different rules for grouping (left to right versus right to left)? Even with a 
language as simple as Pascal, the number of grammatical artifices you must 
introduce is uncomfortable. For an operator-rich language such as C, it is 
downright ridiculous. 

So why not prepare for future growth by introducing a boiled-down 
grammar: 

an expression is 
a NUMBER, or 
a '+' expression, or 
a '-' expression, or 
a ' (' expression ')', or 
an expression '+' expression, or 
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an expression , _, expression, or 
an expression '*' expression, or 
an expression'/' expression 
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You must complete this grammar with a table of binding strengths for the 
various infix operators, plus grouping rules for each infix operator. Never­
theless, the resultant two-part document is probably easier to grasp by all 
concerned - analyst, programmer, maintainer, and user. 

Once you get a taste for shifting syntax into semantics, it is easy to go 
into a shark-like feeding frenzy. I have seen input-driven programs degen­
erate into the All Purpose Input Grammar: 

input is 
stuff, possibly followed by 
more stuff 

11rhe latitude you get in coding ad hoc semantic functions is wonderful 
\U.-for producing tailored diagnostics and context-sensitive interpreta­
tions. The only trouble is, with each simplification of the grammar your 
program becomes less dominated by its grammar and more by its seman­
tics. In the technology of language recognition, there is no aspect better 
understood, or better automated, than parsing. It is foolish to turn your 
back on any discipline that can help you structure a nontrivial program. 

So to summarize the problem of ambiguity: 
• Left-to-right design requires you to craft a grammar that describes the 

input your program must recognize. 
• There is usually a broad spectrum of grammars that can be used to 

describe a given input structure. 
At one end of the spectrum, you attempt to describe all constraints on the 
input with syntactic rules - you endeavor to make it syntactically impos­
sible to utter nonsense sentences. At the other end of the spectrum, you 
tolerate almost any utterance syntactically - you endeavor to filter out 
nonsense by imposing semantic checks on the input. 

As a design method, left-to-right design is weaker than it first appears. 
With all the technology available for constructing parsers, you would think 
that this part of the business of writing programs would be the most cut 
and dried. Upon closer inspection, you find that you get far less guidance 
than you would like. 

Remember, the purpose of a method is to tell you what to do when you 
don't know what you're doing. Any method that relies too heavily on 
previous experience isn't telling you much. It must be viewed more as an 
aesthetic guideline than an engineering formula. 

I was fortunate that, as an employee of Bell Laboratories when the yacc 
compiler compiler was first introduced, I got to spend about a year trying 
it out on a number of programming tasks. That was when I learned how 
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broad is the continuum of grammars that can be applied to any input 
structure. That was also when I acquired a considerable amount of my 
education in the pragmatics of constructing parsers. 

I have learned from experience where best to draw the line between 
lexical analysis, syntactic analysis, and semantic interpretation. I haven't 
learned enough to articulate hard and fast rules to others, however. I can 
tell you basically to put everything you can into the grammar that looks at 
all grammatical. If you find yourself introducing artificial syntactic entities 
(nonterminals that you have trouble describing in words) just to get the 
parse right, back off. If you find yourself reconstructing parse trees because 
they aren't built quite right, take another look at your grammar. 

I can't tell you much more than that. 
mnother issue is lookahead. One of the most important properties of a 
.a.grammar is how many symbols you have to look at before you can 
determine which grammatical structure the symbols must belong to. Per­
haps you have seen the terms LLl and LRl. These describe grammars that 
require you to look at one new symbol from the input, at most, before you 
can decide how to parse the input. There is a vast literature on the properties 
of lookahead-I grammars, so much so that you tend to forget there are other 
kinds as well. 

Are there lookahead-0 grammars? The honest answer is, "Yes and no." 
You can certainly define a grammar that requires no lookahead. In fact, I 
began this essay by describing the traditional way programs accepted input 
in the days of my youth. You were obliged to punch a card (remember 
those?) with a number specifying how many input records follow. You were 
further obliged to append exactly that many input records. The program 
took no responsibility for the consequences of your failure to follow this 
recipe exactly. 

That is a lookahead-0 grammar. 
It is reminiscent of Queen Victoria's purported practice of sitting down, 

without looking back, at whatever moment the urge struck her to do so. 
She had every expectation that some courtier would be there on time with 
a chair. It is not recorded that she was ever disappointed. (This example is, 
more precisely, one of a lookbehind-0 grammar.) 

I know of no computer programmers who have been raised to the 
peerage, so far. Meanwhile, us commoners have a stronger obligation to 
our constituencies. Even if the advertised grammar lets us off the hook 
regarding lookahead, we still must face the possibility that the input does 
not match the grammar. I like to think that I am not a dogmatic person, in 
most matters, but I unhesitatingly herewith present Plauger's Dogma: 
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Jlo program map ltabt its sanitp 
at tbt mtrcp of its input. 

This can also be expressed in corollary form as: 

~arbagt in, biagnostics out. 

51 

What this means for lookahead-0 grammars is that they are incomplete, 
for the purpose of structuring a program. By the time you complete such a 
grammar, it necessarily becomes at least lookahead-I. You must look before 
you leap. 
~nee you have to deal with lookahead, then there is a certain amount of 
~machinery you must master. That input stream that your program is 
scanning must now be elastic enough to suffer an occasional kink. In other 
words, your parsing code should have a number of places where it calls a 
function with a name something like, "Get next symbol from input stream." 
Lookahead is most easily handled centrally by adding a companion func­
tion with a name like, "Whoops, take this symbol back and give it out as 
the next symbol from the input stream." 

The ANSI C library has a standard function called unqetc that does the 
latter operation for a single character read from an input stream. If that is 
not sufficient, or if you don't have even that machinery available, it's easy 
enough to create. You simply interpose a qet function between your 
parsing code and the raw qet, then team it up with an unqet that puts 
returned symbols in a known place. Your qet always looks in the known 
place before it tries to get a truly new symbol from the input. (See Essay 4: 
Finite-State Machines for how to design modules with private memory 
like this.) 

If you have to look ahead more than one symbol, you simply provide 
for a stack (or last-in, first-out queue) of ungotten symbols. The stack must 
be at least as deep as the worst-case lookahead. When you write such 
functions, remember to have them check for stack overflow and panic 
loudly should it occur. That's invaluable for debugging the lookahead logic 
of parsers. 

But what if your grammar requires lookahead of more than one symbol? 
This is more common than you think. Even languages as well designed as 
Pascal and C have occasional lapses, where the parser must look ahead two 
characters before it can decide. Remember the comment parser we studied 
in the previous essay? (See Essay 4: Finite-State Machines.) You have to 
peer past every '/' in C or PL/I before you can make a major control 
decision within the parser - does the slash introduce an operator or a 
comment? Older languages such as FORTRAN are much worse. Perhaps 
you have seen the classic pun: 
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DO 5 I = 1, 3 
DOSJ = 13 

Programming on Purpose 

Since spaces are not significant in FORTRAN, you have to peer ahead quite 
a bit before you distinguish between a DO statement and an assignment. 

In general, such lapses are easily dealt with by a small additional amount 
of lookahead, in one or two places. These are just additional kinks in the 
input stream, if you will. One of the virtues of using a tool such as yacc is 
that it warns you of lookahead problems, without taxing your gray cells. 
You can then usually isolate and deal with small lapses one at a time. 
7fi! ut what if you have to deal with an arbitrary amount of lookahead? It's 
(l'tJlike the old joke about the man asking directions on a subway train. 
"Oh, that's easy. Just watch me and get off one stop before I do." It's no fun 
to have to take the whole trip before you learn where you should have 
gotten off. 

Arbitrary lookahead problems crop up all the time. The X3Jl 1 committee 
almost introduced one into C when it added the option of declaring the 
types of arguments in a function declaration. You see, now you can write: 

int funl(int, int); 

to declare the function funl the new way, and: 

int fun2(x, y) 
int x, y; 
{ . . . . . } 

to define fun2 the old way. That's nice. But what happens when someone 
writes: 

typedef int x, y; 
int fun3(x, y) 

Are we introducing a declaration that provides argument types, or a defi­
nition that provides argument names? If there were 30 arguments, you 
would have to look past all 30 in the argument list before you start seeing 
clues that make the correct answer unambiguous. 

There are various ways to deal with arbitrary lookahead. Most people 
subconsciously resort to one of them as soon as they detect the problem. It 
never even surfaces as a lookahead problem. 

You can recast the grammar to eliminate the problem. Generally, this 
requires the customer to specify more information up front to disambiguate 
the situation early. X3Jll blanched at the thought of adding yet another 
keyword, or grammatical artifice, so they didn't take this out. 

You can accept the problem and put the burden on the implementor. This 
is the Algol 68 approach - make the language just barely parsable and 
stimulate the technology a bit. X3Jll wanted to keep a larger community 
of implementors (and users) than Algol 68 now enjoys. 
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You can simply legislate the problem out of existence by decreeing which 
interpretation shall be chosen up front. This is what X3J11 did. If an 
argument looks like it starts with a type, then it is a type. Never mind that 
it might be an argument identifier, in the scope of a new function, that 
supersedes a typedef in an outer scope. 

Generally speaking, the third solution is the best. Most people will accept 
parsing by decree, if the chosen parse is the more common and if the 
ambiguity is sufficiently esoteric. In the case of C, there were already several 
places where the language is disambiguated this way, so the Committee 
plowed no new ground with this approach. 
mn issue closely related to lookahead is backtracking. If you think about 
.a.what you do when you have to deal with lookahead logic, there are 
three general approaches. 
• You can assume you know the outcome and proceed down that path. 

Should you find you have chosen the wrong path, you must then undo 
any computations you performed back to the point of your incorrect 
guess. This is backtracking in all its glory. 

• You can tentatively assume you know the outcome, but do as little as 
possible to proceed with the parse. Should you find you have chosen the 
wrong path, you must then undo what little work you have done back 
to the point of your incorrect guess. This is the kind of backtracking 
described above, where the only damage to be undone is to the input 
stream. 

• You can straddle the fence, deferring any commitment until you know 
the outcome for sure. Parsers constructed as finite-state machines often 
use this ploy: "Enter state 17 if you are building either a divide operator 
or the start of a comment." 
I favor the second approach for top-down parsing, the third for bottom­

up. I avoid the first like the plague. Why? Because if you must perform any 
nontrivial computation based on your current interpretation of the input, 
you must be sure to perform the inverse of that computation should you 
guess wrong. 

The inverse will probably be nontrivial as well. And all the computations 
you performed going in must be inverted in reverse order going out. The 
chances of your getting this code right, and keeping it right under main­
tenance, is frighteningly small. 

So the basic rule of backtracking is: Don't, if you can avoid it. If you can't 
avoid it, keep it simple and overt. This is where the qet/unqet function 
pair really pays off. It gives you a way of expressing the lookahead/back­
track machinery in a way that is contained and reasonably easy to check 
for correctness. 



54 Programming on Purpose 

11T"he last issue I want to mention in this essay is error handling. As I stated 
"1.iabove, I take it as axiomatic that every program should check its input 
well enough to keep from going crazy. Ideally, it should also keep from 
saying anything crazy, particularly if it masquerades as sensible output. The 
only way to do this when recognizing input is to write code that handles 
every possible sequence of input. 

What you may find, however, is that the code you add to satisfy this 
responsibility may swamp the code you need to solve the problem as 
originally presented. When that happens, much of the benefit of left-to­
right design as a structuring principle gets lost. 

There are ways to deal with this problem, but they constitute a whole 
new design method that I call easy-to-hard design. (See Essay 6: Handling 
Exceptions.) While parsing input is particularly prone to being over­
whelmed by error handling, it is by no means the only aspect of program 
design that can suffer. So I will defer any further discussion of error 
handling during input parsing until the next essay. o 

(Ttfterword: This essay appeared as two successive columns. I spliced them 
~together to eliminate the artifices introduced with the original split. Parsing is 
an enormous subject to summarize even in a double installment. My modest goal 
here was to introduce the fundamentals. A nontrivial data structure should shape 
the structure of a program that reads it, in a fundamentally different way than it 
shapes a program that produces it. Too many presentations on data structuring 
gloss over issues such as lookahead and error recovery. 

/on Bentley has described "little languages" that occur widely in applications 
programming (Ben86). These offer opportunities to define clean and powerful user 
interfaces. They also offer opportunities to structure important chunks of a program 
using right-to-left design. 
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METHOD: Easy-to-hard design. 
DESCRIPTION: Easy-to-hard design adopts the viewpoint that the struc­
ture of a program should be most strongly shaped by the normal (straight­
forward or commonplace) situations. Errors, interrupts, limit violations, 
and so forth are best handled as exceptions, with minimum impact on pro­
gram structure. The name derives from the observation that writing a pro­
gram innocent of exceptions is relatively easy, so the harder problem of 
making a program robust in the presence of arbitrary exceptions is better 
deferred to last. 

The goal is to ensure that all possible cases are handled safely, at the least, 
and gracefully if possible. The ultimate mechanism for exception handling 
is the nonlocal GOTO, to effect an unplanned early return from one or more 
levels of function call. 
DOCUMENTATION: Exception lists tell what conditions are handled, 
and how, on a module-by-module basis. 
LIMITATIONS: Exceptions raise coupling between modules and may in­
troduce unnecessary complexity in situations where error codes are easily 
distinguished from valid function return values, and hence may be han­
dled inline. 
7{n the last essay (Essay 5: Recognizing Input), I spoke about the problems 
;,nof parsing input to a program. I stated Plauger's Dogma: 

jllo program map ltabt its sanitp 
at tbt mtrcp of its input. 

In other words, it is professionally unacceptable to write a program that 
does something out of control merely because a naive (or malicious) 
customer contrives to type input at it that is out of the ordinary. This dogma 
imposes an obligation on the programmer to write parsing code that is 
prepared to handle every possible sequence of input. That is not an easy 
obligation to satisfy, but it is both necessary and possible to do so. The 
purpose of this essay is to help convince you that you can and should honor 
this obligation. 

If you think, on the other hand, that this is so obvious that everyone deals 
with the problem automatically, try the following experiments. Choose five 
programs you believe in, and: 
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• feed each an empty input file 
• ask each to write to a full, write-protected, or nonexistent disk 
• feed each a text line with 1,000 characters in it 
• feed each a file with 1,000,000 records in it 
• offer a case of beer to an undergraduate ifs/he can break it 
Naturally, not all of these tests are relevant to all the programs. Some may 
not be possible. But it is a rare program that performs a nontrivial service 
and can pass all of these tests. Particularly the last one. 
'.]'(f you construct your input parser by using left-to-right design (Essay 5: 
.:;DRecognizing Input), there are simple techniques you can bring to bear 
to ensure that you have considered all possible input patterns. Left-to-right 
design tells you to impose a grammar on the input to a program, using as 
composition forms sequences, alternations, and repetitions of more basic 
forms. You then write a structured program using statement sequences, 
IF /ELSE statements, and WHILE statements to recognize these composi­
tion forms and to process them. You can be sure that your parser is complete 
if you make each of these forms complete. How do you complete a form? 
Let's look at each of the forms, in reverse order. 

A repetition consists of zero or more instances of a more basic form. The 
number of repetitions is determined by some predicate. The predicate may 
be some hardwired number - the program expects one record to follow 
for each of the 50 states. It may be some number determined from earlier 
input - the program reads a line giving the count of records to follow. Or 
it may be determined from a limited amount of lookahead - the program 
reads records until end-of-file, or until a sentinel record, or until a non-nu­
meric field is encountered. 

To complete a repetition, all you generally have to do is make the 
predicate more suspicious. You might change, "While I haven't read 50 
records" to, "While I haven't read 50 records and there are more records to 
read." Or you might change, "While I'm expecting more personnel records" 
to, "While I'm expecting more personnel records and the next record exists 
and has a valid personnel identification number." 

You must judge whether an ill-formed record is better diagnosed in the 
loop as a bad member of a repetition, or whether it is better taken as proof 
that the repetition has ended. In the latter case, it might then be diagnosed 
as a bad form of the next record expected. Whatever else you look for, 
end-of-file must be one reason for making a WHILE predicate go false. 

An alternation consists of two or more different forms, exactly one of 
which may occur next in the input. For each binary decision among 
alternate forms, there is some predicate that determines which form is 
actually present. The predicate may be determined from earlier input (the 
user has shifted input mode to octal). Or it may be determined from a 
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limited amount of lookahead (the X coordinate is non-numeric, so treat the 
line as a title). 

To complete an alternation, you must ensure that there is a trailing ELSE 
on the chain of IF /ELSE statements that look for alternatives. The trailing 
ELSE clause processes all input not handled by an earlier IF or ELSE IF. 
It may read, "ELSE we're done sooner than I anticipated, pass it on." Or it 
may read, "ELSE there must be trouble, because I can't recognize this 
input." As with an unexpected end to a repetition, you must judge whether 
the surprise is better diagnosed in the context of the alternation or in some 
higher context. 

A sequence consists of a more basic form, immediately followed by 
another more basic form. You normally have no predicate because there is 
no choice. A print command is always followed by a filename, for instance, 
or a new graph title is always followed by the x and Y scale factors. 

To complete a sequence, change each of the members to a completed 
alternation, as described above. You may have to write, "For a PRINT 
command, if there is a field following and it makes sense as a filename, take 
it as such; otherwise observe that the input contains an incomplete PRINT 
command." Or, "If you've got a new graph title and you can successfully 
read two numeric fields on the line following, take them as the x and Y scale 
factors; otherwise complain that the scale factors don't look good." 
7{f you complete all your forms in this manner, nothing should get by the 
.:ninput parse. The price you may have to pay, however, is that you can no 
longer see how correct cases are handled by the code, because all the error 
handling dominates the structure of the program. We will discuss how to 
mitigate this later. 

Say, for example, you want to filter a text stream for a variety of ASCII 
printer escape sequences. This means that, besides the usual printable 
characters and spacing-control characters (backspace, line feed, etc.), you 
can expect a variety of sequences that begin with the escape character, ESC. 
There are fixed-length sequences of one, two, or three characters, plus some 
that contain a variable-length list of characters with a null (zero value) 
character on the end. A partial grammar might read: 

input is zero or more occurrences of 
either a non-ESC character, or 
an ESC character followed by 

CODEl, or 
CODE2 any-char, or 
CODE3 any-char any-char, or 
CODE4, followed by 

zero or more 
nonzero characters, followed by 

a zero character 
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The outer two forms are complete, since zero or more occur­
rences of and either non-ESC or ESC cover all possible inputs. 
Once you see an ESC character, however, there are all sorts of fragmentary 
input sequences you can present that this grammar will not accept. I leave 
it as an exercise for you to complete the grammar so that it can serve as the 
basis for a bullet-proof program. 
A. o far I have focused on parsing input as a source of errors, but there are 
e:1'numerous places in any program where you may be faced with alter­
natives you'd rather not have to deal with. Every time you add two integers, 
for instance, you court the possibility of arithmetic overflow. If you are 
accumulating a sum, you can get a silly printout. Much worse, you may 
end up with a dangerous limit value for a subsequent loop. Since most 
modern computers, and programming languages, are notoriously lax 
about checking for integer overflow, you must either contrive your pro­
gram logic to make overflow impossible or add special checking logic to 
detect the occurrence in line. 

Floating-point arithmetic is subject to: 
• overflow, when a number gets too large to represent 
• underflow, when a number gets too small 
• loss of significance, when insufficient fraction bits can be retained 
Most of us take for granted that a huge number, or machine infinity, is an 
adequate approximation to a result that has overflowed. Even more of us 
are happy to approximate with exact zero a result that has underflowed. 
Few of us even notice when we lose half (or all) of the significance in a 
calculation. A very few of us are content to have our programs terminate 
abruptly when any or all of these problems arise. 

The point is that floating-point arithmetic is awash with exceptions, and 
with traditional "fixups" whose wisdom we seldom question. Certainly 
none of us want to replace x + y with: 

ADD x TO y, 
ON OVERFLOW RESULT IS huge val 
ON UNDERFLOW RESULT IS 0 -
ON SIGNIFICANCE_LOSS print("meaningless") 

As a general rule, however, I find that programmers err on the side of in­
adequate checking, and inadequate error recovery logic, when performing 
floating-point arithmetic. 
A. till another under-checked area is assignment, or type casting, that 
e:1'cau,;es information to be lost. It often makes sense to assign a floating­
point number to an integer by discarding all fraction bits, but not always. 
Rounding is often more appropriate. It is sometimes reasonable to discard 
significant bits when storing a large integer into a smaller one, but not often. 
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Some compilers give a warning message every time you write an assign­
ment that might lose significance. If you write a type cast to reassure the 
compiler that you meant what you said, you lose all possibility of static 
type-compatibility checking. Other compilers will generate code that dy­
namically checks all assignments that might lose significance. If you can't 
afford this overhead, you may have to turn off all checking. Wouldn't it be 
nice if you could write something like: 

ASSIGN y to x, 
ON SIZE_ERROR despair() 

to get the checks only when you want them? 
Still another source of errors is bad subscripts, or silly pointer values. 

"Safe" languages such as Pascal and Ada make a point of checking sub­
scripts, unless you insist that all such checking be disabled at run time. Since 
it is difficult to check that pointers are valid, except by ruling out a special 
NIL value, such languages avoid the problem by not letting you do much 
with pointers.Con the other hand lets you express pointer logic that rivals 
assembly language in compactness, at the expense of most safety checks. 
Only the most conscientious C programmer will habitually write: 

assert(&a[O] <= p && p < &a[AMAX]); 
*p = 3; 

11rhe final exception that I will mention is the asynchronous interrupt. The 
~commonest source of such interrupts is when you strike some magic 
attention key on your keyboard, such as control-C, DEL, ATTN, ESC, or 
BREAK. Unlike all the others mentioned above, this condition cannot be 
associated with any particular statement in your program. You may some­
times choose to honor such interrupts only during a read, say, but you still 
don't know where in the input parse an interrupt may occur. So you must 
either test on every read, poll for the interrupt at various places in your 
program, or be prepared to have the rug jerked out at an arbitrary place in 
your computation. None of these answers is suitable for all occasions. 

Given all these opportunities for being conscientious, you can see how 
easy it is to completely obscure any sequence of code with error-handling 
logic. The ASCII escape-sequence example above doesn't get too mucked 
up by the addition of error handling, but sometimes a program does. What 
do you do then? There are several responses. 

At one extreme, you can reduce the number of forms categorized as 
errors by ascribing useful semantics to various partial forms. If the user fails 
to type the name of an output file, perhaps it makes sense to write to the 
standard output by default. If no maxima are entered for the X and/ or Y 

coordinates, perhaps the program should provide automatic scaling. Innu­
merable opportunities exist for providing shorthand by completing a 
grammar that would otherwise require decoration with error messages. 
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There is a danger in carrying this too far, however. Dennis Ritchie once 
wrote a powerful text editor called QED for the GE 635. (It is the precursor 
to the UNIX ed and its widely used screen-oriented derivatives.) QED had 
so many commands, and the input syntax was so forgiving, it was nigh on 
impossible to type in a sequence of characters that were diagnosed as 
erroneous. A common mistake was to enter plain text while in command 
input mode - at which point the most interesting things happened to 
buffers, files, and tempers. It is significant that, when QED became ed, the 
commands were reduced in number and restricted to one per line. 

At the other extreme, you can make a virtue of necessity and shift the 
design focus of your parser from handling correct input as economically as 
possible to providing the world's most elaborate diagnostics. If you choose 
to do this with a program, make sure you emit diagnostics that educate the 
user and suggest correct inputs. Few things are more frustrating than a 
program that sits with its arms folded (figuratively speaking) and continu­
ally scolds you with syntax error. 

A friend of mine, Dave Bulman, characterizes one particularly annoying 
class of diagnostics as, "You misspelled California." The unspoken message 
is, "I know what you're trying to say, but until you get it just right, I refuse 
to acknowledge it." Operating systems are perhaps the worst offenders in 
this league. I once had to live with an operating system whose commonest 
diagnostic amounted to, "I made a mistake somewhere, and I won't tell you 
where, but I'm terminating your program." A systems programmer in one 
of my seminars once put it perfectly - "Most operating systems act as 
though you're bothering them." 
A. o if you're going to diagnose the heck out of your input, make sure 
e:1'your program gives constructive criticism. And if you' re going to guess 
some meaning from fragmentary input, make sure that you guess wisely. 
In particular, you should never accept shorthand commands that cause 
data to be destroyed irrevocably. UNIX has been properly criticized for 
letting you type rm * to remove all files in your current directory, without 
so much as a passing, are you sure? 

A middle-of-the-road approach is to change your mindset about what 
you classify as errors, and represent some of the erroneous conditions as 
"meta messages." You then incorporate what was once error-handling logic 
into the main design. This is exactly what happens when your floating­
point hardware replaces an underflow with exact zero, or an overflow with 
a special code for infinity. The best software example I can think of is the 
inline handling of end-of-file that I discussed in the preceding essay. (See 
Essay 5: Recognizing Input.) A particularly clean implementation is the C 
library function qetchar, which returns the special value EOF, that is 
distinguishable from any input character value, when end-of-file is encoun-
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tered. C programmers habitually process end-of-file as just another input 
result to be handled by the parsing logic. 

Indeed, C programmers seem much more willing than others to return 
error codes "in channel" from a variety of function calls. I know of no 
language that lets you declare a type such as: 

[0 255] ARE CHARACTER CODES 
-1 IS END OF FILE 
-2 IS END OF LINE 
-3 IS READ ERROR 

Since C provides relatively weak type checking anyway, in comparison to 
other modern languages, it is an easy matter to mix subranges and enu­
merations in this eclectic fashion. 

I am all in favor of passing back error codes as meta messages, given two 
provisos. The first is that the error is sufficiently commonplace, and not so 
disastrous, that it makes sense to process it as just another case. The second 
proviso is that there are reasonable values left over for assigning to error 
codes. An early version of getchar, for instance, returned zero for end-of­
file. You could not distinguish reading a NOL character from reading 
end-of-file. Such a loss of transparency is never worth the convenience of 
an in-channel error code. 
7Q ut let us say that you have defaulted all you can, and diagnosed all you 
~can, and incorporated all you can -and still the mainline computation 
is overwhelmed by error handling. What can you do? The answer is, 
separate the error handling from the mainline. 

Block-structured languages are really neat for supporting information 
hiding and control flow, but they get in the way sometimes. From time to 
time, you need an escape from the pure nesting of, "I call you, you call him, 
he returns to you, you return to me." You want to say something like, "If 
you or any of your subordinates encounter this condition, just drop every­
thing and give control back to me." 

The generic name for this capability is the nonlocal GOTO statement. In 
PL/I you can do this with ON-units and GOTO statements. In Pascal, you can 
jump out of nested functions or procedures to a containing one with a GOTO 
statement In C you can "re-return" from a call to the magic function 
setjmp by calling the function longjmp with a pointer to the save area 
filled in by set jmp. In all cases, the normal nesting of calls and returns is 
subverted, and control reverts to a higher level in the calling hierarchy. 

With this machinery, you write your program in a specific order. First 
you design the code for handling correct cases. (This is the easy part, which 
you get out of the way first.) Then you complete all control structures that 
parse input. If asynchronous interrupts can occur, or floating-point excep­
tions can occur in numerous places, add the code needed to get control 
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when these conditions occur. Decide at what level you wish to handle each 
condition, then use nonlocal GOTO statements to transfer control there. If 
any of the error handling logic is too complex, introduce additional condi­
tion handlers, move the complex logic there, and put nonlocal GOTOs where 
the errors are detected. (This is the hard part, which you save for last.) And 
that's easy-to-hard design. 

I end with two observations. The first is that COBOL, which is not my 
favorite programming language, probably does the best job of emphasizing 
the conditional nature of reads and computations. It has wonderful quali­
fier phrases, such as AT END and ON OVERFLOW, for handling exceptions 
right where they occur. And the language Ada, also not my favorite 
programming language, has marvelous machinery for handling exceptions 
in a readable fashion. Much as I respect C.A.R. Hoare in many areas, I must 
disagree with the unkind words he addressed to this machinery in his 
Turing Award Lecture (Hoa81). 

The second observation is that I do not advocate designing programs 
with no error checking, then adding it later. It has been wisely and widely 
observed that reliability cannot be retrofit. Easy-to-hard design tells you 
what you can defer until later in the design process. You cannot defer error 
handling until later in the software development process. o 

mfterword: This essay has a long build-up and an abbreviated climax. It cries out 
~for more detailed examples of handling exceptions in various languages. (It also 
predates the addition of exception handling to C++.) But that is the fundamental 
difference between a textbook chapter and an essay in a popular magazine. The latter 
does not have such a captive audience. Nor can it seize arbitrary amounts of paper 
real estate to drive home its points. 

So this essay drives home the most important points first. You can't write 
credulous code. Writing absolutely safe code often compromises readability. Proc­
essing the nasties out of line helps preserve the relationship between the structure 
of the program and the overt structure of the problem. 
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m method tells you what to do when you don't know what you're doing . 
.a.Or, to put it another way, the purpose of a method is to give you 
guidance in solving a problem so that you need not keep the whole picture 
in mind to make progress. It tells you what to do next. 

Software development is an exercise in mastering complexity. As such, 
it is a nonstop battle with detail, with ruthless requirements for accuracy 
and completeness, that threatens to overwhelm both designers and imple­
mentors. Little wonder that each new method for aiding the software 
development process is greeted with an enthusiasm that often borders on 
religious. 

It is seldom profitable, however, to confine one's tactics to a limited set 
of responses. For no matter how much zeal, and faith, is put behind a given 
approach, there will always be important situations where it is inappropri­
ate, or simply not relevant. 

In the first of this series of essays (Essay 1: Which Tool is Best?), I drew 
the analogy of picking a single tool for doing carpentry. Saws cut straight 
lines well, lathes shape cylinders nicely, hammers drive nails for sturdy 
joints. Each has its selling points. 

But which tool is best for making a picnic table? Only the most loyal and 
persistent carpenter would stick with any one tool for the entire job, no 
matter how favored the tool. The sensible craftsperson learns to use many 
tools, each where it is most effective. 

It is sad that proponents of many software development methods can't 
see beyond their favorite tools. What is needed, clearly, is a healthy assort­
ment of methods, plus some guidelines for choosing the right one at the 
right time. Those guidelines add up to just another method, a method for 
choosing among methods. That's what this essay is about. 

For the last several essays, I have focused on a number of design methods 
that I have found useful. These I have dubbed: 
• inside-out design (Essay 2: Writing Predicates) 
• right-to-left design (Essay 3: Generating Data) 
• bottom-up design (Essay 4: Finite-State Machines) 
• left-to-right design (Essay 5: Recognizing Input) 
• easy-to-hard design (Essay 6: Handling Exceptions) 
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I still have at least as many methods to describe, but I thought this would 
be a good time for an intermission, to refocus on the overall goal. 

How do you develop a method for choosing methods? There are two 
essential ingredients: 
1) You must know the region of applicability of each method, and the 

areas in which it has little or nothing to contribute 
2) You must learn to confine your view of a problem to its "most interest-

ing" aspect at any given stage of solution. 
An aspect is most interesting if it appears to dominate the problem, and if 
there is some particular method that deals with that aspect. Often it looks 
very much like a problem you've seen before, with a known solution you 
can parallel. 
'.ib ere is a concrete example. Imagine that you live in, say, Concord, 
RMassachusetts and wish to visit a friend in Rochester, New York. How 
do you get there? 

A simple solution is: Go west, young person. Of course, a proper imple­
mentation of this simple strategy had better specify a distance, and get the 
compass direction a little more precise. And there is the matter of transpor­
tation. A recipe this simple can only be applied to something along the lines 
of a ballistic missile - which may cause trouble with neighbors at both 
ends of the trip, with the U.S. Air Force in mid flight, and with your general 
health after the landing. 

More likely, you will base your solution on either flying by airplane or 
driving your car, then reduce the problem to a series of subproblems. This 
is more of a strategic decision involving relative costs, travel times, and 
perhaps just plain preferences. To proceed, let us assume that you have 
chosen to drive your car. 

Applying the global go-west strategy, you consult road maps and lay out 
a route involving major roads that most closely approximate a straight path 
to your destination. The experienced traveler quickly learns that a major 
road going almost the right direction is faster and less subject to delays than 
a minor road that lies closer to the straight line. So early on in the project 
you must get comfortable with the notion that you will be going not exactly 
in the right direction for extended periods of time. 

If your only measure of progress is, "How far am I from my friend's 
house?" then you have already learned to cultivate patience. Why? Because 
the research you have done on road maps has led you no closer to your goal 
(unless you keep your maps in the west wing of your house). You must 
have faith that an investment in planning early on will keep you off false 
trails later. 

Next you must deal with getting onto that network of roads you have 
been studying. It is not likely that your driveway runs due west directly 
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onto the Interstate system (at least I hope not, for your sake). So you accept 
the need to traverse a series of local streets and roads to get to the appro­
priate highway interchange. You are probably unconcerned even if you 
must drive ten miles east to get to the major highway of your choice. And 
all the twists and turns along the way you also take in stride, for you are 
sophisticated enough to know that your metric of success (distance from 
your goal) must be subordinated to local tactics. 

Once on the highway, you can start making serious progress. But even 
this must be interrupted by occasional rest stops, for food and fuel as well. 
The wise driver knows that breaking up a trip makes it less stressful and 
hence safer. So you accept that progress will not always be continuous, in 
the interest of more certain success. 

When you get to Rochester, you essentially reverse the process you 
followed getting started in Concord. One difference may be that, while the 
roads around Concord were chosen from long experience, and navigated 
from memory, here you are not so well versed. Hence you may have to 
follow directions sent to you by your friend. If you've ever tried to follow 
a path described only in words and sketches not to scale, you know this 
calls for quite another set of skills. 

At last you arrive. You are weary from driving, perhaps a little stiff -
and blissfully unaware of the complexities you have mastered in making 
such a trip. Even at that, you didn't have to deal with detours, blowouts, 
or No-Vacancy signs this time, but those contingencies each require sepa­
rate methods as well. 

From experience with other trips, you know which aspect is "most 
interesting" at each point- reading maps, navigating local roads, locating 
service stations, deciphering directions (not to mention operating the auto­
mobile). You remembered solutions that worked for your parents when 
they took you on trips. Once you mastered the currently most interesting 
aspect, the next one loomed larger in importance. 
]'{f only software development came so naturally. (Few of us, alas, have 
..lJlearned programming by watching our parents succeed at it!) Writing 
20,000 lines of code is much harder than driving a few hundred miles, in 
terms of the complexity you must deal with. Yet developers often impose 
less structure for such a project than you just went through for your 
imaginary auto trip. 

Not enough design time occurs up front, because (as Gerry Weinberg 
puts it so well) the boss starts asking, "Why isn't Sam coding anything?" 
This is the WISCA syndrome, that sabotages early planning in the interest 
of giving the appearance of making progress. Not enough scaffolding is put 
in place at the outset because it doesn't count as part of the final product. 
It is not "progress." 
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Not enough check points are specified along the way because they 
would delay reaching the goal. And not enough attention is given to the 
final packaging because it involves skills not daily exercised by most 
programmers. Besides, the job is always "almost done," so why delay 
delivery? 

Worst of all, software developers are not attuned to the diversity of 
methods they must exercise to get the whole job done. Endorsing top-down 
design as a panacea for software construction woes is like saying, "Go 
west." Trusting structured programming to get you there is like riding a 
ballistic missile to Rochester, New York. The practical programmer travels 
safer roads and uses more varied skills. 
11r'he fundamental problem, as I have tried to emphasize with this homey 
~example, is that we still lack the culture for developing software that is 
reliable and on schedule. We as a profession have certainly come a long way 
in the last two or three decades, but we have an equally long way to go, I 
believe. Other branches of engineering have a much better track record than 
us software developers. 

It can also be stated, with good accuracy, that the average professional 
programmer does not have all the skills needed to do his or her job properly. 
To make that car trip, you had to be at various times a driver, a navigator, 
an accountant, and perhaps even a negotiator - among many other skills 
you use just staying alive in a complex society. Imagine if we placed such 
a premium on driving skills alone that we prepared new drivers with a 
week on an oval race track, then unleashed them on our streets and 
highways. But is that much different than teaching students how to be 
hotshot code writers, without teaching them about testing or project man­
agement? 

No, I am not condemning the current computer-science curriculum. I 
believe that the colleges are teaching what has been understood well 
enough to be captured in usable textbooks, and that's all you can ask of 
them. People who write code for a living are still learning how to do it right, 
on the job, at the expense of their employers and their customers. 

Through many years of experience, some of it unpleasant, I have learned 
that I lack many skills needed to coordinate a group of software developers 
through all the stages of a project. I am a good programmer, in some areas 
a very good one; but I have learned that I have many limitations. It seems, 
in fact, that I discover new ones almost daily. It is the difference between 
being a programmer and a software engineer (whatever that is). 

On the other hand, I have seen people who are good software engineers. 
The skills they have are demonstrably real, important, and within the reach 
of mere mortals. While I am skilled enough to preach in one area of my 
profession, around these people I consider myself a rather clumsy student. 
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?ll?lll' hat are the skills of software engineering? I can name some of them, 
~at least. You must understand the software life cycle, particularly the 
phases that occur during the software-development phase, well enough to 
appreciate what you should be doing in each phase. It is just as bad to start 
coding before you have a complete design as it is to start redesigning (or to 
begin designing!) in the middle of coding. 

You must appreciate the importance of estimating accurately, as early in 
the development as possible. This does not involve taking your best guess 
and multiplying by n! Rather, you must learn to repeatedly subdivide each 
effort until you (and an honest observer) can compare each component to 
something you have seen done successfully before. Until you can do that, 
you must admit that you are still in the research phase, and you must not 
pretend you can give accurate schedules until that phase is complete. 

You must know an accurate specification when you see one, how to fix 
it if it is not, and how to write one if at all possible. No project should have 
a serious investment of development effort until you and the customer have 
signed off on a spec you both can live with. Once you've signed off on it, 
you must resist any changes by the customer, by you, or by the program­
mers - unless their impact is reflected in an honest revaluation of the 
delivery schedule and you all can live with the change. 

You must have deliverables specified so objectively that there can be no 
question when you are done. This is important for the mental health of your 
programmers - they must know when it is proper to declare victory -
and for cordial relations between you and the customer. (For the project 
you are working on right now, ask yourself if you'll know when it is 
complete. The answer is often sobering.) 

You must know what constitutes adequate documentation for a project, 
both for internal maintenance and for use by the customer. There are 
programmers who are good at both documentation and coding, but for 
most nontrivial projects it is more cost effective to use writers for the writing 
and coders for the coding. You must also know what constitutes adequate 
tests, and adequate testing. It is a rare project that can leave the testing to 
the very end, with no preparation along the way. And it is rarer still that a 
software product can be kept alive without well defined procedures for 
regression testing, as automatically as possible. 

Oh, and by the way, you also have to know how to design and code 
computer programs. That's my first love, and mostly what I focus on in 
these essays. But it's important to keep in perspective where the program­
ming process fits in the overall scheme of things. I'm sure that some people 
who read this essay are of the home-hobbyist or cottage-industry ilk. They 
are their own spec writers, designers, coders, testers, and major customers. 
For them it is fair game to let the software engineering take a back seat to 
the more enjoyable business of crafting code. But I'm equally sure that for 
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most of you readers the code you write contributes significantly to your 
income and your job security. If you ignore the context in which you write 
code, you risk losing the opportunity to advance in your profession (or even 
to stay in it!) . 
.a... o when I talk about examining the most interesting aspect of a problem, 
e::1'mostly I mean something like, "Is it time for left-to-right design to 
capture the input-data structure, or can we proceed with inside-out design, 
to get the control flow down pat?" But on a more global scale, I mean asking 
questions like, "Should we even use a computer for this problem?" And, 
"Do we have a precise enough specification to proceed with detailed 
design?" And, "Is it more important to deliver something on time next 
month, or to add that neat feature you just thought of?" 

At this point, I must confess that I can't lay down any simple mechanical 
rules for deciding what to do next. I could tell you to use common sense, 
just like driving a car cross country, but that doesn't meet the requirements 
of a method. I do know that, once you've accumulated enough small 
successes to have built up an assortment of comfortable methods, you will 
find it easier and easier to know which ones to apply and when. 

So the best recipe I know for learning how to choose among methods is: 
• Learn as many methods as you can. 
• Make sure to apply each method you learn on a job small enough to be 

successful. 
• Be on the lookout for complexity overload. 

That last point is the hardest one to teach. By "complexity overload" I 
mean taking on a project so much beyond the biggest thing you have 
mastered before that you completely misjudge how big it truly is. Flush 
with success from your last project, it is easy for you to see the next 
opportunity as "just a little bit bigger." Remember, however, that people 
are even worse at perceiving complexity than they are at estimating prob­
abilities. (If people could estimate probabilities at all accurately, there 
would be no lotteries, casinos, or insurance companies in the world.) It is 
altogether too easy to dismiss the blurry part of a prospectus with a wave 
of the hand and a confident feeling that, "I can handle those details later." 
A forest from a distance is a blur of green not because it is featureless but 
because it has millions of leaves. 

One symptom that you have bogged down in complexity overload is 
when you find yourself doggedly applying a method that is clearly irrele­
vant, at least to any outside observer. It is like the mechanically inept person 
whose car breaks down - so he puts water in the battery and empties the 
ashtrays. 

On the other hand, if you've accumulated enough experiences that no 
aspect of the project at hand is completely new turf, it is amazing how easy 
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it is to see what to do next. You need not have done exactly that project 
before, or to that scale. Indeed, competitive industry and our own zeal for 
new experiences prevent most of us from doing the same job repeatedly. If 
you've seen a test-tube size version of a data-structuring problem, you can 
usually master a full-blown version in the real world. That's how us 
mammals get educated and survive. 

I close this essay by reminding you of the opening sentence, "A method 
tells you what to do when you don't know what you're doing." That's 
designed to reassure you that you need not be completely clear about how 
to reach your goal, so long as you are clear about what the goal is. And you 
need not demonstrate straight-line progress to approach your goal most 
effectively, so long as you have some faith that you're gaining ground in 
some dimension. If you're going to be in the business of controlling com­
plexity, you must accept that there are often times when it seems to control 
you. You don't have to know what to do, you just have to know what to do 
next. o 

mfterword: I like the auto-trip analogy a lot. It is the best way I know to convey 
.a.the fractal nature of software development. Whatever level of detail you 
consider, multitudinous problems confront you. The strategies you use are quali­
tatively similar at each level, even if they differ markedly in size. This analogy also 
brings home the need for a culture of software development. That culture certainly 
exists, and it grows richer with each passing year. But it is nowhere near as rich as 
the automobile culture we enjoy today. 
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METHOD: Chaos-to-order design. 
DESCRIPTION: Chaos-to-order design applies to any situation where a 
sequence of data must be reordered, on the basis of some predicate applied 
to pairs from the sequence. The name derives from the usual assumption 
that the sequence that needs to be sorted may be presented in arbitrary 
initial order. 

Sorting is sufficiently difficult technology to replicate that existing sort 
utilities should be used wherever possible. This is particularly true when 
the sequence to be sorted may be arbitrarily long. If there is any certain 
knowledge about the length or initial order of a sequence, however, there 
is a rich literature on how to take advantage of such knowledge to improve 
performance. A particularly important special case is merging, where two 
or more subsequences are known to be properly ordered. 
DOCUMENTATION: A sort is described by its ordering rules - a list of 
what subfields (keys) are compared by what criteria. A sorting technique 
is best described in terms of its underlying algorithm, plus any tailoring 
done for the problem at hand. 
LIMITATIONS: If a sequence needs no rearranging, sorting is irrelevant. 
If the rearrangements are localized in the sequence, sorting may be over­
kill. If the ordering rules are not expressible as arithmetic relationships 
(less, equal, or greater), or if they apply to other than pairs, standard sort­
ing technology is not applicable. And if the ordering rules may change 
during the sort, many popular algorithms may never terminate. 
]'{have harped at considerable length, in earlier essays, about the impor­
,JJ tance of structuring data by recursive application of the three fundamen­
tal composition rules of sequence, alternation, and repetition. There are 
several good reasons for doing so: 
• The vast majority of data structures encountered in real life are express­

ible this way. 
• Human beings seem to be able to comprehend structures composed this 

way, with a minimum of confusion. 
• This approach leads naturally to structured programs (composed of 

statement sequences, IF /ELSE statements, and WHILE loops), which are 
now widely regarded as highly readable and maintainable. 
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The subject of this essay is a common situation where this approach to 
data structuring breaks down. Such a situation arises whenever you must 
accept data in arbitrary order, but process it in some fixed sequence. 

1~onsider the simple problem that arises in recognizing declarations in C. 
~(Sorry for the language-oriented examples, but that's my primary area 
of activity. And no, I am not going to go into the more bizarre peculiarities 
of C declarations.) Let's say you want to recognize a declaration of x as type 
int and reqister storage class. The (unfortunately very lax) rules of C 
let the programmer write any of: 

reqister int X; 
reqister X; 
int reqister X; 

If you want to write a transformer from all permissible input declara­
tions to a canonical output form, you must match up these three input forms 
with one output form. That's not too bad, just a bit tiresome. But now, let's 
do the same thing for the canonical declaration: 

auto short int X; 

By the rules of C, the keywords may occur in any order, and the 
keywords auto and int are optional. Now there are eleven input forms: 

auto short int X; short int X; 
auto int short X; int short X; 
short auto int X; short auto X; 
short int auto X; auto short X; 
int auto short X; short X; 
int short auto X; 

Throw in the optional keyword siqned, now permissible in ANSI C, and 
you are faced with 38 possibilities! This is not the sort of thing you want to 
capture in a grammar using only sequence, alternation, and repetition. 

A little simple arithmetic tells you that if you must recognize N distinct 
things in arbitrary order, there are N! (N factorial) possibilities. If some of 
these things are optional, you must add in additional factorials as well. It 
doesn't take a very large value of N, or many options, for the combinatorics 
to overwhelm you. It's not that you can't write a grammar to capture the 
input data structure, it's just that it doesn't help you master complexity. 
Rather, it adds to it. 

In real life, of course, people resort to various tricks to avoid writing 
grammars that explode. You can express the nonterminal AUTO-SHORT, for 
instance, by the recursive grammar: 

an AUTO-SHORT is 
short, or 
AUTO-SHORT OTHER, or 
OTHER AUTO-SHORT 
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where OTHER is 
nothinq, or 
OTHER auto, or 
OTHER int, or 
OTHER siqned 
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subject to the semantic constraint that the final form may contain no re­
peated keywords. This still is not as readable as the simple statement, "An 
AUTO-SHORT is represented by the keywords auto siqned short int 
written in any order, with all but the keyword short optional." 

In real life, of course, implementors build some form of bit vector and 
check it against a small set of valid patterns. This amounts to sorting the 
keywords into a canonical order so that valid forms are few in number. 
However you disguise it, a reordering is a sort. The data-structuring 
problem gets completely out of hand when the number of input items is 
open ended. But that consideration is almost academic given the combina­
toric explosion that has already set in for very small numbers of items. 
A. o the basic message of chaos-to-order design is: When you encounter 
e:lJa situation where data is presented in chaotic order, but must be 
processed in some definable order, you have a sorting problem. Forget 
about data structuring or structured programming for the time being. 
Instead, cast the problem into a form that can be handled by known sorting 
technology, then apply it. And keep the sort encapsulated so that changes 
in the sorting rules or technology do not affect the rest of the program, and 
changes in the rest of the program are least likely to affect the sorting 
aspects. 

The examples above are very specialized reordering situations. It makes 
sense to grind out ad hoc code to do such peculiar jobs. A very high 
percentage of reordering problems, however, fit a more generic pattern: 
1) You have some number, N, of items to reorder. 
2) You have some predicate (set of testing rules) that depends only upon 

the values of a pair of items to determine their ordering (first item is less 
than, equal to, or greater than the second). 

3) There is some way to exchange two items (swap them in memory, or 
swap pointers to them in memory, or rewrite items in a file). 
When you see this pattern, you know there are oodles of techniques in 

the literature for doing the job. A straightforward presentation of some 
useful programs for sorting may be found in Chapter 4 of either Software 
Tools (K&P76) or Software Tools in Pascal (K&P81). For a clean presentation 
of several sorting algorithms, see The Design and Analysis of Computer 
Algorithms, (AHU74). And for encyclopedic coverage of sorting technology, 
see Volume 3 of Knuth's The Art of Computer Programming (Knu73a). I won't 
even try to approximate here the coverage found in any of these references. 
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~ow comes the hardest message for the young programmer to hear . 
..jlJrWhen the time comes to write a sort module, don't write your own. 
Sure, it's an interesting challenge. But the chances of your getting it right 
without a serious investment in debugging are small. The chances of your 
even matching, much less surpassing, the performance of an existing sort 
are even smaller. And the chances of your making a genuine contribution 
to the technology are almost nonexistent. 

Sorting is big league stuff. Some of the oldest and best established of 
today's software companies write and sell sort packages. They make their 
living at shaving percentage points off the execution times of their sort 
packages every few years. Why? Because, the minicomputer and micro­
computer revolutions notwithstanding, a significant chunk of the dollars 
spent on computing every year still goes toward sorting transactions in a 
commercial environment. We're not talking academic interest among com­
puter scientists here, we're talking serious cost control and profits. 

Even if you don't swim in such turbulent waters, chances are there's a 
sort utility, or a sort function in the library, that is already engineered better 
than anything you're likely to manage in the time diverted from solving 
the problems you're supposed to be working on. UNIX has a sturdy sort 
utility that often does exactly what you want to a text file, without specify­
ing any options. When it doesn't, you can usually contrive a set of com­
mand options that does what you want. The Standard C library has qsort, 
a very generic function for in-memory sorts. Even MS-DOS comes with a 
SORT utility, although I confess to never having used it. I favor the portable 
sort utility from Idris (to which I'm addicted). 

So, to emphasize, there are two compelling reasons for using an existing 
sort instead of writing your own: 
1) It's hard enough to do that you're likely to get it wrong, and/or spend 

a long time getting it right. 
2) Existing packages are likely to do what you want. 

1Let me give an example of the first point from personal experience. When 
Brian Kernighan and I wrote Software Tools in Pascal (K&P81), we 

naturally rewrote the RATFOR version of the quicksort function from 
Software Tools to take advantage of recursive function calls. The last lines of 
the function rquick (on p. 119) thereby acquired a compelling symmetry, 
as shown in Figure 8.1. 

Elegant, yes? Unfortunately, no. The alternation is a waste of time, 
because it doesn't matter in which order you sort the subintervals on either 
side of the pivot element (at i) if you do both by recursive descent. Worse, 
there is a nasty performance bug lurking in this meretricious beauty. 

Quicksort is a divide-and-conquer algorithm. You guess a pivot element, 
then shove everything greater than the pivot to the right and everything 
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if (low < hi) then begin 

if (i - lo < hi - i) then begin 
rquick(lo, i-1); 
rquick(i+l, hi) 

end 
else begin 

rquick(i+l, hi); 
rquick(lo, i-1) 

end 
end 

Figure 8.1 Erroneous version of quick-sort recursion. 
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less than the pivot to the left. That gives you two subintervals, on either 
side of the pivot, which you sort by the same technique. If you recurse only 
to sort the smaller of the two subintervals, then the depth of recursion 
cannot exceed logi(N), so the demands on a runtime call stack are nicely 
bounded. 

If you can ever recurse to sort the larger subinterval, however, then it is 
possible to recurse to a depth of N calls. This is not so nice, since call stacks 
can easily require an order of magnitude more storage that the data itself. 
With the choice of pivot element used in rquick, this can happen when 
sorting data that has no equal elements and is already in sequence. Given 
small enough input, or a large enough call stack, the bug doesn't show up. 
But when it does, it understandably surprises the customer. That's why it 
is known as a performance bug. The proper way to write rquick is to make 
it a loop, as shown in Figure 8.2. 
71it rian and I missed the bug, obviously, thanks to a combination of 
~superficial testing and large address-space machines. As far as I know, 
only one or two readers picked it up. If you've read the Letters section of 
any programming magazine, you know how quick some programmers are 

while (low < hi) then begin 

if (i - lo < hi - i) then begin 
rquick(lo, i-1); 
lo := i+l 

end 
else begin 

rquick(i+l, hi); 
hi .- i-1 

end 
end 

Figure 8.2 Corrected version of quick-sort recursion. 
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to pounce on anything that smacks of a bug. So that gives you some idea 
of its subtlety. The point is, Kernighan and I tried very hard to present a 
number of useful computer programs that were readable and correct. And 
the one we tripped up on the worst (I think) was our best version of a sort 
function. 
11rhe second reason for not writing your own sort is that you probably 
\Uldon' t have to. For an in-memory sort, the only parameters a generic sort 
module must have are: 
1) how many items to sort 
2) what function to call to compare items i and j 
3) what function to call to exchange items i and j 
The actual algorithm for deciding when to compare and when to exchange 
is contained in the generic sort module. So a sort module is an excellent 
candidate for inclusion in a library. It requires few parameters, it performs 
a nontrivial function, and its performance is likely to match or exceed any­
thing ad hoc that you write to do the same job. 

If you need to sort more data than can be held in computer memory all 
at once, then you must resort to an external sort, as opposed to the internal 
sort performed by a library module. For an external sort, the basic strategy 
is to fill memory with chunks of data, sort the chunks in memory, write 
them to intermediate files, then merge the sorted chunks to produce the 
final output. Once again, this is heavy-duty technology; and all the earlier 
caveats apply here in spades. (The two Software Tools books show all the 
pieces, if you're curious.) Look for a utility that sorts files, then do your best 
to bend it to your needs. 

A problem with prepackaged utilities, of course, is that you can seldom 
just drop in your own comparison or exchange functions, as for the library 
sort described above. Commercial packages usually offer you a plethora of 
sorting options, to make up for this lack of programmability. The items to 
be sorted must be delineated in some standard fashion, either as records 
(in record-structured environments) or as text lines (in less structured 
environments such as UNIX or MS-DOS). The ordering rules are specified 
in terms of keys - subfields of records - and rules for comparing the keys 
by pairs. 

The simplest rule, for instance, is often to treat each record as a sequence 
of characters to be compared in native collating order for the host machine. 
A more elaborate rule might specify several keys, some of which are 
interpreted as account numbers, some as dollar amounts, and some as 
dates. I often find that I must experiment for about an hour with a complex 
sorting problem, until I get the keys and sort rules specified just right. That's 
still miles better than writing yet another custom sort to do the same job, 
with a program that is perhaps only slightly faster. 
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Having said all this, I concede that there are times when you really must 
write a specialized sort. For those cases where a standard sort could do the 
job, the only justification I can think of is when 
1) you really can't get the performance you need from a standard sort 
2) you're certain that the data you care about already has some order you 

can take advantage of 
71'.l ere is an example so pedestrian that you probably have never thought 
Rof it in this light. Many data bases are still kept off line, stored as large 
sequential files kept in sort by account number. On a regular basis, trans­
actions must be applied against this data base to update (or delete) certain 
records. This is the classic master-file update, that even Dijkstra has taken 
a swipe or two at. 

A straightforward approach is to make data-base and transaction records 
look the same, except for a discriminating tag, so they can all inhabit the 
same file. Then you just concatenate any new transactions with the data 
base, sort the whole works, and pass over the sorted file to merge data-base 
records with their now adjacent transactions. I have often used the sort 
and uniq utilities of UNIX or Idris to do just this sort of operation. It saves 
a lot of programming for one shot (or few shot) applications. 

Of course, nobody solves the problem this way for a production system. 
Knowing the large data base is in sort, you first sort only the new transac­
tions. Then you merge the transaction sequential file with the data-base 
sequential file, applying the transactions as you match them up to produce 
a new sequential file. Since even the best of sorts has time complexity on 
the order of N*log(N), and since merging is noticeably cheaper, you can win 
big by not sorting the entire data base. With the transaction presort and 
transaction merge, you have in effect replaced a single sort with a more 
complex operation that has better properties. At least the properties are 
better once you get the specialized code debugged. 
7{ encountered another specialized sort in my first week of programming. 
;nwith a minimum of help from a friend, I had contrived to write a 
FORTRAN program, get it to compile, and have the computer punch out a 
binary object deck (remember those?). With no help at all from anyone, I 
contrived to drop all three hundred odd cards of the deck on the floor. There 
was a card sorter in the room, and the deck was sequence numbered in the 
last few columns. So I watched a few people use the sorter for awhile, 
waited for the room to empty of potential critics, and went to work. 

I had about thirty neat little piles (OOX, OlX, etc.) laid out on a table when 
my friend came back. To my horror, he swept up half an hour's worth of 
effort into a single unordered deck. He then sorted the deck on the units 
column, reassembled it with that column now in order, sorted it the same 
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way on the tens column, and again on the hundreds column. After three 
sorts he presented me my deck, completely restored to its original order. 

What he used was a stable radix sort. The "radix" part was dealing the 
deck out into ten bins, which exhausted the space of values of each of the 
three sort keys (columns). The "stable" part was that sorting on the tens 
column didn't destroy the ordering on the units column - items that 
compared equal on the tens sort were never reordered. Combining those 
two tricks saved an incredible amount of time over building the tree of 
subdecks that I was working on. 

That was my first big lesson in complexity theory, and in the importance 
of selecting a proper algorithm. It took me ten years to learn the comple­
mentary lesson, that lies at the heart of using software tools-you are better 
off wasting a little time by using an existing program than spending a lot 
of time writing a program that will only save you a little time. 
11T"here are, of course, still other reasons why you may have to write your 
~own sorting program in certain cases. You can't safely sort by priority, 
using conventional algorithms, if some little demon is periodically altering 
the priorities during the sort. And you must be careful how you sort if you 
have unconventional ordering relationships. Consider the trio: 

scissors cut paper 
paper covers rock 
rock smashes scissors 

Which comes first? A more important variation of this curiosity is the 
problem of determining an acceptable linear ordering given only partial 
ordering information. In work flow, for instance, some tasks depend on the 
completion of others, but many are unrelated. In a subroutine library, you 
may have to put at the end all modules that are called by other library 
modules - and hope that there are no circular dependencies. These are 
problems that require a topological sort, for which technology also exists. You 
can often find the algorithm you need, but you're less likely to find the code 
prepackaged.a 

(:1tfterword: This is one of the few essays where I actively discourage programmers 
~from doing what they love best. (The lessons of UNIX and software tools seem 
old fashioned in this era of event-driven mega applications, but perhaps they're 
not.) Still, I find that coders write ad hoc sorts almost as readily as they do Pascal 
parsers. I'll keep trying. 

When this column first appeared, I botched the combinatoric computations and 
some program logic. (They are corrected here.) Naturally, several alert readers 
checked my work and wrote letters pointing out the gaffe. That neatly illustrated 
my point about how critical a technical audience can be, unfortunately. 
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METHOD: Outside-in design. 
DESCRIPTION: Outside-in design deals with modules that have multiple 
nontrivial input and/ or output data structures. The name derives from the 
view that data enters and leaves a module at its periphery, with processing 
occurring inside. 

This approach focuses on resolving any clashes between different data 
structures either by marrying them into a common structure or isolating 
them into separate modules that communicate by a less structured inter­
mediate data stream. A marriage of data structures is unavoidable when a 
merge must be performed. 

If separate modules must be formed, they are organized by top-down 
design. The separate modules are then amenable to reduction by left-to­
right or right-to-left design. One-to-many input transformations, or many­
to-one output transformations, are reduced by bottom-up design. 
DOCUMENTATION: If separate modules are not formed, a combined 
data-structure diagram best captures the underlying structure. Otherwise, 
other documents show the form of each module and the organization of 
the whole. 
LIMITATIONS: If there is no clash to resolve, outside-in design contrib­
utes little. If any data sequence must be reordered, the combined structure 
may be too ornate. If the combined structure is much more complex than 
any of the separate data structures, the solution will be obscure . 
.11lltany programs are data transformers. That is, they consume one or 
.Jl~lmore sequential streams of input data to produce one or more sequen­
tial streams of output data. The transformation itself is often not very 
ornate. In that case, the best organizing principle for such a program is to 
start with the structure of the data being processed and build the control 
flow around a similar procedural structure. 

I repeat yet again the basic organizing principles of data-structured 
design. If you have a repetition of data structures, you process it in a loop 
(WHILE statement). If you have an alternation of possibilities in the data 
structure, you process it in a conditional (IF /ELSE statement). And if you 
have a sequence of different data types in the structure, you process it with 
a sequence of statements. A remarkably large fraction of data structures 
encountered in computing succumbs to this approach - which forms the 
basis of structured programming. 
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~ 
Figure 9.1 Data transform with nontrivial output data structure. 

One broad class of programs produces structured output from fairly 
unstructured input. You may need to produce a paginated report, for 
instance, from a series of single transaction records. Or you may be gener­
ating a series of formatted screens from single-line queries typed in. For 
this class, the problem of producing the structured output data dominates 
the problem, so you build your program around the code needed to 
replicate that structure. 

Here the hard part, once you have identified the basic data structure, is 
getting the predicates right. They control how many times you loop on a 
repetition, or which branch of a conditional to take. This I call right-to-left 
design (Essay 3: Generating Data), since it is customary to show data flow 
with the input on the left and the output on the right of a data transform 
(program) in a data-flow diagram. Figure 9.1 shows a single transform with 
nontrivial output structure. The resultant program structure is indicated 
underneath the transform. (All data structures are highly stylized in these 
figures.) The generic program structure looks something like: 

WHILE (more_input) 
qenerate_output 

where all the action is in qenerate_output. 
mnother broad class of programs produces fairly unstructured output 
.a.from structured input. You may want to simulate a desk calculator, for 
instance, in one window of an interactive system. Or you may accept 
English-like data-base queries and generate one-sentence responses. For 
this class, the problem of recognizing the structure of the input data 
dominates the problem, so you build your program around the code 
needed to recognize, or parse, that structure. 

Here the hard part, once you have identified the basic data structure, is 
getting all the lookahead and error recovery right. The code must redis­
cover the repetitions and alternations the user has chosen for a particular 
input. This is called left-to-right design (Essay 5: Recognizing Input), for 
reasons I leave to your imagination. Figure 9.2 shows a single transform 
with nontrivial input structure. The generic program structure looks some­
thing like: 
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WHILE (more input) 
IF (match_input) 

qenerate_output 
ELSE 

put_error 

where all the action is in the predicate match_ input. 
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711? ut what happens if both output and input have nontrivial data struc­
~ture? Or, for that matter, what happens if you have multiple inputs 
and/ or multiple outputs, and two or more of them could each serve as the 
principal structuring basis for the program? I have been careful to avoid 
such examples so far, while exploring the wonders of right-to-left and 
left-to-right design. 

In the real world, there is no such thing as a completely trivial input or 
output. (The people across the street are already selling that program and 
you are trying to take their market share with a fancier version of the same 
thing). Even in the examples I gave, I glossed over contributions to the 
structure of a program from "trivial" sources. The contributions were 
nonetheless present. 

The answer, of course, is that you must accommodate the structure of all 
the data you are processing. Otherwise the program is not doing its in­
tended job. A program with more structure than is dictated by the problem 
to be solved may well have lurking bugs in the special cases. It will certainly 
cost you a premium to maintain. But it has a chance at serving its purpose 
correctly. A program with less structure than the data it must process 
cannot, from first principles, do the whole job. 

It is still a good organizing principle to let your data structure your 
program. When you have multiple data structures influencing the design, 
you have a problem. The solution is to find a more ornate data structure 
that will accommodate the diverse data structures contributed from differ­
ent streams. In other words, you must marry all of the input and output 
data structures to obtain the structure about which to organize the flow of 
control of your program. You can't simply proceed right-to-left, or left-to­
right. You must approach the center of the transform from all directions at 
once. This approach, naturally enough, is called outside-in design. Figure 
9.3 shows a single transform with nontrivial input and output structures. 

~ 
Figure 9.2 Data transform with nontrivial input data structure. 
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Figure 9.3 Data transform with nontrivial input and output data structures. 

It is harder to show a generic program structure for outside-in design. 
Sometimes the bookkeeping involved in generating output dominates. 
Sometimes the problem of input recognition dominates. Sometimes the two 
are so intertwined as to defy decomposition. Let's look at some examples. 
m data-base query language, for instance, usually permits input in a 
.a.variety of forms, if only to accommodate varying numbers of parame­
ters for different queries. Even if it is not your goal to advertise "natural 
English language queries" or "user-friendly input," you must still tolerate, 
and parse, a variety of input forms. So the input structure can be repre­
sented along the lines of: 

zero or more requests, where 
a request is either 

TYPEl paraml param2, or 
TYPE2 param, or 
TYPE3 

The output, on the other hand, may be one line of text for some requests, 
a screenful for others, or multiple screens for still others. Let's say that the 
language includes the statements SBOWFROM x TO y, SBOWME x, and 
SBOWALL. Then the married structure might look like: 

zero or more requests, where 
a request is either 

SBOWFROM x TO y, with 
zero or more 

output lines, or 
SBOWME x, with 

either 
an output line, or 
"NOT FOUND", or 

SBOWALL, with 
zero or more 

output lines 

If you wish to structure multi-line output into screens, or if you wish to 
put NOT FOUND for any repetition of zero items, then the structure gets that 
much more ornate. But the basic principle is the same. 
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~ow I know this is the sort of design work you do all the time. You don't 
»need any highfalutin pronouncements about marrying data structures 
to figure out what to do in a simple situation like this. The point of 
outside-in design, like all the other methods I have talked about so far, is 
to focus your attention on the underlying principles of what you're doing. 
That helps you can see where the action is (or should be). 

In the case of outside-in design, you are building a combined data 
structure. If you just start writing code any old way, you may well evolve 
a program structure that recognizes the same input structure in two or more 
places. Or it generates the same output structure in multiple ways. Or it 
captures neither structure exactly right. If, on the other hand, you know 
your goal is to produce a marriage of input and output structures, then you 
have a check list of what operations must be performed and where in the 
program they should appear. 

Almost as bad, many programmers have unwittingly fallen into the 
habit of writing all transforms as if they were either report generators or 
parsers. You construct report generators by applying right-to-left design, 
which is fine if the input is not too fancy. If it is fancy, however, you will 
find read-ahead code stuck here, push-back code over there, and partially 
parsed data stuck in side pockets all over the place. Report generators do 
not accommodate parsing at all well. 

If you are a parser freak, on the other hand, you apply left-to-right 
design. This is fine if the output is closely related to the input. If it is not 
closely related, you will have an assortment of partially filled buffers, state 
flags such as 

paqe_done 

and counters such as 

column number 

buffer_empty 

line number 

sprinkled about the program. Parsers do not construct output at all well. 
If you consider all your data structures at once, however, you are less 

likely to produce an unmaintainable travesty. You may well end up with 
an output-driven program (report generator) anyway, because that is the 
best compromise. Or you may well end up with an input-driven program 
(parser), because that minimizes maintenance. In either case, however, you 
will have made an informed choice, instead of lucking out or losing out. 
7b ere is a simple variant on the previous example, which shows some 
Raspects of a hybrid solution. Let's assume that input consists of ac­
count-number records each followed by zero or more transaction records 
for that account. A transaction record may contain zero or more items of 
that transaction type (whatever an item may be). We wish to produce a 
report that starts a new page for each account number. The report may have 
multiple pages per account. It lists up to 50 transactions per page. And it is 
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wide enough to accommodate the maximum number of possible items in 
the columns of one report line. The input structure is: 

zero or more groups, each with 
an account record, plus 
zero or more transactions, with 

a transaction type, plus 
zero or more 

items 

The output structure is: 

zero or more accounts, with 
one or more pages, with 

a page header 
zero to 50 lines, with 

the transaction type, plus 
zero or more 

item columns 
a page footer 

11rhese structures marry fairly easily, as is often the case. (Nothing magic 
\Ulhere-people tend to keep the input structure in mind when contriving 
output structure, and conversely.) Here is a program that handles the 
problem: 

got_one := get_rec(rec) 
WHILE (got_one) 

IF (rec.type <> ACCTNO) 
put_error(rec) 

page := 1 
DO 

put_header(rec.acct, page) 
line := 1 
WHILE (got_one AND line <= 50 

AND rec.type = XACTION) 
start_line(rec.xaction) 
col := 1 
WHILE (is item(rec.item[col])) 

put_col(rec.item[col]) 
col := col + 1 

line := line + 1 
got_one := get_rec(rec) 

put footer(page) 
page := page + 1 
WHILE (got_one) 

If you had to characterize this structure as one or the other, it is more of 
a report generator than a parser. Why? Because everything is in its expected 
place for generating the output. Counters are incremented where you 
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expect and program structures mimic the output (zero or more becomes 
WHILE, one or more becomes DO-WHILE). 

On the other hand, the lookahead required for parsing occurs in two 
places, a primer at the top of the program and a refilling read down where 
the last of the input record is consumed. That's not too unusual for parser 
logic, but the output generation code puts some perceptual distance be­
tween the parsing bits. The distance is enough that output generation 
certainly lays more claim to the program structure. 

On the third hand, the overall structure of this program looks remark­
ably like the generic solution given earlier for programs produced by 
left-to-right design. You can argue it either way. What is important is that 
the check lists for both report-generator and parser logic are easily verified. 
You have reason to believe that the program structure might be correct and 
complete. That is the goal of outside-in design. 
a... o far we have examined only programs with a single input source. As 
~soon as you introduce a second input stream, a whole new class of 
issues presents itself. If the input streams don't interact, you must ask why 
a single program is being called upon to process them. If they do interact, 
you must determine the predicate that selects when you draw upon each 
stream to produce the combined data flow to be processed. 

If the data streams have identical structure, then the program is perform­
ing a simple merge. Figure 9.4 shows two identical streams combining into 
one at a transform, making a simple merge. Merging was touched upon as 
one aspect of chaos-to-order design (Essay 8: Order Out of Chaos). While 
merging offers a number of interesting challenges, better designers than I 
have contributed more to that technology than I can begin to even summa­
rize here. What you need to know is, as soon as you see a merge point in 
your data flow, it is time to dig up a merge utility if possible, or look up an 
appropriate merge algorithm if necessary. 

What if you have multiple input streams converging at a single trans­
form? A number of merge algorithms work fine with an arbitrary number 
of inputs. If you can't apply one of these, for whatever reason, you can 
always factor a multi-way merge into two or more two-way merges. Figure 
9.5 illustrates the data flow for such a compound merge. If you are imple­
menting this as a UNIX-style pipeline, then the amount of extra work is 

Figure 9.4 Data transform performing simple merge. 
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Figure 9.5 Data transform performing compound merge. 

minimal. You simply mention the extra merge as another stage in the 
pipeline, using the same utility for both: 

gen filel I merge file2 I merge file3 I use 

Organizing a single program that implements a compound merge, 
however, has some interesting problems, which I will defer until a future 
essay on top-down design. (See Essay 11: Who's the Boss?.) 
mn interesting variation occurs when you have two or more distinct 
.a.streams you must bring together before you can process either. This 
commonly occurs in the classic master-file update. Here you merge a 
stream of transactions, sorted by account number, with a stream of master­
file records, sorted the same way, to produce an updated master file. 

I described master-file update as a special form of sorting in the previous 
essay. (See Essay 8: Order Out of Chaos.) Figure 9.6 shows a transform that 
performs an update merge. It looks the same as a simple merge (Figure 9.4), 
except that the input data structures differ. 

What makes the update merge interesting is not so much the problem 
of marrying diverse data structures. They are simply concatenated long 
enough for a transaction processor to digest them and emit an updated 
master-file record. No, the challenge comes in bringing the streams together 
in such a way that all special cases are properly handled: 
1) If no transaction corresponds to a given master-file record, then the 

record is copied unmodified. 
2) If no master file record corresponds to a given transaction, then the 

transaction either creates a record or it is erroneous. 
3) All transactions that correspond to a given master-file record must be 

applied in sequence. A transaction that calls for a record to be deleted 
produces no updated record. 

4) If the transaction file is exhausted before the master-file, remaining 
master-file records must be copied unmodified, as in 1) above. 

5) If the master file is exhausted before the transaction file, remaining 
transactions must be processed as in 2) above. 

6) If either file is not in sort, then the program should stay sane at least, 
and diagnose the disaster at best. 
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Figure 9.6 Data transform performing update merge. 

7{ have given this problem, in one form or another, to hundreds of students 
.:nin week-long seminars. They worked in groups of three to six people, 
over a period of about ten hours. In that environment, about half the 
students came up with reasonable solutions. The successful students pro­
duced every structural variation (and every bug) that you can imagine. As 
the simplest nontrivial data-flow problem most programmers encounter, 
master-file update is a good vehicle for conveying a variety of sermons. 

Interestingly enough, the most successful group consisted of commercial 
COBOL programmers. Why? Because programs like this are their stock in 
trade. At least they were before on-line data bases came to dominate 
commercial data processing. Nevertheless, I am still surprised regularly 
when I trip across a program with the same morphology as master-file 
update that is still in use in some well traveled corridor of contemporary 
computing. 

There are two general shapes for performing a merge of this sort. 
Leaving out all but the grossest details, the simplest looks like: 

WHILE (more of both) 
IF (master.no < xaction.no) 

<put master> 
<qet master> 

ELSE IF (master.no = xaction.no) 
<apply xaction to master> 
<qet xaction> 

ELSE 
<do xaction> 
<qet xaction> 

WHILE (more master) 
<put master> 
<qet master> 

WHILE (more xaction) 
<do xaction> 
<qet xaction> 

The second variation relies on a clever trick beloved of COBOL program­
mers. It assumes that end-of-file on either stream can be represented as an 
ordinary record with an account number higher than any input value for 
that field (a.k.a. HIGH-VALUES): 
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WHILE (both not HIGH-VALUES) 
IF (master.no < xaction.no) 

<put master> 
<qet master> 

ELSE IF (master.no = xaction.no) 
<apply xaction to master> 
<qet master> 

ELSE 
<do xaction> 
<qet xaction> 

Programming on Purpose 

In either case, it is clear that the details must be filled in carefully if you 
intend to satisfy all of the requirements enumerated above. The most 
important thing, as always, is to recognize the shape of this problem when 
you see it. That way, you will know immediately the shape of the solution 
required. And you will know what to look out for when generating a 
program of the requisite shape. 

You encounter another broad class of situations when doing outside-in 
design. These are characterized by multiple data structures that do not lend 
themselves to being married. When you encounter these, you must apply 
a completely different set of approaches. But that is the subject of the next 
essay (Essay 10: Divorcing Data Structures). o 

mfterword: This essay and the next are my reaction to data-structured design as 
~traditionally taught. Both Michael Jackson (Jac75, Jac83) and Ken Orr 
(Orr77) have earned ardent followings by teaching this powerful approach to 
program design, and justifiably so. Many commercial programs structure natu­
rally around nontrivial data flow. Unfortunately, that feeds the inevitable tendency 
to make this a one-size-fits-all design method. And it obscures the relationship 
between data-structured design and other methods. 

I prefer to peel data-structured design apart into its component approaches. 
Output-driven design is the simplest, followed by input-driven. This essay shows 
both as special cases of marrying data structures. Doing so, I believe, takes some of 
the magic out of the lookahead logic and other warts needed to make data-structured 
design work in real life. The next essay shows where things get really nasty. 
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7{n the last essay I introduced outside-in design,which focuses on the 
.:.nproblem of structuring modules that have multiple nontrivial data 
structures being input or output. (See Essay 9: Marrying Data Structures.) 
The examples I gave all involved marrying the multiple structures from the 
outside to form a composite data structure that shaped the code inside the 
module. Thus the name outside-in design. 

I continue the discussion of outside-in design with a hard look at the 
many cases where such a marriage of data structures doesn't work. To say 
that the marriage doesn't work is not an absolute statement. Rather, it 
involves a judgment that the resulting structure is so complex that it doesn't 
help control the complexity of the problem to be solved. It adds to it. 

So what do you do? The answer is best summarized in the Brian Savage 
cartoon shown in Figure 10.1. (I am a sucker for a well aimed cartoon, and 
Savage often lives up to his name.) Indeed, if you can't get along, why not 
get a divorce? That's all there is to it. 

Figure 10.1 "What's the big problem? If you can't get along, get a divorce." 

Reproduced by special permission of Playboy magazine 
Copyright© 1966 by Playboy 
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Figure 10.2 Data transform with clashing data structures. 

In programming terms, you must put some distance between the various 
data streams that don't fit together well. Where originally you had a single 
module, replace it with two or more. Each of the new modules inherits just 
one of the troublesome data streams. Naturally, you must connect these 
multiple modules by introducing new data streams. Otherwise they could 
not possibly cooperate to perform the task specified for the original mod­
ule. The real design work comes in specifying the structure of the newly 
introduced streams. 
?ll?lll' hat you need to do is determine a simpler structure that is common 
~to the more complex structures. You want this structure to be as 
complex as possible, to stay close to the original data structure, yet simple 
enough to marry nicely with two or more of the more complex structures 
you started out with. You see, you can't get away from the necessity of 
marrying all of the data structures for streams that enter or leave a single 
module. All you can do is break a difficult problem up into two or more 
simpler problems. 

Figure 10.2 shows a simple example where input and output data 
structures clash. The clash is illustrated symbolically by an input structure 
that repeats in groups of threes and an output structure that repeats in 
groups of twos. Since 2 and 3 are relatively prime, the simplest structure 
that accommodates both is a repetition of groups of sixes. That's not an 
awful data structure, but it's certainly not a compelling design to repeat any 
code in six variations. And as with all combinatorics, things get bad very 
fast with more factors. 

Figure 10.3 shows the obvious way to resolve this structure clash. You 
break the original module into two, and connect the two with a stream 
whose structure is a simple repetition of the common atomic structure. 
Now you have two simpler problems. The left module in the data stream 
is a classic input-driven form, reducible by left-to-right design. (See Essay 
5: Recognizing Input.) It is a parser that must produce single records as 
they are recognized. 

~ 
Xform 

Figure 10.3 Resolving the structure clash of Figure 10.2. 
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The right module in the data stream is a classic output-driven form, 
reducible by right-to-left design. It is a data generator, or report writer, that 
must compose more complex forms from a stream of single input records. 
(See Essay 3: Generating Data.) 
,.fj:'Or a more concrete example, consider a text formatter. Shorn of its 
,,JJ whistles and bells, a text formatter spends much of its time reading lines 
of text written any old way and composing them into lines of more or less 
uniform width. In the absence of any hyphenation algorithms, output lines 
are split between words. You start a new line after you have placed at least 
one word on a line and before you place a word that will make the line too 
long. With this simple rule, and a fairly moronic definition of what consti­
tutes a word, you can do a remarkably pretty job of formatting text. 

The structure clash is obvious. There is no predeterminable relationship 
between the words presented on any one input line and the output lines 
they generate. A given input line could complete one line, generate several 
more whole lines, and/ or provide the beginning of yet another. I have seen 
programs which nevertheless read lines, unpack them into words, repack 
words into output lines, and put out the lines, all in one giant control loop. 
What such programs lack in aesthetics, they make up for in job security for 
the original authors. 

How to resolve the structure clash is equally obvious. You want an input 
module that reads lines of text and delivers up separate words. You also 
want an output module that eats words one at a time and produces lines 
to be written out. The intermediate data stream you introduce is a sequence 
of zero or more words. 

Of course, you could also introduce an intermediate data stream that 
consists of individual characters. In a UNIX-like environment where each 
of the modules is a separate program and the two are connected by a 
pipeline, this is a compelling solution for the intermediate stream. But that 
is mostly because UNIX traffics heavily in unstructured streams of individ­
ual characters. You always have more machinery to help you out if you 
adopt the local lingua franca. 

If both modules are within the same program, however, it may be harder 
to justify introducing a character stream. I am assuming that there are ways 
in which the line structure of the input affects how you break the input into 
words. (You may tolerate hyphenated words split across input lines, for 
instance.) In that case, you may find yourself recognizing words, then 
decomposing them for transmission, in the input module. Meanwhile, the 
output module is reconstituting words from the connecting data stream so 
that they can be properly packed into output lines. This is make work. 

And even if you don't object to communicating via streams of characters, 
you would probably balk at communicating via bit streams. Everyone 
draws the line somewhere. 
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~ 
Figure 10.4 Data transform with clashing output structures. 

IO'xamples abound, in fact, where input data structure clashes with output 
~data structure. Disk files are almost invariably composed of a sequence 
of fixed-size blocks. If a file contains variable-length records, be they text 
lines or more structured entities, it is commonplace for records to span 
block boundaries. You have a clash just separating out the record structure. 

A program that reads one disk file and writes another faces multiple 
clashes. It must read disk blocks, compose input records, perform its 
principal business of transforming input records to output records, then 
sprinkle output records across a different pattern of disk-block boundaries. 
Small wonder that most of us lean heavily, and gratefully, upon operating 
systems and libraries to handle most of this business for us under the hood. 

A programmer's vocabulary is replete with jargon for various stylized 
ways of resolving structure clashes. We speak of blocking and deblocking, 
packing and unpacking, buffering and unbuffering. Think of all the pro­
grams that compose screens, or paginate output, or assemble packets for 
transmission. Each is isolating an output stream with nontrivial data struc­
ture from an input stream with an unrelated nontrivial data structure. 

Structure clashes don't just occur between input and output structures. 
Figure 10.4 shows a stylized example of a module that accepts relatively 
unstructured input, but must produce two output streams each with its 
own peculiar structure. If the two output structures do not marry easily, 
you have just as much trouble arriving at a clean data-structured organiza­
tion of the module as when input and output structures clash. 

Figure 10.5 shows a data flow you can introduce to resolve the output 
structure clash of Figure 10.4. This time we add two modules, because the 
original module still has plenty to do in splitting the data stream. It is 
generally best not to pollute it with the problem of handling one of the 
nontrivial output structures as well . 
..c;..plitting modules this way is just another application of the principle of 
e:21information hiding. D.L. Parnas deserves credit for expressing this 
principle most clearly (Par72). Each module is responsible for the detailed 
knowledge of one (and preferably just one) data stream. Ideally, everyone 
else calls upon one module to generate data for that stream, and upon a 
companion module to consume data from that stream. Information about 
the structure of the stream is shared between these two modules, but 
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Xform 

Figure 10.5 Resolving the structure clash of Figure 10.4. 
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hidden from the rest of the universe. That way, changes in the structure of 
the stream can safely be effected by changing just the producer and con­
sumer modules. Nothing else should be perturbed by the change. 

The price you pay for working with more tractable modules, of course, 
is that you have more of them. You must be sure that, given your imple­
mentation of data streams and modules, you do not lose too much perform­
ance for the elegance you gain. So lets talk about implementations for 
awhile. Systems analysts have learned to deal as much as possible in 
drawings with neat circles connected by arrows. This is the most abstract 
way of representing the flow of data and the transformations that must 
occur upon that data to get the job done. You have maximum freedom to 
understand and refine the fundamental data flow at this abstract level. 

The job of the systems analyst can be summarized in four steps: 
• Determine the current physical data flow in the system under study. Draw 

a physical data-flow diagram, showing paper flow, phone lines, and all 
other ways that communicate data. 

• Determine the current logical data flow. Redraw the physical data-flow 
diagram as abstract data streams and transforms. 

• Determine the desired logical data flow. Alter the current logical data­
flow diagram to simplify communications, add new functions, resolve 
structure clashes, etc. 

• Determine the desired physical data flow of the improved system. Draw 
a new physical data-flow diagram, showing implementation decisions 
for the desired data-flow diagram. 

?11"1le tend to take for granted that the result of a systems analysis will be 
~a computer program (or suite of programs) that performs all of the 
functions identified in the analysis. A good analyst will keep in mind that 
there are many ways to implement parts of a system that are better handled 
outside the computer. (A very good analyst will keep open the possibility 
that the entire system might be better handled outside the computer.) 
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Here, for instance, are a few ways to implement a data stream: 
• arguments to a function call, or the return value from a function call 
• data written in a globally accessible location 
• data read from or written to a disk file 
• data passed along a pipeline 
• data read from a serial communications link, or a network 
• a truck full of magnetic tapes 
• a (voice) telephone call 
• a letter, sent once a month 
• a standard form filled out and pasted to the outside of a crate 
• a few words shouted over a partition 

Similarly, you can implement a data transform in many ways: 
• a main routine 
• a subroutine 
• a program in a pipeline 
• a separate microprocessor connected via a data link 

• acam 
• a human being 
• a trained seal 

To stretch your imagination a bit, try drawing a hydrocarbon-flow 
diagram of a 1970 VW Beetle. Identify all the different kinds of logic used 
to tum gasoline into kinetic energy and exhaust. Some of the transforms 
are mechanical, some fluid logic, some electrical, and some chemical. Who 
knows, you may find a better implementation for your IBM 3270. 
7fit ack to computers. Even if you confine your attention to data-flow 
~diagrams implemented entirely as single programs, you have much 
more freedom than you may realize. The data-flow approach tells you to 
allocate one function for each transform in the data-flow diagram. It also 
tells you to communicate data as much as possible via arguments to the 
functions and values returned by calling functions. Most important of all, 
it tells you that the backbone of your program is its data flow. The hierarchy 
of functions you contrive to implement your program must have the same 
connectedness as the original data-flow diagram. 

This raises an interesting issue. What you start out with is a bunch of 
circles connected by arrows. These circles sprawl across a two-dimensional 
sheet of paper. (More complex systems may require arrows to cross over 
each other, or layered data-flow diagrams, so even two dimensions may 
not be enough to represent the data flow.) Your job is to map this network 
onto a tree of functions. A tree has only one root, the main routine that 
controls everything. To do the job, you must either introduce yet another 
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Figure 10.6 Data flow with added coordinator transform. 

module whose sole purpose is to coordinate all of the data transforms as 
subfunctions, or exalt one of the transforms above all the others. It would 
be nice to have some guidelines in choosing among the alternatives. 

Introducing a coordinator at the top is generally the least desirable 
approach. What you are doing in effect is writing an additional data 
transform on your data-flow diagram, then looping all of the arrows 
through that single transform, as shown in Figure 10.6. You then appoint 
the new transform as the top function in the hierarchy. That violates all sorts 
of design principles, not the least of which is information hiding. 

On the other hand, this is exactly what the UNIX operating system does 
for you when you write a pipeline. The shell parses the command-line 
description of the pipeline, sets up all of the data streams, and starts each 
data transform going as a separate program. All data streams loop through 
the UNIX resident, which calls upon each of the data transforms to resume 
its activities when it can make additional progress. This wins, in many 
cases, because UNIX doesn't know any of the internal structures passing 
through the pipelines that it is administering. Each looks like a simple 
stream of characters being administered by a standard central service. 

If this implementation of data streams has acceptable performance, and 
if the connectedness of the data-flow diagram can be modeled by the simple 
bits of plumbing provided by UNIX, then you can arrive at a quick solution. 
Many a program has been lashed together in this fashion long enough to 
tune its specification and prove its worth, before investing in more expen­
sive C code. Many a production system in use today is still implemented 
in terms of UNIX shell scripts that build pipelines, because the solution is 
maintainable and has performance that is quite good enough. 
7fit ut let's return to the construction of a single computer program from a 
~data-flow diagram. To build a tree of modules, you need to pick one of 
them and place it at the top of the tree. You would like to have some 
guidance in picking the module that goes at the top. You would also like to 
have some guidance in deciding how to hang the remaining modules off 
the one at the top - in short, a design method. 
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The design method that addresses this problem is not outside-in design. 
What outside-in design does for you is to show you how to break complex 
modules up into simpler modules, so that each module is easier to imple­
ment. It also leads to modules that better specialize in the important 
business of information hiding. Given a data-flow diagram, you apply 
outside-in design repeatedly until all of your modules can be structured by 
left-to-right or right-to-left design. How to organize all of the (now more 
numerous) modules into a function-call hierarchy is the topic of the next 
essay, on top-down design. (See Essay 11: Who's the Boss?) 

To get some sense of the impact of hierarchical organization on the 
implementation of each module, meditate upon the following simple prob­
lem. Let us say you need to implement the function that performs the 
rightmost data transform in Figure 10.3. It takes as input a repetition of 
atoms and produces groups of atoms as output. To be more concrete, 
consider the earlier problem of consuming words of text and producing 
justified lines. Try writing the control structure for this module as: 
• an input module you call to get justified lines of text 
• a control module that gets words from a subfunction and delivers 

justified lines to another subfunction 
• an output module you call with single words, that calls a subfunction 

whenever it completes a justified line 
For extra credit, you can try the same exercise with the cluster of data trans­
forms shown in Figure 10.5. 
1IT"O give credit where it is due, I should point out that what I call outside-in 
~design was pioneered by J.D. Warnier (War74, War78). More recently, 
Michael Jackson (Jac75, Jac83) and Ken Orr (Orr77) have separately written 
quite a bit on various aspects of this approach to designing computer 
programs. What is known as the Jackson Design Methodology is largely 
outside-in design. Those sketchy little data structures I write on the data 
flow diagrams are handled in much greater detail as Warnier-Orr Dia­
grams.Data-flow analysis has seen many contributions from Chris Gane, 
Trish Sarson, and Ed Yourdon, among others (G&S77, Y&C79, W&M85, 
H&P87, Y&C89). 

Indeed, this essay comes closest, of all that I have written so far, to the 
mainstream of programming-design methods. With the next essay, I jump 
right into the middle of the mainstream, with both feet. o 

(:1tfterword: This essay hovers somewhere between the trivial and the profound. I 
.:ct.wanted to emphasize that programmers resolve structure clashes almost intui­
tively. At the same time, I wanted to show the central role the clash resolution plays 
in the sophisticated discipline of data-structured design. All of these approaches 
start coming together now. And clash resolution is right in the middle. 
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METHOD: Top-down design. 
DESCRIPTION: Top-down design focuses on the decomposition of a pro­
gram into a hierarchy of modules. It can be viewed as a process of stepwise 
refinement, from the most general to the specific. Or it can be viewed as a 
technique for mapping a data-flow network into a hierarchy of modules. 
The name derives from the convention of drawing hierarchical decompo­
sitions of functions with the most general modules (the root of the tree) at 
the top and the most detailed modules (the leaves) at the bottom. 

Mapping data-flow networks is a safe way to evolve a hierarchy of 
modules, because it offers a number of models for proven solutions based 
on frequently occurring network topologies. 
DOCUMENTATION: A data-flow diagram retains the most information 
about a modular decomposition. At the procedural level, a structure (or 
HIPO) chart documents the modules and data interfaces of a hierarchy. 
LIMITATIONS: Without a clear understanding of the flow of data, at the 
appropriate level of abstraction, top-down design offers little guidance and 
leads to an excess of modules. Recursion can tie knots in a structure chart. 
?ll?llthen I discussed bottom-up design several essays earlier (Essay 4: 
~Finite-State Machines), I probably annoyed some people by focus­
ing on the construction of finite-state machines. I know that a number of 
other design methods are generally subsumed under that rubric, but I felt 
few qualms about using the name for finite-state machines alone. 

In this essay, I expect to annoy even more people by discussing top-down 
design almost purely in terms of data-flow analysis. I know that for many 
readers top-down design is a blanket term that covers any of several Right 
Ways to Do Things. It is stepwise refinement, it is prototyping, it is goal-di­
rected programming. I am willing to stipulate that top-down design is 
indeed all of these things, provided that you are willing to concede that 
more guidance may be needed to tum an approach into a design method. 
In my experience, the greatest guidance in elaborating a top-down design 
comes from an analysis of the flow of data through the program you are 
trying to build. 

The goal of top-down design is to produce a list of all the functions 
(routines, procedures, subroutines) that are required to perform a set of 
operations within one computer program. A computer program has one 
main function that gets control when the program starts up. The main 
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function calls in turn all of the other functions, exchanging data in the form 
of arguments, function return values, and access to shared global data. So 
at this level of abstraction the list of functions should be accompanied by: 
• a list of the data passed into each function when it is called 
• a list of the data passed back from the function when it is called 
• a list of the shared global data that may be accessed or modified by the 

function when it is called 
• a brief (often one sentence) description of what each function does 
• a list of the functions called in turn by each function 

Essentially all of this data can be captured on a diagram called a structure 
chart. IBM popularized a more stylized version of the structure chart as a 
HIPO (for Hierarchy with Input, Process, and Output) chart. Figure 11.1 
shows a small structure chart. Each box represents a function, each large 
arrow a potential call to that function from another function. Each small 
arrow is a data item that is read (down arrow) or written (up arrow) by the 
called function. As you can see, you can pack quite a lot of useful informa­
tion into a structure chart. 
11T"he structure chart is an excellent document for capturing the initial 
~design of a program. You have something concrete that is detailed 
enough to evaluate, yet abstract enough to keep you out of the mire of 
implementation details. It is close enough to our everyday experience of 
writing code that many of us can evaluate the likely success of the coding 
effort just from the data-flow and function descriptions. There are also a 
number of criteria for measuring design quality that are applicable only 
after a structure chart has been generated. (See Essay 15: Which Tool is 
Last?) 

The structure chart is also an excellent document to maintain throughout 
the lifetime of a program. Changes do occur in the number and nature of 
functions that constitute a program, but such changes are fewer in number 
than those that leave the structure chart unchanged. The maintenance effort 
in keeping the structure chart current is well repaid. You have a quick 

aet record. 

aet liu 

Figure 11.1 A small structure chart. 
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overview of the program, and a handy road map to the functions and data 
that are likely to be affected by a given change. If the structure chart for a 
program is at all nontrivial, it is well worth generating and keeping alive. 
,a... o how do you go about making this marvelous document? The easiest 
e:lJway is to write the program, get it working, then document what you 
did. That puts the structure chart in the same category as, say, a cross 
reference of all identifiers defined in your program. It helps with the 
maintenance, but not with the design. If you want to generate a structure 
chart as part of the design creation and evaulation process, however, you 
need a bit more guidance. 

The HIPO approach is one attempt at giving added guidance. It tells you 
to write the main function box at the top of the page. You then describe its 
function the same way you would describe the overall function of the 
program. It could be, "produce graphs." Or, "update database from trans­
actions." Or, "perform Fourier analysis on spectra." You then identify three 
subfunctions that: 
• obtain input, at the appropriate level of abstraction 
• process the input to produce output 
• deliver the output 

For each of these subfunctions, you then apply the same paradigm. For 
input functions, you ask yourself what three subfunctions are appropriate 
to obtain (somewhat less refined) input, do the process, and generate the 
(refined) output. For output functions, you ask yourself what three sub­
functions will result in the production of somewhat more refined output. 
And for process functions, you're on your own. 

Eventually you should get to a level where input/ output can be per­
formed in terms of the input/ output services of the programming language 
you are using. Similarly, all processing can be performed in terms of 
statements in the language or calls to standard library functions. In real life, 
you probably discover the need for a few common subfunctions along the 
way. You stop what you're doing and go specify them. This is a way of 
bringing the bottom up to meet you, as it were, while you're mostly 
progressing top down. Nothing to be ashamed of, everybody does it. 

Also, in real life, you shouldn't be too religious about decomposing each 
module into three subfunctions, for input, process, and output. Often one 
or two of these subfunctions becomes trivial long before you get to the 
bottom-most module for the third. If you find yourself making up silly little 
functions just to keep the hierarchy balanced, then you've fallen into the 
HIPO trap. As we shall see, there is no particular virtue in having structure 
charts that are symmetric. There are more fundamental forces at work in 
shaping the hierarchy of a program. 
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11rhere' s a more important limitation of this approach to top-down design, 
"1tas I have said before. (See Essay 1: Which Tool is Best?) It's easy to get 
lost on the way down. If the problem is small, you can usually succeed -
but then the design method doesn't help all that much. If the problem is 
familiar, you can also succeed - but then you are primarily imitating a past 
design. What you need for big-league problems is a set of guidelines that: 
• let you make small problems out of big ones 
• let you identify familiar problems within unfamiliar ones 
• let you organize the smaller pieces into a coherent whole 

This is where data-flow analysis moves to the fore in top-down design. 
With this approach, you first develop a data-flow diagram for the problem 
to be solved. You then derive the structure chart almost mechanically from 
the data-flow diagram. The hardest part of the design, in fact, is hidden in 
that word "almost." Of the many structure charts you can derive from a 
given data flow, you need some guidance for determining which is best. 

A data-flow diagram is nonprocedural. It deals with the connectedness 
of the problem, in terms of the data transformations that must occur, 
without committing to any particular hierarchical decomposition into func­
tions. It is a natural by-product of the analysis phase, before program 
packaging decisions come into play. It is often easier for civilians to under­
stand a data-flow diagram, well enough to perform a constructive review, 
than to understand a procedural description that implements the data flow. 

I talked quite a bit about how to refine data-flow diagrams in the 
previous two essays, on outside-in design. (See Essay 9: Marrying Data 
Structures and Essay 10: Divorcing Data Structures.) There I focused on 
breaking up the data-flow transforms into subnetworks of simpler trans­
forms. Each simpler transform can be implemented with a single function 
whose structure is dictated by the structure of the data streams flowing in 
and out of the transform. You should always apply outside-in design 
repeatedly to a data-flow diagram, until you can make no further improve­
ments. Only then do you begin top-down design. 

In the previous essay, I stopped just short of showing how to turn 
data-flow diagrams into structure charts. Now you are ready to learn the 
great secret. All you do is grab the data-flow diagram by one bubble and 
shake it hard. The result, every time, is a structure chart that you can 
implement, that does the job, and that has the minimum connectedness 
required by the problem to be solved. 

Figure 11.2 shows a typical data-flow diagram that can result from 
data-flow analysis, plus the application of outside-in design. The double 
arrow indicates the module (labeled C) I chose as the grabbing point. With 
a flick of the wrist, Figure 11.3 results. Outside-in design assures that each 
box in the structure chart performs just one function. Moreover, that 
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Figure 11.2 A typical data-flow diagram. 

function can be implemented by code whose structure captures the struc­
ture of the data flowing in and out (as arguments or calls to subfunctions). 
Data-flow analysis assures that all necessary data sharing is present, and 
no more. This is not just a top-down design, it is probably a good one. 
7( haven't told the whole story, of course. I gave no justification for my 
~choice of bubbles to grab in Figure 11.2. The one I picked (labeled C) gave 
a nice looking structure chart, but who is to say that it is the best? I could 
have picked the bubble below and to the left of my actual choice (labeled 
E), or the one below that (labeled F). Indeed I have seen programs based 
on those choices, and they work. 

I could even have picked one of the ones out on the fringes, and I could 
make any of them work as well. Figure 11.4 shows the structure chart you 
get if you choose the fringe module at the lower left of the diagram (labeled 
G). Such modules are seldom chosen in real life to serve as the main function 
of a program hierarchy, but people equally seldom explore why that is so. 

Believe it or not, you can truly pick up a data-flow diagram by any of its 
bubbles, shake it out, and write a program that works from the resultant 
structure chart. What you find, however, is that some of the structure charts 
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Figure 11.3 A structure chart from Figure 11.2. 
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Figure 11.4 Yet another structure chart from Figure 11.2. 

require more exotic coding than others, to get the data to appear in the right 
place at the right time. 

Data-flow diagrams with merge points, like the two in Figure 11.2, cause 
one set of problems. Merges are reasonably well understood, but still easy 
to get wrong. Most people automatically make a single merge point the 
main function of a program, and with good reason as it turns out. Data-flow 
diagrams with loops in them are often even more troublesome, for you have 
data that both merges and diverges at different points in the diagram. 
Designers usually fall back on various ad hoc structures to implement such 
data flows, and they often introduce an excess of data coupling between 
modules as a result. 
.a... o it turns out that all of the bubbles in a data-flow diagram are equally 
e::1'valid candidates for serving as the main function of a program hierar­
chy. But, just like the pigs and the other animals in George Orwell's Animal 
Farm, some are more equal than others. The data-flow diagram is great for 
showing what data must flow to what modules to get the job done. What 
the data-flow diagram doesn't tell you is how to coordinate the flow of data 
between modules. That's where you have to get procedural. And it is the 
procedural criteria, in the end, that determine who should be the boss. 

All sorts of hairy issues can crop up when you try to get the coordination 
right in a hierarchy. I just touched on some of them in conjunction with 
merge points and loops in data-flow diagrams. Most of the everyday issues, 
however, are really quite pedestrian. They have nothing to do with fancy 
connectedness. Rather, they arise out of the very modules we write all the 
time to resolve structure clashes, to buffer or unbuffer data. 
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Figure 11.5 A simple data-flow diagram. 

In the previous essay, I asked you to consider the effect on a module of 
making it variously an input function, a main function, or an output 
function. Figure 11.5 shows a very simple data flow diagram that could 
force you to confront such effects. Depending upon which of the three 
bubbles you choose as the boss module, the central module (labeled B) can 
occur in any of three positions in the resulting hierarchy. Figure 11.6 shows 
all three possibilities. 

Let's assume that B's role in life is to gather up several records from A, 
assemble them into a combined datum, and deliver a stream of such 
combined data to C. If B is an input module, then C calls it every time it 
needs another combined datum. B calls in tum upon A repeatedly until it 
has assembled a complete record, then returns control to C with the com­
bined datum as the function return value. 

If B is the main module, it is built around a loop. While there are more 
input records obtainable from A, the main module assembles some of them 
into a combined datum, and calls C to dispose of the combined datum. 
Finally, if B is an output module, it is called by A every time A has 
constructed a record. B must maintain enough private memory to hold a 
combined datum, with notes detailing the state of that combined datum. B 
adds the newest record to the combined datum, calls C if the combined 
datum is complete, then updates its private memory so that it knows where 
to pick up the next time it is called. B then returns control to A. 

~f the three implementations, the last is probably the most ornate. You 
~can't avoid having private memory when Bis an output module. You 
should know by now that having private memory incurs a maintenance 
cost that had better pay for itself by decreasing complexity somewhere in 
the design. If there is an alternate hierarchy that doesn't need private 
memory, it should be favored. 

A 

B 

A c 

Figure 11.6 Three structure charts from Figure 11.5. 
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By this criterion, the implementation that has B as the main function is 
probably the least complex. (It may lead to higher cost for the other 
modules, but we'll get to that in a moment.) The implementation that has 
B as an input module can be equally as simple, provided there are no 
lookahead issues in recognizing the end of a group of records that consti­
tutes a combined datum. 

If you must lookahead, then you need some form of push-back as well. 
That means that either A or B must have private memory to the tune of one 
input record, plus state information, to assist the input parse. So once again, 
B is the least complex if it is the main function. 

You should not be surprised to learn that all modules are least complex 
when implemented as main functions. That is one of the reasons why 
UNIX-style pipelines are often so cheap to code and maintain. Each module 
gets to be the boss of its own little data transformation, and the operating 
system solves most of the coordination problems in a standard way. But if 
you're bent on implementing a data-flow diagram as a single hierarchy of 
modules (a single program), then only one module can be the boss. 

That's not as bad as it sounds. As this little example shows, B is almost 
as simple when it is written as an input module. And it is not all that bad 
as an output module. Chances are the other modules in the data-flow 
diagram have different problems. You should be able to guess the proper­
ties of a module that unpacks records, for instance, rather than packing 
them as B does. An unpacker has to have private memory as an input 
module, is simple as a main function, and is equally simple as an output 
module. None of the implementations are all that hard to write or to 
maintain. 
A. o the seat of the pants rule for picking the best bubble to grab is really 
e:21quite straightforward - locate the one that has the most complex 
structure and make it the boss. Chances are, one module stands out from 
the others in this regard. And chances are, all the others can be implemented 
reasonably well wherever they fall on the hierarchy. 

You will find that this straightforward rule usually selects modules 
somewhere near the center of a data-flow diagram. The fringe modules are 
usually the easiest to simplify by outside-in design, so they present the 
fewest problems by the time you get to top-down design. 

Several major schools of software design are covered by the approach 
I've outlined in this essay and the one before. Each uses a different vocabu­
lary, and each devotes considerable attention to details I have just touched 
on fleetingly here. I plan to spell out the parallels with other schools, and 
some of those details, in the essay that follows. (See Essay 12: By Any Other 
Name.)o 
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mften.vord: I developed the grab-and-shake approach many years ago, while I was 
~teaching seminars at Yourdon inc. I taught it to several other seminar instruc­
tors who have gone on to write any number of books. Nevertheless, I have never 
seen the approach captured in print outside these essays. Larry Constantine is the 
first person I know to use data flow as a guide to constructing structure charts. The 
detailed analysis of module complexity as a function of position in the chart is my 
small addition. 
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]'{n the previous essay, I discussed how you can use data-flow diagrams 
,JJ to guide you when doing top-down design. (See Essay 11: Who's the 
Boss?) The goal of top-down design is to produce a structure chart, docu­
menting the modules you need and how they call each other. Your basic 
approach is to grab the data-flow diagram by one bubble and shake it hard. 
The result is always a structure chart that implements the data flow with a 
minimum of modules and data interchange. 

What is harder to minimize is the complexity of each module. If a data 
transform maps to any module except the main, or topmost, module, it may 
have to retain private memory between calls. It's not so bad if that private 
memory is mostly remembered data, such as a partially consumed buffer 
or a partially complete output screen. It can be much worse if that private 
memory contains nontrivial state information. You are then in the business 
of writing a program with multiple program counters, each implemented 
in a different way. 

In this essay, I want to explore further the methods for picking a good 
top and for living with the consequences. Along the way, I will show how 
these methods relate to an assortment of design disciplines that have been 
put forth in the past. My goal is to show you how each of the older design 
disciplines is successful in dealing with certain classes of problems. I also 
want to show you how the older disciplines all hang together, in terms of 
the various design methods I have been talking about so far. 
~ne of the commonest program structures encountered in commercial 
"'7 programming is the transaction center. At a transaction center, input data 
is divided into a variety of classes, each of which is handled by separate 
code. If you have to maintain a specialized data base, for instance, you may 
well conceive a single program that performs all data-base accesses. The 
program reads a series of transactions, each of which contains a command 
plus any necessary additional data. At the very least, you need commands 
to create, delete, and read items in the data base. You may also want others. 
The transactions differ considerably in effect, but all result in (possible) 
changes in the data base and (possible) additions to the output report. 

How do you design a transaction-centered program? First you recognize 
that the data-flow diagram has a familiar shape. Figure 12.1 shows a 
data-flow diagram with an obvious transaction center. Transactions are 
distilled from the input, then divided into a number of separate streams. 
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Figure 12.1 Data-flow diagram with a transaction center. 

Each of these streams performs a series of distinct transformations, but all 
results are merged to produce a common output. 
:J{f you grab the data-flow diagram by the bubble that separates the 
~transactions, then you get the classic transform-centered structure chart 
shown in Figure 12.2. The main module obtains transactions and fans out 
control to one of a group of subfunctions to perform each transaction. These 
call in turn upon a small group of common action functions. All data-base 
operations, for instance, can be implemented in terms of atomic functions 
that insert, delete, and read items. The net result is that the structure chart 
fans in at the bottom to just those functions that define the interface to the 
data base, or produce the output report. 

Yourdon and Constantine discuss transaction centers at length in their 
book Structured Design (Y&C79, Y&C89). They refer back to an even older 
technique with the acronym SAPTAD. I always forget what the SAP stands 
for, but the TAD reminds you to address in turn all the Transactions, their 
Actions, and the resultant Details. If the most interesting part of your 
program is a transaction center, then SAPTAD tells you how to elaborate 
the design. 

Figure 12.2 Structure chart for the transaction center in Figure 12.1. 
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A transaction center is at its best when it encapsulates information. If 
you provide a complete set of operations for accessing your data base, for 
instance, then no other program need know the internal structure of the 
data base. No other program should know the internal structure, in fact. 
Otherwise, you have greater maintenance problems when you (inevitably) 
alter the structure of the data base at some future time. 

A transaction center is less useful if the commands are a hodgepodge, or 
if there is no information to hide. Back in the days of batch programming, 
and in the early days of time-sharing, there was a strong tendency to write 
large, monolithic programs. The mind set was that it costs so much super­
structure to build any program, and it costs so much to start a program 
running, that you need to get your money's worth. Many programs became 
transaction centers just to handle all the myriad alternatives you might 
want to handle in conjunction with the specific business of the program. 

Now that we have better support for reusable modules, it's easier to 
write a suite of small programs that share common access modules for a 
given data base. And now that we have user-cordial, if not user-friendly, 
operating systems, it's easier to run a program to do just one transaction 
and then exit. That's not to say that transaction centers are a thing of the 
past, but they do seem to be more wisely employed these days. 
Aow let's look at an operation called program inversion. In the previous 
»essay, I talked at some length about how to implement a data transform 
when it appears in different places in the structure chart. It is easiest to make 
a data transform into a main module. You can directly apply: 
• right-to-left design (Essay 3: Generating Data), 
• left-to-right design (Essay 5: Recognizing Input) 
• outside-in design (Essay 9: Marrying Data Structures and Essay 10: 

Divorcing Data Structures) 
It is also always possible to make a data transform into either an input or 
an output module. To do so, however, you have to modify the straightfor­
ward structure of the module as main module. That's not always easy. 

Let's look at the simplest case first. A generic data transform looks like: 

WHILE (more_input) 
qet(input) 
transform(input, output) 
put(output) 

That's how it reads as a main module. If it appears on the input leg of the 
structure chart, however, you must alter it to look like: 

qet_transformed() 
qet(input) 
transform(input, output) 
RETURN (output) 
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Figure 12.3 Data-flow diagram with a central merge. 

The main module becomes a function that returns a generated output da­
tum. Wherever you had to output a datum in the main module, you replace 
the output statement with a RETURN statement that returns the latest gen­
erated value. 

On the other hand, if the module appears on the output leg of the 
structure chart, you must alter it to look like: 

put_transformed(input) 
transform(input, output) 
put(output) 

The main module becomes a function whose argument is an input datum. 
Wherever you had to obtain more data in the main module, you return 
control to the caller. 

lLooks simple, no? Then let's try a more difficult case. A variation of the 
transaction center is the merging central transform, where two or more 

data streams must be merged to produce a stream that is further trans­
formed. Figure 12.3 shows a data-flow diagram with a merging central 
transform. On more than one occasion I have described the classic master­
file update, where you merge a sorted stream of transactions with a sorted 
sequential file of master records. You then do one of three things: 
• If no transaction matches a master record, you copy the master record 

unchanged. 
• If no master record matches a transaction, you create a new master 

record from the transaction (or generate an error report if the transaction 
does not call for a record to be created). 

• If a transaction matches a master record, you apply the transaction to 
produce an updated master record (which may be the same as the 
original record if the transaction is merely an inquiry). 
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read(T) 
read(M) 
WHILE (more_T AND more M) 

IF (T.key < M.key) 
update(T, NULL) 
read(T) 

ELSE IF (T.key = M.key) 
update (T, M) 
read(T) 

ELSE {M.key < T.key} 
update (NULL, M) 
read(M) 

WHILE (more_ T) 
update(T, NULL) 
read(T) 

WHILE (more_M) 
update (NULL, M) 
read(M) 

update(NULL, NULL) 

Figure 12.4 Pseudo code for a merge main function. 
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Figure 12.4 shows the pseudo code for a main module that does the 
merge. The actual update is performed by the function update, which 
accepts a NULL argument in place of either the transaction record or the 
master record. When both arguments are NULL, update knows to drain 
any buffered output, since no additional input remains. Note that when a 
transaction matches a master record a new master record is not immedi­
ately obtained. This supports the (very reasonable) possibility that multiple 
transactions may be applied to the same master record. Writing the master 
record too soon is an all too common bug. 
Aow that we know how to do a merge as a main module, let's look at 
»another form. If we decide to put the merge on the input leg of the 
structure chart, then we must alter the control flow along the lines of the 
simpler example above. Every time the main module calls update to 
output something, the input function must return to the caller. Every time 
the input function is called again, it must pick up where it left off. The result 
is certainly messier than the simple example, but it can be done. 

There is even a fairly straightforward, if inelegant, way to do it. You 
should recognize this as a module that must retain its own program counter, 
to keep track of where it is in the combined data structure that it must track. 
In other words, you must tum the module into a finite-state machine. I 
covered how to do that under bottom-up design. (See Essay 4: Finite-State 
Machines.) 
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get_yair() 

0: 

1: 

2: 

3: 

4: 

5: 

6: 

STATIC pc .- 0 

GOTO pc 

read(T) 
read(M) 
WHILE (more_T AND more M) 

IF (T.key < M.key) 
pc := 1 
RETURN {T, NULL) 

read(T) 
ELSE IF (T.key = M.key) 

pc := 2 
RETURN {T, M) 

read{T) 
ELSE {M.key < T.key} 

pc := 3 
RETURN (NULL, M) 

read(M) 
WHILE (more_ T) 

pc := 4 
RETURN {T, NULL) 

read{T) 
WHILE (more_M) 

pc := 5 
RETURN {NULL, M) 

read(M) 
pc := 6 

RETURN (NULL, NULL) 

Figure 12.5 Pseudo code for a merge output function. 
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mssuming you can program in a language sufficiently tolerant to permit 
.a.ooTOs into blocks (C is such a language, sadly), you can simply write 
code similar to Figure 12.5. The STATIC variable pc is set to its assigned 
value at program startup. Afterward its current value is remembered 
between calls to the function. 

The last label is not misplaced, by the way. Why do you think it has been 
moved up? 
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get_yair () 
STATIC state := NEED TM 

IF (state = NEED_TM) 
read(T) 
read(M) 

ELSE IF (state = NEED_T) 
read(T) 

ELSE IF (state = NEED_M) 
read(M) 

{ELSE 
nothing to read} 

IF (more_T AND more_M) 
IF (T.key < M.key) 

state := NEED T 
RETURN (T, NULL) 

ELSE IF (T.key = M.key) 
state := NEED T 
RETURN (T, M) 

ELSE {M.key < T.key} 
state := NEED M 
RETURN (NULL, M) 

ELSE IF (more_T) 
state := NEED T 
RETURN (T, NULL) 

ELSE IF (more_M) 
state := NEED M 
RETURN (NULL,-M) 

ELSE 
state := DONE 
RETURN (NULL, NULL) 

Figure 12.6 Revised pseudo code for a merge output function. 
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11rhis pseudo code is moderately ugly, as I warned, but it works. With a 
~bit more effort, you can make the more readable transformation shown 
in Figure 12.6. 

I won't show you how the merge looks as an output module. You might 
try your hand at it, to see if you understand what's going on here. The point 
I want to demonstrate is that the merge gets noticeably messier when you 
make it other than a main module. There is a straightforward, almost 
mechanical, way to transform the module, but the result is less readable. 
There are creative ways to transform the module and keep it readable, but 
creativity requires work without guidance. 

Most people who preach the use of data-flow diagrams as design aids 
tell you simply that a merge point should be at the top of the hierarchy you 
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derive. You grab the data-flow diagram by the transform center and shake 
it out. Perhaps now you can see why this is almost always a good idea. You 
can also see when it might not be a good idea: 
• If your data-flow diagram has more than one transform center, you must 

either make one the boss or introduce an artificial coordinator. 
• If your data-flow diagram has a data transform which is even more 

difficult to structure than the transform center, you may be better off 
making that the main function. 

jf)llichael Jackson talks quite a bit about this process of restructuring 
Pl.modules that cannot be main modules (Jac75, Jac83). He calls the 
restructuring program inversion, which is reasonably descriptive. He also 
believes strongly in what I call right-to-left design, or letting your output 
data structure your program. Curiously enough, he pays less attention to 
left-to-right design, or letting your input parse structure your program. But 
he also teaches quite a bit about marrying data structures and resolving 
structure clashes, the yin and yang of outside-in design. Perhaps now you 
can see why Jackson's approach is often successful. 

Jackson's approach is, of course, not fruitful for some design problems. 
That's okay, because no method is always relevant. There is, however, a 
class of relevant programs where program inversion breaks down. So far, 
the most complicated problem I've shown requires that only a single 
module be inverted. That is, an input module has all of its output state­
ments in the module proper, so these can simply be turned into RETURN 

statements. Equally, an output module has all of its input statements in the 
module proper, so these can simply be turned into RETURN statements. 

But what happens if the transform is sufficiently complex that several 
modules participate in the input (or output)? If an input module calls a 
submodule to generate part of the output, you can't just have that sub­
module return control to the original caller. You must also provide some 
way to have the next call from on high get control back to the point in the 
submodule where you left off work. I'm not saying you can't write it- the 
biggest problem with programming is that you can do anything. You just 
end up with something that's hard to write, read, and maintain. That's all. 
11rhe machinery for handling this particular control problem has been 
\Ulinvented, several times in fact. What you need is the ability to write 
coroutines. A program structured into coroutines has multiple control 
stacks, one for each thread of control. When one coroutine (co)calls another, 
your program stacks the current state of the caller just as on a normal call. 
But it then switches to the saved control stack of the callee, so that it can 
pick up right where it left off, after its last cocall. With coroutines, you can 
indeed return to a caller from within a submodule, then get control back at 
that point on the next cocall. 
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Only a few modern languages support coroutines, and none of the 
widely used ones do. Ada has machinery that supports coroutines, after a 
fashion, but then Ada has a little bit of everything. There are serious 
problems in implementing coroutines, problems that can only be solved by 
consuming program space for multiple stacks and/ or execution time for 
switching more elaborate contexts. It is little wonder that languages sup­
porting coroutines have seldom proved competitive with simpler ones. 

An operating system that supports multiple processes, however, has 
almost all the machinery needed to implement coroutines. At the risk of 
being tiresome, I point out yet again that the UNIX pipeline mechanism is 
just the added bit you need to finish the job. All the popular UNIX shells 
(command interpreters) make it easy for you to type a line of text that starts 
up two or more autonomous processes linked together by their standard 
data streams. If you can afford the time overhead of communicating via 
pipelines, UNIX hides the complexity for you. 

You can even implement coroutines on single-thread systems, if the total 
program need not be interactive - if you don't need to obtain the first 
output before the last input is read. Even a system as simple as MS-DOS 
lets you specify pipelines just like UNIX does. The only difference is that 
MS-DOS runs the first program in the pipeline to completion, saving its 
output in a temporary file on disk. It then runs the next program in line, 
feeding it input from the temporary file. After the second program termi­
nates, the temporary file is quietly discarded. If you can afford the pipeline 
overhead, and the extra demands on disk space, and the non-interactive 
behavior, you've got coroutines. 

~l{n summary, there is nothing new about using data-flow diagrams to 
...lJguide top-down design. What may be new is the realization that top­
down design needs some guiding principle to make it a design method, 
rather than just a good idea. There is nothing new about choosing the 
central transform in a data flow, when picking the top module for a 
structure chart. What is new is a more detailed understanding of the forces 
that favor choosing the central transform. And there is nothing new in the 
technology for inverting modules that cannot be at the top of the structure 
chart. What is new is a realization that inversion has several degrees of 
difficulty: 
• It can be so easy that you hardly notice that you're doing it. 

• It can be hard enough to require a mechanical transformation to a 
finite-state machine. 

• It can be so hard that only coroutines do the job properly. 

I end by emphasizing that top-down design is one of the most powerful 
approaches to designing programs that I know. Despite all my disparaging 
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remarks, I use it frequently and encourage you to do the same. Just 
remember that there are two difficulties in practicing top-down design: 
• finding the right top 
• working your way to the bottom 
Otherwise, it's a snap. o 

mfterword: This essay is my attempt to tie together the major approaches to 
~designing computer software - stepwise refinement, structured design, and 
data-structured design. To me, it is obvious that all are more alike than different. 
The most interesting parts of the problem are what determine the best approach. I 
just wish it were more obvious to others who preach the gospel of disciplined 
software design. 
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METHOD: Order-to-chaos design. 
DESCRIPTION: Order-to-chaos design deals with the problem of looking 
up an arbitrary sequence of items in an ordered collection of data. The 
result of each such search may be to insert, delete, replace, or simply read 
all data from the collection which satisfies some predicate. The predicate is 
generally applied to the lookup item and the data in the collection. It may 
also involve the position of the data. The name derives from the assump­
tion that lookup data is less ordered than the collection. 

Numerous techniques exist for ordering and searching collections of 
data, with various tradeoffs among access time, ease of update, and storage 
space. Common to all techniques, however, is the need to encapsulate all 
accesses in a minimal set of cooperating modules. 
DOCUMENTATION: Data-linkage diagrams show the paths along which 
a collection can be searched. Data-structure diagrams document the com­
position of the data. Module specifications describe access functions. 
LIMITATIONS: If you guess wrong about the pattern of accesses, you 
may impose inappropriate structure on the data. Encapsulating a data col­
lection with a trivial pattern of accesses may introduce higher coupling 
than necessary. 
A. everal essays back, I discussed sorting at some length. (See Essay 8: 
~Order Out of Chaos.) I talked about why sorting falls into a special 
category of programming. I discussed a few approaches to sorting. And I 
gave my usual sermon about why you should avoid writing your own 
sorting code. The one thing I failed to do was discuss why you might want 
to sort in the first place. 

Several people wrote letters when that essay appeared in print. I botched 
some arithmetic on combinatorics, and I got a test wrong way 'round in an 
algorithm. (All such errors are corrected in this collection.) That was plenty 
of fuel for programmers who delight in catching their brethren out on 
matters of verifiable fact. (What can I say? I've been known to indulge in 
the same pastime myself.) There was not a single complaint, however, that 
I failed to justify the need for sorting as part of the discussion. 

I have become sensitized to issues of this nature lately, in my role as 
president of a software company selling into a marketplace that has become 
increasingly competitive. As I have learned more and more about market­
ing, I have learned to distinguish between features and benefits. 

117 
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What is a feature? It is a gadget, a refinement, a characteristic of the 
product that the vendor chose to add. The vendor added it for any of several 
reasons: 
• It was fun to do. 
• It seemed like a good idea. 
• The need for it was obvious, at least to the vendor. 
The description of features makes for all the fine print you read in ads 
written by techies to clutter (and pay for) computer publications. 

What is a benefit? It is a gadget, a refinement, a characteristic of the 
product that the buyer wants. The buyer wants it for any of several reasons: 
• It is fun to have. 
• It seems like a good idea. 
• The need for it is obvious, at least to the buyer. 
The absence of clear benefits in ads and product literature makes for all 
those annoying reviews that clutter (and justify) computer publications. 
]'{ trust the distinction between features and benefits is now clear. If the 
,JJ vendor puts it in the product, it is just a feature. Only if the buyer knows 
that it is there, knows what it is for, and knows why it might make life better 
- only then is it a benefit. 

If you paint the product orange, that is a feature. If the buyer knows that 
painting the product orange reduces eyestrain and improves worker pro­
ductivity, that is a benefit. If the product fits in a shoe box, that is a feature. 
If the buyer knows that your smaller product will cut shipping costs and 
the need for warehouse space, that is a benefit. You get the drift. 

It is amazing how easy it is to lose track of the distinction, however. Once 
you become immersed in your trade, you associate more and more with 
people who share your peculiar culture and vocabulary. Features automat­
ically turn into benefits. You forget that a significant portion of your 
customer base has only casual contact with your area of expertise, and they 
want to keep it that way. That's how you end up with ad copy that reads 
something like, "The doors are blue, with green diagonal stripes, and you 
know what that means!" 

When you buy a vacuum cleaner, for example, you probably don't want 
to research the current state of the art of suction engineering. You may try 
to dig up a recent Consumer Reports article, but that's about the limit of 
interest for the average civilian. Mostly, you want some assurance that the 
model you pick: 
• has the tradeoff you want between economy and quality 
• is appropriately priced 
• meets or exceeds industry averages for performance 
That's about it. 
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?ll?llt hat does all this have to do with software in general, and with sorting 
~in particular? Plenty. If you are a serious programmer, one who is 
programming on purpose, then you are in a competitive marketplace. lime 
is your principal asset, and complexity is your bane. You don't waste time 
adding complexity to the products you make just because it's fun, or it 
seems like a good idea. There must be an obvious, measurable benefit to 
everything you do. 

Sherlock Holmes went one step farther - he refused even to learn about 
anything that was not of obvious application to his trade. He once told 
Watson that whether the Earth revolved about the sun, or the sun about the 
Earth, was of no interest to him. He chose not to clutter his mind with facts 
that did not help him solve cases. I don't know whether Arthur Conan 
Doyle actually espoused this approach to life, or whether he described this 
incident just to shed further light upon the fascinating character of Holmes. 
It certainly shows a professional dedication that is extremely benefits 
oriented. 

You can learn all sorts of things about sorting, and you can apply them 
at the least excuse to every program you write. But unless you have a good 
reason for every time you reorder data, you are focusing on the feature 
instead of the benefit. And when you think about it, there is only one reason 
you ever have for sorting data - to make it easier to search for something 
later. 

If you're never going to look at the data again, there is no need to sort it. 
And if you don't care what order you consider the data in future, there is 
no need to sort it. Only when you need to revisit the data - and you 
perceive a need to reduce the cost of access for certain patterns of queries 
- only then does sorting pay off. 

Sorting, therefore, is a prelude to searching. Or contrariwise, searching 
is an epilogue to sorting. You need to consider both operations together to 
make proper design decisions about either. And, of course, you must be 
sure there is some measurable benefit to any searches you do, as well as 
any sorts. 

So, let's assume from here on that you have a legitimate need to search 
a collection of data from time to time. This imposes at least three obvious 
constraints on how you represent the data: 
• You have to know how to find it all. 
• You have to know when you've found what you're looking for. 
• You have to be able to do what you want to do with the data once you've 

found it. 
You must satisfy these three constraints irrespective of any performance 
goals. Otherwise you can't do the job at all. 
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11ro see how the constraints interact, consider a simple situation. Say you 
\Ulhave a list of several hundred customers. If you want to access it from 
a computer program, you must put it in machine-readable form. The easiest 
way is to use a text editor to produce a sequential text file. You need some 
sort of delimiter to separate customer records. For small enough records 
you can type one-line records and use the line terminator as a delimiter. To 
look up a customer by name, say, you need a program that reads the 
customer file one line at a time, knows which part of the line contains the 
customer's name, and does a comparison between the search name and the 
customer's name. 

It is then easy enough to scan the file from front to back to get the goods 
on any particular customer. Adding customers is easy, provided you are 
content to add them at the end of the file. Deleting customers is tiresome. 
You must either rewrite the file to percolate down records after the deletion, 
or have some way of marking certain records as dead. If you choose the 
latter course, you must plan to squeeze out the dead records, from time to 
time, before wasted disk space and longer access times become a problem. 
But these are performance issues. The point is, you can do everything you 
have to do with this simple organization. 

You could also allocate a fixed amount of space for each customer record, 
large enough to hold the largest record. That would make it easier to delete 
records. You just move the last record into the hole and shorten the file by 
one record. If you perform a lot of deletions, it might make sense to trade 
off extra disk space this way for a simpler deletion algorithm. It would also 
open the door for various speedups, since it is much easier to locate and 
rearrange fixed-length records than varying-length ones. Once again, how­
ever, we are talking performance. Switching from varying-length to fixed­
length records is not necessary to do the job, just (possibly) to do it better. 
11ro know whether you can do the job better, you have to know what the 
\Uljob is. As I stated earlier, you must know how to locate existing data (or 
decide where to put new data), and you must be able to operate on the data. 
Locating data involves examining data until you have satisfied some 
predicate. Two possibilities are: 
• You are looking for a particular datum, part of whose contents (called a 

search key) matches a pattern provided as part of the search. 
• You are looking for an extremum, that datum whose search key is 

smallest (or largest) among the relevant data in the collection. 
Operations on a collection of data can generally be characterized as: 

insertions - you have new data to add 
deletions - you wish to discard existing data 
replacements - you wish to insert new data in place of existing data 
reads - you wish to examine existing data 
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All data collections are read from time to time. (Otherwise, why bother 
keeping the data?). Once initially constructed, however, different data 
collections may require different combinations of insertions, deletions, and 
replacements, including none at all. You may speed up insertions and reads, 
for instance, by switching to a data organization that is miserable at 
deletions. This could lead to simpler code if deletions never occur, or to 
better overall performance if deletions are rare. Or you may know that you 
will only delete the smallest datum, at any given time, so you can choose 
an organization that favors this operation at the cost of others. 

The point is, you need certain knowledge that one or more of these 
operations will never occur before you can safely omit the code that 
supports the operation. And you need some reliable conjecture about the 
pattern of possible operations before you can make performance tradeoffs 
with any wisdom. Once you have that reliable conjecture, you will find that 
the literature abounds with methods for organizing data. (I just caught up 
on reading the last two years' worth of Communications of the ACM. You'd 
be astonished at all the things you can do with partially ordered heaps, lists, 
and trees.) You can tradeoff access time against insert time, or insert time 
against delete time, or enhance any group of properties at the cost of the 
remainder. 
mbout the only thing you cannot do is spit in the eye of information 
.a.theory. If you need to determine the smallest of a set of N records, for 
example, then some operation is going to take time proportional (at least) 
to N*log(N). You can sort at insert time, and read in constant time. Or you 
can insert in constant time, and sort when you read. Or you can divide the 
work between the two. Sooner or later, however, you pay the piper. 

It's kind of like pushing down on the bedsprings that stick up from an 
old mattress. Given enough hands and feet, you can hold down all the 
bedsprings you want to. The more you want to hold down, however, the 
more force you have to bring to bear. And various conservation laws ensure 
that some unattended bedsprings will eventually pop up, by way of 
compensation. 

The best thing to try first, in fact, is the solution that requires you to push 
on no bedsprings at all. My personal list of addresses and telephone 
numbers, for example, is implemented just the way I described the cus­
tomer list earlier. It is a text file of about 200 lines, which I keep under the 
Idris operating system, which in turn runs under MS-DOS on my Compaq 
Deskpro 386. The command: 

Phone <pattern> 

is actually a shell script, which in turn uses the utility grep (well known to 
users of UNIX) to select and display records that match <pattern>. 
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Unfortunately, there are some conceptual flaws with this approach. Two 
important ones are: 
• qrep doesn't know the structure of a record, so it occasionally gives 

"false positives" by matching a key intended as a surname to some other 
field, such as a street name. 

• The average access time is proportional to the number, and size, of 
records in the file. 
The first flaw is easy to live with, since I use Phone only as an interactive 

filter, never to provide uninspected input to another program. The second 
is equally innocuous, since qrep is more than fast enough to scan 200 
names on my older IBM PC/XT. On a Desqpro 386, it has growth capacity 
to spare. So even though Phone: 

• invokes a shell 
• which reads a script 
• which invokes qrep 
• which performs pattern matches on every line it reads 
• which calls for data blocks to be read by Idris 
• which calls for data blocks to be read by MS-DOS 
the script is fast enough to do the job. By making use of considerable 
canned complexity, and by overwhelming a bad algorithm by brute force, 
I avoid having to add complexity to this little collection of data. 
]'{f I ever acquire enough friends and business contacts to saturate this 
,JJ simple system, only then will I reconsider how it is organized, accessed, 
and maintained. At that point, I will probably break down and acquire one 
of the excellent data-base management systems now available for personal 
computers. That introduces lots of implementation complexity, and gives 
me better performance than I probably need. But it once again sidesteps 
any complexity that I personally would have to create and maintain. 

Whatever I do, you can be sure that I will confine any knowledge of the 
structure of the data collection to a minimum number of modules. That 
way, I can change representations as the mood strikes me, knowing each 
time that the code I must alter is minimal and clearly bounded. Searching, 
because it involves so few primitive operations, is a prime candidate for 
information hiding. 

There are several important principles at work here: 
• An algorithm with poor asymptotic performance often out performs a 

better one, for small amounts of data, because it is simpler and has less 
overhead. 

• The crossover point between a simple algorithm and a more sophisti­
cated one may well involve far more data than you need to handle. 
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• An algorithm with poor asymptotic performance is often good enough 
even in regions where it is outclassed by a better one. 

• An algorithm that is already implemented is much cheaper to employ 
than one you have to write code for. 

• Complexity is an asset if someone else is responsible for creating and 
maintaining it, a liability if you have to create and maintain it yourself. 

• No algorithm is so wonderful that it is not a candidate for future change, 
so you may as well contain the damage that will cause right from the 
start. 

A. ometimes, of course, you can't avoid pushing on the odd bedspring. 
e::vone of my favorite examples comes from the external sort that Brian 
Kernighan and I presented in Chapter 4 of Software Tools and Software Tools 
in Pascal (K&P76, K&P81). The problem is to merge N files, each of which 
is in sort, to produce a single output file. One way to do it is: 
• Read a record from each file, and tag each record with the file it came 

from and whether it is end-of-file. 
• Sort the records to identify the smallest one, sorting end-of-file higher 

than all other records. 
• If the smallest record is end-of-file, then stop, else put it out. 
• Replace the smallest record with another record from the same file, as 

in the first step, then go back to the second step. 
This seems to be the irreducible minimum to do the job. You need an 

internal data structure that can represent N records, each with a file tag and 
an end-of-file indicator. You need to be able to sort the data structure, find 
the smallest record, and replace the smallest record. 

But wait. Once the first set of records is in sort, all you ever do to perturb 
the order is replace the smallest record. You should be able to reorder the 
new set with far less effort than a full blown sort would expend. 

Indeed, this is the case. You can organize the records into a heap, which 
is a balanced binary tree each of whose nodes is less than any of the records 
in its subtrees. Nothing is promised about the relative ordering of the 
subtrees of a node. Figure 13.l shows a small heap, with six items. 

Figure 13.1 A small heap. 

1 
/ ~ 

5 3 
/ ~ / 

6 8 7 
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One of the desirable properties of a heap is that you can represent it 
neatly as an array (or as an array of pointers), assuming that its size is 
reasonably bounded. In this case: 
• If (2*i+l < N) then heap [2*i+l] is the root of the left subtree of 

heap[i]. 
•If (2*i+2 < N) thenheap[2*i+2] istherootoftherightsubtreeof 

heap[i]. 
So the heap shown in Figure 13.1 can be represented by the array: 

1 5 3 6 8 7 

mnother desirable property of a heap is that you can find its smallest entry 
.a.in constant time - it is at the root of the heap, or heap [ 0] in the array 
representation. Still another desirable property of a heap is that it is easy to 
reestablish its integrity after you replace its smallest entry: 

i := 0 
WHILE (heap[i] has subnodes 

AND either is smaller than heap[i]) 
<swap heap[i] with the smaller subnode> 
<set i to the index of that subnode> 

Since a heap with N items can have no more than ceil(log2(N)) levels, the 
heap is re-established in time proportional to log(N). 

For example, say the first record, with value l, is replaced by a record 
with value 9 in the heap of Figure 13.1. The array evolves through the 
stages: 

953687 
3 5 9 6 8 7 
3 5 7 6 8 9 

and it is once again properly ordered. 
All that remains to complete the merge is to write code that will build 

the heap in the first place. It is easy enough to write the code that builds a 
heap, but even that can be avoided. All you have to do is fill the array with 
a record from each file, then sort it with a conventional sort. It so happens 
that an array that is completely in sort also satisfies the ordering require­
ments of a heap, and then some. Sure, it's overkill, but a sort utility already 
needs an internal sort function, and it's an operation you only do once per 
external sort. 

Using a general sort function to build a heap nicely satisfied several of 
the principles I outlined above: 
• It recycles canned complexity from somewhere else. 
• It is a suboptimal algorithm used in an arena where it is good enough. 
• It is overkill with an insignificant time penalty. 
Now that's programming on purpose. o 
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mfterword: My original plan in writing this essay was to show half a dozen clever 
.a.ways to optimize accesses to a data base. Then I realized that I would be 
replicating a common intellectual trap. It's easy to get caught up in the features of 
algorithms without a thought to their true benefits. Thus, I decided to focus on why 
you might want to sort or search in the first place. I'd still like to show all those 
clever ways to access a data base, however. 
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METHOD: Hard-to-easy design. 
DESCRIPTION: Hard-to-easy design focuses on safe cooperation among 
sequential processes. When independent agents endeavor to share data, 
synchronization is required to prevent race conditions and data corrup­
tion. When synchronization is poorly implemented, lapses and deadlock 
may occur. The name derives from the observation that synchronization is 
hard to get right, and best dealt with early on in the design process. 

The primitives used to effect synchronization vary widely among differ­
ent systems. Often, safe operation can be achieved only at the cost of overall 
system performance. Thus, synchronization requirements should be kept 
to a bare minimum. 
DOCUMENTATION: Timing diagrams show the critical transitions that 
assure proper synchronization. 
LIMITATIONS: You cannot always separate synchronization from back­
ground computation, particularly in real-time systems with sophisticated 
feedback. It is hard to avoid all possibility of deadlock in a complex system. 
~nee upon a time, computers were fairly simple. When your program 
~wanted to read a card, it issued a READ instruction to the card reader, 
then proceeded to twiddle its thumbs. Nothing else happened while the 
picker separated the bottom card from the deck in the input hopper, the 
feed mechanism dragged the card past the read heads, and the stacker 
dropped it neatly in the output hopper. A very large fraction of a second 
after your program issued the READ, it moved on to the instruction follow­
ing, full secure in the knowledge that the data from the card was copied 
into the designated buffer in memory. 

Even in those unhurried times, programmers lamented the milliseconds 
wasted while bits of matter were coaxed into motion by various peripheral 
devices. So computer designers developed the input/output channel, a mod­
erately stupid processor that knew just enough to supervise the transfer of 
data to or from a peripheral device. The central processing unit, or CPU, 
issued its READ request to the I/ 0 channel, then went on about its business. 
When a transfer was complete, the 1/0 channel jerked the chain of the CPU 
by sending an interrupt. Your program could then note, in some fashion, 
that the transfer was complete and liberate the buffer for other uses. 

At that point, the systems programmers made a mistake. They assumed 
that the control of overlapped 1/0 should be given into the hands of every 
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applications programmer. Suddenly, us FORTRAN programmers had to 
deal with new 1/0 options of frightening power. We had to specify event 
flags, to be set on successful completion of a transfer. We had to specify 
handlers to be entered on transfer error, on end-of-file, possibly even on 
successful completion. Most important, we had to learn to keep our cotton­
picking hands off the 1/0 buffer until each transfer was complete. 

If we didn't take on all this baggage, we suffered the stigma of Using the 
Computer Inefficiently (a social faux pas roughly equivalent to turning 
down a date with Brooke Shields). If we did, we were forced through a 
programmed-learning course in how to synchronize (nominally) cooperat­
ing sequential processes - with our application program providing the 
only courseware, and with no textbook for the course. 

Eventually, the systems programmers took pity on us. They provided 
spoolers that used overlapped 1/0 to read ahead on card readers and write 
behind on printers and punches. Us wimps went back to writing programs 
that waited for each transfer to complete before proceeding, secure in the 
knowledge that most transfers involved simply a memory-to-memory 
buffer copy. Computer utilization was up and we were socially in a state of 
grace. Only the macho types persisted in coding overlapped I/O. 
?flSt as that flap was settling down, another one emerged. Computers 
,JJ were being equipped with multiple terminals. Several people could sit 
and simultaneously negotiate with separate programs, all running on the 
same machine. Conversational time-sharing was invented, as a way of 
keeping everybody seated waiting for better response time instead of 
milling about the ready room waiting for spooled printer output. To make 
all this happen, systems programmers developed operating systems that 
could juggle multiple processes, or separate threads of control. (You can 
think of a process as a program that thinks it has a whole machine to itself, 
only the machine is a virtual machine that is just a subset of the real 
underlying hardware.) 

At that point, the systems programmers made another mistake. They 
assumed that the ability to run multiple processes should be given into the 
hands of every applications programmer. Suddenly, us PL/I programmers 
had to deal with tasking options of frightening power. We had to specify 
event flags, to be set on successful completion of a subtask. We had to 
specify handlers to be entered on tasking errors. Most important, we had 
to learn to keep our cotton-picking hands off any storage used by another 
task until its usage was assuredly complete. 

There was never quite the stigma associated with not using tasking that 
clung to not using overlapped I/O. What was worse was that it looked easy 
to use. Nowhere in the PL/I manual was there the least hint that tasks were 
hard to specify safely, or expensive to start up, or next to impossible to 
debug. Once again, the tuition we paid did not entitle us to a textbook. 
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Eventually, the systems programmers again took pity on us. They pro­
vided command interpreters that start and administer multiple processes 
on our behalf. They gave us processes that run on separate virtual machines 
and communicate only through the operating system. They invented pipe­
lines and FIFO files for sequential data passing. They invented record 
locking for shared access to files. By eliminating most of our freedoms, they 
set us free. Only the macho types persist in writing unstructured multi­
thread programs. 
7{ have just described what is generally regarded as the first three genera­
.:ntions of computers. (The distinction between generations has since 
dissolved in an acid sea of marketing hype.) These are: 
first generation - a single thread of control in a private memory 
second generation- overlapped 1/0, used to improve the performance 

of a single thread of control in a private memory 
third generation - multi-processing, used to support largely inde­

pendent processes, each a single thread of control in a private memory 
The point I am belaboring is that overlapping multiple operations that 

work toward a common goal is a great way to improve the performance of 
a computer system, but it is very hard to control. Synchronizing logic is the 
hardest code in the world to design, debug, and tune. Once you get it right, 
you stuff it in a black box, hold it at arm's length, and treat it as just another 
peripheral connected to your first-generation virtual machine. Nearly all 
the code you write should be written for a single-thread environment. 
Otherwise, you'll pay a stiff premium on everything you write. 

This is why I call writing synchronizing code hard-to-easy design. If you 
have to do it, do it first, before the problem gets cluttered up with more 
mundane details. Identify where cooperating sequential processes abso­
lutely must share information in order to cooperate, and keep that interface 
to a bare minimum. Then encapsulate that interface, both data and syn­
chronizing functions, and document clearly the rules for using it. Finally, 
debug the synchronization code alone, as best you can, before you go on. 

This may seem to you to be an unseemly fear of synchronization code. 
All I can say is that, of all the designing and debugging I have ever done, 
none has come close to presenting the same level of difficulty. You develop 
a feel, with a complex program, about how much you can perturb it with 
changes before it gets out of control. I have found that an operating system 
kernel the same size as a language translator can safely tolerate only about 
a fifth as many changes, before it breaks, as the translator. And when an 
operating system breaks on you, it quickly turns into an uncooperative 
lump that is inert at best, insanely malicious at worst. 

If you are now sufficiently frightened, let's look at what it takes to 
synchronize multiple activities. Once again, I will recapitulate (more or 
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less) the evolution of multi-thread systems from the simplest to the most 
ambitious. Say you need to design a microprocessor-based system that 
gathers data from a number of sources. The easiest way to do it is to provide 
a simple hardware interface, for each of these sources, that holds onto the 
most recent datum until the computer can do something with it. 

From time to time, your program examines a status bit in the control 
registers for each of the hardware interfaces. If the bit is set, your program 
knows that a datum is present. It reads the datum in and clears the control 
bit, to inform the hardware interface that the datum has been delivered. 
This matters only if your program fails to collect a datum before the next 
one comes along. At that point, the hardware interface suffers a data overrun, 
which it should report to your program, via yet another status bit. Your 
program is obliged to do something sensible in the presence of data 
overruns. The control code looks something like: 

FOREVER 
IF (data ready) 

item := <input data> 
<clear data ready> 
process (item) 

IF (data overrun) 
<evince concern> 
<clear overrun> 

11T"his is a popular method for interfacing to computers, particularly 
"1.imicroprocessor-based systems where cost and complexity must be kept 
to a minimum. It requires a style of programming called polling. The design 
centers around an infinite loop that polls each device in turn, looking for 
more work to do. Synchronization is simple, because the control program 
gathers data only when it is ready for it, then disposes of it completely 
before taking on the next task. 

Provided that system performance is high enough to keep data overruns 
to a minimum, and provided that such data overruns are not cataclysmic, 
the solution has admirable simplicity. Notice how much it resembles a 
first-generation computer performing non-overlapped reads and writes. 

Polling breaks down, however, when data from one or more sources is 
bursty. There may be enough system capacity to handle all data presented 
in any given five-second interval, say, but a single device may sometimes 
need attention fifty times per second to avoid data overruns. You can extend 
the capacity of polling systems to handle such cases in two ways. 
• You can build hardware that queues up data from bursty sources, to tide 

the interface over until the control program can service it. 
• You can rewrite the control program as two (or more) control loops, 

servicing bursty devices in a fast loop and performing longer computa­
tions in a slower loop. 
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The first approach raises hardware costs, the second raises software com­
plexity. Both can help you delay the day when you must take on even more 
hardware costs and software complexity, however. 

Amore robust solution to the problem of bursty data is to let its hardware 
interface generate an interrupt whenever it needs attention. When an 
interrupt occurs, the computer saves whatever information is needed to 
restore the state of the current activity, then transfers control to a piece of 
software called an interrupt handler. A properly designed handler services 
the attention request from the hardware interface, to the point where the 
interface no longer feels motivated to generate an interrupt, then termi­
nates by restoring the state of the current activity. Whatever process was 
running is oblivious to its interruption. 
?11711.t hat an interrupt does, in effect, is move the synchronization point for 
~a device further inboard from its hardware interface. You can bring 
the full power of the CPU to bear on buffering data to be transferred, and 
reduce the need for special-purpose hardware in the interface. What an 
interrupt costs you is an added demand on the processing power of the 
CPU, and added software complexity in dealing with the necessary syn­
chronization. Say you are using an interrupt handler to buffer data into the 
array in_ data, of size N. You maintain a circular buffer with an index and 
a count: 

IF {N <= in_count) 
<data overrun> 

ELSE 
i := in next + in count 
IF (N <= i) 

i := i - N 
in_data[i] := <input> 
in count := in count + 1 

To process this data, you need a background loop something like: 

FOREVER 
WHILE (in_count = 0) 

<wait> 
item := in_data[in_next] 
in next := in next + 1 - -IF (N <= in next) 

in next== 0 
in count := in count - 1 - -<process item> 

For output devices, you write very similar code. The difference is that 
the background loop must wait when the output buffer is full, and the 
interrupt occurs when more data can be output. (It is slightly more complex 
to restart an idle output device, but I will gloss over that for now.) 
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But there is a nasty problem with the loop shown above. Whenever an 
interrupt is serviced, the handler assumes that certain relationships obtain 
among the control variables for the buffer: 
• There are in_count items unconsumed in the buffer. in_count may 

be zero, but it never exceeds N. 

• The next item to process, if present, is at in_ data [in_ next] . 
in_ next may be zero, but it never equals or exceeds N . 

.a... ince interrupts may generally occur between any consecutive instruc­
e::1'tions (or even in the middle of a complex instruction on some ma­
chines), the interrupt handler may be entered at any point in the 
background loop that is processing the input data. The handler may even 
be entered part way through one of the statements, since high-level lan­
guage statements frequently translate to several machine instructions. You 
can identify any number of places where the necessary relationships do not 
hold among the control variables. Mucking with them at these places leads 
to numerous flavors of mayhem. 

The relationships do obtain at the beginning of the loop body. When 
execution gets to the end of the loop body the relationships are restored. 
The problem is that, in between, the operations needed to update the state 
of the buffer are not atomic. Such a sequence of code is called a critical region. 

In a critical region, shared data is in an inconsistent state. Because the 
data is shared by agents that are proceeding asynchronously, it is never safe 
for more than one of the agents to be in a critical region, for a given 
collection of data, at the same time. There is a similar region of code within 
the interrupt handler, but it will always be executed atomically (unless there 
is a higher-priority interrupt that mucks with the same variables and can 
pre-empt execution). 

What you must do with a critical region is find a way to make it atomic. 
There are two fundamental approaches: 
• You must ensure somehow that no other concerned agents can execute 

while your program is executing a critical region. 
• You must add additional control variables, that can be updated atomi­

cally, to inform other agents when the critical region is busy. These 
agents must then elect to stay out of the critical region while it is busy. 
Here, the other agent is the interrupt handler. You must dismiss the 

second approach out of hand, in this case, because an interrupt handler has 
very little latitude. It must dispose of its latest input and return control with 
a minimum of fuss, for two reasons: 
• The more an interrupt handler fusses around, the more likely it will 

cause a data overrun while it is preoccupied. 
• Any constructive fussing it might do will just involve additional syn­

chronization problems somewhere else. 
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,a... o what you do to keep interrupt handlers from interrupting critical 
e::1'regions is to keep them from executing. Computers can generally 
disable or inhibit interrupts until a more opportune time, at which point the 
interrupts are enabled or permitted. The need to interrupt is not forgotten, its 
servicing is merely postponed. The background loop must be rewritten as: 

FOREVER 
WHILE (in_count = 0) 

wait 
<disable interrupt> 
item := in_data[in_next] 
in next := in next + 1 - -IF {N <= in next) 

in next== 0 
in count := in count - 1 
<enable interrlipt> 
<process item> 

This code still assumes that in_ count can be compared against zero 
with an operation that either is atomic or fails safe. If you have any doubt 
about that, then you must make the protected region even larger. Naturally, 
it is important to keep to a minimum the time interrupts are disabled, just 
as it is important to keep to a minimum the time interrupt handlers are 
active. Poor design or coding here can increase data overruns dramatically. 

You should notice once more, by the way, how much this program 
resembles a first-generation computer performing non-overlapped reads 
and writes. Most of the loop body, in the example above, is just our old 
friend the READ statement in a new disguise. 

Those of you who know something about the technology of synchroni­
zation may have noticed something odd. I have made it this far without 
discussing gates, semaphores, queues, monitors, or any of the other higher­
level concepts that fill many of the books and papers written about syn­
chronization. There are several reasons for this: 
• I wanted to pound home the historical lesson that first-generation com­

puting, isolated from synchronization issues, is the safest model for most 
program logic. 

• I wanted to illustrate the nuts-and-bolts issues that even the simplest 
computer interface must address. 

• Most of the literature on synchronization deals with cooperating se­
quential processes that have more or less identical stature, whereas 
interrupts and background loops are intrinsically asymmetric. 

11rhere's lots more to talk about on this thorny topic. What happens when 
~you have multiple interrupts to contend with, for instance? The best 
code for handling this case is not always a simple generalization of the 
single-interrupt case illustrated here. Nor are your worries over once you 
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have protected all your critical regions and made all your accesses to shared 
data atomic. That just gets you in the game. You then have to make sure 
that the sequences of synchronized operations you specify make sense, and 
never lead to deadlock. Let's consider a few more complex cases. 

The situation gets far more interesting once you introduce two or more 
data streams. Each may have separate needs for buffering, whether aided 
by interrupts or simply driven by polling. The heart of the problem lies in 
that innocent looking wait that must occur in any background loop, for 
when the program must wait for further interrupt activity before it can 
proceed. It may be that no progress can be made on processing this 
particular stream, but what about the others? 

You can extend the background loop to handle more than one data 
stream. Indeed, that is simply the polling program I introduced earlier. 
Should the background processing for one data stream reach a point where 
it must wait for more interrupt activity, the background loop does not wait. 
Instead, it looks for some other activity on which it can make progress. Each 
data stream has an associated set of data that memorizes the state of 
processing for that stream. The polling loop must continually put down 
one set of data, for a data stream on which no more progress can currently 
be made, and pick up another set of data, for a data stream that can make 
additional progress. 

If the processing of data for one stream generates data for another, 
however, you can get into some messy situations. The sets of data that 
characterize the state of each process get intermixed. Or you may need to 
insure that there is input available from two sources before a computation 
can proceed. Now you have to hand craft logic that inspects two or more 
sets of data to determine the state of another set of data. Sure, you can code 
your way out of it, but at considerable cost in complexity. It is even harder 
to code your way out of a situation where higher-priority data pre-empts 
normal processing. Try that in a simple polling loop and see what you get. 
711?11.t hat you find yourself doing in these cases is simulating multiple 
~processors on a single processor, by writing a growing pile of ad hoc 
code. What you find yourself wishing for in these cases is a budget that lets 
you dedicate a separate microcomputer CPU to camp on each data stream. 
Each of these CPUs is easy to code - its background control loop is just 
like the example above for synchronizing with a single interrupt. 

CPUs responsible for input from the outside world buffer the input as 
need be, process it as far as possible, then write out the results. Other CPUs 
wait for data written by these CPUs, until they have enough data to do 
something, process their data as far as possible, then in turn write out their 
results. Still other CPUs responsible for real-world output read these results 
as they become available and buffer the output as need be for physical 
devices. 
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The ideal result, from the standpoint of logical simplicity at least, is thus 
a network of CPUs, connected in a way that resembles as closely as possible 
the data flow being modeled. Each data transformer has its own dedicated 
CPU, executing a program modeled after the structure of the data that it 
must transform. If this sounds remarkably like what I have been preaching 
in earlier essays, that is hardly an accident. (See Essay 2: Writing Predicates, 
Essay 10: Divorcing Data Structures, and Essay 11: Who's the Boss?) The 
only ingredient I have added here is the need to have multiple CPUs, each 
camping on data streams that must be synchronized. 

Once you arrive at this viewpoint, you are well on your way to being a 
successful designer of multi-process systems. You see, most designers are 
pretty good at identifying the data flow and synchronization points be­
tween data transforms. Those drawings that you make on the backs of 
napkins or on conference-room blackboards are often excellent repre­
sentations of the system to be modeled. What you must learn to do is 
postpone implementation decisions until after you have partitioned the 
logical data flow into separate processes. Whether you assign each process 
to a separate CPU, or assign all processes to one CPU, or perform some 
division in between is a packaging issue. Packaging is done best when it 
follows logical design, rather than being intertwined with that phase. 
)f)OU must keep firmly in mind, during the logical partitioning phase, that 
~the purpose of each process (CPU) is to advance the cause of one data 
stream. It must synchronize with other agents at its inputs and outputs, but 
behave like a first-generation computer in between. If any CPU can block 
on a wait statement while there is progress to be made in a different part 
of its processing, replace it with two CPUs. If any CPU has no wait 
statements, you should merge its code with one of its neighbors and 
eliminate it. There may be other compelling reasons for keeping the code 
as a separate process, but synchronization is not one of those reasons. 

Now for the packaging choices. You can implement each CPU in one of 
two general ways: 
• as a separate process under control of a multi-processing executive or 

operating system 
• as a separate CPU 
It was not so long ago that the second alternative was too expensive even 
to consider. Now, the cost barrier is often not the extra CPUs and support­
ing chips, but the extra complexity in synchronizing data among multiple 
processors operating in parallel. You must have shared memory, or a suf­
ficiently high bandwidth channel, to communicate the data. You must also 
have a carefully designed signaling protocol between the processors to 
synchronize the communication. The payoff for this extra complexity gen­
erally occurs in one of three areas: 
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increased performance - because multiple processors can be acting in 
parallel 

easier growth - because you can tack on additional processors to get in­
creased parallelism 

increased reliability- because critical processors can keep operating 
when others die 

If you can't make a case that you will get at least one of these benefits, you 
should rethink your desire to introduce multiple processors into your de­
sign. 

As a general rule, in fact, the first alternative is preferred whenever the 
host processor has enough performance to do the job. The processes in a 
multi-processing system can be connected in myriad ways, and the connec­
tions can be changed on a whim. That's far less true of a system of CPUs 
wired together in some ad hoc fashion to do a given job. At work here is 
the Principle of Latest Binding: The longer you can defer binding decisions 
into a program, the more flexible it will be and the cheaper it will be to 
modify and to maintain. 
A. o let's say that you want to simulate having two or more CPUs by 
e:21multiplexing just one. What are your choices? In the simplest case, all 
but one of the processes (CPUs) is kicked into activity by the occurrence of 
a hardware interrupt. This is the situation I discussed earlier in this essay. 
All you have to do is make proper use of the interrupt-vectoring capabilities 
of your host CPU. The interrupt-driven processes become interrupt han­
dlers, and the remaining process executes in the background, when no 
interrupts are active. The only hard part is writing the functions that 
enqueue and dequeue data between interrupt handlers and the back­
ground process, as I discussed earlier in this essay. There is no need for any 
fancier software. 

It is within the capabilities of many programmers to write adequate 
enqueue and dequeue functions for a given host CPU. The risks of writing 
and debugging your own synchronizing code are probably well repaid by 
the reassurance that you know every byte of code that goes into the product. 
A program like this that has no support software is called freestanding. From 
microwave ovens to traffic lights, the world is rapidly filling up with 
embedded microcomputers executing freestanding programs. 

The world is also filling up with more ambitious applications involving 
embedded computers. As soon as your application involves two or more 
processes that run on an equal footing, not driven by interrupts, then you 
need software that manages multiple logical processes. 

That software must be integrated with the enqueue and dequeue func­
tions that you need to pass data between processes. The proper behavior 
when a process attempts to take data from an empty queue is for that 
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process to block (on the wait statement within the dequeue function) and 
for another process that can make progress to resume operation. And the 
proper behavior when a process adds data to an empty queue is to unblock 
at least one process that was waiting for data from that queue. Synchroni­
zation of data transfer between processes is intimately entwined with 
scheduling those processes. 

It is not easy to write good software to manage multiple processes. Aside 
from the problems of getting it right and robust, about which I have 
harangued at length, there is the problem of getting adequate performance. 
The simplest approach to writing a process scheduler is to manage a set of 
process queues. One queue contains all of the processes that have not 
blocked waiting for something. Another queue contains all of the processes 
waiting for a time interval to expire. Still other queues contain all of the 
processes waiting for a data queue to become non-empty (or non-full). The 
simplest way to manage these queues is to scan them from beginning to 
end every time you need to locate, insert, or delete a process on the queue. 

If you perform all queue operations with linear scans, then your enqueue 
and dequeue functions can take time proportional to the number of proc­
esses in your runtime system. Once you get above about a dozen processes, 
you will probably observe unacceptably long delays in clearing interrupts, 
because the interrupts may have to be active (and blind) or disabled (and 
blinded by a single event) while you're scanning all those queues. When I 
discussed searching in an earlier essay, I pointed out that there are numer­
ous tradeoffs between insert, delete, and lookup times for collections of 
data. (See Essay 13: Chaos Out of Order.) The better performance you insist 
on, however, the greater sophistication you must invest in how you organ­
ize your data. 
,a... o whether or not you think it is within your capabilities to write a set 
e:z1of functions that cooperate to manage multiple processes, you should 
resist the temptation to do so. If you need multi-processing capability, then 
for heaven's sake buy it. There are oodles of packages available off the shelf 
these days that can provide the services you need correctly, with decent 
performance, and without too much extra baggage that you'd rather not 
have. The best known are the real time executives such as VRTX, pSOS, and 
MTOS, to name just a few. If you can find it in your heart, and budget, to 
build your embedded application upon a commercial executive, then you 
will be ahead of the game when it comes to writing, debugging, and 
maintaining your application-specific code. 

I have talked glibly so far about the use of queues for passing data 
between logical processes. Indeed, this is an adequate mechanism that does 
the job. There are variations on the data queue, however, that are often 
better adapted to specific uses. Some of these are: 
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gates - one-bit messages used to provide mutual exclusion, so that only 
one of a set of processes enters a critical region at a given time 

semaphores - queues of one-bit messages used to provide finite but mul­
tiple accesses to a limited resource 

signals - one-bit messages that simply report the occurrence of some 
situation 

events - one-bit messages that are often grouped to make it easy to test 
for various logical groups of events, such as eventl AND event2 or 
eventl OR event2. 

messages - multi-byte data, often kept in a shared data area, whose own­
ership is passed by sending a fixed-size token 

monitors - sets of related functions whose activations are synchronized 
so that only one function is active at a given time. 

rendezvous - statements within cooperating processes that provide for a 
synchronized function call, with argument passing, within one process 
from another 
Before you start writing letters, I acknowledge that each of these terms 

has a variety of meanings. I have intentionally made only an arm-waving 
characterization of each. The only point I wish to make here is that there 
are any number of different mechanisms that have been implemented to 
provide synchronization between processes. In my experience, no single 
one of them has the proper balance between sophistication and perform­
ance to serve all needs. A nontrivial real-time application may make good 
use of gates, events, queues, and messages. So long as all of the different 
mechanisms play together, you should not hesitate to make use of any mix 
that seems appropriate for your needs. 
711?1\t hen you pick your commercial executive, you should make sure that 
~you have all of the features you need, and no more. Perhaps the worst 
trend in this rapidly growing marketplace is the beefing up of the more 
successful little executives to take on ever more sophisticated applications. 
Once you saddle a set of process-control primitives with hardware memory 
management, general device 1/0, structured file 1/0, dynamic loading of 
new processes, and/ or interactive background processing, the compelling 
simplicity of the original product rapidly begins to fade. 

When you find yourself needing any of these bolt-on services, that is the 
time for you to reconsider your support needs in terms of the more 
full-fledged operating systems. You are generally better off working with 
a well designed host system that has been scaled down for ROM-based (or 
small disk-based) operation. The UNIX computational model has now been 
captured as the vendor-independent IEEE standard called POSIX. A small 
but growing number of commercial offerings can now give you POSIX 
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conformance with the real-time performance and services that you need 
for embedded applications. 
mnd now for the bad news. No matter how clever you are at writing 
.a.synchronization code, or no matter how judicious you are at picking 
commercial products, you still have synchronization problems to look out 
for. Three that spring to mind, in order of increasing seriousness, are load 
balancing, response prediction, and deadlock prevention. 

Once you have partitioned your application into separate processes, and 
packaged your processes for one or more CPUs, you want to believe that 
the load will be distributed pretty much as you planned it. Unfortunately, 
it is well known that programmers are lousy at predicting where their 
programs will consume most of their execution time. If you guess wrong 
enough, you may have some serious repackaging to do before you get the 
performance you need. 

What aggravates the problem of balancing loads among processes is: 
• It can be difficult to get meaningful performance data in a multi-proc­

essing environment. 
• It can be difficult to outsmart a complex scheduler once you know the 

behavior you want. 
Both of these points argue for keeping the simplest possible process model, 
and scheduler, you can get away with. 

Predicting response is a similar problem. Your system may be well 
balanced, and it may have all the performance capacity it needs, yet certain 
operations may not be happening fast enough. Event-driven schedulers, 
such as are commonly used in the simple real-time executives, seldom give 
the kind of response that human beings like when they interact. These 
schedulers give real-time processes highest priority, as well they should. 
They treat all other background processes equally, whether they are inter­
active or compute bound. You need a scheduler designed to juggle priori­
ties in favor of interactive processes to fix this performance problem. 

Some schedulers provide for assured response to high-priority events to 
the extreme that they permit indefinite overtaking of lower-priority opera­
tions. As soon as you introduce any place in your multi-process design 
where one process may unconditionally overtake another, you open the 
possibility that the overtaken process may be indefinitely starved for 
attention. The only fix is to juggle priorities by hand until you get the 
behavior you like. 

Indeed, the worst aspect of response prediction is the prediction part. 
You may observe that you get desirable behavior every time you look, but 
your customer may demand assurances that the worst-case response has 
some fixed upper bound. If your application is too complex, you may be 
able to make such assurances only by deoptimizing the entire system. 



140 Programming on Purpose 

The extreme in bad response is when your system never gets around to 
servicing a request. Usually, this is caused by some form of deadlock, where 
two or more processes have each tied up resources that another one needs 
to make progress, and none are willing to release the resources they 
currently hold. If you think of writing good synchronizing functions as 
getting the syntax of synchronization correct, then deadlock prevention 
amounts to getting the semantics correct. 
7b ere is a concrete example. The Idris operating system, like many a 
;Jli!UNIX system, manages disk 1/0 with a pool of memory-resident 
buffers, each capable of holding a fixed-size block of disk storage. If your 
program reads a file, the Idris resident code running on behalf of your 
process obtains exclusive rights to a buffer, gets the appropriate device 
handler to read the contents of the file a block at a time into that buffer, and 
copies the relevant buffer contents to the place specified by your program. 

So long as each process requests just one buffer, and so long as no process 
will block while that buffer is tied up, the system can never be starved for 
buffers. If all buffers are tied up, eventually some process will progress to 
the point where the buffer is released, and the waiting process can grab the 
released buffer. 

Unfortunately, there are situations where the Idris resident would love 
to tie up a buffer on behalf of a process even while it is blocked. There are 
other situations where the resident simply must have two buffers handy to 
perform an operation. (There used to be situations where more than two 
buffers were required, but these were carefully recoded to need only two.) 
What to do? 

The solution lay in maintaining a count of buffer futures. Each process 
that sees a need to tie up more than one buffer requests the right to do so, 
before asking for even the first buffer of the pair. The buffer futures count 
is maintained as a semaphore - if too many processes reserve the right to 
ask for a second buffer, subsequent petitioners block while requesting this 
right until an adequate supply of excess buffers is available. With this 
machinery, the Idris resident will not deadlock on insufficient buffers even 
if there are only two available to the entire system. (And that's a ridicu­
lously small number, given the memory available on computers today). 

The point of the example is that having safe primitives for reserving and 
freeing buffers did not guarantee that the system would never hang up. 
Running the system with lots of buffers may lower the odds, but still does 
not guarantee that the system would never hang up. It took careful seman­
tic analysis of the problem, and equally careful coding, to make the Idris 
resident reliable in this important area. 

Lots more can be said on the subject of synchronization than I have 
covered in this essay. Whole books have been written on the subject. Even 
so, my personal experience is that this area of design is easily the least 
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understood, and the least structured, of all the areas I have covered so far. 
Of all that can be said, I feel the simple pragmatic advice I have given here 
will meet most of your needs. o 

mfterword: This is another two-part essay combined into one. Even so, I only 
~touched on all the things that I wanted to cover about synchronization. In the 
end, I opted as usual to focus on the basic concepts and pragmatic advice. Too many 
books plunge into the intricacies of synchronization logic without ever telling you 
to keep it small and encapsulated. What the world needs, I believe, is a simple 
real-time operating system presented as part of an extensive tutorial text. Even 
then, buying makes better sense than building, just as with sort packages. 
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711?1\then I learned how to ski, many years ago, I did it the hard way. A 
~friend of mine gave me a few lessons, then I went off on my own. I 
didn't bother to take additional lessons. I didn't go near professional ski 
schools. All I did was read an assortment of books on skiing, watch other 
people who skied well, and try to look like them. 

I knew how you were supposed to look when you skied properly. Your 
skis moved in graceful arcs, or in short businesslike hops. You could turn 
on a dime and stop at a whim. Most important of all, your skis stayed 
together at all times. 

My skis, on the other hand, hopped gracelessly through arcs and made 
a bad business of hops. I could only stop when I wanted to turn, or turn 
when I wanted to stop. And my skis, left to their own devices, stabilized at 
a spacing of about 50 centimeters. 

What I concluded, after a season or two of struggle, was that my 
problems would disappear as soon as I got those skis together. After all, 
that's how the experts looked. So for the next two seasons, I settled 
doggedly on a peculiar style of skiing. Every time I made it through a turn 
and steadied on a new traverse I would look down. If my skis were not 
together (and they never were), I would drag them together by main force 
and hold them there. For a few glorious seconds, as I traversed across the 
slope, I looked good. Or so I thought. 

There was a flaw in this approach. My skis were apart because I was 
(incorrectly) keeping considerable weight on my uphill ski. To drag that ski 
downslope against my weight, and in defiance of panic signals from my 
inner ear, took both muscular exertion and a silly kind of courage. Believe 
me, the muscles you use for pulling your legs together are not among your 
stronger ones. The result was that by early afternoon my legs were quiver­
ing from exhaustion and my adrenals were drained from skiing perpetually 
on the edge of disaster. 

All this just to look good for a few seconds at a time. 
Eventually, I despaired of this approach. I focused on skiing in control 

and on having fun. My skis drifted apart and stayed there. I did not look 
good. On the other hand, I was skiing all day and getting better. I even 
signed up for a few ski lessons along the way. 

One day, as I was swooping down a slope that was only moderately 
challenging, I heard a clattering noise. I looked down and saw an amazing 

143 



144 Programming on Purpose 

sight. My uphill ski, relieved of all weight because I was skiing properly, 
had slid downhill until it rested against my other ski. I was skiing with my 
skis together. I looked good. 

In that instant, I experienced the thrill of epiphany. It was only a lower­
case insight, unaccompanied by angels or complete enlightenment. Never­
theless, it was a blast. The mini Zen lesson that came home to me on that 
ski slope has spilled over into many areas of my life. 

The lesson is: You can know how you're supposed to look when you do 
it right, and still not know how to do it right. If you try to make yourself 
just look right, and still not do it right, you will waste a lot of energy. You 
won't look good, no matter how you feel that you look. If, on the other 
hand, you do it right, you don't have to worry about how you look. You 
will look good. 
11rhis essay is nominally about computer programming, not skiing. How 
~does the mini Zen lesson apply? As you might guess, the lesson warns 
us to be careful of software design rules that deal more with appearance 
than substance. How a program appears in the end is an important indica­
tion of whether it was designed properly. But knowing how a program 
should look does not necessarily guide you through the design process. 
And focusing on appearance too early in the design process can lead you 
to waste a lot of effort to no good effect. 

Here is a classic example. One of the earliest observations, during the 
development of modern structured programming, was that large modules 
are hard to read. If you contemplate a subroutine that sprawls over several 
pages of listing, you have to work hard to understand it. To see all the places 
where a local variable is referenced, you may have to flip back and forth 
through several pages. To locate the target of a GOTO is that much harder. 
Even if you write perfectly structured code that is always properly in­
dented, you can lose track of the level of indentation whenever you cross 
a page boundary. 

One of the earliest responses to the problem of reading large modules 
was simply to outlaw them. More than one shop decreed that each function 
or subroutine must be displayed on a single printed page. If the module 
exceeded this limit by so much as a line, coding rules demanded that it be 
recast as two or more modules each of which must fit on a single printed 
page. 

The results were varied: 
• Some programmers obeyed both the spirit and the letter of the single­

page limitation. With numerous small modules, their programs some­
times suffered a performance penalty from all the extra function calls 
and returns, but their source code was arguably more readable. 
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module size 
Figure 15.1 Distribution of module sizes with no size constraints. 

• Some programmers obeyed only the letter of the law. If a module came 
out too large, they would chop it up arbitrarily into multiple modules, 
then paste the pieces together with masses of shared data. These projects 
lost more in readability from bad modularization than they gained from 
having single page modules. 

• Some programmers simply ignored the limitation. They also ignored all 
of the other rules in the shop guide. There was seldom much rationale 
for any of the rules to begin with, there was little or no history of success 
in using them, and there was no indication as to which rules were 
important and which were not. Besides, nobody got rewarded for en­
forcing the rules. On the contrary, most programmers knew they would 
lose big if they focused on following coding rules at the expense of 
churning out lines of code. 

mou can usually identify which of these approaches a shop has followed. 
~Just plot a histogram of module sizes for a complete project. If there is 
no preoccupation with module size, you will get the usual bell-shaped 
curve that shows a random scatter around some characteristic mean value. 
Figure 15. l shows a typical histogram when module size is not an issue. 

A religious application of a module-size limit gives a result something 
like Figure 15.2. Note the hard cutoff at the enforced limit. The total number 

module size 
Figure 15.2 Distribution of module sizes with hard cutoff. 
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moc!ule eise 
Figure 15.3 Distribution of module sizes showing chopped-up modules. 

of modules (the area under the curve) is often larger than in Figure 15.1, 
because extra modules must be introduced from time to time to stay under 
the enforced size limit. 

Figure 15.3 reveals some of the pernicious effect of chopping up modules 
at arbitrary places. The double peak, one at small module sizes and one 
close to the hard-cutoff size, warns you that you will not enjoy reading (or 
maintaining) many of the resulting modules. 

Finally, Figure 15.4 shows the effect of an utter contempt for rules about 
module size. All the good reasons for limiting module size are ignored 
along with the arbitrary limits. You can be sure that most other rules of good 
design and coding are also ignored. Lest you think that I have simply 
created a caricature to illustrate a point, I can testify to having seen projects 
where the average module size was 5,000 lines of FORTRAN. I have heard 
of projects where module size ranged up to one million lines of code. 

There are good reasons for keeping modules small. There are also good 
reasons why some modules get large. A multi-way SWITCH statement, for 
instance, or a long chain of ELSE-IF statements may have to choose one 
operation to perform from among dozens or even hundreds of alternatives. 
This is an effective way to encode a classic transaction center. (See Essay 12: 
By Any Other Name.) If each of the operations can be succinctly expressed 
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module size 
Figure 15.4 Distribution of module sizes with no size discipline at all. 
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within the SWITCH statement, it is foolish to incur additional overhead in 
execution time, code size, and source size by packaging the operations as 
separate modules. Readability is little compromised by spreading the 
SWITCH module over multiple pages. 

Rigid rules about module size do not help you design or code better 
software. Guidelines about module size can tell you something about how 
to write modules, but not what modules to write. Evaluation criteria based 
on the distribution of module sizes, however, can help tell you whether 
you've done the job right in the end . 
."111 any design rules developed over the last two decades are like the rule 
~I.about module size. They tell you how a program should probably look 
if it is done right, but they don't necessarily guide you to the right program. 
If you apply these rules too early in the design process, at best you are 
wasting time. It's like painting the boards before you drive in the nails. At 
worst you are raising obstacles to finding the best solution, or you are 
homing in on a suboptimal solution. 

Don't get me wrong, many of these rules are important. Before you finish 
any program, you should evaluate it from several different standpoints. 
You need to judge whether the program is sufficiently simple and robust 
that you (and others) can convince yourself that it is correct. You need to 
judge whether the program is sufficiently readable that you (and others) 
can debug it or enhance it years from now, long after you've forgotten why 
you did things the way you did. You need to judge whether the program 
looks enough like successful programs that it is likely also to be successful. 

The key phrase here is, ''before you finish." Much of my preaching in 
these essays has been about doing things in the right order. A popular 
vulgarism among software designers is Attila the Hun's maxim: If you're 
going to rape, pillage, and bum, be sure to do things in that order. For most 
of a complex project, you don't even have to know how to get to the end. 
You just have to know what to do next. (See Essay 7: Which Tool is Next?) 
Rules that talk about the final appearance of a program are generally best 
downplayed until near the end of a project. They tell you what to do last. 

When you draw a structure chart, for instance, you can get all sorts of 
advice about what good structure charts look like: 
• A good structure chart is balanced, because the topmost module usually 

derives from one of the transforms near the center of the data-flow 
diagram. (See Essay 11: Who's the Boss?) 

• A good structure chart has no module that calls more than about seven 
subordinate modules (unless it is a transaction center). 

• A good structure chart is narrow at the top, wide in the middle, and 
narrow again at the bottom, like an Arabic mosque. (See Essay 1: Which 
Tool is Best?) 
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You can also get silly advice, like: 
• Every module should either call no submodules or it should call exactly 

three submodules (input, process, and output). 
• No module should have a single subordinate. 
• No module should be called by more than one superordinate module. 
I've discussed why I dislike these rules in the earlier essays cited above. 
Whatever advice you choose to follow, please notice whether it helps you 
formulate a new design or evaluate an existing one. Save evaluation rules 
for last. 
mou can, of course, get some early guidance out of rules that help you 
~evaluate designs. Larry Constantine, the guy who pioneered structured 
design, laid down some excellent rules that get you on the right track from 
the start, then help you evaluate your result at the end (Y&C89). The two 
groups of rules that I have found most useful over the years cover what 
Constantine calls coupling and cohesion. 

Coupling is a qualitative measure of the degree to which two modules 
interact. The higher the coupling between two modules, the more you have 
to keep the innards of one in mind when you work on the other. To control 
complexity by the strategy of divide and conquer, you must keep coupling 
to a minimum. 

One extreme of coupling is the traditional monolithic COBOL program. 
You declare all your data in one place, the DATA DIVISION, so every 
module can access every piece of data. When you call a module, you have 
no way to document, much less enforce, just what data the module should 
access or modify. You have no way to associate temporary variables with 
just those modules that use them. As a result, the amount of source text that 
you must inspect before you can make a seemingly local change can be 
arbitrarily large. COBOL programs have about the highest coupling you 
can imagine. 

Other languages support unstructured sharing of data between mod­
ules, even when argument passing and local variables are also provided. 
Unreconstructed programmers of the old school still tend to use such 
machinery, rather than work out an economical passing of data on a 
need-to-know basis. Constantine dubbed accesses to globally shared data 
pathological connections, which is about as negative a term as you can use in 
polite company. There are times, of course, when you need unstructured 
sharing. Modules may need to conspire to provide a useful package of 
services. You trade higher coupling within the package for lower coupling 
between the package and its customers. 

You can avoid pathological connections and still indulge in higher 
coupling than necessary. How often have you passed an entire record to a 
function that just accesses one or two fields of the record? Had you written 
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the function to accept just the fields of interest as arguments, you would 
not have to worry about whether the function inadvertently accesses fields 
that should be of no concern to it. You could write the function with no 
knowledge of the record structure, so it is more likely to be reusable in other 
contexts. 

Constantine dubbed accesses to excessive data stamp coupling, a term 
with a curious etymology. Evidently, some early software projects began by 
making up a rubber stamp that listed all of the variables used in the 
program. To design a module, you stamped out a copy of the full set of 
variables, then ticked off the ones you planned to use in this particular 
module. I suppose you could look on the stamp as a poor man's data 
dictionary, but as a productivity aid the effort was certainly misplaced. 
Worst of all, making up a stamp encouraged the practice of gathering 
unrelated data into a single structure to make what is affectionately known 
as a "garbage vector." 

The subtlest way to raise coupling is by implicit assumption. How often 
have you written a function that was intended to handle only, say, positive 
arguments? When some innocent maintainer later calls it with a negative 
argument, you can disavow responsibility. But the extra maintenance cost 
in discovering this limitation is still chargeable back to your inadequate 
design. You can lower coupling by implicit assumption in several ways: 
• Eliminate the need for the assumption by writing the function to work 

properly for all possible inputs, even if it doesn't (yet) need to. 
• Enforce the assumption by checking argument values before the func­

tion gets in trouble. Better a surprise diagnostic than erratic behavior. 
• At the very least, document the function prominently so that future 

users are less likely to go astray. 
If you want to learn more about coupling, read Yourdon and Constan­

tine's Structured Design (Y &C79, Y &C89). For a different perspective on the 
same issue, read the classic paper on information hiding by Dave Parnas 
(Par72). 

1~ohesion is another invaluable concept, both for elaborating designs and 
~evaluating them when you're finished. Cohesion is a qualitative meas­
ure of the degree to which a module stays intact as a program evolves 
through debugging, maintenance, and enhancement. The lower the cohe­
sion of a module, the more likely you will find the need to break it up into 
multiple modules at a later date. To get the maximum benefit from a 
modular design, you must keep the cohesiveness of each module as high 
as possible. 

You can get a feel for cohesion by watching groups of people whom you 
don't know. Stand near an elevator at lunch time, for instance, and note 
what happens to each collection of people disgorged when the doors open. 
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Try to guess which people are staying together and which are going their 
separate ways. 

When the doors first open, you might have trouble. The people are 
packed closely together just by the accident of having gotten on the same 
elevator at the same time. As the crowd moves outward, however, a natural 
evolution takes place. People with different destinations move off in differ­
ent directions. Couples, families, luncheon parties, and the occasional posse 
stay together. They may disperse a bit and mingle in different combinations 
(particularly families with energetic children), but you can see the effect of 
the powerful social forces that keep them bound together. 

Similar forces are at work within every computer program. You may be 
tempted, when writing a program, to make a module out of a pattern of 
five statements you see occurring in several places within your program. 
When space is at a premium, it can be hard to resist optimizations of this 
sort. If this pattern recurs purely by happenstance, however, the module 
has only coincidental cohesion. A change needed to correct the behavior of 
the module for one use will probably not be suitable for the other uses. You 
can support the change sensibly only by replicating the module and chang­
ing one version. If the module was used in just two or three places, you may 
soon find you have as many versions as calls. The justification for making 
a separate module evaporates. 

Highly optimizing compilers, by the way, will sometimes create modules 
with coincidental cohesion. Common-subexpression elimination tries very 
hard to do just that. You needn't worry about additional maintenance cost, 
however. The compiler reconsiders what modules to create every time you 
alter the source text. It doesn't leave dead wood lying about the way us 
humans do. 
~t the other extreme of the cohesiveness scale lies the ultimate goal, 
~functional cohesion. When you can describe what a module does in a 
simple, active sentence, then you probably have a highly cohesive module 
that will stay around. Descriptions such as, "clear update record," or, 
"compute alternative minimum tax," indicate functional cohesiveness. 
Descriptions such as, "initialize everything," or, "output update record and 
clear it," are wanting. Any changes you make to calls on the module should 
be to make more appropriate use of the function. Any changes you make 
within the module should be to better implement the functional specifica­
tion, which should benefit all callers. 

Constantine describes several levels of cohesiveness between coinciden­
tal and functional. The distinctions are useful in revealing just what forces 
will eventually dismember the module. They can also educate you about 
some of the ways you can delude yourself into thinking a module is 
functional when it is not. Otherwise, the distinctions are unimportant, 
because you should not settle for less than functional cohesiveness in every 
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module you write. I say this as a person who has often written modules 
that implement two successive data transforms. Constantine calls this 
sequential cohesiveness, and predicts with frightening accuracy that sooner 
or later you will be moved to break the module into its two separate 
functional parts. He's right. 

There are other tools in your programmer's tool kit that you should save 
for last. Among the more important of these are the tools you use for 
evaluating, and tuning, the performance of your final program. Unlike 
many programmers, I do not believe that performance should rank first 
and foremost when you write a computer program. I believe that it should 
rank last and foremost. Brian Kernighan and I have discussed this topic at 
length in several other books. (K&P76, K&P78, K&P81) o 

mfterword: I would write this essay just a little differently were I to do it over 
:a.today. The current intense interest in object-oriented technologies begs at least 
some mention here. I chose not to add any such words, however, since they would 
be mostly negative in this context. Object-oriented design, like all methods, is at 
its best when it tells you what to do next. And, like all methods, it is at its worst 
when it merely tells you what you have done wrong. I fear that much of what is 
currently taught as object-oriented design falls in the second category. 
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m bibliography can serve many purposes. In degenerate form, it is merely 
.a.a list of references cited explicitly by the author in the running text of a 
presentation. Various intermediate forms offer you a sampling of other 
works in the field that you might find of interest, assuming that you still 
care about the field after having stumbled through the current offering. At 
its best, a bibliography leads you on a guided tour of a field that you know 
little about, pointing out the tourist attractions and stimulating interests 
you barely suspected that you harbored. 

You can often tell more about the motivation behind a paper or book 
from reading the references at the back than the author ever wanted you to 
discover. As an author, you tend to let your guard down near the end of a 
project, and the bibliography (or at least its presentation) is usually the last 
tiresome installment in a saga that took longer than you ever imagined. So 
like it or not, you leak out subliminal messages, such as: 
• "Look, this is really original work. Whatever has gone before is for the 

historians to document. I have taken a new departure." Accompanied 
by either no references, or citations only to the author's earlier works. 

• "Okay, I've done my homework. I know there are other people out there 
working in this field, and I've included the standard references so that 
you know I'm not completely out of touch." Accompanied by about six 
references, such as the original Ritchie and Thompson article on UNIX 
in the Bell System Technical Journal. 

• "You're not going to catch me with an indefensible idea. I've got citations 
for every sentence not in the passive voice. Let's see if my orals commit­
tee can find anything to challenge." Accompanied by 50 to 100 refer­
ences, mostly obscure. About a third are private communications. 

• "All right, my adviser made me spend four months in the library before 
I could start any real work. I've skimmed every book in the library that 
has the words finite or automaton in its title. I may as well get a paper out 
of all of this busy work." Accompanied by yards of references that look 
like the output you get from qrep with a poor search pattern. 

• "Isn't archaeology fun? I'll bet nobody knew that Thales of Miletus 
wrote several offhand remarks that could be construed as observations 
on the future problems of data processing. My literature searches go 
farther back than yours ever will." Accompanied by amusing, if useless, 
references tracing the evolution of an idea through two millennia. 

153 
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Some bibliographies really help, of course. My favorites are the ones 
where the author unbends enough to give you a hint about the nature of 
each reference, and where it fits into the overall scheme of things. My 
absolute favorites are the ones where the author tells the unvarnished truth 
about each source, so you know whether to waste your time digging it up 
and reading it. 
?ll?IJ.that I'd really like, and have yet to see at the back of a paper or book, 
~is an annotated bibliography that crosses over the line into the more 
subjective world of book reviews. Wouldn't you love to know, for instance, 
the five most informative books about Markov chains? And what is good 
and bad about each? Even if the reviewer is opinionated (and all reviewers 
are, if they're worth anything), and even if you don't always agree with the 
reviewer (which you should not, if you are worth anything), such a guide 
to a specialized area of technical literature would be invaluable. 

A variation of this approach is somewhat more anecdotal. Can you list 
the ten (or twenty, or thirty) papers and books that really made an impres­
sion on you, that you feel taught you something new? What books do you 
reach for when you need an algorithm, a memory refresher, or an inspira­
tion? Wouldn't it be fun to compare your private list with someone else's, 
so that you could trade a few gems? Bibliographies could certainly be a lot 
more interesting, and probably more useful, if the author intentionally 
revealed some personal background along with the dry facts. 

With all that in mind, I present my long-promised bibliography for 
designers and coders of computer programs. By now you can probably 
guess that it is idiosyncratic. These are some of the books that made a 
difference to me when I read them (or in some cases when I helped write 
them), and that I think might make a difference to you. I accompany each 
with a few pithy remarks designed to give you a sense of how it can help 
you in learning more about your craft. 

I make no attempt to be historically complete. We all know, for instance, 
that Bohm and Jacopini wrote an important paper about flow of control 
(B&J66). What they demonstrated lies at the heart of structured program­
ming, because they showed that a small set of control-flow structures is 
sufficient in an important sense. They weren't exactly talking about struc­
tured programming, however. And you don't have to read their paper to 
practice that important discipline. So I do not suggest that you read their 
paper simply because it was an important milestone. 

I do believe, however, that you should go back and read Dijkstra's 
original letter to Communications of the ACM titled, "Go To Statement 
Considered Harmful" (Dij68). Why? Because it's short and to the point, 
and because it doesn't say what most people who haven't read it think it 
says. Two decades after this letter there are still periodic eruptions of the 
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tiresome debate over GOTOs, in the Letters section of CACM. That's a classic 
example of people doomed to repeat history when they don't study it. 

Dijkstra's paper is included in a superb collection, by the way, that Ed 
Yourdon put together some time ago (You79). Bohm and Jacopini are there 
too, if you want to ignore my advice and read that paper. The collection 
includes a number of essays by Dijkstra, and other fun reading from all 
sorts of people (including me). 

Without further ado, here's my reading list. I begin with books on design 
and analysis. 
IO'· Yourdon and L. Constantine, Structured Design, Prentice-Hall, 1989 
~(Y&C79, Y&C89) -This is the original book on structured design. (I 
think Glenford Myers beat them to press with his Composite/Structured 
Design (Mye78). But Constantine deserves recognition for having devel­
oped many of the seminal ideas in this field.) 

Ed Yourdon and Larry Constantine were classmates at M.l.T. Yourdon 
went on to found Yourdon inc., part of a subindustry that promoted 
training in productivity-improvement techniques for programmers. Con­
stantine has practiced family therapy, industrial counseling, and writing 
the odd symphony. It was Yourdon's drive to bring enlightenment to the 
masses of programmers that forced Constantine's hoary notes into book 
form and into the light of day. 

Some of the ideas expressed in the original book are a bit dated now. You 
might want to stick with the later revision. Nevertheless, even in the 
original version you will find a high density of good ideas and just plain 
common sense. This is not so much a single-minded approach to writing 
all programs as it is a collection of observations on what works and what 
doesn't. It's a good starting point, particularly if you're new to the field. 
?{· Wamier, Logical Construction of Programs, Van Nostrand Reinhold, 1978 
;J1 (War74, War78) - This is one of the pioneering works on the data-struc­
tured approach to designing computer programs. Here you will find a clear 
presentation of the rules for composing data into simple structures, for 
modeling program structure after data structure, and for marrying multiple 
input-data structures. 

In more recent years, Ken Orr has worked hard to popularize many of 
Wamier's ideas (Orr77), just as Yourdon has preached the gospel according 
to Constantine. And like Yourdon, Orr has met the commercial program­
ming marketplace more than halfway (as you must, if you want to win the 
hearts, minds, and money of perennially overworked EDP personnel). 

Wamier's book is dry reading, by comparison. His emphasis is more on 
logical exposition than on motivation. Perhaps it was more exciting in the 
original French, but somehow I don't think so. You should read this book 
if you have a mathematical bent, or if you're really sold on the data-struc-
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tured approach and want to understand Warnier's very logical approach 
uncluttered by later interpretations . 
.Jfl1t. Jackson, Principles of Program Design, Academic Press, London, 1975 
~-.il(Jac75)-Michael Jackson is a British counterpart to Yourdon and/ or 
Orr. He, too, has packaged his approach to program design for commercial 
consumption, and he has won over many adherents in the process. (He's 
not afraid to relate his theories to the world of COBOL programming, for 
instance.) 

Like Warnier and Orr, he focuses heavily on the data-structured ap­
proach to program design. But he goes beyond data structure to both higher 
and lower levels of abstraction. His descriptions of "structure clashes" and 
restructuring by "program inversion" are quite readable. This book is a 
good starting point if you want to better appreciate Jackson's later presen­
tations. 
l.r". Gane and T. Sarson, Structured Systems Analysis: Tools and Techniques, 
~Improved Systems Technologies Inc., 1977 ( G&S77) - Chris Gane and 
Trish Sarson were two of the handful of employees at Yourdon inc. when I 
joined the staff in 1975. Both were determined to bring the same discipline 
to the analysis process that Yourdon and Constantine had brought to 
program design. (Structured design was, of course, inspired in large part 
by the early successes of structured programming.) I am continually 
amazed at how much they got right on the first try with this book. 

There is nothing highfalutin or theoretical about the presentation. Writ­
ten by two experienced systems analysts, it speaks straight to an analyst's 
daily needs. I would almost accuse the authors of writing mere common 
sense, if that were ever "mere" or "common." If you're aspiring to be an 
analyst after getting your feet wet in commercial programming, here is a 
good introduction to the craft. 
11r'· DeMarco, Structured Analysis and System Specification, Yourdon inc., 
~New York, 1979 (deM78, deM79) - Tom DeMarco was one of my 
luckier finds when recruiting and auditioning instructors to teach Yourdon 
inc. courses. And I was privileged to work with some of the best people in 
the business in those days. When he put together his version of a struc­
tured-analysis book, somewhat after Gane and Sarson had done theirs, I 
was pleased to see a companion work emerge instead of a competitor. 

DeMarco goes into considerable detail about how to use data-flow 
diagrams to capture the result of analysis and to represent the overall 
design as it evolves. He even touches on how to use data structuring to 
build the innards of each code module, but he stops shy of wandering out 
of the analysts domain. I should also point out that the author has a 
polished delivery and a sunny sense of humor that shines through at the 
most pleasant of moments. 
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Now for some books on coding and style. 
711?. Kernighan and P. Plauger, The Elements of Programming Style, McGraw­
~Hill, 1974 (K&P74, K&P78)- Brian Kernighan and I ended up with 
adjacent offices, at Bell Labs in Murray Hill, almost by accident. (Our 
management chains converged only with the V.P. of Research and Devel­
opment.) 

We began by commiserating over the sad state of computer program­
ming and ended up in the authoring business, both for the first time, by 
writing this little book over a period of about four months. As far as I know, 
it marks the first time that "programming style" was identified in print as 
a legitimate topic of discussion by adults. 

The book is terribly dated now, of course. All the examples are in 
FORTRAN and PL/I. Our gimmick was to find flawed examples in current 
programming texts, which was not hard to do in those days, and savage 
them in the guise of teaching lessons on good style. Occasionally we lost 
control and went into a sort of feeding frenzy, but mostly the book keeps a 
light tone. It's still worth reading for the pithy style rules (inspired by the 
classic on writing English prose by W. Strunk and E.B. White, The Elements 
of Style, MacMillan, 1972). 
?{·Nevison, The Little Book of BASIC Style, Addison-Wesley, 1978 (Nev78) 
,JJ- I first met Jack Nevison in 1975, while he was still at Dartmouth. Later 
he came to be, and remains, my neighbor in Concord, Massachusetts. None 
of that has anything to do with his having written this marvelous little book. 

Little it is, and about BASIC to be sure. What he shows, however, is that 
even a language as intractable as BASIC can be made readable. And even 
a subject as pious as programming style can be presented with warmth and 
humor. 

You will find no feeding frenzies here. 
11T"· Plum, C Programming Standards and Guidelines, Plum Hall, Cardiff, 
~New Jersey, 1981 (Plu81) - I have known Tom Plum, and his wife Joan 
Hall, since we worked together at Yourdon inc. many years ago. We are the 
best of friends. 

Plum is also one of the best educators plying the commercial EDP trade 
that I know. Even before he began devoting a large fraction of his life to 
producing the ANSI standard for C, he was writing books like this on good 
C style. 

This is the style book you should be using today. It happens to preach 
what I consider a good style for writing readable and maintainable C code. 
It also deigns to show alternatives and give some rationale for the choices 
it makes. I consider it a must for a programming shop of any size that uses 
the programming language C. 
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7flt. Kernighan and P. Plauger, Software Tools, Addison-Wesley, 1976 
;f"J(K&P76). Also, Software Tools in Pascal, Addison-Wesley, 1981 (K&P81) 
- Yes, me again. Brian and I wrote Software Tools over a ten-month period, 
during which I relocated from Bell Labs to Yourdon inc. It still ranks as one 
of the hardest jobs I've ever undertaken. (It was definitely harder than my 
Ph.D. thesis and comparable to writing a C compiler.) 

Our goal was to show an unsuspecting world that the then little known 
operating system called UNIX was something new under the sun, and that 
not all of the good ideas that came with it were necessarily tied irrevocably 
to the UNIX kernel. We succeeded well enough at making software tools a 
topic of interest that we were encouraged to address the Pascal boom with 
Software Tools in Pascal a few years later. 

Both of these books teach program design and style by example. The 
examples are a number of relatively small programs inspired by the more 
heavily used utilities of UNIX. Much of what we preached has become a 
standard part of the culture now. Between the widespread use of UNIX, 
and its influence on nearly all other systems, the lessons have been taught 
in many other ways. You still might find some useful insights in these 
books, however. 
IO'· Dijkstra, A Discipline of Programming, Prentice-Hall, 1973 (Dij73) -
~Dijkstra, in case you don't know, is a theoretical physicist who turned 
himself into a theoretical programmer. He has brought a rigor and profes­
sionalism to the trade of writing code that was sorely lacking. (Many will 
say that rigor and professionalism are still sorely lacking in our trade.) He 
has the uncompromising hauteur of the European Herr Professor, the 
theoretician's natural love for mathematical rigor, and a distressing habit 
of being right. 

This is a tough book to read. It is easy to bog down in notation or to get 
bowled over by Dijkstra's juggernaut presentation. I find two things to 
recommend in it, however. First, the book presents a way of expressing 
algorithms with what Dijkstra calls guarded commands. Seeing a few simple 
algorithms presented this way can shake you loose from years of proce­
dural thinking that obscure intent with method. Second, the book is scru­
pulously honest. Dijkstra tells us about all the false trails he pursued and 
the mistakes he made in arriving at each solution. He presents a much more 
realistic treatment of stepwise refinement than any other book I have read 
on the subject. If you can survive the notation, it's worth the effort. 
?ll?lltell, those are my leading contenders for books you should read, 
~and/ or keep handy, in the areas of analysis, design, coding, and style. 
I have more books, in other categories, on my list of favorites, so I will 
provide more bibliography in the next essay. (See Essay 17: A Designer's 
Reference Shelf.) o 
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f?(fterword: I got a lot of positive feedback on this essay. Seems everybody has a 
:a.favorite book or two and is eager to share it with others. Mostly, I incorporated 
those suggestions in a series of columns for Embedded Systems Programming, 
a sister publication to Computer Language published by Miller Freeman. The 
bibliography at the end of this collection is not annotated, despite what I said in the 
preamble to this essay. Mostly, that was to avoid redundancy with this essay and 
the next. 

Sadly, I must report that Joan Hall died a few years ago. (I included her obituary 
in my essay "State of the Art: Soft Stuff," Embedded Systems Programming, 
October 1989.) She was a special person who is still sorely missed by many of us. 
Tom Plum eventually remarried. His wife Lana and my wife Tana are twin sisters. 
Thus, Tom and I are even closer friends than before. 
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]'{n the previous essay, I presented a bibliography of a number of books 
,JJ from the fields of software design and programming. (See Essay 16: A 
Designer's Bibliography.) Perhaps it would be more precise to charac­
terize that essay as a concatenation of more or less related book reviews, 
since I indulged my usual habit of tendering advice along with the raw 
information. I figure that a bibliography is a lot more useful if you have 
some notion, however opinionated, of the position and worth of each entry. 

As promised, I continue in this essay with my stroll down the fifteen-odd 
feet of shelving that passes for my reference library. Having hit the high 
spots with my favorite design and coding books, I pass on to texts of a more 
general nature. 

A reference book, to me, is one that I'm not likely to reread from cover 
to cover. Ever. But a good reference book is one that I find myself pawing 
through from time to time to find a useful bit of information that I vaguely 
recall having seen there when I first digested the book. The following list 
gives the books that I have found to be useful references over the years. 
t'?'r· Aho, J. Hopcroft, and J. Ullman, The Design and Analysis of Computer 
~Algorithms, Addison-Wesley, 1974 (AHU74) - If you've ever taken a 
serious course on compiler design, you probably recognize these guys as 
the authors of the famous "Dragon Books." (The name comes from the 
moderately outrageous cover pioneered with the first of the books, show­
ing a knight slaying a dragon.) Of all the books they have written, in various 
combinations of authors, this is my favorite. 

First, it is a good source of algorithms. If you ever have to write hairy 
code for climbing over trees, or manipulating matrices, or performing 
polynomial arithmetic, or matching patterns of text, then this is a good 
place to start looking. You will either find just the algorithm you need, or 
learn enough about the issues in the problem area of interest to know what 
you have to do to make your own algorithm. 

Second, the book tells you a lot about the time and/ or space complexity 
of the algorithms it presents. It does you no good to find an algorithm that 
needs only 1 kilobyte of memory if it runs for two weeks on a PC/ AT. Nor 
can an algorithm help you that runs in 3 seconds, given 100 megabytes of 
memory. You need to know what the tradeoffs are before you can make 
them. This book raises your consciousness in that area better than any other 
that I know. 

161 



162 Programming on Purpose 

Finally, Aho, Hopcroft, and Ullman are masters at presentation. They lay 
the groundwork, touch all the bases, and keep a consistent level of detail 
from beginning to end. You need to be comfortable with mathematics to 
keep these authors from intimidating you, but they never indulge in 
unnecessary notation. 
"m. Knuth, The Art of Computer Programming, Volume 1: Fundamental 
JU Algorithms, Second Edition, Addison-Wesley, 1973 (Knu73b). Also Vol­
ume 2: Seminumerical Algorithms, Second Edition, Addison-Wesley, 1981 
(Knu81). Also Volume 3: Sorting and searching, Addison-Wesley, 1973 
(Knu73a) - Donald Knuth, in case you didn't know, is a Turing Award 
winner and one of the more energetic contributors to the discipline of 
computer science. 

Two decades ago, he embarked upon an extremely ambitious project. He 
put out the first volume of what was designed to be a seven-volume series 
(yes!) covering essentially all aspects of computer science. Volume 1 was 
titled "Fundamental Algorithms." It covered basic concepts and informa­
tion structures. Volume 2 was titled "Seminumerical Algorithms," and 
covered random numbers and arithmetic. Volume 3 was titled "Sorting and 
Searching." And so on. 

Over the years, he has emitted the first few books of this series. He has 
also gone back and generated revised editions of the earliest volumes. 
Whether the world will ever see all seven volumes I don't know. But what 
Knuth has produced to date is nothing short of phenomenal. This is the 
nearest thing to an encyclopedia of computer algorithms that you can buy. 
(When I want to learn the basic algorithms in a field, I first go to Aho, 
Hopcroft, and Ullman. When I need seven variations on a theme, I browse 
through Knuth.) 

The saddest thing about this impressive opus is that Knuth chose to 
present his algorithms in a contrived machine language (called MIX). It is 
unfortunate that he began just on the threshold of the widespread accep­
tance of high-level languages. Had he presented an equivalent amount of 
code in Algol 60, Pascal, or C, he could have significantly lowered the 
barriers to understanding for thousands of students. 

These make great coffee table books. They are the kind of references that 
your supervisor keeps on his or her shelf years after the last technical 
project, just to remind you and the other minions that even managers know 
how to program, at least sometimes. 
311. Sterbenz, Floating-Point Computation, Prentice-Hall, 1974 (Ste74) - I 
-iFJfirst mentioned this book when I discussed floating-point arithmetic. 
(See my essay "Programming on Purpose: Floating-Point Arithmetic," 
Computer Language, March 1988.) I cheerfully repeat here the quote from 
R.W. Hamming that ended that essay, "Nobody should ever have to know 
that much about floating-point arithmetic. But I'm afraid sometimes you 
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might." Coming from a man who has little patience for anything that is not 
first rate, that is high praise. 

I first encountered the minefield that surrounds floating-point arithme­
tic a decade before this book appeared. I'm sure those ten years would have 
been much better spent had I known half as much about floating point as 
I learned on first reading Sterbenz. (Sterbenz is, I believe, the guy who 
convinced IBM to retrofit a guard digit on System/360 double-precision 
arithmetic after any number of units had been shipped. I'm sure he has thus 
kept more than one missile from going astray since then.) 

This book is getting a little old, obviously. But until someone can tum 
out a readable text explaining why IEEE 754 has all those strange features 
in it, this may well be your best introduction to floating-point arithmetic. 
~- Hart, et al., Computer Approximations, Robert E. Krieger Publishing 
,JICompany, 1978 (Har68, Har78) - I mentioned this book a couple of 
times when discussing how to approximate functions. (See my essay "Pro­
gramming on Purpose: Do-It-Yourself Math Functions," Computer Lan­
guage, June 1988.) 

To the practicing numerical programmer, it is invaluable. The first half 
is a rather nice discussion of general methods for computing functions 
numerically on a computer. It is very succinct, but it touches all the bases. 
The second half is an assortment of tables of coefficients. You pick your 
popular math function, you pick the precision you need, and you look up 
the most economical approximation in the back of this book. Chances are, 
you'll find just what you need. 

The book I used for years, before I discovered Hart, et al., was the lordly 
Handbook of Mathematical Functions, edited by Milton Abramowitz and Irene 
A. Stegun (A&S65) and later corrected editions). It has more than you can 
ever imagine wanting to know about an astonishing assortment of math 
functions. I still reach for it first when I want to explore new territory. But 
I have quicker results with Hart, et al. when I just want to bash out a good 
approximation to a widely used math function. 

If your budget permits, and you do serious amounts of numeric pro­
gramming, I'd recommend having both on hand. 
1.tl· Tufte, The Visual Display of Quantitative Information, Graphics Press, 
~1983 (Tuf83)- This book is a rare delight. It contains some of the most 
insightful, inspired, and prettiest graphs you have ever seen. 

Accompanying the graphs is a narrative guided tour of the typography, 
psychology, and even physiology of visual displays. If "user friendly" is 
more than just a buzz phrase to you, and if you are seriously concerned 
with presenting displays that inform effectively, then you should read this 
book from cover to cover (once, anyway). 
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What Tufte has given us is the pictorial version of an older classic by 
Darrell Huff called How to Lie with Statistics (Huf54). Both books tell you all 
the tricks of the trade, and how they can be used to misdirect or deceive the 
reader. Both books, however, come from honesty. They assume that you as 
a presentor should learn to avoid such trickery, and that you as reader 
should learn to spot it when it is being perpetrated. 

This really is a coffee-table book. You can lay it alongside your Pictorial 
Guide to the Hummingbirds, with every confidence that you will wow your 
visitors. Just watch your techie guests. They may want to steal it. 

The following books touch on various aspects of computer program 
design sometimes only peripherally. Nevertheless, I have found each one 
to be an important source of philosophical inspiration about some aspect 
of our chosen trade. 

jf. Brooks, The Mythical Man-Month, Addison-Wesley, 1975 (Bro75) -
Fred Brooks was the lucky guy chosen to head up the development of 

OS/360. As someone who presided over one of the most impressive cost 
and time overruns in modern program-development history, Brooks is 
perforce an expert on dealing with many of the problems of large software 
products. 

This is a book you can read in an evening. It is worth buying just for the 
clever pictures and quotes that start each essay. I consider it must reading 
for anyone who hopes to head up a software-development project for the 
first time. It is also must reading for anyone who feels ready to tackle a 
project somewhat larger than the last one. Brooks rubs your nose in just 
how huge a factor "somewhat" can become. 

Again, some of the material is dated. The hope that Brooks extends with 
chief-programmer teams has not panned out since those early optimistic 
reports (that were fresher when he wrote this book). If you read his essays 
on "planning to throw one away" and "the second-system effect" in quick 
succession, you will quickly figure out that you should plan to throw two 
designs away. 

But hindsight comes easy. Brooks showed us many things about our 
trade for the first time, and in a way that stuck. Brooks' Law has become a 
platitude. We all know that you don't dare add programmers to a late 
project, lest you make it even later. Here is the first clear statement of that 
and several other important principles of software engineering. 
AX. Weinberg, The Psychology of Computer Programming, Van Nostrand 
~Reinhold, 1971 (Wei71) - Gerry Weinberg has written a number of 
books, over the years, on various aspects of data processing. Anything he 
writes is a fun read, and worth the bother. My favorite, however, still 
remains this, the first of his books that I read. 
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Weinberg found his way into data processing from the psychology 
department. He quickly turned the magnifying glass on that new breed, 
the computer jock. What he has to say, while less novel than when it first 
appeared, still provides valuable insights to those of us who need to 
understand the techies around us. Or ourselves. 

I have always suspected that Weinberg talks psychology around com­
puter types and computers around psychologists. That way, he leaves each 
group thinking that his real expertise lies in the other realm. If he is running 
a scam, then he is pulling it off. His Technical Leadership Conferences alone 
have convinced many that he knows how to bridge between the two realms. 

What I like most about this book (and all the others that Weinberg has 
written) is the anecdotal style of presentation. He can wrap a parable in a 
cute little story, tag it with an unforgettable name, and it sticks in your 
memory for years to come. I'm sure that my own penchant for doing similar 
things was aggravated by frequent contact with Weinberg's books. He does 
it much better than I do, however. 
:II). Pirsig, Zen and the Art of Motorcycle Maintenance, Bantam Books, 1975 
»CPir75) - I have yet to find a good book on debugging computer 
programs. Until one comes along, you should read this one, which has next 
to nothing to do with computers. It is, just as its title says, about Zen and 
maintaining motorcycles. If you happen not to enjoy reading essays, or if 
you don't get caught up in inner quests by introspective people who 
happen to be good writers, then you may find this book heavy going. If you 
find that to be the case, please don't put the book down unfinished. At the 
very least, skip to the chapter on debugging motorcycles. You will learn 
more about the process of debugging software there than anywhere else I 
can point you. 

Don't put the book down until you understand what Pirsig means by 
"gumption traps," or until you accept the fact that a 59-cent bolt can be 
worth far more than the contents of your wallet. Particularly if you strip its 
threads alongside the road, 50 miles from civilization in either direction. 

If you finish the book, you will also get a first-rate sermon on Quality 
(with a capital Q, by all means). After all that has been written in recent 
years about how the Japanese are beating us on quality this and quality 
that, Pirsig can put you back in touch with Quality. 
It"· Alexander, Notes on the Synthesis of Form, Harvard University Press, 
~1964 (Ale64) - Christopher Alexander is a loud presence in architec­
tural circles. What he has written here speaks directly to those of us who 
would dare to invent complex systems from the ground up. He comes at it 
from the standpoint of architectural evolution and tradition, but what he 
has to say can bring an important note of humility to an overly ambitious 
design project. 
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In this rather dry essay, Alexander discusses the social forces behind 
tradition in architecture. Why do the locals persist in putting that rococo 
little cupola up there? Or why must the straw be thatched just so? For 
answer, Alexander explores the sheer complexity involved in designing all 
aspects of a dwelling. Given that no single person is likely to be inventive 
enough to arrive at a consistent solution with all of those variables, the 
safest answer seems to be not to let things vary. What was good enough for 
our parents is good enough for us. Probably better. 

If you've ever been in a house designed in a very nontraditional style, 
you understand quickly. There are annoying drafts, unexpected dead 
spaces, worrisome cracks in the walls. Maybe three releases later, your 
grandchildren will get a version that they can enjoy, but meanwhile you 
have to debug and/ or adapt to all of the oversights. 

Applying the same reasoning to the design of computer systems shows 
us why we have made so many drafty habitats. We just don't know enough 
yet to master all of the complexity. In time perhaps we will, but only after 
we develop an architectural sense, and a humility, that will keep us in check. 
Read Alexander if you want to develop that architectural sense. 
7{ end this essay with something even farther out of the ordinary. I would 
;JJ like to list the handful of authors whose books I buy without first looking 
at the titles. Not that these are infallible people, or literary giants. I would 
not embarrass them with such silly flattery. Rather, each of them always 
seems to have something interesting to say, about a topic that I care about. 

Edsger W. Dijkstra is certainly on the list. He persists in taking an original 
view of everything he tackles. I mentioned a couple of his works last in the 
previous essay. (See Essay 16: A Designer's Bibliography.) He has a 
number of other essays that are well worth reading. Sometimes my lips 
move when I read his stuff, and I often have to trace the same line over five 
times with my finger, but I usually find the effort rewarded. 

Tom Plum is another. (I already confessed in the previous essay that Tom 
is a close friend. That he is also a good writer I consider a pleasant 
coincidence.) Tom has written several books, alone and with Jim Brodie, on 
various aspects of programming. His primary focus to date has been the C 
language. He also writes frequent articles in the trade press. When Plum 
reviews products, he brings an honesty and compassion to the job that other 
reviewers could well emulate. When he explains a technical topic, he 
persists until the cobwebs are swept away. 

Finally (for now, at least) I list Gerry Weinberg. I gave you most of the 
reasons why I like him earlier in this essay. Anyone who can be consistently 
both entertaining and insightful in the same (written) breath has to be 
considered a safe bet. o 
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mfterword: It was fun writing this essay. I look on it as a sort of distillation of 
.a.computing Reviews, the ACM periodical that endeavors to review all books 
and articles of interest to the computing profession. Much as I like Computing 
Reviews, I despair at having to scan it every month for the stuff I care about. (It 
is one of about 20-30 publications I read regularly.) I'd love to have someone learn 
my profile of interests well enough to pick out just those books I care about that 
earn good marks. I figured others would appreciate the same service. 





18 A Preoccupation with Time 

.JflltY association with the magazine Embedded Systems Programming has 
,JWl.forced me to think once more about design methods. It has also forced 
me to read quite a lot, since I do a monthly review column for ESP called 
"State of the Art." As a consequence, I have become sensitized to the use of 
certain buzzwords that are now widely bandied about. In particular, the 
terms "embedded" and "real-time" strongly attract my eye. 

I keep hoping I will read something that is fundamentally special about 
programming embedded systems. I keep getting disappointed. At Software 
Development '89, I expressed this disappointment in a talk titled "Design­
ing Embedded Systems." That talk was not enough to get the issue unstuck 
from my craw, however. So I find myself chewing over the same theme once 
again. 

It seems abundantly dear to all sorts of people that embedded systems 
differ in fundamental ways from other kinds. Miller Freeman went so far 
as to start another magazine to address the topic, rather than divert Com­
puter Language more in that important direction. (It is a truism in publishing 
that if you aim for the union of two diverse markets, you get only their 
intersection.) I figured that if the difference is so fundamental, then it is 
worth articulating. That's why I asked for, and got, the privilege of writing 
the introductory essay in the premiere issue of ESP. 

It was fun writing that essay. It even helped clarify in my mind some of 
the things that are special about programming embedded systems. But it 
also forced me to realize that there are no dear boundaries between the 
different flavors of computer systems that we work on. For every touch­
stone I could contrive, I could find examples of both embedded and 
non-embedded systems that satisfied the touchstone. 
7Qut you have to start somewhere. So let's begin by spelling out a few 
~definitions. An embedded system is one that is dedicated to a particular 
task. By contrast, a general-purpose system is one that you can fairly easily 
switch among diverse tasks. The chip running your microwave oven is 
inarguably an embedded application. You can't run a spreadsheet on it, or 
play Adventure. The PC or workstation that dominates your day at work 
is a general-purpose system. You can aim it in almost as many directions 
as your management endeavors to aim you. 

A real-time system is one that must respond to its inputs soon enough to 
make a difference. For some systems, soon enough is measured in micro-
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seconds. For others, an answer in half a day is arguably a real-time re­
sponse. While many embedded systems are also real-time systems, you can 
find examples of each flavor that are not also of the other flavor. 

An interactive system is a real-time system that must respond to human 
interaction. I know that is not the common definition, but I think it is the 
most revealing. Human beings impose a very demanding load in some 
ways. They get impatient when operations they find trivial take a long time. 
They go mildly crazy when they see a large variation in response time. They 
have a high error rate for which the computer must be prepared to com­
pensate. At the same time, humans impose a lighter load than other 
real-time tasks. They take many milliseconds to perform most actions, and 
many seconds to compose requests. And they can correct for naive program 
behavior that can drive other computer systems bonkers. It is easy to see 
why most people view interactive systems as qualitatively different than 
real-time systems. 

Finally, a batch system is one that is atomic in its response to its inputs. It 
offers no serious opportunity for any sort of interactive give and take 
between the reading of its first input and the writing of its last output. 
Again, this is not a conventional definition of batch systems, but I think it 
provides the irreducible minimum that happens to be true. 
~ow that we have several distinct categories, let's start blurring the lines. 

;J[J,,As I have often pointed out, there are embedded systems that you can 
play Adventure on. AT&T began many years ago to use UNIX systems to 
oversee its extensive network of telephone trunks. You could log on to those 
systems, compile replacement code, and yes, even play games while the 
system sniffed at trunks and made pretty displays. Nevertheless, such a 
UNIX system is embedded because it is just a (small but reasonably impor­
tant) component in a dedicated system. 

Similarly, there are embedded systems involving some of the biggest and 
fastest IBM 30XX machines, enough to fill a Big Ten college gymnasium. 
Systems like these run the big airline reservation systems that keep people 
moving through airports. They are embedded because they are fanatically 
dedicated to a single, economically very important application. 

At the other extreme, I have developed serious quantities of commercial 
software on computer systems so small that no self-respecting brat would 
now accept any of them as an embedded video-game engine. I do not 
exaggerate when I say that some traffic lights today have more MIPS and 
megabytes than those early development systems of mine. You tell me 
where to draw the line between general purpose and embedded, at least 
when it comes to flexibility and size. 

The other touchstone you can apply to identify embedded systems is 
that they have peculiar devices attached to them. In a sense this is true. Your 
PC has no need for switch-closure detectors (except the keys in your 
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keyboard) or position sensors (unless you have a joy-stick attached). I 
stretch the truth a bit to make a point, since the set of conventional gadgets 
is finite. It is not stretching the truth, however, to point out that conventional 
gadgets are often just as idiosyncratic to program as the peculiar devices you 
find in embedded systems. Try writing an MS-DOS or UNIX device driver 
sometime. For any device. You will find that all devices are peculiar, if you 
have to program them in detail. 

Then there is the myth of real-time. Show me a program of any flavor 
with no real-time constraints, and I will show you a program that is not 
worth running. Even a monthly batch payroll program must be deemed 
inadequate if it takes two months to run, or if it can only deliver results 
three months after the day paychecks must be handed out. And there are 
batch programs with performance requirements tighter than some embed­
ded systems. All you can talk about is the degree of real-time response 
required, not the presence or absence of such a requirement. 

A related issue is the need for synchronization. We know that embedded 
systems tend to have special requirements for coordinating the actions of 
one or more processors with one or more real-world processes. What we 
tend to overlook is that even programs run in batch mode can have 
synchronization problems. Consider, for example, a data-base server oper­
ating on a multi-user system. Try writing a reliable server without record 
locking or some other safe synchronizing primitives. Whenever you have 
cooperating sequential processes, which is often, you have synchronization 
problems. 
mfter going through this little exercise in iconoclasm, I looked around to 
.a.see if anyone else had better luck. You can find lots of books out there 
with "real-time" in their titles. Surely one or more of them had found a way 
to distinguish clearly between real-time and more conventional systems. 
And maybe that would help us all to better distinguish between embedded 
and more conventional systems, since real-time is so often identified with 
embedded. It is clear that there is a qualitative difference. It would be nice 
to make it quantitative as well. 

I even devoted two consecutive episodes of "State of the Art" to review­
ing books on real-time design. (See "State of the Art: Designing Real-Time 
Systems," Embedded Systems Programming, February 1989, and its continu­
ation, March 1989.) In the process, I turned up two books that are widely 
acclaimed as good references for those who would design real-time sys­
tems. One is by Paul T. Ward and Stephen J. Mellor, Structured Development 
for Real-Time Systems, Volumes 1-3 (Y&M85). The other is Derek J. Hatley 
and Imtiaz A. Pirbhai, Strategies for Real-Time System Specification (H&P87). 

Both are good books. Both start with data-flow analysis, one of the more 
popular organizing approaches popularized by structured analysis. Both 
add various bits of notation to document the flow-of-control information 
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atop the more conventional data-flow diagrams. That seems to make 
real-time designers happy, since they are often preoccupied with control 
issues. But neither book really discusses real-time. 

Another of my favorite publishing truisms comes from the world of 
science fiction. It helps you test whether a story is genuine science fiction 
or just an interloper from some other genre. Try substituting "horse" for 
"space ship," "six gun" for "laser cannon," and "ranch" for "moon base." 
If it reads like a Western, then that's what it is. Only the nouns have been 
changed. 

I found you could do the same with Ward/Mellor, or Hatley /Pirbhai, or 
any of the other books on real-time design. Reword the putative examples 
of embedded, real-time systems and either of these books could serve as a 
design guide for on-line banking or payroll systems. Don't get me wrong. 
These two are still good books, and they seem to be useful to designers of 
real-time systems. But I believe that is because real-time systems share so 
many problems in common with all other systems. It is not because the 
authors have learned to identify and address peculiar requirements of 
real-time systems. 

It should be reassuring, in fact, that computer systems have so many 
common design issues. We have struggled for decades, and continue to 
struggle, to develop a collection of methods that we can bring to bear on 
the software-design process. I am happy to see these authors successfully 
transfer many of the techniques that have worked for years in the commer­
cial arena to the realm of real-time and embedded systems. It is encouraging 
to think that the machinery they have added can be carried back to the 
commercial arena and used to deal with such problems as shared access to 
common data. 
7Qut where does that leave real-time design? Is it a separate discipline or 
;fietJnot? Personally, I have learned to be comfortable with the notion that 
many of the categories we humans make up are only qualitative. The 
engineer, the scientist, and the mathematician often look in vain for the 
quantitative touchstone that can simplify the sorting of things into catego­
ries. That's a noble endeavor, but one that is often neither necessary nor 
sufficient to the working designer. The designer still brings the same tools 
to bear. Some design problems just use a given tool more than others. 

To me, what is peculiar about real-time design is right there in its name. 
What we characterize as real-time systems have an unusually strong pre­
occupation with time. An acceptable solution must respond soon enough, as 
always. For a real-time system, soon enough may push the limits of the 
chosen hardware, or software, or even the state of the art. So great is a 
preoccupation with adequate performance in real-time systems that this 
branch of our business has been one of the last hold outs in the use of 
high-level languages and other productivity aids. No responsible designer 
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wants to risk delivering a system that fails to meet performance specifica­
tions. Fortunately, improved compilers and a growing collection of success 
stories have encouraged more and more real-time and embedded imple­
mentations to use up-to-date technology. 

The preoccupation with time takes other forms as well. A solution that 
is fast enough on average may still be unacceptable. Every real-time system 
usually has one or more situations where a worst-case response time must 
be guaranteed. As an extreme example, running a 747 jumbo jet on a 
LISP-based system has a lot of appeal, provided it doesn't decide to indulge 
in five minutes' worth of garbage collection on a final approach to LAX. It 
can be far more important to the designer to be able to predict the worst-case 
response of a solution than to get the fastest possible. Predictable solutions 
are the stuff of engineering. Wing-and-a-prayer landings are the stuff of 
drama. Engineers dislike drama in their working lives, and rightly so. 
?ll?lll'hen I started writing these essays, I focused primarily on presenting 
~a series of design methods. These were methods that I had found 
useful over many years of writing programs for a living. I tried to identify 
and codify all the different methods that I or my coworkers brought to bear 
in solving design problems. I even made up (sometimes cutesy) names to 
help people remember the different methods and when to apply them. 

Of all those methods, only one dealt with time. (See Essay 14: Synchroni­
zation.) It focused on the fundamental importance of getting synchroniza­
tion right and demonstrably safe in any system that involves cooperating 
sequential processes. I called the method hard-to-easy design because it is 
always hard to debug synchronization logic. Despite years of papers by a 
variety of smart people, nobody has invented a language that delivers 
foolproof synchronization. You do the hard part first, before synchroniza­
tion issues get cluttered up with other details. Then you add the details that 
do not involve synchronizing code. 

I still believe that this is an important aspect of real-time design. And it 
is a separate issue from getting adequate performance. Another stock 
truism is, "Make it right before you make it faster." You put in semaphores, 
record locks, etc. to make sure the code always behaves properly. Only after 
that is debugged do you put serious effort into measuring performance and 
tweaking code to make it faster. (Of course, you must pick algorithms with 
sensible time complexity from the outset. Otherwise you may not have a 
prayer at souping up underachieving code. But in the early stages of design 
and coding, you must not embellish those algorithms in the hope of picking 
up speed that you may or may not get or need.) 

So the design methods I outlined focused most heavily on one aspect of 
time, getting parallel processes to cooperate properly. I paid the conven­
tional lip service to tuning systems only at the appropriate stage of devel­
opment. (See Essay 15: Which Tool is Last?) And, I now see in hindsight, I 
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overlooked an important aspect of designing with a preoccupation for time. 
A system must also be stable over time. 

If you've ever worked at one terminal on a multi-user time-sharing 
system, you know some of the issues. All time-sharing systems bog down, 
naturally, under a heavy enough load. Some systems are more gracious 
than others when they bog. The worst offenders are the ones that seem to 
fall over a cliff when they pass some undocumented limit. Response goes 
to hell, and any attempt to sniff out the extent of the disaster sends the 
system to deeper reaches of hell. I have even been on systems that brood 
for a spell after the excess load is removed. They sit there licking their 
wounds and pouting until various secret internal parameters become 
convinced that the world has returned to normal. 

Networks exhibit all sorts of pathological behavior in the time domain. 
You can get some of the simpler ones to "ring." Just like a microphone that 
howls when you turn the sound system up too loud, simpler networks can 
start packets endlessly circulating and regenerating. Messages still get 
through, but the capacity to transmit information is diminished. 

If you read the SIGSOFT newsletter (from the ACM Special Interest 
Group on Software Engineering), you will see a steady stream of reports 
on complex systems that bog, oscillate, or even collapse under unusual 
loads. Sometimes those loads are caused by happenstance, the data proc­
essing equivalent of Mothers' Day for the phone company. Sometimes 
those loads are the result of malice, or at least carelessness. I need not recite 
yet again details of the well publicized worm that crawled into several 
thousand Berkeley UNIX systems. As a cautionary tale, it has certainly been 
effective. 
7Qut how do we display our caution? It is clear, to me at least, that 
~designing for stability in the time domain is just as important as 
designing for correct synchronization and designing for adequate perform­
ance. It is also clear that this is the least understood of the various disciplines 
for dealing with our preoccupation with time in real-time systems. I can 
only offer a weak analogy and a general observation. 

The analogy is to electrical engineering. The time-dependent behavior 
of currents in electrical circuits has been thoroughly studied for decades. 
Most real-world components can be represented by just a few parameters. 
Most circuits can be modeled as a sequence of transforms. Modern circuit 
theory can often predict quite accurately the behavior of a circuit to a given 
stimulus, such as a sine-wave voltage applied across two points in a circuit. 
In fact, you can often plot out the behavior of the circuit for sine waves of 
a broad range of frequencies. 

Now here is the really interesting part. If you know the response of a 
circuit as a function of frequency for a broad range of frequencies, you can 
tell a priori whether that circuit is stable. You can predict whether it will 
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ring or cook components, with rather good accuracy. And once you know 
the instabilities in a circuit, you have a good guide to making it stable. The 
general principle is to sacrifice some of the amplification in a circuit through 
negative feedback. Gain goes down but stability goes up. It's a classic 
tradeoff. 

The analogy to computer design is weak, of course, because we don't 
understand complex systems nearly as well as simple electrical circuits. We 
can only guess, measure, or test many properties of the systems we build. 
Nevertheless, I believe that we as designers have an obligation to pay more 
attention up front to the time stability of the systems we contrive. Knowing 
that complex systems are not automatically stable, we must devote a certain 
amount of our time to anticipating, looking for, and correcting problems in 
this area. As usual, if we do not, then our customers will do it for us in the 
field, at a premium price, before an audience of eager competitors. 

The general observation is that enhancing stability will probably cost 
you performance. That is just a specific application of Robert Heinlein's 
favorite truism, "There ain't no such thing as a free lunch." Adding extra 
checks or redundant transmissions is going to cost you cycles and bytes. So 
you'd better be prepared to up your measure of what constitutes adequate 
performance. Make sure you have some performance left over to spend on 
this important aspect of the design. 

In the end, there's nothing wrong with being preoccupied with time. 
That's the hallmark of real-time design. It is also an aspect of conventional 
design that has probably not received adequate attention to date. Just make 
sure that your preoccupation has a payoff. Spend your time worrying about 
time wisely. o 

mfterword: I still have fights with people over this approach to defining real-time 
.a.systems. It's like art - nobody can define it, but they know what they like. For 
want of a quantitative measure, this is the best qualitative way I know to identify 
what is special about real-time design and programming. 
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11rhe previous essay was on one of my favorite topics - how to design 
~software systems in an orderly fashion. (See Essay 18: A Preoccupation 
with Time.) My thesis in that essay was that the time behavior of computer 
systems has not received the attention it deserves, particularly in designing 
embedded and real-time systems. I discussed three aspects of a program's 
time behavior that you must address: adequate performance, safe syn­
chronization, and stable response. 

Thinking about time led me to wondering why more people haven't 
addressed this important area in greater detail. Sure, there are lots of 
academic books on semaphores, monitors, and other synchronization 
mechanisms. But there are still very few operating systems, languages, or 
subroutine libraries that make synchronization substantially safer in the 
programs you have to write. 

There are also lots of books, both academic and trade, that purport to 
address the needs of the real-time designer and/ or programmer. Neverthe­
less, these almost always devote the bulk of their attention to conventional 
design issues. The examples are from the problem domain of real-time 
systems, but the shapes of the examples are remarkably universal. Little 
attention is devoted, in any of these books, to the peculiar problems of 
dealing with time. 

You'd think, with the emphasis placed on time in the very phrase 
"real-time" that designers would be encouraged to begin with time consid­
erations and work their way down to the relatively trivial (or at least 
mundane) coding details. Yet this is not how most of us were taught in real 
life. It is seldom how newcomers to the field are being taught today. There 
is little prospect that kids entering college next fall will be taught much 
differently. How come, I asked myself, we pay so much lip service to 
dealing with the most important design issues first, yet we persist in 
starting with other aspects of a design in practice? 

Then it hit me. Discovery is usually a bottom-up process. The first things 
we learn about a subject are the basic abstractions. Over time, we learn 
higher-level abstractions, built on the basics, that provide the really impor­
tant unifying principles. The basics appear relatively unimportant in hind­
sight. Nevertheless, they had to come first. 

Certainly this is true in the discipline that passes for computer science. 
We had to learn the importance of using assemblers (rather than code by 
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hand in octal) long before we could begin to appreciate a higher-level 
language such as FORTRAN. We needed a decade or more of experience 
with rough-and-ready languages such as FORTRAN and COBOL before 
we could appreciate the need for the refinements of C and Pascal. Only now 
are languages catching on that demand even greater levels of abstraction. 

None of these newer languages completely displace their forebears. You 
can still find serious programmers who swear they need the control you 
get by writing in assembly language. FORTRAN is nowhere near dead, 
despite many an obituary tossed off by an enthusiast for later technology. 
I venture to predict that C will cheerfully endure the onslaught of C ++,Ada, 
Eiffel, and whatever else appears between now and the end of the century. 
Not everyone wants to inhabit the current topmost layer of the pyramid. 
And only the hardiest of pioneers enjoy hauling rocks all day to build the 
pyramid higher. 
?ll?IJ.that this means in the world of design methods is that we discover 
~the lowest-level methods first. These are the ones we learn earliest. 
These are the ones we get the most experience with and grow most 
comfortable using. These are the ones we therefore turn to first when we 
need to do something and we're not quite sure what to do next. Under stress, 
people almost invariably revert to an earlier pattern of behavior that made 
them feel in control, whether or not it is relevant to the current situation. 
And those early patterns of behavior are often more relevant than you 
might expect. 

It's been over twenty years since Dijkstra first told us to structure the 
control flow in our code more carefully (Dij68). In the cosmological scheme 
of things, we now know that minimizing the number of GOTOs in your code 
is treating a symptom instead of the disease. Indeed that is the purport of 
Dijkstra's letter, a fact generally overlooked or curdled in the GOTO debate 
that has continued even to the present day. 

Something that addresses the disease more directly is to look at the 
structure of the data that your program is manipulating. Structure the data, 
some say, then reflect that structure in the code that manipulates it and 
everything will turn out fine. Few methods for imposing structure on data 
encourage you to write GOTOs, it turns out. Those that do tend to use GOTOs 
in a sufficiently disciplined manner that you needn't worry about code 
readability or maintainability. 

Worrying about data-structure alone is still designing in the small. You 
can have the prettiest data structure diagrams in town and still get 
swamped by a project that requires 100,000 lines of code. It is clear that 
imposing structure on the organization of your code into modules is much 
more important. Structure the hierarchy, some say, and the data will reflect 
the structure of the clean interfaces between modules. Few interfaces can 
achieve the laudable goals of yielding high cohesion within modules and 
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low coupling between modules without also yielding well structured data. 
And well structured data, as we saw before, leads to well structured code. 

But the best structured hierarchy is worthless if performance is not 
adequate, or if the program is subject to lockups and race conditions, or if 
the overall system is unstable over time. Hence we must address timing 
demands before we do anything else. You can seldom retrofit adequate 
performance if the basic algorithm has unacceptable time complexity. You 
cannot retrofit correctness in a system written without proper concern for 
safe synchronization. You can stabilize a system only if you have designed 
in excess performance and adequate feedback to exploit it. 

In short, our highest goal should be to structure time. Then we can safely 
partition a system and structure its hierarchy. Then we can identify the 
information flow within the hierarchy and structure that data. And finally, 
we can write structured code. Now that is top-down design. 
711?1\then was the last time you designed a system by performing those 
~design steps rigorously in that order? My guess is that you never 
have. I know that I haven't. Then again, maybe we all have more than we 
think. People who preach software design as a disciplined activity spend 
considerable energy making us all feel guilty. We can never be structured 
enough or object-oriented enough to achieve nirvana in this lifetime. We 
all truck around a kind of original sin from having learned BASIC at an 
impressionable age. But my bet is that most of us are better designers than 
the purists will ever acknowledge. 

The usual excuse we give is that developing a product involves several 
trips up and down between levels of abstraction. We do a little mental 
top-down design to get a feel for the low-level stuff that may be difficult to 
implement. Then we suspend the orderly process of stepwise refinement 
long enough to do some good old fashioned bottom-up implementation of 
a few critical pieces. Reassured that we're not completely out to lunch, we 
go back to the top-down approach, at least long enough to spot the next 
potential hang-up. With sufficient luck, skill, and patience, we eventually 
converge to a complete design and implementation. 

Another view is that we must make several trips around a spiral. We 
design the system at a very abstract level, often over beers, after work, on 
the back of a napkin. The process is allegedly top-down, but the only 
documentation is soggy and tears easily. Then we go through the process 
at a greater level of detail, more on the lookout for those low-level gotchas 
I just mentioned. This is the round that looks most like an orderly process, 
one that leaves your boss with the mistaken impression that he or she is 
really in control. Then we do it again and again, as often as necessary to fill 
in the details. After enough rounds, each at a greater level of refinement, 
the process nominally converges to a deliverable system. 
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Or perhaps you use the Michaelangelo Approach, where you keep 
chipping away pieces of marble that do not look like a statue of David. Or 
the Columbus Method, where you discover a problem and land on it. Or 
the Woody Allen Approach - "If it moves, fondle it." Or you can use 
Drunkard's Walk, or Outlive the Testers, which I believe are self explana­
tory. The only technique I don't approve of is the one first attributed to 
Jiminy Cricket- "Wishing will make it so." 
11r'he point is, those of us who develop software for a living have learned 
~to direct our efforts with some degree of efficacy over the life of a 
project. We often cannot articulate why we do what we do when we do it. 
That's why we hide behind self-deprecating humor so often when we 
describe our jobs to civilians. But most of the time we're doing something 
that needs to get done and that seems to be in the way at the moment. (See 
Essay 7: Which Tool is Next?) 

What we fail to credit is that each of the many design methods has more 
than one thing to say. Some aspects of a method tell you what to do to launch 
a brand-new design. Others guide you through the difficult shoals of 
converting an abstract design to a very concrete and specific implementa­
tion. Still others tell you what to look for once the project is fully afloat, lest 
it sink from a hundred leaks. A few even help you steer a course toward 
future enhancements. 

To put it another way, every design method has to provide different 
services at different stages of the development process. First of all, a method 
must help you predict the future. It promises you that a problem of a given 
shape can benefit from a solution of a corresponding shape. It tells you what 
details you must focus on to capture the design and where the interesting 
coding problems will lie. It should even give you good hints about how to 
test and debug the almost final code, and how to measure and tune the 
really final code. And, of course, a method must tell you what documents 
you need to produce to capture the critical design decisions. 

As I have preached for years, you have to apply numerous design 
methods to complete any nontrivial programming project. Even the purists 
who think they use just one method really use several. And even if you 
think you are applying methods one at a time, you can't help but overlap 
them throughout a project. 

With all those methods nattering at you throughout the software-devel­
opment process, it's no wonder you can't articulate why you're doing any 
particular job at any particular time. If you have an urge to see structure in 
everything, you will see reciprocating motion, or a spiral climb, or a 
waterfall. You will probably not see 20 or 30 interlaced checklists being 
filled out from left to right. Not unless you are more organized than the 
average bear. Nevertheless, I maintain that that is what most professionals 
end up doing. 
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Ignorance can, of course, get you in trouble. Often large unsolved design 
problems remain at a stage where everyone is pretending to be in final 
systems integration. One or two checklists just got lost in the shuffle. Or 
they got bent and twisted to fit into the pretty spiral. Even more often, the 
planners gloss over a few hundred microsteps in the checklists to satisfy 
the needs of Back-to-Front Scheduling - "I need it in seven and a half 
months, when can I have it?" More often than we all care to admit, weekly 
progress meetings are run by disciples of Jiminy Cricket. 

Still, my basic message is to be more kind to yourself as a designer. You 
tend to forget about all the successes that got you where you are in your 
career. (You can at least afford to buy this book, nicht wahr?) Just try to be 
more aware of how many fronts you are fighting on. You'll get the troops 
to the critical battles more often. 
7{ have discussed about a dozen methods in this collection of essays. Some 
;JJof them are admittedly low level, using the rating scheme I outlined 
above. Others are very high level. Some of them are most useful in the 
earliest stages of design. Others are weak on prediction but strong in the 
final stages. If you are indeed going to juggle multiple applications of these 
methods, it helps to be aware of where each makes its best contributions. 
Let's look at them. 

Starting at the lowest level, three of the methods deal primarily with just 
structuring code: 

Inside-out design is preoccupied with writing good predicates, those 
control expressions you write in IF and WHILE statements to get flow of 
control right. When you have a lot of decisions to make, it can provide 
important structure through the use of decision tables and encoded Kar­
naugh maps. Otherwise, its contribution is mostly in the middle stages of 
coding. 

Bottom-up design is mostly about building finite-state machines. When 
you have a problem that requires hidden state memory it can't be beat. (Two 
obvious examples are a handler for some peripheral device and the guts of 
an object in object-oriented design.) So this method is long on prediction, 
but at a fairly low level of abstraction. 

Easy-to-hard design deals with handling exceptions. It tells you to code 
for the "normal" case, so the code reflects the commonest situations, then 
deal with the less common exceptions with special handlers out of line. 
Thus the method guides you early on in partitioning the control logic. In 
the final stages of testing, it also gives you a neat checklist for verifying that 
all errors are properly handled. 

Three more methods address various aspects of data-structured design. 
These are: 
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Right-to-left design encourages you to describe the data your program 
generates in terms of sequences, alternations, and repetitions of simpler 
structures. A program that reflects the data it generates is perforce struc­
tured in the classical sense. It offers most guidance at the design and coding 
stages, somewhat less during testing and tuning. 

Left-to-right design is about recognizing structure in input data, or 
parsing if you will. It is very important during early design because the 
form and flexibility of input languages have a profound effect on program 
usability. A well designed grammar also is important, however, in design­
ing for good test coverage. 

Chaos-to-order design focuses on exploiting any order that has been 
imposed on a data base. It can help you speed up data insertions, deletions, 
replacements, or accesses. Or it can simply help you preserve the integrity 
of a data base by limiting the number of agents that manipulate its internal 
structure. This method captures many of the virtues currently advertised 
for object-oriented programming. As such, it is an important organizing 
principle in the early stages of design, even if it addresses a relatively low 
level of abstraction. 
11r'hree more methods address how you structure a hierarchy of modules. 
~These are: 

Outside-in design helps you break up modules that are too complex to 
design by simpler data-structuring methods. It deals with marrying data 
structures that are compatible and divorcing those that are incompatible. It 
is mostly of importance while designing and coding, but it can warn of 
testing problems in modules that must retain static memory. 

Chaos-to-order design has a simple message. It tells you to treat any 
need for reordering data as a sort, then isolate the sorting in a separate 
module. (It also encourages you to use commercial sort packages rather 
than reinvent your own.) It applies almost exclusively in the earliest design 
phases. 

Top-down design provides an orderly method for converting data-flow 
diagrams to structure charts. It guides you in picking a top module that is 
likely to lead to relatively low coupling and minimal complexity within 
modules. As such, it deals almost exclusively with early design issues, and 
only moderately with coding issues. 

Finally, there are three methods for structuring time (only one of which 
I have so far graced with a name): 

Hard-to-easy design tells you to get your synchronization problems out 
of the way as early as possible. They are too hard to get right to risk 
postponing until you have accumulated any added complexity. Since lan­
guages and systems still let you get into arbitrary amounts of trouble in this 
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arena, you must nevertheless keep alert to synchronization issues through 
all phases of design, coding, testing, and tuning. 

Stable-to-fast design is an obvious term for the well worn dictum, 
"Make it right before you make it faster." It encourages you to focus in the 
early design stages purely on the time complexity of algorithms. It discour­
ages you in the middle stages of coding and debugging from adding any 
complexity for the sole purpose of improving performance. It guides you 
in the testing phases to successful techniques for locating performance 
bugs. Finally, it suggests the kind of tuning you can safely do in the end to 
improve performance without a major sacrifice in maintainability. 

Fast-to-stable design is an equally obvious term for the concerns I 
addressed in the previous essay. (See Essay 18: A Preoccupation with 
lime.) You must not consider a design complete until you have reason to 
believe that the time-dependent behavior of the delivered system is suffi­
ciently stable. Since there are only a few very general design principles you 
can apply in the early stages to ensure stability, this method kicks in most 
strongly at the end. It tells you to look for instabilities and to sacrifice 
performance as needed to eliminate them in the final product. 

So there you have it. A dozen different methods, at four levels of 
abstraction, each providing varying degrees of guidance at different stages 
of the program-development process. It may not be tidy, but I bet it covers 
a lot of what you do when you do what you call computer programming. 
And mostly it works. o 

mfterword: This was my attempt to better unify all the different essays presented 
~earlier in this collection. I suspect some of the regularity is specious -why are 
there exactly three methods for each of the four levels of abstraction, and why does 
"X-to-Y" design always have a companion "Y-to-X" design method? We human 
beings can find patterns where we want them, regardless of the actual supporting 
evidence in the real world. Nevertheless, I do believe that this collection of ap­
proaches subsumes many of the design methods we actually use. And I believe that 
this way of presenting them is as good as any. At the least, it's mnemonic. 
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1o-verybody knows that abstraction is a Good Thing. Computers spend all 
~of their microseconds walloping bits around. They are profoundly 
concrete. We programmers, on the other hand, try to impose some higher­
order meaning to those flying bits. We must at least pretend that the bits 
stand for something more abstract than ones and zeros. 

Programmers are continually distracted away from the problem domain 
and into the world of machine representations. The customer complains 
that credits over $200 million suddenly tum into debits. The programmer 
explains that 32-bit signed numbers do that when they overflow. The 
customer is unimpressed with this lame excuse and demands a working 
program. The programmer is annoyed that customers don't appreciate the 
"natural" limitations of the computer. The two are living at different levels 
of abstraction. 

I can always spot a programmer who has only worked on one architec­
ture. He or she looks on the basic data types of that machine as God given. 
The same goes for how the system names files, how it represents lines of 
text, and dozens of other arbitrary design choices. There is a level of abstract 
thinking that comes only from writing code intended to be portable across 
architectures. 

Years ago, I concocted a seminar titled "Structured Programming in 
Assembly Language" and taught it several times. All the classes took the 
control-flow primitives in stride. Most were even willing to entrust the 
choice of tests and branches to a package of macros that generate the 
primitives for you. Where I hit a brick wall, however, was when I tried to 
teach assembly-language programmers that data has structure. Data was 
bits and bytes to them, not subranges and records. Nary a one was willing 
to refrain from peering at the underlying representation. 

I wrote that experience off as one of the dangers of pioneering. Not 
everyone was ready to be structured, and assembly-language program­
mers were likely to be the most ardent holdouts. That explanation sat 
comfortably in the attic of my brain until just the other day. I saw a 
description of some new system calls in MS-005 4.0. Each of the data items 
was characterized as having 1, 2, or 4 bytes. Period. No internal structure, 
no range limitations, no additional semantics. People coding all those hot 
new PC applications still pretend all too often that data has no structure 
beyond its overt representation. 
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?ll?llt hat finally pushed me over the edge was the spate of seminars I 
~recently attended in my capacity as reviewer for Embedded Systems 
Programming. Religious converts to object-oriented programming often act 
as if they invented abstract thinking. The typical before-and-after examples 
stack up crassly short-sighted functions against well-crafted objects. Now, 
some of us old timers think we know a thing or two about data abstraction. 
It is annoying to see straw men set up as examples of our breed. 

On the other hand, there are still a lot of assembly language program­
mers in the world. The number of programmers writing MS-DOS system 
calls may well rival the ranks of the older bit twiddlers. Can it be that the 
OOPs-a-daisies are at least half right? Do most programmers avoid abstract 
thinking unless it is forced upon them? Maybe I've been hanging around 
good programmers for so long that I've lost touch with common practice. 

Or maybe the picture isn't all that bleak. Using abstraction to good effect 
is a skill that everyone has to learn. Like many aspects of computer 
programming, it doesn't come naturally. I can't recall ever reading a simple, 
straightforward set of guidelines for how to do it. Not in a textbook, not in 
a famous paper. Perhaps our educations are merely spotty in this area, not 
the subject of a national scandal. 

I decided to write down the obvious. Probably you know all this stuff 
already, if only at a subconscious level. Maybe you've never bothered to 
articulate it. Conceivably some of it is news to you. Whatever, here are the 
simplest guidelines that came to me on the subject of abstraction. 

First, you need to keep in mind your reasons for introducing abstractions 
when you program. You don't do so lightly, because you always pay a price. 
With each benefit comes a drawback: 
• insulation - You want to protect your program from excessive depend­

ence on the underlying implementation. Protect it too much, however, 
and you introduce inefficiencies in size and speed. 

• documentation - You want to convey extra information that is not 
obvious from the choice of implementation. Convey misleading infor­
mation, and you have a debugging and maintenance nightmare. 

• completeness- You want to ensure that you've thought through all the 
states your data can assume and all the ways that states can change. Go 
overboard with completeness and you saddle your development with 
unnecessary extra work. 

Keep these three goals in mind as we examine a few guidelines. 
11rhe first guideline is: Give all your numbers names. It is an old mathe­
\Ulmatical truism that there are only three good numbers - none, one, 
and all. The programming equivalent is that you should be suspicious of 
any constant in your code other than 0 or 1. (I have learned to be suspicious 
of most of those, as well.) All those 80s peppering your code are not 
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constants of nature. They represent some value that has a story attached. 
The story is more likely to stay unchanged over the years than the value. 

So you summarize the story behind each number in a memorable name. 
Assemblers have EQU directives, Pascal and its ilk use CONST, C has 
#define. Whatever the mechanism (and it is a rare language that lacks 
one), you use it to bind each funny number to its name. And keep an 
abbreviated version of the story with the definition in the form of a 
comment. You or your successor will need the reminder some day. 

Sound obvious? Then how come a large fraction of the code I see 
published still contains funny numbers? It's bad enough when code is 
peppered with 80s, but it's worse when some are masquerading as 79s, 
81s, and 40s. Even qrep, that most stalwart of software tools for software 
maintainers, doesn't help you much the day 80becomes120. 

Don't tell me that the 80 will never change. I once consulted for a 
company that owned three mines. Every program they owned was pep­
pered with 3s (and the odd 2 or 4 that also counted mines). You should 
have seen the sheepish programmers the day top management ordered one 
of the mines closed. If a giant hole in the ground can go away, a card can 
grow 40 columns. 

The only thing worse than failing to name a number is numbering a 
name. I have seen programs that define FOUR as 4, or K1024 as 1024. Lest 
you think this is merely a waste of time, I must tell you that later versions 
of those programs changed the definition of FOUR to 5, and Kl 02 4 to 4 0 96. 
Stupidity transmutes easily to perversity. 
mnother guideline says: Give all your data distinct types. You are already 
.a.increasing entropy when you decide which computational types to use 
for your data. You can at least document that the long integers you use for 
counting apples differ from the long integers that count oranges. One day, 
you may want to change just one of them. 

Language designers have tried many ways to help you better tailor your 
data declarations. Declaring a subrange captures more information than 
just choosing the smallest adequate integer representation. Declaring an 
enumeration lets you give names to values (see above) and frees you of the 
temptation to pick clever values. Declaring a powerset makes clear that you 
intend to twiddle individual bits. All these mechanisms are very helpful. 

The only problem is, I'm always wanting to mix them up. A classic 
example is the Standard C function qetchar. It returns a value that is 
either in the subrange representable as an unsiqned char, or the distinct 
code EOF (for end-of-file). That's useful behavior which C programmers 
indulge in all the time. I've just never seen a language where you can 
declare such usage. So I pick an adequate representation and list the 
semantic restrictions in the type definition. 
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One reason for picking a given computational type is, of course, the 
computations that the language supports for that type. You pick integers 
for counting whole apples and floating point for weighing apple sauce. The 
language may let you add apples and oranges. It probably won't implicitly 
convert apples to applesauce by the standard rule of thumb. Don't count 
on a language to replace your own documentation and discipline, no matter 
what the proponents promise. 

You can also declare types for your data that inherit almost none of this 
baggage. Make a new type and you get to spell out just those operations 
you wish to define for it. (Even in C, which treats most type definitions as 
synonyms for existing types, every structure is a new and distinct type.) 
You then have the chore of spelling out all those operations, either as 
macros, functions, or overloaded operators. 

In my experience, the division is a natural one. A datum that you can 
represent as a scalar computational type generally wants most if not all of 
the operations that go with it. (It makes sense to add and subtract apples, 
but only to multiply apples by dimensionless types.) I prefer functional 
notation for the operations I must supply. The last thing a maintainer needs 
is to have operators redefined for scalar operands. 

On the other hand, a datum that requires two or more components begs 
a new set of functions to manipulate it. (For a screen window, you can 
imagine wanting to open, close, read, write, and position it, at the very 
least.) And the functions can look like functions, for all I care. I can tolerate 
overloading the plus operator to add two complex numbers, but I don't 
want it to paste two windows together. That's cute, but hardly a boon to 
code reading or debugging. 
1it"'ombining these two guidelines yields a third: Give each named number 
~a type. I didn't mention this up front because it can be hard enough to 
get some programmers to name their numbers at all. The fact remains, 
however, that each number you name belongs only in certain places. You 
can store it only in data objects of the proper type and you can legitimately 
perform only certain operations on it. Pretend otherwise and you're back 
in the K1024 school. 

Pascal has enumeration constants that carry both an unspecified value 
and a specified type. It also has CONST declarations that carry a specified 
value and an implicitly specified type. It would be nice to be able to specify 
both. C has only weakly typed enumeration constants and #defines that 
are even weaker. Fortunately, you can also write a type cast before any 
constant to get all the type checking you can. (Detractors will say that still 
is not enough type checking.) 

I am all for having your programming language enforce the restrictions 
you want to impose. It irks me when you get more restrictions than you'd 
like. That leads to twisty code, to evade the checks, or inefficient code. I 
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don't mind too much, however, when the language fails to help in this area. 
I figure that you'd better be imposing a strong discipline on your code no 
matter what. Don't abrogate your responsibility to the compiler. 

In this case, that means you'd better know what type each of your named 
constants has even if the compiler doesn't care. Document it and check it 
by hand. There's no such thing as a typeless number. 
mnother guideline is: Give each datum a complete set of states. Not every 
.a.combination of bits in the representation is likely to have meaning for 
the abstract data that you are modeling. The opposite must, however, be 
true. Every sensible state in the abstract must have a concrete repre­
sentation. You should be able to write a predicate that determines every 
sensible state with a reasonable amount of computation. 

Even the simplest computational type can often overflow or be in an 
undefined state. Set aside discrete values, if at all possible, to represent 
these special cases. Or make sure that you handle errors so well that 
nonsense values don't propagate far. If your code has to be really robust, 
check for special cases before you bull ahead with a silly computation. 

For more complex, structured types, the opportunities for inconsistent 
states abound. Like Topsy, the typical ornate data structure "just growed." 
Even if there was a concerted effort at design in the early days, an accretion 
of enhancements has long blurred its outlines. And if you've never viewed 
a complex data structure as a finite-state machine, chances are it began in 
trouble. For an eye-opening experience, go take a look at the largest data 
structure in a large program you've worked on recently. Try describing all 
the valid states of that data structure and you will see what I mean. 

Some languages encourage you to provide a tag field for each union 
(variant record). The value stored in the tag determines which variant is 
active in the union. That's a step in the direction of state completeness, but 
only a small one. Some languages encourage you to specify an initial value 
for each data object that you create. That too is a help, provided you can 
easily specify a sane state when you write an initial value. 

Here is a situation where state-transition diagrams can really help. (See 
Essay 4: Finite-State Machines.) Drawing the diagram forces you to think 
about where you start, where you can go, and how you can get there. Just 
don't quit until you are sure that you have considered every possible 
transition from every possible state. 
(?Y companion guideline is: Give each datum a complete set of operations . 
.Q.It's one thing to know all the possible state transitions, it's quite another 
to provide them. The temptation is always strong to leave out the ones you 
don't need right now. They are always the ones you are going to need next 
week. What I am talking about here is an explicit investment in the future. 
I realize that is a hard thing to sell to management in these days of quick 
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return on investment. You have to be convinced yourself that there is a 
payoff in the present, if only in debugging with greater confidence. 

The winning argument these days is code reusability. If you can make a 
case that doing the whole job now means not doing it over next month, 
you'll more likely get a hearing. One of the big selling points of object-ori­
ented programming is that it encourages writing reusable code. It does so 
to the extent that it forces you to think about everything you want to do to 
a data object. Whether you're crafting data objects or just building conven­
tional sets of functions and data declarations, however, it pays you to be 
complete about it. 

Go back to the state-transition diagram you made to design the data 
structure. Is there a function that creates data objects in a consistent initial 
state? Are there separate function calls for making all the state transitions? 
When a data object dies do you need a function to tidy up properly before 
its storage goes away? If you are performing any of these operations with 
inline code, make sure that it will survive likely changes in data repre­
sentations. 
11T"hat's enough guidelines for a fairly simple subject. The important thing 
"1.iis to keep in mind the underlying reasons I listed above for introducing 
abstractions. Then abstract whenever you serve one of those reasons, and 
never abstract when you don't. 

I end with a few touchstones for checking your work: 
• It ain't abstract if you have to look at the underlying implementation to 

understand what's going on. 
• It ain't portable if the underlying representation cannot change. 
• It ain't reusable if it is not complete. a 

mfterword: I wrote this essay and the two that follow because of the surge of 
x:ipopularity of object-oriented design and programming. Having seen several 
"revolutions" go by over the past few decades, I know how religious zeal can distort 
perspectives, if only for awhile. Thus the emphasis on how we have used abstraction 
in the past, and the price we pay for using it more in the future. 
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7{n the previous essay, I discussed the basic principles of data abstraction. 
;nu's a simple topic, involving lore basic to the programming trade. (See 
Essay 20: Abstract It.) Nevertheless, I find that too many practicing pro­
grammers don't know when to introduce abstractions. Some don't even 
seem to know how to. At the risk of insulting half my putative audience, I 
reviewed the obvious. I continue in this essay with a related topic, encap­
sulation. It too is simple. And it too contains lore that is not as widely known 
as I once thought. So the review continues. 

Abstraction and encapsulation are not synonymous. You can introduce 
abstractions and spread them throughout your code. You can encapsulate 
code that makes no use of abstraction. In either case, you are ahead of the 
game. You have done something to make your program easier to maintain. 

The two often go hand in hand, however. Stuff all the code that is likely 
to change in a module and hide its innards. Then introduce whatever types 
and named constants you need to define the interface. The abstractions aid 
the encapsulation, and conversely. 

You can't encapsulate everything, of course. Nor should you. Imagine a 
program where every executable statement is a function call. You have a 
great mound of primitive functions off to one side, each containing one 
executable statement. Or imagine that every term in an expression is a 
function call. You have another great mound of primitive functions, each 
returning the value of a constant or data object. Everything that can 
possibly change is carefully encapsulated. 

Such antics dramatically increase program size and execution time, but 
they add nothing to program maintainability or readability. In fact, they are 
sure to make matters worse. It is clear that encapsulation per se is not the 
road to perfect programs. In the previous essay, I cited three goals for 
introducing abstraction. You have the same three goals when you encapsu­
late. The tactical emphasis is different, but the danger is the same. Accom­
panying every benefit is a drawback: 
• insulation - You want to protect your program from changes that are 

likely to happen. Build too many walls and you lose performance. 
• documentation - You want to emphasize what parts of your program 

interact strongly and what parts interact only weakly. Pack the wrong 
things together and you increase coupling between modules and mis­
lead maintainers. 
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• completeness - You want to keep all related code and data together so 
that you can easily check for missing states or functionality. Pile the 
wrong things together and you get overwhelmed in combinatorial 
complexity. 

With those goals in mind, we can now look at a few guidelines. 
11T"he first guideline is: If it's likely to change, make sure there's exactly 
"1.ione right place to make the change. That sentence contains a number 
of critical phrases. Let's look at them in turn. 

The first critical phrase is "likely to change." You don't want to take out 
insurance against changes that are not likely to happen. Insurance costs 
money. You needn't redefine the keywords in C, as in: 

#define IF_KEYWORD if 

I can assure you that committee X3Jl 1 is much too tired to consider chang­
ing the keywords of C for the next five years or so. 

You certainly want to introduce a #define for each "constant" in your 
program. We all know how often those critters change. You may want 
certain parameters to be alterable at program startup. A program to be used 
across Europe may adjust its prompts to match the language of the execut­
ing locale. You may even want to make some supposed constants into data 
objects whose values can vary when the program runs. 

Your job as a programmer is to determine the most flexible point to bind 
a value to the name the program uses for it. The well known Principle of 
Latest Binding encourages you to defer binding as long as possible. That 
gives your program maximum flexibility. I would further encourage you 
to defer it no longer than the latest sensible point you can imagine. Beyond 
that point, you sacrifice more performance and readability than you gain 
in flexibility. I freely admit that determining when to bind values is one of 
the toughest skills for a programmer to acquire. (I have heard it said that a 
programmer is someone who can decide on insufficient information when 
to bind values.) As a beginner, you should err in favor of later binding. 
When you get to the hotshot stage, start binding sooner than your enthu­
siasm encourages you to. As an expert, trust your instincts. 

The next critical phrase to address from the guideline is "exactly one." 
If there is more than one place to change, you will probably miss at least 
one of them. (The next maintainer will miss one even if you don't.) If there 
is no place to change, then your program is suspiciously insensitive to a 
change in its environment. Or worse, the changes are too diffuse to identify. 

Here, of course, is where abstraction and encapsulation work hand in 
glove. The act of giving a name to a number confines the changeable 
number to one place in your code. You can foolishly replicate definitions 
across all your separately compiled modules. Fortunately, that takes even 
more work than doing it right. 
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The final critical phrase is "right place." It does you no good to know 
that a change is localized if you cannot locate the right spot. You want your 
intuition, or a sensible reading of the program text, to lead you to the spot 
where the change must occur. Then you want the change to be unequivo­
cally hidden from the rest of the code. That way, you don't have to scan 
acres of code (either by eye or by qrep) to check the implications of the 
change. Encapsulation does little good if the walls of the box are transparent 
instead of black. 
r.;ynother guideline is: Limit access to information until it just begins to 
.a.hurt. It's really wonderful when you can make a change with no fear of 
affecting other parts of the program. It's less wonderful when those other 
parts need information and have to jump through hoops to get it. As in all 
things, you have to strike a balance. 

The basic principle at work here is, of course, information hiding. David 
Parnas was one of the first to preach the benefits of partitioning to limit the 
scope of each design decision (Par72). You want to avoid combinatoric 
explosion by having each decision interact with as few others as possible. 

Naturally, there must be some way to access each design decision. If the 
behavior of the program is not affected by a given choice, you have dead 
wood on your hands. What you want, ideally, is one right way to sniff out 
each decision. In C or C++ you pack definitions and declarations into a 
header file. In more structured languages you include the visible part of a 
package declaration. At best, you get the information at translation time 
directly from the declarations. At worst, you have to call a function at run 
time to find out what you need to know. 

This is not a matter of deferred binding to improve the flexibility of a 
program. Rather, it is an unfortunate side effect of building effective fire 
walls between dumps of information. You can put up with a little ineffi­
ciency in the interest of improved maintainability. If the performance price 
gets too high, however, you have to compromise the principle of informa­
tion hiding. 
7{nformation hiding is not the same as secrecy. The idea is not to prevent 
;noutsiders from knowing what you are doing inside a module. Rather, it 
is to encourage them not to depend on that knowledge. That leads to a kind 
of secondary coupling which is more pernicious than obvious depend­
encies because it is less visible. You should encapsulate information to keep 
it private, not secret. (What you do in the bathroom is no secret, but it is 
private.) 

So assuming that your modules have no important secrets, there are 
various ways you can trade privacy for performance. Rewrite functions as 
macros that peer directly inside private data structures. That eliminates 
function-call overhead at the cost of potentially larger code size. (If the 
whole purpose of the function call is to access a single field, you can win 
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on code size as well.) You can also collapse several layers of function calls 
into a single call, at the cost of greater shared knowledge between different 
data types. 

To use the older language of structured design, you want to keep 
coupling as low as possible. Coupling cannot be nonexistent, for the 
obvious reason I cited above. Some forms of coupling, however, are defi­
nitely lower than others. Passing the value of a data object as an argument 
to a function is very low coupling. Broadcasting the name of a static data 
object to all modules is very high coupling. In fact, Larry Constantine 
stigmatized this practice for all time by dubbing it pathological coupling. 
Nevertheless, you may choose to indulge in pathological coupling to share 
widely used parameters with reasonable efficiency. 

In the more stylish language of object-oriented programming, you want 
to keep the innards of each object private. Access those innards only by 
"sending a message to a method" associated with the object. In other words, 
you must call one of the functions defined for the object to peek inside. Only 
such a function has the savvy to do the job. (A smart translator may expand 
simple methods to in-line code, of course.) 

An object-oriented programmer will be quick to tell you that a little pain 
is good for you. If you aren't forced to think through the design of each 
object before you use it, you aren't doing it right. If it's too easy to get at 
information, you aren't doing it right. An old-school programmer will be 
equally quick to tell you that too much pain is bad for you. If it costs too 
much performance to do it right, you aren't doing it right. 
A. till another guideline is: Chop your code into modules, but only along 
e:1'the seams. We all know that modularity is a Good Thing. The only area 
where we differ is in how we go about making modules. 

In the early days, some shops tried to enforce modularity by fiat. Pro­
grammers accustomed to writing monoliths responded in their customary 
passive-aggressive style. They applied what is now known as the Chinese 
Duck algorithm. (Where the cleaver falls is where the pieces separate. 
Never mind the bones.) They would write their usual monolithic program, 
then chop it every 500 lines and paste the pieces back together with 
branches. (See Essay 15: Which Tool is Last?) 

Later programmers honestly tried to honor the spirit of modularity. They 
just didn't have many guidelines about how to locate reasonable seams. A 
module might be 5 lines or 5,000. Worse, the larger modules might prove 
to be more maintainable than the smaller ones. What's a mother to do? 

Then along came structured design and modularity came into its own. 
Constantine gave us the concept of cohesion as a measure of the goodness 
of a module. You want to keep cohesion high by keeping related things 
together and unrelated things apart. Minimizing coupling is important, to 
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be sure, but maximizing cohesion is vital. Whether your functions are 
chunks of assembly language or methods defined in a class, you must keep 
cohesion high. 

Making better functions did wonders for modularity, but soon even that 
was not enough. As programs got larger, we found ourselves awash in a 
sea of function names. On large projects, programmer A had a good chance 
of making up names that clashed with those generated by programmer B. 
The project manager either created a central clearing house for external 
names or handed out funny prefixes to each of the subprojects. Neither 
solution scales at all well. 

One obvious solution is to nest functions. Put inside each function all of 
its subfunctions (and so on, recursively). That way, the normal block 
scoping of the language partitions your name space quite nicely. Pascal uses 
this approach, as does PL/I. 

The obvious solution has one obvious failing. If you draw a structure 
chart of a typical large program, you seldom get a pure tree. Near the top 
you find that each module has one or more subordinates that it uses 
exclusively. But farther down the tree, you invariably find increased shar­
ing of modules. More and more functions make use of a handful of 
low-level primitives to carry out their jobs. (See Essay 1: Which Tool is 
Best?) 

In a good design, in fact, fan-in dominates at the bottom of the structure 
chart. That indicates a dean interface to a lower level of abstraction, as 
preached by Edsger Dijkstra (DDJ72). It manifests itself in a structure chart 
shaped like an Arabic mosque, as preached by Constantine (Y&C89). 
mn alternate way to group functions is by the abstractions they enforce . 
.Q.Good C programmers know to put highly related functions in one 
source file, along with any static data they must share. If you minimize the 
number of names you make external, you can hide a considerable amount 
of complexity in separately compiled modules. You publish in an #in­
clude file only what others need to know to use a given module. 

Object-oriented programming offers an even better way to encapsulate 
related functions. A class is essentially just a data-object type with a bunch 
of associated functions attached. (Purists insist on calling these functions 
methods, to confuse the uninitiated.) The type presumably is one of interest 
to all the functions in the class. (Otherwise, the class has low cohesion.) 

Now here's where the fun comes in. To call one of these functions, you 
have to name its class as well as the function name within the class, as in 
window. open. Or you can name a data object of that class to qualify the 
function name, as in prompt_ win. close. You have a hierarchy of names, 
just as with Pascal-style nesting. Only now the dumping matches the fan-in 
of the structure chart. You are encapsulating groups of functions in a way 
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that matches the shape of the problem. By now you should know that that 
is a Good Thing. 

Object-oriented languages offer other niceties as well. A function call of 
the form prompt_ win . close essentially passes the name of the data 
object as a secret argument zero. You have nice ways to talk about this 
special data object. You are encouraged to write constructors and destructors 
that help data objects of that class stay consistent from cradle to grave. You 
can sometimes even overload the standard operators of the language by 
defining what function to call when operands of that class appear in 
expressions. 

All that frippery can easily obscure the simple importance of encapsu­
lation. That service alone can dramatically improve your ability to maintain 
a program of a given size. If you have a large system that manipulates 
several low-level abstractions, the payoff is obvious. That's why, I believe, 
object-oriented programming came to the forefront about the same time 
that graphics and windowing software began to burgeon. It is a marriage 
made in heaven. 

Two caveats are in order, however. When I described the typical structure 
chart of a large program, I noted that the fan-in occurs near the bottom. 
That fan-in is a loud signal that you should introduce objects for each cluster 
of related functions. Equally, the absence of fan-in higher up the structure 
chart should serve as a warning. If you try to stuff all of your modules into 
objects, you won't get nearly the same return on investment. The code that 
uses an object, even the code inside that implements all the methods, may 
not itself be a good candidate for this organizational paradigm. Use objects 
where they work, but don't feel you have to use them exclusively. 

The second caveat is that structured design still matters. People new to 
object-oriented programming are often at a loss about what to include in 
each class. If you consider coupling and cohesion in terms of the whole 
class, not just individual functions, you will find the guidance you need. 
You can make truly ugly classes that are hard to maintain and unlikely to 
be reused. Or you can make gems that you'll use unchanged for years. I 
assure you that the gems will have low coupling to other objects and high 
internal cohesion . 
.JllltY final guideline is: Don't finish a module until it's complete. There's 
.Jf ~llots of blather about how reusable code is in object-oriented lan­
guages. That's true only for modules with good coupling and cohesion, of 
course. It's also true only for modules that come with a complete set of 
operations (methods). Cut corners here and you're wasting much of your 
extra investment in designing for the future. 

Some people think you can always toss in the missing code later, when 
the need arises. My experience is that you always have to change part of 
the existing code when you do. You can argue that the functionality remains 
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unchanged when you alter the guts, but try explaining that to a project 
manager who's sharing the code for a delivered product. I've yet to see a 
competent manager allow a baseline change without extensive retesting. 
Making changes later can be more expensive than you think. 

You don't have to code in C++ or Eiffel to write reusable code, by the 
way. Some of us old hands feel like we've been doing that for some time 
now. What we called subroutine libraries are now packaged with fancier 
names. Granted, the language assist is nice. But the rules for writing 
reusable code haven't changed. o 

mfterword: This is the second of a series of three essays on the underlying 
;a.principles of object-oriented programming. I wrote it to demystify some aspects 
of the business of choosing objects. Many authors and lecturers were making a great 
thing out of this new trade. The strong implication was that designing in terms of 
objects was a) a new skill that existing programmers would find hard to learn, and 
b) a skill that would soon be essential to your professional survival. Both implica­
tions contain a grain of truth, but are typically overstated. Thus, I present object 
formation as a natural outgrowth of our 20 years' experience in encapsulating 
portions of a design. 
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11rhis is the third and last essay in a series. I began with a series of simple 
~guidelines for how and when to introduce abstractions in your code. 
(See Essay 20: Abstract It.) I continued with more guidelines for how and 
when to encapsulate portions of each program you write. (See Essay 21: 
Encapsulate It.) I conclude this series with some observations on how you 
can use inheritance to improve your programs. 

All three of these terms - abstraction, encapsulation, and inheritance 
- have become buzzwords. To be au courant as a software designer, you 
must pay regular homage to these three techniques for controlling the 
complexity of computer programs. While I basically agree with that stylish 
position, I hasten to point out that the words alone do not a design guide 
make. You must have some notion of when each technique helps, when it 
does not, and how to apply it when it does help. That is why I have focused 
on the "when and how" of using each technique. 

The proponents of object-oriented programming generally agree that a 
language is truly object-oriented only if it supports all three techniques in 
the construction of objects. I also agree with that position. What I don't buy 
is the false contrapositive that many such proponents arrive at through 
some twisty little maze of conjectures. They conclude that unless you are 
writing in a proper object-oriented language, you can't possibly be using 
abstraction, encapsulation, or inheritance properly. 

Baloney. Some of us have been doing all that stuff for most of our 
professional programming careers. A good language helps you use the 
techniques better. (A good language does not, however, guarantee that you 
will use them better.) But all of the techniques go back many years. 

I gave a number of examples of how you use abstraction and encapsu­
lation in the previous two essays. Inheritance is, in many ways, even more 
widely used in common practice. It also has a rather precise meaning in the 
world of object-oriented programming. The double meaning for the term 
only adds to the confusion. 

In the general sense, you make use of inheritance every time you declare 
a scalar data object. Procedural languages since the days of FORTRAN 
provide an assortment of arithmetic types - Booleans, integers, and float­
ing-point representations - in a variety of sizes. Later languages even let 
you manipulate storage addresses (pointers) to some degree. Each scalar 
type supports a variety of operations, such as equality comparison and 
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addition. There are built-in rules for converting between types and for 
mixing certain types across an operator within an expression. 

So as soon as you write int x in your code, you inherit a slew of 
properties and methods. Your newborn x has a birthright that helps it 
quickly become a productive citizen. You don't have to write a pageant to 
describe its future life and times in excruciating detail. The language 
designer gives you, and your newly conceived data object, a bouquet of 
useful stuff. 

You probably get more than you bargained for, in fact. It is a rare x that 
really should assume all of the values representable by an int. You may 
have to add code to certain assignments to ensure that only the sensible 
subset of values actually gets stored. (Some languages let you define a 
subrange of values, which is helpful. But not all subsets are subranges, as 
I have pointed out in the past.) Similarly, your x may hold values that 
should not be added to the values stored in y, or divided by 17. Neverthe­
less, you inherit permission to write such nonsense along with all the 
properties you want from int. 

mnother traditional way to inherit useful stuff is to call on the services of 
.a.a support library. When you include the standard header <stdio . h> 
in a C program, you get (among many other things) a type definition called 
FILE. Call the function fopen with a valid filename and you get back a 
pointer to a FILE data object. You can pass this pointer to a wide assortment 
of functions that manipulate the contents of the opened file in all sorts of 
wondrous ways. The services you buy with that one #include directive 
would cost you pages of declarations and kilobytes of code to replicate. 

Of course, FILE provides even more overkill than int. What you want 
to do to a given file is typically but a shadow of what the Standard C library 
is prepared to do on your behalf. You probably wouldn't provide all that 
machinery if you were defining your own object for manipulating a sequen­
tial file of names and addresses. Some of the code you write will certainly 
be geared toward holding that inherited power in check. 

The obvious point I am trying to make is that we use inheritance all the 
time. There is nothing profound about the concept and there is nothing 
particularly difficult about the practice. The more subtle point is that we 
also derive new types from inherited types much of the time. Your code says, 
"I want x to behave mostly like an int except in the following ways." Or, 
"This is just like a FILE but with the following severe constraints." The 
objects that come with a general-purpose programming language are al­
most always too general purpose to be used without being circumscribed. 

The central theme of object-oriented programming is to make your own 
objects. One promised payoff is code reusability. You reuse code when you 
can recycle an object that does mostly what you want. If it does exactly what 
you want, you're home free. But we all know how often that happens in 
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real life. So you are happy when the language lets you inherit all the 
properties of an almost-right object, then derive the right one by amending 
those properties. 

This is the more precise meaning of inheritance that I alluded to earlier. 
It is really the same thing we have always done, but more stylized and more 
centralized. (The stylization is a form of abstraction and the centralization 
is a form of encapsulation.) To the extent that it makes you think explicitly 
about how you want to edit what you inherit, object-oriented programming 
is a Good Thing. To the extent that it obscures a simple practice, and 
introduces inefficiencies in the bargain, it is not. 
?ll?llthere do the inefficiencies come from? They arise when you try to do 
~something simple in a language that is prepared to handle complex 
cases as well. If the translator cannot determine that what you really want 
to do is simple, it must bring to bear the full power of general-purpose 
machinery just to be safe. That invariably costs you some performance. 

In the case of object-oriented programming, one of the worst sources of 
inefficiency lurks in the machinery for matching up methods with objects. 
To explain what that means, and why it can be a problem, I have to back 
up a bit. 

In the previous essay, I described how you can group functions to 
minimize clutter in the space of external names. The principles of coupling 
and cohesion apply just as much to these groups as to individual functions, 
so you want the functions in a group to be highly related. Typically, all the 
functions manipulate a specific data structure. (And no other functions 
need to know the innards of the data structure.) 

A language that supports encapsulation well will let you declare the 
functions along with the data structure in a class. The function names 
occupy a private space, just like the names of the data structure members. 
You identify which function to call by naming the class, as in win­
dow. open () . Or you name an instance of the data structure, as in 
new_ window. close () . That way, any number of classes can have func­
tions with simple and meaningful names like open and close with no fear 
of collision or reader confusion. 

You can encapsulate groups of functions this way even in Standard C. 
Put all the functions in a separate file and declare them static. All that 
you make external is the name of a structure containing the addresses of 
the functions you want to make visible, as in: 

struct Win { 
Window *(*open) (void); 
(*close) (Window*); 
. . . . . ) ; 

extern struct Win Win = { 
&open, &close, }; 
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Once you include a header that contains these declarations (without the 
initializer, of course), you can call the functions by writing expressions like 
Win. open () . (Standard C lets you write this simpler form as well as the 
older (*Win . open) () .) 

As a matter of fact, object-oriented languages like C++ actually do this 
sort of thing under the hood. Each object has an accompanying transfer 
vector much like the C structure in the example above. Why? That's where 
inheritance comes in. 
?ll?llthen you derive a new object from an existing one, you inherit all of 
~its functions. But you can override some of the functions you inherit 
with a new version for the new object. And you can add functions that do 
not appear in the original object. The transfer vector for the new object starts 
out looking like the old one. The address of each replacement function 
displaces the corresponding address from the old object. The addresses of 
new functions get added on the end. 

What this machinery gives you is dynamic binding of methods. You can 
write an expression that invokes a method where it is not clear whether the 
actual operand is an object of the older or the newer type. In that case, an 
instance of each type contains an additional field that designates which 
transfer vector to use. To call a method, the translator generates code that 
uses this field to determine the transfer vector. The code then uses the 
appropriate member of the vector to determine which function to call. 

The unmitigated C code for such an expression is: 

(*object->vector.func_;>tr) () 

Such a call clearly takes longer than calling a function whose address is 
known directly to the translator. It doesn't take much longer, to be sure. 
But C++ is rife with function calls, both explicit and implicit. Given enough 
secret calls on constructors and destructors, an elegantly ambiguous object 
reference can cause considerable churning beneath the surface. (I hesitate 
to say, "below C level.") 

Now, C++ is pretty good about this sort of thing most of the time. When 
the translator can determine exactly which method to call, it calls it directly. 
Only when you indulge in clever overloading of method references do you 
pay the price. The price can be higher than you expect, but it is one you can 
avoid paying with a bit of training. 

Other object-oriented languages are less flexible. Smalltalk, for example, 
is essentially untyped at translation time. You can send a message to an 
object designating any method you choose to name. That means the run­
time system must be prepared to look up a method name in an open-ended 
list of methods for each object. No fixed offset into a transfer vector here. It 
also means that the object may have no instance of the method. The runtime 
can only panic in that case. 
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The up side of Smalltalk is that you can incrementally enhance objects 
by adding methods a bit at a time. The down side is that you never know 
when a production program is going to cough on an unexpected method 
reference. And, of course, the performance is substantially worse than for 
simpler procedural languages. 

Inheritance is very sexy. Proponents of object-oriented programming are 
convinced that any cost in performance is well worth the improvement you 
get in code reusability. They give wonderful examples of whole trees of 
objects derived in stages from a well crafted root. (The entire Smalltalk 
system is itself rather a good example of the possibilities of inheritance.) 

I remain dubious. The real world examples where I see inheritance pay 
off are fairly specialized cases. Most involve not so much trees of objects as 
two-dimensional arrays of data types versus methods. 

You have circles, squares, and triangles. You want to draw, move, and 
rotate them. The classic solution is to make a parent object, called shape 
for instance. A shape has a location, so it is easy to provide a generic move 
method that all objects can inherit. Any other methods must be fleshed out 
in the derived objects. (They are virtual methods.) rotate is trivial for a 
circle, not so easy for the others. They may or may not share a full blown 
rotate method by having a common ancestor. 
11T"he point is, you use the tree nature of inheritance mostly to factor out 
"'1.icommon methods. That saves replicating some code, but it doesn't 
reflect the shape of the problem. What the problem begs is a two-dimen­
sional array of functions, some of which happen to be identical. 

And even when you see the array of functions, you can still build the 
wrong objects. A standard straw man set up by proponents of object-ori­
ented programming is the poorly factored program. Write functions called 
draw, move, and rotate then see what happens when you add a new 
shape. Each function has to handle a new case, so all must change. The good 
guys just derive a new object and redefine the methods that have to change. 
That makes them the clear winners. 

But you can rig the game the other way. What happens if you have to 
add a new method such as reflect? Maybe you're lucky and can get away 
with adding it in the root object. Probably you'll have to modify every 
object, if only to get a consistent level of optimization. You can also plan for 
this by making your objects drawinq, movement, and rotation. The 
three methods become circlify, squarify, and trianqlify. But just 
try to get an object-oriented programmer to swallow "circlifying a draw­
ing." 

The simple fact is, you can plan for change even without indulging in 
object-oriented programming. If you've ever passed the address of a func­
tion as a parameter, or indexed into a table of function pointers, you've 
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deferred binding of a method. With any foreknowledge of what is likely to 
change, you can use such machinery to isolate the change to your heart's 
content. Write another function, add a pointer to a table, and you're done. 

I freely admit that a good object-oriented language can help the read­
ability of some programs. It's nice to have all those pointers being derefer­
enced under the hood. Just make sure you're happy with where your 
horsepower is being consumed. 
7{ conclude this ranging overview of abstraction, encapsulation, and 
..:ninheritance with my own revisionist viewpoint. The end result is that I 
support object-oriented programming, but not for the usual reasons. 

One of the big problems you must solve in organizing a large program 
is imposing some structure on all the functions you have to write. The early 
practitioners of structured design told us to draw a structure chart. You 
draw a box for the main function at the top. Below that you draw boxes for 
all the functions called directly from the main function, with arrows to 
document the calls. Below each of these boxes you draw still more boxes 
for the next immediate subordinates, with still more arrows - and so on 
until you've written a box for every function in the program. (See Essay 1: 
Which Tool is Best?) 

That's fine for a language like FORTRAN or COBOL, with no recursion. 
Recursion turns your neat tree into a directed graph. All sorts of interesting 
arrows loop from deep in the hierarchy to functions closer to the root of the 
tree. Structure charts with as few as a score of boxes suddenly become 
marginally readable. 

Even without recursion, you still have the problem of documenting 
fan-in. That's where more than one higher-level module sees fit to call upon 
one lower-level module. With enough fan-in, a structure chart that spreads 
out at the top begins to close in again toward the bottom. This makes the 
familiar Arabic mosque shape beloved of structured designers. 

Fan-in is not only likely in a nontrivial design, it borders on being de 
rigeur. The mosque shape indicates that you have properly interfaced your 
program to the next lower level of abstraction. Whether it's a data-base 
management system, a file system, or a multi-processing operating system 
underneath, you want to interact with it through just a few portals. You 
pass through those portals by calling upon half a dozen or more functions. 
The boxes for those functions lie at the bottom of your structure chart. 

For upwards of three dozen functions, you can draw a useful structure 
chart. The fan-in at the bottom may call for a few crossed arrows, but the 
document is still fairly revealing and easy to read. Beyond that number, 
however, structure charts begin to lose their usefulness. 

Documenting all the calls on system interface functions is, in many ways, 
as silly as documenting all the print statements. It may be nice to know 
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which modules actually perform I/ 0, but capturing that information in the 
structure chart just causes clutter. And if you're going to show all the 
modules with print statements, then why not show the ones with switch 
statements as well? They may well make secret calls to runtime support 
functions. Then you have to argue whether you want to show if and 
while usage as well. 

For most of us, it's clear where to draw the line. Statements are somehow 
part of the language in which we code. We don't document the plumbing. 
The functions we write are our value added. That's the part we want to 
describe. 
?11711.that you have to realize, however, is that we make up mini-languages 
~as we go along. A program that consists of a hundred or more 
functions almost certainly uses them in clumps. One clump may implement 
a simple data-base management system. Another may impose an indexed­
sequential organization on an underlying set of files. Still a third may 
simply interface to the process scheduling primitives of the host operating 
system. 

Try to draw a structure chart subsuming the top-level control plus all 
these clumps and you have a useless rats nest. With fan-in going to three 
different clumps, plus additional structure within the clumps, you'll never 
see the boxes for the arrows. 

Instead, you should characterize each of the clumps in terms of the half 
dozen or dozen functions it presents to the outside world. (This is abstrac­
tion at work.) Draw a separate structure chart for each of the clumps. (This 
is encapsulation.) Then draw a structure chart of the top-level control, 
leaving out all the calls to the functions in the clumps. 

As far as that structure chart is concerned, such calls are just additional 
statements in the underlying programming language. Those statements 
may often be implemented as a handful of interface functions that make 
use of an existing library or set of system services. (This is inheritance.) 

If an object-oriented language lets you express a large program more 
readably, then by all means use it. Don't be deluded into thinking that you 
are no longer programming procedurally, however. All those functions are 
still there. They still must be organized into hierarchies. You just found a 
better technique for managing them in clumps. o 

mfterword: I don't pretend that the approach outlined here is a complete substi­
.:citute for object-oriented design as conventionally taught. Sometimes, building 
a hierarchy of classes is so central to the design that you simply must do it first. 
Rather, I put forth this approach for the many cases where objects are important 
but peripheral to other design considerations. In such cases, "mining" a design 
arrived at by other means gives better guidance in how to form objects. 
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1frhe s~mple fact is, choosi~g the.best set of objects is ind~ed more of a~ art than 
"1.ia science. drawinq. c1rcl1fy () can make sense man application where 
the shapes are stable but the operations are subject to change. People skilled in 
object-oriented design know a good solution when they see one. Often, that is 
enough to guide them to a good solution from a standing start. Less skilled people 
(in this area) need more guidance at the outset, however. Any method that leads 
you to a good solution deserves a place in your kit of tools. 
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'm esigning software is a field that has a checkered record of successes. I 
~have been a student of such methods for nearly three decades. Often, 
I have tried to exercise the latest methods in practical programming situ­
ations. Occasionally, I have even tried to serve as teacher. I cannot honestly 
report that any method will guarantee success. The good ones will improve 
your odds, but even the best can leave you in the lurch. 

If dogma doesn't work reliably, you have an obligation to look at other 
approaches. The opposite of dogma is heresy (at least along some axes). I 
believe that it is worthwhile to examine a number of heretical design 
principles, even though heresies generally deserve their bad reputation. At 
the very least, such an examination can open your mind to new approaches. 
At worst, it can reinforce your conviction that there is no reliable way to 
design computer software. 

One of the seminars I gave at Miller Freeman's Software Development 
'90 conference was on various heresies of software design. It was suffi­
ciently well received that I was asked to repeat the talk at Software Devel­
opment '90 East. Not one to abandon good material before it is worked to 
death, I decided to recycle the topic for this essay. 

Of course, there is a certain shock value in using a term as emotionally 
charged as "heresies." I am not above a bit of showmanship, as some of you 
may know. But I do like to educate as well as entertain. It's one thing to lure 
people in the door with the promise of an interesting topic. It's another to 
get them to leave with the sense that their time was not ill used. 

The seminar took an open-minded look at software design principles 
both in and out of vogue. The goal was to formulate an approach to design 
that works, for whatever reason. It was not to prove that the establishment 
is doing everything wrong. Nor was it to replace one set of dogma with 
another. 

A heresy is a belief that opposes the common view. Some people gravi­
tate to heresies simply because they like to oppose. They (erroneously) 
assume that opposition is the mark of the independent thinker. I have 
certainly enjoyed playing the opposer more than once in the past. There is 
a certain comfort in knowing that you are not making the same mistakes 
as the majority. There is also a certain chill in being alone when you make 
your own brand of errors. 

207 
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Others gravitate to heresies because they have lost faith in the common 
view. They (erroneously) assume that a heretical view must be right be­
cause it differs from a view that is wrong. It's sometimes comforting to think 
that we live in a world of binary choices. But the chill reality is that life is 
never so simple, at least for the responsible. 

The common view generally becomes common because it is mostly right. 
Heresies are worth examining only when the common view has a poor 
track record. In that situation, even erroneous heresies serve a useful 
purpose. They force you to think. I believe it is fair to say that software 
design can use a bit more thinking. So let's trot out a few heresies. 
:Tl\ eresy: If you know exactly how to do it, it's not worth doing. Writing 
Rcomputer software is all about controlling complexity. We need to 
control complexity because our minds, wonderful as they are in certain 
ways, are easily overwhelmed by it. That's the attraction of computers, that 
they let us extend the powers of our minds in useful ways. Programming 
is unique in that you need never do exactly the same job twice. 

Yes, I know that it doesn't feel this way. It seems as if we spend half our 
professional careers writing the same handful of programs over and over 
again. Somehow, the last payroll program - or screen generator, or matrix 
inverter - is never quite appropriate for the next application. 

We focus on the repetition and don't see the novelty. Often the reason 
that the old version doesn't work is that we have more sophisticated 
requirements for other parts of the program. We need better input checking, 
or more reliable code, or fancier displays. Even then, we recycle successful 
algorithms unconsciously. That saves us the mental cost of mastering yet 
another chunk of complexity. 

For all that we complain about redoing software too often, we have 
accreted quite a bit of power over the years. Look at the size of the library 
that you get with a typical compiler these days. Compare that with what 
you got ten years ago. Look at the operating-system services of a Macintosh, 
or UNIX, or even MS-OOS 3.x. Then throw in the libraries you can buy off 
the shelf. Add the powerful applications programs you can drop into an 
application with a minimum of configuring. We've come a long way, baby. 

If you are faced with a task that you understand thoroughly, you should 
therefore be suspicious. What's the glory (or sense, or profit) in it? Surely 
that particular chunk of complexity has been mastered before. 

You need to put your energy into adding significant new value to 
whatever you do. If you are merely recycling an old design to reimplement 
old code, you're being left behind. Someone else out there is building on 
code that is good enough, to do something wonderfully new. You can't 
afford to play it completely safe. 



Essay 23 Heresies of Software Design 209 

7b eresy: If you've never done it before, you don't know how to do it. 
RThis is the flip side of the previous statement. You can put it positively 
and say that each new job is a challenge. Or you can put it negatively and 
say that each new job is a risk. 

What makes programming unique, again, is that we have trouble judg­
ing the depth of complexity that we cannot fully grasp all at once. That 
makes it particularly difficult to estimate how long it will take to write a 
new program. The more new things lurking in the program specification, 
the more out of control you are as a programmer. 

What gets us every time is the linear extrapolation. We estimate, perhaps 
honestly, that a new task will take twice as many lines as one we've done 
in the past. We then assume erroneously that the effort will also simply 
double. That makes no allowance for dealing with any unknowns. It also 
fails to account for the exponential increase in potential interactions be­
tween different parts of the code. 

There is one fairly safe situation. That is when a large project is the sum 
of several small projects that you have done before. You can scale the effort 
linearly because there are few unknowns. You can also suspect that the job 
is not worth doing, since it violates the previous heresy. 

Fred Brooks has given us one trick for writing new programs. One 
chapter of his wonderful book The Mythical Man-Month (Bro75) is titled, 
"Plan to throw one away." To figure out how to write a program, says 
Brooks, write a draft of it. Since that draft will be marred by misperceptions 
and false starts, don't plan on keeping it. Instead, allow sufficient time to 
write a draft and then spec out the actual writing of the code. 

Interestingly, Brooks also includes in his book a chapter titled, "The 
Second System Effect. "There he gives a different warning. Writing a second 
version of a program tempts you to add all the whistles and bells you left 
out the first time. If you can't discipline yourself to avoid this tendency (and 
it is hard to avoid), you must be even more conservative. Plan to throw two 
away. 

It takes one try to figure out how to write a program and a second to 
figure out how to write it elegantly. After writing a program three times, 
you should have it good enough that you need never rewrite it again. 
7b eresy: Trust your customer or systems analyst to tell you how to do it 
Rwrong. We all pay lip service to listening to the customer. We bemoan 
the lack of emphasis on proper systems analysis before committing to 
design. Nevertheless, you must guard against giving too much weight to 
input from either of these worthy sources. 

The problem stems from a lack of abstraction. People tend not to think 
in terms of what they want. Rather, they focus on one way to get it. Customers 
know how they have run their enterprise for years. They implicitly assume 
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that every piece of paper, every file, every communications channel is 
necessary. They will expect to see those concrete relics captured in various 
parts of a computer system. Not knowing the ways of computers, they will 
inadvertently close off your options as a designer. 

Even analysts, who are nominally trained to elicit abstract specifications, 
often fall prey to the same tendency. In some ways, they are worse. Many 
analysts come up through the ranks of programming and software design. 
Knowing how to do a job at least one way colors their thinking. Some want 
to control the design and coding. Others try to do so without thinking. 
Either way, they overstep boundaries and tromp on your turf. 

As a consequence, any specification you get for a software project will 
almost certainly be tainted. The taint comes from a deep presumption that 
the final product should be implemented in a certain way. Your customer 
will envision the existing paper system reconstituted electronically. Each 
form will have a corresponding screen or printer form. And every human 
being currently in the loop will still have a hand in processing the electronic 
paper. 

For a program to be really useful, however, it must streamline more than 
just the flow of paper. You as a designer must take a hard look at the 
information flow, and how data is stored. By the time you streamline 
processing, ensure robustness, and provide adequate backup systems, you 
may have to radically alter the current architecture. 

A systems analyst is supposed to do this for you, of course. The only way 
to get an untainted specification can be tough, however. You have to apply 
another Rule of Three. This rule is similar to the one derived from Brooks' s 
precepts, but it comes from a different angle. 

Require the analyst to outline two quite distinct implementations that 
meet the stated specifications. That will force the analyst to let go of a 
particular mind set and start thinking more abstractly. It's hard to bias 
toward one implementation if another is on the table as well. If you really 
want to be tough, then, ask for three. 

I found that writing portable software was next to impossible for pro­
grammers who worked on a single computer architecture. Require them to 
prove in the code on two quite different machines and you eliminate many 
portability bugs. Require them to do it for three and you have won just 
about all the portability you ever need. After that, only exotic architectures 
cause many problems. 

Analysis and coding are remarkably similar in this regard. If you want 
to eliminate dependencies, you have to invest the extra effort up front. 
7h eresy: Prototype a system to find out what not to do. Prototyping is 
?J:i! one of those practices that seem impervious to criticism. The worst I 
have heard is that some customers are willing to settle for the prototype. If 
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you have your heart set on doing the whole project as originally envisioned, 
that can of course be disastrous. Nevertheless, most modem designers 
appreciate the beneficial feedback you can get only from customer experi­
ence with a prototype. 

What you have to keep in mind, however, is that the useful feedback is 
mostly negative. Customers are quick to discover what they don't like 
about a system from mucking with a prototype. They tend to be compla­
cent, or even oblivious, about the parts that work as expected. Listen 
carefully for any criticism and give it more weight even than the customers. 
That will tell you where to spend your energy most wisely. 

The other thing you learn from prototyping is what parts of the system 
to postpone indefinitely. Your preoccupation as a designer will be with the 
challenges. You will automatically focus on the bits of complexity that will 
be hardest to tame. With rare exception, however, the customer won't share 
your concerns. You will find that the hardest parts of a program to imple­
ment are generally the ones least desired by the customer. 

A past master of focused prototyping is Brian Kernighan. (See my essay 
"Programming on Purpose: The Seven Warning Signs," Computer Language, 
October 1989.) He has designed any number of languages and applications 
by getting early customers to tell him what not to implement. Those of us 
who love solving complex problems are still untangling complexity long 
after Brian has cheerfully moved on to his next success. 

The lesson is simple - never put off until tomorrow what you can put 
off indefinitely. 
7beresy: If you don't understand how to apply a design method, it's 
Rprobably not your fault. Practically everyone who preaches organized 
methods of software design try to make designers feel lazy or stupid. Just 
put enough energy into designing the system right (for a change), and you 
are bound to increase your productivity dramatically. You can guess that 
the "right" way is the way they happen to be teaching this year. 

You must not lose sight of two factors. One is that you are probably 
smarter than they give you credit. Otherwise you couldn't afford to pay for 
their books and seminars, now could you? The other is that they are 
probably not as smart about writing software as they think. Otherwise they 
would be making millions writing the best software instead of books and 
seminars, now wouldn't they? 

All those methods being taught have something of value. Your job is to 
figure out what the value is and where you can best apply it. If you can't 
apply a given method in a given situation, it probably doesn't apply very 
well. Try something else. If that fails, try anything else. 

Eventually, you will succeed. 
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:Tl\ eresy: Don't tune a system if you can get away without tuning it. This 
Ris not the usual truism about tuning systems only after they are 
debugged. It's not about measuring to find the hot spots because you 
invariably guess wrong. It's not even about picking good algorithms up 
front. It's about avoiding unnecessary work. 

The simple fact is, most programs that you write work fast enough. 
Tuning them to go even faster may seem like a socially responsible thing to 
do, but it's not. And that's because everything you are likely to do to make 
a program smaller or faster is going to cost you something. That something 
is invariably readability, maintainability, extendibility, or all of the above. 
Those virtues are far more important than saving CPU cycles that no one 
is currently missing. Don't sacrifice them lightly. 

A corollary to this is, stop tuning as soon as you can. It's seductive to 
keep tweaking a program once you start. A part of you wants to produce 
the "best" program by some arbitrary performance metric. Know well, 
however, that the tweaks you perform after the first round are even more 
costly of those virtues listed above. Cut it out. 
:Tl\ eresy: Don't jump to projects or jobs that are too far from your level 
R of expertise. Programmers evolve through various stages of profes­
sionalism. At the lowest, you can contrive a small program and get it mostly 
correct on your own. Then you learn to design with greater discipline, work 
with others, document properly, estimate more accurately, test more thor­
oughly, and so on. You need to learn the levels of professionalism in 
software development. And you need to know where you stand, as accu­
rately as possible. 

The Software Engineering Institute has begun the process of defining the 
evolutionary scale for programmers and programming shops (Hum89). 
What they have published to date can only be described as preliminary, but 
it is a start. As a science, it is still descriptive and a long way from 
prescriptive. They are at least formulating guidelines for us to assess our 
abilities and levels of sophistication. 

The main thing you need to know is that you can't skip steps. You don't 
climb out of the primordial ooze of hackerdom one day and work on 
million-line projects the next. If you see an opportunity to join a new project, 
first ask yourself where it lies on the evolutionary scale. If it's one notch up 
from you and you're ready to be stretched, go for it. Two notches up is out 
of reach. Your chances of failure are too great. 

Likewise, you can't go back. Once you get accustomed to working to 
budget and to deadline, with detailed specifications and a testing organi­
zation ready to support you, anything less smacks of anarchy. It may have 
felt like the headiest of freedom to you five years ago, but no longer. 
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This is not a rationale for a class structure in programming, by the way. 
I simply observe that it is important for you to know your place. You must 
also know that you can improve your place, if you go about it properly. 
How far you go is up to you. o 

f.1rfterword: This essay has a companion on software management. (See "Pro­
~gramming on Purpose: Heresies of Software Management," Computer Lan­
guage, March 1991.) Both were written only 0.2 in jest. I have observed far too 
often that technical training in software-design methods is wasted. A sensible 
designer must have some awareness of the context in which he or she works, lest 
people issues sabotage the technical ones. I could try to build such awareness by 
discussing management and politics directly. (I have done so, in a separate 
collection of essays.) Here, however, I chose to focus on how politics perverts and 
inverts truisms. The resultant rules are cast as heresies, but I believe in them 
religiously. 
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7{ recently spent a year teaching software engineering at the University of 
;JJ New South Wales in Sydney, Australia. It was my first foray back into 
academic life since I earned my doctorate over two decades ago. I took the 
post mostly as an excuse to spend a year in Australia. I happily returned to 
my life as an unemployed writer. But I must say that I enjoyed my year on 
campus. 

For one thing, it's nice to see young people eager to learn. No, the current 
generation is no more dedicated than you and I were. They still drink beer, 
doze through lectures, and botch assignments miserably all too often. But 
every once in awhile, I got to witness that brief Aha! that repays so much 
frustration. At my age, a few of those go a long way. 

For another thing, teaching people is a great way to learn what you don't 
know. I showed up on campus with hundreds of pages of essays accumu­
lated over decades of preaching. I soon learned which presentations scored 
and which flew wide of the mark. I left with hundreds of pages of edited 
notes. Back, as they say, to the drawing board. 

The first term, I was one of three lecturers teaching a senior course in 
software engineering. We had over 170 students, for many of whom English 
is a second language. (Australian schools have become very popular among 
Asians, both immigrant and overseas visitors.) That queered many of my 
puns from the outset. On the other hand, it forced me to express ideas with 
added clarity and simplicity. 

I was nominally responsible for presenting conventional structured­
analysis techniques. The (preselected) text was Tom DeMarco's excellent 
Structured Analysis and System Specification (deM78). Naturally, I deviated 
freely and often from DeMarco's presentation. I have been known to 
express my own ideas on that topic in the past. 

I got only limited feedback from a class of that size. The students had to 
perform a term-long analysis project in teams of three. I saw how they 
applied data-flow and related analysis techniques on the preliminary re­
port and on the final submission. I wrote and graded a few questions on 
their homework and their final examination. I answered a lot of questions 
from individual students. 

The main thing I learned (or was reminded of) was that drawing data­
flow diagrams is an inexact craft. Sixty groups can contrive almost as many 
distinct diagrams for a nontrivial problem. Most may be correct, but only 
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a few are sufficiently elegant. Teaching elegance is at least as important as 
teaching the mechanics, I now realize. 

The other thing I learned is that students seldom know what they think 
they know. Many were exposed in earlier courses to Karnaugh maps, 
decision tables, and state-transition diagrams. Few had suffered enough 
experience to really know how to apply them. But most were secure enough 
in their knowledge to be bored by a review. Just enough exposure to form 
antibodies, I suppose. 

I hope some of what I tried to teach rubbed off on that large mob. I felt 
the old twinges of conscience from past teaching experience. Probably, 
many students learned just enough from me to be dangerous. Well, at least 
I tried to be entertaining. 
11T"he second term was lots more fun. I got a first-year graduate seminar 
"1.iall for my very own. I ended up with almost four dozen assorted honors 
and graduate students. More of them understood my puns and the rest 
were crafty enough to laugh along with the others. We met Monday 
evenings from 6:00 to 9:00 (a mixed blessing). 

I anguished a lot about what to present to this crew. My colleagues 
assured me they needed much the same material as I had taught the first 
term. But this time I was responsible for the entire course content. It was 
up to me to give these serious computer-science students a serious dose of 
software engineering. 

I joked for a spell that what I really wanted to teach was somewhat less 
lofty. I figured that even the best of those students would have one or more 
major lacunae in his or her prior education. The field is still sufficiently 
young and spotty that no two students are likely to have a large overlap of 
shared experience. I told my colleagues that I intended to teach Remedial 
Software Engineering. 

After awhile, however, I realized that I was not joking. That was exactly 
what I felt these students needed. Perhaps none of them intended ever to 
be software engineers. They might want to be computer scientists, manag­
ers, or just good programmers. That's fine. But they should know the basic 
skills required of a working software engineer. Just as they major in com­
puter science to learn the basic skills of that more academic discipline. 

So I began by listing the various skills and bits of knowledge that I have 
found to be important. I then structured the course to at least touch on the 
most important of these. I soon found that I had no trouble filling up the 
allotted meeting time. 

I chose a simple working definition of software engineering. It's that 
body of skills you need to tackle large software projects and deliver the 
goods reliably. Many people can design and write programs if they can hold 
all the details in their heads long enough. A software engineer has the tools 
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for partitioning much larger problems into manageable chunks. It's like the 
difference between writing a one-page letter and outlining a 40-page refer­
ence manual. 
mnother way to handle larger projects is to divide them up among a team 
.a.of people. That requires a knowledge of how to divide work wisely and 
how to organize groups of people. It demands practical skills in working 
in groups, including how to survive committee meetings. Again, it's like 
the difference between writing a document yourself and working with 
co-authors. 

Reliability is at least as important as the ability to handle larger projects. 
The larger the projects, in fact, the greater the stakes you're playing for. 
People who fund large projects understandably want a high level of confi­
dence that they will succeed. The sensible ones gladly pay a premium to 
lower the risk of failure. That's why publishers often favor hack writers 
who always deliver stuff that sells over the hard-drinking genius who 
sometimes falls flat. 

I intentionally chose analogies to writing here instead of to other 
branches of engineering. That's because I feel that software engineering is 
still underdeveloped. It is less like circuit design than it is like writing 
scripts for a weekly TV series. At least lore and formulas are the precursors 
to predictable techniques. 

With this definition, it was obvious what I should lecture on. Begin with 
a discussion of various ways to organize large projects. Discuss the relative 
merits of hierarchical v. matrix management. Introduce the concept of 
surgical teams as a way of limiting communication overload. Discuss the 
tradeoffs between robustness and efficiency for projects of varying com­
plexity. 

With people issues out of the way, I could then pick a coherent analysis 
and design method and present it in detail. Hatley /Pirbhai (H&P87) or 
Ward/Mellor (W&M85) are both modem updates of the approach pio­
neered by DeMarco and others in the 1970s. That would lead naturally to 
a discussion of modem CASE tools and object-oriented design and pro­
gramming techniques. I could end with a discussion of the latest ideas from 
the Software Engineering Institute (Hum89) and other places seriously 
concerned with making software engineering real. 
7{ didn't do any of that stuff. Remember, this is a remedial course. No point 
;JJ in leading students to the mountain top if they haven't learned their way 
around the foothills adequately. My goal was to make sure they at least 
knew about all the low-level terrain. They could climb their own hills later, 
if they chose. So I split each three-hour meeting into three equal parts. For 
the first hour, I lectured on one particular topic. Usually, it was a technique 
I felt that all programmers should know. Typically, the technique was of use 
primarily in chopping larger problems into smaller ones. These are not the 
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sort of techniques that a seat-of-the-pants programmer picks up without 
concerted effort. 

For the second hour, I had the class work in groups. They had to perform 
an exercise that used the technique I had just lectured on. That reinforced 
the message before it faded completely. (It also rescued those who had 
daydreamed through the lecture, provided someone in their group managed 
to stay alert.) 

Almost invariably, the exercise came in two parts. Halfway through the 
hour, I would ask the groups to alter or enhance the solution they had 
almost completed. That's what they will be spending the rest of their careers 
doing, I figure. 

I also obliged each group to submit a written report on what they 
accomplished by the start of the next week's lecture (their only workload 
outside of class time). All members of the group had to sign the report, and 
all got the same grade. No minority reports accepted. Once again, that's 
often the way real life works. 

The third hour was spent on book reports. Each student had to report 
on some book, periodical, or magazine that might be of use to a software 
engineer. I provided an initial list and preapproved any additions to the 
list. Publications ranged from ACM's Software Engineering Notes to Pirsig's 
Zen and the Art of Motorcycle Maintenance (Pir75), from the magazine Com­
puter Language to Tufte's The Visual Display of Quantitative Information 
(Tuf83). 

A student had less than ten minutes to show a copy of the publication, 
summarize it, and put it in proper perspective for software engineers. My 
goal in this case was to familiarize students with the myriad sources of 
information they can draw upon. Books teach techniques and perspective. 
Periodicals keep you current. A software engineer needs to read widely and 
continually to supplement whatever formal education he or she gets. 
11T"hat, in outline, was the overt agenda. Gerry Weinberg and Larry Con­
~stantine have taught me to be sneakier than that, however. Often, the 
best way to deliver a message is to disguise it. A good part of what I taught 
came almost in passing. 

For example, I devoted almost no lecture time to the business of working 
in groups. Instead, I let the class find out the hard way. On the first night, 
the nominal exercise was to perform two technical tasks. The first was to 
derive a specification for a simple binary-search function. The second was 
to review a C version of the binary search and locate any errors. (I salted it 
with half a dozen.) I broke the class up into teams of varying sizes. The 
smallest was one person, the largest was about 20. I then unleashed the 
groups on these two exercises with no additional preparation. 
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If you know group dynamics, you can predict the outcome. Writing a 
specification is essentially a solitary activity. The smallest groups got the 
most done, the larger groups spent their time haggling over details. The 
largest group got nowhere. Reviewing a specification, on the other hand, 
is a good use of group time. You benefit from having multiple pairs of eyes 
looking for flaws. (You must, of course, have a good group leader to control 
discussion.) Here, the groups of three to ten did well. The one-person group 
didn't know C - he lacked the resources to do much at all. The largest 
group again got nowhere. 

After the first night, I mostly let people form their own groups. I didn't 
have to tell them that groups of three to seven people were most likely to 
get things done. They knew. 
7&ere is another example. The exercise for the second week was to 
Rinterview customers. That's the origin of many proposals and the 
starting point of nearly all analysis. I labeled half the groups A, the other 
half B. First the A groups interviewed the B groups to elicit one specifica­
tion. Then the B groups interviewed the A groups to elicit a different 
specification. 

Again, this was an exercise in frustration. No groups learned much 
technical in half an hour. What everybody learned was that it is silly for a 
dozen people to sit around a table and hope to communicate much about 
a brand-new problem. Yet that is exactly what businesses persist in doing 
week in and week out. Those students now know to avoid such meetings 
as much as possible. When such meetings are unavoidable, they know to 
keep them small. When the meetings get large, they know to lower their 
expectations. 

My favorite exercise was the one on brainstorming. The idea was to 
emphasize that any system can be implemented many different ways. A 
data-flow diagram is just a starting point, not a recipe for the final deliver­
ables. So I asked the groups to come up with as many different implemen­
tations as possible for a problem. They were rewarded on quantity, not 
quality. The winning group had 39 solutions that arguably met specifica­
tions. I then asked the groups to come up with the most bizarre implemen­
tation possible for another problem. Here the reward was for strangeness, 
not sensibility. The winning solution was marvelously disgusting. I can't 
describe it in an essay meant for general consumption. But it met the specs. 

In each case, the winning group got a case of beer. (They got to choose 
the brand.) The extra effort they put in to get that beer was all out of 
proportion to the payoff. To me at least. But then, my student beer-drinking 
days have faded to a hazy memory. What the class learned was that larger 
groups often brainstorm better than smaller ones. And public recognition 
of a job well done is at least as important as conventional payoffs such as 
salary and grades. 
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11rhe lecture topics were the sort of things I have been harping about for 
"1tyears. Most of them, in fact, were based heavily the essays that appear 
in this collection. The topics included: 
• scope and goals of software engineering 
• capturing specifications in a data-flow diagram 
• evaluating modules in terms of coupling and cohesion 
• deriving structure charts from data-flow diagrams 
• creative packaging alternatives 
• decision tables and Karnaugh maps 
• finite-state machines 
• data-structure diagrams and structured programming 
• resolving structure clashes 
• object-oriented design and programming 
• first-order testing 
• deciding what to do next 

None of these topics is particularly highfalutin, at least not the way I 
present them. But each involves a skill that can be taught and reinforced by 
practice. A nodding acquaintance with all these skills is, I feel, a minimum 
prerequisite for studying software engineering. Someone comfortable with 
these skills needn't blush at being called a software engineer. At least not if 
that person knows the relevant literature and has a few basic skills at 
working in groups. 
~t this point, I'm supposed to prove to you that I did the right thing by 
.a.my students. I should cite statistics that they are 82 per cent more 
productive, or that they got 17 per cent higher grades, or they landed better 
jobs or more attractive spouses. Naturally, I can't do that. Like any wise 
carpetbagger, I skipped town before people learned the consequences of 
my actions. 

I can tell you that it felt right while I was doing it. I speak as one who 
was often ready to leave town long before I finished delivering an expen­
sive seminar. And many of my students said they enjoyed the experience. 
They even looked sincere when they said it. Only time will tell whether 
they truly benefited, of course. 

For me, it helped clarify a vision that I have been grappling with for 
decades. I believe that many practicing programmers suffer the same 
inconsistent preparation that students often experience. Once in the work 
force, however, you have fewer opportunities to fill in the holes in your 
education. 

I see a gap in the literature available to the commercial world. You can 
find computer-science texts on parsing theory and Petri nets. You can find 
pragmatic introductions to programming in C++ and SQL. Those books 
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prepare you to be a computer scientist or a programmer. At the other 
extreme, you can study project organization and design methodologies. 
You can learn to use CASE tools. Those sources teach you how you're 
supposed to behave as a software engineer. 

What's missing is the training you need to become a software engineer in 
the first place. Earning a B.S. in computer science won't do it. Nor will 
writing 30,000 lines of working code. That's why I think the world needs 
more emphasis on remedial software engineering. o 

mfterword: This essay summarizes everything I have tried to say in this collec­
.Q.tion. It is fitting to present it last. I finally learned why I've been unable to 
assemble much of this material into a traditional book on design methods. Any such 
presentation would be too pretentious. The people I am trying to reach are my fellow 
practitioners of the programming arts. Most of us are humble enough to admit that 
we have gaps in our education. Many of us are willing to admit when complex 
approaches leave us in the dust. It doesn't hurt to review the basics, from time to 
time. That fills in the holes and helps us better understand the complex stuff. 

I can finally admit that I am more of an essayist than a textbook writer. Doling 
out useful information in bite-size chunks comes easy to me. I believe it better serves 
the needs of many busy professionals in our field. It's not a bad way to speak to 
students either. 

This collection probably is the textbook on Remedial Software Engineering that 
I have hankered to write all these years. My other collections of essays provide useful 
supplemental reading - on people issues and on more specialized issues of 
programming technology. Being my own best fan, I enjoyed rereading these essays 
as I edited them for publication in this form. But I can still report that I found few 
statements that were dated, even after over half a decade. That says something about 
the continuing need for a source book on design methods. And it says even more 
about the constancy of basic principles even in the teeth of rapid technological 
change. 
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through December 1992. For example, the entry 

Jul 1986 Design 1 Which Tool is Best? 

tells you that the essay "Programming on Purpose: Which Tool is Best?" 
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