

Game Testing

Game Testing.indb 1 03/09/16 3:57 PM

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book (the “Work”), you agree that this license grants
permission to use the contents contained herein, but does not give you the right
of ownership to any of the textual content in the book or ownership to any of
the information or products contained in it. This license does not permit uploading
of the Work onto the Internet or on a network (of any kind) without the written consent
of the Publisher. Duplication or dissemination of any text, code, simulations,
images, etc. contained herein is limited to and subject to licensing terms for the
respective products, and permission must be obtained from the Publisher or
the owner of the content, etc., in order to reproduce or network any portion of
the textual material (in any media) that is contained in the Work.

Mercury Learning and Information (“MLI” or “the Publisher”) and anyone involved
in the creation, writing, or production of the companion disc, accompanying
algorithms, code, or computer programs (“the software”), and any accompanying
Web site or software of the Work, cannot and do not warrant the performance or
results that might be obtained by using the contents of the Work. The author,
developers, and the Publisher have used their best efforts to insure the accuracy
and functionality of the textual material and/or programs contained in this
package; we, however, make no warranty of any kind, express or implied, regarding
the performance of these contents or programs. The Work is sold “as is” without
warranty (except for defective materials used in manufacturing the book or due to
faulty workmanship).

The author, developers, and the publisher of any accompanying content, and
anyone involved in the composition, production, and manufacturing of this
work will not be liable for damages of any kind arising out of the use of (or the
inability to use) the algorithms, source code, computer programs, or textual
material contained in this publication. This includes, but is not limited to, loss
of revenue or profit, or other incidental, physical, or consequential damages
arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to
replacement of the book, and only at the discretion of the Publisher. The use of
“implied warranty” and certain “exclusions” vary from state to state, and might
not apply to the purchaser of this product.

Companion files for this book are also available from the publisher by writing to
info@merclearning.com.

Game Testing.indb 2 03/09/16 3:57 PM

mailto:info@merclearning.com

Game Testing
all in one

Third Edition

Charles P. Schultz
Robert Denton Bryant

Mercury Learning and Information

Dulles, Virginia
Boston, Massachusetts

New Delhi

Game Testing.indb 3 03/09/16 3:57 PM

Copyright ©2017 by Mercury Learning and Information. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any way,
stored in a retrieval system of any type, or transmitted by any means, media, electronic display
or mechanical display, including, but not limited to, photocopy, recording, Internet postings, or
scanning, without prior permission in writing from the publisher.

Publisher: David Pallai
Mercury Learning and Information

22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
800-232-0223

Charles P. Schultz and Robert Denton Bryant. Game Testing: all in one, Third Edition.

ISBN: 9781942270768

The publisher recognizes and respects all marks used by companies, manufacturers, and
developers as a means to distinguish their products. All brand names and product names
mentioned in this book are trademarks or service marks of their respective companies. Any
omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to
infringe on the property of others.

Library of Congress Control Number: 2016912764

161718321

Printed in the United States of America
This book is printed on acid-free paper.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations,
etc. For additional information, please contact the Customer Service Dept. at 800-232-0223
(toll free).

All of our titles are available in digital format at authorcloudware.com and other digital
vendors. Companion files (figures and code listings) for this title are available by contacting
info@merclearning.com. The sole obligation of Mercury Learning and Information to the
purchaser is to replace the disc, based on defective materials or faulty workmanship, but not
based on the operation or functionality of the product.

Game Testing.indb 4 03/09/16 3:57 PM

mailto:info@merclearning.com
http://www.merclearning.com
mailto:info@merclearning.com

Contents

Preface.. 	 xiii
Acknowledgments... 	 xv

Chapter 1  Two Rules of Game Testing.................................... 	 1

Don’t Panic.. 	 1
Unfamiliar... 	 2
Unprepared... 	 3
Under Pressure.. 	 3
Unrested.. 	 5

Late Night Testing Checklist... 	 6
Pre-Test... 	 6
Post-Test.. 	 6
Nearsighted... 	 7

Trust No One... 	 7
Balancing Act... 	 8
Word Games.. 	 9
Last Chance... 	 10
Trust Fund... 	 11

Give and Take.. 	 11
The Rest of the Story.. 	 12
Summary... 	 13

Chapter 2  Being a Game Tester... 	 15

Playing Games... 	 16
Identifying Bugs... 	 21

Here Comes the Judge... 	 21
Amplifying Problems.. 	 23

Early Bird.. 	 24
Places Everyone... 	 24

Game Testing.indb 5 03/09/16 3:57 PM

vi • Game Testing

Notifying the Team.. 	 25
Describe.. 	 26
Pick a Severity.. 	 28
Prioritize.. 	 29
Be Helpful... 	 33
Pass or Fail?... 	 35

Testify to Others... 	 35
Verify the Fix... 	 37
Exercises... 	 37
References... 	 39

Chapter 3  Why Testing is Important....................................... 	 41

Who Cares?... 	 42
Defect Typing.. 	 43

Functions.. 	 45
Assignments... 	 46
Checking... 	 48
Timing... 	 49
Build/Package/Merge... 	 50
Algorithms... 	 53
Documentation.. 	 57
Interfaces.. 	 59

Testing Happens.. 	 61
Exercises... 	 62

Chapter 4  Software Quality... 	 65

Game Quality Factors... 	 65
Game Quality Appraisal.. 	 67

Walkthroughs... 	 67
Reviews... 	 70
Checklist-based Reviews... 	 70
Inspections.. 	 71

Game Standards... 	 73
User Interface Standards.. 	 73
Coding Standards... 	 75

Game Quality Measurements.. 	 76
Six Sigma Software... 	 77
Phase Containment.. 	 79

Quality Plans.. 	 82
QA Personnel... 	 83

Game Testing.indb 6 03/09/16 3:57 PM

Contents • vii

Standards... 	 84
Reviews and Audits.. 	 84
Feedback and Reports.. 	 85
Problem Reporting and Corrective Action........................... 	 85
Tools, Techniques, and Methods... 	 86
Supplier Control.. 	 89
Training... 	 89
Risk Management.. 	 90

Summary... 	 90
Exercises... 	 91
References... 	 92

Chapter 5  Test Phases.. 	 93

Pre-Production.. 	 94
Planning Tasks... 	 95

Determine the Scope of Testing the Project Will Require.... 	 95
Assign a Lead Tester... 	 97
Determine Phase Acceptance Criteria............................. 	 97
Participate in Game Design Reviews............................... 	 98
Set Up the Defect Tracking Database.............................. 	 98
Draft Test Plans and Design Tests................................... 	101

Testing Before Testing Begins... 	102
Test Kickoffs.. 	102

Alpha Testing... 	108
Alpha Phase Entry Criteria... 	108

Beta Testing... 	110
Beta Phase Entry Criteria... 	110
Design Lock.. 	111
Letting Bugs Go... 	112

Gold Testing.. 	113
Last-Minute Defects.. 	114
Release Certification.. 	115

Post-Release Testing... 	116
“Live Teams”... 	116
Exercises... 	118

Chapter 6  The Game Testing Process..................................... 	119

“Black Box” Testing.. 	120
“White Box” Testing... 	122
The Life Cycle of a Build.. 	124

Game Testing.indb 7 03/09/16 3:57 PM

viii • Game Testing

Test Cases and Test Suites.. 	125
Entry Criteria.. 	127
Configuration Preparation.. 	129
Smoke Testing.. 	131
Regression Testing... 	132
Testing “Around” a Bug.. 	133

On Writing Bugs Well... 	134
Just the Facts, Ma’am... 	135
Brief Description... 	135
Full Description... 	136
Great Expectations... 	138
Habits to Avoid.. 	140

Exercises... 	141

Chapter 7  Testing by the Numbers.. 	143

Testing Progress... 	143
Testing Effectiveness.. 	147
Tester Performance.. 	149
Exercises... 	152

Chapter 8  Combinatorial Testing.. 	153

Parameters.. 	154
Values.. 	154

Defaults... 	154
Enumerations.. 	155
Ranges... 	155
Boundaries.. 	157

Constructing Tables.. 	158
Combinatorial Templates.. 	178
Combinatorial Test Generation... 	181
Combinatorial Economics... 	185
Exercises... 	186

Chapter 9  Test Flow Diagrams.. 	189

TFD Elements... 	190
Flows... 	190
Events... 	190
Actions.. 	191

Game Testing.indb 8 03/09/16 3:57 PM

States... 	191
Primitives.. 	191
Terminators... 	192

TFD Design Activities.. 	192
Preparation.. 	192
Allocation.. 	192
Construction.. 	193

A TFD Example... 	195
Data Dictionary... 	203

Data Dictionary Application.. 	203
Data Dictionary Reuse... 	203
Data Dictionary Example... 	204

TFD Paths... 	208
Minimum Path Generation... 	209
Baseline Path Method.. 	210
Expert Constructed Paths... 	212
Combining Path Strategies.. 	214

Producing Test Cases from Paths.. 	214
TFD Templates.. 	219
To TFD or Not to TFD?... 	219
Exercises... 	220

Chapter 10  Cleanroom Testing.. 	223

Usage Probabilities... 	224
Mode-Based Usage.. 	224
Player Type Usage.. 	225
Real-Life Usage... 	227

Cleanroom Test Generation.. 	229
Cleanroom Combinatorial Tables.. 	229
Cleanroom Combinatorial Example..................................... 	232
TFD Cleanroom Paths... 	237
TFD Cleanroom Path Example... 	238
Flow Usage Maintenance.. 	241
Flow Usage Profiles.. 	244

Inverted Usage... 	246
Calculating Inverted Usage... 	246
Combinatorial Table Usage Inversion.................................. 	247
TFD Flow Usage Inversion... 	249

Exercises... 	252

Contents • ix

Game Testing.indb 9 03/09/16 3:57 PM

x • Game Testing

Chapter 11  Test Trees.. 	255

Test Case Trees.. 	255
Tree Feature Tests... 	258
Test Tree Designs... 	263
Exercises... 	271

Chapter 12  Ad Hoc Testing and Gameplay Testing............... 	273

Ad Hoc Testing.. 	273
Free Testing Comes From the Right Side of Your Brain....... 	274
“Fresh Eyes”.. 	275
Directed Testing Makes Order Out of Chaos....................... 	276

Set Goals and Stick to Them... 	276
If You’re Not Recording, You’re Not Testing.................... 	278
Avoid Groupthink... 	279

Testing as Detective Work.. 	281
How to Be a Repro Man (or Woman).............................. 	281
The Scientific Method.. 	283

Gameplay Testing... 	284
A Balancing Act.. 	285
“It’s Just a Suggestion”.. 	287
Making a Game Easy Is Hard Work..................................... 	288
External Testing... 	289

Subject Matter Testing... 	289
External Beta Testing... 	290

Who Decides?.. 	292
Exercises... 	292

Chapter 13  Defect Triggers.. 	295

Operating Regions... 	295
Pre-Game Operating Region... 	296
Game Start Operating Region... 	296
In-Game Operating Region.. 	297
Post-Game Operating Region... 	297

The Triggers.. 	297
The Configuration Trigger.. 	297
The Startup Trigger.. 	299
The Exception Trigger.. 	300
The Stress Trigger.. 	301
The Normal Trigger... 	301
The Restart Trigger.. 	302

Game Testing.indb 10 03/09/16 3:57 PM

Classifying Defects... 	302
Defect Triggers and Test Designs.. 	305

Combinatorial Design Trigger Examples............................. 	306
TFD Trigger Examples... 	311

Exercises... 	318

Chapter 14  Regression Testing and Test Reuse..................... 	321

Regression Testing... 	321
A-B-C’s.. 	322
Defect Modeling.. 	325
Time Keeps on Ticking... 	327
Expanding Possibilities... 	329

Test Reuse... 	330
TFD Design Patterns... 	330
Looking Back and Forth... 	334
Combinatorial Expansion.. 	336

Exercises... 	343

Chapter 15  Exploratory Game Testing.................................... 	345
Exploratory Testing Overview... 	345

Sports.. 	346
Stadium Tour... 	346
Player Tour ... 	346
Manager Tour.. 	347

Combat... 	347
Military Tour.. 	347
Side-Scroller Tour.. 	347
Medic Tour.. 	347
Energy Tour... 	348

The Couch Potato Tour.. 	348
The Rained Out Tour... 	350
The Taxi Cab Tour.. 	350
The Prior Version Tour... 	351
The Obsessive-Compulsive Tour... 	351

Recording Exploratory Tests... 	352
Exploration Tips... 	354

Reporting Exploratory Results.. 	355
Filing Bug Reports... 	357

Session Based Testing... 	358
References... 	360

Contents • xi

Game Testing.indb 11 03/09/16 3:57 PM

xii • Game Testing

Appendix A  Odd-Numbered Answers to Exercises................ 	361

Appendix B  Basic Test Plan Template..................................... 	375

Appendix C  Combinatorial Test Templates............................ 	383

Appendix D  Test Flow Diagram (TFD) Templates................. 	391

Appendix E  On the Companion Disc....................................... 	401

Index... 	409

Game Testing.indb 12 03/09/16 3:57 PM

Preface

Although the first edition of this book appeared a little over ten years ago,
the world of video games has both transformed and exploded in the last
decade.

That time has seen the number of players, platforms, and business
models proliferate. We’ve moved from a world where most games were
sold in boxes at brick-and-mortar retail stores to one in which most games
are downloaded—to smartphones, to consoles, and to computers.

Billion-dollar global companies release years-in-the-making “AAA” games
that are epic in their scope. Tiny one-person development teams release
quirky little mobile games. Billions of dollars have been spent in the last
several years by hundreds of companies trying to make a market for virtual
reality. Pokémon Go proved the market for augmented reality games in a
weekend.

There have never been more games competing for the attention of
more players. Never before has game quality—and stability—been more
important. The process and discipline of game testing is crucial for any
development team of any size to learn and adhere to, especially in this new
age of constant patches, updates, feature roll-outs, expansions, and DLC
releases. It seems today that with so many games, development is never
finished. Neither, then, is testing.

Software engineers will continue to make mistakes; game designers will
introduce exploits; artists will fail to close vertices. It is still up to the game

Game Testing.indb 13 03/09/16 3:57 PM

xiv • Game Testing

tester to advocate for the players by breaking the game before the player ever
gets to play. It is up to we game testers to save the player from frustration,
confusion, and lost time—and thereby help to ensure the commercial and
critical success of the game. Like the Night’s Watch in Game of Thrones, we
are the anonymous, out-of-sight, and unsung heroes of the realm of video
game development. Our hope is that the material presented in this updated
version of our book will help you to hone your skills as a tester, or test
manager, remaining ever vigilant. The players, though they may not know
it, are most grateful for your hard work.

Charles P. Schultz
Robert Denton Bryant

August 2016

Game Testing.indb 14 03/09/16 3:57 PM

Acknowledgments

The authors would like to thank and recognize Heather Maxwell Chandler
for her role in bringing the authors and publisher together for this new
edition of the book.

Game Testing.indb 15 03/09/16 3:57 PM

Game Testing.indb 16 03/09/16 3:57 PM

DON’T PANIC

In a game project, panic is a bad thing. The person panicking did not
choose to panic, and may not realize it is happening. It is an irrational reac-
tion to a set of circumstances, and it can lead a tester to cause harm to the
project. When a tester is reacting inappropriately to some unreasonable
request, remind him not to panic by asking “What’s rule number one?”

Scuba divers put themselves in situations similar to what game testers
might face: limited resources (the equipment you bring with you, time con-
straints (air supply), rules to follow (rate of descent/ascent), and other sur-
prises (unexpected sea visitors). According to Dr. William Morgan, episodes
of panic or near-panic may explain recreational diving accidents and deaths.
The panic attack was often spurred by something that a non-diver would deem

In This Chapter

●● The two most important rules every tester and test team needs to
know:

●● Rule 1: Don’t Panic
●● Rule 2: Trust No One

TWO RULES of
GAME TESTING

1c h a pt e r

Game Testing.indb 1 03/09/16 3:57 PM

2 • Game Testing

serious: entanglement, an equipment malfunction, or the sight of a shark. But
the attacks don’t make things better, Morgan says. They can lead to irrational
and dangerous behavior. Even scuba divers with many years of experience
sometimes experience panic for no apparent reason [SCUBADOC].

Testing the wrong build, failing to notice an important defect, or send-
ing developers on an avoidable search for a nonexistent bug shouldn’t get
you physically hurt, but there will be a price to pay in extra time, extra
money spent, and/or loss of sales and reputation.

Game project panic happens when you are:

■■ Unfamiliar

■■ Unprepared

■■ Under pressure

■■ Unrested

■■ Nearsighted

Unfamiliar
As a member of the game team, you might be asked to do something

you’ve never had to do before. You might be given someone else’s tests to
run, be thrown into the middle of a different game project, or be told to take
someone else’s place at the last minute to do a customer demo. In situations
like these, rely on what you know, stick to basics, and pick up any new or
different ways by watching the people who have already been doing them.

You might even be asked to accomplish something you’ve never done
before, such as achieving 100% automation of the installation, or writing a
tool to verify the foreign language test in the game. Maybe no one has ever
done this before. Don’t make a commitment right away, don’t invent sce-
narios, and don’t try to be a hero. If you are unfamiliar with a situation, you
might act on your best judgment, but it still might not be right. It requires
having good radar to know when to get help, and also a dose of humility
so you don’t feel like you have to take on everything yourself or say “yes”
to every request. You don’t need to lose any authority or credibility. Find
someone who’s “been there, done that” and who can steer you toward some
working solutions. Stay away from responses that are known to fail. You can
even search the Internet to see if anyone else has been through it and is
willing to share their experience.

Game Testing.indb 2 03/09/16 3:57 PM

Two Rules of Game Testing • 3

Chapter 6, “The Test Process,” shows you how to define and follow
a set of activities that will give you consistent test throughput and
results, even when you’re in unfamiliar territory.

Unprepared
A number of unexpected things will happen on your project. Expect the

unexpected! Many parts of the game need to be tested at various points in
the game’s life cycle. Behind the scenes, many different technologies are at
work – 3D graphics, audio, user interfaces, multithreading, and file systems
to name a few. If you are not ready for a variety of test assignments and you
don’t have the skills needed to perform them successfully, then you will
stumble rather than star.

Study, practice, and experience are ingredients for good preparation.
During the course of the project, try to get to know more about the game
code. Keep up with the industry so you are also aware of what the next
generation of games and technologies will be like. Become an expert in
requirements and designs for the parts of the game you are responsible for
testing, and then get familiar with the ones that you aren’t responsible for.
When you least expect it, you might need to take on a different position,
fill in for another tester, or grow into more responsibility. Be ready when it
happens.

The information in Chapter 5 “Test Phases”, gives you information
on preparing yourself to succeed as a game tester, as well as what
kinds of test environments, projects, roles, and jobs you might find
yourself in someday.

Under Pressure
Pressure can come from any of three directions:

■■ Schedule (calendar time to complete the project)

■■ Budget (money to spend on the project)

■■ Headcount (the quantity and types of people assigned to work on
the game)

There’s nothing to prevent one or more of these resources from shrinking
at any time during the project. These factors won’t be under your control as

NOTE

NOTE

Game Testing.indb 3 03/09/16 3:57 PM

4 • Game Testing

a tester. Usually they are determined by business
conditions or project managers. In any case, you
will be impacted. Figure 1.1 shows the resources
in balance with the scope of the project.

Moving in any one of these points on the tri-
angle squeezes the project, creating pressure.
Sometimes a game project starts out with one
of these factors being too small, or they can get
smaller any time after the project has launched.
For example, money can be diverted to another
game, developers might leave to start their own
company, or the schedule gets pushed up to
release of a newly announced game that competes
with yours. Figure 1.2 shows how a budget reduc-
tion can put pressure on the game project’s sched-
ule and headcount.

Another way to cause pressure within this
triangle is to add more to it than it was originally
planned for. This demand could be internally
driven, such as adding more levels or characters,
or scrapping the old graphics engine for a new one
to take advantage of newly announced hardware.
Other unplanned changes might be made to sup-
port more game platforms than originally planned
or to keep up with newly announced games in terms
of levels, characters, online players supported, and
so on. Figure 1.3 illustrates how increasing the
scope of a project can put pressure on the budget
and headcount if they are not also increased.

When there is pressure on the project, you can expect it to get passed on.
Someone demands something from you and uses phrases like the following:

■■ I/we need … immediately

■■ I don’t care

■■ That was then, this is now

■■ Figure out how to do it

Schedule

Budget
pressure Headcount

PROJECT

Figure 1.2  Budget reduction
causes pressure

Schedule

Budget Headcount

PROJECT

Figure 1.3  Budget and headcount
pressure caused by scope increase

Schedule

PROJECT

Budget Headcount

Figure 1.1 R esources balanced
with project scope

Game Testing.indb 4 03/09/16 3:57 PM

Two Rules of Game Testing • 5

■■ Make it happen

■■ Deal with it

■■ We can’t afford to …

■■ Nothing else matters but…

It’s likely that you will get more than one demand at a time and from
different people. Examine the schedule, budget, and headcount available
to you. Achieve the request by then scaling down what you would normally
do so that it fits in your new triangle. Do the things that will have the most
impact on meeting the request to the greatest extent possible. Consider
using Agile development and test practices that allow you to incrementally
deliver working content via continuous updates instead of having to deliver
all of your features in a single release.

Chapter 2, “Being a Game Tester”, introduces you to what’s expect-
ed of you in your role as a tester, and how to make an impact on the
quality of the game.

Chapter 14, “Regression Testing and Test Reuse,” provides tech-
niques for being efficient when more tests or more testing is needed
quickly and unexpectedly, and when more games need to be tested.

Unrested
Running long tests after staying up for 30 hours straight or working

100+ hours a week is not the best approach to finding defects. It is, how-
ever, a good way to introduce them!

When developers do this, they keep testers in business, but it doesn’t
help get the game released. It’s just as bad for the project when testers
make mistakes.

Reporting a problem that doesn’t really exist (for example, tested the
wrong build, didn’t do the test setup or install properly, and so on) will
cause the developers unnecessary re-evaluations and will waste precious
time. If you absolutely have to do testing late at night or at the end of a long
week, make a checklist to use before and after testing. If there’s another
tester around, have her check your work, and you can check hers when she’s
done. Also, by writing down relevant information as you go along, you won’t

NOTE

Game Testing.indb 5 03/09/16 3:57 PM

6 • Game Testing

be prone to mistakes later on if you have to rely on your tired memory. It’s
kind of like a prelaunch checklist for launching satellites into orbit. If some-
thing is wrong, stop the countdown. Go back and make it right – as it says
in the test instructions. After testing is done, record pertinent results and
facts. Here’s an example checklist that you can start with and expand upon.
Here’s an example checklist that you can start with and expand upon to fit
your own game projects:

LATE NIGHT TESTING CHECKLIST

PRE-TEST
Do you have the right version of the test?

Test version:

Are you using the right version of the build?

Build version:

Are you using the right hardware configuration and settings?

Describe:

Are you using the right game controller and settings?

Describe:

Which installation options did you use (if any)?

Describe:

Is the game in the right initial state before running the test case?

Describe: _________________________

POST-TEST
Did you complete all of the steps in order?

Did you record the completion of the tests and the test results?

Did you record all of the problems you found?

If you reported a problem, did you fill in all of the required fields?

Game Testing.indb 6 03/09/16 3:57 PM

Two Rules of Game Testing • 7

In addition to putting formal practices into place for checking mistakes,
also look for strategies to prevent them in the first place. Depending on
your game platform and test environment, flexible test methods such as
Exploratory Testing may be a viable approach for some or all parts of your
testing strategy.

Chapter 15, “Exploratory Game Testing” describes flexible tech-
niques for exposing defects at any stage of the project.

Nearsighted
Panic symptoms can include too much focus on the near term. Many

game projects take months, so make that a factor in deciding what to work
on today and how to do it. A good question to ask a tester that will put him
in the right frame of mind is “Will this be our last chance to test this?” If
answer is “no”, then we discuss how to approach the present situation in
the context of the overall strategy of repeated testing, feedback from test
results, budgeting resources, and so on.

Successful sports teams know how to avoid panic. When they are losing,
they’re confident that they can come back from behind and win the game
because they are a) familiar with the situation, b) prepared to deal with is
from practice, film study and in-game experience, c) rested, and d) don’t
feel pressure to make up the deficit immediately. Teams that have a losing
record often lack one or more of these ingredients.

Chapter 5, “Test Phases”, shows you what kinds of testing should
be done along the way as the game code matures. This helps you
test appropriately for a particular situation and allows you to
know that you can rely on the additional testing you will do later.

TRUST NO ONE

On the surface this sounds like a cynical approach, but the very fact that testing
is built into the project means that something can’t be trusted. You’ll read more
about this in Chapter 3, “Why Testing Is Important.” The very existence of tes-
ters on a game project is a result of trust issues, such as the following:

NOTE

NOTE

Game Testing.indb 7 03/09/16 3:57 PM

8 • Game Testing

■■ The publisher doesn’t trust that your game will release on time and with
the promised features, so they write contracts that pay your team incre-
mentally based on demonstrations and milestones

■■ The press and public don’t trust that your game will be as good and fun
and exciting as you promised, so they demand to see screen shots and
demos, write critiques, and discuss your work on websites and social
media.

■■ Project managers don’t trust that the game code can be developed with-
out defects, so testing is planned, funded, and staffed. This can include
testers from a third-party QA house and/or the team’s own internal test
department.

■■ The publisher can’t trust the development house testers to find every
defect, so they may employ their own testers or issue a beta release for
the public to try it out and report the defects they find.

Don’t take it personally. It’s a matter of business, technology, and com-
petition. A great deal of money is on the line, and investors don’t want to
lose it on your project. The technologies required to produce the game
may not even have been available at the time development started, giving
your team the opportunity to create the kind of game no one has ever done
before. By trying to break the game, and failing, you establish confidence
that it will work. Games that don’t come out right fall victim to rants and
complaints for all to see. Don’t let this happen to you!

Balancing Act
Evaluate the basis of your testing plans and decisions. Hearsay, opin-

ions, and emotions are elements that can distract you from what you should
really be doing. Using test methods and documenting both your work and
your results will contribute to an objective game testing environment.

Measuring and analyzing test results – even from past games – will give
you data about your game’s strengths and weaknesses. The parts that you
trust the least – the weak ones – will need the most attention in terms of
testing, retesting, and analysis. This relationship is illustrated in Figure 1.4.

The parts you can trust the most – the strong ones – will require the
least attention from you, as illustrated in Figure 1.5. These should still be
retested from time to time to reestablish your trust.

Game Testing.indb 8 03/09/16 3:57 PM

Two Rules of Game Testing • 9

Chapter 4, “Software Quality,” introduces you to some basic prin-
ciples for evaluating the trustworthiness of your game code.

Chapter 7, “Testing by the Numbers” describes measurements
you can make from the test data you would normally collect and
recommends how to analyze those measurements to zoom in on
specific problem areas.

Word Games
It’s useful to be wary of advice you get from outside the test team. Well-

meaning people will suggest shortcuts so the game development can make
better progress, but you won’t remove bugs form the game by simply not
finding them. Don’t trust what these people are telling you. At the same
time, don’t cross the boundary from being distrustful to turning hostile. The
whole team is working to deliver the best game it can, even when it doesn’t
seem that way through the eyes of a tester.

A general form of statements to watch out for is “X happened, so (only/
don’t) do Y.” Here are some examples:

■■ “Only a few lines of code have changed, so don’t inspect any other lines.”

■■ “The new audio subsystem works the same as the old one, so you only
need to run your old tests.”

■■ “We added foreign language strings for the dialogs, so just check a few
of them in one of the languages and the rest should be okay too.”

And some variants:

■■ “We only made small changes so don’t worry about testing <insert feature
name here>.”

NOTE

TRUST

TEST

Figure 1.4  Low trust means more testing

TRUST

TEST

Figure 1.5  More trust leads to less testing

Game Testing.indb 9 03/09/16 3:57 PM

10 • Game Testing

■■ “You can run just one or two tests on this and let me know if it works.”

■■ “We gotta get this out today so just…”

You’ll be surprised how many bugs you will find by behaving opposite
from the advice you get from other people about what should and
should not be tested.

Don’t equate a “trust no one” attitude with a “don’t do anything you’re
asked to do” attitude. If a test lead or the project manager needs you to meet
goals for certain kinds of testing to be done, be sure you fulfill your obliga-
tion to them before going off and working on the issues you don’t trust.
The difference is between being a hero (“I finished the tests you wanted,
and also managed to start looking at the tournament mode and found some
problems there. We should do more testing on that next time around”) or
a zero (“I didn’t have time to do the tests you wanted because I was getting
some new tests to work for the tournament mode”).

Last Chance
Examine your own tests and look for ways you can improve so you gain

more trust in your own skills in finding defects. Just never let that trust turn
into arrogance or the belief that you are perfect. Leave room to mistrust
yourself just a little bit. Remain open to suggestions from managers, devel-
opers, other testers, and yourself. For example, if you’re in the middle of
running a test and you’re not sure you are testing the right version – check
it! You may have to go back and start over, but that’s better than reporting
the wrong results and wasting other people’s time too.

As game development progresses, management and developers want
to feel comfortable about the quality of the game and its readiness for the
next milestone and, ultimately, final release. As a tester, you should not be
lulled into complacency. Re-energize your team periodically by instructing
them to “Treat this release like it’s our last chance to find problems.” Con-
flicts will arise about whether or not to introduce new tests, and you’ll hear
complaints about why important problems are found so late in the project.
There are many reasons for late defects showing up that have nothing to do
with incompetent testing. Here are some you will run into:

■■ The defects were introduced late, just before you found them

!
TIP

Game Testing.indb 10 03/09/16 3:57 PM

Two Rules of Game Testing • 11

■■ Bugs from earlier rounds of testing kept you from getting to the part of
the game where the late defect was hiding

■■ As you spend more time testing the game, you become familiar with
where the defects are coming from, so it is perfectly natural that espe-
cially subtle problems might not be found until late in the project.

In any case, even if the bugs were there from the very first release, they
were not put there by testers.

Chapter 10, “Cleanroom Testing,” and Chapter 12, “Play Testing
and Ad Hoc Testing”, give you methods to use for testing the game
based on your testing intuition and insight

Trust Fund
You can get a head start on knowing what not to trust in a couple of

ways. Sometimes the developers will tell you, if you just ask…

Tester: “Hey Bill, is there anything you’re particularly concerned about
that I should focus on in my testing?”

Bill: “Well, we just redid the logic for the Fuzzy Sword quest, so we
definitely want that looked at.”

You can get more clues by mentioning parts of the system and seeing
how people react. Rolling eyes and pauses in response are giveaways that
there is some doubt as to how good that new weapon will work or if multi-
player will work as well as it did before the latest changes.

In Chapter 3, you will find out why testing is important to the health
of the game. It covers many factors that contribute to making things
go wrong and how you, the game tester, should deal with them.

GIVE AND TAKE

If you’ve been paying close attention up to this point – and you should
have as an aspiring or working game tester – you would have noticed an
apparent contradiction between the testing approach to counteract panic
(don’t treat this release like it’s the last one), and the “trust no one” approach

NOTE

NOTE

Game Testing.indb 11 03/09/16 3:57 PM

12 • Game Testing

of treating each release like it is the last one. A sports analogy might illus-
trate how these concepts can co-exist.

In baseball, one batter can’t step up to the plate with bases empty and
put six runs on the board. Instead, batter by batter and inning by inning, the
team members bat according to the situation, producing the most runs they
can. The batters and base runners succeed by being patient, skilled and
committed to their manager’s strategy. If every batter tries to hit a home
run, the team will strike out often and leave the opposing pitcher fresh for
the next inning.

At the same time, when each player is at bat or in base, he is aggres-
sively trying to achieve the best possible outcome. He is fully analyzing
the type and location of each pitch, executing his swing properly, and run-
ning as fast as he can once the ball is hit. He knows that it contributes to
the team’s comeback and that one run or RBI could mean the difference
between a win and a loss for the team.

So, as a tester, you can do both at once by following this advice:

■■ Know your role on the team based on what responsibilities have been
assigned to you

■■ Execute your tasks aggressively and accurately

■■ Do the most important things first

■■ Do the tests most likely to find defects often

■■ Make emotion-free and objective decisions to the extent possible

Chapter 13, “Defect Triggers,” describes how testing causes defects
to appear so you can cover those possibilities in your testing. These
also help you decide which tests will be the most important ones to
run and which ones should be run the most often.

THE REST OF THE STORY

The rest of this book equips you to apply the two rules to your game
testing. Don’t feel like you have to incorporate everything at one to be suc-
cessful. You may already consider yourself an effective tester. Use new
insights from this book to refine your testing skills and add the techniques

NOTE

Game Testing.indb 12 03/09/16 3:57 PM

Two Rules of Game Testing • 13

you learn in Chapters 8 through 15 where it makes the most sense for your
projects.

Apply the Two Rules to what you read in this book. Don’t trust that
what you read here will work every time for everything you do. If you get
results that don’t make sense, find out why. Try something, then measure or
evaluate it to decide whether to go on using it or refining it, whether to try
something new or whether to go back to what you were doing in the first
place. But do try it before passing judgment. A word of caution: don’t trust
yourself too much before you make sure you are applying the technique
properly. Then you can decide if it works for you. You will discover that the
methods suggested in this book are good.

Remember, as a game tester, everyone is trusting in you to find prob-
lems before the game ships. Don’t give them cause to panic!

Chapter 8, “Combinatorial Testing,” Chapter 9, “Test Flow
Diagrams,” and Chapter 11 “Test Trees,” introduce you to three
important game testing methods. Use them to understand the
game software early in development and systematically explore the
game’s features and functions throughout the project.

Summary

In this chapter, you learned two important rules for game testing and
how they relate to the remaining chapters of this book. Panic and trust are
counterproductive to successful game testing. You can achieve maximum
results by remembering and applying the two rules.

Panic results in:

■■ Poor judgment and decision making

■■ Unreliable test results

■■ Too much emphasis on the short-term

Panic costs the project in:

■■ Unnecessary rework

■■ Wasted effort

■■ Loss of confidence and credibility

NOTE

Game Testing.indb 13 03/09/16 3:57 PM

14 • Game Testing

Avoid panic by:

■■ Recognizing when you need help, and getting it

■■ Preparing for the unexpected

■■ Relying on procedures

■■ Getting sufficient rest

Don’t trust:

■■ Hearsay

■■ Opinions

■■ Emotions

Rely on:

■■ Facts

■■ Results

■■ Experience

Test each game release as if:

■■ It’s not the last one

■■ It is the last one

Game Testing.indb 14 03/09/16 3:57 PM

Being a game tester starts with being a game player. This is the part
that seems to attract most people to the profession. Just imagine—
getting paid to play games! For the most part you don’t get to test

(play) whatever you feel like on any given day. You are given assignments
that you’re expected to complete thoroughly and on time, even if it means
you have to stay late to get them done. The tests and the hours will pile up
anytime you get near to a major release.

Just playing the game isn’t enough to be a good tester, however. Sure,
you need to have a knack for finding problems, but you also need to do a
good job at other things, such as documenting and reporting bugs, report-
ing test progress, and helping developers find and fix your bugs. These tasks
are done over and over again until the game ships. Think of the acronym
“PIANo TV” - Play, Identify, Amplify, Notify, and Optionally Testify and
Verify.

In This Chapter

●● Testing versus playing
●● Identifying bugs
●● Reporting bugs
●● Handling fixes

BEING A GAME TESTER

2c h a pt e r

Game Testing.indb 15 03/09/16 3:57 PM

16 • Game Testing

PLAYING GAMES

At home, you play games to have fun. You get to choose what to play,
when to play, and how to play it. Testing games can still be fun, but you
have fewer choices about what, when, and how to play. Everything you do
when you play is for a purpose—either to explore some area of the game,
check that a specific rule is being enforced, or look for a particular kind of
problem.

Your job begins by running a series of tests that are assigned to you.
Some of the tests are very specific and consist of step-by-step instructions.
These rely on your keen observations and attention to details. This is a good
format for user interface (UI) testing.

Here’s a short example for testing the character selection portion of the
Edit Trooper UI in the Song Summoner: The Unsung Heroes – Encore RPG
(the character gallery is pictured in Figure 2.1):

1.	Enter a town and tap the “Edit Trooper” icon to enter the Edit Trooper
screen.

❏❏ Check that the main character’s picture appears first in the list, with
his name (Ziggy) above his image. Also check that the image frame and
background reflect his current status in the game (in this case, “Gold”).

❏❏ Check that the circular control within the slider bar is positioned to
the far left, the number 1 appears to the left of the bar, and the num-
ber at the right of the slider bar equals the number of characters you
have acquired during the game (83 in this example).

❏❏ Check that Ziggy’s character class “Capable Conductor” appears in
the upper left of the box in the lower left corner of the screen.

❏❏ Check that Ziggy’s stats for Movement, Range, HP, and SP are
correct.

❏❏ Check that a miniature version of Ziggy’s avatar appears to the right
of his stats, with a small musical note at his right.

2.	Scroll one character over by swiping the screen from right to left.

❏❏ Check that the second character’s picture appears first in the list,
with his name above his image. Also check that the image frame
and background reflect his current status in the game.

Game Testing.indb 16 03/09/16 3:57 PM

Being a Game Tester • 17

❏❏ Check that the circular control within the slider bar moved slightly
to the right and that the numbering on the ends of the bar has not
changed.

❏❏ Check that newly selected character’s class appears in the upper left
of the box in the lower left corner of the screen.

❏❏ Check that the newly selected character’s stats for Movement, Range,
HP, and SP are correct.

❏❏ Check that a miniature version of the new character’s avatar ap-
pears to the right of his or her stats, with a small musical note to
the right.

3.	Scroll one character to the right by holding your finger on the circular
control within the slider bar and dragging it slightly to the right until the
third character’s image is in the center of the screen.

❏❏ Perform the same checks that you made in step 2, but this time for
the proper display of the third character’s information.

4.	Scroll one character to the left by swiping the screen from left to right.

❏❏ Perform the same checks that you made in step 2.

Figure 2.1  Song Summoner Edit Trooper selection screen showing the initial state of the
character gallery.

Game Testing.indb 17 03/09/16 3:57 PM

18 • Game Testing

5.	Scroll one character to the left by holding your finger on the circular
control within the slider bar and dragging it slightly to the right until
the first character’s image is in focus.

❏❏ Perform the same checks that you made in step 1.

6.	Scroll all the way to the end of the trooper list (see Figure 2.2) by swiping
from right to left (multiple times if necessary).

❏❏ Check that the last character’s picture appears first in the list, with his
name above his image. Also check that the image frame and background
reflect the character’s current status in the game.

❏❏ Check that the circular control within the slider bar is positioned to
the far right and that the number 1 appears to the left of the bar and
the number at the right of the slider bar equals the number of charac-
ters you have acquired during the game.

❏❏ Check that the last character’s class appears in the upper left of the
box in the lower left corner of the screen.

❏❏ Check that the last character’s stats for Movement, Range, HP, and
SP are correct.

❏❏ Check that a miniature version of the last character’s avatar appears to
the right of his or her stats, with a small musical note to the right.

Figure 2.2  Song Summoner Edit Trooper selection screen showing the end of the
character gallery.

Game Testing.indb 18 03/09/16 3:57 PM

Being a Game Tester • 19

7.	Scroll all the way back to the beginning of the list by holding your finger
on the circular control within the slider bar and dragging it all the way to
the left until the first character’s image is in focus.

❏❏ Perform the same checks that you made in step 1.

8.	Scroll all the way to the end of the list by holding your finger on the cir-
cular control within the slider bar and dragging it all the way to the right
until the last character’s image is in focus.

❏❏ Perform the same checks that you made in step 6.

9.	Scroll all the way to the beginning of the trooper list by swiping from left
to right (multiple times if necessary).

❏❏ Perform the same checks that you made in step 1.

So, you see, you are given specific operations to perform and details to
check at each step. This can become tedious over the course of a long test
case, especially when doing many of these tests one after the other. To keep
subtle problems from slipping past you, maintain concentration and treat
each item as if it’s the first time you’ve seen it.

Other test assignments involve more open-ended directives, and might
be in checklist or outline form. These tests rely more on your own indi-
vidual game knowledge, experience, and skills.

Testing special moves in a fighting game is a typical situation where you
might run into a checklist. For example, use the following checklist from Hijinx
Software’s Street Fighter Moves app (Android and iOS) [SFMOVESET 10]
to test Chun Li’s special attacks when playing Ultra Street Fighter IV. To
successfully and efficiently complete this testing, you must be able to per-
form the game controller stick motions and button presses with the right
timing and in the right fight situation for each move.

■■ Kikouken (Fireball)

■■ Hazan Shuu (Overhead Flip Kick)

■■ Spinning Bird Kick

■■ Senretsu Kyaku (Hyper Lightning Legs)

■■ Housenka (Ultra 1)

■■ Kikoshou (Ultra 2)

Game Testing.indb 19 03/09/16 3:57 PM

20 • Game Testing

Whereas a checklist tends to focus on verifying a narrow set of game
behaviors, an outline can be used to test a broader range of results without
worrying about the detailed steps to take to reach that goal. According
to mafiawars.wikia.com, as of December, 2015, there were one hundred
and ninety-nine achievements possible in the Mafia Wars™ (Zynga®) game
played on Facebook®. Imagine having to define or follow a button-by-
button series of steps to complete jobs, fight in different locations, earn
enough money, and reach the levels necessary to unlock and complete each
achievement! You, the tester, need to know the game well enough to pick
the right strategies and spend your points efficiently. Additionally, you must
play the game well enough to reach the goals for each achievement. Here’s
a compact outline format that can be used for this purpose, focusing on the
seventeen New York Achievements.

Achievement Requirement

One Down Master at least one stage in New York

What else you got? Master all New York job tiers

Armed & Dangerous Own 10 Tommy guns

Personal Fleet Own 500 town cars

The First is the Hardest Make a $1,000,000 deposit (after bank fee)

Personal Bailout Make a $1,000,000,000 deposit (after bank fee)

That’s with a “T” Make a $1,000,000,000,000 deposit (after bank fee)

Nest Egg Make a $10,000,000,000,000 deposit (after bank fee)

What’s After Trillion? Deposit 999 Trillion Dollars

Collector Vault any collection set

Curator Vault at least nine New York collection sets

Slum Lord Own a level 30 Tenement property

Knife Thrower Loot 10 Butterfly Knives

Uncle Sam Own 50 Federal Agents

Land Holder Own 1 of each NY property

Land Baron Upgrade all New York properties to level 25 or higher

Real Estate Tycoon Upgrade all New York properties to level 100 or higher

Table 2.1  Mafia Wars Achievements – New York

Game Testing.indb 20 03/09/16 3:57 PM

Being a Game Tester • 21

In addition to writing and running your own tests, you could also find
yourself writing tests for other testers to run. Later in this book you learn
some formal methods for designing tests, but that option might not always
be available to you. In an informal testing situation, choose step-by-step,
checklist, or outline form to describe the testing you want done, or to record
any informal testing you might have completed.

IDENTIFYING BUGS

Game testing has two purposes. The first is to find defects that are in
the game code or design. The second is to demonstrate which parts of the
game are working properly. When the test doesn’t find any problems, it
“Passes.” When a test finds a problem, it “Fails.”

Another possible outcome of a test is “Blocked,” which means an existing
problem keeps you from getting to other parts of the test. One such example
is when the PC version of BioShock 2 crashes when you try to accept a friend
invite on the Multiplayer Menu. This blocks you from doing any further test-
ing in multiplayer mode after an invite [STEAMCOMMUNITY 13].

The test could also be “Not Available,” meaning the part you are sup-
posed to test has not been included in the version of the game you were given
to test. It might be because the developers are still in the process of getting
all the game elements put together, so a level, item, function, or character is
intentionally left out of the test release. It could also be that the game version
for the platform you are testing does not include what you need to test, such
as the five additional UFC Undisputed 2010 Ultimate Fight Mode events and
three exclusive fighters, which are only available for the PS3 [UFC 10].

Here Comes the Judge
Not every tester will notice the same defects when testing the same

part of a game. Likewise, not every tester will run the same test in the same
way. Psychology can have an explanation as to why this happens, in the form
of the Myers-Briggs Type Indicator (MBTI). One of the categories in this
indicator rates a person as either a Judger or a Perceiver, as follows:

Judger Defined

Judgers require a very structured, ordered, and predictable environ-
ment to be happy. If Judgers are working in an unorganized envi-
ronment, Judgers will either try to organize it or they will constantly

Game Testing.indb 21 03/09/16 3:57 PM

22 • Game Testing

complain that things are a mess, nothing is in its place or that the
disorganized workplace environment affects their productivity.
Judgers thrive in union or highly regulated environments. Judgers
work first and play later.

Perceiver Defined

Perceivers like a more laid back approach. Perceivers focus on
the experience and so perceivers prefer things to unfold as they
will. Perceivers do not like to limit options and thrive in dynamic,
ever-changing workplace environments. Perceivers can work in a
mess; in fact, they prefer to work in chaos as it stimulates creative
thinking when predictability is removed. Perceivers seek employers
that offer flexible working arrangements. Perceivers love to play,
therefore if work is playful and unconventional, they are happy
[Suite.IO].

Not sure if you are more of a Judger or Perceiver? You can take a
quick, informal temperament test at the Personality Test Center
[PERSON 01] to find out.

Read more about Judgers and Perceivers at suite101®.com, Judgers
and Perceivers at Work: MBTI or Myers Briggs Type and Preferred
Working Environments [Suite.IO].

The tendency toward one of these behaviors versus the others will
manifest itself in the way you approach testing, and the kinds of defects
you tend to find. For example, a Judger is good at following step-by-step
instructions, running through a number of tests, and finding problems in
game text, the user manual, and anywhere the game is inconsistent with
historical facts. The Perceiver tends to wander around the game, come up
with unusual situations to test, report problems with playability, and com-
ment on the overall game experience. Assign Judgers to verify the game’s
“authenticity” and Perceivers to verify its “fun-ticity.”

Conversely, there are things Judgers and Perceivers might not be good
at. A Judger would perhaps not do steps or notice problems that aren’t in
the written tests. A Perceiver could miss seeing problems when running a
series of repetitive tests. Although testing without written tests provides
more freedom, Perceivers might not always have good documentation of
how they got a bug to show up.

NOTE

Game Testing.indb 22 03/09/16 3:57 PM

Being a Game Tester • 23

You are probably not 100% of one type, but you most likely have a
tendency toward one or the other. Don’t treat that as a limitation. Use that
knowledge to become more aware of areas you can improve so you can find
more bugs in the games you test. Your goal should be to use both sets of
qualities at the appropriate times and for the right purpose. When you see
a bug that someone else found and it makes you think “Wow! I never would
have tried that,” then go and talk to that person and ask her what made
her think of doing that. Do this often and you can start to find those same
kinds of bugs by asking yourself “How would Linda test this?” Make sure
you share your own bug stories too. Computer Related Risks [Neumann 94]
and Fatal Defect [Peterson 96] are two books that will give you some more
insight, with real-world examples and analysis from outside of the video
game industry.

Table 2.2 shows some of the ways that each personality type affects
the kinds of bugs testers will find and what kinds of testing are best used
to find them.

Judger Perceiver

Run the tests for… Find a way to…

Conventional game playing Unconventional game playing

Repetitive testing Testing variety

User manual, script testing Gameplay, usability testing

Factual accuracy of game Realistic experience of game

Step-by-step or checklist-based testing Open-ended or outline-based testing

May rely too much on test details to
see defects

May stray from the original test
purpose

Concerned about game contents Concerned about game context

Table 2.2  Tester Personality Comparison

AMPLIFYING PROBLEMS

Normally the word “amplify” makes you think of something getting big-
ger or louder. In this case, “amplifying” your defect will narrow it down for
the developers, make it more likely the defect will be fixed right the first
time, and reduce the overall time and cost spent on the problem.

Game Testing.indb 23 03/09/16 3:57 PM

24 • Game Testing

If you found a way to crash the game by performing basic operations,
there’s not much else you need to do to draw attention to your defect in
order to get it fixed. If the way to cause the crash is obscure, or you find it
late in the project, or it seems difficult to pinpoint and repair, your defect
will likely take a back seat to other ones. In both cases, there are some
specific ways that you can amplify the defects to maximize their “fixability.”

Early Bird
Find defects early by testing the following items as soon as they become

available. If you don’t know how to get the information you need, ask the
development team or build engineer for some kind of report of the changes
put into each build.

■■ New levels, characters, items, cut scenes, and so on as soon as they are
introduced

■■ New animations, lighting, physics, particle effects, and so on

■■ New code that adds functionality or fixes defects

■■ New subsystems, middleware, engines, drivers, and so on

■■ New dialog, text, translations, and so on

■■ New music, sound effects, voice-overs, audio accessories, and so on

Places Everyone
Once you have found a defect in some deep, dark corner of the game,

that might not be the only place it shows up. If you stop looking there and
hurry to log your bug and move on to the next test, you might overlook a
more common place or scenario in the game where the same bug shows up.
It would be nice if all game bugs were fixed before the product shipped,
but there are reasons why that’s not done. A defect that only happens in an
obscure place can get left in the game that ends up on the store shelves.

Find defects in more places within the game by looking for the following:

■■ All of the places in the game where the same faulty behavior can be
activated

■■ All of the places in the code that call the defective class, function, or
subroutine

■■ All of the game functions that use the same defective item, scene,
and so on

Game Testing.indb 24 03/09/16 3:57 PM

Being a Game Tester • 25

■■ All of the items, levels, characters, and so on that have a shared attribute
with the faulty one (for example, character race, weapon type, levels
with snow, and so on)

Then, use this two-step process to increase the frequency of the defect:

1.	Eliminate unnecessary steps to get the defect to appear.

2.	Find more frequent and/or more common scenarios that could include
the remaining essential steps.

NOTIFYING THE TEAM

Once you’ve found the problem and can describe all the ways in which
it affects the game, you need to record that information and notify the
developers about it. Typically, project teams will use defect management
tools to help with this. Although you don’t have to be concerned about the
installation and management of the tool itself, you need to become familiar
with how to best use it to record your defects and get them closed. This sec-
tion is not meant to be a full-blown tutorial, but provides an initial exposure
and discussion of the following:

■■ Using a defect tracking system

■■ Information that is essential to good defect reports

■■ Avoiding typical mistakes and omissions

■■ Extra things you can do to help get your bug looked at and fixed

Figure 2.3 shows the new defect entry window of the Mantis Bug
Tracker tool. The main elements of this window are the function selections
along the sidebar, and the entry screen on the right. Field names with aster-
isks provide a visual cue that these fields are mandatory. You must provide
information in each of these fields before your defect can be submitted.

In general, this function and the View Issues filters are very similar to
using an email program like Microsoft®

 Outlook®. You can decide which
things need your attention, browse through them, and make changes to
issues as needed.

The data entry screen is where you make most of your contributions, so
the following sections explore some of the key fields you need to work with.
To learn more about using other functions of Mantis, you can explore the
demo at https://www.mantisbt.org/demo.php [MANTIS 16].

Game Testing.indb 25 03/09/16 3:57 PM

https://www.mantisbt.org/demo.php

26 • Game Testing

Figure 2.3  Mantis “Report Issue” form.

Describe
Start your entry with a descriptive title. Generic or broad descriptions like

“Had to restart game” or “Problem in multiplayer lobby” do not sufficiently
describe the problem to get the attention of the people who need to go after
the problem to fix it. Imagine picking up a newspaper and reading headlines
like “Some Crime Happened” or “A Team Won”—you might be left wonder-
ing. Instead, provide one or two details that help narrow down the problem.

Take a cue from the Sports page. If a team beats another under no spe-
cial circumstances, you might see a headline like “Yankees Beat Red Sox.” If
something else noteworthy happens, however, there might be more detail,
such as “Marlins Shut Out Yankees to Win Series.” Think of your bug as a
noteworthy event that will be competing for the reader’s attention.

Figure 2.4 shows Summary and Description fields for a problem
found while playing the free version of Doodle Bowling for iPhone® and
iPod Touch®. In this case, the Title mentions what happened and where it

Game Testing.indb 26 03/09/16 3:57 PM

Being a Game Tester • 27

happened. Always include the “what” and then add one or two of the dis-
tinctive “who,” “where,” “when,” or “how” factors.

In the Description, be sure to include all of these details: who (player—
as opposed to a computer opponent or NPC), what (pin in gutter gets
replaced), where (in “realistic” themed bowling alley), when (in second half
of frame), how (pin is upright). Then, describe how you were able to rem-
edy or avoid the situation, if at all, and add any things that you tried to do
that would not reverse or undo the effects of the problem. This serves two
purposes: First, it helps the project leaders evaluate the importance of fix-
ing the bug. Second, it gives the developers clues about how the problem
happened and how they might go about fixing it. It also establishes the
minimum criteria for testing later on when you need to verify that this bug
was properly fixed.

Another way to describe your defect in detail would be to provide a step-
by-step description of how you found it. Don’t start from when you turned

Figure 2.4  Defect Title and Description

Game Testing.indb 27 03/09/16 3:57 PM

28 • Game Testing

the computer on, but include the steps that are relevant to reproducing the
problem. An alternative description for the “pin in the gutter” bug would be:

Select the “realistic” Doodle Bowling theme. Continue to play until
you leave a pin upright in the gutter. When the pins are reset, the
pin in the gutter has been placed back onto the lane in its original
position.

You should also include information about any additional places you
looked for the problem where it didn’t show up. For example, does an upright
pin in the gutter after rolling the second ball in the frame get counted?

Pick a Severity
The defect Severity field is also important for the routing and handling

of your defect. Use your best judgment to provide a Severity, even if the field
is not mandatory. This helps the team understand how urgent it might be
and who is best equipped to handle the issue. What we have here could be
considered a trivial, tweak, or minor issue depending on the which platforms
and devices are impacted. Figure 2.5 shows the defect Severity set to “major”.

Figure 2.5  Severity Type selection.

Game Testing.indb 28 03/09/16 3:57 PM

Being a Game Tester • 29

Not everything you find as a tester is a bug in the sense that something
doesn’t work as planned. You will find things that could be improved or
added to the game to make it better. These kinds of issues might be classi-
fied as “minor”, “trivial”, or “tweak.”.

Likewise, you can enter a “feature “enhancement” for such things as

■■ An idea for the sequel

■■ An optimization to make for the next platform you port the game to

■■ Adding support for a brand new type of controller

■■ A feature or item to make available for download after the game ship

Another function of the game tester is to check the documentation. You
could be looking for consistency with how the actual game functions, impor-
tant things that are left out, or production errors such as missing pages, mis-
labeled diagrams, and so on. These would fall into the “text” defect type.

The “Third Party” type could be problems introduced by software or
hardware that your team does not produce. For example, a particular brand
of steering wheel controller doesn’t give force feedback to the user, whereas
three other brands work fine.

For the kinds of defects in which the game is simply not working the
way it is supposed to, the “Major” or “Crash” type would be specified, while
the “Block” choice might be used for something that has a larger scope,
such as redoing the collision detection mechanism in the game.

Prioritize
Depending on the “rules of engagement” for your project, you might

also be required to classify the defect priority (or “severity”) and/or type.
Figure 2.6 shows a pull-down menu of choices for assigning an initial prior-
ity to this defect.

The names and meanings of the priority choices could be different for
your project or defect tracking tool, but the concept is the same. Rank the
defect according to its importance, as defined for each choice. For example,
an “Immediate” defect could be designated for defects in games that rely
on subscribers or in-game purchases to sustain the operation of the game.
“Urgent” can be defined as a defect that stops or aborts the game in prog-
ress without any way to recover and continue the game. An Urgent bug
might also have side effects, such as causing the player’s recent progress to

Game Testing.indb 29 03/09/16 3:57 PM

30 • Game Testing

be lost, as well as the loss of newly won or discovered items. If your charac-
ter was frozen in a multiplayer game, this could also result in player death
and its associated penalties after the evil horde you were fighting continued
happily pummeling you until your health reached 0.

A “High” priority bug could be a problem that causes some severe con-
sequence to the player, such as not getting a quest item after successfully
completing the quest. This priority could also be used for an “Urgent” type
of defect that happens under obscure circumstances. You should be stingy
about making that kind of a downgrade when you first log the bug, especially
in a multiplayer game, because nefarious players might be able exploit that
bug to their advantage or your disadvantage if the obscure circumstances are
discovered in the released game and subsequently publicized. An example
of this kind of misuse happened in the Asheron’s Call PC-based online game
where players would kill their character and then intentionally crash the
game server. Once the server was back up, they were able to retrieve a dupli-
cate of a rare item from their corpse. See “A Note on the Hotfix” sidebar for
the developers’ response to this defect when it occurred in January of 2001.

Figure 2.6  Defect Priority selection.

Game Testing.indb 30 03/09/16 3:57 PM

Being a Game Tester • 31

A Note on the Hotfix

January 23, 2001

We wanted to thoroughly explain the cause of today’s hotfix, and what impact it
will have on you, the players.

Late Monday night, a bug was discovered that allowed players to intentionally crash
the server their characters were on. Additionally, a person could use this bug and the
resulting time warp (reverting back to the last time your character was saved to the
database), to duplicate items. By intentionally crashing the servers, this also caused
every other player on that server to crash and time warp, thus losing progress.

We were able to track down this bug and we turned off the servers to prevent
additional people from crashing the servers and/or duplicating items.

The good news is that we were able to track down all the players who were
exploiting this bug and crashing the servers. As we have stated in the past: Since
Asheron’s Call was commercially released, it has been our policy that if players make
use of a bug that we did not catch or did not have time to fix before releasing the
game, we would not punish them for our mistake, instead directing our efforts
toward fixing those bugs as soon as possible. The exceptions to this are with those bugs
that significantly affect the performance or stability of the game.

The players who were discovered repeatedly abusing this bug to bring down the
servers are being removed from the game. While we dislike taking this type of
action, we feel it is important that other players know that it is unacceptable to
disrupt another player’s game in such a fashion.

We deeply regret this bug, and sincerely apologize for the consequences this has
had on our players.

The Asheron’s Call Team [ASHERON 01]

“Normal” defects cause noticeable problems, but probably do not
impact the player in terms of rewards or progress. The difference between
“High” and “Medium” could be the difference between getting your bug
looked at and fixed, put aside to be fixed in a post-release patch, or left in
the game as it is. When in doubt, unless otherwise directed by your project
leads, assign the “High” priority so it will be fairly evaluated before being
downgraded. Be careful not to abuse this tactic, or the defects you find will
not be taken as seriously as they should.

The “Low” priority is normally for very minute defects that don’t affect
gameplay, those that occur under impossible conditions, or those that are

Game Testing.indb 31 03/09/16 3:57 PM

32 • Game Testing

a matter of personal taste. FIFA 15 Ultimate Team™ New Season awards
trophies for winning tournaments. The winning player is presented with a
trophy and information about the player’s rewards. For example, in Figure
2.7, the player is shown that they received 3000 Coins and 1 PREMIUM
GOLD JUMBO pack. Occasionally, the reward information is corrupted,
as seen in Figure 2.8.

Figure 2.7 C orrect display of tournament rewards.

Figure 2.8  Incorrect display of tournament rewards.

Game Testing.indb 32 03/09/16 3:57 PM

Being a Game Tester • 33

In many game companies, an additional “severity” rating is used in
conjunction with a “priority.” In these cases, the severity field describes the
potential impact of the bug on the player, while the priority field is used by
the team to establish which defects are determined to be the most impor-
tant to fix. These categories can differ when a low impact (severity) defect
is very conspicuous, such as misspelling the game’s name on the main
menu, or when a very severe defect is not expected to occur in a player’s
lifetime, such as a crash that is triggered when the console’s date rolls over
to the year 3000. The ability of a player to recover from a defect, and the
risk or difficulty associated with fixing a defect, are also factors in deter-
mining the priority, apart from the severity. In this arrangement, severities
are typically assigned by the person who logs the defect and the priority
gets assigned by the CCB or the project manager.

Be Helpful
Finally, make sure you fill in any remaining required fields and include

any other artifacts or information that might be of help to anyone trying to
assess or repair the problem, such as the fact that the Doodle Bowling bug
was first introduced in version 1.6 of the game.

In addition to adding more details to the description, with DevTrack you
can use the Attachment function to add helpful files to the defect record.
Attach or provide links to any of the following items you can get your hands on:

■■ Server logs

■■ Screen shots

■■ Transcripts from the character’s journal

■■ Sound files

■■ Saved character file

■■ A digital recording (including audio) of the events leading up to and
including the appearance of the bug

■■ Traces of code in a debugger

■■ Log files kept by the game platform, middleware, or hardware

■■ Operating system pop-ups and error codes

■■ Data captured by simulators for mobile development environments,
such as Android™, Apple’s XCode IDE, and Microsoft’s Windows®
Mobile SDK

Game Testing.indb 33 03/09/16 3:57 PM

34 • Game Testing

Figures 2.9 and 2.10 show two screen shots to attach to the Doodle
Bowling bug report. These provide before and after the error event occurred
(the pin in the gutter was put back into play), and also show the impact on
the player’s score at the bottom of the screen.

Figure 2.9  Pin remains upright in the gutter af-
ter rolling the first ball. (Permission Marc Andreoli,
GameResort LLC.)

Figure 2.10  Pin appears back on the lane in the
second half of the frame. (Permission Marc Andre-
oli, GameResort LLC.)

Not all defect tracking systems you use will have the same kind of struc-
ture or user interface as Mantis. Pay attention to getting the basics right
and ask the other testers or your test lead what else is expected of you when
reporting a bug. For example, you might be expected to send an email to a
special mailing list if the defect tracking system you are using does not do
that automatically, or you could be using a shared spreadsheet instead of a
tool specifically designed for defect tracking.

For an online list of more defect tracking tool options, see ApTest,
“Bug and Defect Tracking Tools” [APTEST10].

!
TIP

Game Testing.indb 34 03/09/16 3:57 PM

Being a Game Tester • 35

Pass or Fail?
Tests that fail are good from your perspective, but it’s also important for

the project to know which tests passed. You will probably be expected to
record the completion and results of your tests by indicating which passed
and which failed. Other status types might include “Blocked” or “Not Avail-
able,” where “Blocked” indicates that an existing problem is preventing you
from executing one or more steps in the tests, and “Not Available” indicates
that a feature or capability that is part of the test is not available in the ver-
sion of the game you are testing. For example, a multiplayer scenario test
is “Blocked” if a defect in the game prevents you from connecting to the
multiplayer server. A test that can’t be run because the level hasn’t been
added to the game yet would be classified as “Not Available.”

Usually this information goes to the test lead and it’s important to pro-
vide it in a timely manner. It might just be a physical sheet of paper you fill
out and put on a pile, or an electronic spreadsheet or form you send in. This
information can affect planning which tests get run for the next release, as
well as the day-to-day assignments of each tester.

In the course of testing, keep track of what version of the game you
are running, what machine settings to use, peripherals, and so on.
It’s also a good idea to make and keep various “save” files for the
game so you can go back later to rerun old tests, or try new ones
without having to play through the game again. You should also
keep your own list of the bugs you have found so that you can follow
up on them during the project. It’s not uncommon to become the
victim of bug reports that were “lost” or “moved,” even though the
bugs themselves were still in the software. Just make sure you have
a way to identify each save file with the game version it was made
for. Otherwise, you can get false test results by using old files with
new releases or vice versa.

TESTIFY TO OTHERS

As much as you might become attached to the defects you find, you
could have very little to say directly about whether or not they get fixed.
Your precious defects will likely be in the hands of a merciless Change Con-
trol Board (CCB). This might go by some other name in your company or

!
TIP

Game Testing.indb 35 03/09/16 3:57 PM

36 • Game Testing

project team, but the purpose of this group is to prioritize, supervise, and
drive the completion of the most necessary defects to create the best ship-
ping game possible when the project deadline arrives. This implies that
defects are easier to get fixed when they are found early in the project than
when they are found later. The threat of messing up the rest of the game
and missing the shipping deadline will scare many teams away from fixing
difficult defects near the end of the project. This is why you want to find the
most significant issues early!

The CCB generally includes representatives from development, test-
ing, and project management. On a small game team, everyone might get
together to go over the bugs. On larger productions, the leads from various
groups within the project will meet, along with the project manager and the
configuration manager—the person responsible for doing the builds and
making sure the game code files are labeled and stored properly in the proj-
ect folder or other form of code repository. Your defects will be competing
with others for the attention of the CCB. The defect type and priority play
an important role in this competition. Also, if you were diligent in providing
details about how to reproduce the bug and why it is important to fix, your
bugs will get more attention.

Different strategies for determining the “final” priority of a defect
can produce different results for the same defect. If only a single indi-
vidual, like the head of the CCB, gets to decide on the priority, then the
tendency will be for defects to have a lower average priority (meaning
less “severe”) than if people with different perspectives, such as produc-
ers, designers, developers, and testers, each give a score and the average
score is used.

Also keep in mind that if your project has a particular goal or threshold
for which kinds of defects are allowed to be released in the game, then
anything you submit will be under pressure to get de-prioritized below that
threshold. This is where amplifying the defect helps you make a stronger
case for why something should be considered high priority versus medium,
for example.

One of the difficulties some testers have is balancing “ownership” of the
defect with knowing when to “let go.” You are expected to find problems
and report them. Other people on the project are usually designated to take
responsibility for properly processing and repairing the defects. Don’t take
it personally if your defect doesn’t get fixed first, or other people don’t get
as excited about it as you do.

Game Testing.indb 36 03/09/16 3:57 PM

Being a Game Tester • 37

VERIFY THE FIX

As a tester, your involvement doesn’t end after the bug is found and
reported. You can expect to help developers reproduce the bug, run experi-
ments for them, and re-test after they think the bug is fixed. Sometimes you
will run the test on a special build that the developer makes and then you
will need to re-run it after the fix is put into the main version of the game
release.

Use your knowledge of your Judger/Perceiver traits to get better
at finding a wider variety of defects and to get more testing done. This
includes reading and thoroughly knowing the rules of the game. At the
same time, take on positions, assignments, or roles that make the most of
your tendencies.

Once you’ve seen a bug, identify it, try to make it show up in more
places, and more frequently. Then you’re ready to document the bug in the
defect tracking system. Use a specific title and provide a detailed description.
Include files that provide evidence of the problem and could help reproduce
and track down the defect. A poorly documented bug costs the CCB time to
figure out the proper severity to assign to the problem, developers’ time to
reproduce and root cause the problem so it can be fixed, and your time in
reprocessing the same defect instead of moving on to find more bugs.

While you’re testing, have the tape running, so to speak, so that when
the defect happens you have all the evidence to include in the bug report.
Screen shots and log files really help!

Over the course of any project, expect to spend a portion of your time
writing up defects, reporting your results, going back over your issues with
developers, and re-running your tests on one or two experimental builds
before a good fix makes it into a general release.

Exercises

1.	What is Rule 2?

2.	Identify each of the following as Judger (J) or Perceiver (P) behaviors:

a.	Noticed a misspelling in the user manual

b.	Created a character with all skills set to 0 just to see what would
happen

Game Testing.indb 37 03/09/16 3:57 PM

38 • Game Testing

c.	Reported that the AK-47 doesn’t fire at the correct rate

d.	Found a way to get his skater off the map

3.	Which of the following is an appropriately detailed defect title?

a.	Game crashes

b.	Found a bug in multiplayer mode

c.	Can’t drive Fastkat vehicle into the hallway south of the main
chamber

d.	Character dies unexpectedly

4.	Which of the following should be in the defect description?

a.	Where the defect happened

b.	How the defect happened

c.	Who in the game caused the problem

d.	What the defect did to the game

e.	All of the above

5.	Your first assignment for Gamecorp is testing a first-person shooter
game. Your character, a cyborg wearing heavy armor, is on the sec-
ond level carrying a knife and ammo for the megazooka weapon. You
find an empty megazooka, pick it up and try to fire it, but it doesn’t
shoot because it’s reading 0 ammo. You know from your project meet-
ings that the weapon is supposed to automatically load any ammo you
are carrying for it. What are some things you should do to “amplify”
this defect?

6.	What are some of the kinds of problems you might find by running
the step-by-step test example from the “Playing Games” section of
this chapter?

7.	Rewrite the step-by-step test in outline form. What are some advantages
of doing this? What are some disadvantages?

Game Testing.indb 38 03/09/16 3:57 PM

Being a Game Tester • 39

References

[SFMOVESET 10] Street Fighter Moves app for Android and iOS, Hijinx Soft-
ware, accessed December 2015.

[APTEST 10] ApTest. Bug and defect tracking tools. Available online at http://
www.aptest.com/bugtrack.html, accessed December 2015.

[ASHERON 15] OG’s crashing Darktide server to exploit. Available online at
https://www.asheronscall.com/en/forums/showthread.php?64575-OG-s-
crashing-Darktide-server-to-exploit, accessed February 2016.

[Neumann 94] Neumann, Peter G. 1994. Computer related risks, Addison-Wesley
Professional.

[PERSON 10] Personality Test Center. Available online at http://
www.personalitytest.net/cgi-bin/q.pl, accessed December 2015.

[Peterson 96] Peterson, Ivars. 1996. Fatal defect: Chasing killer computer bugs,
Vintage.

[STEAMCOMMUNITY 13] Steam Community. BioShock2 v1.03. Available online
at http://www.fileplanet.com/209922/200000/fileinfo/BioShock-2---Patch-v1.03,
accessed February, 2016.

 [SUITE.IO] suite.io Judgers and Perceivers at Work. Available online at http://
suite.io/joni-rose/6ts273, accessed December 2015.

[MANTIS 16] Mantis Bug Tracker. Available online at https://www.mantisbt.org/
demo.php, accessed February, 2016.

[UFC 10] PlayStation.Blog. UFC Undisputed 2010 – PlayStation 3 Exclusive
Content. Available online at http://blog.eu.playstation.com/2010/04/30/ufc-
undisputed-2010-playstation-3-exclusive-content/, accessed December 2015.

Game Testing.indb 39 03/09/16 3:57 PM

http://www.aptest.com/bugtrack.html
http://www.aptest.com/bugtrack.html
https://www.asheronscall.com/en/forums/showthread.php?64575-OG-s-�crashing-Darktide-server-to-exploit
https://www.asheronscall.com/en/forums/showthread.php?64575-OG-s-�crashing-Darktide-server-to-exploit
https://www.asheronscall.com/en/forums/showthread.php?64575-OG-s-�crashing-Darktide-server-to-exploit
http://www.personalitytest.net/cgi-bin/q.pl
http://www.personalitytest.net/cgi-bin/q.pl
http://www.fileplanet.com/209922/200000/fileinfo/BioShock-2---Patch-v1.03
http://suite.io/joni-rose/6ts273
http://suite.io/joni-rose/6ts273
https://www.mantisbt.org
http://blog.eu.playstation.com/2010/04/30/ufc-undisputed-2010-playstation-3-exclusive-content
http://blog.eu.playstation.com/2010/04/30/ufc-undisputed-2010-playstation-3-exclusive-content
http://blog.eu.playstation.com/2010/04/30/ufc-undisputed-2010-playstation-3-exclusive-content

Game Testing.indb 40 03/09/16 3:57 PM

Writing this chapter led to a lengthy list of answers to the question of
“Why is testing important?”

■■ It’s easy for game software to go wrong.

■■ There are many opportunities to make a mistake.

■■ Game software is complex.

■■ People write game software and people make mistakes.

■■ Software tools are used to produce games and these tools are not
perfect.

■■ There is a great deal of money at stake for games that succeed.

■■ Games must work on multiple platforms with a variety of configurations
and devices.

In This Chapter

●● Types of defects to look for
●● Looking at source code to find bugs
●● Other sources of problems

why testing is
important

3c h a pt e r

Game Testing.indb 41 03/09/16 3:57 PM

42 • Game Testing

■■ People expect more out of every game you make.

■■ It better work right if over a million people will be playing at the same
time online and paying a monthly fee for that privilege.

■■ Critics are standing by, ready to rate your game in print, in app stores,
and on the Internet.

■■ Games have to be fun, meet expectations, and get released on time.

A short and simple answer, which summarizes everything in this list, is
“Because games get made wrong.” If you can identify mechanisms or pat-
terns that describe how games get made wrong, you can relate that to what
kinds of problems you should look out for and anticipate testing as you fol-
low your path to becoming a top-notch game tester. Maybe the people who
care the most about game testing can help you to understand.

Who Cares?

Testing must be important to game publishers because of all the
trouble they go through to staff and fund testers and then organize and
manage the rounds of beta testing that precede the official game release.
It’s important to console providers because they require certain quality
standards to be met before they will allow a title to ship for their box.
Mobile game testing is required by handset manufacturers and wireless
carriers in order for games to get approved for use on their devices and
networks.

Testing is important to the development team. They rely on testers to
find problems in the code. The testers bear the burden of getting blamed
when serious defects escape their notice. If defects do escape, someone
wonders why they paid all that money for testing.

Testing is important because of the contractual commitments and com-
plex nature of the software required to deliver a top-notch game. Every
time someone outside of your team or company is going to get a look at the
game, it is going to be scrutinized and publicized. If all goes well, you might
get canonized. If not, then your sales and profits could vaporize.

Despite all of the staffing, funding, and caring, games still get made
wrong.

Game Testing.indb 42 03/09/16 3:57 PM

Why Testing is Important • 43

Defect Typing

Let’s leave the people behind for a minute and look at the software.
Software can fail in a variety of ways. It is useful to classify defects into
categories that reveal how the defect was introduced and how it can be
found or, even better, avoided in the future. The Orthogonal Defect Clas-
sification (ODC) system, developed by IBM, was developed for this pur-
pose. This system defines multiple categories of classification, depending
on the development activity that is taking place. This chapter explores the
eight Defect Type classifications, and examines their relevance to game
defects. The Defect Type classifies the way the defect was introduced into
the code. As we go along, keep in mind that each defect can be the result
of either incorrect implementation or code that is simply missing. The fol-
lowing ODC Defect Types summarize the different categories of software
elements that go into producing the game code:

■■ Function

■■ Assignment

■■ Checking

■■ Timing

■■ Build/Package/Merge

■■ Algorithm

■■ Documentation

■■ Interface

If you have trouble remembering this list, try remembering the acro-
nym FACT BADI (pronounced “Fact Baddie”).

Defect examples in this section are taken from the Dark Age of Camelot
(DAOC) game Version 1.70i Release Notes, posted on July 1, 2004 [JEUX
04]. A predecessor to World of Warcraft, Dark Age of Camelot is also a
Massive Multiplayer Online Role Playing Game (MMORPG) that is con-
tinually modified by design to continue to expand and enhance the players’
game experience. As a result, it is patched frequently with the dual purpose

!
TIP

Game Testing.indb 43 03/09/16 3:57 PM

44 • Game Testing

of fixing bugs and adding or modifying capabilities. This gives us the oppor-
tunity to examine it as it is being developed, as opposed to a game that has
a single point of release to the public.

The defect description by itself doesn’t tell us how the defect was intro-
duced in the code—which is what the Defect Type classification describes.
Because we don’t have access to the development team’s defect tracking
system in order to know exactly how this bug occurred, let’s take one specific
bug and look at how it could have been caused by any of the defect types.

Here is a fix released in a patch for Dark Age of Camelot, which will be
referenced throughout the examples in this chapter:

“The Vanish realm ability now reports how many seconds of super
stealth you have when used.”

If that’s how it’s supposed to work, then you can imagine that the bug
was logged with a description that went something like this:

“The Vanish realm ability fails to report how many seconds of super
stealth you have when it’s used.”

Details of the Vanish ability are as follows:

Provides the stealther with super stealth, which cannot be broken.
Also will purge DoTs and Bleeds and provides immunity to crowd
control. This ability lasts for one to five seconds depending on level of
Vanish. The stealther also receives an increase in movement speed as
listed. A stealther cannot attack for 30 seconds after using this ability.

Effect:

L1 - Normal Speed, 1 second immunity

L2 - Speed 1, 2 second immunity

L3 - Speed 5, 5 second immunity

Type: Active

Re-use: 10 minutes.

Classes that can use Vanish: Infiltrator, Shadowblade [ZAM 11].

Game Testing.indb 44 03/09/16 3:57 PM

Why Testing is Important • 45

Functions
A Function error is one that affects a game capability or the way the

user experiences the game. The code providing this function is missing or
incorrect in some or all instances where it is required.

Here’s an imaginary code snippet that illustrates code that could be
used to set up and initiate the Vanish ability. The player’s Vanish ability
level is passed to a handler routine specific to the Vanish ability. This
routine is required to make all of the function calls necessary to activate
this ability. The g_vanishSpeed and g_vanishTime arrays store val-
ues for each of the three levels of this ability, plus a value of 0 for level
0. These arrays are named with the “g_” prefix to indicate that they are
global, because the same results apply for all characters that have this
ability. Values appearing in all uppercase letters indicate that these are
constants.

Missing a call to a routine that displays the time of the effect is an
example of a Function type defect for this code. Maybe this block of code
was copied from some other ability and the “vanish” globals were added
but without the accompanying display code. Alternatively, there could have
been a miscommunication about how this ability works and the program-
mer didn’t know that the timer should be displayed.

void HandleVanish(level)
{
 if (level == 0)
 return; // player does not have this ability
so leave
 PurgeEffects(damageOverTime);
 IncreaseSpeed(g_vanishSpeed[level]);
 SetAttack(SUSPEND, 30SECONDS);
 StartTimer(g_vanishTime[level]);
 return;
} // oops! Did not report seconds remaining to user – hope they
don’t notice

Alternatively, the function to show the duration to the user could have
been included, but called with one or more incorrect values:

 ShowDuration(FALSE, g_vanishTime[level]);

Game Testing.indb 45 03/09/16 3:57 PM

46 • Game Testing

Assignments
A defect is classified as an Assignment type when it is the result of incor-

rectly setting or initializing a value used by the program or when a required
value assignment is missing. Many of the assignments take place at the start
of a game, a new level, or a game mode. Here are some examples for vari-
ous game genres:

Sports
■■ Team schedule

■■ Initialize score for each game

■■ Initial team lineups

■■ Court, field, rink, etc. where game is being played

■■ Weather conditions and time of day

Role Playing Game (RPG), Adventure
■■ Starting location on map

■■ Starting attributes, skills, items, and abilities

■■ Initialize data for current map

■■ Initialize journal

Racing
■■ Initialize track/circuit data

■■ Initial amount of fuel or energy at start of race

■■ Placement of power-ups and obstacles

■■ Weather conditions and time of day

Casino Games, Collectible Card Games, Board Games
■■ Initial amount of points or money to start with

■■ Initial deal of cards or placement of pieces

■■ Initial ranking/seeding in tournaments

■■ Position at the game table and turn order

Game Testing.indb 46 03/09/16 3:57 PM

Why Testing is Important • 47

Fighting
■■ Initial health, energy

■■ Initial position in ring or arena

■■ Initial ranking/seeding in tournaments

■■ Ring, arena, etc. where fight is taking place

Strategy
■■ Initial allocation of units

■■ Initial allocation of resources

■■ Starting location and placement of units and resources

■■ Goals for current scenario

First Person Shooters (FPS)
■■ Initial health, energy

■■ Starting equipment and ammunition

■■ Starting location of players

■■ Number and strength of CPU opponents

Puzzle Games
■■ Starting configuration of puzzle

■■ Time allocated and criteria to complete puzzle

■■ Puzzle piece or goal point values

■■ Speed at which puzzle proceeds

You can see from these lists that any changes could tilt the outcome in
favor of the player or the CPU. Game programmers pay a lot of attention
to balancing all of the elements of the game. Initial value assignments are
important for providing that game balance.

Even the Vanish defect could have been the result of an Assignment
problem. In the imaginary implementation that follows, the Vanish ability
is activated by setting up a data structure and passing it to a generic ability
handling routine.

Game Testing.indb 47 03/09/16 3:57 PM

48 • Game Testing

ABILITY_STRUCT realmAbility;
realmAbility.ability = VANISH_ABILITY;
reamAbility.purge = DAMAGE_OVER_TIME_PURGE;
realmAbility.level = g_currentCharacterLevel[VANISH_ABILITY];
reamAbility.speed = g_vanishSpeed[realmAbility.level]
realmAbility.attackDelay = 30SECONDS;
realmAbility.duration = g_vanishTime[realmAbility.level];
realmAbility.displayDuration = FALSE; // wrong flag value
HandleAbility(realmAbility);

Alternatively, the assignment of the displayDuration flag could be
missing altogether. Again, cut and paste could be how the fault was intro-
duced, or it could have been wrong or left out as a mistake on the part of
the programmer, or there could have been a misunderstanding about the
requirements.

Checking
A Checking defect type occurs when the code fails to properly validate

data before it is used. This could be that a check for a condition is missing
or improperly defined. Some examples of improper checks in C code would
be the following:

■■ “=” instead of “==” used for comparison of two values

■■ Incorrect assumptions about operator precedence when a series of
comparisons are not parenthesized

■■ “Off by one” comparisons, such as using “<=” instead of “<”

■■ A value (*pointer) compared to NULL instead of an address
(pointer) – either directly from a stored variable or as a returned
value from a function call

■■ Ignored (not checked) values returned by C library function calls such
as strcpy

Back to our friend the Vanish bug. The following shows a Checking
defect scenario where the ability handler doesn’t check the flag for display-
ing the effect duration or checks the wrong flag to determine the effect
duration.

Game Testing.indb 48 03/09/16 3:57 PM

Why Testing is Important • 49

HandleAbility (ABILITY_STRUCT ability)
{
 PurgeEffect(ability.purge);
 if (ability.attackDelay > 0)
 StartAttackDelayTimer(ability.attackDelay);
 if (ability.immunityDuration == TRUE)
 // should be checking ability.displayImmunityDuration!
 DisplayAbilityDuration(ability.immunityDuration);
}

Timing
Timing defects have to do with the management of shared and real-

time resources. Some processes could require time to start or finish, such
as saving game information to a hard disk. Operations that depend on that
data shouldn’t be prevented until completion of the dependent process.
A user-friendly way of handling this is to present a transition such as an
animated cut scene or a “splash” screen with a progress bar that shows the
player that the information is being saved. Once the save operation is com-
plete, the game resumes. Other timing-sensitive game operations include
preloading audio and graphics so that they are immediately available when
the game needs them. Many of these functions are now handled in the
gaming hardware, but the software still might need to wait for some kind of
notification, such as a flag that gets set, an event that gets sent to an event
handler, or a routine that gets called once the data is ready for use.

The FMOD multi-platform audio engine [GAMEDEV 04]
illustrates how an audio event notification scheme is set up and
utilized. To play a song, the developer starts by initializing FMOD,
loading a song which returns a handle, and passing that handle to
the PlaySong function. When an event is eventually detected that
should stop the song—such as when the game environment changes
to a new setting (city, arena, planet, etc.)—StopSong will do just
what its name suggests and the handle can be freed using FreeSong.

User inputs can also require special timing considerations. Double-
clicks or repeated presses of a button could cause special actions in the
game. There could be mechanisms in the game platform operating system
to handle this or the game team might put its own into the code.

NOTE

Game Testing.indb 49 03/09/16 3:57 PM

50 • Game Testing

In MMORPG and multiplayer mobile games, information is flying
around between players and the game server(s). This information has to
be reconciled and handled in the proper order or the game behavior will
be incorrect. Sometimes the game software tries to predict and fill in what
is going on while it is waiting for updated game information. When your
character is running around, this can result in jittery movement or even a
“rubber band” effect, where you see your avatar run a certain distance and,
all of a sudden, you see your character being attacked way back from where
you thought you were.

Getting back to the familiar Vanish bug, let’s look at a Timing-defect sce-
nario. In this case, pretend that one function starts up an animation for casting
the Vanish ability, and a global variable g_animationDone is set when the
animation has finished playing. Once g_animationDone is TRUE, the dura-
tion should be displayed. A Timing defect can occur if the ShowDuration
function is called without waiting for an indication that the Vanish animation
has completed. The animation will overwrite anything that gets put on the
screen. Here’s what the defective portion of code might look like:

 StartAnimation(VANISH_ABILITY);
 ShowDuration(TRUE, g_vanishImmunityTime[level]);

This would be the correct code:

 StartAnimation(VANISH_ABILITY);
 while(g_animationDone == FALSE)
 ; // wait for TRUE
 ShowDuration(TRUE, g_vanishImmunityTime[level]);

Build/Package/Merge
Build/package/merge or, simply, Build defects are the result of mistakes

in using the game source code library system, managing changes to game
files, or identifying and controlling which versions get built.

Building is the act of compiling and linking source code and game
assets such as graphics, text, and sound files in order to create an executable
game. Configuration management software is often used to help manage
and control the use of the game files. Each file might contain more than
one asset or code module. Each unique instance of a file is identified by a
unique version identifier.

The specification of which versions of each file to build is done in a con-
figuration specification—or “config spec.” Trying to specify the individual

Game Testing.indb 50 03/09/16 3:57 PM

Why Testing is Important • 51

version of each file to build can be time consuming and error prone, so
many configuration management systems provide the ability to label each
version. A group of specific file versions can be identified by a single label
in the config spec.

Table 3.1 shows some typical uses for labels. Your team perhaps will
not use the exact label names shown here, but they will likely have similarly
named labels that perform the same functions.

Label Usage

[DevBuild]
Identifies files that programmers are
using to try out new ideas or bug fix
attempts

[PcOnly]

Developing games for multiple plat-
forms might require a different version
of the same file that is built for only one
of the supported platforms

[TestRelease]

Identifies a particular set of files to use
for a release to the testers. Implies that
the programmer is somewhat certain
the changes will work. If testing is
successful, the next step might be to
change the label to an “official” release
number.

[Release1.1]

After successful building and testing, a
release label can be used to “remember”
which files were used. This is especially
helpful if something breaks badly later
on and the team needs to backtrack
either to debug the new problem or
revert to previous functionality.

Table 3.1  Typical Labels and Uses

Each file has a special evolutionary path called
the mainline. A version tree provides a graphical
view of all versions of a file and their relation-
ship to one another with respect to the mainline.
Figure 3.1 shows how a new version added to the
mainline is represented on the version tree.

Original version

New version

1

2

Figure 3.1  Mainline of a simple
version tree.

Game Testing.indb 51 03/09/16 3:57 PM

52 • Game Testing

Any new versions of files that are derived from
one already on the mainline are called branches.
Files on branches can also have new branches that
evolve separately from the first branch. Figure 3.2
shows how a branch is numbered and represented
graphically with respect to the mainline.

The changes made on one or more branches
can be combined with other changes made in par-
allel by a process called a merge. Merging can be
done manually, automatically, or with some assis-
tance from the configuration management system,
such as highlighting which specific lines of code
differ between the two versions being merged
together. See Figure 3.3 for an example of how
a version tree can evolve as a result of branching
and merging.

When a programmer wants to make a change
to a file using a configuration management sys-
tem, the file gets checked out. Then, once the
programmer is satisfied with the changes and
wants to return the new file as a new version of
the original one, the filed is checked in. If at some

point in time the programmer changes his mind, the file check out can be
cancelled and no changes are made to the original version of the file.

With that background, let’s explore some of the ways a mistake can be
made.

Specifying a wrong version or label in the configuration specification
might still result in successfully generating a game executable, but it will
not work as intended. It could be that only one file is wrong, and it has a
feature used by only one type of character in one particular scenario. Mis-
takes like this keep game testers in business.

It’s also possible that the configuration specification is correct, but one
or more programmers did not properly label to the version that needed to
be built. The label can be left off, left behind on an earlier version, or typed
incorrectly so that it doesn’t exactly match the label in the config spec.

Another problem can occur as a result of merging. If a common portion
of code is changed in each version being merged, it will take skill to merge

Merger of
2 and 1.1

2 1.1

1

3

Figure 3.3  Merging back to the
mainline.

Mainline Branch

2 1.1

1

Figure 3.2 A version tree with a
branch.

Game Testing.indb 52 03/09/16 3:58 PM

Why Testing is Important • 53

the files and preserve the functionality in both changes. The complexity of
the merge increases when one version of a file has deleted the portion of
code that was updated by the version it is being merged with. If a real live
person is doing the merges, these problems will perhaps be easier to spot
than if the build computer is making these decisions and changes it entirely
on its own.

Sometimes the code will give clues that something is wrong with the
build. Comments in the code like // TAKE THIS OUT BEFORE SHIPPING!
could be an indication that a programmer forgot to move a label or check a
newer version of the file back into the system before the build process started.

Referring back to Figure 3.3, assume the following for the Vanish code:

1.	Versions 1 and 2 do not display the Vanish duration.

2.	Version 1.1 introduced the duration display code.

3.	Merging versions 2 and 1.1 produces version 3, but deletes the part of
the code in version 1.1 that displays the duration.

For the Vanish display bug, here are some possible Build defect type scenarios:
■■ The merge that produced version 3 deleted the part of the code in ver-

sion 1.1 that displays the duration. Version 3 gets built but we get no
duration display.

■■ Versions 1.1 and 2 were properly merged, so the code in version 3 will
display the duration. The label used by build specification has not been
moved up from version 2 to version 3, however, so version 2 gets built
and we get no duration display.

■■ Versions 1.1 and 2 were properly merged, so the code in version 3 will
display the duration. The build label was also moved up from version
2 to version 3. However, the build specification was hard-coded to build
version 2 of this file instead of using the label, so we get no duration
display.

Algorithms
Algorithm defects include efficiency or correctness problems that

result from some calculation or decision process. Think of an algorithm as a
process for arriving at a result (for example, the answer is 42) or an outcome
(for example, the door opens). Each game is packed with algorithms that
you might not even notice if they are working correctly. Improper algorithm

Game Testing.indb 53 03/09/16 3:58 PM

54 • Game Testing

design is often at the root of the ways people find to gain an unexpected
advantage in a game. Here are some places where you can find algorithms
and Algorithm defects in games from various genres:

Sports
■■ CPU opponent play, formation and substitution choices

■■ CPU trade decisions

■■ Modeling the play calling and decision making of an actual coach or
opponent

■■ The individual AI behavior for all positions for both teams in the game

■■ Determining camera angle changes as the action moves to various parts
of the field/court/ice, etc.

■■ Determining penalties and referee decisions

■■ Determining player injuries

■■ Player stat development during the course of the season

■■ Enabling special power-ups, awards, or modes

Role Playing Game (RPG), Adventure
■■ Opposing and friendly character dialog responses

■■ Opposing and friendly character combat decisions and actions

■■ Damage calculations based on skills, armor, weapon type, and strength,
etc.

■■ Saving throw calculations

■■ Determining the result of using a skill; for example, stealth, crafting,
persuading, etc.

■■ Experience point calculations and bonuses

■■ Ability costs, duration, and effects

■■ Resources and conditions needed to acquire and use abilities and
items

■■ Weapon and ability targeting, area of effect, and damage over time

Game Testing.indb 54 03/09/16 3:58 PM

Why Testing is Important • 55

Racing
■■ CPU driver characteristics, decisions and behaviors—when to pit stop,

use power-ups, etc.

■■ Damage and wear calculations for cars, and damaged car behavior

■■ Rendering car damage

■■ Automatic shifting

■■ Factoring effects of environment such as track surface, banking,
weather

■■ CPU driver taunts

Casino Games, Collectible Card Games, Board Games
■■ Opposing player styles and degree of skill

■■ Applying the rules of the game

■■ House rules, such as when dealer must stay in Blackjack

■■ Betting options and payouts/rewards

■■ Fair distribution of results; for example, no particular outcome (card,
dice roll, roulette number, etc.) is favored

Fighting
■■ CPU opponent strike (offensive) and block (defense) selection

■■ CPU team selection and switching in and out during combat

■■ Damage/point calculation, including environmental effects

■■ Calculating and rendering combat effects on the environment

■■ Calculating and factoring fatigue

■■ Enabling special moves, chains, etc.

Strategy
■■ CPU opponent movement and combat decisions

■■ CPU unit creation and deployment decisions

■■ Resource and unit building rules (pre-conditions, resources needed, etc.)

Game Testing.indb 55 03/09/16 3:58 PM

56 • Game Testing

■■ Damage and effect calculations

■■ Enabling the use of new units, weapons, technologies, devices, etc.

First Person Shooters (FPS)
■■ CPU opponent and teammate AI

■■ Opposing and friendly character combat decisions and actions

■■ Damage calculations based on skills, armor, weapon type and strength,
etc.

■■ Weapon targeting, area of effect, and damage over time

■■ Environmental effects on speed, damage to player, deflection or con-
centration of weapons (for example, Unreal Tournament Flak Cannon
rounds will deflect off of walls)

Puzzle Games
■■ Points, bonus activation, and calculations

■■ Determining criteria for completing a round or moving to the next level

■■ Determining success of puzzle goals, such as forming a special word, or
matching a certain number of blocks

■■ Enabling special power-ups, awards, or modes

To complicate matters further, some game titles incorporate more
than one genre, each with a different set of algorithms. For example, the
Pokémon Soul Silver and Heart Gold titles for the Nintendo® DS™ mainly
focus on following a storyline while training up your Pokémon to higher
levels, but they also include beauty and athletic competitions, as well as a
Minesweeper-style mini-game. The Unreal Tournament series is primarily
considered a first-person shooter. It also incorporates adventure and sports
elements at various stages of the tournament. FIFA Ultimate Team mode
on consoles and mobile devices requires players to acquire trading cards
using virtual currency earned from winning games and tournaments.

You can find out more about FIFA Ultimate Team mode features at
https://www.easports.com/fifa/ultimate-team/features

Some other areas where Algorithm type defects can appear in the game
code are graphics rendering engines and routines, mesh overlay code,

NOTE

Game Testing.indb 56 03/09/16 3:58 PM

https://www.easports.com/fifa/ultimate-team/features

Why Testing is Important • 57

z-buffer ordering, collision detection, and attempts to minimize the pro-
cessing steps to render new screens.

For the Vanish bug, consider an Algorithm-defect scenario where the
duration value is calculated rather than taken from an array or a file. Also
suppose that a duration of 0 or less will not get displayed on the screen. If
the calculation (algorithm) fails by always producing a 0 or negative number
result, or the calculation is missing altogether, then the duration will not get
displayed.

The immunity duration granted by Vanish is one second at Level 1, two
seconds at Level 2, and five seconds at Level 3. This relationship can be
expressed by the equation

vanishDuration = (2 << level) – level;

So at Level 1, this becomes 2 − 1 = 1. For Level 2, 4 − 2 = 2, and at Level
3, 8 − 3 = 5. These are the results we want, according to the specification.

Now, what if by accident the modulus (%) operator was used instead of
the left shift (<<) operator? This would give a result of 0 − 1 = −1 for Level
1, 0 − 2 = −2 for Level 2, and 2 − 5 = −3 for Level 3. The immunity duration
would not get displayed, despite the good code that is in place to display
this duration to the user. An Algorithm defect has struck!

Documentation
Documentation defects occur in the fixed data assets that go into the

game. This includes text, audio, and graphics file content, as listed here:

Text
■■ Dialogs

■■ User interface elements (labels, warnings, prompts, etc.)

■■ Help text

■■ Instructions

■■ Quest journals

Audio
■■ Sound effects

■■ Background music

■■ Dialog (human, alien, animal)

Game Testing.indb 57 03/09/16 3:58 PM

58 • Game Testing

■■ Ambient sounds (running water, birds chirping, etc.)

■■ Celebration songs

Video
■■ Cinematic introductions

■■ Cut scenes

■■ Environment objects

■■ Level definitions

■■ Body part and clothing choices

■■ Items (weapons, vehicles, etc.)

This special type of defect is not the result of improper code. The errors
themselves are in the bytes of data retrieved from files or defined as con-
stants. This data is subsequently used by statements or function calls that
print or draw text on the screen, play audio, or write data to files. Defects of
this type are detectable by reading the text, listening to the audio, checking
the files, and paying careful attention to the graphics.

String constants in the source code that get displayed or written to a file
are also potential sources of Documentation type errors. When the game
has options for multiple languages, putting string constants directly in the
code can cause a defect. Even though it might be the proper string to dis-
play in one language, there will be no way to provide a translated version if
the user selects an alternate language.

The examples in this section take a brief detour from the Vanish bug and
examine some other bugs fixed in the Dark Age of Camelot 1.70i release,
which appear at the end of the “New Things and Bug Fixes” list:

■■ If something damages you with a DoT and then dies, you see “A now
dead enemy hits you for X damage” instead of garbage.

This could be a Documentation type defect where a NULL string,
or no string, was provided for this particular message, instead of the
message text that is correctly displayed in the new release. There
could be other causes in the code, however. Note that this problem
has the condition “… and then dies” so maybe there is a Checking
step that had to be added to retrieve the special text string. A point

Game Testing.indb 58 03/09/16 3:58 PM

Why Testing is Important • 59

to remember here is that the description of the defect is usually not
sufficient to determine the specific defect type, although it might
help to narrow it down. Someone has to get into the bad code to
determine how the defect got put in there.

■■ Grammatical fixes made to bug report submissions messages, autotrain
messages, and grave error messages.

This one is almost certainly a Documentation type defect. No mention
is made of any particular condition under which these are incorrect.
The error is grammatical, so text was provided and displayed, but the
text itself was faulty.

■■ Sabotage ML delve no longer incorrectly refers to siege equipment.

This description refers to doing a /delve command in the game
for the Sabotage Master Level ability. The quick conclusion is
that this was a Documentation defect fixed by correcting the text.
Another less likely possibility is that the delve text was retrieved for
some other ability similar to Sabotage due to a faulty pointer array
index—perhaps due to an Assignment or Function defect.

Interfaces
The last ODC Defect Type that needs to be discussed is the Inter-

face type. An interface occurs at any point where information is being
transferred or exchanged. Inside the game code, Interface defects occur
when something is wrong in the way one module makes a call to another.
If the parameters passed on somehow don’t match what the calling routine
intended, then undesired results occur. Interface defects can be introduced
in a variety of ways. Fortunately, these, too, fall into logical categories:

1.	Calling a function with the wrong value of one or more arguments

2.	Calling a function with arguments passed in the wrong order

3.	Calling a function with a missing argument

4.	Calling a function with a negated parameter value

5.	Calling a function with a bitwise inverted parameter value

6.	Calling a function with an argument incremented from its intended value

7.	Calling a function with an argument decremented from its intended value

Game Testing.indb 59 03/09/16 3:58 PM

60 • Game Testing

Here is how each of these could be the cause of the Vanish problem.
Let’s use the ShowDuration, which was introduced earlier in this chap-
ter, and give it the following function prototype:

void ShowDuration(BOOLEAN_T bShow, int duration);

This routine does not return any value, and takes a project-defined Boolean
type to determine whether or not to show the value, plus a duration
value, which is to be displayed if it is greater than 0. So, here are the Inter-
face type defect examples for each of the seven causes:

1.	ShowDuration(TRUE, g_vanishSpeed[level]);

In this case, the wrong global array is used to get the duration (speed
instead of duration). This could result in the display of the wrong value
or no display at all if a 0 is passed.

2.	ShowDuration(g_vanishDuration[level], TRUE);

Let’s say a #define statement causes the BOOLEAN_T data type to be
an int, so inside ShowDuration the duration value (first parameter)
will be compared to TRUE, and the TRUE value (second parameter)
will be used as the number to display. If the duration value does not
match the #define for TRUE, then no value will be displayed. Also, if
a #define assigns TRUE a value of 0 or some negative number, then no
value will be displayed because of our rule for ShowDuration that a
duration less than or equal to zero does not get displayed.

3.	ShowDuration(TRUE);

No duration value is provided. If it defaults to 0 as a result of a local vari-
able being declared within the ShowDuration routine, then no value
will be displayed.

4.	ShowDuration(TRUE, g_vanishDuration[level] | 0x8000);

Here’s a case where the code is unnecessarily fancy and causes trouble.
An assumption was made that the high-order bit in the duration value
acts as a flag that must be set to cause the value to be displayed. This
could be left over from an older implementation of this function or a
mistake made by trying to reuse code from some other function. Instead
of the intended result, it changes the sign bit of the duration value and

Game Testing.indb 60 03/09/16 3:58 PM

Why Testing is Important • 61

negates it. Because the value used inside of ShowDuration will be less
than zero, it will not be displayed.

5.	ShowDuration(TRUE, g_vanishDuration[level] ^ TRUE);

More imaginary complexity here has led to an Exclusive OR operation
performed on the duration value. Once again, this is a possible attempt
to use some particular bit in the duration value as an indicator for wheth-
er or not to display the value. In the case where TRUE is 0xFFFF, this
will invert all of the bits in the duration, causing it to be passed in as a
negative number, thus altering its value and preventing it from being
displayed.

6.	ShowDuration(FALSE, g_vanishDuration[level+1]);

This can happen when an incorrect assumption is made that the level
value needs to be incremented to start with array element 1 for the first
duration. When level is 3, this could result in a 0 duration, because
g_vanishDuration[4] is not defined. That would prevent the value
from being displayed.

7.	ShowDuration(FALSE, g_vanishDuration[level-1]);

Here the wrong assumption is made that the level value needs to be decre-
mented to start with array element 0 for the first duration. When level is
1, this could return a 0 value and prevent the value from being displayed.

Some of these examples are far-fetched, but they illustrate the variety
of ways every single parameter of every single function call can be a tick-
ing time bomb. One wrong move can cause a subtle, undetected, or severe
Interface defect.

Testing Happens

Anytime someone plays a game, it is being tested. When someone
finds a problem with the game, it makes an impression. A beta release
is published for the express purpose of being tested. Hasn’t the game
already been extensively tested prior to the beta release? Why are prob-
lems still found by the Beta Testers? Even after the game is released to
the general public, it’s still being tested. Game companies scramble to get

Game Testing.indb 61 03/09/16 3:58 PM

62 • Game Testing

patches out to fix bugs in PC and online games, but unfortunate console
game publishers have to live with the bugs that were burned onto the
game cartridge or CD-ROM. Mobile developers have an easier time of
it, but when they spend their time fixing old problems, that’s time they’re
not spending on building their next popular mobile hit. Even patches can
miss issues or create new problems that have to be fixed in yet another
patch. All of those bugs escaped the watchful eyes of the game company’s
paid and volunteer testers.

Despite the best efforts of everyone on the game team, games get made
incorrectly. When games go wrong it’s because of defects described by the
eight ODC Defect Types covered in this chapter: Function, Assignment,
Checking, Timing, Build/Package/Merge, Algorithm, Documentation, and
Interface.

In Memoirs of Constant, Volume III, Chapter IX, it is written “…there
is much in common between smugglers and policemen, the great art
of a smuggler being to know how to hide, and that of the detective to
know how to find.” (Accessible at http://www.napoleonic-literature.com/
Book_11/V3C9.html.) This chapter has shown you the ways of the smug-
gler in the hope that it will make you a better game testing policeman.

Exercises

1.	Is game testing important?

2.	Which of the Defect Types do you think is the hardest for testers to
find? Explain why.

3.	List five situations where assignments are likely to occur in the code
for a simulation game, such as games in the The Sims™ or Zoo Tycoon®
series.

4.	List five type of algorithms that you might find in a simulation game.

5.	From the following code example from the publicly available source
code for Castle Wolfenstein: Enemy Territory [WOLFENSTEIN 10],
identify line numbers (added in parentheses) that might be a source of
a defect for each of the ODC Defect Types.

Game Testing.indb 62 03/09/16 3:58 PM

http://www.napoleonic-literature.com

Why Testing is Important • 63

/*
===============
RespawnItem
===============
*/
(0) void RespawnItem(gentity_t *ent) {
(1) // randomly select from teamed entities
(2) if (ent->team) {
(3) gentity_t *master;
(4) int count;
(5) int choice;

(6) if (!ent->teammaster) {
(7) G_Error(“RespawnItem: bad teammaster”);
(8) }
(9) master = ent->teammaster;

(10) for (count = 0, ent = master;
(11) ent;
(12) ent = ent->teamchain, count++)
(13) ;

(14) choice = rand() % count;

(15) for (count = 0, ent = master;
(16) count < choice;
(17) ent = ent->teamchain, count++)
(18) ;
(19) }

(20) ent->r.contents = CONTENTS_TRIGGER;
(21) //ent->s.eFlags &= ~EF_NODRAW;
(22) ent->flags &= ~FL_NODRAW;
(23) ent->r.svFlags &= ~SVF_NOCLIENT;
(24) trap_LinkEntity (ent);

(25) �// play the normal respawn sound only to nearby clients
(26) G_AddEvent(ent, EV_ITEM_RESPAWN, 0);

(27) ent->nextthink = 0;
}

Game Testing.indb 63 03/09/16 3:58 PM

64 • Game Testing

6.	That was fun! Let’s do it again with another Wolfenstein example:

/*
============
G_SpawnItem

Sets the clipping size and plants the object on the floor.

Items can’t be immediately dropped to floor, because they might
be on an entity that hasn’t spawned yet.
============
*/
(0) void G_SpawnItem (gentity_t *ent, gitem_t *item) {
(1) char *noise;

(2) G_SpawnFloat(“random”, “0”, &ent->random);
(3) G_SpawnFloat(“wait”, “0”, &ent->wait);

(4) ent->item = item;
(5) // some movers spawn on the second frame, so delay item
(6) // spawns until the third frame so they can ride trains
(7) ent->nextthink = level.time + FRAMETIME * 2;
(8) ent->think = FinishSpawningItem;

(9) if(G_SpawnString(“noise”, 0, &noise))
(10) ent->noise_index = G_SoundIndex(noise);

(11) ent->physicsBounce = 0.50; // items are bouncy

(12) if(ent->model) {
(13) ent->s.modelindex2 = G_ModelIndex(ent->model);
(14) }

(15) if (item->giType == IT_TEAM) {
(16) G_SpawnInt(“count”, “1”, &ent->s.density);
(17) �G_SpawnInt(“speedscale”, “100”, &ent->splashDamage);
(18) if(!ent->splashDamage) {
(19) ent->splashDamage = 100;
(20) }
(21) }
}

Game Testing.indb 64 03/09/16 3:58 PM

Software quality can be determined by how well the product performs
the functions for which it was intended. For game software, this in-
cludes the quality of the player’s experience plus how well the game

features are implemented. Various activities can be performed to evaluate,
measure, and improve game quality.

In the book “Quality is Free,” [Crosby80] Philip Crosby states that,
well, “Quality is free.” This should be the high concept of your quality pro-
gram. If the cost of performing some quality function is not expected to
produce an eventual saving, find a way to do it cheaper or better. If you
can’t, then stop doing it.

GAME QUALITY FACTORS

Different gamers may have different criteria for what makes a game
“good” for them. Some qualities are likely to be important to many game
customers:

Quality of the story

Quality of the game mechanics

Quality (for example, style, realism) of in-game audio and visual effects

Quality of the download and update experience

Software Quality

4c h a pt e r

Game Testing.indb 65 03/09/16 3:58 PM

66 • Game Testing

Beauty of the visual style

Use of humor and exaggeration

“Human-like” non-player character Artificial Intelligence (AI)

Additionally, games should have an interface that is easy to use and
clear to understand. This includes both the graphical user interface ele-
ments presented on the screen during gameplay and the game control(s)
provided for the player to operate and affect the game. The user interface
can consist of multiple elements such as on-screen displays and menus. The
game control includes the way players control and operate their characters
(or teams, cars, armies, and so on) during the game, as well as the way they
can control their experience through point-of-view and lighting settings.
The game should also support a variety of controllers that are especially
suited for the game’s genre, such as joysticks for air combat, guitars for mak-
ing music and steering wheels for driving.

Another factor in providing a quality experience for the user is to ensure
game code and assets are compatible with the memory constraints of the
target platform. This includes the available working memory required for
the game to run properly as well as the size, quantity and types of target
media supported such as CD-ROMs, DVDs, digital downloads, or virtual
reality content.

Higher memory requirements may affect game performance while
time is spent switching game assets in and out of memory during play. The
impact is magnified when the assets are sent from a remote server to the
console, PC, or mobile gaming device. If the game code and assets don’t fit
within the memory footprint of the least expensive device, the market for
the game and profit potential are reduced.

Handheld device and console memory is not as upgradeable as PCs
are. Games have to fit within the memory constraints of the onboard chips,
removable memory and or hard-drive devices that are supported. Mobile
games are the most constrained in terms of available fixed and removable
memory and tend to use up more and more memory as fixes and updates
are made during the life of the game. Both mobile and console gamers are
likely to reach a point where their memory consumption reaches limitations
of their device and have to make a decision about deleting a less-frequently
used game for the new shiny download that caught their eye.

Game Testing.indb 66 03/09/16 3:58 PM

Software Quality • 67

Any efforts at “code crunching” get more and more expensive the later
they happen in the game development cycle. The cost isn’t just in the labor
to do the reduction work. Shrinking game code or reformatting assets to fit
on the target media or memory footprint can introduce new hard-to-find
bugs late in the project. This creates an extra burden on development, proj-
ect management, defect tracking, version control, and testing.

GAME QUALITY APPRAISAL

The actual quality of the game is established by its design and subse-
quent implementation in code. However, appraisal activities are necessary
to identify the difference between what was produced and what should
have been produced. Once identified, these differences can be repaired
before - and sometimes after - releasing the game.

Testing is considered an appraisal activity. It establishes whether the
game code performs the functions for which it was intended. But testing is
not the most economical way to find game defects; it’s best to catch prob-
lems at the point they are introduced.

Having peers review game deliverables as they are being produced pro-
vides immediate feedback and the opportunity to repair problems before
they are introduced and commingled with the rest of the game. It will be
much harder and more expensive to find and repair these problems at later
phases of the project.

Peer reviews come in different “flavors.” In each case, there are times
when you, the tester, will be required to participate. If you don’t put in the
necessary time and effort to contribute to the review, you and your team
will be less likely to be asked to participate in the future. Make sure you
take this responsibility seriously when your number gets called.

Walkthroughs
Walkthroughs are one form of peer review. A general outline of a walk-

through is as follows:

1.	Leader (for example, the designer) secures a room and schedules the
walkthrough

2.	Leader begins the meeting with an overview of work including scope,
purpose, and special considerations

Game Testing.indb 67 03/09/16 3:58 PM

68 • Game Testing

3.	Leader displays and presents document text and diagrams

4.	Participants ask questions and raise issues

5.	New issues raised during the walkthrough are recorded during the
meeting

The room should comfortably fit the number of people attending
and have a projector for presentations. A whiteboard or paper easel pad
can be used by the leader or participants to elaborate on questions or
answers. Limit attendance to 6–8 people at most. This should not turn
into a team meeting. Only include a representative from each project
role that is potentially affected by the work you are walking through. For
example, someone from the art team does not have to be in most code
design walkthroughs, but there should be an experienced game artist
there when graphics subsystem designs are being presented. Don’t invite
the test lead to every single walkthrough that affects the test team. If you
do, then game knowledge and walkthrough experience won’t get passed
on to other testers. This also keeps the test lead from spending too much
time on walkthroughs and not enough time on test leading. Work with
the test lead to find other capable representatives on her team. If you are
the test lead, send someone capable from your team in your place when
you can.

Be sure to invite one or more developers to your test walkthroughs. It’s
a great way to find out if what you intend to test is really what the game is
going to do once it’s developed. Conversely, get yourself invited to design
and code walkthroughs. Brush up on the design techniques and program-
ming language your team is using. Even if you don’t have any comments to
improve the author’s work, you can use what you learn there to make your
tests better.

It’s also not a bad idea to use some walkthroughs as mentoring or growth
opportunities for people on your team. The “guests” should limit their own
questions and comments during the meeting to the material being pre-
sented and have a follow-up time with their “host” to go over any other
questions about procedures, the design methodology being used, and so on.
This probably should not be done for every walkthrough, but in situations
where someone already has a background in the topic and/or is expected to
grow into a lead role for some portion of the project.

Game Testing.indb 68 03/09/16 3:58 PM

Software Quality • 69

Here’s a list of representatives to consider inviting to walkthroughs of
various project artifacts:

■■ Technical Design Document (TDD) - tech lead, art director, producer,
project manager

■■ Storyboard - producer, dev lead, artists

■■ Software Quality Assurance Plan (SQAP) - project manager, producer,
development lead, test lead, QA lead, and engineer(s)

■■ Code designs, graphics - key developers, art representative, test
representative

■■ Code designs, other - key developers, test representative

■■ Code - key developers, key testers

■■ Test plan - project manager, producer, development lead, key testers

■■ Tests - feature developer, key testers

Relevant topics to cover in walkthroughs include:

■■ Possible implementations

■■ Interactions

■■ Appropriate scope

■■ Traceability to earlier work products

■■ Completeness

Issues raised during the walkthrough are also recorded during the meet-
ing. Sometimes the presenter will realize a mistake simply by talking about
his work. The walkthrough provides an outlet for that. One participant acts
as a recorder, recording issues and presentation points that are essential to
understand the material. Other participants may end up using the infor-
mation for downstream activities, such as coding or testing. The leader is
responsible for promptly closing each issue and distributing the meeting
notes to the team within one week of the walkthrough. QA is expected to
follow up by checking that the issues were indeed closed before any work
was done based on the material that was walked through and that the notes
were distributed to the participants.

Game Testing.indb 69 03/09/16 3:58 PM

70 • Game Testing

Reviews
Reviews are a little more intimate than walkthroughs. Fewer people are

involved - typically 4 to 6 - and the bulk of time is spent on the reviewers’
comments.

Reviewers are expected to prepare their comments prior to the review
meeting and submit them to the review leader so that they can be consoli-
dated prior to the actual meeting. Comments sent electronically are easier to
compile and understand. Be sure to let the review leader know when you are
going to submit a pen-and-paper markup instead of an electronic file. The
review leader may or may not be the author of the material being reviewed.

The review itself can be an in-person meeting between the author and
reviewers or simply a review of the comments by the author alone who
contacts individual reviewers if he has any questions about their issues. An
in-between approach is for the author to look over the reviewer comments
prior to the review meeting and limit the meeting time to discussions over
the few issues that the author disagrees with or has questions about. This
meeting can also take place virtually using network meeting software and
phone headsets. That is especially useful for projects distributed across stu-
dios that are separated in space and time.

During the meeting, someone – usually the review leader – must take
notes and publish the resolution of each item to the team. If the opinions of
a reviewer differ from what the author believes should be done, decisions
on technical matters are left to the author whereas procedural matters can
be resolved by QA.

Checklist-based Reviews
Another form of review takes place between only two people: the author

and a reviewer. In this case, the reviewer follows a checklist to look for mis-
takes or omissions in the author’s work. The checklist should be thorough
and based on specific mistakes that are common for the type of work being
reviewed. Requirements, code, and test reviews of this type would each use
different checklists. At times it would even be appropriate to have check-
lists specific to a game project. These checklists should constantly evolve to
include new types of mistakes that start to show up. Mistakes found during
the checklist review that were not on the checklist should be recorded and
considered for use in the next version. Technology, personnel, and meth-
odology changes could all lead to new items being added to the checklist.

Game Testing.indb 70 03/09/16 3:58 PM

Software Quality • 71

Inspections
Inspections are more structured than reviews. Fagan Inspections are

one particular inspection methodology from which many others have been
derived. They were defined by Michael Fagan in the 1970s based on his
work at IBM, and are now part of the Fagan Defect-Free Process. You can
find out more about this process at [FAGAN16].

A Fagan Inspection follows these steps:

1.	Planning

2.	Overview

3.	Preparation

4.	Meeting

5.	Rework

6.	Follow-Up

7.	Causal Analysis

The inspection meeting is limited to four people, with each session
taking no more than two hours. Larger work should be broken up into
multiple sessions. These guidelines are based on data that shows a decline
in the effectiveness of the inspection if these limits are exceeded. If you
don’t know your inspection rates, such as pages per hour or lines of code
per hour, measure them for the first 10 or so inspections you do. Then
use those results to calculate how many sessions are needed for any future
inspections.

In the Fagan Inspection method, each participant plays a specific role
in the inspection of the material. The Moderator, who is not the Author,
organizes the inspection and checks that the materials to be inspected
satisfy predefined criteria. As with the checklist reviews, you will need to
establish these criteria for different items that you will be inspecting. Once
the criteria are met, the Moderator schedules the review meeting, plus an
“overview” session that takes place prior to the review. This is to discuss the
scope and intent of the inspection with the participants. Participants may
also have questions that can be answered here or soon after the meeting.
Typically, there should be two working days between the overview and the
inspection meeting. This is to give reviewers adequate preparation time.

Game Testing.indb 71 03/09/16 3:58 PM

72 • Game Testing

Each of the inspectors is assigned a role to play in the inspection meet-
ing. The Reader is expected to paraphrase the material being inspected.
The idea is to communicate any implied information or behavior that the
Reader interprets to see if it matches the Author’s intended function. For
example, here is a line of code to read:

 LoadLevel(level[17], highRes, 0);

You could just say “Call LoadLevel with level seventeen, high res
and zero.” A better reading for inspection purposes would be to say “Call
LoadLevel without checking the return value. Pass the level information
using a constant index of seventeen, the stored value of highRes and a hard-
coded zero.” This second reading raises the following potential issues:

1.	The return value of LoadLevel is not checked. Should it return a value
to indicate success, or a level number to verify the level you intended to
load did in fact get loaded?

2.	Using a constant index for the level number may not be a good practice.
Should the level number come from a value passed to the routine that
this code belongs to or should the number 17 be referenced by a more
descriptive defined constant such as HAIKUDUNGEON in case some-
thing in the future causes the level numbering to be re-ordered?

3.	The value of 0 provides no explanation about its function or the parameter
it is being assigned to.

You can get similar results from reading test cases. Having another per-
son try to literally understand your test steps word for word may not turn
out as you intended.

The Tester does not have to be the person from the test team. This is
a role where the person questions things like whether the material being
inspected is internally consistent or consistent with any project documents
it is based on. It is also good if the Tester can foresee how this material will
fit in with the rest of the project and how it would potentially be tested.

A Recorder takes detailed notes about the issues raised in the inspection.
The Recorder is a second role that can be taken on by any of the four people
involved. The Reader is probably not the best choice for Recorder and you
may find that it works best if the Moderator accepts the Recorder role. The
Moderator also helps keep the meeting on track by limiting discussions to
the material at hand.

Game Testing.indb 72 03/09/16 3:58 PM

Software Quality • 73

Throughout the meeting the participants should not feel confined by
their roles. They need to become engaged in discussions of potential issues
or how to interpret the material. A successful inspection is one that invites
the “Phantom Inspector.” This is neither an actual person nor a supernatu-
ral manifestation. Rather, it is a term to explain the source of extra issues
that are raised by the inspection team coming together and feeding off of
each other’s roles.

Once the meeting has concluded, the Moderator determines whether
any rework is required before the material can be accepted. He continues
to work with the Author to follow up on issues until they are closed. An
additional inspection may be necessary, based on the volume or complexity
of the changes.

The final step of this process involves causal analysis of the product
(inspected item) faults and any inspection process (overview, preparation,
meeting, and so on) problems. Issues can be discussed, such as how the
overview could have been more helpful, or requiring stricter compiler flags
to be set that could flag certain code defects prior to submitting the code
for inspection.

GAME STANDARDS

Among its many responsibilities, the QA team should establish that the
project work products follow the right formats. This includes assuring that
the game complies with any standards that apply. User interface standards
and coding standards are two kinds of standards applicable to game software.

User Interface Standards
User interface (UI) standards help players identify with your game title.

Following are some examples of user interface standards, which are
derived from Rob Caminos’ 2004 GDC presentation “Cross-Platform User
Interface Development” [CAMINOS04]. As part of your Quality Assurance
function you would examine relevant screens to confirm they had the prop-
erties and characteristics called for in the standards.

1.	Text should be large and thick, even at the expense of creating an extra
page of text.

2.	Make all letter characters the same size.

Game Testing.indb 73 03/09/16 3:58 PM

74 • Game Testing

3.	Avoid using lowercase letters. Instead, user smaller versions of upper-
case letters.

4.	Use an outline for the font where possible.

5.	On-screen keyboards should resemble the look of an actual keyboard.

6.	On-screen keyboards should have the letters arranged alphabetically.
Do not use the QWERTY arrangement.

7.	Split alphabet, symbol, and accent characters into three separate on-
screen keyboards.

8.	Common functions such as Done, Space, Backspace, Caps Lock, and
switching between character sets should be mapped to available but-
tons on the game controller.

9.	Assign Space and Backspace keyboard functions to the left and right
shoulder buttons.

10.	Each menu should fit on one screen.

11.	�The cursor should blatantly draw attention to the currently selected
menu item.

12.	Avoid horizontal menus.

13.	�Vertical menus should consist of no more than 6–8 items, each with its
own button.

14.	�Menus should by cyclic, allowing the player to loop through the menu
choices.

15.	�Leave breathing room for text localization. (Some languages, such as
German, may require more letters per word than your game’s native
language.)

16.	�Place button icons next to their functions instead of using lines to con-
nect the functions to the buttons.

17.	Point button icons to their location on the controller.

18.	Separate thumb-stick movement functions from button functions.

Game Testing.indb 74 03/09/16 3:58 PM

Software Quality • 75

Additional standards could apply to consistent keyboard assignments
(“F1 should always be the Help button”) or the flexibility of game controller
options (“There shall always be an option to enable or disable vibration”).

Your list of standards can be used as a checklist that gets filled out for
each screen. The checklist should include other information such as the
QA person’s name, the date of the appraisal, the name of the software build
and/or identifier being checked, and the name of the screen. Don’t wait
until the UI is coded and put into a release before you check it. Work with
developers to verify that the standard is being followed in their UI design.
Some checking should also take place after code is released to verify that
the implementation matches the intent. This may include a suite of tests
that specifically check that each UI standard is met.

You may find that some of these items above make perfect sense for
your game, while some don’t. Use what’s right for you and your customers.
The important thing is to have some standards, have a reason for including
each item in the standard, and have a way to periodically check that the
team uses the standard.

Coding Standards
Coding standards can prevent the introduction of defects when the

game code is written. Some of the topics typically addressed by coding stan-
dards include

■■ File naming conventions

■■ Header files

■■ Comment and indentation styles

■■ Use of macros and constants

■■ Use of global variables

To many critics, coding standards pay too much attention to the format
of the code rather than its substance. On the other hand, there must be
some reason why development tool companies continue to provide more
and more coding assistance using visual means such as colors and graphs.
Both have the same goal in mind: to help the developer get the code right
the first time.

Game Testing.indb 75 03/09/16 3:58 PM

76 • Game Testing

Even so, coding standards aren’t just about formatting. Many of the
rules are designed to address important issues such as portability, clarity,
modularity, and reusability. The importance of these standards is magnified
in a project that is distributed across different teams, sites, and countries.
There are few things less fun than tracking down a defect caused by one
team defining SUCCESS as 0 and another team defining SUCCESS as 1.

Here are some excerpts from the C Coding Standards for the Com-
puter Associates Ingres® project:

■■ Do not use constants to check for machine dependent ranges or values.
Use the symbolics instead (For example: UINT_MAX not 4294967295).

■■ Constants must be properly typed to match their usage. For example, a
constant 1 that will be passed to a procedure expecting a long must be
defined as ((long)1).

■■ Do not use the literal zero as a NULL pointer value.

■■ Use TYPEDEF, not #define, to declare new types.

As a tester, you should be aware that these standards also give clues
as to how code will fail under certain situations. For example, if machine-
dependent ranges are hard-coded, you will see the resulting failure on one
type of machine but not on another. So, features that depend on values that
could be machine dependent should be tested on different machines.

In a QA role, your responsibility is to check that the programmers have
coding standards which they apply to their code. This is typically done by
sampling files from the game code and doing a manual or automated check
against the appropriate standards. If you are doing QA on behalf of a pub-
lisher or third-party QA group, you can still do this by gaining access to the
programmer’s standards, tools and files. Alternatively, you could require the
programming team to submit evidence, such as printouts, that they did this
checking themselves.

GAME QUALITY MEASUREMENTS

How good is “good” game software? Certainly the amount of defects in
the code has something to do with goodness. The team’s ability to find defects

Game Testing.indb 76 03/09/16 3:58 PM

Software Quality • 77

in its product is another factor to consider. A “sigma level” establishes the
defectiveness of game code relative to its size, while “phase containment”
provides an indicator of how successful the team is at finding defects at their
source, leaving fewer to escape to your customers.

Six Sigma Software
A “sigma level” is one way to establish a goal for the outgoing quality

of your game. For software this measure is based on defects per million
lines of code, excluding comments (also referred to as “non-commented
source lines” or “NCSL”). The “lines of code” measure is often normal-
ized to Assembly-equivalent lines of code (AELOC) in order to balance
the different level of abstraction across the variety of languages in use
such as C, C++, Java, Visual Basic, and so on. The level of abstraction
of each language is reflected in its multiplier. For example, each line of
C code is typically regarded as the equivalent of three to four AELOC,
whereas each line of Perl code is treated as about 15 AELOC. It’s best
to measure this factor based on your specific development environment
and use that factor for any estimates or projections you need to make in
the future. If you are using different languages for different parts of your
game, multiply the lines of code for each portion by the corresponding
language factor.

Assembly code is the low level instructions that are understood
by the microprocessors running in your PC, game console,
portable game device or mobile phone. “Assembly-equivalence”
refers to the number of Assembly language lines of code that are
generated by compiling your game code in whatever language
you wrote it in.

Table 4.1 show defect rates required to achieve a software quality mea-
sure anywhere between three and six sigma. Six sigma – only 3.6 defects
per million lines of code – is typically regarded as an outstanding result,
and getting in the 5.5 sigma range is very good. In case you think it’s silly to
worry about 1 million lines of code unless your writing software for NASA,
keep in mind that even mobile games can chew up a hundred thousand
lines of code or more.

NOTE

Game Testing.indb 77 03/09/16 3:58 PM

78 • Game Testing

Released Defects per (AELOC) Sigma Value

20,000 100,000 250,000 1,000,000

124 621 1552 6210 4.0

93 466 1165 4660 4.1

69 347 867 3470 4.2

51 256 640 2560 4.3

37 187 467 1870 4.4

27 135 337 1350 4.5

19 96 242 968 4.6

13 68 171 687 4.7

9 48 120 483 4.8

6 33 84 337 4.9

4 23 58 233 5.0

3 15 39 159 5.1

2 10 27 108 5.2

1 7 18 72 5.3

4 12 48 5.4

3 8 32 5.5

2 5 21 5.6

1 3 13 5.7

2 9 5.8

1 5 5.9

0 0 0 3 >6.0

Table 4.1  Sigma table for various sizes of delivered software

Don’t fool yourself by measuring your sigma on the sole basis of the
open defects you know about in the product. This might reward poor test-
ing which did not find many defects that still remain in the game, but
wouldn’t reflect the experience your customers will have. The defects being
counted must include both the game defects you know about that have not

Game Testing.indb 78 03/09/16 3:58 PM

Software Quality • 79

been fixed, whatever defects your customers have already found, and your
projection of defects that remain in the software which haven’t been dis-
covered yet. It’s best to wait anywhere from 6 to 18 months after shipping
to calculate your sigma. If you still have a good result after that, continue
to operate your projects in a similar manner by repeating what went “right”
but also fix what went “wrong.” If you have poor results, take a good hard
look at what changes you can make to avoid a repeat performance. You can
start by going through the list of non-conformances that QA found during
the project.

Phase Containment
Phase containment is the ability to detect faults in the project phase in

which they were introduced. Phase Containment Effectiveness (PCE) is a
measure of how well that is being done.

Faults that are found in the phase in which they are introduced are
known as in-phase faults or “errors.” Faults that don’t get caught in the
same phase in which they are introduced are said to escape and become
“defects.” The principle is that if any subsequent work is derived from the
faulty item, then a defect has occurred. Think of the 18-inch high Stone-
henge descending from the ceiling in the movie Spinal Tap. That could
have been avoided (but not as funny!) if someone noticed the size was given
in inches instead of feet on the drawing given to the artist.

Errors are typically found by reviews, walkthroughs, or inspections.
Defects are most noticeably found by testing and unhappy customers, but
they can also be found in reviews of downstream work products. For exam-
ple, a code inspection issue might actually be the result of incorrect design
or requirements. Because other work has already been done based on the
fault, this is a defect.

PCE is typically tracked and reported by showing the faults found in
each development phase. The faults are organized into columns for each
phase in which they might be found. A coding fault can’t be detected in the
requirements phase because the code does not exist at that point. Calculate
PCE by dividing the number of in-phase faults by the sum of faults found
in all phases to come up with the PCE for that phase. From the data in
Figure 4.1, the design phase PCE is calculated by dividing the number of
faults found in the coding phase, 93, by the sum of all faults introduced by
coding, which is 93 + 6 + 24 = 123. The result is 93/123 = 0.76. Figure 4.2
shows a graph summarizing the code PCEs for each phase.

Game Testing.indb 79 03/09/16 3:58 PM

80 • Game Testing

Phase where faults are found
Phase created
REQMTS 114 27 4 15

93 6 24
213 105

REQMTS

DESIGN

DESIGN

CODING

CODING

Totals

TEST PCE
0.71
0.76
0.67

114 120 223 144

Figure 4.1  Game code phase containment data.

Phase where faults are found
Phase
created
REQMTS 114 27 4 11

93 6 19
213 90

REQMTS

DESIGN

DESIGN

CODING

CODING

Totals

TESTING
DEV TEST DEMOS ALPHA BETA

PCE

0.71
0.76
0.67

114 120 223 120

3
5
10
18

1
0
5
6 0

Figure 4.3  Game code phase containment data with expanded test categories.

Alternatively, test results could
be broken out into separate cat-
egories, as shown in Figure 4.3.
These extra categories do not affect
the PCE numbers or graphs, but
this could be more convenient
for data collection if different sys-
tems or categories are used for
different release types. This data
also helps the team understand
whether there will be additional
testing activities that could further
reduce the PCE numbers as more
defects are found. In Figure 4.3,

no Beta testing results are available to add to the table. So, the PCE num-
bers for requirements, design, and coding only represent the maximum
possible value. New defects found in Beta testing will be sourced to these
phases and reduce the corresponding PCEs.

1.00
0.90
0.80
0.70
0.60
0.50

P
C

E

0.40
0.30
0.20
0.10
0.00

REQMTS DESIGN CODING

Figure 4.2  Game code phase containment graph.

Game Testing.indb 80 03/09/16 3:58 PM

Software Quality • 81

If this practice is useful for
understanding how well the
team is capturing defects in
the game code, it should also
be applied to the work pro-
duced by the testers. Figure
4.4 shows example PCE data
for testing deliverables and
Figure 4.5 shows the corre-
sponding graph.

As the test PCE data
shows, some faults in the tests
don’t get noticed until the test
is executed on the game code. The problem might have been recognized
as a test defect by the tester running the test, or it may have started out as
a code defect before analysis and retesting uncovered the fact that the test
was wrong, not the code. You can imagine how much more time consuming
that is versus finding the defect before releasing the test.

Remember, this is not a measure of how well the executed tests per-
form. This is a measure of how well faults were captured in the test designs,
scripts, and/or code. Any mistakes made in one of these activities will need
to be repaired when they are eventually discovered. Test mistakes that don’t
get discovered could impact the quality of the game itself. A missing test, or
a test that checks for the wrong result and passes, can send game bugs on
their merry way to the paying public.

As with the sigma value, look for ways to improve your PCE. If you
had 100% containment in all of your phases, you would only have to run

Phase where faults are found
Phase created

SCRIPTING
211 56 23 7

403 37 16
123 24

DESIGN
DESIGN

SCRIPTING

CODING

CODING

Totals

EXECUTION PCE
0.71
0.88
0.84

211 459 183 47

Figure 4.4  Game test phase containment data.

1.00
0.90
0.80
0.70
0.60
0.50

P
C

E

0.40
0.30
0.20
0.10
0.00

DESIGN SCRIPTING CODING

Figure 4.5  Game test phase containment graph.

Game Testing.indb 81 03/09/16 3:58 PM

82 • Game Testing

each test once and they would all pass. Your customers wouldn’t find any
problems and you’d never have to issue a patch. Think of the time and
money that would save! Since the PCE is a function of the faults produced
and the faults, you can attack a low PCE at both ends. Programmers can
improve their ability to prevent the introduction of faults. Testers and QA
can improve their ability to detect faults. In both cases, some basic strate-
gies to address low PCE areas are:

■■ Improve knowledge of the subject matter and provide relevant training.

■■ Have successful team members provide mentoring to less-successful
members.

■■ Document methods used by successful individuals and deploy them
throughout the team.

■■ Increase compliance with existing methods and standards.

■■ Add standards which, by design, help prevent faults.

■■ Add checking tools that run during the creation process, such as color-
coded and syntax-aware editors.

■■ Add checking tools that run after the creation process, such as stronger
compilers and memory leak checkers.

QUALITY PLANS

Each game project should establish its own plan for how quality will
be monitored and tracked during the project. This is typically documented
in the Software Quality Assurance Plan (SQAP). The SQAP contains no
information about testing the game. That is covered in the game’s Software
Test Plan. An SQAP is strictly concerned with the independent monitoring
and correction of product and process quality issues. It should address the
following topics, most of which are covered in more detail below:

■■ QA personnel

■■ Standards to be used in the product

■■ Reviews and audits that will be conducted

■■ QA records and reports that will be generated

Game Testing.indb 82 03/09/16 3:58 PM

Software Quality • 83

■■ QA problem reporting and corrective actions

■■ QA tools, techniques, and methods

■■ QA metrics

■■ Supplier control

■■ QA records collection, maintenance, and retention

■■ QA training required

■■ QA risk management

The book’s DVD contains an SQAP template document [SQAP11] that
includes the elements in this outline.

QA Personnel
Begin this section by describing the organizational structure of the

QA team. Show who the front-line QA engineers work for and who the
head of QA reports to. Identify at which level the QA reporting chain is
independent from the person in charge of the game development staff.
This helps establish a path for escalating QA issues and identifies which
key relationships should be nurtured and maintained during the project. A
good rapport between the QA manager and the development director will
have a positive effect on both the QA staff and the development staff.

Describe the primary role of each person on the QA team for this proj-
ect. List what kinds of activities each of them will be involved in. Be as
specific as possible. If a person is going to be responsible for auditing the
user interface screens against the company’s UI standards, then say that.
If another person is going to take samples of code and check them with a
static code analysis tool, then say that. Use a list or a table to record this
information.

Strictly speaking, QA and testing are separate, distinct functions. QA
is more concerned with auditing, tracking, and reporting, whereas testing
is about the development and execution of tests in the relentless pursuit of
finding operational defects in the game. However, depending on the size
and skills of your game project team, you may not have separate QA and
test teams. It’s still best to keep those two plans separate even if some or all
of the same people are involved in both kinds of work.

ON DVD

Game Testing.indb 83 03/09/16 3:58 PM

84 • Game Testing

Standards
Two types of standards should be addressed in this section: product

standards and process standards. Product standards apply to the function
of things that are produced as part of the game project. This includes code,
graphics, printed materials, and so on. Process standards apply to the way
things are produced. This includes file naming standards, code formatting
standards, and maintenance of evolving project documents such as the
technical design document. Document all of the standards that apply as
well as which items they apply to. Then describe how the QA staff will
monitor them and follow up on any discrepancies.

Reviews and Audits
The kinds of reviews performed by QA are not the same as developers

or testers would do for code or test designs. A QA review is usually done
by a single QA engineer who evaluates a work product or ongoing process
against some kind of reference such as a checklist or standard. QA reviews
and audits span all phases and groups within the game project.

Project documents, project plans, code, tests, test results, designs, and
user documentation are all candidates for QA review. QA should also audit
work procedures used by the team. These can include the code inspection
process, file backup procedures, and the use of tools to measure game per-
formance over a network.

Reviews and audits can be performed on the results of the process,
such as checking that all required fields in a form are filled in with the right
type of data and that required signatures have been obtained. Another way
to audit is to observe the process in action. This is a good way to audit peer
reviews, testing procedures, and weekly backups. Procedures that occur
very infrequently, such as restoring project files from backup, can be initi-
ated by QA to make sure that the capability is available when it is needed.

QA itself should be subject to independent review (Rule 2). If you have
multiple game projects going on, each project’s QA team can review the
work of the other in order to provide feedback and suggestions to ensure
that they are doing what they documented in the SQAP. If no other QA
team exists, you could have someone from another function such as testing,
art, or development use a checklist to review your QA work.

The QA activities identified in this section of the SQAP should be
placed on a schedule to ensure that the QA people will have the time to

Game Testing.indb 84 03/09/16 3:58 PM

Software Quality • 85

do all of the activities they are signed up for. These activities should also
be coordinated with the overall project schedule and milestones so you can
count on the work products or activities that are being audited to be avail-
able at the time you are planning to audit them.

As part of being a good citizen, planned QA activities that will disrupt
other people’s work, such as restoring backups or sitting down with some-
one to review a month’s worth of TDD updates, should be incorporated
into the overall project schedule so the people affected will be able to set
aside the appropriate amount of time for preparing and participating in
the audit or review. This is not necessary for activities such as sitting in on
a code review because the code review was going to take place whether or
not you were there.

Feedback and Reports
The SQAP should document what kinds of reports will be generated by

SQA activities and how they will be communicated. Reporting should also
include the progress and status of SQA activities against the plan. These
get recorded in the SQAP along with how frequently the QA team’s results
will be reported and in what fashion. Items that require frequent atten-
tion should be reported on regularly. Infrequent audits and reviews can be
summarized at longer intervals. For example, the QA team might produce
weekly reports on test result audits, but produce quarterly reports on backup
and restoration procedure audits. Test result audits would begin shortly after
testing starts and continue through the remainder of the project. Backup
and restoration audits could start earlier, once development begins.

SQA reporting can be formal or informal. Some reports can be sent to the
team via email, while others may aggregate into quarterly results for presen-
tation to company management at a quarterly project quality review meeting.

Problem Reporting and Corrective Action
SQA is not simply done for the satisfaction of the QA engineers. The

point of SQA is to provide a feedback loop to the project team so that they
are more conscientious about the importance of doing things the right way.
This includes keeping important records and documents complete and up
to date. It’s up to QA to guide the team or the game company in deter-
mining which procedures and work products benefit the most from this
compliance. Once an SQA activity finds something to be non-compliant, a
problem report is generated.

Game Testing.indb 85 03/09/16 3:58 PM

86 • Game Testing

Problem reports can be very similar to the bug reports you write when
testing finds a defect in the software. They should identify which orga-
nization or individual will be responsible and describe a timeframe for
resolving the issue. The SQAP should define what data and statistics on
non-compliant issues should be reported, as well as how and when they are
to be reviewed with the project team.

History has shown, unfortunately, that some project members might
be more reluctant to spend time closing SQA problems because they have
their “real job” to do – development, testing, artwork, and so on. As a con-
sequence, it’s a good idea to define the criteria and process for escalating
unresolved issues. Similarly, there should be a defined way for resolving
issues with products that can’t be fixed within the game team, such as soft-
ware tools or user manuals.

In addition to addressing compliance issues one at a time, SQA should
also look for the causes of negative trends or patterns and suggest ways to
reverse them. This includes process issues such as schedule slippages and
product issues such as game asset memory requirements going over bud-
get. The SQAP should document how the QA team will detect and treat the
causes of such problems.

Tools, Techniques, and Methods
Just like development and testing, the QA team can benefit from tools.

Since QA project planning and tracking needs to be coordinated with the
rest of the project, it’s best if they use the same project management tools
as the rest of the game team. Likewise, tracking issues found in QA audits
and reviews should be done under the same system used for code and test
defects. Different templates or schemas might be needed for QA issue
entry and processing, but this will keep the team software licensing and
operation costs down and make it easy for the rest of the team to access and
update QA issues.

Some statistical methods might be useful for QA analysis of project and
process results. Many of these methods are supported by tools. Such tools
and methods should be identified in the SQAP. For example, Pareto Charts
graph a list of results in descending order. The bars furthest on the left are
the most frequently occurring items. These are the issues you should spend
your time on first. If you are successful at fixing them, the numbers will go
down and other issues will replace them on the left of the chart. You can

Game Testing.indb 86 03/09/16 3:58 PM

Software Quality • 87

go on forever addressing the issue at the left of the chart because there will
always be one. This is kind of like trying to clean out your garage. At some
point in time, you can decide the results are “good enough” and move on to
some entirely different result to improve.

Figure 4.6 shows an example Pareto Chart of the number of defects
found per thousand lines of code (KLOC) in each major game subsystem.
The purpose of such a chart could be to identify which portion of the code
would benefit the most from using a new automated checking tool. Because
there are costs associated with new technologies – purchasing, training,
extra effort to use the tool, and so on – it should be introduced where it
would have the greatest impact. In this case, start with the rendering code.

Subsystem Health
3

2.5
2.5

2

1.5

D
ef

ec
ts

 p
er

 K
L

O
C

1

0.5

Rendering Al Asset
Management

Audio

Subsystem

Installation Collision Player Data
0

1.5

0.8 0.7

0.3 0.2 0.2

Figure 4.6  Pareto Chart of defects per KLOC for each game subsystem.

Another useful software QA method is to plot control charts of product
or process results. The control chart shows the average result to expect and
“control limit” boundary lines for the set of data provided. Any items out-
side of the control limits fall beyond the range of values that would indicate
they came from the same process as the rest of the data. This is like hav-
ing a machine that stamps metal squares a certain way, but every once in a
while, one comes out very different from the others. If you have the right
amount of curiosity to be a QA person, you would want to know why the

Game Testing.indb 87 03/09/16 3:58 PM

88 • Game Testing

square comes out wrong some of the time. The same is true for software
results that come out “funny.” The control chart reveals results that should
be investigated to understand their cause. It might simply be a result of
someone entering the wrong data (date, time, size, defects, and so on).
Figure 4.7 shows an example control chart for new lines of delta (added or
deleted) code changes in the game each week. The numbers are in KLOC.

The solid line running across the middle of the chart is the average value
for the data set. The two dashed lines labeled UCL and LCL represent the
Upper Control Limit and the Lower Control Limit, respectively. These val-
ues are calculated from the data set as well. The data point for the week of
5/2/2004 lies above the UCL. This is a point that should be investigated.

The Pareto Chart and control chart in Figures 4.7 and 4.8, respec-
tively, were created using SPC for Excel [SPC11]. A downloadable
demo version is available from their site.

I remember one project where there was a noticeable dip in the number
of defects submitted one week. This was a good result for the developers

NOTE

0

2/
1/

20
04

2/
8/

20
04

2/
15

/2
00

4
2/

22
/2

00
4

2/
29

/2
00

4
3/

7/
20

04
3/

14
/2

00
4

3/
21

/2
00

4
3/

28
/2

00
4

4/
4/

20
04

4/
11

/2
00

4
4/

18
/2

00
4

4/
25

/2
00

4
5/

2/
20

04
5/

9/
20

04

5

10

Week of

15

20

25 Avg

LCL

UCL

Weekly Code Growth (Avg=23.1, UCL=37.6,
LCL=8.7 for subgroups 2/1/2004-5/9/2004)

30

35

40

45

50

K
L

O
C

Figure 4.7 C ontrol chart of weekly code change in KLOC.

Game Testing.indb 88 03/09/16 3:58 PM

Software Quality • 89

but bad for the testers. A quick investigation revealed that “Bud” – an
especially productive tester – had been on vacation that week. The test
data for the rest of the team was within the normal range. Legitimately bad
results should be understood and subsequently prevented from happening
in the future. Especially good results are just as important to understand so
they can be imitated. Additional tools and techniques can be identified in
the SQAP for those purposes. This result also suggests that the data could
be reported in a different way, such as defects per tester, to account for
inevitable fluctuations in staffing. This could replace the original chart or
be used in addition to it.

Supplier Control
Your game is not just software. It’s a customer experience. The adver-

tisements in the store, the game packaging, the user’s manual and the game
media are all part of that experience. In many cases these items come from
sources outside the game team. These are some of your “suppliers.” There
work is subject to the same kinds of mistakes you are capable of producing
on your own. You may also have software or game assets supplied to you
that you use within the game, such as game engines, middleware, art and
audio files.

In both of the cases above, QA should play a role in determining that
the supplied items are “fit for use.” This can be done in the same way inter-
nal deliverables are evaluated. Additionally, the QA team can evaluate the
supplier’s capability to deliver a quality product by conducting on-site visits
to evaluate the supplier’s processes. When you go to the deli, it’s nice to
see that the food is laid out nicely in the display case. You also appreciate
the fact that a food inspector has checked out the plant where the food
originates from to see that it is uncontaminated, and that the produced in a
clean and healthy environment. The same should be true for game-related
software and materials that are supplied to you from other companies.

Training
If new tools, techniques, and/or equipment are going to be used in the

development of the project, it may be necessary for one or more QA per-
sonnel to become acquainted so they can properly audit the affected deliv-
erables and activities. The impact of the new technologies may affect QA
preparation as well, such as requiring new audit checklists to be created
or new record types to be defined in the audit entry and reporting system.

Game Testing.indb 89 03/09/16 3:58 PM

90 • Game Testing

The QA training should be planned and delivered in time for QA to
conduct any activities related to work products or processes using the new
technology. If the team is already having an in-house course delivered, then
add some seats for QA. If the team is inventing something internally, try
to get a briefing from one of the inventors. Some tools and development
environments come with their own tutorials, so get some QA licenses and
allocate time to go through the tutorial.

New tools or techniques identified for QA-specific functions should be
accompanied with appropriate training. Identify these, document them in
the SQAP, and get your training funded.

Risk Management
Risk management is a science all unto itself. In addition to all of the

risks involved with developing a game, there are also risks that could ham-
per your team’s QA efforts. Some typical SQA risks are:

■■ Project deliverables go out of sync with planned audits

■■ QA personnel diverted to other activities such as testing

■■ Lack of independent QA reporting structure

■■ Lack of organization commitment to take corrective actions and/or close
out issues raised by QA

■■ Insufficient funding for new QA technologies

■■ Insufficient funding for training in new development and/or QA
technologies

It’s not enough to list your risks in the SQAP. You also need to identify
the potential impact of each risk and any action plans you can conceive to
describe how you would proceed if the risk occurs and/or persists.

Summary

Software quality is certainly affected by testing, but there are other
activities that can impact quality sooner and less expensively. Various forms
of peer reviews can find faults before they escape to other phases of the

Game Testing.indb 90 03/09/16 3:58 PM

Software Quality • 91

project. Standards can be defined and enforced as a way to prevent defects
from being introduced into the game, many of which are difficult to detect
by testing. Measures such as sigma value and phase containment provide
stakes in the ground from which you can set improvement goals. The Soft-
ware Quality Assurance organization carries out activities according to a
plan that monitor and promote the use of these techniques and measures.
Their cost must be weighed against the consequences and costs of releasing
a poor quality game.

For more information and resources on software quality, check out
the American Society for Quality Web site at www.asq.org.

Exercises

1.	Your game code size is 200,000 AELOC. It had 35 defects you knew
about when you released it. The people who bought it have reported 17
more. What sigma level is your code at?

2.	Describe the differences between the leader role in a walkthrough and
the Moderator role in a Fagan Inspection.

3.	Add the following defects found in Beta testing to the data in Figure 4.3:
Requirements – 5, Design – 4, Coding – 3. What are the updated code
PCEs for the requirements, design, and coding phases?

4.	Using the SPC Tool demo, create a control chart of the following test
case review rates, measured in pages per hour:

	 Review 1: 8.5
	 Review 2: 6.1
	 Review 3: 7.3
	 Review 4: 4.5
	 Review 5: 13.2
	 Review 6: 9.1
	 Which reviews, if any, fall above or below the control limits? Describe

which are “good” and which are “bad.” How might a high or low review
rate impact the number of faults found in those reviews?

NOTE

Game Testing.indb 91 03/09/16 3:58 PM

http://www.asq.org

92 • Game Testing

REFERENCES

[CAMINOS04] Gamasutra, “Cross-Platform User Interface Development,”
available online at http://www.gamasutra.com/gdc2004/features/20040326/
caminos_01.shtml, June 2016.

[Crosby80] Crosby, Philip, Quality is Free, Signet, 1980

[FAGAN16] Michael Fagan Associates, “Improved Fagan Inspections and Con-
tinuous Process Improvement,” available online at http://www.mfagan.com,
June 2016.

[SPC16] BPI Consulting, LLC, “SPC for Excel:Statistical Analysis Software,”
available online at https://www.spcforexcel.com/spc-software, June 2016

[SQAP11] sqap.pdf, “Software Quality Assurance Plan (SQAP) Template,”
available online at www.scribd.com/doc/7428795/IEEE-Software-Quality-
Assurance-Plan-Template, acccessed June, 2016.

Game Testing.indb 92 03/09/16 3:58 PM

http://www.gamasutra.com/gdc2004/features/20040326
http://www.mfagan.com
https://www.spcforexcel.com/spc-software
http://www.scribd.com/doc/7428795/IEEE-Software-Quality-Assurance-Plan-Template
http://www.scribd.com/doc/7428795/IEEE-Software-Quality-Assurance-Plan-Template

Video games can range in size from tiny, downloadable, mobile phone
games that take a few weeks to produce, to epic, massively-multi-
player, online, role-playing games developed over four or five years.

No matter what size the game or how long the production schedule, the
testing of the game should always follow the same basic structure:

1.	Pre-Production

2.	Alpha

3.	Beta

4.	Gold

5.	Post-Release

In This Chapter

●● Pre-production
●● Test kickoffs
●● Alpha testing
●● Beta testing
●● Gold testing
●● Post-release testing
●● “Live Teams”

Test Phases

5CHA P T ER

Game Testing.indb 93 03/09/16 3:58 PM

94 • Game Testing

Like the plot of a suspense thriller, each sequence occurs more rapidly,
and with much more heightened excitement—and stress—than the previ-
ous one. Figure 5.1 illustrates a very rough timeline for a hypothetical mid-
budget, hand-held racing game.

Pre-Production
weeks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

12
2
9
5
2
4
6

Test Kickoff
Alpha
Beta
Gold
Release
Post-Release

Figure 5.1  Hypothetical hand-held racing game timeline.

The following sections examine each phase in order to understand why
it is vital to the project and distinct from the other phases.

Pre-Production

Depending on your role on the team and when you were brought into
the project, you might think that testing begins sometime after a good por-
tion of the game is developed. In reality, testing begins when the project
begins. There might not be people called “testers” involved at the begin-
ning, but code, scripts, and assets are being produced from the start, which
need to be evaluated, critiqued, and corrected.

Much of what happens at the early stages of the project will set the tone for
how well testing will go later on. This includes both how good the game stands
up to testing, and how well the tests themselves are organized and executed.
The bottom line is that both the QA team and the development team (or “dev
team”) can go home earlier at night if more effort and skill is applied to testing
activities at the beginning of the project. It is profoundly more difficult and
expensive to try to make up for a lack of early testing by throwing more testers
(and more overtime work) on the game in the later stages of development.

You can’t test quality into a game. The quality of the game is established by
the code, the art, the audio, and the feedback loop between the game and the
player—the “fun factor”—that is compiled into the software. All testing can
do is to tell the development team what is wrong with the software. Testing
better, and testing earlier, can get problems fixed sooner and less expensively.

If you received a coupon in the mail at the beginning of your project
that said “mail back this coupon to save 20% or more on your game budget,”
would you send it in? When you delay testing until the end of a project, it

Game Testing.indb 94 03/09/16 3:58 PM

Test Phases • 95

is the same as having that coupon but not mailing it in because you didn’t
want to pay for the postage stamp.

Planning Tasks
Almost as soon as a project is conceived, planning for test begins. Test

planning includes the tasks outlined in the following sections.

Determine the Scope of Testing the Project Will Require

The game design document (GDD), technical design document (TDD),
and the project schedule are reviewed by the test manager in order to
formulate a “scope of test” document that outlines the amount of testing
resources—that is, time, people, and money—he will need to get the game
tested thoroughly for release.

The following sidebar, “Expansion Plans,” is a brief scope-of-test memo
written by a small publisher planning to develop an expansion pack to a
real-time strategy (RTS) game released earlier that same year.

Expansion Plans

M E M O R A N D U M

To:	E xecutive Producer

From:  Manager of Quality Assurance

RE:	R TS EXPANSION TEST PLAN SUMMARY

Summary

I have evaluated the GDD you forwarded last week. Assuming no changes to the
game scope outlined in the document, it will take 1,760 hours to test the expansion
pack, based on the following assumptions:

●● 50-day production schedule,
●● Four-person test team,
●● 10% allowance for overtime, and
●● No post-release patch testing.

Single Player (900 hours)

A significant amount of QA time will be spent testing the new campaign. Because
the story mode of these missions will be highly script-dependent, testers will be

Game Testing.indb 95 03/09/16 3:58 PM

96 • Game Testing

tasked with breaking those scripts to ensure the user will have a seamless, immersive
gameplay experience.

Because the developer has not designed cheats into the game, and because our
experience with the base game was such that saved games could not reliably be
brought forward from prior builds, campaign mode will take up the majority of
test time.

Multiplayer (650 hours)

The thrust of multiplayer testing will be to:

1.	E nsure correct implementation of new units and the new tile set,

2.	Debug new maps,

3.	Debug “interface streamlining” (new functionality described in the design doc),

4.	 Stress test game size,

5.	 Stress test army size,

6.	 Stress test game length, and (as time permits)

7.	Balance testing.

Because the expansion pack introduces 12 new units, we will be concerned
only with the high-level balance testing—if one of the new units gives its clan an
overwhelming advantage (or disadvantage), we would bug it out. We do not have
the resources available to re-evaluate each of the more-than-50 existing units
against the new units. We will count on the developer’s design team (and user
feedback compiled since the release of the base game) to fine tune the balance of
the expansion pack.

Test Matrices (210 hours)

Because this is a product for the PC and not consoles, there will not be a first-party
TRC component to the testing. However, we will provide a similar standards-based
level of final release testing based on a number of PC standards developed from
our own experience as well as standards used at other PC game publishers.

We will run the following standard matrices on the game:

1.	 Install/uninstall matrix (with an emphasis on interoperability with the previous
product)�

2.	Windows 9x “gotchas” matrix

3.	Publisher standards matrix

4.	Multiplayer connectivity matrix

We will also produce and run the unit matrix developed while testing the original
game on each new unit in the expansion pack.

Game Testing.indb 96 03/09/16 3:58 PM

Test Phases • 97

Compatibility Testing (0 hours)

Because the minimum system requirements will not change from the original game,
we do not anticipate needing the services of a third-party hardware compatibility
lab for compatibility testing. If any machine-specific bugs on the varied hardware
in our internal lab crop up during the normal course of testing, we will evaluate at
that point whether a full compatibility sweep is warranted, along with an estimated
additional budget.

Overtime (tbd)

Because this product has only a modest upside for the company, QA will work
with Production to make best efforts to contain overtime costs. At this point we
anticipate working overtime only on such occasions that failure to do so will make
the product late.

Assign a Lead Tester

This is no trivial matter. The lead tester’s experience, temperament, and
skill set will have a tremendous influence over the conduct of the testing
cycle. This might be the single most important decision the test manager
makes on the project. A lead tester must be:

■■ A leader able to motivate the test team and keep them focused and
productive.

■■ A team player able to recognize the role test plays as part of the larger
production process.

■■ A communicator able to gather and to present information clearly and
concisely.

■■ A diplomat able to manage conflicts as they arise (and they will arise).

The test manager, or the lead tester, should then appoint a “vice lead
tester,” often called a primary tester. On very large teams it is not uncom-
mon to have more than one primary tester, each leading specific subteams
(e.g., multiplayer, franchise mode, tutorial, map editor, etc.).

Determine Phase Acceptance Criteria

In an ideal world, you will be working from a contract, design spec, or
product plan that defines very specific criteria for each phase of testing.
The world is seldom ideal, however.

Game Testing.indb 97 03/09/16 3:58 PM

98 • Game Testing

The lead tester should take whatever materials are available and write a
specification for the Alpha, Beta, and Gold (release) versions of the game.
By establishing clear and unambiguous entry acceptance criteria for each
phase of testing, conflicts can be avoided later in the project when pres-
sure might be felt from various parts of the organization to begin, say, Beta
testing on a build that isn’t truly Beta. Once the test manager has approved
these criteria, they should be distributed to all senior members of the proj-
ect team.

Three elements are required in the certification planning for each test
phase:

1.	Entry criteria: The set of tests that a build must pass before entering a
given test phase. The game won’t be considered “at Alpha” until the code
passes the Alpha Entry test, for example.

2.	Exit criteria: The set of tests that a build must pass before completing
a test phase.

3.	Target date: The date both the development and test teams are work-
ing toward for a specific phase to launch.

Participate in Game Design Reviews

As mentioned in earlier chapters, all stakeholders benefit from the
test team playing an active role from the beginning of a project. The lead
tester or primary tester should participate regularly in design reviews.
Their role is not to design the game, but rather to stay abreast of the latest
design changes, as well as to advise the project manager of any technical
challenges or testing complications that might arise from any anticipated
feature revision. Changes in the scope of the game will dictate changes
in the flow of the testing. The sooner the lead tester knows of a design
change, the easier it is for her to change the test plan to accommodate
those changes.

Set Up the Defect Tracking Database

This is a critical step, in that a poorly designed database can waste
precious minutes every time someone uses it, and those minutes quickly
add up to man-hours toward the end of a project—man-hours you will
wish you had back! Figure 5.2 shows a typical entry in a bug database—
note that the bug type “Unexpected Result” is too general. Aren’t all bugs
unexpected?

Game Testing.indb 98 03/09/16 3:58 PM

Test Phases • 99

Figure 5.2  Typical entry in a bug database.

The lead tester and project manager should mutually agree on appropri-
ate permissions—that is, those team members in each department who have
edit rights to specific fields. The lead tester should also ask the project man-
ager for a list of development team members to whom bugs will be assigned.
The “assigned to” field allows the lead tester, project manager, or anyone else
so entrusted to review new bugs and assign them to the right member of the
development team. Programmers, artists, and other dev team members then
search the database for the bugs assigned to them and, presumably, fix their
own defects. They can then assign the bug back to the lead tester so that the
fix can be verified in the next build.

Whether the bug database is going to exist on an internal server or be
accessible over the Internet, it’s a good idea at this point to populate the bug
database with a few dummy records and double-check all passwords and
permissions, both locally and remotely. Every person who will have access
to the “bug base” should be assigned an individual password, and the lead
tester can allow or block edit rights to individual fields based on the role that
person will play on the project team. Learn more about bug bases in the
sidebar, “Bug Base Tips.”

Game Testing.indb 99 03/09/16 3:58 PM

100 • Game Testing

Bug Base Tips

A bug database that is editable by only the lead tester is not very useful—these tend
to be very static and incapable of conveying current information about the state of
the project. Neither is a bug base in which every member of the team can edit every
field—these are chaotic and ultimately useless.

In designing the bug base, the lead tester must balance the need for team members
to communicate with each other about a particular defect with the equally
important need to control the flow of information in order to manage task priorities.
Programmers need to be able to comment on or to ask questions about a defect
in the Developer Comments or Notes field, but they can’t be allowed to close a
bug arbitrarily by changing the Status field to “closed.” Testers need to be able to
describe the bug in the Brief Description and Full Description fields, but they might
not be qualified to judge who should own the bug in the Assigned To field.

Here are some recommendations:

●● Status should be editable by the lead tester only. The default value for this field
should be “New,” so that as testers enter bugs, they can be reviewed and refined
by the lead tester before the status is changed to “Open” and is assigned to a
member of the development team.

●● Severity should be editable by the lead tester or primary testers. Remember that
the severity of a defect is not the same as its fix priority. Testers, rightly, tend to be pas-
sionate about the defects they find. It is the job of the test team leaders to check
against this and assign a severity in an objective manner.

●● Priority should be editable by the project manager and senior members of the
development team. This field is primarily a tool to help the project manager
prioritize the flow of work to members of the development team. With agile
development methodologies becoming more and more popular in the games
industry, project managers want maximum flexibility in assigning day-to-day or
hour-to-hour priorities. Leave the priority field to them.

●● Category Fields should be input by the testers and editable by the lead or pri-
mary tester. These fields include such specifics as Game Type, Number of Players,
Level, Bug Type, Reproduction Rate, and any other field that includes specific
information about the bug.

●● Brief/Full Description should be input by the testers and editable by the lead
or primary tester. This is the meat of the bug description, including the steps to
reproduce. It should not become a message board about the bug. Leave that to
the comments field.

●● Assigned To is a field that should be editable by the lead tester and any mem-
ber of the development team. The lead tester will typically assign new bugs to
the project manager, who will then review the bug and assign it to a specific

Game Testing.indb 100 03/09/16 3:58 PM

Test Phases • 101

programmer or artist to be fixed. Once the bug is fixed, that person can either
assign it back to the project manager for further review, or back to the lead
tester so that the fix can be verified in the next build and the bug can be closed.

●● Developer Comments should be editable by the project manager and any mem-
ber of the development team.

●● QA Comments should be editable by testers, the lead tester, and the primary tester.

Draft Test Plans and Design Tests

Having current and detailed knowledge of the game design is critical as the
lead tester begins to draft the test documents. An overall test plan document
defines what types of tests will be done and what the individual test suites and
matrices will look like (see Chapter 6, “The Game Testing Process”). This is
the point in the project where you can put the methods described in Part IV of
this book to good use. Remember: Prior planning prevents poor performance.

Test Plan

A test plan acts as the playbook for the QA team. It identifies the team’s
goals along with the resources (staff, time, tools, and equipment) and meth-
ods necessary to achieve them. Test goals are typically defined in terms of
time and scope. The testing timeline often includes intermediate goals for
one or more milestones that occur prior to the final release of the game.
Any risks that could affect the test team’s ability to meet the test goals are
identified in the test plan, along with information about how to manage
those risks if they occur. The scope of a test plan can be limited to a single
subsystem of the game, or it can span many game features and releases. If
the game is being developed at multiple sites, the test plan helps to define
what test responsibilities are assigned to each team. Appendix C contains a
basic outline for a test plan, and the book’s DVD provides a link to a tem-
plate for a test plan document you can fill in for your own project.

Test Case

A test case describes an individual test that is to be performed by a tester
or testers. Each test case has a distinct objective, which is part of the test case
description. A test case also describes what operations to perform in order to
meet its objective. Each individual operation within a test case is a test step. The
level of detail in the test case can vary based on the standards of a particular test
organization. Test cases are conceived and documented by each tester who is

ON DVD

Game Testing.indb 101 03/09/16 3:58 PM

102 • Game Testing

assigned a set of responsibilities in the test plan. The total set of test cases pro-
duced by a tester should fully cover his or her assigned responsibilities.

Test Suite

A test suite is a collection of related rest cases that are described in fur-
ther detail. The test suite gives step-by-step instructions about what opera-
tions to perform on the game and what details to check for as a result of
each step. These instructions should be sufficient for manual execution of
the test or for writing code to automate the test. Depending upon how the
tests cases are written, they might or might not depend on the steps that
were taken in a previous test case. Ideally, each test in the suite can be
individually identified and executed independently of the other tests in the
suite. Think of the test cases as individual chapters, while the test suite is a
book that puts the test cases together into a detailed, cohesive story.

Testing Before Testing Begins
You might soon begin to get proto-builds in bits and pieces, with requests

from the development team to do very narrowly focused testing of certain
specific features in order to give them confidence that these bits of code are
working as intended before writing more and more code on top of them.
This is sometimes called modular testing, because you’re testing individual
“modules” of code, not a complete build of the game.

At this stage in development, it is entirely likely that as code becomes
functional and modules are tested, the design of the game might be revised
significantly “on the fly.” Patience is required as you revise, and re-revise,
your test documents accordingly. Just as game design is often an iterative
process, game test materials must iterate as well.

During modular testing, it is premature to begin writing bugs beyond
the narrow scope of the module’s test case. True defect testing of the game
won’t begin until the dev team submits the first Alpha candidate.

Finally, the lead tester should begin to recruit or hire additional team
members as necessary, according to her resource plan. Once the team is in
place, test kickoffs can begin.

Test Kickoffs
Kickoffs have a positive impact on game development, leading to better

process definition, better problem solving, and schedule reduction. On a team
in which testers have various levels of testing and game project experience,
individual needs are not likely to be addressed at the project kickoff. Rather,

Game Testing.indb 102 03/09/16 3:58 PM

Test Phases • 103

it benefits the team to have kickoffs at the next-lowest level: a test kickoff for
each “test” that is being created or executed by individual testers. The test
kickoff illustrates the principle that increasing an organization’s speed results
from an iterative process of identifying obstacles, designing a new process
that eliminates them, and ensuring that the new method is implemented.

Test kickoff activities are broken into two parts: tester preparation and
the kickoff meeting, which is conducted according to the kickoff agenda.
The tester’s preparation steps and the kickoff agenda are documented in a
test kickoff checklist, as shown in Figure 5.3.

Figure 5.3  Test kickoff checklist.

Game Testing.indb 103 03/09/16 3:58 PM

104 • Game Testing

From the test kickoff checklist, the tester should prepare in the follow-
ing ways:

1.	Read the requirements and/or documentation for the game feature
being tested.

2.	Gather equipment, files, and programs needed for the test.

3.	Read through the tests, making certain everything is clear and able to be
performed.

The tester should consult with a “test expert” if there seem to be any
roadblocks or questions regarding the completion of any preparation activi-
ties. The test expert can be the original author of the test, a tester who
already has a lot of experience with the game feature, or the test lead. The
expert should also be familiar with the recent defect history of the game or
feature(s) to be tested. Experienced testers should not be exempt from this
preparation process; just as “familiarity breeds contempt,” overconfidence
breeds carelessness, and this process should be completed fully before con-
ducting the kickoff meeting.

Once the tester has completed the preparation activities, the test lead
conducts the kickoff meeting by doing the following:

1.	Giving a feature overview

2.	Addressing feature questions

3.	Bringing up any special test instructions

4.	Bringing up and soliciting any relevant test improvement suggestions

5.	Addressing any test execution questions or issues

6.	Recording important issues on the kickoff form and providing a copy to
the tester after the meeting is completed

Following the preparation steps listed on the checklist and participat-
ing in the meeting, per the kickoff agenda, benefits testing in the follow-
ing ways:

■■ Prepares and equips the tester to run through the entire test without
stopping for equipment or questions

Game Testing.indb 104 03/09/16 3:58 PM

Test Phases • 105

■■ Familiarizes the tester with the expected behavior of the game or
module during testing to increase tester awareness of “right” from
“wrong”

■■ Resolves any conflicts in test instruction prior to executing the
test in order to eliminate retesting because of test ambiguities or
errors

■■ Provides a forum for test improvement at the grassroots level,
improving tester involvement in and ownership of the test
process

Each test kickoff is an opportunity to improve test understanding,
test quality, and test execution. These opportunities would have been
missed or identified much later in the test phase if the kickoff process
was not used. The net result is that the test kickoff acts as a “pre-mortem”
that identifies important issues prior to performing the test, rather than
waiting to identify them in a postmortem after testing has already been
done. As kickoff records are collected, systemic issues can be identified
and addressed in the current test phase. Checklists, group meetings, and
email are all means of communicating the lessons learned from the kick-
offs and suggesting remedies to implement on the current project, rather
than the next project.

By collecting and evaluating the results of kickoffs for each project,
actions can be taken to prevent repeating any problems in future test
efforts. The careful analysis of test kickoff results and the time savings
achieved by using kickoffs can improve the way hundreds of other tests will
be conducted going forward. The across-the-board use of test kickoffs will
translate into further improvements in the test schedule and uncover more
defects, leading to better game quality.

The following behaviors, which are driven by the use of test kickoffs,
can reduce the length of the testing critical path:

■■ Make fewer mistakes: The test kickoff steps are designed to ensure
that testing does not begin until the tester is fully equipped to test and
understands the details and goals of the specific test. Among other
things, this results in quicker and more accurate measurement of
results.

Game Testing.indb 105 03/09/16 3:58 PM

106 • Game Testing

■■ Wasting less time: As part of preparation, the tester reviews the test
and requirements in their entirety. This reduces misunderstood and
improperly performed steps, resulting in much less test effort spent on
backing up and redoing test sections.

■■ All effort results in something that will be used: Metrics show that
the use of test kickoffs reduces the testing cycle time, even when you
add in the time it takes to plan and hold the kickoffs.

■■ Truth-telling is encouraged: The one-on-one setting of a test kickoff
is less intimidating than the group setting of a phase or release kickoff.
The kickoff leader should make the tester comfortable and remind the
tester of the kickoff goals. When testers see that their feedback results
in improvements, they are more open about voicing their opinions and
ideas.

■■ Produce constructive discussions rather than destructive
debates: The test kickoff meeting gets every tester involved in
process improvement. It also gives the tester and kickoff leader
shared responsibility to address the issues raised and recorded
in the meeting. Sticking to the kickoff agenda keeps the meeting
focused on test-related issues.

The idea that having a meeting would actually save time is coun-
terintuitive to most people. We have held test kickoffs for tests
side-by-side with testing conducted without kickoffs. Our metrics
show that the “kicked-off” tests were executed at 1.4 times the rate
of the “non-kicked-off” tests. Putting it another way, testers who
benefitted from a kickoff meeting completed 40% more tests than
those who did not have a kickoff.

Test kickoffs can provide the same benefits for test creation as they
can for test execution. Whether it’s test flow diagrams (TFDs) and com-
binatorial tables (both discussed later in the book), test trees, matrices or
checklists, the process of creating test tools is made more efficient by using
a kickoff process. All it takes is a slightly different agenda and checklist, as
shown in Figure 5.4.

NOTE

Game Testing.indb 106 03/09/16 3:58 PM

Test Phases • 107

Figure 5.4  Test creation kickoff checklist.

Both of the test kickoff checklists shown in this chapter are available on
the book’s DVD.ON DVD

Game Testing.indb 107 03/09/16 3:58 PM

108 • Game Testing

Alpha Testing

Now it’s time to get busy. The project manager delivers you an Alpha
candidate. You certify it against the Alpha criteria you established in the
planning phase. Full-bore testing can begin at last.

Over the course of Alpha testing, the game design is fine tuned. Fea-
tures are play tested and revised (or scrapped). Missing assets are inte-
grated. Systems developed by different programmers are linked together.
It’s an exciting time.

As each member of the code and art teams checks new work into the
build, they’re also checking in new defects. This means that the game at
this phase is a “target-rich environment” for a tester. It can also seem very
overwhelming (remember Rule #1: Don’t Panic). It is critical at this stage
that the test suites are strictly adhered to. They will provide a structure for
bringing order to what might seem like chaos.

Over the course of Alpha testing, all modules of the game should be
tested at least once, and performance baselines should be established
(frame rate, load times, and so on). These baselines will help the develop-
ment team determine how far they have to go to get each performance
standard up to the target for release. For example, a frame rate of 30 (or
even 15) frames of video per second (fps) might be acceptable in the early
stages of developing a 3D action game, but the release target might be a
solid 60 fps with no prolonged dips when there are a greater-than-usual
number of animations and effects on the screen.

Alpha Phase Entry Criteria
The following are Alpha entry criteria for a typical console game:

1.	All major game features exist and can be tested. Some might still be
in separate modules for testing purposes.

2.	A tester can navigate the game along some path from start to finish.
This assumes the game is linear, or has some linear component (for exam
ple, career mode in a sports game). Because many games are nonlinear,
the lead tester and project manager must agree ahead of time on a content
completion target for such games (for example, three of 12 mini-games).

3.	The code passes at least 50% of the platform TRC. Each console
game has a set of standards published and tested against by the manu-
facturer of that platform. When you produce a PlayStation®3 game, for
Format QA team at Sony Computer Entertainment America (SCEA)

Game Testing.indb 108 03/09/16 3:58 PM

Test Phases • 109

will test it against the PlayStation Technical Requirements Checklist
(TRC) to make certain that the game complies with platform conven-
tions. These requirements are very exacting, such as specifying the
precise wording of status or error messages a game must display dur-
ing the save process.

  4.	�Basic interface is complete and preliminary documentation is
available to QA. The main menu, most submenus and the in-game
interface (sometimes called the Heads-Up Display, or HUD) should
be functional, if not yet finalized and visually polished. Preliminary
documentation in this context means any explanation of new function-
ality, changed controller maps, and cheat codes (if any).

  5.	�The game is compatible with most specified hardware and soft-
ware configurations. For a cross-platform console game, this means
that the game will run on every targeted platform slated for initial com-
mercial release. For a PC game, this criterion dictates that the game
must run on a variety of systems with varying specifications (a range of
CPU speeds, a range of RAM caches, and so on).

  6.	�Level scripting is implemented. This pertains primarily to single-
player story mode. An Alpha candidate that requires the tester to load
separate levels manually would fail this criterion.

  7.	�First-party controllers and other peripherals work. Each plat-
form manufacturer (e.g., SCEA, Microsoft, and Nintendo) either
manufactures or licenses for manufacture its own line of peripherals.
Because support of these first-party peripherals is required by the
platform TRCs, and because the majority of testing will be done using
first-party peripherals, they need to be supported by Alpha.

  8.	�Final or placeholder art is in for all areas of the game. All the
levels and characters must be textured and animated, though these
textures, animations, and even the level geometry, might be subjected
to refinement as the game approaches Beta.

  9.	�Online multiplayer can be tested. Enough networking code must
be implemented so that at least two consoles can connect over a LAN
and play a game.

10.	�Placeholder audio is implemented. Is it entirely possible that the
voice recording and final mixing sessions have not yet taken place at
Alpha. In this case, members of the development team should record
“stub” dialog and sound effects and integrate them where needed.

Game Testing.indb 109 03/09/16 3:58 PM

110 • Game Testing

Beta Testing

By the end of Alpha, the development team should have a very clear
idea of the game they’re creating. The development team has, for the most
part, stopped creating new code and new artwork, and will not shift their
focus to perfecting what they’ve already created. It’s time to identify and fix
the remaining bugs.

Although the term “Beta testing” frequently refers to any outside
testing, it is only at the early stages of the Beta phase that final game-
play testing should take place with people outside the design team. The
majority of testing done by outside Beta testers during true Beta is bug
reporting and load testing. Gameplay feedback and suggestions should
continue to be recorded for possible post-release implementation in a
patch or sequel.

Beta Phase Entry Criteria
The following criteria are typical for the Beta phase of a console game:

1.	All features and options are implemented. The game is “feature
complete.”

2.	The code passes at least 100% of platform TRC. Toward the end of
Beta, the game should be ready for a “pre-certification” submission to
the platform manufacturer. This process allows the platform manufac-
turer’s QA team to test the game against the latest TRC and warn of any
potential compliance issues.

3.	The game can be navigated on all paths. Any bugs that might have
closed off portions of the game are eliminated.

4.	The entire graphical user interface (GUI) is final.

5.	The game is compatible with all specified hardware and software
configurations.

6.	The game logic and AI is final. Programming is complete on the
gameplay of the game. The game knows its own rules. All AI profiles
are complete.

7.	All controllers work. Those third-party peripherals that have been
chosen by the development team (and the publisher) to be supported
function with the game.

Game Testing.indb 110 03/09/16 3:58 PM

Test Phases • 111

	 8.	�Final artwork is implemented. There should be no placeholder art-
work left. Beta is the phase when most screenshots, trailers, and game-
play footage will be taken to use in the packaging and to market the game.

	 9.	�Final audio is implemented. All placeholder audio has been re-
placed with final assets of the voice talent. (There might be a few do-
over, or “pick-up” lines that have yet to be integrated, but these should
not have an impact on in-game event timing or level scripting.)

10.	�All online modes are complete and testable.

11.	�All language version text is implemented and ready for simulta-
neous release. The game script (both written and spoken) is locked
and can be sent forward for translation and integration into the foreign
language versions of the game.

Design Lock
At some point during Beta testing, the project manager should declare the

game to be in a state of design lock (sometimes called feature lock). The play
testing has concluded. Questions of balance have been resolved as best they
can. The focus of the test team at this point should be to continue to run the
test cases against the builds in an iterative manner, because each defect fixed
at this point might have introduced another defect elsewhere in the game.

Toward the end of Beta, many tough decisions must be made. The teams
are tired, tempers are on edge, and time is running out. In this charged
atmosphere, with very little sleep themselves, the project team leaders have
to make such critical choices as:

■■ Whether or not to implement that last-minute feature enhance-
ment. The designers might have had a great idea at the eleventh hour
and are eager to introduce a new feature, character, or level. The project
team leaders must weigh the risks of implementing the new feature (and
possibly introducing new bugs and schedule slippage) against shipping a
perhaps less compelling game on time.

■■ Whether to cut that level that just doesn’t seem to be much fun.
Occasionally it becomes clear during the course of testing that a level or
other content component is a “problem child,” and requires too much
work relative to the time left in the schedule to redesign. Cutting it out
entirely could be problematic, however, in that the game will require
new tests to ensure that the remaining levels run seamlessly around
the deleted content. Critical story or gameplay information might have

Game Testing.indb 111 03/09/16 3:58 PM

112 • Game Testing

been presented in the problem level, and other levels will have to be
reworked (and retested) to accommodate this.

■■ Which bugs to ship with. In many ways, this is the toughest decision
of all—which bugs to let go.

Letting Bugs Go
As a player, you might have encountered a defect in a game you’ve

played. Your reaction might likely have been, “I wonder how the testers
missed this one?” Chances are that they didn’t miss the defect. It’s highly
likely that a game tester found the bug and wrote it into the bug database.
Not all bugs get fixed.

There will be times, especially late in the project, when the develop-
ment team determines that they can’t (or won’t) fix a bug. This can happen
for a variety of reasons. Perhaps the technical risks involved in the fix out-
weigh the negative impact of the defect. Perhaps there is a workaround in
place that the technical support team can supply to players who encounter
the defect. Perhaps there simply isn’t enough time.

Whatever the reason, each project must have a quick and orderly
process in place to determine which defects will be waived, that
is, which will not be fixed by the development team. This designa-
tion has many different names. Waived bugs can be known as “as
is,” ISV (In Shipped Version), DWNF (Developer Will Not Fix),
or CBP (Closed by Producer). The worst of all possible names for
waived status is “featured,” which institutionalizes the cynical
joke, “It’s not a bug; it’s a feature.” Not surprisingly, one studio
that repeatedly used “featured” to describe waived defects is now
defunct, having released too many buggy games.

Cynicism, defeatism, and defensiveness have no place in the bug waiv-
ing process. On the one hand, testers work very hard and want to feel as
though their efforts matter to the project. On the other hand, developers
work just as hard (and longer) and have a duty to ship the project on sched-
ule. It is crucial that all parties involved maintain an understanding and
respect for the role each plays in the overall project team.

Ideally, the senior members of the project team will meet regularly and
often to discuss those bugs that the development team has requested to be
waived. These can be flagged as “waive requested” or “request as is” in the

NOTE

Game Testing.indb 112 03/09/16 3:58 PM

Test Phases • 113

Status or Developer Status fields of the bug database. The senior members
of the project team (the producer, executive producer, lead tester, and QA
manager) can meet to evaluate each bug and to discuss the costs and ben-
efits of fixing it versus leaving it in the game. Other team members, such as
programmers or testers, should be available for these meetings as needed.
This decision-making body is sometimes called the CCB (Change Control
Board) or the Bug Committee.

In some cases, where a post-release software update—or patch—is antici-
pated, a number of bugs will be designated for fixing after the game has been
shipped (see “Post-release Testing,” later in this chapter). Because most current
game consoles are Internet-capable and have some on-board means of storing
data, console developers are relying or patches more and more as a means of
artificially extending their development schedule. Whereas with older consoles
(e.g., PlayStation 2, Xbox, Nintendo GameCube™) a game had to be ready to
ship before it was manufactured, console developers can now fix bugs up until
the game ships or goes live, as long as they have the patch tested and live by the
street date. Further updates–including bug fixes, gameplay tweaks and even
new free features–can be released any time over the life of a game.

Once a bug has been waived, it’s important to remind both the bug author
and the test team as a whole that merely because the bug was waived doesn’t
mean that it wasn’t a legitimate bug. Nor does it mean that they shouldn’t
continue to find defects with the same level of diligence.

It is the duty of the test team to write up every bug, every time, no
matter when in the production cycle they find it.

They supply the lead tester, project manager, and the business unit heads
(marketing, sales, product development) with the best information possible
about the state of the game so that the best business decisions can be made.

Gold Testing

Once the Beta test phase winds down, the game should be ready for release
or, in the case of a console title which must be tested and certified by a third
party, final submission. The following entry criteria are typical for release testing:

1.	All known Severity 1 bugs (crashes, hangs, major function failures) are fixed.

2.	Greater than 90% of all known Severity 2 bugs are fixed.

NOTE

Game Testing.indb 113 03/09/16 3:58 PM

114 • Game Testing

3.	Greater than 85% of all known Severity 3 bugs are fixed.

4.	Any known open issues have a workaround that has been communicated
to Technical Support (or documented in an FAQ or a readme.txt file).

5.	Release-level performance has been achieved (for example, a 60 fps
frame rate).

Upon meeting your release criteria, the game is declared at “code lock.”
A brief, intense period of testing is performed on what everyone on the
team hopes will be (but which will probably not be) the final build. Because
the version of the game that is sent to be manufactured is known as the gold
master, the final few versions tested are known as gold master candidates
(GMCs) or release candidates (RCs).

At this point the game looks and feels like a released, commercial
game. It’s up to the testers to serve as the last line of protection for both
the players and the project team by sniffing out any remaining hidden
defects that might have a significant impact on player satisfaction. This
should be done by rerunning all of the test suites—or as many as time
permits—one final time. In addition, a number of testers should be tasked
with “breaking” the game one final time. Any remaining bug found during
this final effort deemed too severe to be waived is called a show stopper,
because it causes the GMC to be rejected. A new GMC must be prepared
with a fix for the new defect, and Gold testing must start all over again
from the beginning.

Last-Minute Defects
Because the final stages of the project are so intense and pressure-

laden, people will react negatively to show stoppers. “Why are we [or you]
just finding this now? Testing has been going on for months!” This refrain
is frequently heard from stressed-out executives. It is best for the test team
to take such emotional comments in stride and remember several inviolable
truths of game development:

1.	There is seldom enough time in any project to find every bug.

2.	Every time a programmer touches the code, bugs might be introduced.

3.	Code changes accumulate over time, so that several iterative changes
to different parts of the game might result in a bug showing up down-
stream from those changes.

Game Testing.indb 114 03/09/16 3:58 PM

Test Phases • 115

4.	Programmers are much more tired and prone to mistakes toward the
end of a project.

5.	Testers are much more tired and prone to missing things toward the end
of the project.

6.	Bugs happen.

In the case of a PC game, Web games, and games for other “open”
platforms, the game’s publisher or financing entity is the sole arbiter of
whether to release the product. In these cases, once the Gold testing phase
has been concluded, the game is ready for manufacture. In the case of a
console game, however, there is one final gatekeeper—the platform manu-
facturer (for example, Nintendo, Microsoft, Sony, or Apple®)—who must
certify the code. This final release testing process is known as certification
testing.

Release Certification
A clean GMC is sent to the platform manufacturer for final certification

once the project team has finished gold testing. The platform manufacturer
then conducts its own intensive testing on the GMC. This testing consists
of two phases, which can happen concurrently or simultaneously. The stan-
dards phase tests the code against the Technical Requirements Checklist.
The functionality phase tests the code for functionality and stability. The
certification testers generally play the game all the way through at least
once per submission. They often find show-stopper bugs of their own.

At the end of certification testing, the platform manufacturer’s QA team
will issue a report of all the bugs they found in the GMC. Representatives
of the publisher will discuss this bug list with the representatives at the plat-
form manufacturer, and will (in theory) mutually agree upon which bugs on
the list must be fixed.

The development team is well advised to fix only those bugs on the
“must fix” list, and to avoid fixing each and every minor bug on the list in an
effort to please the platform manufacturer. Fixing more bugs than is abso-
lutely necessary to win final certification only puts the code at risk for more
defects, and the schedule at risk for further delays.

Once the game has been resubmitted and certified by the platform
manufacturer, it is “gold.” The champagne should flow. The project is not
over yet, however.

Game Testing.indb 115 03/09/16 3:58 PM

116 • Game Testing

Post-Release Testing

Patches are a fact of life. Users don’t like them, but want them if they’re
available. Publishers don’t like them, because they potentially add to the overall
cost of the project. Developers don’t like them, because they can be perceived
as a tacit admission of failure. However, if the game was shipped with even one
or two bad defects, either intentionally or inadvertently, it’s time for a patch.

The upside of developing and testing a patch is that it allows the devel-
opment team to revisit the entire list of waived bugs and last-minute design
tweaks to further polish the game. Each additional bug fix or feature polish
means more testing, however, and should be planned for accordingly.

Sometimes the development team will release more than one patch. In
that case, the testing becomes more complicated, because interoperability
must be tested. Each new patch must be tested to see whether it functions
with both the base retail game and earlier patched versions.

The significance of downloadable content (DLC) is discussed in the
sidebar, “A Note on DLC.”

“LIVE TEAMS”

So many games today are conceived less as closed-ended products than
as “live” services that are constantly being updated. Beyond mere “patches,”
these post-release updates help to keep a game alive for months—and often
years—after its initial release. Such post-release, “live” updates can be
prompted for any of three main reasons:

1.	The developer or publisher wishes to release new features, improve-
ments to existing features, or refreshed content (such as a new “season”
of multiplayer competition.

2.	The developer or publisher is required by the operating system (OS) or
platform owner to update the game in order to make it compatible with
an updated version of the OS (e.g., Android or Steam).

3.	Further bug fixes.

The concept of a “live team” was made popular in the development of
MMO games, where the success of game itself depended upon thousands
of contented players interacting in a shared virtual environment. MMOs
“went gold,” at retail outlets, but they also “went live” on their servers. Once

Game Testing.indb 116 03/09/16 3:58 PM

Test Phases • 117

the game was released, a substantial portion of the development team was
retained to respond to the needs of players in order to keep the commu-
nity thriving and the subscription revenue coming in. The “live team” would
release patches to fix bugs, rebalance gameplay, and to push new content into
the game world. That “live team” concept has been adopted by a growing
number of developers as so many games, like MMOs, depend upon a happy
community of players for continued success. These games—many of them
so-called “free to play” games—are continually updated (and tested) until
they reach the end of their commercial life, which is generally determined
by the players, not the developers. As long as these open-ended, “live team”
games continue to make money, publishers are happy to support them.

For whatever the reason, it is important to understand that each update,
like each chapter of DLC, should be treated as a new, distinct product in
terms of test planning and execution. Although it is tempting in a “live” state
to cut corners and push builds to the release server as quickly as possible,
careful testers will not allow the complexity of the development environ-
ment to become an excuse for not doing their jobs carefully and according
to a written test plan based on a written specification of the update, no mat-
ter how trivial it may seem.

A Note on DLC

DLC, or downloadable content, is growing more and more popular—even expected—
with console players. Sometimes DLC is planned after a game’s release; sometimes on
the fly during its development. DLC can take many forms and sizes, from additional
vehicles or outfits, to map packs or bonus levels, to completely new storylines and
casts of characters. In social or mobile games, items or levels can be purchased à la
carte, and are released regularly throughout the game’s life cycle.

No matter what its size, each DLC release should be treated as a new product and subject
to all the planning, test kickoffs, and phase entry criteria described in this chapter.
DLC should not be marginalized or treated as less of a product—nor should it be
tested with less diligence—merely because it is released after its parent game.

Structured game testing breaks the test activities into distinct phases,
each of which has its own inputs, deliverables, and success criteria. These
phases reflect the progressive completion and improvement of the game

Game Testing.indb 117 03/09/16 3:58 PM

118 • Game Testing

code until it is finally fit to be released to the playing public. Once test plan-
ning and preparation are completed, different types of testing are used in
the remaining phases. Like pieces of a mosaic, they each reveal something
different about the game code—in the right place and at the right time.

Exercises

  1.	What are the main responsibilities of a lead tester?

  2.	�Which fields in the bug database should the primary tester be allowed
to modify?

  3.	�The Beta build is the version that will be sent to manufacturing. True
or false?

  4.	�Describe whether each of the following is an appropriate topic to dis-
cuss during a test execution kickoff, and why:

a.	Possible contradictions in the feature requirements

b.	Ideas for new tests

c.	Company stock prices

d.	Identical tests already being run in other test suites

e.	How “buggy” a feature was in a previous release

f.	 Recent changes to the game data-file formats

g.	Lack of detail in the test case documentation

  5.	Feature lock should happen at Alpha. True or false?

  6.	Online multiplayer features can be tested at Alpha. True or false?

  7.	�Being a team player is not an important criterion for being a lead
tester. True or false?

  8.	All bugs must be fixed before a build can be considered a GMC. True
or false?

  9.	�Explain the difference between a test case and a test plan.

	10.	�The QA lead on your live team leaves the company, and you are
promoted to take her place. Your first assignment is to test the next
content update of your game. What phases will you use in planning
your update testing?

Game Testing.indb 118 03/09/16 3:58 PM

Developers don’t fully test their own games. They don’t have time to,
and even if they did, it’s not a good idea. Back at the dawn of the
video game era, the programmer of a game was also its artist, de-

signer, and tester. Even though games were very small—the size of email—
the programmer spent most of his time designing and programming. Little
of his time was spent testing. If he did any testing, it was based on his own
assumptions about how players would play his game. The following sidebar
illustrates the type of problem these assumptions could create.

The Player Will Always Surprise You

The programmer of Astrosmash, a space shooter released for the Intellivision®
system in 1981, made an assumption when he designed the game that no player

In This Chapter

●● “Black Box” Testing
●● “White Box” Testing
●● The Life Cycle of a Build
●● Writing Bugs Well

The Game Testing
Process

6c h a pt e r

Game Testing.indb 119 03/09/16 3:58 PM

120 • Game Testing

would ever score 10 million points. As a result, he didn’t write a check for score
overflowing. He read over his own code and—based on his own assumptions—it
seemed to work fine. It was a fun game—its graphics were breathtaking (for the
time) and the game went on to become one of the best sellers on the Intellivision
platform.

Weeks after the game was released, however, a handful of customers began
to call the game’s publisher, Mattel Electronics, with an odd complaint: when
they scored more than 9,999,999 points, the score displayed negative numbers,
letters, and symbol characters. This in spite of the promise of “unlimited scoring
potential” in the game’s marketing materials. The problem was exacerbated by
the fact that the Intellivision console had a feature that allowed players to play
the game in slow motion, making it much easier to rack up high scores. John Sohl,
the programmer, learned an early lesson about video games: the player will always
surprise you.

The sidebar story demonstrates why video game testing is best done
by testers who are: (a) professional, (b) objective, and (c) separated—
either physically or functionally—from the game’s development team. That
remove and objectivity allows testers to think independently of the devel-
opers, to function as players, and to figure out new and interesting ways to
break the game. This chapter discusses how, like the gears of a watch, the
game testing process meshes into the game development process.

“Black Box” Testing

Almost all game testing is black box testing, testing done from outside
the application. No knowledge of, or access to, the source code is granted
to the tester. Game testers typically don’t find defects by reading the game
code. Rather, they try to find defects using the same input devices avail-
able to the average player, be it a mouse, a keyboard, a console gamepad, a
motion sensor, or a plastic guitar. Black box testing is the most cost-effective
way to test the extremely complex network of systems and modules that
even the simplest video game represents.

Figure 6.1 illustrates some of the various inputs you can provide to a
videogame and the outputs you can receive back. The most basic of inputs
are positional, and control data in the form of button presses and cur-
sor movements, or vector inputs from accelerometers, or even full-body

Game Testing.indb 120 03/09/16 3:58 PM

The Game Testing Process • 121

cameras. Audio input can come from microphones fitted in headsets or
attached to a game controller. Input from other players can come from a
second controller, a local network, or the Internet. Finally, stored data such
as saved games and options settings can be called up as input from memory
cards or a hard drive.

Once some or all of these types of input are received by the game, it
reacts in interesting ways and produces such output as video, audio, vibra-
tion (via force feedback devices), and data saved to memory cards or hard
drives.

The input path of a video game is not one-
way, however. It is a feedback loop, where the
player and the game are constantly reacting to
each other. Players don’t receive output from
a game and stop playing. They constantly alter
and adjust their input “on the fly,” based on
what they see, feel, and hear in the game. The
game, in turn, makes similar adjustments in its
outputs based on the inputs it receives from
the player. Figure 6.2 illustrates this loop.

GAME CODE
(THE “BLACK BOX”)

INPUTS

Button Presses

Audio

Video

Packets

Memory

Video

Audio

Vibration

Memory

OUTPUTS

FIGURE 6.1  Black box testing: planning inputs and examining outputs.

Inputs

The Player

The Game

Outputs

Figure 6.2  The player’s feedback
loop adjusts to the game’s input, and
vice versa.

Game Testing.indb 121 03/09/16 3:58 PM

122 • Game Testing

If the feedback received by the player were entirely predictable all the
time, the game would be no fun. Nor would it be fun if the feedback received
by the player were entirely random all the time. Instead, feedback from games
should be just random enough to be unpredictable. It is the unpredictability
of the feedback loop that makes games fun. Because the code is designed to
surprise the player and the player will always surprise the programmer, black
box testing allows testers to think and behave like players.

“WHITE BOX” TESTING

In contrast to black box testing, white box testing gives the tester oppor-
tunities to exercise the source code directly in ways that no player ever
could. It can be a daunting challenge for the white box tester to read a piece
of game code and predict every single interaction it will have with every
other bit of code, and whether the programmer has accounted for every
combination and order of inputs possible. Testing a game using only white
box methods is also extremely difficult because it is nearly impossible to
account for the complexity of the player feedback loop. There are, however,
situations in which white box testing is more practical and necessary than
black box testing. These include the following:

■■ Tests performed by developers prior to submitting new code for integra-
tion with the rest of the game

■■ Testing code modules that will become part of a reusable library across
multiple games or platforms

■■ Testing code methods or functions that are essential parts of a game
engine or middleware product

■■ Testing code modules within your game that might be used by third-
party developers or “modders” who, by design, could expand or modify
the behavior of your game to their own liking

■■ Testing low-level routines that your game uses to support specific functions
in the newest hardware devices, such as graphics cards or audio processors

In performing white box tests, you execute specific modules and the
various paths that the code can follow when you use the module in various
ways. Test inputs are determined by the types and values of data that can be
passed to the code. Results are checked by examining values returned by the

Game Testing.indb 122 03/09/16 3:58 PM

The Game Testing Process • 123

module, global variables that are affected by the module, and local variables
as they are processed within the module. To get a taste of white box testing,
consider the TeamName routine from Castle Wolfenstein: Enemy Territory:

 const char *TeamName(int team) {
 if (team==TEAM_AXIS)
 return “RED”;
 else if (team==TEAM_ALLIES)
 return “BLUE”;
 else if (team==TEAM_SPECTATOR)
 return “SPECTATOR”;
 return “FREE”;
 }

Four white box tests are required for this module to test the proper
behavior of each line of code within the module. The first test would be
to call the TeamName function with the parameter TEAM_AXIS and then
check that the string “RED” is returned. Second, pass the value of TEAM_
ALLIES and check that “BLUE” is returned. Third, pass TEAM_SPECTATOR
and check that “SPECTATOR” is returned. Finally, pass some other value
such as TEAM_NONE, which makes sure that “FREE” is returned. Together
these tests not only exercise each line of code at least once, they also test the
behavior of both the “true” and “false” branches of each if statement.

This short exercise illustrates some of the key differences between a
white box testing approach and a black box approach:

■■ Black box testing should test all of the different ways you could choose
a test value from within the game, such as different menus and buttons.
White box testing requires you to pass that value to the routine in one
form—its actual symbolic value within the code.

■■ By looking into the module, white box testing reveals all of the pos-
sible values that can be provided to and processed by the module being
tested. This information might not be obvious from the product require-
ments and feature descriptions that drive black box testing.

■■ Black box testing relies on a consistent configuration of the game and
its operating environment in order to produce repeatable results. White
box testing relies only on the interface to the module being tested and
is concerned only about external files when processing streams, file
systems, or global variables.

Game Testing.indb 123 03/09/16 3:58 PM

124 • Game Testing

The Life Cycle of a Build

Game testers are often frustrated that, like players, they must wait (and
wait) for the work product of the development team before they can spring
into action. Players wait for game releases; testers wait for code releases,
or builds. The test results from each build is how all stakeholders in the
project—from QA to the project manager to the publisher—measure the
game’s progress toward release.

A basic game testing process consists of the following steps:

1.	Plan and design the test. Although much of this is done early in the
planning phase, planning and design should be revisited with every
build. What has changed in the design spec since the last build? What
additional test cases have been added? What new configurations will
the game support? What features have been cut? The scope of testing
should ensure that no new issues were introduced in the process of fix-
ing bugs prior to this release.

2.	Prepare for testing. Code, tests, documents, and the test environment
are updated by their respective owners and aligned with one another. By
this time the development team should have marked the bugs fixed for
this build in the defect database so the QA team can subsequently verify
those fixes and close the bugs.

3.	Perform the test. Run the test suites against the new build. If you find a
defect, test “around” the bug to make certain you have all the details neces-
sary to write as specific and concise a bug report as possible. The more re-
search you do in this step, the easier and more useful the bug report will be.

4.	Report the results. Log the completed test suite and report any de-
fects you found.

5.	Repair the bug. The test team participates in this step by being avail-
able to discuss the bug with the development team and to provide any
directed testing a programmer might require to track the defect down.

6.	Return to Step 1 and re-test. With new bugs and new test results
comes a new build.

These steps not only apply to black box testing, they also describe white
box testing, configuration testing, compatibility testing, and any other type

Game Testing.indb 124 03/09/16 3:58 PM

The Game Testing Process • 125

of QA. These steps are identical no matter what their scale. If you substitute
the word “game” or “project” for the word “build” in the preceding steps, you
will see that they can also apply to the entire game, a phase of development
(Alpha, Beta, and so on), or an individual module or feature within a build.
In this manner, the software testing process can be considered fractal—the
smaller system is structurally identical to the larger system, and vice versa.

As illustrated in Figure 6.3, the
testing process itself is a feedback
loop between the tester and devel-
oper. The tester plans and executes
tests on the code, then reports the
bugs to the developer, who fixes
them and compiles a new build,
which the tester plans and executes,
and so on.

A comfortable scale from which
to examine this process is at the level
of testing an individual build. Even a relatively small game project could
consist of dozens of builds over its development cycle.

Test Cases and Test Suites
As discussed in the previous chapter, a single test performed to answer

a single question is a test case; a collection of test cases is a test suite. The
lead tester, primary tester, or any other tester tasked with test creation
should draft these documents prior to the distribution of the build. Each
tester will take his or her assigned test suites and perform them on the
build. Any anomalies not already present in the database should be written
up as new bugs.

In its simplest form, a test suite is a series of incremental steps that the
tester can perform sequentially. Subsequent chapters in this book discuss
in depth the skillful design of test cases and suites through such methods
as combinatorial tables and test flow diagrams. For the purposes of this
discussion, consider a short test suite you might execute on Minesweeper,
a simple game available with most versions of Microsoft Windows®. A por-
tion of this suite is shown in Figure 6.4. You will find a sample test suite in
Appendix E of this book.

Bugs

The Tester

The Developer

Code

Figure 6.3  The testing process feedback loop.

Game Testing.indb 125 03/09/16 3:58 PM

126 • Game Testing

This is a very small portion of a very simple test suite for a very small
and simple game. The first section (steps one through seven) tests launch-
ing the game, ensuring that the default display is correct, and exiting. Each
step either gives the tester one incremental instruction or asks the tester
one simple question. Ideally, these questions are binary and unambiguous.
The tester performs each test case and records the result.

Because the testers will inevitably observe results that the test designer
hadn’t planned for, the Comments field allows the tester to elaborate on a
Yes/No answer, if necessary. The lead or primary tester who receives the
completed test suite can then scan the Comments field and make adjust-
ments to the test suite as needed for the next build.

Where possible, the questions in the test suite should be written in such
a way that a “yes” answer indicates a “pass” condition—the software is work-
ing as designed and no defect is observed. “No” answers, in turn, should
indicate that there is a problem and a defect should be reported. There are
several reasons for this: it’s more intuitive, because we tend to group “yes”
and “pass” (both positives) together in our minds the same way we group
“no” and “fail.” Further, by grouping all passes in the same column, the

Step Pass Fail Comments
1. Launch Minesweeper
2. Musical tone plays?
3. Visible menu options are Game and Help?
4. Right Number (time elapsed) displayed as 0?
5. Left Number (bombs left) displayed is 10?
6. Click Game on the menu and choose Exit.
7. Game closes?
8. Re-launch Minesweeper.
9. Choose Game > Options > Custom

10. Enter 0 in the Height box
11. 0 accepted as input?
12. Click OK.
13. Error message appears?
14. Click OK again.
15. Game grid 9 rows high?
16. Game grid 9 columns wide (unchanged)?
17. Choose Game > Options > Custom
18. Enter 999 in the Height box
19. 999 Accepted as input?
20. Click OK.
21. Playing grid 24 rows high?
22. Playing grid 9 columns wide (unchanged)?

FIGURE 6.4  A portion of a test suite for Minesweeper.

Game Testing.indb 126 03/09/16 3:58 PM

The Game Testing Process • 127

completed test suite can be easily scanned by both the tester and test man-
agers to determine quickly whether there were any fails. A clean test suite
will have all the checks in the Pass column.

For example, consider a test case covering the display of a tool tip—a
small window with instructional text incorporated into many interfaces. A
fundamental test case would be to determine whether the tool tip text con-
tains any typographical errors. The most intuitive question to ask in the test
case is:

 Does the text contain any typographical errors?

The problem with this question is that a pass (no typos, hence no bugs)
would be recorded as a “no.” It would be very easy for a hurried (or tired)
tester to mistakenly mark the Fail column. It is far better to express the
question so that a “yes” answer indicates a “pass” condition:

 Is the text free of typographical errors?

As you can see, directed testing is very structured and methodical. After
the directed testing has concluded, or concurrently with directed testing,
a less structured, more intuitive form of testing, known as ad hoc testing,
takes place.

Entry Criteria
It’s advisable to require that any code release meets some criteria for

being fit to test before you risk wasting your time, or your team’s time,
testing it. This is similar to the checklists that astronauts and pilots use to
evaluate the fitness of their vehicle systems before attempting flight. Builds
submitted to testing that don’t meet the basic entry criteria are likely to
waste the time of both testers and programmers. The countdown to testing
should stop until the test “launch” criteria are met.

The following is a list of suggestions for entry criteria. Don’t keep these
a secret from the rest of the development team. Make the team aware of
the purpose—to prevent waste—and work with them to produce a set of
criteria that the whole team can commit to.

■	 The game code should be built without compiler errors. Any new com-
piler warnings that occur are analyzed and discussed with the test team.

■■ The code release notes should be complete and should provide the de-
tail that testers need to plan which tests to run or to re-run for this build.

Game Testing.indb 127 03/09/16 3:58 PM

128 • Game Testing

■■ Defect records for any bugs closed in the new release should be updated
so they can be used by testers to make decisions about how much to test
in the new build.

■	 Tests and builds should be properly version-controlled, as described in
the sidebar, “Version Control: Not Just for Developers.”

■	 When you are sufficiently close to the end of the project, you also want to
receive the game on the media on which it will ship. Check that the media
provided contains all of the files that would be provided to your customer.

Version Control: Not Just for Developers

A fundamental principle of software development is that every build of an application
should be treated as a separate and discrete version. Inadvertent blending of old
code with new is one of the most common (and most preventable) causes of
software defects. The process of tracking builds and ensuring that all members of a
development team are checking current code and assets into the current version is
known as version control.

Test teams must practice their own form of version control. There are few things
more time wasting than for a test team to report a great number of bugs in an old
build. This is not only a waste of time, but it can cause panic on the part of the
programmer and the project manager.

Proper version control for the test team includes the following steps:

1.	� Collect all prior physical (e.g., disk-based) builds from the test team before
distributing the new build. The prior versions should be staked together and
archived until the project is complete. (When testing digital downloads,
uninstall and delete or archive prior digital builds.)

2.	� Archive all paperwork. This includes not only any build notes you received
from the development team, but also any completed test suites, screen shots,
saved games, notes, video files, and any other material generated during the
course of testing a build. It is sometimes important to retrace steps along the
paper trail, whether to assist in isolating a new defect or determining in what
version an old bug was re-introduced.

3.	� Verify the build number with the developer prior to distributing it.

4.	� In cases where builds are transmitted electronically, verify the byte count, file
dates, and directory structure before building it. It is vital in situations where

Game Testing.indb 128 03/09/16 3:58 PM

The Game Testing Process • 129

builds are sent via FTP, email, Dropbox (www.dropbox.com) or other digital
means that the test team makes certain to test a version identical to the version
the developers uploaded. Confirm the integrity of the transmitted build before
distributing it to the testers.

5.	� Renumber all test suites and any other build-specific paperwork or electronic
forms with the current version number.

6.	� Distribute the new build for smoke testing.

Configuration Preparation
Before the test team can work with the new build, some housekeeping

is in order. The test equipment must be readied for a new round of testing.
The test lead must communicate the appropriate hardware configuration
to each tester for this build. Configurations typically change little over
the course of game testing. To test a single-player-only console game, you
need the game console, a controller, and a memory card or hard drive.
That hardware configuration typically will not change for the life of the
project. If, however, the new build is the first in which network play is
enabled, or a new input device or PC video card has been supported, you
will perhaps need to augment the hardware configuration to perform tests
on that new code.

Perhaps the most important step in this preparation is to eliminate any
trace of the prior build from the hardware. “Wiping” the old build of a
disk-based game on a Nintendo Wii™ is simple, because the only record-
able media for that system is an SD card or its small internal flash memory
drive. All you have to do is remove and archive the saved game you created
with the hold build. More careful test leads will ask their testers to go the
extra step of reformatting the media, which completely erases it, to ensure
that not a trace of the old build’s data will carry forward during the testing
of the new build.

Save your saves! Always archive your old player-created data,
including game saves, options files, and custom characters, levels,
or scenarios.

!
TIP

Game Testing.indb 129 03/09/16 3:58 PM

http://www.dropbox.com

130 • Game Testing

Not surprisingly, configuration preparation can be much more com-
plicated for PC games. The cleanest possible testing configuration for a
PC game is:

■	 A fresh installation of the latest version of the operating system, including
any patches or security updates.

■■ The latest drivers for all components of the computer. This not only
includes the obvious video card and sound card drivers, but also chipset
drivers, motherboard drivers, Ethernet card drivers, WiFi® firmware,
and so on.

■	 The latest version of any “helper apps” or middleware the game requires
in order to run. These can range from Microsoft’s DirectX® multimedia
libraries to third-party multiplayer matchmaking software.

The only other software installed on the computer should be the new build.

Chasing False Defects

We once walked into a QA lab that was testing a (then) very cutting-edge 3D PC
game. Testing of the game had fallen behind, and we had been sent from the publisher
to investigate. We arrived just as the testers were breaking for lunch, and were
appalled to see the testers exit the game they were testing and fire up email, instant
messenger clients, Web browsers, and file sharing programs—a host of applications
that were installed on their test computers. Some even jumped into a game of Unreal
Tournament. We asked the assistant test manager why he thought it was a good
idea for the testers to run these extraneous programs on their testing hardware. “It
simulates real-world conditions,” he shrugged, annoyed by our question.

As you perhaps have already guessed, this lab’s failure to wipe their test computers
clean before each build led to a great deal of wasted time chasing false defects—
symptoms testers thought were defects in the game, but which were in fact problems
brought about by, for example, email or file sharing programs running in the
background, taxing the system’s resources and network bandwidth. This wasted tester
time also meant a good amount of wasted programmer time, as the development
team tried to figure out what in the game code might be causing such (false) defects.

The problem was solved by reformatting each test PC, freshly installing the
operating system and latest drivers, and then using a drive image backup program
to create a system restore file. From that point forward, testers merely had to
reformat their hard drive and copy the system restore file over from a CD-ROM.

Game Testing.indb 130 03/09/16 3:58 PM

The Game Testing Process • 131

As will be discussed further in Chapter 12, “Ad Hoc Testing and Game-
play Testing,” testing takes place in a “lab,” and labs should be clean. So
should test hardware. It’s difficult to be too fastidious or paranoid when
preparing test configurations. When you get a new build, reformat your PC
rather than merely uninstall the new build.

Delete your old builds! Reformat your test hardware—whether it’s
a PC, a tablet or a smartphone. If it’s a browser game, delete the
cache.

Browser games should be purged from each browser’s cache and the
browser should be restarted before you open the new game build. In the
case of Flash® games, you can right-click on the old build and select “Global
Settings…” This will launch a separate browser process and will connect
you to the Flash Settings Manager. Choosing the “Website Storage Settings
panel” will launch a Flash applet. Click the “Delete all sites” button and
close all of your browser processes. Now you can open the new build of
your Flash game.

iOS™ games should be deleted both from the device and the iTunes®
client on the computer the device is synched to. When prompted by iTunes,
choose to delete the app entirely (this is the “Move to Recycle Bin” or
“Move to Trash” button). Now, synch your device and make certain the
old build has been removed both from iTunes and your device. Empty the
Recycle Bin (or the Trash), relaunch iTunes, copy the new build, and synch
your device again.

Android™ games, like iOS games, should be deleted entirely from the
device and your computer. Always synch your device to double-check that
you have scrubbed the old build off before you install the new build.

Whatever protocol is established, config prep is crucial prior to the dis-
tribution of a new build.

Smoke Testing
The next step after accepting a new build and preparing to test it is to

certify that the build is worthwhile to submit to formal testing. This process
is sometimes called smoke testing, because it’s used to determine whether a
build “smokes” (malfunctions) when run. At a minimum, it should consisted of

!
TIP

Game Testing.indb 131 03/09/16 3:58 PM

132 • Game Testing

a “load & launch,” that is, the lead or primary tester should launch the game,
enter each module from the main menu, and spend a minute or two playing
each module. If the game launches with no obvious performance problems
and each module implemented so far loads with no obvious problems, it is
safe to certify the build, log it, and duplicate it for distribution to the test team.

Now that the build is distributed, it’s time to test for new bugs, right?
Not just yet. Before testing can take a step forward, it must first take a step
backward and verify that the bugs the development team claims to have fixed
in this build are indeed fixed. This process is known as regression testing.

Regression Testing
Fix verification can be at once very satisfying and very frustrating. It gives

the test team a good sense of accomplishment to see the defects they report
disappear one by one. It can be very frustrating, however, when a fix of one
defect creates another defect elsewhere in the game, as can often happen.

The test suite for regression testing is the list of bugs the development
team claims to have fixed. This list, sometimes called a knockdown list, is
ideally communicated through the bug database. When the programmer or
artist fixes the defect, all they have to do is change the value of the Devel-
oper Status field to “Fixed.” This allows the project manager to track the
progress on a minute-to-minute basis. It also allows the lead tester to sort
the regression set (by bug author or by level, for example). At a minimum,
the knockdown list can take the form of a list of bug numbers sent from the
development team to the lead tester.

Don’t accept a build into test unless it is accompanied by a knock-
down list. It is a waste of the test team’s time to regress every open
bug in the database every time a new build enters test.

Each tester will take the bugs they’ve been assigned and perform the
steps in the bug write-up to verify that the defect is indeed fixed. The fixes
for many defects are easily verified (typos, missing features, and so on).
Some defects, such as hard-to-reproduce crashes, could seem fixed, but
the lead tester might want to err on the side of caution before he closes the
bug. By flagging the defect as verify fix, the bug can remain in the regres-
sion set (i.e., stay on the knockdown list) for the next build (or two), but
out of the set of open bugs that the development team is still working on.

!
TIP

Game Testing.indb 132 03/09/16 3:58 PM

The Game Testing Process • 133

Once the bug has been verified as fixed in two or three builds, the lead
tester can then close the bug with more confidence. (For a more complete
discussion of regression, see Chapter 14, “Regression and Reuse.”)

At the end of regression testing, the lead tester and project manager
can get a very good sense of how the project is progressing. A high fix rate
(number of bugs closed divided by the number of bugs claimed to have
been fixed) means the developers are working efficiently. A low fix rate
could be cause for concern. Are the programmers arbitrarily marking bugs
as fixed if they think they’ve implemented new code that might address the
defect, rather than troubleshooting the defect itself? Are the testers not
writing clear bugs? Is there a version control problem? Are the test systems
configured properly? While the lead tester and project manager mull over
these questions, it’s time for you to move on to the next step in the testing
process: performing structured tests and reporting the results.

Testing “Around” a Bug
The old saying in carpentry is “measure twice, cut once.” Good game

testers thoroughly investigate a defect before they write it up, anticipating
any questions the development team might have.

Before you begin to write a defect report, ask yourself some questions:

1.	Is this the only location or level where the bug occurs?

2.	Does the bug occur while using other characters or units?

3.	Does the bug occur in other game modes (for example, multiplayer as
well as single player, skirmish as well as campaign)?

4.	Can I eliminate any steps along the path to reproducing the bug?

5.	Does the bug occur across all platforms (for example, does it occur on
both the Xbox One and PlayStation 4 builds)?

6.	Is the bug machine-specific (for example, does it occur only on PCs with
a certain hardware configuration)?

These are the types of questions you will be asked by the lead tester,
project manager, or developer. Try to develop the habit of second-guessing
such questions by performing some quick additional testing before you
write the bug. Test to see whether the defect occurs in other areas. Test to
determine whether the bug happens when you choose a different character.

Game Testing.indb 133 03/09/16 3:58 PM

134 • Game Testing

Test to check which other game modes contain the issue. This practice is
known as testing “around” the bug.

Once you are satisfied that you have anticipated any questions that the
development team might ask, and you have all your facts ready, you are
finally ready to write the bug report.

On Writing Bugs Well

Good bug writing is one of the most important skills a tester must learn.
A defect can be fixed only if it is communicated clearly and effectively. One
of the oldest jokes in software development goes something like this:

Q: How many programmers does it take to screw in a light bulb?

A: None—it’s not dark where they’re sitting.

Good bug report writing gets the development team to “see the light”
of the bug. The developers are by no means the only people who will read
your bug, however. Your audience could include:

■■ The lead tester or primary tester, who might wish to review the bug
before she gives it an “open” status in the bug database.

■■ The project manager, who will read the bug and assign it to the appro-
priate member of the development team.

■■ Marketing and other business executives, who might be asked to weigh
in on the possible commercial impact of fixing (or not fixing) the bug.

■■ Third parties, such as middleware developers, who could be asked to re-
view a bug that is possibly related to a project they supply to the project
team.

■■ Customer service representatives, who might be asked to devise work-
arounds for the bug.

■	 Other testers, who will reproduce the steps if they are asked to verify a
fix during regression testing.

Because you never know exactly who will be reading your bug report,
you must always write in as clear, objective, and dispassionate a manner
as possible. You can’t assume that everyone reading your bug report will
be as familiar with the game as you are. Testers spend more time in the

Game Testing.indb 134 03/09/16 3:58 PM

The Game Testing Process • 135

game—exploring every hidden path, closely examining each asset—than
almost anyone else on the entire project team. A well-written bug will give
a reader who is not familiar with the game a good sense of the type and
severity of the defect it describes.

Just the Facts, Ma’am
The truth is that defects stress out development teams, especially

during “crunch time.” Each new bug added to the database means more
work still has to be done. An average-sized project can have hundreds or
thousands of defects reported before it is completed. Developers can feel
overwhelmed and might, in turn, get hostile if they feel their time is being
wasted by frivolous or arbitrary bugs. That’s why good bug writing is fact
based and unbiased.

 The guard’s hat would look better if it was blue.

This is neither a defect nor a fact; it’s an unsolicited and arbitrary opin-
ion about design. There are forums for such opinions—discussions with the
lead tester, team meetings, play testing feedback—but the bug database
isn’t one of them.

A common complaint in many games is that the Artificial Intelligence,
or AI, is somehow lacking. (AI is a catch-all term that means any opponents
or NPCs controlled by the game code.)

 The AI is weak.

This could indeed be a fact, but it is written in such a vague and gen-
eral way that it is likely to be considered an opinion. A much better way to
convey the same information is to isolate and describe a specific example
of AI behavior and write up that specific defect. By boiling issues down to
specific facts, you can turn them into defects that have a good chance of
being addressed.

Before you begin to write a bug report, you have to be certain that
you have all your facts.

Brief Description
Larger databases could contain two description fields: Brief Description

(or Summary) and Full Description (or Steps). The Brief Description field
is used as a quick reference to identify the bug. This should not be a cute

!
TIP

Game Testing.indb 135 03/09/16 3:58 PM

136 • Game Testing

nickname, but a one-sentence description that allows team members to iden-
tify and discuss the defect without having to read the longer, full description
each time. Think of the brief description as the headline of the defect report.

 Crash to desktop.

This is not a complete sentence, nor is it specific enough to be a brief
description. It could apply to one of dozens of defects in the database. The
brief description must be brief enough to be read easily and quickly, but
long enough to describe the bug.

 The saving system is broken.

This is a complete sentence, but it is not specific enough. What did
the tester experience? Did the game not save? Did a saved game not load?
Does saving cause a crash?

 Crash to desktop when choosing “Options” from Main Menu.

This is a complete sentence, and it is specific enough so that anyone
reading it will have some idea of the location and severity of the defect.

 �Game crashed after I killed all the guards and doubled
back through the level to get all the pick-ups and killed
the first re-spawned guard.

This is a run-on sentence that contains far too much detail. A good way
to boil it down might be

 Game crashes after killing respawned guards.

The one-sentence program descriptions used by cable television guides
and download stores can provide excellent examples of brief description
writing—they boil an entire one-hour cop show or two-hour movie into one
sentence.

Write the full description first, and then write the brief description.
Spending some time polishing the full description will help you under-
stand the most important details to include in the brief description.

Full Description
If the brief description is the headline of a bug report, the Full Descrip-

tion field provides the gory details. Rather than a prose discussion of the
defect, the full description should be written as a series of brief instructions

!
TIP

Game Testing.indb 136 03/09/16 3:58 PM

The Game Testing Process • 137

so that anyone can follow the steps and reproduce the bug. Like a cooking
recipe—or computer code, for that matter—the steps should be written in
second person imperative, as though you were telling someone what to do.
The last step is a sentence (or two) describing the bad result.

1. Launch the game.
2. �Watch the animated logos. Do not press ESC to skip through

them.
--> �Notice the bad strobing effect at the end of the Developer

logo.

The fewer steps, the better; and the fewer words, the better. Remem-
ber Brad Pitt’s warning to Matt Damon in Ocean’s Eleven: don’t use seven
steps when four will do. Time is a precious resource when developing a
game. The less time it takes a programmer to read, reproduce, and under-
stand the bug, the more time he has to fix it.

1. Launch game.
2. Choose multiplayer.
3. Choose skirmish.
4. Choose “Sorrowful Shoals” map.
5. Choose two players.
6. Start game.

These are very clear steps, but for the sake of brevity they can be boiled
down to

1. Start a two player skirmish game on “Sorrowful Shoals.”

Sometimes, however, you need several steps. The following bug
describes a problem with a power-up called “mugging,” which steals any
other power-up from any other unit.

1. Create a game against one human player. Choose Serpent tribe.
2. �Send a swordsman into a Thieves Guild to get the Mugging

power-up.
3. �Have your opponent create any unit and give that unit any

power-up.
4. �Have your Swordsman meet the other player’s unit somewhere

neutral on the map.
5. Activate the Mugging power-up.
6. Attack your opponent’s unit.

--> Crash to desktop as Swordsman strikes.

Game Testing.indb 137 03/09/16 3:58 PM

138 • Game Testing

This might seem like many steps, but it is the quickest way to repro-
duce the bug. Every step is important to isolate the behavior of the mugging
code. Even small details, like meeting in a neutral place, are important,
because meeting in occupied territory might bring allied units from one side
or another into the fight, and the test might then be impossible to perform.

Good bug writing is precise yet concise.

Great Expectations
Oftentimes, the defect itself will not be obvious from the steps in the

full description. Because the steps produce a result that deviates from
player expectation, but does not produce a crash or other severe or obvious
symptom, it is sometimes necessary to add two additional lines to your full
description: Expected Result and Actual Result.

Expected Result describes the behavior that a normal player would rea-
sonably expect from the game if the steps in the bug were followed. This

!
TIP

FIGURE 6.5  Fallout 4: One would expect player-placed structures to appear grounded on the terrain
rather than floating above it.

Game Testing.indb 138 03/09/16 3:58 PM

The Game Testing Process • 139

expectation is based on the tester’s knowledge of the design specification,
the target audience, and precedents set (or broken) in other games, espe-
cially games in the same genre.

Actual Result describes the defective behavior. Here’s an example.

1. Create a multiplayer game.
2. Click Game Settings.
3. �Using your mouse, click any map on the map list. Remember the

map you clicked on.
4. Press up or down directional keys on your keyboard.
5. Notice the highlight changes. Highlight any other map.
6. Click Back.
7. Click Start Game.
Expected Result: Game loads map you chose with the keyboard.
Actual Result: Game loads map you chose with the mouse.

Although the game loaded a map, it wasn’t the map the tester chose with
the keyboard (the last input device he used). That’s a bug, albeit a subtle
one. Years of precedent creates the expectation in the player’s mind that the
computer will execute a command based on the last input the player gave.
Because the map-choosing interface failed to conform to player expectation
and precedent, it could be confusing or annoying, so it should be written
up as a bug.

Use the Expected/Actual Result steps sparingly. Much of the time,
defects are obvious (see Figure 6.5) Here’s an example of “stating the obvi-
ous” in a crash bug.

4. Choose “Next” to continue.
Expected Result: You continue.
Actual Result: Game locks up. You must reboot the console.

It is understood by all members of the project team that the game
shouldn’t crash. Don’t waste time and space stating that with an unneces-
sary statement of Expected and Actual Results.

You should use these statements sparingly in your bug reports, but you
should use them when necessary. They can often make a difference when a
developer wants to close a bug in the database by declaring it “by design,”
“working as intended,” or “NAB” (Not a Bug).

Game Testing.indb 139 03/09/16 3:58 PM

140 • Game Testing

Interview

More players are playing games than ever before. As any human population
grows—and the pool of game players has grown exponentially over the last
decade—that population becomes more diverse. Players are different from each
other, have different levels of experience with games, and play games for a range of
different reasons. Some players want a competitive experience, some an immersive
experience, some want a gentle distraction.

The pool of game testers in any organization is always less diverse than the player
base of the game they are testing. Game testers are professionals, they have skills
in manipulating software interfaces, they are generally (but not necessarily)
experienced game players. It’s likely that if your job is creating games, that you’ve
played video games—a lot of them. But not every player is like you.

Brent Samul, QA Lead for developer Mobile Deluxe, put it this way: “The biggest
difference when testing for mobile is your audience. With mobile you have
such a broad spectrum of users. Having played games for so long myself, it can
sometimes be really easy to overlook things that someone who doesn’t have so
much experience in games would get stuck on or confused about.” (For more on
this subject, see “Avoid Groupthink” in Chapter 12.)

It’s a big job. “With mobile, we have the ability to constantly update and add
or remove features from our games. There are always multiple things to test for
with all the different configurations of smartphones and tablets that people have
today,” Mr. Samul says.

Although testers should write bugs against the design specification, the authors
of that specification are not omniscient. As the games on every platform become
more and more complex, it’s the testers’ job to advocate for the players—all
players—in their bug writing. (Permission: Brent Samul)

Habits to Avoid
For the sake of clarity, effective communication, and harmony among

members of the project team try to avoid two common bug writing pitfalls:
humor and jargon.

Although humor is often welcome in high-stress situations, it is not wel-
come in the bug database. Ever. There are too many chances for misinter-
pretation and confusion. During crunch time, tempers are short, skins are
thin, and nerves are frayed. The defect database could already be a point of

Game Testing.indb 140 03/09/16 3:58 PM

The Game Testing Process • 141

contention. Don’t make the problem worse with attempts at humor (even if
you think your joke is hilarious). Finally, as the late William Safire warned,
you should “avoid clichés like the plague.”

It perhaps seems counterintuitive to want to avoid jargon in such a
specialized form of technical writing as a bug report, but it is wise to do
so. Although some jargon is unavoidable, and each project team quickly
develops it own nomenclature specific to the project they’re working on,
testers should avoid using (or misusing) too many obscure technical terms
or acronyms. Remember that your audience could range from program-
mers to financial or marketing executives, so use plain language as much
as possible.

Although testing build after build might seem repetitive, each new
build provides exciting new challenges with its own successes (fixed bugs
and passed tests) and shortfalls (new bugs and failed tests). The purpose of
going about the testing of each build in a structured manner is to reduce
waste and to get the most out of the game team. Each time around, you get
new build data that is used to re-plan test execution strategies and update
or improve your test suites. From there, you prepare the test environment
and perform a smoke test to ensure the build is functioning well enough
to deploy to the entire test team. Once the test team is set loose, your top
priority is typically regression testing to verify recent bug fixes. After that,
you perform many other types of testing in order to find new bugs and to
check that old ones have not re-emerged. New defects should be reported
in a clear, concise, and professional manner after an appropriate amount of
investigation. Once you complete this journey, you are rewarded with the
opportunity to do it all over again.

Exercises

1.	Briefly describe the difference between the Expected Result and the
Actual Result in a bug write-up.

2.	What’s the purpose of regression testing?

3.	Briefly describe the steps in preparing a test configuration.

4.	What is a “knockdown list”? Why is it important?

5.	True or False: Black box testing refers to examining the actual game code.

Game Testing.indb 141 03/09/16 3:58 PM

142 • Game Testing

6.	True or False: The Brief Description field of a defect report should
include as much information as possible.

7.	True or False: White box testing describes the testing of gameplay.

8.	True or False: Version control should be applied only to the develop-
ers’ code.

9.	True or False: A “Verify Fix” status on a bug means it will remain on
the knockdown list for at least one more test cycle.

10.	�True or False: A tester should write as many steps as possible when
reporting a bug to ensure the bug can be reliably reproduced.

11.	�On a table next to a bed is a touch-tone landline telephone. Write
step-by-step instructions for using that phone to dial the following local
number: 555-1234. Assume the person reading the instructions has
never seen or used a telephone before.

Game Testing.indb 142 03/09/16 3:58 PM

Product metrics, such as the number of defects found per line of code,
tell you how fit the game code is for release. Test metrics can tell you
about the effectiveness and efficiency of your testing activities and

results. A few pieces of basic test data can be combined in ways that reveal
important information that you can use to keep testing on track, while get-
ting the most out of your tests and testers.

TESTING PROGRESS

Collecting data is important to understanding where the test team is
and where they are headed in terms of meeting the needs and expecta-
tions of the overall game project. Data and charts can be collected by the
test lead or the individual testers. Take responsibility for knowing how well
you’re doing. For example, in order to estimate the duration of the test

In This Chapter

●● Testing progress
●● Testing effectiveness
●● Tester performance

Testing by the Numbers

7c h a pt e r

Game Testing.indb 143 03/09/16 3:58 PM

144 • Game Testing

execution for any portion of
the game project, estimate
the total number of tests to
be performed. This number
is combined with data on
how many tests can be com-
pleted per staff-day of effort,
how much of a tester’s cal-
endar time is actually spent
on testing activities, and how
many tests you can expect to
be redone.

Figure 7.1 provides a set
of data for a test team starting
to run tests against a new code
release. The project manager
worked with the test lead to
use an estimate of 12 tests per
day as the basis for project-
ing how long it would take to
complete the testing for this
release.

Thirteen days into the
testing, the progress lagged
what had been projected, as
shown in Figure 7.2. It looks
like progress started to slip
on the fifth day, but the team
was optimistic that they could
catch up. By the tenth day
they seemed to have managed

to steer back toward the goal, but during the last three days the team lost ground
again, despite the reassignment of some people on to and off of the team.

To understand what is happening here, data was collected for each day
that a tester was available to do testing, and the number of tests he or she
completed each day. This information can be put into a chart, as shown in
Figure 7.3. The totals show that an individual tester completes an average
of about four tests a day.

Date

22-Dec 12
12
12
12
12
12
12
12
12
12
12
12
12 7

3
10
16
11
11
10
11
8

12
11
11
13 12

24
36
48
60
72
84
96
108
120
132
144
156 134

127
124
114
98
87
76
66
55
47
35
24
13

23-Dec
28-Dec
29-Dec
30-Dec
4-Dec
5-Jan
6-Jan
7-Jan
8-Jan
10-Jan
11-Jan
12-Jan

Daily Execution Total Execution
Planned Actual Planned Actual

Figure 7.1  Planned and actual test execution progress data.

180

160

140

120

100 Planned
Actual

Te
st

s
R

un

22
-D

ec
23

-D
ec

28
-D

ec
29

-D
ec

30
-D

ec
4-

Ja
n

5-
Ja

n
6-

Ja
n

7-
Ja

n
8-

Ja
n

10
-J

an
11

-J
an

12
-J

an

80

60

40

20

0

Test Progress

Figure 7.2  Planned and actual test execution progress graph.

Game Testing.indb 144 03/09/16 3:58 PM

Testing by the Numbers • 145

Once you have the test effort data for each person and each day, you must
compare the test effort people have contributed to the number of work days
they were assigned to participate in system testing. Ideally, this ratio would
come out to 1.00. The numbers you actually collect will give you a measure-
ment of something you felt was true, but couldn’t prove before: most testers
are unable to spend 100% of their time on testing. This being the case, don’t
plan on testers spending 100% of their time on a single task! Measurements
will show you how much to expect from system testers, based on various
levels of participation. Some testers will be dedicated to testing as their only
assignment. Others perhaps perform a dual role, such as developer/tester or
QA engineer/tester. Collect effort data for your team members that fall into
each category, as shown in Figure 7.4.

These data lead to a number of important points. One is that, given
tester “overhead” tasks such as training, meetings, preparing for demos,
and so on, a full-time tester might be able to contribute only about 75%
of his or her time at best, and 50%-60% on average, over the course of a
long project. If you are counting on people with other responsibilities—for
example, artists, developers, or QA—to help with testing, then expect only
half as much participation as the full-time testers. Using the numbers in

DATE TESTER TESTER
DAYS

COMPLETED
TESTS

22-Dec *
*
*
*
*
*
*
*
*

*
* *

*
*

*
*
*
* * *

*
*
*
*
*
*
*
*
*

*
*
*
*

B C D K Z
2 13

11
11
12
8

11

11
11
16
10
3
7

10

2
2
2
2
3
3
3
3

3
3
1

33 134
4.06

TOTALS
TESTS/TESTER DAY

4

23-Dec
28-Dec
29-Dec
30-Dec

4-Jan
5-Jan
6-Jan
7-Jan
8-Jan

10-Jan
11-Jan
12-Jan

Figure 7.3  Test completion rate per tester per day.

Game Testing.indb 145 03/09/16 3:58 PM

146 • Game Testing

Figure 7.4, that would be about 30% of their total available time. You will
need to make these measures for your own particular project.

Also, by combining the individual productivity numbers to find a team
productivity number, you can see that this team performs only half as many
tests as they could if they had 100% of their time to perform testing. This
number can be combined with your effort estimate to give an accurate count
of calendar work days remaining before testing will be finished. Using the
number of 125 tests remaining, and a staff size of 11 testers, you would
approximate 11 staff-days of testing remaining. Now that you know what
the team’s productivity is, however, you divide 11 by 46%, resulting in 24
calendar work days remaining, or nearly five “normal” work weeks. If you
had committed to the original, optimistic number of 11 days, there would
be much gnashing of teeth when the tests weren’t actually completed until
three weeks after they had been promised!

You need this kind of information to answer questions such as “How
many people do you need to get testing done by Friday?” or “If I can get
you two more testers, when can you be done?”

FULL - TIME TESTERS

PART - TIME TESTERS

FULL - TIME TESTER AVAILABILITY

WEEK 1
15.5
44

21.5 35.5 31.5 36.5 22 23.5
414150535150

2 3 4 5 6 7 TOTAL
186
330
56%

TESTER DAYS
ASSIGNED DAYS

PART - TIME TESTER AVAILABILITY

WEEK 1
0
0

244
532
46%

0 0 18.5 18.5 6 15
4653544900

2 3 4 5 6 7 TOTAL
58

202
29%

TESTER DAYS
ASSIGNED DAYS

TESTER DAYS
CUMULATIVE

ASSIGNED DAYS
AVAILABILITY

Figure 7.4  Tester participation rate calculations.

Game Testing.indb 146 03/09/16 3:58 PM

Testing by the Numbers • 147

Burn into your mind that it’s easier to stay on track by getting a little
extra done day to day than by trying to make up a large amount in a
panic situation; remember Rule #1: Don’t Panic.

Going back to Figure 7.1, you can see that on 8-Jan the team was only
six tests behind the goal. Completing one extra test on each of the previous
six work days would have had the team on goal. If you can keep short-term
commitments to stay on track, you will be able to keep the long-term com-
mitment to deliver completed testing on schedule.

TESTING EFFECTIVENESS

Measure your Test Effectiveness (TE) by adding up defects and divid-
ing by the number of tests completed. This measurement tells you not only
how “good” the current release is compared to previous ones, it can also
be used to predict how many defects will be found by the remaining tests
for that release. For example, with 30 tests remaining and a TE of 0.06,
testers should find approximately two more defects. This could be a sign to
developers to delay a new code release until the two expected defects are
identified, classified, and removed. An example table of TE measurements
is shown in Figure 7.5.

You should measure TE for each release as well as for the overall proj-
ect. Figure 7.6 shows a graphical view of this TE data.

Notice how the cumulative TE reduced with each release and set-
tled at .042. You can take this measurement one step further by using

!
TIP

Code
Release

Defects
New Total

Tests Run
Release ReleaseTotal Total

0.060
0.045
0.045
0.043
0.042

0.060570570
1230
890
490
220144

138
120
81
3434

47
39
18
6

1800
2690
3180
3400

0.038
0.044
0.037
0.027

Defects/Test

DEV1
DEV2
DEV3
DEMO1
ALPHA1

Figure 7.5  Test Effectiveness measurements.

Game Testing.indb 147 03/09/16 3:58 PM

148 • Game Testing

test completion and defect
detection data for each tes-
ter in order to calculate indi-
vidual TEs. Figure 7.7 shows
a snapshot of tester TEs for
the overall project. You can
also calculate each tester’s
TE per release.

Note that for this proj-
ect, the effectiveness of each
tester ranges from 0.030 to
0.099, with an average of
0.060. The effectiveness is
perhaps as much a function
of the particular tests each
tester was asked to perform
as it is a measure of the skill
of each tester. Like the over-
all TE measurement, how-
ever, this number can be
used to predict how many
additional defects a particu-
lar tester could find when
performing a known num-
ber of tests. For example, if
tester C has 40 more tests to
perform, expect her to find
about four more defects.

In addition to measuring
how many defects you detect

(quantitative), it is important to understand the severity of defects intro-
duced with each release (qualitative). Using a defect severity scale of 1 to
4, where 1 is the highest severity, detection of new severity 1 and 2 defects
should be reduced to 0 prior to shipping the game. Severity 3 and 4 defect
detection should be on a downward trend approaching 0. Figure 7.8 pro-
vides examples of severity data.

0.070

0.060

0.050

0.040 Release
Total0.030

0.020

0.010

0.000

DEV1
DEV2

DEV3

Code Release
DEMO1

ALPHA1

Test Effectiveness

Figure 7.6  Test Effectiveness graph.

TESTER B C D K Z TOTAL
570169

9

0.0530.0300.0760.0990.060

151

9 6

7971

7 3

100

34

0.060

TESTS RUN
DEFECTS
FOUND
DEFECTS
/TEST

Figure 7.7  TE measured for individual testers.

Release Defects by Severity

Dev1 7
4
2
1
0 0 6

12
34
30
13 1

2
0
3
0 6

18
39
47
34

2
3

11
13

1 2 3 4 All

Dev2
Dev3
Demo1
Alpha1

Figure 7.8  Defect severity trend data.

Game Testing.indb 148 03/09/16 3:58 PM

Testing by the Numbers • 149

Figure 7.9 graphs the
trend of the severity data
listed in Figure 7.8. Take
a moment to examine the
graph. What do you see?

Notice that the severity
3 defects dominate. They
are also the only category
to significantly increase
after Dev1 testing, except
for some extra 4s popping
up in the Demo1 release.
When you set a goal that
does not allow any severity
2 defects to be in the ship-
ping game, there will be a tendency to push any borderline severity 2 issues
into the severity 3 category. Another explanation could be that the develop-
ers focus their efforts on the 1s and 2s so they leave the 3s alone early in
the project, with the intention of dealing with them later. This approach
bears itself out in Figures 7.8 and 7.9, where the severity 3 defects are
brought way down for the Demo1 release and continue to drop in the
Alpha1 release. Once you see “what” is happening, try to understand “why”
it is happening that way.

TESTER PERFORMANCE

You can implement some other measurements to encourage testers to
find defects and to give them a sense of pride in their skills. One of them
is the “Star Chart.” This chart is posted in the testing area and shows the
accomplishments of each tester according to how many defects they find of
each severity. Tester names are listed down one side of the chart and each
defect is indicated by a stick-on star. The star’s color indicates the defect’s
severity. For example, you can use blue for 1, red for 2, yellow for 3, and sil-
ver for 4. Points can also be assigned to each severity (for example, A = 10,
B = 5, C = 3, D = 1), and a “Testing Star” can be declared at the end of the
project based on who has the most points.

Defect Serverity Trends
40

1
2
3
4

35
30
25
20

N
ew

 D
ef

ec
ts

15
10
5

Dev1
Dev2

Code Release
Dev3

Demo1
Alpha1

0

Figure 7.9  Defect severity trend graph.

Game Testing.indb 149 03/09/16 3:58 PM

150 • Game Testing

In our experience, this chart has led to a sense of friendly competi-
tion among testers, increased their determination to find defects,
promoted tester ownership of defects, and has caused testers to
pay more attention to the severity assigned to the defects they find.
This approach turns testing into a game for the testers to play
while they’re testing games.

Figure 7.10 shows what
a Star Chart looks like prior
to applying the testers’ stars.

If you’re worried about
testers getting into battles
over defects and not fin-
ishing their assigned tests
quickly enough, you can cre-
ate a composite measure of
each tester’s contribution to
test execution and defects
found. Add the total number
of test defects found and cal-

culate a percentage for each tester, based on how many they found divided
by the project total. Then do the same for tests run. You can add these two
numbers for each tester. Whoever has the highest total is the “Best Tester”
for the project. This might or might not turn out to be the same person who
becomes the Testing Star. Here’s how this works for testers B, C, D, K, and
Z for the Dev1 release:

■■ Tester B executed 151 of the team’s 570 Dev1 tests. This comes out to
26.5%. B has also found 9 of the 34 Dev1 defects, which is also 26.5%.
B’s composite rating is 53.

■■ Tester C ran 71 of the 570 tests, which is 12.5%. C found 7 out of the 34
total defects in Dev1, which is 20.5%. C’s rating is 33.

■■ Tester D ran 79 tests, which is approximately 14% of the total. D also
found 6 defects, which is about 17.5% of the total. D earns a rating
of 31.5.

■■ Tester K ran 100 tests and found 3 defects. These represent 17.5% of
the test total and about 9% of the defect total. K has a 26.5 rating.

NOTE

STAR CHART FOR XYZZY

B

C

D

K

Z

TESTERS STARS (Sev. 1 = BLUE, 2 = RED, 3 = YELLOW, 4 = SILVER)

Figure 7.10 E mpty Star Chart.

Game Testing.indb 150 03/09/16 3:58 PM

Testing by the Numbers • 151

■■ Tester Z ran 169 tests, which is about 29.5% of the 570 total. Z found
9 defects, which is 26.5% of that total. Z’s total rating is 56.

■■ Tester Z has earned the title of “Best Tester.”

When you have people on your team who keep winning these awards,
take them to lunch and find out what they are doing so you can win
some too!

Be careful to use this system for good and not for evil. Running more
tests or claiming credit for new defects should not come at the expense of
other people or the good of the overall project. You could add factors to
give more weight to higher-severity defects in order to discourage testers
from spending all their time chasing and reporting low-severity defects that
won’t contribute as much to the game as a few very important high-severity
defects.

Use this system to encourage and exhibit positive test behaviors. Remind
your team (and yourself!) that some time spent automating tests could have
generous payback in terms of test execution. Likewise, spending a little time
up front to effectively design your tests, before you run off to start banging
on the game controller, will probably lead you to more defects. You will
learn more about these strategies and techniques in the remaining chapters
of this book.

This chapter introduced you to a number of metrics you can collect to
track and improve testing results. Each metric from this chapter is listed
below, together with the raw data you need to collect for each, mentioned
in parentheses:

■■ Test Progress Chart (# of tests completed by team each day, # of tests
required each day)

■■ Test Completed/Days of Effort (# of tests completed, # days of test
effort for each tester)

■■ Test Participation (# of days of effort for each tester, # of days each tester
assigned to test)

■■ Test Effectiveness (# of defects, # of tests for each release and/or tester)

■■ Defect Severity Profile (# of defects of each severity for each release)

!
TIP

Game Testing.indb 151 03/09/16 3:58 PM

152 • Game Testing

■■ Star Chart (# of defects of each severity for each tester)

■■ Testing Star (# of defects of each severity for each tester, point value of
each severity)

■■ Best Tester (# of tests per tester, # of total tests, # of defects per tester,
of total defects)

Testers or test leads can use these metrics to aid in planning, predict-
ing, and performing game testing activities. Then you will be testing by the
numbers.

Exercises

1.	How does the data in Figure 7.3 explain what is happening on the graph
in Figure 7.2?

2.	How many testers do you need to add to the project represented in
Figures 7.1 and 7.2 in order to bring the test execution back on plan in
the next 10 working days? The testers will begin work on the very next
day that is plotted on the graph.

3.	Tester C has the best TE as shown in Figure 7.7, but did not turn out to
be the “Best Tester.” Explain how this happened.

4.	You are tester X working on the project represented in Figure 7.7. If you
have run 130 tests, how many defects did you need to find in order to
become the “Best Tester?”

5.	Describe three positive and three negative aspects of measuring the
participation and effectiveness of individual testers. Do not include any
aspects already discussed in this chapter.

Game Testing.indb 152 03/09/16 3:58 PM

Like Goldilocks, testers and project managers are continually strug-
gling with the issue of how much testing is too little, too much, or just
right. Game quality has to be good enough for consumers, but test-

ing can’t go on forever if the game is going to hit its release date. Trying to
test every possible combination of game events, configurations, functions,
and options is neither practical nor economical under these circumstances.
Taking shortcuts or skipping some testing, however, is risky business.

Pairwise combinatorial testing is a way to find defects and gain confi-
dence in the game software, while keeping the test sets small relative to the
amount of functionality they cover. “Pairwise” combination means that each
value you use for testing needs to be combined at least once with each other
value of the remaining parameters.

In This Chapter

●● Pairwise combinatorial testing
●● Constructing tables
●● Combinatorial templates
●● Combinatorial test generation
●● Combinatorial economics

Combinatorial Testing

8c h a pt e r

Game Testing.indb 153 03/09/16 3:58 PM

154 • Game Testing

PARAMETERS

Parameters are the individual elements of the game that you want to
include in your combinatorial tests. You can find test parameters by looking
at various types of game elements, functions, and choices such as:

■■ Game events

■■ Game settings

■■ Gameplay options

■■ Hardware configurations

■■ Character attributes

■■ Customization choices

The test you create can be homogenous—designed to test combinations
of parameters of the same type, or heterogeneous—designed to test more
than one type of parameter in the same table.

For example, testing choices from a Game Options screen for their
effect on gameplay is done with a homogenous combinatorial table. If you go
through various menus to select different characters, equipment, and options
to use for a particular mission, then that results in a heterogeneous table.

VALUES

Values are the individual choices that are possible for each parameter.
Values could be entered as a number, entered as text, or chosen from a list.
There are many choices for a gamer to make, but do they all need to be
considered in your testing? That is, does every single value or choice have
the same weight or probability of revealing a defect, or can you reduce the
number of values you test without impacting your test’s ability to reveal the
defects in the game?

Defaults
Consider whether or not default values should be used in your tests.

These are the settings and values that you get if you don’t select anything
special and just start playing the game as installed. You might also want
to consider the first item in any list—say, a choice of hairstyle for your

Game Testing.indb 154 03/09/16 3:58 PM

Combinatorial Testing • 155

character—to be a kind of default value, because if you want to start play-
ing as quickly as possible and bang on the Select key to get through all of the
mandatory choices, these are the values you will be using.

If the combinatorial testing is the only testing that will be using these
parameters, then the defaults should be included. They are the values that
will be most often used, so you don’t want to let bugs escape that will affect
nearly everyone who plays the game.

On the other hand, if combinatorial testing is going to be a complement
to other types of testing, then you can reduce your test burden by leaving the
default values out of your tables. This strategy relies on the fact that the defaults
will be used so often that you can expect them to show up in the other testing
being done for the game. If you consider leaving these values out, get in touch
with the other groups or people who are testing to make sure they do plan on
using default values. If you have a test plan for your game, use it to document
which sets of tests will incorporate default values and which will not.

Enumerations
Many choices in a game are made from a set of distinct values or options

that do not have any particular numerical or sequential relationship to one
another. Choosing which car to drive, or which baseball team to play, or
which fighter to use are examples of this kind of choice.

Regardless of the number of unique choices (team, car, fighter, weapon,
song, hairstyle, and so on), each one should be represented somewhere in
your tests. It’s easy to find bugs that happen independent of which particu-
lar choice is made. Those that do escape tend to happen for only a very few
of the choices.

Ranges
Many of the game options and choices require the player to pick a num-

ber from a range or list. This could be done by directly entering a number or
by scrolling through a list to make a selection. For each range of numbers,
three particular values tend to have special defect-revealing properties:
Zero, Minimum, and Maximum.

Anytime a zero (0) is a presented as a possible choice or entry, it should
be included in testing. This is partly due to the unique or ambiguous way
that the value 0 might affect the game source code. Here is a partial list of
possible unintended zero-induced effects:

Game Testing.indb 155 03/09/16 3:58 PM

156 • Game Testing

■■ A loop could prematurely exit or could execute code in the body of the
loop before checking for zero

■■ Confusion between starting loop counts at 0 or 1

■■ Confusion with arrays or lists starting at index 0 or 1

■■ 0 is often used to represent special meaning, such as to indicate an infi-
nite timer or that an error has occurred

■■ 0 is the same value as the string termination (NULL) character in C,
C++, C# and Objective-C

■■ 0 is the same value as the logical (Boolean) False value in C, C++, C#
and Objective-C

Minimum values are also a good source of defects. They can be applied
to numerical parameters or list choices. Look for the opportunity to use
minimum values with parameters related to the following:

■■ Time

■■ Distance

■■ Speed

■■ Quantity

■■ Size

■■ Bet, sell, or purchase amount

For example, using a minimum time might not allow certain effects to
be completed once they are started - similar to the Doodle Bowling bug you
saw in Chapter 2 - and could make certain goals unachievable.

Maximum values can also cause undesirable side effects. They are espe-
cially important to use where they place an extra burden of time or skill for
the tester to reach the maximum value. Both developers and testers will
tend to pass over these values in favor of “easier” testing.

Use maximum values for the same parameter categories that you would
test for minimum values. In addition to testing in-game elements, be sure
to also include tests for the maximum number of players, maximum number
of controllers connected, maximum number of saved files, and maximum
storage—disk, cartridge, mobile device memory, and so on.

Game Testing.indb 156 03/09/16 3:58 PM

Combinatorial Testing • 157

Boundaries
When a child (or even an adult) colors in a page of a coloring book,

we judge how they do by how well they stay within the lines. Likewise, it
is the responsibility of the game tester to check the game software around
its boundaries. Game behavior that does not “stay within the lines” leads to
defects.

Some of the boundaries to test might be physically rendered in the
game space, such as the following:

■■ Town, realm, or city borders

■■ Goal lines, sidelines, foul lines, and end lines on a sports field or court

■■ Mission or race waypoints

■■ Start and finish lines

■■ Portal entrances and exits

Other boundaries are not physical. These can include:

■■ Mission, game, or match timers.

■■ The speed that a character or vehicle can achieve.

■■ The distance a projectile can travel.

■■ The distance at which graphic elements become visible, transparent, or
invisible.

Dig deep into the rules of the game to identify hidden or implied
boundaries.

For example, in football there are rules and activities tied in with the
timing of the game. The timing of a football game is broken into four quar-
ters of equal length, with a halftime pause in the game that occurs after the
end of the second quarter. The game ends if one team has more points than
another at the end of the fourth quarter. With two minutes left in each half,
the referee stops the clock for the Two Minute Warning. To test a football
game, two-minute quarters are a good boundary value to see if the second
and fourth quarters of the game each start normally or with the special
Two Minute Warning. A three-minute duration could also be interesting
because it is the smallest duration that would have a period of play prior to
the Two Minute Warning.

Game Testing.indb 157 03/09/16 3:58 PM

158 • Game Testing

Another boundary example is from Madden NFL Mobile when one
season comes to an end and a new season begins. The Madden Season
Score retains the player’s Madden Cash balances, but resets the player’s
Coins, Item Binders, Rank, Seasons Completed, Level and Achievements.
See https://www.easports.com/madden-nfl/news/2015/mobile-season-score-
launch for more details.

CONSTRUCTING TABLES

To see how a combinatorial table is constructed, start with a simple
table using parameters that have only two possible values. Games are full
of these kinds of parameters, providing choices such as On or Off, Male
or Female, Mario or Luigi, or Night or Day. This test combines character
attributes for a Jedi character in a Star Wars™ game to test their effects
on combat animations and damage calculations. The three test parameters
are character Gender (Male or Female), whether the character uses a one-
handed or two-handed Light Saber, and whether the character follows the
Light side or the Dark side of the Force.

Tutorial

The table starts with the first two parameters arranged in the first two
columns so that they cover all four possible combinations, as shown in
Table 8.1.

Gender Light Saber

Male 1-Handed

Male 2-Handed

Female 1-Handed

Female 2-Handed

Table 8.1  First Two Columns of Jedi Combat Test

To construct a full combinatorial table, repeat each of the Gender and
Light Saber pairs, and then combine each with the two possible Force values.
When the Light and Dark “Force” choices are added in this way, the size of
the table doubles—determined by the number of rows, as shown in Table 8.2.

Game Testing.indb 158 03/09/16 3:58 PM

https://www.easports.com/madden-nfl/news/2015/mobile-season-score-launchfor
https://www.easports.com/madden-nfl/news/2015/mobile-season-score-launchfor
https://www.easports.com/madden-nfl/news/2015/mobile-season-score-launchfor

Combinatorial Testing • 159

Gender Light Saber Force

Male 1-Handed Light

Male 1-Handed Dark

Male 2-Handed Light

Male 2-Handed Dark

Female 1-Handed Light

Female 1-Handed Dark

Female 2-Handed Light

Female 2-Handed Dark

Table 8.2 C omplete Three-Way Combinatorial Table for Jedi Combat Test

For a pairwise combinatorial table, it’s necessary to combine each value
of every parameter with each value of every other parameter at least once
somewhere in the table. A pair that is represented in the table is said to
be “satisfied,” while a pair not represented in the table is “unsatisfied.” The
following six pairings must be satisfied for the Jedi combat table:

1.	Male Gender paired with each Light Saber choice (1-Handed,
2-Handed)

2.	Female Gender paired with each Light Saber choice (1-Handed,
2-Handed)

3.	Male Gender paired with each Force choice (Light, Dark)

4.	Female Gender paired with each Force choice (Light, Dark)

5.	One-Handed (1-Handed) Light Saber paired with each Force choice
(Light, Dark)

6.	Two-Handed (2-Handed) Light Saber paired with each Force choice
(Light, Dark)

To make the pairwise table, rebuild from Table 8.1 by adding a column
for the Force values. Next, enter the Light and Dark choices for the Male
character, as shown in Table 8.3. This satisfies pairings 1 and 3—Male Gender
with Light Saber choices and Male Gender with Force choices.

Game Testing.indb 159 03/09/16 3:58 PM

160 • Game Testing

Gender Light Saber Force

Male 1-Handed Light

Male 2-Handed Dark

Female 1-Handed

Female 2-Handed

Table 8.3 A dding Force Choices for the Male Rows

Adding the “Dark” value to the first Female row will satisfy the criteria
for pairing “1-Handed” Light Saber with each Force choice, as illustrated
in Table 8.4.

Gender Light Saber Force

Male 1-Handed Light

Male 2-Handed Dark

Female 1-Handed Dark

Female 2-Handed

Table 8.4 A dding the First Force Choice for the Female Character Tests

Finally, fill in the Light value in the second Female row to produce
Table 8.5 which completes the pairwise criteria for all parameters. This final
entry takes care of the remaining pairings for Female Gender paired with
each Light Saber choice, Female Gender paired with each Force choice,
and Two-Handed (2-Handed) Light Saber paired with each Force choice.

This new table is only half the size of Table 8.2, which was developed
to account for all possible three-way combinations, rather than concen-
trating on using parameter pairs. Including the Force parameter in these
tests is “free” in terms of the resulting number of test cases. In many cases,
pairwise combinatorial tables let you add complexity and coverage without
increasing the number of tests you will need to run. This will not always
be true; sometimes you will need a few more tests as you continue to add
parameters to the table. The growth of the pairwise table, however, will be
much slower than full combinatorial tables for the same set of parameters
and their values.

Game Testing.indb 160 03/09/16 3:58 PM

Combinatorial Testing • 161

Gender Light Saber Force

Male 1-Handed Light

Male 2-Handed Dark

Female 1-Handed Dark

Female 2-Handed Light

Table 8.5 C ompleted Pairwise Combinatorial Table for Three Jedi Combat Parameters

In this simple example, the pairwise technique has cut the number of
required tests in half compared by creating every mathematically possible
combination of all of the parameters of interest. This technique and its ben-
efits are not limited to tables with two-value parameters. Parameters with
three or more choices can be efficiently combined with other parameters
of any dimension. When it makes sense, incorporate more parameters to
make your tables more efficient.

The number of choices (values) tested for a given parameter is referred
to as its dimension. Tables are characterized by the dimensions of each
parameter. They can be written in descending order, with a superscript
to indicate the number of parameters of each dimension. In this way, the
Jedi combat table completed in Table 8.5 is described as a 23 table. A table
with one parameter of three values, two parameters of four values, and
three parameters of two values is described as a 423123. Another way to
describe the characteristics of the table is to list the parameter dimensions
individually in descending order with a dash between each value. Using
this notation, the Jedi combat table is a 2-2-2 table, and the second example
mentioned above is described as 4-4-3-2-2-2. You can see how the second
notation takes up a great deal of space when there are a significant number
of parameters. Use whichever works best for you.

Create pairwise tables of any size for your game tests using the following
short and simple process. These steps might not always produce the optimum
(smallest possible) size table, but you will still achieve an efficient table.

1.	Choose the parameter with the highest dimension.

2.	Create the first column by listing each test value for the first param-
eter N times, where N is the dimension of the next-highest dimension
parameter.

Game Testing.indb 161 03/09/16 3:58 PM

162 • Game Testing

3.	Start populating the next column by listing the test values for the next
parameter.

4.	For each remaining row in the table, enter the parameter value in the
new column that provides the greatest number of new pairs with respect
to all of the preceding parameters entered in the table. If no such value
can be found, alter one of the values previously entered for this column
and resume this step.

5.	If there are unsatisfied pairs in the table, create new rows and fill in the
values necessary to create one of the required pairs. If all pairs are satis-
fied, then go back to step 3.

6.	Add more unsatisfied pairs using empty spots in the table to create the
most possible new pairs. Go back to step 5.

7.	Fill in empty cells with any one of the values for the corresponding
column (parameter).

The next example is a little more complicated than the previous one.
Use the preceding process to complete a pairwise combinatorial table for
some of the FIFA 15 Match parameters under the Game Settings menu in
order to be able to test their effect on the user’s visual experience during
gameplay. Figure 8.1 shows a portion of the available Match settings. To
be thorough, also verify the contents, spelling, capitalization and punctua-
tion for the description of each setting that appears at the bottom of the
Game Settings dialog. For example, when the Difficulty Level selection is
highlighted, the description is “Based on your skill, set the difficulty level
of your opponent.”

Half Length is the real-world amount of time it takes to complete each
half of the match. Half Length times are selectable from 4-10 minutes,
15 minutes, or 20 minutes. This test design will use 4 and 10 as range bound-
aries and 20 because it is the maximum value for this parameter. Match
Difficulty Level choices in the game range from Amateur to Legendary,
so these two extremes should be represented. Match Referees each have a
different level of strictness with regard to calling fouls and issuing cards. We
will test using referees that represent a Lenient, Average, or Strict approach
toward fouls and cards. Just be sure that you select a referee that has the
same attributes for both card strictness and foul strictness. For example,

Game Testing.indb 162 03/09/16 3:58 PM

Combinatorial Testing • 163

you can use H. G. Monksfield as the “Lenient” referee, F. Fredskild as
the “Average” referee, and M. Barbosa as the “Strict” disciplinarian. Lastly,
the two extreme Game Speed choices will be tested: Slow and Fast. As a
result, you will create a 3323 table consisting of three parameters with three
choices: Half Length, Referee, and Weather, followed by three parameters
with two choices: Difficulty Level, Pitch Wear, and Game Speed.

If you aren’t familiar with the game or the detailed rules of soccer, that
doesn’t matter right now. You just need to be able to understand and follow
the seven steps for constructing a pairwise combinatorial table.

Begin the process with steps 1 and 2 and list the Half Length values
three times in the first column of the table. This is because Half Length is
one of the parameters with the highest dimension (3). One of the param-
eters with the next highest dimension is Referee, which also has a dimen-
sion of three.

Next, apply step 3 and put each of the three Referee values in the first
three rows of column 2. Table 8.6 shows what the matrix looks like at this
point. A row number is included in the table so that each combination (test
case) can be referenced easily.

Figure 8.1  FIFA 15 Match Settings screen.

Game Testing.indb 163 03/09/16 3:58 PM

164 • Game Testing

Half Length Referee

1 4 min Lenient

2 10 min Average

3 20 min Strict

4 4 min

5 10 min

6 20 min

7 4 min

8 10 min

9 20 min

Table 8.6  Starting the FIFA 15 Match Settings Test Table

Apply step 4 to continue filling in the next column. Starting with the
fourth row, enter a Referee parameter that creates the most number of
new pairs. Because this is only the second column, you can create only one
new pair. The “Lenient” Referee has already been paired with “4 min” Half
Length, so you can put “Average” in row 4 to create a new pair. Likewise,
“Strict” and “Lenient” should go in rows 5 and 6 to create new pairs with
“10 min” and “20 min,” respectively. Table 8.7 shows the resulting combina-
tions at this point in the process.

Row Half Length Referee

1 4 min Lenient

2 10 min Average

3 20 min Strict

4 4 min Average

5 10 min Strict

6 20 min Lenient

7 4 min

8 10 min

9 20 min

Table 8.7 A dding the Second Set of Referee Values

Game Testing.indb 164 03/09/16 3:58 PM

Combinatorial Testing • 165

Continue with step 4 to complete the Referee column. At the seventh
row, enter a Referee type that creates a new pair with the “4 min” Half
Length value. “Lenient” (row 1) and “Average” (row 4) have already been
paired, so “Strict” is the correct value for this row. By the same process,
“Lenient” goes in row 8 and “Average” in row 9. Table 8.8 shows the first
two columns completed in this manner.

Row Half Length Referee

1 4 min Lenient

2 10 min Average

3 20 min Strict

4 4 min Average

5 10 min Strict

6 20 min Lenient

7 4 min Strict

8 10 min Lenient

9 20 min Average

Table 8.8 C ompleting the Referee Column

Applying step 5, check that all of the pairs required for the first two
columns are satisfied:

■■ Half Length = “4 min” is paired with “Lenient” (row 1), “Average” (row 4)
and “Strict” (row 7).

■■ Half Length = “10 min” is paired with “Lenient” (row 8), “Average” (row 2)
and “Strict” (row 5).

■■ Half Length = “20 min” is paired with “Lenient” (row 6), “Average” (row 9)
and “Strict” (row 3).

Because all of the pairs required for the first two columns are repre-
sented in the table, step 5 sends us back to step 3 to continue the process with
the Weather option and its three test values. Applying step 3, list the “Clear,”
“Rainy,” and “Overcast” Weather values at the top of the third column, as
shown in Table 8.9.

Game Testing.indb 165 03/09/16 3:58 PM

166 • Game Testing

Row Half Length Referee Weather

1 4 min Lenient Clear

2 10 min Average Rainy

3 20 min Strict Overcast

4 4 min Average

5 10 min Strict

6 20 min Lenient

7 4 min Strict

8 10 min Lenient

9 20 min Average

Table 8.9  Starting the Weather Column

Proceed with step 4 to add the Weather value that creates the most pairs
for row 4 (“4 min” and “Average”). “Clear” is already paired with “4 min” in
row 1 and “Rainy” is already paired with “Average” in row 2, so “Overcast”
is the correct entry for this row. In the same manner, “Clear” creates two
new pairs in row 5, and “Rainy” creates two new pairs in row 6. Table 8.10
shows what the test table looks like at this point.

Row Half Length Referee Weather

1 4 min Lenient Clear

2 10 min Average Rainy

3 20 min Strict Overcast

4 4 min Average Overcast

5 10 min Strict Clear

6 20 min Lenient Rainy

7 4 min Strict

8 10 min Lenient

9 20 min Average

Table 8.10 A dding the Second Set of Weather Values

Game Testing.indb 166 03/09/16 3:58 PM

Combinatorial Testing • 167

Again, continue with step 4 to complete the Weather column. “Rainy”
produces two new pairs in row 7: “Overcast” in row 8, and “Clear” in row 9.
Table 8.11 shows the completed Indicator column.

Row Half Length Referee Weather

1 4 min Lenient Clear

2 10 min Average Rainy

3 20 min Strict Overcast

4 4 min Average Overcast

5 10 min Strict Clear

6 20 min Lenient Rainy

7 4 min Strict Rainy

8 10 min Lenient Overcast

9 20 min Average Clear

Table 8.11 C ompleting the Weather Column

It’s time again to check that all the required pairs are satisfied. Because
the first two columns have been previously verified, there’s no need to
check them again. Check the new Weather column against all of its prede-
cessors, as follows:

■■ Half Length = “4 min” is paired with “Clear” (row 1), “Rainy” (row 7)
and “Overcast” (row 4).

■■ Half Length = “10 min” is paired with “Clear” (row 5), “Rainy” (row 2)
and “Overcast” (row 8).

■■ Half Length = “20 min” is paired with “Clear” (row 9), “Rainy” (row 6)
and “Overcast” (row 3).

■■ Referee = “Lenient” is paired with “Clear” (row 1), “Rainy” (row 6) and
“Overcast” (row 8).

Game Testing.indb 167 03/09/16 3:58 PM

168 • Game Testing

■■ Referee = “Average” is paired with “Clear” (row 9), “Rainy” (row 2) and
“Overcast” (row 4).

■■ Referee = “Strict” is paired with “Clear” (row 5), “Rainy” (row 7) and
“Overcast” (row 3).

With all of the required pairs satisfied at this point, step 5 sends you
back to step 3 to add the Difficulty parameter. Table 8.12 shows the two
Difficulty test values added to the top of the fourth column.

Row Half Length Referee Weather Difficulty

1 4 min Lenient Clear Beginner

2 10 min Average Rainy Legendary

3 20 min Strict Overcast

4 4 min Average Overcast

5 10 min Strict Clear

6 20 min Lenient Rainy

7 4 min Strict Rainy

8 10 min Lenient Overcast

9 20 min Average Clear

Table 8.12  Starting the Difficulty Column

Apply step 4 and add the extreme Difficulty values in row 3 (“20 min,”
“Strict” and “Legendary”) that creates the most pairs with column 4. Either
“Beginner” or “Legendary” will create a new pair with all three of the other
values in this row. For this exercise, choose “Beginner” for row 3. Continue
from there and add the correct values for rows 4 through 6. “Beginner”
in row 4 would create only one new pair with “Beginner” so “Legendary”
is the right value to put here, creating pairs with “4 min” and “Overcast.”
Rows 5 and 6 are populated with “Legendary” to create two new pairs in
each of these rows as well—“Strict” and “Clear” in row 5 and “20 min” and
“Rainy” in row 6. Table 8.13 shows the table with the newly satisfied pairs
in BOLD in rows 3 through 6.

Game Testing.indb 168 03/09/16 3:58 PM

Combinatorial Testing • 169

Row Half Length Referee Weather Difficulty

1 4 min Lenient Clear Beginner

2 10 min Average Rainy Legendary

3 20 min Strict Overcast Beginner

4 4 min Average Overcast Legendary

5 10 min Strict Clear Legendary

6 20 min Lenient Rainy Legendary

7 4min Strict Rainy

8 10 min Lenient Overcast

9 20 min Average Clear

Table 8.13  Generating New Difficulty Pairs

Now choose the right Difficulty values for the remaining rows. “Legend-
ary” in row 7 does not create any new pairs, because “4 min” is already paired
with “Legendary” in row 4, “Strict” is already paired with “Legendary” in
row 5, and “Rainy” is already paired with “Legendary” in row 6. “Beginner”
in row 7 does create a new pair with “Rainy,” so it is the only correct choice.
Rows 8 and 9 must be populated with “Beginner” to create new pairs with
Half Length = “10 min” and Referee = “Average,”. Table 8.14 shows the
completed Difficulty column.

Row Half Length Referee Weather Difficulty

1 4 min Lenient Clear Beginner

2 10 min Average Rainy Legendary

3 20 min Strict Overcast Beginner

4 4 min Average Overcast Legendary

5 10 min Strict Clear Legendary

6 20 min Lenient Rainy Legendary

7 4 min Strict Rainy Beginner

8 10 min Lenient Overcast Beginner

9 20 min Average Clear Beginner

Table 8.14 C ompleting the Difficulty Column

Game Testing.indb 169 03/09/16 3:58 PM

170 • Game Testing

Now check that all the required pairs for the Difficulty column are
satisfied:

■■ Half Length = “4 min” is paired with “Beginner” (rows 1, 7) and “Leg-
endary” (row 4).

■■ Half Length = “10 min” is paired with “Beginner” (row 8) and “Legendary”
(rows 2, 5).

■■ Half Length = “20 min” is paired with “Beginner” (rows 3, 9) and
“Legendary” (row 6).

■■ Referee = “Lenient” is paired with “Beginner” (rows 1, 8) and “Legendary”
(row 6).

■■ Referee = “Average” is paired with “Beginner” (row 9) and “Legendary”
(rows 2, 4).

■■ Referee = “Strict” is paired with “Beginner” (rows 3, 7) and “Legendary”
(row 5).

■■ Weather = “Clear” is paired with “Beginner” (rows 1, 9) and “Legend-
ary” (row 5).

■■ Weather = “Rainy” is paired with “Beginner” (row 7) and “Legendary”
(rows 2, 6).

■■ Weather = “Overcast” is paired with “Beginner” (rows 3, 8) and “Legend-
ary” (row 4).

So far, so good! Having satisfied all of the pairs required by the Dif-
ficulty column, go back again to step 3 to continue with the Pitch Wear
option. Add the “Beginner” and “Legendary” Difficulty values to the top of
the fifth column, as shown in Table 8.15.

Row Half Length Referee Weather Difficulty Pitch Wear

1 4 min Lenient Clear Beginner None

2 10 min Average Rainy Legendary Heavy

3 20 min Strict Overcast Beginner

4 4 min Average Overcast Legendary

Game Testing.indb 170 03/09/16 3:58 PM

Combinatorial Testing • 171

Row Half Length Referee Weather Difficulty Pitch Wear

5 10 min Strict Clear Legendary

6 20 min Lenient Rainy Legendary

7 4 min Strict Rainy Beginner

8 10 min Lenient Overcast Beginner

9 20 min Average Clear Beginner

Table 8.15  Starting the Pitch Wear Column

Step 4 requires a value in column 5 that creates the most value for row 3.
Only “Heavy” creates a new pair with the four other values in this row.
Repeat for row 4 and choose “None,” which creates three new pairs (“Aver-
age,” “Overcast,” and “Legendary”), while “Heavy” would provide only one
new pair with “4 min.” Populating rows 5 and 6 with “None” creates two new
pairs in each of these rows, while “Heavy” would add only one new pair in
each case. Table 8.16 shows “Heavy” chosen for ”Scrolling Lineups” in row
3, and “None” for rows 4, 5, and 6.

Row Half Length Referee Weather Difficulty Pitch Wear

1 4 min Lenient Clear Beginner None

2 10 min Average Rainy Legendary Heavy

3 20 min Strict Overcast Beginner Heavy

4 4 min Average Overcast Legendary None

5 10 min Strict Clear Legendary None

6 20 min Lenient Rainy Legendary None

7 4 min Strict Rainy Beginner

8 10 min Lenient Overcast Beginner

9 20 min Average Clear Beginner

Table 8.16 A dding to the Pitch Wear Column

A “Heavy” value in the remaining rows produces a new pair for each:
“4 min,” “Lenient,” and “Clear.” Table 8.17 shows the completed Pitch
Wear column.

Game Testing.indb 171 03/09/16 3:58 PM

172 • Game Testing

Row Half Length Referee Weather Difficulty Pitch Wear

1 4 min Lenient Clear Beginner None

2 10 min Average Rainy Legendary Heavy

3 20 min Strict Overcast Beginner Heavy

4 4 min Average Overcast Legendary None

5 10 min Strict Clear Legendary None

6 20 min Lenient Rainy Legendary None

7 4 min Strict Rainy Beginner Heavy

8 10 min Lenient Overcast Beginner Heavy

9 20 min Average Clear Beginner Heavy

Table 8.17 C ompleting the Pitch Wear Column

It’s time again to check that all the required pairs for the new column
are satisfied:

■■ Half Length = “4 min” is paired with “Beginner” (rows 1, 4) and
“Heavy” (row 7).

■■ Half Length = “10 min” is paired with “Beginner” (row 5) and “Heavy”
(rows 2, 8).

■■ Half Length = “20 min” is paired with “None” (row 6) and “Heavy”
(rows 3, 9).

■■ Referee = “Lenient” is paired with “None” (rows 1, 6) and “High” (row 8).

■■ Referee = “Average” is paired with “None” (row 4) and “Heavy”
(rows 2, 9).

■■ Referee = “Strict” is paired with “None” (row 5) and “Heavy” (rows 3, 7).

■■ Weather = “Clear” is paired with “None” (rows 1, 5) and “Heavy” (row 9).

■■ Weather = “Rainy” is paired with “None” (row 6) and “Heavy”
(rows 2, 7).

■■ Weather = “Overcast” is paired with “None” (row 4) and “Heavy”
(rows 3, 8).

Game Testing.indb 172 03/09/16 3:58 PM

Combinatorial Testing • 173

■■ Difficulty = “Beginner” is paired with “None” (row 1) and “Heavy” (rows
3, 7, 8, 9).

■■ Difficulty = “Legendary” is paired with “None” (rows 4, 5, 6) and “Heavy”
(row 2).

This confirms that the pairs required for the Difficulty column are all
satisfied. The process sends you back to step 3 to pair the Game Speed val-
ues in the final column. Add the “Slow” and “Fast” values to the top of this
column, as shown in Table 8.18.

Row Half
Length

Referee Weather Difficulty Pitch
Wear

Game
Speed

1 4 min Lenient Clear Beginner None Slow

2 10 min Average Rainy Legendary Heavy Fast

3 20 min Strict Overcast Beginner Heavy

4 4 min Average Overcast Legendary None

5 10 min Strict Clear Legendary None

6 20 min Lenient Rainy Legendary None

7 4 min Strict Rainy Beginner Heavy

8 10 min Lenient Overcast Beginner Heavy

9 20 min Average Clear Beginner Heavy

Table 8.18  Starting the Game Speed Column

As you proceed from here, something new happens. Either of the
Game Speed values added to row 3 creates four new pairs, so neither value
can be selected. A “Slow” creates new pairs with “20 min,” “Strict,” “Over-
cast,” and “Heavy,” while a “Fast” creates new pairs with “20 min,” “Strict,”
“Overcast,” and “Beginner.” As you go through the table, you will find that
no preferred value can be found for any of the remaining rows. Don’t trust
me on this (remember Rule #2?)—check for yourself! According to step 4,
“If no such value can be found, alter one of the values previously entered
for this column and resume this step.” So, one of the Game Speed values in
the first two rows should be changed. Table 8.19 shows the updated table
with the second Game Speed value changed to “Slow.”

Game Testing.indb 173 03/09/16 3:58 PM

174 • Game Testing

Row Half
Length

Referee Weather Difficulty Pitch
Wear

Game
Speed

1 4 min Lenient Clear Beginner None Slow

2 10 min Average Rainy Legendary Heavy Slow

3 20 min Strict Overcast Beginner Heavy

4 4 min Average Overcast Legendary None

5 10 min Strict Clear Legendary None

6 20 min Lenient Rainy Legendary None

7 4 min Strict Rainy Beginner Heavy

8 10 min Lenient Overcast Beginner Heavy

9 20 min Average Clear Beginner Heavy

Table 8.19 R estarting the Game Speed Column

Continue to step 4 from this point and see that there are now clear
choices for the remaining rows. A “Fast” in row 3 provides new pairs with
all of the first five columns, versus only four new pairs that would be pro-
vided by a “Slow.” Another “Fast” in row 4 provides four new pairs versus
three from using “Slow,” and rows 5 and 6 get two new pairs from a “Fast”
versus only one from a “Slow.” Table 8.20 shows how the table looks with
these values filled in.

Row Half
Length

Referee Weather Difficulty Pitch
Wear

Game
Speed

1 4 min Lenient Clear Beginner None Slow

2 10 min Average Rainy Legendary Heavy Slow

3 20 min Strict Overcast Beginner Heavy Fast

4 4 min Average Overcast Legendary None Fast

5 10 min Strict Clear Legendary None Fast

6 20 min Lenient Rainy Legendary None Fast

7 4 min Strict Rainy Beginner Heavy

8 10 min Lenient Overcast Beginner Heavy

9 20 min Average Clear Beginner Heavy

Table 8.20 A dding to the Game Speed Column

Game Testing.indb 174 03/09/16 3:58 PM

Combinatorial Testing • 175

Complete the final three values for the table in the same manner.
“Slow” is the only value that produces a new pair in each of these rows. The
completed table is shown in Table 8.21.

Row Half
Length

Referee Weather Difficulty Pitch
Wear

Game
Speed

1 4 min Lenient Clear Beginner None Slow

2 10 min Average Rainy Legendary Heavy Slow

3 20 min Strict Overcast Beginner Heavy Fast

4 4 min Average Overcast Legendary None Fast

5 10 min Strict Clear Legendary None Fast

6 20 min Lenient Rainy Legendary None Fast

7 4 min Strict Rainy Beginner Heavy Slow

8 10 min Lenient Overcast Beginner Heavy Slow

9 20 min Average Clear Beginner Heavy Slow

Table 8.21  The Completed Match Game Settings Test Table

Now, for perhaps the last time, check that all the required pairs for the
Game Speed column are satisfied:

■■ Half Length = “4 min” is paired with “Slow” (rows 1, 7) and “Fast” (row 4).

■■ Half Length = “10 min” is paired with “Slow” (row 2) and “Fast” (rows 5, 8).

■■ Half Length = “20 min” is paired with “Slow” (row 9) and “Fast” (rows 3, 6).

■■ Referee = “Lenient” is paired with “Slow” (rows 1, 8) and “Fast” (row 6).

■■ Referee = “Average” is paired with “Slow” (rows 2, 9) and “Fast” (row 4).

■■ Referee = “Strict” is paired with “Slow” (row 7) and “Fast” (rows 3, 5).

■■ Weather = “Clear” is paired with “Slow” (rows 1, 9) and “Fast” (row 5).

■■ Weather = “Rainy” is paired with “Slow” (rows 2, 7) and “Fast” (row 6).

■■ Weather = “Overcast” is paired with “Slow” (row 8) and “Fast” (rows 3, 4).

■■ Difficulty = “Beginner” is paired with “Slow” (rows 1, 7, 8, 9) and “Fast”
(row 3).

Game Testing.indb 175 03/09/16 3:58 PM

176 • Game Testing

■■ Difficulty = “Legendary” is paired with “Slow” (row 2) and “Fast” (rows
4, 5, 6).

■■ Pitch Wear = “None” is paired with “Slow” (row 1) and “Fast” (rows
4, 5, 6).

■■ Pitch Wear = “Heavy” is paired with “Slow” (rows 2, 7, 8, 9) and “Fast”
(row 3).

Well done! By creating a pairwise combinatorial table, you developed
nine test cases that can be used to test these game parameters and values
comprising 216 possible mathematical combinations (3∗3∗3∗2∗2∗2). It was
certainly worth the effort to create the table in order to save 207 test cases!
Also note that for this table you didn’t have to resort to steps 6 and 7. That
won’t be true in every case, so don’t rule it out for the future.

Now you are ready to test the game using the combinations in the table
and check for any irregularities or discrepancies with what you expect to
happen. Create test tables as early as possible, for example, by using infor-
mation provided in the design document long before any working code is
produced. Check any available documentation to see if there is a clear defi-
nition of what should happen for each of your combinations. That will equip
you to raise questions about the game that perhaps had not been considered.
This is an easy way to prevent bugs and improve gameplay.

A second approach is to ask people involved with code or require-
ments “What happens if…” and read your combinations. You might be
surprised by how many times you will get an answer like “I don’t know” or
“I’ll have to check and get back with you.” This is a much more economic
alternative to finding surprises late in the project. It is also much more
likely that your issues will be fixed, or at least considered, by the time the
code is written.

Don’t just check for immediate or near-term effects of your combinato-
rial tests. It’s important to make sure that a menu selection is available or
a button performs its function when pressed, but mid-term and far-term
effects can lock up or spoil the game down the road. Some of these effects
to consider are as follows:

q Does my game or session end properly?

q Do achievements get recorded properly?

Game Testing.indb 176 03/09/16 3:58 PM

Combinatorial Testing • 177

q Can I progress to appropriate parts of the game or story?

q �Did actions taken in the game get properly counted toward season/
career accomplishments and records?

q Can I properly start and play a new session?

q Can I store and retrieve sessions or files?

Also take a look at the sidebar below, where unusual behaviors were
observed from running a similar set of combinatorial tests for FIFA 11
Match Settings.

Issues with Goal Scoring

In the first long game I tested, I noticed late into the game that when play resumed
after scoring a goal, the time of the goal and the goal scorer was being reported
incorrectly. The time was in the past and the same time and player’s name was
always being shown. Examining the game’s Match Events screen showed that the
goal which was being reported was the 30th goal that was scored by my team.
Going through a few other test cases from the table confirmed that this happened
consistently and occurred whether the 30th goal is scored in the first half or second
half of the game.

A second issue appeared when I finished one match with a score of 107-0. The
individual Player Ratings: Goals screen recorded a total of only 100 goals and the
Match Events: Goals screen listed only the 100 most recent goals—goals scored in
the first 4 minutes were not listed.

In the games I played with the 10-minute and 20-minute Half Length, I experienced
some delays and stuttering on screen transitions during gameplay toward the end
of the match. Perhaps this was due to the accumulation of all of the events that
get logged during the game, a graphics memory management issue, or some other
nefarious problem.

At some point in the sequence of games I was playing, I noticed that when starting
a game with Weather = Rainy, the rain is initially visible in the “lobby” but stops
coming down after a short period of time. There was also no rain coming down
during the match. This is one of those cases where the tester needs to run further
experiments to determine which combination or sequence of combinations triggers
this phenomenon.

Game Testing.indb 177 03/09/16 3:58 PM

178 • Game Testing

Figure 8.2 shows how a second-half goal scored in the 55th minute of
the match is reported as occurring in the 23rd minute of the previous half.

COMBINATORIAL TEMPLATES

Some pre-constructed tables are included in Appendix C and on
the DVD you got with this book. You can use them by substituting the
names and values of the parameters you want to test for the entries in
the template. This will be a fast way to produce tables of fewer than 10
tests without having to develop them from scratch and then verify that
all of the necessary pairs are covered. Wherever a “∗” appears after a
letter in the template, such as B∗, that means you can substitute any of
the test values for that parameter and the table will still be correct. If
you received this book without a DVD, you can request the files from
info@merclearning.com.

ON DVD

ON DVD

Figure 8.2  Incorrect reporting of goal event.

Game Testing.indb 178 03/09/16 3:58 PM

mailto:info@merclearning.com

Combinatorial Testing • 179

Tutorial

To see how this works, create a test table based on the Advanced Con-
trols settings screen for Halo Reach (Figure 8.3). Start by determining
how many parameters and values you want to test. Figure 8.3 shows nine
Advanced Controls parameters and examples of their values. For this exer-
cise, test the Look Inversion, Look Sensitivity, AutoLook Centering, Crouch
Behavior and Clench Protection settings in combination with one another.
The Look Sensitivity parameter can be a value from 1 to 10 and the remain-
ing parameters have Yes/No, Enabled/Disabled or Toggle/Hold choices.
Because Look Sensitivity ranges from 1 to 10, a good set of values to test
would be the default, minimum, and maximum values, which are 3, 1, and
10, respectively. This test requires a combinatorial table of five parameters,
where one parameter values (Look Sensitivity) has three values and the
remaining parameters have two test values. Scan through Appendix C and
you will find that Table C.18 corresponds to this configuration.

For each parameter, assign one of the test values to the alphanumeric
placeholders in the table template. Because Look Sensitivity is the only
parameter with three values, it goes in the first column. The default value

Figure 8.3 A dvanced Controller Settings for Halo: Reach.

Game Testing.indb 179 03/09/16 3:58 PM

180 • Game Testing

(3) will be assigned to A1, the minimum value (1) to A2, and the maximum
(10) to A3. Replace each instance of A1, A2, and A3 in the table with their
assigned values. The table at this point should look like Table 8.22.

Test Look
Sensitivity

Param B Param C Param D Param E

1 3 B1 C1 D1 E1

2 1 B2 C2 D1 E1

3 10 B1 C2 D2 E1

4 3 B2 C2 D2 E2

5 1 B1 C1 D2 E2

6 10 B2 C1 D1 E2

Table 8.22  Sensitivity Values Placed into Table Template

Next, choose one of the two-value parameters, and substitute its name
and values in the template’s ParamB column. Choose the Look Inversion
parameter, assigning the default value (NO) to each instance of B1 in the
table and the YES value to each B2. The table now looks like Table 8.23.

Test Look
Sensitivity

Look
Inversion

ParamC ParamD ParamE

1 3 NO C1 D1 E1

2 1 YES C2 D1 E1

3 10 NO C2 D2 E1

4 3 YES C2 D2 E2

5 1 NO C1 D2 E2

6 10 YES C1 D1 E2

Table 8.23  Look Inversion Values Added to the Table

Continue this process for the remaining columns using the default val-
ues for the first entry and the remaining value for the other choice. The
complete design is shown in Table 8.24.

Game Testing.indb 180 03/09/16 3:58 PM

Combinatorial Testing • 181

Test Look
Sensitivity

Look
Inversion

Autolook
Centering

Crouch
Behavior

Clench
Protection

1 3 NO NO HOLD DISABLED

2 1 YES YES HOLD DISABLED

3 10 NO TES TOGGLE DISABLED

4 3 YES TES TOGGLE ENABLED

5 1 NO NO TOGGLE ENABLED

6 10 YES NO HOLD ENABLED

Table 8.24 C ompleted Controller Settings Table

To use one of the template files included in the book’s DVD, start by
selecting the appropriate file based on your table dimensions. If all of your
test parameters have only two values, then use the file CombTemplates-
2Values.xls. If one or more of your parameters has three values, use the
file CombTemplates3Values.xls. If you have any parameters with four or
more values, then you need to construct your table by hand or see the
“Combinatorial Tools” section that follows.

Once you have identified the right template file to use, click the tab at
the bottom of the worksheet that corresponds to the number of test param-
eters you are using. Then find the template on that sheet that matches your
parameter configuration.

For the Halo Reach Controller Settings test, you would open the
CombTemplates3Values.xls file and click the “5 params” tab at the bottom
of the worksheet. Scroll down until you find the table labeled “1 parameter
with 3 values, 4 parameters with 2 values.” You will see that this table is
identical in structure to the one in Appendix C that produced the test in
Table 8.24. Cut this table out and paste it into your own test file. Finally, do
a textual substitution for each of the test values to arrive at the same result.

COMBINATORIAL TEST GENERATION

At some point, you will find it difficult to construct and verify large
parameter and value counts. Fortunately, James Bach has made a tool,
available to the public at www.satisfice.com/tools.shtml, which handles this

ON DVD

Game Testing.indb 181 03/09/16 3:58 PM

http://www.satisfice.com/tools.shtml

182 • Game Testing

for you. It is also provided as part of the DVD that accompanies this book.
The Allpairs tool uses a tab-delimited text file as input and produces an
output file that includes a pairwise combinatorial table as well as a report
on how many times each pair was satisfied in the table.

Tutorial

To use Allpairs, start by creating a file that contains tab-delimited col-
umns of parameter names with the test values in the following table. Here
is an example based on the match settings from the fighting game Dead or
Alive 3 (DOA3):

Difficulty MatchPoint LifeGauge RoundTime

Normal 1 Smallest NoLimit

Easy 2 Small 30

Hard 3 Normal 40

VeryHard 4 Large 50

5 Largest 60

99

Remember, this is not an attempt at a combinatorial table - the All-
pairs tool will provide that. This is a description of the parameters you
want to test: Skill Level, Game Speed, Quarter Length, and various Cam-
era Settings which affect the views and perspectives of the players during
gameplay. Even though there are only four parameters, the fact that they
have 4, 5, 5, and 6 values each to test would make this difficult to con-
struct and validate by hand. That also means there are 600 (4∗5∗5∗6) values
if you try to test all 4-way combinations. You should expect a much smaller
test set from a pairwise combinatorial test of these options—somewhere
in the 30 to 40 range—based on the dimensions of the two largest param-
eters (6∗5).

Now open a DOS (yes - DOS!) window and enter “allpairs input.txt >
output.txt” where input.txt is the name of your tab-delimited parameter
list file, and output.txt is the name of the file where you want to store the
generated combinatorial table. Make sure you are in the directory where
the files are located, or provide the full path.

ON DVD

Game Testing.indb 182 03/09/16 3:58 PM

Combinatorial Testing • 183

For this DOA3 table, the command might be allpairs doaparams.txt >
doapairs.txt. Here’s what the test case portion of the output looks like:

TEST CASES

case	 Difficulty	 MatchPoint	 LifeGauge	 RoundTime	 pairings
1	 Normal	 1	 Smallest	 NoLimit	 6
2	 Easy	 2	 Small	 NoLimit	 6
3	 Hard	 3	 Normal	 NoLimit	 6
4	 VeryHard	 4	 Large	 NoLimit	 6
5	 Hard	 1	 Small	 30	 6
6	 VeryHard	 2	 Smallest	 30	 6
7	 Normal	 3	 Large	 30 	 6
8	 Easy	 4	 Normal	 30	 6
9	 VeryHard	 1	 Normal	 40	 6
10	 Hard	 2	 Large	 40	 6
11	 Easy	 3	 Smallest	 40	 6
12	 Normal	 4	 Small	 40	 6
13	 Easy	 1	 Large	 50	 6
14	 Normal	 2	 Normal	 50	 6
15	 VeryHard	 3	 Small	 50	 6
16	 Hard	 4	 Smallest	 50	 6
17	 Normal	 5	 Largest	 60	 6
18	 Easy	 1	 Largest	 60	 4
19	 Hard	 2	 Largest	 60	 4
20	 VeryHard	 3	 Largest	 60	 4
21	 Easy	 5	 Smallest	 99	 5
22	 Normal	 4	 Largest	 99	 4
23	 Hard	 5	 Small	 99	 4
24	 VeryHard	 5	 Normal	 99	 4
25	 ~Normal	 5	 Large	 NoLimit	 2
26	 ~Easy	 5	 Largest	 30	 2
27	 ~Hard	 5	 Largest	 40	 2
28	 ~VeryHard	 5	 Largest	 50	 2
29	 ~Hard	 4	 Smallest	 60	 2
30	 ~Hard	 1	 Large	 99	 2
31	 ~VeryHard	 ~1	 Largest	 NoLimit	 1
32	 ~Normal	 ~1	 Small	 60	 1
33	 ~Easy	 ~2	 Normal	 60	 1
34	 ~Easy	 ~3	 Large	 60	 1
35	 ~Normal	 2	 ~Smallest 	 99	 1
36	 ~Easy	 3	 ~Small	 99	 1

Game Testing.indb 183 03/09/16 3:58 PM

184 • Game Testing

Aren’t you glad you didn’t have to do that by hand! The “case” and
“pairings” columns are added to the output by the Allpairs tool. “Case” is
a sequential number uniquely identifying each test case. The “pairings”
number indicates how many necessary parameter pairs are represented
by the set of values in each row. For example, the “pairings” value in row
18 is 4. You can check for yourself that row 18 produces four new pairs:
Easy-Largest, Easy-60, 1-Largest, and 1-60. The Largest-60 pair was sat-
isfied earlier in the table at row 17, and the Easy-1 pair first appears in
row 13.

Values that begin with the “~” symbol are wildcards. That is, any value
of that parameter could be placed there without removing one of the
necessary pairings to complete the table. The tool arbitrarily chooses, but
you, the knowledgeable tester, can replace those with more common or
notorious values, such as defaults or values that have caused defects in
the past.

The output from Allpairs also produces a Pairing Details list, which is
an exhaustive list of each necessary pair and all of the rows that include that
pair. One of the pairings listed for the DOA3 table is

MatchPoint   Difficulty   1   Easy   13, 18

which means that the pair MatchPoint = 1 and Difficulty = Easy occurs
2 times, in rows 13 and 18 of the table.

In the same list, the entry

RoundTime   LifeGauge   60   Largest   4   17, 18, 19, 20

traces the RoundTime = 60 and LifeGauge = Largest pair to rows 17–20
of the combinatorial table. This kind of information is especially useful if
you want to limit your testing to all the instances of a particular pair. One
reason for doing that would be to limit verification testing of a release that
fixed a bug caused by one specific pair.

Another use for the Pairing Details information is to quickly narrow
down the possible cause of a new defect by immediately testing the other
entries in the table that had the same pairs as the test that just failed. For
example, if the test in row 13 fails, search the Pairing Details list for other
pairs that were included in row 13. Then run the tests on any rows listed in
addition to row 13. Here are the pairs that are satisfied by row 13:

Game Testing.indb 184 03/09/16 3:58 PM

Combinatorial Testing • 185

RoundTime	 MatchPoint	 50	 1	 1	 13

RoundTime	 LifeGauge	 50	 Large	 1	 13

RonudTime	 Difficulty	 50	 Easy	 1	 13

MatchPoint	 LifeGauge	 1	 Large	 2	 13, 30

MatchPoint	 Difficulty	 1	 Easy	 2	 13, 18

LifeGauge	 Difficulty	 Large	 Easy	 2	 13, 34

From this information, tests 18, 30, and 34 could be run next to help
identify the pair that causes the defect. If none of those tests fail, then the
cause is narrowed down to the first three pairs, which are only found in
row 13: 50-1, 50-Large, or 50-Easy. If test 18 fails, then look for the 1-Easy
pair to be the cause of the problem. Likewise, if test 30 fails then suspect
the 1-Large combination. If test 34 fails, you can suggest Large-Easy as the
cause of the problem in your defect report.

The Allpairs output file is tab delimited so you can paste it right into
Microsoft Excel or any other program supporting that format. You can find
the Allpairs tool files and the examples from this chapter, including the
complete output file, on the book’s DVD.

COMBINATORIAL ECONOMICS

The examples used in this chapter have produced tables with significant
efficiency, covering hundreds of potential combinations in no more than
a few dozen tests. As it turns out, these are very modest examples. Some
configurations can yield reductions of more than 100:1, 1000:1, and even
beyond 1,000,000:1. It all depends on how many parameters you use and
how many test values you specify for each parameter. Do you always want
to do less testing?

Some game features are so important that they deserve more thorough
testing than others. One way to use pairwise combinatorial tests for your
game is to do full combinatorial testing for critical features, and pairwise for
the rest. Suppose you identify 10% of your game features as “critical” and
that each of these features has an average of 100 tests associated with them
(approximately a 4 x 4 x 3 x 2 matrix). It is reasonable to expect that the
remaining 90% of the features could be tested using pairwise combinatorial

ON DVD

Game Testing.indb 185 03/09/16 3:58 PM

186 • Game Testing

tables, and only cost 20 tests per feature. The cost of full combinatorial test-
ing of all features is 100∗N, where N is the total number of features to be
tested. The cost of pairwise combinatorial testing 90% of those features is
100∗0.1∗N + 20∗0.9∗N = 10∗N+18∗N = 28∗N. This provides a 72% savings by
using pairwise for the noncritical 90%.

Another way to use combinatorial tests in your overall strategy is to cre-
ate some tables to use as “sanity” tests. The number of tests you run early in
the project will stay low, and then you can rely on other ways of doing “tra-
ditional” or “full” testing once the game can pass the sanity tests. Knowing
which combinations work properly can also help you select which scenarios
to feature in prerelease videos, walkthroughs, or public demos.

In each of these situations, the least expensive way for your team to find
and remove the defects is to create pairwise combinatorial tables as early
as possible in the game life cycle and to investigate the potential results of
each test case. Once the design document or storyboards become available,
create combinatorial tables based on the information available to you at the
time and question the designers about the scenarios you generate.

If you know your testing budget in terms of staff, effort, or dollars
early in the project, you have to make choices about how to distribute your
resources to test the game the best you can. Pairwise combinatorial tests
provide a good balance of breadth and depth of coverage, which allows you
to test more areas of the game than if you concentrate resources on just a
few areas.

Exercises

1.	Explain the difference between a pairwise combinatorial table and a full
combinatorial table.

2.	Explain the difference between a parameter and a value.

3.	Use the appropriate template to add the Offsides (On/Off) parameter
from the Game Settings: Rules screen to the FIFA 15 Match Settings
test table in Figure 8.22.

Game Testing.indb 186 03/09/16 3:58 PM

Combinatorial Testing • 187

4.	Because some of the issues found with FIFA 11 are related to the Half
Length, add three new rows to the FIFA 15 Match Settings test table
that pair the “15 min” Half Length with the other 5 parameters.

5.	Use the Allpairs tool to create a combinatorial table for some of the set-
tings for the mobile game Kingturn RPG available on iOS and Android.
The first parameter to test is “Sound” using the values On and Off. The
second parameter is “Difficulty” with the values Casual, Normal, Strate-
gist, Master, and King. For the third parameter use “Perma Knockout”
with the values On and Off. Lastly, include the “Pinch Zoom” values for
Slowest, Slower, Default, Faster, and Fastest.

Game Testing.indb 187 03/09/16 3:58 PM

Game Testing.indb 188 03/09/16 3:58 PM

Test Flow Diagrams (TFDs) are graphical models representing game
behaviors from the player’s perspective. Testing takes place by trav-
eling through the diagram to exercise the game in both familiar and

unexpected ways.

TFDs provide a formal approach to test design that promotes
modularity and completeness. Testers can enjoy a high degree of TFD
reuse if the same behaviors are consistent across multiple game titles or
features. This benefit extends to sequels and ports to other platforms.
The graphical nature of the TFD gives testers, developers, and produc-
ers the ability to easily review, analyze, and provide feedback on test
designs.

In This Chapter

●● Creating Test Flow Diagrams
●● Defining the Data Dictionary
●● Path Strategies
●● Producing Test Cases

Test Flow Diagrams

9CHA P T ER

Game Testing.indb 189 03/09/16 3:58 PM

190 • Game Testing

TFD Elements

A TFD is created by assembling various drawing components called
“elements.” These elements are drawn, labeled, and interconnected accord-
ing to certain rules. Following the rules will make it possible for your tests
to be understood throughout your test organization and makes them easier
to reuse in future game projects. The rules will become even more impor-
tant if your team develops software tools to process or analyze the TFD
contents.

Flows
Flows are drawn as a line connecting one game “state” to another, with

an arrow indicating the direction of flow. Each Flow also has a unique iden-
tification number, one Event and one Action. A colon (“:”) separates the
Event name from the flow ID number and a slash (“/”) separates the Action
from the Event. During testing, you do what is specified by the Event and
then check for the behavior specified by both the Action and the Flow’s
destination State. An example flow and each of its components are shown
in Figure 9.1.

event

action flow

flow identifier

1:AbortSwitchActivated

/IndicatorRedResetCountdown

Figure 9.1  Flow components.

Events
Events are operations initiated by the user, peripherals, multiplayer

networks, or internal game mechanisms. Think of an Event as something
that is explicitly done during the game. Picking up an item, selecting a spell
to cast, sending a chat message to another player and an expiring game
timer are all examples of Events. The TFD does not have to represent all
possible events for the portion of the game being tested. It is left up to each
tester, who is now in the role of a test designer, to use his knowledge and
judgment in selecting the right events that will achieve the purpose of a

Game Testing.indb 190 03/09/16 3:58 PM

Test Flow Diagrams • 191

single TFD or a set of related TFDs. There are three factors that should be
considered for including a new event:

1.	Possible interactions with other Events

2.	Unique or important behaviors associated with the Event

3.	Unique or important game states that are a consequence of the Event

Only one Event can be specified on a flow, but multiple operations
can be represented by a single event. An Event name can appear multiple
times on a TFD when each instance carries the exact same meaning. Events
could possibly cause a transition to a new game state.

Actions
An Action exhibits temporary or transitional behavior in response to an

Event. It is something for the tester to check as a result of causing or perform-
ing an Event. Actions can be perceived through human senses and gaming
platform facilities, including sounds, visual effects, game controller feedback,
and information sent over a multiplayer game network. Actions do not persist
over time. They can be perceived, detected, or measured when they occur
but can no longer be perceived, detected, or measured some time later.

Only one Action can be specified on a Flow, but multiple operations
can be represented by a single Action. An Action name can appear multiple
times on a TFD when each instance carries the exact same meaning.

States
States represent persistent game behavior and are re-entrant. As long as

you don’t exit the State you will continue to observe the same behavior and
each time you return to the State you should detect the exact same behavior.

A State is drawn as a “bubble” with a unique name inside. If the same
behavior applies to more than one state on your diagram, consider whether
they could be the same state. If so, remove the duplicates and reconnect the
flows accordingly. Each state must have at least one Flow entering and one
Flow exiting.

Primitives
Events, Actions, and States are also referred to as Primitives.

Primitive definitions provide details of the behavior represented on the
TFD without cluttering the diagram. Primitive definitions form a “Data

Game Testing.indb 191 03/09/16 3:58 PM

192 • Game Testing

Dictionary” for the TFD. These definitions could be in text (e.g., English), a
software language (e.g., C++), or an executable simulation or test language
(e.g., TTCN). See the Data Dictionary section below for details and examples.

Terminators
These are not machines from the future programmed for war. Termina-

tors are special boxes placed on the TFD that indicate where testing starts
and where it ends. Exactly two Terminators should appear on each TFD.
One is the IN box, which normally has a single Flow that goes to a State.
The other is the OUT box, which has one or more Flows entering from one
or more States.

TFD Design Activities

Creating a TFD is not just a matter of mechanically typing or drawing
some information you already have in another form. It is a design activity
which requires the tester to become a designer. A sound approach to get-
ting your TFDs off and running is to go through three stages of activities:
Preparation, Allocation, and Construction.

Preparation
Collect sources of game feature requirements.

Identify the requirements that fall within the scope of the planned test-
ing, based on your individual project assignment or the game’s Test Plan.
This would include any storyboards, design documents, demo screens, or
formal software requirements, as well as legacy titles that the new game is
based on, such as a sequel or a spin-off.

Allocation
Estimate the number of TFDs required and map game elements to each.

Separate large sets of requirements into smaller chunks and try to cover
related requirements in the same design. One way to approach this is to test
various abilities provided in the game, such as picking up a weapon, firing a
weapon, healing, and so forth. Plan on having one or more TFDs for each
ability, depending on how many variations exist, such as distinct weapon
types or different ways to regain health. Another approach is to map situ-
ations or scenarios to individual TFDs with a focus on specific achieve-
ments. These could be individual missions, quests, matches, or challenges,

Game Testing.indb 192 03/09/16 3:58 PM

Test Flow Diagrams • 193

depending on the type of game you are testing. In this case, you are estab-
lishing that particular goals or outcomes are achievable according to which
path you take in the game. A TFD design based on achievements could be
used either instead of, or in addition to, the abilities approach. Don’t try to
squeeze too much into a single design. It’s easier to complete and manage a
few simple TFDs than one that is complex.

Construction
Model game elements on their assigned TFDs using a “player’s

perspective.”

A TFD should not be based on any actual software design structures
within the game. The TFD is meant to represent the tester’s interpreta-
tion of what she expects to happen as the game flows to and from the game
States represented on the diagram. Creating a TFD is not as mechanical as
constructing a Combinatorial Table. There is an element of art to it. TFDs
for the same game feature could turn out quite differently depending on
which tester developed them.

Begin the TFD with a blank sheet or a template. You can start on paper
and then transfer your work to an electronic form or do the whole thing
in one shot on your computer. The use of templates is discussed later in
this chapter. Follow the steps below to begin constructing your TFD from
scratch. An example appearing later in this chapter illustrates the applica-
tion of these steps.

1.	Open a file and give it a unique name that describes the scope of the
TFD.

2.	Draw a box near the top of the page and add the text “IN” inside of it.

3.	Draw a circle and put the name of your first State inside of it.

4.	Draw a Flow going from the IN box to your first State. Add the Event
name “Enter” to the Flow.

Do not number any of the flows at this time. This will be done at
the end to avoid recordkeeping and editing the numbers if you
change the diagram during the rest of the design process.

Unlike the steps given for developing a pairwise combinatorial table in
Chapter 8, “Combinatorial Testing,” the middle steps for creating a Test

NOTE

Game Testing.indb 193 03/09/16 3:58 PM

194 • Game Testing

Flow Diagram do not have to be followed in any particular order. Construct
your diagram as your mind flows through the game scenario you are testing.
The creation of the diagram should be iterative and dynamic as the diagram
itself raises questions about possible events and their outcomes. Refer to
the steps below when you get stuck or when you think you are done, to
make sure you don’t leave out any parts of the process.

1.	From your first State, continue to add Flows and States. Flows can
be connected back to the originating State in order to test required
behavior that is transient (Action) or missing (ignored, resulting in
no Action).

2.	Record the traceability of each Flow to one or more requirements, op-
tions, settings, or functions. This could be as simple as ticking it off from
a list or highlighting portions of the Game Design Document; or it can
be done formally by documenting this information in a Requirements
Traceability Matrix (RTMX).

3.	For each Flow going from one State (A) to another State (B), check the
requirements for possible ways to go from B to A, and add Flows as ap-
propriate. If the requirements neither prohibit nor allow the possibility,
review this with the game, feature, or level designer to determine if a
requirement is missing (most likely), wrong, or ambiguous.

	 Once all requirements are traced to at least one Flow, check the dia-
gram for alternative or additional ways to exercise each requirement. If
a Flow seems appropriate, necessary, or obvious but can’t be traced to
any game documentation, determine if there might be a missing or am-
biguous requirement. Otherwise, consider whether the Flow is outside
of the defined scope of the TFD currently being constructed.

Go through these final steps in the order they appear here:

4.	Add the OUT box.

5.	Select which State or States should be connected to the OUT box. Your
criteria should include choosing places in the test that are appropriate
for stopping one test and starting the next one or selecting States that
naturally occur at the end of the ability or achievement modeled by the
TFD. For each of these States, provide a connecting flow to the OUT
box with an “Exit” Event. There should be no more than one such flow
coming from any State.

Game Testing.indb 194 03/09/16 3:58 PM

Test Flow Diagrams • 195

6.	Update your IN and OUT box names to IN_xxx and OUT_xxx where
xxx is a brief descriptive name for the TFD. This is done at the end in
case your scope or focus has changed during the process of creating
the TFD.

7.	 Number all of the flows.

A TFD Example

In order to draw a TFD, you need a drawing application that can draw
circles, lines with arrows, rounded or square rectangles, and the ability to
attach numbers and text to each element. Microsoft PowerPoint® is an ade-
quate and quite accessible tool that will do the job, or you might prefer the
richer features in Microsoft Visio® or SmartDraw.

Your first TFD example will be based on the ability to pick up a weapon
and its ammo while the game properly keeps track of your ammo count and
performs the correct audible and visual effects. This is an ability required in
first-person shooters, role playing games, action/adventure games, arcade
games, and even some racing games. It might seem like a trivial thing to
test, but ammo bugs have plagued Unreal Tournament players throughout
its history, such as

“Fixed ammo number on HUD pulsing on armor pickup instead of
ammo pickup” [SHACKNEWS 09]

“Chaos UT ammo will not cycle” [STEAM 14]

“UT 2004 Unlimited Ammo” [UT2004 15]

and

Glitch: Unlimited Tag Rifle Ammunition” [GAMEWINNERS 16]

Use your favorite drawing tool to create your own diagram files as
you follow the examples in this chapter. Do your own layout and
editing and then compare what you designed with the example
diagrams each step along the way.

All TFDs start with an IN box, followed by a flow to the first state of
the game that you want to observe or that you need to reach in order to
begin testing. Don’t begin every test with the startup screen unless that’s
what you are trying to test with the TFD. Jump right to the point in the

NOTE

Game Testing.indb 195 03/09/16 3:58 PM

196 • Game Testing

game where you want to start doing things (Events) with the game that
you want the tester to check (Actions, States).

In this TFD, the first State will
represent the situation where the
player has no weapon and no ammo.
Draw a flow to connect the IN box
to the NoGunNoAmmo state. Per
the process described earlier in this
chapter, provide the Event name
“Enter” on the flow but don’t provide
an ID number yet. Figure 9.2 shows
how the TFD looks at this point.

The next step is to model what happens when the player does some-
thing in this situation. One likely response is to find a gun and pick it up.
Having a gun creates observable differences from not having a gun. A gun
appears in your inventory, your character is shown holding the gun, and
a crosshair now appears at the center of the screen. These are reasons to
create a separate state for this situation. Keep the naming simple and call
the new state “HaveGun.” Also, in the process of getting the gun, the game
could produce some temporary effects like playing the sound of a weapon
being picked up and identifying the weapon on the display. The temporary
effects are represented by an Action on the flow. Name the flow’s Event
“GetGun” and name the Action “GunEffects.” The TFD with the gun flow
and new state is shown in Figure 9.3.

IN

NoGun
NoAmmo

GetGun/GunEffects

Enter

HaveGun

Figure 9.3  TFD after picking up weapon.

IN

NoGun
NoAmmo

Enter

Figure 9.2  Starting the Ammo TFD.

Game Testing.indb 196 03/09/16 3:58 PM

Test Flow Diagrams • 197

Because it’s possible that the player could find and pick up ammo before
getting the weapon, add another flow from NoGunNoAmmo to get ammo and
check for the ammo sound and visual effects. A new destination state should
also be added. Call it “HaveAmmo” to be consistent with the “HaveGun”
state name format. Your TFD should look like Figure 9.4 at this point.

IN

NoGun
NoAmmo

GetGun/GunEffects

G
et

A
m

m
o

/A
m

m
oE

ffe
ct

s

Enter

HaveGun

HaveAmmo

Figure 9.4  TFD with HaveGun and HaveAmmo states.

Now that there are a few states on the diagram, check if there are any
flows you can add that go back from each state to a previous one. You got to the
HaveGun state by picking up a weapon. It could also be possible to go back to
the NoGunNoAmmo state by dropping the weapon. Likewise, there should
be a flow from HaveAmmo going back to NoGunNoAmmo when the player
somehow drops his ammo. If there are multiple ways to do this, each should
appear on your TFD. One way might be to remove the ammo from your inven-
tory and another might be to perform a reload function. For this example, just
add the generic DropAmmo event and its companion DropSound action. In
order to illustrate how actions might be reused within a TFD, the diagram will
reflect that the same sound is played for dropping either a weapon or ammo.
That means the DropGun event will also cause the DropSound action. The
return flows from HaveGun and HaveAmmo are shown in Figure 9.5.

Game Testing.indb 197 03/09/16 3:58 PM

198 • Game Testing

IN

NoGun
NoAmmo

GetGun/GunEffects

G
et

A
m

m
o

/A
m

m
oE

ffe
ct

s

D
ro

pA
m

m
o

/D
ro

pS
ou

nd

DropGun
/DropSound

Enter

HaveGun

HaveAmmo

Figure 9.5  Return flows added from HaveGun and HaveAmmo.

Now that the test represents gun-only and ammo-only states, tie the two
concepts together by grabbing ammo once you have the gun. Call the resulting
state “HaveGunHaveAmmo.” You should recognize that picking up the gun
once you have the ammo will also take you to this very same state. Figure 9.6
shows the new flows and the HaveGunHaveAmmo state added to the TFD.

IN

NoGun
NoAmmo

GetGun/GunEffects

G
et

A
m

m
o

/A
m

m
oE

ffe
ct

s

G
et

A
m

m
o

/A
m

m
oE

ffe
ct

sD
ro

pA
m

m
o

/D
ro

pS
ou

nd

DropGun
/DropSound

Enter

HaveGun

Have
Ammo

HaveGun
HaveAmmo

GetGun/GunEffects

Figure 9.6  Flows added to get both gun and ammo.

Game Testing.indb 198 03/09/16 3:58 PM

Test Flow Diagrams • 199

You perhaps have noticed that when new states are added it’s good to
leave some room on the diagram for flows or states that you might decide
to add when you get further into the design process. Use up some of
that empty space now by doing the same thing for HaveGunHaveAmmo
that you did with the HaveAmmo and HaveGun states: create return
flows to represent what happens when the gun or the ammo is dropped.
One question that arises is whether the ammo stays in your inventory
or is lost when the gun is dropped. This test is based on the ammo
automatically loading when you have the matching weapon, so the
DropGun event will take you all the way from HaveGunHaveAmmo to
NoGunNoAmmo. Be careful not to get caught up in the symmetry that
sometimes arises from the diagram. Flows coming out of states don’t
always return to the previous state. The TFD with these additional flows
is shown in Figure 9.7.

D
ro

pA
m

m
o

/D
ro

pS
ou

nd

IN

NoGun
NoAmmo

GetGun/GunEffects

G
et

A
m

m
o

/A
m

m
oE

ffe
ct

s

G
et

Am
m

o
/A

m
m

oE
ffe

ct
s

D
ro

pA
m

m
o

/D
ro

pS
ou

nd D
ropG

un

/D
ropSound

DropGun/DropSound

Enter

HaveGun

HaveAmmo

HaveGun
HaveAmmo

GetGun/GunEffects

Figure 9.7  Return flows added from HaveGunHaveAmmo.

Game Testing.indb 199 03/09/16 3:58 PM

200 • Game Testing

At this point, evaluate whether there’s anything else that could be added
that remains consistent with the purpose of this test. That is, are there any
ways to manipulate the ammo or the gun that would require new flows and/
or states on the TFD? Start from the furthest downstream state and work
your way up. If you have the gun and ammo, is there any other way to end
up with the gun and no ammo besides dropping the ammo? Well, shooting
the gun uses ammo, so you could keep shooting until all of the ammo is used
up and then end up back at HaveGun. Because both of the states involved
in this transition are already on the diagram, you need to add a new flow
only from HaveGunHaveAmmo to HaveGun. Likewise, besides picking up
an empty gun, you might get lucky and get one with some ammo in it.
This creates a new flow from NoGunNoAmmo to HaveGunHaveAmmo.
Figure 9.8 shows the diagram with these new interesting flows added.

IN

NoGun
NoAmmo

GetGun/GunEffects

G
et

A
m

m
o

/A
m

m
oE

ffe
ct

s

G
et

A
m

m
o

/A
m

m
oE

ffe
ct

s

D
ro

pA
m

m
o

/D
ro

pS
ou

nd DropGun/DropSound

D
ropG

un

/D
ropSound

D
ro

pA
m

m
o

/D
ro

pS
ou

nd

Sh
oo

tA
llA

m
m

o

/A
llA

m
m

oE
ffe

ct
s

G
etL

oadedG
un

/L
oadedG

unE
ffects

Enter

HaveGun

HaveAmmo

HaveGun
HaveAmmo

GetGun/GunEffects

Figure 9.8  Loaded gun and shooting flows added.

Note that some of the existing flows were moved around slightly to make
room for the new flows and their text. ShootAllAmmo will cause sounds,
graphic effects, and damage to another player or the environment. Doing
GetLoadedGun will cause effects similar to the combined effects of separately

Game Testing.indb 200 03/09/16 3:58 PM

Test Flow Diagrams • 201

picking up an unloaded gun and its ammo. The actions for these new events
were named AllAmmoEffects and LoadedGunEffects to reflect the fact that
these multiple effects are supposed to happen and need to be checked by the
tester. The ShootAllAmmo event illustrates that your test events do not have to
be atomic. You do not need a separate event and flow for firing each individual
round of ammo, unless that is exactly what your test is focusing on.

Do the same for HaveGun and HaveAmmo that you just did for
HaveGunHaveAmmo. Question whether there are other things that could
happen in those states to cause a transition or a new kind of action. You
should recognize that you can attempt to fire the weapon at any time,
whether or not you have ammo, so a flow should come out from HaveGun
to represent the game behavior when you try to shoot with no ammo. Where
does this flow go to? It ends up right back at HaveGun. This is drawn as a
loop as shown in Figure 9.9.

IN

NoGun
NoAmmo

GetGun/GunEffects

ShootGun

/ClickSound

G
et

A
m

m
o

/A
m

m
oE

ffe
ct

s

G
et

A
m

m
o

/A
m

m
oE

ffe
ct

s

D
ro

pA
m

m
o

/D
ro

pS
ou

nd DropGun/DropSound

D
ropG

un

/D
ropSound

D
ro

pA
m

m
o

/D
ro

pS
ou

nd

Sh
oo

tA
llA

m
m

o

/A
llA

m
m

oE
ffe

ct
s

G
etL

oadedG
un

/L
oadedG

unE
ffects

Enter

HaveGun

HaveAmmo

HaveGun
HaveAmmo

GetGun/GunEffects

Figure 9.9  Flow added to shoot gun with no ammo.

At this point, only two things remain to do according to the procedures
given earlier in this chapter: add the OUT box and number the flows. Keep

Game Testing.indb 201 03/09/16 3:58 PM

202 • Game Testing

in mind that the numbering is totally arbitrary. The only requirement is that
each flow has a unique number.

Another thing that has been done is to name the IN and OUT boxes to
identify this specific TFD which might be part of a collection of multiple TFDs
created for various features of a game. This also makes it possible to uniquely
specify the test setup and tear-down procedures in the Data Dictionary defi-
nition for these boxes. This is described in further detail later in this chapter.

Once you complete your diagram, be sure to save your file and give it
an appropriate descriptive name. Figure 9.10 shows the completed Ammo
TFD.

IN_GunAmmo

NoGun
NoAmmo

2:GetGun/GunEffects

3:ShootGun

/ClickSound

11
:G

et
A

m
m

o
/A

m
m

oE
ffe

ct
s

4:
G

et
A

m
m

o
/A

m
m

oE
ffe

ct
s

10
:D

ro
pA

m
m

o
/D

ro
pS

ou
nd

7:DropGun/DropSound

8:D
ropG

un

/D
ropSound

5:
D

ro
pA

m
m

o
/D

ro
pS

ou
nd

6:
Sh

oo
tA

llA
m

m
o

/A
llA

m
m

oE
ffe

ct
s

9:G
etL

oadedG
un

/L
oadedG

unE
ffects

1:Enter

HaveGun

HaveAmmo

HaveGun
HaveAmmo

13:Exit

OUT_GunAmmo

12:GetGun/GunEffects

Figure 9.10  The completed Ammo TFD.

Game Testing.indb 202 03/09/16 3:58 PM

Test Flow Diagrams • 203

Data Dictionary

The Data Dictionary provides detailed descriptions for each of the
uniquely named primitive elements in your TFD collection. This also
implies that any primitive name you reuse within a TFD and across multiple
TFDs will carry the same meaning during testing. Think of the primitive
names on the TFD as a hyperlink to pages that contain their definitions.
When you mentally “click” on one of those names, you get the same defini-
tion, regardless of which instance of the name you click on.

Data Dictionary Application
If you are using SmartDraw to create and maintain your TFDs, you

can do this literally by highlighting the text for an event, action, or state
and selecting “Insert Hyperlink” from the “Tools” pulldown menu. Then
manually browse for a text or HTML file that contains the description of
the primitive. If you use HTML files for the description, then you can also
export your diagram to make your test accessible as a Web page. Do this by
selecting “Publish to the Web” from the “File” menu.

It is up to you to decide how formal your definitions should be. In small
teams intimate with the product, the TFD by itself might be sufficient if
you can trust the person running the test (Rule #2…) to remember and
consistently apply all of the details of each primitive. For large teams, espe-
cially when new people are moving in and out of the test team during the
course of the project, the Data Dictionary will provide more consistent and
thorough checking, as well as better adherence to the intent of the test.
You will perhaps also want to keep TFD use informal in early development
stages until the development team better understands how they really want
the game to behave. Once the game stabilizes, capture that information in
the Data Dictionary.

Data Dictionary Reuse
The Data Dictionary can also be an important tool for reusing your

TFDs for different games or game elements. For example, the Ammo TFD
in Figure 9.10 refers abstractly to “Gun” and “Ammo.” Most games involving
weapons provide multiple types of weapons and ammo that is specific for
each. You could cover this by making copies of the TFD for each of the dif-
ferent weapon types, changing the event, action, and state names to match.
An alternative is to keep a generic TFD and then apply different Data Dic-
tionaries to interpret the TFD specifically for each weapon and ammo type.

Game Testing.indb 203 03/09/16 3:58 PM

204 • Game Testing

A good strategy for Unreal Tournament or any other first-person shooter
game would be to use a single TFD but have different data dictionaries for
the various weapon/ammo pairs such as Flak Cannon/Flak Shells, Rocket
Launcher/Rocket Pack, Shock Rifle/Shock Core, and so on. Each Data Dic-
tionary could elaborate on the different audio, visual, and damage effects
associated with each pair.

Tutorial

Data Dictionary Example

Build the Data Dictionary by defining each of the elements in the dia-
gram. The “do” items (events) are written normally. The “check” items
(actions and states) should be written in list form with a leading dash or bul-
let to visually separate them from the “do” items. You can also use an empty
box character ❏ that can be checked off as the test is run. This is useful for
providing a physical record of what the tester observed.

Some of the Ammo TFD data dictionary items for Figure 9.10 are
defined below for the Bio-Rifle weapon, arranged in alphabetical order for
easy searching. Individual definition files are also provided on the book’s
DVD.

AmmoEffects

❏❏ Check that the Bio-Rifle ammo sound is made

❏❏ Check that the game temporarily displays “You picked up some Bio-Rifle
ammo” in white text above the gun icons at the bottom of the screen

❏❏ Check that the temporary text on the display fades out slowly

DropGun

Hit the “ \” key to drop your selected weapon.

DropSound

Check that the item drop sound is made.

Enter

Select a match and click the FIRE button to start the match.

ON DVD

Game Testing.indb 204 03/09/16 3:58 PM

Test Flow Diagrams • 205

Exit

Hit the ESC key and exit the match.

GetAmmo

Find a Bio-Rifle ammo pack on the floor in the arena and walk over it.

GetGun

Find an unloaded Bio-Rifle hovering above the floor of the arena and walk
into it.

GetLoadedGun

Find a Bio-Rifle loaded with ammo hovering above the floor of the arena
and walk into it.

GunEffects

❏❏ Check that the Bio-Rifle sound is made

❏❏ Check that the game temporarily displays “You got the Bio-Rifle” in
white text above the gun icons at the bottom of the screen

❏❏ Check that the game simultaneously displays “Bio-Rifle” temporar-
ily in blue text above the “You got the Bio-Rifle” message

❏❏ Check that all temporary text on the display fades out slowly

HaveAmmo

❏❏ Check that the Bio-Rifle icon is empty in the graphical weapon
inventory at the bottom of the screen

❏❏ Check that the Bio-Rifle barrel is not rendered in front of your character

❏❏ Check that you cannot select the Bio-Rifle weapon using the mouse
wheel

❏❏ Check that the aiming reticle in the center of the screen has not changed

HaveGun

❏❏ Check that the Bio-Rifle icon is present in the graphical weapon
inventory at the bottom of the screen

❏❏ Check that the Bio-Rifle barrel is rendered in front of your character

Game Testing.indb 205 03/09/16 3:58 PM

206 • Game Testing

❏❏ Check that you can select the Bio-Rifle weapon using the mouse wheel

❏❏ Check that the Bio-Rifle aiming reticle appears as a small blue bro-
ken triangle in the center of the screen

❏❏ Check that the ammunition count in the right hand corner of the
screen is 0

HaveGunHaveAmmo

❏❏ Check that the Bio-Rifle icon is present in the graphical weapon
inventory at the bottom of the screen

❏❏ Check that the Bio-Rifle barrel is rendered in front of your
character

❏❏ Check that you can select the Bio-Rifle weapon using the mouse
wheel

❏❏ Check that the Bio-Rifle aiming reticle appears as a small blue broken
triangle in the center of the screen

❏❏ Check that the ammunition count in the right hand corner of the
screen is 40

IN_GunAmmo

Launch Unreal Tournament on the test PC.

LoadedGunEffects

❏❏ Check that the Bio-Rifle sound is made

❏❏ Check that the game temporarily displays “You got the Bio-Rifle” in
white text above the gun icons at the bottom of the screen

❏❏ Check that the game simultaneously displays “Bio-Rifle” temporar-
ily in blue text above the “You got the Bio-Rifle” message

❏❏ Check that all temporary text on the display fades out slowly

NoGunNoAmmo

❏❏ Check that the Bio-Rifle icon is empty in the graphical weapon
inventory at the bottom of the screen

Game Testing.indb 206 03/09/16 3:58 PM

Test Flow Diagrams • 207

❏❏ Check that the Bio-Rifle barrel is not rendered in front of your
character

❏❏ Check that you cannot select the Bio-Rifle weapon using the mouse
wheel

OUT_GunAmmo

At the main menu, click on “EXIT” to exit the game.

You can even include screenshots, art from design documents, or art
from storyboards to provide a visual reference for the tester. This works
well with the hyperlink and Web publishing approach. The reference
graphics can be updated to reflect changes and maturing of the screen
layout and art as the game gets closer to completion. For testing the Bio-
Rifle, the AmmoEffects definition could include a screenshot like the one
in Figure 9.11 below, which shows how the “picked up” confirmation text
is rendered on the screen.

Figure 9.11  Unreal Tournament 2004 Bio-Rifle AmmoEfffects.

Game Testing.indb 207 03/09/16 3:58 PM

208 • Game Testing

Likewise, Figure 9.12 illustrates a useful reference for showing the
Bio-Rifle GunEffects action by capturing the on-screen indications that the
Bio-Rifle has been picked up and is now the player’s active weapon.

Figure 9.12  Unreal Tournament 2004 Bio-Rifle GunEffects.

TFD Paths

A test path is a series of Flows, specified by the flow numbers in the
sequence in which they are to be traversed. Paths begin at the IN state and
end at the OUT state. A set of paths provides behavior scenarios appropri-
ate for prototyping, simulation, or testing.

A path defines an individual test case which can be “executed” to explore
the game’s behavior. Path execution follows the Events, Actions, and States
on the TFD. A textual script can be constructed by cutting and pasting
primitives in the order they occur along the path. Testers then follow the
script to execute each test, referring to the Data Dictionary for details of
each primitive. Automated scripts are created in the same manner, except

Game Testing.indb 208 03/09/16 3:58 PM

Test Flow Diagrams • 209

lines of code are being pasted together rather than textual instructions for
a human tester.

Many paths are possible for a single TFD. Tests can be executed
according to single strategy for the duration of the project or path sets can
vary according to the maturity of the game code as it progresses through
different milestones. The TFD remains constant as long as the correct
game requirements and behaviors do not change. Some useful strategies
for selecting test paths are described below.

Tutorial

Minimum Path Generation

This strategy is designed to produce the smallest number of paths that
will result in covering all of the flows in the diagram. In this context, “cover-
ing” means that a flow is used at least once somewhere in the test.

The benefits of using a Minimum path set are that you have a low test
count and the knowledge that you exercised all parts of the diagram at least
once. The drawbacks are that you tend to get long paths, which might keep
you from testing some parts of the diagram until later in the project, when
something goes wrong early in the test path.

Here’s how to come up with a minimum path for the TFD in Fig-
ure 9.10. Start at the IN and take flow 1 to NoGunNoAmmo. Then go to
HaveGun via flow 2. Since flow 3 loops back to HaveGun, take that next
and then exit HaveGun via flow 4. The minimum path so far is 1, 2, 3, 4.

Now from HaveGunHaveAmmo, go back to HaveGun via flow 5. Since
flow 6 also goes from HaveGunHaveAmmo to HaveGun, take flow 4 again
and this time use flow 6 to return to HaveGun. At this stage, the Minimum
path is 1, 2, 3, 4, 5, 4, 6, but there are still more flows to cover.

Take flow 7 out from HaveGun to go back to NoGunNoAmmo. From
here you can take flow 9 to HaveGunHaveAmmo and return back using
flow 8. Now the path is 1, 2, 3, 4, 5, 4, 6, 7, 9, 8. All that remains now is to
use the flows on the left side of the TFD.

You are at NoGunNoAmmo again so take flow 11 to HaveAmmo and then
return to NoGunNoAmmo via flow 10. Only flow 12 and 13 are left now, so
take 11 back to HaveAmmo where you can take 12 to HaveGunHaveAmmo

Game Testing.indb 209 03/09/16 3:58 PM

210 • Game Testing

and finally exit via flow 13 to the OUT box. The completed minimum path
is 1, 2, 3, 4, 5, 4, 6, 7, 9, 8, 11, 10, 11, 12, 13. All thirteen flows on the TFD
are covered in fifteen test steps.

There is usually more than one “correct” minimum path for any given
TFD. For example, 1, 11, 10, 11, 12, 8, 9, 5, 7, 2, 3, 4, 6, 4, 13 is also a
minimum path for the TFD in Figure 9.10. Diagrams that have more than
one flow going to the OUT box will require more than one path. Even if
you don’t come up with the shortest path(s) mathematically possible, the
purpose is to cover all of the flows in the least number of paths, which is
one for the Ammo TFD.

Baseline Path Method
Baseline path generation begins by establishing as direct a path as pos-

sible from the IN Terminator to the OUT Terminator, which travels through
as many states without repeating or looping back. This is designated as the
Baseline path. Additional paths are derived from the Baseline by varying
where possible, returning to the baseline path and following it to reach the
OUT Terminator. The process continues until all Flows in the diagram are
used at least once.

Baseline paths are more comprehensive than Minimum paths, but still
more economical than trying to cover every possible path through the dia-
gram. They also introduce small changes from one path to another, so a
game defect can be traced back to the operations that were different among
the paths that passed and the one(s) that failed. One drawback of Baseline
paths is the extra effort to generate and execute the paths versus using the
Minimum path approach.

Still using the TFD in Figure 9.10, create a baseline path starting at the
IN box and then traveling across the most number of states you can in order
to get to the OUT box. Once you get to the NoGunNoAmmo state from
flow 1, the farthest distance to the OUT box is either through HaveGun and
HaveGunHaveAmmo or through HaveAmmo and HaveGunHaveAmmo.
Take the HaveGun route by taking flow 2, followed by flow 4 and exiting
through flow 13. This results in the baseline path of 1, 2, 4, 13.

The next thing to do is to branch wherever possible from the first flow on
the baseline. These branches are called “derived” paths from flow 1. Flow
2 is already used in the baseline, so take flow 9 to HaveGunHaveAmmo.
From there flow 8 puts you back on the baseline path. Follow the rest of

Game Testing.indb 210 03/09/16 3:58 PM

Test Flow Diagrams • 211

the baseline along flows 2, 4, and 13. The first derived path from flow 1 is
1, 9, 8, 2, 4, 13.

Continue to check for other possible branches after flow 1. Flow 11
comes out from NoGunNoAmmo and has not been used yet so follow it to
HaveAmmo. Then use flow 10 to return to the baseline. Finish this path by
following the remainder of the baseline to the OUT box. This second path
derived from flow 1 is 1, 11, 10, 2, 4, 13.

At this point there are no more new flows to cover from NoGunNoAmmo,
so move along the next flow on the baseline which is flow 2. Stop here
and look for unused flows to follow. You need to create a path using flow
3. Because it comes right back to the HaveGun state, continue along the
remainder of the baseline to get to the path 1, 2, 3, 4, 13. The only other
flow coming out of HaveGun is flow 7, which puts you right back on the
baseline at flow 2. The final path derived from flow 2 is 1, 2, 7, 2, 4, 13.

Now on to flow 4! Flow 4 takes you to HaveGunHaveAmmo which has
three flows coming out from it that aren’t on the baseline: 5, 6, and 8. We
already used flow 8 in an earlier path, so there is no obligation to use it here.
Flows 5 and 6 get incorporated into our baseline the same way because they
both go back to the HaveGun state. The derived path using flow 5 is 1, 2, 4,
5, 4, 13 and the derived path from flow 6 is 1, 2, 4, 6, 4, 13.

It might seem as though you are done now because the next flow along
the baseline goes to the OUT box, and you have derived paths from each
other flow along the baseline. Upon further inspection, however, there is
still a flow on the diagram that is not included in any of your paths: flow 12
coming from the HaveAmmo state. It’s not connected to a state that’s along
the baseline so it’s easy to lose track of it, but don’t fall into that trap. Pick
up this flow by taking flows 1 and 11 to HaveAmmo and then use flow 12.
You’re now at HaveGunHaveAmmo and you must get back to the baseline
to complete this path. Take flow 8, which is the shortest route and puts you
back at NoGunNoAmmo. Finish the path by following the rest of the base-
line. This final path is 1, 11, 12, 8, 2, 4, 13.

As you can see, the baseline technique produces many more paths and
results in much more testing time than a minimum path. The final baseline
and derived paths for our Ammo TFD are as follows

Baseline:

1, 2, 4, 13

Game Testing.indb 211 03/09/16 3:58 PM

212 • Game Testing

Derived from flow 1:

1, 9, 8, 2, 4, 13

1, 11, 10, 2, 4, 13

Derived from flow 2:

1, 2, 3, 4, 13

1, 2, 7, 2, 4, 13

Derived from flow 4:

1, 2, 4, 5, 4, 13

1, 2, 4, 6, 4, 13

Derived from flow 11:

1, 11, 12, 8, 2, 4, 13

Expert Constructed Paths
Expert Constructed paths are simply paths that a test or feature “expert”

traces based on the expert’s knowledge of how the feature is likely to fail
or where she needs to establish confidence in a particular set of behaviors.
They can be used by themselves or in combination with the Minimum or
Baseline strategies. Expert Constructed paths do not have to cover all of
the flows in the diagram, nor do they have to be any minimum or maximum
length. The only constraint is that, like all other paths, they start at IN and
end at OUT.

Expert paths can be effective at finding problems when there is organi-
zational memory of what has failed in the past or what new game functions
are the most sensitive. These paths could possibly have not shown up at all
in a path list generated by the Minimum or Baseline criteria. The draw-
backs of relying on this approach are the risks associated with not covering
every flow and the possibility of tester bias producing paths that do not
perform “unanticipated” sequences of Events.

Some Expert Constructed path strategies:

■■ Repeat a certain flow or sequence of flows in combination with other
path variations

■■ Create paths that emphasize unusual or infrequent events

■■ Create paths that emphasize critical or complex states

Game Testing.indb 212 03/09/16 3:58 PM

Test Flow Diagrams • 213

■■ Create extremely long paths, repeating flows if necessary

■■ Model paths after the most common ways the feature will be used

For example, the “emphasize critical or complex states” strategy can be
used for the Ammo TFD in Figure 9.10. In this case, the HaveGun state will
be emphasized. This means that each path will pass through HaveGun at
least once. It is also a goal to cover all of the flows with this path set. To keep
the paths short, head for the Exit flow once the HaveGun state has been used.

One path that works is to go to HaveGun, try to shoot, and then leave.
This path would be 1, 2, 3, 4, 13. Another would incorporate the DropGun
event in flow 7. The shortest way out from there is via flow 9 followed by
13, resulting in the path 1, 2, 7, 9, 13. You also need to include the two flows
going into HaveGun from HaveGunHaveAmmo. This produces the paths
1, 2, 4, 5, 4, 13 and 1, 2, 4, 6, 4, 13. Finish covering all of the flows leaving
HaveGunHaveAmmo by using flow 8 in the path 1, 2, 4, 8, 9, 13.

All that remains are some slightly longer paths that cover the left side
of the TFD. Flows 1, 11, 12 get you to HaveGunHaveAmmo. The quickest
way from there to HaveGun is either with flow 5 or 6. Choose flow 5, which
results in the path 1, 11, 12, 5, 4, 13. You can eliminate or keep the earlier
path that was made for the sole purpose of covering flow 5 (1, 2, 4, 5, 4, 13).
It is no longer essential since is has now also been covered by the path you
needed for flow 12.

The last flow to cover is flow 10. Go to HaveAmmo, take flow 10, go
back through HaveGun and go out via flow 2. This gives you your final path
of 1, 11, 10, 2, 4, 13. The list all of the paths that were just constructed for
this set are as follows:

Expert path set:

1, 2, 3, 4, 13

1, 2, 7, 9, 13

1, 2, 4, 6, 4, 13

1, 2, 4, 8, 9, 13

1, 11, 12, 5, 4, 13

1, 11, 10, 2, 4, 13

Originally constructed but later eliminated:

1, 2, 4, 5, 4, 13

Game Testing.indb 213 03/09/16 3:58 PM

214 • Game Testing

Combining Path Strategies
Testing uses time and resources that get more critical as the game

project wears on. Here is one way to utilize multiple strategies that
might make the best use of these resources for different stages of the
project:

1.	Use Expert Constructed Paths early, even when the game is not yet
code complete and everything might not be working. Limit your-
self to paths that only include the parts that the developers are most
interested in or paths that target the only parts of the game that are
available for testing.

2.	Use Baseline Paths to establish some confidence in the feature(s)
being tested. This can begin once the subject of the TFD is fea-
ture complete. You might even want to begin by seeing if the game
can pass the baseline path before trying to use the other paths in
the set. Anything that fails during this testing can be narrowed
down to a few test steps that vary between the failed path(s) and
the successful ones.

3.	Once the Baseline Paths all pass, use the Minimum Paths on an
ongoing basis to keep an eye on your feature to see that it hasn’t
broken.

4.	As any kind of delivery point nears, such as going to an investor demo,
a trade show, or getting ready to go gold, revert back to Baseline and/or
Expert Paths.

This puts a greater burden on the construction of the test paths, but
over the course of a long project it could be the most efficient use of the
testers’ and developers’ time.

Producing Test Cases From Paths

Here’s how to produce a test case from a single TFD path. The subject
of this example will again be the Ammo TFD in Figure 9.10. The test case
will test getting ammo, then getting the gun, and then exiting. This is path
1, 11, 12, 13. To describe this test case, use the Data Dictionary defini-
tions provided earlier in this chapter for the Unreal Tournament Bio-Rifle
weapon.

Game Testing.indb 214 03/09/16 3:58 PM

Test Flow Diagrams • 215

Tutorial

Start constructing the test case with the Data Dictionary text for the IN box
followed by the text for flow 1 which is the Enter flow:

Launch Unreal Tournament on the test PC.

Select a match and click the FIRE button to start the match.

Now add the text from the Data Dictionary for the NoGunNoAmmo state:

❏❏ Check that the Bio-Rifle icon is empty in the graphical weapon inven-
tory at the bottom of the screen

❏❏ Check that the Bio-Rifle barrel is not rendered in front of your
character

❏❏ Check that you cannot select the Bio-Rifle weapon using the mouse
wheel

Now take flow11 to get the Bio-Rifle ammo. Use the Data Dictionary entries
for both the GetAmmo event and the AmmoEffects action:

Find a Bio-Rifle ammo pack on the floor in the arena and walk over it.

❏❏ Check that the Bio-Rifle ammo sound is made

Flow 11 goes to the HaveAmmo state so paste the HaveAmmo Data Dic-
tionary text into the test case right after the text for flow 11:

❏❏ Check that the Bio-Rifle icon is empty in the graphical weapon inven-
tory at the bottom of the screen

❏❏ Check that the Bio-Rifle barrel is not rendered in front of your
character

❏❏ Check that you cannot select the Bio-Rifle weapon using the mouse
wheel

❏❏ Check that the aiming reticle in the center of the screen has not
changed

Next add the text for the GetGun event and GunEffects action along
flow 12:

Game Testing.indb 215 03/09/16 3:58 PM

216 • Game Testing

Find an unloaded Bio-Rifle hovering above the floor of the arena and walk
into it.

❏❏ Check that the Bio-Rifle sound is made

❏❏ Check that the game temporarily displays “You got the Bio-Rifle” in
white text above the gun icons at the bottom of the screen

❏❏ Check that the game simultaneously displays “Bio-Rifle” temporarily
in blue text above the “You got the Bio-Rifle” message

❏❏ Check that all temporary text on the display fades out slowly

Then paste the definition of the HaveGunHaveAmmo state:

❏❏ Check that the Bio-Rifle icon is present in the graphical weapon
inventory at the bottom of the screen

❏❏ Check that the Bio-Rifle barrel is rendered in front of your character

❏❏ Check that you can select the Bio-Rifle weapon using the mouse
wheel

❏❏ Check that the Bio-Rifle aiming reticle appears as a small blue broken
triangle in the center of the screen

❏❏ Check that the ammunition count in the right hand corner of the
screen is 40

Flow 13 is the last flow on the path. It is the Exit flow which goes to
OUT_GunAmmo. Complete the test case by adding the text for these two
elements:

Hit the ESC key and exit the match.

At the main menu, click on “EXIT” to exit the game.

That’s it! Here’s how all of the steps look when they’re put together:

Launch Unreal Tournament on the test PC.

Select a match and click the FIRE button to start the match.

❏❏ Check that the Bio-Rifle icon is empty in the graphical weapon inven-
tory at the bottom of the screen

❏❏ Check that the Bio-Rifle barrel is not rendered in front of your
character

Game Testing.indb 216 03/09/16 3:58 PM

Test Flow Diagrams • 217

❏❏ Check that you cannot select the Bio-Rifle weapon using the mouse
wheel

Find a Bio-Rifle ammo pack on the floor in the arena and walk over it.

❏❏ Check that the Bio-Rifle ammo sound is made

❏❏ Check that the Bio-Rifle icon is empty in the graphical weapon inven-
tory at the bottom of the screen

❏❏ Check that the Bio-Rifle barrel is not rendered in front of your
character

❏❏ Check that you cannot select the Bio-Rifle weapon using the mouse
wheel

❏❏ Check that the aiming reticle in the center of the screen has not
changed

Find an unloaded Bio-Rifle hovering above the floor of the arena and walk
into it.

❏❏ Check that the Bio-Rifle sound is made

❏❏ Check that the game temporarily displays “You got the Bio-Rifle” in
white text above the gun icons at the bottom of the screen

❏❏ Check that the game simultaneously displays “Bio-Rifle” temporarily
in blue text above the “You got the Bio-Rifle” message

❏❏ Check that all temporary text on the display fades out slowly

❏❏ Check that the Bio-Rifle icon is present in the graphical weapon in-
ventory at the bottom of the screen

❏❏ Check that the Bio-Rifle barrel is rendered in front of your character

❏❏ Check that you can select the Bio-Rifle weapon using the mouse wheel

❏❏ Check that the Bio-Rifle aiming reticle appears as a small blue broken
triangle in the center of the screen

❏❏ Check that the ammunition count in the right hand corner of the
screen is 40

Hit the ESC key and exit the match.

At the main menu, click on “EXIT” to exit the game.

Game Testing.indb 217 03/09/16 3:58 PM

218 • Game Testing

You can see how indenting the action and state definitions makes it easy
to distinguish tester operations from things you want the tester to check for.
When something goes wrong during this test you will be able to document
the steps that led up to the problem and determine what specifically was
different from what you expected.

There are two techniques you can use to reuse this test case for
another type of weapon. One is to copy the Bio-Rifle version and sub-
stitute the name of another weapon and its ammo type for “Bio-Rifle”
and “Bio-Rifle ammo.” This only works if all of the other details in the
events, flows, and states are the same except for the gun and ammo
names. In this case, Bio-Rifle specific details were put into some of the
definitions in order to give a precise description of what the tester should
check.

GunEffects contains the following check, which references text
color that varies by weapon. It is blue for the Bio-Rifle but different
for other weapons, such as red for the Rocket Launcher and white for
the Minigun.

❏❏ Check that the game simultaneously displays “Bio-Rifle” temporarily
in blue text above the “You got the Bio-Rifle” message

Likewise, the HaveGunHaveAmmo state describes a specific color and
shape for the Bio-Rifle aiming reticle as well as an ammunition count. Both
vary by weapon type.

❏❏ Check that the Bio-Rifle aiming reticle appears as a small blue broken
triangle in the center of the screen

❏❏ Check that the ammunition count in the right hand corner of the
screen is 40

This leaves you with the option to copy the Bio-Rifle Data Dictionary
files into a separate directory for the new weapon. These files should then
be edited to reflect the details for the new weapon type you want to test.
Use those files to construct your test cases for the new weapon in the same
way you did for the Bio-Rifle.

Remember that using text in the Data Dictionary is not your only
option. You can also use screen shots or automated code. When executable

Game Testing.indb 218 03/09/16 3:58 PM

Test Flow Diagrams • 219

code for each TFD element along a test path is pasted together you should
end up with an executable test case. Use the IN definition to provide intro-
ductory code elements, such as including header files, declaring data types,
and providing main routine opening braces. Use the OUT definition to per-
form cleanup actions such as freeing up memory, erasing temporary files,
and providing closing braces.

Storing Data Dictionary information in separate files is not your only
option. You could keep them in a spreadsheet or database and use a
query to assemble the “records” for each TFD element into a report. The
report could then be used for manual execution of the game test.

TFD Templates

Appendix B provides eight TFD templates you can apply to vari-
ous situations for a wide variety of games. You can recreate the dia-
grams in your own favorite drawing tool or use the files provided on
the book’s DVD in SmartDraw (.sdf) and Windows Metafile (.wmf) for-
mat. In the drawing files, suggested baseline paths are indicated by blue
flows.

Flows in the template files are not numbered. There will be times when
you will need to edit or otherwise customize the TFD to match the specific
behaviors for your game. If you need an action and none is there, put in
what you need. If there’s an action on the TFD but you don’t have one in
your game, take the action out. Change the names of events, actions, or
states to suit your game. Also feel free to add any states you want to test
that aren’t already provided. Once you’ve done all that, then add the flow
numbers and define your paths.

To TFD or Not to TFD?

Table 9.1 provides some guidelines for making a choice between using
a Combinatorial Table or TFD for your test. If a feature or scenario has
attributes that fall into both categories, consider doing separate designs of
each type. Also, for anything critical to the success of your game, create
tests using both methods when possible.

ON DVD

Game Testing.indb 219 03/09/16 3:58 PM

220 • Game Testing

Attribute/Dependency Combinatorial Test Flow Diagram

Game Settings X

Game Options X

Hardware Configurations X

Game State Transitions X

Repeatable Functions X

Concurrent States X

Operational Flow X

Parallel Choices X X

Story Paths or Routes X

Table 9.1  Test Design Methodology Selection

Test Flow Diagrams are used to create models of how the game should
work from the player’s perspective. By exploring this model the tester can
create unanticipated connections and discover unexpected game states.
TFDs also incorporate invalid and repetitive inputs to test the game’s
behavior. TFD tests will demonstrate if expected behavior occurs and unex-
pected behavior doesn’t. Complex features can be represented by complex
TFDs, but a series of smaller TFDs is preferred. Good TFDs are the result
of insight, experience, and creativity.

Exercises

1.	Describe how you would apply the Ammo TFD in Figure 9.10 to an archer
in an online role-playing game. Include any modifications you would make
to the TFD structure as well as to individual states, events, or actions.

2.	Update the diagram in Figure 9.10 to account for what happens when
the player picks up ammo that doesn’t match the type of gun he has.

3.	Create a set of Baseline and Minimum paths for the updated TFD you
created in Exercise 2. Create Data Dictionary entries and write out the

Game Testing.indb 220 03/09/16 3:58 PM

Test Flow Diagrams • 221

test case for your Minimum path. Reuse the Data Dictionary entries
already provided in this chapter and create any new Data Dictionary
entries you need.

4.	Construct a TFD for a mobile game that is suspended when the user
receives a call or the screen is locked due to inactivity. Try to keep the
number of states low. The game should be resumed once the call ends
or the user unlocks the screen.

Game Testing.indb 221 03/09/16 3:58 PM

Game Testing.indb 222 03/09/16 3:58 PM

Cleanroom testing is a technique extracted from a software devel-
opment practice known as Cleanroom Software Engineering. The
original purpose of Cleanroom testing was to exercise software in

order to make mean time to failure (MTTF) measurements over the course
of the project. In this chapter, Cleanroom testing is applied to the problem
of why customers find problems in games that have been through thou-
sands of hours of testing before being released. If one measure of a game’s
success is that the users (players) will not find any bugs, then the game
team’s test strategy should include a way to detect and remove the defects
that are most likely to be found by users.

So how do users find defects that testers missed? Users find defects in
software by using it the way users use it. That’s a little bit of a tongue twister,
but it points to a testing approach that exercises the game according to the

In This Chapter

●● Usage probabilities
●● Cleanroom test generation
●● Inverted usage

Cleanroom Testing

10CHA P T ER

Game Testing.indb 223 03/09/16 3:58 PM

224 • Game Testing

way the players are going to use it. That’s what Cleanroom test development
does; it produces tests that play the game the way players will play it.

Usage Probabilities

Usage probabilities, also referred to as usage frequencies, tell testers
how often game functions should be used in order to realistically mimic
the way customers will use the game. They can be based on actual data you
might have from studies of game players or based on your own expectations
about how the game will be played. Also take into account the possible evo-
lution of a user’s play during the life of the game. A player’s patterns would
be different just after running the tutorial than they would be by the time
the player reaches the boss on the final level. Initially, the player would
utilize fundamental operations and have few, if any, special items unlocked.
Clicking dashboard icons would occur more frequently than key commands
and user-defined macros. Matches or races might take longer at the end of
the game due to the higher difficulty and closer matching of the player’s
skill to the in-game opponent(s). Usage information can be defined and
utilized in three different ways:

■■ Mode-based usage

■■ Player-type usage

■■ Real-life usage

Mode-Based Usage
Game usage can change based on which mode the player is using, such

as single player, campaign, multiplayer, or online.

Single-player mode could involve one or only a few confrontations or
missions. The action usually starts right away so the player is less likely to
perform “build-up” operations such as building advanced units and spend-
ing money or points on expensive skill-boosting items. Some features might
not be available at all to the single player, such as certain characters, weap-
ons, or vehicles. The single player’s character might also have limited race,
clan, and mission options.

Campaigns tend to start the player with basic equipment and opponents
and then introduce more and more complex elements as the campaign
progresses. For sports games, Franchise or Season modes provide unique

Game Testing.indb 224 03/09/16 3:58 PM

Cleanroom Testing • 225

options and experiences that aren’t available when playing a single game,
such as draft picks, training camp, trading players, and negotiating salaries.
RPG games will provide more powerful spells, armor, weapons, and oppo-
nents as your characters level up. Racing games can provide more powerful
vehicles, add-ons, and powerups, as well as more challenging tracks.

Multiplayer gaming can take place on the same machine, usually for
2–4 players, across two interconnected consoles, or over the Internet
for more massive multiplayer experiences. Headset accessories are used for
team confrontations, but aren’t something you’re likely to use by yourself
unless the game has voice commands. Text chatting also is used in multi-
player PC games, giving the text keyboard a workout. Game controls can
also be assigned to smack talk phrases and gestures, which you will also use
to taunt your inferior opponents. The time spent on a multiplayer session
can be much greater than that which a single player will spend, sometimes
extending into the wee hours of the morning. This also brings up the fact
that multiplayer games might involve players from different time zones and
geographical regions, bringing together a variety of game clocks, and lan-
guage settings.

Player Type Usage
Another factor that influences game usage is the classification of four

multi-user player categories described by Richard A. Bartle in “Hearts,
Clubs, Diamonds, Spades: Players Who Suit MUDs” [Bartle 96]. He
describes players by their tendencies to emphasize either Achievement,
Exploration, Socializing, or Killing when they participate in multiplayer
games.

The Achiever wants to complete game goals, missions, and quests. He
will gain satisfaction in advancing his character’s level, point, and money
totals in the most efficient way possible. Achievers often replay the game
at a higher level of difficulty or under difficult circumstances such as using
a last-place team or going into combat armed only with a knife. They will
also be interested in reaching bonus goals and completing bonus missions.

Explorers are interested in finding out what the game has to offer.
They will travel around to find obscure places and the edges of the map;
unmapped territory will draw their attention. The Explorer will look around
and appreciate the art and special beauty in the game such as a particularly
nice moonrise or light shining through a stained glass cathedral window.
She is also likely to attempt interesting features, animations, combos, and

Game Testing.indb 225 03/09/16 3:58 PM

226 • Game Testing

physics effects. Expect the Explorer to try to open every door and check the
inventory at all of the stores. The Explorer wants to figure out how things
work. Think of the phrase “I wonder what would happen if…?”

The goal of the Socializer is to use the game as a means to role play and
get to know other players. Chat and messaging facilities are important to
him, as well as joining social groups within the game such as clans, guilds,
and so on. He will perhaps host meetings or tournaments, or bring many
players together in one place for announcements, trading, or even an occa-
sional wedding. Socializers will use special game features once they find out
about them from other players.

Killers enjoy getting the best of other players. They engage in player
versus player and real versus realm battles. Killers know where the taunt
keys are and how to customize and activate an end zone celebration. Head-
sets, chats, and private messages are also tools that the Killer uses to bait
and humiliate his opponents.

Finally, here are some other gamer “subtypes” to consider when you go
to test your game the same way players play the game:

■■ Casual gamer: Sticks mostly to functions described in the tutorial, user
manual, and on-screen user interface.

■■ Hard-core gamer: Uses function keys, macros, turbo buttons, and
special input devices such as joysticks and steering wheels. Checks the
Internet for tricks and tips. Might also have game hardware juiced up
to run the highest graphics resolution and frame rate. MMORPGs and
RTS’s such as Blizzard’s World of Warcraft and Starcraft2 are frequent
hunting grounds for this gamer type, some of whom operating multiple
characters and computers at the same time.

■■ Button Masher: Values speed and repetition over caution and defense.
Wears out the A button on the controller to run faster, jump higher, or
strike first. Will run out of ammo. Stylus-operated games on Nintendo
DS devices and touch-enabled smartphones have bred the Button
Masher’s cousin: the Screen Scratcher. Scribblenauts™ is a great game
for this gamer type.

■■ Customizer: Uses all of the game’s customization features and plays
the game with custom elements. Will also incorporate unlocked items,
decals, jerseys, teams, and so on. You can find these capabilities in many
sports titles, such as Electronics Arts’ Madden and FIFA series.

Game Testing.indb 226 03/09/16 3:58 PM

Cleanroom Testing • 227

■■ Exploiter: Always looking for a shortcut. Will use cheat codes, look for
cracks in zone walls, and pick off opponents from a secret or unreach-
able spot. Creates bots to craft items, earn points, and level up. Uses
infinite card combos against AI and human Collectable Card Game
(CCG) opponents.

Real-Life Usage
Some games have built-in mechanisms for capturing your in-game

actions. This data might be available to you within the game, published on
your game profile for other players to see, or even sent as raw data back to
the game publisher for analysis or debugging. Capturing data from real-
world gaming “friends” or in-game nonplayer characters (NPCs), such as
coaches, goblins, war bunnies, etc., can be used to let you practice against
their style of play so you can crush them the next time you battle for real.
The 2015 edition of Madden NFL puts realistic data into the player’s hands
by incorporating real-time data into each play.

One example is an on-screen “Previous Play” information box that com-
pares the player’s yards gained versus the results from all Madden online
players at that moment. A player may lose 4 yards on their play, but will see
that the community of Madden players who ran that play averaged a gain
of 10.1 yards.

Figure 10.1  Madden NFL Previous Play Information Box

Game Testing.indb 227 03/09/16 3:58 PM

228 • Game Testing

Additionally, the Xbox One and PS4 editions provide even more infor-
mation through the CoachGlass companion app that you can run on your
iPhone or Android tablet. Think of it as a coach’s digital clipboard. Madden
25 Creative Director Kolbe Launchbaugh described this new experience
as follows:

“When we sat down to build our CoachGlass feature, we wanted to
build you a defensive assistant. There are 3 different ways to use the Coach-
Glass feature. Number on shows you the percentage of the time that the
offense runs a certain personal group. Once they’ve selected what’s on the
field, we then automatically give you three defensive plays to select from.
These defensive plays are sourced through crowd data from all the games
that are played online. We track the play gersus play data, then we flip to
a threat window. When they’re in this personnel group, this is the number
one threat, this is the number two threat, …”

“The second way to use our CoachGlass feature is a little more in depth.
Rather than waiting for them to pock a personnel group, you know that pre-
viously when they play on this down and distance, they’re gonna throw to
the right short. You can select by the region on the field, whether it’s gonna

be a pass or a run, and then where they’re gonna
throw or run to. If you tap that region, then we’ll
recommend plays based on what they’ve done to
you in that game. We’ll give you the best recom-
mendations against those plays”

“The final way to use the CoachGlass feature –
and this is probably the most hardcore – we sim-
ply track all the play versus play data throughout
the game. You’ll start to find patterns in what your
opponent is doing and you’ll start to know what
he’s calling.”

Armed with this kind of information—
whether aggregated by the game company or
from individual gamers’ results, testers can exer-
cise games according to different player styles
and the expected frequency of use of various
game actions, choices, and options. It is impor-
tant to account for these tendencies because
testing based entirely on balanced use of the Figure 10.2  Madden CoachGlass

Game Testing.indb 228 03/09/16 3:58 PM

Cleanroom Testing • 229

game features would not reveal defects, such as a memory overflow caused
by tapping the A button repeatedly on every play over the course of a maxi-
mum length game.

Cleanroom Test Generation

It’s possible to generate Cleanroom tests using any of the methods
covered in this book. You can also create your own Cleanroom tests on
the fly. A usage probability must be assigned to each step in the test.
This can be done in writing or you can keep track in your head. Use the
usage probability to select test steps, values, or branches, and put them
in sequence to produce tests that reflect your usages. For example, if
you expect a simulation game player to develop residential property 50%
of the time, commercial property 30% of the time, and industrial prop-
erty 20% of the time, then your Cleanroom tests will reflect those same
frequencies.

Cleanroom Combinatorial Tables
Cleanroom combinatorial tables will not necessarily be “pairwise” com-

binatorial tables (see Chapter 8, “Combinatorial Testing”). The number of
tests to be created is determined by the test designer, and the values for
each test will be chosen on the basis of their frequency of use rather than
whether or not they satisfy one or more necessary value pairs.

To produce Cleanroom combinatorial tables, assign usage probabilities
to the test values of each parameter. The probabilities of the set of values
associated with a single parameter must add up to 100%.

To illustrate how this is done, revisit the parameter and value choices for
the Halo Reach Advanced Controls table that you completed in Chapter 8,
Table 8.24. The test values for each parameter are listed below with the
default values identified.

■■ Look Sensitivity: 1, 3 (default), 10

■■ Look Inversion: Inverted, Not Inverted (default)

■■ Autolook Centering: Enabled, Disabled (default)

■■ Crouch Behavior: Hold to Crouch (default), Toggle

■■ Clench Protection: Enabled, Disabled (default)

Game Testing.indb 229 03/09/16 3:58 PM

230 • Game Testing

Next, usage percentages need to be determined for each of the table’s
parameters. If you are considering testing against more than one player
profile, you can make a separate usage table for each parameter with a col-
umn of usage percentages for each of the profiles you intend to test. Tables
10.1 through 10.5 show multiple profile usages for each of the five Halo
Reach Advanced Controls parameters that you will incorporate into your
Cleanroom combinatorial table.

This chapter presents a variety of usage numbers in order to
illustrate differences among user types, based on personal experi-
ence. If you have data gathered through scientific means, then that
is what you should be using. If these numbers don’t make sense to
you, then please consider them “for educational purposes only” as
you continue through the examples in this chapter.

Beginning with Table 10.1, distinct usage percentages for the Look Sen-
sitivity parameter are provided to reflect the expected tendencies for each
of the depicted player types.

Look Sensitivity Casual Achiever Explorer Multiplayer

1   10    0 10 5

3   85 75 70 75

10    5 25 20 20

TOTAL 100 100 100 100

Table 10.1  Look Sensitivity Values with Usage Percentages

Table 10.2 provides a different set of usage values for the Inverted and
Not Inverted options available for the Look Inversion parameter.

Look Inversion Casual Achiever Explorer Multiplayer

Inverted   10   40   30   50

Not Inverted   90   60   70   50

TOTAL 100 100 100 100

Table 10.2  Look Inversion Values with Usage Percentages

NOTE

Game Testing.indb 230 03/09/16 3:58 PM

Cleanroom Testing • 231

Table 10.3 introduces a situation where the Disabled value for Autolook
Centering has a 100% weighting. As a consequence, it will be tested using
this same value throughout the entire set of cleanroom tests generated for
the Achiever player type.

Autolook
Centering

Casual Achiever Explorer Multiplayer

Enabled   30    0   20   10

Disabled   70 100   80   90

TOTAL 100 100 100 100

Table 10.3  Autolook Centering Values with Usage Percentages

Table 10.4 provides Crouch Behavior usage values that are mostly
biased towards the Hold value, except for the Explorer, who is given an
equal probability of selecting either the Hold or Toggle option.

Crouch Behavior Casual Achiever Explorer Multiplayer

Hold   80   75   50   90

Toggle   20   25   50   10

TOTAL 100 100 100 100

Table 10.4  Crouch Behavior Values with Usage Percentages

Table 10.5 contains the final set of probabilities that are needed to pro-
ceed with Cleanroom test generation.

Clench
Protection

Casual Achiever Explorer Multiplayer

Enabled   25   60   50   90

Disabled   75   40   50   10

TOTAL 100 100 100 100

Table 10.5  Clench Protection Values with Usage Percentages

Use Tables 10.1 through 10.5 as you work through the tutorial below to
complete your first Cleanroom Combinatorial Table.

Game Testing.indb 231 03/09/16 3:58 PM

232 • Game Testing

Tutorial

Cleanroom Combinatorial Example

A Cleanroom combinatorial table can be constructed for any of the
player usage profiles you define. For this example, you will create one such
table for the “Casual” player. To decide which value to choose for each
parameter, you need a random number source. You could think of a num-
ber in your head, write a program to generate a list of numbers, or roll
electronic dice on your smartphone. Microsoft Excel® can generate random
numbers for you with the RAND() function or the RANDBETWEEN()
function if you install the Analysis ToolPak add-in. You can also download
free mobile apps to do the job for you, such as iGenerateRandomNumbers™
which provides random numbers one-at-a-time or Randoms™ which can
give you up to 100 random numbers at a time. There is no wrong way as
long as the number range is from 1–100, and selection is not biased toward
any portion of the range.

Start building the table with an empty template that has column head-
ings for each of the parameters. Decide how many tests you want and leave
room for them in the table. A Cleanroom combinatorial table “shell” for the
Halo Advanced Controls is shown in Table 10.6. It has room for six tests.

Test Look
Sensitivity

Look
Inversion

Autolook
Centering

Crouch
Behavior

Clench
Protection

1

2

3

4

5

6

Table 10.6  Halo Reach Advanced Controls Cleanroom Combinatorial Table Shell

Because there are five parameters, get five random numbers in the
range of 1–100. These will be used one at a time to determine the values
for each parameter in the first test. Construct the first test from the five
numbers 30, 89, 13, 77, and 25.

Game Testing.indb 232 03/09/16 3:58 PM

Cleanroom Testing • 233

Referring back to Table 10.1, the Casual player is expected to set the
Look Sensitivity to “1” 10% of the time, to “3” 85% of the time, and to “10”
5% of the time. Assigning successive number ranges to each choice results in
a mapping of 1–10 for Look Sensitivity = 1, 11–95 for Look Sensitivity = 3,
and 96–100 for Look Sensitivity = 10. The first random number, 30, falls
into the 11–95 range, so enter “3” in the first column of the test table.

Likewise, Table 10.2 provides a range of 1–10 for Look Inversion =
Inverted and 11–100 for Look Inversion = Not Inverted. The second ran-
dom number is 89, which is within the 11–100 range. Enter “Not Inverted”
in the Look Inversion column for Test 1.

In Table 10.3, the Autolook Centering usage ranges for the Casual
player are 1–30 for Enabled and 71–100 for Disabled. The third random
number is 13, so enter “Enabled” in Test 1’s Autolook Centering column.

Table 10.4 defines an 80% usage for Crouch Behavior = Hold and a
20% usage for Toggle. The fourth random number is 77, which is within
the 1–25 range for the Yes setting. Enter “Hold” in the Crouch Behavior
column for Test 1.

Last, Table 10.5 defines the Clench Protection Casual player usage as
25% for Enabled and 75% for Disabled. The last random number is 25,
which is within the 1–25 range for the Enabled setting. Complete the defi-
nition of Test 1 by putting “Enabled” in the Clench Protection column for
Test 1.

Table 10.7 shows the first test constructed from the random numbers
30, 89, 13, 77, and 25.

Test Look
Sensitivity

Look
Inversion

Autolook
Centering

Crouch
Behavior

Clench
Protection

1 3 Not Inverted Enabled Hold Enabled

Table 10.7  The First Advanced Controls Cleanroom Combinatorial Test

A new set of five random numbers is required to produce the second
test case. Use 79, 82, 57, 27, and 8.

The first number is 79, which is within the 11–95 range for Look Sen-
sitivity = 3. Put a “3” again in the first column for Test 2. The second usage
number is 82. It falls within the 11–100 range for Look Inversion = Not
Inverted, so put “Not Inverted” that column for Test 2. Your third random

Game Testing.indb 233 03/09/16 3:58 PM

234 • Game Testing

number is 57. This number is in the 31–100 range for Autolook Centering,
so enter “Disabled” into that column for Test 2. The fourth usage number is
27. This is within the 1–80 range for Crouch Behavior = Hold. Add “Hold”
to the fourth column of values for Test 2. The last random number is 8. This
usage value corresponds to the Enabled value range of 1–25 for the Clench
Protection parameter. Complete Test 2 by entering “Enabled” in the last
column. Table 10.8 shows the first two completed rows for this Cleanroom
combinatorial table.

Test Look
Sensitivity

Look
Inversion

Autolook
Centering

Crouch
Behavior

Clench
Protection

1 3 Not Inverted Enabled Hold Enabled

2 3 Not Inverted Disabled Hold Enabled

Table 10.8  Two Advanced Controls Cleanroom Combinatorial Tests

The third test in this table is constructed from the random number
sequence 32, 6, 11, 64, and 66. Once again, the first value corresponds to
the default Look Sensitivity value of “3.” The second usage number is 6,
which results in the first “Inverted” entry for the Look Inversion parameter
by virtue of being inside the 1–10 range for that value. The third random
number for Test 3 is 11, which gives you an Enabled value for the Auto-
look Centering parameter. The number to use for determining the Crouch
Behavior test value is 64, which maps to the 1–80 range for the Hold choice.
The fifth number provides another “first”—a “Disabled” value for Clench
Protection, because it falls within the 26–100 range. Table 10.9 shows the
first three tests entered in the table.

Test Look
Sensitivity

Look
Inversion

Autolook
Centering

Crouch
Behavior

Clench
Protection

1 3 Not Inverted Enabled Hold Enabled

2 3 Not Inverted Disabled Hold Enabled

3 3 Inverted Enabled Hold Disabled

Table 10.9  Three Advanced Controls Cleanroom Combinatorial Tests

Continue by using the random numbers 86, 64, 22, 95, and 50 for Test 4.
The 86 is within the 11–95 range for Look Sensitivity =3, so put a “3” again

Game Testing.indb 234 03/09/16 3:58 PM

Cleanroom Testing • 235

in column one. A 64 is next in the usage number list. It maps to the Not
Inverted range for Look Inversion. The next number, 22, corresponds to
“Enabled” for Autolook Centering. The 95 provides the first Toggle value
for Crouch Behavior in this set of tests. The Clench Protection number is
50, which puts another Disabled value in that column. Table 10.10 shows
the table with four of the six tests defined.

Test

Look
Sensitivity

Look
Inversion

Autolook
Centering

Crouch
Behavior

Clench
Protection

1 3 Not Inverted Enabled Hold Enabled

2 3 Not Inverted Disabled Hold Enabled

3 3 Inverted Enabled Hold Disabled

4 3 Not Inverted Enabled Toggle Disabled

TablE 10.10  Four Advanced Controls Cleanroom Combinatorial Tests

Your fifth set of random numbers is 33, 21, 76, 63, and 85. The 33 puts
a “3” in the Look Sensitivity column. The 21 is in the Not Inverted range
for Look Inversion. An 85 is within the Not Inverted range for Invert Flight
Control. The 63 corresponds to a Hold value for Crouch Behavior and the
85 causes another “Disabled” to be put in the last column for the Clench
Protection parameter. Table 10.11 shows the Cleanroom combinatorial
table with five tests defined. Only one more to go now!

Test Look
Sensitivity

Look
Inversion

Autolook
Centering

Crouch
Behavior

Clench
Protection

1 3 Not Inverted Enabled Hold Enabled

2 3 Not Inverted Disabled Hold Enabled

3 3 Inverted Enabled Hold Disabled

4 3 Not Inverted Enabled Toggle Disabled

5 3 Not Inverted Disabled Hold Disabled

Table 10.11  Five Advanced Controls Cleanroom Combinatorial Tests

One more number set is needed to complete the table. Use 96, 36, 18, 48,
and 12. The first usage number of 96 is high enough to be in the 96–100

Game Testing.indb 235 03/09/16 3:58 PM

236 • Game Testing

range for the “10” Look Sensitivity value. This marks the first time that value
appears in the table. Moving through the rest of the numbers, the 36 puts a No
in the Invert Thumbstick column, 18 corresponds to Controller Vibration =
Yes, 48 is in the range for Invert Flight Control = No, and 12 completes the
final test row with a Yes for Auto-Center. Table 10.12 shows all six Cleanroom
combinatorial test cases.

Test Look
Sensitivity

Look
Inversion

Autolook
Centering

Crouch
Behavior

Clench
Protection

1 3 Not Inverted Enabled Hold Enabled

2 3 Not Inverted Disabled Hold Enabled

3 3 Inverted Enabled Hold Disabled

4 3 Not Inverted Enabled Toggle Disabled

5 3 Not Inverted Disabled Hold Disabled

6 10 Not Inverted Enabled Hold Disabled

Table 10.12  Completed Advanced Controls Cleanroom Combinatorial Table

Your keen testing eye should have noticed that Look Sensitivity = 1 was
never generated for this set of tests. That is a function of its relatively low
probability (10%), the low number of test cases that you produced, and the
particular random number set that was the basis for selecting the values for
table. In fact, if you stopped generating tests after five test cases instead of
six, the default value of “3” would have been the only value for Look Sensi-
tivity that appeared in the table. This should not be considered a problem
for a table of this size. If a value has a 5% or higher usage probability and
you don’t see it at all in a test set of 100 or more tests, then you can suspect
that something is wrong with either your value selection process or your
random number generation.

Also notice that some values appear more frequently or less fre-
quently than their usage probability would suggest. Autolook Centering =
Enabled has only a 30% usage for the Casual profile, but it appears in
67% (4/6) of the tests generated. This is mainly due to the low number of
tests created for this table. With a test set of 50 or more you should see a
better match between a value’s usage probability and its frequency in the
test set.

Game Testing.indb 236 03/09/16 3:58 PM

Cleanroom Testing • 237

Just to reinforce the fact that the Cleanroom combinatorial table method
doesn’t guarantee it will provide all test value pairs that are required for a
pairwise combinatorial table, confirm that the pair Autolook Centering =
Disabled and Crounch Behavior = Toggle is absent from Table 10.12. Now
take a moment to see which other missing pairs you can find.

You will recall that pairwise combinatorial tables are constructed verti-
cally, one column at a time. Until you complete the process for building the
table you don’t know what the test cases will be nor how many tests will result.
Because Cleanroom combinatorial tables are constructed horizontally—
one line at a time—you get a completely defined test on the very first row,
and every row after that for as many Cleanroom combinatorial tests as you
choose to produce.

TFD Cleanroom Paths
Cleanroom TFD tests come from the same diagram you use for cre-

ating minimum, baseline, and expert constructed paths. Cleanroom test
paths travel from state to state by choosing each subsequent flow based on
its usage probability.

A usage probability must be added to each flow if the TFD is going to
be used for Cleanroom testing. The probabilities of the set of flows exiting
each state must add up to 100%. Figure 10.3 shows a flow with the usage
probability after the action. If there is no action on the flow, then the usage
probability gets added after the event.

event

action flow

flow identifier

1:AbortSwitchActivated

/IndicatorRed Reset Countdown:10%

usage

Figure 10.3  Example flow with usage probability.

Figure 10.4 shows an entire TFD with flow numbers and usage per-
centage amounts. Remember, the probabilities of flows exiting each state
must add up to 100%. You might recognize this TFD from the templates
provided in Appendix D. The flow numbers and usage percentages make
this TFD ready for Cleanroom testing.

Game Testing.indb 237 03/09/16 3:58 PM

238 • Game Testing

IN_PointsItem

NoPoints
ItemLocked

HavePoints
ItemLocked

HavePoints
Item

Unlocked

NoPoints
HaveItem

8:PurchaseItem

/NoPurchase:10%

10:Purchase

Item/No

Purchase:5%

11:GetPoints/GetPointsEffects:90%

12:LosePoints/LosePointsEffects:10%

13
:L

oc
kIt

em

/L
oc

kE
ffe

cts
:5%

2:LosePoints/LosePointsEffects:10%

1:Enter:
100%

3:GetPoints
/GetPoints

Effects:50%

4:
Unl

oc
k

Ite
m

/U
nl

oc
k

Effe
cts

:9
0%

5:
Loc

kI
te

m

/L
oc

kE
ffe

cts
:5

%

6:E
xit:10%

7:Purch
ase

Ite
m

/G
etI

tem

Effe
cts

:75%

OUT_PointsItem

NoPoints
Item

Unlocked

9:D
eleteItem

/D
eleteItem

E
ffects:90%

14
:U

nloc
kI

tem

/U
nloc

kE
ffe

cts
:50

%

Figure 10.4  Unlock Item TFD with usage probabilities added.

Tutorial

TFD Cleanroom Path Example

With the usage information added to the TFD, generate random num-
bers to guide you around the diagram from flow to flow until you reach the

Game Testing.indb 238 03/09/16 3:58 PM

Cleanroom Testing • 239

OUT terminator. The resulting path defines a single test. Continue gener-
ating as many paths as you like, using new random number sets each time.
Experience has shown that it is a good practice to always assign a 10% value
to the Exit flow. A larger value will result in paths that exit too soon and a
smaller value will cause too many paths that seem to go on forever before
finally exiting. The 10% value provides a nice mix of long, medium, and
short paths in your Cleanroom test set.

Each Cleanroom test case is described by the sequence of flow num-
bers along the Cleanroom path. Because the path length can vary from
one test to another, you will not know ahead of time how many random
numbers you need to generate for all of your paths. The result is that you
could exit some tests after only a few flows, or you could travel around the
diagram several times before reaching the OUT box. Normally you would
generate the random numbers as you need them, but for your convenience
the random number set for the example in this section is 30, 27, 35, 36, 82,
59, 92, 88, 80, 74, 42, and 13.

Generating a test case for the TFD in Figure 10.4 starts at the IN box.
The only flow from there has a 100% usage, so there is no need to produce
a random number—you must begin your test with this flow. Next, there are
two possible ways out from the NoPointsItemLocked state: flow 3 and flow
14. Each of those flows has the usage probability of 50%. Assign them each
a random number range according to their numerical order. Use flow 3 if
the random number is 1–50 and use flow 14 if it is 51–100. Get the random
number 30 from the list above and take flow 3 to HavePointsItemLocked.
The test path so far is 1, 3.

There are two flows exiting state HavePointsItemLocked. Flow 2 has a
10% usage and flow 4 has a 90% usage. The range for flow 2 is 1–10 and for
flow 4 it’s 11–100. Use 27 as the random number for this flow. That sends
the test along flow 4 to HavePointsItemUnlocked. The test path at this
point is 1, 3, 4.

HavePointsItemUnlocked is the most interesting state so far, with four
flows to choose from for the next step in your test. Flow 5 has a 5% usage, flow
6 has 10%, flow 7 has 75%, and flow 12 has 10%. The corresponding number
ranges are 1–5 for flow 5, 6–15 for flow 6, 16–90 for flow 7, and 91–100 for
flow 12. You anxiously await the next random number . . . and it’s . . . 35. Your
test path now takes flow 7 to NoPointsHaveItem. The path is now 1, 3, 4, 7.

From NoPointsHaveItem there are two flow choices: flow 8 with a 10%
usage and flow 9 with a 90% usage. You will take flow 8 if the random

Game Testing.indb 239 03/09/16 3:58 PM

240 • Game Testing

number is in the range 1–10 and flow 9 if it’s within 11–100. Your new ran-
dom number is 36, so take flow 9 to NoPointsItemUnlocked. The test path
is currently 1, 3, 4, 7, 9.

Flows 10, 11, and 13 all leave NoPointsItemUnlocked. Flow 10’s usage
is 5% (1–5), flow 11 has a 90% usage (6–95), and flow 13 has a 5% (96–100)
usage. Another random number is generated and it’s 82. That’s within the
range for flow 11, so take that flow to HavePointsItemUnlocked. The path
has grown to 1, 3, 4, 7, 9, 11, but you’re not done yet.

You’re back at HavePointsItemUnlocked and the next random number
is 59. That fits in the 16–90 range for flow 7, taking you on another trip to
NoPointsHaveItem. A usage of 92 here matches up with flow 9, going to
NoPointsItemUnlocked. The test path is now 1, 3, 4, 7, 9, 11, 7, 9.

The next random number is 88. This takes you from NoPointsItemUn-
locked to HavePointsItemUnlocked via flow 11. The 80 takes you along
flow 7 for the third time in this path and the next number, 74, sends you to
NoPointsItemUnlocked via flow 9. A 42 in the random number list chooses
flow 11, which brings you once again to HavePointsItemUnlocked. These
flows extend the path to 1, 3, 4, 7, 9, 11, 7, 9, 11, 7, 9, 11.

The next random number to use is 13. This falls within the 6–15 range,
which corresponds to flow 6. That’s the Exit flow, which goes to the OUT
terminator. This marks the end of this test path. The completed path is 1, 3,
4, 7, 9, 11, 7, 9, 11, 7, 9, 11, 6.

Once a path is defined, create the test cases using the data dictionary
techniques described in Chapter 11. To create an overview of this test, list
the flows, actions, and states in the order they appear along the path. List
the flow number for each step in parentheses at the beginning of each line,
as follows:

IN_PointsItem

(1) Enter, NoPointsItemLocked

(3) GetPoints, GetPointsEffects, HavePointsItemLocked

(4) UnlockItem, UnlockEffects, HavePointsItemUnlocked

(7) PurchaseItem, GetItemEffects, NoPointsHaveItem

(9) DeleteItem, DeleteItemEffects, NoPointsItemUnlocked

(11) GetPoints, GetPointsEffects, HavePointsItemUnlocked

Game Testing.indb 240 03/09/16 3:58 PM

Cleanroom Testing • 241

(7) PurchaseItem, GetItemEffects, NoPointsHaveItem

(9) DeleteItem, DeleteItemEffects, NoPointsItemUnlocked

(11) GetPoints, GetPointsEffects, HavePointsItemUnlocked

(7) PurchaseItem, GetItemEffects, NoPointsHaveItem

(9) DeleteItem, DeleteItemEffects, NoPointsItemUnlocked

(11) GetPoints, GetPointsEffects, HavePointsItemUnlocked

(6) Exit, OUT_PointsItem

Generating this path provided some expected results. The path starts
with the IN and ends with the OUT, which is mandatory. Flows with large
percentages were selected often, such as flows 9 and 11, which each have a
90% usage probability.

Did anything surprise you? Some flows and states didn’t appear in this
path at all. That’s okay for a single path. When you create a set of paths you
should expect to explore a wider variety of flows and states.

Was the flow longer than you expected? Flows 7, 9, and 11 appeared
multiple times in this path. This is not what you would expect from mini-
mum or baseline path sets. It’s also interesting to note that those three flows
form a loop. They were used three times in a row before finally exiting and
ending the path.

Was the path longer than you wanted it to be? Is this a path you would
have chosen on your own? Because this technique is based on a process
rather than the ideas or preconceptions of a particular tester, the paths are
free of bias or limitations. Cleanroom paths also highlight the fact that the
game is not played one operation at a time and then turned off. These paths
will test realistic game-use scenarios if your percentages are reasonably cor-
rect. As a result, your Cleanroom tests will have the ability to reveal defects
that are likely to occur during extended or repeated game use.

Flow Usage Maintenance
There will come a time when you will need to move one or more flows

around on your TFD. This could perhaps affect your usage values. When a
flow’s destination (arrowhead end) changes, you are not required to change
its usage. Conversely, if you change a flow to originate from a new state, you
must re-evaluate the usage values for all flows coming from both the new
state and the original one.

Game Testing.indb 241 03/09/16 3:58 PM

242 • Game Testing

Figure 10.5 shows an updated version of the Unlock Item TFD. Flow
9 on the left side of the diagram now goes all the way back to NoPoin-
tsItemLocked instead of NoPointsItemUnlocked. The usage percentage
for flow 9 does not have to change. The percentages for all the flows com-
ing from NoPointsHaveItem still add up to 100: 10% for flow 8 and 90%
for flow 9.

IN_PointsItem

NoPoints
ItemLocked

HavePoints
ItemLocked

HavePoints
Item

Unlocked

NoPoints
HaveItem

8:PurchaseItem

/NoPurchase:10%

10:Purchase
Item/No

Purchase:5%

11:GetPoints/GetPointsEffects:90%

12:LosePoints/LosePointsEffects:10%

13:LockIte
m

/LockIte
m

Effe
cts

:5%

14:U
nlockI

tem

/U
nlock

Effe
cts

:50%

2:LosePoints/LosePointsEffects:10%

1:Enter:
100%

3:GetPoints
/GetPoints

Effects:50%
4:

Unl
oc

kI
te

m
/

Unl
oc

k
Effe

cts
:9

0%
5:

Loc
kI

te
m

/L
oc

kE
ffe

cts
:5

%

9:
D

el
et

eI
te

m
/D

el
et

e
It

em
E

ffe
ct

s:
90

%

6:E
xit:10%

7:Purch
ase

Ite
m

/G
etI

tem

Effe
cts

:75%

OUT_PointsItem

NoPoints
Item

Unlocked

Figure 10.5  Unlock Item TFD with altered flow 9.

Game Testing.indb 242 03/09/16 3:58 PM

Cleanroom Testing • 243

Figure 10.6 includes a second update to the Unlock Item TFD.
Flow 6 originally started at HavePointsItemUnlocked but now it goes from
NoPointsHaveItem to the OUT box. For this case, all flows coming from
both HavePointsItemUnlocked and NoPointsHaveItem were re-evaluated
to add up to 100% from each originating state.

IN_PointsItem

NoPoints
ItemLocked

HavePoints
ItemLocked

HavePoints
ItemUn
locked

NoPoints
HaveItem

8:PurchaseItem

/NoPurchase:5%

10:Purchase
Item/No

Purchase:5%

11:GetPoints/GetPointsEffects:90%

12:LosePoints/LosePointsEffects:20%

13:LockIte
m

/LockIte
m

Effe
cts

:5%

14:U
nlockI

tem

/U
nlock

Effe
cts

:50%

2:LosePoints/LosePointsEffects:10%

1:Enter:
100%

3:GetPoints
/GetPoints

Effects:50%

4:
Unl

oc
kI

te
m

/

Unl
oc

k
Effe

cts
:9

0%
5:

Loc
kI

te
m

/L
oc

kE
ffe

cts
:5

%

9:
D

el
et

eI
te

m
/D

el
et

e
It

em
E

ff
ec

ts
:8

5%

6:Exit:10%

7:Purch
ase

Ite
m

/G
etI

tem
Effe

cts
:75%

OUT_PointsItem

NoPoints
ItemUn
locked

Figure 10.6  Unlock Item TFD with altered flows 6 and 9.

Game Testing.indb 243 03/09/16 3:58 PM

244 • Game Testing

For HavePointsItemUnlocked, one or more percentages need to
increase because that state lost a flow. You can give flow 12 the 10% that
used to be allocated to flow 6. That would not overly inflate the usage for
flow 7, and it keeps flow 5’s usage small. As Figure 10.6 shows, flow 12 now
has a 20% usage instead of its original 10% value.

Additionally, one or more flows coming from NoPointsHaveItem must
now be reduced to make room for the new flow. Because flow 6 is an Exit
flow, it must have a 10% usage. Two other flows come from NoPoint-
sHaveItem: flow 8 with a 10% usage and flow 9 with a 90% usage. Reducing
flow 8 by 10% will put it at 0%, meaning it will never be selected for any
Cleanroom paths for this TFD. Instead, take away 5% from flow 8 and 5%
from flow 9. The new percentages for these flows are reflected in Figure
10.6. Alternatively, you could have taken 10% away from flow 9 and left flow
8 at 10%. Your choice depends on what distribution you think best reflects
the expected relative usage of these flows according to the game player,
mode, or data you are trying to model.

Flow Usage Profiles
You might want to have multiple usage

profiles to choose from when you create TFD
Cleanroom paths. One way to accomplish this
is to create copies of the TFD and change the
usage numbers to match each profile. Another
solution is to do what you did for combina-
torial profiles: produce a mapping between
each test element and its usage probability for
one or more game users, types, or modes. In
this case, usage numbers should not appear
on the TFD. Figure 10.7 shows the Unlock
Item TFD without usage percentages on the
flows.

Table 10.13 shows how one profile’s proba-
bilities map to the flows on the TFD. Document
the random number range that corresponds to
each flow’s usage. For example, because flows 3
and 14 go out from NoPointsItemLocked, flow 3
gets the range 1–50 and flow 14 gets 51–100.
When you edit the TFD to add, remove, or move
flows, you must revisit this table and update the
usage and range data.

Flow Casual

1 100

2 10

3 50

4 90

5 5

6 10

7 75

8 10

9 90

10 5

11 90

12 10

13 5

14 50

TOTAL 600

Table 10.13  Casual Player
Usage Table for Unlocked Item

TFD Flows

Game Testing.indb 244 03/09/16 3:58 PM

Cleanroom Testing • 245

The total at the bottom of the flow probability table is a good way to
check that your percentages add up correctly. The total should be equal to
100 (for the Enter flow) plus 100 times the number of states on the diagram
(flows exiting each state must add up to 100%). The TFD in Figure 10.6 has
five states, so 600 is the correct total.

IN_PointsItem

NoPoints
ItemLocked

HavePoints
ItemLocked

HavePoints
Item

Unlocked

NoPoints
HaveItem

8:PurchaseItem

/NoPurchase

10:Purchase

Item/No

Purchase

11:GetPoints/GetPoints
Effects

12:LosePoints/LosePointsEffects

13
:L

oc
kI

tem

/L
oc

kE
ffe

cts

2:LosePoints/LosePoints
Effects

1:Enter

3:GetPoints
/GetPoints

Effects

4:
Unl

oc
kI

te
m

/

Unl
oc

k E
ffe

cts
5:

Loc
kI

te
m

/L
oc

kE
ffe

cts

6:E
xit

7:Purch
ase

Ite
m

/G
etI

tem
Effe

cts

OUT_PointsItem

NoPoints
Item

Unlocked

9:D
eleteItem

/D
eleteItem

E
ffects

14
:U

nloc
kI

tem

/U
nloc

kE
ffe

cts

Figure 10.7  Unlock Item TFD without usage probabilities.

Game Testing.indb 245 03/09/16 3:58 PM

246 • Game Testing

Generate your Cleanroom tests from the flow usage table similarly to
the way you do when the flow usage is on the diagram. The only difference
is the extra step to look up the flow’s range in the table. If you are creating
an automated process or tool to construct TFD Cleanroom paths, this table
could be stored in a database or exported to a text file.

Admittedly, keeping track of flow usage in a table presents some
problems. Because the flow numbering does not have to be related to
the way flows appear on the diagram, it takes a little more work to
identify the flows coming from each individual state. For example,
the flows coming from NoPointsItemLocked—3 and 14—are at
opposite ends of the flow list. This wrinkle can become more of a
problem when many flows are added, moved, or removed to adapt to
changes in the game software. Just be careful and check your num-
bers when you are faced with this situation.

Inverted Usage

Inverted usage can be applied when you want to emphasize the less
frequently used functions and behaviors in the game. This creates a usage
model that might reflect how the game would be used by people trying to
find ways to exploit or intentionally crash the game for their own benefit.
It also helps draw out defects that escaped earlier detection because of the
very fact that the game is rarely, if ever, expected to be used in this way.

Calculating Inverted Usage
Inverted usage is calculated using a three step process:

1.	Calculate the reciprocal of each usage probability for a test parameter
(combinatorial) or for all paths exiting a state (TFDs).

2.	Sum the reciprocals.

3.	Divide each reciprocal from step 1 by the sum of the reciprocals calcu-
lated in step 2. The result is the inverted probability for each individual
usage value.

For example, say there are three values A, B, and C, with the usage
10%, 50%, and 40%, respectively.

!
TIP

Game Testing.indb 246 03/09/16 3:58 PM

Cleanroom Testing • 247

Apply step 1 of the inversion process to get reciprocal values of 10.0 for

A (1
0.10), 2.00 for B (1

0.5), and 2.50 (1
0.40) for C.

Add these reciprocals to get a sum of 14.5. The reciprocals are divided

by this sum to get the inverted values of 69.0% (10
14.5) for A, 13.8% (2

14.5)
for B, and 17.2% (2.5

14.5) for C. These can be rounded to 69%, 14%, and 17%

for test generation purposes.

One characteristic of this process is that it inverts the proportions
between each probability compared to its companions for a given set of
usage values.

In the preceding example, B is used 5 times more frequently than

A (50
10) and 1.25 times more frequently than C (50

40).
The relationship between inverted A and inverted B is 69%

13.8%
, which

is 5.00.

Likewise, the relationship between inverted C and inverted B is 1.25

(17.2%
13.8%).

For any case where there are only two usage values to invert, you can
skip the math and simply reverse the usage of the two values in question.
You will get the same result if you apply the full process, but why bother
when you could use that time to do more testing?

If an item has a 0% usage, then the first step in the inversion process
will cause a divide by zero situation. Keep that from happening by
adding 0.01% to each value before doing the three-step inversion
calculation. This will keep the results accurate to one decimal place
of precision in the results and maintain the relative proportions of
usages in the same set.

Combinatorial Table Usage Inversion
Table 10.1 showed a set of usage probabilities for the Halo Reach Look

Sensitivity test values of 1, 3, and 10. Construct a table of inverted values
starting with the Casual player profile. The three usage probabilities in that

!
TIP

Game Testing.indb 247 03/09/16 3:58 PM

248 • Game Testing

column are 10, 85, and 5. These are percentages, so the numerical values of
these probabilities are 0.10, 0.85, and 0.05.

Apply step 1 and calculate 1
0.10

 = 10.

Do the same for 1
0.85

, which is 1.18, and 1
0.05

, which equals 20.

Add these numbers according to step 2. 10 + 1.176 + 20 = 31.176. Fin-
ish with step 3.

Dividing 10, which is the reciprocal of the usage probability for Look
Sensitivity = 1, by 31.18, which is the sum of all three reciprocals, gives an
inverted probability of 0.321. Because the numbers in the table are per-
centages, this gets entered as 32.1. Likewise, divide 1.18 by 31.18 to get
the second inverted usage result 0.038, or 3.8%. Complete this column by
dividing 20 by 31.18 to get 0.641 and enter 64.1 as the inverted usage for
Look Sensitivity = 10.

Comparing the inverted usage values to the original ones confirms that
the relative proportions of each usage value have also been inverted. Origi-
nally, the usage for Look Sensitivity = 1 was 10% versus 5% for Look Sen-
sitivity = 10: a 2 to 1 ratio. In the inverted table, the Look Sensitivity = 10
value is 64.2—twice that of the 32.1% usage for Look Sensitivity = 1. You
can examine the values for each parameter to confirm that this holds true
for the other values within each column.

The complete inverted Look Sensitivity usage for all player profiles is
provided in Table 10.14.

Look Sensitivity Casual Achiever Explorer Multiplayer

1 32.1 99.9 60.9 75.9

3 3.8 0.0 8.7 5.1

10 64.1 0.0 30.4 19.0

TOTAL 100 100 100 100

Table 10.14  Inverted Usage Percentages for the Look Sensitivity Parameter

Game Testing.indb 248 03/09/16 3:58 PM

Cleanroom Testing • 249

The “normal” and inverted usage tables for all of the Halo Reach
Advanced Controls parameters are provided in an Excel spread
sheet file on the book’s DVD. There are separate worksheets for
the Normal and Inverted usages. You can change the values on the
Normal Usage sheet and the values on the Inverted Usage sheet
will be calculated for you.

TFD Flow Usage Inversion
The TFD Enter and Exit flows present special cases you must deal

with when inverting usages. Because these are really “test” operations
versus “user” operations, the usage percentage for these flows should be
preserved. They will keep the same value in the inverted usage set that
you assigned to them originally. Table 10.15 shows the Unlock Item TFD’s
inverted Casual player usage table initialized with these fixed values.

Flow 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Casual 100 10

Table 10.15  Inverted Flow Usage Table Initialized with Enter and Exit Flow Data

Complete the table by performing the inversion calculation process for
the flows leaving each state on the TFD. Go from state to state and fill in
the table as you go along. Start at the top of the diagram with the NoPoin-
tsItemLocked state. Do inversion calculation for flows 3 and 14. Because
these flows have the identical value of 50%, there’s no need to do any math.
The inverted result in this case is the same as the original. Put 50s in the
table for these flows, as shown in Table 10.16.

Flow 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Casual 100 50 10 50

Table 10.16  Fixed Usage Added for Flows Leaving NoPointsItemLocked

Moving clockwise around the diagram, do the inversion for flows 2
and 4 coming from HavePointsItemUnlocked. There are only two values,
so you can swap values without having to do a calculation. Table 10.17
shows the 90% inverted usage for flow 2 and the 10% inverted usage for
flow 4 added to the table.

NOTE

ON DVD

Game Testing.indb 249 03/09/16 3:58 PM

250 • Game Testing

Flow 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Casual 100 90 50 10 10 50

Table 10.17  Inverted Usage Added for Flows Leaving HavePointsItemLocked

The next state on your trip around the TFD is HavePointsItemUnlocked.
This is the state that has the Exit flow, which is already recorded as 10%
in the inverted table. The trick here is to invert the other flows from this
state while preserving the total usage of 100% when they are all added up,
including the Exit flow. Have you figured out how to do this? For step 1,
calculate only the reciprocals of flows 5 (5%), 7 (75%), and 12 (10%). These
would be 20, 1.33, and 10, respectively. The sum of the reciprocals (step 2) is
31.33. Divide each reciprocal with the sum (step 3) to get 0.638, 0.042, and
0.319. Because it has already been established that flow 6 (Exit) accounts
for 10% of the usage probability total for HavePointsItemUnlocked, then
these other three flows must account for the remaining 90%. Multiply the
inverted usages for flows 5, 7, and 12 by 0.9 (90%) to account for that. The
final result for flow 5 is 0.574 (57.4%), for flow 7 is 0.038 (3.8%), and for
flow 12 is 0.287 (28.7%). Table 10.18 shows these numbers included with
the results for the other flows usages calculated so far.

Flow 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Casual 100 90 50 10 57.4 10 3.8 28.7 50

Table 10.18  Inverted Usage Added for Flows Leaving HavePointsItemUnlocked

Go to the next state, which is NoPointsHaveItem. This is another situa-
tion with only two flows to invert. Swap the usage values for flow 8 and flow
9. Table 10.19 shows flow 8 added to the table with a 90% inverted usage
and flow 9 with a 10% inverted usage.

Flow 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Casual 100 90 50 10 57.4 10 3.8 90 10 28.7 50

Table 10.19  Inverted Usage Added for Flows Leaving NoPointsHaveItem

NoPointsItemUnlocked is the last state to account for on the diagram.
Three flows leave this state, so you have to do some calculations. Flow 10

Game Testing.indb 250 03/09/16 3:58 PM

Cleanroom Testing • 251

has a 5% usage, so its reciprocal is 20. Flow 11 has a 90% usage. Its recipro-
cal is 1.11. Flow 13 has the same usage as flow 10 and, therefore, the same
reciprocal of 20. Now do step 2 and add up the reciprocals. 20 + 1.11 + 20 =
41.11. Find the inverted usage of each flow by dividing their reciprocals by
this total.

For flows 10 and 13, calculate 20
41.11

, which results in 0.486, or 48.6%.

Calculate flow 11’s inverted usage as 1.11
41.11

, which is 0.027, or 2.7%.

Enter these values to the table to get the completed version shown in
Table 10.20.

Flow 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Casual 100 90 50 10 57.4 10 3.8 90 10 48.6 2.7 28.7 48.6 50

Table 10.20  Completed Table with Inverted Usage for NoPointsItemUnlocked

With these inverted percentages you can produce TFD Cleanroom
paths and test cases in the same way you did earlier from the normal usage
probabilities.

One technique that makes it a little easier to keep track of the number
ranges associated with each percentage is to add a Range column to the
usage table. Table 10.21 shows how this looks for the Unlock Item TFD
inverted usages. This column can be especially helpful when the flows
from a state are scattered around, such as flows 3 and 12 coming from
NoPointsItemLocked.

Game players have tendencies and patterns of use that can be incorpo-
rated into game tests for the purpose of testing the game the way players
play the game. The point of doing that is to find and remove the bugs that
would show up when the game is played in those ways. If you are success-
ful, those players will not find any bugs in your game. That’s good for them
and good for you.

When you sell millions of copies of your game, “rare” situations can
show up a number of times over the life of a title. Tests based on inverted
usage profiles can emphasize and expose those rare defects in your game.

Game Testing.indb 251 03/09/16 3:58 PM

252 • Game Testing

Flow Casual Usage Range

1 100 1-100

2 90 1-90

3 50 1-50

4 10 91-100

5 57.4 1-57

6 10 58-67

7 3.8 68-71

8 90 1-90

9 10 91-100

10 48.6 1-49

11 2.7 50-52

12 28.7 72-100

13 48.6 53-100

14 50 51-100

Table 10.21  Inverted Casual Player Usage and Ranges for Unlock Item TFD

Exercises

1.	What type of player are you? If you do not match any of the types listed
in this chapter, give your type a name and describe it. Now think of
someone else you know and find their player type. Describe a scenario
where you would expect you and your friend to play the game different-
ly. How are the game functions, features, and elements used differently
by your two styles?

2.	Identify and list each pair of values that is missing from the Cleanroom
combinatorial table in Table 10.12. Explain why they are not necessary
and why they might not even be desirable in this application.

3.	Is it possible to have the same exact test case appear more than once in a
Cleanroom test set? Explain.

4.	Create a set of tables with the inverted Casual profile usage probabilities
for each of the Halo Reach Advanced Settings parameters.

Game Testing.indb 252 03/09/16 3:58 PM

Cleanroom Testing • 253

5.	Generate six Cleanroom combinatorial tests from the inverted usage
tables you produced in Exercise 4. Use the same random number set
that was used to generate the combinatorial tests shown in Table 10.12.
Compare the new tests to the original ones.

6.	Modify the TFD from Figure 10.4 to incorporate the inverted usages in
Table 10.21. Round the usage values to the nearest whole percentage.
Make sure the total probabilities of the flows exiting each state add up to
100. If not, adjust your rounded values accordingly.

7.	Generate a path for the TFD you produced in Exercise 6. List the flows,
actions, and states along your path using the same format shown earlier
in this chapter. Compare the new path to the original one.

Game Testing.indb 253 03/09/16 3:58 PM

Game Testing.indb 254 03/09/16 3:58 PM

Test trees can be use for three different purposes in game testing:

1.	Test case trees document the hierarchical relationship between test
cases and game features, elements, and functions.

2.	Tree feature tests reflect the tree structures of features and functions
designed into the game.

3.	Test tree designs are used to develop tests that systematically cover spe-
cific game features, elements, or functions.

Test Case Trees

In this application of test trees, the tests have already been developed
and documented. The tree is used each time the game team sends a new
release to the testers. The test lead can determine which tests to execute
based on which defect fixes or new abilities were introduced in the release.
Such an organization could also reflect the way the game itself is structured.

In This Chapter

●● Test case trees
●● Tree feature tests
●● Test tree designs

Test Trees

11CHA P T ER

Game Testing.indb 255 03/09/16 3:58 PM

256 • Game Testing

Take, for example, a tree of tests for Warhammer 40,000: Dawn of War,
which is a real-time simulation (RTS) game for the PC. In this game, up to
eight players can compete against one another and/or computer AI oppo-
nents. Players control and develop their own race of warriors, each of which
has its own distinct military units, weapons, structures, and vehicles. Games
are won according to various victory conditions, such as taking control of
a location, defending a location for a given amount of time, or completely
eliminating enemy forces.

At a high level, the Dawn of War tests can be organized into Game
Options tests, User Interface tests, Game Mode tests, Race-specific tests,
and Chat capability tests. The Option tests can be grouped into Graph-
ics, Sound, or Controls options. The User Interface tests can be divided
between the Game Screen UI and the in-game Camera Movement. Addi-
tionally, there are three major Game Modes: Campaign, Skirmish, and
Multiplayer, and four Races that players can choose from: Chaos, Eldar,
Orks, and Space Marines. The Chat capability is available when connected

via LAN, Online, or Direct
Link. Figure 11.1 shows
these top two levels of orga-
nization arranged as a tree.

During game devel-
opment, each bug fix can
affect one or more areas of
the game. With the test case
tree, you can easily target
which tests to run by finding
them under the tree nodes
related to the parts of the
game affected by the new
code. Some fixes could have
to be re-checked at a high
level, such as a change in the
Chat editor font that applies
to all uses of chat. Other fixes
might be more specific, such
as a change in the way Chat
text is passed to the online
chat server.

Graphics

Sound

Controls

Game Screen
Camera Movement

Campaign
Skirmish
Multiplayer

Chaos

Eldar
Orks
Space Marines

LANChat

Races

OptionsDawn
of War

Online
Direct Link

Game
Modes

User
Interface

Figure 11.1  Dawn of War two-level test case tree.

Game Testing.indb 256 03/09/16 3:58 PM

Test Trees • 257

It is also possible to define the tree in finer detail in order to make a
more precise selection of tests. For example, the Skirmish Game Modes
tests could be further organized by which Map is used, how many Players
are active in the match, which Race is chosen by the player, what Game
Options are selected, and which Win Conditions are applied. Figure 11.2
shows the further breakdown of the Skirmish branch.

Graphics

Sound

Controls

Game Screen

Camera Movement

Campaign

Skirmish

Multiplayer

Chaos

Maps

of Players

Races

Game Options

Win ConditionsEldar

Orks

Space Marines

LANChat

Races

OptionsDawn
of War

Online

Direct Link

Game
Modes

User
Interface

Figure 11.2  Skirmish Game Mode test case sub-tree added.

Revealing the additional details of the Skirmish mode is important
because it exposes another set of tests that should be run if changes are
made to any game assets or functions that are specific to one or more of the
Races. Whether your tests are stored in a regular directory system, configu-
ration management repository, or test management tool, you can organize
them to match the tree hierarchy of the game’s functions. This is an effi-
cient way to find the tests you want to run once you map them to the code
changes in each release you test.

Game Testing.indb 257 03/09/16 3:58 PM

258 • Game Testing

Tree Feature Tests

A second application of test trees is used to reflect the actual tree struc-
ture of features implemented in the game. Dawn of War has such struc-
tures for the tech trees of each race. These trees define the dependency
rules for which units, vehicles, structures and abilities can be generated.
For example, before the Eldars can produce Howling Banshee units, they
must first construct an Aspect Portal and upgrade the structure with the
Howling Banshee Aspect Stone. Other units can be produced immediately,
such as the Rangers. These trees can be quite complex, with dependencies
between multiple structures, upgrades, and research items. Test these trees
by following the various paths to successfully construct each item. Also
check that attempted “shortcuts” will not produce the intended result, such
as trying to produce Warp Spider units without the Warp Spider Aspect
Stone. Be thorough and examine all the ways this might be attempted—
such as from a menu, command line, or by clicking an icon. Figure 11.3
shows the Aspect Portal tech tree for the Eldar race.

Rangers

Pr
od

uc
tio

n
R

es
ea

rc
h

Farseer

Howling Banshee
Aspect Stone

Howling Banshee

Warp Spider

Dark Reaper

Avatar of Khaine (Unique)

Warp Spider
Aspect Stone
Dark Reaper
Aspect Stone

Cameloline Cloaks

Call of War

Death Omen

Warp Spider Equipment

Aspect
Portal

Figure 11.3  Dawn of War technology tree for Eldar Aspect Portal.

Game Testing.indb 258 03/09/16 3:58 PM

Test Trees • 259

Another example of this type of tree is the job, or skill, tree typically
defined for RPG games, such as the Final Fantasy or Dragon Age series.
Characters might be required to develop skills up to a certain level before
new skills or abilities become available. In some cases, the skill and role
choices are dictated by the choice of character race, occupation, and/or
faction. Each successive choice will perhaps narrow the options available
for the remaining choices. For these kinds of trees, think of the string of
lights on a Christmas tree. If one light is faulty, the remaining connected
lights will also be off. In this case, some Classes or Backgrounds won’t be
available if the preconditions (required combinations of previous choices)
aren’t met. As a tester, you’ll want to test each possible result by leaving
out the necessary preconditions, one at a time; plus, you’ll test for the
case where all of the necessary conditions are met. See Figure 11.4 for an
example of how this is portrayed in the game screen for a Male Dwarf in
Dragon Age: Origins.

Selecting the “Male” gender reveals the Race choices that are available.
In this case, any of the three races—Human, Elf, or Dwarf—can be chosen.
Choosing the Dwarf race limits your choice of class to Warrior or Rogue.

Figure 11.4  Male Dwarf character generation in Dragon Age: Origins.

Game Testing.indb 259 03/09/16 3:58 PM

260 • Game Testing

Selecting the Rogue class for the Dwarf Male limits you to two of the six
Background possibilities available: Commoner or Noble.

When the character tree isn’t already drawn for you on the game screen,
go ahead and construct your own. As you progress through the tree, check
that the allowed roles and skills are available at the end of the tree, and also
check that choices that should be unavailable are blocked along the way.

Job trees are another construct built into many popular games. Take a
moment to look at Figure 11.5 which shows a tree diagram for the mage
jobs available to Hume characters in Final Fantasy Tactics A2: Grimoire of
the Rift (FFTA2).

HUME White Mage
1

4

4

2

1

Illusionist

Seer Blue Mage

Black Mage

Figure 11.5  Hume Mage job tree for FFTA2.

Before he can take on the role of an Illusionist, the player’s character
must master two White Mage abilities and four Black Mage abilities. The
diagram also shows that the character must master one White Mage ability
before he can even take on the role of Black Mage, in order to begin mas-
tering Black Mage abilities.

The entire job tree structure for FFTA2 can be seen at
http://finalfantasy.wikia.com [WIKIA10]. Complete access informa-
tion is provided in the references for Chapter 11, in Appendix F.

Define the tree feature tests for a particular job by providing the test
values for each of the nodes along the tree branches. You can keep the tests
to a minimum by checking only the “edges” of the values that determine
whether a skill, job, or ability is unlocked. For example, there are no tests
for White Mage mastery = 2 nor Black Mage mastery = 1 or 2. It’s sufficient
to know that the Illusionist job is still not unlocked when only 3 Black Mage
abilities are mastered in test case 2, and then establish that it’s properly
unlocked when Black Mage proficiency reaches 4. Table 11.1 shows the test
cases that should result for the tree in Figure 11.5.

NOTE

Game Testing.indb 260 03/09/16 3:58 PM

http://finalfantasy.wikia.com

Test Trees • 261

Test White Mage Black Mage Illusionist Enabled

1 1 4 No

2 2 3 No

3 2 4 YES

Table 11.1  Hume Mage Illusionist Job Tree Tests

Trees can also define and limit which areas or locations within a game
can be accessed by the player at any given time. Figure 11.6 shows the pro-
gression of battlegrounds that become available to players of the Battleheart
RPG for iOS devices. Check marks indicate locations conquered, skulls
represent unconquered locations that are available to the player, and pad-
locks indicate locations that are not accessible.

Figure 11.6  Battleheart battleground selection tree.

Yet another example is the Energy Path mission tree for the North Las
Vegas location in the Mafia Wars game on Facebook. Players must com-
plete the “Blackmail A Car Dealer” mission to access the “Steal A Truckload
Of Slots” on the left side branch and the “Secure Some Wheels” mission

Game Testing.indb 261 03/09/16 3:58 PM

262 • Game Testing

on the right. The tooltip for the “Steal A Truckload Of Slots” mission also
reveals that completing the mission gives the player access to purchase
the “Slots” property, accessed on the player’s “My Casino” screen. See
Figure 11.7 for the structure of this tree as shown in the game.

Figure 11.7  Mafia Wars Energy Path mission tree for the North Las Vegas territory.

Many other feature trees exist across a wide variety of games. Here’s a
list of some places you might find them:

■■ Technology trees

■■ Progressing through tournament brackets

■■ Game option menu structures

■■ Adding or upgrading spells, abilities or superpowers

■■ Increasing complexity and types of skills needed to craft or cook items

■■ Earning new ranks, titles, trophies, or medals

■■ Unlocking codes, upgrades, or power-ups

Game Testing.indb 262 03/09/16 3:58 PM

Test Trees • 263

■■ Unlocking new maps, battlegrounds, environments, or race courses

■■ Unlocking better cars, outfits, or opponents

One situation that’s especially interesting to test is when different menu
trees or tree paths can affect the same value, ability, or game element. Such
values should be set and checked by all the possible means (paths) provided
by the game. For example, the Dawn of War Game Options that are set
in Skirmish mode also become the values used in the Multiplayer, LAN,
Online, and Direct Host modes.

Test Tree Designs

Thus far, this chapter has dealt with intentionally organized paths and
patterns built into the game for progression, improvement, or advancement
of various aspects of video games. At the other end of the spectrum, some
features can seem incredibly chaotic. Take, for example, card battle games.
In these games, players take turns playing cards from a deck they have
assembled, which perhaps must also meet certain specifications imposed
by the game rules. Winning the card battle usually involves eliminating the
opponent, his creatures (army, players, etc.), or both. A card will perhaps
have a special behavior that is defined by the type of card and/or additional
instructions printed on the card. Some cards can affect other players or
cards. There are cards for offensive and defensive purposes. Hundreds of
different cards can potentially interact and affect each other in unexpected
or undesirable ways. More and more cards become available over time,
creating new and sometimes unexpected interactions. Remember Rule #1:
Don’t Panic! You can create a test tree design to define a set of tests for
special card capabilities.

Magic: The Gathering® is a popular CCG (Collectible Card Game)
which is available in video game form as downloadable content on the Xbox
and PS3. Magic: The Gathering, Duels of the Planeswalkers™ game includes
a “Challenge” mode in which the player has a single turn to defeat the
opponent who seems to have an insurmountable advantage. Only a specific
combination of cards, played in the correct order and put to proper use, will
result in victory.

In a Magic: The Gathering duel, cards are played that provide energy
(“mana”) of various types (red, blue, green, white, black, or colorless) which
are used to summon creatures or power spells and abilities. Assigning the

Game Testing.indb 263 03/09/16 3:58 PM

264 • Game Testing

right types of mana to each card played is key to enabling subsequent spells
or abilities to be played in the same turn.

Challenge 5 has you playing against Liliana with only 2 life points left to
your name. Somehow you have to figure out how to damage Liliana for 13
points or more in one turn if you are going to win. You have 6 cards in your
hand, plus five creatures in play, and six mana—3 green (G) and 3 black (B)—
on the table to power your cards. The cards and their costs are as follows:

Overrun – 2GGG

Elvish Champion – 1GG

Imperious Perfect – 2G

Elvish Warrior – GG

Elvish Eulogist – G

Eyeblight’s Ending – 2B

You can organize the possible sequences of played cards into a tree
structure, accounting for all of the choices remaining after each subsequent
play. This will reveal which sequences (paths) will lead to defeat and which
(at least one) should result in success. As an alternative to laying out trees in
a graphical format, you can use a spreadsheet to organize and visualize the
structure and relationships between game options, player choices, and the
results for each branch.

Start defining the paths, using the most expensive card to play. This
reduces the amount of mana left with which to play subsequent cards so it
should be one of the simpler branches in the tree/table. In this scenario, the
Overrun card has the highest cost of 2GGG, which means the player has to
pay 3 Green colored mana and 2 additional mana of any color (green included)
to play this spell. Once that has been played, only one black mana is left. This
is not enough to pay for any of the remaining cards. Attacking after playing this
card and applying any of the effects available to your other cards in play will
not result in a victory; so this is a losing path. See Table 11.2 for the representa-
tion of this branch of the test tree in a tabular (spreadsheet) format. Because
each path is a test case, they should be numbered for easy reference.

Test 1st Card Payment 2nd Card Payment Result

1 Overrun (2GGG) BGGG N/A N/A Lose

Table 11.2  Overrun Card Branch for the Liliana Challenge

Game Testing.indb 264 03/09/16 3:58 PM

Test Trees • 265

The next most restrictive card is Elvish Champion, which costs 1GG—
two green mana and one other mana of any color. Some rows for this branch
end with no 2nd card played, because a player could choose to complete their
turn even if they haven’t used up all of their available mana. Also, because
the “1” means any type of available mana could be paid, there needs to be a
separate sub-branch for when green mana is used for the “1” and another for
when black mana is used. These choices will provide different constraints on
which cards could possibly be played with the remaining mana available. A key
to creating a thorough table is to recognize that different action “payment”
combinations for each node in the tree must all be accounted for. Additional
sub-branches are necessary in order to represent the various options for play-
ing a second card. See Table 11.3 for the Elvish Champion branch of the test
tree. Take note that in the last branch of this table, you will still have two black
mana available after paying a total of BGGG, but no further move is possible
because there are no cards in your hand which can be played for that cost.

Test 1st Card Payment 2nd Card Payment Result

2 Elvish Champion
(1GG) GGG None N/A Lose

3 Eyeblight’s Ending
(1BB) BBB Lose

4 BGG None N/A Lose

5 Eyeblight’s Ending
(1BB) BBG Lose

6 Imperious Perfect (2G) BBG Lose

7 Elvish Eulogist (G) G Lose

Table 11.3  Elvish Champion Card Branch for the Liliana Challenge

Sometimes it’s a tip-off to the player that all of the resources pro-
vided, such as mana, must be used in order to solve a problem or
win a challenge. While this is not a bug per se, as a tester should
point this out when it’s to the detriment of the game, such as when
there’s only one way to spend the resources and, *surprise!* That’s
the winning move!

Next is the branch for playing the Imperious Perfect card first. This
card costs 2G to play—one green mana plus two more of any color. With

NOTE

Game Testing.indb 265 03/09/16 3:58 PM

266 • Game Testing

the mana available for the challenge, the possible costs for this card are
GGG, BGG, and BBG. Here you encounter a greater number of restric-
tions as certain colors of mana are used up, such as the inability to play the
Elvish Champion card (1GG) when paying BGG for the Imperious Perfect.
Table 11.4 maps out the card play sequences available when starting your
turn with the Imperious Perfect card.

Test 1st Card Payment 2nd Card Payment Result

8 Imperious
Perfect (2G) GGG None N/A Lose

9 Eyeblight’s Ending (2B) BBB Lose

10 BGG None N/A Lose

11 Eyeblight’s Ending (2B) BBG Lose

12 Elvish Eulogist (G) G Lose

13 BBG None N/A Lose

14 Eyeblight’s Ending (2B) BGG Lose

15 Elvish Champion (1GG) BGG Lose

16 Elvish Warrior (GG) GG Lose

17 Elvish Eulogist (G) G Lose

Table 11.4  Imperious Perfect Card Branch for the Liliana Challenge

Continue by building out the Elvish Warrior card branch. This card
costs only two mana (GG), so there might be opportunities for more than
two cards to be played, depending on how the mana is spent. Once the Elv-
ish Warrior card is followed by Elvish Eulogist, you choose not to play any
more cards, but are still capable of paying for Eyeblight’s Ending with the
three Black mana that remain. Additional columns need to be added to the
test tree table to accommodate the possible “3rd card nodes” of the test tree.
Figure 11.5 shows the table for the Elvish Warrior card, which provides not
just one, but TWO winning branches.

Game Testing.indb 266 03/09/16 3:58 PM

Test Trees • 267

Test 1st Card Payment 2nd Card Payment 3rd Card Payment Result

18
Elvish
Warrior
(GG)

GG None N/A N/A N/A Lose

19
Imperious
Perfect
(2G)

BBG N/A N/A Lose

20
Elvish
Eulogist
(G)

G None N/A Lose

21
Eyeblight’s
Ending
(2B)

BBB WIN

22
Eyeblight’s
Ending
(2B)

BBG N/A N/A Lose

23 BBB None N/A Lose

24
Elvish
Eulogist
(G)

G WIN

Table 11.5  Elvish Warrior Card Branch for the Liliana Challenge

Keep in mind that to win this challenge, you have to do more than just
put the proper cards into play. When Eyeblight’s Ending is played, you
need to target (destroy) the opponent’s Nightmare card, which is her only
creature with the Flying ability. After the Elvish Eulogist is played, you
need to “tap” the Immaculate Magistrate card—which was already in play
at the start of the challenge—to increase the amount of damage that will
be done by the Elven Riders card. With the Nightmare out of the way, your
Elven Riders cannot be blocked, so when you attack, you deliver 13 points
of unblocked damage to defeat Liliana.

At this point, two more main branches remain to be explored. The
Elvish Eulogist card is the last one that requires a Green mana cost, as
shown in Table 11.6. Two more winning sequences are revealed.

Game Testing.indb 267 03/09/16 3:58 PM

268 • Game Testing

Test 1stCard Payment 2nd Card Payment 3rd Card Payment Result

25
Elvish
Eulogist
(G)

G None N/A N/A N/A Lose

26
Elvish
Warrior
(GG)

GG N/A N/A Lose

27
Eyeblight’s
Ending
(2B)

BBB WIN

28
Imperious
Perfect
(2G)

BGG N/A N/A Lose

29 BBG N/A N/A Lose

30
Eyeblight’s
Ending
(2B)

BGG N/A N/A Lose

31 BBG N/A N/A Lose

32 BBB N/A N/A Lose

33
Elvish
Warrior
(GG)

GG WIN

Table 11.6  Elvish Eulogist Card Branch for the Liliana Challenge

The last tree to construct starts when Eyeblight’s Ending is played first.
This opening move produces the largest table for this challenge. This time
the player is prevented from accessing the two winning branches in this
portion of the tree because the game will not let you pay three black mana
(BBB) for the Eyeblight’s Ending card. Instead, it automatically pays two
black mana and one green mana (BBG).

As you play through the card sequences in this final portion of the tree,
you should notice that when you play the Eyeblight’s Ending card as your first
card, the game automatically chooses to pay with BBG. At the time this book
is being written, there is no mechanism in the game for the player to explicitly
choose which lands (mana) are used to pay for each card as it’s played, so the
nodes on the test branch that require the player to pay BGG or BBG cannot be
executed, preventing access to two winning branches in tests 44 and 46. Woe
to the player who opens with Eyeblight’s Ending, for he shall be thwarted!

Game Testing.indb 268 03/09/16 3:58 PM

Test Trees • 269

Test 1st Card Payment 2nd Card Payment 3rd Card Payment Result

34
Eyeblight’s
Ending
(2B)

BGG None N/A N/A N/A Lose

35
Elvish
Eulogist
(G)

G N/A N/A Lose

36 BBG None N/A N/A N/A Lose

37
Elvish
Champi-
on (1GG)

BGG N/A N/A Lose

38
Imperious
Perfect
(2G)

BGG N/A N/A Lose

39
Elvish
Eulogist
(G)

G N/A N/A Lose

40 BBB None N/A N/A N/A Lose

41
Elvish
Champi-
on (1GG)

GGG N/A N/A Lose

42
Imperious
Perfect
(2G)

GGG N/A N/A Lose

43
Elvish
Warrior
(GG)

GG N/A N/A Lose

44
Elvish
Eulogist
(G)

G WIN*

45
Elvish
Eulogist
(G)

G N/A N/A Lose

46
Elvish
Warrior
(GG)

GG WIN*

Table 11.7  Eyeblight’s Ending Branch for the Liliana Challenge

Game Testing.indb 269 03/09/16 3:58 PM

270 • Game Testing

There are also a number of losing plays which are blocked for the
same reason, denying players the opportunity to explore those possibili-
ties. For example, when playing Eyeblight’s Ending after the Elvish Eulo-
gist in tests 32 and 33, the game uses BBB and does not give the option to
pay GBB as an alternative. This blocks tests 30 and 31. Looking back over
the entire test tree, a total of 21 branches—nearly half of the tree—cannot
be played:

■■ 2, 3 – cannot pay GGG for Elvish Champion

■■ 8, 9 – cannot pay GGG for Imperious Perfect

■■ 13, 14, 15, 16, 17 – cannot pay BBG for Imperious Perfect

■■ 28 – cannot pay BGG for Imperious Perfect

■■ 30 – cannot pay BGG for Eyeblight’s Ending

■■ 31 – cannot pay BBG for Eyeblight’s Ending

■■ 34, 35 – cannot pay BGG for Eyeblight’s Ending

■■ 40 through 46 – cannot play BBB for Eyeblight’s Ending

These tests should still remain in your test design, but they could be
grayed out and/or designated as “blocked” until the AI is updated to either
utilize the mana differently or provide a way for players to explicitly deter-
mine how mana is spent for each card.

The mana AI issue was a hot topic on discussion boards but it
has since been updated and fixed. See the solution on YouTube at
www.youtube.com/watch?v=ohljUh2UK3w&hl=en-GB&gl=NG

Well, that was a good mental workout! Tree structures are useful for
organizing test cases so that the proper set of tests can easily be selected
for a given set of changes to the game. Each downstream node represents
a set of tests with a more specific purpose and scope than the nodes above
it. Additionally, tests can reflect tree-like relationships that exist between
game functions and elements. The behavior of these structures is tested
by exercising the values along the various possible paths from the start of
the tree, through each branch, and ending when there are no more moves,
decisions, or choices to make.

NOTE

Game Testing.indb 270 03/09/16 3:58 PM

http://www.youtube.com/watch?v=ohljUh2UK3w&hl=en-GB&gl=NG

Test Trees • 271

Finally, test trees can be designed to improve understanding of a com-
plex game feature or problem to be solved, and to bring order to a seem-
ingly chaotic or complex function. This is especially relevant when you
need to explore the interaction of game rules, options, elements, and func-
tions. A well-formed tree progressively decomposes the feature until the
end nodes are reached, defining the specific actions to perform during
testing. Don’t forget to “prune” any branches that are not possible due to
game limitations.

Exercises

1.	From the test case tree in Figure 11.2, which test branch(es) should
you re-run for a new release of the game that fixes a bug with the sound
effect for the Orks “Big Shoota” weapon?

2.	There are actually four Multiplayer game modes in Dawn of War: LAN,
Online, Direct Host, and Direct Join. Furthermore, the same choices
available in Skirmish mode—Maps, # of Players, Race, Game Options,
and Win Conditions—apply to the LAN and Direct Host multiplayer
modes. Describe how you would update the test case tree in Figure 11.2
to include these additional choices.

3.	Draw a test tree representing the following relationships between les-
sons and items in The School of Wizardry game for Facebook:

a.	You can find a Disarming Spell by doing the “Discover that you pos-
sess wizard powers as well” lesson.

b.	The “Get a wand of your own” lesson requires the Disarming Spell
and can also give you the Flashlight Charm.

c.	The “Go to your first day of nonwizard school” lesson requires one
Flashlight Charm and can provide an Impeding Charm.

d.	 “Your first magic lesson with Uncle Mortimer—levitate an object”
lessonrequires one Impeding Charm and can give you a Confusion
Spell.

e.	The “Study the History of Magic” lesson requires two Confusion
Spells and can provide a Cast Flame Charm.

Game Testing.indb 271 03/09/16 3:58 PM

272 • Game Testing

f.	 The “Study potions with your uncle” lesson requires two Disarming
Spells.

g.	The “Escape the neverending path in the Mystical Forest” lesson
requires three Cast Flame Charms.

h.	The “Make it back home safely…” lesson requires five Cast Flame
Charms.

4.	Copy and edit the spreadsheet included in the Chapter 11 folder of the
DVD provided with this book to update the “Liliana Challenge” tree
table in order to show how it should look if the Imperious Perfect card
were to cost 1GG to play instead of 2G.

ON DVD

Game Testing.indb 272 03/09/16 3:58 PM

Although most of this book is designed to help you take a methodi-
cal, structured approach to testing a game, this chapter focuses on
more chaotic, unstructured—yet no less crucial—approaches to

game testing.

Ad hoc testing, sometimes referred to as “general” testing, describes
searching for defects in a less structured, more intuitive manner. Gameplay
testing describes playing the game to test for such subjective qualities as
balance, difficulty, and “fun factor.”

Ad Hoc Testing

Ad hoc is a Latin phrase that can be translated as “to this particular
purpose.” Ad hoc testing is, in its purest form, a single test improvised to
answer a specific question.

In This Chapter

●● Free testing
●● Directed testing
●● Gameplay testing
●● External testing

Ad Hoc Testing and
Gameplay Testing

12 CHA P T ER

Game Testing.indb 273 03/09/16 3:58 PM

274 • Game Testing

Despite the most thorough and careful test planning and test design,
or the most complex test suite you might have developed, even after being
reviewed carefully by other test leads or the project manager, there is always
something you (and they) might have missed.

Ad hoc testing allows you, as an individual tester, to explore investigative
paths that perhaps occurred to you, even subconsciously or unconsciously,
in the course of performing structured test suites on the game. During the
course of testing a game you will, almost daily, have thoughts along the lines
of “I wonder what happens if I do…?”

Ad hoc testing gives you the opportunity to answer those questions. It
is the mode of testing that best enables you to explore the game, wandering
through it as you would a maze.

There are two main types of ad hoc testing. The first is free testing,
which allows the professional game tester to “depart from the script” and to
improvise tests on the fly. The second is directed testing, which is intended
to solve a specific problem or to find a specific solution.

Free Testing Comes From the Right Side of Your Brain
Because it is a more intuitive and less structured form of testing, free

testing is sometimes called “right-brain testing.” Nobel Prize-winning psy-
chobiologist Roger W. Sperry asserted that the two halves of the human
brain tend to process information in very different ways. The left half of the
brain is much more logical, mathematical, and structured. The right half is
more intuitive, creative, and attuned to emotions and feelings. It is also the
side that deals best with complexity and chaos.

For a good summary of Sperry’s ideas on this topic, especially as it
applies to creative thinking, see Chapter 3 of Drawing on the Right
Side of the Brain, by Betty Edwards [Edwards 89].

As the video game industry continues to grow, there is contin-
ued pressure for “bigger, better, and more” in every aspect of a game’s
design—more features, more user customization, more content, more
genre-blending, and more complexity. At its best, ad hoc testing allows
you as a tester to explore what, at times, can appear to be an overwhelm-
ingly complex game design.

!
TIP

Game Testing.indb 274 03/09/16 3:58 PM

Ad Hoc Testing and Gameplay Testing • 275

Ad hoc testing also presents you with an opportunity to test the game
as you would play it. What type of game player are you? Do you like to
complete every challenge in every level and unlock every unlockable? Do
you like to rush or build up? Do you favor a running game or a passing
game? Do you rabbit through levels or explore them leisurely? Ad hoc test-
ing allows you to approach the game as a whole and to test it according to
whatever style of play you prefer. (For an expanded discussion of player
types, see Chapter 10, “Cleanroom Testing.”)

“Fresh Eyes”
Fatigue, carelessness and apathy are all enemies of good game testing.

Those testers who must exercise the same part of a game repeatedly are
most at risk, but over the course of a long project, sooner or later each team
member is likely to suffer from one condition or another. It’s very easy for
testers to become “snow blind,” a condition in which you’ve been looking
at the same assets for so long that you can no longer recognize anomalies as
they appear. You need a break.

Ad hoc testing can allow you to explore modes and features of the game
that are beyond your primary area of responsibility. Depending on the
manner in which your project is managed, you as a tester will perhaps
be assigned to one specific area, mode, feature, or section of the game.
All the test suites you perform on each build might focus on that specific
area. Ad hoc testing allows you to move beyond to other areas, and allows
other testers to explore your area, without a test suite to guide them.

This method can include the following:

■■ Assigning members of the multiplayer team to play through the single-
player campaign

■■ Assigning campaign testers to skirmish or multiplayer mode

■■ Assigning the config/compatibility/install tester to the multiplayer
team

■■ Assigning testers from another project entirely to spend a day (or part of
a day) on your game

■■ Asking non-testers from other parts of the company to play the game
(see the section “Gameplay Testing” later in this chapter)

The sidebar “Who Turned the Lights On?” tells about a case in point.

Game Testing.indb 275 03/09/16 3:58 PM

276 • Game Testing

Who Turned the Lights On?

A venerable PC games publisher operated a handful of test labs in its various
studios around the country, and the local test managers often would send builds
of their current projects to each other for ad hoc testing and “idiot checking.”

When one test manager handed the latest build of another studio’s Formula One-
type racing game to two of his testers, he was surprised to see them back in his
office minutes later. “Crashed it already!” they proudly reported.

“How?” the manager cried. “You’ve barely had time to get past the main menu!”

“We turned the headlights on!”

As you might expect, the default time in the default track in the default mode was
“day.” When the two testers started their race in this mode, they turned their car’s
headlights on “just to see what happens.” The game crashed instantly.

Needless to say, this counterintuitive pair of settings (time = day and headlights = on)
was added to the combinatorial tables by the chastened, but wiser, test lead.

By performing ad hoc testing, you can put fresh eyes on various parts
of the game to find previously overlooked issues; and using ad hoc testing
early will quickly help to reveal any lingering deficiencies in your test plans,
combinatorial tables, and test flow diagrams.

The “fresh eyes” concept is applicable to structured testing as well.
It’s wise to have testers rotate the specific suites they’re responsible
for periodically—even every build.

Directed Testing Makes Order Out of Chaos
Ad hoc testing is a natural complement to structured testing, but it is by

no means a substitute for it. Whether you have been given a specific assign-
ment by your test lead or you’re playing through the single-player campaign
“just to see what happens,” your testing should be documented, verifiable,
and worthwhile.

Set Goals and Stick to Them

Before you begin, you should have a goal. It need not (and should
not) be as complex or as well thought out as the test cases and test suites

!
TIP

Game Testing.indb 276 03/09/16 3:58 PM

Ad Hoc Testing and Gameplay Testing • 277

discussed earlier. You need to know where you’re going so you don’t waste
your (and the project’s) time, however. Briefly write out your test goal
before you launch the game.

Whether you actually achieve the goal of your free testing is less
important. If, in the course of trying to reach your goal, you
stumble upon a defect you hadn’t intended to find, that’s great.
That is what free testing is all about.

This goal can be very simple, but it must be explicit. Here are some
examples:

■■ Can I play a full game by making only three-point shots?

■■ Is there a limit to the number of turrets I can build in my base?

■■ Can I deviate from the strategy suggested in the mission briefing and
still win the battle?

■■ Is there anywhere in the level I can get my character stuck?

■■ Can I buy a unique item more than once?

If you’re leading a multiplayer test, let all the other testers know
the purpose of the game session before it starts. Successful multi-
player testing requires communication, coordination, and cooperation,
even if it seems that the testers are merely running around the level try-
ing to shoot each other. In most circumstances, one tester should direct
all of the other players in order to reach an outcome successfully, which
can often be “as difficult as herding kittens.” If one tester in a multiplayer
test loses sight of the aim of the test, the amount of time wasted is multi-
plied by the number of testers in the game. Don’t let your team fall into
this trap.

In your testing career, avoid the use of the verb “to play” when you
refer to game testing. This will help to counter the widely held no
tion that your department “just plays games for a living.” It will also
help to reinforce to your test team that your work is just that, work.
Remember: the first time you play through a game, you’re playing.
The fortieth time, you’re working.

NOTE

!
TIP

Game Testing.indb 277 03/09/16 3:58 PM

278 • Game Testing

If You’re Not Recording, You’re Not Testing

You should continually take notes as you’re testing through the game.
Game designer Sid Meier (Civilization) has said that good games are made
up of “interesting choices.” It is imperative that you keep track of these
choices—writing down which options you choose, paths you take, weapons
you equip, plays you call, and so on—in a very meticulous and diligent man-
ner. In so doing, when you encounter a defect, you will be better able to
come up with a reproducible path. For an instance of this, see the sidebar,
“How to be a Repro Man (or Woman).”

Documentation could be difficult when you’re in the middle of a 12-trick
chain in a Tony Hawk-style stunt game. That’s where video capture becomes
an almost indispensable test tool. In designing your test configuration, allow
for some “minimally invasive” video recording solution that won’t affect the
performance of the game on the target hardware. Although the Xbox One
and PlayStation 4 have built-in video and screenshot capture tools, they have
limitations that make them less than optimal for professional testing. Game
testers often need a visual record of every move they make in the game.
Depending upon the particular platform, you may need to add a video cap-
ture device between your game console and your screen. If you’re testing on
a hand-held console, tablet or smartphone, it may be necessary to rig a video
camera on a tripod in order to record gameplay on the target device.

PC games can be captured with such third-party software tools as Ban-
dicam (www.bandicam.com), Fraps (www.fraps.com) or Camtasia Studio
(www.techsmith.com/camtasia/). The drawback to using video capture
software, however, is that you run the risk of tasking system resources dur-
ing the game’s runtime, thereby possibly creating defects or lowering per-
formance benchmarks than you would normally experience without the
video capture software running simultaneously on the system. As part of
the test planning phase, lead testers should work with both hardware and
software engineers to arrive at a “code friendly” solution that all parties are
confident will not introduce false defects.

Testing video should not become a crutch, or an excuse for less-than-
diligent work on the part of the tester. It should serve as a research tool and
a last-resort means of reporting a defect. Use the following steps as a guide:

1.	Start the DVR (or capture software) and press the record button before
you start the game. (It’s too easy to forget, otherwise.)

2.	When you come to a defect you can’t reproduce, rewind the recording,
study it, and then show it to your test lead and colleagues to discuss what

Game Testing.indb 278 03/09/16 3:58 PM

http://www.bandicam.com
http://www.fraps.com
http://www.techsmith.com/camtasia

Ad Hoc Testing and Gameplay Testing • 279

could have caused the bug and whether anyone else has seen the same
behavior in similar circumstances.

3.	If you absolutely, positively, cannot reproduce the defect, copy a clip of
the video and attach it to the bug report, email it to the developer, or
copy it to a project folder for future reference.

4.	Once you’ve filled up the DVR, archive the captured video. Video files
tend to be very large, so you should establish some network backup
protocol to prevent your local hard drive from filling up with gameplay
captures.

Free testing should have clear goals. The work done should be docu-
mented (via video) and documentable (through clear, concise, reproducible
bug reports). It should also be worthwhile. The following are but a few of
the common pitfalls you should avoid when free testing:

■■ Competing with other testers in multiplayer games. It’s not about your
individual score or win/loss record, it’s about delivering a good product.

■■ Competing against the AI (or yourself) in single-player games.

■■ Spending a great deal of time testing features that could be cut. You
might be made aware that a certain mode or feature is “on the bubble,”
that is, in danger of being eliminated from the game. Adjust your free
testing focus accordingly.

■■ Testing the most popular features of the game. Communicate frequently
with your test lead and colleagues so you can stay current with what
areas, features, and modes have been covered (and re-covered) already.
Focus your time on the “unexplored territory” of the game.

■■ Spending a disproportionate amount of time testing features that are in-
frequently used. You could be wasting time spending day after day explor-
ing every nook and cranny of the map editor in your RTS, for example.
Only about 15% of all users typically ever enter a map editor, and fewer
than 5% actually use it to create maps. You want those players to have a
good experience, but not if it places the other 85% of your players at risk.

Avoid Groupthink

Because ad hoc testing depends on the instincts, tastes, and prejudices
of the individual tester, it’s important as a test manager to create an environ-
ment in which testers feel free to think differently from one another. Game
players are not a uniform, homogenous group; your test lab shouldn’t be,

Game Testing.indb 279 03/09/16 3:58 PM

280 • Game Testing

either. If you’ve staffed your lab with nothing but self-identified “hardcore”
players, you won’t find all the bugs, nor will you ship the best product.

Groupthink is a term coined by social psychologist Irving Janis to
describe a situation in which flawed decisions or actions are taken because
a group under pressure often sees decay in its “mental efficiency, reality
testing, and moral judgment” [Janis 82]. One common aspect of groupthink
is a tendency toward self-censorship—where individuals within a group
fail to voice doubts or dissent out of a fear of being criticized, ostracized,
or worse. This is a danger in game testing because the majority of people
who aggressively seek game tester jobs are men in their early 20s—young
enough that pressure to conform to the peer group is still very strong. (For
more information on groupthink, see Groupthink: Psychological Studies of
Policy Decisions and Fiascoes (Second Edition), by Irving Janis [Janis 82].)

Turn your hardcore players into hardcore testers. Hardcore gaming
is not the same as hardcore testing. So-called “hardcore” gamers are
generally a masochistic lot—they willingly pay for games weeks and
months before they’re even released; they gladly suffer through launch
week server overload problems; they love to download patches. Use
the methods described in this book to get them to understand that
bug-fixing patches can be the exception, rather than the rule. All it
takes is careful test planning, design, and execution.

You perhaps will encounter attitudes in your test lab such as:

■■ “Everybody has broadband, so we don’t need to test modem play.”

■■ “Nobody likes the L.A. Clippers, so I won’t test using them as my team.”

■■ “Everybody played StarCraft, so we don’t need to test the tutorial in our
own RTS.”

■■ “Nobody likes CTF (capture the flag) mode, so we don’t need to spend
much time on it.”

■■ “Nobody uses melee weapons, so I’ll just use guns.”

Your job as a tester, and as a test manager, is to be aware of your and
your team’s pets and pet peeves, and to create an atmosphere in which a
variety of approaches are discussed and respected freely and frequently.
Cultivate and encourage different types of play styles. Recruit sports
gamers. Recruit casual and non-gamers. Foster diversity.

!
TIP

!
TIP

Game Testing.indb 280 03/09/16 3:58 PM

Ad Hoc Testing and Gameplay Testing • 281

Testing as Detective Work
The second broad category of ad hoc testing is directed testing. You

could best describe this method as “detective testing,” because of its spe-
cific, investigative nature. The simplest form of directed testing answers
very specific questions, such as:

■■ Does the new compile work?

■■ Can you access all the characters?

■■ Are the cut scenes interruptible?

■■ Is saving still broken?

The more complex type of directed testing becomes necessary when
testers find a major defect that is difficult to seemingly impossible to repro-
duce. The tester has “broken the game,” but can’t figure out how she or he
did it. As with a good homicide case, the tester finds himself with a body
(the bug) and an eyewitness (himself or other testers). Unlike a homicide
case, the focus is not on “whodunit.” The perpetrator is a defect in the code.
The focus is on “howdithappen?”

Directed testing commonly begins when one or more testers report a
“random” crash in the game. This can be very frustrating, because it often
delays running complete test suites and a significant amount of time could
be spent restarting the application and re-running tests. Unstable code,
especially in the later phases of the project, can be very stressful. Again,
remember Rule #1: Don’t Panic. You’ll need your wits about you so that
you can do your best detective work. Is your “random” crash a lone crime of
passion, or have you found the work of a “serial killer”?

“Random” crashes are seldom truly random. Use directed testing
and the scientific method in order to eliminate uncertainty along
your path to being able to reproduce the bug often enough so that
you can get the development team to find and fix it.

How to Be a Repro Man (or Woman)

One of the most critical bits of information in any bug report is the rate
of reproduction. In a defect tracking database, this field might be called
(among other things) frequency, occurrence rate, “happens,” or “repro”
rate. All these various terms are used to describe the same thing.

!
TIP

Game Testing.indb 281 03/09/16 3:58 PM

282 • Game Testing

Reproduction rate can be defined as the rate at which, following
the steps described in its bug report, anyone will be able to repro-
duce a defect.

This information is generally expressed as a percentage ranging from
100% to “once,” but this can be misleading. Assume, for example, that you
find a defect during the course of your free testing. After a little research,
you narrow down the steps to a reproducible path. You follow those steps
and get the bug to happen again. You could, reasonably, report the defect
as occurring 100% of the time—you tried the steps twice and it happened
both times. It could be just as likely that the bug is only reproducible 50%
of the time or less, however, and you just got lucky, as though you had
flipped a penny and got it to land heads-up twice in a row.

For this reason, many QA labs report the repro rate as the number of
observed occurrences over the number of attempts (for example, “8 out of
10?). This information is far more useful and accurate, because it allows
your test lead, the project manager, and anyone else on the team to evaluate
how thoroughly the bug has been tested. It also helps to keep you honest
about the amount of testing you’ve given the defect before you write your
report. How fair is it for you report that a crash bug happens “once” if you
tried to reproduce it only once? If you want to maintain your credibility as
a member of the test team, you won’t make a habit of this.

On the other hand, with certain defects, even a relatively novice tester
can be certain that a bug occurs 100% of the time without iterative testing.
Bugs relating to fixed assets, such as a typo in in-game text, can safely be
assumed to occur 100% of the time.

The word “anyone” is critical to the above definition of reproduction
rate. A defect report is not very helpful if the tester who found the bug is
the only one able to re-create it. Because videogame testing is often skill-
based, it is not uncommon to encounter a defect in a game (especially a
sports, fighting, platforming or stunt game) that can only be reproduced
by one tester, but that tester can reproduce the bug 100% of the time. In
an ideal situation, that tester will collaborate closely with other members
of the team so that they can zero in on a path that will allow the others to
recreate the bug.

If this is not possible due to time or other resource constraints, be pre-
pared to send a video clip of the defect to the development team or, in worst

NOTE

Game Testing.indb 282 03/09/16 3:58 PM

Ad Hoc Testing and Gameplay Testing • 283

cases, send the tester to the developer to do a live demonstration of the bug.
This is very costly and time consuming because, in addition to any travel
expenses, the project is also paying for the cost of having the tester away
from the lab (and not testing) for a period of time.

In summary, the more reproducible a bug is, the more likely it is that it
will be fixed. So always strive to be a “repro man.”

The Scientific Method

It’s no coincidence that the room where game testers work is often
called a lab. Like most laboratories, it’s a place where the scientific method
is used both to investigate and to explore. The scientific method consists of
the following steps:

1.	Observe some phenomenon.

2.	Develop a theory—a hypothesis—as to what caused the phenomenon.

3.	Use the hypothesis to make a prediction; for example, if I do this, it will
happen again.

4.	Test that prediction by retracing the steps in your hypothesis.

5.	Repeat steps 3 and 4 until you are reasonably certain your hypothesis is
true.

These steps provide the structure for any investigative directed test-
ing. Assume you’ve encountered a quirky defect in a PC game that seems
very hard to reproduce. Perhaps a condition that breaks a script, gets your
character stuck in the geometry of the level, causes the audio to drop out
suddenly, or a complete crash to your PC’s desktop. Here’s what you do:

First, review your notes. Quickly jot down any information about what
you were doing when the defect occurred, while it’s still fresh in your mind.
Review the video. Determine as best you can the very last thing you were
doing in the game before it crashed.

Second, process all this information and make your best educated guess
as to what specific combination and order of inputs could have caused the
crash. Before you can retrace your steps, you have to determine what they
were. Write down the input path you think most likely caused the crash.

Third, read over the steps in your path until you are satisfied with
them. You guess that if you repeat them, the defect will occur again.

Game Testing.indb 283 03/09/16 3:58 PM

284 • Game Testing

Fourth, reboot your computer, restart the game, and retrace your steps.
Did you get the crash to occur again? If you did, great! Now.

Fifth, Write it up. If you didn’t recreate the bug, change one (and only
one) step in your path. Try the path again, and so on, until you successfully
re-create the defect.

Unfortunately, games can be so complex that this process can take a
very long time if you don’t get help. Don’t hesitate to discuss the problem
with your test lead or fellow testers. The more information you can share,
the more brainstorming you can do, the more “suspects” you can eliminate,
and the sooner you’ll nail the bug.

Gameplay Testing

Gameplay testing (or “play testing”) is entirely different from the types
of testing discussed so far in this book. The previous chapters have con-
cerned themselves with the primary question of game testing: Does the
game work? Play testing concerns itself with a different but arguably more
important question: Does the game work well?

The difference between these two questions is obvious. The word
“well” implies a substantial amount in a mere four letters. The answer to
the first question is binary; the answer is either yes or no. The answer to the
second question is far from binary because of its subjective nature. It can
lead to many other questions:

Is the game too easy?

Is the game too hard?

Is the game easy to learn?

Are the controls intuitive?

Is the interface clear and easy to navigate?

And the most important question of all:

Is the game fun?

Unlike the other types of testing covered thus far, gameplay testing con-
cerns itself with matters of judgment, not fact. As such, it is some of the
most difficult testing you can do.

Game Testing.indb 284 03/09/16 3:58 PM

Ad Hoc Testing and Gameplay Testing • 285

A Balancing Act
Balance is one of the most elusive concepts in game design, yet it is also

one of the most important. Balance refers to the game achieving a point of
equilibrium between various—usually conflicting—goals:

■■ Challenging, but not frustrating

■■ Easy to get into, but deep enough to compel you to stay

■■ Simple to learn, but not simplified

■■ Complex, but not baffling

■■ Long, but not too long

Balance can also refer to a state of rough equality between different
competing units in a game:

■■ Melee fighters vs. ranged fighters

■■ Rogues vs. warlocks

■■ Sniper rifles vs. rocket launchers

■■ The Covenant vs. Humanity

■■ Ken vs. Ryu

■■ Plants vs. Zombies

The test team might be asked by the development team or project man-
ager for balance testing at any point in the project life cycle.

 It is often prudent to suggest delaying any serious consideration of
balance until at least Alpha, because it is hard to form useful opin-
ions about a game if key systems are still being implemented.

Once the game is ready for gameplay testing, it is important for
test feedback to be presented in as specific, organized, and detailed
a manner as any other defect report. Some project managers will per-
haps ask you to report such balance issues as bugs in the bug database;
others will perhaps ask the test lead to keep gameplay and balance feed-
back separate from defects. In either case, express your gameplay obser-
vations so that they are presented as based in fact, and hence, sound
authoritative.

!
TIP

Game Testing.indb 285 03/09/16 3:58 PM

286 • Game Testing

Let’s examine some feedback collected from testers during bal-
ance testing on Battles Realms, a PC real-time strategy game (RTS)
developed by Liquid Entertainment. It became clear very early in the
course of play testing that the Lotus Warlock unit was overpowered. One
tester wrote:

Lotus Warlocks do too much damage and need to be nerfed.

If you’ve spent any time on Internet message boards, comments like
this should look very familiar. The tester is not specific. How much damage
is too much? Relative to what? If nerfed means “made less powerful,” how
much less? 50%? 50 points? The development team is not very likely to
take this comment seriously, thinking it’s an impulsive, emotional reaction.
(It so happens that it was. The tester had just been on the receiving end of
a warlock rush.)

Lotus Warlocks should have a five-second cooldown added to
their attack.

This tester is overly specific. He has identified a problem (overpow-
ered warlocks) and gone too far by appointing himself game designer
and declaring that the solution is a five-second cooldown (that is, a
delay of five seconds between the end of a unit’s attack and the beginning
of its next attack). This comment presumes three things: that the warlocks
are indeed overpowered, that the designers agree that the best solution is
to implement a cooldown, and that the code has been written (or can be
written) to support a cooldown between attacks. The development team is
likely to bristle at this presumption (even if it is a viable solution).

Lotus Warlocks are more powerful than the other three races’
highest-level unit. Their attack does approximately 10% more
damage than the Dragon Samurai, Serpent Ronin, and Wolf clan
Werewolf. They get three attacks in the same time it takes
the other clans’ heavy units to do two attacks. Players who
choose to play as the Lotus Clan win 75% of their games,
frustrating the non-Lotus players.

This comment is specific and fact-based. It gives the producers and
designers enough information to start thinking about rebalancing the units.
It does not, however, suggest how the problem should be solved.

Game Testing.indb 286 03/09/16 3:58 PM

Ad Hoc Testing and Gameplay Testing • 287

Interview

Determining what emotions a player is feeling during a game is a very important
part of play testing, says Karen McMullan, who worked as a content designer on
some of Ensemble Studio’s biggest games (among them Age of Mythology, Age of
Empires III, and Halo Wars).

“The most useful thing for me as a designer is for you to tell me what you’re
feeling. What you’re thinking about. What decisions you made, and why.”
Ms. McMullan suggests expressing gameplay feedback by “leading with a feeling
and following it up with a reason. ‘I was frustrated because my spearmen lost to
chariots. Infantry are supposed to beat cavalry, right?’ for instance.” (Permission
Karen McMullan)

“It’s Just a Suggestion”
Play testing occurs constantly during defect testing. Because testers

are not robots, they will always be forming opinions and making judg-
ments, however unconscious, about the game they are testing. Occa-
sionally, a tester will feel inspired to suggest a design change. In some
labs, these are called “suggestion bugs,” and are frequently ignored.
Because bugs stress out programmers, artists, and project managers,
they rarely appreciate the bug list being cluttered up with suggestion
bugs or “severity S” defects.

A far more successful method of making your voice heard as a tester, if
you’re convinced you’ve got a valuable (and reasonable) idea for a design
change, is the following:

1.	Ask yourself whether this is a worthwhile change. “Zorro’s hat should be
blue,” is not a worthwhile change.

2.	Express your idea in the positive. “The pointer color is bad,” is a far less
helpful comment than, “Making the pointer green would make it easier
to see.”

3.	Sleep on it. It might not seem like such a good idea in the morning.

4.	Discuss it with your fellow testers. If they think it’s a good idea, then
discuss it with your test lead.

Game Testing.indb 287 03/09/16 3:58 PM

288 • Game Testing

5.	Ask your test lead to discuss it with the project manager or lead
designer.

6.	If your test lead convinces the development team that your idea has
merit, at that point you might be asked to enter the suggestion into the
defect database as a bug so that it can be tracked like any other change.
Only do this if you are asked to do so.

Testers often have their suggested design tweaks incorporated into
games by using this process—discussing the idea, getting the team to buy
in, and communicating it to the developers outside of the bug database.

Making a Game Easy Is Hard Work
One element of game balance that becomes the most difficult to pin

down late in the development cycle is, ironically, difficulty. Games take
months and years to develop. By the time a game enters full-bore testing,
the game testers will likely have completed the game more often than even
the most ardent fan. The design and development team might have been
playing the game for more than a year. Over the course of game develop-
ment, the following take place:

■■ Skills improve with practice. If you couldn’t grind a rail for more than
10 feet when you got the first test build of an action sports game, you
can now grind for hours and pull off 20-trick combos without breaking
a sweat.

■■ AI patterns, routes, and strategies are memorized. The behaviors of
even the most sophisticated AI opponents become predictable as you
spend weeks playing against them.

■■ Puzzles stop being puzzling. In adventure games or other types
of games with hide-and-seek puzzle elements, once you learn how
to solve a puzzle or where an item is hidden, it’s impossible to
unlearn it.

■■ Tutorials stop tutoring. It’s very difficult to continue to evaluate how ef-
fective a lesson is if you’ve already learned the lesson.

■■ Jokes become stale.

■■ What was once novel becomes very familiar—almost boring. (See the
discussion of “Fresh Eyes,” earlier in this chapter.)

Game Testing.indb 288 03/09/16 3:58 PM

Ad Hoc Testing and Gameplay Testing • 289

The upside of all this is that, on release day, the development and test
teams are the best players of their own game on the planet. This won’t last
long, though, so you should enjoy “schooling” new players online while
you can.

The downside is that you (and the rest of the project team) lose your
ability to objectively evaluate difficulty as the game approaches release.
Nothing of what is supposed to be fresh and new to a player seems fresh
and new to you. That is why you need another set of fresh eyes: outside
gameplay testers.

External Testing
External testing begins with resources outside of the test and develop-

ment teams, but still inside your company. These opinions and data can
come from the marketing department, as well as other business units. It’s a
good idea to have everyone who is willing, from the CFO to the part-time
receptionist, gameplay test the game if there are questions that remain to
be answered.

Here we must be careful to keep in mind Dr. Werner Heisen-
berg’s warning that “The act of observing something changes the reality
observed.” Even small children are aware they’re participating in a
focus group or play test. Because they (or their adult counterparts) are
often eager to please, they might tell you what they think you want to
hear. Entire books have been written on how to manage this problem
with consumer research. (For more information on managing problems
with consumer research, see Sudman and Wansink, Consumer Panels
[Sudman 02].)

Although outside gameplay testing and opinion gathering is an effort
typically initiated by the development or design teams, it is often imple-
mented and managed by the test team.

Subject Matter Testing

If your game takes place in the real world, past or present, the develop-
ment team will perhaps wisely choose to have subject matter experts review
the game for accuracy. See the sidebar, “Testing for Realism,” about how
real-life input from experienced fighter pilots enhanced the development
of a game.

Game Testing.indb 289 03/09/16 3:58 PM

290 • Game Testing

Testing for Realism

During the development of the PC jet fighter simulator Flanker, producers at the
publisher, SSI, used the Internet to pull together a small group of American and
Russian fighter pilots who were given Beta builds of the game. Their feedback
about the realism of the game, from the feel of the plans to the Russian-language
labels on the cockpit dials, proved invaluable.

These experts posted their comments to a password-protected message board, and
their feedback was carefully recorded, verified, and passed on to the development
team. The game was released to very good reviews and was given high marks for its
realistic depiction of Soviet-era fighter planes.

Such an expert panel tends to be relatively small and easy to manage.
It’s much more challenging to manage a mass Beta test effectively.

External Beta Testing

External Beta testing can give you some very useful data. It can also
give you a ton of useless data if the testing is not managed properly.

There are two types of Beta testing: closed and open. Closed Beta occurs
first and is carefully controlled. Closed Beta testers are screened carefully
and usually have to answer many questions before they are accepted into
the Beta test. These questions can range from the technical specifications
of their computer to which specific games they’ve played recently.

The simplest type of closed Beta testing occurs on console or other
offline platforms. Testers are recruited and sent a Beta build of the game
that is playable on consumer equipment. After the testers play the game,
they are asked to complete an online questionnaire or to participate in a
message board discussion. They could also be invited to report any bugs
they might find.

Open Beta occurs after closed Beta concludes. Open Beta is open
to all who are interested in participating. Although developers will still
solicit some level of gameplay feedback from this much larger group,
their role is to load test the network code and shake out such items as
the login system, matchmaking, overall network stability, the in-game
economy, and so on.

Game Testing.indb 290 03/09/16 3:58 PM

Ad Hoc Testing and Gameplay Testing • 291

Although open Beta testers won’t run test cases, they could report
defects, in addition to providing gameplay feedback. Most Beta test manag-
ers will host a bug reporting site that allows Beta testers to report defects,
make comments, and ask questions.

Besides playing the game the way it would “normally” be played, here
are some other strategies you can adopt as an individual Beta tester:

■■ Try to create infinite point-scoring, money-making, or experience-pro-
ducing strategies.

■■ Try to find ways to get stuck in the game environment, such as a pinball
bouncing forever between two bumpers or an adventurer who falls into
a river and can’t get out.

■■ Spend some time in every feature, mode, or location provided in
the game.

■■ Spend all of your time in one feature, mode, or location, and fully explore
its options and functions.

■■ Try to find ways to access prohibited modes or locations.

■■ See what happens when you try to purchase, acquire, or use items and
abilities that were designed for characters at a level much higher than
yours.

■■ Try to accomplish something “first” in the game, such as becoming the
first “maxed-out” character, the first to enter a particular town, the first
to win a match, the first to form a clan, and so on.

■■ Wear, wield, and activate as many stat-increasing items as you can at one
time, such as armor or power-ups.

■■ Try to be the player with the “most” of something in the game, such as
wins, points, money, trophies, or vassals.

Likewise, you can conspire with other Beta testers to create situations
that might not have been foreseen by the game developers, or which were
impossible for them to test, such as:

■■ Get as many people as you can to show up in the same location in the
game.

■■ Get as many people as you can to log into the game at the same time.

Game Testing.indb 291 03/09/16 3:58 PM

292 • Game Testing

■■ Get as many people as you can to join the same match at the same time.

■■ Get as many people as you can to send you an in-game message at the
same time.

■■ Create an in-game chat group with as many people as possible.

■■ Get multiple people to try to give you items at the same time.

■■ Get as many people as you can to stand within range of your “area of
effect” spell.

■■ Get as many people as you can to cast stat increasing or decreasing spells
(e.g. buffs or debuffs) on you.

Who Decides?
Ultimately, decisions that relate to changing the design, rebalancing,

adding (or cutting) features, even delaying the release to allow more time
for “polish,” are not made by game testers. The testers’ role is to supply the
appropriate decision makers and stakeholders with the best facts and advice
they can, so that the best decisions can be made.

Ad hoc testing is the mode of testing that best enables you to explore the
game, wandering through it as you would a maze. There are two main types
of ad hoc testing. The first is free testing, which allows the professional
game tester to “depart from the script” and improvise tests on the fly. The
second is directed testing, which is intended to solve a specific problem
or to find a specific solution. Gameplay testing focuses on the more sub-
jective areas of player feelings and the “fun factor.” External testing can
be conducted for a variety of reasons, including gameplay feedback, but
external testers—being nonprofessionals—should be monitored closely
and their feedback scrutinized carefully so that only the best and most
useful information is surfaced to the development team.

Exercises

1.	True or False: It’s a good idea to keep the same tester performing the
same test cases for the length of a project.

2.	Why is it unwise for game testers to refer to the work they do as
“playing?”

Game Testing.indb 292 03/09/16 3:58 PM

Ad Hoc Testing and Gameplay Testing • 293

3.	Discuss the differences (in both method and results) between free test-
ing and gameplay testing.

4.	What are two methods of expressing a defect’s reproduction rate?

5.	You and seven other testers jump into a death match session of the
online shooter you’re testing. Once the game starts, it’s a free-for-all,
with each tester competing to win the session. Is this gameplay testing
or ad hoc testing? Why?

6.	You’ve been assigned to test the gameplay of a Marvel vs. Capcom-type
fighting game and suspect that one of the fighters seems significantly
weaker than the others. What ad hoc tests can you perform in order to
confirm and quantify your suspicion?

Game Testing.indb 293 03/09/16 3:58 PM

Game Testing.indb 294 03/09/16 3:58 PM

Orthogonal Defect Classification (ODC) includes a set of Defect
Triggers to categorize the way defects are caused to appear. These
same triggers can be used to classify tests as well as defects. Test

suites that do not account for each of the triggers will be incapable of re-
vealing all of the defects in the game.

Operating Regions

Game operation can be broken down into three stages: Game Start,
In-Game, and Post-Game. These regions don’t just apply to the game as a
whole. They can also be mapped to discrete experiences within the game,
such as new missions, seasons, or levels. There is also a Pre-Game region in
which the game environment—hardware, operating system, and so on—is

In This Chapter

●● Game Operating regions
●● Six types of defect triggers
●● Classifying defects
●● Adding defect triggers to test designs

Defect Triggers

13C h a pt e r

Game Testing.indb 295 03/09/16 3:58 PM

296 • Game Testing

operational but the game has not been started. Figure 13.1 shows the rela-
tionship of these operating regions.

Activate

Pre-Game Post-GameGame Start In-Game

Deactivate

Figure 13.1  Game software operating regions.

Pre-Game Operating Region
The Pre-Game region represents the period that precedes the use of

the game. For consoles, this would be the time prior to inserting the game
disk, or while browsing in the lobby to choose which game to play. On PCs
and mobile phones, this is the period in time before you launch the game
app. Cartridge-based handhelds will also have an operational mode that is
used prior to the insertion of the game cartridge. In each of these cases, the
user can change settings and do things with the device that will potentially
impact the subsequent operation of your game.

Game Start Operating Region
The Game Start region accounts for operations that are performed

from the time the player starts the game until the time the game is actu-
ally ready to be played. Some activities that take place during this time
can be interrupted, such as cinematic sequences that provide an intro-
duction or highlights of the game’s features. Other activities, such as a
screen displaying the “loading” progress, cannot be accelerated or inter-
rupted. The game software also performs activities that are essential to
the proper operation of the game but are not visible to the player. At the
very end of this process, the game could be in a “ready” state, during

Game Testing.indb 296 03/09/16 3:58 PM

Defect Triggers • 297

which it is waiting for the player to hit a button or key in order to enter
the game.

In-Game Operating Region
The In-Game region covers all of the actions you could possibly make

when playing the game. Some functions can be performed only once during
the course of the game, whereas others can be repeated throughout the game.
There are also functions that depend on the player meeting some condition
before they can occur. Games that incorporate non-player characters (NPCs)
also manage and control these resources during this operating period.

Post-Game Operating Region
The player can end the game or a gaming session a number of ways.

Quitting without saving requires less processing than when saving. The
player is often given the opportunity to save character data and progress
before the game terminates itself. Games played on portable devices can be
ended by turning off the device. If the device’s Off switch is under software
control, the game software can perform save and shutdown operations prior
to killing power.

Story-based games treat the user to a final cinematic sequence and
roll credits when users reach the end of the story. Some games unlock new
experiences for the player who reaches the end so he can continue to enjoy
the game when going back through it a second time. This could activate
code that is not exercised at all until the first time the game is completed.

The Triggers

Six Defect Triggers span the four game operating regions. These trig-
gers describe ways to cause distinct categories of game defects to show
up during testing. Together, these triggers account for all of the possible
defects that can occur.

The Configuration Trigger
Some game configuration takes place in the Pre-Game region, prior

to running the game. This includes device or environment settings that
are established before running the game, such as game platform soft-
ware versions. Date and time, screen resolution, system audio volume,

Game Testing.indb 297 03/09/16 3:58 PM

298 • Game Testing

operating system version, patches, and lan-
guage settings are all examples of Configu-
ration triggers. Figure 13.2 shows the many
video configuration settings available for Mass
Effect 3 on the PC.

Configuration also involves external devices
that can be used with the game platform. Game
controllers, keyboards, mice, speakers, moni-
tors, and network connections are all parts of
the test configuration. These devices typically
connect to the game console’s I/O (Input/Out-
put) ports through various connectors or wire-
less receivers. An Xbox One interface diagram is
shown in Figure 13.3.

INPUTS

NETWORK

VOICE

MOTION

CHATPAD
KEYBOARD

GAME
CONTROLLER

MEDIA
REMOTE

AUDIO

OUTPUTS

Figure 13.3  Xbox One I/O Interfaces.

Figure 13.2  Mass Effect 3 PC Video Configuration settings.

Game Testing.indb 298 03/09/16 3:58 PM

Defect Triggers • 299

To learn more about the interfaces and overall architecture of the
Xbox One system, see the Xbox One wiki online at [WIKIPEDIA 16].

The nature of these external devices is that they each have their own
settings, properties (for example, version), and physical connection. Even
game controllers can have additional devices and modes of operation. A
Nintendo Wii U console can be used in combination with a Wii Remote™,

Wii U Game Pad, Nunchuck, Balance Board, WiiWheel™ or MotionPlus™
accessory. An Xbox One user can play from the standard game controller, or
use a Chatpad and headset combination.

Disconnecting one or more devices during gameplay is a type of config-
uration change. Unfortunately for developers, the game software is unable
to do anything to prevent the user from connecting or disconnecting exter-
nal devices during gameplay, or from changing settings or software versions
on the game platform. Configuration changes can occur in any of the game
software operating regions.

Connecting a device could be done to correct an accidental disconnec-
tion (“The dog kicked the wireless router plug out of the wall!”), replace
batteries, change out a faulty device, or add a new capability, such as a
headset for voice control. These scenarios should be anticipated by the
game design and incorporated into the game tests.

Configuration possibilities shouldn’t be excluded from testing just
because your initial response is “Why would anyone ever do that?” Rec-
ognize, when you have this kind of reaction, that you should test that area
vigorously. It is likely that other people would have reacted similarly and
didn’t bother to find out what would happen in that case.

Configuration failures might show up immediately as a result of the
configuration operation or at some later time when a game operation relies
on the new configuration. Seemingly unrelated capabilities might also fail
as a side-effect of a configuration change.

The Startup Trigger
The Startup trigger is utilized by attempting operations while some

game function is in the process of starting up, or immediately after that
while code values and states are in their initial conditions. This could be
a highly noticeable activity, such as a “Loading please wait…” screen, or a
series of messages that are updating you of the progress being made during
the startup process. Other events may happen entirely “behind the scene”,
such as waiting for the game to load graphic content for a room you just

NOTE

Game Testing.indb 299 03/09/16 3:58 PM

300 • Game Testing

entered, or being unable to proceed until a remote server authenticates
your in-game identity.

Particular code vulnerabilities exist during the startup period. These
do not present themselves at any other time in the game. Code variables
are being initialized. Graphics information is being loaded, buffered, and
rendered. Information is read from and/or written to a server or the local
device’s memory.

As an example, here is a summary of the events that take place in Unreal
Engine 3 in order to start up a new level [UNREAL 11]:

1.	The GameInfo’s InitGame() event is called

2.	The GameInfo’s SetGrammar() event is called

3.	All Actors’ PreBeginPlay() events are called

4.	All Actors’ zones are initialized

5.	All Actors’ PhysicsVolumes are initialized

6.	All Actors with bScriptInitialized=false have their PostBeginPlay() func-
tions called

7.	The SetInitialState() function is called on all actors with
bScriptInitialized=false

8.	Actors are “Attached” based on their AttachTag, bShouldBaseOnStartup,
Physics, and world collision settings.

Startup defects are triggered by operations that take place during the
Game Start period. These operations can be user-initiated or can be caused
by the game platform. Interrupting any part of this sequence could mean
that some essential operation will not complete its work or might not get to
run at all. The Startup trigger accounts for bugs that will show up only as a
result of the initial conditions that result from the game’s initialization and
startup processes. That means that defects that occur the very first time you
use a game capability, such as a new map, item, power-up, or spell, should
also be classified as Startup defects.

The Exception Trigger
Special portions of the game code are exercised by the Exception trig-

ger. Exception handling in a game is normally recognized by the player.
Audio “bonks” or alert boxes are common ways in which an in-game

Game Testing.indb 300 03/09/16 3:58 PM

Defect Triggers • 301

problem is communicated. Some excep-
tions are under the control of the game,
such as restricting user input choices.
Other exceptions are caused by external
conditions that are not under the control
of the game software, such as network
connection problems. Figure 13.4 shows
the special alert you get when trying to
play Godville if the mobile device is not
connected to the Internet. Exceptions
can occur in any of the game operating
regions.

The Stress Trigger
The Stress trigger tests the game

under extreme conditions. These could be
conditions imposed on either hardware or
software resources. Memory, screen reso-
lution, disk space, file size, and network
speed are all examples of game conditions
that could be stressed by users or through

testing. Simply reaching a limit does not constitute a stress condition. Once
stressed, the resource must be used or operated in some way for the stress
behavior to reveal itself.

The Normal Trigger
Normal game operation takes place in the In-Game operating region.

This refers to using the game apart from any stress, configuration, or excep-
tion conditions, similar to the way you would script a demo or describe
in the user manual how the game should be played. The “normal” code
is distinct from the code that handles the exceptions, the code that pro-
cesses configuration changes, and the code that takes over under stressful
conditions.

Most of the testing that is done uses Normal triggers. That’s fine,
because that is how the game will be used the vast majority of the time;
testing is not just about finding defects, it also demonstrates that the game
functions the way it is supposed to. Testing that uses Normal triggers almost
exclusively, however, is only training the code to follow a script. It will not
detect many user faults that will occur in real-life situations.

Figure 13.4  Godville connection exception
alert.

Game Testing.indb 301 03/09/16 3:58 PM

302 • Game Testing

The Restart Trigger
The Restart trigger classifies a failure that occurs as a result of quit-

ting, ending the game, turning off the game device, ejecting the game disk,
or terminating the game’s operation in any other way. Some games are nice
about this and prompt you to save vital information before allowing you to
exit a game scenario, mission, level, or ongoing battle. When ending the
game, some information needs to be remembered and some forgotten. If
either is done incorrectly, the player can gain an advantage or lose precious
progress.

Sometimes you can notice the effects of a Restart defect during the
End Game period, or you might have to wait until the next time
you use the game. This is illustrated by a couple of bugs reported
for the tower defense game Revenge of the Titans:

“When I restart level 13 (Sinus edam) (after failing) and
I click on factory, there seems to be some sort of a bug
there, and then I get a “level failed” dialog”[REVENGE 10].

“I’ve been encountering this bug, usually happens when I
restart a level many times, one time it happened when the
boss killed my base and then died right after, or other
times it just happens out of nowhere: the level refuses
to spawn any titans, the thread level is forever low,
and the level selection has red dots but they can’t be
played” [STEAM 11].

You can “restart” under various conditions, such as when a game takes
you back to a level selection screen, or when you load a saved game after
failing. Be sure to explore each of the different restart methods available for
the game you are testing, and follow through by playing the game for a while,
after the reloads, in order to detect any undesirable effects of the restart.

Classifying Defects

You don’t have to wait for your next project to start using Defect Trig-
gers in your tests. Use keywords to help classify new or existing tests and
defects. With that information you can identify where the defects are com-
ing from and what testing is missing. Not surprisingly, many bugs that get
released belong to Defect Triggers that received little attention, if any, dur-
ing game testing.

NOTE

Game Testing.indb 302 03/09/16 3:58 PM

Defect Triggers • 303

When defects of a certain trigger start to show up, that’s your cue to
beef up the tests to use that trigger even more often.

 Table 15.1 provides lists of keywords you can use to classify your defects
and tests according to each of the six defect triggers.

Trigger Keywords

Configuration configure, model, type, version, environment, add, remove, setup

Startup startup, initial, first, uninitialized, creation, boot, warm-up, wake-up,
loading, transition

Exception exception, error, violation, exceeds, NULL, unexpected, recover,
prevented, blocked, prohibited, unavailable

Stress stress, load, rate, slowest, fastest, low, high, speed, capacity, limit,
long, short, few, many, multiple, empty, full

Normal normal, typical, common, usual, expected, planned, basic, default,
out-of-the-box, allowed, available

Restart restart, reset, reload, cleanup, eject, power down, ctrl-alt-del, quit

Table 13.1  Defect Trigger Keywords

Following are some examples taken from a list of updates for The Elder
Scrolls IV: Oblivion [ELDER 11]. Remember, missing capabilities are
defects as well as game functionalities that don’t work properly.

“Fixed issue where stolen items would lose their stolen status
if the player character was female.”

Because the character gender is established prior to entering the game
world, this should be identified as a Configuration issue.

“Fixed a crash with stealing an object, exiting and immediately
re-entering an interior.”

In this situation, the problem only manifests when the interior location
is re-entered. This should be considered a Restart fault.

“Fixed memory leak with sitting in a chair multiple times.”

The Stress keyword “multiple” is used here and it is in reference to a
problem that occurs when trying to sit in a chair over and over again, so this
is a Stress defect.

!
TIP

Game Testing.indb 303 03/09/16 3:58 PM

304 • Game Testing

“Player can no longer fast travel when paralyzed.”

Fast Travel is a map-based way of traveling between landmarks in the
Elder Scrolls world. Being paralyzed is not a configuration because it is a
situation that occurs after the character has been configured and is active in
the game world (the In-Game operating region). Neither is the fast travel
ability a result of a particular configuration. This is simply a Normal defect.

“Fixed issue where lock/unlocked states on doors would oc-
casionally be stored incorrectly in a saved game.”

In this context, locking and unlocking is the door’s “life cycle” in the
game world. Loading the saved game data “restarts” the player’s character
and the state of all of the game assets. This restart loses track of the door’s
proper state. The defect has been revealed by a Restart trigger.

“Improved LOD visual quality for landscape.”

Problems don’t just have to happen in game logic to be considered
bugs. Here the level of detail of the rendered landscape was improved. The
solution is not related to a particular condition or configuration of the game.
This is a Normal defect.

“Fixed issue with LOD not loading in properly when entering/
exiting worldspaces.”

Game maps can also have a life cycle: Start Map–Use Map–Change/
Restart Map and so on. The worldspace is rendered with an undesirable
level of detail as a result of the map restart. Therefore, this defect is trig-
gered by that Restart.

“Pickup sound effects no longer play during the loading
screen.”

Yet another “life cycle” reveals itself here. The cycle of examining an
item: select the item to examine, pick it up, examine it, then keep it or
drop it. Because the problem is tied to the “loading” screen, map this to the
Startup trigger.

“Fixed an occasional crash with NPCs who were not loaded going
into combat”

This is a case where the game is referencing one or more “unavailable”
resources. This is an Exception trigger defect.

“In Light the Dragonfires, fixed issue where improper journal
would appear if you closed the Oblivion gate.”

Game Testing.indb 304 03/09/16 3:58 PM

Defect Triggers • 305

Don’t confuse a game mission or quest with “configuration.” Think of
a quest as a feature or function of the game. Even though this bug only
appears in a particular quest, the problem was in the In-Game operating
region and not dependent on any configuration. It is another Normal trig-
ger defect.

Sometimes you will come across defects that perhaps seem to belong
to more than one trigger category. An example might be the case where an
exception is not handled properly during startup. What you must resolve is
which situation was primarily responsible for triggering the defect. If the
situation is considered only an “exception” during startup, then it is the
exception that is triggering the fault. The rationale is that there is a particu-
lar piece of code that should exist to handle the exception during startup.
The exception condition causes that code to execute and finds that it is
missing or faulty. Conversely, if the handling of that exception is common
throughout the game, and it fails to operate properly only during startup,
then it is the fact that you tried it at startup that triggered the exception
code not to run or to run improperly. Your responsibility as a tester is to test
the handling of this exception in all operating regions of the game in order
to help make this kind of determination.

Defect Triggers and Test Designs

Each element in the test design represents one of the Defect Triggers.
Using one or more test design techniques will not by itself guarantee that all
of the Defect Triggers will be sufficiently represented in your tests. It takes
an explicit effort to identify appropriate triggers and to incorporate them into
whatever type of test designs you produce. All of the Defect Triggers should
be included either in a single test design or a set of test designs related to a
specific game feature, function, or capability. If you have data from previ-
ous projects, see which triggers have been effective at finding defects and
include those in your designs, as well as any others you can think of.

The effectiveness of each trigger can be measured in terms of defects
per test. You can also think of this as the sensitivity of the game code to
each trigger. A large defects/test number relative to other triggers tells you
how to find bugs economically and could also hint at an underlying flaw
in the game platform design or implementation. If you only have time or
resources to run a given number of tests, running the tests for the most
effective triggers will yield more defects than running the tests for the trig-
ger that produces the fewest defects per test (usually the Normal trigger).

Game Testing.indb 305 03/09/16 3:58 PM

306 • Game Testing

As you continue to create and run more tests for the most effective triggers,
you will saturate them and will no longer be able to find new bugs. Repeat
this process to establish saturation for all of the triggers.

Tutorial

Combinatorial Design Trigger Examples

Let’s go back to the Halo Reach Controller menu combinatorial table,
shown in Chapter 8, “Combinatorial Testing” (Table 8.24), to see if any trig-
gers need to be added. Look Sensitivity is tested for its default, minimum,
and maximum values. The minimum and maximum values could be consid-
ered Stress values because the game is supposed to respond (“process”) as
slowly or as quickly as it can to the movement of the joystick. The remain-
ing parameters have values that determine whether a capability is either
on or off. None of these address a particular configuration or a situation
that would apply to Startup, Restart, Exception, or Stress conditions. As a
result, the majority of test values represent Normal behavior. For this test
to be more effective, incorporate the missing triggers as well as any other
possible Stress values.

Start by identifying Configuration resources related to the Controller
options. Online players typically use a headset in conjunction with the game
controller. This affects where game audio is routed—to your headset or
to your game console’s audio output. By design, some audio sources will
continue to be routed to your main speakers and others to the headset. The
controllers themselves can be wireless or wired. Each controller is sequen-
tially assigned to unique slots on the game console. It is also possible to
remove a controller during the process of selecting the options, and sub-
sequently re-connect it in the same position or in a different one. Wireless
controllers “disconnect” when going out of range from the console’s wire-
less receiver, when their batteries run out of power, or when the player
intentionally removes the batteries. Disconnecting a controller connected
to an accessory could have unintended consequences, such as resetting cali-
bration values on a racing wheel. These possibilities suggest new param-
eters and values to add to the combinatorial table.

The updated table is shown in Table 13.2. Because of the added com-
plexity introduced by the new parameters and values, the Allpairs tool was
used to generate this table.

Game Testing.indb 306 03/09/16 3:58 PM

Defect Triggers • 307

Te
st

Lo
ok

Se

ns
it

iv
it

y
Lo

ok

In
ve

rs
io

n
A

ut
ol

oo
k

C
en

te
ri

ng
C

ro
uc

h
B

eh
av

io
r

C
le

nc
h

P

ro
te

ct
io

n
R

em
ov

e
C

on
tr

ol
le

r
R

ep
la

ce

C
on

tr
ol

le
r

H
ea

ds
et

Eq

ui
pp

ed
C

on
tr

ol
le

r
C

on
ne

ct
io

n

1
1

YE
S

YE
S

H
O

L
D

E
N

A
B

L
E

1
1

YE
S

W
IR

E
D

2
3

N
O

N
O

T
O

G
G

L
E

D
IS

A
B

L
E

1
2

N
O

W
IR

E
L

E
SS

3
3

N
O

YE
S

H
O

L
D

D
IS

A
B

L
E

2
1

YE
S

W
IR

E
L

E
SS

4
1

YE
S

N
O

T
O

G
G

L
E

E
N

A
B

L
E

2
2

N
O

W
IR

E
D

5
10

N
O

YE
S

T
O

G
G

L
E

E
N

A
B

L
E

3
3

YE
S

W
IR

E
D

6
10

YE
S

N
O

H
O

L
D

D
IS

A
B

L
E

3
4

N
O

W
IR

E
L

E
SS

7
1

N
O

N
O

H
O

L
D

D
IS

A
B

L
E

4
3

YE
S

W
IR

E
L

E
SS

8
3

YE
S

YE
S

T
O

G
G

L
E

E
N

A
B

L
E

4
4

N
O

W
IR

E
D

9
10

N
O

N
O

T
O

G
G

L
E

E
N

A
B

L
E

1
1

N
O

W
IR

E
L

E
SS

10
10

YE
S

YE
S

H
O

L
D

D
IS

A
B

L
E

2
2

YE
S

W
IR

E
D

11
3

YE
S

N
O

H
O

L
D

E
N

A
B

L
E

3
3

N
O

W
IR

E
D

12
1

N
O

YE
S

T
O

G
G

L
E

D
IS

A
B

L
E

3
4

YE
S

W
IR

E
L

E
SS

13
10

YE
S

N
O

T
O

G
G

L
E

D
IS

A
B

L
E

4
1

YE
S

W
IR

E
D

14
1

YE
S

YE
S

H
O

L
D

D
IS

A
B

L
E

1
3

N
O

W
IR

E
L

E
SS

15
3

N
O

N
O

H
O

L
D

E
N

A
B

L
E

2
4

YE
S

W
IR

E
D

16
1

N
O

YE
S

H
O

L
D

E
N

A
B

L
E

4
2

N
O

W
IR

E
L

E
SS

17
10

N
O

YE
S

T
O

G
G

L
E

E
N

A
B

L
E

2
3

N
O

W
IR

E
L

E
SS

18
10

YE
S

N
O

H
O

L
D

D
IS

A
B

L
E

1
4

YE
S

W
IR

E
D

19
3

YE
S

YE
S

T
O

G
G

L
E

D
IS

A
B

L
E

3
1

N
O

W
IR

E
L

E
SS

20
1

N
O

N
O

T
O

G
G

L
E

E
N

A
B

L
E

3
2

YE
S

W
IR

E
D

Ta
b

le
 1

3.
2 

C
on

tr
ol

le
r

Se
tt

in
gs

 C
om

bi
na

to
ria

l T
ab

le
 w

ith
 C

on
fig

ur
at

io
n

Tr
ig

ge
rs

Game Testing.indb 307 03/09/16 3:58 PM

308 • Game Testing

As an alternative, create a separate table to cover the configuration-
related parameters and value pairs. This approach enables you to use the
mostly “Normal” table as a “sanity test” and then switch over to the tables
for the other triggers once the game passes the sanity tests. The Controller
settings configuration table is shown in Figure 13.3.

Test Remove
Controller

Replace
Controller

Headset
Equipped

Controller
Connection

1 1 1 YES WIRED

2 1 2 NO WIRELESS

3 1 3 YES WIRELESS

4 1 4 NO WIRED

5 2 1 NO WIRELESS

6 2 2 YES WIRED

7 2 3 NO WIRED

8 2 4 YES WIRELESS

9 3 1 YES WIRED

10 3 2 NO WIRELESS

11 3 3 YES WIRELESS

12 3 4 NO WIRED

13 4 1 NO WIRELESS

14 4 2 YES WIRED

15 4 3 NO WIRED

16 4 4 YES WIRELESS

Table 13.3  Controller Actions Configuration Table

The next step is to seek out Exception trigger opportunities. Because
the option values are selected by scrolling, there is no opportunity to enter a
“wrong” value. It is perhaps possible to disrupt the selection mechanism itself,
however. The A and B buttons are used for accepting the options or going back
to the previous screen. Try holding down X, Y, the Left Trigger (“L”), or Right
Trigger (“R”) during the selection of the test values. Again, one of your options
is to add a column for these values, plus the “None” choice, into a single table,
as shown in Table 13.4. Although the table has grown again, these 28 cases rep-
resent pairwise coverage of 15,360 total possible combinations of these values!

Game Testing.indb 308 03/09/16 3:58 PM

Defect Triggers • 309

Te
st

Lo
ok

Se

ns
it

iv
it

y
Lo

ok

In
ve

rs
io

n
A

ut
ol

oo
k

C
en

te
ri

ng
C

ro
uc

h
B

eh
av

io
r

C
le

nc
h

P
ro

te
ct

io
n

R
em

ov
e

C
on

tr
ol

le
r

R
ep

la
ce

C

on
tr

ol
le

r
H

ea
ds

et

Eq
ui

pp
ed

C
on

tr
ol

le
r

C
on

ne
ct

io
n

Si
m

ul
ta

ne
ou

s
K

ey

1
1

YE
S

YE
S

H
O

L
D

E
N

A
B

L
E

1
1

YE
S

W
IR

E
D

N
O

N
E

2
3

N
O

N
O

T
O

G
G

L
E

D
IS

A
B

L
E

2
2

N
O

W
IR

E
L

E
SS

N
O

N
E

3
10

YE
S

N
O

T
O

G
G

L
E

E
N

A
B

L
E

1
2

N
O

W
IR

E
D

X
4

1
N

O
YE

S
H

O
L

D
D

IS
A

B
L

E
2

1
YE

S
W

IR
E

L
E

SS
X

5
3

N
O

YE
S

H
O

L
D

E
N

A
B

L
E

3
3

N
O

W
IR

E
D

Y
6

10
YE

S
YE

S
T

O
G

G
L

E
D

IS
A

B
L

E
4

4
YE

S
W

IR
E

L
E

SS
Y

7
1

N
O

N
O

T
O

G
G

L
E

E
N

A
B

L
E

3
4

YE
S

W
IR

E
L

E
SS

L
8

3
YE

S
N

O
H

O
L

D
D

IS
A

B
L

E
4

3
N

O
W

IR
E

D
L

9
10

N
O

N
O

H
O

L
D

D
IS

A
B

L
E

1
3

YE
S

W
IR

E
L

E
SS

R
10

3
YE

S
YE

S
T

O
G

G
L

E
E

N
A

B
L

E
2

4
N

O
W

IR
E

D
R

11
10

YE
S

N
O

T
O

G
G

L
E

D
IS

A
B

L
E

3
1

N
O

W
IR

E
L

E
SS

Y
12

1
N

O
YE

S
H

O
L

D
E

N
A

B
L

E
4

2
YE

S
W

IR
E

D
L

13
1

YE
S

YE
S

T
O

G
G

L
E

D
IS

A
B

L
E

1
3

N
O

W
IR

E
L

E
SS

N
O

N
E

14
10

N
O

N
O

H
O

L
D

E
N

A
B

L
E

2
4

YE
S

W
IR

E
D

N
O

N
E

15
3

N
O

YE
S

T
O

G
G

L
E

E
N

A
B

L
E

3
1

YE
S

W
IR

E
L

E
SS

X
16

1
N

O
N

O
H

O
L

D
D

IS
A

B
L

E
1

2
YE

S
W

IR
E

D
Y

17
3

YE
S

N
O

T
O

G
G

L
E

D
IS

A
B

L
E

1
1

N
O

W
IR

E
D

L
18

1
N

O
N

O
T

O
G

G
L

E
E

N
A

B
L

E
4

1
N

O
W

IR
E

L
E

SS
R

19
10

YE
S

YE
S

H
O

L
D

D
IS

A
B

L
E

3
2

N
O

W
IR

E
D

X
20

10
YE

S
N

O
H

O
L

D
E

N
A

B
L

E
2

3
YE

S
W

IR
E

D
R

21
10

N
O

YE
S

H
O

L
D

D
IS

A
B

L
E

2
4

N
O

W
IR

E
L

E
SS

L
22

3
N

O
N

O
T

O
G

G
L

E
E

N
A

B
L

E
4

3
YE

S
W

IR
E

L
E

SS
X

23
1

YE
S

N
O

T
O

G
G

L
E

D
IS

A
B

L
E

3
2

YE
S

W
IR

E
L

E
SS

R
24

3
YE

S
YE

S
H

O
L

D
E

N
A

B
L

E
1

4
YE

S
W

IR
E

L
E

SS
Y

25
10

YE
S

N
O

H
O

L
D

D
IS

A
B

L
E

4
4

N
O

W
IR

E
D

N
O

N
E

26
1

N
O

YE
S

T
O

G
G

L
E

E
N

A
B

L
E

3
3

N
O

W
IR

E
D

N
O

N
E

27
1

YE
S

N
O

T
O

G
G

L
E

D
IS

A
B

L
E

2
4

N
O

W
IR

E
D

X
28

3
N

O
YE

S
T

O
G

G
L

E
E

N
A

B
L

E
2

2
N

O
W

IR
E

L
E

SS
Y

Ta
b

le
 1

3.
4 

C
on

tr
ol

le
r

Se
tt

in
gs

 w
ith

 C
on

fig
ur

at
io

n
an

d
Ex

ce
pt

io
n

Tr
ig

ge
rs

Game Testing.indb 309 03/09/16 3:58 PM

310 • Game Testing

A potential danger in doing this is that most of your test cases will
result in an exception behavior that might prevent you from observing the
effects of the other test values. In Table 13.4, only six tests—1, 2, 13, 14,
25, and 26—avoid a possible input exception. A way around this is to cre-
ate a separate table to isolate the exception effects, as shown in Table 13.5.
The “NONE” value for the Simultaneous Key parameter is not included
because it is not an Exception trigger, and it is already implicitly repre-
sented in the non-exception table for this feature.

Test Look
Sensitivity

Look
Inversion

Autolook
Centering

Crouch
Behavior

Clench
Protection

Simultaneous
Key

1 1 YES YES HOLD ENABLE X

2 3 NO NO TOGGLE DISABLE X

3 1 NO YES TOGGLE ENABLE Y

4 3 YES NO HOLD DISABLE Y

5 10 YES YES TOGGLE DISABLE L

6 10 NO NO HOLD ENABLE L

7 1 YES NO TOGGLE DISABLE R

8 3 NO YES HOLD ENABLE R

9 10 YES YES HOLD DISABLE X

10 10 NO NO TOGGLE ENABLE Y

11 1 NO NO HOLD DISABLE L

12 3 YES YES TOGGLE ENABLE L

13 10 YES NO HOLD ENABLE R

Table 13.5  Controller Settings Table with Only Exception Triggers Added

The extreme Look Sensitivity values were identified as Stress triggers,
but is there any other “stressful” operation that can be done during option
selection? For this particular game, both the left analog stick and the D-Pad
on the game controller can be used to scroll through the options (vertically)
and choices (horizontally). Operating them simultaneously could produce
interesting results. Add this to the test table by defining the Scroll Control
parameter with the values of LEFT STICK, D-PAD, and BOTH. Follow
the same rationale as for the previous triggers when deciding whether to

Game Testing.indb 310 03/09/16 3:58 PM

Defect Triggers • 311

add these parameters and values to a single table for this screen versus cre-
ating a separate table for this trigger.

All that’s left to do now is to identify Startup and Restart triggers for
your Controller settings. These particular settings are tied to individual
player profiles. This presents the opportunity to test the settings for a brand
new profile versus one that has already been in use. The new profile behav-
ior is your Startup trigger. Add this to the tests as a “Profile” parameter with
NEW (Startup) or EXISTING (Normal) choices.

The Controller setting selection process can be restarted in a variety
of ways: go back to the previous screen without saving, eject the game
disk from the console, or turn the console off. Follow up these opera-
tions by going back into the Advanced Controls screen to check for any
abnormalities. Because these settings can be stored in either internal
or removable memory, another way to do a “restart” is to load informa-
tion previously saved to external memory back on top of your internally
saved modified values. Represent these possibilities in your table with a
“Re-Enter” parameter that has a possible value of NONE for the Nor-
mal trigger and BACK, EJECT, OFF, and LOAD EXTERNAL for the
Restart trigger.

TFD Trigger Examples
TFD triggers are located along the flows. The Ammo TFD template,

provided in Appendix D, will be used to illustrate how to incorporate all
of the defect triggers into a TFD. It has a few more flows than the TFD
you constructed in Chapter 11, but is it “complete” in terms of triggers?
Use it in one of the Unreal Tournament game titles, and see what you
can find.

To begin with, the template includes several Normal trigger flows,
such as GetGun and GetAmmo when you have neither (NoGunNoAmmo).
The same event can represent different triggers, however, depending on
its context with respect to the states it’s leaving and entering. For exam-
ple, GetAmmo when you already have the maximum amount is a case of
performing a function when a resource (ammo) is at its maximum. This
qualifies as a Stress trigger. Shooting a gun with no ammo falls on the
other end of the spectrum where the ammo resource is at a minimum (0).
Figure 13.5 shows the Ammo TFD template with these Stress triggers
highlighted.

Game Testing.indb 311 03/09/16 3:58 PM

312 • Game Testing

D
ro

pA
m

m
o

/D
ro

pS
ou

ndG
et

Am
m

o
/A

m
m

oE
ffe

ct
s

NoGun
NoAmmo

Have
Ammo

DropGun/DropSound

Enter

D
ropG

un

/D
ropSound

Sh
oo

tA
llA

m
m

o
/S

ho
ot

E
ff

ec
ts

D
ro

pA
m

m
o

/D
ro

pS
ou

nd
G

et
A

m
m

o
/A

m
m

oE
ff

ec
ts

ShootAllAm
m

o

/ShootE
ffects

D
ropAm

m
o

/D
ropSound

G
etL

oadedG
un

/L
oadedG

unE
ffects

GetGun
/GunEffects

G
etA

m
m

o

Exit

HaveGun
HaveAmmo

GetMaxAmmo
/MaxAmmoEffects

OUT_GunAmmo

IN_GunAmmo

HaveGun
MaxAmmo

HaveGun

GetGun/GunEffects

ShootGun
/ClickSound

DropGun/DropSound

Figure 13.5  Ammo TFD template with Stress flows highlighted.

Now how about adding a Startup trigger? The TFD Enter flow jumps
right to the point where the player is active in the match. In reality, there
is a “pre-game” period where the player can run around the arena before
hitting the “fire” button (usually the left mouse button) to initiate the
match. This is relevant to the purpose of the test because a player who
runs over weapons or ammo during this time should not accumulate any
items as a result.

Game Testing.indb 312 03/09/16 3:58 PM

Defect Triggers • 313

Represent this startup process on the TFD by performing “mitosis”
on the “NoGunNoAmmo” state. That is, split it into two connected states.
One state retains the original name and connections (except for the Enter
flow) while the other captures the dry run and countdown behavior. Fig-
ure 13.6 shows the process of splitting this portion of the TFD.

NoGun
NoAmmo

NoGun
NoAmmo

NoGun
NoAmmo

Pre
Match

Initiate
Match

Pre
Match

Figure 13.6  NoGunNoAmmo state mitosis.

The new PreMatch state can be introduced to the TFD. Start by dis-
connecting the Enter flow from NoGunNoAmmo and attaching it to Pre-
Match. Then add flows to attempt GetAmmo and GetGun during the
PreMatch period. These flows are Startup triggers, as shown in Figure 13.7.

Next add the Restart trigger to the diagram. It’s possible to change your
status to Spectator in the middle of a match and then join back in as a partici-
pant. Spectator mode takes your character out of the game and lets you follow
players in the game while you control the camera angle. Any guns or ammo
picked up prior to entering Spectator mode should be lost when you join the
same match that is still in progress. Rejoining the game from Spectator mode
is done instantly without the countdown timer that you get when you start the

Game Testing.indb 313 03/09/16 3:58 PM

314 • Game Testing

match for the very first time. Suspending and rejoining can be done at any
time during the match after the initial countdown timer has expired. Add a
SpectateAndJoin flow from each of the in-game states on the TFD and tie it
back to NoGunNoAmmo. Don’t forget the loop flow from NoGunNoAmmo
back to itself. A TFD with these updates is shown in Figure 13.8.

PreMatch

GetAmmo GetGun

D
ro

pA
m

m
o

/D
ro

pS
ou

nd

G
et

Am
m

o
/A

m
m

oE
ffe

ct
s

Enter

NoGun
NoAmmo

Have
Ammo

DropGun/DropSound

D
ropG

un/D
ropSound Sh

oo
tA

llA
m

m
o

/S
ho

ot
E

ff
ec

ts
D

ro
pA

m
m

o
/D

ro
pS

ou
nd

G
et

A
m

m
o

/A
m

m
oE

ff
ec

ts

ShootAllAm
m

o

/ShootEffects

D
ropAm

m
o

/D
ropSound

G
etL

oadedG
un

/L
oadedG

unE
ffects

GetGun
/GunEffects

G
etA

m
m

o

Exit

HaveGun
HaveAmmo

GetMaxAmmo
/MaxAmmo

EffectsOUT_GunAmmo

HaveGun
MaxAmmo

HaveGun

GetGun/GunEffects

ShootGun
/ClickSound

DropGun/DropSound

Initiate

M
atch

IN_GunAmmo

Figure 13.7  PreMatch state and Startup trigger flows added to Ammo TFD.

Game Testing.indb 314 03/09/16 3:58 PM

Defect Triggers • 315

Note that more “pressure” is being put on the NoGunNoAmmo state
with all of the flows entering and exiting. It’s like a busy intersection; they
tend to be much more dangerous than the ones that aren’t so busy. This
reflects the importance of this state to the well-being of the feature and its
potential sensitivity to changes.

Figure 13.8  Ammo TFD with SpectateAndJoin Restart flows highlighted.

PreMatch

GetAmmo GetGun
D

ro
pA

m
m

o
/D

ro
pS

ou
nd

G
et

Am
m

o
/A

m
m

oE
ffe

ct
s

Sp
ec

ta
te

An
dJ

oi
n

Enter

Spectate
AndJoin

NoGun
NoAmmo

Have
Ammo

DropGun/DropSound

D
ropG

un/D
ropSound

SpectateA
ndJoin Sh

oo
tA

llA
m

m
o

/S
ho

ot
E

ff
ec

ts
D

ro
pA

m
m

o
/D

ro
pS

ou
nd

G
et

A
m

m
o

/A
m

m
oE

ff
ec

ts

ShootAllAm
m

o

/ShootEffects

D
ropAm

m
o

/D
ropSound

G
etL

oadedG
un

/L
oadedG

unE
ffects

GetGun
/GunEffects

G
etA

m
m

o

Exit

HaveGun
HaveAmmo

GetMaxAmmo
/MaxAmmo

EffectsOUT_GunAmmo

HaveGun
MaxAmmo

HaveGun

GetGun/GunEffects

SpectateAndJoin

ShootGun
/ClickSound

SpectateAndJoin

DropGun/DropSound

Initiate

M
atch

IN_GunAmmo

Game Testing.indb 315 03/09/16 3:58 PM

316 • Game Testing

The TFD is getting cozy but there are a still a few more triggers to con-
sider. For the Exception trigger, there is an operation available to use a weap-
on’s alternate-fire mode. Typically, the left mouse button is used for normal
firing and the right mouse button for alternate firing. Some weapons, such
as the Grenade Launcher, do not have an alternate firing mode. They should
not fire nor decrement their ammo count when the user attempts alternate
firing. This is something you can use as an Exception trigger. Because this
“UnsupportedAltFire” operation will not change the ammo status of the
weapon, add it as a loop on the TFD states where there is both a gun and
ammo. Your result should resemble the diagram in Figure 13.9.

PreMatch

GetAmmo GetGun

D
ro

pA
m

m
o

/D
ro

pS
ou

nd

G
et

Am
m

o
/A

m
m

oE
ffe

ct
s

Sp
ec

ta
te

An
dJ

oi
n

Enter

Spectate
AndJoin

NoGun
NoAmmo

Have
Ammo

DropGun/DropSound

D
ropG

un/D
ropSound

SpectateA
ndJoin Sh

oo
tA

llA
m

m
o

/S
ho

ot
E

ff
ec

ts
D

ro
pA

m
m

o
/D

ro
pS

ou
nd

G
et

A
m

m
o

/A
m

m
oE

ff
ec

ts

ShootAllAm
m

o

/ShootEffects

D
ropAm

m
o

/D
ropSound

G
etL

oadedG
un

/L
oadedG

unE
ffects

GetGun
/GunEffects

G
etA

m
m

o

Exit

UnsupportedAltFire

HaveGun
HaveAmmo

GetMaxAmmo
/MaxAmmo

Effects
OUT_GunAmmo

HaveGun
MaxAmmo

HaveGun

Unsupporte
d

AltF
ire

GetGun/GunEffects

SpectateAndJoin

ShootGun
/ClickSound

SpectateAndJoin

DropGun/DropSound
Initiate

M
atch

IN_GunAmmo

Figure 13.9  Ammo TFD with AltFire Exception flows highlighted.

Game Testing.indb 316 03/09/16 3:58 PM

Defect Triggers • 317

Finally, the Configuration must be included. One of the weapon settings in
the game allows the player to select an older style rendering of certain weapons.
Although this is appealing to players who owned earlier titles in this series, it
also creates an additional test responsibility. You can check that changing the
weapon rendering while the game is in progress does not affect the amount of
ammo loaded in that weapon nor produce unwanted artifacts, such as unex-
pected audio or “shadow” (duplicate) weapons. Add a ToggleWeaponSkin flow
at all of the states where the player has the weapon. Because this should not
affect the ammo, these flows will loop back into the states from which they
originated. Figure 13.10 shows the TFD with these Configuration flows.

PreMatch

GetAmmo GetGun

D
ro

pA
m

m
o

/D
ro

pS
ou

nd

G
et

Am
m

o
/A

m
m

oE
ffe

ct
s

Sp
ec

ta
te

An
dJ

oi
n

Enter

Spectate
AndJoin

NoGun
NoAmmo

Have
Ammo

DropGun/DropSound

D
ropG

un/D
ropSound

SpectateA
ndJoin Sh

oo
tA

llA
m

m
o

/S
ho

ot
E

ff
ec

ts
D

ro
pA

m
m

o
/D

ro
pS

ou
nd

G
et

A
m

m
o

/A
m

m
oE

ff
ec

ts

ShootAllAm
m

o

/ShootEffects

D
ropAm

m
o

/D
ropSound

G
etL

oadedG
un

/L
oadedG

unE
ffects

GetGun
/GunEffects

G
etA

m
m

o

Exit Toggle
WeaponSkin

ToggleWeaponSkin

Toggle
W

eapon
Skin

HaveGun
HaveAmmo

GetMax
Ammo/

Max
Ammo
EffectsOUT_GunAmmo

HaveGun
MaxAmmo

HaveGun

Unsupported

AltFire U
ns

up
po

rte
d

AltF
ire

GetGun/GunEffects

SpectateAndJoin

ShootGun
/ClickSound

SpectateAndJoin

DropGun/DropSound

Initiate

M
atch

IN_GunAmmo

Figure 13.10  Ammo TFD with weapon skin Configuration flows.

Game Testing.indb 317 03/09/16 3:58 PM

318 • Game Testing

Now the TFD is getting really crowded! Just remember that the same
option that was presented for combinatorial tests is applicable to TFDs,
test tree designs, or any other formal or informal means you use to come up
with test cases. You can incorporate the triggers into a single design or cre-
ate companion test designs that work together as a suite of tests to provide
the trigger coverage you need.

You might also find it useful to document the intended triggers for each
test element. One easy way is to provide a letter code in parentheses after
the event name on each TFD flow, parameter value for combinatorial tests,
or branch node for test tree designs. You can count the number of times
each letter appears to see how many times each trigger is being used. It also
helps you classify defects you find when running the tests. Just be aware
that this carries a maintenance burden to reevaluate the trigger designation
whenever you move or add new test elements to the design.

What a difference the extra triggers make in the test design! Is it more
work? Yes. It’s also better. You have improved the capability of this test to
find defects, and you will have more confidence in your game when it passes
tests that use all of the triggers. Defect Triggers were not created with any
one particular test methodology in mind. They are effective whether you
are testing at the beginning or the end of the project and whether you have
meticulous test designs or you are just typing in test cases as you go along. If
you choose not to use them, you are adding to the risk of important defects
escaping into your shipping game.

Exercises

Having come this far in the book, you should be well equipped to offer
your own suggestions and to contribute to your team’s test strategies. The
following exercises are designed to give you some practice at that.

1.	Which is your favorite Defect Trigger? Why? Which one would be the
most difficult for you to include in your tests, both in terms of test ex-
ecution and test design?

2.	Earlier in this chapter it was mentioned that both the D-Pad and Analog
joystick on the game controller could be used to make the Halo Reach
option selections. Describe how you would incorporate these choices
into your test suite. Do you prefer adding them to a large single table

Game Testing.indb 318 03/09/16 3:58 PM

Defect Triggers • 319

for the feature or creating a separate smaller table focused on the option
selection means? Be specific about which factors would cause you to
change your answer.

3.	It could be interesting to start an Unreal Tournament match while
standing on one of the gun or ammo items. The game automatically
snaps you back to the original starting point after a 3-second countdown
before the action starts. Describe how you would update the Ammo
TFD to include this possibility, including what effects you would check
for and why.

4.	Again, for the Ammo TFD, describe how you would add or change flows
to represent someone playing from a PC who can fire her gun using
either a joystick or the left mouse button. Treat this as a case where both
the mouse and joystick are connected during the game. Also indicate
which triggers are represented by this possibility.

5.	Make a list or outline of how you would include each trigger in your test-
ing of a hypothetical or actual Texas Hold ’Em video game. Don’t stop
at one example—list at least three values, situations, or cases for each
of the non-Normal triggers. Remember to include tests of the betting
rules—not just the mechanics and winning conditions for the hand. If
you are not familiar with the rules of this card game, do a search online
and read a few descriptions before you build your trigger lists.

Game Testing.indb 319 03/09/16 3:58 PM

Game Testing.indb 320 03/09/16 3:58 PM

REGRESSION TESTING

Regression Testing is a strategy for deciding which tests to run against each
version of the game. This applies to code that is under development as well as
to bug-fix releases. It gets its name from the need to determine if any of the
code has “regressed” (gone backward in progress) due to changes introduced
in the latest build. A good strategy will minimize the number of tests you run
and will still be able to help you catch newly introduced and remaining errors.

Chapter 6, “The Game Testing Process,” describes the important role
regression testing plays in distributing a good release. Once testing is under
way, you need to be able to react in real time as the game code or assets
become updated in response to bugs or change requests. You also need to
be able to adjust your tests to cover new changes in the code or specs.

In This Chapter

●● Distributing tests
●● Defect modeling
●● Test design patterns
●● Combinatorial expansion

Regression Testing
and Test Reuse

14c h a pt e r

Game Testing.indb 321 03/09/16 3:58 PM

322 • Game Testing

A-B-C’s
Regression testing needs to do more than re-run tests that have previ-

ously failed. The rationale for this hinges on the phenomenon of “Software
Rot”. Software Rot can be categorized by two types:

Dormant Rot refers to Software that is not used on a consistent basis,
making it prone to become useless as the rest of the application evolves.

Active Rot occurs when constant modifications and bug fixes gradually
affect the integrity of the original feature or code base.

Every time you get handed new code to test, you’re getting a combina-
tion of code that hasn’t been touched, code that has intentionally changed,
and code that perhaps was unintentionally affected by the changes.

One approach for compating software rot is to break your tests in thirds,
executing a new third every time you get new code. Rather than breaking
up your entire test suite into top, middle, and bottom thirds, it’s better to
slice each major function or feature into thirds. This helps re-establish that
each feature is working correctly in every build, demonstrates that the code
has not significantly decayed, and keeps your test results from getting stale.

For more information about decaying code see “Software Rot” at
Wikipedia.com [SOFTWAREROT 16].

Here’s an example of how you could distribute your tests across a mobile
card battle game where you have one screen for purchasing cards, another
for assembling your deck, and another for battling with an AI opponent and
determining a winner.

In this imaginary test suite, there are 40 combinatorial test cases for
purchasing cards, two TFDs with a total of 20 paths for assembling your
deck, and one TFD with 6 paths and 15 tests written manually to test the
card battle process. Table 14.1 shows how these can be distributed into
three test sets called A, B, and C.

Card Battle Feature Test Type “A” Tests “B” Tests “C” Tests

Purchase Cards Combinatorial 13 13 14

Deck Forming TFD 7 7 6

Resolve Battle TFD + Manual 7 7 7

Table 14.1  A-B-C Distribution of Card Battle Tests

NOTE

Game Testing.indb 322 03/09/16 3:58 PM

Regression Testing and Test Reuse • 323

To distribute the tests even more efficiently, break them down by each
design. If the three Purchase Cards combinatorial designs generate 12, 12,
and 16 test cases respectively, then the “A” tests should use four tests from
the first combinatorial table, four from the second, and five from the third. If
the two Deck Forming TFD designs have 11 and 9 paths respectively, then
use four from the first TFD and three from the second one. Follow suit for
the Resolve Battle tests. Then repeat the process for the “B” and “C” cycles so
that all of the test cases are scheduled to be run across all three cycles. Table
14.2 shows a detailed breakdown and A-B-C distribution of the Purchase
Cards combinatorial test cases generated by separate designs for selecting a
pack to purchase, paying for the cards, and updating the card inventory.

Test Design A Cycle B Cycle C Cycle

SelectPack Test1

Test2

Test3

Test4

Test5

Test6

Test7

Test8

Test9

Test10

Test11

Test12

PayForCards Test1

Test2

Test3

Test4

Test5

Continued

Game Testing.indb 323 03/09/16 3:58 PM

324 • Game Testing

Test Design A Cycle B Cycle C Cycle

Test6

Test7

Test8

Test9

Test10

Test11

Test12

UpdateInventory Test1

Test2

Test3

Test4

Test5

Test6

Test7

Test8

Test9

Test10

Test11

Test12

Test13

Test14

Test15

Test16

Table 14.2  Detailed Distribution of Purchase Cards Combinatorial Test Cases

A good procedure to follow whenever you get a release with bug fixes is
to run the tests that previously failed plus any new tests you created for that
bug, regardless of which cycle you are on. Following that, run the tests you
identified for the current cycle to maintain your confidence in the quality
of the remaining features.

Game Testing.indb 324 03/09/16 3:58 PM

Regression Testing and Test Reuse • 325

Defect Modeling
Besides deciding which tests to run, regression testing can also involve

the modification of existing tests or the creation of new tests. When you
don’t have specific tests for new issues or tweaks that pop up in Alpha, Beta,
post-release, or patches, you can provide very targeted test designs that
model specific bugs or changes. Like the tests you created earlier in the
project, the new tests should be run in cycles in order to establish that the
changes continue to work as intended. As an example, we’ll create a test to
model this defect that was fixed in a patch for Gears of War 2:

 �An issue that could cause players’ Look Sensitivity to be
changed to their Zoom sensitivity while zooming in, zooming
out, and firing. [UPDATE 2]

Gears of War 2 gives the player the ability to configure three independent
weapon-wielding sensitivity parameters. The Look Sensitivity affects how
quickly your player can turn back and forth when looking around the environ-
ment with his weapon at his side. Target Sensitivity determines how fast you
can swivel your weapon when it is raised and you are looking through the gun
sight for targets to shoot. The Zoom Sensitivity value determines how quickly
your player can turn when your weapon is raised and zoomed in to magnify
your target. For example, when wielding a sniper rifle, you might want to be
able to look around quickly to find something to shoot at, have some more
control when you’re picking out a distant target, and slowly guide the cross-
hairs to get a precise shot when you zoom in with the scope. In that case,
you would have Look Sensitivity = High, Target Sensitivity = Medium, and
Zoom Sensitivity = Low. When the defect changes the Look Sensitivity to the
Zoom Sensitivity, that will slow down your ability to scan and notice incoming
enemies when you’re not aiming at anything, contrary to your original setup.

To get this TFD started, draw bubbles and connecting lines that exactly
match the different states of the game that are described in the bug report.
The report explicitly mentions three events: zooming in, zooming out, and
firing. It’s logical to model this with a “zoomed in” state and a “zoomed
out” state. Events like “FireWeapon” and “ZoomIn” provide transitions and
loops. Figure 14.1 shows a first cut at the sensitivity regression scenario.

Fire
Weapon Fire

WeaponZoomed
Out

ZoomIn
Zoomed

InZoomOutIN

Figure 14.1  First stage of Look Sensitivity bug-fix verification TFD.

Game Testing.indb 325 03/09/16 3:58 PM

326 • Game Testing

This is a good start, but so far the design doesn’t have any states or flows
related to the use of the LookSensitivity parameter, which is the part that
was broken prior to the patch. Because LookSensitivity affects the player’s
turning speed when their weapon is lowered, this test needs a NotAiming
state. That will serve as a place to start the failure verification scenario and a
place to return to in order to check that LookSensitivity behaves according to
the player’s setting once he lowers his weapon. The NotAiming state is also a
good place to connect the OUT box because it will force the LookSensitivity
to be checked at the end of each test.

Finally, this TFD needs to take into account what should be verified
when arriving at each zoomed state. The tests generated from this design
must check that the appropriate sensitivity setting is applied to each zoomed
state. That checking can be done each time the test arrives at the ZoomedIn
or ZoomedOut by performing a “look” so the data dictionary definitions for
those states must instruct the tester to look and check that the appropriate
sensitivity is used—the Zoom Sensitivity value for the ZoomedIn state, the
Target Sensitivity for the ZoomedOut state, and the Look Sensitivity for the
NotAiming state.

Figure 14.2 shows the full verification TFD with actions, flow numbers,
and the OUT state added to the diagram.

3:Fire
Weapon/
Weapon
Effects

5:Fire
Weapon/
Weapon
Effects

Zoomed
Out

NotAiming

4:ZoomIn

2:Aim
Weapon

1:Enter 9:Exit

8:Look

Zoomed
In6:ZoomOut

7:LowerWeapon

IN OUT

Figure 14.2  Complete Look Sensitivity bug-fix verification TFD.

Once the diagram and checks are in place, you need to come up with
a set of paths to test. The situation here is slightly different from when
you create a fresh new TFD for something you haven’t tested yet. In this
case, you must test the specific path that matches the failure scenario
described in the bug report. If there was more than one way to cause

Game Testing.indb 326 03/09/16 3:58 PM

Regression Testing and Test Reuse • 327

the failure, each of those paths must be defined for this test. Once that’s
been done, define additional paths to ensure each flow is tested at least
once. For the current design, the defect verification paths should include
the zoom in/zoom out/fire sequence, which corresponds to flows 4, 6,
and 3, plus doing the “Look” after lowering your weapon to make sure
LookSensitivity has not changed. This makes the basic bug verification
path 1, 2, 4, 6, 3, 7, 8. This path should also function as the baseline path
for this TFD.

Beyond the baseline, you need to have at least one path that includes
flow 5, but also consider what other paths will do a thorough job of ensur-
ing that the original defect is not still lurking in the code. Be sure to define
one or more paths with loops, cycle through the baseline and a take a long
path or two. Some paths that would be appropriate for the current example
are as follows:

Loops—a) Fire your weapon multiple times when zoomed in, then
zoom out, and lower the weapon to check LookSensitivity. b) Follow the
baseline to the ZoomedIn state, then ZoomIn and ZoomOut multiple times
before firing from the ZoomedOut state. c) After entering, look multiple
times from the NotAiming state before proceeding with the rest of the
baseline.

Baseline Cycling—Follow the baseline and return to the NotAiming
state, but instead of exiting from there, go back through the baseline a sec-
ond time.

Long Path—Go through each flow three times in different sequences.

The benefit of modeling the defect and doing a new design instead of
running a existing test that “sort of” covers the defect scenario, is that you
will do a better job of revealing manifestations of related defects that could
exist but were not found during the initial testing, or new defects that were
introduced by the code changes that were made to fix the bug. The purpose
is to create a safety net of tests that will increase your confidence that the
original issues are fixed and no new issues were introduced by the fixes.

Time Keeps on Ticking
Some games seem as though they have been played almost forever.

Successful sports titles in particular can evolve and grow over a course of
many years by updating rosters, uniforms, schedules, stadiums, and so on.
You can play one version of the game over many seasons or purchasing the

Game Testing.indb 327 03/09/16 3:58 PM

328 • Game Testing

newer editions of the game. When the same part of a game is exercised
over and over again, unintended side effects could show up. Rather than
clearing memory and deleting saved files each time you re-run a test, have
a machine or drive that keeps saved files so you can accumulate informa-
tion in order to age the game to the point where things start to break down.

Take a moment to stop and think about detrimental situations that
could result from playing or testing a game over a long period of time…

Have you thought about it? Some plausible examples are:
■■ The weapon shop runs out of inventory.

■■ The game won’t allow you to plant any more trees.

■■ Your player accumulates money or points until there are no more digits
left to represent an increase in the amount.

■■ All vehicles are damaged so badly that they can’t be used, preventing
access to the next area or zone.

■■ Your stats are maxed out so buffs and bonuses have no effect.

A real-life example of an aging problem shows up in FIFA 11 after you
take your Virtual Pro through many seasons. New players are generated to
simulate what happens in real life when the original players don’t have their
contracts renewed or they retire from the game. The new players receive
newly generated names and are incorporated into each of the teams over
time. One impact of the newly minted players is that there are no audio
assets for the pronunciation of their names, so the in-game announcers con-
tinue to use the audio for the original player’s name at that roster spot. An
additional side effect occurs where some new players are assigned empty
names. This manifests itself in many places where the player’s name is blank
on various game screens and reports. Figure 14.3 shows an exhibition match
lineup screen where the left center midfielder (LCM) for the Bohemians
club has a blank name. Wherever the game UI would normally make refer-
ence to the player’s name, such as when the player scores a goal or receives
a yellow card, you see only a blank space or just the player’s jersey number.
Looking across all of the teams in the game reveals that many other teams
exhibit the same problem and some have more than one player without a
name. The big lesson here is that if you end your testing after only one sea-
son, or never play through the game multiple times, you can miss faults that
occur and accumulate over time.

Game Testing.indb 328 03/09/16 3:58 PM

Regression Testing and Test Reuse • 329

Expanding Possibilities
Regression testing also applies to checking original game features in

the presence of new additions such as expansion packs or items added to an
online store. Integrating them with existing tests might not always be possi-
ble. The Gears of War 2 “All Fronts” expansion pack added 19 maps, a new
single player chapter, and 13 new achievements. Some of the achievements
have requirements that combine original Gears 2 features or achievements
with the new content. For example, the “Be Careful What You Wish For”
achievement requires you to have reached level 8 in multiplayer and com-
pleted waves 1 through 10 on the Highway map in Horde. A player who had
previously reached level 8 or higher should be able to earn the achievement
by completing the 10 waves. Players who bought the game and the expan-
sion together, however, would have to satisfy both requirements before
receiving the achievement. It’s possible for the player to reach the required
level before completing the 10th Horde wave, and it’s also possible for the
player to complete the 10th wave before reaching level 8. A player who is
already at level 8 before installing the expansion pack only has to worry
about completing the 10th wave on the new map. This situation turns out to
be a good time to use a test tree to represent the various ways to fulfill the
conditions of the achievement.

Figure 14.3  FIFA 11 match lineup with nameless player.

Game Testing.indb 329 03/09/16 3:58 PM

330 • Game Testing

Figure 14.4 shows a test tree for the “Be Careful What You Wish
For” achievement. The tree accounts for what level the player is at with
respect to the goal (level 8), when the target level or target wave criteria is
met—also account for both being met simultaneously and which criteria is
reached after the first one is met. Reaching any of the terminal nodes in the
tree should result in successful completion of the achievement.

TEST REUSE

Test Reuse is a strategy to create tests that are designed and structured
to expand and adapt to the evolution of the game. The effort you put into
the development of a test design or script can be used over and over again
for more than one feature, more than one version, more than one game or
all of the above. To be successful, you need to think about reuse from the
time you begin designing your tests.

TFD Design Patterns
As you gain experience testing games, you’ll be able to recognize recur-

ring situations within each game, as well as common situations that appear
across multiple genres and titles. This provides an opportunity to optimize
the way you produce new test designs. Many of these situations can be rep-
resented by two or three major game states, with a few transitions between
each state. Test Flow Diagrams are a good vehicle for turning out tests
based on these patterns. Each new test can be created by changing the state
names and flows without having to rethink the structure of the diagram
each time. Figure 14.5 shows the skeleton for a two-state pattern.

Starting Level

Install DLC > Level 8 Complete 10 waves

Complete 10 waves

Complete 10 waves

Reach Level 8

Reach Level 8Complete 10 waves

Complete 10 waves
and reach Level 8
at the same time

< Level 8

Level 8

1st Accomplishment 2nd Accomplishment

Figure 14.4  Highway map wave achievement tree.

Game Testing.indb 330 03/09/16 3:58 PM

Regression Testing and Test Reuse • 331

IN
State1 State2

Event1/Action1

Event2/Action2

Figure 14.5  Two-State TFD design pattern.

Here’s how to use the pattern for testing weapon swapping in a first-
person shooter. State1 becomes the state where you are wielding the default
weapon, so you can call that state Weapon1. State2 is where you are using
an alternate weapon instead of the default. You get from State1 to State2 by
swapping weapons, and likewise to get from State2 back to State1. This pat-
tern also can be used for swapping weapons from your inventory or having
to drop your weapon in order to pick up a new one. Figure 14.6 shows the
weapon swap scenario implemented using the two-state pattern.

IN Weapon1 Weapon2
Swap2/SwapFx2

Swap1/SwapFx1

Figure 14.6  Weapon Swap using the two-state design pattern.

To reuse this pattern for the same game running on different platforms,
you need to account for platform-specific events. For example, game con-
trols can be very different for a version that’s published for consoles, ver-
sus the same game running on PCs or mobile devices. Swapping weapons
might be accomplished by a single controller button hitting a keypad num-
ber or tapping on the screen. The differences can be reflected in the name
you give to each Event, or you can use a generic name for each event and
have the flexibility to define whether it’s the same button used for each, or a
different type of control altogether. A simple table can provide the separate
event and action definitions for each supported platform without requiring
you to make any new diagrams. Table 14.3 provides some example defini-
tions for swapping weapon 1 on those various platforms:

Platform Swap1 event definition

PC Press the 1 key on the numeric keypad

Console Press the X button on the controller

Mobile Tap the “1” icon in the lower left corner

Table 14.3  Swap1 Event Definitions for Various Platforms

Game Testing.indb 331 03/09/16 3:58 PM

332 • Game Testing

Similarly, the actions resulting from each swap could vary due to dif-
ferent animations and/or sound effects designed for each weapon type and/
or platform. Keep in mind that this doesn’t just apply to weapons—you can
take the same approach if you are swapping kittens, skee balls, or golf clubs.
Use the patterns to get started quickly and turn them into well-designed
TFDs by adding related flows and states that are particular to your game
and the intended purpose of the test. Additional techniques described in
previous chapters, such as expert paths and flow usage profiles will help you
round out your design. Complete the TFD by adding the OUT state, num-
bering the flows, and providing percentages for each flow if you are doing
usage-based testing. Once you generate your paths, your new test is ready
to go.Figure 14.7 illustrates some example scenarios that fit into the two-
state pattern. This is not an exhaustive list but is meant to encourage you
to recognize situations where you can use these patterns to test your game
features more efficiently. Note that some scenarios begin with a negative
state (e.g., NotPoisoned) and others with a positive one (HasBall). Where
you start the test depends entirely on the initial state of the situation you
want to model—either by your choice as a test designer, or to reflect the
natural progression of the game. For example, in the Wolfman example, the
game story begins with the hero in human form and the moon not yet full.

IN
Not

Poisoned

Posion

Cure Poisoned

IN
Not

Wolfman

FullMoon

NotFullMoon Wolfman

IN
Not

Flying

TakeOff

Land Flying

IN HasFlag

DropFlag

PickupFlag
Doesn’t

HaveFlag

IN HasBall

Fumbles

RecoversFumble
Doesn’t

HaveBall

Figure 14.7  Example two-state scenario starter diagrams.

Game Testing.indb 332 03/09/16 3:58 PM

Regression Testing and Test Reuse • 333

There are also game situations that can be tested using a three-state
pattern. The principle is the same as for the two-state patterns. An extra
twist to the three-state template is that one of the states has a transition in
only one direction and another always has two flows going back to the start-
ing state. This might not apply one hundred percent of the time, but start
with the basic pattern and force yourself to discover what information can
be put on each of the flows. After establishing the basic pattern, provide
the additions or subtractions that will make your test complete and correct,
while keeping it relatively simple. Figure 14.8 shows the template for the
three-state TFD pattern.

Event5/
Action5

Event4/
Action4

State3

State1
IN

State2

Event3/
Action3

Event1/Action1

Event2/Action2

Figure 14.8  Three-state TFD design pattern.

As with the two-state patterns, you can have different event, action, or
state definitions for the same game running on different platforms, but you
don’t have to change the diagram to accommodate that. Figure 14.9 shows
the three-state pattern applied to a few generic game scenarios.

None of the two-state or three-state pattern lists are exhaustive, and the
patterns themselves by no means represent every game scenario you will
encounter. As you progress through your career as a tester, pay attention
to the patterns that emerge from your own test designs and add them to
your pattern collection. Reuse them and evolve them to get more and more
mileage for your effort. At the same time, resist the temptation to be satis-
fied with a pattern-based test that might not be the best test for the situa-
tion at hand. Treat the pattern as a starting point rather than an endpoint.
It’s not meant to constrain you but to get you going quickly with the basic
stuff so you can direct your energy at including all the special parts that
make the test uniquely yours.

Game Testing.indb 333 03/09/16 3:58 PM

334 • Game Testing

Looking Back and Forth
Looking back at the TFD created for the Gears of War sensitivity bug,

doing a thorough and efficient job of testing means reusing that one design
to test each of the five weapons in the game that have zoom capabilities:
Hammerburst Assault Rifle, Longshot Sniper Rifle, Boltok Pistol, Gorgon
Pistol, and Snub Pistol. An efficient way to handle this without making
edits, creating additional diagrams, or adding paths, is to repeat the tests
for each zoomable weapon. When the test is reused in this way, each vari-
ant needs to show up as a separate item in your test inventory so that you

Booted Leave
Group

InGroup

NotIn
Group

Invited
ToGroupIN

Accept

GetInvite

Decline

Plow
Harvest

Plants
Mature

EmptyLot Planted
LotIN

WaitTime

PlantSeed

Plow

Drop
Item

Sell
Item

OwnItem

NoItem Examining
ItemIN

Purchase

Examine

Decline

Figure 14.9  Example three-state scenario starter diagrams.

Game Testing.indb 334 03/09/16 3:58 PM

Regression Testing and Test Reuse • 335

can track results and include each of them in your A-B-C execution cycles.
It’s also best in this case to mix weapons and paths into each of the cycles
so you’re not blind to a fault that occurs for an individual weapon or path.
Table 14.4 shows how this might look if you’ve defined three paths for your
Look Sensitivity TFD.

Test Design: LookSensitivity

A Cycle B Cycle C Cycle

Path1 - Hammerburst

Path 2 - Longshot

Path 3 - Boltok

Path 1 - Gorgon

Path 2 - Snub

Path 3 - Hammerburst

Path 1 - Longshot

Path 2 - Boltok

Path 3 - Gorgon

Path 1 - Snub

Path 2 - Hammerburst

Path 3 - Longshot

Path 1 - Boltok

Path 2 - Gorgon

Path 3 - Snub

Table 14.4  Look Sensitivity Test Scheduling for Zoomable Weapons

Earlier in this chapter, a test tree was used to provide a design for test-
ing a particular achievement added to Gears of War 2 via an expansion pack.
Even though this happened after your main test development campaign,
you can still benefit from taking a reusable approach. The expansion pack
has a total of seven new achievements with similar requirements, varying by
what level the player achieves, how many waves must be cleared, and which
map must be used. Instead of creating seven similar test trees, produce a
single generic version that can be understood and run by testers according to

Game Testing.indb 335 03/09/16 3:58 PM

336 • Game Testing

the different data requirements for each achievement. Figure 14.10 shows a
generic test tree to accommodate existing and future achievements that are
structured the same way.

Starting Level

Complete
required waves

Complete
required waves

Complete
required waves

Complete required
waves and reach
required level

at the same time

Reach
required Level

Reach
required level

Complete
required waves

1st Accomplishment 2nd Accomplishment

Install DLC > Required
 level

< Required
 level

Required
level

Figure 14.10  Generic wave completion achievement tree.

For details about the achievements that are part of the All Fronts
Collection, see Gears of War 2 All Fronts Official Achievement
List, at http://www.ign.com/articles/2009/05/26/gears-of-war-2-all-
fronts-official-achievement-list.html.

Combinatorial Expansion
Games will grow in complexity as they evolve and get updated. Redoing

your tests from scratch is not a productive strategy. Because combinatorial
tests can absorb new parameters and values with minimum growth of your
test inventory, they’re a great way to evolve your tests to keep up with new
or updated features.

Electronic Arts’ FIFA series has been around for a long time, pro-
viding more capabilities each year to keep up with soccer fans’ growing

NOTE

Game Testing.indb 336 03/09/16 3:58 PM

http://www.ign.com/articles/2009/05/26/gears-of-war-2-all-fronts-official-achievement-list.html
http://www.ign.com/articles/2009/05/26/gears-of-war-2-all-fronts-official-achievement-list.html
http://www.ign.com/articles/2009/05/26/gears-of-war-2-all-fronts-official-achievement-list.html

Regression Testing and Test Reuse • 337

expectations. FIFA 2007 for Xbox 360 provided the following choices on the
Game Settings—Visual screen:

Time/Score Display: OFF, ON

Camera: Dynamic, Dynamic V2, Tele, End-to-End

Radar: 2D, 3D, OFF

Match Intro: ON, OFF

These values can be reduced to 12 tests using a combinatorial design
generated by the allpairs tool, as shown in Table 14.5.

Camera Radar TS Display Match Intro

1 Dynamic 2D OFF OFF

2 Dynamic 3D ON ON

3 DynamicV2 2D ON OFF

4 DynamicV2 3D OFF ON

5 Tele OFF OFF OFF

6 Tele 2D ON ON

7 EndToEnd OFF ON ON

8 EndToEnd 3D OFF OFF

9 Dynamic OFF OFF ON

10 DynamicV2 OFF ON OFF

11 Tele 3D ON OFF

12 EndToEnd 2D OFF ON

Table 14.5  FIFA 2007 Visual Settings Combinatorial Table

For the 2008 edition, the Match Intro setting was removed and two
new settings: HUD and Indicator were added. HUD choices are “Player
Name Bar” and “Indicator.” Indicator choices are “Player Name” and
“Player Number.” Also, the Camera choices were moved to the Game
Settings–Camera screen and a “Pro” camera choice was added. Separate
Camera setting choices can be made for different game modes—Single
Player, Multiplayer, Be a Pro, and Online Team Play; but for the purposes
of this example we will treat them as a single setting. When it’s time to test,

Game Testing.indb 337 03/09/16 3:58 PM

338 • Game Testing

go through the table for each of the different modes, taking advantage of
yet another way to re-use this test design.

The 2008 version of the table can be constructed from scratch, but it’s
easier to just make the changes to the 2007 file you ran through allpairs and
regenerate a new table. Listing 14.1 shows the FIFA 2008 data for allpairs
input file and Table 14.6 shows the new visual settings combinatorial table
generated for FIFA 2008. One hundred and twenty combinations are now
reduced to 16 test cases.

LISTING 14.1 Allpairs File for FIFA 2008 Visual Settings Changes

Camera	 Radar	 TS-Display	 HUD	 Indicator
Dynamic	 2D	 OFF	 NameBar	 Name
DynamicV2	 3D	 ON	 Indicator	 Number
Tele	 OFF
EndToEnd
Pro

Camera Radar TS Display HUD Indicator

1 Dynamic 2D OFF NameBar Name

2 Dynamic 3D ON Indicator Number

3 DynamicV2 2D ON NameBar Number

4 DynamicV2 3D OFF Indicator Name

5 Tele OFF OFF NameBar Number

6 Tele OFF ON Indicator Name

7 EndToEnd 2D OFF Indicator Number

8 EndToEnd 3D ON NameBar Name

9 Pro 2D ON Indicator Name

10 Pro 3D OFF NameBar Number

11 Dynamic OFF OFF Indicator Name

12 DynamicV2 OFF ON NameBar Number

13 Tele 2D OFF NameBar Name

14 Tele 3D ON Indicator Number

15 EndToEnd OFF OFF Indicator Number

16 Pro OFF ON NameBar Name

Table 14.6  FIFA 2008 Visual Settings combinatorial table

Game Testing.indb 338 03/09/16 3:58 PM

Regression Testing and Test Reuse • 339

The files for all of the FIFA combinatorial update examples are
included on the book’s DVD in the folder for this chapter.

FIFA 2009 made only one small addition to the visual settings: a “Broad-
cast” choice for the Camera option. This is easily incorporated into an addi-
tional row in the allpairs input file shown in Listing 14.2, which produces
the tests shown in Table 14.7. Adding the Broadcast value was inexpensive,
costing only three more tests.

Listing 14.2 Allpairs File for FIFA 2009 Visual Settings Changes

Camera	 Radar	 TS-Display	 HUD	 Indicator
Dynamic	 2D	 OFF	 NameBar	 Name
DynamicV2	 3D	 ON	 Indicator	 Number
Tele	 OFF			
EndToEnd				
Pro
Broadcast

Camera Radar TS-Display HUD Indicator

1 Dynamic 2D OFF NameBar Name
2 Dynamic 3D ON Indicator Number
3 DynamicV2 2D ON NameBar Number
4 DynamicV2 3D OFF Indicator Name
5 Tele OFF OFF NameBar Number
6 Tele OFF ON Indicator Name
7 EndToEnd 2D OFF Indicator Number
8 EndToEnd 3D ON NameBar Name
9 Pro 2D ON Indicator Name
10 Pro 3D OFF NameBar Number
11 Broadcast OFF OFF Indicator Name
12 Broadcast 2D ON NameBar Number
13 Dynamic OFF ON NameBar Number
14 DynamicV2 OFF OFF NameBar Name
15 Tele 2D OFF Indicator Number
16 Tele 3D ON NameBar Name
17 EndToEnd OFF ON Indicator Number
18 Pro OFF OFF NameBar Name
19 Broadcast 3D OFF Indicator Number

Table 14.7  FIFA 2009 Visual Settings Combinatorial Table

NOTE

ON DVD

Game Testing.indb 339 03/09/16 3:58 PM

340 • Game Testing

Because only the Camera parameter list was expanded for FIFA 09, an
alternative to producing an entirely new table would be to “tack on” addi-
tional rows to the table, which will cover the combinations necessary for the
added Broadcast choice. The advantage of doing this is that you can continue
to use the tests you’ve already produced so you don’t have to update your
test management system or re-do the automation for those tests. The test
suite will grow based on which parameter acquired the additional value. In
this case, the new Camera parameter added only three more tests because
that was the highest number of choices for any of the other parameters. To
form the required pairs, the new choice has to be combined with each of
the choices for the other parameters in the test. If a new value was added
to the HUD instead of the Camera, then five new tests would be required
to pair the new HUD value with each of the five Camera choices: Dynamic,
DynamicV2, Tele, EndToEnd and Pro. Table 14.8 shows test cases 17-19
tacked onto the end of the FIFA 2008 table.

Camera Radar TS-Display HUD Indicator

1 Dynamic 2D OFF NameBar Name

2 Dynamic 3D ON Indicator Number

3 DynamicV2 2D ON NameBar Number

4 DynamicV2 3D OFF Indicator Name

5 Tele OFF OFF NameBar Number

6 Tele OFF ON Indicator Name

7 EndToEnd 2D OFF Indicator Number

8 EndToEnd 3D ON NameBar Name

9 Pro 2D ON Indicator Name

10 Pro 3D OFF NameBar Number

11 Dynamic OFF OFF Indicator Name

12 DynamicV2 OFF ON NameBar Number

13 Tele 2D OFF NameBar Name

14 Tele 3D ON Indicator Number

15 EndToEnd OFF OFF Indicator Number

16 Pro OFF ON NameBar Name

17 Broadcast 2D OFF NameBar Name

18 Broadcast 3D ON Indicator Number

19 Broadcast OFF OFF NameBar Name

Table 14.8  FIFA 2009 Visual Settings Appended to FIFA 2008 Table

Game Testing.indb 340 03/09/16 3:58 PM

Regression Testing and Test Reuse • 341

FIFA 10 retained the same choices as FIFA 09 so you get to keep
those tests without any changes. Now let’s take a look at what changed in
FIFA 11. First, the “Indicator” visual setting was renamed “Player Indi-
cator” and a “Gamertag Indicator” On/Off setting was added. Second, a
“Net Tension” setting was added, allowing you to choose between Default,
Regular, Loose or Tight tension. Lastly, the “Dynamic V2” Camera setting
was renamed “Co-Op.” When you update the allpairs input file, make
sure each row has a total of seven columns (six tabs) to account for the
two added parameters. Listing 14.3 shows the allpairs input data for the
FIFA 11 visual settings.

LISTING 14.3 Allpairs File for FIFA 2011 Visual Settings Changes

	 Player	 Gamertag	 Net
Camera	 Radar	 TS-Display	 HUD	 Indicator	 Indicator	 Tension
Dynamic	 2D	 OFF	 NameBar	 Name	 OFF	 Default
Co-Op	 3D	 ON	 Indicator	 Number	 ON	 Regular
Tele	 OFF					 Loose
EndToEnd						 Tight
Pro
Broadcast

This time the change has a more significant impact on the test
suite. Table 14.9 shows that six more tests are required, so now the table
has grown to more than double the size of that which was first produced for
FIFA 2007. You also need to consider that the time to setup, run, auto-
mate and check the results of these tests has become more complicated
because of the additional parameters that have to be accounted for.

Camera Radar TS-Display HUD Player
Indicator

Gamertag
Indicator

Net
Tension

1 Dynamic 2D OFF NameBar Name OFF Default

2 Dynamic 3D ON Indicator Number ON Regular

3 Co-Op 3D ON NameBar Number OFF Default

4 Co-Op 2D OFF Indicator Name ON Regular

5 Tele OFF ON NameBar Name ON Loose

6 Tele OFF OFF Indicator Number OFF Tight

Continued

Game Testing.indb 341 03/09/16 3:58 PM

342 • Game Testing

Camera Radar TS-Display HUD Player
Indicator

Gamertag
Indicator

Net
Tension

7 EndTo-
End 2D ON Indicator Number OFF Loose

8 EndTo-
End 3D OFF NameBar Name ON Tight

9 Pro OFF ON Indicator Name ON Default

10 Pro 2D OFF NameBar Number OFF Regular

11 Broadcast 3D OFF Indicator Name OFF Loose

12 Broadcast 2D ON NameBar Number ON Tight

13 Dynamic OFF ON NameBar Name OFF Regular

14 Co-Op OFF OFF NameBar Number ON Loose

15 Tele 2D OFF Indicator Number ON Default

16 Tele 3D ON NameBar Name OFF Regular

17 EndTo-
End OFF OFF Indicator Number OFF Default

18 Pro 3D ON Indicator Name OFF Tight

19 Broadcast OFF ON NameBar Name ON Default

20 Dynamic ~3D OFF Indicator Number ON Loose

21 Co-Op ~2D ON Indicator Name OFF Tight

22 EndTo-
End ~OFF ON NameBar Name ON Regular

23 Pro ~2D OFF NameBar Number ON Loose

24 Broadcast ~3D OFF Indicator Number OFF Regular

25 Dynamic ~OFF OFF NameBar Number ON Tight

Table 14.9  FIFA 2011 Visual Settings Combinatorial Table

It’s very expensive to run all of your tests for every incremental change
to a game, so choosing the right set of tests to run can make a big difference
in how fast your team can retest and re-certify the new code. Good regres-
sion testing is a combination of safety, history, and intuition. The right for-
mula will balance higher quality with a shorter time frame for getting your
product out to your avid customers.

Game Testing.indb 342 03/09/16 3:58 PM

Regression Testing and Test Reuse • 343

Tests which are constructed in a consistent and rational manner make
it easier for testers to maintain, update, and execute their tests efficiently.
Like well-built durable objects in the real world, reusable tests should last a
long time, be useful in many situations, and require little or no maintenance
to continue functioning.

Exercises

1.	Create a bug-fix TFD for the following Gears of War 2 issue:
“An issue where players couldn’t chainsaw enemy
meatshields if the meatshields were already damaged.”

2.	Use a 2-bubble TFD pattern to provide tests for at least three scenarios
you might find in a vampire role-playing game. Consider situations from
both the vampire’s perspective and the perspective of other characters
who might appear in the game.

3.	The DVD that comes with this book contains video excerpts of a match
played by the two teams shown in Figure 14.3. Write down all of the
situations you can find on the video where the left center midfielder’s
(LCM) name should appear but is not shown.

4.	Update Table 14.9 to account for a “3DTV” Gamertag Indicator value,
adding the minimum number of new test cases needed to maintain full
pairwise coverage.

ON DVD

Game Testing.indb 343 03/09/16 3:58 PM

Game Testing.indb 344 03/09/16 3:58 PM

EXPLORATORY TESTING OVERVIEW

Up to this point, we have focused on structured approaches for creat-
ing test cases. Those methods rely on strict interpretation of requirements
and specifications, from which test cases are derived. When the product is
examined, it is judged to be correct or incorrect. Despite the formality of
that approach, a significant portion of defects continue to appear across a
wide variety of games.

Exploratory testing attempts to fill the gaps by taking an approach that
puts the tester in the role of a tourist who explores the specifications and
requirements of the product according to different routes throughout the
product. The goals of exploratory game testing are:

In This Chapter

●● Exploratory Testing Overview
●● Recording Exploratory Tests
●● Session Based Testing

Exploratory Game
Testing

15c h a pt e r

Game Testing.indb 345 03/09/16 3:58 PM

346 • Game Testing

■■ Gain an understanding of how the game or a game feature works, how
elements of the game interact during the game, and how does the game
function while the user is playing the game

■■ Force the game software to exhibit its capabilities

■■ Find bugs in the game

In the book “Exploratory Software Testing”, James A. Whittaker suggests
and describes tours through various “districts” for the tester to examine and
explore. Here are some useful tours based on various game genres:

Sports
Stadium Tour

When you go to a sports venue, what do you expect to see? Fans, cheer-
leaders, scoreboards, banners, weather, songs, the sounds of referees or
umpires, and the game announcer are all part of a major sporting event. If
any of these elements are missing, the game loses authenticity. Teams may
also move to a new stadium permanently, or to a foreign venue for special
events such as the World Cup, Stanley Cup, NBA Finals, Super Bowl, or
the World Series. Weather can also play a role in outdoor events.

Player Tour

The FIFA and Madden franchises constantly update the rosters of players
and referees from one version to another. Check for missing or incomplete

Figure 15.1  Blank player image.

Game Testing.indb 346 03/09/16 3:58 PM

Exploratory Game Testing • 347

elements in the roster or card selection gallery in all mobile, console and PC
versions. Here’s an example of a blank Left Back player image from FIFA 15
Ultimate Team New Season:

Also check for effects from players or teams temporarily performing to
other stadiums, such as World Cup or tournament events. Teams may be
promoted to a higher league or relegated to a lower tier. Player stats can
also change for better or for worse from season to season, and special ver-
sions of players may appear, either temporarily or permanently.

Manager Tour

When you are in the role of manager of a team, you may have to deal
with schedule changes, tournaments, injuries, fines, budgets, suspensions,
and roster changes. Keep an eye out for special dates like holidays which
may change the time or date of a scheduled match. Make sure you are able
to accept a job with another team or move to another league. Funds may
be temporarily suspended when a transaction is pending and should be
adjusted once the transaction is completed. Check your bank account when
fines are levied, salaries are raised, or bonuses are awarded.

Combat
Military Tour

Warfare games like Halo, Unreal Tournament, and Mass Effect rely on
weapons, vehicles, ammunition and healing. Players must be able to pick
up and use the weapons and ammo that are compatible with their class
and skills, and according to their level and/or abilities. Verify that damage
is applied to objects in the environment if applicable. That would be a fac-
tor in determining whether a vehicle or weapon can continue to operate.

Side-Scroller Tour

Marvel Contest of Champions, Mortal Kombat, and other side-scrollers
have to take into consideration the amount of energy a player has in order
to progress to another level or match. Various factors may delay the abil-
ity to engage in a battle, such as “stun” effect or “sleep” effect, insufficient
energy, belonging to an appropriate class or faction, or waiting for a team-
mate or another opponent to become available to join the match.

Medic Tour

Healer class players of the required level may or may not be able to heal
themselves. Non-healer players should be able to heal when equipped with
the appropriate healing elements. Check that healers are able to heal other

Game Testing.indb 347 03/09/16 3:58 PM

348 • Game Testing

healers if applicable. The duration of healing and the recovery time should
also be considered according to the healer’s level and/or attributes.

Energy Tour

Many battle games have wait times between matches or events. Some-
times It may be possible to purchase energy or boosting items to acceler-
ate the next battle. There may be restrictions, such as the type of energy
required. Make sure to check for max energy, warnings for low energy, and
the “no energy” condition. Credits or payments (in-game currency or actual
money) may be available to restore energy to continue the fight.

In addition to tours based on video game genres, tours can also be based
on possible player behaviors, such as…

The Couch Potato Tour
The Couch Potato does as little work as necessary. This often involves

leaving optional fields blank or at their default value. Card battle players
could employ the “Couch Potato Tour”, making minimum actions or trans-
actions, such as waiting for the daily free card and doing nothing else, but
being patient to sell or trade them at a later date.

Figure 15.2  Selecting the highest value crystal.

Game Testing.indb 348 03/09/16 3:58 PM

Exploratory Game Testing • 349

One example of Couch Potato behavior comes from Marvel Contest of
Champions, which shows possible selections of crystals that can be used to
boost the level of one of the game characters. The couch potato will select
a single crystal with the highest value (1300) rather than selecting multiple
lower-value crystals, even though consuming multiple crystals would free
up slots for additional crystals.

Another Couch Potato example comes from FIFA 15 Ultimate Team™.
In this scenario, the Couch Potato has to decide how to refill the players’
stamina. Rather than performing 3 separate transactions to bring 3 individual
players to 100% stamina, the Couch Potato prefers to make one transaction
by using an expensive Squad Fitness card instead.

Figure 15.3  Using an expensive Squad Fitness card.

In the case where a player gets injured, the Couch Potato will put in a
substitute to finish the match and continue to use the replacement in the
starting squad for the subsequent match, rather than bother going through
multiple steps to apply a healing card and re-instate the injured player.

When the Couch Potato goes to the Transfer Market in FIFA 15 Ultimate
Team and simply waits, all of the candidates will expire and no transaction
should occur.

Game Testing.indb 349 03/09/16 3:58 PM

350 • Game Testing

The Rained Out Tour
The Rained-Out tour is based on stopping an activity before you fully

complete it. It’s also useful for identifying time-consuming operations, such
as waiting for rewards to appear in the player’s inventory or waiting for
match-making to find an online opponent for you. For example, verify that
you do not receive cards or coins after cancelling or de-listing an item in
either the game world or the “real” world.

While being rained out you may lose items or rewards that expire if you
don’t use them, so be sensitive to the timing and the quantities you specify
in your test cases.

The Taxi Cab Tour
There is usually more than one way to get to a feature or function in

your game. On a recent business trip to Tampa, I had the good fortune of
getting a taxi driver who was interested in showing me interesting land-
marks and features along the way to my hotel. The scenic route provided
an entertaining ride and reliably delivered me to my hotel. Likewise, to test
your game you need to consider different possible routes that could accom-
plish the same goal. Referring back to the “Marvel Contest of Champions”
crystal inventory example in Figure 15.2, the player can also access crystals
from the Inventory tab, from the ISO-8 screen, and from the champion’s
Upgrade bar.

Figure 15.4  Expired transfer candidates.

Game Testing.indb 350 03/09/16 3:58 PM

Exploratory Game Testing • 351

The Prior Version Tour
When an update, sequel, bonus content, spin-off, or new version of

your game is constructed from a prior version, run your existing test cases
to quickly identify what has been changed. Try to expose features or quirks
that were present in the previous version. Identify old functions, vehicles,
weapons, locations, or characters that should have been removed and make
sure that no artifacts or side-effects are left behind. Also test the product
using the old ways that should still function, as well as functions that are
introduced by the new version.

The Obsessive-Compulsive Tour
This tour is all about repetition. Focus on one aspect of the game and

execute the same strategy over and over again. These can apply to both AI
and human opponents.

Tower Defense Games – Focus on building and leveling up one type of
offense (tanks, troops, artillery, ninjas, etc.) or one type of defense (moats,
walls, electric fences, pit traps, etc.)

Fighting Games – Rapidly punch or over and over again without using
the Block button

Football – Call the same play over and over again. This could work best
where the personnel stats and the formation are designed to run the play.

Figure 15.5  Accessing crystals from the Upgrade bar.

Game Testing.indb 351 03/09/16 3:58 PM

352 • Game Testing

Baseball – Put all your points in the pitcher’s arm speed stat and throw
fastballs throughout the entire game. Alternatively, only throw knuckle balls
or curve balls.

Basketball – Create a team exclusively comprised of 3-point shooting
experts and take 3’s on every possession.

MMORPGs – Craft the same item over and over again.

RECORDING EXPLORATORY TESTS

In the same way that your tests can be stored and managed, there are
tools you can use for defining and managing your tours and exploratory test
results.

The Chrome Web Store offers some useful testing and development
tools, including an “Exploratory Testing (Preview)” app from Microsoft.
You will need this tool to complete the exercises in the remaining portion
of this chapter.

Go to the Chrome Web Store (https://chrome.google.com/webstore/)
and search the “Extensions” category. Click the “+ ADD TO CHROME”
button, then click the “Add Extension” button.

Next, open a tab in the Chrome browser. The functions of the Explor-
atory Testing tool include a “Standalone” mode and a “Connected” mode,
described in detail below:

Exploratory Testing for everyone – capture, create, & collaborate

Exploratory Testing now in 3 easy steps – capture, create & collaborate.
Everyone in the team, be it product owners, developers, testers, UX designers
etc., can perform exploratory testing of web-apps, right from the Chrome
browser on any platform (Windows, Mac, or Linux).

●● Capture - Use various capture formats- notes, screenshots with annota-
tions, image action logs (user actions), and screen recording. Test your
applications on real devices using cloud providers like Perfecto, or test them
on browser based emulators.

Game Testing.indb 352 03/09/16 3:58 PM

https://chrome.google.com/webstore

Exploratory Game Testing • 353

This remainder of this chapter will utilize Exploratory techniques
using the “Standalone” mode to capture information about the Shooting
Balloons game “Bloons TD 5.” You can find the game in the Chrome store
at: www.funnygames.us/game/bloons_td_5.html?utm_source=cws&utm_
medium=app&utm_campaign=cws&utm_term=bloons_td5

●● Create - Quick creation of bugs, tasks and test cases with all the captured
information automatically attached for you.

●● Collaborate - Export your session report in the standalone mode and share
your findings with the rest of the team. Additionally, connect to your Team
Foundation Server/Visual Studio Team Services account to leverage an in-
tegrated experience spanning E2E traceability, avoiding duplicate bugs,
simplified tracking & triaging of issues and gathering rich insights across
exploratory testing sessions.

You can use the extension in two modes:
In “Standalone” mode you can:

●● Capture screenshots (optionally annotate them) and jot down notes while
exploring your web applications.

●● Easily create bugs with captured notes and screenshots automatically
attached.

●● Share your findings with your team in the form of a report containing details
of all the bugs created.

Switch to “Connected” mode to get access to all features, such as:

●● Create bugs and/or tasks directly from the browser containing the captured
screenshots, notes, image action logs (user actions), screen recordings, and
browser information automatically attached.

●● View similar bugs and optionally update an existing bug with your findings
to avoid duplication of issues.

●● Explore work items to establish end to end traceability between the bugs/
tasks created and work-item being explored.

●● Leverage simplified tracking and triaging of issues.

●● Test your application on devices using browser based emulators or device
cloud providers, like Perfecto.

Game Testing.indb 353 03/09/16 3:58 PM

http://www.funnygames.us/game/bloons_td_5.html?utm_source=cws&utm_

354 • Game Testing

Exploration Tips
To get the most out of your exploratory session, make Notes frequently.

The Notes control is the third icon from the left. The other two controls we
will discuss are the Create Bug and Capture Screenshots icons. The Cre-
ate Bug icon looks like a sheet of paper with an exclamation point and the
Capture Screenshot icon looks like a camera.

Figure 15.7  Icon bar to make Notes, Create Bugs, and Capture Screenshots.

Once you’re ready to explore, find the icon that looks like a chem-
istry flask in the upper right corner of the browser window, as shown in
Figure 15.7. If you’re not sure which one that is, hover your cursor over
each icon until an “Exploratory Testing” tooltip is shown. Click on that icon
and your session has just begun. During the course of exploring the game,
you can use the Image, Note, and/or Video buttons to capture interesting
events and observations.

Figure 15.6  The Bloons map.

Game Testing.indb 354 03/09/16 3:58 PM

Exploratory Game Testing • 355

One approach to explore the game, or a set of game features, is to make
at least three passes through the game. The first pass is your initial discov-
ery phase. Before you even start the game, look around on the screen. What
elements can you explore? There are clearly marked money and health
counters, winding road paths, as well as GO! and SAVE buttons. For exam-
ple, there’s also a mysterious row of slots for “Special Agents” which doesn’t
give us enough information, so that needs to be addressed while exploring.

Different testers may make very different observations during a single
exploration of the game. If you are the only tester responsible for testing
the entire game, then break up the major features of the game and perform
separate explorations for each of those features. If there are other testers on
your team, collaborate with them and consider rotating them through the
different features so they can serve as a backup in a pinch.

Whether you are by yourself, or working on a team, a good strategy is to
make at least 3 passes through the game in order to thoroughly investigate the
features you are responsible for. The first pass gets you initially oriented with
the game and should raise some questions that you will want to explore fur-
ther. The second pass is used to go into further depth to explore unexpected
behaviors that caught your interest in the first pass, and the third pass can be
used for thinking about combinations or alternate ways to achieve one or more
of the major tasks or goals of the game.

For example, when I introduced a Boomerang Thrower on the playing
field, I discovered that the boomerang is blocked when another shooter is
in the Boomerang Thrower’s path.

Another discovery I made during my second-pass exploration, was that
the description for each “thrower” has an associated hotkey, which would
accelerate my time to bring a new shooter into play. Likewise, I also instinc-
tively used the Fast Forward for a bit to see if that would affect perfor-
mance. Both of those features open the door for a possible “Stress” tests, as
discussed back in Chapter 13.

Reporting Exploratory Results

Once you have completed your session, click the red square icon to
close the session. You will then have access to the “XT Session Report”.
Each of your Notes, Images and Video captures are shown in a timeline.

Shown below, is a record of the first session for testing Bloons TD 5:

Game Testing.indb 355 03/09/16 3:58 PM

356 • Game Testing

XT SESSION REPORT

Exploratory Testing
Session attachments

Note-1  5/27/2016 02:56 PM

Make note of first green balloons

Note-2  5/27/2016 02:57 PM

First “Special Agent” character appears

Note-3  5/27/2016 02:58 PM

Unlocked Faster Shooting

Note-4  5/27/2016 02:59 PM

Using Boomerang thrower

Note-5  5/27/2016 03:00 PM

Noticed that boomerang thrower can be obstructed

Note-6  5/27/2016 03:01 PM

Standing pat at this level

Note-7  5/27/2016 03:02 PM

Fast Forward works fine

Note-8  5/27/2016 03:03 PM

Playing out the remainder of the game by waiting to lose

Note-9  5/27/2016 03:04 PM

Did not add Ninja Monkey

Note-10  5/27/2016 03:05 PM

Fast Forwarding again

Next, proceed to the second exploratory phase to incorporate new
“vectors” that we did not think of in phase 1, and to follow up on suggestions
for phase 2. Since we previously checked that the boomerang thrower could
be blocked by the sniper, one of the goals of phase 2 should be to capture an

Game Testing.indb 356 03/09/16 3:58 PM

Exploratory Game Testing • 357

image of the blocked sniper and report it as a “bug”. We should also examine if
any type of thrower could be blocked by any other type thrower. For the sake
of brevity, we will check the behavior of the Sniper obstructing 1 or 2 monkeys.
We also intend to find out more about the Special Agent. Since this is shaping
up to be a lengthy game, the second phase will end by using the Save feature.

To prepare for taking a screen capture, click on the “flask” icon again
and be ready to click on the camera icon to catch the blocked sniper in
action. After clicked the game’s “GO!” button,
it only took a little time for the right moment
to catch the sniper red-handed. One screen-
shot was captured full-screen, and another
was manually selected and sized in the game
window – as shown in Figure 15.8.

Regarding the Special Agents, hovering
on the only agent brings up the tooltip “Buy
special agents…”so there’s nothing further to
discover on that front.

When it came time to Save the game, we received a dialog saying
“Log in to save your progress on this track!” We do not intend to register,
but the request dialog event should be added to the Notes in our session
timeline.

Finally, two new Screenshots and a Note are added to the session
timeline:

Screenshot-3.png

5/28/2016 10:43 PM

Screenshot-4.png

5/28/2016 10:47 PM

Note-11

5/28/2016 10:48 PM

Captured image of blocked sniper

Filing Bug Reports
Our last point of business is to record a bug for the blocked Sniper issue.

Any time during testing, a new bug can be created. Click on the “Create

Figure 15.8  Manually selected
and sized screenshot.

Game Testing.indb 357 03/09/16 3:58 PM

358 • Game Testing

Bug” icon and a “New bug” dialog is shown. Included in the “New bug” dia-
log is a history list of the Notes that were made during the testing session.

When testing is completed and the report is generated, click on the icon
that’s to the left of the clock (timer) icon. Bugs are recorded within the Ses-
sion Report, and the number of bugs filed is added to the XT Session report.

Figure 15.9  New bug write-up.

SESSION BASED TESTING

Session Based testing is another popular and effective style of Explor-
atory Testing.

When performing Session Based Testing, each tester is assigned a
“charter” which defines the scope of the functions that the tester should be
testing for. For example, one tester may be responsible for the scoring fea-
ture, while another tester has responsibility for performance. The charter
is further divided or organized in “sessions” that are typically sized for 45 to
60 minute periods. The tests are defined and prepared according to areas
that should be covered by the testing, and the tests are ranked according
to the importance of the test. This ensures that the most important testing
gets priority as testing continues until the session is done. It’s also a good
practice for team members to peer review each other’s tests and update
their tests prior to finalizing and executing the planned tests.

Pokémon GO™ provides a nice variety of features to explore as a team.
Here’s a potential organization of charters:

Avatar Charter: Select/Change avatar features and accessories

■■ gender

■■ skin tone

■■ hair

■■ eye color

■■ cap

■■ shirt

■■ pants

■■ shoes

■■ backpack

Game Testing.indb 358 03/09/16 3:58 PM

Exploratory Game Testing • 359

Pokedex Charter: Check Pokémon quantities

■■ Caught Pokémon

■■ Seen Pokémon

■■ Numbers displayed in grid for Pokémon not yet caught

Items Charter Use each type of available Items

■■ Potion

■■ Super Potion

■■ Revive

■■ Lucky Egg

■■ Incense

■■ Poké Ball

■■ Great Ball

■■ Ultra Ball

■■ Lure Module

■■ Razz Berry

■■ Camera

■■ Egg Incubator

Shopping Charter –

■■ Poké Balls

■■ Incense

■■ Lucky Eggs

■■ Lure Module

■■ Egg Incubator

■■ Bag Upgrade

■■ Pokémon Storage Upgrade

Awards Charter

Hatching Charter – hatch eggs in different conditions

■■ Fill all egg slots

■■ Hatch 5.0 km eggs

■■ Hatch 10.0 km eggs

■■ Hatch egg from unlimited incubator

■■ Hatch egg from purchased incubator

Awards Charter – earn medals in different categories

■■ Earn a Bronze medal

■■ Earn a Silver medal

■■ Earn a Gold medal

Game Testing.indb 359 03/09/16 3:58 PM

360 • Game Testing

References

[FUNNYGAMES 16] Bloons TD 5.

http://www.funnygames.us/game/bloons_td_5.html. Accessed 5/28/2016

[MORENO 16] Exploratory Testing Chrome Extension. https://chrome.google.
com/webstore/search/exploratory%20test%20moreno?hl=en. Accessed
5/27/2016

[QUALITEST 16] Qualitest

http://www.qualitestgroup.com/resources/knowledge-center/how-to-guide/write-
exploratory-test-charter/. Accessed 5/30/2016

[SAST 16] How to perform Exploratory Testing using Test Charters.

http://www.sast.se/q-moten/2007/stockholm/q3/2007_q3_claesson.pdf. Accessed
5/30/2016

[TECHTARGET 12] Using session-based test management for exploratory
testing. https://searchsoftwarequality.techtarget.com/tip/Using-session-based-
test-management-for-exploratory-testing. Accessed 5/30/2016

[WHITTAKER 16] Exploratory Software Testing, Addison-Wesley, 2009.

Game Testing.indb 360 03/09/16 3:58 PM

http://www.funnygames.us/game/bloons_td_5.html
https://chrome.google
http://www.qualitestgroup.com/resources/knowledge-center/how-to-guide/write-exploratory-test-charter
http://www.qualitestgroup.com/resources/knowledge-center/how-to-guide/write-exploratory-test-charter
http://www.qualitestgroup.com/resources/knowledge-center/how-to-guide/write-exploratory-test-charter
http://www.sast.se/q-moten/2007/stockholm/q3/2007_q3_claesson.pdf
https://searchsoftwarequality.techtarget.com/tip/Using-session-based-test-management-for-exploratory-testing
https://searchsoftwarequality.techtarget.com/tip/Using-session-based-test-management-for-exploratory-testing
https://searchsoftwarequality.techtarget.com/tip/Using-session-based-test-management-for-exploratory-testing

ODD-NUMBERED
ANSWERS TO EXERCISES

Chapter 1 – (No Exercises)

Chapter 2 – Being a Game Tester

1.	 Trust no one.

3.	c.

5.	Check if the megazooka ammo is still in your inventory and if anything
else you were carrying is gone. Check if this problem occurs on other
levels, with other character types, and while wearing other armor.
Check if this occurs when you are not carrying a weapon other than the
knife, and with no weapon at all — just the megazooka ammo. Check
if this bug occurs when the ammo is in different inventory slots. Drop
the megazooka and pick it up again while you still have the ammo to
see if it still reads “0 ammo.” Try manually reloading the megazooka.
Try picking up more megazooka ammo while you are using the empty
megazooka. Get two megazooka ammo packs and then pick up the
empty megazooka.

7.	Outline text:

Enter Town

Edit Trooper

Select next character by swiping

Appendix A

Game Testing.indb 361 03/09/16 3:58 PM

362 • Game Testing

Select next character by scrolling

Select previous character by swiping

Select previous character by scrolling

Swipe to end of trooper list

Scroll to beginning of trooper list

Scroll to end of trooper list

Swipe to beginning of trooper list

Advantages: shorter, fewer chances of making an error in writing
or executing the test, easier to reuse across versions and platforms,
different testers may find different defects by running the test
differently.

Disadvantages: does not specify all the details that should be checked
after each step, developers may not be able to reproduce problems
without more details about each step, may not get repeated exactly the
same way each time or when run by a different tester.

Note that both the last advantage and the last disadvantage result from
running the test differently from one time to another.

Chapter 3 – Why Testing Is Important

1.	 Yes.

3.	Correct answers to this question should be along the lines of: when you
are placed in a particular location in the game world, when you type in
a name for something in the game (a player, town, pet, etc.), when you
change a game option (language, difficulty, etc.), when you gain a new
ability (skill, level, job, unlocked item, etc.), when you set the selling
price of an item.

5.	RespawnItem defect type opportunities:

Function — 1 through 19 (random selection), 20-24 (setup and use
flags), 25-26 (play respawn sound)

Assignment — 9, 10 (2 instances), 12 (2 instances), 15 (2 instances), 17
(2 instances), 20, 27

Checking — 2, 6, 11, 16

Timing — 26

Game Testing.indb 362 03/09/16 3:58 PM

Appendix A • 363

Build/Package/Merge — 21

Algorithm — 14, 22, 23

Documentation — 7 (a literal string is used to report an error)

Interface — 0, 7, 24, 26

Chapter 4 – Software Quality

1.	 Your total released defects are 35 + 17 = 52. The table in Figure 4.1 has
a column for 100,000 but not for 200,000, so double the defect count
values in the 100,000 column. A defect count of 66 indicates a 4.9 sigma
level and 48 is 5 sigma. Your 52 defects don’t reach the 5 sigma level, so
your game code is at 4.9 sigma.

3.	The new PCE for the requirements phase is 0.69. The new PCE for
design is 0.73. The new code PCE is 0.66.

Chapter 5 – Test Phases

1.	 The main responsibilities of a Lead Tester are: managing the test team,
designing and implementing the overall project test plan, and “owning”
the bug database.

3.	False

5.	False

7.	False

9.	Put briefly, a test plan defines the overall structure of the testing cycle.
A test case is one specific question or condition the code is operated
and evaluated against.

Chapter 6 – The Game Testing Process

1.	 The Expected Result is the way the game should work according to its
design specification. The Actual Result is anomalous behavior observed
when you played the game, caused by a software defect.

3.	Remove the old build, and all related save data. Verify and amend your
hardware setup to meet the spec of the new build. Install the new build.

5.	False

7.	False.

9.	True.

Game Testing.indb 363 03/09/16 3:58 PM

364 • Game Testing

11.	 �Your answer should look something like the following sequence.
Check for any steps or details you missed in your answer.

a.	 Look on the table next to the bed. You will see an odd plastic box
with a coiled cord looped on one side. This is a “telephone.”

b.	The looped cord is connected to a bracket-shaped piece on the top
of the telephone. The brackets end in two round cups. This is the
“receiver.”

c.	 Pick up the receiver and notice that one cup has many more holes
than the other. Put the cup with the fewest holes to your ear. You
should hear a loud, steady hum.

d.	Push the numbered buttons in the following order: 5-5-5-1-2-3-4.
When you hear a voice answer, begin talking.

Chapter 7 – Testing by the Numbers

1.	 The original two testers, B and Z, were progressing at a steady rate
which was not quite enough to keep up with the goal. Tester D was
added in January but the team’s total output was not improved. This
could be due to effort diverted from testing to provide support to D
or to verify his tests were done properly. On January 8, C and K were
thrown into the mix while B took a day off. We can presume C and
K knew what they were doing, as the group output went up and they
almost caught up with the goal line. K and Z did not participate after
that and the output went back down even as B returned. Ultimately only
D was left on the project, as presumably the others were reassigned to
more vital testing. D completed seven tests on the 12th but it remains
to be seen if he can sustain this output and hold the fort until this
project can get its testing staff back up to where it should be. The two
important observations here are that you can’t treat every tester as an
identical plug-in replacement for any other tester — they each have
their own strengths and skill sets — and adding more testers does not
guarantee a proportional increase in team output, especially during the
first few days.

3.	Tester C made the best use of her test opportunity to find the most
defects per test. However, other testers such as B and Z were able to
perform many more tests and find a few more defects. Since “Best
Tester” is based on the combined overall contribution to tests completed

Game Testing.indb 364 03/09/16 3:58 PM

Appendix A • 365

and defects found, C is not in the running. It’s still important to identify
C’s achievements and recognize them. If B and Z could have been as
“effective” as C, they could have found about six more defects each—a
very significant amount.

5.	Some positive aspects of measuring participation and effectiveness:
some people will do better if they know they are being “watched,”
some people will use their own data as motivation to improve on their
numbers during the course of the project, provides a measurable
basis for selecting “elite” testers for promotion or special projects (as
opposed to favoritism, for example), testers seeking better numbers
may interact more with developers to find out where to look for
defects.

Some negative aspects: effort is required to collect and report this
tester data, it can be used as a “stick” against certain testers, may
unjustly lower the perceived “value” of testers who make important
contributions in other ways such as mentoring, could lead to jealousy if
one person constantly wins, testers may argue over who gets credit for
certain defects (hinders collaboration and cooperation), some testers
will figure a way to exceed at their individual numbers without really
improving the overall test capabilities of the team (such as choosing
easy tests to run).

Chapter 8 – Combinatorial Testing

1.	Full combinatorial tables provide all possible combinations of a set
of values with each other. The size of such a table is calculated by
multiplying the number of choices being considered (tested) for
each parameter. A pairwise combinatorial table does not have to
incorporate all combinations of every value with all other values. It
is “complete” in the sense that somewhere in the table there will be
at least one instance of any value being paired up in the same row
with any other value. Pairwise tables are typically much smaller than
full combinatorial tables; sometimes hundreds or thousands of times
smaller.

3.	Use the template for three parameters with three values and four
parameters with two values in Appendix C to arrive at Table A.1. The
cells with “*” can have either a “Yes” or “No” value and your table will
still be a correct pairwise combinatorial table.

Game Testing.indb 365 03/09/16 3:58 PM

366 • Game Testing

Row Half
Length

Referee Weather Difficulty Pitch
Wear

Game
Speed

Offsides

1 4 min Lenient Dry Amateur None Slow On

2 10 min Average Rainy Legendary High Slow On

3 20 min Strict Snowy Amateur High Fast On

4 4 min Average Snowy Legendary None Fast Off

5 10 min Strict Dry Legendary None Fast *
6 20 min Lenient Rainy Legendary None Fast *
7 4 min Strict Rainy Amateur High Slow Off

8 10 min Lenient Snowy Amateur High Slow Off

9 20 min Average Dry Amateur High Slow Off

TABLE A.1  FIFA 15 Match Settings Test Table with Seven Parameters.

5.	 If you provided the right parameters and values to Allpairs, you should
get the tests shown in Table A.2 (the “pairings” column has been left
out). If your input table had the parameters in a different order that
was used for this solution, verify that you have the same number of
test cases as Table A.2. 540 full combinations have been reduced to 23
pairwise tests. If your result doesn’t seem right, redo the input table
following the same ordering of the parameters that appears in Exercise
3 and try again.

Case Sound Difficulty Perma
Knockout

Pinch Zoom

1 On Casual On Slowest

2 Off Casual Off Slower

3 Off Normal On Slowest

4 On Normal Off Slower

5 On Strategist On Default

6 Off Strategist Off Faster

7 Off Master Off Default

8 On Master On Faster

9 On King Off Fastest

Continued

Game Testing.indb 366 03/09/16 3:58 PM

Appendix A • 367

10 Off King On Slowest

11 Off Casual On Fastest

12 ~On Casual Off Slowest

13 ~On Normal On Slower

14 ~Off Normal ~Off Default

15 ~Off Strategist ~On Slower

16 ~On Strategist ~Off Fastest

17 ~Off Master ~On Fastest

18 ~On Master ~Off Slowest

19 ~On King ~On Default

20 ~Off King ~Off Faster

21 ~On Casual ~On Faster

22 ~Off Casual ~Off Default

23 ~On Normal ~Off Faster

24 ~Off Normal ~On Fastest

25 ~Off Strategist ~Off Slowest

26 ~On Master ~On Slower

27 ~Off King ~Off Slower

TABLE A.2  Kingturn RPG Game Options Settings.

Chapter 9 – Test Flow Diagrams

1.	 Your answer should at least describe the following kinds of changes:

a.	 Change “Ammo” to “Arrows” and “Gun” to “Bow”

b.	 “DropSound” would be different for the arrows (rattling wood
sound) than for the bow (light “thud” on grass, “clank” on
cobblestone), so need two distinct events for “DropArrowsSound”
and “DropBowSound.”

c.	 If you have both the bow and some arrows, dropping the bow will
not cause you to lose your arrows, so flow 8 should connect to the
“HaveAmmo” state.

Game Testing.indb 367 03/09/16 3:58 PM

368 • Game Testing

d.	 It’s not really possible to pick up a loaded bow, so eliminate the
“GetLoadedGun” flow (9).

e.	 “ShootGun” (now “ShootBow”) may make more of a “twang” or
“whoosh” sound if there is no arrow, so change “ClickSound” to
“NoArrowSound” or something similarly descriptive.

f.	 Firing a bow requires more steps than shooting a gun. You could add
some or all of the states and flows for the steps of taking an arrow
from the quiver, loading the arrow onto the bowstring, pulling
the string, aiming, and releasing the arrow. Your reason for doing
this should remain consistent with the purpose of the TFD. For
example, with a bow and arrows, you could load the arrow to go to
an “ArrowLoaded” state, but then unload the arrow to go back to
“HaveBowHaveArrows” to make sure the arrow you didn’t fire was
not deducted from your arrow count.

3.	From Exercise 2, your updated TFD should at least have
a “GetWrongAmmo” flow going from “HaveGun” to a new
“HaveGunWrongAmmo” state. From that state you would have
a “DropWrongAmmo” flow going back to “HaveGun” and a
“ShootGun” flow with a “ClickSound” action looping back to
“HaveGunWrongAmmo” the same way flow 3 does with the
“HaveGun” state. Your Minimum path must include all of the new
flows, passing through the “HaveGunWrongAmmo” state. For
Baseline path generation, you may choose the same baseline that
applies to Figure 9.10 or define a different one. At some point, you
need to have a derived path that get to the “HaveGunWrongAmmo”
state and passes through the “ShootGun” loop. Swap your test case
with a friend and check each other’s results step by step. It may help to
read out loud as you go along and trace the flows that are covered with
a highlighter.

Chapter 10 – Cleanroom Testing

1.	 The answer is specific to the reader.

3.	 It is possible to have the same exact test case appear more than once in
a Cleanroom test set. This would typically involve values that have high
usage frequencies but, like the lottery, it’s also possible that infrequent
value combinations will be repeated in your Cleanroom table.

5.	From Exercise 4 you should have produced inverted usage values for
the Casual user profile as follows:

Game Testing.indb 368 03/09/16 3:58 PM

Appendix A • 369

Look Sensitivity: 1 – 32%, 3 – 4%, 10 – 64%

Look Inversion: Inverted – 90%, Not Inverted – 10%

Autolook Centering: Enabled – 70%, Disabled – 30%

Crouch Behavior: Hold – 20%, Toggle – 80%

Clench Protection: Enabled – 75%, Disabled – 25%

The random number set that was used to produce the table in Figure
10.12 generates the following inverted usage test data:

1.	 Look Sensitivity = 1, Look Inversion = Inverted, Autolook Centering =
Enabled, Crouch Behavior = Toggle, Clench Protection = Enabled

2.	 Look Sensitivity = 10, Look Inversion = Inverted, Autolook Centering =
Enabled, Crouch Behavior = Toggle, Clench Protection = Enabled

3.	 Look Sensitivity = 1, Look Inversion = Inverted, Autolook Centering =
Enabled, Crouch Behavior = Toggle, Clench Protection = Enabled

4.	 Look Sensitivity = 10, Look Inversion = Inverted, Autolook Centering =
Enabled, Crouch Behavior = Toggle, Clench Protection = Enabled

5.	Look Sensitivity = 3, Look Inversion = Inverted, Autolook Centering =
Disabled, Crouch Behavior = Toggle, Clench Protection = Disabled

6.	 Look Sensitivity = 10, Look Inversion = Inverted, Autolook Centering =
Enabled, Crouch Behavior = Toggle, Clench Protection = Enabled

7.	The path produced from the inverted usage values will depend on
the random numbers that you generate. Ask a friend or classmate to
check your path and offer to check theirs in return.

Chapter 11 – Test Trees

1.	 The bug fix affects “sound,” “Orks,” and “weapon,” so you should run
the collection of tests associated with the following nodes on the tree:

Options – Sound

Game Modes – Skirmish – Races (Orks)

Races – Orks

3.	The keys here are to indicate on your diagram how many spells are
required to enable each new lesson, and to notice where the same
spell unlocks different lessons. A correct tree is drawn with a vertical
orientation in Figure A.1.

Game Testing.indb 369 03/09/16 3:58 PM

370 • Game Testing

Discover powers

Get a wand

First day of school

First magic lesson

Study the history

Home safely

Escape the path

Study potionsDisarming
Spell (1)

Cast
Flame (3)

Disarming Spell (2)

Flashlight Charm (1)

Impeding Charm (1)

Confusion Spell (2)

Cast Flame (5)

Figure A.1  School of Wizardy test tree solution.

Chapter 12 – Ad Hoc Testing and Gameplay Testing

1.	 False

3.	Free testing is an unstructured search for software defects. It results
in additional bugs being discovered. Play testing is a structured
attempt to judge the quality, balance, and fun of a game. It results
in suggestions and feedback that the designers can use to tweak and
polish the game.

5.	This is gameplay testing. The testers are playing the game, not testing
the game.

Chapter 13 – Defect Triggers

1.	 The answer is specific to the reader

3.	Representing the “snap back” behavior on the TFD requires a state
to represent your avatar at the starting location and another state

Game Testing.indb 370 03/09/16 3:58 PM

Appendix A • 371

to represent your avatar standing at a gun or ammo location. A
“MoveToGun” flow would take you from the “PreMatch” location to
the “standing” location. A flow with a “PrematchTimerExpires” event
would take you from your standing location to the “NoGunNoAmmo”
state, accompanied by an action describing the “snap back” to the
starting position. For the case where you don’t move from the initial
spawning location, add a “PrematchTimerExpires” flow from the
“PreMatch” location to “NoGunNoAmmo” but without the snap
back action.

5.	 Besides the Normal trigger testing, which you are accustomed to, here
are some ways to utilize other defect triggers for this hypothetical poker
game:

Startup: Do stuff during the intro and splash screens, try to bet all of
your chips on the very first hand, try to play without going through the
in-game tutorial.

Configuration: Set the number of players at the table to the minimum
or maximum, set the betting limits to the minimum or maximum, play at
each of the difficulty settings available, play under different tournament
configurations.

Restart: Quit the game in the middle of a hand and see if you have
your original chip total when you re-enter the game, create a split pot
situation where one player has wagered all of his chips but other players
continue to raise their bets, save your game and then reload it after
losing all of your money.

Stress: Play a hand where all players bet all of their money, play for
long periods of time to win ridiculous amounts of cash, take a really
long time to place your bet or place it as quickly as possible, enter a long
player name or an empty one (0 characters).

Exception: Try to bet more money than you have, try to raise a bet by
more than the house limit, try using non-alphanumeric characters in
your screen name.

Chapter 14 – Regression Testing and Test Reuse

1.	 The first stage of your defect model should have states for an
undamaged meatshield, damaged meatshield and a destroyed (by the
chainsaw) meatshield, as shown in Figure A.2.

Game Testing.indb 371 03/09/16 3:58 PM

372 • Game Testing

DamageMeatshield

Chainsaw
Meatshield

Chainsaw
Meatshield

Damaged
Meatshield

Undamaged
Meatshield

Meatshield
Destroyed

Enter

Exit
OUT

IN

Figure A.2  Basic meatshield defect model TFD.

Additionally, you should tack on a few more states and flows to
make sure you check what happens if the meatshield is dropped and
picked up, and to verifiy that the meatshield can actually be destroyed.
Figure A.3 shows a TFD that incorporates these added elements. For
the final touch, put actions where they’re appropriate.

Enter

DamageMeatshield

Undamaged
Meatshield

Meatshield
Destroyed

Enemy
Destroyed

Damaged
Meatshield

No
Meatshield

Chainsaw
Meatshield

Drop
Meatshield

Pickup
Damaged
Meatshield

Pickup
Undamaged
Meatshield

Chainsaw
Meatshield

Chainsaw
Enemy

OUT

IN

Exit

Figure A.3  Enhanced meatshield defect model TFD

3.	 The following events or situations are missing the player’s name. Either
blank information is shown or only the player’s jersey number (8) is shown.

a.	 At 0:59 after the captains meet the referee at midfield, the Bohemians
FC lineup is shown. Player 8’s number is shown without a name.

Game Testing.indb 372 03/09/16 3:58 PM

Appendix A • 373

b.	At 1:03, a graphic shows the Bohemians FC formation but there is
no name below the number 8 jersey.

c.	 At 1:32, scrolling through the team roster shows the #8 player is
wearing the captain’s armband, but his name does not appear

d.	As the game begins, each player’s name appear above them when
the have possession of the ball. From 1:50 to 1:55, player 8 dribbles
the ball towards the goal his name does not appear. Likewise when
he attempts a shot from 1:58 to 2:00.

e.	 At 2:35, player 8 gets the ball again and is subsequently fouled. A
free kick is awarded and when scrolling through players to change
the kicker, player 8’s name is blank.

f.	 When player 8 takes the kick from 2:55 to 3:00, his name never
appears.

g.	 At 3:20, player 8 receives the ball at midfield and heads towards
the goal, scoring at 3:28. A popup badge appears on the screen to
indicate the goal scorer but only the number 8 is shown.

h.	 Once play resumes at 3:42, the goal notification pops up above the
scoreboard. The time of the goal is properly shown, but the name
of the goal scorer is not. You can compare that to what’s displayed
at 4:30 when the opposing team scores.

i.	 The video skips ahead to the end of the match and again, player 8’s
name is missing from his goal.

j.	 After the match, at 5:28, the Player Ratings screen shows the
players’ names below their image, except for player 8 (above and to
the right of the goalkeeper).

Chapter 15 – (No Exercises)

Game Testing.indb 373 03/09/16 3:58 PM

Game Testing.indb 374 03/09/16 3:58 PM

Game Name

1.	 Copyright Information

Table of Contents

SECTION 1: QA TEAM (and areas of responsibility)

1.	 QA Lead

a.	 Office phone

b.	 Home phone

c.	 Mobile phone

d.	 Email / IM / VOIP addresses

2.	 Internal Testers

3.	 External Test Resources

SECTION II: TESTING PROCEDURES

1.	 General Approach

a.	 Basic Responsibilities of Test Team

i.	 Bugs

BASIC TEST PLAN
TEMPLATE

Appendix B

Game Testing.indb 375 03/09/16 3:58 PM

376 • Game Testing

1.	 Detect them as soon as possible after they enter the build

2.	 Research them

3.	 Communicate them to the dev team

4.	 Help get them resolved

5.	 Track them

	 ii.	 Maintain the Daily Build

	 iii.	 �Levels of Communication. There’s no point in testing unless the
results of the tests are communicated in some fashion. There
are a range of possible outputs from QA. In increasing levels of
formality, they are:

1.	 Conversation

2.	 ICQ/IM/Chat

3.	 Email to individual

4.	 Email to group

5.	 Daily Top Bugs list

6.	 Stats/Info Dump area on DevSite

7.	 Formal Entry into Bug Tracking System

2.	 Daily Activities

a.	 The Build

	 i.	 Generate a daily build.

	 ii.	� Run the daily regression tests, as described in “Daily Tests”
which follows.

	 iii.	 If everything is okay, post the build so everyone can get it.

	 iv.	 If there’s a problem, send an email message to the entire dev
team that the new build cannot be copied, and contact which-
ever developers can fix the problem.

	 v.	 Decide whether a new build needs to be run that day.

Game Testing.indb 376 03/09/16 3:58 PM

Appendix B • 377

b.	 Daily Tests

	 i.	 Run though a predetermined set of single-player levels, per-
forming a specified set of activities.

1.	 Level #1

a.	 Activity #1

b.	 Activity #2

c.	 Etc.

d.	 The final activity is usually to run an automated script that
reports the results of the various tests and posts them in
the QA portion of the internal Web site.

2.	 Level #2

3.	 Etc.

	 ii.	 Run though a predetermined set of multiplayer levels, perform-
ing a specified set of activities.

1.	 Level #1

a.	 Activity #1

b.	 Activity #2

c.	 Etc.

d.	 The final activity is usually for each tester involved in the
multiplayer game to run an automated script that reports
the results of the various tests and posts them in the QA
portion of the internal Web site.

2.	 Level #2

3.	 Etc.

	 iii.	 Email showstopper crashes or critical errors to the entire team.

	 iv.	 Post showstopper crashes or critical errors to the daily top bugs
list (if one is being maintained).

Game Testing.indb 377 03/09/16 3:58 PM

378 • Game Testing

3.	 Daily Reports

a.	 Automated reports from the preceding daily tests are posted in the
QA portion of the internal Web site.

4.	 Weekly Activities

a.	 Weekly tests

	 i.	 Run though every level in the game (not just the preset ones
used in the daily test), performing a specified set of activities and
generating a predetermined set of tracking statistics. The same
machine should be used each week.

1.	 Level #1

a.	 Activity #1

b.	 Activity #2

c.	 Etc.

2.	 Level #2

3.	 Etc.

	 ii.	 Weekly review of bugs in the Bug Tracking System

1.	 Verify that bugs marked “fixed” by the development team
really are fixed.

2.	 Check the appropriateness of bug rankings relative to where
the project is in the development.

3.	 Acquire a “feel” for the current state of the game, which can
be communicated in discussions to the producer and depart-
ment heads.

4.	 Generate a weekly report of closed-out bugs.

	 b.	 Weekly Reports

	 i.	 Tracking statistics, as generated in the weekly tests.

5.	 Ad Hoc Testing

a.	 Perform specialized tests as requested by the producer, tech lead, or
other development team members

Game Testing.indb 378 03/09/16 3:58 PM

Appendix B • 379

b.	 Determine the appropriate level of communication to report the
results of those tests.

6.	 Integration of Reports from External Test Groups

a.	 If at all possible, ensure that all test groups are using the same bug
tracking system.

b.	 Determine which group is responsible for maintaining the master
list.

c.	 Determine how frequently to reconcile bug lists against each other.

d.	 Ensure that only one consolidated set of bugs is reported to the
development team.

7.	 Focus Testing (if applicable)

a.	 Recruitment methods

b.	 Testing location

c.	 Who observes them?

d.	 Who communicates with them?

e.	 How is their feedback recorded?

8.	 Compatibility Testing

a.	 Selection of external vendor

b.	 Evaluation of results

c.	 Method of integrating filtered results into bug tracking system

SECTION III: HOW TESTING REQUIREMENTS ARE GENERATED

1.	 Some requirements are generated by this plan.

2.	 Requirements can also be generated during project meetings, or other
formal meetings held to review current priorities (such as the set of
predetermined levels used in the daily tests).

3.	 Requirements can also result from changes in a bug’s status within the
bug tracking system. For example, when a bug is marked “fixed” by a
developer, a requirement is generated for someone to verify that it has
been truly killed and can be closed out. Other status changes include

Game Testing.indb 379 03/09/16 3:58 PM

380 • Game Testing

“Need More Info” and “Can’t Duplicate,” each of which creates a re-
quirement for QA to investigate the bug further.

a.	 Some requirements are generated when a developer wants QA to
check a certain portion of the game (see “Ad Hoc Testing”).

 SECTION IV: BUG TRACKING SOFTWARE

1.	 Package name

2.	 How many seats will be needed for the project?

3.	 Access instructions (Everyone on the team should have access to the
bug list)

4.	 “How to report a bug” instructions for using the system

 SECTION V: BUG CLASSIFICATIONS

1.	 “A” bugs and their definition

2.	 “B” bugs and their definition

3.	 “C” bugs and their definition

 SECTION VI: BUG TRACKING

1.	 Who classifies the bug?

2.	 Who assigns the bug?

3.	 What happens when the bug is fixed?

4.	 What happens when the fix is verified?

 SECTION VII: SCHEDULING AND LOADING

1.	 Rotation Plan. How testers will be brought on and off the project, so
that some testers stay on it throughout its life cycle while “fresh eyes”
are periodically brought in.

2.	 Loading Plan. Resource plan that shows how many testers will be
needed at various points in the life of the project.

Game Testing.indb 380 03/09/16 3:58 PM

Appendix B • 381

 SECTION VIII: EQUIPMENT BUDGET AND COSTS

1.	 QA Team Personnel with Hardware and Software Toolset

a.	 Team Member #1

	 i.	 Hardware

1.	 Testing PC

a.	 Specs

2.	 Console Debug Kit

a.	 Add-ons (TV, controllers, etc.)

3.	 Record/capture hardware or software (see “Capture/Play-
back Testing”)

	 ii.	 Software Tools Needed

1.	 Bug tracking software

2.	 Other

	 b.	 Team Member #2

	 c.	 Etc.

2.	 Equipment Acquisition Schedule and Costs (summary of who
needs what, when they will need it, and how much it will cost)

Game Testing.indb 381 03/09/16 3:58 PM

Game Testing.indb 382 03/09/16 3:58 PM

TABLES OF PARAMETERS WITH TWO TEST VALUES

Test
1 A1 B1 C1

C2
C2
C1

B1
B2
B2

A2
A1
A2

2
3
4

ParamA ParamB ParamC

Table C.1  Three Parameters, Two Values Each

Test
1
2
3
4
5

A1
A2
A1
A2
A2

B1
B1
B2
B2
B1

C1 D1
D1

D1
D2

D2

C2
C2
C1
C1

ParamA ParamB ParamC ParamD

Table C.2  Four Parameters, Two Values Each

COMBINATORIAL TEST
TEMPLATES

Appendix C

Game Testing.indb 383 03/09/16 3:58 PM

384 • Game Testing

Test
1
2
3
4
5
6

A1
A2
A1
A2
A2
A* C*

B1
B1
B2
B2
B1
B2

C1 D1 E1
E1
E2
E2
E2
E1

D1

D1
D2

D2
D2

C2
C2
C1
C1

ParamA ParamB ParamC ParamD ParamE

Table C.3  Five Parameters, Two Values Each

Test
1
2
3
4
5
6

A1
A2
A1
A2
A2
A1 C2

B1
B1
B2
B2
B1
B2

C1 D1 E1 F1
F1
F1
F2
F2
F2

E1
E2
E2
E2
E1

D1

D1
D2

D2
D2

C2
C2
C1
C1

ParamA ParamB ParamC ParamD ParamE ParamF

Table C.4  Six Parameters, Two Values Each

Test
1
2
3
4
5
6

A1
A2
A1
A2
A2
A1 C2

B1
B1
B2
B2
B1
B2

C1 D1 E1 F1 G1
G2
G2
G2
G1
G1

F1
F1
F2
F2
F2

E1
E2
E2
E2
E1

D1

D1
D2

D2
D2

C2
C2
C1
C1

ParamA ParamB ParamC ParamD ParamE ParamF ParamG

Table C.5  Seven Parameters, Two Values Each

Test
1
2
3
4
5
6

A1
A2
A1
A2
A2
A1 C2

B1
B1
B2
B2
B1
B2

C1 D1 E1 F1 G1
G2
G2
G2
G1
G1

F1
F1
F2
F2
F2

E1
E2
E2
E2
E1

D1

D1
D2

D2
D2

C2
C2
C1
C1

ParamA ParamB ParamC ParamD ParamE ParamF ParamG ParamH
H1
H2
H1
H2
H1
H2

Table C.6 E ight Parameters, Two Values Each

Game Testing.indb 384 03/09/16 3:58 PM

Appendix C • 385

Test
1
2
3
4
5
6

A1
A2
A1
A2
A2
A1 C2

B1
B1
B2
B2
B1
B2

C1 G1
G2
G2
G2
G1
G1

F1
F1
F1
F2
F2
F2

E1
E1
E2
E2
E2
E1

D1
D1

D1
D2

D2
D2

C2
C2
C1
C1

ParamA ParamB ParamC ParamD ParamE ParamF ParamG ParamH ParamJ
H1
H2
H1
H2
H1
H2

J1
J2
J2
J1
J2
J1

Table C.7  Nine Parameters, Two Values Each

Test
1
2
3
4
5
6

A1
A2
A1
A2
A2
A1 C2

B1
B1
B2
B2
B1
B2

C1 G1
G2
G2
G2
G1
G1

F1
F1
F1
F2
F2
F2

E1
E1
E2
E2
E2
E1

D1
D1

D1
D2

D2
D2

C2
C2
C1
C1

ParamA ParamB ParamC ParamD ParamE ParamF ParamG ParamH ParamJ ParamK
H1
H2
H1
H2
H1
H2

J1
J2
J2
J1
J2
J1

K1
K2
K1
K1
K2
K2

Table C.8  Ten Parameters, Two Values Each

TABLES OF PARAMETERS WITH THREE TEST VALUES

Test ParamA ParamB ParamC
1
2
3
4
5
6
7
8
9

A1
A2
A3
A1
A2
A3
A1
A2
A3

B1
B2
B3
B2
B3
B1
B3
B1
B2

C1
C2
C3
C3
C1
C2
C2
C3
C1

Table C.9  Three Parameters, Three Values Each

Game Testing.indb 385 03/09/16 3:58 PM

386 • Game Testing

Test ParamA ParamB ParamC
1
2
3
4
5
6
7
8
9

A1
A2
A3
A1
A2
A3
A1
A2
A3

B1
B2
B3
B2
B3
B1
B3
B1
B2

C1
C1
C1
C2
C2
C2
C*
C*
C*

Table C.10  Two Parameters with Three Values, One Parameter with Two Values

Test ParamA ParamB ParamC
1
2
3
4
5
6

A1
A2
A3
A1
A2
A3

B1
B2
B1
B2
B1
B2

C1
C1
C1
C2
C2
C2

Table C.11  One Parameter with Three Values, Two Parameters with Two Values

Test ParamA ParamB ParamC ParamD
1
2
3
4
5
6
7
8
9

A1
A2
A3
A1
A2
A3
A1
A2
A3

B1
B2
B3
B2
B3
B1
B3
B1
B2

C1
C2
C3
C3
C1
C2
C2
C3
C1

D1
D1
D1
D2
D2
D2
D3
D3
D3

Table C.12  Four Parameters, Three Values Each

Game Testing.indb 386 03/09/16 3:58 PM

Appendix C • 387

Test ParamA ParamB ParamC ParamD
1
2
3
4
5
6
7
8
9

A1
A2
A3
A1
A2
A3
A1
A2
A3

B1
B2
B3
B2
B3
B1
B3
B1
B2

C1
C2
C3
C3
C1
C2
C2
C3
C1

D1
D1
D1
D2
D2
D2
D*
D*
D*

Table C.13  Three Parameters with Three Values, One Parameter with Two Values

Test ParamA ParamB ParamC ParamD
1
2
3
4
5
6
7
8
9

A1
A2
A3
A1
A2
A3
A1
A2
A3

B1
B2
B3
B2
B3
B1
B3
B1
B2

C1
C2
C1
C1
C2
C2
C2
C1
C*

D1
D1
D1
D2
D2
D2
D*
D*
D*

Table C.14  Two Parameters with Three Values, Two Parameters with Two Values

Test ParamA ParamB ParamC ParamD
1
2
3
4
5
6

A1
A2
A3
A1
A2
A3

B1
B2
B1
B2
B1
B1

C1
C2
C2
C2
C1
C1

D1
D1
D2
D2
D2
D1

Table C.15  One Parameter with Three Values, Three Parameters with Two Values

Game Testing.indb 387 03/09/16 3:58 PM

388 • Game Testing

Test ParamA ParamB ParamC ParamD ParamE
1
2
3
4
5
6
7
8
9

A1
A2
A3
A1
A2
A3
A1
A2
A3

B1
B2
B3
B2
B3
B1
B3
B1
B2

C1
C2
C3
C3
C1
C2
C2
C3
C1

D1
D2
D1
D2
D2
D2
D1
D1
D1

E1
E2
E2
E1
E1
E1
E2
E2
E2

Table C.16  Three Parameters with Three Values, Two Parameters with Two Values

Test ParamA ParamB ParamC ParamD ParamE
1
2
3
4
5
6
7
8
9

A1
A2
A3
A1
A2
A3
A1
A2
A3

B1
B2
B3
B2
B3
B1
B3
B1
B2

C1
C2
C1
C2
C2
C2
C1
C1
C1

D1
D2
D2
D1
D1
D1
D2
D2
D2

E1
E1
E2
E2
E2
E2
E1
E1
E1

Table C.17  Two Parameters with Three Values, Three Parameters with Two Values

Test ParamA ParamB ParamC ParamD ParamE
1
2
3
4
5
6

A1
A2
A3
A1
A2
A3

B1
B2
B1
B2
B1
B2

C1
C2
C2
C2
C1
C1

D1
D1
D2
D2
D2
D1

E1
E1
E1
E2
E2
E2

Table C.18  One Parameter with Three Values, Four Parameters with Two Values

Game Testing.indb 388 03/09/16 3:58 PM

Appendix C • 389

Test ParamA ParamB ParamC ParamD ParamE ParamF
1
2
3
4
5
6
7
8
9

A1
A2
A3
A1
A2
A3
A1
A2
A3

B1
B2
B3
B2
B3
B1
B3
B1
B2

C1
C2
C3
C3
C1
C2
C2
C3
C1

D1
D2
D1
D2
D2
D2
D1
D1
D1

E1
E2
E2
E1
E1
E1
E2
E2
E2

F1
F1
F2
F2
F2
F2
F1
F1
F1

Table C.19  Three Parameters with Three Values, Three Parameters with Two Values

Test ParamA ParamB ParamC ParamD ParamE ParamF
1
2
3
4
5
6
7
8
9

A1
A2
A3
A1
A2
A3
A1
A2
A3

B1
B2
B3
B2
B3
B1
B3
B1
B2

C1
C2
C3
C3
C1
C2
C2
C3
C1

D1
D2
D1
D2
D2
D2
D1
D1
D1

E1
E2
E2
E1
E1
E1
E2
E2
E2

F1
F1
F2
F2
F2
F2
F1
F1
F1

ParamG
G1
G1
G1
G2
G*
G*
G2
G2
G2

Table C.20  Three Parameters with Three Values, Four Parameters with Two Values

Game Testing.indb 389 03/09/16 3:58 PM

Game Testing.indb 390 03/09/16 3:58 PM

POWER-UPS

Power-ups are items that give your character some kind of temporary
bonus. You might need to drive over them, run over them, trigger a spe-
cial item in a puzzle, or hit a special sequence on your game controller or
keypad. The TFD template in Figure D.1 covers acquiring the power-up,
using its abilities, canceling the power-up, checking for power-up expira-
tion, and stacking power-ups. This same template could also be used for
RPG and adventure games where a player can trigger temporary effects
from a weapon, get a temporary boost from an item, or receive temporary
“buff” spells from other characters.

TEST FLOW DIAGRAM (TFD)
TEMPLATES

Appendix D

Game Testing.indb 391 03/09/16 3:58 PM

392 • Game Testing

IN_Powerups

No
Powerups

One
Powerup

Powerup
ActiveOne
Powerup

GetP
ow

er
up

/G
etP

ow
er

up

Effe
cts

OUT_Powerups

E
xi

t

Powerup
ActiveNo
Powerup

TwoPowerups
Active

UsePowerup/NoPowerupEffects

UsePowerup
/PowerupEffects

UsePowerup
/UsePowerup

EffectsPowerupExpires

/EndPowerup

Effects

CancelPowerup

/EndPowerup

Effects

C
ancelPowerup

/E
ndPowerup

E
ffects

Get
Pow

er
up

/G
et

po
wer

up

Effe
cts

UsePowerup

/NoPowerupEffects

UsePowerup

/NoPowerupEffects

Pow
erupE

xpires

/E
ndPow

erup

E
ffects

PowerupExpires

EndPowerup
Effects

CancelPowerup

/EndPowerup
Effects

Enter

Figure D.1  Power-ups TFD template.

CRAFT ITEM

Crafting an item in a game world requires the player to have the ingre-
dients and the skill to craft that particular type of item. Besides being
trained in the right skill, the character must also have raised his skill to
a sufficient level to make a crafting attempt of the target item. Some or
all of the ingredients are normally consumed, whether or not the crafting

Game Testing.indb 392 03/09/16 3:58 PM

Appendix D • 393

attempt was successful. These factors are incorporated into the TFD tem-
plate in Figure D.2.

IN_CraftItem Enter

AttemptCraft

/NoCraftEffects

AttemptCraft

/NoIngredient
Effects

D
ropC

raftItem

/D
ropItem

E
ffects

SellC
raftItem

/SellItem

E
ffects

No
Ingredients

NoSkill

Have
Ingredients

NoSkill

D
ro

pI
ng

re
die

nt
s

/D
ro

pI
ng

re
die

nt
s

Effe
cts

BuyIn
gr

ed
ien

ts

/B
uyIn

gr
ed

ien
ts

Effe
cts

Sell
In

gr
ed

ien
ts

/Sell
In

gr
ed

ien
ts

Effe
cts

Dro
pIn

gre
dien

ts

/D
ro

pIn
gre

dien
tsE

ffe
cts

BuyIn
gre

dien
ts

/B
uyIn

gre
dien

ts

Effe
cts

Sell
In

gre
dien

ts

/Sell
In

gre
dien

tsE
ffe

cts

Fail
Craf

t

/F
ail

Craf
tE

ffe
cts

RaiseSkill

/RaiseSkill

Effects

At
te

m
pt

C
ra

ft
/N

oS
ki

llE
ffe

ct
s

RaiseSkill
/RaiseSkillEffects

No
Ingredients
HaveSkill

HaveCrafted
Item

AttemptCraft/NoIngredient
EffectsOUT_CraftItem

Have
Ingredients
HaveSkill

Exit

SucceedCraft
/Succeed

CraftEffects

Figure D.2  Craft Item TFD template.

HEAL CHARACTER

Whether it’s medics, magic, or a well-deserved nap, nothing beats a
timely heal to get you through a tough mission, level, or battle. Get a friend
to resurrect you or respawn to start over. You can also change “Heal” to

Game Testing.indb 393 03/09/16 3:58 PM

394 • Game Testing

“Repair” and use the TFD template in Figure D.3 when it’s your car or
robot that’s taking a beating.

IN_Heal

Take
Minor

Dam
age

/M
inorD

am
age

Effe
cts

Heal

/H
eal

Effe
cts

Rest

/H
eal

Effe
cts

Ta
ke

C
ri

tic
al

D
am

ag
e

/C
ri

tic
al

D
am

ag
eE

ff
ec

ts

IncreaseHealth
/IncreaseHealthEffects

D
eathB

low

/D
eathB

low
E

ffects

Heal/NoHealEffects

R
es

t
/N

oH
ea

lE
ff

ec
ts

Rest/NoHealEffects

Enter
FullHealth

Reduced
Health Heal

/HealEffectsRest
/HealEffects

TakeCriticalDamage

/CriticalDamage

Effects

Maximum
Health

D
eathBlow

/D
eathBlowEffects

FullResurrect

/FullResurrectEffects

Character
DeadLowHealth

Exit

Rest/NoHealEffects

DeathBlow
/DeathBlowEffects

TakeDamage
/DamageEffects

Resurrect
/ResurrectEffects

Respawn/RespawnEffects

OUT_Heal

Hea
l

/N
oH

ea
lE

ffe
cts

Figure D.3  Heal Character TFD template.

CREATE/SAVE

Games are full of custom elements. You can create characters, teams,
playbooks, song lists, and skateboards. You also need to save them if you
want to see them the next time you fire up the game. The TFD template in
Figure D.4 handles creating, deleting, filling up your save slots, and restart-
ing the game without saving your changes. If you’re using this for something

Game Testing.indb 394 03/09/16 3:58 PM

Appendix D • 395

besides character creation, replace “Character” with the name of the type
of element you are testing.

IN_CreateSave

OUT_CreateSave

No
Character

Res
ta

rtG
am

e

Dele
teC

hara
cte

r

/D
ele

teE
ffe

cts
C

reateC
haracter

/SlotsFullE
ffects

FillCharacter

Slots/FillSlots

Effects

C
re

at
eC

ha
ra

ct
er

/S
lo

ts
F

ul
lE

ff
ec

ts

Cre
ate

Cha
rac

ter

/C
re

ati
on

Effe
cts

D
elete

C
haracter

/D
eleteE

ffects

OneSaved
Character
SlotsFull

OneSaved
Character

One
Character

Exit

SaveCharacter
/SaveEffects

SaveCharacter

/SaveEffects

Sa
ve

Cha
ra

ct
er

/S
av

eE
ffe

ct
s

UpdateCharacter

/UpdateEffects

U
pd

at
e

C
ha

ra
ct

er
/U

pd
at

e
E

ffe
ct

s

Updated
Saved

Character

R
estart

G
am

e

AllSaved
Characters
SlotsFull

Sa
ve

Al
l

C
ha

ra
ct

er
s

/S
av

eA
ll

E
ffe

ct
s

RestartGame

Re
sta

rt
G

am
e

Restart
Game

Restart

Game

DeleteAllCharacters

/DeleteAllEffectsDeleteCharacter
/DeleteEffects

Figure D.4  Create/Save TFD template.

UNLOCK AND BUY ITEM

Simulation, RPG, adventure, and even sports games tend to have fea-
tured items that you can purchase once you have unlocked the ability to
purchase the item and have enough points to actually buy it. The “items”
could be weapons, spells, clothing, furniture, mini-games, new vehicles, or
new levels. To unlock them, you might have to complete a specific task or
mission, defeat a particular opponent, raise your character’s level, or achieve
a result under special circumstances. Test your purchasing power using the

Game Testing.indb 395 03/09/16 3:58 PM

396 • Game Testing

TFD template in Figure D.5. Some of these criteria are documented in the
game and some are hidden. Shhhh…

IN_PointsItem

OUT_PointsItem

Purch
ase

Ite
m

/G
etIt

em

Effe
cts

PurchaseItem

/NoPurchase

D
eleteItem

/D
eleteItem

Effects

Purch
ase

Ite
m

/N
oP

urch
ase

E
xit

NoPoints
ItemLocked

NoPoints
ItemUn
locked

GetPoints
/GetPoints

Effects

Unlo
ck

Ite
m

/U
nlo

ck
Effe

cts

Unlock
Ite

m

/U
nlock

Effe
cts

LockIte
m

/LockEffe
cts

Loc
kI

tem

/L
oc

kE
ffe

cts

HavePoints
ItemLocked

HavePoints
ItemUn
locked

NoPoints
HaveItem

GetPoints/GetPointsEffects

LosePoints/LosePointsEffects

LosePoints/LosePointsEffects

Enter

Figure D.5  Use Points to Buy Unlocked Item TFD template.

UPDATE SONG LIST

It’s very effective when games incorporate popular music. You might
find today’s hits blasting from a car radio or a street basketball court. Music
can also be a more integral part of game play, such as in a dancing, musical

Game Testing.indb 396 03/09/16 3:58 PM

Appendix D • 397

instrument, or karaoke game. The TFD template in Figure D.6 reflects
the player’s ability to add and delete songs, order them, map them to
game events, and trigger them from within the game. Depending on the
game, triggering could be user controlled—such as tuning to a particular
in-game radio station—or event-driven, such as the music played when
the home team scores a touchdown. Just remember that “New Order”
on the TFD refers to the order of songs in the list, not the electronica
supergroup.

Enter

NewSong
AtEnd

MoveNewSongToBeginning/MoveSongEffectsMoveNewSongToEnd/MoveSongEffects

M
ap

New
So

ng
To

Eve
nt

/M
ap

So
ng

Effe
cts

OrignalSongs
Original
Order

Unm
ap

N
ew

So
ng

/U
nm

ap
So

ng
Effe

cts

FirstSong
Mapped
ToEvent

R
em

ove

N
ew

Song

/R
em

ove

SongE
ffects

AddSongTo

B
eginning

/AddSong

E
ffects

NewSong
AtBeginning

E
xit

LastSong
MappedTo

Event

M
apN

ew
Song

ToE
vent

/M
apSongE

ffects

OUT_SongList

PlaySongList/NewSongPlaysFirst

TriggerE
vent

/LastSongPlays

U
nm

apN
ewSong

/U
nm

apSongE
ffects

IN_SongList

PlaySongList

/NewSong
PlaysLast

Rem
ove

New
Song

/R
em

ove
SongE

ffe
cts

AddSongT
oEnd

/A
ddSongE

ffe
cts

Tr
ig

ge
rE

ve
nt

/N
ew

So
ng

Pl
ay

s

Figure D.6  Update Song List TFD template.

Game Testing.indb 397 03/09/16 3:58 PM

398 • Game Testing

COMPLETE A MISSION OR QUEST

Many games will reward points, money, items, or access to new parts
of the game if you can complete a particular mission, quest, or other desig-
nated goal. It’s common for these missions to be broken into multiple objec-
tives that must be completed individually in order to achieve success and
earn the reward. These objectives could be things such as capturing a set of
territories or villains, winning a series of competitions, or completing a set
of bonus words. The TFD template in Figure D.7 is constructed for goals
with three objectives, but you can also use it for two objectives by knocking
out the states and flows that deal with Objective3.

IN_Mission

R
es

ta
rt

M
is

si
on

RestartMission
R

estartM
ission

Ent
er

RestartM
issionObjective

2Met

Objective
1and2Met

FailO
bjective3

Objective
2and3Met

M
ee

tO
bj

ec
tiv

e1

/O
bj

ec
tiv

eM
et

E
ffe

ct
s

M
eetO

bjective3

/O
bjectiveM

etEffects

OUT_Mission

Fail

Objective1

Fail

Objective2

All
Objectives

Met
Exit

Objective1
and3Met

No
Objectives

Met

Fail
Objective1

Fail

Objective2

Objective
1Met

Fail
Objective2

F
ail

O
bjective3

Mee
tO

bjec
tiv

e1

/O
bjec

tiv
eM

etE
ffe

cts

Rest
art

Miss
ion

Objective
3Met

M
ee

t
O

bj
ec

tiv
e2

/O
bj

ec
tiv

eM
et

E
ffe

ct
s

Meet
Objective3

/Objective
MetEffects

M
ee

t

Objec
tiv

e1

/O
bjec

tiv
e

M
etE

ffe
cts

Meet
Objective3
/Mission

Completed

M
eet

O
bjective2

/O
bjective

M
etE

ffects

M
eetO

bjective2

/O
bjectiveM

et

E
ffects

Meet
Objective1
/Mission

Completed

M
ee

t
O

bj
ec

tiv
e2

/M
is

si
on

co
m

pl
et

ed

FailObjective1

FailO
bjective3

MeetObjective3
/ObjectiveMetEffects

Figure D.7  Complete a Mission or Quest TFD template.

Game Testing.indb 398 03/09/16 3:58 PM

Appendix D • 399

GET WEAPON AND AMMO

The TFD template in Figure D.8 is an enhancement of the diagram
from the walkthrough in Chapter 9. A state and flows have been added
for handling the case where the weapon has maximum ammo. You can
also apply this TFD structure to game elements which have a similar rela-
tionship, such as cars and fuel or spells and mana. Just replace “Gun” and
“Ammo” with the corresponding elements.

IN_GunAmmo

ShootGun/ClickSound
D

ropG
un

/D
ropSound

DropGun
/DropSound

DropGun/DropSound

ShootAllAm
m

o

/ShootE
ffects

D
ropAm

m
o

/D
ropSound

D
ro

pA
m

m
o

/D
ro

pS
ou

nd
G

et
Am

m
o

/A
m

m
oE

ffe
ct

s

D
ro

pA
m

m
o

/D
ro

pS
ou

nd

NoGun
NoAmmo

G
etL

oadedG
un

/L
oadedG

unE
ffects

HaveGun
MaxAmmo

HaveGun
HaveAmmo

Exit

Sh
oo

tA
llA

m
m

o
/S

ho
ot

E
ffe

ct
s

Have
Ammo

OUT_GunAmmo
GetMaxAmmo

/MaxAmmoEffects

G
etA

m
m

o
G

et
Am

m
o

/A
m

m
oE

ffe
ct

s

HaveGun

GetGun/GunEffects

GetGun/GunEffects

Enter

Figure D.8  Weapon and Ammo TFD template.

Game Testing.indb 399 03/09/16 3:58 PM

Game Testing.indb 400 03/09/16 3:58 PM

Items included on the DVD:
■■ Late Night Testing Checklist (Chapter 1)

■■ Tester Personality Comparison (Chapter 2 – Table 2.2)

■■ Sigma Table for Various Sizes of Delivered Software (Chapter 4)

■■ Game Test Creation Kickoff Checklist (Chapter 5)

■■ A Portion of a Test Suite for Minesweeper (Chapter 6)

■■ Planned and Actual Test Execution Progress Table (Chapter 7)

■■ Planned and Actual Test Execution Progress Graph (Chapter 7)

■■ Test Completion Rate Per Tester Per Day (Chapter 7)

■■ Test Participation Rate Calculations (Chapter 7)

■■ Test Effectiveness Measurements (Chapter 7)

■■ Test Effectiveness Graph (Chapter 7)

■■ TE Measured for Individual Testers (Chapter 7)

■■ Defect Severity Trend Data (Chapter 7)

■■ Defect Severity Trend Graph (Chapter 7)

■■ Empty Star Chart (Chapter 7)

ON THE COMPANION DISC

Appendix E

Game Testing.indb 401 03/09/16 3:58 PM

402 • Game Testing

■■ First Two Columns of Jedi Combat Test (Chapter 8)

■■ Complete Three-Way Combinatorial Table for Jedi Combat Test
(Chapter 8)

■■ Adding Force Choices for the Male Rows (Chapter 8)

■■ Adding the First Force Choice for the Female Character Tests
(Chapter 8)

■■ Completed Pairwise Combinatorial Table for Three Jedi Combat
Parameters (Chapter 8)

■■ FIFA 15 Match Settings Screen (Chapter 8)

■■ Starting the FIFA 15 Match Settings Test Table (Chapter 8)

■■ Adding the Second Set of Referee Values (Chapter 8)

■■ Completing the Referee Column (Chapter 8)

■■ Starting the Weather Column (Chapter 8)

■■ Adding the Second Set of Weather Values (Chapter 8)

■■ Completing the Weather Column (Chapter 8)

■■ Starting the Difficulty Level Column (Chapter 8)

■■ Generating New Difficulty Pairs (Chapter 8)

■■ Completing the Difficulty Column (Chapter 8)

■■ Starting the Pitch Wear Column (Chapter 8)

■■ Adding to the Pitch Wear Column (Chapter 8)

■■ Completing the Pitch Wear Column (Chapter 8)

■■ Starting the Game Speed Column (Chapter 8)

■■ Restarting the Game Speed Column (Chapter 8)

■■ Adding to the Game Speed Column (Chapter 8)

■■ The Completed Match Game Settings Test Table (Chapter 8)

■■ Incorrect reporting of Goal Event (Chapter 8)

■■ Advanced Controller Settings for Halo: Reach (Chapter 8)

Game Testing.indb 402 03/09/16 3:58 PM

Appendix E • 403

■■ Sensitivity Values Placed into Table Template (Chapter 8)

■■ Look Inversion Values Placed into Table Template (Chapter 8)

■■ Completed Controller Settings Table (Chapter 8)

■■ Flow Components (Chapter 9)

■■ Starting the Ammo TFD (Chapter 9)

■■ TFD After Picking up Weapon (Chapter 9)

■■ TFD with HaveGun and HaveAmmo states (Chapter 9)

■■ Return Flows Added from HaveGun and HaveAmmo (Chapter 9)

■■ Flows Added to Get both Gun and Ammo (Chapter 9)

■■ Return Flows Added from HaveGunHaveAmmo (Chapter 9)

■■ Loaded Gun and Shooting Flows Added (Chapter 9)

■■ Flow Added to Shoot Gun with No Ammo (Chapter 9)

■■ The Completed Ammo TFD (Chapter 9)

■■ Data Dictionary Example (Chapter 9)

■■ Unreal Tournament 2004 Bio-Rifle Ammo Effects (Chapter 9)

■■ Unreal Tournament 2004 Bio-Rifle Gun Effects (Chapter 9)

■■ Test Design Methodology Selection (Chapter 9)

■■ Madden Previous Play Information Box (Chapter 10)

■■ Madden CoachGlass (Chapter 10)

■■ Look Sensitivity Values with Usage Percentages (Chapter 10)

■■ Look Inversion Values with Usage Percentages (Chapter 10)

■■ Autolook Centering Values with Usage Percentages (Chapter 10)

■■ Crouch Behavior Values with Usage Percentages (Chapter 10)

■■ Clench Protection Values with Usage Percentages (Chapter 10)

■■ Halo: Reach Advanced Controls Cleanroom Combinatorial Table
(Chapter 10)

Game Testing.indb 403 03/09/16 3:58 PM

404 • Game Testing

■■ The First Advanced Controls Cleanroom Combinatorial Test
(Chapter 10)

■■ Two Advanced Controls Cleanroom Combinatorial Tests (Chapter 10)

■■ Three Advanced Controls Cleanroom Combinatorial Tests (Chapter 10)

■■ Four Advanced Controls Cleanroom Combinatorial Tests (Chapter 10)

■■ Five Advanced Controls Cleanroom Combinatorial Tests (Chapter 10)

■■ Completed Advanced Controls Cleanroom Combinatorial Tests
(Chapter 10)

■■ Example Flow with Usage Probability (Chapter 10)

■■ Unlock Item TFD with Usage Probabilities Added (Chapter 10)

■■ Unlock Item TFD with Altered Flow 9 (Chapter 10)

■■ Unlock Item TFD with Altered Flows 6 and 9 (Chapter 10)

■■ Unlock Item TFD without Usage Probabilities (Chapter 10)

■■ Casual Player Usage Table for Unlocked Item TFD Flows
(Chapter 10)

■■ Inverted Usage Percentages for the Look Sensitivity Parameter
(Chapter 10)

■■ EXCEL Spreadsheet file for Normal Usage (Chapter 10)

■■ EXCEL Spreadsheet file for Inverted Usage (Chapter 10)

■■ Inverted Flow Usage Table Initialized with Enter and Exit Flow Data
(Chapter 10)

■■ Fixed Usage Added for Flows Leaving NoPointsItemLocked
(Chapter 10)

■■ Inverted Usage Added for Flows Leaving HavePointsItemLocked
(Chapter 10)

■■ Inverted Usage Added for Flows Leaving HavePointsItemUnlocked
(Chapter 10)

■■ Inverted Usage Added for Flows Leaving NoPointsHaveItem
(Chapter 10)

Game Testing.indb 404 03/09/16 3:58 PM

Appendix E • 405

■■ Completed Table with Inverted Usage for NoPointsItemUnlocked
(Chapter 10)

■■ Inverted Casual Player Usage and Ranges for Unlock Item TFD
(Chapter 10)

■■ Dawn of War Two-level Test Case Tree (Chapter 11)

■■ Skirmish Game Mode Test Case Sub-Tree Added (Chapter 11)

■■ Dawn of War Technology Tree for Eldar Aspect Portal (Chapter 11)

■■ Male Dwarf Character Generation in Dragon Age: Origins (Chapter 11)

■■ Hume Mage Job Tree for FFTA2 (Chapter 11)

■■ Hume Mage Illusionist Job Tree Tests (Chapter 11)

■■ Battleheart Battleground Selection Tree (Chapter 11)

■■ Mafia Wars Energy Path Mission Tree for the North Las Vegas Territory
(Chapter 11)

■■ Overrun Card Branch for the Liliana Challenge (Chapter 11)

■■ Elvish Champion Card Branch for the Liliana Challenge (Chapter 11)

■■ Imperious Perfect Card Branch for the Liliana Challenge (Chapter 11)

■■ Elvish Warrior Card Branch for the Liliana Challenge (Chapter 11)

■■ Elvish Eulogist Card Branch for the Liliana Challenge (Chapter 11)

■■ Eyeblight’s Ending Branch for the Liliana Challenge (Chapter 11)

■■ Game Software Operating Regions (Chapter 13)

■■ Mass Effect 3 PC Video Configuration Settings (Chapter 13)

■■ Xbox One I/O Interfaces (Chapter 13)

■■ Godville Connection Exception Alert (Chapter 13)

■■ Defect Trigger Keywords (Chapter 13)

■■ Controller Settings Combinatorial Table with Configuration Triggers
(Chapter 13)

■■ Controller Actions Configuration Table (Chapter 13)

Game Testing.indb 405 03/09/16 3:58 PM

406 • Game Testing

■■ Controller Settings with Configuration and Exception Triggers
(Chapter 13)

■■ Controller Settings Table with Only Exception Triggers Added
(Chapter 13)

■■ Ammo TFD Template with Stress Flows Highlighted (Chapter 13)

■■ NoGunNoAmmo State Mitosis (Chapter 13)

■■ PreMatch State and Startup Trigger Trigger Flows Added to Ammo
TFD (Chapter 13)

■■ Ammo TFD with SpectateAndJoin Restart Flows Highlighted
(Chapter 13)

■■ Ammo TFD with AltFire Exception Flows Highlighted (Chapter 13)

■■ Ammo TFD with Weapon Skin Configuration Flows (Chapter 13)

■■ A-B-C Distribution of Card Battle Tests (Chapter 14)

■■ Detailed Distribution of Purchase Cards Combinatorial Test Cases
(Chapter 14)

■■ First Stage of Look Sensitivity Bug Fix Verification TFD (Chapter 14)

■■ Complete Look Sensitivity Bug Fix Verification TFD (Chapter 14)

■■ FIFA 11 Match Lineup with Nameless Player (Chapter 14)

■■ Highway Map Wave Achievement Tree (Chapter 14)

■■ Two-State TFD Design Pattern (Chapter 14)

■■ Weapon Swap Using the Two-State Design Pattern (Chapter 14)

■■ Swap1 Event Definitions for Various Platforms (Chapter 14)

■■ Example Two-State Scenario Starter Diagram (Chapter 14)

■■ Three-State TFD Design Pattern (Chapter 14)

■■ Example Three-State Scenario Starter Diagrams (Chapter 14)

■■ Look Sensitivity Test Scheduling for Zoomable Weapons (Chapter 14)

■■ Generic Wave Completion Achievement Tree (Chapter 14)

■■ Allpairs File for FIFA 2008 Visual Settings Changes (Chapter 14)

Game Testing.indb 406 03/09/16 3:58 PM

Appendix E • 407

■■ FIFA 2008 Visual Settings Combinatorial Table (Chapter 14)

■■ Allpairs File for FIFA 2009 Visual Settings Changes (Chapter 14)

■■ FIFA 2009 Visual Settings Combinatorial Table (Chapter 14)

■■ FIFA 2009 Visual Settings Appended to FIFA 2008 Table (Chapter 14)

■■ Allpairs File for FIFA 2011 Visual Settings Changes (Chapter 14)

■■ FIFA 2011 Visual Settings Combinatorial Table (Chapter 14)

■■ FIFA 15 Blank Left Back Player Image (Chapter 15)

■■ Marvel Contest of Champions Crystals (Chapter 15)

■■ FIFA 15 No Transaction (Chapter 15)

■■ Marvel Contest of Champions Crystals from Upgrade Bar (Chapter 15)

Game Testing.indb 407 03/09/16 3:58 PM

Game Testing.indb 408 03/09/16 3:58 PM

A
Ad hoc testing
	 directed testing

		 detective testing, 281
		 goals, 276–277
		 Groupthink, 279–280
		 reporting defects, 278–279
		 reproduction rate, 282–283
		 scientific method, 283–284

	 free testing, 274–275
AELOC. See assembly-equivalent lines of code
algorithm defects, 53–57
Alpha testing, 108–109
Android™ games, 131
appraisal activity, 67
“around” bug testing, 133–134
assembly code, 77
assembly-equivalence, 77
assembly-equivalent lines of code (AELOC), 77–78
assignment defects, 46–48

B
baseline path method, 210–212
Beta testing
	 design lock, 111–112
	 entry criteria, 110–111
	 releasing bugs, 112–113
black box testing, 120–122
blocked defects, 35

Bloons map, 354
browser games, 131
bug database, 100–101
bug report, filing, 357–358
bugs
	 high priority, 30–31
	 identification

		 Judger defined, 21–22
		 Perceiver defined, 22–23
		 purpose of testing, 21

	 low priority, 31–32
	 medium defects, 31
	 urgent, 30
bug writing
	 Brief Description field, 135–136
	 expected/actual result statements, 138–139
	 fact based, 135
	 Full Description field, 135–138
	 pitfalls, 140–141
	 unbiased, 135
build defects, 50–53
Button Masher, 226

C
calculating inverted usage, 246–247
campaigns usage, 224–225
casual gamer, 226
certification planning, 98
checking defects, 48–49

Index

Game Testing.indb 409 03/09/16 3:58 PM

410 • Game Testing

checklist-based reviews, 70
cleanroom testing
	 cleanroom combinatorial tables, 229–238
	 inverted usage

		 calculating, 246–247
		 combinatorial table, 247–249
		 TFD flow usage inversion, 249–252

purpose of, 223–224
TFD paths
	 example, 238–246
	 flow usage maintenance, 241–244
	 flow usage profiles, 244–246
	 producing test cases from, 214–219
	 with usage probability, 237–238
usage probabilities
	 mode-based usage, 224–225
	 player type usage, 225–227
	 real-life usage, 227–229
closed Beta testing, 290
coding standards, 75–76
collectible card game (CCG), 263
combat
	 exploratory testing

		 energy tour, 348
		 medic tour, 347–348
		 military tour, 347
		 side-scroller tour, 347

combinatorial design trigger, 306–311
combinatorial economics, 185–186
combinatorial table
	 cleanroom testing, 229–238
	 difficulty column, 169
	 difficulty level column, 167
	 difficulty pairs, 168
	 game speed column, 173–174
	 for Jedi combat test, 158–161
	 match settings screen, 163
	 match settings test table, 163–164
	 pitch wear column, 170–172
	 referee column, 164–165
	 usage inversion, 247–249
	 weather column, 165–167
combinatorial templates, 178–181
combinatorial test generation, 181–185
combinatorial testing
	 economics, 185–186
	 parameters, 154
	 templates, 178–181, 391–399
	 test generation, 181–185
	 values

		 boundaries, 157–158
		 defaults, 154–155

		 enumerations, 155
		 ranges, 155–156

compatibility testing, 97
Computer Associates Ingres® project, 76
configuration management software, 50
configuration trigger, 297–299
control chart, 87–88
Couch Potato tour, 348–350
craft item TFD template, 392–393
create/save TFD template, 394–395

D
Dark Age of Camelot (DAOC) game
	 Version 1.70i, 43–44, 58
Data Dictionary, 203–208
data-driven testing, 376–379
defect management tool. See DevTrack™

defect tracking database, 98–99
defect triggers
	 classification, 302–305
	 configuration trigger, 297–299
	 exception trigger, 300–301
	 normal trigger, 301
	 restart trigger, 302
	 startup trigger, 299–300
	 stress trigger, 301
	 and test designs

		 combinatorial design trigger, 306–311
		 TFD triggers, 311–318

	 defect types
		 algorithm, 53–57
		 assignment, 46–48
		 build/package/merge, 50–53
		 checking, 48–49
		 documentation, 57–59
		 function, 45
		 interface, 59–61
		 timing, 49–50

design lock, 111–112
detective testing, 281
[DevBuild], 51
DevTrack™

	 attachment function, 33
	 defect priority selection, 29–33
	 defect title and description, 26–28
	 defect tracking system, 34
	 defect type selection, 28–29
	 initial exposure and discussion, 25–26
directed testing
	 detective testing, 281
	 goals, 276–277

Game Testing.indb 410 03/09/16 3:58 PM

Index • 411

	 Groupthink, 279–280
	 reporting defects, 278–279
	 reproduction rate, 282–283
	 scientific method, 283–284
documentation defects, 57–59
downloadable content (DLC), 117

E
Elvish Champion card, 265
Elvish Eulogist card, 267–268
Elvish Warrior card, 269
energy tour, 348
enumerations, 155
exception trigger, 300–301
expert constructed path, 212–213
exploiter, 227
exploratory testing
	 combat

		 energy tour, 348
		 medic tour, 347–348
		 military tour, 347
		 side-scroller tour, 347

	 Couch Potato tour, 348–350
	 obsessive-compulsive tour, 351–352
	 prior version tour, 351
	 Rained-Out tour, 350
	 recording

		 exploration tips, 354–355
		 filing bug reports, 357–358

	 reporting exploratory results, 355–357
	 session based testing, 358–359
	 sports

		 manager tour, 347
		 player tour, 346–347
		 stadium tour, 346

taxi cab tour, 350–351
exploration tips, 354–355
external Beta testing, 290–292
external testing, 289
Eyeblight’s Ending card, 269

F
Fagan Defect-Free Process™, 71
Fagan Inspection method, 71–73
feature lock, 111–112
feedback loop, 125
filing bug reports, 357–358
flows, 190
free testing, 274–275
full-time testers, 145–146
function defects, 45

G
game quality appraisal
	 checklist-based reviews, 70
	 inspections, 71–73
	 peer reviews, 67
	 reviews, 70
	 walkthroughs, 67–69
game quality factors, 65–67
game quality measurements
	 phase containment, 79–82
	 six sigma software, 77–79
game standards
	 coding standards, 75–76
	 user interface standards, 73–75
game start operating region, 296–297
game tester
	 amplifying problems

		 early defects, 24
		 in more places, 24–25
		 two-step process, 25

	 bugs identification
		 judger defined, 21–22
		 perceiver defined, 22–23
		 purpose of testing, 21

	 fixing defects, 35–36
	 notifying team

		 descriptive title, 26–28
		 defect Severity field, 28–29
		 defect priority choices, 29–33
		 being helpful, 33–34

	 Pass/Fail test status, 35
	 personality comparison, 23
	 playing games, 16–21
	 reporting bugs, 25–35
	 verifying fixed defects, 37
general testing. See Ad hoc testing
give and take approach, 11–12
gold testing
	 entry criteria, 113–114
	 last-minute defects, 114–115
	 release certification, 115
Groupthink, 279–280

H
hard-core gamer, 226
heal character TFD template, 393–394
heterogeneous combinatorial table, 154
high priority bug, 30–31
homogenous combinatorial table, 154
hypothetical hand-held racing game timeline, 94

Game Testing.indb 411 03/09/16 3:58 PM

412 • Game Testing

I
Imperious Perfect card, 266
individual Beta tester, 291–292
informal testing, 21
in-game operating region, 297
interface defects, 59–61
Inverted usage
	 calculating, 246–247
	 combinatorial table usage inversion, 247–249
	 TFD flow usage inversion, 249–252
iOS™ games, 131

J
Jedi combat test
	 first two columns of, 158
	 pairwise combinatorial table, 159
	 three-way combinatorial table, 161
Judger defined identification, 21–22

K
knockdown list, 132

L
last-minute defects, 114–115
lead tester
	 defect tracking database, 98–99
	 game design reviews, 98
	 phase acceptance criteria, 97–98
	 roles of, 97
live teams, 116–118
low priority bug, 31–32
low trust, 9

M
Mafia Wars™, 20
Magic: The Gathering®, 263
manager tour, 347
Massive Multiplayer Online Role Playing Game

(MMORPG), 43–44, 50
MBTI. See Myers-Briggs type indicator
medic tour, 347–348
medium defects, 31
merge defects. See build defects
military tour, 347
mission/quest TFD template, 398
MMORPG. See Massive Multiplayer Online Role

Playing Game
mobile game testing, 42
mode-based usage probabilities, 224–225
modular testing, 102
more trust, 9
multiplayer gaming usage, 225

multiplayer testing, 96
Myers-Briggs type indicator (MBTI), 21

N
NCSL. See non-commented source lines
nearsighted panic, 7
non-commented source lines (NCSL), 77–79
nonplayer characters (NPCs), 227
normal trigger, 301
“not available” defects, 35
NPCs. See nonplayer characters

O
obsessive-compulsive tour, 351–352
ODC system. See Orthogonal Defect Classification

system
open Beta testing, 290–291
operating regions
	 game start, 296–297
	 in-game, 297
	 post-game, 297
	 pre-game, 296
	 stages of, 295
Orthogonal Defect Classification (ODC) system, 43
Overrun card, 264

P
package defects. See build defects
pairwise combinatorial testing, 153
panic symptoms
	 nearsighted, 7
	 under pressure, 3–5
	 unfamiliar, 2–3
	 unprepared, 3
	 unrested, 5–6
Pareto chart, 86–87
part-time testers, 146
PCE. See phase containment effectiveness
[PcOnly], 51
peer reviews, 67
Perceiver defined identification, 22–23
Phantom Inspector, 73
phase acceptance criteria, 97–98
phase containment, 79–82
phase containment effectiveness (PCE), 79–82
player tour, 346–347
player type usage probabilities, 225–227
play testing
	 balance, 285–286
	 hardwork, 288–289
	 suggestions, 287–288
post-game operating region, 297

Game Testing.indb 412 03/09/16 3:58 PM

Index • 413

post-release testing, 116
power-ups TFD template, 391–392
pre-game operating region, 296
pre-production test phase
	 planning tasks

		 compatibility testing, 97
		 multiplayer testing, 96
		 overtime, 97
		 scope of testing, 95
		 single player, 95–96
		 test matrices, 96

	 test design, 101–102
	 test documents, 101–102
primary tester, 97
primitives, 191–192
prior version tour, 351
process standards, 84
product standards, 84

R
Rained-Out tour, 350
realism, testing for, 290
real-life usage probabilities, 227–229
regression testing
	 A-B-C’s distribution, 322–324
	 defect modeling, 325–327
	 expansion packs, 329–330
	 period of time, 327–329
	 in testing lifecycle, 132–133
	 testing process, 132–133
[Release1.1], 51
reproduction rate, 282–283
restart trigger, 302
reviews/reviewers, 70
risk management, 90
rules of game testing
	 give and take approach, 11–12
	 panic symptoms

		 nearsighted, 7
		 under pressure, 3–5
		 unfamiliar, 2–3
		 unprepared, 3
		 unrested, 5–6

	 trust
		 issues of, 7–8
		 late defects, 10–11
		 measuring and analyzing test results, 8–9
		 word games, 9–10

S
scientific method, 283–284
session based testing, 358–359

side-scroller tour, 347
single-player mode usage, 224
single player testing, 95–96
six sigma software, 77–79
Skirmish game mode test, 257
sleep effect, 347
smoke testing, 131–132
Software Quality Assurance Plan (SQAP)
	 feedback and reports, 85
	 problem reporting and corrective action, 86
	 QA personnel, 83
	 reviews and audits, 84–85
	 risk management, 90
	 standards, 84
	 supplier control, 89
	 tools, techniques, and methods, 86–89
	 training, 89–90
	 in walkthroughs, 69
sports
	 exploratory testing

		 manager tour, 347
		 player tour, 346–347
		 stadium tour, 346

SQAP. See Software Quality Assurance Plan
stadium tour, 346
startup trigger, 299–300
states, 191
story-based games, 297
stress trigger, 301
string constants, 58
stun effect, 347
subject matter testing, 289–290

T
taxi cab tour, 350–351
TDD. See Technical Design Document
TE. See test effectiveness
Technical Design Document (TDD), 69
templates
	 basic test plan, 375–381
	 combinatorial test, 383–389
	 test flow diagram, 219, 391–399
terminators, 192
test case, 101–102, 125–127
	 from TFD paths, 214–219
test case trees, 255–257
test design, 101–102
test design methodology selection, 219–220
test documents
	 test case, 101–102
	 test plan, 101
	 test suite, 102

Game Testing.indb 413 03/09/16 3:58 PM

414 • Game Testing

test effectiveness (TE)
	 defect severity trend data, 148
	 defect severity trend graph, 148
	 graph, 148
	 for individual testers, 146
	 measurements, 147
tester performance, 149–152
test flow diagram (TFD)
	 cleanroom paths

		 example. 238–246
		 flow usage maintenance, 241–244
		 flow usage profiles, 244–246
		 with usage probability, 237–238

	 defect triggers, 305–306
	 design activities

		 allocation, 192–193
		 construction, 193–195
		 preparation, 192

	 elements
		 actions, 191
		 events, 190–191
		 flows, 190
		 primitives, 191–192
		 states, 191
		 terminators, 192

	 example, 195–202
	 flow usage inversion, 249–252
	 producing test cases from, 214–219
templates, 219
	 craft item, 392–393
	 create/save, 394–395
	 heal character, 393–394
	 mission/quest, 398
	 power-ups, 391–392
	 unlock and buy item, 395–396
	 update song list, 396–397
	 weapon and ammo, 399
test path
	 baseline path generation, 210–212
	 combining path strategies, 214
	 expert constructed paths, 212–213
	 minimum path generation, 209–214
testing lifecycle
	 around bug testing, 133–134
	 bug writing

		 Brief Description field, 135–136
		 expected/actual result statements, 138–

139
		 fact based, 135
		 Full Description field, 136–138
		 pitfalls, 140–141
		 unbiased, 135

	 configuration preparation, 129–130
	 entry criteria, 127–128
	 feedback loop, 125
	 regression testing, 132–133
	 smoke testing, 131–132
	 steps for, 124–125
	 test case, 125–127
	 test suit, 125–127
testing progress, 143–147
test kickoff checklist, 103
test kickoffs, 102–107
test matrices, 96
test phases
	 Alpha testing, 108–109
	 Beta testing, 110–113

		 design lock, 111–112
		 entry criteria, 110–111
		 releasing bugs, 112–113

	 certification planning, 98
	 gold testing, 113–115

		 entry criteria, 113–114
		 last-minute defects, 114–115
		 release certification, 115

	 live teams, 116–118
	 post-release testing, 116
	 pre-production

		 test kickoffs, 102–107
test plan, 101
test planning tasks
	 compatibility testing, 97
	 multiplayer testing, 96
	 overtime, 97
	 scope of testing, 95
	 single player, 95–96
	 test matrices, 96
test plan template, 375–481
[TestRelease], 51
test reuse
	 combinatorial expansion, 336–343
	 definition, 330
	 look sensitivity, 334–336
	 TFD design patterns

		 three-state, 333–334
		 two-state, 331–332

test suite, 102, 125–127
test trees
	 case trees, 255–257
	 tree designs, 263–271
	 tree feature tests, 258–263
TFD. See test flow diagram
three-state TFD design pattern, 333–334
timing defects, 49–50

Game Testing.indb 414 03/09/16 3:58 PM

Index • 415

tree feature tests, 258–263
trigger defects
	 classification, 302–305
	 configuration trigger, 297–299
	 exception trigger, 300–301
	 normal trigger, 301
	 restart trigger, 302
	 startup trigger, 299–300
	 stress trigger, 301
trust
	 issues of, 7–8
	 late defects, 10–11
	 measuring and analyzing test results, 8–9
	 word games, 9–10
two-state TFD design pattern, 331–332

U
UI. See user interface
Ultimate Team™, 349
under pressure panic, 3–5
unfamiliar panic, 2–3
unlocked buy item TFD template, 395–396
unprepared panic, 3
unrested panic, 5–6
update song list TFD template, 396–397
urgent bug, 29–30

usage probabilities
	 mode-based usage, 224–225
	 player type usage, 225–227
	 real-life usage, 227–229
user interface (UI)
	 game standards, 73–76
	 testing, 16–21

V
Vanish ability, 45, 47
version control, 128–129
version tree, 51
vice lead tester, 97

W
walkthroughs, 67–69
weapon and ammo TFD template, 399
white box testing, 122–123
word games, 9–10

X
XT Session Report, 355–356

Z
Zynga®, 20

Game Testing.indb 415 03/09/16 3:58 PM

	Cover
	Halftitle
	Title
	Copyright
	Contents
	Preface
	Acknowledgments
	Chapter 1 Two Rules of Game Testing
	Don’t Panic
	Unfamiliar
	Unprepared
	Under Pressure
	Unrested

	Late Night Testing Checklist
	Pre-Test
	Post-Test
	Nearsighted

	Trust No One
	Balancing Act
	Word Games
	Last Chance
	Trust Fund

	Give and Take
	The Rest of the Story
	Summary

	Chapter 2 Being a Game Tester
	Playing Games
	Identifying Bugs
	Here Comes the Judge

	Amplifying Problems
	Early Bird
	Places Everyone

	Notifying the Team
	Describe
	Pick a Severity
	Prioritize
	Be Helpful
	Pass or Fail?

	Testify to Others
	Verify the Fix
	Exercises
	References

	Chapter 3 Why Testing is Important
	Who Cares?
	Defect Typing
	Functions
	Assignments
	Checking
	Timing
	Build/Package/Merge
	Algorithms
	Documentation
	Interfaces

	Testing Happens
	Exercises

	Chapter 4 Software Quality
	Game Quality Factors
	Game Quality Appraisal
	Walkthroughs
	Reviews
	Checklist-based Reviews
	Inspections

	Game Standards
	User Interface Standards
	Coding Standards

	Game Quality Measurements
	Six Sigma Software
	Phase Containment

	Quality Plans
	QA Personnel
	Standards
	Reviews and Audits
	Feedback and Reports
	Problem Reporting and Corrective Action
	Tools, Techniques, and Methods
	Supplier Control
	Training
	Risk Management

	Summary
	Exercises
	References

	Chapter 5 Test Phases
	Pre-Production
	Planning Tasks
	Determine the Scope of Testing the Project Will Require
	Assign a Lead Tester
	Determine Phase Acceptance Criteria
	Participate in Game Design Reviews
	Set Up the Defect Tracking Database
	Draft Test Plans and Design Tests

	Testing Before Testing Begins
	Test Kickoffs

	Alpha Testing
	Alpha Phase Entry Criteria

	Beta Testing
	Beta Phase Entry Criteria
	Design Lock
	Letting Bugs Go

	Gold Testing
	Last-Minute Defects
	Release Certification

	Post-Release Testing
	“Live Teams”
	Exercises

	Chapter 6 The Game Testing Process
	“Black Box” Testing
	“White Box” Testing
	The Life Cycle of a Build
	Test Cases and Test Suites
	Entry Criteria
	Configuration Preparation
	Smoke Testing
	Regression Testing
	Testing “Around” a Bug

	On Writing Bugs Well
	Just the Facts, Ma’am
	Brief Description
	Full Description
	Great Expectations
	Habits to Avoid

	Exercises

	Chapter 7 Testing by the Numbers
	Testing Progress
	Testing Effectiveness
	Tester Performance
	Exercises

	Chapter 8 Combinatorial Testing
	Parameters
	Values
	Defaults
	Enumerations
	Ranges
	Boundaries

	Constructing Tables
	Combinatorial Templates
	Combinatorial Test Generation
	Combinatorial Economics
	Exercises

	Chapter 9 Test Flow Diagrams
	TFD Elements
	Flows
	Events
	Actions
	States
	Primitives
	Terminators

	TFD Design Activities
	Preparation
	Allocation
	Construction

	A TFD Example
	Data Dictionary
	Data Dictionary Application
	Data Dictionary Reuse
	Data Dictionary Example

	TFD Paths
	Minimum Path Generation
	Baseline Path Method
	Expert Constructed Paths
	Combining Path Strategies

	Producing Test Cases from Paths
	TFD Templates
	To TFD or Not to TFD?
	Exercises

	Chapter 10 Cleanroom Testing
	Usage Probabilities
	Mode-Based Usage
	Player Type Usage
	Real-Life Usage

	Cleanroom Test Generation
	Cleanroom Combinatorial Tables
	Cleanroom Combinatorial Example
	TFD Cleanroom Paths
	TFD Cleanroom Path Example
	Flow Usage Maintenance
	Flow Usage Profiles

	Inverted Usage
	Calculating Inverted Usage
	Combinatorial Table Usage Inversion
	TFD Flow Usage Inversion

	Exercises

	Chapter 11 Test Trees
	Test Case Trees
	Tree Feature Tests
	Test Tree Designs
	Exercises

	Chapter 12 Ad Hoc Testing and Gameplay Testing
	Ad Hoc Testing
	Free Testing Comes From the Right Side of Your Brain
	“Fresh Eyes”
	Directed Testing Makes Order Out of Chaos
	Set Goals and Stick to Them
	If You’re Not Recording, You’re Not Testing
	Avoid Groupthink

	Testing as Detective Work
	How to Be a Repro Man (or Woman)
	The Scientific Method

	Gameplay Testing
	A Balancing Act
	“It’s Just a Suggestion”
	Making a Game Easy Is Hard Work
	External Testing
	Subject Matter Testing
	External Beta Testing

	Who Decides?

	Exercises

	Chapter 13 Defect Triggers
	Operating Regions
	Pre-Game Operating Region
	Game Start Operating Region
	In-Game Operating Region
	Post-Game Operating Region

	The Triggers
	The Configuration Trigger
	The Startup Trigger
	The Exception Trigger
	The Stress Trigger
	The Normal Trigger
	The Restart Trigger

	Classifying Defects
	Defect Triggers and Test Designs
	Combinatorial Design Trigger Examples
	TFD Trigger Examples

	Exercises

	Chapter 14 Regression Testing and Test Reuse
	Regression Testing
	A-B-C’s
	Defect Modeling
	Time Keeps on Ticking
	Expanding Possibilities

	Test Reuse
	TFD Design Patterns.
	Looking Back and Forth
	Combinatorial Expansion

	Exercises

	Chapter 15 Exploratory Game Testing
	Exploratory Testing Overview
	Sports
	Stadium Tour
	Player Tour
	Manager Tour

	Combat
	Military Tour
	Side-Scroller Tour
	Medic Tour
	Energy Tour

	The Couch Potato Tour
	The Rained Out Tour
	The Taxi Cab Tour
	The Prior Version Tour
	The Obsessive-Compulsive Tour

	Recording Exploratory Tests
	Exploration Tips
	Reporting Exploratory Results

	Filing Bug Reports

	Session Based Testing
	References

	Appendix A Odd-Numbered Answers to Exercises
	Appendix B Basic Test Plan Template
	Appendix C Combinatorial Test Templates
	Appendix D Test Flow Diagram (TFD) Templates
	Appendix E On the Companion Disc
	Index

