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Series foreword

Artificial intelligence is the study of intelligence using the ideas and methods of
computation. Unfortunately, a definition of intelligence seems impossible at the
moment because intelligence appears to be an amalgam of so many information-
processing and information-representation abilities.

Of course psychology, philosophy, linguistics, and related disciplines offer
various perspectives and methodologies for studying intelligence. For the most
part, however, the theories proposed in these fields are too incomplete and too
vaguely stated to be realized in computational terms. Something more is needed,
even though valuable ideas, relationships, and constraints can be gleaned from
traditional studies of what are, after all, impressive existence proofs that intelli-
gence is in fact possible.

Artificial intelligence offers a new perspective and a new methodology. Its
central goal is to make computers intelligent, both to make them more useful and
to understand the principles that make intelligence possible. That intelligent
computers will be extremely useful is obvious. The more profound point is that
artificial intelligence aims to understand intelligence using the ideas and methods
of computation, thus offering a radically new and different basis for theory
formation. Most of the people doing work in artificial intelligence believe that
these theories will apply to any intelligent information processor, whether
biological or solid state.

There are side effects that deserve attention, too. Any program that will
successfully model even a small part of intelligence will be inherently massive
and complex. Consequently, artificial intelligence continually confronts the
limits of computer-science technology. The problems encountered have been
hard enough and interesting enough to seduce artificial intelligence people into
working on them with enthusiasm. It is natural, then, that there has been a steady
flow of ideas from artificial intelligence to computer science, and the flow shows
no sign of abating.

The purpose of this series in artificial intelligence is to provide people in many
areas, both professionals and students, with timely, detailed information about
what is happening on the frontiers in research centers all over the world.

J. Michael Brady
Daniel Bobrow
Randall Davis
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Preface

The schema mechanism is a general leamning and concept-building mechanism
intended toreproduce aspects of Piagetian cognitive development during infancy.
A computer program that implements the schema mechanism has replicated sev-
eral early milestones in the Piagetian infant’s invention of the concept of persist-
ent object.

The schema mechanism implementation connects to a simulated body in a mi-
croworld. The mechanism learns from its experiences by processes of empirical
learning and concept invention, and uses what it learns to plan actions, often for
the sake of explicit goals. Empirical learning is achieved by a novel induction
technique, marginal attribution, that builds structures called schemas; each sche-
ma asserts that a given action, in a specified context, has particular results. Con-
texts and results are expressed in terms of binary state elements called items. Cru-
cially, the schema mechanism not only discovers relations among existing
representational elements (actions and items), but also constructs new such ele-
ments. Its learning is entirely autonomous and unsupervised.

For any achievable result, the mechanism can define a new, abstract action, the
action of achieving that result. Most importantly, the mechanism invents radical-
ly novel concepts by constructing new state elements, synthetic items, to desig-
nate aspects of the world that the existing repertoire of representations fails to ex-
press. A synthetic item is defined with respect to a particular unreliable schema;
the item designates whatever unknown condition must be satisfied for the schema
to be reliable. Such a condition may differ fundamentally from any states pre-
viously represented by the mechanism.

The schema mechanism, like a Piagetian infant, initially represents the world
only in terms of simple sensory and motor elements. Atfirst, there is noconcept of
persistent, external objects—objects that exist even when not perceived. The
schema mechanism recapitulates aspects of the Piagetian developmental se-
quence by inventing a series of approximations to the persistent-object concept.
The mechanism discovers correspondences among touch, vision, and other mo-
dalities, and eventually represents an object independently of how, or if, the object
is currently perceived. This designation is far removed from the original, sensori-
motor elements of representation.
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1 Introduction and overview

The most wondrous quest of humankind remains its ancient and ongoing effort
to understand the human mind. This book presents the schema mechanism, one
of myriad attempted contributions to that effort. The schema mechanism pro-
ceeds from the work of the psychologist Jean Piaget, who sought the basic opera-
tional principles of the mind by studying the genesis of thought in infants and chil-
dren.

Piaget’s theoretical stance, known as constructivism, proposes that the new-
born infant is virtually a solipsist, conceiving of reality exclusively in terms of
sensory impressions and motor actions; the infant can learn that certain actions
can create particular sensations, but lacks any idea that there are objects that exist
independently of their perception. But although, by this account, the individual
begins life with only sensorimotor terms of representation, she goes on to con-
struct new representational elements as the prior repertoire proves inadequate to
describe her experiences. Eventually, she is able to conceive of an object inde-
pendently of how—or even whether—it is currently perceived.

The schemamechanism is a general learning and concept-building mechanism
inspired by Piaget’s account of human cognitive development. The mechanism is
intended to replicate key aspects of cognitive development during infancy, with
possible relevance to later development as well. This project serves two pur-
poses: it takes Piaget’s theory of human development as a source of inspiration for
anartificial learning mechanism; and it extends and tests Piaget’s theory by seeing
whether a specific mechanism that works according to Piagetian themes actually
exhibits Piagetian abilities. In fact, a computer program which implements the
schema mechanism (along with a simple, simulated physical environment) has
replicated several early milestones in the Piagetian infant’s acquisition of the con-
cept of physical object.

The schema mechanism practices a kind of learning that uses almost no a priori
knowledge of the world. Starting without such knowledge is both a handicap and
asource of power. A system that depends too strongly on built-in knowledge, and
built-in terms of representation, will have difficulty ever making discoveries far
beyond the scope of what is built in. But without already having a good idea of
what relates to what, and how itrelates, alearning system faces a formidable prob-
lem in interpreting its experiences well enough to learn from them in the first
place; and without a built-in conceptual vocabulary suited to the problems it
faces, the system needs a powerful facility for inventing concepts for itseif. These
are the two central challenges addressed by this research.

Copyrighted Material



4 Chapter 1. Introduction and overview

This chapter begins with an overview of the schema mechanism, and of the
background of this research program—some basic concerns about the nature of
learning that motivate and inform this work. A brief guide to the dissertation con-
cludes the chapter. Subsequent chapters present adetailed description of the sche-
ma mechanism itself and of the results from experiments with its implementation.
The final chapters discuss the schema mechanism in relation to cognitive science
and to other research programs in the field of artificial intelligence.

1.1 The schema mechanism: an overview

This section summarizes the book. It spotlights the fundamental questions ad-
dressed by research with the schema mechanism, sketches the schema mecha-
nism’s implementation, and samples the results obtained.

1.1.1 Fundamental problems: empirical learning and concept invention

The schema mechanism controls, and receives sensory information from, abody.
Based on its interaction with the world, the mechanism discovers regularities in
the world, expressed in some existing representational vocabulary; and it con-
structs new concepts, thereby augmenting that vocabulary to make additional em-
pirical discoveries expressible. The schema mechanism uses the knowledge it ac-
quires to guide its actions, both for the sake of specific goals, and in order to gain
further knowledge.

The mechanism expresses regularities as schemas, each of which predicts
some effects of an action under specified circumstances; the mechanism expres-
sesconcepts as binary state elements called items, each of which can be on or off to
assert or deny that some condition holds. Each item can have an associated value;
an item’s value can influence the selection of those actions which, according to
extant schemas, may achieve the state designated by the item. The mechanism
thus follows what we might call a prediction-value paradigm (see section 9.1), in
contrast with a situation-action paradigm: the mechanism does not directly learn
what action to take in a given situation, but rather learns what would happen next
foreach of several possible actions. It may then select what action to take based in
part on the value of an achievable resuit.

The schema mechanism is principally concerned with empirical learning and
with concept invention. For each of these intertwined processes, I identify a foun-
dational problem, and propose and demonstrate a partial solution.

® The foundational problem in empirical learning is that the variability of the
effects of the same action in different circumstances makes an action’s re-
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1.1. The schema mechanism 5

sults hard to notice as such in the first place. A solution to the empiri-
cal-learning problem, implemented by the schema mechanism’s marginal
attribution facility, is 1o use sensitive statistical measures to alternate be-
tween discovering a highly unreliable result, and then seeking conditions
with respect to which the result follows more reliably.

® The foundational problem in concept invention is the need to define radical-
ly novel concepts—ones that designate entities fundamentally different
from any that were previously represented (as, for example, a physical ob-
ject is a much different sort of thing than a visual image or a tactile sensa-
tion). A solution is to define a new concept as the potential to evoke a man-
ifestation, where the manifestation is described in terms of previously
designated concepts; the schema mechanism’s synthetic items define such
concepts.

Empirical learning: marginal attribution

The first foundational problem concemns empirical learning. The schema mecha-
nism’s empirical learning facility faces a difficult chicken-and-egg problem. A
given action may have a variety of different results in different circumstances; for
example, moving one’s hand incrementally backward can resultin a tactile sensa-
tion on the chin, the shoulder, or elsewhere, depending on where the hand started.
Even if a particular result follows a given action reliably under certain circum-
stances, that result may occur only rarely in general. Moreover, causes other than
the given action may also give rise to the result; and even when that action does
cause the result, the result may be buried among many unrelated evenis. Thus,
eventhe mostreliableresults can be hard to notice as such, until the corresponding
circumstances have been identified; but those, in turn, cannot be sought without
first knowing what result they correspond to. That is the chicken-and-egg prob-
lem.

One solution would be to provide a priori constraint about what might be rele-
vant to what. But in the interests of being able to transcend a priori domains (and
in the interests of modeling Piaget’s theory), the schema mechanism starts with-
out such knowledge. This way, from the outset, the mechanism demonstrates the
ability to learn in unprecedented domains—since, to the mechanism, all domains
are unprecedented.

The schema mechanism’s marginal attribution facility (section 4.1.2) tackles
the chicken-and-egg problem by distinguishing the relevance of a result from its

reliability. A resultis relevz&t) ;S)y;}?ga}%:}é(gl A%ta}%% Haasylt occurs more often when the



6 Chapter 1. Introduction and overview

action is taken than when not, however infrequent the result may be even when the
actionis taken. Requiring only that there be a significant difference in frequencies
relieves the problem of aresult’s general rarity despite its following reliably under
the right conditions. Requiring that the difference be significant quickly filters
out merely coincidental co-occurrences. But detecting relevant results without a
priori constraints requires looking everywhere—that is, maintaining relevance
statistics for every pair of action and possible result. Section 5.1 argues that the
burden of this exhaustive cross-correlation is acceptable.

Having identified a relevant result, the mechanism seeks conditions under
which the result follows reliably. Here, too, distinguishing relevance from reli-
ability turns out to be important, in order to build up to some necessary conjunc-
tion of context conditions by finding one conjunct at a time (as explained in sec-
tion 4.1.2).

Concept invention: synthetic items

The second foundational problem is radically novel concept invention. Conven-
tional learning systems define new concepts as boolean combinations, general-
izations or specializations, or analogs or clusters of existing concepts. Any such
variant of existing concepts resembles one or more prior concepts, differing only
incrementally. Piagetian development, in contrast, requires the invention of con-
cepts that differ fundamentally from ail prior concepts.

For example, the schema mechanism—like an infant, according to Pia-
get—starts with only sensorimotor terms of representation—terms that designate
sensory inputs and motor outputs. But the mechanism (again, like a Piagetian in-
fant) develops important precursors of the concept of physical object, eventually
being able to represent an object’s continued existence even when the object is no
longer perceived. A physical object that persists when not perceived is nothing
like its various sensory manifestations: those are transient, variable, recurrent,
and intangible, whereas an object is characterized by (among other things) its
long-term persistence, its stability, its substance, its tangibility, its spatial locality,
and its weight and volume.

The schema mechanism defines a new concept by building a state element
calleda synthetic item (section 4.2). The mechanism defines a synthetic item with
respect to a schema that represents a patfern of recoverability. For example, re-
turning the hand to where an object was last felt typically recovers the tactile man-
ifestation of the object (because anearby object typically stays put for a while, and

thus will be felt again when the hand returns to where the object was recently en-
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1.1. The schema mechanism 7

countered.) Upon discovering this pattern of recoverability, the mechanism de-
fines a new synthetic item to designate whatever unknown aspect of the world as-
sures this recoverability; in this example, the new synthetic item is thus defined to
represent whatever aspect of the world assures that returning the hand to a particu-
lar location would in fact result in the tactile sensation in question.

In effect, this synthetic item thereby designates that there is, at present, areadi-
ly palpable object at a particular location. This English description—object at a
particular location—is composed of designations of physical object, and of spa-
tial location. But crucially, the mechanism itself does not define this synthetic
item by composing prior concepts of object and location; the mechanism has no
such prior concepts. On the contrary, this synthetic ittem may serve as a precursor
of those very concepts.

Thus, the construction of a synthetic item starts from some previously con-
ceived manifestation—in this example, a tactile sensation—which, however, had
not been conceived of as a manifestation of anything. Working backward from
the manifestation, the act of defining a synthetic item postulates a previously un-
conceived-of thing that is manifested (in this case, a physical object). Building
synthetic items corresponds to Piagetian conservation phenomena, wherein an in-
dividual postulates some new kind of thing that remains invariant even when all
manifestations of it change or cease. From early infancy to sophisticated sci-
ence—from palpable objects to energy or quarks—such postulates can be revolu-
tionary.

Having thus defined a new concept, the mechanism then tries to discover appli-
cablity conditions for the concept—that is, conditions which distinguish in-
stances of the concept from non-instances. In the present example, the applicabil-
ity conditions are conditions under which the probing action of the hand would, in
fact, result in the specified manifestation. These conditions are expressed as a
function of other concepts represented by the mechanism (e.g., concepts corre-
sponding to visual evidence for the object’s presence). The applicability condi-
tions serve to operationalize the new concept, to make it usable, by determining,
albeit imperfectly, when the concept is and is not applicable. But the operational-
izing function does not define the new concept, for the function is always subject
toextension and revision when new experiences reveal adiscrepancy between the
function and the concept that it is supposed to operationalize.
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8 Chapter 1. Introduction and overview

1.1.2 The implementation: structures, machinery, and accomplishments

Lintend schema mechanism to be a generic term (like internal combustion en-
gine); it designates any learning mechanism that operates more or less as de-
scribed here, no matter whether the mechanism is instantiated biologicaily, elec-
tronically, or is just an unimplemented abstraction. [advance the hypothesis that
the schema mechanism may be implemented by the human brain, as a component
of our intelligence. However, except where otherwise noted, 1 use the term sche-
ma mechanism in this book to refer to the mechanism as implemented by a partic-
ular computer program that is described here.

This section sketches the schema mechanism'’s data structures, its machinery
for building and using its structures, and a synopsis of the leaming actually
achievedby the implementation. Chapters 3,4 and 6 present this subject matter in
greater breadth and depth.

Figure 1.1 illustrates the schemamechanism’s robot body and microworld(i.e.,
a small, artificial world in which the body resides). These can be viewed on a
computer screen, providing a way to watch the mechanism’s actions. The body
includes a crude visual system, and a single, mobile hand (detached from the
body) with tactile sensors and the ability to grasp and move objects. Like a neo-
nate’s, this body lacks the ability to move itself from place to place.

the hand

an object

\the}d/body

Figure 1.1 The microworld. The schema mechanism controls a simu-
lated robot in a two-dimensional microworld. The visual field can move
relative to the body. Here, the visual field encompasses the body and a
round object, but not the hand.

the visual field

Structures: schemas, actions, and items

The schema mechanism has three kinds of data structures: schemas, actions, and

items.

Copyrighted Material



1.1. The schema mechanism 9

® A schemais atripartite structure comprising a context, action, and result. A
schema asserts that if its action is taken when its context conditions are all
satisfied, then the result conditions will obtain. (The assertion is subjectto a
reliability factor that the schema maintains). For example, the schema in
figure 1.2 asserts that if the hand is just in front of the mouth (context), mov-
ing the hand incrementally backward (action) will precipitate a tactile sen-
sation on the mouth (result).

® Each action designates an event that can affect the state of the world (as
might be reflected in the state of some of the mechanism’s items).

® Anitemisastateelement. Each item corresponds to some proposition about
the state of the world, and is On (or Off) to assert (or deny) that proposition.
(An item can also be in an Unknown state.)

context: action: result:

HandInFrontOfMouth MouthFeelsTouch

HandBackward

Figure 1.2 A schema. A schema asserts that taking its action
when its context conditions are satisfied would achieve its result.
This schema says how to move the hand backward to the mouth.

A schema is a unit of knowledge, both declarative and procedural. Declara-
tively, a schema makes a factual assertion, an assertion about what would happen
under certain circumstances. Procedurally, a schema can say how to pursue a
goal; the goal may be in the schema’s own result, or the schema may facilitate the
activation of some other schema whose result includes the goal. A schema is also
a unit of experimentation, comparing what happens when an action is taken to
what happens without it. As explained below, new schemas arise from such ex-
periments.

Schemas’ contexts and results are represented in terms of items. Each context
designates zero or more items; some may be negated. In figure 1.2, the context
consists of the (nonnegated) item HandInFrontOfMouth. A context is satisfied
when and only when all of its nonnegated items are On, and all of its negated items
are Off. A resultsimilarly contains zero or more (possibly negated) items; in fig-

ure 1.2, the result consists Ot;])?/ H&Wté/lcf’%{‘: ee?ﬁgfaucl1 (also nonnegated). The



10 Chapter 1. Introduction and overview

result items are expected, subject to the schema’s reliability factor, to turn On (or
Off, if negated) when the schema completes its activation. Toactivate aschemais
to initiate its action when the schema’s context conditions are satisfied; the sche-
ma’s activation finishes when its action terminates.

Primitive and acquired structures

The schema mechanism’s primitively supplied items all correspond to perceptual
information, such as there's something touching the hand or there's some object
at the upper left of the visual field. Each primitively supplied action corresponds
to some simple motor activity, like moving the hand incrementally forward or
glancing incrementally to the left. Calling the initial actions and items primitive
is just to say that they comprise the initial representational vocabulary, in contrast
with later elements, which the mechanism itself constructs. What the primitive
items designate, and how they are computed, need not be simple; the visual items,
for example, may correspond to information that (in humans) is the result of a
complicated analysis of a visual scene to extract information about three-dimen-
sional structure.

However sophisticated the processing may be that supplies primitive informa-
tion to the schema mechanism, the schema mechanism itself is, at first, wholly ig-
norant of what the primitive actions and items correspond to, or how they migh.
relate to one another. It does not know, for example, which items are visual and
which tactile, or even what it would mean to be visual or tactile. It does not know
thattwo items designating similar kinds of information—for example, two tactile
items corresponding to contact with adjacent regions of the hand—have any clos-
er relationship to each other than to arbitrary other items. And the mechanism
does not even have—Ilet alone understand—any primitive items that designate
persistent objects—objects that continue to exist even when not perceived. It is
part of the schema mechanism’s task to learn about the relations among its units of
representation, both primitive and constructed.

A constructivist mechanism is like a programming language in that its charac-
ter is defined not so much by its particular set of primitives as by its ways of com-
bining structures to form larger ones, and by its means of abstraction—its means
of forming new units of representation that allow the details of their implementa-
tion to be ignored.! The schema mechanism, like a good programming language,
is extensible: instances of its basic units of representation—schemas, items, and
actions—can all be constructed by the mechanism’s means of combination and

1. This analysis of programming languages is borrowed from Abelson and Sussman 1.
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1.1. The schema mechanism 11

abstraction. More than this, the schema mechanism is self-extensible—it is the
mechanism itself (rather than a programmer or other external agent) that man-
ufactures these extensions.

The schema mechanism interacts with the world, and based on its experiences,
constructs new schemas, actions, and items.

® The schema mechanism builds schemas that connect items and actions to
express discoveries about regularities in the world. Such discoveries are
made by the mechanism’s marginal attribution facility, which, as mentioned
above, addresses the chicken-and-egg problem of empirical learning: how
to recognize an action’s result without first knowing the necessary context
conditions.

@ The mechanism builds new state elements, synthetic items, to designate as-
pects of the world that are radically different from any that were previously
represented.

® For any achievable result, the mechanism can build a composite action, de-
fined as the action of achieving that result, regardless of just which schemas
are used to achieve the result. Defining composite actions allows the mech-
anism to represent events at levels of abstraction higher than the lowest, sen-
sorimotor level. Composite actions also allow for the designation of state
transitions that are caused externally, rather than being under the mecha-
nism’s control (as explained in section 4.3.2).

Highlights of the implementation’s accomplishments

Chapter 6 presents a detailed synopsis of the developmental progression achieved
by the schema mechanism’s computer implementation, emphasizing its recapitu-
lation of some early milestones in the Piagetian development of the concept of
physical objects. Here, as a preview, are some brief highlights.

The mechanism has ten primitive (i.e., built-in) actions: four to move the hand
incrementally forward, back, right, or left, within a certain range of the body; four
to shift the glance orientation incrementally in those directions, within a certain
range; and actions of opening and closing the hand. There are three categories of
primitive items: proprioceptive?, tactile, and visual. For each possible body-rela-
tive hand position, there is a hand-position item which is On justin case the hand is
in that position; similarly, there is an eye-position item for each possible body-rel-

2. Proprioception gives an organism information about the orientation of its limbs and other
body parts using direct cues such as muscle tension, as opposed to, say, visual evidence.
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12 Chapter 1. Introduction and overview

ative glance orientation. Various tactile items designate contact with parts of the
hand or the body; some tactile items denote specific tactile details of objects being
felt. The visual field comprises a number of regions; for each, there is a visual
item which is On just in case an object appears at that region (every object’s image
occupies just one such region). Also, for each of several foveal regions, anumber
of other items designate visual details of an image appearing there; these details
can help identify specific objects.

Among the mechanism'’s first achievements is a practical elaboration of the
spatial relationship among the various visual-field items and proprioceptive
items. That is, the mechanism builds schemas such as in figure 1.3, which de-
scribe the adjacency of certain hand-position, eye-position, or visual-region items
with respect to incremental hand or glance actions. Such schemas chain together
innetworks that tell the mechanism how to move the hand from one body-relative
position to another by a series of motions between adjacent positions, or how to
direct the gaze to a given orientation, or change the gaze to shift animage toa giv-
en part of the visual field.

hand- hand-—
at-2,1 2 S ar-2,2
hand-
forward
eye— image—at— image—at—
at—W—.ﬁ’ 1 region-3.3 Ej S region-2,3
eye— eye—
backward right

Figure 1.3 Adjacency schemas, These schemas help forge a practi-
cal understanding of locations’ adjacency.

The mechanism learns about some visual effects of hand motions, as illustrated
in figure 1.4. In addition, the mechanism learns to sometimes anticipate tactile
contact when the hand is seen moved beside an object, also shown in figure 1.4.
Such schemas begin to connect an object’s visual and tactile properties—but
without yet representing the object apart from its sensory manifestation.

It is not enough to discover such connections among existing representations.
A constructivist system’s greatest challenge is to transcend its initially supplied
terms of representation, to extend its own ontological vocabulary, to designate
kinds of things that are radically different from any that it had previously been

able to represent. Beyond discovering intermodal coordination, the schema
Copyrighted Material
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hand—image— hand-image—
ar—region—W—region—Z 2 hand—touch—
hand— left
forward 00 at \J / hand-
region-2,3 image—to—
region-2,2

Figure 1.4 Intermodal schemas. These schemas anticipate some visual
and tactile effects of hand motion. The notation hand-image... abbrevi-
ates visual-detail items that correspond to the hand; hand-image-to-re-
gion-2,2 is a composite action.

mechanismbuilds synthetic items that begin to designate objects, as distinct from
their current perceptions.

The first schema in figure 1.5 says that the action of moving the hand to
body-relative position (2,3)3 results in a tactile sensation. The schema’s context is
empty, so its assertion is unconditional, and very unreliable—the assertion is cor-
rect only when an object happens to be at the adjacent position (1,3). The mecha-
nism builds a synthetic item, which we might call PalpableObjectAtl,3 (the
name, of course, has no meaning to the mechanism). The item is defined to repre-
sent whatever condition makes the schema reliable; we observers know (but the
mechanism does not) that this condition is that there be an object at (1,3). 4 Asthe
mechanism discovers conditions under which the schema is reliable—for in-
stance, if the schema happened to succeed just recently—it turns the item On
when such conditions are met; whenever the item is On, the mechanism under-
stands that moving the hand to (2,3) will result in a tactile sensation.

Similarly, when the second synthetic item in figure 1.5 is On, the mechanism
knows that looking directly at (2,3) will produce an image just left of where the
glance is directed; the item thus denotes a visible objectat (1,3). Each of these two
synthetic items can remain On even when the eye and hand are both directed else-
where, enabling the mechanism to represent that something persists in the ab-
sence of any sensory manifestation. Later developments coordinate these initial-
ly distinct items, so that they tend to turn On and Off together, reflecting, in effect,

3. Thisaction is a composite action. The formation of composite actions is explained in section
4.3.1.

4.  The reader may wonder why the synthetic item does not get incorporated into the context of
the schema. The answer is that a given schema’s context (or result) never changes, although a simi-
lar schema, but with something added to its context or result, may also be built. Thus, the synthetic
item shown here may appear in the context (or result) of some other schema, but not in the very
schema with respect to which the item is defined.
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synthetic item: synthetic item:
e palpable—object—at—l 3 L4 vzsible——object—at—] 3

image—just—left—

and—touc h—
@__'_@/ —center
@ZEZG/ glance—

at-2,3 ar-2

Figure 1.5 Persistent-object items. These synthetic items designate palpa-
ble or visible objects (respectively) at a certain body-relative position.

adiscovery that the representations are coextensive—that a visible object at (1,3)
is the same thing as a palpable object at (1,3).

1.2 Origins of constructivist AI: on the meaning of
learning

A research program’s aspirations are elucidated by its inspirations—by the prior
investigations that pose basic questions and frame possible answers. This section
presents some concerns about the nature of learning that motivate the schema
mechanism, both in its broad outline and in many of its details.

The scope of human skill and knowledge is striking. For some domains of ex-
pertise, such as visual processing, it is clear that the human species is genetically
endowed with hardware that embodies knowledge about the domain. For other
domains, such as language, the question of built-in knowledge is controversial.
But for many domains—pbhysics, architecture, economics, chess, juggling, cine-
matography, computer programming, rock’n’roll—there can be no correspond-
ing innate mental modules. The subject matter of these domains did not even exist
(orbecome accessible) until so recently thatevolution could not have learned how
to preprogram the corresponding skills; and the complexity of those domains,
along with the tight match of the corresponding competence, precludes the possi-
bility that such preprogramming arose as an accidental side-effect of other evolu-
tionary developments. Moreover, in those domains and myriad others, dramatic
advances in knowledge occur within individual lifetimes—sometimes in mere
years,days, even seconds. Uniquely, successive generations of human beings in-
herit a progressive accumulation of competence arising not by the rearrangement
of genes but by the creativity of minds, and propagating not through biological
reproduction but through the tutelage of culture.
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1.2. Origins of constructivist Al 15

We must, of course, be endowed with innate machinery that is responsible for
our ability to construct and acquire such diverse knowledge. We may term such
machinery a general learning mechanism—general in the sense that it spans a di-
verse, open-ended set of domains that were not specifically ‘‘anticipated” by evo-
lution. It is natural to wonder what portion of human intelligence grows out of a
general learning mechanism, and what part is due to innately specialized, do-
main-specific processing modules.

1.2.1 Learning in human beings: nativism and constructivism

JeanPiaget and Noam Chomsky stand at two extremes of the nativism vs. learning
spectrum. Piaget’s work is at the foundation of the modern empirical study of the
genesis of intelligence in individual humans. Piaget proposes a radically con-
structivist account in which even the basic notion of an object—the notion that
visual and tactile sensations are related to each other, as manifestations of some
external thing; that this thing exists even when not perceived, etc.—is not innate,
but is abstracted from the infant’s interactions with its world. Similarly, notions
of logic, classification, and number, conceptions of people and of seif, and of the
rest of the world, are all gradually constructed. Moreover, intelligence it-
self——seen as a gamut of strategies for pursuing goals or solving problems or ex-
ploring terrains, literal or figurative—is constructed, bit by bit, with ever-increas-
ing sophistication.

At the other extreme, Noam Chomsky champions a radically nativist theory of
cognitive development. Chomsky doubts the very intelligibility of the notion of
learning [ 15, 54], particularly withregard to cognitive universals, thatis, concepts
normally acquired by all persons; virtually everyone, for example, comes to un-
derstand the rudimentary properties of physical objects, and gains fluency in
speaking and understanding a language. It may be that such knowledge is not at
first present, or is not present in a form that the infant can use (just as, forexample,
an infant’s reproductive apparatus is not yet functional). But what is innately
present, by any account, is a mechanism which, interacting with any normal envi-
ronment, nearly inevitably develops a usable version of such knowledge.

Chomsky poses the rhetorical question: how does that nearly inevitable devel-
opment differ from, say, the nearly inevitable development of limbs by a zygote?
Limbs are not present at conception, nor any miniature model of limbs; nor is
there even (necessarily) any local region of the genome specifically descriptive of
limbs, i.e., specifically dedicated to the control of limb development but not of

other body parts. Nonethel&sgbt;;:i lr?(;gvctlh I&fa l}g}l}lg[ﬂ limbs is an innately specified
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maturational process, merely by virtue of the fact that the human genome, placed
inanormal environment, almost certainly will grow limbs. And, although natural
selection undoubtedly shaped the evolution of limbs, many other physical struc-
tures (e.g., navels) were not specifically selected for, but developed instead as
side-effects of other constraints; nonetheless, even navels are properly said to be
innately specified, not learned by each individual. Why should the learnedness of
cognitive universals be judged by different standards than morphological univer-
sals?

Escaping the snare of this clever, provocative question helps elucidate the
meaning of learning, and prepares the way for more substantive investigations of
the nature of learning. Here, I believe, is an easy, sensible way out.

Consider, for example, knowing the names and layout of the streets in one’s
neighborhood. This knowledge is untendentiously learned, in that information is
gained when thisknowledge is acquired (using Shannon’s [62] technical sense of
information). Noexamination of a zygote could yield a street map of its neighbor-
hood; the information simply is not present. But examining the brain of a person
who has acquired that knowledge could—in principle—reveal that information.

In contrast, the process of growing limbs yields no new information that limbs
will exist. Looking at a zygote, one could already—in principle—deduce that the
mature organism will develop limbs, if nurtured in a normal environment (pre-
suming that one knows what such an environment is like). Thus, the information
that limbs would develop is already present in the zygote; the mature organism
bears no additional such information.

Let us say that a mechanism is a learning mechanism if its function is to gain
and use information. Chomsky’s point, recast in these terms, is that the acquisi-
tion of cognitive universals, like the development of limbs, entails no information
gain; as much can be determined (in principle) about cognitive universals by ex-
amining a zygote (if the examiner has knowledge of the zygote’s normal kind of
environment) as by examining an adult. The same can be said for analytic—nec-
essarily true—knowledge, such as 2+2=4. In the case of nonanalytic universals,
either examination is fruitful; in the case of analytic knowledge, both examina-
tions are superfluous (since we can know, for example, that 2+2=4, without em-
pirical demonstration of that fact).

Nonetheless, in opposition to Chomsky’s conclusion, universal or analytic
knowledge might develop as the product of a learning mechanism. That is, a
mechanism whose function is to gain and use information, to build and use knowl-
edge structures that represent environmental contingencies (e.g., street names),
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1.2. Origins of constructivist Al 17

might also, and by the same processes, build and use structures that represent fea-
tures of the environment which turn out to be so ubiquitous, and so prominent, that
any such mechanism, in a normal environment, will almost inevitably come to
represent those features. Because they are inevitable, these structures do not add
information (in the technical sense) to the system. Nonetheless, studying the
knowledge structures built by alearning mechanism, one lacks any good reason to
exclude those that turn out to be inevitable, hence universat (to mechanisms of
that kind); all of a learning mechanism’s similarly acquired and similarly used
knowledge structures are sensibly called learned.

Thus, universal and analytic knowledge can be learned, if acquired by a learn-
ing mechanism—a mechanism for gaining information (even though the acquisi-
tion of universal and analytic knowledge is not itself an information gain). But
even if cognitive universals are in fact learned, it remains sensible to say, as
Chomsky does, that they are innately specified, in the same sense that limbs or
navelsare (evenif, like navels, the cognitive universals were not specifically ‘‘an-
ticipated,” i.e., selected for, by evolution). The two apparently conflicting claims
are reconcilable if the innately specified developmental process is a learning pro-
cess, in the sense just given.

The substantive question, then, is which such knowledge, if any, is in fact
learned by human beings, and which, if any, is either present at birth, or develops
later by a nonlearning maturational process.

1.2.2 Learning in artificial systems

A parallel question arises when designing an artificial intelligence (Al). To what
extent is it reasonable to seek powerful general mechanisms of learning; to what
extentshould research focus on more domain-specific mechanisms? The question
about humans is distinct from the question about AL. Even if general learing
mechanisms are feasible, human beings might not be designed that way; con-
versely, even if much of human intelligence does flow from a general learning
mechanism, engineering a replica of that mechanism may be an intractable prob-
lem.

Indeed, early Al work, pursuing self-organizing systems, tried and failed to
find just such a mechanism. As this approach became discredited, there followed
a generation of knowledge-based Al, characterized by the principle that intelli-
gence, especially learning, derives its power from knowledge: about specific do-
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structure to support the acquisition of new structure. From this point of view,
bootstrapping from meager initial knowledge seems unlikely.

On the other hand, the failure to develop tabula rasa systems may have been
due to problems not intrinsic to the very attempt. In particular, the study of
self-organizing systems (like some philosophical and psychological inquiries
about the innateness vs.acquisition of human knowledge) has been handicapped
by lack of attention to empirical evidence. The relevance of empirical data to the
question about humans is clear: by observing the intellectual development of hu-
mans from infancy, one can hope to obtain evidence as to the early presence or
absence of certain abilities or knowledge.S With regard to the Al approach, it is
good to be reminded of a maxim of Seymour Papert: in order to think seriously
about thinking, one must think about thinking about something. But what is a
self-organizing system to “think”* about? Not the things that human adults think
about: adult tasks are predicated upon much acquired knowledge, not available to
atabula rasa machine. On the other hand, whatever it is that human infants think
aboutis aplausible candidate for the subject matter of alearning-based Al mecha-
nism. The infant’s learning achievements offer target abilities for the mechanism,
providing a basis for the mechanism’s design. Without data about infants (and
without a plausible constructivist theory to characterize that data) there is no good
source of inspiration as to what, specifically, a constructivist mechanism ought to
do.

The methodological flaw—not having a clearly specified target domain—is
compounded by a second problem in research about self-organizing systems: itis
traditional to set up a chaotic gaggle of interacting elements and then wait for or-
der to emerge from the chaos. But extracting order from chaos is hard work. A
mechanism to do this work must be designed not just to amass atomic facts, but to
organize data into functional units, to abstract essential attributes and discard use-
less ones, to verify suspected regularities and pursue variations on them, to devel-
op new kinds of representation as old ones prove inadequate—the sort of activity
that must be involved in any serious effort to make sense of the world.®

5. The interpretation of such evidence is not straightforward, though (see section 2.9.3). Anin-
fant might not yet manifest certain knowledge that is nonetheless present—or that will arise from
an innately-programmed maturational sequence. Conversely, adultocentric interpretations may
impart to an infant a more sophisticated understanding than is necessary 10 explain its actions.

6.  The resurrection of self-organizing systems in the guise of connectionism avoids the primary
pitfalls of earlier such research. Present-day connectionism tends to focus more modestly on pro-
viding alternative computational goals for solving particular problems. Section 9.2compares con-
nectionist work with the approach advocated here.
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1.2.3 Humanlike learning in artificial systems

Piaget’s work offers an antidote to both the lack of a clear target domain and the
naive-order-from-chaos problem. Piaget gives an elaborate description of the
course of cognitive development from infancy through childhood and adoles-
cence, taking account of the evolution of primitive problem-solving and do-
main-specific knowledge. Piaget characterizes ways in which, at a given point,
aperson uses existing knowledge and skills to achieve specific goals, and to create
new knowledge and skills. Piaget’s intricate road map of the course of develop-
ment—especially during infancy—specifies a target domain for artificial sys-
tems, a sequence of cognitive acquisitions for a mechanism to achieve.

Piaget documents some striking uniformities throughout cognitive develop-
ment, and refers to these as the functional invariants of intelligence. These invari-
ants amount to a loose characterization of an underlying developmental mecha-
nism. Departing from the older empiricist tradition, Piaget’s characterization of
developmental invariants emphasizes the importance of well-designed activities
of organizing, structuring, and abstracting from experience, and of the purposive
application of knowledge and exploration in the pursuit of goals, in contrast with
merely accumulating data from and being conditioned by the environment. Pia-
get’sloose description of functional invariants falls far short of a formal specifica-
tion of a developmental mechanism; still, it furnishes an important alternative to
naive order from chaos as a starting point for a precise specification.

My research program, then, is to design and implement a mechanism that cor-
responds to Piaget’s sketch of the functional invariants of cognitive development.
This endeavor has two broad goals: to help understand the human mind, and to
help design an artificial mind. As mentioned above, questions about the nature of
intelligence might have different answers for cognitive science than for AI. None-
theless, the program advocated here (not as the sole promising approach, but as
one of them) is to try to build an intelligent mechanism by taking human intelli-
gence as the inspiration—that is, by trying to reverse engineer the mechanism of
the human mind.

I presume, as a working hypothesis, the approximate correctness of Piaget’s
théory (subject to certain revisions in light of modern evidence, as discussed in
section 2.9.3). That is, I assume that a general learning mechanism resembling
Piaget’s is indeed present in the human mind, and is of central importance to the
development of intelligence during infancy (and quite possibly through adult-
hood). I present results to show that a mechanism designed along the lines of Pia-
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mental progression. The motivation for stressing early (rather than later)
development is threefold: early development is simplest; the most detailed com-
prehensive observations of human development concern early development; and
the developmental mechanism is most clearly discerned in its earliest operation,
before its own constructs obscure it by complicating its observable activity.

The schema mechanism is a proposed approximation to the mechanism of Pia-
getian development. I make no a priori assumption about how uniform or compli-
cated this mechanism must be; my method is to postulate as much built-in com-
plexity as appears to meet the mechanism’s design goals. Two fundamental
influences contribute to the design of the schema mechanism: the Piagetian road
map, and engineering requirements. The mechanism is intended both to help ex-
plain the themes of Piagetian development, and to be well-motivated from an en-
gineering standpoint, given the computational demands of the learning tasks in-
volved. I avoid machinery that accords with only one of these two
principles—machinery that is rigged to replicate this or that developmental event,
but without any good reason for a learning system to incorporate such machinery;
or apparatus that builds in sophisticated abilities which, however, are not initially
presentin Piagetian development. These exclusions stem from the goal of reverse
engineering the Piagetian mechanism. Replication of developmental events is of
interest here only to the extent that those events reflect the operation of a reason-
ably designed learning mechanism; and reasonably designed mechanisms that do
notcorrespond to the human apparatus are worthy of investigation, butbelongtoa
different program of research. (See section 10.1 for elaboration on these method-
ological issues.)

Piaget’s theory is symbiotic with the schema mechanism:

® As just noted, Piaget outlines the main themes of cognitive development,
and details much of the content of its early learning. This gives a first ap-
proximation to the mechanism, and a set of target achievements.

® The schema mechanism adds precision to Piaget’s characterization of con-
structivism. A more concrete statement of Piagetian theory makes possible
more specific tests and evaluations of the theory.

® Implementing a mechanism for Piagetian development is itself a partial test
of his theory. Successful replication of Piagetian milestones by a plausibly
engineered learning mechanism is circumstantial evidence that such a

mechanism is involved in human development. Unsuccessful attempts at
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such replication may point to places where the theory is wrong, or needs to
be supplemented.

In sum, the project of constructivist Al is to explore Piaget’s theory by the
methodology of artificial intelligence: testing a theory of the mind by building a
mechanism that works according to that theory, and seeing to what extent the
mechanism displays the abilities that the theory was supposed to explain.

1.3 Guide to the rest of the book

Nine chapters follow the present one.

® Chapter Two gives asynopsis of theinitial, sensorimotorperiod of Piagetian
development (and touches briefly on subsequent periods); this developmen-
tal sequence is the target scenario for the schema mechanism. This chapter
also addresses the the suitability of basing the schema mechanism on Pia-
get’s theory, given strong contemporary challenges to that theory. (The
reader who is concerned only with the schema mechanism per se may wish
to skip this chapter.)

Part II: The schema mechanism

® Chapter Three describes the schema mechanism, its data structures, and its
control.

® Chapter Four describes the mechanism’s facilities for building new in-

stances of its data structures.

® Chapter Five sketches the architecture (neural and computer implementa-
tion) of the schema mechanism.

Part III: Performance and speculations

® Chapter Six presents a synopsis of the schema mechanism’s computer im-
plementation’s achievement of some of the developmental milestones de-
scribed in the second chapter, and proposes a hypothetical scenario of fur-
ther achievements.

® Chapter Seven raises the speculative possibility that the basic learning
mechanism, acting in concert with its own constructs, can implement more

sophisticated virtual %ﬁ%&mgg W%fms.
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® Chapter Eight addresses the problem of naive induction and its bearing on
proposed learning systems, such as the schema mechanism.

Part 1V: Appraisal

® Chapter Nine analyzes the schema mechanism in relation to other Al re-
search programs.

® Chapter Ten offers a methodological critique of constructivist Al sugges-
tions for future research, and an evaluation and summary.
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2 Synopsis of Piagetian development

This chapter discusses Piaget’s theory of the development of sensorimotor intelli-
gence, as described in his volumes on infancy [50, 52]. I present a summary of
the original theory, and suggest bases for reconciling Piagetian theory with mod-
ern evidence evidence which reveals infant knowledge that is apparently preco-
cious by Piagetian theory.

2.1 Piagetian fundamentals

The point of departure of Piaget’s theory is the schema: a unit of behavior and
knowledge which, by Piaget’s biological metaphor, interacts and evolves with its
physical environment, and with other schemas. The initial schemas are merely
those of reflex responses. For quite some time, the infant’s schemas are closely
associated with her own actions. Later sophistications, involving the combina-
tion of schemas, abstraction above specific acts and perspectives, and the interio-
rization of schemas’ activity, will allow the schema to transcend a literal depen-
dence on physical action, while retaining its procedural flavor. Schemas of
looking, grasping what’s seen, swinging, dropping, hiding one object under
another, pushing one object with another, are examples of post-reflex schemas.

Piagetidentifies assimilation and accommodation as the basic processes of in-
telligence:

® Assimilation is a schema’s use of things in the world (including other sche-
mas) as part of its own functioning; and

® Accomodation is the modification of schemas in adjustment to novelties in
the world.

Piaget does not try to present complete, explicit rules governing the activity
and modification of schemas. But his theory does try to characterize such rules
and to give an intricate chronicle of the low-level results of their functioning.

The sensorimotor period (from birth until about age two) is the first of four
broad periods of development in Piagetian theory. Sensorimotor intelligence is
expressed solely in actions that affect the world. In the later phases—the preop-
erational phase, then the phases of concrete operations and formal opera-
tions—the truth of assertions about the world becomes the focus of intelligence,
first for assertions about the real world, and later in the realms of the hypothetical
and the abstract [53].

Piaget distinguishes six stages within the sensorimotor period. Each succes-
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lem-solving activity (the infant’s earliest behavior is only a zeroth-order example
of problem-solving; later stages do greater justice to the term) or goal-pursuing
activity (which never implies the eradication of less sophisticated schemas, or
even that such schemas stop being created). The elaborations characteristic of a
givenstage do not appear simultaneously; the stage is just the period during which
such appearances first peak. A stage’s uniformity is thus a descriptive invention,
and doesn’t imply rigid chronological partitioning.

The infant’s representation of reality—space, objects, causation, time—exhib-
its corresponding stages of development. In fact, Piaget argues that progressively
more sophisticated technigues of intelligence, and progressively more sophisti-
cated representations of reality, are two indissociable aspects of the same devel-
opment. At the outset, problem-solving is just the dynamic expression of the in-
fant’s representation of reality—a natural enough idea, since the infant’s schemas
are procedural: a thing is understood in terms of what can be done to it or with it.
So, more advanced problem solving results from the application of the same
mechanism to more sophisticated representations of reality, and vice versa. Even-
tually, of course, the child acquires explicit knowledge about thinking that can be
used to improve methods of thought; but there is substantial maturing of intelli-
gence long before such meta-knowledge is evident in the child.

One critical feature of the infant’s intelligence, not well captured by this sum-
mary, is the incremental quality of its development. At least at the outset, each
new capability observed in the infant is only slightly different than what was pre-
viously exhibited; the infant shows only minor adjustments of activity, in appar-
ent response to experience in prior activity. It should be kept in mind that the ac-
tual steps are of much finer grain than are presented here. As intelligence
progresses and there come to be more powerful schemas for interpreting the
world, the steps grow bolder, and, in ways that I'll discuss, less dependent upon
specific experience. So, the change from trivial to powerful steps is a smooth one;
the increments by which intelligence improves are, in effect, of size proportional
to the power of existing schemas, so the development has an exponential charac-
ter.

2.2 First stage: reflex activity, solipsist images’

The infant’s initial schemas are those of reflex activity: for example, closing the
hand in response to a touch on the palm, or sucking something that touches the
lips. These schemas are exercised either in response to the appropriate stimuli, or

else spontaneously, as though for play or practice.
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From the outset, schemas admit of modifications in response to experienced
results of their activity. For example, after many instances of disorderly reflexive
groping for a nipple touching the mouth, an infant’s sucking schema appears to
notice that when the nipple touches (say) the left cheek, turning to the left will be
propitious. Groping in adjustment to the nipple thus assumes a gradually more co-
herent appearance, as clues such as cheek-contact are exploited.

The early development of schemas also shows generalization and differenti-
ation. For example, the sucking schema adjusts itself not only to the nipple, but
also to other objects frequently presented to it: e.g., a finger or a toy. Often, the
infant will suck such an object as contentedly as if it were a nipple. But when
hungry, the infant responds with enthusiasm to the nipple while crying instead if
given a finger to suck. The appearance of this discrimination suggests that, de-
spite the production-like character of schemas’ early, stimulus-triggered activity,
the desired result of a schema’s activity also affects its course.

The first few months of life also see the first so-called primary circular reac-
tions. These are patterns of action, derived by gradual differentiation of reflex
schemas, that tend towards repetition. For example, the grasp-reflex schema
gives rise to a alternately-hold-then-release-object schema, and to a scratch-ob-
+ ject schema, and so on. As with pure reflex schemas, these sometimes repeat
“emptily,” that is, without any stimulus or object to interact with.

Visual schemas developing at this time include those of tracking a slowly mov-
ing object, of visually exploring a stationary object, and of alternate glances be-
tween one object and another.

A striking feature of these early schemas is that they haven’t yet “inter-
twined.” Forexample, tactile stimuli elicit no visual response; things seen inspire
no effort at prehension. Moreover, when for example a watched object passes be-
yond the infant’s field of view, the infant either loses all evident interest in it, as
though it no longer existed; or else, with apparent expectation of seeing it again,
either continues to look off in the same direction, or gazes back to where the object
was first seen. Similarly, an object that is touched but not seen may be repeatedly
grasped then released; but if, say, it falls to a new position, the infant will neither
search for it visually, nor move her hand to search for the object in a different posi-
tion than where just grasped.

These observations imply that the infant’s model of the world—in the sense of
what aspects of the world the infant can react to or exploit—is (metaphorically)

7. Iam using a slightly different border between first and second stage than Piaget defines.
This is of no importance; I mention it only to avoid confusion.
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solipsistin nature: the infant’s universe contains not objects of substance and per-
manence viewable from different perspectives, but rather images, some visual,
some tactile, etc., that change state in response to personal actions (themselves
known only by the transformations they produce). The infant’s early schemas or-
ganize the world into various solipsist spaces, each giving a group (in the mathe-
matical sense) of operations: the operations are primitive motor actions {or, some-
times, passive expectation), and the things operated on are sensory states.

2.3 Second stage: the coordination of primary sche-
mas

Asreflex schemas elaborate into primary circular reactions, they also begin to in-
tercoordinate and thus to bridge the gap between sensory modes. The primary cir-
cularreactions, and their intercoordinations, both appear to have the same charac-
ter of development: a schema acquires differentiated responses to, and
anticipations of, sensory signals with which it was previously unacquainted. If
the new signals of one schema are already familiar to another, then a functional
coordinationresults, as when schemas of hand movements combine with sucking
to form an integrated thumb-sucking schema.

Initially, an infant will suck her finger (or other object) only if it comes in fortu-
itous contact with the infant’s mouth (or, slightly later, cheeks etc.). (Even then,
the infant doesn’t know how to keep her hand in place, and the hand is quickly
pulled away.) But random hand movements may accidently brush the hand
against the vicinity of the mouth. Not only will this trigger attempts to suck, but
also, future hand trajectories will converge to the mouth more and more directly.
Eventually, the infant can smoothly and spontaneously move her hand to her
mouth, and insert and suck on a finger. Later, a more profound development is
seen: the infant is capable of carrying a grasped object to her mouth and sucking
on it; thus, prehension is coordinated with sucking.

Morestriking still is the coordination that develops between vision and prehen-
sion. Piaget discerns a number of milestones in this development:

® The infant watches the movements of her hand, and graduaily learns to bring
her hand into her visual field, and keep it there while watching it.

® The infant watches wag% ;ngmg%% g}?gfing objects.
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® The infant subsequently will turn to look at an object when the object
touches her hand, or will move the object into her visual field to look at it.

® At some point, the infant will reach for an object, but only if the object and
the infant’s hand are seen together.

® Eventually, the sight of the object alone will suffice to trigger a successful
attempt to grasp it.

Of course, each of these bits and pieces of eye/hand coordination develops not
as a sudden leap, but by gradually improved groping.

The acquisition of visual/tactile coordination has an important consequence:
hereafter, the infant’s learning and attention become oriented around objects, not
justparticular sensory impressions. The appearance of this more objective behav-
ior marks the onset of the next sensorimotor stage.

2.4 Third stage: secondary circular reactions, sub-
jective permanence

The third sensorimotor stage usually begins four or five months after birth, and
continues until eight or nine months of age.

Secondary circular reactions are characteristic of third stage behavior; these
consist of the repetition of actions in order to reproduce fortuitously-discovered
effects on objects. For example:

® The infant’s hand hits a hanging toy. The infant sees it bob about, then re-
peats the gesture several times, later applying it to other objects as well, de-
veloping a striking schema for striking.

® A strange sound is made by accidentally striking the crib wicker with a toy.
The infant reproduces the motion involved, and after more occasional fortu-
itous contacts, will rub the toy deliberately against the wicker. However,
spatial contact between the objects is not understood as such. If the infant’s
position is changed such that the customary gesture fails to achieve contact
with the crib, she repeats the gesture anyway, doing nothing that adapts to
the altered situation.

® The infant pulls a string hanging from the bassinet hood, and notices that a

toy, also connected toé%%%@]&%ﬁéponse. The infant again grasps
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and pulls the string, already watching the toy rather than the string. Again,
the spatial and causal nature of the connection between the objects is notun-
derstood; the infant will generalize the gesture to inappropriate situations.

Inthese reactions, the infant responds quickly to a novel result by using a famil-
iar schema to reproduce the result, even though the schema had never previously
been used for that purpose. However, the effect is discovered by accident, and
only the particular schema involvedin the accident is used to reproduce the ef fect.

Nonetheless, thanks to the intersensorial schemas of the previous stage, the
current schemas transcend particular primitive motor actions and sensory images.
This, together with the more complex chain of actions involved in, say, seeing,
grasping, moving, or rubbing an object, give secondary circular reactions the ap-
pearance of being goal-directed (where the goal is to reproduce the surprise ef-
fect), in contrast with the stimulus-bound appearance of the primary circular reac-
tions.

The sense in which the third stage initiates the representation of objects rather
than images is perhaps best described as follows: if one were to write a program
that did the sorts of things that a third stage infant does (apart from learning), the
program would most naturaily be written on a level of abstraction that designated
objects; a program to mimic earlier stages would most naturally lack such alevel,
and would instead be oriented around sensory images.

To the extent that they deal with objects rather than images, the secondary cir-
cular reactions can begin to designate interactions, and hence practical relations,
between objects—but with the limitation that the relationship is given only by a
schema with a particular motor action, implying both unnecessary restrictions,
and inappropriate generalizations, of the relation (as in the wicker-striking and
hood-pulling examples above).

Similar progress, and limitations, appear in the third stage representation of ob-
jects’ permanence and position:

® Deferred circular reactions appear. Aninfant, playing with a toy (via a sec-
ondary circular reaction schema) is momentarily distracted but soon turns
back to where the toy was left and resumes playing with it. Thisis similarto,
but more complicated than, the earlier feat of looking again at one image af-
ter shifting gaze to another; here, a coordination of body and hand move-
ments, guided by vision, is required to recapture the object.

® When the infant is watching an object that falls, moving too quickly to track

so that she loses sight of it, she will look downwards for it. At first this hap-
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pens primarily when it was the infant who held and dropped the object, and
is also catalyzed by the sound of the fallen object, or by tracking it momen-
tarily when it starts to fall. Eventually, the reaction becomes reliable evenin
the absence of such clues.

® Similarly, if the infant holds (without looking at it) an object that falls, or is
taken, from her hand, she learns at this stage to extend her hand and reclaim
the object.

Thus, the third stage infant apparently conceives of objects as occupying par-
ticular positions at which they can be reclaimed if they vanish from view. More-
over, in contrast with the previous stage, the object can be sought in a new posi-
tion, rather than the first or last place that it was recently perceived. However,
closer observation shows that thisreclamation is only understood with respect to a
particular schema of action. The infant confronted with an object’s sudden disap-
pearance tries to recapture it either by extending the activity of a schema already
invoked to keep sight of the thing—e.g., for the falling object—or by reusing a
schema just used to secure the thing in the first place—e.g., reaching to regrasp an
unseen object removed from the hand. In this latter case, if that particular gesture
fails to rediscover the object, the infant will not (until the next, fourth, stage)
employ perpendicular motions in a systematic search for the thing, but may in-
stead revert to looking for it in its original position. This reversion to cruder tech-
niques when more advanced ones fail tends to occur through all stages of sensori-
motor intelligence, and later intelligence as well.

That the position of vanished objects is first conceived only in terms of particu-
lar action schemas is further attested to by the reaction of an infant to the interven-
tion of an obstacle. If an infant of this stage is presented with a toy which, as she
watches, is covered with a cloth, the infant will not attempt to raise the cloth to
recapture the object—despite the fact that the infant is quite capable of picking up
a cloth when that itself is of interest. When the toy disappears, the infant either
loses interest, stares at where it was, or looks back at where it was first seen (if that
was adifferent place), but does not reach for it—or, if already reaching for it when
sight of it is blocked, will immediately give up. Infact, evenif the infant’s attempt
to grasp a toy is thwarted by a barrier that doesn’tblock sight of the toy, the infant
appears to be oblivious to the barrier, making no attempt to displace it or move
around it. The infant does, however, learn during this stage to grasp and extricate

the hidden toy if part of it éo‘ﬁ?rl?&ted Material
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The need to rotate an object presents intellectual difficulties similar to those
posed by the need to move an obstacle. Suppose a third stage infant is presented
with a bottle, but the bottle is held with the nipple facing away from the child, so
that the nipple cannot be seen. Thus the important part of the bottle is obscured,
not by a foreign object but by the rest of the bottle itself. The infant exhibits prob-
lems similar to those produced by a separate obstacle, giving up on the nipple
when it is no longer perceived. The difficulty is not a lack of the motor skill re-
quired to rotate an object, since while the nipple is visible, the infant will turn the
bottle to make the nipple accessible; this is done quite unsystematically, but per-
sistently until fortuitous success is achieved. So the difficulty is again arepresen-
tational one, characteristic of this stage: the potential nipple (as opposed to the
nipple when actually perceived) is understood only in connection with certain
schemasknown to actualize it. There is not yet a schema of rotation; the successes
in orienting a visible nipple appear to be due to a series of separate movements,
each guided crudely by the current perception of the nipple, and not or ganized into
a coherent activity of reorientation. When, in the next stage, these attempts are
arranged ina coordinated structure, there will indeed be a schemaof rotation, with
respect to which the potential nipple can be represented.

Finally, it should be noted that during the third stage, a potential-X-with-re-
spect-to-prehension is not strongly coordinated with a potential-X-with-re-
spect-to-vision. For example, an infant of this stage who has looked at, but not
touched, an object that falls below her gaze may look downward for it, but will not
make any tactile search for it.

2.5 Fourth stage: coordination of secondary schemas

The fourth stage brings a coordination of secondary schemas analogous to the sec-
ond stage’s intertwining of primary schemas. Just as the second stage allowed the
infant’s representation of the world to transcend specific primitive motor se-
quences and sensory impressions, and abstract these to acts upon objects (the sub-
ject of third stage learning), so the fourth stage coordinations will allow the in-
fant’s understanding to become independent of particular acts, preparing for fifth
stage elaboration of the activity of objects themselves, and their interrelation-
ships.

The fourth stage infant is capable of using a familiar schema for a new purpose
inanew situation. This contrasts with the previous stage, whose secondary circu-
lar reactions did allow familiar schemas to be used for new effects, but only if

these effects had previously been em?irically (and fortuitously) produced.
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A classic example of this is the removal of an object blocking the prehension of
adesired toy. This may be catalyzed by the accidental displacement of the inter-
vening object when the infant initially ignores it. But at some point, the infant’s
attention is focused specifically on moving the obstacle (at first clumsily, but
successive efforts develop a well coordinated schema of displacement by picking
up and moving, or by striking). The infant’s behavior makes clear that she is not
interested in the obstacle itself, since it is discarded and the desired toy is then
grasped. The obstacle displacement was thus subordinated to that goal. (Interest-
ingly, it isn’t until shortly after this displacement coordination that Piaget ob-
serves the advent of the infant’s ability to release one toy being held in order to
pick up another.)

An important variation of the above displacement coordination is the removal
of an object that blocks the view of a desired toy. In transition between the third
and fourth stages, an infant might continue to reach for and grasp a toy whose view
was blocked, provided that the infant had already started to reach when the object
disappeared from sight. This, along with the extrication of partially hidden ob-
jects (from the previous stage), and the displacement of non-hiding obstacles,
leads to the ability to react to the complete covering of an object by removing the
cover and claiming the rediscovered object. This is quickly generalized into a
game of repeatedly hiding and recovering an object.

Recall the third stage inability to, say, respond with prehension to a potential
visual object. During the fourth stage, potential (in contrast with actually per-
ceived) objects with respect to different schemas are united in a way reminiscent
of the second stage’s marriage of visual and tactile perceptions. The ability to un-
cover a hidden object extends this unity: not only is there a prehensile remedy to a
visual disappearance, but the remedy is complicated, involving a pair of second-
ary schemas that deal with two distinct objects. Thus, both the permanence and
spatial localization of vanished objects are now understood, not just with respect
to a given secondary schema, but with respect to coordinated pairs of such sche-
mas. This begins to put objects in spatial relationship to one another. Similarly,
the infant of this stage becomes capable of:

® Systematic search. E.g., when the infant drops an object, her hand will not
only be moved down to find it, but will also be moved perpendicularly in
exploration of the immediate vicinity.

® Systematic rotation. The infant can recover the obscured reverse side of an

object. Copyrighted Material
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® Exploitation of perspective. The infant can shift her head to look around an
obstacle.

® Imitation of familiar but invisible movements. During the third stage, only
visible actions, producible by existing schemas, are imitated—e.g., grasp-
ing a toy. (Interestingly, there is no imitation of a sequence, such as opening
and closing a hand, that is exercised as a part of various familiar schemas,
but not yet differentiated in its own right.) In the fourth stage, the infant will
imitate an action (such as sticking out the tongue) that she has taken many
times, but without having seen its effects. Prior visual and tactile explora-
tion of faces, in conjunction with sounds sometimes accompanying the ges-
ture, provide clues that assist that identification.

® Systematic exploration of novelty. When presented with a new object, the
infant applies in succession many familiar schemas to the object: shaking,
striking, rotating, etc. During the third stage, a new object would tend to ex-
cite some schema or other, but the current emphasis is different: the schemas
now seem focused on the object, while previously, understanding of the ob-
ject seemed focused on a particular schema. (Anunexpected effect of some
exploratory action—say, the production of an unusual sound—may give
rise to a secondary circular reaction repeating that effect. Piaget calls such a
reaction derived to denote that it arose in the context of more structured ac-
tivity, namely the exploration.)

Despite these advances, the fourth stage representations of reality still exhibit
many limitations of subjectivity. The most striking of these is the fourth-stage
place error, shown by the following experiment. The infant plays with a toy that
is then taken away and hidden under a pillow at the left. The infant raises the pil-
low and reclaims the object. Once again, the toy is taken and hidden, this time
under a blanket at the right. The infant promptly raises, not the blanket, but the
pillow again, and appears surprised and puzzled not to find the toy.

This sort of confusion is observed repeatedly during the fourth stage. Itis are-
markable analog to the earlier reaction to disappearance by searching in the first
or last place that the thing was recently perceived, or in a new position by extend-
ing a reclaiming schema. Then, hidden position was represented only with re-
spect to the comparatively simple schemas that existed. Now, hidden position is
understood in terms of combinations of such schemas, which relate pairs of ob-
jects. Although more complex, the representation is still procedural, and the pro-
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cedures involved have only developed to the point of saying something like:
“when this toy disappears, displacement of the pillow will rediscover it.”’

So the relationships among objects are yet understood only in terms of pairwise
transitions, as in the cycle of hiding and uncovering a toy. The intervention of a
third object is not properly taken into account. Moreover, the infant still compre-
hends the displacement of an object relative to herself rather that to another object.
For instance, an infant who can easily turn a block around does not yet learn to
orientitrelative to abox so as to fitinside. Similarly, there is no comprehension of
the need to put a stick in contact with a semi-distant toy in order to move the toy.
These feats will be possible in the following stage.

2.6 Fifth stage: experiments on objects

During the fifth sensorimotor stage (usually beginning about a year after birth)
the so-called rertiary circular reactions appear. These are little “experiments”
that the infant conducts to see what an object will do. For example, an infant may
repeatedly drop a toy, paying evident attention not to the act of dropping, but to
the behavior of the object as it falls. Similarly, the infant experiments with vary-
ing ways of placing an object on an inclined surface to watch it roll, or perching
it at the edge of a table so that it tumbles to the ground, etc.

These experiments extend the focus on an object’s behavior, rather than per-
sonal action, noted during the last stage. But where fourth stage explorations
merely use the object in existing schemas, the present experiments vary the ex-
ploratory schemas—not just in response to surprise results (as with the derived
secondary reactions noted in the previous section) but in provocation of unex-
pected behavior. (Indeed, the specific autonomous activity of an object is yet un-
expected by the infant, as evidenced by systematic inability to account for it when
necessary. For example, an infant trying to dispose of an obtrusive cushion re-
peatedly pushes it back against a wall, but in such a position that it must fall back
in the way again.)

Tertiary (like secondary) circular reactions can be coordinated with other sche-
mas in a means-end relationship. For instance, an infant reaches through the bars
of a playpen to grasp a long toy. The infant doesn’t anticipate the solidity of the
bars, which block the toy from being drawn closer. (The fourth stage infant
Jlearned about the solidity of an obstacle to prehension, but that was only with re-
spect to movement of the hand itself! Here, the infant must learn that one object
also blocks the motion of another object.) Although the infant already knows how

to rotate an object (say to fiag ll)t_\S/ rrl%%etresg Wg)é;?aere is not yet a schema for rotat-
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ing one object relative to another, as is called for here so the toy can be oriented to
allow passage through the bars. But, lacking such a schema, the infant nonethe-
less appears to identify the collision as the source of difficulty, and foralong while
gropes for different ways of placing the object against the bars. Eventually, a
successful orientation is found. On subsequent attempts, the infant’s gropings
converge more and more quickly to the solution, and a reliable schema of ob-
ject-relative rotation evolves.

The gropings of this example are tertiary circular reactions, as they involve de-
liberate variations of arepeated action, and with interest in the effect on the object
(i.e., whether it is making progress through the bars), rather than in the action it-
self. Now there is an additional feature: the experiment is directed toward the goal
of bringing the toy closer. Thus, many schemas influence the activity:

® the grasping schema, which specifies the goal.

® the schema of turning an object, relative to one’s self, which gives a point of
departure for the new means needed to fulfill the goal.

® importantly, the many schemas that by now exist to describe objects and
space; these are needed to interpret meaningfully the results of the exper-
imental variations, to direct refinements of the evolving rotation schema.

® the intermediate approximations to the eventual object-relative rotation
schema.

From the observer s point of view, the coordination of these schemas results in
an important amplification of the infant’s intellectual capabilities: for the first
time, the infant responds to an unexpected obstacle by inventing a way to over-
come it, rather than just relying on an already-existing schema. Piaget concludes
that this capability essentially falls out of:

® quantitatively, the myriad schemas that can be brought to bear on a situation;
and

® qualitatively, the higher level of abstraction on which the scheinas now rep-
resent things, focusing on objects as such; thus allowing the same principles
of interaction of schemas to yield more sophisticated results.

Similar examples of the invention of new means are found when the infant
learns to use a stick, an underlying support, or an attached string, to move a given
object. You may recall that some secondary circular reactions involved influenc-
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ing one object by pulling another connected to the first by a string. But that effect
was discovered entirely by accident, and with no appreciation of the physical con-
nection. During the present stage, the infant wishing to influence a remote object
learns to search for an attached string, visually tracing the path of connection. As
with the object-relative rotation schema, a great deal of intermediate groping is
required to develop schemas for using a string, support, or stick. One interesting
intermediate situation that Piaget observes regarding the use of a stick is that an
infant who is trying to grasp an object just out of reach, and who has previously
succeeded in using a stick to draw the object closer, will not think of doing that
unless she is already holding the stick, or unless the stick is presented to her. This
is somewhat like the state of a second stage infant who is learning to grasp what is
seen, but only when the hand is seen next to the object.

These developments add to the infant’s conceptions of objects and space.
Through the tertiary circular reactions, objects are endowed with autonomous be-
havior; and the direction of such reactions towards goals involving a second ob-
Ject teaches the infant about the solidity of objects, and relationships among ob-
Jects themselves. This progress is also reflected in the fourth-stage place error,
described above. During that stage, some improvement is made in selecting the
right place to look for a vanished object, but the accomplishment has an empirical
character and the selection is often wrong, as though the infant had learned that
looking under the blankef sometimes works instead, but without really getting the
point. On the other hand, the fifth stage infant learns reliably to search the place at
which the object was seen to disappear.

2.7 Sixth stage: simulation of events

The fifth stage infant shows no sign of mentally simulating the activity of objects
and learning from the simulation instead of from actual experimentation. But the
sixth stage furnishes evidence of this ability. Aninfant who reaches the sixth stage
without happening to have learned about (say) using a stick may invent that be-
havior (in response to a problem that requires it) quite suddenly, with dramatically
less groping than for similar inventions of the previous stage. Piaget argues that
the interiorization (a kind of internal reenactment) of physical activity is respon-
sible for this capability.

In addition, the infant now becomes capable of interpreting situations whose
understanding requires representation of events not actually observed. For in-
stance, consider yet another form of hidden object confusion, which the fifth stage

infant exhibits: A toy is plae%%%?g%?gg me)a(t e\\)\,/,lig)out a lid, so that the infant still
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sees it. Before the infant has a chance to recover the toy from the box, the box is
moved beneath a blanket where, hidden from the infant’s view, toy is dumped out.
The box is brought to view again, empty. The infant is surprised that the toy is no
longer in the box, and does not attempt to search under the blanket. Analogously
to fourth stage progress with the place error, the fifth stage infant does learn, em-
pirically and unreliably, to search under the blanket. But when two screening ob-
jects are used in succession, a remarkably parallel confusion results: the infant
does not understand the need to look specifically under that cover from which the
box emerged. But now, during the sixth stage, the infant deals successfully with
these situations, apparently able to represent the unobserved displacement of the
toy under the screen.

The above developments are a small sample of the explosion of intellect and
knowledge of the sixth stage. The ability to represent one’s own body in objective
spatial terms, to understand personal orientation (for example, being able to point
back to a house that’s no longer in sight), and the beginning of language all arise
during this stage. The sixth stage thus forms a bridge between sensorimotor intel-
ligence and the later periods.

2.8 Subsequent periods: preoperational, concrete
and formal operations

Throughout the sensorimotor period, the infant’s intelligence is concerned with
the effects of actions on prescnt reality. Even the first manifestations of language,
towards the end of the sensorimotor period, are concerned with the expression of
desires and commands, rather than the communication of ideas. But in the period
to follow—the preoperational period—the child begins to manipulate the truth of
propositions, via inference and classification, just as earlier she had manipulated
the state of objects via physical actions. The child begins to think and speak of
past or distant events, of causation and number and time, of other peoples’ per-
spectives.

During the period of concrete operations, the child becomes able to reason
more systematically about the subject matter of the previous period; as during the
various sensorimotor stages, previously uncoordinated fragments of representa-
tion become properly connected. A preoperational child, for example, confuses
the relative duration of two time intervals with the ordering of their beginnings or
ends; a child at that period tends to believe that the older of two people was born

later. A preoperational child has not grasped conservation of number (or at least,
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conservation of 1-1 correspondence); consider the following fascinating (and
typical) protocol, taken from a conversation with a child of five years ([51], p. 26):

What are these?—Little green [A2)and red {Allbeads.—Is there the same
amount in the two glasses?—Yes.—If we made a necklace with the red ones
and another with the green ones, would they be the same
length?—Yes.—Why?—Because there’s the same height of green and
red —If we put the beads in there [L], what would happen?—They would be
higher—Would there be the same amount?—No. —Where would there be
more?—There —[L].—Why?—Because it is narrow.—[Al was poured
into L] Do you really think there are more beads there [L] than here
[A2)?—Yes.—Why? —Because it is narrow and they go higher—If 1
poured them all out [making as though to pour the red beads on one side and
the green on the other] would they be the same or not?—More red
ones—Why?——SBecause that one [L] is narrow—And if I make a neck-
lace with the red beads and one with the green beads, will they be the same,
or not?—The red one will be longer—Why?—Because there’ Il be more in
there [L].—[The red beads were put back into A1.] And now?—They're the
same height again. —Why?—Because you've poured them into that
one[Al].—Are there more red ones or green ones? —The same.

These and other illuminating confusions are corrected during the period of con-
crete operations.

The final period of intelligence—the period of formal operations—begins ap-
proximately at the onset of adolescence. Just as the ascension from sensorimotor
intelligence brought with it the ability to represent abstract truth instead of just
current state, the passage to formal operations brings the capacity to represent ab-
stract validity instead of just actual truth. Previously the individual could use one
propositionto imply others in a variety of ways; but now implicability itself—i.e.,
validity—becomes an “‘object’” about which the individual can reason. Reason-
ing about validity as such makes formal reasoning possible—reasoning separated
from the content of the propositions reasoned about. In a similar vein:

® True hypothetico-deductive reasoning appears: a person gains the ability to
devise appropriate experiments to test hypotheses, systematically varying
one factor, then another, while holding the others constant. Previously the
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logical entailment; now, an entire such space is a single pointina new space,
where going from point to point corresponds to changing a hypothesis.

® The ability to generate systematic permutations appears. The concrete oper-
ations individual could reason about sets of things; to generate all possible
permutations among a collection of objects, a person must reason about a set
of sets, each of the sets being one permutation of the objects. In all these
examples, relations among concrete-operations objects in turn become the
objects of formal reasoning.

Piaget describes the progression to concrete and then formal operations as the
development of more powerfully expressive logics. In reply, Fodor [25] argues
that such a progression, if indeed it occurs, cannot occur by learning. The essence
of Fodor’s argument is that less powerful logics, by definition, simply cannot ex-
press, and therefore cannot build, systems that embody more powerful logics.
This objection, and a way around it, can be understood by an analogy between log-
ics and classes of computational entities.

A finite-state automaton is strictly less powerful than a Turing machine: a Tur-
ing machine can simulate a finite-state automaton, but not vice versa [45]. Hence,
a finite-state automaton cannot possibly learn to be a Turing machine. Nonethe-
less, any physically realized digital computer, though conventionally regarded as
Turing-equivalent, is really just a finite-state automaton. It is considered Tur-
ing-equivalent via the reasonable and customary idealization that its memory is
infinite. There are no precise rules governing the suitability of this idealization;
roughly, the idealization is appropriate when a finite-state automaton has a large
array of state elements that it uses more or less uniformly—elements that thereby
serve as general memory.

A finite-state automaton might well have an initial state that does not lend itself
to an infinite-memory idealization, but might later enter a state for which that ide-
alization becomes suitable; this could happen, for example, if the automaton sim-
ulates a series of devices, and if an eventual such simulation, but not the ones that
precede it, is of a device that is reasonably idealized as a Turing machine. Then, a
Fodor-like argument is still correct, but only as a technicality: formally, there has
been no increase in computational power. Nonetheless, for reasonable practical
purposes, by plausible customary idealizations, the system has indeed changed it-
self from a finite-state automaton to (virtually) a Turing machine. An analogous
possibility with regard to the development of logics of varying power suffices to
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escape Fodor’s impossibility argument concerning the learning of concrete and
formal operations.

2.9 Themes of Piagetian development

Several recurrent themes of Piagetian development are illustrated in the forego-
ing sections (in some detail for the sensorimotor stages, and hastily for the subse-
quent periods). These also serve as central themes for the design of the schema
mechanism.

® [ntelligence develops by building state-spaces to represent the world:
® by discovering how states and transformations are related; and

® by constructing new elements of the space, and new transformations,
whose relations must in turn be discovered. From motions of physical
objects to inferences among propositions, this theme is repeated
throughout Piagetian development.

® New schemas form as incremental differentiations or generalizations of ex-
isting ones.

® Schemas coordinate to form composite structures that abstract above the de-
tails of the component elements.

® Another important kind of abstraction involves conservation—the discov-
ery of a new kind of thing in the world, found by noticing the possibility of
returning to some manifestation of it.

2.9.1 Fragmented representation

Perhaps the most powerful theme, composed of the above strands, is that the boot-
strapping of intelligence involves the assembly of concepts from special-case
fragments. That is, many apparently atomic or fundamental concepts are in fact
composites of a large body of constituent schemas, from which the ‘‘atomic”
thing arises. For example:

® Knowing that the ball is on the table entails the expectation that it can be de-
tected there by sight, or by touch (or by weighing the table and noticing the
extra weight...); and entails that it won’t be found elsewhere at the moment
(such as on the floor); and that it must have gotten there somehow, that it
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® Knowing that four things are present entails that adding another will make

five; that if none are added or removed, there will still be four; that if they are
counted, in any order, with each counted exactly once, the result will be
“four;” etc. For each of these concepts (and many others), Piaget demon-
strates that certain “‘entailed consequences’’ of the concept can be seen com-
ing into use for the first time (thus, by implication, first existing) at different
stages of development. Gradually, they are organized into acoherent whole.
Only in the eventual mature result are the constituent parts of the concept so
well coordinated, their mutual entailment so automatic, as to give rise to a
functional unity.

2.9.2 Stages of development

The role of stages in Piagetian theory is often over-emphasized. As mentioned
above in section 2.1, the apparent simultaneity of the innovations of a given stage
is an expository device; the actual uniformity is only approximate. Moreover,
even for some particular strand of development, the invariance of the ordering
along the sequence is both less absolute, and less important, than is often thought.
There are several reasons that development A might be observed to precede B,
oron the other hand to be contemporaneous with B, inatypical individual’s devel-

opment. For example:

® A and B might each derive quickly and independently from some common

ancestor C, and thus tend to appear at the same time.

A and B might develop (mostly) independently, with A just being ““sim-
pler” than B, so that A would appear first.

A and B might be comparable points along two similar but independent se-
quences of constructions, whose analogous developments are roughly con-
temporaneous.

Some of A’s structures might be included as components of B's; A’s struc-
tures are then a prerequisite for B, so A must appear first. In the first three
cases, itis plausible that the typical order of A and B might be altered by cir-
cumstances that cause the individual to focus an unusual amount of attention
on one or the other. Thus, it is not surprising that White and Held [72], for
example, have shown that by varying the prominence of a hanging, bright-
ly-colored object in infants’ early environments, experimenters can induce
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variations in the order of acquisition of hand-regard and swiping behavior.
Evenin the fourth case above, where the ordering constraint is the strongest,
it is possible that alternative paths of development can bypass certain pre-
requisites, especially when unusual conditions (say, physical handicaps)
block the typical paths.

Indeed, there is no a priori reason to expect a constructivist mechanism to ex-
hibit stagelike regularities at all; the space of plausible developmental paths might
be large enough for each individual to pursue her own idiosyncratic construction,
in some or all domains. Alternatively, there may be domains where a particular
next step is always so “‘obvious” that there is little room for variation. Butin fact,
some domains do show strong developmental regularities among different indi-
viduals, and it is natural for the study of constructivist mechanisms to begin there.
For by observing similar developments among different individuals, the exper-
imenter can partially compensate for being unable to repeat, with controlled vari-
ations, the same development for a given individual. Hence, a reason for the pre-
ponderance of stagelike developments in the discussion of constructivism.

2.9.3 Constructivism vs. nativism

A constructivist account of the development of intelligence holds that the differ-
ence between the mind of an adult, and that of an infant, lies in mental structures
built by the individual. Even when a given concept is attained universally (e.g.,
the idea of a physical object), it is because the concept is prominent in reality, in
away that is accessible to the mechanism of learning (recall section 1.2.1). A na-
tivist account, on the other hand, holds that universal knowledge is innate, and is
either already operative in the neonate, or unfolds according to a predetermined,
nonlearning process.

The debate between constructivist and nativist accounts of human intelligence
extends back to antiquity. In a famous dialog, Socrates leads a student to a diffi-'
cult conclusion by a series of leading questions; Socrates concludes that the stu-
dent must have known the conclusion all along, since the teacher stated no facts,
but merely asked questions (e.g., [58], p. 92).

Modern arguments on this subject often involve actual evidence. But the inter-
pretation of such evidence can be difficult; it is easy to under- or over-attribute
knowledge to an infant. The fact that a certain piece of knowledge does not show
itself in an infant’s behavior until a certain age does not guarantee that it was re-
cently learned. Perhaps the infant had the knowledge sooner, butlacked some fur-
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recently acquired, but by anonlearning maturational process. Piaget’s strategy of
observing infants’ activity can give the false impression that learning occurs, by
failing to detect the early presence of knowledge in some latent form.

On the other hand, it is also easy to overestimate an infant’s knowledge, by pre-
suming more awareness than is actually required to explain an infant’s behavior.
Consider an infant who sees an object, then reaches out and grasps it. This could
be due to the infant’s understanding that there are objects, that an object has a spa-
tial location, that it has visual and tactile manifestations, that a certain visual pat-
tern means object A is at position X, and that moving the hand to position X will
therefore result in touching the object, which the infant desires. Alternatively, the
infant might have no suspicion of the existence of objects, but might have noticed
that a certain (visual) sensation, followed by a certain action (grasping), results in
another (tactile) sensation (which the infant desires). A third possibility is that the
infant is just exhibiting a reflex consisting of a motor response to a visual stimu-
lus, without specifically desiring the result of that response, without even antici-
pating what the result will be, indeed without even knowing that there is any re-
sult.

In the present example, the Piagetian view is that all three interpretations are
correct, each at a different stage of development. Mindiess reflex activity yields
tolearned predictions that can be harnessed to pursue goals. These predictions are
at first in drastically subjective form, expressed exclusively in terms of primitive
perceptual inputs and motor actions. The predictions are then reformulated in
gradually more objective terms of representation, terms that become progressive-
ly independent of personal action and perception.

What sort of evidence can be marshaled for or against such an interpretation?
In principle, an examination of the infant’s neural apparatus could reveal what
sort of cognitive event was taking place; but that would require both a technology
for monitoring the apparatus, and a theory for understanding what was being
monitored, neither of which is forthcoming in the forseeable future. Thus, for
now, we must settle for less direct forms of evidence.

® Pro-Piagetianevidence. Piaget chronicles a gradual elaboration of abilities,
eachstep incrementally more advanced than the last. The themes of this pro-
cess correspond to plausible learning methods, which the schema mecha-
nism makes precise. That the incremental elaborations are consistent with
the steps taken by a learning mechanism is circumstantial evidence that
learning is in fact taking place.
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® Anti-Piagetian evidence. Many recentexperiments reveal infant knowledge
that is expressed more subtly than by overt, purposeful action. Often, such
expressions occur considerably prior to the first Piagetian manifestations of
the corresponding knowledge, casting doubt on the Piagetian interpretation.

Some such evidence suffers from the problem of over-attributing knowledge to
an infant. A clear example, I believe, occurs in T.G.R. Bower’s description of a
neonate’s aversion to a looming object [9]. An infant sits in front of a screen that
shows a projected outline of arapidly approaching object. The infant exhibits an
avoidance response: the infant closes its eyes, turns its head away, raises its arms
in front of its face, and so on. Bower takes this as evidence that the infant inter-
prets the visual information as an indication of an approaching object, anticipates
that an unpleasant collision could occur, and takes action intended to ward off the
collision.

Alternatively, the infant may have no such understanding of the movement and
effects of objects, or even of their very existence. Instead, the infant may simply
have areflex that releases a particular motor response to a one simple class of visu-
al stimuli. This more conservative attribution of knowledge indeed seems the
more plausible, given the obvious benefit of having such areflex, and the anoma-
lous complexity of the infant’s behavior by comparison with any other interac-
tions with objects untii several months later.

In other cases, however, Piaget under-attributes the infant’s or child’s abilities.
For example, Piaget demonstrates that a preoperational child, when asked how a
given scene (e.g., a model of some terrain) looks to an observer stationed some-
where in the lerrain, instead describes how the scene looks from her own vantage
point. Piaget infers a general inability to appreciate the difference of another’s
perspective; but experiments by Masangkay et al. [42] show that in simpler
tasks—e.g., asking which of two sides of a card an observer sees when the card is
placed between the child and the observer—children as young as two answer cor-
rectly. Still, in view of the Piagetian theme of assembling concepts from simpler
fragments, it remains plausible that these special-case earlier abilities, over-
looked by Piaget, are precursor components of a more general ability exhibited in
the tasks Piaget describes. Taking note of the earlier abilities fine-tunes the Piage-
tian story, extending it rather than refuting it.

Some recent experiments, however, demonstrate early knowledge that is more
difficult to reconcile with a Piagetian explanation. Here, the recent work of Bail-
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largeonis exemplary. In one experiment [5], a five-month-old infant (third Piage-
tian stage) sits opposite a plywood board; the board attaches to a tabletop by
hinges on which the board can rotate toward or away from the infant. Initially, the
board is rotated flat against the table, tilting toward the infant. Just behind the
board is a small toy. As the infant watches, the board rotates up, away from the
infant, until it blocks the infant’s view of the toy. The experimenter then surrepti-
tiously removes the now-hidden toy (via a hidden trap-door in the table), and the
board continues its rotation until it is again flat on the table, but now tilting away
from the infant; the board could not have rotated that far if the toy were still in its
way.

This seemingly impossible event surprises the infant, as determined by the in-
fant’s extended scrutiny of the apparatus, compared to (among otherrelevant con-
trols) the time spent looking at similar rotation in the absence of an obstructing
toy. Moreover, the infant takes into consideration such properties as the hidden
toy’s size and compressibility, showing surprise only if the board rotates further
than those properties should allow.

Baillargeon’s evidence thus reveals knowledge of hidden objects in infants
who cannot yet retrieve such an object by displacing the barrier (despite being
able to grasp and move the barrier object when that object itself is of interest). It
remains an open question whether such knowledge is innate or learned. Clearly,
however, Piaget’s explanation for the third-stage obliviousness to hidden ob-
Jects—that the infant simply does not represent that the object still exists—is con-
tradicted by Baillargeon’s evidence.

Baillargeon construes the evidence to demonstrate a failure of coordination be-
tween an infant’s knowledge of hidden objects, and purposeful activity that rests
on that knowledge. But that construal, I maintain, admits of three broad further
interpretations, two of which are compatible with the constructivist view.

® One interpretation is not compatible: the infant’s knowledge of hidden ob-
jects might be unlearned (or learned by a non-Piagetian process). The infant
acquires the ability torecover a hidden object when some impediment to ex-
ploiting that already-present knowledge is overcome, perhaps by learning,
or perhaps by a nonlearning maturational process.

® Alternatively, the persistence of hidden objects might be learned according
to Piagetian developmental themes, albeit prior to the ability to exploit the
knowledge by recovering a hidden object. That ability may be acquired by

further learning along Piagetian lines. Section 10.3.1 illustrates thi i-
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bility in terms of the schema mechanism (although the illustration concerns
intermodal coordination, rather than hidden-object persistence).

® It may be that the Piagetian story is true, not of the infant’s cognition as a
whole, but of the infant’s central cognitive system. The central system, by
this hypothesis, incorporates a general learning mechanism, and uses whatit
learns to guide its actions to achieve goals. True, the infant’s peripheral, per-
ceptual modules enjoy extensive, possibly innate knowledge about physical
objects and their persistence (as reflected, for example, by the surprise ex-
hibited by the infant in Baillargeon’s experiment). But the central system,
by thisinterpretation, lacks access to the knowledge embodied in the periph-
eral modules. Those modules use their knowledge to assemble the perceptu-
al input to the central system, which, by this account, has no initial under-
standing of that input. The central system must recapitulate for itself much
of the peripheral modules’ knowledge (such as awareness of hidden ob-
jects), and does so in accordance with the Piagetian sequence. Observations
of infants’ purposeful behavior, in contrast with experiments that elicit sub-
tle indications of surprise, reflect the Piagetian learning accomplished by
the central system.

The first of these interpretations, if correct, would cast serious doubt on the
constructivist theory, by refuting that account with respect to one of its paradig-
matic examples. The second interpretation, like the perspective experiment cited
above, extends the theory rather than refuting it. The third interpretation ac-
knowledges a large exception to Piagetian theory, but salvages the essence of the
theory.

It may seem implausibly wasteful for the central system to have to recapitulate
knowledge already present in other moduies, as stipulated by the third interpreta-
tion. But suppose that, in the course of biological evolution, a special-purpose
learning system arose that became powerful enough to go far beyond its original
special purpose—in particular, powerful and general enough to recapitulate and
transcend much built-in knowledge from other cognitive modules. The knowl-
edge in other modules would not be suitable for extension by this learning mecha-
nism, because the independently developed representational formats used by the
other modules would not be compatible with the module that happened to evolve
into the general learning mechanism. (In particular, the peripheral knowledge
would likely be implicit in procedures for, e.g., visual tracking, rather than explic-
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knowledge in the older modules would then be redundant—perhaps, in some
cases, even becoming vestigial—as the learned recapitulation gained impor-
tance.? Built-in, biologically evolved knowledge of the existence of physical ob-
jectsis then (partly) superseded by similar concepts re-invented by each individu-
al; to put it succinctly, ontology recapitulates phylogeny.®

Postulating the learned recapitulation of apparently built-in competence may
seem an unduly contorted effort to salvage Piaget’s theory by explaining away the
contrary evidence. In the absence of clear positive evidence for constructivism,
this defense of Piaget would indeed be weak. One kind of positive evidence,
though, is a demonstration that a plausibly designed learning mechanism would
indeed have reason to exhibit the milestones of Piagetian development, as reflec-
tions of Piagetian learning processes. This book presents preliminary indications
to that effect.

The research program presented here takes Piaget’s theory as an approximate
working hypothesis. This theory, even if diluted by the recapitulation interpreta-
tion of modernevidence, suffices to support the dual motivation for this research:
using human cognition as inspiration for design of an artificial mechanism, and
experimenting with an artificial mechanism in order to elaborate and demonstrate
the possible workings of human cognition. If, on the other hand, the nativist alter-
native is correct after all, then these motivations collapse. In that case, aspects of
the schema mechanism may still hold interest as artificial learning techniques, but
the likelihood of their being prominent in human or humanlike development will
be far smaller.

Evenifthe Piagetian account is essentially correct, there remain many possible
versions of the account, with different balances of nativism and constructivism.
Consider these illustrative points along a spectrum of possibilities:

® Thereis an invariant constructivist mechanism, and it is responsible for Pia-
getian development within the central system.

® The constructivist mechanism is invariant, except for some parameters or
resource levels that improve maturationally. This maturational system

8. Even if such recapitulation is thus required, might we not expect evolution itself to per-
form the recapitulation, building the duplicated knowledge directly into the central system,
rather than requiring each individual’s central system to re-learn it? Perhaps, eventually. But
would that built-in recapitulation evolve before the central system became powerful enough to
ask this very question? If not, the evolved recapitulation has not happened yet.

9. This pun is due to Ed Hardebeck.
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serves merely to delay cognitive development, compared to a system in
which the full complement of resources was available from the outset. 10

® Various auxiliary features are added maturationally, embellishing the the
constructivist mechanism but leaving it qualitatively unchanged. As in the
case just above, Piagetian development still results from the structures built
bythis mechanism, rather than from the predetermined changes fo the mech-
anism.

® There is a preprogrammed succession of fundamentally different develop-
mental mechanisms; for example, one for sensorimotor development, one
for the concrete operations phase, one for formal operations.

® Muchdevelopmentis via structures built by a constructivist mechanism, but
some major developments (say, instantiating a universal grammar) occur
maturationally, due to other, more specialized mechanisms.

® No cognitive development is driven by learning. Acquired knowledge is
tightly constrained, for a given domain at a given stage, to be of the sort that
that domain’s module is preprogrammed to accommodate at that stage.

Only the first of these possibilities is purely constructivist. But only the last
three have significant maturational, nonlearning aspects; and only the last is en-
tirely nonconstructivist. Any but the last of these possibilities preserves in full the
motivations for building the schema mechanism. The schema mechanism itself,
as currently implemented, is at the constructivist extreme of the above spectrum,
but that can be regarded as merely a simplifying assumption. At this distance, the
difference is not yet perceptible.

10. Conceivably, though, certain delays of complexity actively help subsequent development
by providing useful simplifications to build upon.
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Part II The schema mechanism
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3 Representational elements: structure and use

The schema mechanism is engineered to pursue two fundamental, symbiotic ob-
jectives: to gain knowledge by constructing or revising symbolic assertions about
the world, and to use those symbolic constructs to pursue specific goals and to
gain further knowledge. The acquisition of symbolic constructs in turn has two
principal themes: making discoveries expressed in terms of existing representa-
tional elements, and constructing new elements with which to express further dis-
coveries. Figure 3.1 diagrams the major components of the schema mechanism,
as explained in the next several chapters.

construction/revision garbage collection

machinery (not implemented)
schemas | marginal attribution
{(spinoff schemas)
g
3 actions | action composition
s
- items item synthesis
chaining
goal
value delegation

selection and hysteresis

activation
3 exploration | habituation
S value
: .
= inverse

actions
action
controllers
subactivation
(not implemented)

Figure 3.1 Organization of the schema mechanism.

This chapter and the next two describe the schema mechanism, and aspects of
its present computer implementation. This chapter specifies the structure and

function of the three kinds %Wf@ﬂfémfé‘fﬁfmts used by the schema mech-
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anism: schemas, actions, and items. Schemas express the effects of actions; items
are state elements; and actions are conditions that are (sometimes) under the sche-
ma mechanism’s control. This chapter describes the representational elements
themselves, and the control of their use; the next chapter describes their construc-
tion and maintenance. There follows a chapter describing the schema mecha-
nism’s architecture—both the hypothesized architecture for aneural implementa-
tion, and the actual architecture of the computer implementation.

3.1 Schemas

A schema has three main parts: a context, an action, and a result. Contexts and re-
sults contain items, each of which designates a particular state or condition; an
item’s occurrence in a context or result may be negated, to designate the opposite
or absence of a given state or condition. Figure 3.2 shows a schema with context
p~qr, action a, and result xy. By notational convention, a schema’s name is writ-
ten in the form context/action/result; a negated item is preceded with a ~, and
items conjoined in a context or result are separated with an & (ampersand) (or,
if the items have single-letter names, they are simply concatenated). Thus, the
schema in figure 3.2 is p~gr/a/xy.

context result

action

Figure 3.2 A schema. This schema has three context elements and two
result elements.

A schema asserts that if its action is taken when its context conditions are all
satisfied, then its result conditions will obtain. The assertion is subject to some
auxiliary information that the schema maintains, including a reliability factor and
asetofknown overriding conditions, as discussed below. Four clarifications may
circumvent some easily gained misconceptions about schemas:

® A schema makes no assertion about what happens if its action is taken when
its context conditions are not all satisfied.

® A schemaisnotarule thatsays to take its action when its context is satisfied;
the schema just says what would happen if that were done.
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® Satisfying a schema'’s context is not a prerequisite for being able to take the
designated action; the context just designates a set of circumstances (possi-
bly one such set among many) under which a particular result would ensue
from the action.

® The schema does not assert that the effects noted in the schema’s result are
exhaustive; other events may occur as well, whether or not they are caused
by the action.

As noted in the introduction (section 1.1.2), a schema serves as a declarative,
procedural, and experimental unit of representation. Declaratively, a schema as-
serts a prediction about what would happen if a given action were taken. Proce-
durally, a schema directs activity, often in order to pursue a designated goal. Ex-
perimentally, a schema compares what occurs with vs. without a given action, or
with vs. without a given condition’s satisfaction (section 4.1.2). For an entity that
must learn to take purposive action in its world, schemas’ declarative, procedural,
and experimental roles dovetail to make the schema both easy and useful to ac-
quire.

A schema’s context is a set of zero or more items (discussed in the next section),
eachincluded in either positive or negative form; a schema’sresult is another such
set. Anitem can be in the state of being On or Off. (A synthetic item can also be in
an Unknown state; see section4.2.2.) A schema’s context is satisfied when all the
positively included items are On and all the negatively included items Off.

A schema is said to be applicable when its context is satisfied and no known
overriding conditions obtain. An applicable schema is said to be valid at times
when its assertion is in fact true—that is, at times when the result would indeed
obtain if the action were taken.

To activate a schema is to initiate its action when the schema is applicable. A
schema asserts that its activation culminates in turning On those items that are
positively included in the result, and turning Off those items that are negatively
included. An activated schema is said to succeed if its predicted results all in fact
obtain, and to fail otherwise.

Schemas compete for activation on two bases: a schema may be activated for
the sake of its own exercise, giving the mechanism a chance to test its validity and
toextend or revise it; or it may be activated to help achieve a goal. When areliable
schema’s context conditions are satisfied, and the schema’s result items include
some that are designated as goals (more on goals in section 3.4.1), the value of

those goals contribute to th%rgﬁf/l}%%?g{fglwg grtlié‘a/f to activate the schema. More
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generally, as shown schematically in figure 3.3, there may exist a chain of sche-
mas from a current state to a goal. Such a chain has an initial schema whose con-
textis satisfied. Its result conditions are a superset of the context conditions of the
next schema in the chain, and so on to the final schema, whose results include a
goal. If the chained schemas are reliable, activating each in succession should
achieve the context conditions of the next one, which can then be activated in turn,
until the goal is achieved.

current state a goal

Figure 3.3 Chaining. These schemas chain from a current state to a goal
state.

There are two kinds of activation: explicit and implicit. To explicitly activate
an applicable schema is to select it for activation and initiate its action. As a
side-effect of an explicit activation, other schemas whose contexts are satisfied,
but which are not themselves selected for activation, may have their actions initi-
ated (if they happen to share the same action as the schema that was explicitly acti-
vated). Such schemas are said to be implicitly activated. As documented in sec-
tion4.1.2, schemas maintain some statistics that depend on activation, but that do
not distinguish between implicit and explicit activation; thus, implicit activations
contribute to these statistics. Keeping track of implicit activation also provides a
way to assess the cost of a given schema’s activation on some occasion; its cost is
the minimum (i.e., the greatest magnitude) of any negative-valued results of sche-
mas that are implicitly activated as a side-effect of the given schema’s activation
on that occasion.

A schema maintains various auxiliary data, documented for reference in table
3.1, and discussed in this and subsequent sections. The data include a reliability
measure and a correlation measure.

® A schema’s reliability is the probability with which the schema succeeds
when activated. Each schema keeps track of its success rate when activated
(biased toward more recent activations), which is taken to measure its reli-
ability.
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® A schema’s correlation is the ratio of the probability with which a transition
to the schema’s result state obtains when the schema is activated to the fre-
quency with which that transition obtains when the schema s applicable, but
not activated (here again, a tabulation of actual frequency serves as a pre-
sumptive probability). Thus, a schema’s correlation indicates the extent to
which the result depends on the action. Activating a schema for the sake of
its result makes most sense when the schema’s reliability and correlation are
both high, so that the action is likely to be both sufficient and necessary.

Correlation Ratio of frequency of result transition
with vs. without activation.

Reliability Rate of successful activation.

Duration Average time from activation to

completion of action.
Cost Average cost (i.e., negative-valued
side-effects) of activation.

Table 3.1 Schema data.

In addition to its three main parts, each schema has two large ancillary struc-
tures, an extended context and an extended result (figure 3.4). Each has a slot for
every item in the schema mechanism—not just the items appearing in that sche-
ma. (Each extended result also has a slot for certain context-like sets of items, as
explained below in section 4.1.4). Each such slot maintains some data about cor-
relations between the schema and that item, and also, based on that data, specifies
whether that item’s being On (or being Off) overrides the schema; if so, the sche-
ma is inapplicable whenever the overriding item is On (or Off, as specified), even
if the schema’s context is satisfied.

A schema’s auxiliary data (including the content of the extended-context and
extended-result slots) are subject to revision, but a schema’s context, action, and
result uniquely identify that schema, and do not change.

Although schemas maintain some statistical information, such as the reliability
factor and correlations just mentioned, schemas are designed to provide symbol-
ic, qualitative representations of the world. The schema mechanism endeavors to
build schemas that are of high reliability; there is no attempt to make accurate or

sophisticated models of the&g%tﬁ?ght}g%olwg% cerfain events. Inparticular, each
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Figure 3.4 Extended context and result. Each schema has anex-
tended context and an extended result.

schema’s quantitative reliability measure serves mainly to exclude the schema if
it falls far short of the ideal. Extended-context and -result correlations have a dif-
ferent primary purpose: to guide the construction of reliable schemas, as ex-
plainedinsection4.1.2. The extended context also has several secondary uses: to
discoverorspecify overriding conditions (section4.1.5), sustained context condi-
tions (section 4.1.6), and conditions for turing Off a synthetic item (section 4.2.2).
A secondary use of extended resuits is to support the discovery of chains of sche-
mas (section 5.1.2).

3.2 Items

Anitemis astate element. Each item represents some condition in the world, and
has a state of On or Off to assert respectively that the condition does or does not
currently obtain; an item can also assume a third state, Unknown, to indicate un-
certainty. Anitem also maintains some auxiliary data, documented for reference
in table 3.2, and described in the sections to follow.

Generality Rate of being On rather than Off.

Accessibility Rate of being at the end of some chain
of schemas.

Primitive value Built-in positive or negative
desirability measure.

Delegated value Acquired positive or negative

desirability measure.

Table 3.2 Item data.

There are two kinds of items, primitive and synthetic. Primitive items are built
into the schema mechanism—they are part of its initial endowment. Each primi-
tive item corresponds to some sensory input; for the current implementation, the
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inputs are as shown in table 6.2. The state of a primitive item—that is, whether the
item is On or Off—is maintained by the sensory apparatus.

Itis plainly inadequate to represent states of the world directly in terms of prim-
itive sensory elements. Even if, say, statements about physics, ballet, or politics
could in principle be reduced to statements about the sensory manifestations of
those domains, the reduction would be impossibly cumbersome. If alearning sys-
tem’s initial conceptual repertoire is indeed limited to sensorimotor terms, then a
necessary condition for the system’s eventual attainment of humanlike intelli-
gence is the ability to synthesize much higher-level concepts.

Syntheticitems are constructed by the mechanism itself. Each suchitem desig-
nates the validity conditions of a particular unreliable schema, called the item’s
host schema (figure 3.5); the synthetic item is called its host schema’s reifier, be-
cause constructing the item treats the attainment of those conditions as a thing or
state in its own right, thus reifying the validity conditions of the host schema. By
notational convention, the default name for a synthetic item is its host schema’s
name, surrounded by square brackets; thus, the item in figure 3.5 is [p/a/x]. That
item designates whatever (possibly yet-unknown, possibly yet-unrepresented)
conditions must hold if the result x is to follow reliably when action a4 is taken un-
der condition p.

synthetic item
® —

/A\
P ~
@._'__)@ ~— host schema
a

Figure 3.5 A synthetic item. A synthetic itemreifies the validity condi-
tions of its host schema.

The schema mechanism invents concepts by building synthetic items; as with
primitive items, each synthetic item designates an aspect of the state of the world.
Thus, there is no synthetic item whose meaning is physical object, which is a thing
rather than a state; instead, there are various items with meanings such as object A
is at position X. The systematic coordination of many such items amounts to the
concept of physical object. Section 6.5.4 speculates as to the construction of ab-
stract concepts, such as number, by means of synthetic items.

Primitive items are hardwired to sensory inputs that maintain their state. For

each synthetic item, howe\é% ﬁjl}%émggm%f}%}ism itself must discover for it-
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self the conditions under which the item should be On or Off, expressed as a func-
tion of the (past and present) state of other items. Section 4.2 describes the ma-
chinery for this discovery process.

3.3 Actions

There are two kinds of actions, primitive and composite. Primitive actions, like
primitive items, are part of the schema mechanism’s built-in endowment. Just as
each primitive item is wired to a sensory input device, each primitive action is
wired to a device that carries out a particular motor action. Table 6.1 documents
the primitive actions used in the current implementation. Initiating a primitive
action (by activating a schema which has that action) initiates the corresponding
motor device.

Even for sensorimotor-stage schemas, primitive actions alone are insufficient,
for two reasons: the schema mechanism needs to express actions at higher levels
of abstraction; and it needs to discover the results of external events as well as of
its own actions. Composite actions facilitate the abstraction and externalization
of actions.

Consider, for example, the action of turning on a light switch. Ona given occa-
sion, that action might be accomplished by a particular low-level motor action,
occurring in just the right context at the end of some chain of schemas that pre-
pares for the final flick of the switch.!! Rather than (orin addition to) such a repre-
sentation, it is valuable for the schema mechanism to designate turning on the
light switch as an action in itself. Such a designation offers three advantages:

® By abstracting above the action’s implementation, the mechanism can learn
about the results of turning on the light switch per se (e.g., that a light goes
on), rather than just learning about the results of the particular motor action
used on some occasion to turn the switch on; that lesson would not general-
ize to the next instance of turning on the light switch, if accomplished then
by different low-level actions.

® Also, by abstracting above the action's implementation, the mechanism is
able toorganize activity hierarchically. A chainof schemas may incorporate
the action of turning on the light switch—or much higher-level actions than
that—as asingle step, the details of whichneedn’tbe accounted for as part of

11.  This hypothetical example is considerably beyond the implementation$ actual achieve-
ments. Lower-level examples of the same principle appear in the synopsis of the schema mecha-
nism’s performance, in chapter 6.
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that chain; the details may depend in part on circumstances that are yet un-
known when that action is initiated

® Finally, representing light switch-on as an action enables the schema mecha-
nism to learn about the effects of that action (e.g., a light going on) even
when the action occurs as an external event, not under the mechanism’s own
control (as explained below in section 4.3.2). Thus, the schema mecha-
nism’s composite-action facility brings about a transition from representing
the result of some action, to representing the external result as an action in
itself—and in turn finding its own results. This facilitates the Piagetian pro-
gression from schemas of physical activity to schemas that are independent
of personal action, via intermediate schemas that involve the effects of per-
sonally-caused external events.

A composite action is defined with respect to some goal state; it is the action of
bringing about that state. Like a schema’s context or result, a composite action’s
goal state is a set of (positively or negatively included) items. A composite action
isessentially a subroutine: it is defined to be the action of achieving the designated
goal state, by whatever means available. The means are given by chains of sche-
mas that lead to the goal state from various other states (figure 3.6); such schemas
are said to be components of the composite action. (A given schema may serve as
a component of arbitrarily many composite actions, or of none at all.)

composite action

composite action
goal state

Figure 3.6 A composite action. The topmost schema has acomposite
action whose goal state is z.

Each composite action has an associated controller. Just as a schema’s ex-
tended context and extended result have a slot for every extant item, a composite
action’s controller has a slot for every schema. Each slot contains data about
whether the schema lies along some chainto the goal state, and, if so, the proximity

to the goal that will be achleé/ed}ﬁllg gwatgr?g ivated. Proximity is inversely
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proportionate to the expected time to reach the goal state, derived from the ex-
pected activation time of the schemas in the relevant chain; proximity is also pro-
portionate to those schemas’ reliability, and inversely proportionate to their cost
of activation.

Initiating a composite action (due to activating a schema which has that action)
causes the controller to identify a component schema (among those currently
applicable) with greatest proximity to that action’s goal state; that schema is then
activated. This process repeats until either the goal state obtains, or the composite
action fails. The composite action is considered to have failed if either it has great-
ly exceeded its expected execution duration (a statistic that each action maintains,
based on prior performance) without making much progress (that is, without
much increase in proximity to the goal), or if a brief interval passes during which
no component schema is applicable, so that no progress can be made.

The repeated selection of the most proximal component permits a kind of op-
portunism (e.g., [2]) in composite action execution: control may pass from one
chain of schemas to another, if a more proximal schema along a different chain
unexpectedly becomes applicable. The controller does not notice this shift as
such; the shift is just a consequence of always selecting next the most proximal
applicable component. 12

3.4 Control

Schemas compete for activation. At top level, the schema mechanism selects a
schema for activation. Selection occurs at each next time unit in the current, dis-
crete-time implementation; a continuous-time version might perform this selec-
tion atregular, frequent intervals—perhaps a few times per second. Inthe present
implementation, only one schema is activated at a time. However, the activation
of a schema that has a composite action entails the immediate activation of some
component schema; thus, the current implementation supports nested activations,
but not parallel activations.

The top-level selection process chooses among applicable schemas according
to the activation importance they assert. The importance of activating a given
schemais based ontwocriteria: explicit goal-pursuit, and exploration. The explo-
ration criterion boosts the importance of a schema to promote its activation for the
sake of what might be learned by that activation. The goal-pursuit criterion con-

12, Work on universal plans [60] describes a planning scheme similar in this regard to compos-
ite-action controt.
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tributes to a schema’s importance to the extent that the schema’s activation helps
chain to an explicit top-level goal.

Each explicit top-level goal is a state represented by some item, or conjunction
of items. The schema mechanism explicitly designates an item as corresponding
to atop-level goal by assigning the item a positive value ; an item can also takeon a
negative value, indicating a state to be avoided. I use the qualifier top-leve! to re-
fer to goals designated by a value level, as opposed to the goal states of composite
actions. A composite action single-mindedly pursues its goal state when that ac-
tion has been initiated. But the decision to initiate it, or any action, by the activa-
tion of a schema, is due to schemas’ competition for activation, based on an explo-
ration criterion and a top-level goal criterion. In what follows, the word goal,
appearing alone, refers to explicit top-level goals.

Of course, the exploration criterion also serves a kind of goal, the goal of ac-
quiring knowledge; but explicit goal-pursuit refers to achieving a state that is ex-
plicitly represented by some item—trying to achieve it because of its explicitly
represented value. Exploration value could be made explicit; there could be a pos-
itively valued primitive item that asserts that interesting learning is taking place.
Suchan item would, in effect, create an explicit appetite for learning, similar to an
appetite for food. Such a goal-based curiosity drive may well be present in higher
organisms, and arguably should be present in the schema mechanism implemen-
tation (but is not currently).

To strike a balance between goal-pursuit and exploration criteria, the mecha-
nism alternates between emphasizing goal-pursuit criterion for a time, then em-
phasizing exploration criterion; currently, the exploration criterion is emphasized
most often (about 90% of the time). Also, rather than merely selecting the schema
asserting the highest activation value, the mechanism chooses at random among
those schemas whose value is close to the maximum value then asserted. This
process prevents a small advantage from forever excluding schemas nearly as
good as the best available; but limiting the selection to schemnas close to the maxi-
mum value prevents highly valuable schemas from being passed over.

A new activation selection occurs at each time unit. Even if a chain of schemas
leading to some goal is still in progress, each next link in the chain must compete
for activation. Thus, as with the execution of a composite action, control may
shift to an unexpected, new, better path to the same goal. Top-level selection car-
ries this opportunism one step further: here, control may even shift to a chain that
leads instead to a different, more important goal.
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The mechanism also permits an executing composite action to be interrupted.
A schema with a composite action, of course, may take arbitrarily long to com-
plete, depending on the length of the chain of schemas used to reach the action’s
goal state, and on the duration of the activation of each schema in the chain. Even
if a schema with a composite action is in progress, the cycle of schema selection
continues at each next time unit. If the pending schema is re-selected, its compos-
ite action proceeds to select and activate the next component schema (which may
recursively invoke yet another composite action, etc). If, on the other hand, a
schemaother than the pending schema is selected, the pending schema is aborted,
its composite action terminated prematurely. The mechanism grants a pending
schemaenhanced importance for selection, so that the schema will likely be re-se-
lected until its completion, unless some far more important opportunity arises.
Hence, there is akind of focus of attention that deters wild thrashing from one nev-
er-completed action to another, while still allowing interruption for a good
enough reason.

3.4.1 Explicit goal pursuit

Kinds of explicit value: primitive, instrumental, and delegated

Three kinds of value may be associated with an item: primitive, instrumental,
ordelegated value. Eachis a positive or negative quantity associated with an item
or set of items.

® Primitive value is associated with certain primitive items. In biological sys-
tems, for example, representations of events beneficial to the organism or
species (e.g., taste of food, sexual stimulation) ought to have built-in posi-
tive value, and designations of deleterious events (hunger, pain, etc.) should
be negative. Correspondingly, the present schema mechanism implementa-
tion assigns positive primitive value to certain tastes, and negative primitive
value to certain tactile sensations (‘‘sharpness”). Inputs which represent
states whose achievement is likely to be informative also have positive
primitive value (these include items designating an image appearing at the
foveal region of the visual field, where more visual detail is available than at
the periphery; an item designating contact with the fingers, which provide
tactile detail; and an item designating the sensation of grasping an object).

® A state is of instrumental value if its attainment is a specific prerequisite for
achieving something else of value. Whenthe schemamechanism activatesa

schema as a link in some chain to a positively valued state, then that sche-
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ma’s result (or rather, the part of it that includes the next link’s context) is
said to have instrumental value.

Instrumental value, unlike primitive (and delegated) value, is transient rath-
er than persistent. As the state of the world changes, a given state may lie
along a chain from the current state to a goal at one moment but not the next.

® Delegated value combines aspects of primitive and instrumental value. As
with instrumental value, anitem’s delegated value derives from other things
of value that that item helps achieve. Butdelegated value, like primitive val-
ue, is persistent. Delegated value is assigned as follows.

Ateach time unit, the schema mechanism computes the value explicitly acces-
sible from the current state—that is, the maximum value of any items that can be
reached by a reliable chain of schemas starting with an applicable schema. (Sec-
tion 5.1.2 discusses the machinery for identifying such chains efficiently.) The
mechanismalsokeeps track of the average accessible value over an extended peri-
od of time.

Foreach item, the mechanism keeps track of the average accessible value when
the item is On, compared to when the item is Off. If the accessible value when On
tends to exceed the value when Off, the item receives positive delegated value; if
the accessible value when On is less than the value when Off, the item receives
negative delegated value. The magnitude of the delegated value is proportional
both to the size of the discrepancy of the On and Off values, and to the expected
duration of the item’s being On. For purposes of the value-delegation compari-
son,accessible items of zero value count as having slight positive value, thus dele-
gating more value to states that tend to of fer a greater variety of accessible options.

Rationale for delegated value

Delegated and instrumental value serve complementary functions: delegated val-
ue accrues to states that generally tend to facilitate other things of value; instru-
mental value is for states that currently facilitate other things of value, by a specif-
ically forseen chain of events. Thus, delegated value may be said to be strategic
whereas instrumental value is tactical.

An item does not (and should not) receive delegated value just by virtue of re-
ceiving frequent instrumental value. The state of, say, being in a standing position
is often of instrumental value (as a prerequisite for walking somewhere, for in-
stance); but it would be foolish (under most circumstances) to make a point of re-

maining standing just in C@Sﬂ]ﬁwrﬂ%@ﬁy that required walking some-
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where. The effort of standing all the time would be wasted, since it is enough to
wait to stand up when the need to walk arises.

To generalize, if a frequently instrumental state (e.g., being on one’s feet) is it-
selfreadily accessible, then the things it facilitates are thereby accessible even be-
fore the instrumental state itself has actually been achieved. Consequently, the
value accessible when the state obtains does not exceed the value accessible when
it does not; therefore, no value is delegated to that state.

Delegated value arises, and is useful, when a state is that is not readily accessi-
ble facilitates other things of value under circumsiances that are likely to occur
while the state still obtains (see figure 3.7). To an infant, for example, the presence
of a parent may receive delegated value, even when there is no specific goal for
which the infant needs the parent at the moment, because such a need arises often
enough that it is good to have the parent nearby just in case. When a given state
does not facilitate a specific goal at the moment, there is no chain of schemas to
impart instrumental value to that state; consequently, delegated value is needed to
promote the strategic pursuit of that state. The criteria mentioned above—dele-
gating value to an item based on average value accessible when the item is On or
Off, and the duration of its being On—are intended to promote delegation of value
in a situation such as that of figure 3.7.

persistent but
usually inaccessible state

valued state

occasionally arising state

Figure 3.7 Delegated value. Here, a persistent but usually inaccessi-
ble state and some occasionally arising state together make a valued
state accessible. The usually inaccessible state thereby receives dele-
gated value from the valued state.

Delegating negative value to a state is appropriate if that state is, in effect, dan-
gerous—if there is no probable negative value caused by its attainment, but there
is a small possibility of large negative value arising. Here, too, there will be no
chain of schemas that can reliably predict the unusual negative event; instead,

delegating negative value to the state in question makes it something that is defi-
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nitely somewhat bad, rather than something that is possibly very bad. The danger
is thus avoided strategically, rather than tactically.

To designate goals only in terms of the mechanism’s primitive lexicon would
be as burdensome as having to represent all predictions and plans at that bottom-
most level of abstraction. The delegation machinery allows higher-level, con-
structed concepts to acquire lasting value as well. At the same time, this machin-
ery must ensure consistency between original and delegated value, so that
pursuing the delegated value will continue to promote the top-level goals that the
preassigned, primitive values are designed to coincide with. Arbitrary, uncon-
strained revision of the system’s goals would be disastrous.

In particular, the mechanism must avert the danger of positive feedback in val-
ue delegation when two or more states are of mutual strategic value. Depending
on how much value is delegated, each state’s increase in delegated value could
cause a similar increase in the other’s, and so on without bound. To dampen such
feedback, the value delegated to an item is only half of the difference between the
unconditional average attainable value, and the value attainable when the item is
on.

Of course, despite such safeguards, the delegation of value not only facilitates
prior goals, but also changes the goal structure for the future. Thus, changes
which locally do a better job of pursuing what is already sought may eventually
culminate in additional goals which are far removed from what was originally
pursued. This is not unlike biological evolution, in which the implicit goal of per-
petuating an extant kind of organism is often most effectively achieved by making
slight changes, thereby perpetuating inexact copies that are more robust than the
original design; eventually, what is being perpetuated may bear little resemblance
to its ancestors. (Indeed, biological cognitive systems’ built-in values for certain
primitive sensations may be regarded as having been delegated—not by the cog-
nitive system, but by evolution—to various explicitly represented states—or-
gasm, tasting food, etc.—whose attainment strategically facilitates the implicit
goal of perpetuating the genome.)

Rationale for numeric values

Numeric values are used to adjudicate the selection of a schema for activation.
Yet this selection makes a qualitative decision: which of several eligible schemas
to prefer. Basing this qualitative choice on aquantitative measure may seem inap-
propriate, particularly in light of the schema mechanism’s presumption in favor

of symbolic, nonnumeric repwgsgEHiieRs M anintain that numeric values are
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appropriate to the selection task: given n explicit goals, n numeric values allow
the derivation of n2 preferences that might arise in pairwise choices between
goals; they also permit the derivation of exponentially many (2 ") possible choices
between sets of multiple goals. |3 Just as monetary exchange, as opposed to barter-
ing, prevents having to trade one commodity directly for a preferred one, using
quantitative values prevents having to make a direct qualitative comparison of
each pair of results that the system can choose between. Still, delegated value
derives from a particular qualitative relation, namely the facilitation of the acces-
sibility of other things of value.

Although the current schema mechanism implementation includes primitive,
instrumental, and delegated value, the mechanism’s acquired skills to date are so
unsophisticated that primitive and delegated value have little effect on the mecha-
nism’s activity; there simply are not any interesting things of value that the mech-
anism knows how to achieve. The mechanism’s activity is influenced instead by
instrumental value (in that the initiation of a composite action involves chaining
to its goal state), and by exploration value, described below. Thus, in particular,
the utility of delegated value remains to be demonstrated.

3.4.2 Exploration value

The schemamechanism maintains acyclic balance between emphasizing goal-di-
rected value and exploration value. The emphasis is achieved by changing the
weights of the relative contributions of these components to the importance as-
serted by each schema. Goal-directed value is emphasized most of the time; but
a significant part of the time, goal-directed value is diluted so that only very im-
portant goals take precedence over exploration criteria.

A schema’s exploratory value is calculated to promote useful learning by the
schema mechanism, rather than to pursue explicitly represented goals. Two chief
components of exploration value are hysteresis and habituation: a recently acti-
vated schema is favored for activation (hysteresis), providing a kind of focus of
attention that promotes repetition of a small number of schemas; but a schema that
hasrecently been activated many times becomes partly suppressed (habituation),
preventing a small number of schemas from persistently dominating the mecha-
nism’s activity.

13. The constraints of nonreflexivity, asymmetry, and transitivity imposed by numeric values
ought to be respected by a rational preference system: it makes no sense to prefer A to itself (reflex-
ivity), or to prefer A to B and B to A (symmetry), or to prefer A to B and B to C but not A to C (non-
transitivity), given those pairwise choices all in the same situation.
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A schemarecords its usage rate—its frequency of being selected for activation.
Other factors being equal, a more frequently used schema is favored for selection
over aless used schema. This factor mitigates possible redundancy among struc-
tures. Suppose there is some set of nearly-identical schemas—schemas which dif-
fer, say, by including different infrequently arising context conditions that only
slightly affect reliability; or schemas that use different, effectively synonymous
items to designate the same condition (see section 6.4.5). If one of these schemas,
by chance, is used slightly more than the others, it accumulates greater
usage—which, in turn, promotes its further usage (relative to those others), fur-
ther increasing its value relative to those others. This deliberate instability carves
out a situational niche in which only a few schemas, among all the similar ones,
will dominate..!4 The instability is controlled by subordinating the usage factor to
other components of a schema’s value.

Another component of exploration value is designed to share activation among
different actions. Without such a component, actions that appear in relatively
many schemas tend to be initiated more often than others, which in turn promotes
the construction of more schemas for those actions, leading to instability. To cir-
cumvent this problem, schemas with underrepresented actions receive enhanced
exploration value. Similarly, acomponent of exploration value promotes under-
represented /levels of actions, where a structure’s level is defined as follows: prim-
itive items and actions are of level zero; any structure defined in terms of other
structures is of one greater level than the maximum of those structures’ levels.

Inverse actions

The schema mechanism includes a facility to identify pairs of inverse actions, and
to promote their successive activation; this promotion is part of the mechanism’s
exploration value. A pairof inverse actions is such that some schema with the first
action reliably turns Off some item that some other schema, with the second ac-
tion, reliably turns back On. For example, moving the hand backward, then for-
ward again, reliably turns Off, then On, an item designating the original position
of the hand; moving the hand forward is thus a inverse action of moving the hand
backward.

The mechanism promotes the successive aclivation of inverse actions—espe-
cially if there is some other itemn which, in the same situation, the first action reli-
ably turns Off and the second action unreliably turns back On. The hope is that
this normally unreliable effect may be reliable when it immediately follows the

4 This trick al sin (3] ;
1 is trick also appears in [é(;pynghted Material
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first action. For instance, in the example just cited, an item designating tactile
contact at the front of the hand is reliably turned Off by moving the hand back-
ward, and unreliably turned On by the inverse action of moving the hand forward
again—but moving the hand forward reliably turns the tactile item back On when
the item had just been turned Off by moving the hand backward. Section 6.4.2
shows how the successive activation of inverse actions can catalyze conservation
discoveries, such as object-persistence; and section 7.1.5 speculates about an
unimplemented extension of the inverse-action facility which might promote
conservation discoveries via thought experiments as well as by real activity.
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Above all, the design of the schema mechanism reflects the need for the mecha-
nism to learn, to build its own structures for its own use, to come to represent the
world in a way that is both practical and informative. The processes of construct-
ing new schemas, actions, and items correspond roughly and respectively to em-
pirical leamning, abstraction, and conceptual invention. Schemas express discov-
eries about the relations among existing actions and items; composite actions
designate the achievement of particular goals, abstracting above the details of
how those goals are reached, permitting the goal itself to be seen as a cause of fur-
ther results; and, especially, synthetic items represent aspects of the state of the
world of which (some) previously represented states were mere manifestations.

4.1 Marginal attribution: spinning off new schemas

Piagetian development is rife with examples of generalizations and specializa-
tions of schemas. These examples involve the discovery of consequences of ac-
tions, and the discovery of the conditions that these consequences depend on. The
schema mechanism tries to capture this sort of discovery with the process of mar-
ginal attribution, which constructs new schemas.

4.1.1 The problem: partially described regularities don’t look regular

Asnoted in section 1.1.1, the task of constructing reliable schemas poses a chick-
en-and-egg problem. Even though the schema mechanism is designed to identify
reliable results of actions—as opposed to making accurate probabilistic models
of random events—a result that follows reliably under the right circumstances
may follow only rarely in general. In addition, even when such a result does fol-
low, it may be accompanied by dozens, perhaps thousands, of entirely coinciden-
tal state transitions at various levels of description. Therefore, identifying an ac-
tion’s result as such, before knowing the corresponding context conditions, is not
amere matter of noting that the result typically, or even occasionally, follows the
action.

Thus, the chicken-and-egg problem: aresult does not look like one except with
respect to the appropriate context. Until the context is known, finding the result is
difficult; but finding the context is impossible without knowing what result it is
the context for.

Another, related chicken-and-egg problem arises even after a result has some-
how been identified, if a conjunction of several conditions is required for the re-
sult to follow the action, so that the result does not follow if only some of the con-

ditions are satisfied. Then, @8 b?)ﬁé?ﬂé?f’/f/f‘é‘t%?fé? of those conditions is difficult
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to discern until the others have been identified—only when the last conjunct is
added does the schema become reliable. More generally, if the required context is
a disjunction of many conjunctions, the same problem arises for each of the con-
junctions.

There is an obvious, but unworkable, brute-force approach to the conjunc-
tive-context problem: express all possible conjunctions of items, and for each
one, tabulate the probability of the result following the action when that conjunc-
tion is satisfied. Infact, this approach would solve the context-result problem too,
if all context-result pairs are similarly tabulated for each action. However, these
approaches are clearly intractable; the number of expressible context conjunc-
tions, or of context-result pairs, is exponential in the number of items. If the con-
junctions are limited in size to k conjuncts, only polynomially many (7 %, where n
is the number of items) need be monitored, as Littlestone [40] points out; still, if n
is on the order of a million or more, even a limit of, say, five conjuncts puts n k
vastly beyond the number of synapses in the human brain.

The combinatorial problem would be eased if there were apriori constraints on
which items might be relevant to which schemas or actions. But it is impossible,
in a constructivist learning mechanism, to supply such constraints. Tobegin with,
there are no natural partitions among the primitive sensory items and motor ac-
tions. Hand motions, for example, can have tactile, visual, and auditory effects;
further, the effects might be contingent on conditions in any of those domains.
Similarly, vocal actions can have diverse effects—especially via people as inter-
mediary agents. (The discovery of such effects needn’t entail awareness of that
agency; a neonate might discover that crying produces food long before under-
standing the existence of people.) As for constructed items and actions, as op-
posed to primitive ones, it is even harder to impose a priori constraints on rela-
tions among elements when the elements themselves are not present a priori, and
when those elements derive from primitive underpinnings which, as just argued,
are also without such constraints. (The need to be able learn without a priorirele-
vance constraints does not, however, preclude the possibility of learned relevance
constraints assisting further learning.)

Fortunately, both chicken-and-egg problems—the context-result problem, and
conjunctive context problem—nhave a solution that does not presuppose a priori
constraintsonrelevance. The solution, as mentioned insection 1.1.2, is to identi-
fy relevant items by a subtle statistical comparison of their states’ correlations
with schemas’ activations (the specific comparisons and correlations are given
just below.) These comparisons are implemented by the schema mechanism’s
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marginal attribution machinery, which, to find the necessary correlations, re-
quires the brute force of anexhaustive crossbar between schemas and items. Forn
schemas and items, only on the order of » 2computational units are needed for an
exhaustive crossbar, rather than an exponential number (or even just a larger-or-
der polynomial number); as argued in section 5.1.4, a crossbar of that size is
neurophysiologically plausible.

4.1.2 Marginal attribution: finding relevant partial descriptions

Marginal attribution initially identifies relevant but unreliable effects of a sche-
ma’s activation, then searches for context conditions with respect to which those
effects obtain more reliably. A series of intermediate, unreliable schemas serves
as a scaffold for the construction of an eventual, reliable schema (when the pro-
cess succeeds). Each schemakeeps track of its own reliability, so the intermediate
constructs are not mistaken for reliable assertions.

Initially, for each primitive action, the schema mechanism has a bare schema: a
schema with empty context and result (e.g., atleftin figure 4.1). Similarly, whena
new composite action is defined, the mechanism constructs a bare schema that
usesthat action. A bare schema makes no assertionin its own right, butservesasa
point of departure for the discovery of the effects of its action.

o MoythF eelsTouch Mouth-
8 gé’;’;ﬁf/}i‘;‘,‘fr’ﬁmch HandBackward FeelsTouch
. O @—»&/ ChinFeels
HandBackward HandBackward Touch
Shoulder
HandBackward FeelsTouch

Figure 4.1 Result spinoffs. A bare schema discovers some results of its
action and spins off other schemas.

Result spinoffs

Abare schema’s extended result discovers effects of the schema’s action. The dis-
covery proceeds by way of two statistics maintained by each extended result slot.

® QOne statistic, the positive-transition correlation, is the ratio of the probabili-
ty of the slot’s item turning On when the schema’s action has just been taken
to the probability of its turning On when the schema’s action is not being tak-
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® The other statistic, the negative-transition correlation, is a similar ratio, but
with respect to turning Off instead of On.

These statistics are tabulated over a number of trials in which the action is tak-
en, and a number of trials in which it is not; the more trials there have been, and the
more discrepancy there is between the two probabilities, the sooner the machinery
will detect the difference (see section 5.2.2). The sampling is weighted toward the
most recent trials.

Since the machinery seeks transitions to the result state, a trial for which the
result was already satisfied before the action was taken does not count as a posi-
tive-transition trial; and one for which the result was already unsatisfied does not
count as a negative-transition trial. Arguably, the mechanism should also look for
a result that is kept constant by an action, when that item would otherwise have
changed state. The present implementation does not do this—looking for transi-
tions is more important, and memory and time are limited—but it could trivially
be extended to maintain such statistics as well.

If some extended-result slot for a given schema shows that an item is signifi-
cantly more likely to turn On (or Off) when the schema’s action is taken, that item
is deemed relevant to the action. A relevantitem is a candidate for positive inclu-
sion (if it turns On) or negative inclusion (if Off) in a schema that is said to spin off
from the given schema. A spinoff schema copies the given schema’s context, ac-
tion, and result, but with the designated item included in the copy’s result (or con-
text, as discussed below). For example, in figure 4.1, the extended result of the
schema /HandBackward/ discovers the relevance of items MouthFeelsTouch,
ChinFeelsTouch, and ShoulderFeelsTouch. Correspondingly, the schemas
/HandBackward/MouthFeelsTouch, |/HandBackward/ChinFeelsTouch, and
/HandBackward/ShoulderF eelsTouch spin off from the bare schema /HandBack-
ward/. (These examples are not from the implementation, whose simulated body
lacks a chin or shoulder; but these schemas are similar to ones built by the imple-
mentation, which are described at length in chapter 6.)

A relevant result need not follow an action reliably. In fact, its occurrence fol-
lowing the action may be arbitrarily unlikely, provided that its occurrence is even
less likely in the action’s absence. The relevance criterion uses the schema to
specify a controlled experiment, comparing what happens with activation to what
happens without (the control). Subtle but significant statistical differences then
serve to identify a relevant but arbitrarily unreliable result, solving the context-re-
sult chicken-and-egg problem.
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The machinery’s sensitivity to relevant results is amplified by an embellish-
ment of marginal attribution: when a given schema s idle (i.e., it has not justcom-
pleted an activation), the updating of its extended result data is suppressed for any
state transition which is explained—meaning that the transition is predicted as the
result of a reliable schema whose activation has just completed. Consequently, a
given schema whose activation is a less frequent cause of some result needn’t
compete with other, more frequent causes, once those causes have been identified;
inorder for the result to be deemed relevant to the given schema, that schema need
only bring about the result more often than the result’s other unexplained occur-
rences.

Context spinoffs

Once a relevant result has been so designated and a corresponding schema spun
off, the induction machinery of the spinoff schema looks for context conditions
with respect to which the result follows more reliably than it occurs in general;
the spinoff schema'’s extended-context slots maintain statistics that identify such
conditions. In particular, each extended-context slot records the ratio of the prob-
ability that the schema will succeed (i.e., that its result will obtain) if the schema
is activated when the slot’s item is On, to the probability of success if that item
is Off when the schema is activated. As with extended-result statistics, these are
weighted toward more recent trials; and the more trials there have been, and the
greater the difference between the two probabilities, the sooner the machinery can
detect the difference.

If the first (or second) of the extended-context probabilities is significantly
higher than the other, the item is deemed arelevant condition for the schema’s suc-
cess, and is a candidate for positive inclusion (if the schema is more reliable with it
On) or negative inclusion (more reliable when Off) in the context of a spinoff
schema. In figure 4.2, the extended context of /HandBackward/MouthFeels-
Touch discovers that HandInFrontOfMouth boosts the schema’s reliability, spin-
ning off HandInFrontOfMouth/HandBackward/MouthF eelsTouch; similarly, the
discovery of the relevance of HandInFrontOfChin to /HandBackward/Chin-
FeelsTouch spins off the schema HandInFrontOfChin/HandBackward/Chin-
FeelsTouch.

A context spinoff schema, like aresult spinoff, need not be reliable. Foranitem
to be arelevant condition for a given schema, the schema need only be significant-
ly more reliable for one state of the item than for the other, but even the greater of

these reliability levels can isahiieantys mpdkefigontext spinoff’s own extended
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HandInFrontOf <i|

Mouth MouthFeelsTouch
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Figure 4.2 Context spinoffs. Each of two empty-context schemas
discovers a relevant context item, spawning a spinoff schema.

context seeks conditions that further improve reliabitity; the discovery of such
conditions spawns additional context spinoffs, as in figure 4.3. In this fashion,
marginal attribution can build up to some conjunction of conditions that does
make the schema reliable.

892 ON AR 05-20
o JO>O o |@0

Figure 4.3 Context conjunctions. Successive spinoffs build upto a
conjunction of context conditions.

Here again, distinguishing relevance fromreliability solves achicken-and-egg
problem. If, say, items p, g, and r must all be On for result x to follow from action
a, then the probability that the result follows if, say, p was On when the action ini-
tiated—call that P(win/p), i.e., the probability of a win given p—is just the proba-

bility that ¢ and r were On then tog. If p, ¢, and r. are statistically ind d f
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one another, then P(win/p) is the product of the individual probabilities of g and r
being On; if p, ¢, and r are positively correlated, then P(win/p) is even larger than
that product. However small this probability may be, it is significantly larger than
the likelihood that the result follows the action if p is Off—that likelihood is zero,
given the above assumption that p, g, and r are all required. Hence, the relevance
of p to the schema’s context is detectable (and similarly for the other conjuncts;
the one that makes the biggest difference will be detected first).

Critically, discovering the context-relevance of p does nor depend on there be-
ing any nonzero chance that the schema succeeds when only p (but not g and ») is
on. Evenif p contributes nothing to the schema’s reliability unless g and r-are also
on, p’s relevance is noticeable without yet paying attention to g and r; it is notice-
able because some of the trials for which p’s statistics are collected do happen to
have g and r satisfied as well.

Asmentioned previously, for purposes of the statistics maintained by marginal
attribution, a schema is considered to have been activated (implicitly activated)
any time its action is taken when its context is satisfied, even if that schema was
not selected for activation (to so select a schema explicitly actives it). Thus, many
schemas’ extended-context data may be updated at once. In fact, all activa-
tion-dependent schema data equates implicit and explicit activation; and the ex-
plainedness of a state transition, invoked just above, is also with respect to either
kind of activation.

Most generally, there may be a disjunction of conjunctions of conditions under
which the result x follows the action a. The schema mechanism does notrepresent
disjunctive contexts as such; however, it may construct several reliable schemas
that all have the same action and the same result, but with different contexts. This
effectively expresses a disjunctive condition for the result to follow the action.

In that case, however, p’s relevance is detected only if P(win/p) exceeds the
probability that some disjunct of the necessary condition is satisfied when p is not.
If, on the other hand, some disjunctof the necessary condition—say, the conjunc-
tion of items d, e, f—is more likely to be satisfied when p is Off than is the conjunc-
tion of g and r when p is On, then the relevance of p will be obscured. (One way for
the mechanism to circumvent this problem is to instead solve a differently formu-
lated version of it; see section 6.3.3 for an example.)

4.1.3 Suppressing redundant attribution

There is an embellishment of the marginal attribution algorithm—deferring to a

more specific applicable s@w@?g&qﬁg?eﬁgples the discovery of an item
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whose relevance has been obscured. Suppose, in the example just discussed, that
the context-relevance of d to schema /a/x is not obscured; the schema’s extended
context discovers this relevance, leading to the construction of the schema d/a/x.

The extended-context slot for d in /a/x records that a schema has been spun off
from that schema for that (positively included) item. The following embellish-
ment then occurs:

® All correlation data in all extended context slots of the schema/a/x are reset
to zero.

® Subsequently, whenever /a/x is activated and d is On, the updating of all ex-
tended context data for that trial of /a/x is suppressed. The effect of this em-
bellishment is that the extended context of /a/x now maintains correlation
data only for trials for which d is not On (resetting the data erases correla-
tions that had been tabulated without this condition). Thus, when d is on,
attribution is deferred from /a/x to the more specific applicable schema d/a/
x. That schema, of course, can update its own extended context data for the
trial, leading to the eventual construction of defl/a/x.

Once the relevance of d has been thus recorded, the probability of /a/x succeed-
ing when a is On no longer has to compete with the probability of its success when
d1s On. The embellishment of deferring to a more specific applicable schemaen-
sures that as some (conjuncts of) disjuncts of a disjunctive condition are identi-
fied, it becomes easier to detect the relevance of (conjuncts of) other dis-
juncts—the other disjuncts need only compete against the ‘‘background”
probability of the schema’s success due to yet-unidentified conditions. Not all
conditions are thus discoverable, but many common and useful ones are.

Deferring to a more specific applicable schema also performs a second vital
function. Consider again the sequence of constructions shown in figure 4.3, in
which /a/x spins off p/a/x, which spins off pg/a/x, which spins off pgr/a/x. 1f not
for the provision for deferring to more specific applicable schemas, /a/x would
also spin off g/a/x and r/a/x; schema p/a/x would also spin off pr/a/x, and so on
(figure 4.4).

With just three items in the eventual reliable context, such a proliferation of in-
termediate constructs isnocrisis. In general, though, the number of such interme-
diate constructs is exponential in the size of the eventual context (the set of inter-
mediate constructs corresponds to the powerset—the set of all subsets—of the
eventual context). Fortunately, deferring to more specific applicable schemas

prevents this exponential proliferation. If /a/x has already spun off, say, p/a/x,
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Figure 4.4 Powerset proliferation. Unembellished marginal at-
tribution tries to build all subsets of an eventual context.

then/a/x’s extended context slot for ¢ will no longer be updated on trials when p is
On; hence, /a/x will not redundantly discover the relevance of g.

A second embellishment also reduces redundancy: when a schema’s extended
context simultaneously detects the relevance of several items—that is, their sta-
tistics pass the significance threshold on the same trial—the most specific is cho-
sen as the one for inclusion in a spinoff from that schema. Thus, if i is a special
case of j (that is, i is On only when j is On), and the extended context of /b/z discov-
ers the relevance of both simultaneously, i/b/z will spin off. (Both conditions’
relevance will be discovered simultaneously if all encountered trials of /b/z when j
is On aiso have i On.) If the more general condition j actually suffices, then /b/z
will eventually spawn j/b/z as well, due to trials when jis On and { is Off. If, on the
other hand, the more specific condition is necessary, j/b/z will not be built. (See
section 6.2.4 for an example from the implementation’s performance.)

Without this specific-priority embellishment, /b/z might first spawn j/b/z.
Then, if the more specific condition i were actually necessary, /b/z would defer
attribution to j/b/z, which would spawn j/b/z. The unnecessary conjunction ij, ap-
pearing as the context of a reliable schema, would then be eligible for inclusion in
the results of other schemas. The specific-first embellishment avoids this unnec-
essary proliferation.

An item is considered more specific if it is On less frequently. Although the
specific-first embellishment is intended for situations in which the more specific
itemn is a special case of the more general (as opposed to occurring disjointly), the
embellishment is applied without checking whether the more specific item is in
fact a special case. When it is not, the specific-first criterion amounts to an arbi-
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It may be of interest that, although the need for these redundancy-mitigating
embellishments might have been anticipated a priori, it was not until I ran the un-
embelilished implementation, and observed the proliferation, that  became aware
of the problem.

4.1.4 Result conjunctions

In order for one schema to chain to another, its result items must include all the
context items of the other (and with the same signs). Thus, for purposes of chain-
ing, the schemas in figure 4.5a are not equivalent to those in figure 4.5b; the sche-
mamechanism’s chaining broadcast (described in section 5.1.2) identifies a chain
to x in the second case, but not the first. Consequently, the marginal attribution
machinery must be able to build schemas with conjunctive results, as well as con-
junctive contexts.

G
OOV

(a) No chain to xy. (b) These schemas chain together.

Figure 4.5 Conjunctive chaining. Predicting two items separately
does not chain to a context that requires their conjunction.

The mechanism might be designed to build conjunctive results incrementally,
as with contexts. However, this approach would create a powerset proliferation
problem, as above. And the above solution to that problem for conjunctive con-
texts—deferring to more-specific applicable schemas—does not suffice for con-
junctive results; it fails to block a different exponential proliferation, as illustrated
in figure 4.6. Suppose there exist reliable schemas p/a/x and g/aly. If p/a/x some-
times activates when ¢ is On, then if p/a/x could have its own result spinoffs, it
would discover the relevance of y as a further result, and would spin off the sche-
ma p/a/xy; similarly, g/aly could spawn g/a/xy. Either of these schemas, in turn,
could spawn the reliable schema pg/a/xy, which combines the assertions of p/a/x
and g/aly.

A combination of two such schemas is acceptable. But, here again, if 7 sche-
mas thus combine, the number of such combinations is exponential in n. To pre-
vent the explosive proliferation of such combinations, the schema mechanism
does not build conjunctive results incrementally; only a schema with anempty re-
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Figure 4.6 Combinational proliferation. Incrementally extend-
ing results would proliferate combinations of schemas.

sult can spin off a schema with a new result item. (Such a schema will be bare,
since an empty result implies an empty context.) Chaining to contexts that have
more than one items is made possible by permitting a schema to spawn a multi-
ple-item result spinoff all at once, as follows.

A schema’s extended result includes a slot for set of items whose appears as a
context of areliable schema (as well as a slot forevery individual item). Marginal
attribution treats each such conjunction just like an individual item with respect to
maintaining extended-result statistics about the correlation between its transition
and the schema’s activation, and with respect to including a relevant conjunction
inthe result of a spinoff schema. Thus, when a conjunctive result is actually need-
ed—to chain to a reliable schema’s context—the marginal attribution machinery
will permit that result.

Thus, a conjunctive result can form only if a conjunctive context has first been
formed by some other schema; except in that case, a schema’s result can include
only one item.

4.1.5 Overriding conditions

Extended contexts, like extended results, identify relevant items for inclusion in
spinoff schemas. Extended contexts serve asecond function: identifying overrid-
ing conditions, that is, conditions under which an ordinarily reliable schema is in-
valid. A schema whose context is satisfied is nevertheless excluded from selec-
tion for activation when its extended context reports that a known overriding
condition obtains.

The example in figure 4.7 illustrates the need to recognize overriding condi-
tions. The schema p/a/x is very reliable, but fails when the (unusual) condition w
obtains. The extended context of p/a/x duly discovers the relevance of w being
Off—the schema has a much higher probability of succeeding if activated then

than if w is On. Conseque&{%}p@mgwggﬁgp is spun off,
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Figure 4.7 Override conditions. Here, condition w overrides
schema p/a/x.

But merely creating the more specific schema ~wp/a/x does nothing to sup-
press p/a/x when w is On; the mechanism needs to be able to learn not to trust the
schema in that case. Permanently suppressing p/a/x, and relying instead on ~wp/
a/x, would solve that problem, but at an unacceptable cost: schemas chaining to x
via a would now have to include ~w in their results—and similarly for all other
overriding conditions that may be discovered. Butif these conditions arise rarely,
the overhead of having to build new chains of schemas that explicitly include the
negations of the overriding conditions is unacceptable; if the schema p/a/x shows
itself to be highly reliable, the mechanism should be able to depend on it.

Instead of permanently suppressing the schema, the mechanism suppresses it
whenever w is On. This temporary suppression is accomplished by the extended
context’s override machinery, which notes that item w is not in the state which
makes the schema more reliable than otherwise by a significant factor; hence the
mechanism deems the schema unreliable at the moment, and avoids selecting it
for activation. At other times, however, the schema p/a/x may still be useful.

4.1.6 Sustained context conditions

Actions have variable execution times. In the presentimplementation, each prim-
itive action takes one time unit to execute (though nothing depends on this). The
time between a composite action’s initiation and completion can vary consider-
ably, even for different invocations of the same action, depending on the number
of steps in the shortest chain to the action’s goal state.

Some context conditions need only be satisfied when an action is initiated.
Others need to be satisfied throughout the action’s execution. The primary ex-
tended-context slot correlation, described above, compares two probabilities of a
schema’s success that are conditional on an item’s state at the time that the sche-
ma’s action is initiated. A second correlation, also maintained by each extended
contextslot, compares similar probabilities defined with respect to an item’s state
at the conclusion of the action. If both the initiation-time and completion-time
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correlations are significant, the mechanism presumes that the corresponding con-
dition needs to be sustained throughout the action’s execution.

If a context condition needs to be sustained until completion of a (composite)
action, the mechanism obliges this requirement in two ways:

® When components of the composite action are selected for execution, ac-
tions whose results assert the negation of that condition are thereby sup-
pressed. First, the activated schema informs its sustained context items of
that status. Then, the mechanism identifies every schema whose result
would negate a sustained item. Any such schema that is applicable, of non-
negligible reliability, and is not superseded by a more specific applicable
schemainforms its action of its status. The action then suppresses the activa-
tion of all schemas that have that action

® If such a condition becomes negated anyway (due to external events or to
unanticipated side-effects of the mechanism’s actions), the pending schema
is aborted. (In that case, some chain of schemas that reestablishes the vio-
lated context condition and proceeds to the same goal may well be the basis
for the next activation, effectively repairing the problem.)

Except for conditions that need only be satisfied initially, the mechanism does
not seek context conditions that need to be satisfied for only part of the action-ex-
ecution interval. This is in keeping with the use of schemas to chain to a
goal—each prior link establishes the conditions needed for the next link to be
applicable. A condition which is only necessary at, say, the completion of an ac-
tion can be designated as a condition to be sustained throughout the action.

4.2 Synthetic items

Creating new state elements involves a more radical sense of novelty than build-
ingnew schemas and actions. Schemas and composite actions are merely re-or ga-
nizations of existing structures. But a synthetic item is a new element of the sys-
tem’s ontology—an element fundamentally different from the prior contents of
the system’s conceptual vocabulary. This section explains the schema mecha-
nism’s construction of synthetic items, and the subsequent elaboration of their
meaning.

4.2.1 Constructing synthetic items

The mechanism’s facility for building and maintaining synthetic items is de-

signed to promote Piagelia&w&yﬂ%@%@%&wa: conceiving of an underly-



82 Chapter 4. Construction and revision

ing invariant when all apparent manifestations change or cease. Sometimes, as
with conservation of object or of mass, what’s required is the conception of some
underlying physical reality. In contrast, conservation of number, for example, in-
volves the conception of an underlying nonphysical abstraction. The synthet-
ic-item machinery is designed to promote conservation discoveries of either kind
(although the implementation has demonstrated only the first) by creating new
items to represent newly-conceived aspects of reality.

The schema mechanism constructs a synthetic item to reify the validity condi-
tions of an unreliable schema. Thatis, anew synthetic item is defined to represent
whatever unknown aspect of the world governs the schema’s validity. This is best
explained by the example in section 1.1.2, whose illustration is repeated in figure
4.38.

synthetic item: synthetic item:
® PalpableObjectAtl ] ® VisibleObjectAtl ]

/A\ /A\

e ~ 7 ~
hand—touch— image—at—center—
left region
hand- glance-
ar-1,2 at-1,1

Figure 4.8 Synthetic items. These synthetic items designate palpable or vis-
ible objects (respectively) at a certain body-relative position.

The first schema in figure 4.8 asserts that moving the hand to the body-relative
position (1,2) results in a tactile sensation at the hand. This schema is unreliable; it
only succeeds when there happens to be an object at that position, waiting to be
touched.

Significantly, however, the schema is locally consistent, meaning that if it hap-
pens to succeed when activated on some occasion, it is likely to succeed again if
activated again within, say, the next several seconds. This consistency follows
from the tendency of objects in our environment to stay put for a while. The sche-
ma mechanism, of course has no appreciation of this explanation; but it does keep
track, empirically, of each schema’s local consistency, the probability of its suc-
cess when its last activation was successful; and, fora schema with high local con-
sistency, the mechanism also tabulates the expected duration of the schema’s con-
sistency, the average interval during which the schema is observed to remain
valid.

When a schema is found to be unreliable but locally consistent, the mechanism

constructs anew synthetic item, called that schema’s reifier; the schema is the new
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item’s host schema. The host schema’s reifier designates whatever condition
makes the schema valid—in this case, roughly the condition that a palpable object
is present at body-relative position (1,2).

In effect, the host schema associates its reifier with a probing action—the host
schema’s action—and a manifestation—the host schema’s result. A synthetic
item thus works backward from a thing’s manifestation to define the very thing
manifested. Inthe present example, an object ata given position is manifested by
atactile sensation when probed by putting the hand there. The reifying synthetic
itemrepresents the state of the world right now such that the probing action, if tak-
en now, would yield the manifestation.

The concept of a palpable object being there says more than that the probe in
fact yielded the manifestation—the concept further entails that, even when the
probing action is not now carried out, it would yield the manifestation if it were
now carried out (a so-called counterfactual assertion [39, 29], based on a hypo-
thetical premise—that the probe is now carried out—which is contrary to fact).
The synthetic item of this example, when it is On, asserts that, whether the hand is -
in fact moved there or not, the world right now is in such a state that moving the
hand to the designated position now would result in a touch sensation; the item
thus reifies that disposition of the world, regarding that disposition as a thing in
itself—and that thing-in-itself turns out to be a palpable object’s presence at the
designated position.

What persists between probing actions and between manifestations is the fact
that the probe would now yield the manifestation. This persistence is not merely
the recency or recurrence of the manifestation; many states (e.g., television
images or thunder) recur without there having to be an underlying entity which
persists between recurrences and which the recurrent state repeatedly manifests.
Thus, in the present example, asserting the persistence of a physical object goes
beyond, say, having the memory that a particular sensation was feltamoment ago.

To repeat, the condition the condition that persists in this example—the condi-
tion that tends to be present after and between manifestations—is the presence of
a palpable object at a particular position. From the mechanism’s point of view,
this concept is not composed from already distinguished concepts of object and
position (as noted in section 1.1.2); rather, the synthetic item designating this con-
dition is a rudimentary precursor of the concept of physical object (and of the con-
ceptof position). Assection 6.4.5 illustrates, the development and intercoordina-
tion of many such fragments implements progressively better approximations to

the concept of physical object.
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Looking for persistence is built into the schema mechanism’s synthetic item
facility; thus, the significance of persistence it is innate to the mechanism, rather
than being acquired. When the mechanism constructs a synthetic item, what is
novel and learned is not persistence per se, but rather the very thing whose persist-
ence is noticed—not the manifestation (which may recur, but does not persist be-
tween or after recurrences), but rather the state of the world such that the probing
action would yield the manifestation.

4.2.2 Maintaining verification conditions

The state of a primitive item is set directly by some input module. In contrast, the
state of a synthetic item must be maintained according to learned criteria for dis-
tinguishing whether the represented state currently obtains or not—that is, ac-
cording to learned verification conditions.

The schema mechanism recognizes four kinds of verification conditions:

® Host schema trial. Each time the host schema completes its activation, it
turns its reifier On or Off according to whether the schema succeeded or
failed.

® [ocal consistency. When any of the conditions listed here turns a synthetic
item On or Off, the item stays in that state for a period of time equal to the
empirically determined expected duration of the host schema’s local consis-
tency (actually, two separate durations are used: one for staying On, the oth-
er for staying Off). If that period of time elapses without any further such
condition, the item times out, reverting to the Unknown state. (An item also
assumes the Unknown state if there is contradictory evidence as to its
state—except that host-trial evidence simply overrides any conflicting evi-
dence, since host-schema validity is the very definition of a synthetic item’s
referent.) Thus, local-consistency evidence is the memory of the most re-
cent evidence for the state of an item—provided that there is some recent
evidence.

® Augmented context conditions. A host schema’s extended context may dis-
cover conditions that make that schema more reliable, leading to the con-
struction of spinoff schemas (this is just the usual process of marginal attri-
bution). For example, as illustrated in figure 4.9, the palpable-object
schema shown above may be copied, with the addition of a context element

that designates a visible object at the same position.
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A reliable schema reports its applicability to its parent schema (the schema
from which it spun off); in this example, when the visual-evidence schemais
applicable, itreports that fact to the palpable-object schema. The applicabli-
ty of this reliable schema implies that its action, if taken now, would yield its
result; but that action and result are both shared by the parent schema. That
schema—the palpable-object schema—thereby knows, without actually
having to try, that its activation would succeed at the moment. Accordingly,
the palpable-object synthetic item is turned On. If, however, some override
condition currently obtains for the evidence schema (section 4.1.5), its re-
port to its parent schema is suppressed. If an override condition obtains for
the host schema itself, the host schema’s reifier turns Off.

® Predictions. A synthetic item, like a primitive item, may come to be in-
cluded in the results and contexts of many schemas. If a synthetic item ap-
pears in the result of a reliable schema, and that schema is activated, then in
the absence of any evidence to the contrary, the mechanism presumes that
that schema succeeded; thus the item is turned On (if positively included in
the result, or Off if negatively included).

® PalpableObjectAtl ]
N

N VisibleObjectAtl 1
hand—touch— hand—touch—
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hand- hand-
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Figure 4.9 Context verification conditions. Context spinoffs specify
evidence that helps maintain a synthetic item’s state.

A synthetic item’s verification conditions bootstrap from one another; the bet-
ter an approximation they provide to the concept defined by the item, the better
able the mechanism is to discover further correlates of that state, accordingly re-
vising the verification conditions. The crucial step in this process is the initial
one: defining the synthetic item in the first place. Asnoted insection 1.1.2, verifi-
cation conditions operationalize a synthetic item—they make the item us-
able—by asserting when the state represented by the item does or does not obtain.
But this assertion may be imperfect, and the state-maintaining function of verifi-
cation conditions is always subject to revision upon the discovery of a discrepan-
cy between what the function says, and the actual success or failure of the host

schema. The latter is what @M}Uﬂgaeﬁlfg?éﬁgyhetic item; the state-maintain-
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ing function does not, for if a *“definition” can change, but still correspond to the
same concept, then it was not really definitive of that concept. In fact, itis typical-
ly impossible to fully define a synthetic item’s meaning as a function of the mech-
anism’s prior concepts, as the next section argues.

4.2.3 Irreducibility to any function of prior concepts

Verification conditions can be expressed in terms of nonprimitive items and ac-
tions, as well as primitive ones. Nonetheless, the state of every synthetic item,
maintained on the basis of a function of the item’s verification conditions, com-
putes some boolean function of the past and present states of the schema mecha-
nism’s primitive items; functions of nonprimitive elements are ultimately ex-
pressible as functions of primitive ones, since the nonprimitive elements are
themselves so expressible. Indeed, the state of any component of any determinis-
tic machine must be some function of the cumulative (i.e., past and present) inputs
to the machine; moreover, if the inputs are binary, the component’s state must be
given by a boolean function of those inputs.

Paradoxically, however, any given function of the system’s cumulative inputs
is inadequate to define many of the concepts that an intelligent mechanism that
starts with only sensorimotor primitives needs todevelop (as argued, forexample,
by Fodor [25]); Fodor pessimistically concludes that learning concepts is impos-
sible, since he sees no alternative to defining a concept as some function of cumu-
lative inputs). Even the most rudimentary conceptions of the physical object can-
not be defined by the schema mechanism as any function of the sensory
primitives. Consider, say, the concept that an object is present at body-relative
position X. Two considerations make it impossible define this concept as any
function of the cumulative inputs to the mechanism:

® Nomanifestation. Often, an object’s presence at X has never had any senso-
ry manifestation, directly or indirectly; on such occasions, the mechanism
simply does not have the information needed to determine that the object is
present. Moreover, even such manifestations as are available are often just
probabilistic indicators of the object’s presence; any function that relies on
such indicators will sometimes be wrong

® Unrecognized manifestation. Even when manifestations are available, the
mechanism cannot necessarily recognize them as such. The very question
of what counts as amanifestation depends on physical regularities and states
about which the mechanism may have incomplete information.
Copyrighted Material
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The no-manifestation problem has the consequence that no possible function
of the cumulative inputs is coextensive with there being an object at X. Hence,
there is no such function that defines what it means for an object to be there; a
function that did define that could could never be incomplete or wrong—it would
always, by definition, be correct. The unrecognized-manifestation problem im-
plies that, even if there were some function of cumulative inputs that says precise-
ly which manifestations are relevant, the mechanism may be in no position to find
that exact function; the mechanism may forge an approximation, but that approxi-
mation is subject to change, and thus, once again, does not define the concept.

Furthermore, if we consider the need to represent more abstract concepts, an
additional difficulty becomes apparent:

® [ogical inexpressibility. Some concepts are uncomputable—e.g., the con-
cept that the Turing machine in front of me will halt. This concept’s uncom-
putability assures that the concept cannot be expressed as any function of my
cumulative sensory inputs.

This problem is related to Fodor’s argument that it is impossible to increase
logical expressiveness via learning (section 2.8). If a new concept could be de-
fined only as a function of the state of prior representational elements, such learn-
ing would indeed be impossible. Alternative means of definition, however, evade
that objection. 13

The schema mechanism, starting with only sensorimotor primitives, defines
concepts that cannot be computed as any function of the cumulative state of those
primitives. This apparent paradox is resolved by the observation that the mecha-
nism does not in fact compute the meaning of these concepts. It does compute, for
each item, a function of verification conditions, and this function maintains the
item’s state; but, as noted, that function does not actually define the concept—it
only presents a changing approximation to the concept.

What, then, justifies construing a synthetic item as designating a concept other
than what its state in fact computes? It is not merely that I, as the designer, intend
synthetic items to designate the validity conditions of their respective host sche-
mas. Rather, it is that the mechanism itself treats each item as having that mean-

15. For example, consider a schema whose context designates a Turing machine, whose action

is running the machine forever or until it halts or repeats, and whose result is seeing it halt some-

time. The synthetic item reifying the validity conditions for this schema defines the concept of the

Turing machine halting predicate. Of course, the function computed by this item} verification

conditions is computable (since it is, in fact computed); but since that function does not define the
there is no contradiction of the concept’s uncomputability.

coneept: Copyrighted Materal
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ing, by systematically adjusting the item’s state-maintaining function to better
conform to that meaning, to better predict when the item’s host schema is valid.

4.2.4 Intension, extension, and verification conditions

The analysis of a synthetic item’s meaning is aided by the traditional distinction
between two aspects of a concept’s meaning: a concept’s intension and extension.
A concept’s extension is the set of possible circumstances under which the con-
cept holds. (This definition presumes that the concept is propositional, as is the
case with concepts represented by primitive and synthetic items in the schema
mechanism.) The intension of a concept is a particular designation or representa-
tion of that concept; in the schema mechanism, the intension of the concept repre-
sented by a given synthetic item is the item’s host schema.

The state-maintaining function of an item’s verification conditions changes;
and, as noted above, it changes systematically in the direction of the extension
given by the item’s intension. !¢ Thus, an item’s state-maintaining function tends
to converge to the item’s extension. But the state-maintaining function needs not
ever fully match the extension; they meet only at an imaginary limit.

The relation among an item’s intension, extension, and verification conditions
helps solve the puzzle of how a concept’s extension can have psychological real-
ity. Itis well known that two concepts can have the same extension but different
intensions (e.g., {26]). For example, section 6.4.5 discusses the formation of a
syntheticitem that designates a palpable-object-at-position-X, and another desig-
nating a visible-object-at-position-X. In a world without invisible or intangible
objects, the two concepts are coextensive: there is a palpable object at X if, and
only if, a visible object is there.!7 But they have different intensions: one is de-
fined withrespect to ahost schema for reaching and touching something, the other
forlooking and seeing. Atfirst, the schemamechanism does notrepresent the two
concepts’ mutual equivalence; indeed, it sometimes recognizes the applicability
of one, but not the other. In what sense, then, is their coextension psychologically
real atthat time? That is, in what sense is their coextension, at that time, a property
of the schema mechanism rather than just of the world external to the mechanism?

16.  More accurately, as Putnam’s twin-earth parable demonstrates [55], extension is given both
by intension, and by the physical circumstances of the agent entertaining the concept. But this sub-
tlety is beside the present point.

17. This example recasts philosophers’ traditional morning-star example. The first star to rise
in the evening may happen to be the same astronomical object as the last to set in the moming; yet
one might separately define the last morning star and the first evening star, and fail 1o realize their
synonymity.
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Again, the answer concems the state-maintaining functions of the two con-
cepts, which soon become the same as one another. Even before the two functions
come to coincide, it can be said that the mechanismis disposed to make them coin-
cide, given suitable exposure of the mechanism to the world; and this disposition-
al property is reasonably regarded as a property of the mechanism, even
though—Ilike other dispositional properties, such as physical brittleness (a dispo-
sition to break easily)—it depends as well on external conditions.

4.2.5 The symbol grounding problem

The schema mechanism is one of many Al systems that build and use symbolic
representations. When such systems organize their primitive structures into com-
pound ones, it is relatively straightforward to express the meaning of the com-
pound structures as a function of the meaning of the primitives, and of the compo-
sitional syntax. Often, however, there is no obvious basis—apart from the
intentions of the system’s programmer—for ascribing meaning to the primitives
themselves. This is known as the symbol grounding problem (¢.g., Harnad [32]):
by virtue of what does a primitive (i.e., unstructured) symbol represent some con-
cept?

For an embodied system whose primitives are wired to perceptions and ac-
tions, an obvious approach is to regard the primitives as representing those per-
ceptions and actions. But then the problem becomes: how does the system acquire
new concepts, other than boolean combinations of the primitives? As justargued
in section 4.2.3, building new logical combinations of sensorimotor primitives is
an inadequate basis for defining the sort of new concepts an intelligent entity must
have.

A common proposal is to allow a symbol’s meaning to be adaptive, in some
sense or other; Harnad [32] and Edelman [24,56] (see section 9.9.4) exemplify
this proposal. Harnad’s adaptation is connectionist, Edelman’s quasi-Darwinian.
In both cases, a non-symbolic (e.g., connectionist) computational assembly re-
ceivesinputs from the system’s inputs and from other such assemblies; the assem-
bly computes some function of its inputs, and that function can change over time,
adapting to new contingencies. The assembly’s output is a symbol, a primitive
input to the symbolic part of the system; the symbol is grounded in part in the as-
sembly’s process of adaptation.

The adaptation of such an assembly is reminiscent of the updating of verifica-
tion conditions for a synthetic item. But synthetic items, I believe, add a crucial
further step. Whatever sortgfasiatpionanassembly performs mustsomehow be
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trained by an indicator of positive and negative instances of the concept being
learned; the assembly adapts by changing itself to better conform to the indicator.
Harnad’s and Edelman’s indicators, however, correspond only to sensorimotor
inputs (Harnad’s indicators include iconic representations, which are analog and/
or picture-like encodings of sensory data). Thus, their assemblies can only be
trained to categorize such inputs, i.e., to build logical combinations of the inputs,
and hence still fall prey to a Fodor-like anti-learning argument. The schema
mechanism, in contrast, grounds its synthetic items in the reification of counter-
factual assertions; the subsequent adaptation of its verification conditions is driv-
en by that grounding.

4.3 Composite actions

As noted in section 3.3, a composite action is essentially a subroutine, defined by
a goal state and implemented by component schemas coordinated by a controlier.
This section describes how the mechanism builds, maintains, and uses composite
actions.

4.3.1 Constructing and maintaining composite actions

Whenever a bare schema spawns a spinoff schema, the mechanism determines
whether the new schema’s result is novel, as opposed to its already appearing as
the result component of some other schema. If the result is novel, the schema
mechanism defines a new composite action with that result as its goal state; it is
the action of achieving that result. The schema mechanism also constructs a bare
schema which has that action; that schema’s extended result then can discover ef-
fects of achieving the action’s goal state.

A composite action is enabled when one of its components is applicable. If a
schema is applicable but its action is not enabled, its selection for activation is in-
hibited; having a non-enabled action is, in this respect, similar to having an over-
ride condition obtain. Usually, a newly formed composite action is seldom en-
abled, because few (if any) extant reliable schemas chain to it. But such an action
may occur implicitly (see the next section) even before the mechanism can reli-
ably bring it about; implicit activation suffices for the mechanism to leamn about
the effects of the action.

When a new composite action forms, the mechanism also allocates and initial-
izes the new action’s controller, which, as discussed in section 3.3, connects to all
schemas, with a slot for each schema that records the schema’s proximity to the

action’s goal state. To initialize the controller, the mechanism broadcasts a mes-
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sage backwards in parallel through chains of schemas that lead to the goal state
(section 5.1.2). Occasionally thereafter, when the composite action is taken, the
mechanism performs another such broadcast to update the controller information.
Usually, though, the action executes on the basis of the already recorded control-
ler data. Section 4.3.3 discusses some advantages of having a controller.

Recording proximity information in an action’s controller is similar to chunk-
ing in SOAR [37]; both involve searching through a state-space, recording the
points of departure, so that the path from those points to the goal is subsequently
known without having to recapitulate the search. But the nature of the search that
is thus abbreviated is different here; see sections 9.3 and 9.4 for elaboration.

4.3.2 Implicit activation and the representation of external actions

As noted in section 4.1.2, the marginal attribution facility considers a schema to
have been implicitly activated if the schema’s action is initiated when the schema
is applicable, even if that schema was not selected for activation, and thus was not
responsible for the action’s initiation. Composite actions carry implicitactivation
one step further. A composite action is considered to have been implicitly taken
whenever its goal state becomes satisfied—that is, makes a transition from Off
to On—even if that composite action was never initiated by an activated sche-
ma—in fact, even if the goal state’s achievement is due to external events entirely
uninfluenced by the mechanism. Consequently, a schema whose action is com-
posite is implicitly activated each time its action’s goal state becomes satisfied
when the schema is applicable. Marginal attribution can thereby detect results
caused by the goal state, even if the goal state obtains due to external events.

Designating external events as actions combines with activation hysteresis
(section 3.4.2) to promote imitation by the schema mechanism of external events
that correspond to extant schemas. Hysteresis promotes the activation of a sche-
ma that has been activated recently. Hysteresis applies even to implicitly acti-
vated schemas, so if a schema is implicitly activated because an external event
achieved its action’s goal state, the schema’s chances for selection for explicit ac-
tivation are thereby boosted; its explicit activation would then repeat the achieve-
ment of that goal state.

4.3.3 Advantages of the composite-action controller

Using controller data has several advantages over performing a broadcast. The
most straightforward advantage is that it is faster: a broadcast takes time propor-

tionate to the maximum C@Hb]ﬁfﬁfkei?%&?é’r@ﬁ whereas finding the closest
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applicable schema based via the controller only takes time logarithmic in the
number of schemas.

Action controllers also facilitates the concurrent activity of several composite
actions. (The current implementation only activates one top—level schema at a
time, but many nested composite actions may run simultaneously; furthermore,
the mechanism could be extended to permit several toplevel activations.) As
noted in section 5.1.2, concurrent broadcasts would interfere with one another.
Using prerecorded controller data circumvents such interference.

Using controller data also extends the length of chains that can be found by a
broadcast, by means of an embellishment to the broadcast process. Whenabroad-
cast updates the information in a previously initialized composite action, the ex-
isting data serves as a point of departure. Thatis, rather than beginning the broad-
cast only from schemas whose results include the goal state, the broadcast also
starts with schemas of already-known proximity to the goal. Schemas that had
been at the fringe of prior broadcasts can now discover predecessor links in chains
to the goal.

A second embellishment creates still other advantages. A composite action
controller does not only record proximity information from broadcasts. Italsoav-
erages in data from actual executions of the action. That s, each time a composite
action is explicitly initiated, the controller keeps track of which component sche-
mas are actually activated and when. (The present implementation only keeps
track of the initial such component for each time an action is initiated; this lets the
data be kept globally, instead of commanding space in each controller slot.) If the
action successfully culminates in its goal state, the actual cost and duration of ex-
ecution from each entry point are compared with the proximity information stored
in the slot of each component actually activated; in case of discrepancy, the stored
information is adjusted in the direction of the actual data. If the action fails to
reach its goal state, the proximity measures for the utilized components are de-
graded.

Most straightforwardly, this empirical revision of controller data serves to cor-
rect false predictions based on proximity broadcasts. More subtly, the revision
might foster the discovery of certain kinds of reliable paths that a proximity
broadcast cannot identify as such (although such discovery is thus far undemon-
strated by the implementation). In particular, it might be expected to foster the
discovery of diverging and reconverging paths, of paths that require the repetition
of a particular component, and of paths that involve on-the-fly repair of broken
links in a chain.
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® Divergence andreconvergence. Consider aset of three chains of schemas to
acommon goal, as shown in figure 4.10a. The three paths diverge, via three
schemas with the same context and action as one another, but different re-
sults. Suppose it is reliably the case that one of these three results foilows,
but no particular one follows reliably; for example, each may have a 1/3
chance of occurring. Since each of the three results lies on a path that reli-
ably reconverges to the goal, a chain that passes through the area of diver-
gence and reconvergence is reliable.

(a) (b)

Figure4.10 Controller tricks. Composite-action controllers make
possible the discovery of paths that diverge and reconverge, or that
involve repetition.

However, the broadcast process misses this reliability. The cumulative
proximity measure broadcast along each of the three chains is attenuated by
the low reliability of each of the three diverging schemas. Thus, the broad-
cast proximity at and before those links in the chain underestimates the ac-
tual proximity of those links.

An underestimated component might nonetheless be selected by the con-
troller, if no component schema with greater proximity is applicable. Each
time such a selection culminates in reaching the goal state, the proximity
measure for that component increases, until the estimate becomes accurate,

® Repetition. There may be acomponent schera that needs to be repeated sev-
eral times until its result obtains successfully, enabling further progress
along a chain (figure 4.10b). As in the previous example, the schema that is
unreliable at each repetition (but which is, by assumption, reliable within
several repetitions) attenuates the proximity measure that broadcasts back-
ward through that link in the chain. But also as in the previous example, the
empirical success of paths to the goal that pass through the underestimated

link tends eventually @O‘iﬂ”@hf@& m?éﬁéifnate.
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® On-the-fly repair. Suppose a particular component schema is unreliable, and
often fails when there is no other applicable component available, thus inter-
rupting the composite action. It may so happen that certain schemas that
tend to be applicable and to get activated at that point have the side-effect of
making applicable some component of the interrupted action. It may even
be the case that those schemas tend to create some new component schema,
and create circumstances that make it applicable. The break in the original
chain is thus repaired. If such repair follows reliably, the controller again
comes to recognize empirically that the unreliable component, and its pre-
decessor links, reliably lead to the goal state.

By counting on this repair taking place, the machinery effectively invokes
the systemn’s overall intelligence as a subroutine to perform the repair. But
this invocation is not explicit; it is just a consequence of the empirically
derived high proximity value for an unreliable component which nonethe-
less leads to situations in which repair is typically possible.

4.3.4 Deterring redundant attribution of co-occurrences

An item may designate a state which is a special case of the state designated by
some other item; for example, SomethingSmoothTouchingHand is a special case
of SomethingTouchingHand. Both items may come to be goal states of composite
actions. Then, a resuit of the special-case action will be redundantly attributed
to the general-case action as well, and vice versa, since the two actions co-occur
whenever the more specific occurs.

The schema mechanism tries to deter such redundant attribution by keeping
track of actions that are special cases of others. Every schema with an empty con-
text keeps track of the likelihood of its action occurring if its result obtains; if that
likelihood s near unity, the schema’s result is taken to be a special case of the ac-
tion’s goal state (unless the action has already been construed, via some other
schema, as a special case of the result).

When one schema’s action is a special case of another’s, the special-case sche-
ma’s extended result data do not update unless the general-case action has just
completed. Recall that the extended result data compare samples taken both with,
and without, the schema’s action; by ignoring without-action samples unless the
general action has occurred, the comparison finds the effect of the special action
(if any) above and beyond the effect of the general action. If some result follows
the special action only as often as it follows the general action, it will therefore not

be seen as relevant to the special action.
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There is a final, minor feature to mitigate redundant proliferation: by special dis-
pensation, a bare schema with a composite action may not spin off a schema
whose result includes an item in the composite action goal; for example /xyz/ can-
not spin off /xyz/z.
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To be a viable partial theory of theory of human intelligence, or a viable model
for artificial intelligence, the schema mechanism must not be intractably ineffi-
cient. A mechanism’s efficiency depends in part on its presumed architecture; the
schema mechanism’s dual citizenship, in psychology and Al requires two such
substrates, which this section presents: a loosely envisioned neural architecture,
and the actual architecture of the existing computer implementation of the schema
mechanism.

5.1 Neural architecture

The schema mechanism is intended to explain aspects of human learning. The
mechanism’s design must therefore respect the constraints of neurophysiological
plausibility; there ought to be a conceivable neural implementation of the schema
mechanism, one that does not violate what is known about the human brain.

This section outlines a neurally plausible architecture for the schema mecha-
nism. The outline is coarse—it is nothing more than a characterization of the
sheer number of computational units involved, the required connectivity among
them, and the time complexity of the required computations. I argue that these are
plausibly within human-brainlike bounds. In contrast with connectionist [43] or
neural-net models [4], the proposed architecture makes no attempt to indicate
how specific functions performed by the schema mechanism might be implem-
ented by vaguely neuron-like computational elements, such as linear-threshold
units [47].

The presumed architecture supports one million computational units that are
exhaustively cross-connected; that is, a separate physical pathway exists between
each pair of units. (Some units, corresponding to sensorimotor primitives, also
connect to peripheral modules.) The connections transmit data, both numeric and
symbolic, the latter consisting only of a small number of discrete tokens (perhaps
afew dozen); unlike, say, the letters of the alphabet, these tokens do not combine
productively to form long composite structures (such as words or sentences). The
connection points between units, and the units themselves, can each store some
data, again consisting of numeric quantities and a small number of tokens (see fig-
ure 5.1). The connections between units, and the units themselves, operate in par-
allel.

Each unit and each connection point performs some simple, constant-time
computations perhaps a few times per second,; the results of the computation can
affect the stored values, and can be output along the connection lines. The compu-

tation at each connection peipljsadnastomafhestored values there, and of data
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input from the two units that connect there. The computation ateach unitisasym-
metric function of the connection-line inputs to the unit, and of the stored values at
the unit and at its connection points; the function might be the conjunction or dis-
junction of a binary value from each input, or to compute the surn, average, or
maximum of a numeric value from each input, or from those inputs flagged by a
particular token stored at or input to the corresponding connection point (such
computations can be performed in time logarithmic to the number of inputs). A
unitcan output numbers and tokens along its connection lines, as well asreceiving
such data. There is also centrally coordinated global communication, such as
broadcasting a message to every schema, every action, or every item.

connection
oints

a computational unit

“TTTTTY

symmetric functions:
sum, maximum, logical or, etc.

other computational
units

Figure 5.1 Cross-connection. Each computational unit connects to all
others.

The above assumptions are similar to those of standard connectionist architec-
tures, except for the presumption here of exhaustive cross-connectivity, and for
the absence here of any attempt to reduce the computation performed by each unit
to the behavior of linear-threshold elements.

Let us presume, for the sake of this analysis, that on the order of a few million
schemas, items, and actions might suffice to implement adult-level intelligence.
(At least on the order of a million cognitive units of some sort must be needed for
human intelligence; that is the smallest round number that isn’t clearly wrong. For
comparison, the average vocabulary of an English-speaking adult is a few tens of
thousands of words; and presumably there are many non-linguistic concepts for
each one named by a word.) Assuming that each schema, action, and item is im-
plemented by one of the computational units just discussed, I argue that some-
thing like the schema mechanism, with at least one million representational units,

could fit in the neocortex of the human brain,
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I have little to say about the computational units themselves, except that the
10,000 or so neurons available per unit are, intuitively, more than enough for the
assigned computations. The more difficult matter is to account for the cross-con-
nectivity that supports extended contexts and results, and action controllers; the
identification of chains of schemas from current states to goals, noting the acces-
sibility of goals from current states; and the definition new schemas in terms of
actions and items.

The postulated crossbar connecting every unit to every other supports all four
of these capabilities. (In fact, a slightly smaller crossbar, connecting all schemas
to all items, and all actions to all schemas, would suffice; but the order of size of
the required structures would not be much less.) The remainder of this section
first describes how the crossbar supports these capabilities, and then ar gues for the
neurophysiological plausibility of the crossbar itself.

5.1.1 Extended contexts, extended results, and action controllers

The exhaustive crossbar straightforwardly supports extended contexts, extended
results, and action controllers. Each slot in an extended context or result, for ex-
ample, is a connection point between a schema and an item; the slot computes and
stores correlations between a schema’s activation and the state of some item (as
detailed in section 4.1.2). Each action controller slot connects acomposite action
and a schema. The connection point stores proximity information (described be-
low), and receives data from the connecting schema as to whether that schema is
currently applicable. The lines connecting to a given composite action collective-
ly compute the maximum stored proximity among slots for schemas that are cur-
rently applicable.

5.1.2 Chaining

Identifying chains of schemas serves two functions: it propagates instrumental
value to intermediate states between a current state and a goal; and it is part of the
assessment of schemas’ proximity to a composite action’s goal state.

Finding a chain that leads to a particular item works by a parallel broadcast.
The item sends a message to each schema asserting that that item is a goal; the
item’s value is also transmitted. A schemaignores this message unless the schema
includes the item in its result; each connection point between a schema and item
includes that information, stored when the schema is created (see below). If the
schema does include the item that sent the message, and if the schema is reliable,
then the schema broadcasts a message in turn to its context, making its context a

goal; the value informatioCishypagdresy #afellig/Also broadcast is a proximity
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measure that takes account of the schema’s reliability, expected duration of acti-
vation, and cost.

This process iterates, tracing backward along various chains in parallel, each
schema along the way storing its proximity to the original goal, and the goal’s val-
ue. The proximity measures computed by each link of the chain combine as the
broadcast proceeds, diminishing the proximity at each step. When two or more
items send converging messages to the same schema, the largest proximity mea-
sure is stored and propagated further; the others are ignored. The backwards itera-
tion proceeds to some maximum depth of search; the time required is proportional
to this depth.

A schema’s context designates a conjunction of items, rather than just one item.
Broadcasting a message to each item individually would not work, since arbitrari-
ly many schemas might do so simultaneously. It is necessary to distinguish, say,
between broadcasting to the items a and b from a schema whose context includes
both, and broadcasting to those items from two distinct schemas, one with justa in
its context, the other with just b. A chaining schema’s result must include the en-
tire context of the next schema in the chain; hence, in the first case, a schema
whoseresultincluded only a or only b would not be a link in the chain, but it would
be in the second case.

This problem is solved by broadcasting to the context set as a whole. As men-
tioned above in section 4.1.2, certain context conjunctions—specifically, those
that are contexts of schemas of nonnegligible reliability—have extended result
slots, just as individual items have. As with the slots for individual items, each
such slot is set up, when a schema is created, to store a bit that says whether the
schema’s result items include all of that slot’s conjunct items; a second bit indi-
cates whether the result negates an included item.

When chaining is used to propagate instrumental value to help find the next
schema to activate, the process proceeds not just from one goal item, but simulta-
neously from all items that have positive primitive or delegated value. When two
or more goals’ broadcasts converge to the same schema, the one with greatest val-
ue is stored and propagated; among converging broadcasts that have the same val-
ue, the one with greatest proximity is used, as above. A schema whose context is
satisfied does not broadcast further, but rather competes for activation based in
part of the instrumental value received from the broadcast. There is no need for
the mechanism to keep track of which goal a particular broadcast is in aid of; keep-
ing track of value and proximity provides the information needed by the selection
for activation.

Copyrighted Material
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Chaining also serves a distinct but related purpose: determining each schema’s
proximity to a given composite action’s goal, so that that information can be re-
corded in the slots of the action’s controller (section 4.3.3). The broadcast process
for this purpose proceeds as above, but for just one composite action’s goal at a
time, since in this case it is necessary to know what goal each schema is helping to
chain to; broadcasts converging to a given schema from multiple actions’ goal
states would not all be able to propagate further back in the chain. (Of course, the
mechanism could be extended to support simultaneous broadcasts for some fixed
number of composite actions, but not for arbitrarily many, given the assumption
that each computational unit can receive and store just a small number of distinct
tokens.)

Finally, chaining is used to determine what states are accessible from the cur-
rent state. (Accessibility is discussed above in connection with delegated value in
section 3.4.1) To determine accessibility, the mechanism broadcasts messages
forward along chains of reliable schemas (in contrast with propagating instru-
mental value and finding goal proximity, for which the broadcast goes back-
wards). To begin, each schema that is currently applicable broadcasts a message
via its extended result to the items and conjunctions that are included in the sche-
ma’s result. Any schema that has such an item or conjunction as its context broad-
casts in turn via its own extended result, and so on, to some maximum depth of
search. Any itemor conjunctionofitems thatreceives amessage by this processis
currently accessible.

5.1.3 Composition

By the above architectural assumptions, the computational units that implement
the schema mechanism do not support productive composition of symbolic to-
kens, as letters compose to form arbitrarily many words or sentences. Yet the
schema mechanism presumes the ability to compose schemas from actions and
items in just such a fashion. The exhaustive crossbar between schemas and items,
and between schemas and actions, reconciles these two assumptions.

A schema designates its context and result simply by storing, at each connec-
tion point to an included item, the data that that item is included; whether it is in-
cluded in the context, result, or both; and whether each such inclusion is positive
ornegative. Similarly, the schema designates its action at the connection point be-

tween the schema and the action.
Creating a schema with a specified context, action, and result has two steps:

checking whethersucha SCW}WM%}%WhiCh caseitis notduplicated);
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and allocating an unused computational unit, setting up the connection-point des-
ignations of the context, action, and result, and also the extended-result data des-
ignating items and some sets of items that are included in the result proper.

® To check if a specified schema already exists, the mechanism broadcasts to
the action, and to each included item, its designation in the specified schema.
The items and actions transmit this data along their connection lines to all
schemas. If any schema finds a match, at all its item and action connection
points, between the status of those items and actions for that schema, and
their status according to the broadcast, then the specified schema already ex-
ists.

® Each reliable schema’s context, if it is a set of more than one item, is allo-
cated acomputational unit that connects globally to every itemin the mecha-
nism; anitem’s membership in the set is flagged at the set’s connection point
to that item, along with a designation of positive or negative inclusion.
Thus, wiring together a set of items does not require actually laying down a
new wiring path; rather, bits on exhaustively connected, prewired units are
set. The unit is also connected to globally by every schema, as part of each
schema’s extended result.

® When a unit is allocated for a new such set, each schema’s extended
result must record, at the connection point to the new set, whether the
new setis included in the schema’s result. To thisend, every schemais
informed of the number of items in the new set. Foreach schema, each
connection point between the schema and an item stores whether the
item belongs to the schema’s result (and, if so, its sign), and is told by
the item whether the itemis included in the new set (and, if so, its sign).
On this basis, the schema counts how many of its result items also be-
long to the new set, with the appropriate sign. If that number is greater
than or equal to the size of the new set, the schema’s result includes the
new set, and this fact is recorded at the connection point between the
schema and the new set

® When a new schema is built, its extended result must record, at each
connection point, whether the item or set of items at that connection
point is included in the schema’s result. For individual items, that in-
formation provides the very specification of the schema’s result, as

noted above. For sets of items, each unit designating such a set deter-
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mines (by a process similar to the one just described) whether it in-
cludes all the items in the new schema’s result. If so, the unit thus in-
forms the new schema via the extended-result connection line between
that set and the schema; that connection point then records the infor-
mation.

5.1.4 Neural crossbars

Anexhaustive crossbar between units of one type and units of another can be built
from a large number of fanout elements and fanin elements. Each unit of the first
type connects to the input side of a fanout element; the output side of the fanout
element has a separate connection for every unit of the second type. If there are
one million units being cross-connected, then the branching factor for a fanout
element far exceeds the 1,000-10,000 factor for neurons (see e.g., [ 17] for this and
other neurophysiological data cited just below). However, each element can be
constructed as a two-stage device comprised of elements that have a neurally
plausible branching factor, as shown in Figure 5.2; the first stage consists of a
single neuron, with 1,000-fold fanout, connecting to 1,000 second-stage neurons,
each with 1,000-fold fanout.

Input unit

...Output units...

Figure 5.2 A fanout element. Each two-stage fanout element
connects one input unit to all output units.

A row of adjacent fanout elements, shown in figure 5.3, forms a sheet that ex-
tends from all elements of the first type to all elements of the second. The connec-
tion is accomplished by taking a similar sheet of fanin elements rotated ninety de-
grees from the fanout sheet and facing in the opposite direction, and placing the
two sheets together. A similar pair of sheets implements exhaustive cross-com-
munication in the other direction. Perhaps several such pairs of sheets would be
needed to implement various different crossbar computations.

The total number of neurons required for a million-by-million exhaustive
crossbar is about 2x 109, which lies within the bounds set by the size of the human
neocortex. Furthermore, almost all the neurons comprising the crossbar are sec-
ond-stage neurons, each of which needs to reach only a small fraction (1/1,000) of

the target volume. Conseqwﬁly,@,t};@ggm%ﬁgpsbar crossbar implements ex-
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sheet

- ] fanout

fanin
sheet

Figure 5.3 A neural crossbar. A sheet of fanout elements atop a
sheet of fanins forms a full crossbar.

haustive cross-connectivity with regard to the million computational units, it ex-
hibits almost exclusively local connectivity with respect to individual neurons.
Only the first stage neurons—one crossbar neuron in athousand—makes a distant
connection. This locality accords with observations of the wiring of the human
cortex.

Ido not claim that there is positive evidence from neurophysiology that the hu-
man neocortex implements a million-by-million exhaustive crossbar. The fore-
going merely argues that there is no neurophysiological basis to dismiss the hy-
pothesis that such a crossbar exists. In the absence of such a basis, it is as
reasonable to postulate the crossbar, if required by a plausible theory of intelli-
gence, as there is to postulate any other structure or algorithm of intelligence,
without positive neurophysiological evidence.

Still, the crossbar may seem counterintuitively exorbitant—one may envision
ways to be more efficient (e.g., using a priori relevance constraints, although sec-
tion4.1.1 argues against that approach); and, even without a specific alternative in
mind, the crossbar may just seem hopelessly large. But this intuition, I suspect,
results only from thinking on the scale of present-day digital technology. A theory
of human intelligence, I maintain, should not be constrained to be implementable
on twentieth century computers, for there is no good reason to suspect that such an
implementation is possible: Indeed, our only reason to believe that intelligence
can be implemented on a device with the computational power of the brain is that
we see that it already has been; and it is eminently plausible that the brain is as
large as it is because it has to be—or, at least, because that is the simplest course,
even if there are more sophisticated and more efficient alternatives.

One final consideration arises in defense of the crossbar. I originally postulated
the crossbar to support marginal attribution, but subsequently found it important

for other parts of the schema mechanism as well: composite action controllers,
Copyrighted Material
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chaining and broadcasting, and implementing composite structures. The last of
these is especially noteworthy, for it shows that an exhaustive crossbar effectively
erases the distinction between connectionist and symbolic systems; that is, a
crossbar permits a connectionist architecture to implement arbitrary, nested syn-
tactic entities, which are the hallmark of symbolic systems. If a device so power-
ful can fit within the brain, we may well expect to find it there.

5.2 Computer implementation architecture

The computer program implementing the schema mechanism runs on a Thinking
Machines CM2® computer [33], using a dedicated Symbolics® Lisp machine as
front end. The CM2’s salient architectural features are as follows:

® There are up to 65,536 physical processors that operate in paraltel. The ma-
chine portion available for this research had 16,384 processors. Each pro-
cessor has 262,144 bits of memory.

® The CM2 is a SIMD machine (Single Instruction, Multiple Data streams),
which means that all processors execute the same instruction at once, each
on its own data.

® Some instructions operate locally to each processor, affected by or affecting
that processor s data alone. Other instructions act globally, computing, for
example, the sum or maximum of some specified processors’ values for a
given numeric datum, or the logical conjunction or disjunction of some spe-
cified processors’ values for some logical datum. Some global instructions
act in the other direction, sending a value to all processors

® Finally, there is a class of communications instructions, which send mes-
sages from one or more source processors to one or more target processors
per source processor. A source processor may designate its target by ad-
dress, or by coordinates in an n-dimensional grid into which virtual proces-
sors can be organized. A message may be sent to an entire row (or even hy-
perplane) of such a grid at once. Most of the program is written in *LISP
[67], a paralle! extension of LISP [63]. Some inner-loop code is written in
PARIS [68], an assembly-language-like instruction set for the CM2,

5.2.1 General program structure

The program allocates virtual processors for each schema, action, and item, and
for the connection points irobpw}gm@ym%ﬂ@ssbar and the actions-schemas
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crossbar; the connection-point virtual processors are organized into two-dimen-
sional grids for purposes of the communications instructions. (Due to memory
limits, there are 64 connection points per virtual processor; the program iterates
serially through updating each of those 64.) The basic computations performed
at each time unit by each schema, action, item, and by each crossbar connection
point, are cycled through in sequence, all instances of the same kind of structure
performing their computation together. The crossbar connectivity is simulated
by using CM2 communications instructions to transmit data from one kind of
structure to another.

Each of the 16,384 CM2 processors can designate about haif of a schema or
composite action; these are large structures because of the extended contexts and
results, and controllers. Ninety percent of the processors are reserved for sche-
mas, the remainder for composite actions. Available memory for schemas is the
limiting factor in the implementation’s performance.

5.2.2 Compactly storing correlation data

Each schema has an extended-context and extended-result slot for every item
(and, in the case of the extended context, for certain conjunctions of items). Al-
most all of the memory required by the schema mechanism’s data structures is de-
voted to the correlation statistics in schemas’ extended contexts and extended re-
sults; a naive representation of these statistics would be so bulky that the schema
mechanism could not be implemented on present-day hardware. Hence, this sec-
tion descends well below the level of abstraction at which the rest of the mecha-
nism is described here, to explain a low-level scheme for compactly representing
correlation statistics.

Every extended-context or extended-result slot maintains two correlation sta-
tistics, each of which is the ratio of two probabilities, a with-probability and a
without-probability. For extended-result slots, these are respectively the proba-
bilities of particular state transition with or without activation of the schema; for
extended-context slots, these are the probabilities of successful activation with or
without a particular item being on. Positive trials are the events whose probability
is tabulated. For extended results, positive trials are ones for which the state tran-
sition does occur; for extended contexts, positive trials are ones for which the acti-
vation is successful.

Naively, each correlation statistic could be represented by a pair of probabili-
ties (figure 5.4), each represented as arational number, with fixed-length numera-

tor (corresponding to the number of tpositive trials) and denominator (the total
Copyrighted Material
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number of trials).!8 The size of the smallest detectable probability then depends
on the number of bits used for each probability; for example, sensitivity to about
one event in a million requires a numerator and denominator of twenty bits each,
for each of the two probabilities per correlation statistic.

with-probability
[TTTTTITTTII
[TTTTTTTTITT

numerator
denominator

1111 1111
| I1111]

without-probability

LL LI I TR TI iR TITI0T] numerator
TTTITTITTITTITITTITTTIT] denominator

Figure 5.4 Full correlation representation. Representing a
correlation as a pair of probabilities, each with a 20-bit numera-
tor and denominator, has a resolution of 1/1,000,000.

The representation can be made more compact by alternating between one
with-sample and one without-sample (figure 5.5); an alternation bitis added to the
representation to indicate which of the two kinds of samples should be counted
next. If the next trial is not of the indicated type, it is ignored. Alternating between
the two types of samples assures that the two probabilities have the same denomi-
nator. Then, since only the ratio of the two is of interest, the denominators needn’t
be stored.

with-probability
COITTITITIITTT AT I IT] count

without-probability
LT PP T T TRV T T g VITRT]l) count

0O next-sample-bit

Figure 5.5 Correlations without denominators. Alternating be-
tween the two samples eliminates the need for the denominators.

18. A floating-point representation might be used instead. However, incrementing the number
of trials by one then becomes impossible when the exponent is lager than zero, so that the least

significant bit of the mantissa is@(fﬁﬁ?ﬁ@ﬂi‘@?f'Material
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A provision for overflow offers further improvement. If either numerator
reaches its maximum value, both numerators shift right by one bit (that is, divide
by two); this operation preserves their (approximate) ratio. Moreover, the repre-
sentation now has sensitivity to arbitrarily small probabilities—not merely, say,
one in a million—since precision is no longer limited by the size of the numera-
tors. The number of bits per numerator can thus be reduced sharply (figure 5.6).
As information about earlier trials vanishes when the numerators shift, the sample
is biased toward more recent trials. This bias is arguably desirable: circumstances
change, and if the two probabilities significantly differ in the course of recent
trials, it is likely that the item in question is indeed relevant now.

with-count  without-count next-sample-bit
LLIi] LLLL]

Figure 5.6 A truncated correlation. Right-shifting to prevent
overflow requires fewer bits per count.

Unfortunately, this alternation scheme unacceptably slows learning when a
large number of consecutive with-samples tend to alternate with many consecu-
tive without-samples. Extending the next-sample-bit to be a two-bit count miti-
gates the problem. Unless the next-sample-count is zero, another with-sample
canbe tabulated, and the next-sample-count is decremented; unless the next-sam-
ple-count is three, another without-sample can be tabulated, and the next-sam-
ple-count is incremented. Thus, up to three samples of one type can be taken be-
fore having to wait for a sample of the other type.

A final improvement, due to R. Rivest (personal communication), compresses
both counts into one signed count; the current implementation uses a four-bit
count, plus sign bit, as in figure 5.7. The count increments for a positive
with-sample, and decrements for a positive without-sample. To attenuate random
drift (which otherwise would soon bring the count to one of its two extremaeven if
the two probabilities were equal), increments (and decrements) are of different
sizes. In particular, if the count is positive, then a positive with-sample incre-
ments the count by a smaller amount (three, in the present implementation), but a
positive without-trial decrements by a larger amount (presently two). Similarly, if
the count is negative, positive with-trials increment the count by the larger
amount, and positive without-trials decrement it by the smaller amount. This dis-
parity exerts pressure toward zero, so that the with-probability must exceed the

without-probability by the ratio of the two increments for it to be likely that the
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value steadily diverges from zero. If the value reaches the positive extreme, the
corresponding item is deemed relevant (and, for extended-context slots, reaching
the negative extreme indicates the relevance of the item’s negation).

count sign-bit next-sample-count
O

Figure 5.7 A single-count correlation. Two counts collapse
into one signed count which increments and decrements, with a
bias towards zero.

The actual ratio of the two probabilities cannot be recovered from the
single-countrepresentation; that representation indicates only whether the ratio’s
magnitude exceeds a threshold determined by the ratio of the two increments. For
a given probability ratio, the ratio of the larger increment to the maximum count
magnitude determines how many positive trials are required before relevance is
detected. When two probabilities are actually equal, the likelihood of a false indi-
cation of relevance decreases exponentially with the number of trials required
(double-exponentially with the number of bits in the count). Hence, although the
small parameters used by the current implementation are no doubt adequate only
because of the unrealistic simplicity of the microworld—which thereby requires
fewer trials to distinguish real correlations from coincidence—scaling up would
not strain computational storage or time resources.

Copyrighted Material



Copyrighted Material



Part III Performance and speculations
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6 Synopsis of schema mechanism performance

The schema mechanism is designed to recapitulate significant milestones of the
Piagetiandevelopmental sequence ininfancy, in amanner consistent with the Pia-
getian developmental themes, and thus to explain how that development might
in fact come about. This chapter presents a synopsis of the actual developmental
progression exhibited by the current computer implementation of the schema
mechanism, followed by some speculations about further development.

A caveat concerning experiments with computer programs is in order. In
sciences such as physics, experiments must be replicable; published descriptions
must have enough detail to support such replication. Apart from safeguarding
against outright error or fraud, this policy helps determine that observed results
indeed follow from the factors described, rather than from extraneous, unnoticed
conditions.

Computer experiments in Al, however, are seldom subject to systematic at-
tempts at replication.!® This may be due in part to the nature of computer pro-
grams; a deterministic program that once produces a given output for a given in-
put will always do so again. In this sense, replication is trivially guaranteed.

On the other hand, the slightest change to a program revokes the trivial guaran-
tee. One would like to know what characteristics a program must have—short of
being identical—in order to behave similarly to a given prototype. The preceding
chapter is an attempt to so characterize the schema mechanism implementation;
as in the hard sciences, this attempt needs validation by independent replication.

The schema mechanism has been run from scratch on several dozen occasions,
with minor variations of the mechanism or the microworld from one run to the
next. The synopsis describes a particular reference run; in fact, all mention
throughout this book of the implementation’s accomplishments, except where
otherwise noted, regard the reference run. Informally, the results of the reference
run are typical of many other runs of similar versions of the mechanism. But there
is no attempt here to quantify the consistency and variation of results from differ-
ent runs. The synopsis may be regarded as a pilot study in preparation for a more
rigorous analysis, which could be carried out in conjunction with independent
replication efforts.

6.1 The microworld

The computer program that implements the schema mechanism operates in a dis-
crete, two-dimensional microworld (figure 1.1). The program controls a simu-
19. See McDermott [44] for discussion; Haase’s [31] reworking of Lenat’s Eurisko [38] is a note-

worthy exception. Copyrighted Material
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lated robot that has a body, a single hand, and a visual system. The hand can touch
and grasp objects, and move them about. The visual system maps a visual field
onto a region of the world in the immediate vicinity of the robot body; the visual
field provides a bird’s-eye view of that region. The simulated robot can shift its
gaze,changing the body-relative orientation of its visual field. (The visual system
is designed to provide a bird’s-eye view, rather than a projection onto a one-di-
mensionai retina, because of the paucity of information in a one-dimensional pro-
jection.) Objects in the microworld (including the robot’s body, and the hand) are
of uniform size. They can move but cannot rotate, and their motion occurs in dis-
crete units of the same size as the objects themselves. The microworld is energet-
ic, meaning that objects can move spontaneously, not just in response to the simu-
lated robot’s actions.

The schema mechanism’s data structures—primitive and constructed—are
available to the experimenter for direct examination; in effect, there is a monitor-
ing tool for reading the mechanism’s mind. Since the internal representations
may be observed directly, we need not try to infer them from the simulation’s ex-
ternal behavior. Thus, it is much easier with the schema mechanism than with in-
fants to determine what the system knows, and when it knows it.

The primitive actions supplied to this implementation of the schema mecha-
nism are summarized in table 6.1. The hand can move about in a particular
three-by-three unit region relative to the position of the body, as shown in figure
6.1a. Similarly, the visual field can have nine body-relative orientations, within a
range of three units in each dimension (figure 6.1b); the coincidence of the range
of eye and hand movements is not important. The potentially visible body-rela-
tive region is seven units on a side, since the five-by-five visual field can assume
each of three by three orientations.

Two objects are present near the body, and are often seen, or within range of
being touched. Each has four contiguous home positions among which it circu-
lates spontaneously (figure 6.2); at random intervals averaging 200 time units,
each object moves to its nexthome position. The object at left may also be moved
by the hand when the hand grasps it; the object at right is out of the hand’s range for
grasping, but may be moved by being pushed by the other object when the other is
grasped by the hand.

There are four primitive actions, called incremental hand actions, for moving
the hand one unit forward, backward, right, or left (table 6.1). The actions are ef-
fective as long as the hand stays within the permitted body-relative range; an ac-
tion that would move the hand beyond that range has no effect. Similarly, four

Copyrighted Material
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Range of body-relative Potentially visible
hand positions: body-relative region:
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Figure 6.1 Hand and glance ranges. The hand and glance each have a
three-by-three range of possible orientations.

range of home positions

r
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Figure 6.2 Objects’ home positions. Two objects occasionally cir-
culate among their home positions.

incremental eye actions shift the glance orientation one unit in each direction,
within the permitted range. Two other actions close or open the hand; these ac-
tions can cause objects to be grasped or released. For each of these primitive ac-
tions, the mechanism has an initially supplied bare schema (empty context and
result) with that action.

The mechanism’s primitive items present visual, tactile, and proprioceptive in-
formation (table 6.2). Proprioception is the direct perception of the orientation of
limbs or eyes via muscle tension and the like. For each of the nine body-relative
hand positions, there is a proprioceptive item that is On just in case the hand is at
that position; similarly, there is a proprioceptive item for each of the nine visu-
al-field orientations.

There is one coarse tactile item for each of the four sides of the hand, designat-
ing contact with that side of the hand. (Contact occurs when an object occupies an
adjoining position; objects never overlap at the same position.) In addition, the

left side of the hand (the edge)Withdtsre Singerridyas four tactile detail items that
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® handf, handb, handr, handl: These actions move the hand incremen-
tally forward, backward, right, or left.

® cyef, eyeb, eyer, eyel: These actions shift the glance orientation in-
crementally forward, backward, right, or left.

® grasp: This action closes the hand, grasping any object touching the
hand’s “fingers” (its left edge) unless the hand was already closed.
Once closed or grasping, the hand remains in that state for a small
number (two) of time units, unless explicitly opened in the interim.
Moving the hand moves any grasped object; but any other object
cannot be displaced by the hand, and will instead block the hand’s
motion if the hand moves into it.

® ungrasp: This action opens the hand, releasing any object that had
been grasped.

Table 6.1 The primitive actions.

report on the texture of any object that makes contact there; each such item desig-
nates an arbitrary, unspecified textural property. There is also an item that is On
wheneverthe hand is closed, and another that is On whenever the hand is grasping
something.

Similarly, there are four tactile items designating contact with the four sides of
the body; and the front of the body (where the ‘*head” and *‘mouth” are) has four
items that designate arbitrary, unspecified aspects of an object’s taste.

There are 25 coarse visual items, one for each of the five by five visual field
regions. Each coarse visual item is On just in case an object’s image appears at the
corresponding region. Coarse visual items thus report only the presence or ab-
sence of an object at each region; there is no information as to the specific appear-
ance of the objects. For objects appearing in any of the five foveal regions of the
visual field (figure 6.3), that information is provided by visual detail items.

There are 16 visual detail items for each foveal region. The items present infor-
mation intended to be analogous to real-world visual details concerning shape,
texture, color, and other aspects of appearance. Rather than being faithful to as-
pects of real-world appearance, however, the visual detail items, like the texture
and taste items, denote arbitrary, unspecified properties. The designation is con-

sistent, in that an object that turns On a given detail item at one foveal region turns
Copyrighted Material
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® jhpll,.. hp33: Haptic-proprioceptive (hand-position) items, one for
each possible hand position. Position (1,1) is the lower left corner of
the range; in figure 6.1a, the hand appears at hp12.

® ypll,...vp33: Visual-proprioceptive items, one for each possible
glance orientation. Coordinate designates center of visual field, us-
ing same conventions as for hand position; in figure 6.1b, the glance
is oriented at vpl!.

® :actf.tactb tactrtactl: coarse tactile items, one for each side of the
hand (front, back, right, left).

® text0,...text3: Detailed tactile items, denoting arbitrary textural de-
tails of an object touching the ‘‘fingers” (left edge of hand).

® bodyf,bodyb,bodyr,bodyl. Coarse tactile items, one for each side of
the body (front, back, right, left).

® aste0,...taste3: Taste items, designating arbitrary surface details of
an object touching the “mouth” (front edge of body/head).

® jcl: Hand closed.
® jgr: Hand closed and grasping something.

® yf00,...,vf44: Coarse visual-field items, one for each of 25 regions.
Region (0,0) is at the lower left; in 6.1b, the body appears at vf31.

® fovf00,... fovf33,fovb00-33, fovi00-33, fovr00-33, fovx00-33: Visu-
al details corresponding to each of five foveal regions (figure 6.3):
front, back, left, right, and center. Each has 16 arbitrary details:
00,...,33.

Table 6.2 The primitive items.

On the corresponding detail item at any other such region to which the image
shifts. (In fact, the visual detail items are implemented as a low-resolution rendi-
tion of the pixel appearance of each object.)

The coarse and detailed visual-region items are entirely unlike pixel-level in-

formation from the human mﬂaﬁ&%@@rmmjgnating something analogous
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j I O |

Figure 6.3 The fovea. Five foveal regions—front (F), back (B), right
(R), left (L), and center (X)—in the center of the visual field provide
detailed visual information.

to the intensity of light at a particular spot on the human retina, the visual items
convey information similar to the output of sophisticated processing in human vi-
sion, involving the detection of edges, the distinction of figure and ground re-
gions, and the formation of 2.5-dimensional sketches of objects [41]. The end
product of this processing encodes the existence, appearance, and location of ob-
jects in space (three-dimensional space in the real world, or two-dimensional
space in the microworld).

Of course, the simulated robot’s visual system does not perform comparably
sophisticated computations to arrive at this encoding. Rather, the computation is
trivial because of the simplicity of the microworld—in particular, the uniformity
of objects’ size, units of motion, and mapping onto visual-field regions. Further-
more, because the visual field enjoys a bird’s-eye view, it need not recover infor-
mation from a collapsed representation, as with the interpretation of depth from a
real-world two-dimensional projection. Thus, the design of the simulated visual
system deliberately bypasses the difficult problems of real-world vision; the arti-
ficial system merely provides information about nearby objects that is roughly
similar to real-world visual information.

Notice what is and is not hardwired about the nature of physical objects. The
visual system itself may be regarded as being rigged to know much about objects,
by virtue of the close correspondence between the appearance of objects in the vi-
sual field and their actual spatial arrangement in the microworld; as just noted,
this correspondence stands in for elaborate, visual domain-specific computations
inreal-world vision. Nonetheless, the schema mechanism, as opposed to its visual
subsystem, does not know about objects. That is, the mechanism does not know
that some of its sensory primitives designate visual information, or that there are
categories of inputs that correspond to different modalities; the mechanism starts

outknowing nothing about what each item or action represents, or how they might
& ¢ Copyrighted Material P U
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be related to one another. Itis up to the mechanism itself to derive the meaning of
the items and actions by learning about their interrelationships.

From the mechanism’s initial point of view, each primitive item and action is a
featureless entity, rather like a gensymin the computer language LISP [63] (a gen-
sym is a symbol with a unique but arbitrary, automatically generated name).
Whatever innate, domain-specific knowledge about objects and space the visual
system uses to maintain the state of the visual inputs, this knowledge is encapsu-
latedto the visual system, and is not available to the schema mechanism. (Similar-
Iy, of course, for the tactile and other domains.) This encapsulation corresponds to
the working hypothesis put forth in section 2.9.3, that the Piagetian constructivist
accountis approximately correct with respect to the acquisition of knowledge by a
central, general learning mechanism, although peripheral modules embody more
innately specified competence than Piaget acknowledged.

6.2 Learning spatial substrates

6.2.1 Initial schemas

Asnotedin section4.1.2, there is aninitial, bare schema for each primitive action.
Figure 6.4 shows the mechanism’s initial schemas.

Q handf Q @ evef Q Q grasp Q
Z handb Q Z eyeb Q Zungraspg

handr eyer

handl eyel
Figure 6.4 The initial schemas.

6.2.2 Grasping

The first schema built is /grasp/hcl (figure 6.5), which asserts that the grasp action
results in the sensation of the hand being closed. This schema is unusual in that
its result follows from its action unconditionally; hence, the schema is reliable de-
spite an empty context. That the result follows unconditionally also makes the
schema easy to discover quickly by marginal attribution, since every occurrence
of the action produces a transition to the result state (unless the hand is already

closed, in which case the a@@pmmmgfgﬁgpot count as a trial); and a tran-
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sition to the result occurs only when that action is taken. Thus, the significant dif-
ference between the result’s occurrence with and without the action becomes ap-
parent more quickly than in the case of a relevant result that follows only
infrequently, or that occurs under other circumstances as well.

v & Da®
@?‘3@[ d —h

Figure 6.5 A hand-closing schema. The grasp action closes the
hand.

Similar schemas describe the ability to close the hand and grasp an object that
touches the hand’s ““fingers” (figure 6.6). The mechanism builds the unreliable
schema/grasp/hgr, which designates the relevance of the grasp action to the sen-
sationof grasping. That schema’s extended contextdiscovers the relevance of the
condition tactl, spinning off the schema tactl/grasp/hgr, which denotes the neces-
sity of being in appropriate contact with an object in order to grasp.

o

Figure 6.6 A grasping schema. The grasp action grasps an ob-
ject in contact with the fingers.

6.2.3 Elaborating the visual field

Often, it happens that an object is in the visual field when an incremental glance
action occurs. Suppose, for example, that on several occasions, an object appears
at vf21 when the action eyer is taken (figure 6.7). As a result of the action, the
image shifts to the adjoining visual region to the left, and vfI/ turns On.

before glance-right: after glance-right:
LR

Figure 6.7 Glance shifting. A glance action shifts a visual
image to an adjoining region.
Copyrighted Material
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The transition to vfl! is an infrequent result of the action of glancing rightward;
itresults only if an object happens to be within view, and at just the correct region
of the visual field, when the action occurs. Moreover, that transition also happens,
on occasion, in the absence of the action in question—if, say, a forward glance
brings an image from vfI2 to vfl1, or if a moving object’s image passes through
that region while the glance is stationary.

Nonetheless, the transition to vf// happens more often when the action eyer is
taken than when not:

® When eyer is taken, a transition to vfll follows if:

® A stationary object appears at vf2/ before the action starts, and the
glance is not already at its rightmost orientation; or

® A moving object arrives at the projection of vfll as the action con-
cludes (regardless of whether the glance orientation changed, or was
already at its rightmost extreme).

® When eyer is not taken, a transition to vf11 follows if:

® Some other glance action moves the image of a stationary object to
vfll; or

® A movingobject arrives at the projection of vfl I, regardless of whether
a glance action was just taken.

Transitions to vf// brought about by moving objects happen about as often
whenthe eyeraction is taken as when not; in either case, whatisrequiredis that the
object’s image move to wherever vf/] ends up being mapped. Since objects are
stationary most of the time, the comparison between the likelihood of transition
with and without the action is dominated by the case in which the object does not
move.

Transitions to vf1/ due to a stationary object require that some incremental
glance action be taken, that the visual field is not already in its most extreme orien-
tation in the direction of that action, and that the object’s image is in the appropri-
ate adjoining region just before the action. The glance-orientation and image-po-
sition requirements are as likely to be met in the case of the eyer action as in the
case of any of the other three incremental glance actions; therefore, these factors
attenuate the probability of the vfI! transition equally whether or not the eyer ac-
tion occurs. The only rema(ing/fagtoeiy whetbaed glance action occurs, and this
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occurrence is significantly more likely (in fact, certain) if the action eyer is taken
than if not. Thus, the transition to vfl/ is significantly more likely when eyer oc-
curs.

Asindicated in figure 6.8, the extended result of /eyer/ discovers the relevance
of vfll, spinning off the schema /eyer/vfli. Of course, the relevance of other visu-
al-field items is similarly discovered by the extended result, leading to spinoffs

for those items as well.
M g:ﬁé O
eyer : " - @

Figure 6.8 Glance results. A glance-action schema discovers
visual-field results.

These schemas, with empty contexts, are all unreliable. But their extended
contexts each identify the appropriate context condition, designating the visu-
al-field region immediately to the right of the result item (glancing left shifts an
image to the right). So, for example, /eyer/vfll spins off the reliable schema
vf21leyerivfll, and similarly for the other schemas showing results of glancing
left (figure 6.9), except for those glance-left schemas that result in a visual appear-
ance at the leftmost edge of the retina.

() ©
| 52 ©

Figure 6.9 Glance contexts. Schemas expressing visual results
identify corresponding context conditions.

Similar schemas form for each of the other three incremental glance actions.
Eventually, these schemas link together to form a network that elaborates the spa-
tial structure of the visual field (figure 6.10). The spatial elaboration is practical;

k]

the adjacency of visual-fieg 5?)%}}}3?7 1‘2) 861?)1%?3;’?glby their connection via an in-
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cremental glance action. The network comprises chains of schemas that say how
to shift an image from one visual-field region to another by a series of incrementat
glance actions.

Figure 6.10 The visual-field network. These schemas with in-
cremental glance actions link adjacent visual-field items.

The schema mechanism constructs most of the schemas shown in the network
of figure 6.10, but it does not realize the entire network by the time the reference
runends. Rather, the mechanism builds 55 of those 80 schemas; in addition, there
are 24 schemas such as vp32/eyeb/vfll, which corresponds to the special case of
moving the body’s visual image to vfl] from vfI0, which is where the image ap-
pears when the glance orientation is vp32.

6.2.4 Foveal relations

Each of the schemas in figure 6.10 fails when the visual field cannot shift further
in the direction of the action. The mechanism begins to learn about these overrid-
ing conditions, building, for example, the schema vf21 &~vp32/eyer/vfil.

The visual-detail items in the fovea also have adjacency relations; when an
image shifts from one foveal region to another, the details of its appearance shift
correspondingly. The extended result of the bare schema for each incremental
glance action (such as /eyer/ in figure 6.11) notes the relevance of each visual de-
tail item, spinning off schemas such as /eyer/fovx12 and /eyer/fovf32.

Theextended context of each such schema seeks conditions that make the sche-
ma’s result follow reliably. For some schemas, such as /eyer/fovxi2, a corre-
sponding visual-detail item in an adjoining retinal region serves as such a condi-
tion; thus, for example, the schema fovril/eyer/fovxi2 spins off (figure 6.12a),
and similarly for other actions, regions, and details. (It so happens that detail /]
and and detail /2 tend to cGopyuighteugatohigkts encountered, so fovrll and
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o fovxI2 eyer
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Figure 6.11 Foveal glance resulits. A glance-acti:on schema dis-
covers visual-detail results.

fovrl2 are equally correct context conditions for /eyer/fovx]2; leyer/fovx]2’s ex-
tended context discovers the relevance of both items simultaneously, and arbi-
trarily chooses fovrl! for the spinoff schema.)

(a) fovr12 [+] eyer fovx O fo” eyer

—d

O o D52 O ©

Figure 6.12 Foveal glance contexts. These glance-action schemas
discover contexts for visual-detail results.

For other schemas, such as /eyer/fovf32, there is no visual-detail item to confer
reliability, since vf33, the region immediately to the right the forward foveal re-
gion, is not itself a foveal region, and thus conveys no visual detail. The extended
context of /eyer/fovf32 does identify the coarse item vf33 as a relevant condition,
leading to the construction of vf33/eyer/fovf32 (figure 6.12b). This schema,
though still unreliable, is much more reliable than the unconditional /eyer/fovf32.

The extended context of /eyer/fovxi2 also identifies the result’s adjoining
coarse item (in this case vf32) as a relevant context condition. If vf32 spawned a
spinoff schema vf32/eyer/fovxi2 before fovr11 spun off fovril/eyer/fovxi2, then
the extended context of vf32/eyer/fovx12 would itself discover the necessity of the
condition fovr!l, constructing the schema vf32&fovrii/eyer/fovxi2. (Since
fovrll is never On unless vf32 is On, /eyer/fovxl2 would never, once vf32/eyer/
fovx!2 had formed, spawn fovrll/eyerifovxl2, due to the provision, discussed in
section4.1.3, for suppressing redundant attribution by deferring to a more-specif-
ic applicable schema.)

Two factors make it likely that /eyer/fovx{2 will spawn fovrll/eyer/fovxi2 be-

fore spawning vf32/eyer/fovx12. First, the mechanism may encounter an object
. g vf3ley fCopynghted Material Y )



6.2. Learning spatial substrates 125

lacking the visual features I/ and /2 whose image passes from the right-foveal
region to the central-foveal region when the action eyer is taken. In that case,
fovrll contributes more to the observed reliability of /eyer/fovxi2 than does vf32,
so the extended context will detect the relevance of fovri1 sooner. Second, if in-
stead the relevance of the two items is detected concurrently, the mechanism pre-
fers to create a spinoff for the more specific context condition (section 4.1.3
again), again favoring fovrl].

Once fovrll/eyer/fovxi2 exists, the context condition vf32 does not give rise to
further spinoffs for the action eyer and result fovx2: /eyer/fovx]l2 cannot spawn
vf32/eyerifovxi2,because of redundant-attribution suppression; and fovrl 1/eyer/
fovxi2 does not spawn vf32&fovrll/eyerifovxi2, because there is no measured
improvement in the reliability of fovr1l/eyer/fovx12 when vf32 is On rather than
Off (indeed, fovril/eyer/fovxl2 cannot even be tested when vf32 is Off, since
fovrll must then be Off too, making the schema inapplicable). Thus, the mecha-
nism avoids the inefficiency of building a conjunctive context here when a single
item suffices.

For similar reasons, the mechanism avoids building fovri2/eyer/fovxi2, as
long as details /7 and /2 co-occur. Butsuppose the mechanism were to encounter
an object that has feature /2 butnot //. If, on some occasions, glancing left shifts
that object’s image from the rightmost foveal region to the central foveal region,
leyer(fovx12 canspawnfovri2/eyer/fovxl2;sincefovril was Off on those trials, it
does not suppress the attribution of relevance on those trials to fovri2.

6.2.5 Elaborating the proprioceptive fields

Incremental glance actions affect visual proprioceptive items as well as visu-
al-field items. Schemas such as vp21/eyefivp22 express the adjacency of visual
proprioceptive items by designating their connectivity with respect to incremen-
tal glance actions. (I omit the details of this schema’s derivation, which is similar
to the examples above.)

Such schemas link the visual proprioceptive items into a network (similar to
the visual-field network in figure 6.10) that elaborates their spatial structure (fig-
ure 6.13). This network provides a chain of schemas from any given eye orienta-
tion to any other, conferring the ability to shift from any orientation to any other.
In the reference run, the mechanism builds 17 of these 24 schemas. In addition,
there are seven pairs of schemas such as vf20/eyeb/vp21 and vf20&vp22/eyeb!

vp21, in which the body’s Wengg fgnacivemaiarge orientation is initially desig-
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nated as the context condition in lieu of the orientation itself; later, the actual
orientation, specified proprioceptively, is added as a condition.

@) @)
@ - @ eyeb "F-eyef

Figure 6.13 The visual proprioceptive network. These schemas within-
cremental glance actions link adjacent visual proprioceptive items.

Similarly, incremental hand actions affect haptic proprioceptive items; for ex-
ample, hp23/handl/hpl3 shows the adjacency of hp23 and hp/3. Such schemas
form yet another network (figure 6.14), which implements a practical description
of the spatial arrangement of the haptic proprioceptive items. The mechanism
constructs the entire haptic proprioceptive network, except that the schemas
taste2/handl/hpll and tastel/handr/hp31 appear in lieu of Ap22/handl/hp1l and
hp22/handr/hp31; these two schemas substitute designations of the taste of the
hand whenitis at (2,1)—touching the mouth—for the proprioceptive designation
of the hand’s position. (These taste items are chained to from the haptic proprio-

ceptive network; see figure 6.19.)
SymECICA®
handbF handf
handr @ @

Figure 6.14 The haptic proprioceptive network. These schemas with
incremental hand actions link adjacent haptic proprioceptive items.

6.2.6 Negative consequences

Shifting the position of the hand, the glance, or a visual image not only establishes
anew position, but also eradicates the prior position. Schemas like those in figure

6.15 designate such conseqéxences_. hted Material
opyrighted Materia
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eyel eyel handb

Figure 6.15 Moving away. Moving to a new position eradicates the
old one.

6.2.7 Positional actions

Each of the proprioceptive items linked in the above networks is an achievable
result; as such, it becomes the goal state for a composite action—the action of
achieving that glance or hand orientation. As stated in section4.3.1, for each new-
ly defined composite action, the mechanism also builds a bare schema which has
that action. Figure 6.16a, for example, shows the bare schema with a composite
action whose goal state is ip22; the action’s component schemas are those of the
network in figure 6.14 above. The action /4p33, shown in 6.16b, has the same
component schemas—as do all the other composite actions with haptic proprio-
ceptive goal states.

Q h,I022 Q Q h11733 Q

(a) (b)

goal stafe: goal stale:
hp22 hp33

Figure 6.16 Positional hand actions. Composite actions form for var-
ious hand positions. Each defines the action of bringing the hand to that
position. The schemas shown in the controllers are from figure 6.14.

These hand actions, with proprioceptive goals, are positional, in contrast with
the primitive hand actions, which are incremental. Activating a given positional
hand action moves the hand to a particular position, regardless of where the hand
started.

Similarly, each of the visual proprioceptive items becomes a goal state of a
composite action, as illustrated in figure 6.17. These composite actions are posi-

tional glance actions, again inGpirdstvgth Ahar@gegmental primitives.
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Q v;|)22 Q Q v;|)33 Q

goal spate: goal stdte:
vp22 vp33

Figure 6.17 Positional glance actions. Composite actions also form
for various glance orientations. Each defines the action of bringing the
glance to that orientation. The schemas shown in the controllers are
from figure 6.13.

Finally, the schemas that link adjacent visual-field items also provide a basis
for the definition of composite actions with those items as goal states (figure
6.18). Each such composite action is the action of shifting an image to a particular
region of the visual field. Of particular interest are the foveation composite ac-
tions: a foveal action (e.g., vf12) shifts an image to one of the foveal regions of the
visual field. Foveal actions permit the visual details of an object to become appar-
ent.

Many visual-detail items themselves become goal states of composite actions.
Most objects exhibit a number of visual details, which therefore tend to co-occur
when the object’s image appears at some foveal region. This could lead to an n?
proliferation of schemas, in which each visual-detail action claimed each co-oc-
curring visual detail as a result. The mechanism’s provision for suppressing re-
dundant attribution to special-case actions (section 4.3.4) substantially mitigates
this proliferation (since visual details are special cases of coarse-visual informa-
tion; also, for any pair of visual details that almost always co-occur, one will arbi-
trarily count as a special case of the other). Still, more than a thousand such sche-
mas do form, in part because some special-case actions acquire attributed results
before being acknowledged as special-case actions.

6.3 Steps toward intermodal coordination

The schemas documented above set forth a substrate for the practical representa-
tion of visual and proprioceptive spatial knowledge. Other schemas begin to de-

scribe the relationships.among these domains—including coordination of the
Copyrighted Material
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goal state:

vf34

Figure 6.18 Visual-position actions. Composite actions form for vari-
ous coarse visual items as well. Each defines the action of shifting an
image to the corresponding region. The schemas shown in the controllers
are from figure 6.10. Some schemas for moving the hand—with visual
side-effects—are also in these controllers (but are not shown in this dia-
gram).

goal state:
vfl2

haptic and buccal (mouth-oriented) domains; the visual manifestations of moving
the hand; and coordination between sight and touch.

6.3.1 Moving the hand to the mouth

The schema hp22/handb/taste ] (among other such examples) anticipates the taste
of the hand when the hand moves to touch the mouth (figure 6.19). Schemas of
the haptic proprioceptive network—e.g., hpl2/handr/hp22—chain to this sche-
ma, allowing the mechanism to suck its thumb (as it were), wherever the hand may
be initially. Schemas such as hp22/handb/tastel implement a rudimentary form
of intermodal coordination; with the advent of these schemas, the haptic and buc-
cal realms are no longer separate and unrelated. Rather, the mechanism now has
a practical elaboration of their interconnection, by knowing, in effect, where in
haptic space the taste-producing location is.

¥
a 2t

Figure 6.19 Hand-taste coordination. The schema mechanism

learns to suck its thumb.
Copyrighted Material
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The mechanism also learns about the tactile effects of moving the hand to the
mouth, building schemas such as hp22/handb/tactb.

6.3.2 Visual effects of incremental hand motions

Moving the hand while it is in view affects where the hand’s image appears in the
visual field. If the motion occurs within the foveal region, the visual change can
be reliably predicted (if the hand is only peripherally visible, its identity as the
hand is uncertain). As shown in figure 6.20, a bare incremental hand-motion
schema such as /handl/ spawns schemas that show the hand, or its visual details,
appearing at various visual-field regions—e.g., /handl/vf01, /handll/fovx02 (visu-
al detail 02 happens to be part of the hand’s appearance); other schemas are simi-
lar, but with other hand actions, visual regions, and visual details.

! E }—,—H ) v01
o vf0l hand|
o fovx02
@ handl @ ; % @_'_O fovx02
handl

Figure 6.20 Seeing the hand move. These schemas depict some visu-
al effects of a hand motion.

Some of these schemas denote effects of the motion of the hand from a foveal
visual region, others from a peripheral region. In the case of a peripheral origin,
the best that the extended context can do is to discover that an image at the appro-
priate adjoining region is a relevant context condition; for example, /handl/vf0l
spawns vf11/handl/vf0! (figure 6.21). This schema is unreliable, since the object
seen at vfl/ need not be the hand.

o=
I handl

Figure 6.21 Peripheral hand motion. The motion of the hand’s visual
image is unreliably predicted from its peripheral appearance.

Incontrast, the extended context of, say, /handl/fovx(02 discovers the relevance
of various visual features of the hand when it appears at the adjoining foveal re-

ion vf32 (figure 6.22a). The relevance of the item vf32 itself is also noticed, but
gionvf32 (fig ) Copyrighted Material & noticed, bu
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only after some of the details that are unique to the hand are found relevant; vf32,
and details less specific to the hand, also obtain when objects other than the hand
are at vf32, and thus make a smaller difference to the with-without comparison
made by the extended context data. Therefore, /handl/fovx02 spawns a context
that best distinguishes the hand from other objects seen at vf32 just before moving
the hand to the left. This process culminates in the schema SeeHand@3,2/handl/
SeeHand@2 2 (figure 6.22b), where SeeHand@x,y is shorthand for a conjunc-
tion of one or more visual features that jointly distinguish the hand’s image at vi-
sual field region (x,y) from the images of other objects seen there.

@] IHJ} i fovrll © @_'_O | '::i:l )
B ovx02 =
- | fovr22 El handl Jowozr i
(b) SeeHand@3,2 O—V—)O SeeHand@2,2
handl

Figure 6.22 Foveal hand motion. When the hand appears in the fovea,
the destination of its image is reliably anticipatable when the hand
moves.

That schema, and others such as SeeHand@2 ,3/handb/SeeHand@?2 2 in figure
6.23, chain together to say how to move the hand so as to move the hand’s image
among the foveal regions. And each achievable result such as SeeHand@?2,2 de-
fines a composite action—the action of bringing the hand’s image to a given re-
gion of the visual field.

ol o

SeeHand@3,2 O—v—)O SeeHand@2,2
@ handb @

Figure 6.23 Seeing the hand move. Moving the hand moves its image
across the fovea.

Copyrighted Material



132 Chapter 6. Synopsis of schema mechanism performance

6.3.3 Touching what is seen, and vice versa

Touching what is seen

Sometimes, moving the hand not only shifts its visual image, but also results in
tactile contact. The schema in figure 6.24a, for example, reflects the discovery
of this result. That schema’s extended context is able to discover a condition that
confers reliability on the tactile result: that an object be seen next to where the
hand willmove. The schemain figure 6.24b incorporates that condition in its con-
text (for a specific visual detail, 02, exhibited by the object being touched).

r_l“l‘J

SeeHand@2 2 C L,
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Figure 6.24 Seeing contact. Moving the hand, and its image, results in
tactile contact if an object is present next to the hand’s destination.

This schema tells the mechanism to anticipate the tactile resulting from mov-
ing the hand beside an object that is seen. However, as of the end of the reference
run, the controller for SeeHand@?2,2 had not incorporated many schemas with
hand-motion actions (although some other SeeHand action had)—most of SeeH -
and@2,2’s component schemas used eye-motion actions, moving the hand’s
image by shifting the glance rather than the hand. But shifting the glance does not
bring the hand into contact with an object. The schema fovf02/SeeH-
and@?2 2/tactf needs to sustain its context (recall section 4.1.6) until its action
completes; sustaining the condition fovf02 would tend to inhibit schemas with
glance actions, since a side-effect of those actions would be to turn vf3 1 Off, If the
controller for SeeHand@3,2 were to incorporate components for moving the
hand’s image to visual-field region (3,2) from immediately adjacent regions, the
mechanism would be able to use the schema fovf02/SeeHand@2 2/tactfto touch

an object, provided that lheag?)gi/ rv}vgz}a,,s) iaelgaﬂ% Féﬁ% f\ear (2.2). This ability would
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correspond to an intermediate development described by Piaget, in which an in-
fant can only grasp an object if the hand is seen in the vicinity of the object.

As more components linked into the controller, grasping would become possi-
ble from more starting points. And the construction of schemas for bringing the
hand into view when it is not seen at all—described in the following section—
could create the ability to grasp an object even when the hand is not at first seen.

Seeing what is touched

Because the composite action SeeHand@23,2 has eye-motion components as well
as hand-motion components, it can serve to look at what is touched, as well as vice
versa. The schema tactfiSeeHand@3,2/vf33 in figure 6.25b is works inversely
to the schema in figure 6.24b; tactfiSeeHand@3,2/vf33 anticipates seeing an ob-
Jjectthat the hand feels, if the glance is directed at the hand. This schema’s success
depends on sustaining the context condition factfby using only eye-motion com-
ponents of SeeHand@3,2, inhibiting hand-motion components.

(a)

SeeHand@3,2
© L ]

SeeHand@3,2

Figure 6.25 Touching then seeing. Looking at the hand when it
touches something results in seeing the object that is touched.

Other descriptive levels

There is an alternative route by which the mechanism starts to develop a schema
for touching what’s seen near the hand, but which turns out to be a dead end. The
schema /handb/, for example, spawns the unreliable schema /handb/tactl. That
schema, however, is unable to make progress toward identifying visual conditions
that confer reliability on the schema. The problem is that the object being touched
could appear anywhere in the visual field (or could fail to appear at all); its appear-
ance at a given visual region makes tactile contact no more likely than its appear-
ance at any other region (and not measurably more likely than when it does not

appear, given that an objecUgpikelyrtebeMerdriafven if not in view). Similarly,
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the hand’s appearance at a given region makes tactile contact no more likely than
for another hand position.

Any conjunctionof animage’s appearance at one region and the hand’s appear-
ance at the appropriate nearby region would confer reliability on the schema
/handb/tactl. But, in this case, the marginal attribution facility is unable to build
incrementally to any of the required conjunctions, because the conjuncts, taken
individually, do not enhance reliability. In effect, the schema mechanism breaks
this impasse by reformulating the problem at a more suitable level of descrip-
tion—expressing the relevant action in terms of moving the hand’s image, rather
than as a primitive motor action. With respect to that description, the relevant
context condition is straightforwardly discerned by marginal attribution—the
mechanism can discover where in the visual field an object must appear to be
touched when the hand appears at a given visual-field region.

In contrast with, say, the Minsky’s Society of Mind theory [46], the schema
mechanism lacks any specific reformulation machinery that detects and reacts to
the need to look afresh at arecalcitrant problem. Rather, the facilities for defining
new actions and items develop a variety of levels of representation; and the mar-
ginal attribution facility filters out levels of representation that are irrelevant to a
given schema—not by recognizing levels of representation as such, but rather the
same way it filters any irrelevant events: by requiring statistical evidence of rele-
vance.

6.3.4 Bringing the hand into view. and looking at the hand

The schema mechanism learns how to bring its hand into view. Unreliable sche-
mas such as /hp23/SeeHand@?22 reflect the fact that seeing the hand at the center
of the fovea sometimes results from that positional hand action. This schema is
reliable for a particular glance orientation (which must be sustained through the
positional hand action’s execution); thus, the above schemas spawns
vp23/hp23iSeeHand@?22 (figure 6.26a). By constructing a number of such sche-
mas, the mechanism in effect builds a dispatch table that says, for each of several
glance orientations, where the hand must be put (relative to the body) to appear
in the visual field when the glance is in that orientation. These dispatching sche-
mas chain to SeeHand@22, and so become components of that composite action.

Similarly, the mechanism builds a number of schemas that say how to shift the
glance to look at the hand when it is out of view (figure 6.26b). These schemas
dispatch from the current hand position, specifying the appropriate glance orien-

tation for each.
Copyrighted Material
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(a) SeeHand@2,2 SeeHand@2,2 ...
hp2 hp31

(b) SeeHand@?2,2 SeeHand@1,2 ...
vp33 vp2l

Figure 6.26 Viewing the hand. Schemas that dispatch from glance
orientation move the hand into view (a). Schemas that dispatch from
hand orientation direct the glance to the hand (b).

6.4 Beginnings of the persistent-object concept

At this point, schemas are structured so as to provide rudimentary representations
of the spatial relationships of both external and proprioceptive sensory data, both
within and between the various sensory modes. This knowledge was acquired
through action, and its embodiment is practical: it is knowledge of how to act and
what to expect to happen. But the content of these schemas is not only procedural:
the coordination of hand motions and eye motions, of seeing and feeling, begins
to describe the nature of objects and space; sight and touch begin to be known as
coordinated properties of external objects.

All of this boasts respectable progress from the schema mechanism’s initial en-
dowment of knowledge, in which all actions and items were devoid of any mean-
ing to the mechanism. Still, it remains to transcend the rendering of reality only in
terms of sensory and motor primitives. If an object is not perceived, then as far as
schema mechanism is concerned, it has ceased to be—there are no items whose
state signifies the thing’s continued existence. And similarly, an object’s specific
identity is immediately forgotten when its distinguishing features (e.g., visual de-
tails) cease to be perceived, even when some (partial) perception of the object per-
sists. Next, the schema mechanism begins to synthesize items to represent these
persistent states in their own right.

6.4.1 Palpable and visible persistent objects

Various positional hand actions, e.g., Ap23, sometimes result in tactile contact,
e.g., tactl. The schema /hp23/tactl reflects this occasional result (figure 6.27).
As in the example of section 4.2.1, this schema is unreliable—it only succeeds
when an object happens to be present at position ip13. But the schema is locally
consistent—ifit succeeds on some occasion, it probably will succeed again if acti-

vated again soon, since nearkyabjeriniend M steyyt forawhile. Withoutunder-
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standing that reason, of course, the schema nonetheless discovers, over a number
of trials, that it is indeed locally consistent; and the schema determines the ex-
pected duration of its local consistency, the average time that the schema remains
valid (in this case, the average time that an object stays put there).

Figure 6.27 Positional contact. Moving the hand to a particular posi-
tion sometimes results in tactile contact.

Such schemas develop for other hand positions as well. Each such schema
serves as host to a synthetic item that designates a persistent palpable object ata
particular body-relative position. For example, the host schema /hp23/tact! ac-
quires areifying synthetic item that we may call PalpableObj@1 3 (figure 6.28);
when the hand is at 4p23, the hand’s left edge touches the object at position (1,3).
The host schema’s positional hand action serves as a probe, and the schema’s tac-
tile result as manifestation, of the condition reified by the synthetic item—the
condition of there being a palpable object beside that hand position.

® PalpableObjectAtl 3
u PN =~

| " hp23 @

Figure 6.28 Persistent positional palpability. This synthetic item
designates a persistent palpable object at a particular position.

Analogous synthetic items designate persistent visible objects. For example,
the unreliable, locally consistent schema /vp21/vfl4 (figure 6.29) reveals a man-
ifestation of a visible object—seeing it at visual-field region (1,4)—Dby the prob-
ing action of glancing at a particular body-relative position. The reifying synthet-
ic item, which I'll call VisibleObj@1,3, designates a persistent visible object at
that position.

A clarification about notation is warranted here. By convention, persistent-ob-
ject synthetic items—aboth palpable and visible—are named with respect to the
body-relative coordinates of the object designated; visible-object items are not
named with respect to visual-field coordinates. For visual orientation vpxy, the
central visual region, vf22, maps to body-relative position (x,y). Thus, for glance

orientation vp21, an object C%t];?;?llg%%cel wg?gﬁaﬁt vf14 is at body-relative posi-
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® VisibleObjectAtl,3
”~~
n P ~

B " vp2l @

Figure 6.29 Persistent positional visibility. This synthetic item des-
ignates a persistent visible object at a particular position.

tion (1,3). This is the same body-relative position as that of PalpableObjectAtl ,3;
thus, the notation uses the same coordinate frame for naming both palpable and
visible persistent-object items.

6.4.2 inverse actions and persistent objects

The successive activation of schemas with inverse actions (section 3.4.2) pro-
motes the formation of synthetic items by demonstrating the local consistency of
their host schemas. Consider, for example, the inverse actions of the schemas
hp23/handb/hp22 and hp22/handf/hp23 when there happens to be an object at
(1,3). Those schemas’ successive activation, starting and finishing with the hand
at hp23, implicitly activates the schema /hp23/tactl. The implicit activation is
successful—the schema’s result does obtain—and several repetitions of the pair
of successive activations thus amount to successive successful activations of
/hp23itactl, exhibiting that schema’s local consistency, and spurring the construc-
tion of a synthetic item for that schema (if none exists already). Similarly, of
course, for other hand positions (and for visible-object items; for those, inverse
eye actions, rather than hand actions, give aid.)

The ability to repeatedly touch and then withdraw from an object appears early
in Piagetian development (section 2.2). This pair of actions implements a special
case of recognizing object persistence—the actions repeatedly recovers the tac-
tile manifestation of an object which is, briefly, unperceived. However, this spe-
cial case of recovery is only accomplished immediately after the manifestation
ceases, and only by a particular action which is the inverse of the action that can-
celed the manifestation. By catalyzing the construction of a synthetic item, the
pair of inverse actions functions not only as a special case of recognizing persist-
ence, but also as a precursor of a less limited version of persistence recognition.

6.4.3 Persistent details

Tactile and visual details also serve as manifestations of conditions representable
by synthetic items. Figure GC¥)shogrieenpeyatigic items that designate the per-
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sistence of the particular details associated with objects at particular locations.
Such items let the mechanism represent more than the continued existence of an
unperceived object—its persistent identity is now representable as well, at least
to the extent that its apparent details specify its identity.

® [/hp23/tactd0] :\ [/vp23ifovri0]
7~~~
// ~ ~ rd = ~ ~
@—r—)o tactd0 @—V+O fovrl0
hp23 vp23
® [/hp23/tactd3] ® [jvp23/fovr20]
P o~

> r'd ~ ~ P rd ~ =~
@—r—)o tactd3 @—v—)o fovr20
hp23 vp23

Figure 6.30 Persistent identity. Some synthetic items correspond to a
persistent object’s specific identity.

6.4.4 Inversely indexed persistence

In addition to persistent-object synthetic items such as [/hp23/tactl] and
[/vp21ivfl4], the schema mechanism builds what might be called inversely in-
dexed representations of persistent objects—for example, [/tactfihp33] and
{/vf43/vp23]. The standardly indexed representations may be thought of as pos-
ing the question What is at this position?, and answering: an object. In contrast,
the inversely indexed representation asks Where is the object?, and answers: at
this position. The question posed by aninversely indexed representation may lack
aunique answer—objects may exist at several locations—but, if details are speci-
fied (as, for example, by the inversely indexed item [/tactd3/hp23/], which the
mechanism builds), the answer becomes more constrained, and possibly unam-
biguous. Aneventual, more complete object concept must include a coordination
of both indexing schemes—knowing that a given position now harbors a particu-
lar object, and knowing that a given object is now to be found at a particular posi-
tron.

6.4.5 Coordinating visible- and palpable-object representations

The synthetic items PalpableObj@1,3 and VisibleObj@1,3 in the previous sec-
tion actually designate the same state of the world as one another—the state in
which there is an object at body-relative position (1,3). In principle, though, in-

visible or intangible objects could exist. Were there such objects, a palpabie ob-
& ! Copyrighted Material ) T
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ject at some location would not assure the presence of a visible one, or vice versa.
But since such objects do not exist in the microworld, PalpableObj@]1,3 and Visi-
bleObj@1,3 are in fact coextensive—whenever one of those states obtains, so
does the other.

However, the schema mechanism is unaware of these items’ coextension.
What turns On PalpableObj@1,3 need not affect VisibleObj@1,3, or vice versa;
initially, in fact, each is turned On only by the successful activation of its own host
schema. Thus, the two items can be in opposite states at the same time; like a
third-stage Piagetian infant, the mechanism may know that it can touch a current-
ly unperceived object, but not know thatitcanlook at it—or vice versa, depending
on the modality by which the object recently manifested itself to the mechanism.
Of course, once the object has been recovered by, say, touching it, intermodal
schemas can anticipate seeing it by turning to look at what is touched (section
6.4.5); thereupon, the visual item will turn On as well. Thus, intermodal schemas
effectively bridge between different modalites of persistent-object representa-
tion, as well as between different modalities of sensory representation. Still,in the
absence of taking the bridging action—looking at the object that is touched, or
vice versa—the mechanism has to clue as to the persistent-object synthetic items’
correspondence to one another.

Although the mechanism does not manage to discover the correspondence be-
tween that particular pair of items, it does learn of the effective synonymity be-
tween among some similar items. For example, the schema /vp23/fovi33 spawns
the reliable context spinoff [/hp23/tactl]/vp23/fovi33; similarly, /hp23/tact]
spawns the reliable context spinoff [/vp23/fovi03]/hp23/tact] (figure 6.31). As
described in section4.2.2, a synthetic item’s state is maintained in part by reliable
context spinoffs spawned by the host schema. Such schemas’ contexts specify
conditions under which the host schema is reliable; hence, its reifier turns On.
Hence, [/hp23/tactl] now turns On [/vp23/fovi33].

Asforthe converse, the schema [/vp23/fovi33]/hp23/tactidoes not form, so the
item [/vp23/fovi33] does not directly turn On [/hp23/tactl]l. However, the mech-
anism does build [/vp23/fovl03]/hp23/tactl, and, as it happens, the visual details
03 and 33 tend to co-occur, so seeing an object that turns On [/vp23/fovi33] will
also tend to turn On [/vp23/fovi03 ]—and turning On [/vp23/fovi03] does turn On
[1hp23itactl],dueto [/vp23/fovi03]/hp23/tactl. Thus, the mutual correspondence
of [/hp23/tactl] and [vp23/fovi33] is effectively recognized.

When this coordination is achieved, each host schema’s extended context also

determines that when the other syr_xon%'mous itemn is Off, that host schema is unre-
Copyrighted Material
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[/hp23/tactl]

~

[/vp23/f0v103]-; |;> [/vp23/fOV’03]
hp23 P

:\[/vp23/fovl33]
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Figure 6.31 Cross-modal persistence. Palpable-objectrepresentations
admit visual evidence, and vice versa.
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liable; hence, its reifier turns Off. When two items thus help maintain one anoth-
er’s state, there is a danger of oscillation when their states differ (and if their states
never differed, neither would ever be in a position to turn the other On or Off—the
other would already be in that state). Two factors prevent such oscillation: 1) that
each item is in an Unknown state when it has received no recent evidence; and 2)
asdiscussed insection4.2.2, host-trial evidence takes precedence over other veri-
fication conditions, and memory of previous evidence yields to current evidence;
hence, seeing or touching an object—or failing to when looking or reaching for
it—definitively sets the state of one of the two synonymous items, which then sets
the state of the other.

The mechanism begins to learn about intra-modal synonymity as well as the
inter-modal coordination just described. For example, the items [Ap23/tactr] and
[/hp32/tactf] both designate palpable objects at (3,3); the mechanism begins to
recognize this correspondence by building the schema [/hp23/tactr]/hp32/tactf.

6.4.6 Relational items

The synthetic items of the last few sections all designate persistent objects in a
body-relative frame of reference (except for the inversely indexed objects, which
might be said to designate the body’s position relative to some object). Alterna-
tively, it is possible to describe one object’s position relative to another, thereby
describing the spatial relationship between the objects. For example, the mecha-
nism builds the item [/vf02/vf10]; when On, this item asserts that there are two
objects separated by (1,-2) units, since mapping one to vf02 results in seeing

another at vf70. . .
Copyrighted Material
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6.4.7 Saturation

The schema mechanism’s reference run runs out of space after 10,912 time units
(about one day of real time on the CM2). At that point, it has built 7,371 schemas
(in addition to 10 primitively supplied bare schemas), 184 synthetic items (in ad-
dition to 175 primitive items), and 343 composite actions (in addition to 10 primi-
tive actions).

6.5 Hypothetical scenario of further developments

This section describes some hypothetical further achievements of the schema
mechanism—developments that build directly on the substrate of knowledge that
the implementation has in fact constructed, and that would perhaps be exhibited
if the same software were to run on a larger machine. I present these hypothetical
developments both to call attention to what the implementation has not yet
achieved, and to specify part of a target scenario for future work.

6.5.1 Grasping and moving objects

Touching what is seen is a useful precursor for grasping and manipulating what
is seen. Figure 6.32a shows a schema for moving a grasped object incrementally,
as expressed in terms of the visual manifestation of that motion. (The image to
the right of the circular object is what the hand looks like when it is grasping some-
thing.) Figure 6.32b shows a schema that expresses similar knowledge in terms
of persistent objects.

SeeHand@3,2 handf
by  hgréh ZJQ—V—)O PalpableObj@! 4
(b) gréhp handf p j@

Figure 6.32 Moving an object. These schemas depict moving a
grasped object. The depiction is visual (a) or in terms of persistent-ob-
ject representations (b).

Moving an object not only puts it in a new place, but also removes it from its
previous place. Schemas mgpypigjmmw.ﬁ express such knowledge.
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These are similar to, but more sophisticated than, the schemas of figure 6.15 that
show the negation of previous hand and glance orientations, and of visual images,
after taking a hand or glance action. The earlier schemas expressed direct, nearly
unconditional results of primitive actions on primitive items; the present sche-
mas, in contrast, express effects on grasped objects, and are therefore subject to
context conditions that describe the appropriate graspedness.

SeeHand@3,2 handf
PalpableObj@]1 ,3@—;—)@ ~PalpableObj@1 .3
handf

Figure 6.33 Moving an object away. Moving an object removes it
from its previous position.

6.5.2 Hidden objects

Suppose the microworld were modified so that an object is obscured from the ro-
bot’s view if some other object (other than the robot’s own body) lies directly be-
hind it (figure 6.34). This ad hoc modification introduces the problem of repre-
senting hidden objects.

Figure 6.34 Hiding from view. The hollow object hides the solid ob-
ject from view. The robot looks directly at the solid object, but does not
see it.

If the robot centers its gaze on the location of the hidden object (as in the fig-
ure), the schema /vp23/vf22, host to the synthetic item VisibleObj@2 3, implicitly
activates, but its result fails to obtain. The synthetic item thus turns Off. Due to
cross-modal coordination similar to that described above in section 6.4.5, the syn-
onymous item PalpableObj@2,3 also turns Off—incorrectly, since the hidden
objectis still palpable. Thus, the mechanism, like a third-stage Piagetian infant, is
ignorant of the possibility of touching the hidden object.

There are several ways that the schema mechanism might represent the contin-

dexistence of ahidden object. A preliminary step (asinth f i
uedext éopyrl é’h?e 311\26%‘ r;a?( mthe case of representing
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persistent objects in the first place) is to designate persistence with respect to a
pair of inverse actions. In this case, the actions are those of replacing and displac-
ing the visual obstacle (figure 6.35). Given the discovery of this special-case re-
coverability, the mechanism can recover a hidden object by displacing the ob-
stacle that hides it—but only immediately following having placed the obstacle

%l

Figure 6.35 Uncovering whatis hidden. Moving the grasped obstacle
to and fro (by moving the hand) alternately reveals and hides the object
in front of the obstacle.

there.

T

One expression of an object’s persistence while hidden appears in figure 6.36.
A schema for moving the hand while grasping the obstacle, thus displacing the
obstacle, has the unreliable but locally consistent result of causing the manifesta-
tion to reappear. This schema could serve as host to a synthetic item that desig-
nates an object hidden behind the obstacle.

T T :\[hgr&hp32/handr/Visible0bj@2,3]

i T // \\
| E& hgr&O_,_>O VisibleObj@2,3
N 4 hp32 handr

Figure 6.36 An uncovering schema. Displacing the obstacle reveals a
hidden object, locally consistently.

This representation would be vulnerable to making a curious mistake. Suppose
the host schema activates successfully, turning On its reifier, the hidden-object
item. Next, the previously hidden object moves to a new location, in full view of
the robot. However, the hidden-object item remains On; there has been no un-
successful activation of the host schema to turn it Off. If the object were now hid-
den behind another obstacle at its new position, and the first obstacle returned to
its original position, the mechanism could exhibit a Piagetian fourth-stage place
error (section 2.5) by still expecting to be able to find the object behind the first

obstacle. Copyrighted Material
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This place error can be corrected by representing the displacement of the ob-
stacle on a less subjective level of abstraction. The schema in figure 6.37a has a
composite action designating the very displacement of the obstacle, rather than
using the primitive hand action of the previous host schema. Now, if the object
moves to another location after its original hidden position is uncovered, the con-
tinuing uncoveredness of that position entails the continuing implicit activation
of the schema whose action is that there be no obstacie covering that position. As
soon as the object moves away from the uncovered position, that implicit activa-
tion is an unsuccessful activation, which turns Off the associated synthetic item.
To eradicate the place error, the more subjective host schema must come to desig-
nate the new item as a synonym, as shown in figure 6.37b.). (The current imple-
mentation of the schema mechanism does not make a composite action withaneg-
ative goal state; that ability would have to be added for the non-obstacle action to
form.)

/~Obstacle@?2,2/VisibleObj@2 3]

~
7~ ~

}- -
i 1 @—,—)O VisibleObj@2.3 @)
_I_E_l_ ~QObstacle@2,2

:\ [hgr&hp32/handr/VisibleObj@?2,3]

rd ~
rd ~

[I~Obstacle@2 2/ °© hgr&o_,_)o VisibleObj@2.3 (b)
VisibleObj@2,3] hp32 handr

Figure 6.37 Uncovering objectively. A more objective representation
of the action fixes fourth-stage place error.
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6.5.3 Large-scale space

The spatial framework developed in the scenario is centered on the mechanism’s
own body; proprioceptive inputs serve as spatial coordinates. This framework
suffices for a stationary infant. But after a while, the infant begins to crawl and
then walk. By displacing herself, the infant moves a// the objects in her body-rela-
tive space (by moving that space itself). But in externally-based, large-scale
space, it is the infant that moves, while the other objects remain still. Coordinates
in large-scale space are not given proprioceptively, but can be expressed in terms
of fixed landmarks. The infant herself is just one of many objects that can move

about in large-scale Space'Copyrighted Material
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Itis plausible to imagine the schema mechanism going on to build arepresenta-
tion of large-scale space much the way it constructs its ‘‘personal”’ spatial frame-
work (though I have worked out no details for this). The probing action (recall
section 4.2.1) for the concept of an object at some landmarked position in
large-scale space is to move oneself to the landmark there; the manifestation is for
the object then to be present in body-relative space. Asin the synopsis above, ex-
tended views could be coordinated together, allowing an object’s position also to
be recognized by seeing the object from a remote landmark, or from a position
between landmarks.

One might regard the entire schema mechanism as essentially a
large-scale-space facility, in which the terms of representing positions have been
generalized—any primitive or constructed item can be used, not just views of
landmarks—and the actions that connect places in the space have been general-
ized to arbitrary state-achievements, not just moving among landmarks. (Some-
thing like the schema mechanism may even have arisen, in the course of evolu-
tion, as a variation of a large-scale-space facility.) The scenario shows how this
generalized large-scale-space facility can be ““retrofitted” to the reconstruction
of personal space; the extrapolations below speculate about the extension of this
facility to the representation of more-abstract ‘‘spaces.”

6.5.4 Reality and beyond

One might be willing to imagine the schema mechanism constructing arbitrarily
elaborate models of the current state of the world. But can such a mechanism
possibly move beyond sensorimotor-level representations, to construct episodic
memories that designate the state of propositions that concern things other than
immediate physical reality? Consider, for example, the assertion that a certain ob-
ject was in a given location yesterday, rather than now. Its position now can be
expressed as the coordinated reification of the validity of various schemas, as dis-
cussedin the scenario. But past state cannot be similarly represented, unless there
is some accessor condition by which some manifestation of the state can be re-
vealed.

Sometimes this is the case, as when a sea gull walking along the beach leaves
tracks in the sand that indicate its past presence. Butitis unusual for pasteventsto
be so obliging as to leave conspicuous remnants—or is it? One very general way
for a past event to ‘‘leave tracks” is to be remembered by a person. In principle,

one’s memory of a past evVERSATIFRREe: Apppppses of maintaining a synthet-
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ic-item state, as one “‘view” (among many intercoordinated ones) of that past
state. Other possible views include:

® Physical remnants of the event, such as tracks in the sand.

® QOne’s cognitive remnants of the event, other than explicit memories; for ex-
ample, new abilities or attitudes acquired as a result of the event.

® Other people’s cognitive remnants of the event, in the form of memories or
new abilities, as manifested verbally and by other behavior.

Such views serve as fragments of a representation of past state; the real repre-
sentation is their coordinated ensemble.

This account may seem circular. After all, the representation of a past state can-
not arise from a representation of a memory of the past state, since that memory
requires that the past state is already representable. But then, in the same way, it is
circular to say that the representation of an object’s presence at some location
when hidden arises from a representation of the object’s presence there when not
hidden, since that assumes there is already a representation of the object’s pres-
ence at that location. On closer examination, though, the circle becomes a spiral:
the new representation is not stated in terms of itself, but rather in terms of a cruder
approximation to itself. This chapter proposes the details of a few turns of that
spiral for the development of the physical-object concept; with regard to the spec-
ulation about representing past states, I have no such details to offer. So, rather
than giving a plausibility argument here, [ am just presenting a bare-possibility
argument. Stili, the thought seems intriguing.20

This idea generalizes to the representation of abstractions. Atagiven moment,
the state of any item in the schema mechanism is always some function of the past
and present state of primitive, sensory items; hence, it would seem thatan item can
only represent some physical reality, as reflected in the sensory data on which the
item’s state (solely) depends. But whenever one’s cognitive apparatus includes
machinery to perform a certain computational task, it may be possible, by repre-
senting that machinery, to make (indirect) statements about the abstraction that
the computation embodies. For example:

20. Another possibility is to have a distinct episodic-memory module accessible to the central
system, as akind of intemal VCR. Traces of memories stored there could serve as one kind of man-
ifestation of past events, to be coordinated with the others mentioned above. Something resem-
bling Minsky’s k-lines [46] might provide an interface for storing and retrieving central-system
states as memories.
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® A thing’s name is accessed by (something like) holding it up to an adult and

21.

manifested by the adult’s saying ‘““That’s an x.”

Classification is like naming, except that a class names only one of a thing’s
many attributes, so the same thing can belong to many classes. Piaget shows
that the child gradually coordinates an extensive view of a class—defined
by the actual set of members—with an intensive view—defined by a distin-
guishing attribute of all members of the class

The cardinality of a group of things is the number one arrives at by counting
them—that is, by reciting a number sequence in synchronization with
touching the objects, touching each exactly once. That process is the acces-
sor, and the final number the manifestation, of the cardinality of the collec-
tion. The individual must discover that this is a persistent property of a col-
lection—that if the process is repeated, one gets the same number
(conservation of number). Note that this proposes an inductive basis for the
discovery—the individual notices that cardinality is persistent, without un-
derstanding why. On the other hand, given a facility for performing thought
experiments (such as the subactivation facility proposed in section 7.1.3),
the induction can be carried out on trials on which the individual merely
imagines placing some objects and performing the counting ritual on them;
the induction need not depend on actual events in the environment, as an ex-
treme of the empiricist tradition has held.

In formal reasoning, the validity of an argument (as opposed to the truth of
its conclusion) has the accessor of inducing belief in the argument’s prem-
ises; the manifestation is believing the conclusion. In each of these exam-
ples, anew abstraction is conceived in terms of how a person’s computation-
al machinery—one’s own, or another’s—behaves in some situation. The
new conception reifies the set of circumstances under which a piece of one’s
computational machinery behaves a certain way.2! Even more than with the
physical-object concept, each such conception eventually requires an en-
semble of many fragments of representation. As with the physical-object
concept, Piaget presents snapshots of various incomplete versions of the

This is not to say that one explicitly or introspectively thinks of one’ conception of abstrac-

tions as being the representation of properties of certain machines; it need not “feel like” that is
what is going on. One’s explicit ideas about one's representations are implemented by other struc-
tures that express a theory about those representations; and that theory like any other that one

holds, can be arbitrarily far off bﬁ‘épyrighted Material
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eventual coordinations. Inthese, one sees bizarre bugs in achild’s behavior
that would be inexplicable if a more ‘‘appropriate” representation were in
use—appropriate, that is, to the givenrepresentation considered in isolation,
rather than as part of the developmental system—just as the spatial nonlo-
cality of hidden objects is a bizarre property of the infant’s fourth-stage con-
ception. The conservation protocol in section 2.8 is one striking illustration
of this phenomenon.

In general, then, self-modelling might provide a route to the representation of
abstractions, allowing an intelligent system to move beyond representing only the
state of the physical world. We can compare this possibility with Papert’s specu-
lation [49] that exposure to the abstractions embodied in computers will pro-
foundly change the way people think, once intellectually accessible computer
systems become widely available, especially to children; by working with the
concrete embodiment of a computational abstraction, a person may appropriate a
model of that abstraction for her own internal use. Ineffect, what [ suggest here is
that (much of) the necessary access to sophisticated computer systems has long
been provided to people—in the form of people themselves. And the resulting
cognitive revolution was quite as spectacular as what Papert predicted.

Additionally, modelling one’s own mind, and others’, is important in its own
right. Understanding other people makes them more predictable and easier to in-
teract with in beneficial ways. Understanding oneself provides the opportunity to
better exploit one’s own abilities, by forming a model of strengths and
weaknesses and means of improvement. And what we call consciousness re-
quires amemory of the occurrence of athought orexperience, understood as such.
Nothing in the schema mechanism’s sensorimotor-level development, for exam-
ple, qualifies as conscious. One might say metaphorically that the mechanism is
aware of the things that it represents; but to take that awareness literally, in the
sense of humanlike consciousness, would be to indulge in a kind of animism.
Consciousnessrequires knowledge (and hence representation) of one’s own men-
tal experiences as such; the schema mechanism does not come close to demon-
strating such knowledge.
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The schema mechanism implementation has made rudimentary but encouraging
progress in the direction of the Piagetian infant’s development of the concept of
physical object. Replicating this development is of special interest because of the
possibility that it is just the earliest achievement of a learning mechanism with
far-reaching capabilities. The present results certainly do not establish that the
schema mechanism is capable of going far beyond its achievements so far; but the
mechanism’s arguable similarity to what is arguably a powerful human learning
mechanism warrants at least the speculation that extended achievements are pos-
sible.

This chapter elaborates the speculation by exploring some hypothetical further
activity of the schema mechanism—activity that is tantamount to the develop-
ment by the schema mechanism of virtual structures and mechanisms. Some of
the hypothetical developments presented here depend on two proposed (i.e.,
unimplemented) extensions to the schema mechanism, subactivation and in-
verse-action identification, which are introduced below.

7.1 Virtual generalizations

Many conventional formal systems make it easy to express generalizations. In
the predicate calculus, for example, one writes For all x, P(X) implies Q(x).,
where P and Q are predicates that apply to some arbitrary object. From the forego-
ing proposition, and the proposition P(a}, Q(a) follows; it can be deduced that a
particular object a that satisfies P must also satisfy Q. Other systems, such as se-
mantic networks and knowledge-representation languages, provide analogous
ways to perform a deduction that instantiates a generalization, that is, that applies
the generalization to a particular instance.

The schema mechanism has no comparable facility for expressing generaliza-
tions. Disconcertingly, the mechanism must re-learn essentially the same fact in
numerous different guises, rather than learning it in a general form and deducing
the instantiations. For example, learning about persistent palpable objects at a
given body-relative position is independent of learning about them at other posi-
tions. Similarly, the effect of grasping a persistent object and then moving the
hand incrementally must be learned separately for each body-relative position;
there is no automatic generalization from one position to another, and no way to
parameterize position in order to express a more general, position-independent
principle (such as Moving an object at (x,y) incrementally right brings it to
(x+1,y)) which could then be instantiated for various particular positions (e.g.,

Moving an object at (3,2) @SW@H%IEY i %g ,z;-éﬁht brings it to (4,2)).
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One approach would be to augment the schema mechanism with parameterized
representations. But it is unclear how the mechanism itseif might devise appro-
priate parameterizations. A parameterization scheme limited to a few built-in
special cases would be of little use or interest.

Instead, I suggest a way that the schema mechanism might behave as though it
expressed and instantiated generalizations; the mechanism might then be said to
embody virtual generalizations. This capability is speculative; the scenario to
follow has not been demonstrated by the schema mechanism implementation, and
even the speculation relies in part on currently unimplemented extensions to the
mechanism, as described below.

The realization of virtual generalizations relies on representations of the same
eventindifferent frames of reference—for example, representing an event visual-
ly, relative to the visual field, and also in terms of visible-object synthetic items, in
body-relative terms. A representation with respect to a particular position in one
field of reference—say, the visual field—applies to a number of different posi-
tions in the other frame of reference—in this example, the body-relative frame.
Call these the source and target reference frames, respectively. A specific,
fixed-position representation in the source frame thus implies a general, posi-
tion-independent statement about the target frame. Shifting the glance orienta-
tion changes the mapping from source to target, instantiating the generalization at
a different target position, as shown in figure 7.1.

Figure 7.1a shows a schema for moving a grasped object incrementally for-
ward; the schema expresses the visual manifestation of this event (vf23 turning
on). Ineach of the twoexamples in figure 7.1b, the glance orientationis such thata
grasped object appears in the same part of the visual field as in the context of the
schemain figure 7.1a. The schemas in figure 7.1b describe the same event as the
schemain figure 7.1a, butin terms of persistent objects at particular body-relative
positions, rather than in terms of visual appearance.

The visual-field view shown in figure 7.1a serves as a canonical perspective of
the eventthatisrepresented. Suppose the mechanism learns that it is interesting to
orient the glance so as to bring about a canonical perspective; in effect, the mecha-
nism learns the heuristic, the rule of thumb, that achieving that perspective is a
good idea. Given the opportunity, the mechanism will then tend to bring about
that perspective. Doing so serves to instantiate the generalization with respect to
whatever target position is mapped onto. If acanonical perspective is achieved by
foveation, as in this example, the primitive value associated with the visual-detail
items promotes the canonical perspective: trying to turn on the foveal items
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Figure 7.1 A virtualgeneralization. A virtual generalization is instan-
tiated by mapping one reference frame to another.

achieves the canonical perspective. In other examples, the items designating the
canonical perspective may achieve delegated value (section 3.4.1) by virtue of the
things of value that are made accessible by achieving the canonical perspective.

7.1.1 Implicit and explicit instantiation

A virtual generalization can be instantiated either implicitly or explicitly. Implicit
instantiation merely consists of achieving the canonical perspective, making the
source-frame schema applicable. Explicit instantiation consists of building a tar-
get-frame schema that pertains to the current target-frame position. Instantiation
requires no special machinery; after a number of trials in the given target-frame
position, the marginal attribution facility builds a schema describing the event in
terms of the target frame—presuming, of course, the availability of target-frame
representational elements (in this case, visible-object synthetic items). (Further-

more, such elements can ther@g}yyﬁ&g[g&%?gﬁ%ﬁf instantiation of virtual gen-
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eralizations, as discussed below.) Activation of the source-frame schema brings
about the event that serves as the basis for building the target-frame representa-
tion, thus explicitly instantiating the virtual generalization for a particular tar-
get-frame position.22

To repeat, virtual generalizations and their implicit and explicit instantiations
do not correspond to particular built-in features of the schema mechanism. Rath-
er, they are epiphenomena, higher-level emergent tendencies of the mechanism.
(They are also hypothetical—that is, not yet demonstrated by the implementa-
tion.) It may seem that so important a capability should be built in. Actually,
though, the importance of this capability argues only for assuring its presence;
whether it is best to do so by building it in or by building a powerful learning
mechanismremains open to question. Piagetian development suggests that many
cognitive abilities that are both important and universal (among adults) are
learned rather than directly built in—suggesting that evolution found it easier to
take the learning route to those abilities, and that efforts to reverse-engineer the
fruits of evolution should do likewise. Moreover, the relative ease of learning in
terms of non-parameterized units of representation may offer an engineering ra-
tionale for relegating parameterizing generalization to the category of having to
be learned.

Once a generalization has been explicitly instantiated in a target-frame sche-
ma, that schema can participate in a chain of schemas leading to some goal. Thus,
the target-frame schema, like any other schema, can be identified by a rapid, par-
allel process as being of use for a given purpose at a given moment. In the case of
implicit instantiation, there is no target schema to be so identified. Thus, the
mechanism must heuristically perform an action to achieve a canonical perspec-
tive before the mechanism can recognize the generalization’s pertinence. This re-
quirement makes generalization by implicit instantiation is an inherently serial
process, since it is not possible to adopt arbitrarily many perspectives simulta-
neously. But, since implicit generalization promotes explicit generalization, the
initial slow serial process gives rise with repetition to the fast parallel process.

The computational space requirements of stamping out explicit instantiations
of virtual generalizations may prove burdensome. But the burden could be offset
by encouraging the garbage collection of unimportant target-frame schemas. The

1. The idea of virtual generalization via canonical perspectives appears in Drescher {201, and
in Agre and Chapman’s notion of deictic representations [3]; see section 9.7. (More specifically,
deictic representations correspond to implicit, but not explicit, instantiation of virtuai generaliza-
tions.)

Copyrighted Material



7.1. Virtual generalizations 153

mechanism might identify unimportant target-frame schemas by a conjunction of
two criteria:

® Rederivability. The marginal attribution facility records each spinoff sche-
ma in the extended context or result of the spinoff’s parent schema. This re-
cord suppresses subsequent, redundant attempts to spin of f the same sche-
ma. The process could be modified to keep track of the frequency with
which such redundant attempts are thwarted. A schema that is a tar-
get-frame instantiation of a virtual generalization would tend to be the sub-
jectof frequent such attempts, promoted by implicit instantiation of the gen-
eralization. There could be a presumption in favor of garbage collecting
readily rederivable schemas, on the grounds that they will tend to reappear
as needed.

® mportance. A schema that serves as an explicit target-frame instantiation is
important in proportion to its frequency of activation, and the value of the
resultin aid of whichitis activated. If sucha schema is used more frequently
than rederivation attempts arise, then its garbage collection based on reder-
ivability should be suppressed.

7.1.2 Generalizing to other positions in the same reference frame

Virtual generalizations depend on a mapping between source and target frames
of reference. This mapping may be bidirectional; that is, the reference frame that
sometimes serves as the source frame used to express a virtual generalization may
at other times serve as the target frame, used to express an instantiation of a gener-
alization from the other frame. For example, infigure 7.2, a body-relative schema
now expresses a generalization with respect to the visual field; the body-relative
source frame here maps to the visual-field-relative target frame, rather than vice
versa.

A bidirectional mapping between two frames of reference also makes it possi-
ble to have a virtual generalization that is instantiated at other positions in the
same frame of reference that serves to express the generalization. The instanti-
ation occurs in two steps: first, an explicit instantiation is made at some position in
the other frame; then, that instantiation serves as a generalization, which is instan-
tiated at various positions in the first reference frame, thus applying the original
generalization to other positions in the same reference frame.

Of course, the extrapolation of a schema from one position to another in the

same frame of reference dqes, B%@]]]l%\ﬁ dgdpstixgly; the reference frame might
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Figure 7.2 Another virtual generalization. Here, the body-relative
perspective is the source frame; the visual field is the target frame.

be inhomogeneous, so that objects behaved differently at different positions. (In-
deed, even the extrapolation to multiple positions in a distinct target frame of ref-
erence does not follow deductively.) Consequently, the processes described here
may be regarded as inductive. Butitisequally reasonable to say that a given sche-
ma represents a virtual generalization over all positions; and although that gener-
alization was itself arrived at inductively, its instantiation at various positions is
then a matter of deduction.

7.1.3 Subactivation

Empirical evidence from real-world events is not the only source of knowledge;
much can be learned from detached reflection and deliberation as well. A plausi-
ble cognitive mechanism must be able to imagine events, as well as participate
inactual events. This section sketches a proposed extension to the schema mecha-

ism that would enable it to do this.
mism it w Copyrighted Material
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To activate an applicable schema is to initiate its action. To subactivate an
applicable schema is essentially to simulate taking its action, by forcing its result
items into a simulated-On state (or, if negated, a simulated-Off state). In addi-
tion, any other applicable schemas which share the subactivated schema’s action
are considered to be implicitly subactivated; their results of their activation are
also simulated by giving the appropriate items a simulated-On or simulated-Off
state. If a subactivated schema’s action is composite, the mechanism may elect
either to subactivate the action’s components, or simply to treat the action as
atomic.

Anitem’s simulated state is distinct from its actual state. If a schema’s context
conditions are all satisfied with respect to those items’ simulated state, then that
schema is deemed applicable for the next subactivation (but not necessarily for
actual activation, whichrequires that the actual states satisfy the context). Inother
words, the simulated state from a prior subactivation serves as a point of departure
for the next simulated action. The mechanism thus engages in a multi-step
“thought experiment.”

Such an experiment would be useless if the mechanism could not learn from it.
But if the marginal attribution machinery took notice of simulated states as well as
of actual states, then learning could proceed from imaginary as well as actual
events. This claim might seem perplexing—it might seem that there would be
nothing new to learn from a subactivation, which only involves the re-enactment
of results already represented by extant schemas. In fact, however, the side-effect
of implicitly subactivating some schemas when others are explicitly subactivated
can bring about novel sequences of (simulated) events, leading to new knowl-
edge—or at least to newly-expressed knowledge which, like the end point of any
deduction, was implicitly present all along. This re-expression is especially
promising when explicit subactivation at one level of abstraction has side-effects
on another level; the following section outlines some examples of this form.

7.1.4 Subactivation and virtual generalization

As noted above, implicit generalization is a serial process; an action must first
bring about a canonical perspective in order for the generalization’s applicability
to the present situation to become apparent. Inaddition to being serial, this instan-
tiation process also relies on a physical action (to bring about the perspective),
rather than just involving some internal calculation. Although being serial is in-

herent in implicit generali@gppn’@l,y@@gmtg;ygjcal action is not. This section
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discusses the hypothetical use of subactivation in lieu of physical action to
achieve the implicit or explicit instantiation of virtual generalizations.

Not surprisingly, the idea is for the schema mechanism to imagine achieving a
canonical perspective—that is, to subactivate rather than activate a schema which
achieves the perspective. Given an adequate substrate of schemas that describe
the source and target frames of reference, subactivation can accurately simulate
what it would be like to bring about the canonical perspective. Figure 7.3 illus-
trates the subactivation of the schema/vf22/ to shift an image from vf/ / to acanon-
ical perspective at vf22. The chain of schemas in figure 7.3a carries out the action
/vf22/in this situation. The schemas in figure 7.3b are (implicitly) subactivated in
succession as side effects of the schemas which implement the composite action.
In this illustration, the initial visual orientation is vp22. The orientation after fo-
veation would be vp11; the subactivation simulation shows this new orientation,
due to the schemas in figure 7.3b, which are implicitly subactivated as a side-ef-
fect of the explicit subactivation of the schemas in figure 7.3a. (Other implicitly
subactivated schemas, not shown, turn Off the original visual-field item vf// and
proprioceptive item vp22 in the subactivation simulation.)
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Figure 7.3 Subactivation side-effects. Explicitly subactivating the
sequence in (a) implicitly subactivates the sequence in (b), changing
the subactivation-simulated glance orientation.
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Correctly simulating the new visual orientation is crucial, since maintaining
the subactivation-state of the relevant visible-object synthetic items depends on

that orientation. In this exagn(};%je/,nsélﬁ é)geﬁéaté%%alctivation next simulates mov-
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ing the hand beside the object and grasping it; suppose the schema in figure 7.1ais
then subactivated, showing the visual effects of moving the grasped object for-
ward. In consequence, and because the subactivation now shows vp// On, Visi-
bleObj@1,1 and PalpableObj@]!,! tum Off and VisibleObj@!,2 and Palpa-
bleObj@1,2 turn On in the subactivation simulation; on the basis of such
subactivated trials, the mechanism can spin off a target-frame schema similar to
those in figure 7.1b. Thus, a virtual generalization is explicitly instantiated, just as
though the entire experiment had been carried out in reality, rather than by subac-
tivation.

Thus, when schemas exist that supply enough information about the source and
target frames of reference, implicit instantiation (leading to explicit instantiation)
can take place by subactivation; it suffices for the mechanism to imagine assum-
ing the canonical perspective, rather than having to do so physically. The implicit
instantiation is still a serial process, however, since the mechanism cannot simul-
taneously carry out arbitrarily many distinct subactivation simulations at once.
But, as usual, when a target-frame schema is built, making the instantiation ex-
plicit, that schema can subsequently participate in fast, parallel chaining sear-
ches—effectively caching the knowledge obtained from the slow, serial search.

7.1.5 Conservation by instantiation of inverse-action generalizations

Section 6.4.2 described the role of inverse actions in promoting conservation dis-
coveries by synthetic item formation. For example, the mechanism might move
the hand backward and forward again to withdraw from and move back in contact
with an object; this sequence promotes the formation of a synthetic item designat-
ing a palpable object at that location.

The successive activation of inverse actions promotes the formation of syn-
thetic items by demonstrating the local consistency of their host schemas. Con-
sider, for example, the inverse hand actions of figure 7.4a. Their successive acti-
vation when the hand is at, say, hp22 implicitly activates the schema /hp22/tactl.
The implicit activation is successful—the schema’s result does obtain; several
repetitions of the pair of successive activations thus amount to successive succes-
sful activations of /hp22/tactl, exhibiting that schema’s local consistency, and
spurring the construction of a synthetic item for that schema (if none exists al-
ready). Similarly, of course, for other hand positions (and for visible-object
items; for those, inverse eye actions, rather than hand actions, give aid).

We may regard this synthetic item formation as the explicit, position-specific

instantiation of a position-ppeRierieaneralization expressed in terms of the
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successive inverse actions. Furthermore, this explicit instantiation can even be
accomplished by subactivation of the relevant schema and its inverse action—as-
suming one further extension to the schema mechanism. Currently, the mecha-
nism does not recognize that moving the hand forward again, immediately after
moving it backward, is likely to recreate the tactile sensation; but let us suppose
that the mechanism is extended to be able to make discoveries of that sort, and that
it makes this discovery regarding the successive activation of the schemas in fig-
ure 7.4a. Then, subactivating those schemas will simulate the recovery of the tac-
tile sensation. But subactivating those schemas will also have the side-effect of
subactivating the schemas in figure 7.4b, keeping track of the hand’s position as it
moves back and forth, and thus simulating the repeated achievement of 4p22 si-
multaneously with the repetition of tact/. The simulation thus demonstrates the
localconsistency of /hp22/tactl, and thereby promotes the reification of that sche-
ma’s validity by the synthetic item PalpableObj@1,2.

Jlalldb /1andf
handb hand’

Figure 7.4 inverse subactivation. Subactivating the inverse actions
in (a) implicitly subactivates the schemas in (b), showing the actions’
side-effects on hand position.

Thus, the need to replicate the discovery of persistent objects at different posi-
tions may be mitigated by systematically promoting that replication, as the instan-
tiation of a virtual generalization.

7.1.6 Deductive overriding of default generalizations

Commonsense reasoning is ronmonotonic; we may believe the generalization
that For all X, P(X) implies Q(X), and then learn that for some A, P(A) is true but
Q(A) is false, contradicting the generalization. Typically, we retain the general-
ization as a default assertion, which we can override in special situations in which
the default is known not to hold. (Such reasoning is called nonmonotonic, in ref-
erence to the fact that the set of statements believed to be true does not just in-
crease with additional knowledge; sometimes, additional knowledge forces the

retraction of a prior view held by default.) Use of extended-context information
Copyrighted Material
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to override an (imperfectly) reliable schema (section 4.1.5) implements a rudi-
mentary kind of nonmonotonic reasoning: the reliable schema makes a default as-
sertion, which is trusted except when some specific overriding condition obtains.

Overriding conditions pose a special problem for virtual generalizations. If an
ordinarily reliable schema that expresses a virtual generalization is overridden by
some particular condition, then all instantiations of the generalization ought to be
overridden by that condition too. In figure 7.5a, for example, the schema SeeDis-
place expresses the visual effect of moving the hand while grasping an object.
The schema exhibits an overriding condition for a particular object that (by stipu-
lation) is too heavy to move; thus, the object remains in place when the hand
moves. Another schema, Seef{eavy (figure 7.5b), asserts that the heavy grasped
object stays in place when the hand moves.

i i SeeDisplace: | ]
~SeeHeavy hord

i 1 obj@2,2 " |18 i T

@ t | ove vf22 handf [ .

B N &SeeHand@3 .2 .

SeeHeavy:
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) &SeeHeavy- ~vf23

B obj@2.2
Figure 7.5 An exception to a generalization. Displacing an object

fails if it is too heavy.

T

Suppose a heavy object is present, and the schema mechanism uses subactiva-
tion to simulate achieving the canonical perspective that makes SeeDisplace
applicable. That schema’s override condition then also turns On , suppressing the
schema; and furthermore, SeeHeavy becomes applicable. Thus, this implicit in-
stantiation appropriately gives SeeHeavy precedence over See-Displace.

However, suppose SeeDisplace has been explicitly instantiated at some
body-relative position—say (2,3); call the schema that expresses this instanti-
ation ObjDisplace2,3 (figure 7.6). Suppose further that the overriding heavy-ob-
ject schema has not been explicitly instantiated at that position. Now, when the
canonical perspective has been achieved, there is a conflict between the predic-
tion made by the now-applicable SeeHeavy schema—which asserts that the
grasped object will remain in place if the hand moves—and the target-frame sche-

ma ObjDisplace2 3, Whicmﬁyﬁ&tﬁ@&%&&?&fm object will move when the
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hand does, contradicting SeeHeavy. The contradiction arises at the item Visi-
bleObj@2,3;, ObjDisplace2 3 predicts that that item should turn On, while SeeH -
eavy predicts a visual scene that doesn’t show the object there.

source frame: visual field target frame: body-relative
SeeDisplace: ObjDisplace2 3:
LI LA
L 4L j instantiation “ “
I 1[ ] —
11 1 1 i1 1 1 B E
hgr&hp3 Obj@2.3
Hand@3.2 )
SeeHand@3 handf handf
overide = deductive override
A 4 &
SeeHeavy: ObjHeavy2,3

1t 1 . @
- - - 1nstantiation
hgr&v224 O_'_)@ hgr&hp324& O_'_>O ~Visible-
SeeHand@3.2 handf HeavyObj@2 2 Yard Obj@2.3

&SeeHeavyObj@2,2

Figure 7.6 Deductive override. The schema ObjHeavy2,3 should
override ObjDisplace2 3.

Of course, if the hand action actually occurs in this situation on several occa-
sions, the overriding generalization expressed by SeeHeavy will be explicitly in-
stantiated for that position; that is, the schema ObjHeavy2,3 will be created (fig-
ure 7.6), and the schema ObjDisplace2,3 will come to recognize an override
condition (the condition of there being specifically a heavy object at that posi-
tion). But until then, there are conflicting predictions; worse still, if the canonical
perspective has nor been achieved, then the schema SeeDisplace will assert,
wrongly but without opposition, that the object will move—even though the
mechanism should know better than that, because the visual virtual generalization

already properly takes note of the exceptional condition.
ety Copynghte?l Material



7.1. Virtual generalizations 161

It is desirable that the mechanism be able to apply an overriding condition to
each target-frame position, rather than having to physically try the relevant action
several times at each such position in order to learn the exception there. In the
absence of this ability, the utility of virtual generalizations would be severely cur-
tailed, given the prevalence of imperfect generalizations that admit specific ex-
ceptions.

The ability to project a general schema’s overriding conditions onto tar-
get-frame instantiations can be achieved if it is possible to appropriately resolve
the conflict just noted between an overriding source-frame prediction (here,
SeeHeavy), and anon-overridden target-frame prediction (SeeDisplace). Givena
proper resolution of that conflict in the course of a subactivation, the exceptional
event would be correctly simulated—the heavy object would be shown to remain
stationary. On that basis, the ObjHeavy2,3 schema would be built, explicitly in-
stantiating the overriding condition at that position.

I speculate that the required conflict resolution might be achieved by augment-
ing the schema mechanism to be able to tell that the general target-frame schema
(here, ObjDisplace2,3) was derivable by subactivation from another schema or
schemas (SeeDisplace), and to suppress the prediction made by a derivable sche-
ma when the schemas from which it is derivable are applicable (even if overrid-
den, as SeeDisplace is here). Intuitively, SeeDisplace accounts for ObjDis-
place2,3 (and for other instantiations, in other positions); so something that
supersedes SeeDisplace(e.g.,SeeHeavy) should also supersede what is accounted
for by SeeDisplace, e.g., ObjDisplace2,3. The target-frame override is thus de-
duced from the source-frame override, even though the overriding condition may
never have been encountered at the target-frame position in question.

The crux of this approach to deduced overrides is the detection of the derivabil-
ity of one schema from others by subactivation. The schema mechanism could
recognize derivability by detecting what is in fact derived (or rederived) from
what during subactivation.

Hereis asketch of how this detection might be accomplished. Suppose that the
mechanism kept track of the schemas used to maintain each item’s state in the
course of a subactivation, and that it also kept track of which items’ states were
relied on for the creation of a new schema in the course of that subactivation.
Then, for each schema derived (or rederived, as defined above in section 7.1.1 ) by
subactivation, the mechanism could note which schemas’ result items caused the
simulation of state-transitions of the items that appear in the result of the derived

schema. Those are schemas from which that schema is derivable. (Counting re-
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derivation, as well as derivation, ensures the recognizability of a schema’s deriv-
ability evenifitarose independently, empirically, before being derived from other
schemas.)

As mentioned above, there are two ways to view the instantiation of virtual
generalizations. From one standpoint, a virtual generalization quantifies over po-
sitions in some space (either physical positions, as in the above examples, or posi-
tions in some abstract space); the generalization itself is arrived at inductively,
and its instantiation by subactivation may be regarded as a deduction. Alterna-
tively, each application of the original schema to a new position may be regarded
as an inductive generalization. From this standpoint, the projection of overriding
conditions onto new instantiations may be seen as resolving a conflict between
two inductive generalizations at different levels of description. (In the above ex-
ample, one level of description is in terms of visual images, the other in terms of
objects that persist at body-relative positions.)

7.2 Virtual mechanisms

An individual’s intelligence develops; an adult’s thought is more advanced than
aninfant’s. Piagetian development involves not only more elaborate representa-
tions of the world—the focus of this thesis—but also more advanced forms of rea-
soning, understanding, and problem solving.

7.2.1 Virtual mechanisms and Piagetian development

Some of the stages of sensorimotor development chronicled by Piaget follow di-
rectly from representational advances. For example, Piaget’s fourth stage brings
the ability to coordinate schemas so as to use one object to act upon another (sec-
tion 2.5). This has the prerequisites of representing the behavior of the acting-on
and the acted-upon objects individually (as the results of schemas; first, there
must be items capable of expressing those results), and being able attribute the lat-
ter to the former (by having composite actions whose goal states correspond to
the behavior of the acting-on object—for example, in the hypothetical schema of
figure 6.3723),

Other advances in intelligence, however, require more than representational
advances. Forexample, fifth-stage tertiary circularreactions (section 2.6) involve
the on-the-fly development of new techniques for acting upon an object. Or, to
take an example from much later development, the stage of formal operations

23. If the acting-on object is the hand, then less representational sophistication is required, since
hand motions are primitively represented as actions.
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brings, among myriad new intellectual powers, the ability to systematically con-
sider hypothetical explanations for an event by exhaustively generating all possi-
ble permutations of candidate factors. (For example, an individual may be asked
to devise a series of experiments to discover which subset of a group of combined
chemicals was responsible for a particular reaction.) Such a capability undoubt-
edly depends in part on new representations—of an abstract space that organizes
permutations, for example—but it requires more than that too. Itrequires the abil-
ity to deploy the representation as needed to generate explanations that depend on
such permutations.

The schema mechanism’s built-in problem-solving behavior is crude, consist-
ing of finding an explicit chain of extant schemas leading from a current state to a
goal state. Moreover, the schema mechanism itself does not develop; the mecha-
nism remains constant as its constructs—schemas, actions, and items—evolve.
Superficially, this constancy is at odds with the need for intelligence to grow. But
just as virtual structures (e.g., the virtual generalizations of the previous section)
can overcome some of the limitations of the actual data format, so virtual mecha-
nisms can develop and improve despite the schema mechanism’s own invariance.

At a given moment, what action the schema mechanism initiates, and what in-
ternal structures it creates or alters, are a function of the extant data structures
(and, of course, of the mechanism’s inputs). This function is invariant; it is in that
sense that the mechanism itself does not change. But the schema mechanism, tak-
entogether with its acquired structures, operates according to some function of its
inputs—and that function can change, as the structures themselves change. What
I call a virtual mechanism is simply the operation of the invariant schema mecha-
nism in concert with some or all of its evolving structures. Thus, the invariant
schema mechanism can support virtual mechanisms that change, as figure 7.7 il-
lustrates schematically. Depending on the structure that implement them, virtual
mechanisms might be domain-independent (e.g., amechanism for formal reason-
ing), domain-specific (e.g., a chess-playing mechanism), or some mixture of the
two.

In fact, the schema mechanism’s hypothetical manipulation of virtual general-
izations, discussed in the previous section, is an example of a virtual mechanism
as well as of virtual structures; the tendency to activate a source-to-targetmapping
schemaimplements a virtual mechanism for instantiating virtual generalizations.
But even this rudimentary example, although sketched here in some detail, re-
mains undemonstrated by the implementation; the further-reaching virtual mech-
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Figure 7.7 Virtual mechanisms. An invariant mechanism, operating
with acquired structures, forms a virtual mechanism. As the structures
evolve, so does the virtual mechanism.

anisms required for even sensorimotor-level Piagetian development are, at this
point, no more than a bare possibility for a system like the schema mechanism.

7.2.2 Virtual mechanisms and the mind’s expressibility

Perhaps human cognitive development culminates in some virtual mechanism
that is fixed from then on. In this case, adult intelligence can be explained at that
level, without reference to its development. But there is an alternative possibility
which I think more likely. It may well turn out that the work of the developmental
process is never complete—that the elusive human attributes of “‘creativity’” and
“commonsense’’ (akind of routine, practical creativity) depend in part on contin-
ual revision and extension of the constructed virtual mechanism. Then, [ see no
reason to expect that the precise rules of revision are expressible on any level of
abstraction higher than that which describes the developmental system. 24 If this
is $0, an artificial intelligence designed on a higher level of abstraction is sure to
exhibit some degree of stereotypical mechanical rigidity in the face of certain un-
anticipated contingencies; if this is so, humanlike flexibility must be explained
in terms of a long-term developmental system, rather than as a later, static, high-
er-level virtual system.

The prospect of there being no precise, static, higher-level mechanism of intel-
ligence is related to arguments by some authors (e.g., Dreyfus (23], Winograd and
Flores [76]) that intelligence is inexpressible as a rule-like system. But if the hu-

24. This is related to Hofstadter’s argument [34] for describing the mind at what he calls the sub-
cognitive level, the details of which are inaccessible 1o conscious cognition. However descriptions
of the mind at the developmental-mechanism level need not be subcognitive.
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man mind is a mechanism, and if the Church-Turing thesis [45] is correct, then a
formal (hence rule-like) description of the mind is surely possible. Nonetheless,
if we think of rules in the sense of consciously followed prescriptive steps—such
as those of a recipe or other explicit plan of action—then indeed there may be no
precise description of intelligence at that level. 25

25. Of course, one might imagine a person explicitly following rules that prescribe a hand-simu-
lation of a mechanism of intelligence; the person would thereby be acting intelligently by con-
sciously following explicit rules, as in (one version of) Searle’s Chinese room [61]. But this ap-
proach is worse than impossibly cumbersome (although it is that, too); it is useless, even in princi-
ple, at least as a prescription for rational thought. For whatever the simulation thinks or does might
just as well have been thought or done by the person in the first place, in lieu of carrying out the

simulation. Copyrighted Material
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As the field of artificial intelligence matures, it begins to address the philosophi-
cal conundrums that have confronted older disciplines’ contemplation of the
mind. The symbol grounding problem, discussed in section 4.2.5, is one such
problem. Another is a foundational riddle about induction; any learning system,
such as the schema mechanism, which is charged with performing inductive rea-
soning must eventually face the problem of this riddle.

8.1 The problem with naive induction

Inductive reasoning draws general conclusions from particular examples. For in-
stance, one might conclude that objects falling on this planet accelerate at 32
ft./sec.2, or that the sun will rise again tomorrow, because things have been ob-
served to always work that way before. Inductive reasoning is nondemonstrative,
meaning that the conclusions are not guaranteed to follow (in the sense that, for
example, 1+1=2 is guaranteed)—yet-unobserved events could proceed entirely
differently than ones encountered so far. Still, in a universe in which all events
conform to a compact set of uniform, exceptionless physical principles—princi-
ples which in turn implement higher-level, approximately uniform principles,
such as those of cosmology, chemistry, biology, psychology, or economics—in-
ductive reasoning will yield true conclusions to the extent that it discerns such un-
derlying principles from some set of examples.

There is a version of inductive reasoning, called naive induction, which, al-
though plausible on the face of it, turns out to be seriously awry. Naive induction
proposes that if there is a generalization of the form A/l X’s are Y—for example,
All emeralds are green—that has been tested many times (that is, many X’s have
been examined for their Y-ness), and found true each time, then there is reason to
believe that the generalization applies to examples not yet tested (e.g., to believe
that other emeralds are probably green, too); further, the more true examples have
been encountered (still in the absence of any false ones), the greater the evidence
that the generalization applies as well to untested examples.

Goodman’s famous grue paradox [29] demonstrates the problem with naive in-
duction. Define grue to mean green if before the year 2000, blue if after 2000. All
observations of emeralds so far are consistent with the generalization All emer-
aldsare grue (all have been seen to be green, and it has always been before the year
2000). But it would be absurd to expect the generalization to continue to hold true
after the year 2000—in order for emeralds to remain grue then, they would have to

suddenly turn blue. Copyrighted Material
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More generally, any set of observed examples is consistent with an infinite
number of mutually inconsistent generalizations. If All X'sare Y is an (intuitively)
reasonable generalization, arbitrarily absurd alternatives, also consistent with the
data, may be constructed by:

® Conjoining the predicate Y with any condition P not tested in the examples,
toform All X’s are Y and P, a gratuitous extension to the reasonable general-
ization; or

® Conjoining the predicate X with any condition 0 common to all the exam-
ples tested so far, to form All X's that are Q are Y, a gratuitous restriction of
the reasonable generalization.

The hidden crux of inductive reasoning is to decide which generalizations consis-
tent with all the encountered data are reasonable, and which—despite their full
accord with the data—are absurd. This is the problem that naive induction ig-
nores. In examples such as grue vs. green generalizations, the distinction is intu-
itively clear, but the principles on which that intuition operates have proven diffi-
cult to formulate. But for purposes of building a humanlike artificial learning
system—or for purposes of explaining how the mechanism of human learning
works—the underlying principles must be understood.

8.2 The problem with proposing only nonabsurd
generalizations

Almost all machine learning research ignores the naive induction problem; extant
systems verify proposed generalizations simply by seeing if in fact they accord
with the available examples. Such systems succeed only to the extend that absurd
generalizations are not entertained in the first place. Holland—an exception to
the tendency to ignore the problem—explicitly proposes [35], as a theory of the
inductivereasoning performed by his system, that its method for proposing gener-
alizations simply does not entertain absurd ones 2 (though, of course, it may en-
tertain false ones); we may regard this stance as taken implicitly by the authors

" of learning systems who are silent on the question.
The basis for Holland’s claim is that his system—Ilike the schema mechanism’s
marginal attribution facility—tends to add new conditions only as needed to con-

26. Developmental theories in cognitive science also tend to be oblivious to the naive induction
problem, although Carey [12] is an exception. Carey proposes a solution along the lines of Good-
man'’s entrenchment, described below.
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form to the data, and thus avoids incorporating gratuitous extensions or restric-
tions into the proposed generalizations. However, in the schema mechanism and
Holland’s system alike, the success of this approach depends on the vocabulary in
whichthe conditions are expressed in the first place. If abizarre condition, suchas
grueness, is already expressed as a state element, then nothing blocks the proposal
of generalizations in terms of that condition. Goodman uses the term projectable
to describe predicates which lend themselves to reasonable generalizations; grue
is unprojectable (except in certain bizarre generalizations that Goodman dis-
cusses). Holland’s solution therefore passes the buck from the generaliza-
tion-proposal machinery to the vocabulary in which the proposals are couched—
and hence, in a constructivist system, to the machinery for synthesizing that
vocabulary.

Forthatreason, I believe that relying on the proposal machinery not to generate
absurd generalizations in the first place is inadequate to solve the naive induction
problem for constructivist systems that are powerful enough to invent arbitrarily
complicated and obscure concepts, and to formulate generalizations in terms of
their invented concepts. The reasonable-proposal solution works well enough
initially, when primitive concepts, and others closely tied to the primitives, pre-
dominate; hence the schermna mechanism’s avoidance, so far, of proposing absurd
generalizations. But, as I now argue, that solution eventually must fail.

8.3 The problem with using only projectable
concepts

One might propose that even as powerful a concept-inventing facility as human
beings’ might never have occasion to propose generalizations in terms of bizarre
predicates such as grue. The mere fact that we can entertain that concept (by read-
ing and writing about it, for example), does not necessarily mean that the concept
is available as a vocabulary item to our induction machinery (e.g., does not mean
there must be a corresponding synthetic item in the schema mechanism). If our
induction machinery does avoid grue-like concepts—even when we discuss the
grue paradox—then not proposing absurd generalizations might be a viable solu-
tion after all.

Unfortunately for that proposal, there is good reason to conclude that the con-
cept grue—or, atleast, aconcept coextensive with it, which presents the same pro-
blems—is indeed available to the induction machinery. Suppose I build a

grue-detector box; such a devioprsghteabnilifey wiring together a color-detector
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and a calendar-clock. Whenever I point it at some object, a light turns on if and
only if that object is grue. Surely a mechanism of humanlike cognitive power
would be able to formulate, and confirm, the generalization that When this box
points at an emerald, the light turns on; this is just a matter of representing some
objects in the environment, and making a straightforward empirical discovery
about their behavior. But this generalization is coextensive with (i.e., true under
the same circumstances as) Emeralds are grue.

Suppose one experimented with the grue-detector box and with various ob-
jects, including emeralds. Suppose further that one had no awareness of what was
in the box, how it was wired, or what it was computing. One would then come
quite reasonably to believe that When this box points at an emerald, the light turns
on, and one would certainly have no grounds to suspect that this would stop being
true at the year 2000; on the contrary, one would quite reasonably (albeit mistak-
enly) believe that the generalization would continue to be true then.

However—and here is the point of this example—if one were now informed of
the circuitry of the box, and understood how it worked, one would then realize that
the box’s light will start to react differently after the year 2000, and that the above
generalization will cease to be true then; this realization is isomorphic to believ-
ing that emeralds will continue to be green, and hence not continue to be grue, at
the year 2000. Yet the false generalization—When this box points at an emerald,
the light turns on—has, in fact, been proposed, and extensively and exception-
lessly confirmed, by the induction apparatus. So we cannotrely on a constrainton
the vocabulary available to the proposal-generator to explain how the incorrect
generalization is rejected.

Rather than not proposing the false generalization in the first place, the induc-
tion apparatus must somehow let this well-confirmed generalization be overrid-
den by other generalizations (e.g., those about the behavior of color-detectors,
clocks, etc.); after all, one could imagine concluding that the box will continue to
give the same answer after 2000, and that it is instead the physics of colors that
will change at that time. The question, then, is what criteria the induction appara-
tus can use to reasonably decide which generalization prevails. (And if the appa-
ratus can decide correctly in this example, it can presumably, by the same princi-
ples, override the original emeralds are grue generalization. There, knowing the
definition of grue in terms of green and time is analogous to knowing the circuitry
of the box. And there is the analogous problem of figuring out which generaliza-
tions override which.)
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8.4 The problem with preferring entrenched
concepts

The problem has now been recast. It is no longer a matter of not proposing absurd
generalizations in the first place, whether by avoiding bizarre (i.e., non-project-
able) vocabulary, or by any other means. Rather, the above argument establishes
that a humanlike learning system must be powerful enough to entertain such gen-
eralizations, and even to believe them, until confronted with conflicting general-
izations. The recast problem then is how to resolve that conflict properly.

One approach would be to give priority, when generalizations conflict, to those
expressed in terms of more familiar predicates (i.e., older ones, or ones more often
encounteredorused, or some such basis); Goodman’s proposed entrenchment cri-
terion is along these lines. In this approach, itis still a matter of assessing the rea-
sonableness of the conceptual vocabulary for expressing géneralizations; but
now, instead of making a binary distinction between acceptable and unacceptable
concepts, it is a matter of the relative reasonableness of the competing concepts.

There is some justification for resolving conflicts in favor of more entrenched
concepts. Earlier-formed concepts are likely to be both more entrenched than re-
centones, and also closer to the primitives, in the sense of being more directly ex-
pressed in terms of the primitives; they may thus be closer to sharing the primi-
tives’ projectability. The primitive concepts are designed to be plausible terms for
expressing generalizations, i.e., to be projectable; indeed, any physical detector
that behaves uniformly from place to place and time to time is a promising basis
for generalization, given the spatiotemporal uniformity of the physics of our uni-
verse (and given the consequence that even higher-level laws tend to be approxi-
mately uniform over a wide range of places and times). But even if there is thus
some correlation between entrenchment and projectability, it is often the case (for
example, in the history of science) that newer concepts better support generaliza-
tions than older concepts; indeed, they often supplant the older concepts, overrid-
ing the older generalizations, even before any data mitigate in favor of the new
concepts and generalizations. Thus, to always resolve conflicts in favor of more
entrenched concepts seems arbitrary, unlikely to be correct, and contrary to how
people actually work.

In particular, no matter how many times one had used one’s grue-detector
box—no matter how deeply entrenched the concepts designating that box had be-
come—the discovery of the box’s circuitry should be no less decisive in predict-

ing that emeralds will ceaseto BygRIBE |Aghtafiey the year 2000. Intuitively, this
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is because the circuitry already accounts for the box’s oft-observed behavior, as
well as predicting a different behavior after 2000; both behaviors are derivable
from the circuitry. Trusting the circuitry-based prediction is parsimonious, be-
cause it requires no separate, additional principle to say how the box works.

8.5 Induction conflicts and deductive overrides

The observation that the grue box’s post-millenial behavior is deducible from the
box’s circuitry is reminiscent of the schema mechanism’s facility for deductive
overrides (section 7.1.6). There, the schema SeeDisplace, and the overriding con-
dition it admits for a heavy object, already accounts both for why ObjDisplace2,3
moves the object, and for why ObjHeavy2,3 (which hasn’t been tried yet) would
not; that is, ObjDisplace2,3 and ObjHeavy2,3 are both deducible from SeeDis-
place, together with its overriding schema SeeHeavy. The schema SeeHeavythus
deductively-overrides ObjDisplace2,3—regardless of which of the schemas or
items involved has been used more (is more entrenched).

The suggestion, then, is that deductive-override machinery may permit the
schema mechanism to escape the fallacy of naive induction. The key is to regard
the conflict between a reasonable generalization and an absurd but always-con-
firmed generalization as just another conflict between generalizations expressed
at different levels of description—and to use the same technique, deductive over-
ride, to resolve the conflict. Seen in this light, the grue problem is just like the
heavy-object problem.

Deductive override cannot be the whole answer to the naive induction prob-
lem. One could always override the override by inventing another absurd,
grue-like confirmed generalization from which the previous overriding schema
can in turn be deduced. This new generalization will in turn be overridable by
some reasonable generalization, but that will in turn be overridable by another ab-
surd one, and so on. Some entrenchment criterion is necessary after all-—not to be
used by always favoring the more-entrenched schemas and items, but rather by
requiring that some threshold of entrenchment be surpassed for an schema or item
to be able to participate in a deductive override. That requirement would block an
unending cascade of absurd overrides (since only a finite number of bizarre sche-
mas and items can have become entrenched already), while still allowing less en-
trenched structures to prevail over more entrenched ones when appropriate. (That
requirement would also provide a safeguard, in more ordinary situations, against
rashly abandoning a robust, proven structure the moment some novel, overriding

long.
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8.6 Why nonnaive induction must be built in

There is an alternative to looking to the basic operation of the schema mechanism
to keep the mechanism from performing naive induction. Instead, one might pro-
pose that the mechanism could form and debug explicit beliefs about reasonable
generalizations, much as it might be hoped to form beliefs about, say, chess, or
astronomy, or aesthetics. Those beliefs, instead of some built-in facility, could
be the mechanism'’s way of deciding that emeralds are grue rather than green; the
problem would thus be solved epiphenomenally, rather than directly by a feature
of the mechanism.

But there are two problems with that proposal (not counting its complete lack
of detail, since any proposed advanced extrapolation of the schema mechanism’s
performance is similarly lacking). One problem is that the mechanism’s process
of forming explicit beliefs about generalizations is itself subject to the naive-in-
duction problem, to the extent that that process has an inductive component. The
second problem is that, even if the mechanism succeeded in building a correct ex-
plicit theory of induction, and explicitly represented in that theory that the conflict
between the green generalization and the grue generalization should be resolved
in favor of the former, doing so would still not override a schema that asserts that
the grue-box’s light will turn on after 2000. The explicit theory may explicitly
contradictthat schema, but that contradiction just provides yet another conflicting
schema, and the mechanism still needs some built-in way to resolve that conflict.
(Given such built-in machinery, though, an explicit theory of induction built by
the mechanism may well assist in resolving induction dilemmas.)

Finally, if there is indeed built-in machinery for resolving induction dilemmas
in human cognitive systems, and if that machinery is involved in rejecting grue
generalizations and the like, then that machinery must have a plausible use in
mundane situations as well; evolution could not have designed a complex appara-
tus whose only benefit was to help us resolve abstruse modern academic para-
doxes. The deductive-override proposal suggests that the relevant machinery isin
fact needed to resolve conflicting predictions at differing levels of abstraction, in
mundane situations such as the heavy-object example.

Whether or not the particular solution proposed here is on the right track, I
think it is clear that there is a problem to be solved—that a constructivist mecha-
nism that performs inductive reasoning cannot be expected to reject grue-like

generalizationsepiphenom&&;p;,igh%gsm%%éqvel, the mechanism is just per-
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forming naive induction. Hopefully, the deductive-override proposal is at leastan
instructive attempt to address the problem.

8.7 Innateness of projectability judgements

It remains true that, whatever experiences an organism or mechanism has had,
there are infinitely many mutually contradictory generalizations that are consis-
tent with those experiences. Therefore, any induction apparatus must impose a
choice among those consistent generalizations.

However, that choice need not be imposed by innately listing the entire accept-
able vocabulary of generalization. Such a measure is both implausibly restric-
tive—it contradicts the fact that we make generalizations about concepts that
could not have been anticipated by evolution—and wholly ineffective, since, as
the grue-box example shows, absurd generalizations can be recast in terms of
mundane concepts, such as boxes and lights, effectively circumventing any re-
striction on conceptual vocabulary.

There must instead be a facility for resolving conflicts between reasonable and
bizarre confirmed generalizations. The deductive-override machinery, which is
necessary anyway for more general and less abstruse purposes, seems a promising
candidate. Given such afacility, the mechanism can learn for itself when to trusta
confirmed generalization, and when not to.2”

8.8 Induction and counterfactuals

Asnotedinsection9.1.1, aschema makes a counterfactual assertion, an assertion
about what would be the case if some (perhaps false) premise were true; and asyn-
thetic item reifies the validity conditions of its host schema’s counterfactual asser-
tion. The counterfactual statement Q would be true if P differs fundamentally
from the statement of logical implication P implies Q; the latter is equivalent to
P and ~Q are not both true, and thus is necessarily true if P is false—regardless
of what Q is. In contrast, the consequent of a counterfactual statement must be
relevant to the premise, but in a sense that has proven elusive.

In fact, as Goodman points out [29], the problem of characterizing the proper
relation between a counterfactual premise and consequent is similar to, and inti-
mately related to, the problem of characterizing projectability. Naively, Q would

27.  One might maintain, a fa Chomsky, that the judgement is not learned, but rather is innately
specified, merely by virtue of the fact that an innately specified mechanism mandates the judge-
ment. But this is just a special case of Chomsky’s general objection to the notion of learning; see
section 1.2.1 for a reply.
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be true if P may be taken to be satisfied justin case All actual instances that have P
have Q (but at least some instances with ~P don’t have Q). As with naive induc-
tion, however, it is easy to construct counterexamples to this construal—e.g., in
all the universe, all instances of George Washington’s blowing out the candles on
a cake have been accompanied by his receiving gifts (or so we may suppose, for
purposes of this example), and otherwise he usually did not receive gifts; yet it
would not follow that, on some arbitrary date, he would have received gifts had he
only lit and blown out some candles on a cake. Or, to take an example of more
practical import to an organism’s survival: the assertion If] step into the road, it is
safe to cross, construed as a logical implication, may well be always true for an
individual whose road-crossing behavior is always suitably cautious; moreover,
the individual may well know it to be true, either by induction on her past experi-
ences or by knowing about her own characteristic caution. However, the individ-
ual would commit a dangerous error to conclude that [f] were to step into the road,
it would be safe to cross is an always-true counterfactual assertion; yet that con-
clusion would follow if the naive criterion of the truth of counterfactuals were
used.

To build schemas, which make counterfactual assertions, the schema mecha-
nism must ultimately tackle the problem of nonnaively resolving such assertions
(just as it must ultimately tackle the problem of naive induction in order to per-
form inductive reasoning); taken by itself, the marginal attribution facility’s com-
parison of what happens with vs. without an action corresponds to the naive con-
strual just cited. The problems of counterfactuals and induction converge in the
following respect: just as the behavior of the grue-box so far is accounted for by
familiar principles which also predict a contrary behavior after 2000, so the truth
of If I step into the road, it is safe to cross is accounted for by familiar principles
(about the physics of oncoming cars, and about how one decides whether to step
into the road) which also predict a contrary outcome if, contrary to customary
practice, one were to step into the road with many cars rushing by. Goodman’s
discussion concludes with the yet-unrealized hope that a solution to projectability
will lead to a solution to the problem of counterfactuals; I conclude here with the
same unrealized hope, in the context of the schema mechanism.
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9 Comparisons

This chapter seeks to situate the schema mechanism in Al-space, relating the
mechanism to other research efforts and paradigms. First come some broad ob-
servations of where this research fits along several dimensions that characterize
Alresearch programs. There follows a more detailed comparison of the schema
mechanism with some proximally related work.

9.1 Modularity for learning: prediction-value vs. sit-
uation-action systems

Superficially, a schemaresembles a production rule (e.g., [48]). A productionrule
has two parts: an antecedent and consequent, also called the left side and right
side,respectively. The antecedent specifies conditions for the rule’s applicability;
the consequent specifies what happens when the rule is invoked. Some produc-
tion systems invoke every rule whose antecedent is satisfied; others arbitrate
among such rules to invoke just one, or a small number of them.

9.1.1 The basic unit: three parts or two?

A schema differs most obviously from a production rule by having three main
parts rather than two. One way to assess the consequence of this difference is to
compare the use of schemas and productions for achieving a goal. Productions
can serve as situation-action rules, in which the left side specifies conditions for
taking the action designated by the right side; the conditions may include a speci-
fication of a current goal, so that the rule is invoked only when that goal is as-
serted. Alternatively, productions can represent situation-result rules, in which
the left side includes an action and some preconditions for taking it, and the right
side specifies a result. The production system must identify a sequence of rule
invocations that leads to a goal; each rule’s result may contribute to the conditions
needed for the next one’s invocation. Identifying chains of schemas is a similar
process.

For purposes of chaining to goals, then, there is little difference between sche-
mas and productions; the information in schemas could be converted to two-part
production-rule syntax and used in that form. However, for purposes of learning
such rules in the first place, the three-way distinction, I argue, is crucial.?8

One way to learn how to act is to discover what would happen (i.e., a counter-
factual assertion) if each of several actions were taken, and to use those pieces of

28. Situation-result rules could be annotated to make a three-way distinction by dividing the situ-
ation into action and preconditions; but that annotation would amount to having a three-part sche-
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knowledge to decide which action to take, based on some designated values of the
possible outcomes. The schema mechanism takes this approach, forming what
we might call a prediction-value system. Another possibility is to try to learn di-
rectly what action is best in a given situation (rather than deriving that from a re-
presentation of what would happen); Holland’s bucket brigade algorithm [35] ex-
emplifies this approach. First, the system learns the desirability of actions that
lead immediately to goals, in certain situations; it then learns the desirability of
actions that lead to those precursor situations, in other situations; and so on, ex-
tending backward from the goals. The credir-assignment problem—attributing
an eventual outcome to earlier events or actions—is addressed by passing credit
incrementally backward from the goal.

The end result is much the same as with tripartite schemas. In the situation-ac-
tion paradigm, results are not explicitly represented; still, the actions were learned
on the basis of the usefulness of the results obtained. When the rules are invoked,
the actions occur in turn, each enabling the next rule in the sequence. Thus, once
formed, suchrules are as useful as schemas for the purpose of reaching goals—al-
though situation-action rules would not support subactivation, for which results
must be explicitly simulated, hence explicitly predicted.

However, situation-action learning is intrinsically, infeasibly slow. One reason
has to do with the fact that such learning only takes place along the fringe of the
state-space that has already been connected to the goal. Encountering a situation
several steps back from the goal is of no use—even if the right action happens to
be taken then—if subsequent steps do not lead to the goal, or at least to the recog-
nized fringe. Incontrast, with context-action-result structures, various islands of
the state-space can be learned as soon as they are encountered, with no forseen
applicability to any goal, then quickly chained through to reach a goal when the
necessary pieces have been assembled.

Human beings—especially infants and children at play—<clearly do seek and
obtain knowledge for its own sake, not just to apply to specific goals. Metaphori-
cally speaking, bucket-brigade-style situation-action learning engages only in
applied research, whereas schema learning does basic research as well. For in-
fants and technological cultures alike, it is imperative to be able to acquire knowl-
edge without already having on hand a use to which that knowledge can be put.

Empirical learning of situation-action rules is slow for a second reason as well.
Different goals arise in different circumstances. For a particular state-space, it
may sometimes be desirable to be at a given point in that space, sometimes else-
where; for example, at different times, one might want to visit a variety of differ-
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ent locations in a room (going to the door, sitting at a table, etc.). In order for the
bucket-brigade to deal with this variability of goals, rules’ situations must include
either the very fact that a certain location is now a goal, or must include areference
to some current circumstance that bears the information that that location is desir-
able (the doorbell is ringing, the aroma of dinner is present, etc.).

The number of situation-action rules that have to be learned is then proportion-
ate to the product of the size of the state-space and the number of goal indications.
In contrast, each piece of a schema-implemented state-space network says what
the result of some action would be, and is acquired independently of the system’s
goals; these pieces are then are used to chain to various goals in order to determine
what actions to take. Thus, a prediction-value system, by decomposing the ques-
tion of what action to take into the distinct questions of where various actions
wouldlead (the prediction), and where the next action shouldlead (the value asso-
ciated with a given state), assumes the right modularity for learning.

If goals were relatively constant—as strategic goals are, compared to tactical
goals—then the problem of multiplying positions with goals would not arise. In
my view, bucket-brigade-style credit-assignment misapplies a strategic learning
algorithm to tactical learning. The schema mechanism instead distinguishes be-
tween instrumental value, which facilitates tactical planning, and delegated val-
ue, which promotes strategic pursuits (section 3.4.1).

The foregoing considerations—of basic vs. applied learning, and tactical vs.
strategic learning—establish the need to represent the result of an action. This, in
turn, requires a designation of appropriate context conditions, since, as already
discussed at length, a given action may have a variety of distinct results in dif fer-
ent situations. Finally, for purposes of learning, the context and action cannot
combine to form an undifferentiated antecedent of a two-part rule; the marginal
attribution machinery, needed to solve the context-result chicken-and-egg prob-
lem, must compare what happens with vs. without the action (given satisfaction of
the context conditions), and thus requires an explicit distinction between context
and action. Hence, a three-part structure is warranted.

9.1.2 Biological evolution and prediction-value representations

The biological evolution of intelligence must also have faced a design choice be-
tween systems using situation-action rules and systems using result predictions
and value designations. For organisms whose behavior is primarily innate, situa-

tion-action rules are the be@We@Wféﬁ@pons:
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® Situation-action representations are simpler than prediction-value repre-
sentations; the latter have strictly more information, since the preferred ac-
tion is deducible from the prediction-value representation, but predicted re-
sults are not necessarily deducible from situation-action representations.
The extra information in prediction-value representations is both super-
fluous-—the system’s purpose is simply to make an organism take the appro-
priate action in a given situation—and difficult to correct, since evolution
(in contrast with, say, marginal attribution) would receive no feedback as to
the accuracy of predicted results, except very indirectly, by the viability of
the consequent overall behavior.

® Because of this limited feedback, evolution is confined to cumbersome stra-
tegic learning (as discussed just above) of innate behaviors, rather than the
more efficient tactical learning which can be done by manipulating predic-
tion-valuerepresentations.2? Since evolution therefore cannot avail itself of
the advantage of prediction-value systems over the simpler situation-action
systems, it has no pressure to develop the more elaborate system for support-
ing innate behaviors.

Simple organisms’ innate behaviors indeed appear to be implemented by situa-
tion-action systems rather than prediction-value systems. A classic example is
the mating ritual of the stickleback, as described by Tinbergen [69]. Tinbergen’s
analysis decomposes each participating stickleback’s activity into a series of re-
sponses to stimuli; each response results in presenting the participant’s partner a
stimulus which prompts its own response. If an experimenter prevents the next
stimulus from reaching the stickleback, the next response does not occur. Con-
versely, if a fake stimulus is provided, the corresponding response is elicited, even
if completely out of sequence. Thus, the sticklebacks do not internally keep track
of their progress through the encounter, but rather depend on the environment to
keep providing the appropriate next stimulus.

In contrast, more intelligent species, such as our own, engage primarily in
learned activity, and so, as just argued, must build prediction-value representa-
tions—though not necessarily to the excluston of having situation-action rules as
well. As discussed in section 2.9.3, human beings do embody substantial innate
competence, though arguably only in peripheral modules. This innate compe-
tence, presumably largely inherited from less intelligent ancestor species, may

29. Here I refer to evolution itself as a learning system (for leamning innate-behavior specifica-
tions), as opposed to whatever learning system may evolve in the brains of oganisms.
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wellinvolve situation-action implementations (for example, for visual tracking).
Such implementations would not be amenable to augmentation by the central
learning system, which, for reasons argued above, needs instead to use a predic-
tion-value representation scheme. Thus, as argued in section 2.9.3, the central
system would need to recapitulate in its own terms some of the innate knowledge
already embodied in peripheral modules.

For organisms with prediction-value learning systems, evolution can imple-
ment innate predispositions by rigging the values associated with innately
supplied state elements, turning those states into explicit goals, to be pursued by
whatever means each organism can learn. In contrast, systems with only situa-
tion-action rules create goals that are only implicit, in that the rules are rigged so
that their execution achieves the goals. Without explicit representation of predic-
tions, such systems will not easily learn novel paths to their goals.

9.1.3 Constants and variables

Many production systems allow variables to appear in production rules. A rule’s
antecedent is checked for satisfaction with respect to any instantiation of those
variables; if some instantiation matches, the consequent is asserted using the same
variable values that resulted in an antecedent match.

The schema mechanism does not support variables or matching for the ele-
ments of schemas. But a sufficiently intelligent system must be able to express
and instantiate generalizations; therefore, some other method is needed to support
generalizations. Chapter 7 raises the possibility that the mechanism might main-
tain virtual generalizations, together with virtual machinery for their instanti-
ation. The reason to rely on this hope, rather than building in a variable-matching
implementation of generalizations, is just that there is no apparent way to support
such an implementation without abandoning the constructivist working hypothe-
sis by including domain-specific build-in structure. For example, if each proprio-
ceptive item were structured as, say (Prop Hand 3 2), with components that desig-
nate spatial coordinates, then the mechanism might be augmented to express
generalizations of the form (Prop Hand x y), where x and y can be matched to par-
ticular coordinates. Atomic elements, however, do not lend themselves to such
generalization.

Perhaps the system itself could be designed to devise explicit structured repre-
sentations to support variablized generalizations. If virtual generalization turns
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But if virtual generalization fails, devising such machinery may be vital to the
schema mechanism.

9.2 The schema mechanism and connectionism

Schemas, although different from production rules, have in common with produc-
tions that they are a kind of qualitative, symbolic construct. This contrasts with
connectionistsystems, which pass numeric values through networks that have ad-
justable weights.

Yet the schema mechanism’s architecture (chapter 5) is connectionist—sym-
bolic structures are composed by setting bits at connection points; data paths
transmit only nonsymbolic information, consisting of numbers, truth values, or a
small number of atomic, noncomposable tokens (i.e., tokens that do not organize
syntactically into larger structures). In fact, as the next section argues, a schema’s
extended context is essentially a connectionist network solving a classifier prob-
lem. The schema mechanism might be viewed as a kind of hybrid system, in
which symbolic structures are created and maintained with the help of a connec-
tionist substrate.

9.2.1 Extended context as connectionist network

A connectionist network divides a global computation into numerous simple, lo-
cal computations. A single-layer, single-output connectionist network has a pro-
cessing unit which computes a simple function—typically a weighted sum—of
the network’s numeric input values. A multi-layer network includes hidden pro-
cessing units whose inputs are other units’ outputs.

If the inputs are restricted to the values 0 and I, we can regard a connectionist
network as computing a boolean function of its inputs; the function’s value is tak-
en to be 0 if the output value is below a specified threshold, else 1. Equivalently,
the network classifies all possibie input combinations into one of two sets, corre-
sponding to the two boolean outputs.

A classifying network can be trained by starting the network with arbitrary
wetghts, presenting a series of example input combinations, and adjusting the
weights according to the correctness of the network’s classification for each ex-
ample. There are various algorithms for this adjustment; all share the property
that, on eachexample, each unit’s weight is adjusted according to 1) the sign of the
unit’s contribution to the weighted sum; and 2) whether the network’s computa-

tion for that example gave the right answer. A positive contribution to a correct
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answer may be rewarded by increasing the weight’s magnitude; a negative contri-
butionto acorrectanswer may be punished by decreasing the weight’s magnitude.

A single-layer network can compute a variety of boolean functions of its in-
puts. For example:

® If a function is a conjunction of several inputs (e.g., a(~b)c, a network can
realize that function by having a positive threshold &, and dividing that
threshold among the weights for the non-negated conjuncts. Negated con-
juncts receive negative weights; all other weights are set to zero. Then, only
if the non-negated conjuncts are all 1, and the negated ones all 0, can the
threshold be reached.

® If a function is a disjunction of non-negated inputs (e.g., a+b+c), then each
disjunct can be given a weight that exceeds the positive threshold k.

® [f a function is a disjunction of possibly negated inputs (e.g., a+(~b)+c),
then the threshold is set to -k, where k is the number of negated inputs. Each
negated input receives weight -(1+1/k), so that even if all non-negated in-
puts are O, the threshold will still be met, unless all negated inputs are 1.
Each non-negated input receives weight 1, so that even if all negated inputs
are 1, any non-negated input will cause the threshold to be reached if that
inputis 1.

If there exists a set of weights to compute a given function, a conver gence theo-
rem [47] shows that a connectionist network can be trained to adjust its weights so
as to compute that function. Consequently, a series of incremental adjustments to
local computing elements can culminate in computing the appropriate overall
computation.

But single-layer networks cannot compute arbitrary boolean formulae. This is
made apparent by considering DNF (disjunctive normal form) formulae; a DNF
formulais a disjunction of clauses, each a conjunction of (possibly negated) atom-
ic terms. Consider, for example, the formula ab+cd. If ab and cd each exceed the
threshold, then a’s weight or b’s must be at least half the threshold, as must either
¢’s or d’s. But then the larger weight from one conjunction, plus the larger from
the other, also exceeds the threshold; no assignment of weights to a,b,c and d can
allow ab and cd to exceed the threshold, while preventing both ac~b~d and
ad~b~c (or both bc~a~d and bd~a~c) from doing so.

The problem is that inputs that satisfy the formula are not linearly separable
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having hidden units that compute functions in terms of which the formulais linear.
Forexample, two internal units might compute the conjunctions ab and cd; an out-
put unit then computes the disjunction of those internal units’ outputs. However,
there is no demonstration that such networks converge to the appropriate weights
within a practical number of training examples, if the inputs number hundreds or
more, and if there may be many (say, dozens) of conjunctive clauses of several
terms each.

Marginal attribution in the schema mechanism takes a different approach. A
schema’s extended context resembles a first-order connectionist network; it faces
the classification problem of distinguishing input combinations (i.e., items’
states) that correspond to successful activations from those that correspond to
failures. (Of course, extant items aren’t always adequate to make that distinc-
tion.) The classification problems to be tackled come from the mechanism itself,
rather than from the supervision of an external teacher—each result spinoff poses
a classification problem to be solved by the spinoff schema’s extended context.
Each extended-context slot’s correlation measure is roughly like a connectionist
weight; it adjusts after each trial to reflect the corresponding item’s contribution
to the overall classification. Anitem’s relevance is identified quickiy; the identi-
fication needs only a handful of successful trials to demonstrate a significant dif-
ference in the schema’s success rate as a function of the item’s state.

Rather than using intermediate processing units to compute conjunctions, the
schema mechanism builds spinoff schemas, whose contexts compute conjunc-
tions. Each such schema has its own extended context—in effect, its own entire
connectionist network. Having an entire such network support each small, sym-
bolic unit of representation is expensive, though arguably (section 5.1) within
neurophysiologically plausible bounds.

9.2.2 Back-propagation and empirical credit assignment

Section 9.1’s remarks about the modularity of learning, and about credit assign-
ment, also apply to much connectionist work. (Holland’s bucket-brigade algo-
rithm, in fact, has dual citizenship as a production system and a connectionist sys-
tem; since Holland’s rules’ antecedents require no variable-matching, and since
all applicable rules are invoked in parallel, a network of such rules is isomorphic
to a connectionist circuit.) Sutton’s temporal difference methods [66] generalize
the bucket-brigade algorithm, and introduce an important distinction between re-

warding that which leads tg eventu% ts €SS VS, rewardmg that which leads to a
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normally reliable precursor of eventual success. Nonetheless, temporal differ-
ence methods fall within the scope of the foregoing discussion.

9.3 The schema mechanism and search algorithms

The schema mechanism broadcasts messages in parallel through chains of sche-
mas (section 5.1.2). Backward broadcasts from a goal state find paths to that goal;
forward broadcasts from the current state find accessible states. Such broadcasts
implement a breadth-first traversal of the state-space described by schemas. Such
searches are prominent in conventional Al; they appear, for example, in classic
game-playing programs (e.g., {59]), which do a minimax search (e.g., {77]) ina
heuristically limited portion of state space; and in SOAR [37], whichuses produc-
tions that chain to describe series of transformations.

Compared to these other state-space searches, schema mechanism broadcasts
are faster but more limited. Both properties derive from the fact that a broadcast
merely propagates messages in parallel through existing structures, whereas gen-
eral state-space searching requires computing at each step a new total world state
from which the next step can proceed.

Consider, for example, a goal of placing two toy blocks on a table. It is not
enough for there to be a schema for placing each of the blocks (figure 9.1a). Even
though activating them in succession would indeed reach the goal state, those
schemas do not chain to the goal state, because neither schema’s result shows two
blocks on the table; each shows only one. This matters, since, for example, any
other schema whose context required two blocks on the table could not be chained
to by either of these schemas. Chaining to the goal is possible only if one of the
schemas has a result that designates both blocks on the table; and if a schema’s
action is to place a single block, then a two-block result can only follow reliably if
that schema’s context asserts that the other block is already there. Such a schema
is chained to by a single-block-placement schema (figure 9.1b), thus chaining to
the goal.

In short, each link along the chain must explicitly designate all aspects of the
world state that are still needed further down the chain. In contrast, conventional
state-space searches can generate that information on the fly by applying succes-
sive transformations each of which designates only that part of the world that is
locally relevant to that transformation. This difference makes the conventional
transformations far more general, because the links in a schema chain must in-
volve not only a widely applicable transformation (e.g., placing a block), but also

a specific version of it thatgygglsyantde thegeplnf the particular situation (e.g.,
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Figure 9.1 Conjunctive planning. Achieving each result separately
(a) does not chain to the conjunctive goal. The schemas in (b) do chain,
by noting the intermediate state.

placing a block when another has already been placed). But such on-the-fly gen-
eration cannot be done in parallel by propagating a fixed set of tokens through
pre-established links; hence, the greater expense of the conventional paradigm.

Subactivation, the extension to the schema mechanism proposed in section
7.1.3, offers the possibility of performing the more general and more expensive
kind of search. Subactivating, say, one of the block-placement schemas in figure
9.1a would produce a simulated world state in which the block is on the table; sub-
activating the other placement schema would then yield a simulated state in which
both blocks are there. From such subactivations (or from actual activations of the
same schemas), the mechanism can derive the dual-block-placement schema of
figure 9.1b (either by marginal attribution, or perhaps by a faster process sug-
gested in section 9.4); that schema is thereafter available for rapid, parallel chain-
ing to the goal.

As with conventional state-space search, subactivation steps are serial. Also,
as with conventional search, there needs to be some systematic or heuristic basis
for selecting the next subactivation step, since the action is not yet known to chain
to the goal; rather, the discovery of that chain will be a consequence of the subacti-
vation. What is needed is the development by the schema mechanism of a virtual
mechanism implemented with the aid of schemas that promote the appropriate
search steps in an appropriate sequence. Such a development is, at this point, en-
tirely speculative and undemonstrated.
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9.4 The schema mechanism and explanation-based
learning

Asnoted in section 7.1.3, having multiple levels of representation means that sub-
activated schemas at a given level might combine to predict results at another lev-
el, which can then be described at that level. Were there but one level of represen-
tation, subactivation would just re-enact what is already known, without deriving
anything new.

One way for the schema mechanism to learn from subactivated events is by us-
ing the marginal attribution machinery just as for actual events. But this is need-
lessly inefficient, for it requires several trials, despite the fact that repeating a se-
quence of subactivations with the same structures will have the same result; the
repeated subactivated trials convey no more information than a single such trial.

Conceivably (though I propose no details here) the mechanism could keep
track of the aspects of the world state that the subactivated result depended on, and
build a schema on the basis of a single subactivated trial, putting the depended-on
state elements in the context of the new schema. Such a technique would resemble
chunking in SOAR [57], which, like other explanation-based learning mecha-
nisms, identifies and records the dependencies in a search process, and abbrevi-
ates subsequent searches by recording what follows from those dependencies, so
that that search need not be recapitulated. (The recording of proximity informa-
tion in a composite action’s controller was also likened to SOAR broadcast-
ing—section 4.3.1—but with respect to the more primitive search process carried
out by parallel chaining.) Or, in lieu of explicit dependency tracking, the mecha-
nism might simply grant a subactivated trial exaggerated impact on correlation
statistics, having the same effect as several actual trials.

Section 3.4.2 raised the possibility that the hysteresis of schemas’ activation
value—atendency toreactivate schemas recently activated—might promote imi-
tation, by inducing the mechanism to explicitly activate a schema that had just ac-
tivated implicitly. Explanation-based learning by means of subactivation might
exploit a tendency toward imitation: a subactivated imitation of an event just ob-
served might include a derivation of an explanation of the event, by deriving sche-
mas that predict the observed outcome.
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9.5 The schema mechanism and rational learning

Biological entities are self-constructing and self-maintaining. To be sure, suit-
ably nurturing environments are essential. But the eventual structure of a newly
conceived organism is determined primarily from within, by its genetic endow-
ment; likewise, repair of injuries is guided from within.

Artificial machines, in contrast, are built and repaired from without—for ex-
ample, by technicians at a factory. Itis not clear that the biological approach is
advantageous if factories (or the like) are readily available to provide synthesis
and maintenance. But if they are not available, self-organization is the only possi-
ble choice; systems that bootstrap themselves from scratch, as in the case of bio-
logical evolution, must therefore organize from within.

In the cognitive domain, the dichotomy of empirical vs. rational learning [36]
parallels the distinction between building from within vs. from without. Rational
learning analyzes representations in light of their internal structure and their rela-
tions to other structures—forming analogies, noticing dependencies, and so on.
The building or modifying of a particular structure is determined mostly by the
knowledge implemented by myriad other structures; in that sense, the construc-
tion and elaboration is directed from without, not from within the structure that is
affected.

In contrast, empirical learning proceeds locally; each structure (for example, a
schema) maintains its own statistics, and spawns variations of itself. True, the
schema’s behavior depends in part on its connections to other structures (for ex-
ample, via the extended context and result). But those structures do not imple-
ment an understanding of the subject matter of the schema they connect to; the
connections do not allow those structures to analyze the schema, but rather the
connections pass data to the schema, which processes the data (e.g., by maintain-
ing correlation statistics), again without having any representation of the meaning
of the structures.

Doing empirical learning—having structures that learn from within, rather
than from without—is crucial to constructivist bootstrapping, much as self-repli-
cation is to evolutionary bootstrapping. Just as evolution had no factories to set it
in motion, constructivist systems include no built-in domain-specific knowledge
to guide earliest learning. This is mostevident withregard to the invention of new
concepts by the assembly of autonomously developed precursor fragments of that

concept (recall the discussion of this Piagetian theme in section 2.9.1).
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Forexample, inconventional systems of representation, an object’s presence at
some location is designated by some notation such as (AT-POSITION OBJ-259
25 16); the system’s domain knowledge and deductive resources combine with
this notation to derive, for example, that to grasp OBJ-259, the hand should move
to (25,16) (and that to see it, the glance should be directed there). In contrast, the
schema mechanism has to construct the very concept of at-position from what
other systems would regard as derived fragments of the concept. This is not mere-
ly amatter of reasoning in the other direction; the mechanism invents the concept
in the first place from the underlying fragments, rather than just discovering the
relation between an already-formed concept and its already-formed fragments.
This having been done, the system indeed reasons both from the fragments to the
concept (by using verification conditions to judge the concept’s applicability),
and vice versa (by the concept’s designation in schemas’ contexts and results).

These considerations do not argue for empirical learning to the exclusion of ra-
tional learning. Indeed, explanation-based learning is a form of rational learning;
and, as the previous section suggests, subactivation may allow the schemamecha-
nism to support such learning—after an adequate substrate of knowledge has been
laid down by another process. (Analogously, biologically evolved systems that
build from within eventually do implement factories, which build from without;
the two systems are thereafter symbiotic.) Empirical rather than rational learning
is needed to get off the ground, both at the very origin of individual development,
and upon introduction to drastically novel domains; conceivably, even routine sit-
uations often require some on-the-fly fine-tuning of skills at levels for which no
rational analysis is readily available. Conventional Al proclaims that “in the
knowledge lies the power;” the constructivist rejoinder, to paraphrase a
well-known adage, is that learning will get you through times of no knowledge
better than knowledge will get you through times of no learning.

9.6 Virtual mechanisms and self-modification

There are two ways that a mechanism might change as it learns. As discussed in
section 7.2.1, a mechanism might operate in conjunction with its acquired data
structures to form a virtual mechanism that evolves as the structures evoive. Al-
ternatively, the mechanism might actually modify itself. For example, Lenat’s
learning system Eurisko [38] represents its own implementation in a format that
the system itself can modify (though not with great usefulness; see Haase [30]}).

Similarly, in SOAR, aspect@g&}pﬁmmp&@mrol structure are represented
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in a format that the system can change, making the system partially self-modify-
ing.30

Inmy view, itis implausible for a constructivist, Piagetian system to modify its
own implementation by the same principles it uses to modify its other data struc-
tures (the systems just mentioned are not Piagetian systems, so this objection does
not apply to them). Representing the system’s implementation in structures ame-
nable to elaboration by the system itself is vastly more difficult than thus repre-
senting, say, the rudiments of physical objects. It would make no apparent sense
to design a system that starts with the far more sophisticated built-in knowledge,
but has to reinvent the much more basic knowledge.

9.7 The schema mechanism and situated activity

The schema mechanism follows Piaget in emphasizing that an individual’ s physi-
cal activity is the foundation for acquired knowledge—even eventual abstract
knowledge far removed from physical domains. A recenttrendin Al highlighted
by the work of Suchman [65], Agre and Chapman [3, 2, 14], Brooks [10], and Wil-
son [75] also addresses activity that is said to be sitzuated in the physical world.

Brooks offers an intriguing methodological rationale for his line of research.
Brooks designs robot systems with roughly insect-like abilities; he argues that, on
the scale of biological evolution, insects are most of the way to humans, so artifi-
cial replication of humanlike intelligence might arise from gradual elaboration of
artificial insectlike intelligence. (Wilson puts forth a similar rationale, though
Wilson maintains that using simulated organisms in simulated worlds work as
well as building real insect-robots; Brooks argues that using the real world is vital,
since microworlds may fail to pose problems that their designers did not know
about.3!) In my view, infants are a more fruitful point of departure than insects;
but this, like many methodological disagreements, is probably most quickly re-

30. .Even a self-modifying mechanism can be described as an invariant mechanism operating in
conjunction with variable data to produce a variable mechanism at a higher level of abstraction.
For example, any computer implementation of Eurisko runs on digital hardware that remains con-
stant; the hardware maintains data which describe the implementation, and which change. But the
level of abstraction at which there is an invariant mechanism is one that describes a general-pur-
pose computer, not one that describes anything specific to Eurisko’s leaming apparatus. In con-
trast, the schema mechanism separates into a fixed mechanism and mutable data at an abstraction
level that does correspond to the substance of the leaming mechanism.

31. 1agree with Brooks' criticism of simulated domains, but maintain that real-world robotic do-
mains are as vulnerable to the same problem. In both cases, a leamning system faces challenges
defined by whatever interface has been constructed between it and its problem domain. In both
cases, that interface imposes some challenges on the mechanism, and glosses over others; and in
both cases, the designer may not anticipate all the challenges posed, or all the challenges not posed.
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solved by investing the necessary years of work on both approaches, and seeing
which (if either) succeeds.

A central theme of situated-activity work is the use of what Agre and Chapman
call leaning onthe world, as opposed torelying on an explicit internal model of the
state of the world. Their sense of leaning on the world has, I belive, two primary
components:

® Their systems do not represent the expected results of actions; rather, they
have what amount to situation-action rules (and, of course, machinery for
adjudicatingamong them). Section 9.1 argues that such an approachis likely
to preclude effective empirical learning; Agre and Chapman'’s systems do
not attempt to learn. Also, not representing results prevents being able to
learn from thought experiments as well as from real activity.

® Their systems do not build perspective-invariant representations of objects;
rather, the representations of situations are tightly bound to (rather sophisti-
cated) perceptual inputs to the system.

The latter point is similar to the Piagetian view, but with a different emphasis.
Sensorimotor schemas, which do not represent an object apart from its perceptual
manifestations, indeed provide a basis for the infant’s early activity. But, even
more importantly, such schemas and activity also form a scaffold for the creation
of explicit representations apart from perception, which in turn support more so-
phisticated activity. The emphasis on perception-based activity’s role in boot-
strapping up to explicit, perception-independent representations distinguishes
constructivist Al from situated-activity Al.

Agre and Chapman, Brooks, and Wilson present three distinct, innovative ar-
chitectures to support situated activity. Agre and Chapman’s system is organized
around the use of visual routines [70] to direct action; Brooks’s system is orga-
nized in a subsumption hierarchy [11] that allows progressive elaboration of the
system’s behavior; and Wilson’s animats (artificial animals) use a Holland-like
genetic algorithm [35] to evolve situation-action rules. All three systems avoid
explicit models of the predicted state of the world. Agre and Chapman’s primary
argument against using world models that make explicit predictions is the intrac-
tability of conventional planning [ 13] based on maintaining world models (partic-
ﬁlarly in the presence of uncertainty); but the schema mechanism’s control struc-
ture (which implements a special case of planning, by chaining schemas) is

efficient; and, like some sygejpy gt awBksiayorld models, supports the def-
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erral of low-level aspects of a plan that depend on yet-unknown details of the
world, and can respond seamlessly to unanticipated problems and opportunities.

Agre and Chapman’s deictic (originally indexical—functional) representation
has much in common with virtual generalization in the schema mechanism. Like
virtual generalization, deictic representation expresses a general rule by mapping
an instance to a particular perceptual view, and then having a routine that applies
to that view (for example, moving the hand to the position of object X can be ex-
pressed as: look at object X; then move the hand to where-looking). But the sche-
ma mechanism, in keeping with its philosophy of transcending leaning on the
world, can go on to build explicit instantiations of virtual generalizations, obviat-
ing the subsequent need to physically enact the mapping step (section 7.1.1).

Agre and Chapman propose deictic representation as an efficient alternative to
variable binding. I am unpersuaded, and do not make a similar claim for the sche-
ma mechanism’s virtual generalizations. Variable binding is indeed intractable
when done exhaustively; butit need not be intractable when good heuristics guide
the matching of variables to constants. The mapping step for virtual generaliza-
tions, and for deictic representations, effectively embodies such heuristics; the
techniques of virtual generalization and deictic representation—along with the
conventional technique of variable binding—will stand or fall on the develop-
ment of heuristics that indeed converge to the correct sliver of an exponentially
large search space.3?

9.8 The schema mechanism and the society of mind

Minsky’s Society of Mind theory [46] is an ingenious portrait of the human mind
as a huge, intricate agglomeration of perhaps thousands of disparate modules,
each fairly simple and unintelligent, some acting as managers for others. In con-
trast, the schema mechanism is a (comparatively) simple, uniform mechanism.

To some extent, the apparent dichotomy between these two approaches exag-
gerates the actual difference. The schema mechanism, if indeed present in the hu-

32.  Also, I believe, Agre and Chapman illustrate the adequacy of the deictic alternative to vari-
able binding only for purposes of the execution of plans, not for purposes of plan generation. Since
their microworlds include nondeterministic, unpredictable events, their systems embody a gener-
alized kind of plan. A traditional plan says, unconditionally, what next action to take (and can
therefore specify the entire sequence of actions in advance), whereas Agre and Chapman’ systems
conditionally specify the next action to take, as a function of the current state. (Calling their condi-
tional specifications generalized plans is my own description; Agre and Chapman would not neces-
sarily agree.) A traditional planner generates a plan from a description of the rules of the problem
domain, and a specification of the goal state. Agre and Chapman} systems have no facility for
generating plans, generalized or otherwise; their systems’ situation-action rules are hand-coded to
converge to the goal.
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man mind in some form, undoubtedly coexists with many other modules, some
involving sensorimotor interfaces, some strictly internal. Whether one regards
these modules as peripheral units hanging off the side of the schema mechanism
(which is the perspective suggested by this book), or as co-equal components of
the mind, is largely a matter of descriptive convention, rather than being a cont-
entful claim (although some statement of the relative importance of these mod-
ules may be implicit in the choice of description). Thus, the schema mechanism
could be seen as but one agency in a Minsky-like society.

Moreover, even within the schema mechanism, there is a huge, intricate
agglomeration—althoughit is an agglomeration of acquired structure, rather than
a built-in agglomeration. I fully agree with Minsky that human intelligence re-
quires a plethora of techniques and representations, and of competing agencies,
some of which may manage others. However, the strong need for such features
says nothing, a priori, about whether they characterize the innate architecture, or
only its constructs. The schema mechanism shows a rudimentary ability, for ex-
ample, to construct and choose among differently formulated representations of
the same thing (section 6.3.3). And one can readily imagine the development of
schemas whose activation systematically puts the mechanism into situations from
which it can learn usefully—a kind of self-managerial expertise. The hypotheti-
cal virtual mechanisms of chapter 7, for example, involve such management; and
section 4.3.3, for example, speculates about the mechanism’s development of
composite-action pathways that reliably get into trouble, thereby systematically
prompting the mechanism to figure out how to repair a path to a goal state. These
early steps and speculations are far from a demonstration of societal development,
but they at least hint at the possibility that a uniform underlying mechanism can
build and use a society of diverse agencies.

9.9 Other Piagetian or sensorimotor learning sys-
tems

The previous sections have characterized the schema mechanism with respect to
broad paradigms of AL. This section instead compares the schema mechanism
with specific research projects that attempt to model Piagetian learning, or senso-
rimotor learning that resembles early Piagetian learning. I make no attempt to be
exhaustive in citing such systems, but rather try to present a representative sam-

ple. Copyrighted Material
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9.9.1 Cunningham

Cunningham’s work [18] was the proximal inspiration of my own effort; that
work first suggested to me the idea of trying recapitulate sensorimotor develop-
ment, and the mechanism Cunningham proposed served as a point of departure
for the schema mechanism. Cunningham presents a hypothetical sensorimo-
tor-level scenario for his unimplemented mechanism. His scenario emphasizes
the development of the typical stages of intelligent strategy (the various circular
reactions, etc), rather than the development of object concepts. Cunningham does
not propose a viable mechanism for empirical learning; his bipartite schemas sim-
ply tie together all simultaneously active elements, and there is no other provision
for creating new representations.

9.9.2 Becker

Becker [6] proposes a mechanism and microworld for sensorimotor-level
learning (thoughhe does not explicitly cast thisin aPiagetian context, and he pres-
ents no scenario of expected development). Becker s mechanismexamines anex-
haustive record of serial primitive events. Anevent designated as a goal is found
in the sequence. A sequence starting with this event is taken to be a result, and a
sequence of events preceding it is proposed as its cause. Different event se-
quences leading to a common result are compared, and irrelevant events (and ir-
relevant ordering-constraints on the events) are discarded. This creates schemas
such as

fa] -> [b][c] -> [d] -> [e][f][g] => {h][i] -> [j] .

The sequence to the left of the double arrow is a cause, the sequence to the right
aresult; a single arrow designates an ordering constraint, while events not sepa-
rated by an single arrow are mutually unordered. The double arrow is placed so
that no actions lie in the result sequence. Elements of the cause sequence include
actions, and non-actions that serve serve as context conditions, which, as in the
schema mechanism, assure that the result will follow the action. Becker argues
for this context-action-result structure on the grounds of being able to chain sche-
mas to lead to a goal (although, as argued in section 9.1, two-part rules can be used
for that purpose as well).

The state elements that appear in event sequences are structured rather than
atomic. His system includes machinery for comparing and generalizing over parts
of these structures, but the structuring itself is built in; there is no provision for the

system to acquire such structuring of its own. There is no abstraction facility apart
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from discarding irrelevant components (or orderings) from a compound struc-
ture.

Becker’s system does not address the chicken-and-egg problem of empirical
learning. Rather, the combinatorial problem of associating events is glossed over
by considering only serial events. A variant of Becker s unimplemented mecha-
nism was implemented by Bond and Mott [7]. Their system used a simple robot,
which learned to turn towards and approach a light source to recharge its battery
whenitranlow. Despite its being situated in the real world, the robot’s trivial sen-
sorimotor interface ensured that recognized events were serial, and were typically
related when contiguous.

9.9.3 BAIRN

BAIRN, a program by Wallace, Klahr, and Bluff [71], is a production-system
model of cognitive development. BAIRN organizes its declarative and procedur-
al knowledge in structures called nodes. A node comprises a set of productions,
some of which express procedural knowledge—what action to take given particu-
lar circumstances and goals; others express declarative knowledge—what fol-
lows from current facts.

Insofar as nodes compete for activation, resulting in the invocation of their con-
stituent productions, a node is somewhat like a schema with a composite action
(though a node’s productions need not converge to a goal state). In addition, a to-
ken corresponding to anode’s activation can appear as a condition in a production
rule. The node’s activation thus effectively defines a state element; in this regard,
nodes are like synthetic items.

But nodes and synthetic items represent differently. A schema designates a
specific assertion, the counterfactual proposition that a given action, under speci-
fied circumstances, would have a particular effect; and a synthetic item represents
the validity conditions of a schema, the conditions under which the schema’s as-
sertion is true. In contrast, a node need not correspond to a succinct assertion,
though it might, depending on the productions in the node.

Wallace et al. report an impressive synopsis of BAIRNs acquisition of conser-
vation of number; the developmental progression closely follows the sequence
shown by children [28]. The progression culminates in BAIRN’s construction of
nodes designating the cardinality of collections, with productions that embody
the understanding that a collection of a number of objects keeps its cardinality,

despite any rearrangementegbfﬁajﬁg& Wilgsssgmething is added or removed.
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The construction of these nodes is particularly striking in view of the amor-
phous nature of what a node represents. The key to BAIRN’s ability to build such
nodes s the presence of highly structured built-in nodes that serve as predecessors
to the eventual number-repsesenting nodes. In particular, Wallace et al. postulate
built-in subitizing nodes, which perceive the numerosity of a small collection of
objects that are in the system’s focus of attention. When BAIRN counts actual
objects, its differentiation and generalization machinery builds variants of the
primitive nodes, appropriately modifying the variants’ constituent production
rules. A complicated derivation leads eventually to the number nodes.

Wallace et al. cite compelling evidence for the existence of innate subitizing
abilities in infants (e.g., Strauss and Curtis [64]); hence, their built-in subitizing
nodes are not at all ad hoc. Still, it is an open question how such innate compe-
tence might be embodied with respect to the central system. In the spirit of the
schema mechanism, for example, there might be a primitive item whose meaning
is There are rtwo objects in view that resemble the object I' m focusing on, another
item that means There are three of them, etc. These primitive items could enable a
system’s behavior to give evidence of subitizing abilities before the system reca-
pitulates any actual understanding of number. Incontrast, BAIRN’s built-in sub-
itizing nodes have extensive internal structure that is in the same format that
BAIRN itself uses, and that is fully accessible to BAIRN; without this accessibil-
ity, the construction of number-representing nodes could not proceed. Thus,
BAIRN’s invention of the number concept does not accord with a constructivist
account of human development; whether it accords with the actuality of human
development remains to be seen.

9.9.4 Darwin L, I1, and I1II

Gerald Edelman {24, 56] argues for the importance of neurophysiological verisi-
militude in models of intelligence (beyond the superficial neural resemblance of
connectionist systems and so-called neural nets). In particular, Edelman main-
tains 1) that the development of the brain—both the maturation of its circuitry,
and the adjustment of synaptic weights as the individual learns—follows a Darwi-
nian paradigm of a selection process that takes a set of random variants and repli-
cates or amplifies those which turn out to win some kind of experiential contest;
and 2) that in the brain, as in biological evolution, this selection culminates in
adaptationto the conditions imposed by the contest. Asdiscussedinsection4.2.5,
Edelman maintains that this adaptation leads the organism to autonomously de-
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tems) presuming that primitive symbols come pre-grounded in the categories of
interest.

Edelman’s Darwin I, I1, and I1I programs engage in classification and recogni-
tion of patterns in the environment. Darwin III, the most advanced of these ef-
forts, includes a simulated organism in a simulated world; the organism catego-
rizes the objects it encounters, and its categorizing is manifested in its behavior
toward the objects (grasping or avoiding, examining visually, etc.). The core
learning machinery has in common with neural networks the fact that it alters con-
nection strengths among quasi-neural assemblies to punish or reward these as-
semblies for their role in causing positive stimuli; the initial assemblies, however,
are more complex and less uniform than is typical for neural nets.

Edelman’s appeal to biology and evolution as models for intelligence are remi-
niscent of Piaget’s approach. Edelman, however, carries the appeal further, not
only taking evolution as ametaphor for learning, but taking neurobiology literally
as a detailed basis for a learning system. As just noted, Edelman criticizes con-
ventional symbolic Al systems for grounding their symbols in the categories in-
tended by the programmer, rather than autonomously; and, although connection-
ism has been put forth as a solution to that problem, Edelman criticizes this
solution by saying that its appeal to neurophysiology is half-hearted, and ulti-
mately unrealistic. But Edelman does not explain why neurophysiological real-
ism is important to solving the problem. His own mechanism, while different—
and more neurophysiologically realistic—in its details than other connectionist
systems, nonetheless shares the basic paradigm of training subsystems by
strengthening or weakening their responses based on their accord with some indi-
cator of a concept that is to be learned. And, as argued in section 4.2.5, that para-
digm per se is missing the crucial step—creating an indicator of a radically novel
concept in the first place, before being able to train a subsystem to recognize it.
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10 Conclusions

10.1 Methodological underpinnings of constructivist
Al

Research in artificial intelligence has two basic goals:

® The scientific goal is to understand human intelligence, which in turn has
several motivations; for instance:

® As anaturalist, one wonders about the workings of the human mind,
just as one explores any significant phenomenon in nature.

® Asaphilosopher, one seeks to comprehend such things as the structure
and limits of our knowledge, and the nature and origins of our feelings
and values, our thoughts, beliefs, attitudes, and conscious experiences.

® As a practicing human being, one wishes to understand one’s mind,
and others’, to help oneself and others achieve fulfillment.

® Asan engineer, one may want to design and build human-like intelli-
gence; this task would be aided by knowing just what human intelli-
gence is.

® Theengineering goal is to endow computers with intelligence, for two kinds
of reasons:

® One may promote the practical applications of intelligent machines.
Depending on the researcher, these applications may range from en-
hancing the quality of people’s lives to profitable technologies of death
and destruction.

® Onemay experiment with artificial intelligences as a source of ideas as
to how human intelligence might work.

Different emphases on these goals can lead to different Al methods. A practi-
cal-minded researcher might be happy with a machine that works efficiently, but
in a patently nonhuman way; someone more theoretically inclined might be con-
tent with a less efficient mechanism if it mirrored human capabilities in an inter-
esting way.

On the other hand, these two goals can be mutually supportive, as indicated by
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accomplish a given feat of intelligence are informed by knowing various ways
that it canbe accomplished. Conversely, insight as to how humans do work—der-
ived from introspection, observation, conversation, experiment, dissection,
etc.—may provide a fresh idea as to how a task can be accomplished. Specula-
tions about the machinery of human intelligence can be tested and revised by engi-
neering a mechanism that works the way humans are thought to, and improving it
until it performs adequately; which in turn creates new speculations about how
humans might work, and so on in a cycle of refinement. Different cycles, for dif-
ferent pieces of the puzzle, influence one another.

10.1.1 Levels of explanation

The scientific and engineering goals for Al support one another to the extent that
the artificial mechanisms under consideration do things the way humans do. But
this concept suffers from a serious ambiguity. For a mechanism to usefully re-
semble the human mind, does it suffice for the mechanism to correspond only
functionally, performing the same computation from input to output as humans
do; or must it implement the computation as humans do—and, if so, down to what
level of abstraction?

Probably the human mind, like other parts of any biological system, is orga-
nized in a hierarchy of levels of abstraction. There may be something analogous
to a logic-gate level in electronic computers, with a higher level designating
something like registers and data busses, perhaps followed by several layers of
virtual machines, some of which (if intelligence is indeed constructivist) are built
by the mechanism itself, as discussed in chapter 7. Atthe highest level of abstrac-
tion, only external behavior—actions as a function of cumulative sensations—is
described.

Simulating intelligence at the highest level is often without explanatory value
for natural intelligence. Consider, for example, a program like Weizenbaum’s
ELIZA [73], which carries on trivial conversations in English by triggering on
key words and performing simple grammatical transformations (e.g., rephrasing
asentence that was spoken to it, changing first-person phrases to the third person).
ELIZA roughly approximates the computation—the function from input to out-
put—that is executed in a superficial human conversation; people naively con-
versing with ELIZA sometimes fail to notice that ELIZA’s responses are vacuous.
But unlike a human in the same situation, ELIZA lacks the slightest comprehen-

sion of what it is talking about. It sheds virtually no light on how (even trivial
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human conversation works; it would not even serve as a useful point of departure
for an effort to model the machinery of human conversation.33

Other such examples abound. For instance, a program might play good chess
by doing very fast brute-force search of the game space, pruned by very simple
heuristics. But this may have little to do with how a person accomplishes a similar
level of play; human chess players apparently perform little explicit search of the
game space, relying instead, for example, on noticing analogies between the cur-
rent board position and other, familiar ones.

On the other hand, simulation at a very low level—say, that of individual neu-
rons, oreven individual atoms—is unnecessary and prohibitively impractical. By
analogy, to understand how a particular Lisp program performs a certain calcula-
tion, one need not know how the structures in the computation map onto the un-
derlying transistor physics of the machine running the program. Admittedly,
there are some purposes for which understanding to substantial depth is impor-
tant. Asaclinician, one must understand implementation on a variety of levels of
abstraction, since problems might arise on any level. (Though even for clinical
purposes, understanding the higher levels alone is not without value; that often
suffices for addressing issues that arise at those levels.) And as a naturalist, one
can be curious about all the various levels of implementation. But as an engineer
or philosopher, one needn’t always care which of several ways some mundane
module happens to be implemented, as long as one understands what the module
does, and how it can be done.

For purposes of engineering and philosophy, then, specification at the most su-
perficial level of abstraction provides an inadequate explanation of intelligence,
but very deep levels pose too strict a requirement. Some intermediate level is
needed. The following section proposes criteria for identifying the appropriate
level.

10.1.2 Foundational fragments

If we are addressing human adult intelligence as a whole—in contrast to some
minute subset, like the ability to add numbers or play chess or exchange verbal
salutations—then it would be valuable to know any mechanism that matched the

33. Weizenbaum does not dispute the superficiality of his simulation. In contrast, Colby re-
garded his own program, PARRY [16]—an ELIZA-like simulation of paranoid conversation—as
an explanatory model of human paranoia. Colby performed a Turning-test-like controlled experi-
ment in which a number of psychiatrists, communicating via teletype with a paranoid patient or
with PARRY, were unable to determine which was which. Putting this finding in perspective, Wei-
zenbaum [74] described a program which simulated a form of infantile autism; he speculated confi-
dently that no psychiatrist working via a teletype could distinguish this program—which gives no
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human mind even at the topmost leve! of abstraction, without concern for low-
er-level similarities. This is so for two reasons:

® No one can yet characterize (except in the vaguest terms) what intelligence
is at the topmost level (i.e., what computation is performed), except indexi-
cally—we point to intelligent beings and say that intelligence is like that.
Any artificial implementation of that computation would be, if nothing else,
a specification of the computation.

® It is quite possible that there are not many radically different reasonable
ways to implement whatever it is that intelligence, as a whole, does. To the
extentthat thisis so, one can zero in on how our intelligence works by setting
out to discover any way it reasonably could work.

This claim may seem contrary to the remarks above about the inadequacy of the
most superficial level of explanation, as illustrated by ELIZA. But the apparent
inconsistency can be resolved by considering fragments of the task of intelligen-
ce—by fragment,I mean some partial specification of the computation performed
by the system. There are several different dimensions along which fragments of a
system can be delineated, including:

® Domain. A fragment can be amodule that performs a subset of the task per-
formed by the entire system.

® Precision. A fragment can be a vague sketch of the computation performed
by the entire system, as, for example, Piaget’s theory sketches a proposed
constructivist mechanism, but not with enough precision to say just what
structures are created next, or just what action is to happen.

® Accuracy. A model of the system might be very precise—any implementa-
tion is precise, for example—but, below a certain resolution, its details
might be inaccurate, failing to match the original system.

ELIZA’s task, for example, is fragmented both by domain—being able to hold
abanal conversation is a very small aspect of human intelligence; and by accura-
cy—ELIZA’s conversation seems realistic only by the most casual and naive in-
spection.

When a fragment is severely limited in its precision, accuracy, or domain, it
may have a much more parsimonious implementation by itself than as a compo-
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tion of the task in isolation may bear little resemblance to its most reasonable im-
plementation in the context of the entire system; the former then teaches little or
nothing about the latter, severing the symbiosis between studying a natural imple-
mentation of the entire system and an artificial implementation of the fragmented
task.

But this does not mean that one must attack the whole system at once. A frag-
ment of the system may have the same reasonable implementation inisolation as it
has as part of the whole system’s behavior. Such a fragment can be called founda-
tional. 1dentifying foundational fragments of intelligence is useful because it af-
fords the methodological value of exploring natural intelligence via artificial
models, and vice versa—while focusing on a tractable subset of the system.

Insofar as a system’s implementation cleaves into cleanly separated modules
whose effects show through at top level, each module will tend to perform a foun-
dational fragment of the system’s task—the very separation of the modules tends
to assure that how each one can best implement its interface to the rest of the sys-
tem is unaffected by the internal details of the rest of the system. In particular, if
there is a module of the human mind devoted to Piagetian learning (e.g., aschema
mechanism), then Piagetian leamning is a foundational fragment of the mind’s be-
havior; the top-level manifestation of the learning module consists of the changes
to the individual’s behavior as knowledge is acquired. Constructivist Alisthe en-
terprise of working backward from that manifestation to reverse-engineer the un-
derlying module. (And by thus working backward from a manifestation to the
manifested entity, the enterprise exemplifies its own content and converges with
itself.)

10.2 Directions for future work

Suggestions for extensions of this work are scattered through preceding chapters.
First, as noted in the introduction to chapter 6, the present implementation results
are best viewed as a pilot effort; validation of the implementation results pres-
ented here requires replication and quantitative characterization of those resuits.
Secondly, some further progress through the Piagetian sequence might be
achieved just by moving the existing implementation to a larger machine, and
making trivial microworld extensions, such as providing for visually obscured
objects. Thirdly, several extensions to the basic mechanism appear worthy of ex-

ploration, some of which 'E&?)PF@M’@@"W&’F&@OW:
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® Subactivation. As discussed in section 7.1.3, subactivation would allow the

mechanism to learn from thought ex periments, as well as from actual physi-
calevents. Furthermore, the learning mechanism might be augmented (sec-
tion 9.4) to learn from a single subactivated trial, rather than having to do
statistical learning based on several identical repetitions.

Connectionist contexts. A schema’s extended context data proposes spinoff
schemas, and also maintains override conditions for the schema. The latter
function could be generalized by allowing the extended context to act as a
conventional connectionist network, adjusting its weights to compute some
function of its inputs (the state of all items) that corresponds to the validity
conditions of the schema. Such a function might usefully complement the
validity conditions computed by the contexts of spinoff schemas.

Clustering. Certain primitive items designate states which are special cases
of other primitively represented states (e.g., fovx20 is a special case of vf22;
tactd? is a special case of tactl). Representing states at different resolutions
facilitates the representation of state-spaces at different levels; having coor-
dinated coarse- and fine-grained spaces mitigates the combinatorics of
showing the path from one fine-grained place to another, because the path
can be represented as a coarse segment to get in the right vicinity, followed
by afine-tuning segment. It would be helpful if constructed state elements,
as well as primitive ones, could avail themselves of such organization. This
might be accomplished by noticing states that cluster together, in the sense
that they are mutual near neighbors in a network of schemas for transform-
ing among them. A new item might then be defined as the disjunction of
several clustered items.

Combinatorics and garbage collection. Marginal attribution does a credit-
able job of picking out reliable schemas (and their precursors) from the ex-
ponential space of expressible schemas. But even among such schemas,
there can be combinatorial proliferations of schemas that are useless varia-
tions of one another (e.g., schemas expressing the co-occurrence of foveal
events); there may also be many schemas that explore useless and sterile
corners of state-space. The schema mechanism may benefit from being able
to recognize and purge such structures—that is, to garbage-collect them. (1
borrow the term garbage collection from programming languages that fea-

ture automatic reclantle}r(I)é Apsmony, g;litaitores permanently inaccessi-
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ble—and therefore unusable—structures. The metaphor is used loosely
here; in the present sense, the reclaimed structures are estimated to be of
lesser value, but need not be flatly unusable.)

The most straightforward garbage collection technique is to purge the least
useful schemas, where usefulness increases with the frequency of a schema’s acti-
vation, and with the goal-value of the result achieved by activating it. Depending
on actual activation makes the usefulness measure responsive to all factors that
contribute to a schema’s selection for activation (including the availability of oth-
er, competing schemas in the situations that make a given schema applicable).

The value of actions and items might derive from the value of the schemas in
which they appear. Care must be taken when purging a structure to either purge
those structures that contain it as a component, or to change such them to remove
their reference to that structure.

Garbage collection based on actual use is infeasible until a large enough set of
structures has amassed. The threshold is determined by the amount of structure
needed to do interesting and useful things; the schema mechanism’s basic rather
than applied learning (section 9.1) causes it to build fragments of skills that will
not become useful until the rest of the necessary fragments also arise. Only then
can the usefulness of the useful structures become apparent, supporting an in-
formed choice of which structures to purge.

Other possible garbage collection criteria involve recognizing particular kinds
of unnecessary proliferations, and purging the proliferating structures:

® Building up to a context conjunction one item at a time leaves behind a trail
of precursor structures with incomplete contexts. If these structures’ ex-
tended contexts fail over a number of trials to make any progress toward
spawning further spinoffs, they might be purged.

® The mechanism might keep track of how often a given schema would be
spun off, if it didn’t already exist. If re-creating circumstances arise much
more frequently than the schema’s activation, the schema might be purged,
in the expectation that it is likely to be re-created before it is next needed (or
at least before the next several times). This reclamation would have the
plausible consequence that the mechanism might become rusty at unused
skills, due to the need to re-create some components on the fly when the skill

is resurrected. Copyrighted Material
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In addition to further extending and experimenting with the schema mecha-
nism itself, the schema mechanism’s developmental progression might suggest
experiments to perform with actual infants, to find evidence for or against corre-
sponding details of their development.

10.3 Evaluation and summary

It is important that at attempt to engineer a constructivist mechanism be guided
by a plausible theory of constructivism in humans; this provides both a point of
departure for the mechanism’s design, and a road map of target abilities by which
the mechanism can be appraised and revised. Moreover, taking such a theory as
a working hypothesis for the design of an artificial mechanism provides an elabo-
ration and appraisal of the original theory. The schema mechanism is built upon
Piaget’s theory of cognitive development; the focus is on sensorimotor-period de-
velopment, since the underlying mechanism is easiest to discern when acquired
structure is still simple.

The schema mechanism is a self-extensible system that constructs schemas,
actions, and items. The mechanism uses these constructs to represent the state of
the world, to discover regularities in the world, and to organize sequences of ac-
tions in the pursuit of goals. The schema mechanism tackles basic problems about
empirical learning and concept invention:

® Empirical learning poses the chicken-and-egg problem of identifying an ac-
tion’s results before knowing the corresponding context conditions; the so-
lution is to distinguish relevance from reliability, and to use an exhaustive
crossbar to look for relevance.

® Conceptinvention poses a deeper problem: the need to invent concepts that
do not resemble prior ones, and that may indeed be inexpressible (hence un-
definable) as any fixed function of prior ones. Here, the solution is to work
backward from a previously-conceived manifestation to postulate the pre-
viously-unconceived thing that is manifested; the newly conceived entity is
defined as the potential to evoke the manifestation.

The mechanism’s empirical-learning and concept-invention facilities share
the uncommon feature that both take counterfactuals seriously. By making coun-
terfactual assertions, schemas promote a useful modularity for learning by sepa-
rating the question of what would happen from the question of what should hap-

pen. And synthetic 1tem by reifying the validity conditions of their host
Copyrigtited Material



10.3. Evaluation and summary 209

schemas’ counterfactual assertions, gain the power to make conservation discov-
eries, acquiring representations of previously unconceived-of aspects of the
world that remain invariant when their manifestations change or cease.

Relying on counterfactuals may seem odd, given the relative novelty and ob-
scurity of the concept of counterfactual assertion, in contrast with the far more fa-
miliar (and far better understood) concept of logical implication. As noted in sec-
tion 8.8, counterfactuals pose subtle problems that are related to the problems of
nonnaive induction (and which perhaps have related solutions). Clearly, though,
counterfactuals are fundamental to what an organism needs to learn. Its most use-
ful predictions are contingent on its actions, which are in turn contingent on its
action-contingent predictions—the organism should take that action which, if it is
taken, predicts the best result, and that is an inherently counterfactual criterion.
The difficulty and obscurity of the concept of counterfactuals is, I suspect, a rea-
son that its fundamental importance for learning systems has been late to be rec-
ognized, rather than a reason to consider it an implausible basis for learning.

10.3.1 Evaluating the mechanism’s performance

The achievements of the schema mechanism’s implementation are on target, but
preliminary. The mechanism does use plausibly designed domain-independent
learning machinery to recapitulate some early milestones of Piagetian develop-
ment, including the anticipation of visual effects of hand motions, learning how
to bring the hand into view, discovering intermodal coordination (e.g., touching
what’s seen, and vice versa), conceiving of persistent visible and palpable objects,
and discovering their coextension. However, the mechanism just barely reaches
the point of constructing some such representations, and does not go so far as to
put them to practical use (say, to grasp an object in order to do something with it).
And even its rudimentary abilities are acquired in the context of a microworld and
sensorimotor interface that are far simpler than what the human environment pro-
vides.

The Piagetian milestones accomplished by the schema mechanism do not all
occur in the same order as in actual Piagetian development. For example, the
mechanism gains facility with recovering hidden objects before it masters inter-
modal coordination; as noted in section 6.3.3, although the mechanism succeeds
in building schemas that anticipate, say, tactile contact resulting from moving the
hand next to where an object is seen, the mechanism does not happen to develop

chains of schemas that enabjg yygaprese/thedraphere (though it does learn how
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to move the hand’s image elsewhere). Thus, it can predict tactile contact in that
situation, but cannot intentionally bring it about.

This out-of-sequence achievement of some milestones are at odds with an in-
terpretation of Piagetian stages that regards them as necessarily uniform, each
stage as a whole requiring the structure of the last as a whole. But the more flex-
ible view of stages espoused in section 2.9.2 is compatible with a variable order of
achievement; intermodal coordination is not logically prerequisite to persistence,
so the order may well depend on contingencies of a learning system’s environ-
ment. In particular, the schema mechanism’s microworld tends to confine the
available objects to a small set of “home positions”” (four such positions apiece),
compared to a larger number of visual-field regions (25); that reason alone might
explain why persistence of objects at those positions is more quickly learned than
knowledge formulated in part in terms of a visual representation.

The example of learning intermodal coordination raises another point. As just
noted, the schema mechanism can predict the tactile results of visible hand mo-
tions before being able to purposefully achieve those results. If an experimenter
were restricted to observing the actions of the schema mechanism’s simulated ro-
bot (as Piaget and other early investigators were restricted to observing infants’
overt behavior), there would be no apparent indication of the mechanism’s antici-
pation of tactile contact. The invisibility of that anticipation is reminiscent of the
results of recent investigators such as Baillargeon (section 2.9.3), who demon-
strates, by monitoring subtle indicators of surprise, that infants anticipate more
than they can act on. The schema mechanism illustrates how a learning system
that operates according to Piagetian themes might indeed know more than its
overt behavior indicates, leading to an overly conservative attribution of knowl-
edge if such behavior were the only evidence available.

A concluding caveat is in order concerning several major features of the sche-
ma mechanism whose usefulness has been argued for here, but has not been dem-
onstrated by the implementation, even though the features are part of the imple-
mentation. First of all, the chicken-and-egg problem tackled by marginal
attribution is not seriously posed by the schema mechanism’s microworld. The
microworld does allow for actions whose reliable effects may be rare without the
correct context conditions; still, few events occur at once, and they are almost al-
ways the result of the action just performed, so that more naive learning tech-
niques may well suffice to solve the chicken-and-egg problem here. Secondly,
although the purpose of the mechanism is to build structures that are both predic-
tive and useful, only the former has been demonstrated; the mechanism puts its

Copyrighted Material
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structures to so little use that the very existence of those structures probably would
not be inferable from the mechanism’s behavior. Thirdly, along the same lines,
the elaborate control criteria built into the mechanism, including the facility for
delegated value, contributes little to its performance. The mechanism’s only
achievementhas to build structures that represent aspects of its world—structures
which, at present, are revealed to observers only by monitoring the internal work-
ings of the mechanism.

10.3.2 Extrapolating from the implementation’s performance

As with any Al effort, the question arises as to whether we might expect this sys-
tem ever to go significantly further than it already has. Here is aroundabout argu-
ment for such extrapolation.

Prior to its most advanced acquisitions, the schema mechanism weaves net-
works of spatial knowledge (the visual and proprioceptive networks) that are not
predicted by Piaget. Nor do these acquisitions contradict Piaget; there is no con-
spicuous external manifestation of their presence or absence, so their develop-
ment is not externally evident. Nonetheless, their development proceeds accord-
ing to the same themes as explicitly Piagetian acquisitions, and, in the schema
mechanism, obtains from the same machinery. Doubtless much of this mi-
cro-Piagetian knowledge (as we might call it) is also built in to innate cognitive
modules; this may be true of much Piagetian knowledge as well, as discussed in
section2.9.3. But, as argued there, a general learning mechanism may need to re-
capitulate what is built in elsewhere in order to represent that knowledge in the
format that the Jearning mechanism can operate on, to then transcend what was
built in.34

Indeed, such eventual transcendence is the only apparent reason for any sys-
tem, natural or artificial, to be designed to rely on recapitulating what is already
builtin. Thus, if infant cognitive development is in fact a form of learning, there is
goodreason to expect that later development involves similar learning, so that the
principles of the early learning extrapolate to more advanced performance.

I think this argument offers the strongest reason to suspect that something
along the lines of the schema mechanism may be capable of more advanced
achievements. As just noted, the mechanism’s performance so far, while on the

34, The design of the schema mechanism makes no attempt to incorporate in its peripheral mod-
ules the sort of innate competence that exists in those modules in human beings. For one thing,
not enough is known of this innate competence to support a reasonable job of replicating it. Also,
it is unclear what influence, if any, the peripheral competence has on central-system development.
If the peripheral competence does help, then not having it in the schema mechanism makes the
mechanism's task even more formidable
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right track, is far too rudimentary to convincingly demonstrate extrapolability to
adultlike (or even childlike) intellectual capabilities. I think this is true of all arti-
ficial intelligence systems to date; extant Al programs either have expert-like abi-
lities in very narrow domains, general methods that work only on toy problems, or
are virtual programming languages whose generality and power derive from their
specific programming. For that matter, even the behavior of young humans is not
convincingly extrapolable—it would never occur to us, when we watched an in-
fant, that the infant might eventually attain adult competence, had we not already
known that to happen to others.

The schema mechanism—again, like other Al (and natural) systems—faces
combinatorial problems that threaten its ability to scale up to more advanced abi-
lities. Although the schema mechanism incorporates a number of features de-
signed to mitigate aspects of the combinatorial assault, there is no theoretical ar-
gument or practical demonstration that these features are necessary or sufficient.
But the core features of the schema mechanism—the machinery for empirical
learning (marginal attribution}, abstraction {(composite actions), and conceptual
invention (synthetic items)—arguably help explain Piagetian development. To
the extent that an artificial system resembies a natural system, the natural system
is an existence proof that something resembling the artificial system can indeed
work. And if the natural system has a way to keep its combinatorics in check—as
itmust, since it works—then such an ability can be built into the artificial system
as well.

Without Piaget’s elaborate observations of actual development, one might
react to the schema mechanism by saying that yes, it looks potentially powerful,
but the mechanism’s early object representations (for example) seem too strange
for us to be comfortable with the idea of an intelligence having to pass through
that. Similarly, given Piaget alone, one might acknowledge the force of his de-
scription of major developmental themes, but be skeptical of how or why a sensi-
bly engineered mechanism would exhibit (for example) the odd bugs evident in
early object-understanding. The schema mechanism and Piaget’s theory, taken
together, explain how the strange, early representations may support the eventual
invention of sensible concepts, and explain why a learning mechanism would ex-
hibit some of the odd bugs encountered along the way in Piagetian development.

When a mechanism figures out for itself that there are objects ‘‘out there,” it
dramatically demonstrates an ability to invent new concepts. The schema mecha-
nism implementation has taken preliminary but promising steps in that direction.
If this success continues—if it is shown that more of the Piagetian sequence of
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achievements, and mistakes, would indeed follow from this machinery designed
to construct and use novel representations—then I think it likely that such ma-
chinery is actually involved in the infant’s development.

In sum, to the extent that the schema mechanism might approximate the actual
mechanism of early Piagetian development, and to the extent that the mechanism
of early Piagetian development might be responsible for later development as
well, itis plausible that something like the schema mechanism can account for as-
pects of later development as well. The most ambitious hope for the present re-
searchis that it may be an early step towards an eventual such account—one more
verse in the long, strange song of who and how we are.

.! TheEndI
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