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The difference between the mathematical mind (esprit de géomé-
trie) and the perceptive mind (esprit de finesse): the reason that math-
ematicians are not perceptive is that they do not see what is before them,
and that, accustomed to the exact and plain principles of mathematics,
and not reasoning till they have well inspected and arranged their princi-
ples, they are lost in matters of perception where the principles do not
allow for such arrangement. . . . These principles are so fine and so
numerous that a very delicate and very clear sense is needed to perceive
them, and to judge rightly and justly when they are perceived, without
for the most part being able to demonstrate them in order as in math-
ematics; because the principles are not known to us in the same way, and
because it would be an endless matter to undertake it. We must see the
matter at once, at one glance, and not by a process of reasoning, at least
to a certain degree. . . . Mathematicians wish to treat matters of percep-
tion mathematically, and make themselves ridiculous . . . the mind . . .
does it tacitly, naturally, and without technical rules.

—PASCAL, Pensées
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Introduction to the MIT Press Edition

This edition of What Computers Can’t Do marks not only a change of
publisher and a slight change of title; it also marks a change of status.
The book now offers not a controversial position in an ongoing debate
but a view of a bygone period of history. For now that the twentieth
century is drawing to a close, it is becoming clear that one of the great
dreams of the century is ending too. Almost half a century ago computer
pioneer Alan Turing suggested that a high-speed digital computer,
programmed with rules and facts, might exhibit intelligent behavior.
Thus was born the field later called artificial intelligence (AI). After
fifty years of effort,however, itis now clear to all but a few diehards that
this attempt to produce general intelligence has failed. This failure does
not mean that this sort of Al is impossible; no one has been able to come
up with such a negative proof. Rather, it has turned out that, for the time
being at least, the research program based on the assumption that human
beings produce intelligence using facts and rules has reached a dead
end, and there is no reason to think it could ever succeed. Indeed, what
John Haugeland has called Good Old-Fashioned AI (GOFAI) is a
paradigm case of what philosophers of science call a degenerating
research program.

A degenerating research program, as defined by Imre Lakatos, is a
scientific enterprise that starts out with great promise, offering a new
approach that leads to impressive results in a limited domain. Almost
inevitably researchers will want to try to apply the approach more

/ ix
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broadly, starting with problems that are in some way similar to the
original one. As long as it succeeds, the research program expands and
attracts followers. If, however, researchers start encountering unex-
pected but important phenomena that consistently resist the new tech-
niques, the program will stagnate, and researchers will abandon it as
soon as a progressive alternative approach becomes available.

We can see this very pattern in the history of GOFAI. The program
began auspiciously with Allen Newell and Herbert Simon’s work at
RAND. In the late 1950s Newell and Simon proved that computers
could do more than calculate. They demonstrated that a computer’s
strings of bits could be made to stand for anything, including features
of the real world, and that its programs could be used as rules for
relating these features. The structure of an expression in the computer,
then, could represent a state of affairs in the world whose features had
the same structure, and the computer could serve as a physical symbol
system storing and manipulating such representations. In this way,
Newell and Simon claimed, computers could be used to simulate
important aspects of intelligence. Thus the information-processing
model of the mind was born.

Newell and Simon’s early work was impressive, and by the late
1960s, thanks to a series of micro-world successes such as Terry
Winograd’s SHRDLU, a program that could respond to English-like
commands by moving simulated, idealized blocks (see pp. 12-13), Al
had become a flourishing research program. The field had its Ph.D.
programs, professional societies, international meetings, and even its
gurus. It looked like all one had to do was extend, combine, and render
more realistic the micro-worlds and one would soon have genuine
artificial intelligence. Marvin Minsky, head of the M.I.T. AI project,
announced: “Within a generation the problem of creating ‘artificial
intelligence’ will be substantially solved.”?

Then, suddenly, the field ran into unexpected difficulties. The trouble
started with the failure of attempts to program an understanding of
children’s stories (see pp. 57-62). The programs lacked the common
sense of a four-year-old, and no one knew how to give them the
background knowledge necessary for understanding even the simplest
stories. An old rationalist dream was at the heart of the problem. GOFAI
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is based on the Cartesian idea that all understanding consists in forming
and using appropriate symbolic representations. For Descartes, these
representations were complex descriptions built up out of primitive
ideas or elements. Kant added the important idea that all concepts are
rules for relating such elements, and Frege showed that rules could be
formalized so that they could be manipulated without intuition or
interpretation. Given the nature of computers as possible formal sym-
bol processors, Al turned this rationalist vision into a research program
and took up the search for the primitives and formal rules that captured
everyday knowledge. Commonsense understanding had to be repre-
sented as a huge data structure comprised of facts plus rules for relating
and applying those facts. As it turned out, though, it was much harder
than anyone expected to formulate, let alone formalize, the required
theory of common sense. It was not, as Minsky had hoped, just a
question of cataloging 10 million facts. Minsky’s mood changed com-
pletely in the course of fifteen years. In 1982 he told a reporter: “The Al
problem is one of the hardest science has ever undertaken.”?

My work from 1965 on can be seen in retrospect as a repeatedly
revised attempt to justify my intuition, based on my study of Martin
Heidegger, Maurice Merleau-Ponty, and the later Wittgenstein, that the
GOFALI research program would eventually fail. My first take on the
inherent difficulties of the symbolic information-processing model of
the mind was that our sense of relevance was holistic and required
involvement in ongoing activity, whereas symbol representations were
atomistic and totally detached from such activity. By the time of the
second edition of What Computers Can’t Do in 1979, the problem of
representing what I had vaguely been referring to as the holistic context
was beginning to be perceived by Al researchers as a serious obstacle.
In my new introduction I therefore tried to show that what they called
the commonsense-knowledge problem was not really a problem about
how to represent knowledge; rather, the everyday commonsense back-
ground understanding that allows us to experience what is currently
relevant as we deal with things and people is a kind of know-how. The
problem precisely was that this know-how, along with all the interests,
feelings, motivations, and bodily capacities that go to make a human
being, would have had to be conveyed to the computer as knowledge —



Introduction to the MIT Press Edition ! xii

as a huge and complex belief system—and making our inarticulate,
preconceptual background understanding of what it is like to be a
human being explicit in a symbolic representation seemed to me a
hopeless task.

For this reason I doubted that the commonsense-knowledge problem
could be solved by GOFAI techniques, but I could not justify my
suspicion that the know-how that made up the background of common
sense could not itself be represented by data structures made up of facts
and rules. Granted that our background knowledge consists largely of
skills for dealing with things and people rather than facts about them,
what I needed was an argument against those who assumed that such
skills were representable in symbolic form. As it turned out, my brother
Stuart provided the missing argument in his phenomenological account
of skill acquisition.?

Skill acquisition, he pointed out, usually begins with a student
learning and applying rules for manipulating context-free elements.
This is the grain of truth in the information-processing model. Thus a
beginner at chess learns to follow strict rules relating such features as
center control and material balance. After one begins to understand a
domain, however, one sees meaningful aspects, not context-free fea-
tures. Thus the more experienced chess player sees context-dependent
characteristics such as unbalanced pawn structure or weakness on the
king side. At the next stage, a competent performer learns to set goals
and then look at the current situation in terms of what is relevant to
achieving those goals. A further stage of proficiency is achieved when,
after a great deal of experience, a player is able to see a situation as
having a certain significance tending toward a certain outcome, and
certain aspects of the situation stand out as salient in relation to thatend.
Given an appropriate board position, for example, almost all masters
would observe after a few seconds of examination that to win white
must attack the king side.

Finally, after even more experience, one reaches the level where one
sees immediately what must be done. A chess grandmaster, for ex-
ample, not only sees the issues in a position almost immediately, but the
right response just pops into his or her head. There is no reason to
suppose that the beginner’s features and rules, or any other features and
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rules, play any role in such expert performance.* That we once followed
a rule in learning to tie our shoelaces does not show, as Edward
Feigenbaum argues it does,’ that we must still be following that same
rule unconsciously whenever we tie a lace. That would be like claiming
that since we needed training wheels when learning how to ride a
bicycle, we must now be using invisible training wheels whenever we
ride. There is no reason to think that the rules that play a role in the
acquisition of a skill play a role in its later application.

When Mind Over Machine came out, however, Stuart and I faced the
same objection that had beenraised against my appeal to holism in What
Computers Can’t Do. You may have described how expertise feels,
critics said, but our only way of explaining the production of intelligent
behavior is by using symbolic representations, and so that must be the
underlying causal mechanism. Newell and Simon resort to this type of
defense of symbolic Al:

The principal body of evidence for the symbol-system hypothesis . . . is
negative evidence: the absence of specific competing hypotheses as to how
intelligent activity might be accomplished whether by man or by machine.®

In order to respond to this “what else could it be” defense of the physical
symbol system research program, we appealed in Mind Over Machine
to a somewhat vague and implausible idea that the brain might store
holograms of situations paired with appropriate responses, allowing it
to respond to situations in ways it had successfully responded to similar
situations in the past. The crucial idea was that in hologram matching
one had a model of similarity recognition that did not require analysis
of the similarity of two patterns in terms of a set of common features.
But the model was not convincing. No one had found anything resem-
bling holograms in the brain.

At this point, like Charlie Chaplin in Modern Times emerging from a
manhole with a red flag just as the revolutionaries came swarming by,
we happily found ourselves surrounded by the rapidly growing ranks of
neural-network modelers. As the commonsense-knowledge problem
continued to resist the techniques that had worked so well in problem
solving, and as pattern recognition and learning turned out to be much
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more intractable than anticipated, this alternative way of using comput-
ers to produce intelligence reemerged as an attractive research program
after a long period of dormancy. The triumphant arrival of the neural-
net revolutionaries, also called connectionists, completed the degen-
eration of the GOFAI research program.

The proposal that we should set about creating artificial intelligence
by modeling the brain’s learning power rather than the mind’s symbolic
representation of the world drew its inspiration not from philosophy but
from what was soon to be called neuroscience. It was directly inspired
by the work of D. O. Hebb, who had suggested in 1949 that a mass of
neurons could learn if the simultaneous excitation of neuron A and
neuron B increased the strength of the connection between them.” This
lead was followed in the late 1950s by Frank Rosenblatt, who reasoned
that since it was probably going to be hard to formalize intelligent
behavior, Al should instead attempt to automate the procedures by
which a network of neurons learns to discriminate patterns and respond
appropriately. Researchers seeking symbolic representations were looking
for a formal structure that would give computers the ability to solve a
certain class of problems or discriminate certain types of patterns.
Rosenblatt, conversely, wanted to build a physical device, or simulate
such a device on a digital computer, that could generate its own
abilities.

When symbolic Al seemed to stall, Donald Norman’s Parallel Dis-
tributed Processing group and others started investigating variations of
Rosenblatt’s project and chalked up surprising successes. Soon, frus-
trated Al researchers, tired of clinging to a research program that Jerry
Lettvin characterized in the early 1980s as “the only straw afloat,”
began defecting to the revived paradigm. Rumelhart, McClelland, and
the PDP Research Group’s two-volume work, Parallel Distributed
Processing,had 6000 backorders the day it went on the market in 1986,
and over 45,000 sets are now in print. Like the dissolution of the Soviet
Union, the speed of collapse of the GOFAI research program has taken
everyone, even those of us who expected it to happen sooner or later, by
surprise.®

Happily for Stuart and me, the neural-network modelers had a much
more plausible answer to the question, If not symbols and rules, what
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else? Their model showed that one need not store cases at all; instead,
a designer could tune a simulated multilayer perceptron (MLP) neural
network® by training it to respond to specific situations and then having
it respond to other situations in ways that are (the designer hopes)
appropriate extrapolations of the responses it has learned. Indeed, the
most striking difference between neural-network modeling and GOFAI
is that the neural-network modeler provides not rules relating features
of the domain but a history of training input-output pairs, and the
network organizes itself by adjusting its many parameters so as to map
inputs into outputs, that is, situations into responses. Thus computers
running simulations of such nets do not count as physical symbol
systems. Paul Smolensky, one of the PDP researchers, sums up the
point:

Connectionist systems are large networks of extremely simple processors,
massively interconnected and running in parallel. Each processor has a nu-
merical activation value which it communicates to other processors along
connections of varying strengths. The activation value for each processor
constantly changes in response to the activity of the processors to which it is
connected. The values of some of the processors form the input to the system,
and the values of other processors form the output. The connections between
the processors determine how input is transformed to output. In connectionist
systems, knowledge is encoded not in symbolic structures but rather in the
pattern of numerical strengths of the connections between processors.!°

In retrospect, the stages of my critique of attempts to use computers
as physical symbol systems to simulate intelligence now fell into place.
My early appeal to holism, my concern with commonsense understand-
ing as know-how, Stuart’s phenomenology of everyday skills, and the
capacities of simulated neural networks all added up to a coherent
position—one that predicted and explained why GOFAIresearch should
degenerate just as it had.

Here is where I would like to say “and the rest is history,” but there
are two issues that must be faced before we lay the whole controversy
to rest. First, the GOFALI research program has refused to degenerate
gracefully and is fighting on, and we have to ask why this is happening.
Second, the question remains whether neural networks can be intelli-
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gent or whether network researchers, like Al researchers in the 1960s,
are basing their hopes on ad hoc successes that may not be generaliz-
able.

That GOFAI was not as dead as I believed was brought home to me
by public television. Readers may have seen an impressive five-part
series called “The Machine That Changed the World,” one episode of
which was devoted to Al In that episode my objections to symbolic Al,
and specifically my conclusion that in attempting to represent common
sense GOFAI had run into a problem it could not solve, was played off
againstthe claims of a lone Al researcher, Douglas Lenat.In 1984 Lenat
had shared my sense of AI's stagnation:

By the mid-1970s, after two decades of humblingly slow progress, workers in
the new field of artificial intelligence had come to a fundamental conclusion
about intelligent behavior in general: it requires a tremendous amount of
knowledge, which people often take for granted but which must be spoon-fed
to a computer. . . . Understanding even the easiest passages in common
English, for example, requires a knowledge of the context, the speaker and the
world at large that is far beyond the capabilities of present-day computer
programs.!!

And by 1991 his concern was even clearer: “Most of the current Al
research we’ve read about is currently stalled.”'? Nevertheless, he is not
discouraged. He heads a research team at the Microelectronics and
Computer Technology Corporation (MCC) thatis in the middle of a ten-
year project aimed at formalizing consensus knowledge, that is, “the
millions of abstractions, models, facts, rules of thumb, representations,
etc., that we all possess and that we assume everyone else does.”"?
This is not the sort of knowledge that is in an ordinary encyclopedia.
Rather, it is the taken-for-granted knowledge that is used by readers in
understanding an encyclopedia article and, more generally, in under-
standing what goes on in the world. Consensus knowledge ranges from
“George Bush is President of the United States” to “George Bush wears
underwear” to “When George Bush is in Washington, his left foot is
also in Washington.” Lenat presents himself as the only person willing
to take on the commonsense-knowledge problem as a major research
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program instead of trying to finesse it. And he is confident that, thanks
to his research, “artificial intelligence is within our grasp.”**

Through cross-cut interviews, the Black Knight of AI, as I have been
called, met the White Knight of symbolic information processing for a
final joust. Lenat claimed that his project was going well and had a 60
percent chance of success. I came across as dubious but ill-informed
and made some unconvincing objections. Clearly, my claim that the
GOFAI program is degenerating can be dismissed as merely reporting
atransient sociological phenomenon unless I can defend my conviction
that Lenat’s project is doomed.

To understand my critique of the GOFAI approach to common sense,
it helps to know its ancestry. Rationalists such as Descartes and Leibniz
thought of the mind as defined by its capacity to form representations
of all domains of activity. These representations were taken to be
theories of the domains in question, the idea being that representing the
fixed, context-free features of a domain and the principles governing
their interaction explains the domain’s intelligibility. On this view all
that we know —even our general know-how for getting around in the
world and coping with things and people —must be mirrored in the mind
in propositional form. I shall call this view of the mind and its relation
to the world “representationalism.” Representationalism assumes that
underlying everyday understanding is a system of implicit beliefs.

This assumption is shared by intentionalist philosophers such as
Edmund Husserl and computationalists such as Jerry Fodor and GOFAI
researchers. The specific Al problem of representing all this knowledge
in formal rules and features only arises after one has already assumed
that common sense derives from a vast data base of propositional
knowledge. When, instead of developing philosophical theories of the
transcendental conditions that must hold if the mind is to represent the
world, or proposing psychological models of how the storage and
retrieval of propositional representations works, researchers in Al
actually tried to formulate and organize everyday consensus knowl-
edge, they ran into what has come to be called the commonsense-
knowledge problem. There are really at least three problems grouped
under this rubric:
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1. How everyday knowledge must be organized so that one can make
inferences from it.

2. How skills or know-how can be represented as knowing-that.
3. How relevant knowledge can be brought to bear in particular situations.

While representationalists have written programs that attempt to deal
with each of these problems, there is no generally accepted solution, nor
is there a proof that these problems cannot be solved. What is clear is
that all attempts to solve them have run into unexpected difficulties, and
this in turn suggests that there may well be in-principle limitations on
representationalism. At the very least these difficulties lead us to
question why anyone would expect the representationalist project to
succeed.

Lenat, however, thinks that his predecessors have simply not tried
hard enough to systematize common sense. His goal is to organize
commonsense knowledge using general categories that make no refer-
ence to the specific uses to which the knowledge is to be put:

Naturally, all programs are built on some primitives (predicates, frames, slots,
rules, functions, scripts).!* But if you choose task-specific primitives, you’ll
win in the short run (building a program for that narrow domain) butlose in the
long run (you’ll find yourself painted into a corner when you try to scale the
program up).'¢

Lenat relates his work to the traditional philosophical job of working
out an ontology—a description of the various types of context-free
entities and their relationships—and he sees that turning traditional
ontology into a research program is no small task:

A serious attempt at [capturing consensus knowledge] would entail building a
vast knowledge base, one that is 10*to 10°larger than today’s typical expert
system, which would contain general facts and heuristics and contain a wide
sample of specific facts and heuristics for analogizing as well. . . . Moreover,
this would include beliefs, knowledge of others’ (often grouped by culture, age
group, or historical era) limited awareness of what we know, various ways of
representing things, knowledge of which approximations (micro-theories) are
reasonable in various contexts, and so on."”
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The data structures must represent objects and their properties,
individuals, collections, space, time, causality, events and their ele-
ments, agency, institutions, and oddly, from a traditional philosophical
point of view, recurrent social situations such as dinner at a restaurant
or a birthday party. This data-base ontology, like any traditional
rationalist ontology, must bottom out in primitive elements.

Choosing a set of representation primitives (predicates, objects, functions) has
been called ontological engineering—that is, defining the categories and
relationships of the domain. (This is empirical, experimental engineering, as
contrasted with ontological theorizing, which philosophers have done for
millennia.)!®

Lenatis clear that his ontology must be able to represent our commonsense
background knowledge — the understanding we normally take for granted.
He would hold, however, that it is premature to try to give a computer
the skills and feelings required for actually coping with things and
people. No one in Al believes anymore that by 2001 we will have an
artificial intelligence like HAL. Lenat would be satisfied if the Cyc data
base could understand books and articles, for example, if it could
answer questions about their content and gain knowledge from them. In
fact, it is a hard problem even to make a data base that can understand
simple sentences in ordinary English, since such understanding re-
quires vast background knowledge. Lenat collects some excellent
examples of the difficulty involved. Take the following sentence:

Mary saw a dog in the window. She wanted it.!
Lenat asks:

Does “it” refer to the dog or the window? What if we’d said “She smashed it,”
or “She pressed her nose up against it”?%

Note that the sentence seems to appeal to our ability to imagine how
we would feel in the situation, rather than requiring us to consult facts
about dogs and windows and how a typical human being would react.
It also draws on know-how for getting around in the world, such as how
to get closer to something on the other side of a barrier. In this way the
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feelings and bodily coping skills that were excluded to make Lenat’s
problem easier return. We need to be able to imagine feeling and doing
things in order to organize the knowledge we need to understand typical
sentences. There are also all the problems of “deixis,” that is, the way
we locate things with respect to our own locations, as “over there,”
“nearby,” etc. All these problems point to the importance of the body.
Lenat does not tell us how he proposes to capture in propositional terms
our bodily sense of what is inside and outside, accessible and inacces-
sible, and what distance we need to be from various sorts of things to
get an optimal grip on them. He just tells us dogmatically that this can
be done.

Our response—in principle and in CYC—is to describe perception, emotion,
motion, etc.,down to some level of detail that enables the system to understand
humans doing those things, and/or to be able to reason simply about them.?!

In our constructed television debate my claim that an intelligence
needs a body was dismissed by reference to the case of Madeleine, a
wheelchair-bound woman described by Oliver Sacks, who was blind
from birth, could not use her hands to read braille, and yet acquired
commonsense knowledge from books that were read to her. But this
case does not in fact support Lenat. Madeleine is certainly not like a
computer. She is an expert at speaking and interacting with people and
so has commonsense social skills. Moreover, she has feelings, both
physical and emotional, and a body that has an inside and outside and
can be moved around in the world. Thus she can empathize with others
and to some extent share the skillful way they encounter their world.
Her expertise may well come from learning to discriminate many
imagined cases and what typically occurs in them, not from forming a
model of the world in Lenat’s sense. Indeed, Sacks says that Madeleine
had “an imagination filled and sustained, so to speak, by the images of
others,images conveyed by language.”?? Thus the claim that Madeleine’s
acquisition of commonsense knowledge from books despite her inabil-
ity to see and move her hands proves that a person can acquire and
organize facts about the world on the model of a symbolic computer
being fed rationally ordered representations ignores the possibility that
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a person’s bodily skills and imagination are a necessary condition for
acquiring common sense even from books.

Mark Johnson gives a good argument for the importance of imagina-
tion even in conscious problem solving:

Imagination is a pervasive structuring activity by means of which we achieve
coherent, patterned, unified representations. It is indispensable for our ability
to make sense of our experience, to find it meaningful. The conclusion ought
to be, therefore, that imagination is absolutely central to human rationality,
that is, to our rational capacity to find connections, to draw inferences, and to
solve problems.?

To assume that Madeleine’s body and imagination are irrelevant to her
accumulation, organization, and use of facts, and that her skills them-
selves are the result of just more storing and organizing of facts, begs
the question. Why should we assume that the imagination and skills
Madeleine brings to the task of learning and using common sense can
be finessed by giving a computer facts and rules for organizing them?

A way to see the implausibility of this claim is to ask how the
computer —with its millions of facts organized for no particular pur-
pose—might be able to retrieve just the relevant information for
understanding a sentence uttered in a specific situation. This is a far
harder problem than that of answering questions on the basis of stored
data, which seems to be all that Lenat has considered until now. In order
to retrieve relevant facts in a specific situation, a computer would have
to categorize the situation, then search through all its facts following
rules for finding those that could possibly be relevant in this type of
situation, and finally deduce which of these facts are actually relevant
in this particular situation. This sort of search would clearly become
more difficult as one added more facts and more rules to guide it.
Indeed, AI researchers have long recognized that the more a system
knows about a particular state of affairs, the longer it takes to retrieve
the relevant information, and this presents a general problem where
scaling up is concerned. Conversely, the more a human being knows
about a situation or individual, the easier it is to retrieve other relevant
information. This suggests that human beings use forms of storage and
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retrieval quite different from the symbolic one representationalist
philosophers and Lenat have assumed.
Lenat admits that there is a problem:

The natural tendency of any search program is to slow down (often combina-
torially explosively) as additional assertions are added and the search space
therefore grows. ... [T]he key to preserving effective intelligence of a growing
program lies in judicious adding of meta-knowledge .2

The problem is that the rules and meta-rules are just more meaningless
facts and so may well make matters worse.

In the end, Lenat’s faith that Cyc will succeed is based neither on
arguments nor on actual successes but on the untested traditional
assumption that human beings have a vast library of commonsense
knowledge and somehow solve the scaling-up problem by applying
further knowledge:

We’re often asked how we expect to efficiently “index” — find relevant partial
matches —as the knowledge base grows larger and larger. . . . Our answer . . .
often appears startling at first glance: wait until our programs are finding
many, far-flung analogies, but inefficiently, i.e. only through large searches.
Then investigate what additional knowledge people bring to bear, to eliminate
large parts of the search space in those cases. Codify the knowledge so
extracted, and add it to the system.?

But the conviction that people are storing context-free facts and
using meta-rules to cut down the search space is precisely the dubious
rationalist assumption in question. It must be tested by looking at the
phenomenology of everyday know-how. Such an account is worked out
by Heidegger and his followers such as Merleau-Ponty and the anthro-
pologist Pierre Bourdieu. They find that what counts as the facts
depends on our everyday skills. In describing a society in which gift-
exchange is important, Bourdieu tells us:

If it is not to constitute an insult, the counter-gift must be deferred and
different, because the immediate return of an exactly identical object clearly
amounts to a refusal. . .. It is all a question of style, which means in this case
timing and choice of occasion, for the same act—giving, giving in return,
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offering one’s services, paying a visit, etc.—can have completely different
meanings at different times.?

Yet members of the culture have no trouble understanding what to do.
Once one has acquired the necessary social skill, one does not need to
recognize the situation objectively as having the features of one in
which gift-giving is appropriate and then decide rationally what gift to
give. Normally one simply responds in the appropriate circumstances
by giving an appropriate gift. That this is the normal response is what
constitutes the circumstance as a gift-giving situation. The same, of
course, holds for the know-how of what gift is appropriate. One does
not have to figure out what is appropriate, or at least not the range of
what is appropriate. Everyone’s skills are coordinated so that normally
one is just solicited by the situation to give a certain type of gift, and the
recipient, socialized into the same shared practices, finds it appropriate.
Bourdieu comments:

The active presence of past experiences . . . deposited in each organism in the
form of schemes of perception, thought, and action, tend to guarantee the
‘correctness’ of practices and their constancy over time, more reliably than all
formal rules and explicit norms.”

This sort of experience suggests that structuring a knowledge base so
as to represent all facts about gift-giving is necessary only for a stranger
or spectator who does not already have the appropriate skill. Bourdieu
insists that it is a mistake — one often made by anthropologists, philoso-
phers, and, we can add, Al researchers—to read the rules we need to
appeal to in breakdown cases back into the normal situation and then to
appeal to such representations for a causal explanation of how a skillful
response is normally produced.

The point of this example is that knowing how to give an appropriate
gift at the appropriate time and in the appropriate way requires cultural
savoir faire. So knowing what a gift is is not a bit of factual knowledge,
separate from the skill or know-how for giving one. The distinction
between what a gift is and what counts as a gift, which seems to
distinguish facts from skills, is an illusion fostered by the philosophical
belief in a nonpragmatic ontology. Since the organization and content
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of a gift frame presupposes gift-giving practices, there is no need of and
no evidence for frames and slots that spell out the supposed objective
features of gifts and gift-giving occasions. It is doubtful that such an
exhaustive account is even possible.

There is an even deeper problem lurking in wait for Lenat. We are not
only able to cope with changing events and motivations, both on the fly
and in our imaginations; we are also able to project our understanding
into new situations. If one is a master of a cultural practice, one can
sometimes do what has not so far counted as appropriate and have it
recognized in retrospect as having been just the right thing to do. Thus
a master of the culture can introduce a new sort of gift or a new gift-
giving occasion. This happens not only at private parties and public
ceremonies but, of course, also in stories and reports about such
occasions. A data base that did not share the culture’s savoir faire, then,
would not only be unable to give appropriate gifts —we’ve agreed that
Lenat does not have to build a skillful robot—but would also fail as a
system storing our consensus knowledge of gifts because it could not
understand innovations in gift-giving.

Lenat sees that the ability to extend our knowledge is crucial both to
exercising our knowledge and to acquiring new knowledge from expe-
rience. Indeed, the success of his program, by his own criterion,
requires that it be able to extend what it knows and learn from reading
books and articles rather than from “brain surgery.” The question of
how we project or extend what we already know therefore becomes
crucial.

Designing more proficient learning programs depends in part on finding ways
to tap a source of power at the heart of human intelligence: the ability to
understand and reason by analogy. . . . This source of power is only beginning
to be exploited by intelligent software, but it will doubtless be the focus of
future research.?

Granted that an intelligent person can see analogies or similarities to
what he or she already knows, there are several ways to think about this
basic human capacity. The classical rationalist tradition since Aristotle
has tried to understand analogies as proportions. A second tradition
traces analogy back to our experience of our body. A third approach has
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reacted to the implausibility of the classical tradition by approaching
analogy in terms of extrapolating a style. Lenat, of course, belongs to
the first camp; Mark Johnson and George Lakoff belong to the second,;
and Heidegger, Merleau-Ponty, and Bourdieu belong to the third.

Bourdieu mentions the role of style in learning and extrapolating gift
exchanges. It may well be that different cultures have different styles —
aggressive, passive, controlling, etc.—and that infants pick up first on
these pervasive styles, which in turn direct what the infant notices and
imitates. If this is so, we would expect style to play an important role
in what similarities are noticed and what metaphors are used to organize
experience. Style, however, is generally neglected in GOFAI. The only
Al researcher who has seen its importance is Douglas Hofstadter, but
even he has not come up with any convincing proposals for dealing with
it

Given that the solution of this problem is essential to the success of
his system, Lenat’s remarks on analogy are rather sketchy. Still, what
he does say works out the rationalist approach in enough details to
reveal its implausibility. Lenat’s sensitivity to metaphors and analogies
is arresting and persuasive.

Almost every sentence is packed with metaphors and analogies. An unbiased
example: here is the first article we saw today (April 7, 1987), the lead story
in the Wall Street Journal: “Texaco lost a major ruling in its legal battle with
Pennzoil. The Supreme Court dismantled Texaco’s protection against having
to post a crippling $12 billion appeals bond, pushing Texaco to the brink of a
Chapter 11 filing.” Lost? Major? Battle? Dismantled? Posting? Crippling?
Pushing? Brink? The example drives home the point that, far from overinflat-
ing the need for real-world knowledge in language understanding, the usual
arguments about disambiguation barely scratch the surface. (Drive? Home?
The point? Far? Overinflating? Scratch? Surface? Oh no, I can’t call a halt to
this! (call? halt?))*

Lenat’s faith that the metaphors “bottom out” in primitives, however,
is not convincing, nor is it argued for. He simply asserts:

These layers of analogy and metaphor eventually ‘bottom out’ at physical —
somatic—primitives: up, down, forward, back, pain, cold, inside, seeing,
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sleeping, tasting, growing, containing, moving, making noise, hearing, birth,
death, strain, exhaustion, . . .*!

The fact that these are somatic primitives does not seem to bother him
at all.

Lenat, nonetheless, asks the right question: “How can a program
automatically find good mappings?”® But he gives the simplistic
rationalist answer: “If A and B appear to have some unexplained
similarities, then it’s worth your time to hunt for additional shared
properties.”3

This begs the question. Everything is similar to everything else in an
indefinitely large number of ways. Why should we suppose that any two
items should be compared? Even if two frames have many slots in
common, why should we think these are the important similarities?
Perhaps the important similarities cannot be symbolically represented
atall. Both the defenders of the basic role of our sense of our active body
with inside/outside, forward/backward, and up/down dimensions and
those who hold that similarity of style is what defines what is worth
comparing would hold that there is no reason to think that the con-
straints on similarity can be represented symbolically.

When John Searle tried to understand metaphors as proportions, he
found that metaphors like “Sally is a block of ice” could not be analyzed
by listing the features that Sally and a large, cold cube have in common.

If we were to enumerate quite literally the various distinctive qualities of
blocks of ice, none of them would be true of Sally. Even if we were to throw
in the various beliefs that people have about blocks of ice, they still would not
be literally true of Sally. ... Being unemotional is not a feature of blocks of
ice because blocks of ice are not in that line of business at all, and if one wants
to insist that blocks of ice are literally unresponsive, then we need only point
out that that feature is still insufficient to explain the metaphorical utterance
meaning . . . because in that sense bonfires are “unresponsive” as well.*

Searle concludes:

There are . . . whole classes of metaphors that function without any underlying
principles of similarity. It just seems to be a fact about our mental capacities
that we are able to interpret certain sorts of metaphor without the application
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of any underlying ‘rules’ or ‘principles’ other than the sheer ability to make
certain associations. I don’t know any better way to describe these abilities
than to say that they are nonrepresentational mental capacities.’

So far we have only discussed the facts and metaphors that are
constituted by our social skills. What about the facts of nature? Where
a domain of facts is independent of us, as is the domain of physical
objects, do we then need a theory of the domain? Not likely. The way
people cope with things is sometimes called commonsense physics.
This leads to the comforting illusion that just as the planets do not move
around at random but obey general principles, so everyday objects do
not stick, slide, fall, and bounce in an unprincipled way but obey
complex and particular laws. Attempts to work out commonsense
physics for the simplest everyday objects, however, lead to formal
principles that are subject to many exceptions and are so complex that
it is hard to believe they could be in a child’s mind.* Lenat concludes
from this that what we know concerning how everyday objects behave
cannot be principles but must be a lot of facts and rules.

[The Cyc] methodology will collect, e.g., all the facts and heuristics about
“Water” that newspaper articles assume their readers already know. This is in
contrast to, for instance, naive physics and other approaches that aim to
somehow capture a deeper theory of “Water” in all its various forms.*’

But granted that there is no reason to think that there can be a theory of
commonsense physics as there is of celestial physics, that is no reason
to think that our know-how for dealing with physical objects can be
spelled out in some all-purpose data base concerning physical objects
and their properties. Perhaps there is no set of context-free facts
adequate to capture the way everyday things such as water behave. We
may just have to learn from vast experience how to respond to thou-
sands of typical cases. That would explain why children find it fascinat-
ing to play with blocks and water day after day for years. They are
probably learning to discriminate the sorts of typical situations they
will have to cope with in their everyday activities. For natural kinds like
water, then, as well as for social kinds like gifts, common sense seems
to be based on knowing-how rather than knowing-that, and this know-
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how may well be a way of storing our experience of the world that does
not involve representing the world as symbolic Al required.

This still leaves the important question of how human beings manage
to engage in purposive behavior. The traditional view, accepted by
GOFALI, has been that they use their theory of the domain in question to
work out a plan for accomplishing whatever they are trying to do. But
rather than suggesting that people store vast numbers of facts and then
plan how to use them, the phenomena, which have to be trusted until
psychology or neuroscience gives us any reason to think otherwise,
suggest that when one has had a great deal of experience in a domain,
one simply sees what needs to be done. It seems that when a person has
enough experience to make him or her an expert in any domain, the field
of experience becomes structured so that one directly experiences
which events and things are relevant and how they are relevant.
Heidegger, Merleau-Ponty, and the gestaltists would say that objects
appear to an involved participant not in isolation and with context-free
properties but as things that solicit responses by their significance.

In the first edition of this book I noted that good chess players don’t
seem to figure out from scratch what to do each time they make a move.
Instead, they zero in on a certain aspect of the current position and
figure out what to do from there (pp. 102-106). In Mind Over Machine
Stuart went further and pointed out that a mere master might need to
figure out what to do, but a grandmaster just sees the board as demand-
ing a certain move.*®

We are all masters in our everyday world. Consider the experience of
entering a familiar type of room. We know but do not appeal to the sort
of facts that can be included in a room frame, such as that rooms have
floors, ceilings, and walls, that walls can have windows in them, and
that the floor can have furniture on it. Instead, our feeling for how rooms
normally behave, a skill for dealing with them that we have developed
by crawling and walking around many rooms, gives us a sense of
relevance. We are skilled at not coping with the dust, unless we are
janitors, and not paying attention to whether the windows are open or
closed, unless it is hot, in which case we know how to do what is
appropriate. Our expertise in dealing with rooms determines from
moment to moment both what we cope with by using and what we cope
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with by ignoring (while being ready to use it should an appropriate
occasion arise). This global familiarity maps our past experience of the
room onto our current activity, so that what is appropriate on each
occasion is experienced as perceptually salient or simply elicits what
needs to be done.

In general, human beings who have had vast experience in the natural
and social world have a direct sense of how things are done and what to
expect. Our global familiarity thus enables us to respond to what is
relevant and ignore what is irrelevant without planning based on
purpose-free representations of context-free facts. Such familiarity
differs entirely from our knowledge of an unfamiliar room, such as the
room of an seventeenth-century nobleman. In that sort of room our
knowledge resembles the sort of knowledge a data base might have. But
even if a Jacobean drawing-room frame and its slots were all in place,
we would still be disoriented. We would not know what to pay attention
to or how to act appropriately.

Global sensibilities (or the imagination thereof) determine situ-
ational relevance because our world is organized by these preconceptual
meanings. It is in terms of them that objects and events are experienced
as something. Our everyday coping skills and the global familiarity
they produce determine what counts as the facts and the relevance of all
facts and so are already presupposed in the organization of the frames
and slots GOFAI uses for representing these facts. That is why human
beings cope more easily and expertly as they learn to discriminate more
aspects of a situation, whereas, for data bases of frames and rules,
retrieving what is relevant becomes more and more difficult the more
they are told.

Lenat does seem to be correct in seeing the Cyc project as the last
defense of the AI dream of producing broad, flexible human intelli-
gence. Indeed, just because of its courage and ambition, the Cyc
project, more than any previous one, confronts the problems raised by
the idea of basing intelligence on symbolic representations. As we have
just seen, the somatic and stylistic background sensitivities that deter-
mine what counts as similar to what and the b'ackground coping
familiarity that determines what shows up as relevant are presupposed
for the intelligent use of the facts and rules with which symbolic Al
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starts. The hope that these background conditions can be analyzed in
terms of the features whose isolation and recognition they make pos-
sible is, on the face of it, implausible. The only arguments that are ever
given in support of the physical symbol system hypothesis are the
rationalist assumption that understanding equals analysis, so that all of
experience must be analyzable (that is, there must be a theory of every
intelligible domain), or the GOFAI response that the mind must be a
symbol manipulator since no one knows what else it might be. Now that
both of these arguments have lost plausibility, there remains only the
pragmatic argument that GOFAI will demonstrate its possibility by
producing an intelligent machine. So far that sort of claim has not been
made good, and Cyc faces all the old problems in their most daunting
form. The project has five more years to go, but Lenat has given us no
reason to be optimistic. It seems highly likely that the rationalist dream
of representationalist AI will be over by the end of the century.

For three groups of AI researchers whose work now focuses on
alternative approaches, GOFAI is already over. One of these ap-
proaches, associated with the work of Philip Agre and David Chapman,
attempts to produce programs that interact intelligently with a micro-
world without using either context-free symbolic representations or
internal model-based planning. The second, represented by the neural-
network modelers, abandons representation altogether. This approach
uses conventional features but produces outputs by a direct mapping
from the inputs, with the mapping extrapolated from examples pro-
vided by an expert. A third new approach to Al, called reinforcement
learning, aims to develop a program that dispenses with the expert and
uses actual performance in the skill domain in order to find, on its own,
a successful input-output rule. It is worth considering the advantages
and limitations of each of these approaches.

The interactionists are sensitive to the Heideggerian critique of the
use of symbolic models of the world and attempt to turn Heidegger’s
account of ongoing skillful coping® into an alternative research pro-
gram. At MIT, where this approach was developed, it is sometimes
called Heideggerian Al. Terry Winograd, who was the first to introduce
Heidegger into his computer science courses, has described this sur-
prising new development:
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For those who have followed the history of artificial intelligence, it is ironic
that [the MIT] laboratory should become a cradle of “Heideggerian AL” It was
at MIT that Dreyfus first formulated his critique, and, for twenty years, the
intellectual atmosphere in the AI Lab was overtly hostile to recognizing the
implications of what he said. Nevertheless, some of the work now being done
at that laboratory seems to have been affected by Heidegger and Dreyfus.“

The AI Lab work Winograd is referring to is the influential theory of
activity developed by Agre and Chapman, implemented in two pro-
grams, Pengi and Sonja, that play computer games. Agre and Chapman
question the need for an internal symbolic model of the world that
represents the context-free features of the skill domain. Following
Heidegger, they note that in our everyday coping we experience our-
selves not as subjects with mental representation over against objects
with fixed properties, but rather as absorbed in our current situation,
responding directly to its demands.

Interactive Al takes seriously the view I attributed to Heidegger in
this book —that there is usually no need for arepresentation of the world
in our mind since the best way to find out the current state of affairs is
to look to the world as we experience it. Chapman tells us:

If you want to find out something about the world that will affect how you
should act, you can usually just look and see. Concrete activity is principally
concerned with the here-and-now. You mostly don’t need to worry about
things that have gone before, are much in the future, or are not physically
present. You don’t need to maintain a world model; the world is its own best
representation.*!

Agre and Chapman also adapt another Heideggerian thesis that Stuart
and I developed in Mind Over Machine, namely that behavior can be
purposive without the agent having in mind a goal or purpose.

In a great many situations, it’s obvious what to do next given the configuration
of materials at hand. And once you’ve done that the next thing to do is likely
to be obvious too. Complex sequences of actions result, without needing a
complex control structure to decide for you what to do.*

What is original and important in Agre and Chapman’s work is that
these ideas are taken out of the realm of armchair phenomenology and
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made specific enough to be implemented in programs. What results is
a system that represents the world not as a set of objects with properties
but as current functions (what Heidegger called in-order-tos). Thus, to
take a Heideggerian example, I experience a hammer I am using not as
an object with properties but as in-order-to-drive-in-the-nail. Only if
there is some disturbance does the skilled performer notice what I have
called aspects of the situation. In Heidegger’s example, the carpenter
notices that the hammer is too heavy. Both of the above ways of being,
which Heidegger calls the available (the ready-to-hand) and the un-
available (the unready-to-hand), are to be distinguished from what he
calls the occurrent (the present-at-hand) mode of being, the mode of
being of stable objects. Objects can be recognized as the same even
when they are used in different contexts or when some of their proper-
ties change. Such reidentifiable objects with their changing features or
properties have been the only mode of being represented in GOFAI
models. The interactionists seek to represent the available and the
unavailable modes. Chapman speaks in this respect of “deictic repre-
sentations”:

The sorts of representations we are used to are objective: they represent the
world without reference to the representing agent. Deictic representations
represent things in terms of their relationship with the agent. The units of
deictic representation are entities, which are things in a particular relationship
to the agent, and relational aspects of these entities. For example, the-cup-I-
am-drinking-from is the name of an entity, and the-cup-I-am-drinking-from-
is-almost-empty is the name of an aspect of it. The-cup-I-am-drinking-from is
defined in terms of an agent and the time the aspect is used. The same
representation refers to different cups depending on whose representation it is
and when it is used. It is defined functionally, in terms of the agent’s purpose:
drinking.®

The other important Heidegger-inspired innovation in interactive
programming is its implementation of purposive action. A GOFAI
planner searches the space of possible sequences of actions to deter-
mine how to get from a symbolic representation of the current situation
to a specified goal. The interactive approach to action stipulates a
mapping from situations directly to actions.



Introduction to the MIT Press Edition ! xxxiii

Interactive Al has implemented Heidegger’s phenomenology of everyday
coping but has not attempted to implement his account of the back-
ground familiarity on the basis of which certain equipment is seen as
relevant and certain courses of action solicit my response. This gap
shows up in Chapman’s unsatisfying account of relevance. Chapman
tells us that “agents represent only relevant aspects of the situation.”#
But this turns out to mean that, as in all GOFAI programs, the program-
mer has predigested the domain and determined for the system what are
the possibly relevant features at any given moment.

So far it looks like Heideggerian Al is true to Heidegger’s phenom-
enology in what it leaves out—long-range planning and internal repre-
sentations of reidentifiable objects with context-free features—but it
lacks what any intelligent system needs, namely the ability to discrimi-
nate relevant distinctions in the skill domain and to learn new distinc-
tions from experience. To provide this crucial capability, more and
more researchers are looking to simulated neural networks. We there-
fore turn to the question of whether such networks can exhibit what I
have called familiarity or global sensitivity and, if not, whether they can
cope in some other way with relevance and learning. (My use of “we”
here is not royal but literal, since my brother Stuart has made indispens-
able contributions to the rest of this introduction.)

We have already mentioned that neural-network modeling, the fash-
ionable answer to the what-else-could-it-be question, has swept away
GOFALI and given Al researchers an optimism they have not had since
the 1960s. After all, neural networks can learn to recognize patterns and
pick out similar cases, and they can do this all in parallel, thus avoiding
the bottleneck of serial processing. But neural networks raise deep
philosophical questions. It seems that they undermine the fundamental
rationalist assumption that one must have abstracted a theory of a
domain in order to behave intelligently in that domain. In its simplest
terms, as understood from Descartes to early Wittgenstein, finding a
theory means finding the invariant features in terms of which one can
map specific situations onto appropriate responses. In physical symbol
systems the symbols in the representation are supposed to correspond
to these features, and the program maps the features onto the response.
As we saw, Lenat, the last heir to GOFAI, assumes that there must be
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such context-free primitives in which his ontology would bottom out.
When neural networks became fashionable, traditional Al researchers
assumed that the hidden nodes in a trained net would detect and learn
the relevant features, relieving the programmer of the need to discover
them by trial and error. But this turned out to be problematic.

The input to neural networks must, of course, be expressed in terms
of stable, recognizable features of the domain. For example, a network
thatis to be trained to play chess would take as its inputs board positions
defined in terms of types and locations of pieces. The question is
whether a network that has learned to play chess has detected higher-
order features, such as unbalanced pawn structure, that combine these
input features in such a way that any position that shares the same
higher-order features maps into the same move. If a given network
architecture trained on a given set of examples could be shown to detect
such higher-order features independently of its connection strengths
prior to training, then it could be said to have abstracted the theory of
the domain. If, for example, such features turned out to be the kinds of
features chess masters actually think about, then the net would have
discovered the theory of the chess domain that chess theorists and
symbolic Al researchers have sought for so long. If these higher-order
features were not the sort of features an expert in the domain could
recognize, the belief that programmers of Al systems could invent
higher-order features based on chess knowledge would of course be
shaken, but the assumption that there must be a theory of any domain
in which intelligent behavior is possible would not have been called
into question.

The implications for rationalism, however, may be much more serious.
To defend the theory theory, rationalists might well insist that, given
any particular set of connection strengths as a starting point for training
anetwork with examples, we can always identify higher-order features,
even if these features cannot be used consciously by experts. Consider
the simple case of layers of binary units activated by feedforward, but
not lateral or feedback, connections. To construct such higher-order
features from a network that has learned certain associations, we could
interpret each node one level above the input nodes, on the basis of the
connections to it, as detecting when any one of a certain set of identi-
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fiable input patterns is present. (Some of the patterns will be the ones
used in training, and some will never have been used.) If the set of input
patterns that a particular node detects is given a name (it almost
certainly won’t have one already), the node could be interpreted as
detecting the highly abstract feature so named. Hence, every node one
level above the input level could be characterized as a feature detector.
Similarly, every node a level above those nodes could be interpreted as
detecting a higher-order feature defined as the presence of one of a
specified set of patterns among the first level of feature detectors. And
so on up the hierarchy. A similar story could be constructed for neurons
with graded (continuous, nonbinary) responses. One would then speak
of the extent to which a higher-order feature is present.

The fact that intelligence, defined as the knowledge of a certain set of
associations appropriate to a domain, can always be accounted for in
terms of relations among a number of such highly abstract features of
a skill domain does not, however, preserve the rationalist intuition that
these explanatory features capture the essential structure of the domain.
The critical question is whether, if several different nets with different
initial connection strengths were trained to produce a given set of input/
output mappings, the same higher-order features would be detectable in
all of them or, at least, whether, at some level of abstraction, all of the
nets could be seen as abstracting equivalent invariances.

No such invariances have been found. The most thorough search
concerns a neural network called NETtalk that converts printed text
into speech. NETtalk is given several pages of text plus the correct
pronunciation of the middle letter of every string of seven characters in
the text. The net starts with random connection strengths, and its
reading of the text sounds like noise. After many hours of training using
backpropagation, a technique that changes the connection strengths
repeatedly, each time bringing the actual output closer to the correct
output, the net learns to read the text aloud in a way that a native speaker
can easily understand.*® But careful analysis of the activity of the
hidden nodes when the net was producing correct responses failed to
reveal any consistent higher-order features in trials with different
initial connection strengths. Thus we can say that so far neural-network
research has tended to substantiate the belief that coping does not
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require the abstraction of a theory of the skill domain.* This is bad news
for rationalism but gives networks a great advantage over GOFAI

Nevertheless, the commonsense-knowledge problem resurfaces in
this work and threatens its progress just as it did work in GOFAI. All
multilayer perceptron neural-network modelers agree that an intelli-
gent network must be able to generalize; for example, for a given
classification task, given sufficient examples of inputs associated with
one particular output, it should associate further inputs of the same type
with that same output. But what counts as the same type? The network’s
designer usually has in mind a specific definition of “type” required for
areasonable generalization and counts it a success if the net generalizes
to other instances of this type. But when the net produces an unexpected
association, can one say that it has failed to generalize? One could
equally well say that the net has all along been acting on a different
definition of “type” and that that difference has just been revealed.

For an amusing and dramatic case of creative but unintelligent
generalization, consider one of connectionism’s first applications. In
the early days of this work the army tried to train an artificial neural
network to recognize tanks in a forest. They took a number of pictures
of a forest without tanks and then, on a later day, with tanks clearly
sticking out from behind trees, and they trained a net to discriminate the
two classes of pictures. The results were impressive, and the army was
even more impressed when it turned out that the net could generalize its
knowledge to pictures that had not been part of the training set. Just to
make sure that the net was indeed recognizing partially hidden tanks,
however, the researchers took more pictures in the same forest and
showed them to the trained net. They were depressed to find that the net
failed to discriminate between the new pictures of trees with tanks
behind them and the new pictures of just plain trees. After some
agonizing, the mystery was finally solved when someone noticed that
the original pictures of the forest without tanks were taken on a cloudy
day and those with tanks were taken on a sunny day. The net had
apparently learned to recognize and generalize the difference between
a forest with and without shadows! This example illustrates the general
point that a network must share our commonsense understanding of the
world if it is to share our sense of appropriate generalization.
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One might still hope that networks different from our brain will make
exciting new generalizations and add to our intelligence. After all,
detecting shadows is just as legitimate as detecting tanks. In general,
though, a device that could not learn our generalizations and project our
practices to new situations would just be labeled stupid. For example,
thanks to our bodies, we normally see symmetric objects as similar. If
a system consistently classified mirror images of otherwise identical
objects as different but classified objects that cast the same shadows or
had any red on them as similar, we would count it not as adding to our
intelligence but as being unteachable or, in short, stupid as far as joining
our community or giving us new insights was concerned. For an
exercise in interesting but unintelligible categorization, consider Jorge
Luis Borges’s story of “a ‘certain Chinese encyclopedia’ in which it is
written that ‘animals are divided into: (a) belonging to the Emperor, (b)
embalmed, (c) tame, (d) sucking pigs, (e) sirens, (f) fabulous, (g) stray
dogs, (h) included in the present classification, (i) frenzied, (j) innumer-
able, (k) drawn with very fine camelhair brush, (1) et cetera, (m) having
broken the water pitcher, (n) that from a long way off look like flies.’”¥’

Neural-network modelers were initially pleased that their nets were
ablank slate (tfabula rasa) until trained, so that the designer did not need
to identify and provide anything resembling a pretraining intelligence.
Recently, however, they have been forced by the problem of producing
appropriate, human-like generalizations to the recognition that, unless
the class of possible generalizations is restricted in an appropriate a
priori manner, nothing resembling human generalizations can be con-
fidently expected.’® Consequently, after identifying in advance the
class of allowable human-like generalizations appropriate to the prob-
lem (the hypothesis space), these modelers then attempt to design the
architecture of their networks so that they transform inputs into outputs
only in ways that are in the hypothesis space. Generalization would then
be possible only on the designer’s terms. While a few examples will be
insufficient to identify uniquely the appropriate member of the hypoth-
esis space, after enough examples only one hypothesis will account for
all the examples. The network will then have learned the appropriate
generalization principle. That is, all further input will produce what,
from the designer’s point of view, is the right output.
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The problem here is that the designer has determined, by means of the
architecture of the network, that certain possible generalizations will
never be found. All this is well and good for toy problems in which there
is no question of what constitutes a reasonable generalization, but in
real-world situations a large part of human intelligence consists in
generalizing in ways that are appropriate to a context. If the designer
restricts the network to a predefined class of appropriate responses, the
network will be exhibiting the intelligence built into it by the designer
for that context but will not have the common sense that would enable
it to adapt to other contexts as a truly human intelligence would.

Perhaps a network must share size, architecture, and initial-connec-
tion configuration with the human brain if it is to share our sense of
appropriate generalization. Indeed, neural-network researchers with
their occasional ad hoc success but no principled way to generalize
seem to be at the stage of GOFAI researchers when I wrote about them
in the 1960s. It looks likely that the neglected and then revived
connectionist approach is merely getting its deserved chance to fail.

To generalize in the way that human beings do, a network’s architec-
ture would have to be designed in such a way that the net would respond
to situations in terms of what are for human beings relevant features.
These features would have to be based on what past experience has
shown to be important and also on recent experiences that determine the
perspective from which the situation is viewed. Only then could the
network enter situations with perspective-based human-like expecta-
tions that would allow recognition of unexpected inputs (such as tanks
in forests) as well as significant expected inputs that are not currently
present in the situation. No current networks show any of these abili-
ties, and no one at present knows or even speculates about how our
brain's architecture produces them. '

There is yet another fundamental problem with the route to artificial
intelligence through the supervised training of neural networks. In
GOFAL it has long been clear that whatever intelligence the system
exhibits has been explicitly identified and programmed by the system
designer. The system has no independent learning ability that allows it
to recognize situations in which the rules it has been taught are
inappropriate and to construct new rules. Neural networks do appear to
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have learning ability; but in situations of supervised learning, it is really
the person who decides which cases are good examples who is furnish-
ing the intelligence. What the network learns is merely how to capture
this intelligence in terms of connection strengths. Networks, like
GOFALI systems, therefore lack the ability to recognize situations in
which what they have learned is inappropriate; instead, it is up to the
human user to recognize failures and either modify the outputs of
situations the net has already been trained on or provide new cases that
will lead to appropriate modifications in behavior. The most difficult
situation arises when the environment in which the network is being
used undergoes a structural change. Consider, for example, the situa-
tion that occurred when OPEC instigated the energy crisis in 1973. In
such a situation, it may well happen that even the human trainer does not
know the responses that are now correct and that should be used in
retraining the net. Viewed from this perspective, neural networks are
almost as dependent upon human intelligence as are GOFAI systems,
and their vaunted learning ability is almost illusory. What we really
need is a system that learns on its own how to cope with the environment
and modifies its own responses as the environment changes.

To satisfy this need, recent research has turned to an approach
sometimes called “reinforcement learning.”* This approach has two
advantages over supervised learning. First, supervised learning re-
quires that the device be told the correct action for each situation.
Reinforcement learning assumes only that the world provides a rein-
forcement signal measuring the immediate cost or benefit of an action.
It then seeks to minimize or maximize the total reinforcement it
receives while solving any problem. In this way, it gradually learns
from experience the optimal actions to take in various situations so as
to achieve long-term objectives. To learn skillful coping, then, the
device needs no omniscient teacher, just feedback from the world.
Second, in supervised learning, any change in the skill environment
requires new supervision by an expert who knows what to do in the new
environment. In reinforcement learning, new conditions automatically
lead to changes in reinforcement that cause the device to adapt appro-
priately.
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An example will clarify what reinforcement learning in its most
elemental form is all about. Suppose a device is to learn from repeated
experience the shortest path from point A to point B in acity. The device
knows where it is (its current state) and the possible directions it can go
in (its space of allowable current actions). After it chooses an action (a
direction), it observes the distance to the next intersection (its next
decision point). This cost is its immediate reinforcement. It also ob-
serves the location of the next intersection (its new situation). The
standard Al approach would be to have the device create an internal
map of the city based on its experiences and then use that map and some
computational algorithm to determine the shortest path. The new
approach, like Heideggerian Al, dispenses with models and long-range
planning. Instead the device repeatedly takes various paths from A to
B, learning in which direction it should go at each intersection to create
the shortest path from a given starting intersection to B. It does this not
by trying alternative paths and remembering the best but by gradually
learning only one piece of information besides its best decision at each
intersection, namely the shortest distance from that intersection to B.
This is the “value” of the intersection. After each decision and obser-
vation of the distance to the next intersection, the reinforcement
algorithm evaluates that decision in terms of its current estimates of the
value of the intersection it is at and the one to which it is going next. If
it looks to be a good decision, it renders that decision more likely to be
chosen in the future when the path problem is repeated and it finds itself
at the same intersection. It also updates its estimate of the value of the
current intersection.*

We have so far described a problem in which a given action in a given
situation always leads to the same next situation and the same immedi-
ate reinforcement, but the approach is equally appropriate to probabi-
listic environments in which the device seeks actions that minimize or
maximize expected long-term reinforcement. Values learned for situa-
tions are then minimal or maximal expected values. To cite one ex-
ample, reinforcement-learning ideas (together with other mechanisms
that are less like what brains seem to do but that speed up the learning)
have been tried on the stochastic game of backgammon.’! A program
that played hundreds of thousands of games against itself, without
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expert-specified principles of the game or expert-supplied positional
values or correct moves, learned expected values of positions well
enough to play at the level of a good human tournament player. It was
as proficient as any computer program using more conventional Al or
supervised learning methods.*

All of this fits well with the phenomena. Most of our skills involve
action in evolving situations and are learned from trial-and-error expe-
rience with environmental feedback but without teachers (or, some-
times, from experience-based fine-tuning of what we initially learned
through instruction). Moreover, while experts generally cannot access
any information explaining their ability, they can usually assess the
value or desirability of a situation easily and rapidly and recommend an
appropriate action.

Assuming that reinforcement-learning ideas correctly capture some
of the essence of the human intelligence involved in learning skillful
coping, the question naturally arises, Can one build a device that does
as well as expert human beings using the phenomenologically plausible
minimal essence of reinforcement learning, at least in particular skill
domains? At least two improvements on present practice, neither of
which appears achievable based on current knowledge, are needed.
First, should reinforcement learning be applied to a problem in which
the number of situations that might be encountered far exceeds the
number that are actually encountered during training, some method of
assigning fairly accurate actions and values to the novel situations is
needed. Second, if reinforcement learning is to produce something
resembling human intelligence, the reinforcement-learning device must
exhibit global sensitivity by encountering situations under a perspec-
tive and by actively seeking relevant input.

Consider first the problem of behavior in unique situations. This
problem has been dealt with by two procedures. The first is an automatic
generalization procedure that produces actions or values in previously
infrequently encountered situations on the basis of actions or values
learned for other situations.®® The second is to base one’s actions on
only a relevant subset of the totality of features of a situation and to
attach a value to the situation based only on those relevant features; in
this way, we lump together experiences with all situations sharing the
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same relevant features regardless of the nonrelevant ones. Actions are
chosen or values learned based on experiences with situations sharing
these relevant features. Both of these approaches are unsatisfactory.
Concerning an automatic generalization procedure, at the point where
generalization is required, the situation is identical with the one faced
by supervised learning. No one has any idea how to get a network or any
other mechanism to generalize in the way that would be required for
human-like intelligence.

The second problem mentioned above —learning what features of a
situation should be treated as a relevant subset and used in determining
actions and values —is equally difficult. One can find out which features
of the current state of affairs are relevant only by determining what sort
of situation this state of affairs is. But that requires retrieving relevant
past situations. This problem might be called the circularity of rel-
evance. To appreciate its implications, imagine that the owner of a
baseball team gives the team manager a computer loaded with facts
about each player’s performance under various conditions. One day,
after consulting the computer late in the last inning, the manager
decides to replace the current batter, A, with a pinch hitter, B. The pinch
hitter hits a home run, and the team wins the game. The owner, however,
is upset and accuses the manager of misusing the computer, since it
clearly shows that B has a lower batting average than A. But, says the
manager, the computer also showed that B has a higher batting average
in day games, and this was a day game. Yes, responds the owner, but it
also showed that he has a lower average against left-handed pitchers,
and there was a leftie on the mound today. And so on. The point is that
a manager’s expertise, and expertise in general, consists in being able
to respond to the relevant facts. A computer can help by supplying more
facts than the manager could possibly remember, but only experience
enables the manager to see the current state of affairs as a specific
situation and so see what is relevant. That expert know-how cannot be
put into the computer by adding more facts, since the issue is which is
the current correct perspective from which to determine which facts are
relevant.

Current procedures attempt to learn about relevance by keeping track
of certain statistics during trial-and-error learning. A procedure pro-
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posed by Chapman and Kaelbling** starts by assuming that no features
are relevant to action or value assessment, that is, that the same action
should be taken no matter what the situation and that the same value
should be attached to all situations. Then, for each possibly relevant
feature of a situation, the procedure keeps track of statistics on how
things work when that feature takes on each of its possible values (often
just “present” or “not present”). If, on the basis of current statistics, the
value of the feature seems to affect actions or values significantly, it is
declared relevant. The situation receives an ever finer description as the
set of features discovered to be relevant grows.

Something vaguely of this sort is probably what the brain does. There
are,however, serious problems with the particular procedure described
above and variations on it. First, a feature may not be relevant to
behavior on its own but may be relevant when combined with one or
more other features. To remedy this, we would need to gather statistics
on the relevance of combinations of features, leading to an exponential
explosion of possibly important statistics.

Second, this approach assumes that the relevance of a feature is a
property of the domain; what is measured is the feature’s relevance in
all situations encountered. But a feature may be relevant in certain
situations and not in others. We would therefore need to gather rel-
evance data separately for each situation, again leading to exponential
growth in the quantity of statistics gathered. Statistics gathering, there-
fore, does not seem a practical way for current computer procedures to
deal with the relevance-determination aspect of intelligent behavior.
As we shall see, given the size and structure of the brain, it may well be
no accident that no one currently has any idea how to deal with this
problem without gathering an impractical amount of statistical data.

A related third problem is that there is no limit to the number of
features that might conceivably be relevant in some situations. We
cannot simply start with all features that might possibly be relevant,
gather statistics on each, and then leave out those that experience
indicates can safely be ignored. But if we start with a finite set of
possibly relevant features, there is no known way of adding new
features should the current set prove inadequate to account for the
learned facts about reinforcement and situation transition.
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So how does the brain do it? No one knows. But certain facts seem
relevant. First, it appears that experience statistically determines indi-
vidual neural synaptic connections, so that the brain, with its hundreds
of thousands of billions of adjustable synapses, can indeed accumulate
statistical information on a scale far beyond current or foreseeable
computers. Second, the reinforcement-learning procedures now being
studied generally produce simple stimulus-response behavior in the
sense that the input, a situation description, maps directly forward into
the output, an action or situation value. The brain clearly has internal
states that we experience as moods, anticipations, and familiarities that
are correlated with the current activity of its hidden neurons when the
input arrives. These are determined by its recent inputs as well as by the
synaptic connection strengths developed on the basis of long-past
experiences, and these as well as the input determine the output. One
can in principle include such internal states in reinforcement-learning
procedures by adding the current internal state of the device to the
situation description, and a few researchers have moved in this direc-
tion. In effect, such an extended procedure in which the internal state
is viewed as the perspective brought to the problem based on recent
events would allow the incorporation of perspective into neural models.
But since no one knows how to incorporate internal states appropri-
ately, a breakthrough will be necessary before human behavior can be
imitated successfully.

Most important, there is evidence that the internal brain state inter-
acts with an input and then feeds its output to motor-control neurons as
well as back into the input pathways, affecting receptors through motor
control so that they actively seek information and simultaneously
influencing perceived relevance through the feedback into input path-
ways. This would be the brain basis of the phenomenon of global
sensitivity that enables a skilled person to see directly what is relevant
in his or her skill domain. This feedback based on the interaction of
sensory input and internal brain state would be a powerful mechanism
for dealing with information pickup and relevance problems, but cur-
rently no details of this mechanism are understood or even hypoth-
esized in a way that could guide Al research. It thus seems reasonable
to hold that mechanisms exist in the brain that can in principle be
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understood and duplicated in hardware so as to produce artificial
intelligence in restricted domains and that reinforcement learning is a
small step in the right direction, while simultaneously holding that our
current ignorance concerning the brain and practical limitations on
computer memory size make it highly unlikely that there will be
substantial progress toward this kind of brain-inspired Al in the fore-
seeable future.

One problem would remain even if the above practical problems were
solved. In all applications of reinforcement learning the programmer
must use his or her knowledge of the problem to formulate a rule that
specifies the immediate reinforcement received at each step. For path
problems and games the objective nature of the problem dictates the
rule. If, however, the problem involves human coping, there is no
simple objective answer as to what constitutes immediate reinforce-
ment. Even if we assume the simplistic view that human beings behave
so as to maximize their total sense of satisfaction, a reinforcement-
learning approach to producing such behavior would require a rule for
determining the immediate satisfaction derived from each possible
action in each possible situation. But human beings do not have or need
any such rule. Our needs, desires, and emotions provide us directly with
a sense of the appropriateness of our behavior. If these needs, desires,
and emotions in turn depend on the abilities and vulnerabilities of a
biological body socialized into a culture, even reinforcement-learning
devices still have a very long way to go.

All work in Al, then, seems to face a deep dilemma. If one tries to
build a GOFAI system, one finds that one has to represent in a belief
system all that a human being understands simply by being a skilled
human being. In my preface to the second edition of this book, the
extreme unlikelihood of successfully programming the computer to
show common sense by making explicit enough of what human beings
understand simply by being embodied and skilled led me to skepticism
concerning the GOFAI research program. Happily, recent research in
machine learning does not require that one represent everything that
human beings understand simply by being human. But then, as we have
just seen, one encounters the other horn of the dilemma. One needs a
learning device that shares enough human concerns and human struc-
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ture to learn to generalize the way human beings do. And as improbable
as it was that one could build a device that could capture our humanity
in a physical symbol system, it seems at least as unlikely that one could
build a device sufficiently like us to act and learn in our world.
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In a game of chess, for example, most decisions (move choices) in a situation
(board position) produce no reinforcement but only a transition to a new
situation. Only a move terminating the game produces a positive, zero, or
negative reinforcement. The device would nevertheless attempt to learn from
experience a best value for each position (based on whether the position leads
to a win, a draw, or a loss with perfect play) and a move that attains that value.

51. Gerald Tesauro, “Practical Issues in Temporal Difference Learning,”
Machine Learning, Vol. 8, Nos. 3/4 (May 1992), pp. 257-277.

52. When eight handcrafted features computed from the board position were
added to its board description input features, the device learned to play at very
close to grandmaster level and well above the level of any other program
known to the net’s creator.

53. To implement an automatic generalization procedure, one chooses some
parameterized formulas and adjusts their parameters to give what are currently
believed to be correct actions and values for situations in which such actions
and values have been learned, and then one uses these formulas to produce
actions and values in all cases. One often-used formula takes the form of a
neural network in which the parameters are the connection strengths.

The backgammon program uses a network to produce its positional values.
It avoids directly choosing actions by examining all possible actions in a
situation and choosing the one that looks best on the basis of the situational
values assigned by the algorithm. This goes beyond what we have called the
minimal essence of reinforcement learning and does not fit the phenomenology
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of human intelligent action. As in the case of supervised-learning networks,
there is nothing in the algorithm that guarantees that it will generalize
correctly when applied to a new situation. For this very reason, its success
surprised its designer. It may well be that, as in the case of NETtalk, this
seemingly successful generalization merely shows that in this domain accu-
racy in generalization is not essential.

54. David Chapman and Leslie Pack Kaelbling, “Input Generalization in
Delayed Reinforcement Learning: An Algorithm and Performance Compari-
sons,” Proceedings of the 1991 International Joint Conference on Artificial
Intelligence (Cambridge, Mass.: AAAI Press/MIT Press, 1991), pp. 726-731.



Acknowledgments

The occasional acknowledgments scattered throughout the following
pages only begin to reflect my indebtedness to a host of sympathetic and
critical readers who not only weeded out mistakes but made many sub-
stantive suggestions. Without the help of Ned Block, Susan Carey Block,
Burton Bloom, Stuart Dreyfus, John Haugeland, Terrance Malick, An-
thony Oettinger, Seymour Papert, George Rey, Charles Taylor, and
Samuel Todes, this book would have been published much sooner and
been easier to read, but also easier ‘to dismiss.

I am grateful to the American Council of Learned Societies, the Na-
tional Science Foundation, and the RAND Corporation for supporting
various stages of my research and writing, and to the Study Group on
the Unity of Knowledge for enabling me to organize colloquia on several
topics which subsequently found their way into the book.

I also want to thank Rena Lieb for debugging an early version of the
manuscript, and especially Barbara Behrendt, who deciphered the first
draft and helped in more ways than I can mention.

In making the changes which I hope improve the form and content
of this revised edition I have been especially helped by Genevieve Bois-
sier-Dreyfus and John Searle.

[ liii






Introduction to the Revised Edition

What Computers Can’t Do stirred up a controversy among all those
interested in the possibility of formal models of man by arguing that,
despite a decade of impressive print-outs and dire predictions of superin-
telligent robots, workers in artificial intelligence (AI) were, in 1967,
facing serious difficulties which they tended to cover up with special-
purpose solutions and rhetorical claims of generality. During the subse-
quent decade this critique has been more or less acknowledged. In the
five-year period from 1967 to 1972 the ad hoc character of AI work was
admitted and, indeed, elevated to a methodological principle. The study
of artificially circumscribed gamelike domains was proclaimed a study
of micro-worlds and was defended as a necessary first step toward
broader and more flexible programs. Then, during the next five years
(1972-1977) the micro-world “successes” were seen to be ungeneraliza-
ble, and in the best AI laboratories workers began to face the problem
of representing the everyday general understanding which they had spent
the first fifteen years of research trying to circumvent. Recently, even the
wishful rhetoric characteristic of the field has been recognized and ridi-
culed by AI workers themselves.

My early outrage at the misleading names given to programs such as
Newell, Shaw, and Simon’s General Problem Solver (GPS) is now shared
by M.I.T.’s Drew McDermott, who writes:

/1
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[IIn Al our programs to a great degree are problems rather than solutions. If
a researcher tries to write an “understanding” program, it isn’t because he has
thought of a better way of implementing this well-understood task, but because
he hopes he can come closer to writing the first implementation. If he calls the
main loop of his program “UNDERSTANDING”, he is (until proven innocent)
merely begging the question. He may mislead a lot of people, most prominently
himself, and enrage a lot of others.'*§

McDermott also singled out overrated GPS:

Many instructive examples of wishful mnemonics by Al researchers come to
mind once you see the point. Remember GPS? By now, “GPS” is a colorless term
denoting a particularly stupid program to solve puzzles. But it originally meant

3

General Problem Solver””, which caused everybody a lot of needless excitement
and distraction. It should have been called LFGNS—‘“Local Feature-Guided
Network Searcher”.?

Even my earliest assessment that work in AI resembled alchemy more
than science’ has been accepted by Terry Winograd, formerly at M.I.T.,
now at Stanford:

In some ways, [AI] is akin to medieval alchemy. We are at the stage of pouring
together different combinations of substances and seeing what happens, not yet
having developed satisfactory theories. This analogy was proposed by Dreyfus
(1965) as a condemnation of artificial intelligence, but its aptness need not imply
his negative evaluation . . . it was the practical experience and curiosity of the
alchemists which provided the wealth of data from which a scientific theory of
chemistry could be developed.*

Winograd is right; as long as researchers in AI admit and learn from
their failures their attempt to supply computers with human knowledge
may in the end provide data for a totally different way of using computers
to make intelligent artifacts. But until recently, admitting their failures
so that others can learn from their mistakes—an essential part of any
scientific field—has been virtually unknown in Al circles. McDermott
reiterates my point that, as he puts it, “. . . Al as a field is starving for
a few carefully documented failures.” And he warns: “Remember,

§Notes begin on p. 307. [Citations are indicated by a superior figure. Substantive notes
are indicated by a superior figure and an asterisk.]
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though, if we can’t criticize ourselves, someone else will save us the
trouble.”* I take this as my cue to return for a critical look at the research
of the past ten years.®*

What strikes me, and has struck other writers reviewing the history
of the field,” is how my views and those of workers interested in the
theoretical issues in AI have gradually converged. In recent years the
attempt to produce special-purpose programs tailored to narrowly re-
stricted domains, with the concomitant principle that this should be
achieved in whatever way is most efficient regardless of whether such
methods are used by human beings, has been abandoned by Al theorists
and frankly and quite successfully taken over by self-styled Al engineers,
with no interest in making generally intelligent machines. Among those
still interested in the theoretical issue of using computers to produce the
full range of human intelligent behavior there is now general agreement
that, as I argue in this book, intelligence requires understanding, and
understanding requires giving a computer the background of common
sense that adult human beings have by virtue of having bodies, interact-
ing skillfully with the material world, and being trained into a culture.

Given the epistemological assumptions dictated by the information-
processing model (see Chapter 4) this precondition of intelligent behav-
ior necessarily appears to AI workers as the need to find a formal
representation in which all the knowledge and beliefs of an average adult
human being can be made explicit and organized for flexible use. Almost
everyone now (with one exception we will deal with later) agrees that
representing and organizing commonsense knowledge is incredibly diffi-
cult, and that facing up to this problem constitutes the moment of truth
for AL Either a way of representing and organizing everyday human
know-how must be found, or Al will be swamped by the welter of facts
and beliefs that must be made explicit in order to try to inform a disem-
bodied, utterly alien computer about everyday human life. With this
recognition, which characterizes the most recent five-year phase of Al
research, unfounded optimism has given way to somewhat self-critical
caution.

Al research has thus passed from stagnation to crisis during the
decade since I concluded my research for this book. If I were to rewrite
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the book today I would divide this decade into two phases and include
them as Chapters 3 and 4 of Part I, so as to cover the full twenty years
the field has been in existence. And I would modify the Conclusion to
take into account the recent maturation of the field. But since the overall
argument of the book is confirmed rather than contradicted by the latest
developments, I would rather leave the original book intact—only re-
working the material where a sentence or a paragraph has proved to be
murky or misleading—while including what are, in effect, Chapters 3
and 4 and the new conclusion in this Introduction. The reader who wants
to get a chronological sense of how research in artificial intelligence
developed should skip ahead to Chapters 1 (Phase 1) and 2 (Phase 2),
and then return to this critical survey of the past ten years. Moreover,
since the arguments at the end of this Introduction presuppose and
extend ideas which are more fully developed in the last half of the book,
the conclusion of the Introduction to the Revised Edition might be best
read after finishing Part III.

Phase Il (1967-1972)
Manipulating Micro-Worlds

When What Computers Can’t Do appeared in January 1972, making
a case that after an exciting start which raised high hopes, work in
artificial intelligence had been stagnating, reviewers within the field of AI
were quick to point out that the research criticized was already dated and
that my charge of stagnation did not take into account the “break-
throughs” which had occurred during the five years preceding the publi-
cation of my critique. Bruce Buchanan’s reaction in Computing Reviews
is typical:

One would hope that a criticism of a growing discipline would mention work in
the most recent one-third of the years of activity. . . . To this reviewer, and other
persons doing Al research, programs developed in the last five years seem to
outperform programs written in the tool-building period of 1957-1967.

For example, it is dishonest to entitle the book a “critique” of AI when it
dwells on the failure of early language translation programs (based primarily on
syntactical analysis) without analyzing the recent work on understanding natural
language (based on syntax, semantics, and context).®
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If the point of these objections had been that my book did not take
account of excellent programs such as M.I.T.’s MATHLAB (1970) for
manipulating symbolic algebraic expressions, and Stanford’s DEN-
DRAL (1970) for inferring chemical structure from mass spectometry
data, I would plead guilty. I would point out, however, that these pro-
grams, while solving hard technical problems and producing programs
that compete with human experts, achieve success precisely because they
are restricted to a narrow domain of facts, and thus exemplify what
Edward Feigenbaum, the head of the DENDRAL project, has called
“knowledge engineering.”® They, thus, do not constitute, nor are they
meant to constitute, progress toward producing general or generalizable
techniques for achieving adaptable intelligent behavior.

Buchanan would presumably agree since the programs he mentions as
giving the lie to my accusations of stagnation are not these engineering
triumphs, but theoretically oriented projects such as Winograd’s natural
language understanding program, and the perception programs devel-
oped at M.I.T. and Stanford.' These, plus Patrick Winston’s concept
learning program, are the programs most often cited by those who claim
that my book ignores a breakthrough which occurred around 1970. If
these programs do constitute progress they roundly refute my charge of
stagnation, so we must now take a detailed look at each of the programs,
as well as a brief look at robot research, which was generating a great
deal of excitement just as this book went to press.

Since by all accounts it is Winograd’s natural language understanding
program (SHRDLU—1971) which demonstrates what Papert and
Minsky call “a major advance,”"! we will turn to it firstt. SHRDLU
simulates a robot arm which can move a set of variously shaped blocks
and allows a person to engage in a dialogue with the computer, asking
questions, making statements, issuing commands, about this simple
world of movable blocks. The program is an integrated system which
makes use of syntax, semantics, and facts about blocks. It is thus, as
Winograd cautiously claims, “a computer program which ‘understands’
language in a limited domain, by including a model of the subject being
talked about and a context of discourse. . . .”'** Furthermore, this
program explores the new idea of representing this knowledge in the
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form of procedures. The resulting dialogue is strikingly natural. Here is
a sample. (The sentences in capital letters are computer print-out. The
parentheses contain Winograd’s comments.)

1. pick up a big red block.
OK.

(The system answers “OK” when it carries out a command. In order to
pick up the red block, it had to clear it off by finding a space for the green
one and moving the green one away.)

2. grasp the pyramid.
I DON’T UNDERSTAND WHICH PYRAMID YOU MEAN.

(There are three pyramids in the scene, so the program does nothing.)

3. find a block which is taller than the one you are holding and put it into
the box. '

(The system has to figure out what is meant by “one” and “it”, as well
as using deduction to decide which block it is holding.)

BY “IT”, I ASSUME YOU MEAN THE BLOCK WHICH IS TALLER THAN THE
ONE I AM HOLDING.

(Printed out to keep us informed.)
OK.

(The hand has to set down the red block to pick up the taller blue one.)

4. what does the box contain?

THE BLUE PYRAMID AND THE BLUE BLOCK.

5. what is the pyramid supported by?

(Earlier the systém responded to “‘the pyramid” by saying “I don’t under-
stand which pyramid you mean”. Now, it assumes that we mean the one
just mentioned.)

THE BOX.

9. can the table pick up blocks?
NO.

(The semantic rules make this a nonsensical question which therefore
must be false.)
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10.

11.

12.

13.

14.

15.

can a pyramid be supported by a block?
YES.

(The deductive system finds an actual example, so it knows this is possi-
ble.)

can a pyramid support a pyramid?
I DON’T KNOW.

(The question makes sense, but there is no example in the scene, so there
is no easy way to tell without being able to examine the robot’s pro-
grams.)

stack up two pyramids.

I CAN’T.

(The robot tries and fails.)

the blue pyramid is mine.

I UNDERSTAND.

(This data is added to the data base.)

I own blocks which are not red, but I don’t own anything which supports
a pyramid.

I UNDERSTAND.
(Two new theorems are created for proving things about “owning”.)
do I own the box?

NO."

If being a major advance means being more general than its predeces-
sors, then SHRDLU, since it no longer depends for its analysis of lan-
guage on external constraints of the sort essential to Bobrow’s STU-
DENT, is a major achievement. Winograd himself points out the
superiority of his program over earlier language understanding pro-

grams:

... A program may succeed by carefully choosing the problem it will attack,
so that some simple special-purpose solution will work. ELIZA (Weizenbaum,
1964) and STUDENT (Bobrow, 1967) are examples of programs which give
impressive performances owing to a severe and careful restriction of the kind of
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understanding they try to achieve. If a model is to be of broader significance, it
must be designed to cover a large range of the things we mean when we talk of
understanding. The principles should derive from an attempt to deal with the
basic cognitive structures.'

If, however, “a major advance” means that a step has been made in
dealing with the basic cognitive structures needed to cover everyday
understanding—that thanks to SHRDLU there is now reason to be
optimistic about the possibility of AI—then no progress at all can be
claimed. To justify this negative judgment we must first find out how the
optimists of the early seventies were able to convince themselves that,
with SHRDLU, AI was at last on the right track.

If one holds, as some Al workers such as Winograd do, that there are
various kinds of understanding so that whether an entity has understand-
ing or not is just a question of degree, it may seem that each new program
has a bit more understanding than the last, and that progress consists in
inching out on the understanding continuum. If, on the other hand, one
holds that “understanding” is a concept that applies only to entities
exactly like human beings, that would stack the deck and make Al
impossible. But it is not up to either side in the debate to stipulate what
“understanding” means. Before talking of degrees of “‘understanding,”
one must note that the term ‘“‘understand” is part of an interrelated set
of terms for talking about behavior such as “ask,” “answer,” “know,”
etc. And some of these terms—such as “answer,” for example—simply
do have an all-or-nothing character. If one is tempted to say that the
DENDRAL program, for example, literally understands mass spectros-
copy, then one must be prepared to say that when it is fed a problem and
types out the answer it has literally been asked and answered a question,
and this, in turn, involves, among other things, that it knows that it has
answered. But whatever behavior is required for us to say of an entity
that it “knows” something, it should be clear that the computer does not
now come near to meeting these conditions, so it has not answered even
a little. If one is sensitive to the central meaning of these interconnected
intentional terms it follows that the claim that programs like SHRDLU
have a little bit of understanding is at best metaphorical and at most
outright misleading.

Workers in Al were certainly not trying to cover up the fact that it



Introduction to the Revised Edition /9

was SHRDLU’s restricted domain which made apparent understanding
possible. They even had a name for Winograd’s method of restricting the
domain of discourse. He was dealing with a micro-world. And in a 1970
internal memo at M.I.T., Minsky and Papert frankly note:

Each model—or “micro-world” as we shall call it—is very schematic; it talks
about a fairyland in which things are so simplified that almost every statement
about them would be literally false if asserted about the real world."

But they immediately add:

Nevertheless, we feel that they [the micro-worlds] are so important that we
are assigning a large portion of our effort toward developing a collection of
these micro-worlds and finding how to use the suggestive and predictive
powers of the models without being overcome by their incompatibility with
literal truth.'e

Given the admittedly artificial and arbitrary character of micro-worlds,
why do Minsky and Papert think they provide a promising line of
research?

To find an answer we must follow Minsky and Papert’s perceptive
remarks on narrative and their less than perceptive conclusions:

... In a familiar fable, the wily Fox tricks the vain Crow into dropping the meat
by asking it to sing. The usual test of understanding is the ability of the child
to answer questions like:

“Did the Fox think the Crow had a lovely voice?”

The topic is sometimes classified as “natural language manipulation” or as
“deductive logic”, etc. These descriptions are badly chosen. For the real
problem is not to understand English; it is to understand at all. To see this
more clearly, observe that nothing is gained by presenting the story in sim-
plified syntax: CROW ON TREE. CROW HAS MEAT. FOX SAYS “YOU HAVE A
LOVELY VOICE. PLEASE SING.” FOX GOBBLES MEAT. The difficulty in getting
a machine to give the right answer does not at all depend on “disambiguat-
ing” the words (at least, not in the usual primitive sense of selecting one
“meaning” out of a discrete set of “meanings”). And neither does the diffi-
culty lie in the need for unusually powerful logical apparatus. The main
problem is that no one has constructed the elements of a body of knowledge
about such matters that is adequate for understanding the story. Let us see
what is involved.
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To begin with, there is never a unique solution to such problems, so we do not
ask what the Understander must know. But he will surely gain by having the
concept of FLATTERY. To provide this knowledge, we imagine a “micro-theory”
of flattery—an extendible collection of facts or procedures that describe condi-
tions under which one might expect to find flattery, what forms it takes, what
its consequences are, and so on. How complex this theory is depends on what
is presupposed. Thus it would be very difficult to describe flattery to our Under-
stander if he (or it) does not already know that statements can be made for
purposes other than to convey literally correct, factual information. It would be
almost impossibly difficult if he does not even have some concept like PURPOSE
or INTENTION."

The surprising move here is the conclusion that there could be a cir-
cumscribed ‘“‘micro-theory” of flattery—somehow intelligible apart
from the rest of human life—while at the same time the account
shows an understanding of flattery opening out into the rest of our
everyday world, with its understanding of purposes and intentions.

What characterizes the period of the early seventies, and makes
SHRDLU seem an advance toward general intelligence, is the very
concept of a micro-world—a domain which can be analyzed in isolation.
This concept implies that although each area of discourse seems to open
out into the rest of human activities its endless ramifications are only
apparent and will soon converge on a self-contained set of facts and
relations. For example, in discussing the micro-world of bargaining,
Papert and Minsky consider what a child needs to know to understand
the following fragment of conversation:

Janet: “That isn’t a very good ball you have. Give it to me and I'll give you my
lollipop.'®

And remark:

. we conjecture that, eventually, the required micro-theories can be made
reasonably compact and easily stated (or, by the same token, learned) once we
have found an adequate set of structural primitives for them. When one begins
to catalogue what one needs for just a little of Janet’s story, it seems at first to
be endless:

Time Things Words
Space People Thoughts
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Talking: Explaining. Asking. Ordering. Persuading. Pretending
Social relations: Giving. Buying. Bargaining. Begging. Asking. Presents. Steal-
ing . ..
Playing: Real and Unreal, Pretending
Owning: Part of, Belong to, Master of, Captor of
Eating: How does one compare the values of foods with the values of toys?
Liking: good, bad, useful, pretty, conformity
Living: Girl. Awake. Eats. Plays.
Intention: Want. Plan. Plot. Goal. Cause. Result. Prevent.
Emotions: Moods. Dispositions. Conventional expressions.
States: asleep. angry. at home.
Properties: grown-up. red-haired. called “Janet”.
Story: Narrator. Plot. Principal actors.
People:  Children. Bystanders.
Places: Houses. Outside.
Angry:  State
caused by: Insult
deprivation
assault
disobedience
frustration
spontaneous
Results not cooperative
lower threshold
aggression
loud voice
irrational
revenge
Etc.”

They conclude:

But [the list] is not endless. It is only large, and one needs a large set of
concepts to organize it. After a while one will find it getting harder to add new
concepts, and the new ones will begin to seem less indispensable.?

This totally unjustified belief that the seemingly endless reference to
other human practices will converge so that simple micro-worlds can be
studied in relative isolation reflects a naive transfer to AI of methods that
have succeeded in the natural sciences. Winograd characteristically de-
scribes his work in terms borrowed from physical science:
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We are concerned with developing a formalism, or “representation,” with which
to describe . . . knowledge. We seek the “atoms” and “particles” of which it is
built, and the “forces” that act on it.”!

It is true that physical theories about the universe can be built up by
studying relatively simple and isolated systems and then making the
model gradually more complex and integrating it with other domains of
phenomena. This is possible because all the phenomena are presumably
the result of the lawlike relations of a set of basic elements, what Papert
and Minsky call “structural primitives.” This belief in local success and
gradual generalization was clearly also Winograd’s hope at the time he
developed SHRDLU.

The justification for our particular use of concepts in this system is that it is
thereby enabled to engage in dialogs that simulate in many ways the behavior
of a human language user. For a wider field of discourse, the conceptual structure
would have to be expanded in its details, and perhaps in some aspects of its
overall organization.?

Thus, for example, it might seem that one could “expand” SHRDLU’s
concept of owning, since in the above sample conversation SHRDLU
seems to have a very simple “micro-theory” of owning blocks. But as
Simon points out in an excellent analysis of SHRDLU’s limitations, the
program does not understand owning at all because it cannot deal with
meanings. It has merely been given a set of primitives and their possible
relationships. As Simon puts it:

The SHRDLU system deals with problems in a single blocks world, with a fixed
representation. When it is instructed to “pick up a big red block”, it needs only
to associate the term “pick up” with a procedure for carrying out that process;
identify, by applying appropriate tests associated with “big”, “‘red”, and ‘“‘block”,
the argument for the procedure and use its problem-solving capabilities to carry
out the procedure. In saying “it needs only”, it is not my intention to demean
the capabilities of SHRDLU. It is precisely because the program possesses stored
programs expressing the intensions of the terms used in inquiries and instructions
that its interpretation of those inquiries and instructions is relatively straightfor-
ward.”

In understanding, on the other hand, “the problem-understanding sub-
system will have a more complicated task than just mapping the input
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language onto the intentions stored in a lexicon. It will also have to create
a representation for the information it receives, and create meanings for
the terms that are consistent with the representation.”* So, for example,
in the conversation concerning owning:

. . . although SHRDLU’s answer to the question is quite correct, the system
cannot be said to understand the meaning of “own” in any but a sophistic sense.
SHRDLU?’s test of whether something is owned is simply whether it is tagged
“owned”. There is no intensional test of ownership, hence SHRDLU knows what
it owns, but doesn’t understand what it is to own something. SHRDLU would
understand what it meant to own a box if it could, say, test its ownership by
recalling how it had gained possession of the box, or by checking its possession
of a receipt in payment for it; could respond differently to requests to move a
box it owned from requests to move one it didn’t own; and, in general, could
perform those tests and actions that are generally associated with the determina-
tion and exercise of ownership in our law and culture.

Moreover, even if it satisfied all these conditions it still wouldn’t under-
stand, unless it also understood that it (SHRDLU) couldn’t own any-
thing, since it isn’t a part of the community in which owning makes
sense. Given our cultural practices which constitute owning, a computer
cannot own something any more than a table can.

This discussion of owning suggests that, just as it is misleading to call
a program UNDERSTAND when the problem is to find out what
understanding is, it is likewise misleading to call a set of facts and
procedures concerning blocks a micro-world, when what is really at
stake is the understanding of what a world is. A set of interrelated facts
may constitute a universe, a domain, a group, etc., but it does not
constitute a world, for a world is an organized body of objects, purposes,
skills, and practices in terms of which human activities have meaning or
make sense. It follows that although there is a children’s world in which,
among other things, there are blocks, there is no such thing as a blocks
world. Or, to put this as a critique of Winograd, one cannot equate, as
he does, a program which deals with “a tiny bit of the world,” with a
program which deals with a “mini-world.”*

In our everyday life we are, indeed, involved in various “sub-worlds”
such as the world of the theater, of business, or of mathematics, but each
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of these is a “mode” of our shared everyday world.?”* That is, sub-worlds
are not related like isolable physical systems to larger systems they
compose; rather they are local elaborations of a whole which they presup-
pose. If micro-worlds were sub-worlds one would not have to extend and
combine them to reach the everyday world, because the everyday world
would have to be included already. Since, however, micro-worlds are not
worlds, there is no way they can be combined and extended to the world
of everyday life. As a result of failing to ask what a world is, five more
years of stagnation in Al was mistaken for progress.

Papert and Minsky’s 1973 grant proposal is perhaps the last time the
artificially isolated character of the micro-world is defended as a scien-
tific virtue—at least at M.I.T.:

Artificial Intelligence, as a new technology, is in an intermediate stage of de-
velopment. In the first stages of a new field, things have to be simplified so
that one can isolate and study the elementary phenomena. In most successful
applications, we use a strategy we call “working within a Micro-World”.?

SHRDLU is again singled out as the most successful version of this
research method. “A good example of a suitably designed Micro-world
is shown in the well-known project of Winograd, which made many
practical and theoretical contributions to Understanding Natural Lan-
guage.”” But while gestures are still made in the direction of generaliza-
tion it is obvious that SHRDLU is running into difficulty.

Since the Winograd demonstration and thesis, several workers have been adding
new elements, regulations, and features to that system. That work has not gone
very far, however, because the details of implementation of the original system
were quite complex.”

Such failures to generalize no doubt lie behind the sober evaluation in
a proposal two years later:

.. . Artificial Intelligence has done well in tightly constrained domains—Wino-
grad, for example, astonished everyone with the expertise of his blocks-world
natural language system. Extending this kind of ability to larger worlds has not
proved straightforward, however. . . . The time has come to treat the problems
involved as central issues.’!
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But typically, it is only from the vantage point of the next phase of
research, with its new hopes, that the early seventies’ illusion that one
can generalize work done in narrowly constrained domains is finally
diagnosed and laid to rest. Winograd himself acknowledges that:

The Al programs of the late sixties and early seventies are much too literal.
They deal with meaning as if it were a structure to be built up of the bricks and
mortar provided by the words, rather than a design to be created based on the
sketches and hints actually present in the input. This gives them a ‘brittle”
character, able to deal well with tightly specified areas of meaning in an artifi-
cially formal conversation. They are correspondingly weak in dealing with natu-
ral utterances, full of bits and fragments, continual (unnoticed) metaphor, and
reference to much less easily formalizable areas of knowledge.*

Another supposed breakthrough mentioned by Buchanan is Adolfo
Guzman’s program, SEE (1968), which analyzes two-dimensional pro-
jections of complicated scenes involving partially occluded three-dimen-
sional polyhedra. (See Figure 1). Already as developed by Guzman this
program could outdo human beings in unscrambling some classes of
complicated scenes, and as generalized by David Waltz it is even more
impressive. It not only demonstrates the power gained by restricting the
domain analyzed, but it also shows the kind of generalization that can
be obtained in micro-world work, as well as indirectly showing the kind
of generalization that is precluded by the very nature of special-purpose
heuristics.

Guzman’s program analyzes scenes involving cubes and other such
rectilinear solids by merging regions into bodies using evidence from the
vertices. Each vertex suggests that two or more of the regions around it
belong together depending on whether the vertex is shaped like an L, an
arrow, a T, aK, an X, a fork, a peak, or an upside-down peak. With these
eight primitives and commonsense rules for their use, Guzman’s pro-
gram did quite well. But it had certain weaknesses. According to Win-
ston, “The program could not handle shadows, and it did poorly if there
were holes in objects or missing lines in the drawing.”** Waltz then
generalized Guzman’s work and showed that by introducing three more
such primitives, a computer can be programmed to decide if a particular
line in a drawing is a shadow, a crack, an obscuring edge, or an internal
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seam in a way analogous to the solution of sets of algebraic equations.
As Winston later sums up the change:

Previously it was believed that only a program with a complicated control
structure and lots of explicit reasoning power could hope to analyze scenes like
that in figure [1]. Now we know that understanding the constraints the real world
imposes on how boundaries, concave and convex interiors, shadows, and cracks
can come together at junctions is enough to make things much simpler. A table
which contains a list of the few thousand physically possible ways that line types
can come together accompanied by a simple matching program are all that is
required. Scene analysis is translated into a problem resembling a jigsaw puzzle
or a set of linear equations. No deep problem solving effort is required; it is just
a matter of executing a very simple constraint dependent, iterative process that
successively throws away incompatible line arrangement combinations.*

This is just the kind of mathematical generalization within a domain
one might expect in micro-worlds where the rule-governed relation of the
primitives (in this case the set of vertices) are under some external
constraint (in this case the laws of geometry and optics). What one would
not expect is that the special-purpose heuristics which depend on corners
for segregating rectilinear objects could in any way be generalized so as
to make possible the recognition of other sorts of objects. And, indeed,
none of Guzman’s or Waltz’s techniques, since they rely on the intersec-
tion of straight lines, have any use in analyzing a scene involving curved
objects. What one gains in narrowing a domain, one loses in breadth of
significance. Winston’s evaluation covers up this lesson:

... It is wrong to think of Waltz’s work as only a statement of the epistemology
of line drawings of polyhedra. Instead I think it is an elegant case study of a
paradigm we can expect to see again and again, and as such, it is a strong
metaphoric tool for guiding our thinking, not only in vision but also in the study
of other systems involving intelligence.*

But in a later grant proposal he acknowledges that:

To understand the real world, we must have a different set of primitives from
the relatively simple line trackers suitable and sufficient for the blocks world.*

Waltz’s work is a paradigm of the kind of generalization one can strive
for within a micro-world all right, but for that very reason it provides
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no way of thinking about general intelligent systems. In the light of these
later evaluations my assumption that work in the early seventies did not
refute my accusation of stagnation seems vindicated.

The nongeneralizable character of the programs so far discussed
makes them engineering feats, not steps toward generally intelligent
systems, and they are, therefore not at all promising as contributions to
psychology. Yet Winston includes Waltz’s work in his claim that *

. making machines see is an important way to understand how we
animals see. . . .””*” and Winograd makes similar claims for the psycholog-
ical relevance of his work:

The gain from developing Al is not primarily in the usefulness of the programs
we create, but in the set of concepts we develop, and the ways in which we can
apply them to understanding human intelligence.**

These comments suggest that in the early seventies an interesting
change was taking place at M.I.T. In previous papers Minsky and his
co-workers sharply distinguished themselves from workers in Cognitive
Simulation, such as Simon, who presented their programs as psychologi-
cal theories, insisting that the M.I.T. programs were ‘“‘an attempt to build
intelligent machines without any prejudice toward making the system
... humanoid.”* Now in their book, Artificial Intelligence, ** a summary
of work done at M.I.T. during the period 1967-1972, Minsky and Papert
present the M.I.T. research as a contribution to psychology. They first
introduce the notion of a symbolic description:

What do we mean by ‘“‘description”? We do not mean to suggest that our
descriptions must be made of strings of ordinary-language words (although they
might be). The simplest kind of description is a structure in which some features
of a situation are represented by single (‘“‘primitive”) symbols, and relations
between those features are represented by other symbols—or by other features
of the way the description is put together.* ‘

They then defend the role of symbolic descriptions in a psychological ac-
count of intelligent behavior by a constant polemic against behaviorism
and gestalt theory which have opposed the use of formal models of themind.

One can detect, underlying this change, the effect of the proliferation
of micro-worlds, with their reliance on symbolic descriptions, and the
disturbing failure to produce even the hint of a system with the flexibility
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of a six-month-old child. Instead of concluding from this frustrating
situation that the special-purpose techniques which work in context-free,
gamelike, micro-worlds may in no way resemble general-purpose human
and animal intelligence, the AI workers seem to have taken the less
embarrassing if less plausible tack of suggesting that even if they could
not succeed in building intelligent systems, the ad soc symbolic descrip-
tions successful in micro-world analysis could be justified as a valuable
contribution to psychology.

Such a line, however, since it involves a stronger claim than the old
slogan that as long as the machine was intelligent it did not matter at
all whether it performed in a humanoid way, runs the obvious risk of
refutation by empirical evidence. An information-processing model must
be a formal symbolic structure, however, so Minsky and Papert, making
a virtue of necessity, revive the implausible intellectualist position ac-
cording to which concrete perception is assimilated to the rule-governed
symbolic descriptions used in abstract thought.

The Gestaltists look for simple and fundamental principles about how perception
is organized, and then attempt to show how symbolic reasoning can be seen as
following the same principles, while we construct a complex theory of how
knowledge is applied to solve intellectual problems and then attempt to show
how the symbolic description that is what one *‘sees™ is constructed according
to similar processes.*

Some recent work in psychology, however, points in the exactly oppo-
site direction. Rather than showing that perception can be analyzed in
terms of formal features, Erich Goldmeier’s extention of early Gestalt
work on the perception of similarity of simple perceptual figures—arising
in part in response to “‘the frustrating efforts to teach pattern recognition
to [computers]”*—has revealed sophisticated distinctions between
figure and ground, matter and form, essential and accidental aspects,
norms and distortions, etc., which he shows cannot be accounted for in
terms of any known formal features of the phenomenal figures. They can,
however, according to Goldmeier, perhaps be explained on the neurolog-
ical level, where the importance of Pragnanz—i.e., singularly salient
shapes and orientations—suggests underlying physical phenomena such
as “‘regions of resonance”* in the brain.
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Recent work in neurophysiology has suggested new mechanisms
which might confirm the Gestaltist’s intuition that other sorts of process
than the manipulation of formal representations of the sort required by
digital computers underlie perception. While still nothing definite is
known about how the brain “processes information,” computer models
look even less likely now than in 1970, while models based on the
properties of optical holograms look perhaps more promising. As John
Haugeland summarizes the evidence:

First, [optical holograms] are prepared from the light bouncing off an ordinary
object, and can subsequently be used to reconstruct a full three-dimensional
colored image of that object. Second, the whole image can be reconstructed from
any large enough portion of the hologram (i.e., there’s no saying which portion
of the hologram “encodes” which portion of the image). Third, a number of
objects can be separately recorded on the same hologram, and there’s no saying
which portion records which object. Fourth, if a hologram of an arbitrary scene
is suitably illuminated with the light from a reference object, bright spots will
appear indicating (virtually instantaneously) the presence and location of any
occurrences of the reference object in the scene (and dimmer spots indicate
“similar” objects). So some neurophysiological holographic encoding might ac-
count for a number of perplexing features of visual recall and recognition,
including their speed, some of their invariances, and the fact that they are only
slightly impaired by large lesions in relevant areas of the brain. . . .

Another interesting property of optical holograms is that if a hologram [com-
bining light from two separate] objects is illuminated with the light from one of
them, an image of the other (absent) object appears. Thus, such a hologram can
be regarded as a kind of “associator” of (not ideas, but) visual patterns. . . .*

Haugeland adds:

. . . Fairly detailed hypothetical models have been proposed for how holograms
might be realized in neuronal structures; and there is some empirical evidence
that some neurons behave in ways that would fit the models.*

Of course, it is still possible that the Gestaltists went too far in trying
to assimilate thought to the same sort of concrete, holistic, processes they
found necessary to account for perception. Thus, even though the expo-
nents of symbolic descriptions have no account of perceptual processes,
they might be right that the mechanism of everyday thinking and learn-
ing consists in constructing a formal description of the world and trans-
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forming this representation in a rule-governed way. Such a formal model
of everyday learning and categorization is proposed by Winston in his
1970 thesis, “Learning Structural Descriptions from Examples.”* Given
a set of positive and negative instances, Winston’s self-proclaimed “clas-
sic” program can, for example, use a descriptive repertoire to construct
a formal description of the class of arches. Since, as we mentioned earlier,
Winston’s program (along with those of Winograd and Guzman) is often
mentioned as a success of the late sixties, we must examine it in detail.

Is this program a plausible general theory of learning? Winston’s
commitment to a computer model dictates the conclusion that it must
be:

Although this may seem like a very special kind of learning, I think the implica-
tions are far ranging, because I believe that learning by examples, learning by
being told, learning by imitation, learning by reinforcement and other forms are
much like one another. In the literature of learning there is frequently an un-
stated assumption that these various forms are fundamentally different. But I
think the classical boundaries between the various kinds of learning will disap-
pear once superficially different kinds of learning are understood in terms of
processes that construct and manipulate descriptions.**

Yet Winston’s program works only if the “student” is saved the trouble
of what Charles Sanders Peirce called abduction, by being “told” a set
of context-free features and relations—in this case a list of possible
spacial relationships of blocks such as “left-of,” “standing,” ‘“‘above,”
and “‘supported by”’—from which to build up a description of an arch.
Minsky and Papert presuppose this preselection when they say that “to
eliminate objects which seem atypical . . . the program lists all relation-
ships exhibited by more than half of the candidates in the set.”* Lurking
behind this claim is the supposition that there are only a finite number
of relevant features; but without preselected features all objects share an
indefinitely large number of relationships. The work of discriminating,
selecting, and weighting a limited number of relevant features is the
result of repeated experience and is the first stage of learning. But since
in Winston’s work the programmer selects and preweights the primitives,
his program gives us no idea how a computer could make this selection
and assign these weights. (In this respect Winston’s program shows no



Introduction to the Revised Edition / 22

progress beyond Newell, Shaw, and Simon’s 1958 proposal; see p. 83 of
this book.) Thus the Winston program, like every micro-world program,
works only because it has excluded from its task domain the very ability
it is supposed to explain.

If not a theory of learning, is Winston’s program at least a plausible
theory of categorization? Consider again the arch example. Once it has
been given what Winston disarmingly calls a ““good description”*® and
carefully chosen examples, the program does conclude that an arch is a
structure in which a prismatic body is supported by two upright blocks
that do not touch each other. But, since arches function in various ways
in our everyday activity, there is no reason to suppose that these are the
necessary and sufficient conditions for being an arch, or that there are
any such defining features. Some prominent characteristics shared by
most everyday arches are “helping to support something while leaving
an important open space under it,” or “being the sort of thing one can
walk under and through at the same time.” How does Winston propose
to capture such contextual characteristics in terms of the context-free
features required by his formal representation?

Winston admits that having two supports and a flat top does not begin
to capture even the geometrical structure of arches. So he proposes
“generalizing the machine’s descriptive ability to acts and properties
required by those acts”' by adding a functional predicate, “‘something
to walk through.”*? But it is not at all clear how a functional predicate
which refers to implicit knowledge of the bodily skill of walking through
is to be formalized. Indeed, Winston himself provides a reductio ad
absurdum of this facile appeal to formal functional predicates:

To a human, an arch may be something to walk through, as well as an appropri-
ate alignment of bricks. And certainly, a flat rock serves as a table to a hungry
person, although far removed from the image the word table usually calls to
mind. But the machine does not yet know anything of walking or eating, so the
programs discussed here handle only some of the physical aspects of these human
notions. There is no inherent obstacle forbidding the machine to enjoy functional
understanding. It is a matter of generalizing the machine’s descriptive ability to
acts and properties required by those acts. Then chains of pointers can link
TABLE to FOOD as well as to the physical image of a table, and the machine will
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be perfectly happy to draw up its chair to a flat rock with the human given that
there is something on that table which it wishes to eat.”

Progress on recognition of arches, tables, etc., must, it seems, either wait
until we have captured in an abstract symbolic description much of what
human beings implicitly know about walking and eating simply by hav-
ing a body, or else until computers no longer have to be told what it is
to walk and eat, because they have human bodies and appetites them-
selves!

Despite these seemingly insurmountable obstacles Winston boasts that
“there will be no contentment with [concept learning] machines that
only do as well as humans.”* But it is not surprising that Winston’s work
is nine years old and there has been little progress in machine learning,
induction, or concept formation. In their account Minsky and Papert
admit that “we are still far from knowing how to design a powerful yet
subtle and sensitive inductive learning program.”** What is surprising is
that they add: “but the schemata developed in Winston’s work should
take us a substantial part of the way.”*® The lack of progress since
Winston’s work was published, plus the use of predigested weighted
primitives from which to produce its rigid, restricted, and largely irrele-
vant descriptions, makes it hard to understand in what way the program
is a substantial step.

Moreover, if Winston claims to “shed some light on [the question:]
How do we recognize examples of various concepts?””*’ his theory of
concepts as definitions must, like any psychological theory, be subject
to empirical test. It so happens that contrary to Winston’s claims, re-
cent evidence collected and analyzed by Eleanor Rosch on just this
subject shows that human beings are not aware of classifying objects
as instances of abstract rules but rather group objects as more or less
distant from an imagined paradigm. This does not exclude the possi-
bility of unconscious processing, but it does highlight the fact that
there is no empirical evidence at all for Winston’s formal model. As
Rosch puts it:

Many experiments have shown that categories appear to be coded in the mind
neither by means of lists of each individual member of the category, nor by means
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of a list of formal criteria necessary and sufficient for category membership, but,
rather, in terms of a prototype of a typical category member. The most cogni-
tively economical code for a category is, in fact, a concrete image of an average
category member.*®

One paradigm, it seems, is worth a thousand rules. As we shall soon see,
one of the characteristics of the next phase of work in Al is to try to take
account of the implications of Rosch’s research.

Meanwhile, what can we conclude concerning AI’s contribution to the
science of psychology? No one can deny Minsky and Papert’s claim that
“Computer Science has brought a flood of . . . ideas, well defined and
experimentally implemented, for thinking about thinking. . . .”** But all
of these ideas can be boiled down to ways of constructing and manipulat-
ing symbolic descriptions, and, as we have seen, the notion that human
cognition can be explained in terms of formal representations does not
seem at all obvious in the face of actual research on perception, and
everyday concept formation. Even Minsky and Papert show a commend-
able new modesty. They as much as admit that Al is still at the stage
of astrology (not unlike alchemy), and that the much heralded break-
through still lies in the future:

Just as astronomy succeeded astrology, following Kepler’s discovery of planetary
regularities, the discoveries of these many principles in empirical explorations of
intellectual processes in machines should lead to a science, eventually.®

Happily, “should” has replaced “will” in their predictions. Indeed, this
period’s contribution to psychology suggests an even more modest hope:
As more psychologists like Goldmeier are frustrated by the limitations
of formal computer models, and others turn to investigating the function
of images as opposed to symbolic representations, the strikingly limited
success of AI may come to be seen as an important disconfirmation of
the information processing approach.

To complete our survey of the state of Al research as it entered its
second decade we need to consider briefly the state of robot research,
both because work in this area received a lot of misleading publicity
during this period and because, as we have just seen in discussing Win-
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ston’s claims, workers in Al often take refuge in the idea that computers
will finally achieve human understanding when they have humanoid
bodies.

Our account will have to be brief because there is not much to report.
After the usual optimistic start, the M.L.T. robot arm was stopped cold
by just the problem of representing its own body space which I suspected
would be its undoing (see p. 251). In the 1968-1969 AI Progress Report
this problem is clearly an embarrassment:

. . . [H]ow should one represent a machine’s body image? For the problem of
a single, not-too-complicated arm, one can doubtless get by with cleverly coded,
sparse, three-dimensional arrays, but one would like something more symbolic.
And one wonders what happens in the nervous system; we have not seen any-
thing that might be considered to be a serious theory. Consider that a normal
human can place an object on a table, turn about and make a gross change in
his position and posture, and then reach out and grasp within one or two inches
of the object, all with his eyes closed! It seems unlikely that his cerebellum could
perform the appropriate vector calculations to do this. . . .*

However, rather than see this as evidence that their attempt to
represent the robot’s arm as one more object in physical space was
misguided, the authors of the report get into deeper trouble defend-
ing their faith.

... We would presume that this complex motor activity is made up, somehow,
of a large library of stereotypical programs, with some heuristic interpolation
scheme that fits the required action to some collection of reasonably similar
stored actions. But we have found nowhere any serious proposal about neurologi-
cal mechanisms for this, and one can hope that some plausible ideas will come
out of robotics research itself.*

Neurophysiology offers, admittedly speculative, accounts of such
similarity, but these are holographic not information processing models.
As for the Al approach, it merely raises the further problem of recogniz-
ing similarity, which is discussed in connection with chess-playing pro-
grams in the next section. In the light of these problems, when the report
adds: “Unfortunately, at present this area is somewhat dormant,”® we
can only take “dormant” as a polite synonym for stagnant or even
comatose.
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In spite of its better press (see p. 300) the SRI robot, Shakey, was in
no better shape. As Bertram Raphael frankly sums up the situation in
response to exaggerated coverage by the media:

. . . Many experiments were performed with Shakey between 1968 and 1972
. . . [but] we made much less progress than various press reports might suggest
toward the creation of an independent sentient robot capzble of meaningful
performance in a normal human environment. Responsible scientists consider
this intriguing idea premature, probably by at least several decades.*

In effect, Shakey is another case of a micro-world success which
turned into a real-world failure.

At his peak, Shakey could only function in a sterile “play-pen” environment of
walls, doorways, carefully painted baseboards (so he could “see” where the walls
met the floor), and a few simply-shaped wooden blocks; he had only about a
dozen pre-programmed “instinctive” abilities, such as TURN, PUSH, GO-
THROUGH-DOORWAY, and CLIMB-RAMP, which could be combined in various |
ways by the planning programs. . . . The scientists who worked on Shakey"
developed a deep appreciation of how difficult it is to produce a robot even with
relatively trivial abilities, let alone the true science-fiction-like independent com-
petence.®

According to Raphael, Shakey and the SRI robot project have been
“temporarily put aside” and there will be no interesting robot work to
report until AI workers solve the basic problem of knowledge representa-
tion:

Surprisingly, the issues of how to acquire, represent, and make use of a broad
store of knowledge has been the most neglected part of past robot research. The
developers of the laboratory robot systems were so busy patching together exist-
ing capabilities (in vision, language, and problem solving), and filling in essential
new areas (representing the physical world, providing for error recovery), that
they did not attend to the fundamental issue of knowledge structures.*

So now we have the overall picture. In all those areas where en-
thusiasts saw signs of success at just the time this book appeared—
language understanding, scene analysis, concept learning, and robot
building—the work turned out to be based on brilliant but nongeneraliza-
ble exploitation of specific features of the task domain. With this realiza-
tion Al finally had to face the problem of representing everyday knowl-
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edge—a difficult, decisive, and philosophically fascinating task with
which it is still struggling today.

Phase IV (1972-1977) Facing the Problem of
Knowledge Representation

As the restricted interest of work in restricted domains became appar-
ent, the distinction between specific applications and research on basic
principles became sharper. Feigenbaum comes to refer to his work on
DENDRAL and his more recent program for inferring the rules of mass
spectometry, META-DENDRAL, as “knowledge engineering”*’ while
Winograd and his associates call their work “cognitive science.”%* At
M.LT,, a grant proposal from this period distinguishes between ‘“‘no-
holds-barred, special purpose, domain-dependent work™ and ‘‘no-tricks
basic study.”*® And it seems to be generally accepted that every program
we discussed in Phase III, and, indeed, the whole micro-world concept,
was in this straightforward sense, a trick.

We shall now see that in Phase IV the special-purpose work makes
steady progress, while the basic study faces a crisis. Everyday human
know-how is increasingly acknowledged to be presupposed by intelligent
behavior, yet it turns out to be incredibly difficult, perhaps in principle
impossible, to program.

The areas in which knowledge engineering has been successful are just
those in which the first edition of What Computers Can’t Do predicted
that progress could be expected. (See Column III, of my breakdown of
the field, p. 292.) As long as the domain in question can be treated as
a game, i.e., as long as what is relevant is fixed, and the possibly relevant
factors can be defined in terms of context-free primitives, then computers
can do well in the domain. And they will do progressively better relative
to people as the amount of domain-specific knowledge required is in-
creased. In such special-purpose programs the form of knowledge repre-
sentation can be limited to situation — action rules in which the situa-
tion is defined in terms of a few parameters and indicates the conditions
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under which a specific heuristic rule is relevant. Again, because relevance
is defined beforehand, reasoning can be by inference chains with no need
for reasoning by analogy.

All these features can be found in one of the most impressive practical
programs to date: Shortliffe’s MYCIN program (1976) for diagnosing
blood infections and meningitis infections and recommending drug treat-
ment. The rules in this case are of the form:

RULE 85
IF:

1. The site of the culture is blood, and

2. The gram stain of the organism is gramneg, and
3. The morphology of the organism is rod, and

4. The patient is a compromised host

THEN:

There is suggestive evidence (.6) that the identity of the organism is pseudomo-
nas-aeruginosa.”

The program has been tested by a panel of judges:

... In 90% of the cases submitted to the judges, a majority of the judges said
that the program’s decisions were the-same-as or as-good-as the decisions they
would have made.”*

This approach, although successful as an engineering feat, involves
several assumptions which may conceal potential limitations. Feigen-
baum, in his analysis of MYCIN, assumes that acquiring expert skill is
acquiring rules for recognizing situations and rules for evaluating evi-
dence.

.. . In most “crafts or branches of learning” what we call “expertise” is the
essence of the art. And for the domains of knowledge that we touch with our
art, it is the “rules of expertise” or the rules of “good judgment” of the expert
practitioners of the domain that we seek to transfer to our programs.”

He conscientiously notes that the experts themselves are not aware of
using rules:



Introduction to the Revised Edition / 29

. . . Experience has also taught us that much of this knowledge is private to the
expert, not because he is unwilling to share publicly how he performs, but
because he is unable. He knows more than he is aware of knowing. (Why else
is the Ph.D. or the Internship a guild-like apprenticeship to a presumed *“master
of the craft”? What the masters really know is not written in the textbooks of
the masters.)”

But Feigenbaum with his assumption that expert performance must
result exclusively from following rules, is nonetheless convinced that by
suitable questioning he can get the expert, as Plato would say, to “recol-
lect” the complete set of unconscious heuristics:

.. . But we have learned also that this private knowledge can be uncovered by
the careful, painstaking analysis of a second party, or sometimes by the expert
himself, operating in the context of a large number of highly specific performance
problems.”

If internship and the use of examples play an essential role in expert
judgment, i.e., if there is a limit to what can be understood by rules,
Feigenbaum would never see it—especially in domains such as medicine
where there is a very large and rapidly increasing body of factual infor-
mation concerning drugs and their side effects and interactions, so that
the computer can make up in data-processing capacity for what it lacks
in judgment. Yet, the fact remains that in each field where ‘“knowledge
engineering” has made its valuable contribution and rivaled the experts,
there are still masters who do better than the machine. To determine
whether this is an accident, or whether skill may involve more than rule
following, it is helpful to look at developments in chess, where the
domain is restricted, factual knowledge is at a minimum, and where we
have some psychological evidence of what master players actually do.

Chess is an ideal micro-world in which relevance is restricted to the
narrow domain of the kind of chess piece (pawn, knight, etc.), its color,
and the position of the piece on the board. But while the game’s circum-
scribed character makes a world champion chess program in principle
possible, there is a great deal of evidence that human beings play chess
quite differently from computers; and I was not surprised to find that up
to 1971 computers played fairly low-level chess (see pp. 82-85). In July
1976, however, the Northwestern University chess program, called
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CHESS 4.5, won the class B section of the Paul Masson American Chess
Championship with an impressive 5 wins and no losses. It then went on
in February 1977 to win the 84th Minnesota Open Tournament against
experts and high-class A players.”” Such unexpected impressive results
require a reexamination of the difference between human and computer
chess playing.

A chess program has the sort of situation — action rules discussed
above. A situation is characterized in terms of context-free features: the
position and color of each piece on the board. All possible legal moves
and the positions which result are then defined in terms of these features.
To evaluate and compare positions, rules are provided for calculating
scores on attributes such as “material balance” (where a numerical value
is assigned to each piece on the board and the total score is computed
for each player), or “center control” (where the number of pieces bearing
on each centrally located square is counted). Finally, there must be a
formula for evaluating alternative positions on the basis of these scores.
Using this approach and looking at a tree of around 3 million potential
positions CHESS 4.5 can beat some players at the expert level, but a
chess master generally looks at the results of less than 100 possible moves
(see p. 102) and yet plays a far better game. How can this be?

In Chapter 1, I note that human beings avoid the counting out of large
numbers of alternatives characteristic of a computer program by “zero-
ing in” on the appropriate area in which to look for a move and I suggest
that this ability is the result of having a sense of the developing game.
While no doubt correct, this now seems to me an inadequate account,
for it does not take into consideration the fact that to develop this ability
to zero in, chess masters must play thousands of actual and book games.
What does this apprenticeship add to their skill?

By playing over book games chess masters presumably develop the
ability to recognize present positions as similar to positions which oc-
curred in classic games. These previous positions have already been
analyzed in terms of their significant aspects. Aspects of a chess position
include such overall characteristics as ‘“control of the situation” (the
extent to which a player’s opponent’s moves can be forced by making
threatening moves), “crampedness of the position” (the amount of free-
dom of maneuver inherent in both the player’s position and the oppo-
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nent’s position), or “overextendedness” (the fact that while the position
might be superficially quite strong, one is not in sufficient control of the
situation to follow through and, with correct play by the opponent, a
massive retreat will be required). The already analyzed remembered
positions focus the player’s attention on critical aspects of the current
position, and the master can thus zero in on these critical areas before
beginning to count out specific moves.

The distinction between features and aspects is central here. Aspects
play a role in an account of human play similar to that of features in
the computer model, but there is a crucial difference. In the computer
model the situation is DEFINED IN TERMS OF the features, whereas in
human play situational understanding is PRIOR TO aspect specification.
For example, the numerical value of a feature such as material balance
can be calculated independently of any understanding of the game,
whereas an aspect like overextendedness cannot be calculated simply in
terms of the position of the pieces, since the same board position can
have different aspects depending on its place in the long-range strategy
of a game. In a game in which white’s long-range strategy is an attack
on the opponent’s king, the advanced position of white’s pieces does
not constitute overextension, whereas otherwise it would. No present
or envisaged chess program attempts to include such long-range strat-
egy, yet to recognize aspects requires some such overall interpretation
of the game.

For the same reason some sort of feature-based matching of the pre-
sent position against a stored library of previous positions won’t help
account for a master player’s ability to use past experience to zero in. It
is astronomically unlikely that two positions will ever turn out to be
identical, so that what has to be compared are similar positions. But
similarity cannot be defined as having a large number of pieces on
identical squares. Two positions which are identical except for one pawn
moved to an adjacent square can be totally different, while two positions
can be similar although no pieces are on the same square in each. Thus
simitarity depends on the player’s sense of the issues at stake, not merely
on the position of the pieces. Seeing two positions as similar is exactly
what requires a deep understanding of the game. And structuring the
situation in terms of aspects of remembered similar situations in turn
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enables the human player to avoid the massive counting out required
when the positions are characterized only in terms of context-free fea-
tures.

Aspects also enable masters to formulate heuristic maxims which play
arole in this account analogous to heuristic ru/es in the computer model.
Polanyi calls attention to the difference between strict rules and maxims:

Maxims are rules, the correct application of which is part of the art which they
govern. The true maxims of golfing or of poetry increase our insight into golfing
or poetry and may even give valuable guidance to golfers and poets; but these
maxims would instantly condemn themselves to absurdity if they tried to replace
the golfer’s skill or the poet’s art. Maxims cannot be understood, still less applied
by anyone not already possessing a good practical knowledge of the art.™

At present computers using exhaustive search, and masters using
selective search guided by aspect analysis and maxims, can each look
ahead about six or seven ply.”* Given the exponential growth of alterna-
tive moves it will not be possible without better tree-searching heuristics
to significantly increase the computer’s power to look ahead. Thus with
present programs what is really at stake is how far computers which
must use tactics based on context-free features can make up by sheer
brute force for the use of long-range strategy, the recognition of
similarity to other preanalyzed games, and the zeroing in on crucial
aspects characteristic of advanced human play.

In general being able to see similarity to prototypical cases and to
recognize shared aspects in terms of this similarity, as well as the possi-
bility of profiting from maxims formulated in terms of these aspects, all
seem to play an essential role in the acquisition and utilization of ex-
pertise. But since these abilities are not based on context-free features
but depend on the overall situation they cannot be captured in the
situation — action rule formalism. Thus we can expect in every area
where expertise is based on experience to continue to find some experts
who outperform even the most sophisticated programs.

Although chess programs and knowledge engineering in general have
made remarkable progress during the past two years, discourse under-
standing, despite the introduction of interesting new ideas, is still in the
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same state of stagnation as it was in 1972. While this has led some
researchers to ever more extravagant promises and claims, it has led
others to sober thoughts on the difficulty of programming human under-
standing. In order to form a reasonable opinion about what has yet to
be done to make computers intelligent, we must turn from the com-
puter’s successes in restricted domains to the stag/flation afflicting the
field of discourse understanding.

The difference between programs like MYCIN and CHESS 4.5, and
programs for understanding discourse, is precisely the difference between
domain-specific knowledge and general intelligence; between anything-
goes engineering and no-tricks basic study; or, as we can now see, the
difference between areas in which relevance has been decided beforehand
(Area III in my chart, p. 292), and areas in which determining what is
relevant is precisely the problem (Area IV).

In the past five years, the problem of how to structure and retrieve data
in situations when anything might be relevant has come to be known as
the knowledge representation problem. As Patrick Winston, head of the
M.L.T. Al Laboratory, puts it in a section of a 1975 research proposal
entitled “The Need for Basic Studies’:

... We believe that proper representation is the key to advanced vision, common
sense reasoning, and expert problem solving, just as it is to many other aspects
of Artificial Intelligence.”

Of course, the representation of knowledge was always a central prob-
lem for work in Al but earlier periods were characterized by an attempt
to repress it by seeing how much could be done with as little knowledge
as possible. Now, the difficulties are being faced. As Roger Schank of
Yale recently remarked:

... Researchers are starting to understand that tour-de-forces in programming
are interesting but non-extendable . . . the Al people recognize that how people
use and represent knowledge is the key issue in the field. . . .”

Papert and Goldstein explain the problem:

It is worthwhile to observe here that the goals of a knowledge-based approach
to Al are closely akin to those which motivated Piaget to call . . . himself an
“‘epistemologist” rather than a psychologist. The common theme is the view that
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the process of intelligence is determined by the knowledge held by the subject.
The deep and primary questions are to understand the operations and data
structures involved.*

Another memo illustrates how ignoring the background knowledge can
come back to haunt one of AT’s greatest tricks in the form of nongeneral-
izability:

. .. Many problems arise in experiments on machine intelligence because things
obvious to any person are not represented in any programs. One can pull with
a string, but one cannot push with one. One cannot push with a thin wire, either.
A taut inextensible cord will break under a very small lateral force. Pushing
something affects first its speed; only indirectly its position! Simple facts like these
caused serious problems when Charniak attempted to extend Bobrow’s “Stu-
dent” program to more realistic applications, and they have not been faced up
to until now.*

The most interesting current research is directed toward the underlying
problem of developing new, flexible, complex data types which will allow
the representation of background knowledge in large, more structured
units.

In 1972, drawing on Husserl’s phenomenological analysis, I pointed
out that it was a major weakness of Al that no programs made use of
expectations (see pp. 241, 242, and 250). Instead of modeling intelligence
as a passive receiving of context-free facts into a structure of already
stored data, Husserl thinks of intelligence as a context-determined, goal-
directed activity—as a search for anticipated facts. For him the noema,
or mental representation of any type of object, provides a context or
“inner horizon” of expectations or “predelineations” for structuring the
incoming data: a “rule governing possible other consciousness of [the
object] as identical—possible, as exemplifying essentially predelineated
types.”®* As I explain in Chapter 7:

... We perceive a house, for example, as more than a fagade—as having some
sort of back—some inner horizon. We respond to this whole object first and then,
as we get to know the object better, fill in the details as to inside and back.
[p. 241]

The noema is thus a symbolic description of all the features which can
be expected with certainty in exploring a certain type of object—features
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which remain “inviolably the same: as long as the objectivity remains
intended as this one and of this kind”® . . . plus “predelineations” of
those properties which are possible but not necessary features of this type
of object.

A year after my objection, Minsky proposed a new data structure
remarkably similar to Husserl’s for representing everyday knowledge:

A frame is a data-structure for representing a stereotyped situation, like being
in a certain kind of living room, or going to a child’s birthday party. . . .

We can think of a frame as a network of nodes and relations. The “top levels”
of a frame are fixed, and represent things that are always true about the supposed
situation. The lower levels have many terminals—‘‘slots” that must be filled by
specific instances or data. Each terminal can specify conditions its assignments
must meet. . . .

Much of the phenomenological power of the theory hinges on the inclusion
of expectations and other kinds of presumptions. A frame’s terminals are nor-
mally already filled with “default” assignments.*

In Minsky’s model of a frame, the “top level” is a developed version
of what in Husserl’s terminology “remains inviolably the same” in the
representation, and Husser!’s predelineations have been made precise as
“default assignments”—additional features that can normally be ex-
pected. The result is a step forward in Al techniques from a passive
model of information processing to one which tries to take account of
the context of the interactions between a knower and his world. Husserl
thought of his method of transcendental-phenomenological constitution,
i.e., “explicating” the noema for all types of objects, as the beginning of
progress toward philosophy as a rigorous science, and Patrick Winston
has hailed Minsky’s proposal as “the ancestor of a wave of progress in
AlL”* But Husserl’s project ran into serious trouble and there are signs
that Minsky’s may too.

During twenty years of trying to spell out the components of the
noema of everyday objects, Husserl found that he had to include more
and more of what he called the “outer horizon,” a subject’s total knowl-
edge of the world:

... To be sure, even the tasks that present themselves when we take single types
of objects as restricted clues prove to be extremely complicated and always lead
to extensive disciplines when we penetrate more deeply. That is the case, for
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example, with a transcendental theory of the constitution of a spatial object (to
say nothing of a Nature) as such, of psycho-physical being and humanity as such,
cultures as such.*

He sadly concluded at the age of seventy-five that he was “a perpetual
beginner” and that phenomenology was an “infinite task”—and even
that may be too optimistic. His successor, Heidegger, pointed out that
since the outer horizon or background of cultural practices was the
condition of the possibility of determining relevant facts and features and
thus prerequisite for structuring the inner horizon, as long as the cultural
context had not been clarified the proposed analysis of the inner horizon
of the noema could not even claim progress.

There are hints in an unpublished early draft of the frame paper that
Minsky has embarked on the same misguided “infinite task” that eventu-
ally overwhelmed Husserl:

Just constructing a knowledge base is a major intellectual research problem.
... Wesstill know far too little about the contents and structure of common-sense
knowledge. A “minimal” common-sense system must “know” something about
cause-effect, time, purpose, locality, process, and types of knowledge. . . . We
need a serious epistemological research effort in this area.*’

Minsky’s naiveté and faith are astonishing. Philosophers from Plato
to Husserl, who uncovered all these problems and more, have carried on
serious epistemological research in this area for two thousand years
without notable success. Moreover, the list Minsky includes in this pas-
sage deals only with natural objects, and their positions and interactions.
As Husserl saw, and as I argue in Chapter 8, intelligent behavior also
presupposes a background of cultural practices and institutions. Obser-
vations in the frame paper such as:

Trading normally occurs in a social context of law, trust, and convention. Unless
we also represent these other facts, most trade transactions will be almost mean-
ingless®®
show that Minsky has understood this too. But Minsky seems oblivious
to the hand-waving optimism of his proposal that programmers rush in
where philosophers such as Heidegger. fear to tread, and simply make
explicit the totality of human practices which pervade our lives as water
encompasses the life of a fish.

To make this essential point clear it helps to take an example used by
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Minsky and look at what is involved in understanding a piece of everyday
equipment as simple as a chair. No piece of equipment makes sense by
itself. The physical object which is a chair can be defined in isolation as
a collection of atoms, or of wood or metal components, but such a
description will not enable us to pick out chairs. What makes an object
a chair is its function, and what makes possible its role as equipment for
sitting is its place in a total practical context. This presupposes certain
facts about human beings (fatigue, the ways the body bends), and a
network of other culturally determined equipment (tables, floors, lamps),
and skills (eating, writing, going to conferences, giving lectures, etc.).
Chairs would not be equipment for sitting if our knees bent backwards
like those of flamingos, or if we had no tables as in traditional Japan or
the Australian bush.

Anyone in our culture understands such things as how to sit on
kitchen chairs, swivel chairs, folding chairs; and in arm chairs, rocking
chairs, deck chairs, barber’s chairs, sedan chairs, dentist’s chairs, basket
chairs, reclining chairs, wheel chairs, sling chairs, and beanbag chairs—
as well as how to get out of them again. This ability presupposes a
repertoire of bodily skills which may well be indefinitely large, since there
seems to be an indefinitely large variety of chairs and of successful
(graceful, comfortable, secure, poised, etc.) ways to sit in them. More-
over, understanding chairs also includes social skills such as being able
to sit appropriately (sedately, demurely, naturally, casually, sloppily,
provocatively, etc.) at dinners, interviews, desk jobs, lectures, auditions,
concerts (intimate enough for there to be chairs rather than seats), and
in waiting rooms, living rooms, bedrooms, courts, libraries, and bars (of
the sort sporting chairs, not stools).

In the light of this amazing capacity, Minsky’s remarks on chairs in
his frame paper seem more like a review of the difficulties than even a
hint of how AI could begin to deal with our commonsense understanding
in this area.

There are many forms of chairs, for example, and one should choose carefully
the chair-description frames that are to be the major capitols of chair-land. These
are used for rapid matching and assigning priorities to the various differences.
The lower priority features of the cluster center then serve . . . as properties of
the chair types. . . .*
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There is no argument why we should expect to find elementary context-
free features characterizing a chair type, nor any suggestion as to what
these features might be. They certainly cannot be legs, back, seat, etc.,
since these are not context-free characteristics defined apart from chairs
which then “cluster” in a chair representation, but rather legs, back, etc.
come in all shapes and variety and can only be recognized as aspects of
already recognized chairs. Minsky continues:

Difference pointers could be “functional” as well as geometric. Thus, after
rejecting a first try at “chair” one might try the functional idea of “something
one can sit on” to explain an unconventional form.”

But, as we already saw in our discussion of Winston’s concept-learning
program, a function so defined is not abstractable from human embodied
know-how and cultural practices. A functional description such as
“something one can sit on” treated merely as an additional context-free
descriptor cannot even distinguish conventional chairs from saddles,
thrones, and toilets. Minsky concludes:

Of course, that analysis would fail to capture toy chairs, or chairs of such
ornamental delicacy that their actual use would be unthinkable. These would be
better handled by the method of excuses, in which one would bypass the usual
geometrical or functional explanation in favor of responding to contexts involv-
ing art or play.*
This is what is required all right, but by what elementary features are
these contexts to be recognized? There is no reason at all to suppose that
one can avoid the difficulty of formally representing our knowledge of
chairs by abstractly representing even more holistic, concrete, culturally
determined, and loosely organized human practices such as art and play.
Minsky in his frame article claims that: “the frame idea . . . is in the
tradition of . . . the ‘paradigms’ of Kuhn,”*? so it is appropriate to ask
whether a theory of formal representation such as Minsky’s, even if it
can’t account for everyday objects like chairs, can do justice to Thomas
Kuhn’s analysis of the role of paradigms in the practice of science. Such
a comparison might seem more promising than testing the ability of
frames to account for our everyday understanding, since science is a
theoretical enterprise which deals with context-free data whose lawlike
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relations can in principle be grasped by any sufficiently powerful “pure-
intellect,” whether human, Martian, digital, or divine.

Paradigms, like frames, serve to set up expectations. As Kuhn notes:
“In the absence of a paradigm or some candidate for paradigm, all the
facts that could possibly pertain to the development of a given science
are likely to seem equally relevant.”®> Minsky interprets as follows:

According to Kuhn’s model of scientific evolution ‘normal’ science proceeds by
using established descriptive schemes. Major changes result from new ‘para-
digms’, new ways of describing things. Whenever our customary viewpoints do
not work well, whenever we fail to find effective frame systems in memory, we
must construct new ones that bring out the right features.*

But what Minsky leaves out is precisely Kuhn’s claim that a paradigm
or exemplar is not an abstract explicit descriptive scheme utilizing formal
features, but rather a shared concrete case, which dispenses with features
altogether:

The practice of normal science depends on the ability, acquired from exemplars,
to group objects and situations into similarity sets which are primitive in the
sense that the grouping is done without an answer to the question, ““Similar with
respect to what?”’*

Thus, although it is the job of scientists to find abstractable, exact,
symbolic descriptions, and the subject matter of science consists of such
formal accounts, the thinking of scientists themselves does not seem to
be amenable to this sort of analysis. Kuhn explicitly repudiates any
formal reconstruction which claims that the scientists must be using
symbolic descriptions:

I have in mind a manner of knowing which is misconstrued if reconstructed in
terms of rules that are first abstracted from exemplars and thereafter function
in their stead.®

Indeed, Kuhn sees his book as raising just those questions which Minsky
refuses to face:

Why is the concrete scientific achievement, as a locus of professional commit-
ment, prior to the various concepts, laws, theories, and points of view that may
be abstracted from it? In what sense is the shared paradigm a fundamental unit
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for the student of scientific development, a unit that cannot be fully reduced to
logically atomic components which might function in its stead?”’

Although research based on frames cannot deal with this question and
so cannot account for commonsense or scientific knowledge, the frame
idea did bring the problem of how to represent our everyday knowledge
into the open in AI. Moreover, it provided a-model so vague and sugges-
tive that it could be developed in several different directions. Two alter-
natives immediately presented themselves: either to use frames as part
of a special-purpose micro-world analysis dealing with commonsense
knowledge as if everyday activity took place in preanalyzed specific
domains, or else to try to use frame structures in “‘a no-tricks basic
study” of the open-ended character of everyday know-how. Of the two
most influential current schools in AI, Roger Schank and his students
at Yale have tried the first approach, Winograd, Bobrow, and their
research group at Stanford and Xerox, the second.

Schank’s version of frames are called ‘“‘scripts.” Scripts encode the
essential steps involved in stereotypical social activities. Schank uses
them to enable a computer to “understand” simple stories. Like the
micro-world builders of Phase III, Schank believes he can start with
isolated stereotypical situations described in terms of primitive actions
and gradually work up from there to all of human life.

To carry out this project, Schank invented an event description lan-
guage consisting of eleven primitive acts such as: ATRANS—the trans-
fer of an abstract relationship such as possession, ownership, or control;
PTRANS—the transfer of physical location of an object; INGEST—the
taking of an object by an animal into the inner workings of that animal,
etc.,”® and from these primitives he builds gamelike scenarios which
enable his program to fill in gaps and pronoun reference in stories.

Such primitive acts, of course, make sense only when the context is
already interpreted in a specific piece of discourse. Their artificiality can
easily be seen if one compares one of Schank’s context-free primitive acts
to real-life actions. Take PTRANS, the transfer of physical location of
an object. At first it seems an interpretation-free fact if ever there was
one. After all, either an object moves or it doesn’t. But in real life things
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are not so simple; even what counts as physical motion depends on our
purposes. If someone is standing still in a moving elevator on a moving
ocean liner, is his going from A to B deck a PTRANS? What about when
he is just sitting on B deck? Are we all PTRANSing around the sun?
Clearly the answer depends on the situation in which the question is
asked.

Such primitives can, however, be used to describe fixed situations or
scripts once the relevant purposes have already been agreed upon.
Schank’s definition of a script emphasizes its predetermined, bounded,
gamelike character:

We define a script as a predetermined causal chain of conceptualizations that
describe the normal sequence of things in a familiar situation. Thus there is a
restaurant script, a birthday-party script, a football game script, a classroom
script, and so on. Each script has in it a minimum number of players and objects
that assume certain roles within the script . . . [Elach primitive action given
stands for the most important element in a standard set of actions.”

His illustration of the restaurant script spells out in terms of primitive
actions the rules of the restaurant game:

Script: restaurant
Roles: customer; waitress; chef; cashier
Reason: to get food so as to go down in hunger and up in pleasure

Scene 1 entering

PTRANS—go into restaurant
MBUILD—find table
PTRANS—go to table
MOVE—sit down

Scene 2 ordering

ATRANS—receive menu
ATTEND—Ilook at it
MBUILD—decide on order
MTRANS—tell order to waitress

Scene 3 eating

ATRANS—receive food
INGEST—eat food
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Scene 4 exiting

MTRANS—ask for check
ATRANS—give tip to waitress
PTRANS—go to cashier
ATRANS—give money to cashier
PTRANS—go out of restaurant'®

No doubt many of our social activities are stereotyped and there is
nothing in principle misguided in trying to work out primitives and rules
for a restaurant game, the way the rules of Monopoly are meant to
capture a simplified version of the typical moves in the real estate busi-
ness. But Schank claims that he can use this approach to understand
stories about actual restaurant-going—that in effect he can treat the
sub-world of restaurant going as if it were an isolated micro-world. To
do this, however, he must artificially limit the possibilities; for, as one
might suspect, no matter how stereotyped, going to the restaurant is not
a self-contained game but a highly variable set of behaviors which open
out into the rest of human activity. What “normally”” happens when one
goes to a restaurant can be preselected and formalized by the program-
mer as default assignments, but the background has been left out so that
a program using such a script cannot be said to understand going to a
restaurant at all. This can easily be seen by imagining a situation that
deviates from the norm. What if when one tries to order he finds that
the item in question is not available, or before paying he finds that the
bill is added up wrongly? Of course, Schank would answer that he could
build these normal ways restaurant-going breaks down into his script.
But there are always abnormal ways everyday activities can break down:
the juke box might be too noisy, there might be too many flies on the
counter, or as in the film Annie Hall, in a New York delicatessen one’s
girl friend might order a pastrami sandwich on white bread with mayon-
naise. When we understand going to a restaurant we understand how to
cope with even these abnormal possibilities because going to a restaurant
is part of our everyday activities of going into buildings, getting things
we want, interacting with people, etc.

To deal with this sort of objection Schank has added some general
rules for coping with unexpected disruptions. The general idea is that in
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a story “it is usual for non-standard occurrences to be explicitly men-
tioned”'®* so the program can spot the abnormal events and understand
the subsequent events as ways of coping with them. But here we can see
that dealing with stories allows Schank to bypass the basic problem, since
it is the author’s understanding of the situation which enables him to
decide which events are disruptive enough to mention.

This ad hoc way of dealing with the abnormal can always be revealed
by asking further questions, for the program has not understood a restau-
rant story the way people in our culture do, until it can answer such
simple questions as: When the waitress came to the table did she wear
clothes? Did she walk forward or backward? Did the customer eat his
food with his mouth or his ear? If the program answers, “I don’t know,”
we feel that all of its right answers were tricks or lucky guesses and that
it has not understood anything of our everyday restaurant behavior.'***
The point here, and throughout, is not that there are subtle things human
beings can do and recognize which are beyond the low-level understand-
ing of present programs, but that in any area there are simple taken-for-
granted responses central to human understanding, lacking which a
computer program cannot be said to have any understanding at all.

Schank’s claim, then, that “the paths of a script are the possibilities
that are extant in a situation”'® is insidiously misleading. Either it means
that the script accounts for the possibilities in the restaurant game
defined by Schank, in which case it is true but uninteresting; or he is
claiming that he can account for the possibilities in an everyday restau-
rant situation which is impressive but, by Schank’s own admission, false.

Real short stories pose a further problem for Schank’s approach. In
a script what the primitive actions and facts are is determined before-
hand, but in a short story what counts as the relevant facts depends on
the story itself. For example, a story which describes a bus trip contains
in its script that the passenger thanks the driver (a Schank example). But
the fact that the passenger thanked the driver would not be important
in a story in which the passenger simply took the bus as a part of a longer
journey, while it might be crucially important if the story concerned a
misanthrope who had never thanked anyone before, or a very law-
abiding young man who had courageously broken the prohibition against
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speaking to drivers in order to speak to the attractive woman driving the
bus. Overlooking this point, Schank claimed at a recent meeting that his
program which can extract death statistics from newspaper accident
reports had answered my challenge that a computer would count as
intelligent only if it could summarize a short story.'® But Schank’s
newspaper program cannot provide a clue concerning judgments of what
to include in a story summary because it works only where relevance and
significance have been predetermined, and thereby avoids dealing with
the world built up in a story in terms of which judgments of relevance
and importance are made.

Another way to see that script analysis of story understanding leaves
out something essential is to consider the question: In reading a story
how do we call up the appropriate script? In discussing this question
Schank points out:

... While the restaurant script can be a subpart of a larger script (such as $STRIP)
[In Schank’s notation the dollar sign indicates a script.] it must be marked as not
being capable of being subsumed by SDELIVERY.'*

But this “solution” raises the problem of negative information which
dogs a proposal like Schank’s. It seems implausible to suppose that one
could mark the restaurant script as not subsumed under such other
" scripts as making a phone call, answering a call for help, retrieving a lost
object, looking for a job, getting signatures for a petition, repairing
equipment, coming to work, doing an inspection, leaving a bomb, arrang-
ing a banquet, collecting for the Mafia, looking for change for the meter,
buying cigarettes, hiding from the police, etc., etc., which might lead one
to enter a restaurant without intending to eat. It would be more manage-
able to write a program which, whenever someone in a story enters a
restaurant, follows the restaurant script until the understander’s expecta-
tions fail to be fulfilled. Presumably because he thinks of his programs
as having psychological reality, Schank neglects this alternative, and on
this point he is right. Normally in reading a story we do not suppose that
a person who enters a restaurant for a purpose that does not involve
eating is preparing to eat; so we do not have to be jolted out of this
hypothesis by the fact that the waitress does not bring him a menu. But
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Schank’s proposal leaves completely unanswered the problem of how we
do choose the right script.

Schank’s latest book does have some interesting ideas about how to go
beyond scripts, since he readily admits that much of our everyday activi-
ties is not scripted. He introduces “plans” as our way of dealing with
stories about situations which don’t have fixed scripts. And he points out
that plans are made up of subplans or planboxes, which are useful in
many situations. For example,

one kind of instrumental goal is a general building block in many planning
processes. In a plan for satisfying hunger, one of the crucial steps is to go to where
food is. Going to an intended location is a very general process, useful in all sorts
of specific plans.'*

Thus a planbox is used whenever no script is available. If a planbox is used often
enough, it will generate a script that eliminates the need for the planbox as long
as the surrounding context stays the same.'’

But here the persistent problem of recognizing similarity again arises.
How can we tell whether the surrounding context is the same? It won’t
be identical, and Schank gives us no theory of how to recognize contexts
as similar.

Finally, Schank has to deal with the short-term goals which motivate
everyday plans, the long range goals which generate the short term ones,
and the life themes, in terms of which people organize their goal-oriented
activities.

. . . The expectations that we generate from themes are an important part of
understanding stories because they generate the goals that generate the plans that
we expect to be carried out.'®*

Here Schank has to face the important way desires, emotions, and a
person’s interpretation of what it means to be a human being open up
endless possibilities for human life. If the themes which organize our
lives turn out to be unprogrammable Schank is in trouble and so is all
of AI. But Schank again imperturbably uses his engineering approach
and starts making lists of life themes. This leads to what would seem to
be an in-principle problem:
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Because life themes are continuous goal generators, it is not really possible to
delimit a set of possible life themes. There are as many life themes as there are
possible long term goals.'®

But Schank passes over this difficulty, as he does all others, by stipulating
a few more ad hoc primitives.

... As understanders we attempt to type people we hear about in terms of one
of our standard life themes. As we hear of differences from the normal type we
create a private life theme for the individual we are hearing about. The infinity
of possible life themes comes from this possibility of the unique combination of
goals for any individual. What makes life themes manageable is that the number
of life theme types is small (six) and the number of standard life themes within
those typings is a tractable size (say 10 to 50 for each type).'"

If these primitives don’t account for our understanding of the variety of
possible human lives, Schank is ready, as always, to add a few more.

Nothing could ever call into question Schank’s basic assumption that
all human practice and know-how is represented in the mind as a system
of beliefs constructed from context-free primitive actions and facts, but
there are signs of trouble. Schank does admit that an individual’s “belief
system” cannot be fully elicited from him; although he never doubts that
it exists and that it could in principle be represented in his formalism.
He is therefore led to the desperate idea of a program which could learn
about everything from restaurants to life themes the way people do. In
a recent paper he concludes:

We hope to be able to build a program that can learn, as a child does, how to
do what we have described in this paper instead of being spoon-fed the tremen-
dous information necessary. In order to do this it might be necessary to await
an effective automatic hand-eye system and an image processor.'"!

For Schank’s ad hoc approach there is no way of ever facing an interest-
ing failure, but the fact that robot makers such as Raphael report that
progress in their area must await an adequate scheme for knowledge
representation, and that those like Schank who hope to provide such
representation systems finally fall back on robots as a means for acquir-
ing them, suggests that the field is in a loop—the computer world’s
conception of a crisis.
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In any case, Schank’s appeal to learning is at best another evasion.
Developmental psychology has shown that children’s learning does not
consist merely in acquiring more and more information about specific
routine situations by adding new primitives and combining old ones as
Schank’s view would lead one to expect. Rather learning of specific
details takes place on a background of shared practices which seem to
be picked up in everyday interactions not as facts and beliefs but as bodily
skills for coping with the world. Any learning presupposes this back-
ground of implicit know-how which gives significance to details. Since
Schank admits that he cannot see how this background can be made
explicit so as to be given to a computer, and since the background is
presupposed for the kind of script learning Schank has in mind, it seems
that his project of using preanalyzed primitives to capture commonsense
understanding is doomed.

A more plausible, even if in the last analysis perhaps no more promis-
ing, approach would be to use the new theoretical power of frames or
stereotypes to dispense with the need to preanalyze everyday situations
in terms of a set of primitive features whose relevance is independent of
context. This approach starts with the recognition that in everyday
communication *“ ‘Meaning’ is multi-dimensional, formalizable only in
terms of the entire complex of goals and knowledge [of the world] being
applied by both the producer and understander.”"'? This knowledge, of
course, is assumed to be “A body of specific beliefs (expressed as symbol
structures . . .) making up the person’s ‘model of the world’.”'"* Given
these assumptions Terry Winograd and his co-workers are developing a
new knowledge representation language (KRL), which they hope will
enable programmers to capture these beliefs in symbolic descriptions of
multidimensional prototypical objects whose relevant aspects are a func-
tion of their context.

Prototypes would be structured so that any sort of description
from. proper names to procedures for recognizing an example could
be used to fill in any one of the nodes or slots that are attached to a
prototype. This allows representations to be defined in terms of each
other, and results in what the author calls “a wholistic as opposed to
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reductionistic view of representation.”'* For example, since any de-
scription could be part of any other, chairs could be described as
having aspects such as seats and backs, and seats and backs in turn
could be described in terms of their function in chairs. Furthermore,
each prototypical object or situation could be described from many
different perspectives. Thus nothing need be defined in terms of its
necessary and sufficient features in the way Winston and traditional
philosophers have proposed, but rather, following Rosch’s research
on prototypes, objects would be classified as more or less resembling
certain prototypical descriptions.

Winograd illustrates this idea using the traditional philosophers’ fa-
vorite example:

The word “bachelor” has been used in many discussions of semantics, since (save
for obscure meanings involving aquatic mammals and medieval chivalry) it
seems to have a formally tractable meaning which can be paraphrased “an adult
human male who has never been married”. . . . In the realistic use of the word,
there are many problems which are not as simply stated and formalized. Con-
sider the following exchange:

Host: I'm having a big party next weekend. Do you know any nice bachelors
I could invite?
Friend: Yes, I know this fellow X. . ..

The problem is to decide, given the facts below, for which values of X the
response would be a reasonable answer in light of the normal meaning of the
word “bachelor”. A simple test is to ask for which ones the host might fairly
complain “You lied. You said X was a bachelor.”:

A: Arthur has been living happily with Alice for the last five years. They have
a two year old daughter and have never officially married.

B: Bruce was going to be drafted, so he arranged with his friend Barbara to
have a justice of the peace marry them so he would be exempt. They have never
lived together. He dates a number of women, and plans to have the marriage
annulled as soon as he finds someone he wants to marry.

C: Charlie is 17 years old. He lives at home with his parents and is in high
- school.

D: David is 17 years old. He left home at 13, started a small business, and is
now a successful young entrepreneur leading a playboy’s life style in his pent-
house apartment.
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E: Eli and Edgar are homosexual lovers who have been living together for
many years.

F: Faisal is allowed by the law of his native Abu Dhabi to have three wives.
He currently has two and is interested in meeting another potential fiancee.

G: Father Gregory is the bishop of the Catholic cathedral at Groton upon
Thames.

[This] cast of characters could be extended indefinitely, and in each case there
are problems in deciding whether the word “bachelor” could appropriately be
applied. In normal use, a word does not convey a clearly definable combination
of primitive propositions, but evokes an exemplar which possesses a number of
properties. This exemplar is not a specific individual in the experience of the
language user, but is more abstract, representing a conflation of typical proper-
ties. A prototypical bachelor can be described as:

1. a person

2. a male

3. an adult

4. not currently officially married

5. not in a marriage-like Jiving situation

6. potentially marriageable

7. leading a bachelor-like life style

8. not having been married previously

9. having an intention, at least temporarily, not to marry
10

Each of the men described above fits some but not all of these characteriza-
tions. Except for narrow legalistic contexts, there is no significant sense in which
a subset of the characteristics can be singled out as the “central meaning” of the
word. In fact, among native English speakers there is little agreement about
whether someone who has been previously married can properly be called a
“bachelor” and fairly good agreement that it should not apply to someone who
is not potentially marriageable (e.g. has taken a vow of celibacy).

Not only is this list [of properties] open-ended, but the individual terms are
themselves not definable in terms of primitive notions. In reducing the meaning
of ‘bachelor’ to a formula involving ‘adult’ or ‘potentially marriageable’, one is
led into describing these in terms of exemplars as well. ‘Adult’ cannot be defined
in terms of years of age for any but technical legal purposes and in fact even in
this restricted sense, it is defined differently for different aspects of the law.
Phrases such as ‘marriage-like living situation’ and ‘bachelor-like life style’ reflect
directly in their syntactic form the intention to convey stereotyped exemplars
rather than formal definitions.'"
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Obviously if KRL succeeds in enabling Al researchers to use such
prototypes to write flexible programs, such a language will be a major
breakthrough and will avoid the ad hoc character of the ‘““solutions”
typical of micro-world programs. Indeed, the future of AI depends on
some such work as that begun with the development of KRL. But there
are problems with this approach. Winograd’s analysis has the important
consequence that in comparing two prototypes, what counts as a match
and thus what counts as the relevant aspects which justify the match will
be a result of the program’s understanding of the current context.

The result of a matching process is not a simple true/false answer. It can be
stated in its most general form as: “Given the set of alternatives which I am
currently considering . . . and looking in order at those stored structures which
are most accessible in the current context, here is the best match, here is the
degree to which it seems to hold, and here are the specific detailed places where
match was not found. . . .”

The selection of the order in which sub-structures of the description will be
compared is a function of their current accessibility, which depends both on the
form in which they are stored and the current context.''

This raises four increasingly grave difficulties. First, for there to be *“a
class of cognitive ‘matching’ processes which operate on the descriptions
(symbol structures) available for two entities, looking for correspon-
dences and differences”''” there must be a finite set of prototypes to be
matched. To take Winograd’s example:

A single object or event can be described with respect to several prototypes, with
further specifications from the perspective of each. The fact that last week Rusty
flew to San Francisco would be expressed by describing the event as a typical
instance of Travel with the mode specified as Airplane, destination San Fran-
cisco, etc. It might also be described as a Visit with the actor being Rusty, the
friends a particular group of people, the interaction warm, etc.'”

But ezc. covers what might, without predigestion for a specific purpose,
be a hopeless proliferation. The same flight might also be a test flight,
a check of crew performance, a stopover, a mistake, a golden opportu-
nity, not to mention a visit to brother, sister, thesis adviser, guru, etc.,
etc., etc. Before the program can function at all the total set of possible
alternatives must be pre-selected by the programmer.
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Second, the matching makes sense only after the current candidates
for comparison have been found. In chess, for example, positions can be
compared only after the chess master calls to mind past positions the
current board positions might plausibly resemble. And, as we saw in the
chess case, the discovery of the relevant candidates which makes the
matching of aspects possible requires experience and intuitive associa-
tion.

We saw also, in both the chess and the robot cases, that the discovery
of this prior similarity seems to point to some entirely different sort of
processing than symbolic description—perhaps the sort of processing
provided by some brain equivalent of holograms in which similarity is
basic. The only way a KRL-based program (which must use symbolic
descriptions) could proceed would be to guess some frame on the basis
of what was already “understood” by the program, and then see if that
frame’s features could be matched to some current description. If not,
the program would have to backtrack and try another prototype until
it found one into whose slots or default terminals the incoming data
could be fitted. This seems an altogether implausible and inefficient
model of how we perform, and only rarely occurs in our conscious life
(see p. 248 of this book for a Husserlian discussion of this problem). Of
course, cognitive scientists could answer the above objection by main-
taining, in spite of the implausibility, that we try out the various proto-
types very quickly and are simply not aware of the frantic shuffling of
hypotheses going on in our unconscious. But, in fact, most would agree
with Winograd that at present the frame selection problem is unsolved.

The problem of choosing the frames to try is another very open area. There is
a selection problem, since we cannot take all of our possible frames for different
kinds of events and match them against what is going on.'"

There is, moreover, a third and more basic question which may pose
an in-principle problem for any formal holistic account in which the
significance of any fact, indeed what counts as a fact, always depends on
context. Winograd stresses the critical importance of context:

The results of human reasoning are context dependent, the structure of memory
includes not only the long-term storage organization (what do I know?) but also
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a current context (what is in focus at the moment?). We believe that this is an
important feature of human thought, not an inconvenient limitation.'*

He further notes that “the problem is to find a formal way of talking
about . . . current attention focus and goals. . . .”’'* Yet he gives no formal
account of how a computer program written in KRL could determine
the current context.

Winograd’s work does contain suggestive claims such as his remark
that “the procedural approach formalizes notions such as ‘current con-
text’ . .. and ‘attention focus’ in terms of the processes by which cognitive
state changes as a person comprehends or produces utterances.”'?? There
are also occasional parenthetical references to “current goals, focus of
attention, set of words recently heard, etc.”' But reference to recent
words has proven useless as a way of determining what the current
context is, and reference to current goals and focus of attention is vague
and perhaps even question-begging. If a human being’s current goal is,
say, to find a chair to sit on, his current focus might be on recognizing
whether he is in a living room or a warehouse. He will also have short-
range goals like finding the walls, longer-range goals like finding the light
switch, middle-range goals like wanting to write or rest; and what counts
as satisfying these goals will in turn depend on his ultimate goals and
interpretation of himself as, say, a writer, or merely as easily exhausted
and deserving comfort. So Winograd’s appeal to ‘“current goals and
focus” covers too much to be useful in determining what specific situa-
tion the program is in.

To be consistent, Winograd would have to treat each type of situation
the computer could be in as an object with its prototypical description;
then in recognizing a specific situation, the situation or context in which
that situation was encountered would determine which foci, goals, etc.
were relevant. But where would such a regress stop? Human beings, of
course, don’t have this problem. They are, as Heidegger puts it, already
in a situation, which they constantly revise. If we look at it genetically,
this is no mystery. We can see that human beings are gradually trained
into their cultural situation on the basis of their embodied precultural
situation, in a way no programmer using KRL is trying to capture. But
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for this very reason a program in KRL is not always-already-in-a-situa-
tion. Even if it represents all human knowledge in its stereotypes, includ-
ing all possible types of human situations, it represents them from the
outside like a Martian or a god. It isn’t situated in any one of them, and
it may be impossible to program it to behave as if it were.

This leads to my fourth and final question: Is the know-how which
enables human beings constantly to sense what specific situation they
are in, the sort of know-how which can be represented as a kind of
knowledge in any knowledge representation language no matter how
ingenious and complex? It seems that our sense of our situation is
determined by our changing moods, by our current concerns and
projects, by our long-range self-interpretation and probably also by
our sensory-motor skills for coping with objects and people—skills
we develop by practice without ever having to represent to ourselves
our body as an object, our culture as a set of beliefs, and our propen-
sities as situation — action rules. All these uniquely human capacities
provide a “richness” or a “thickness” to our way of being-in-the-world
and thus seem to play an essential role in situatedness, which in turn
underlies all intelligent behavior.

There is no reason to suppose that moods, mattering, and embodied
skills can be captured in any formal web of belief, and except for Kenneth
Colby, whose view is not accepted by the rest of the AI community, no
current work assumes that they can. Rather, all AI workers and cogni-
tive psychologists are committed, more or less lucidly, to the view that
such noncognitive aspects of the mind can simply be ignored. This belief
that a significant part of what counts as intelligent behavior can be
captured in purely cognitive structures defines cognitive science and is
a version of what, in Chapter 4, I call the psychological assumption.
Winograd makes it explicit:

Al is the general study of those aspects of cognition which are common to all
physical symbol systems, including humans and computers.'**

But this definition merely delimits the field; it in no way shows there is
anything to study, let alone guarantees the project’s success.
Seen in this light, Winograd’s grounds for optimism contradict his
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own basic assumptions. On the one hand, he sees that a lot of what goes
on in human minds cannot be programmed, so he only hopes to program
a significant part:

[Clognitive science . . . does not rest on an assumption that the analysis of mind
as a physical symbol system provides a complete understanding of human
thought. . . . For the paradigm to be of value, it is only necessary that there be
some significant aspects of thought and language which can be profitably under-
stood through analogy with other symbol systems we know how to construct.'?

On the other hand, he sees that human intelligence is “wholistic” and
that meaning depends on “the entire complex of goals and knowledge.”
What our discussion suggests is that all aspects of human thought,
including nonformal aspects like moods, sensory-motor skills, and long-
range self-interpretations, are so interrelated that one cannot substitute
an abstractible web of explicit beliefs for the whole cloth of our concrete
everyday practices.

What lends plausibility to the cognitivist position is the conviction that
such a web of beliefs must finally fold back on itself and be complete,
since we can know only a finite number of facts and procedures describ-
able in a finite number of sentences. But since facts are descriminated and
language is used only in a context, the argument that the web of belief
must in principle be completely formalizable does not show that such a
belief system can account for intelligent behavior. This would be true
only if the context could also be captured in the web of facts and proce-
dures. But if the context is determined by moods, concerns, and skills,
then the fact that our beliefs can in principle be completely represented
does not show that representations are sufficient to account for cognition.
Indeed, if nonrepresentable capacities play an essential role in situated-
ness, and the situation is presupposed by all intelligent behavior, then the
““aspects of cognition which are common to all physical symbol systems”
will not be able to account for any cognitive performance at all.

In the end the very idea of a holistic information processing model in
which the relevance of the facts depends on the context may involve a
contradiction. To recognize any context one must have already selected
from the indefinite number of possibly descriminable features the possi-
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bly relevant ones, but such a selection can be made only after the context
has already been recognized as similar to an already analyzed one. The
holist thus faces a vicious circle: relevance presupposes similarity and
similarity presupposes relevance. The only way to avoid this loop is to
be always-already-in-a-situation without representing it so that the prob-
lem of the priority of context and features does not arise, or else to return
to the reductionist project of preanalyzing all situations in terms of a
fixed set of possibly relevant primitives—a project which has its own
practical problems, as our analysis of Schank’s work has shown, and, as
we shall see in the conclusion, may have its own internal contradiction
as well.

Whether this is, indeed, an in-principle obstacle to Winograd’s ap-
proach only further research will tell. Winograd himself is admirably
cautious in his claims:

If the procedural approach is successful, it will eventually be possible to
describe the mechanisms at such a level of detail that there will be a verifiable
fit with many aspects of detailed human performance . . . but we are nowhere
near having explanations which cover language processing as a whole, including
meaning.'?

If problems do arise because of the necessity in any formalism of isolating
beliefs from the rest of human activity, Winograd will no doubt have the
courage to analyze and profit from the discovery. In the meantime
everyone interested in the philosophical project of cognitive science will
be watching to see if Winograd and company can produce a moodless,
disembodied, concernless, already adult surrogate for our slowly ac-
quired situated understanding.

Conclusion

Given the fundamental supposition of the information processing ap-
proach that all that is relevant to intelligent behavior can be formalized
in a structured description, all problems must appear to be merely prob-
lems of complexity. Bobrow and Winograd put this final faith very
clearly at the end of their description of KRL:
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The system is complex, and will continue to get more so in the near future.
... [W]e do not expect that it will ever be reduced to a very small set of
mechanisms. Human thought, we believe, is the product of the interaction of a
fairly large set of interdependent processes. Any representation language which
is to be used in modeling thought or achieving “intelligent” performance will
have to have an extensive and varied repertoire of mechanisms.'?’

Underlying this mechanistic assumption is an even deeper assumption
which has gradually become clear during the past ten years of research.
During this period AI researchers have consistently run up against the
problem of representing everyday context, just as I predicted they would
in the first edition of this book. Work during the first five years (1967-
1972) demonstrated the futility of trying to evade the importance of
everyday context by creating artificial gamelike contexts preanalyzed in
terms of a list of fixed-relevance features. More recent work has thus been
forced to deal directly with the background of commonsense know-how
which guides our changing sense of what counts as the relevant facts.
Faced with this necessity researchers have implicitly tried to treat the
broadest context or background as an object with its own set of prese-
lected descriptive features. This assumption, that the background can be
treated as just another object to be represented in the same sort of
structured description in which everyday objects are represented, is es-
sential to our whole philosophical tradition. Following Heidegger, who
is the first to have identified and criticized this assumption, I will call it
the metaphysical assumption.

The obvious question to ask in conclusion is: Is there any evidence
besides the persistent difficulties and history of unfulfilled promises in AI
for believing that the metaphysical assumption is unjustified? It may be
that no argument can be given against it, since facts put forth to show
that the background of practices is unrepresentable are in that very act
shown to be the sort of facts which can be represented. Still, since the
value of this whole dialogue is to help each side to become as clear as
possible concerning its presuppositions and their possible justification, I
will attempt to lay out the argument which underlies my antiformalist,
and, therefore, antimechanist convictions.

My thesis, which owes a lot to Wittgenstein,'?** is that whenever
human behavior is analyzed in terms of rules, these rules must always
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contain a ceteris paribus condition, i.e., they apply “everything else being
equal,” and what “everything else” and “‘equal” means in any specific
situation can never be fully spelled out without a regress. Moreover, this
ceteris paribus condition is not merely an annoyance which shows that
the analysis is not yet complete and might be what Husserl called an
“infinite task.” Rather the ceteris paribus condition points to a back-
ground of practices which are the condition of the possibility of all
rulelike activity. In explaining our actions we must always sooner or later
fall back on our everyday practices and simply say “this is what we do”
or “that’s what it is to be a human being.” Thus in the last analysis all
intelligibility and all intelligent behavior must be traced back to our sense
of what we are, which is, according to this argument, necessarily, on pain
of regress, something we can never explicitly know.

This argument can be best worked out in terms of an example. Back
in 1972 when Minsky was working on the frame concept, one of his
students, Eugene Charniak, was developing a scriptlike approach for
dealing with children’s stories. Papert and Goldstein provide a revealing
analysis of this approach:

. . . [Clonsider the following story fragment from Charniak,

Today was Jack’s birthday. Penny and Janet went to the store. They were
going to get presents. Janet decided to get a kite. “Don’t do that,” said Penny.
“Jack has a kite. He will make you take it back.”

The goal is to construct a theory that explains how the reader understands that
“it” refers to the new kite, not the one Jack already owns. Purely syntactic
criteria (such as assigning the referent of ‘4t to the last mentioned noun) are
clearly inadequate, as the result would be to mistakenly understand the last
sentence of the story as meaning that Jack will make Janet take back the kite
he already owns. . . . [I]t is clear that one cannot know that “it” refers to the
new kite without knowledge about the trading habits of our society. One could
imagine a different world in which newly bought objects are never returned to
the store, but old ones are. The question we raise here is how this knowledge
might be represented, stored and made available to the process of understanding
Charniak’s story.'”

Their answer to this question is, of course, dictated by the metaphysi-
cal assumption. They try to make the background of practices involved
explicit as a set of beliefs:
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Charniak’s formal realization of a frame was in the form of base-knowledge
about a large variety of situations that arise in the context of these stories. The
mechanism of his program was for the content of sentences to evoke this base
knowledge with the following effect: demons (‘‘frame-keepers” in our ter-
minology) were created to monitor the possible occurrence in later sentences of
likely (but not inevitable) consequences of the given situation. Thus, for our story
fragment the birthday knowledge creates expectations about the need for partici-
pants of the party to buy presents and the possible consequence of having to
return these gifts. Hence, these demons expect the possibility of Jack already
possessing the present and the resulting need for Janet to return it, where it is
known to be the present.'*

But once games and micro-worlds are left behind, a yawning abyss
threatens to swallow up those who try to carry out such a program.
Papert and Goldstein march bravely in:

. . . But the story does not include explicitly all important facts. Look back
at the story. Some readers will be surprised to note that the text itself does
not state (a) that the presents bought by Penny and Janet were for Jack, (b)
that the [kite] bought by Janet was intended as a present, and (c) that hav-
ing an object implies that one does not want another. All of the above facts
are inserted into the database by other demons made activated by the birth-
day frame.""

Our example turns on the question: How does one store the “facts”
mentioned in (c) above about returning presents? To begin with there are
perhaps indefinitely many reasons for taking a present back. It may be
the wrong size, run on the wrong voltage, be carcinogenic, make too
much noise, be considered too childish, too feminine, too masculine, too
American, etc., etc. And each of these facts requires further facts to be
understood. But we will concentrate on the reason mentioned in (c): that
normally, i.e., everything else being equal, if one has an object, one does
not want another just like it. Of course, this cannot simply be entered
as a true proposition. It does not hold for dollar bills, cookies, or marbles.
(It is not clear it even holds for kites.) Papert and Goldstein would
answer that, of course, once we talk of the norm we must be prepared
to deal with exceptions:

[Tlhe typical situation in comprehension is to be faced with a set of clues that
evoke a rich and detailed knowledge structure, the frame, that supplies the
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unstated details. Naturally, these defaults may be inappropriate for some situa-
tions and, in those cases, the text must supply the exceptions.'?

But here the desperate hand waving begins, for the text need not
explicitly mention the exceptions at all. If the gift were marbles or cookies,
the text surely would not mention that these were exceptions to the
general rule that one of a kind is enough. So the data base would have
to contain an account of all possible exceptions to augment the text—if
it even makes sense to think of this as a definite list. Worse, even if one
listed all the exceptional cases where one would be glad to possess more
than one specimen of a certain type of object, there are situations which
allow an exception to this exception: already having one cookie is more
than enough if the cookie in question is three feet in diameter; one
thousand marbles is more than a normal child can handle, etc. Must we
then list the situations which lead one to expect exceptions to the excep-
tions? But these exceptions too can be overridden in the case of, say, a
cookie monster or a marble freak, and so it goes. . . . The computer
programmer writing a story understander must try to list all possibly
relevant information, and once that information contains appeals to the
normal or typical there is no way to avoid an infinite regress of qualifica-
tions for applying that knowledge to a specific situation.

The only “answer” the M.I.T. group offers is the metaphysical as-
sumption that the background of everyday life is a set of rigidly defined
situations in which the relevant facts are as clear as in a game:

The fundamental frame assumption is the thesis that . . . [m]ost situations in
which people find themselves have sufficient in common with previously encoun-
tered situations for the salient features to be pre-analyzed and stored in a situa-
tion-specific form.'*

But this “solution” is untenable for two reasons:'***

1. Even if the current situation is, indeed, similar to a preanalyzed one,
we still have the problem of deciding which situation it is similar to. We
have already seen that even in games such as chess no two positions are
likely to be identical so a deep understanding of what is going on is
required to decide what counts as a similar position in any two games.
This should be even more obvious in cases where the problem is to decide
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which preanalyzed situation a given real-world situation most resembles,
for example whether a situation where there are well-dressed babies and
new toys being presented has more in common with a birthday party or
a beauty contest.

2. Even if all our lives were lived in identical stereotypical situations,
we have just seen that any real-world frame must be described in terms
of the normal, and that appeal to the normal necessarily leads to a regress
when we try to characterize the conditions which determine the applica-
bility of the norm to a specific case. Only our general sense of what is
typical can decide here, and that background understanding by defini-
tion cannot be “situation-specific.”

This is the other horn of the dilemma facing the information-process-
ing model. We have seen in discussing KRL that the holistic approach
leads to a circle as to which comes first, similarity or relevant aspects,
now it turns out that the reductionist alternative leads to a regress.

Still, to this dilemma the AI researchers might plausibly respond:
“Whatever the background of shared interests, feelings, and practices
necessary for understanding specific situations, that knowledge must
somehow be represented in the human beings who have that understand-
ing. And how else could such knowledge be represented but in some
explicit data structure?” Indeed, the kind of computer programming
accepted by all workers in AI would require such a data structure, and
so would philosophers who hold that all knowledge must be explicitly
represented in our minds, but there are two alternatives which would
avoid the contradictions inherent in the information-processing model
by avoiding the idea that everything we know must be in the form of
some explicit symbolic representation.

One response, shared by existential phenomenologists such as Mer-
leau-Ponty and ordinary language philosophers such as Wittgenstein, is
to say that such “knowledge” of human interests and practices need not
be represented at all. Just as it seems plausible that I can learn to swim
by practicing until I develop the necessary patterns of responses, without
representing my body and muscular movements in some data structure,
so too what I “know” about the cultural practices which enables me to
recognize and act in specific situations has been gradually acquired
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through training in which no one ever did or could, again on pain of
regress, make explicit what was being learned.

Another possible account would allow a place for representations, at
least in special cases where I have to stop and reflect, but such a position
would stress that these are usually nonformal representations, more like
images, by means of which I explore what I am, not what I know. On
this view I don’t normally represent to myself that I have desires, or that
standing up requires balance, or, to take an example from Schank’s
attempt to make explicit our interpersonal knowledge, that:

[I]f two people are positively emotionally related, then a negative change in one
person’s state will cause the other person to develop the goal of causing a positive
change in the other’s state.'*

Still, when it is helpful, I can picture myself in a specific situation and
ask myself what would I do or how would I feel—if I were in Jack’s place
how would I react to being given a second kite—without having to make
explicit all that a computer would have to be told to come to a similar
conclusion. We thus appeal to concrete representations (images or
memories) based on our own experience without having to make explicit
the strict rules and their spelled out ceteris paribus conditions required
by abstract symbolic representations.

Indeed, it is hard to see how the subtle variety of ways things can
matter to us could be exhaustively spelled out. We can anticipate and
understand Jack’s reaction because we remember what it feels like to be
amused, amazed, incredulous, disappointed, disgruntled, saddened, an-
noyed, disgusted, upset, angry, furious, outraged, etc., and we recognize
the impulses to action associated with these various degrees and kinds
of concerns. A computer model would have to be given a description of
each shade of feeling as well as each feeling’s normal occasion and likely
result.

The idea that feelings, memories, and images must be the conscious
tip of an unconscious framelike data structure runs up against both
prima facie evidence and the problem of explicating the ceteris paribus
conditions. Moreover, the formalist assumption is not supported by one
shred of scientific evidence from neurophysiology or psychology, or from
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the past successes of AI, whose repeated failures required appeal to the
metaphysical assumption in the first place.

AT’s current difficulties, moreover, become intelligible in the light of
this alternative view. The proposed formal representation of the back-
ground of practices in symbolic descriptions, whether in terms of situa-
tion-free primitives or more sophisticated data structures whose building
blocks can be descriptions of situations, would, indeed, look more and
more complex and intractable if minds were not physical symbol sys-
tems. If belief structures are the result of abstraction from the concrete
practical context rather than the true building blocks of our world, it is
no wonder the formalist finds himself stuck with the view that they are
endlessly explicatable. On my view “‘the organization of world knowl-
edge provides the largest stumbling block™**¢ to AI precisely because the
programmer is forced to treat the world as an object, and our know-how
as knowledge.

But this metaphysical assumption definitive of cognitive science is
never questioned by its practitioners. John McCarthy notes that “it is
quite difficult to formalize the facts of common knowledge,”'*” but he
never doubts that common knowledge can be accounted for in terms of
facts.

The epistemological part of Al studies what kinds of facts about the world are
available to an observer with given opportunities to observe, how these facts can
be represented in the memory of a computer, and what rules permit legitimate
conclusions to be drawn from these facts.'**

When AI workers finally face and analyze their failures it might well be
this metaphysical assumption that they will find they have to reject.

Looking back over the past ten years of Al research we might say that
the basic point which has emerged is that since intelligence must be
situated it cannot be separated from the rest of human life. The persistent
denial of this seemingly obvious point cannot, however, be laid at the
door of Al It starts with Plato’s separation of the intellect or rational
soul from the body with its skills, emotions, and appetites. Aristotle
continued this unlikely dichotomy when he separated the theoretical
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from the practical, and defined man as a rational animal—as if one could
separate man’s rationality from his animal needs and desires. If one
thinks of the importance of the sensory-motor skills in the development
of our ability to recognize and cope with objects, or of the role of needs
and desires in structuring all social situations, or finally of the whole
cultural background of human self-interpretation involved in our simply
knowing how to pick out and use chairs, the idea that we can simply
ignore this know-how while formalizing our intellectual understanding
as a complex system of facts and rules is highly implausible.

However incredible, this dubious dichotomy now pervades our think-
ing about everything including computers. In the Star Trek TV series,
the episode entitled “The Return of the Archons” tells of a wise states-
man named Landru who programmed a computer to run a society.
Unfortunately, he could give the computer only his abstract intelligence,
not his concrete wisdom, so it turned the society into a rational plannified
hell. No one stops to wonder how, without Landru’s embodied skills,
feelings, and concerns, the computer could understand everyday situa-
tions and so run a society at all.

In Computer Power and Human Reason,'® Joseph Weizenbaum, a
well-known contributor to work in AI (see pp. 218 ff.) makes this same
mistake. Indeed, the radical separation of intelligence and wisdom is the
basic assumption which seems to support but actually undermines the
thesis of his otherwise eloquent book. Weizenbaum warns that we de-
mean ourselves if we come to think of human beings on the AI model
as devices for solving technical problems. But to make the argument that
we are not such devices he embraces the very dichotomy which gives
plausibility to AI. Weizenbaum argues, for example, that since a com-
puter cannot understand loneliness it cannot fully understand the sen-
tence ““ ‘Will you come to dinner with me this evening’ . . . to mean a
shy young man’s desperate longing for love”!** (a point which workers
in Al would readily admit), while at the same time Weizenbaum grants
the dubious AI assumption that “it may be possible, following Schank’s
procedures, to construct a conceptual structure that corresponds to the
meaning of the sentence.”'*' Stressing these extremes of emphathetic
wisdom and formalized meaning leads Weizenbaum to overlook the
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essential point that all meaningful discourse must take place in a shared
context of concerns.

Ironically, Weizenbaum was the first major contributor to Al to recog-
nize the essential relation of meaning and pragmatic context. As he put
it in 1968: “[I]n real conversation global context assigns meaning to what
is being said. . . .”"*? But once he overlooks this essential connection there
is no way he can resist the conclusions of his AI colleagues. Thus, in spite
of his well-documented claim that each culture has what Justice Oliver
W. Holmes called its “tacit assumptions” and “unwritten practices,”'*
and his commitment to the strong thesis argued for in this book that
these practices “cannot be explicated in any form but life itself,”'**
Weizenbaum, like Minsky, concludes: “I see no way to put a bound on
the degree of intelligence such an organism [i.e., a computer] could, at
least in principle attain.”!'*

This surprising admission can be explained only if Weizenbaum holds
the AI view that the unexplicatable assumptions and unwritten practices
of a culture play no essential role in the intelligent behavior of its mem-
bers. Indeed, at times Weizenbaum seems to embrace the most implausi-
ble implications of this implausible view, viz., that these tacit assump-
tions and practices play no role in everyday linguistic communication,
for he concedes that:

It is technically feasible to build a computer system that will interview patients
applying for help at a psychiatric out-patient clinic and will produce their psychi-
atric profiles complete with charts, graphs, and natural-language commentary.'*

Consistent with this view that intelligence and natural language com-
munication—as distinct from intuition and wisdom—are in-principle
completely formalizable, Weizenbaum further allows that:

. . . the view of man as a species of the more general genus “information-
processing system” does concentrate our attention on one aspect of man. . . ."™*

He calls to aid in justifying this claim the latest “scientific” version of
the Platonic dichotomy—the split brain. This is a natural association,
since pop literature on the split brain seems to support the science-fiction
illusion of the separation of intuition and pure intelligence. As Weizen-
baum explains it:
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The LH [Left Hemisphere] thinks, so to speak, in an orderly, sequential, and,
we might call it, Jogical fashion. The RH [Right Hemisphere], on the other hand,
appears to think in terms of holistic images. Language processing appears to be
almost exclusively centered in the LH. . . .'®

Here again linguistic capacity is isolated and equated with context-free
logicality, forgetting, what Weizenbaum was the first AI worker to see,
that when language is used in communication (and the Left Hemisphere
alone is perfectly able to use language to communicate), “‘a global [holis-
tic] context assigns meaning to what is being said. . . .”'%

After these damaging admissions Weizenbaum is left with only the
moralistic position that “however intelligent machines may be made to
be, there are some acts of thought that ought to be attempted only by
humans.”*** This stricture presumably follows from the notion that
although the background of cultural practices plays no essential role in
intelligent behavior, including everyday conversation, it does play a role
in the wisdom required in making sound legal decisions and psychiatric
evaluations—although even here Weizenbaum is wary of making any
in-principle claim. And he has good reason for caution, since once every-
day activity has been admitted to be a technical problem amenable to the
powers of pure formal intelligence it is impossible to draw a line limiting
what computers may ultimately be able to do. All Weizenbaum has left -
is the high-minded platitude that “‘since we do not now have any ways
of making computers wise, we ought not now to give computers tasks
which demand wisdom.”'*!*

From the perspective we have been laying out here the real problem
is that Weizenbaum accepts the metaphysical assumption that whatever
is required for everyday intelligence can be objectified and represented
in a belief system. Whether this assumption takes the form of the deep
philosophical claim that goes back to Leibniz and is still made by Husserl
that the perceptions and practices required for situated intelligence can
all be represented in a symbolic description, or the shallow technological
view, shared by Weizenbaum and the “artificial intelligentsia” he op-
poses, that everyday understanding and natural language communica-
tion does not essentially involve our embodied, socialized skills, this
assumption distorts our perception of our humanity.

Great artists have always sensed the truth, stubbornly denied by both
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philosophers and technologists, that the basis of human intelligence
cannot be isolated and explicitly understood. In Moby Dick Melville
writes of the tattooed savage, Queequeg, that he had “written out on his
body a complete theory of the heavens and the earth, and a mystical
treatise on the art of attaining truth; so that Queequeg in his own proper
person was a riddle to unfold; a wondrous work in one volume; but
whose mysteries not even himself could read. . . .”'** Yeats puts it even
more succinctly: “I have found what I wanted—to put it in a phrase, I

tE 1

say, ‘Man can embody the truth, but he cannot know it’.

Hubert L. Dreyfus
1979



Introduction

Since the Greeks invented logic and geometry, the idea that all reasoning
might be reduced to some kind of calculation—so that all arguments
could be settled once and for all—has fascinated most of the Western
tradition’s rigorous thinkers. Socrates was the first to give voice to this
vision. The story of artificial intelligence might well begin around 450
B.C. when (according to Plato) Socrates demands of Euthyphro, a fellow
Athenian who, in the name of piety, is about to turn in his own father
for murder: “I want to know what is characteristic of piety which makes
all actions pious . . . that I may have it to turn to, and to use as a standard
whereby to judge your actions and those of other men.”'§ Socrates is
asking Euthyphro for what modern computer theorists would call an
“‘effective procedure,” “a set of rules which tells us, from moment to
moment, precisely how to behave.”?

Plato generalized this demand for moral certainty into an epistemolog-
ical demand. According to Plato, all knowledge must be stateable in
explicit definitions which anyone could apply. If one could not state his
know-how in terms of such explicit instructions—if his knowing how

§Notes begin on p. 307. [Citations are indicated by a superior figure. Substantive notes
are indicated by a superior figure and an astersik.]
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could not be converted into knowing that—it was not knowledge but
mere belief. According to Plato, cooks, for example, who proceed by
taste and intuition, and poets who work from inspiration, have no knowl-
edge: what they do does not involve understanding and cannot be under-
stood. More generally, what cannot be stated explicitly in precise
instructions—all areas of human thought which require skill, intuition,
or a sense of tradition—are relegated to some kind of arbitrary fum-
bling.

But Plato was not yet fully a cyberneticist (although according to
Norbert Wiener he was the first to use the term), for Plato was looking
for semantic rather than syntactic criteria. His rules presupposed that
the person understood the meanings of the constitutive terms. In the
Republic Plato says that Understanding (the rulelike level of his divided
line representing all knowledge) depends on Reason, which involves a
dialectical analysis and ultimately an intuition of the meaning of the
fundamental concepts used in understanding. Thus Plato admits his
instructions cannot be completely formalized. Similarly, a modern com-
puter expert, Marvin Minsky, notes, after tentatively presenting a Pla-
tonic notion of effective procedure: “This attempt at definition is subject
to the criticism that the interpretation of the rules is left to depend on
some person or agent.””’

Aristotle, who differed with Plato in this as in most questions concern-
ing the application of theory to practice, noted with satisfaction that
intuition was necessary to apply the Platonic rules:

Yet it is not easy to find a formula by which we may determine how far and up
to what ‘point a man may go wrong before he incurs blame. But this difficulty
of definition is inherent in every object of perception; such questions of degree
are bound up with the circumstances of the individual case, where our only
criterion is the perception.*

For the Platonic project to reach fulfillment one breakthrough is
required: all appeal to intuition and judgment must be eliminated. As
Galileo discovered that one could find a pure formalism for describing
physical motion by ignoring secondary qualities and teleological consid-
erations, so, one might suppose, a Galileo of human behavior might
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succeed in reducing all semantic considerations (appeal to meanings) to

the techniques of syntactic (formal) manipulation.
 The belief that such a total formalization of knowledge must be possi-
ble soon came to dominate Western thought. It already expressed a basic
moral and intellectual demand, and the success of physical science
seemed to imply to sixteenth-century philosophers, as it still seems to
suggest to thinkers such as Minsky, that the demand could be satisfied.
Hobbes was the first to make explicit the syntactic conception of thought
as calculation: “When a man reasons, he does nothing else but conceive
a sum total from addition of parcels,” he wrote, “for REASON . . . is
nothing but reckoning. . . .

It only remained to work out the univocal parcels or “bits” with which
this purely syntactic calculator could operate; Leibniz, the inventor of
the binary system, dedicated himself to working out the necessary unam-
biguous formal language.

Leibniz thought he had found a universal and exact system of nota-
tion, an algebra, a symbolic language, a ‘“‘universal characteristic” by
means of which “we can assign to every object its determined character-
istic number.”¢ In this way all concepts could be analyzed into a small
number of original and undefined ideas; all knowledge could be ex-
pressed and brought together in one deductive system. On the basis of
these numbers and the rules for their combination all problems could be
solved and all controversies ended: “if someone would doubt my re-
sults,” Leibniz said, “I would say to him: ‘Let us calculate, Sir,” and thus
by taking pen and ink, we should settle the question.”’

Like a modern computer theorist announcing a program about to be
written, Leibniz claims: ’

Since, however, the wonderful interrelatedness of all things makes it extremely
difficult to formulate explicitly the characteristic numbers of individual things,
I have invented an elegant artifice by virtue of which certain relations may be
represented and fixed numerically and which may thus then be further deter-
mined in numerical calculation.®

Nor was Leibniz reticent about the importance of his almost completed
program.
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Once the characteristic numbers are established for most concepts, mankind will
then possess a new instrument which will enhance the capabilities of the mind
to far greater extent than optical instruments strengthen the eyes, and will
supersede the microscope and telescope to the same extent that reason is superior
to eyesight.’

With this powerful new tool, the skills which Plato could not formal-
ize, and so treated as confused thrashing around, could be recuperated
as theory. In one of his “grant proposals”—his explanations of how he
could reduce all thought to the manipulation of numbers if he had money
enough and time—Leibniz remarks:

the most important observations and turns of skill in all sorts of trades and
professions are as yet unwritten. This fact is proved by experience when passing
from theory to practice we desire to accomplish something. Of course, we can
also write up this practice, since it is at bottom just another theory more complex
and particular. . . .*°

Leibniz had only promises, but in the work of George Boole, a math-
ematician and logician working in the early nineteenth century, his
program came one step nearer to reality. Like Hobbes, Boole supposed
that reasoning was calculating, and he set out to “investigate the funda-
mental laws of those operations of the mind by which reasoning is
performed, to give expression to them in the symbolic language of a
Calculus. . . .

Boolean algebra is a binary algebra for representing elementary logical
functions. If “a” and “b” represent variables, represents ‘“‘and,”
“ 4+ ” represents “or,” and “1” and “0” represent “true” and “‘false”
respectively, then the rules governing logical manipulation can be writ-
ten in algebraic form as follows:

[T}

a+a=a a+0=a a+ 1=1
a-a=a a-0=0 a-1=a

Western man was now ready to begin the calculation.

Almost immediately, in the designs of Charles Babbage (1835), prac-
tice began to catch up to theory. Babbage designed what he called an
“Analytic Engine” which, though never built, was to function exactly
like a modern digital computer, using punched cards, combining logical
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and arithmetic operations, and making logical decisions along the way
based upon the results of its previous computations.

An important feature of Babbage’s machine was that it was digital.
There are two fundamental types of computing machines: analogue and
digital. Analogue comnuters do not compute in the strict sense of the
word. They operate by measuring the magnitude of physical quantities.
Using physical quantities, such as voltage, duration, angle of rotation of
a disk, and so forth, proportional to the quantity to be manipulated, they
combine these quantities in a physical way and measure the result. A
slide rule is a typical analogue computer. A digital computer—as the
word digit, Latin for “finger,” implies—represents all quantities by dis-
crete states, for example, relays which are open or closed, a dial which
can assume any one of ten positions, and so on, and then literally counts
in order to get its result.

Thus, whereas analogue computers operate with continuous quanti-
ties, all digital computers are discrete state machines. As A. M. Turing,
famous for defining the essence of a digital computer, puts it:

[Discrete state machines] move by sudden jumps or clicks from one quite definite
state to another. These states are sufficiently different for the possibility of
confusion between them to be ignored. Strictly speaking there are no such
machines. Everything really moves continuously. But there are many kinds of
machines which can profitably be thought of as being discrete state machines. For
instance in considering the switches for a lighting system it is a convenient fiction
that each switch must be definitely on or definitely off. There must be intermedi-
ate positions, but for most purposes we can forget about them.'

Babbage’s ideas were too advanced for the technology of his time, for
there was no quick efficient way to represent and manipulate the digits.
He had to use awkward mechanical means, such as the position of
cogwheels, to represent the discrete states. Electric switches, however,
provided the necessary technological breakthrough. When, in 1944, H.
H. Aiken actually built the first practical digital computer, it was elec-
tromechanical,using about 3000 telephone relays. These were still slow,
however, and it was only with the next generation of computers using
vacuum tubes that the modern electronic computer was ready.

Ready for anything. For, since a digital computer operates with ab-
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stract symbols which can stand for anything, and logical operations
which can relate anything to anything, any digital computer (unlike an
analogue computer) is a universal machine. First, as Turing puts it, it can
simulate any other digital computer.

This special property of digital computers, that they can mimic any discrete state
machine, is described by saying that they are universal machines. The existence
of machines with this property has the important consequence that, considera-
tions of speed apart, it is unnecessary to design various new machines to do
various computing processes. They can all be done with one digital computer,
suitably programmed for each case. It will be seen that as a consequence of this
all digital computers are in a sense equivalent."

Second, and philosophically more significant, any process which can be
formalized so that it can be represented as series of instructions for the
manipulation of discrete elements, can, at least in principle, be repro-
duced by such a machine. Thus even an analogue computer, provided
that the relation of its input to its output can be described by a precise
mathematical function, can be simulated on a digital machine.'**

But such machines might have remained overgrown adding machines,
had not Plato’s vision, refined by two thousand years of metaphysics,
found in them its fulfillment. At last here was a machine which operated
according to syntactic rules, on bits of data. Moreover, the rules were
built into the circuits of the machine. Once the machine was pro-
grammed there was no need for interpretation; no appeal to human
intuition and judgment. This was just what Hobbes and Leibniz had
ordered, and Martin Heidegger appropriately saw in cybernetics the
culmination of the philosophical tradition.**

Thus while practical men like Eckert and Mauchly, at the University
of Pennsylvania, were designing the first electronic digital machine, theo-
rists, such as Turing, trying to understand the essence and capacity of
such machines, became interested in an area which had thus far been the
province of philosophers: the nature of reason itself.

In 1950, Turing wrote an influential article, “Computing Machinery
and Intelligence,” in which he points out that “the present interest in
‘thinking machines’ has been aroused by a particular kind of machine,
usually called an ‘electronic computer’ or a ‘digital computer.”’ !¢ He
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then takes up the question “Can [such] machines think?”
To decide this question Turing proposes a test which he calls the
imitation game:

The new form of the problem can be described in terms of a game which we call
the “imitation game.” It is played with three people, a man (A), a woman (B),
and an interrogator (C) who may be of either sex. The interrogator stays in a
room apart from the other two. The object of the game for the interrogator is
to determine which of the other two is the man and which is the woman. He
knows them by labels X and Y, and at the end of the game he says either “X
is A and Y is B” or “X is B and Y is A.” The interrogator is allowed to put
questions to A and B thus:

C: Will X please tell me the length of his or her hair? Now suppose X is
actually A, then A must answer. It is A’s object in the game to try to cause C
to make the wrong identification. His answer might therefore be

“My hair is shingled, and the longest strands are about nine inches long.”

In order that tones of voice may not help the interrogator the answers should
be written, or better still, typewritten. The ideal arrangement is to have a tele-
printer communicating between the two rooms. Alternatively, the question and
answers can be repeated by an intermediary. The object of the game for the third
player (B) is to help the interrogator. The best strategy for her is probably to give
truthful answers. She can add such things as “I am the woman, don’t listen to
him!” to her answers, but it will avail nothing as the man can make similar
remarks.

We now ask the question, “What will happen when a machine takes the part
of ‘A in this game?” Will the interrogator decide wrongly as often when the game
is played like this as he does when the game is played between a man and a
woman? These questions replace our original, “Can machines think?'"’

This test has become known as the Turing Test. Philosophers may
doubt whether merely behavioral similarity could ever give adequate
ground for the attribution of intelligence,'® but as a goal for those actually
trying to construct thinking machines, and as a criterion for critics to use
in evaluating their work, Turing’s test was just what was needed.

Of course, no digital computer immediately volunteered or was
drafted for Turing’s game. In spite of its speed, accuracy, and universal-
ity, the digital computer was still nothing more than a general-symbol
manipulating device. The chips, however, were now down on the old
Leibnizian bet. The time was ripe to produce the appropriate symbolism
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and the detailed instructions by means of which the rules of reason could
be incorporated in a computer program. Turing had grasped the possibil-
ity and provided the criterion for success, but his article ended with only
the sketchiest suggestions about what to do next:

We may hope that machines will eventually compete with men in all purely
intellectual fields. But which are the best ones to start with? Even this is a difficult
decision. Many people think that a very abstract activity, like the playing of
chess, would be best. It can also be maintained that it is best to provide the
machine with the best sense organs that money can buy, and then teach it to
understand and speak English. This process could follow the normal teaching of
a child. Things would be pointed out and named, etc. Again I do not know what
the right answer is, but I think both approaches should be tried."

A technique was still needed for finding the rules which thinkers from
Plato to Turing assumed must exist—a technique for converting any
practical activity such as playing chess or learning a language into the
set of instructions Leibniz called a theory. Immediately, as if following
Turing’s hints, work got under way on chess and language. The same
year Turing wrote his article, Claude E. Shannon, the inventor of infor-
mation theory, wrote an article on chess-playing machines in which he
discussed the options facing someone trying to program a digital com-
puter to play chess.

Investigating one particular line of play for 40 moves would be as bad as investi-
gating all lines for just two moves. A suitable compromise would be to examine
only the important possible variations—that is, forcing moves, captures and
main threats—and carry out the investigation of the possible moves far enough
to make the consequences of each fairly clear. It is possible to set up some rough
criteria for selecting important variations, not as efficiently as a chess master, but
sufficiently well to reduce the number of variations appreciably and thereby
permit a deeper investigation of the moves actually considered.?’

Shannon did not write a chess program, but he believed that “an elec-
tronic computer programmed in this manner would play a fairly strong
game at speeds comparable to human speeds.”*

In 1955 Allen Newell wrote a sober survey of the problems posed by
the game of chess and suggestions as to how they might be met. Newell
notes that “These [suggested] mechanisms are so complicated that it is
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impossible to predict whether they will work.”? The next year, however,
brought startling success. A group at Los Alamos produced a program
which played poor but legal chess on a reduced board. In a review of this
work, Allen Newell, J. C. Shaw, and H. A. Simon concluded: “With very
little in the way of complexity, we have at least entered the arena of
human play—we can beat a beginner.”* And by 1957, Alex Bernstein
had a program for the IBM 704 which played two ‘“‘passable amateur
games.”**

Meanwhile, Anthony Oettinger was working on the other Turing line.
Having already in 1952 programmed a machine which simulated simple
conditioning, increasing or decreasing a set response on the basis of
positive or negative reinforcement, Oettinger turned to the problem of
language translation and programmed a Russian-English mechanical
dictionary. Further research in these directions, it seemed, might lead to
a computer which could be taught to associate words and objects.

But neither of these approaches offered anything like a general theory
of intelligent behavior. What was needed were rules for converting any
sort of intelligent activity into a set of instructions. At this point Herbert
Simon and Allen Newell, analyzing the way a student proceeded to solve
logic problems, noted that their subjects tended to use rules or shortcuts
which were not universally correct, but which often helped, even if they
sometimes failed. Such a rule of thumb might be, for example: always
try to substitute a shorter expression for a longer one. Simon and Newell
decided to try to simulate this practical intelligence. The term “heuristic
program” was used to distinguish the resulting programs from programs
which are guaranteed to work, so-called algorithmic programs which
follow an exhaustive method to arrive at a solution, but which rapidly
become unwieldy when dealing with practical problems.

This notion of a rule of practice provided a breakthrough for those
looking for a way to program computers to exhibit general problem-
solving behavior. Something of the excitement of this new idea vibrates
in the first paragraph of Newell, Shaw, and Simon’s classic article “Em-
pirical Explorations with the Logic Theory Machine: A Case Study in
Heuristics.”
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This is a case study in problem-solving, representing part of a program of
research on complex information-processing systems. We have specified a system
for finding proofs of theorems in elementary symbolic logic, and by programming
a computer to these specifications, have obtained empirical data on the problem-
solving process in elementary logic. The program is called the Logic Theory
Machine (LT); it was devised to learn how it is possible to solve difficult problems
such as proving mathematical theorems, discovering scientific laws from data,
playing chess, or understanding the meaning of English prose.

The research reported here is aimed at understanding the complex processes
(heuristics) that are effective in problem-solving. Hence, we are not interested in
methods that guarantee solutions, but which require vast amounts of computa-
tion. Rather, we wish to understand how a mathematician, for example, is able
to prove a theorem even though he does not know when he starts how, or if, he
is going to succeed.?

But Newell and Simon soon realized that even this approach was not
general enough. The following year (1957) they sought to abstract the
heuristics used in the logic machine, and apply them to a range of similar
problems. This gave rise to a program called the General Problem Solver
or GPS. The motivation and orientation of the work on the General
Problem Solver are explained in Newell, Shaw, and Simon’s first major
report on the enterprise.

This paper . . . is part of an investigation into the extremely complex processes
that are involved in intelligent, adaptive, and creative behavior. . . .

Many kinds of information can aid in solving problems: information may
suggest the order in which possible solutions should be examined; it may rule
out a whole class of solutions previously thought possible; it may provide a cheap
test to distinguish likely from unlikely possibilities; and so on. All these kinds
of information are heuristics—things that aid discovery. Heuristics seldom pro-
vide infallible guidance. . . . Often they “work,” but the results are variable and
success is seldom guaranteed.?

To convey a sense of the general heuristics their program employed,
Newell and Simon introduced an example of everyday intelligent be-
havior:

I want to take my son to nursery school. What'’s the difference between what 1
have and what I want? One of distance. What changes distance? My automobile.
My automobile won’t work. What’s needed to make it work? A new battery.
What has new batteries? An auto repair shop. I want the repair shop to put in
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a new battery; but the shop doesn’t know I need one. What is the difficulty? One
of communication. What allows communication? A telephone. . . . And so on.

This kind of analysis—classifying things in terms of the functions they serve,
and oscillating among ends, functions required, and means that perform them
—forms the basic system of heuristic of GPS. More precisely, this means-end
system of heuristic assumes the following:

1. Ifan object is given that is not the desired one, differences will be detectable
between the available object and the desired object.

2. Operators affect some features of their operands and leave others un-
changed. Hence operators can be characterized by the changes they produce and
can be used to try to eliminate differences between the objects to which they are
applied and desired objects.

3. Some differences will prove more difficult to affect than others. It is profita-
ble, therefore, to try to eliminate “difficult” differences, even at the cost of
introducing new differences of lesser difficulty. This process can be repeated as
long as progress is being made toward eliminating the more difficult differences.”’

With digital computers solving such problems as how to get three
cannibals and three missionaries across a river without the cannibals
eating the missionaries, it seemed that finally philosophical ambition had
found the necessary technology: that the universal, high-speed computer
had been given the rules for converting reasoning into reckoning. Simon
and Newell sensed the importance of the moment and jubilantly an-
nounced that the era of intelligent machines was at hand.

We have begun to learn how to use computers to solve problems, where we do
not have systematic and efficient computational algorithms. And we now know,
at least in a limited area, not only how to program computers to perform such
problem-solving activities successfully; we know also how to program computers
to learn to do these things.

In short, we now have the elements of a theory of heuristic (as contrasted with
algorithmic) problem solving; and we can use this theory both to understand
human heuristic processes and to simulate such processes with digital computers.
Intuition, insight, and learning are no longer exclusive possessions of humans:
any large high-speed computer can be programmed to exhibit them also.?*

This field of research, dedicated to using digital computers to simulate
intelligent behavior, soon came to be known as “artificial intelligence.”
One should not be misled by the name. No doubt an artificial nervous
system sufficiently like the human one, with other features such as sense
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organs and a body, would be intelligent. But the term “artificial” does
not mean that workers in artificial intelligence are trying to build an
artificial man. Given the present state of physics, chemistry, and neuro-
physiology, such an undertaking is not feasible. Simon and the pioneers
of artificial intelligence propose to produce something more limited: a
heuristic program which will enable a digital information-processing
machine to exhibit intelligence.

Likewise, the term “intelligence” can be misleading. No one expects
the resulting robot to reproduce everything that counts as intelligent
behavior in human beings. It need not, for example, be able to pick a
good wife, or get across a busy street. It must only compete in the more
objective and disembodied areas of human behavior, so as to be able to
win at Turing’s game.

This limited objective of workers in artificial intelligence is just what
gives such work its overwhelming significance. These last metaphysicians
are staking everything on man’s ability to formalize his behavior; to
bypass brain and body, and arrive, all the more surely, at the essence of
rationality.

Computers have already brought about a technological revolution
comparable to the Industrial Revolution. If Simon is right about the
imminence of artificial intelligence, they are on the verge of creating an
even greater conceptual revolution—a change in our understanding of
man. Everyone senses the importance of this revolution, but we are so
near the events that it is difficult to discern their significance. This much,
however, is clear. Aristotle defined man as a rational animal, and since
then reason has been held to be of the essence of man. If we are on the
threshold of creating artificial intelligence we are about to see the tri-
umph of a very special conception of reason. Indeed, if reason can be
programmed into a computer, this will confirm an understanding of man
as an object, which Western thinkers have been groping toward for two
thousand years but which they only now have the tools to express
and implement. The incarnation of this intuition will drastically change
our understanding of ourselves. If, on the other hand, artificial intelli-
gence should turn out to be impossible, then we will have to distinguish
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human from artificial reason, and this too will radically change our view
of ourselves. Thus the moment has come either to face the truth of the
tradition’s deepest intuition or to abandon the mechanical account of
man’s nature which has been gradually developing over the past two
thousand years.

Although it is perhaps too early for a full answer, we must make an
attempt to determine the scope and limits of the sort of reason which has
come fully into force since the perfection of the “analytical engine.” We
must try to understand to what extent artificial intelligence is possible,
and if there are limits to the possibility of computer simulation of intelli-
gent behavior, we must determine those limits and their significance.
What we learn about the limits of intelligence in computers will tell us
something about the character and extent of human intelligence. What
is required is nothing less than a critique of artificial reason.

The need for a critique of artificial reason is a special case of a general
need for critical caution in the behavioral sciences. Chomsky remarks
that in these sciences ‘“‘there has been a natural but unfortunate tendency
to ‘extrapolate,” from the thimbleful of knowledge that has been attained
in careful experimental work and rigorous data-processing, to issues of
much wider significance and of great social concern.” He concludes
that

the experts have the responsibility of making clear the actual limits of their
understanding and of the results they have so far achieved. A careful analysis
of these limits will demonstrate that in virtually every domain of the social and
behavioral sciences the results achieved to date will not support such *“‘extrapola-
tion.”?

Artificial intelligence, at first glance, seems to be a happy exception to
this pessimistic principle. Every day we read that digital computers play
chess, translate languages, recognize patterns, and will soon be able to
take over our jobs. In fact this now seems like child’s play. Literally! In
a North American Newspaper Alliance release, dated December 1968,
entitled “A Computer for Kids” we are told that
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Cosmos, the West German publishing house . . . has come up with a new idea
in gifts. . . . It’s a genuine (if small) computer, and it costs around $20. Battery
operated, it looks like a portable typewriter. But it can be programmed like any
big computer to translate foreign languages, diagnose illnesses, even provide a
weather forecast.

And in a Life magazine article (Nov. 20, 1970) entitled ‘“Meet
Shakey, The First Electronic Person,” the wide-eyed reader is told of a
computer “made up of five major systems of circuitry that correspond
quite closely to basic human faculties—sensation, reason, language,
memory [and] ego.” According to the article, this computer ‘“‘sees,”
“understands,” “learns,” and, in general, has ‘“demonstrated that ma-
chines can think.” Several distinguished computer scientists are quoted
as predicting that in from three to fifteen years “we will have a machine
with the general intelligence of an average human being . . . and in a few
months [thereafter] it will be at genius level. . . .”

The complete robot may be a few years off, of course, but anyone
interested in the prospective situation at the turn of the century can see
in the film 2001: A Space Odyssey a robot named HAL who is cool,
conversational, and very nearly omniscient and omnipotent. And this
film is not simply science-fiction fantasy. 4 Space Odyssey was made with
scrupulous documentation. The director, Stanley Kubrick, consulted the
foremost computer specialists so as not to be misled as to what was at
least remotely possible. Turing himself had in 1950 affirmed his belief
that “at the end of the century the use of words and general educated
opinion will have altered so much that one will be able to speak of
machines thinking without expecting to be contradicted.”*® And the
technical consultant for the film, Professor Marvin Minsky, working on
an early prototype of HAL in his laboratory at M.I.T., assured Kubrick
that Turing was, if anything, too pessimistic.

That Minsky was not misunderstood by Kubrick is clear from Min-
sky’s editorial for Science Journal, which reads like the scenario for
2001:

At first machines had simple claws. Soon they will have fantastically graceful
articulations. Computers’ eyes once could sense only a hole in a card. Now they
recognize shapes on simple backgrounds. Soon they will rival man’s analysis of
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his environment. Computer programs once merely added columns of figures.
Now they play games well, understand simple conversations, weigh many factors
in decisions. What next?

Today, machines solve problems mainly according to the principles we build
into them. Before long, we may learn how to set them to work upon the very
special problem of improving their own capacity to solve problems. Once a
certain threshold is passed, this could lead to a spiral of acceleration and it may
be hard to perfect a reliable ‘governor’ to restrain it.’”!

It seems that there may be no limit to the range and brilliance of the
properly programmed computer. It is no wonder that among philoso-
phers of science one finds an assumption that machines can do every-
thing people can do, followed by an attempt to interpret what this bodes
for the philosophy of mind; while among moralists and theologians one
finds a last-ditch retrenchment to such highly sophisticated behavior as
moral choice, love, and creative discovery, claimed to be beyond the
scope of any machine. Thinkers in both camps have failed to ask the
preliminary question whether machines can in fact exhibit even elemen-
tary skills like playing games, solving simple problems, reading simple
sentences and recognizing patterns, presumably because they are under
the impression, fostered by the press and artificial-intelligence research-
ers such as Minsky, that the simple tasks and even some of the most
difficult ones have already been or are about to be accomplished. To
begin with, then, these claims must be examined.

It is fitting to begin with a prediction made by Herbert Simon in 1957
as his General Problem Solver seemed to be opening up the era of
artificial intelligence:

It is not my aim to surprise or shock you. . . . But the simplest way I can
summarize is to say that there are now in the world machines that think, that
learn and that create. Moreover, their ability to do these things is going to
increase rapidly until—in a visible future—the range of problems they can han-
dle will be coextensive with the range to which the human mind has been ap-
plied.

Simon then predicts, among other things,

1. That within ten years a digital computer will be the world’s chess champion,
unless the rules bar it from competition.
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2. That within ten years a digital computer will discover and prove an impor-
tant new mathematical theorem.

3. That within ten years most theories in psychology will take the form of
computer programs, or of qualitative statements about the characteristics of
computer programs.*

Unfortunately, the tenth anniversary of this historic talk went unno-
ticed, and workers in artificial intelligence did not, at any of their many
national and international meetings, take time out from their progress
reports to confront these predictions with the actual achievements. Now
fourteen years have passed, and we are being warned that it may soon
be difficult to control our robots. It is certainly high time to measure this
original prophecy against reality.

Already in the five years following Simon’s predictions, publications
suggested that the first of Simon’s forecasts had been half-realized, and
that considerable progress had been made in fulfilling his second predic-
tion. This latter, the theorem-discovery prediction, was “fulfilled” by W.
R. Ashby (one of the leading authorities in the field) when, in a review
of Feigenbaum and Feldman’s anthology Computers and Thought, he
hailed the mathematical power of the properly programmed computer:
“Gelernter’s theorem-proving program has discovered a new proof of the
pons asinorum that demands no construction.” This proof, Dr. Ashby
goes on to say, is one which “the greatest mathematicians of 2000 years
have failed to notice . . . which would have evoked the highest praise had
it occurred.”*

The theorem sounds important, and the naive reader cannot help
sharing Ashby’s enthusiasm. A little research, however, reveals that the
pons asinorum, or ass’s bridge, is the elementary theorem proved in
Euclidian geometry—namely that the opposite angles of an isosceles
triangle are equal. Moreover, the first announcement of the “new” proof
“discovered” by the machine is attributed to Pappus (A.D. 300).** There
is a striking disparity between Ashby’s excitement and the antiquity and
simplicity of this proof. We are still a long way from “the important
mathematical theorem” to be found by 1967.

The chess-playing story is more involved and might serve as a model
for a study of the production of intellectual smog in this area. In 1958,
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the year after Simon’s prediction, Newell, Shaw, and Simon presented
an elaborate chess-playing program. As described in their classic paper,
“Chess-Playing Programs and the Problem of Complexity,” their pro-
gram was “not yet fully debugged,” so that one “cannot say very much
about the behavior of the program.”* Still, it is clearly “good in [the]
... opening.”*¢ This is the last detailed published report on the program.
In the same year, however, Newell, Shaw, and Simon announced: “We
have written a program that plays chess,”*” and Simon, on the basis of
this success, revised his earlier prediction:

In another place, we have predicted that within ten years a computer will
discover and prove an important mathematical theorem. On the basis of our
experience with the heuristics of logic and chess, we are willing to add the further
prediction that only moderate extrapolation is required from the capacities of
programs already in existence to achieve the additional problem-solving power
needed for such simulation.*®

Public gullibility and Simon’s enthusiasm was such that Newell, Shaw,
and Simon’s claims concerning their still bugged program were sufficient
to launch the chess machine into the realm of scientific mythology. In
1959, Norbert Wiener, escalating the claim that the program was *“good
in the opening,” informed the NYU Institute of Philosophy that ‘“‘chess-
playing machines as of now will counter the moves of a master game with
the moves recognized as right in the text books, up to some point in the
middle game.”** In the same symposium, Michael Scriven moved from
the ambiguous claim that “machines now play chess” to the positive
assertion that “machines are already capable of a good game.”*

In fact, in its few recorded games, the Newell, Shaw, Simon program
played poor but legal chess, and in its last official bout (October 1960)
was beaten in 35 moves by a ten-year-old novice. Fact, however, had
ceased to be relevant.

While their program was losing its five or six poor games—and the
myth they had created was holding its own against masters in the middle
game—Newell, Shaw, and Simon kept silent. When they speak again,
three years later, they do not report their difficulties and disappointment.
Rather, as if to take up where the myth left off, Simon published an
article in Behavioral Science announcing a program which played
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“highly creative” chess end games involving “combinations as difficult
as any that have been recorded in chess history.”*' That the program
restricts these end games to dependence on continuing checks, so that
the number of relevant moves is greatly reduced, is mentioned but not
emphasized. On the contrary, it is misleadingly implied that similar
simple heuristics would account for master play even in the middle
game.*** Thus, the article gives the impression that the chess prediction
is almost realized. With such progress, the chess championship may be
claimed at any moment. Indeed, a Russian cyberneticist, upon hearing
of Simon’s ten-year estimate, called it ‘“‘conservative.”* And Fred
Gruenberger at RAND suggested that a world champion is not enough
—that we should aim for “a program which plays better than any man
could.”* This regenerating confusion makes one think of the mythical
French beast which is supposed to secrete the fog necessary for its own
respiration.

Reality comes limping along behind these impressive pronounce-
ments. Embarrassed by my exposé of the disparity between their enthusi-
asm and their results, AI workers finally produced a reasonably
competent program. R. Greenblatt’s program called MacHack did in
fact beat the author,** a rank amateur, and has been entered in several
tournaments in which it won a few games. This limited success revived
hopes and claims. Seymour Papert, the second in command at the M.I.T.
robot project, leaped in to defend Simon’s prediction, asserting that *“‘as
a statement of what researchers in the field consider to be a possible goal
for the near futute, this is a reasonable statement.”** And on page 1 of
the October 1968 issue of Science Journal, Donald Michie, the leader of
England’s artificial intelligentsia, writes that ‘“today machines can play
chess at championship level.”*” However, chess master de Groot, discuss-
ing the earlier chess programs, once said: “programs are still very poor
chess players and I do not have much hope for substantial improvement
in the future.” And another chess master, Eliot Hearst, discussing the
M.LT. program in Psychology Today, adds: “De Groot’s comment was
made in 1964 and MacHack’s recent tournament showing would not
require him to revise his opinion.”*® Nor would most recent events.
Greenblatt’s program has been gradually improved, but it seems to have
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reached a point of saturation. During the past two years, it lost all games
in the tournaments in which it had been entered, and received no further
publicity. We shall soon see that given the limitations of digital comput-
ers this is just what one would expect.

It is to Greenblatt’s credit that even in the heyday of MacHack he
made no prediction; as for Simon and the world championship, the ten
years are well up, and the computer is at best a class C amateur.***

This rapid rundown of the state of the art vis-a-vis two of Simon’s
predictions has, I hope, cleared the air. It is essential to be aware at the
outset that despite predictions, press releases, films, and warnings, artifi-
cial intelligence is a promise and not an accomplished fact. Only then can
we begin our examination of the actual state and future hopes of artificial
intelligence at a sufficiently rudimentary level.

The field of artificial intelligence has many divisions and subdivisions,
but the most important work can be classified into four areas: game
playing, language translating, problem solving, and pattern recognition.
We have already discussed the state of game-playing research. We shall
now look at the work in the remaining three fields in detail. In Part I
my general thesis will be that the field of artificial intelligence exhibits
a recurring pattern: early, dramatic success followed by sudden unex-
pected difficulties. This pattern occurs in all four areas, in two phases
each lasting roughly five years. The work from 1957 to 1962 (Chapter
1), is concerned primarily with Cognitive Simulation (CS)—the use of
heuristic programs to simulate human behavior by attempting to re-
produce the steps by which human beings actually proceed. The second
period (Chapter 2) is predominantly devoted to semantic information
processing. This is artificial intelligence in a narrower sense than I have
been using the term thus far. AI (for this restricted sense I shall use the
initials) is the attempt to simulate human intelligent behavior using
programming techniques which need bear little or no resemblance to
human mental processes. The difficulties confronting this approach have
just begun to emerge. The task of the rest of Part I is to discover the
underlying common source of all these seemingly unconnected setbacks.

These empirical difficulties, these failures to achieve predicted prog-
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ress, never, however, discourage the researchers, whose optimism seems
to grow with each failure. We therefore have to ask what assumptions
undelie this persistent optimism in the face of repeated disappoint-
ments. Part IT attempts to bring to light four deeply rooted assumptions
or prejudices which mask the gravity of the current impasse, and to lay
bare the conceptual confusion to which these prejudices give rise.

But these prejudices are so deeply rooted in our thinking that the only
alternative to them seems to be an obscurantist rejection of the possibility
of a science of human behavior. Part III attempts to answer this objec-
tion, insofar as it can be answered, by presenting an alternative to these
traditional assumptions, drawing on the ideas of twentieth-century
thinkers whose work is an implicit critique of artificial reason, although
it has not before been read in this light.

We shall then, in the Conclusion, be in a position to characterize
artificial reason and indicate its scope and limits. This in turn will enable
us to distinguish among various forms of intelligent behavior and to
judge to what extent each of these types of intelligent behavior is pro-
grammable in practice and in principle.

If the order of argument presented above and the tone of my opening
remarks seem strangely polemical for an effort in philosophical analysis,
I can only point out that, as we have already seen, artificial intelligence
is a field in which the rhetorical presentation of results often substitutes
for success, so that research papers resemble more a debater’s brief than
a scientific report. Such persuasive marshaling of facts can only be an-
swered in kind. Thus the accusatory tone of Part I. In Part II, however,
I have tried to remain as objective as possible in testing fundamental
assumptions, although I know from experience that challenging these
assumptions will produce reactions similar to those of an insecure be-
liever when his faith is challenged.

For example, the year following the publication of my first investiga-
tion of work in artificial intelligence, the RAND Corporation held a
meeting of experts in computer science to discuss, among other topics,
my report. Only an “expurgated” transcript of this meeting has been
released to the public, but even there the tone of paranoia which per-
vaded the discussion is present on almost every page. My report is called
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“sinister,” “dishonest,” “hilariously funny,” and an “‘incredible misrep-
resentation of history.” When, at one point, Dr. J. C. R. Licklider, then
of IBM, tried to come to the defense of my conclusion that work should
be done on man-machine cooperation, Seymour Papert of M.I.T. re-
sponded:

I protest vehemently against crediting Dreyfus with any good. To state that you
can associate yourself with one of his conclusions is unprincipled. Dreyfus’
concept of coupling men with machines is based on thorough misunderstanding
of the problems and has nothing in common with any good statement that might
go by the same words.*

The causes of this panic-reaction should themselves be investigated,
but that is a job for psychology, or the sociology of knowledge. However,
in anticipation of the impending outrage I want to make absolutely clear
from the outset that what I am criticizing is the implicit and explicit
philosophical assumptions of Simon and Minsky and their co-workers,
not their technical work. True, their philosophical prejudices and naiveté
distort their own evaluation of their results, but this in no way detracts
from the importance and value of their research on specific techniques
such as list structures, and on more general problems such as data-base
organization and access, compatibility theorems, and so forth. The fun-
damental ideas that they have contributed in these areas have not only
made possible the limited achievements in artificial intelligence but have
contributed to other more flourishing areas of computer science.

In some restricted ways even Al can have, and presumably will have
practical value despite what I shall try to show are its fundamental
limitations. (I restrict myself to AI because it is not clear that naive
Cognitive Simulation, as it is now practiced, can have any value at all,
except perhaps as a striking demonstration of the fact that in behavirg
intelligently people do not process information like a heuristically pro-
grammed digital computer.) An artifact could replace men in some tasks
—for example, those involved in exploring planets—without performing
the way human beings would and without exhibiting human flexibility.
Research in this area is not wasted or foolish, although a balanced view
of what can and cannot be expected of such an artifact would certainly
be aided by a little philosophical perspective.
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Phase I (1957-1962) Cognitive Simulation

I. Analysis of Work in Language Translation,
Problem Solving, and Pattern Recognition

LANGUAGE TRANSLATION

The attempts at language translation by computers had the earliest
success, the most extensive and expensive research, and the most un-
equivocal failure. It was soon clear that a mechanical dictionary could
easily be constructed in which linguistic items, whether they were parts
of words, whole words, or groups of words, could be processed indepen-
dently and converted one after another into corresponding items in
another language. Anthony Oettinger, the first to produce a mechanical
dictionary (1954), recalls the climate of these early days: ‘“The notion of
. . . fully automatic high quality mechanical translation, planted by
overzealous propagandists for automatic translation on both sides of the
Iron Curtain and nurtured by the wishful thinking of potential users,
blossomed like a vigorous weed.”'§ This initial enthusiasm and the
subsequent disillusionment provide a sort of paradigm for the field. It is
aptly described by Bar-Hillel in his report “The Present Status of Auto-
matic Translation of Languages.”

§Notes begin on p. 307. [Citations are indicated by a superior figure. Substantive notes
are indicated by a superior figure and an asterisk.]
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During the first year of the research in machine translation, a considerable
amount of progress was made. . . . It created among many of the workers actively
engaged in this field the strong feeling that a working system was just around
the corner. Though it is understandable that such an illusion should have been
formed at the time, it was an illusion. It was created . . . by the fact that a large
number of problems were rather readily solved. . . . It was not sufficiently realized
that the gap between such output . . . and high quality translation proper was
still enormous, and that the problems solved until then were indeed many but
just the simplest ones whereas the “few” remaining problems were the harder
ones—very hard indeed.?

During the ten years following the development of a mechanical dic-
tionary, five government agencies spent about $20 million on mechanical
translation research.’ In spite of journalistic claims at various moments
that machine translation was at last operational, this research produced
primarily a much deeper knowledge of the unsuspected complexity of
syntax and semantics. As Oettinger remarks, ‘“The major problem of
selecting an appropriate target correspondent for a source word on the
basis of context remains unsolved, as does the related one of establishing
a unique syntactic structure for a sentence that human readers find
unambiguous.”* Oettinger concludes: “The outlook is grim for those who
still cherish hopes for fully automatic high-quality mechanical transla-
tion.”s*

That was in 1963. Three years later, a government report, Language
and Machines, distributed by the National Academy of Sciences Na-
tional Research Council, pronounced the last word on the translation
boom. After carefully comparing human translations and machine
products the committee concluded:

We have already noted that, while we have machine-aided translation of general
scientific text, we do not have useful machine translation. Furthermore, there is
no immediate or predictable prospect of useful machine translation.

Ten years have elapsed since the early optimism concerning machine
translation. At that time, flight to the moon was still science fiction, and
the mechanical secretary was just around the corner. Now we have
landed on the moon, and yet machine translation of typed scientific texts
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—Ilet alone spoken language and more general material—is still over the
horizon, and the horizon seems to be receding at an accelerating rate.
Since much of the hope for robots like those of 2001, or for more modest
servants, depends on the sort of understanding of natural language which
is also necessary for machine translation, the conclusion of the National
Academy of Sciences strikes at all predictions—such as Minsky’s—that
within a generation the problem of creating artificial intelligence will be
substantially solved.

PROBLEM SOLVING

Much of the early work in the general area of artificial intelligence,
especially work on game playing and problem solving, was inspired and
dominated by the work of Newell, Shaw, and Simon at the RAND
Corporation and at Carnegie Institute of Technology.” Their approach
is called Cognitive Simulation (CS) because the technique generally em-
ployed is to collect protocols from human subjects, which are then
analyzed to discover the heuristics these subjects employ.®* A program
is then written which incorporates similar rules of thumb.

Again we find an early success: in 1957 Newell, Shaw, and Simon’s
Logic Theorist, using heuristically guided trial-and-error search, proved
38 out of 52 theorems from Principia Mathematica. Two years later,
another Newell, Shaw, and Simon program, the General Problem Solver
(GPS), using more sophisticated means-ends analysis, solved the “canni-
bal and missionary” problem and other problems of similar com-
plexity.”*

In 1961, after comparing a machine trace (see Figure 2, p. 95) with a
protocol and finding that they matched to some extent, Newell and
Simon concluded rather cautiously:

The fragmentary evidence we have obtained to date encourages us to think that
the General Problem Solver provides a rather good first approximation to an
information processing theory of certain kinds of thinking and problem-solving
behavior. The processes of “thinking” can no longer be regarded as completely
mysterious.'®
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Soon, however, Simon gave way to more enthusiastic claims:

Subsequent work has tended to confirm [our] initial hunch, and to demonstrate
that heuristics, or rules of thumb, form the integral core of human problem-
solving processes. As we begin to understand the nature of the heuristics that
people use in thinking the mystery begins to dissolve from such (heretofore)
vaguely understood processes as “intuition” and “judgment.”"!

But, as we have seen in the case of language translating, difficulties have
an annoying way of reasserting themselves. This time, the “mystery” of
judgment reappears in terms of the organizational aspect of the problem-
solving programs. Already in 1961 at the height of Simon’s enthusiasm,
Minsky saw the difficulties which would attend the application of trial-
and-error techniques to really complex problems:

The simplest problems, e.g., playing tic-tac-toe or proving the very simplest
theorems of logic, can be solved by simple recursive application of all the avail-
able transformations to all the situations that occur, dealing with sub-problems
in the order of their generation. This becomes impractical in more complex
problems as the search space grows larger and each trial becomes more expensive
in time and effort. One can no longer afford a policy of simply leaving one
unsuccessful attempt to go on to another. For, each attempt on a difficult prob-
lem will involve so much effort that one must be quite sure that, whatever the
outcome, the effort will not be wasted entirely. One must become selective to the
point that no trial is made without a compelling reason. . . ."

This, Minsky claims, shows the need for a planning program, but as he
goes on to point out:

Planning methods . . . threaten to collapse when the fixed sets of categories
adequate for simple problems have to be replaced by the expressions of descrip-
tive language.!

In “Some Problems of Basic Organization in Problem-Solving Pro-
grams” (December 1962), Newell discusses some of the problems which
arise in organizing the Chess Program, the Logic Theorist, and especially
the GPS with a candor rare in the field, and admits that “most of [these
problems] are unsolved to some extent, either completely, or because the
solutions that have been adopted are still unsatisfactory in one way or
another.”"* No further progress has been reported toward the successful
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GOAL 1 TRANSFORM L1 INTO LO
GOAL 2 DELETE R FROM L1
GOAL 3 APPLY R8 TO L1
PRODUCES L2 RD~P

GOAL 4 TRANSFORM L2 INTO LO
GOAL 5 ADD Q TO L2
REJECT

GOAL 2
GOAL 6 APPLY R8 TO L1
PRODUCES L3 ~RDQ

GOAL 7 TRANSFORM L3 INTO LO
GOAL 8 ADD P TO L3
REJECT

GOAL 2
GOAL 9 APPLY R7 TO L1
GOAL 10 CHANGE CONNECTIVE TOVIN LEFT L1
GOAL 11 APPLY R6 TO LEFT L1
PRODUCES L4 (~RV ~P)-(~RDQ)

GOAL 12 APPLY R7 TO L4
GOAL 13 CHANGE CONNECTIVE TO Y IN RIGHT L4
GOAL 14 APPLY R6 TO RIGHT L4
PRODUCES LS5 (~RV~P)-(RVQ)

GOAL 15 APPLY R7 T0 LS
GOAL 16 CHANGE SIGN OF LEFT RIGHT LS
GOAL 17 APPLY R6 TO RIGHT L5
PRODUCES L6 (~RV ~P)(~R2Q)

GOAL 18 APPLY R7 TO L6
GOAL 19 CHANGE CONNECTIVE TO ¥
IN RIGHT L6
REJECT

GOAL 16
NOTHING MORE

GOAL 13
NOTHING MORE

GOAL 10
NOTHING MORE

Figure 2
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hierarchical organization of heuristic programs. (Significantly, the great-
est achievement in the field of mechanical theorem-proving, Wang’s
theorem-proving program, which proved in less than five minutes all 52
theorems chosen by Newell, Shaw, and Simon, does not use heuristics.)

Public admission that GPS was a dead end, however, did not come
until much later. In 1967, the tenth anniversary of Simon’s predictions,
Newell (and Ernst) soberly, quietly, and somewhat ambiguously an-
nounced that GPS was being abandoned. The preface to their paper
reveals that peculiar mixture of impasse and optimism which we have
begun to recognize as characteristic of the field:

We have used the term “final” in several places above. This does not indicate
any feeling that this document marks a terminus to our research on general
problem solvers; quite the contrary is true. However, we do feel that this particu-
lar aggregate of IPL-V code should be laid to rest."

That GPS has collapsed under the weight of its own organization
becomes clearer later in the monograph. The section entitled “History
of GPS” concludes:

One serious limitation of the expected performance of GPS is the size of the
program and the size of its rather elaborate data structure. The program itself
occupies a significant portion of the computer memory and the generation of new
data structures during problem solving quickly exhausts the remaining memory.
Thus GPS is only designed to solve modest problems whose representation is not
too elaborate. Although larger computers’ memories would alleviate the extrava-
gances of GPS’s use of memory, conceptual difficulties would remain.'¢

This curve from success to optimism to failure can be followed in
miniature in the case of Gelernter’s Geometry Theorem Machine (1959).
Its early success with theorems like the pons asinorum gave rise to the
first prediction to be totally discredited. In an article published in 1960,
Gelernter explains the heuristics of his program and then concludes:
“Three years ago, the dominant opinion was that the geometry machine
would not exist today. And today, hardly an expert will contest the
assertion that machines will be proving interesting theorems in number
theory three years hence,” that is, in 1963.!” There has been no further
word from Gelernter and no further progress in purely mechanical math-
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ematics. No more striking example exists of an “astonishing” early
success and an even more astonishing failure to follow it up.

PATTERN RECOGNITION

This field is discussed last because the resolution of the difficulties
which have arrested development in game playing, language translation,
and problem solving presupposes success in the field of pattern recogni-
tion (which in turn suffers from each of the difficulties encountered in
the other fields). As Selfridge and Neisser point out in their classic article
“Pattern Recognition by Machine,”

a man is continually exposed to a welter of data from his senses, and abstracts
from it the patterns relevant to his activity at the moment. His ability to solve
problems, prove theorems and generally run his life depends on this type of
perception. We suspect that until programs to perceive patterns can be devel-
oped, achievements in mechanical problem-solving will remain isolated technical
triumphs.'®

There has as usual been some excellent early work. For example, the
Lincoln Laboratory group under Bernard Gold produced a program for
transliterating hand-sent Morse code. More recently, programs have
been written for recognizing a limited set of handwritten words and
printed characters in various type fonts. These all operate by searching
for predetermined topological features of the characters to be recognized,
and checking these features against preset or learned ‘“definitions” of
each letter in terms of these traits. The trick is to find relevant features,
that is, those that remain generally invariant throughout variations of
size and orientation, and other distortions. This approach has been sur-
prisingly successful where recognition depends on a small number of
specific traits.

But none of these programs constitutes a breakthrough in pattern
recognition. Each is a small engineering triumph, an ad hoc solution of
a specific problem, without general applicability. As Murray Eden, who
has done some of the best work in pattern recognition, summed up the
situation in 1968:
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Where there have been successes in performing pattern-recognition tasks by
mechanical means, the successes have rested on rules that were prescribed ad
hoc, in the literal sense of that phrase; that is to say, the successful methods
classify reliably that particular set of patterns for which the methods were
designed, but are likely to lack any significant value for classifying any other set
of patterns."

Even in these special cases, as Selfridge and Neisser remark, “The only
way the machine can get an adequate set of features is from a human
programmer.”? They thus conclude their survey of the field with a
challenge rather than a prediction:

The most important learning process of all is still untouched: No current pro-
gram can generate test features of its own. The effectiveness of all of them is
forever restricted by the ingenuity or arbitrariness of their programmers. We can
barely guess how this restriction might be overcome. Until it is, ‘artificial intelli-
gence’ will remain tainted with artifice.?!

Even these remarks may be too optimistic, however, in their supposi-
tion that the present problem is feature-generation. The relative success
of the Uhr-Vossler program, which generates and evaluates its own
operators, shows that this problem is partially soluble.?? But as long as
recognition depends on a limited set of features, whether ad hoc or
general, preprogrammed or generated, mechanical recognition has gone
about as far as it can go. The number of traits that can be looked up in
a reasonable amount of time is limited, and present programs have
already reached this technological limit. In a paper presented at the
Hawaii International Conference on the Methodologies of Pattern Rec-
ognition (1968), Laveen Kanal and B. Chandrasekaran summed up the
impasse as follows:

Obviously, the engineering approach has built in limitations. There is a certain
level of complexity above which the engineer’s bag of tricks fails to produce
results. As an example while even multifont printed character recognition has
been successfully handled, a satisfactory solution of cursive script recognition
defies all attempts. Similarly there seems to be a fairly big jump between isolated
speech recognition and continuous speech recognition. Those who have been
hoping to model human recognition processes have also reached an impasse. It
is probable that those problems which the engineers have found difficult to
handle are precisely those which have to await more detailed understanding of
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human recognition systems. In any case, these feelings of crisis are intimately
related to those in other aspects of artificial intelligence: game playing and
mechanical translation.?

Again we find the same pattern of optimism followed by disillusion-
ment. Often the disillusioned do not even understand why their hopes
have been dashed, and their questioning goes unheard amidst the prom-
ises and announcements of small technological advances. Such a dis-
senter is Vincent Giuliano, formerly of Arthur D. Little Corporation. If
Giuliano had a more detailed and insightful account of what went wrong,
he would be the Oettinger or Bar-Hillel of the pattern recognition field.

Like many of my colleagues, I was in hot pursuit of ways to develop something
we sometimes refer to as artificial intelligence. . . . in the mid-fifties, many
ambitious research projects were launched with the goal of clearly demonstrating
the learning capabilities of computers so that they could translate idiomatically,
carry on free and natural conversations with humans, recognize speech and print
it out, and diagnose diseases. All of these activities involve the discovery and
learning of complex patterns.

Only a few years ago we really believed that ultimately computers could be
given the entire task of solving such problems, if only we could find the master
key to making them do so.

Alas! I feel that many of the hoped-for objectives may well be porcelain eggs;
they will never hatch, no matter how long heat is applied to them, because they
require pattern discovery purely on the part of machines working alone. The
tasks of discovery demand human qualities.*

Conclusion

By 1962, if we are to judge by published results, an overall pattern had
begun to take shape, although in some cases it was not recognized until
later: an early, dramatic success based on the easy performance of simple
tasks, or low-quality work on complex tasks, and then diminishing re-
turns, disenchantment, and, in some cases, pessimism. This pattern is not
the result of overenthusiastic pressure from eager or skeptical outsiders
who demand too much too fast. The failure to produce is measured solely
against the expectations of those working in the field.

When the situation is grim, however, enthusiasts can always fall back
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on their own optimism. This tendency to substitute long-range for opera-
tional programs slips out in Feigenbaum and Feldman’s claim that “the
forecast for progress in research in human cognitive processes is most
encouraging.”* The forecast always has been, but one wonders: how
encouraging are the prospects? Feigenbaum and Feldman claim that
tangible progress is indeed being made, and they define progress very
carefully as “displacement toward the ultimate goal.”* According to this
definition, the first man to climb a tree could claim tangible progress
toward reaching the moon.

Rather than climbing blindly, it is better to look where one is going.
It is time to study in detail the specific problems confronting work in
artificial intelligence and the underlying difficulties that they reveal.

II. The Underlying Significance of Failure to
Achieve Predicted Results

Negative results, provided one recognizes them as such, can be interest-
ing. Diminishing achievement, instead of the predicted accelerating suc-
cess, perhaps indicates some unexpected phenomenon. Perhaps we are
pushing out on a continuum like that of velocity, where further accelera-
tion costs more and more energy as we approach the speed of light, or
perhaps we are instead facing a discontinuity, which requires not greater
effort but entirely different techniques, as in the case of the tree-climbing
man who tries to reach the moon.

It seems natural to take stock of the field at this point, yet surprisingly
no one has done so. If someone had, he might have found that each of
the four areas considered presupposes a specific form of human “infor-
mation processing” that enables human subjects in that area to avoid the
difficulties an artificial “subject” must confront. This section will isolate
these four human forms of “information processing” and contrast them
with their machine surrogates.

FRINGE CONSCIOUSNESS VS. HEURISTICALLY GUIDED SEARCH

It is common knowledge that certain games can be worked through
on present-day computers with present-day techniques—games like nim
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and tic-tac-toe can be programmed so that the machine will win or draw
every time. Other games, however, cannot be solved in this way on
present-day computers, and yet have been successfully programmed. In
checkers, for example, it turns out that there are reliable ways to deter-
mine the probable value of a move on the basis of certain parameters such
as control of center position, advancement, and so forth. This, plus the
fact that there are relatively few moves since pieces block each other and
captures are forced, makes it possible to explore all plausible moves to
a depth of as many as twenty moves, which proves sufficient for excellent
play.

Chess, however, although decidable in principle by counting out all
possible moves and responses, presents the problem inevitably connected
with choice mazes: exponential growth. Alternative paths multiply so
rapidly that we cannot even run through all the branching possibilities
far enough to form a reliable judgment as to whether a given branch is
sufficiently promising to merit further exploration. Newell notes that it
would take much too long to find an interesting move if the machine had
to examine the possible moves of each of the pieces on the board one after
another. He is also aware that if this is not done, the machine may
sometimes miss an important and original combination. “We do not
want the machine to spend all its time examining the future actions of
committed men; yet if it were never to do this, it could overlook real
opportunities.”?’

Newell’s first solution was “the random element”: ‘“The machine
should rarely [that is, occasionally] search for combinations which sac-
rifice a Queen.”? But this solution is unsatisfactory, as Newell himself,
presumably, now realizes. The machine should not look just every once
in a while for a Queen sacrifice but, rather, look in those situations in
which such a sacrifice would be relevant. This is what the right heuristics
are supposed to assure, by limiting the number of branches explored
while retaining the more promising alternatives.

But no master-level heuristics have as yet been found. All current
heuristics either exclude some moves masters would find or leave open
the risk of exponential growth. Simon is nonetheless convinced, for
reasons to be discussed in Part I, that chess masters use such heuristics,
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and so he is confident that if we listen to their protocols, follow their eye
movements, perhaps question them under bright lights, we can eventu-
ally discover these heuristics and build them into our program—thereby
pruning the exponential tree. But let us examine more closely the evi-
dence that chess playing is governed by the use of heuristics.

Consider the following protocol quoted by Simon, noting especially
how it begins rather than how it ends. The subject says,

Again I notice that one of his pieces is not defended, the Rook, and there must
be ways of taking advantage of this. Suppose now, if I push the pawn up at Bishop
four, if the Bishop retreats I have a Queen check and I can pick up the Rook.
If, etc., etc.?

At the end we have an example of what I shall call “counting out”—
thinking through the various possibilities by brute-force enumeration.
We have all engaged in this process, which, guided by suitable heuristics,
is supposed to account for the performance of chess masters. But how
did our subject notice that the opponent’s Rook was undefended? Did
he examine each of his opponent’s pieces and their possible defenders
sequentially (or simultaneously) until he stumbled on the vulnerable
Rook? That would use up too many considerations, for as Newell, Shaw,
and Simon remark, “The best evidence suggests that a human player
considers considerably less than 100 positions in the analysis of a
move,”* and our player must still consider many positions in evaluating
the situation once the undefended Rook has been discovered. We need
not appeal to introspection to discover what a player in fact does before
he begins to count out; the protocol itself indicates it: the subject “zeroed
in” on the promising situation (“‘I notice that one of his pieces is not
defended”). Only after the player has zeroed in on an area does he begin
to count out, to test, what he can do from there.

An analysis of the MacHack program written by Richard Greenblatt
will illustrate this difference between the way a human being sizes up a
position and the machine’s brute-force counting out. Even MacHack
could not look at every alternative. The program contains a plausible
move generator which limits the moves considered to the more prom-
ising ones. Yet in a tough spot during a tournament, the Greenblatt
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program once calculated for fifteen minutes and considered 26,000
alternatives, while a human player can consider only 100, or possibly
200, moves. MacHack came up with an excellent move, which is not to
say a master could not have done even better; but what is significant
here is not the quality of the move, but the difference between 26,000
and 200 possibilities. This order of difference suggests that when play-
ing chess, human beings are doing something different than just con-
sidering alternatives, and the interesting question is: what are they
doing that enables them, while considering 100 or 200 alternatives, to
find more brilliant moves than the computer can find working through
26,000?

The human player whose protocol we are examining is not aware of
having explicitly considered or explicitly excluded from consideration
any of the hundreds of possibilities that would have had to have been
enumerated in order to arrive at a particular relevant area of the board
by counting out. Nonetheless, the specific portion of the board which
finally attracts the subject’s attention depends on the overall position. To
understand how this is possible, we must consider what William James
has called “the fringes of consciousness”: the ticking of a clock which
we notice only if it stops provides a simple example of this sort of
marginal awareness. Our vague awareness of the faces in a crowd when
we search for a friend is another, more complex and more nearly appro-
priate, case.

While suggesting an alternative to the explicit awareness of counting
out, neither example is entirely appropriate, however. In neither of these
cases does the subject make positive use of the information resting on the
fringe. The chess case is best understood in terms of Michael Polanyi’s
general description of the power of the fringes of consciousness to con-
centrate information concerning our peripheral experience.

This power resides in the area which tends to function as a background because
it extends indeterminately around the central object of our attention. Seen thus
from the corner of our eyes, or remembered at the back of our mind, this area
compellingly affects the way we see the object on which we are focusing. We may
indeed go so far as to say that we are aware of this subsidiarily noticed area
mainly in the appearance of the object to which we are attending.’'*



What Computers Can’t Do / 104

Once one is familiar with a house, for example, to him the front looks
thicker than a fagade, because he is marginally aware of the house
behind. Similarly, in chess, cues from all over the board, while remaining
on the fringes of consciousness, draw attention to certain sectors by
making them appear promising, dangerous, or simply worth looking
into.
As Newell and Simon themselves note:

There are concepts in human chess playing that are much more global than those

above; for example, a “developed position,” “control of the center,” “a won
position,” “a weak king side,” “a closed position.”**

<
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Moreover, they admit that:

Sometimes de Groot’s subject used very global phrases such as ““. . . and it’s a
won position for White,” where it is not possible to see what structure or feature
of the position leads to the evaluation.”

This is Newell and Simon’s way of saying that they see no way of
analyzing this evaluation of the overall position in terms of heuristically
guided counting out. And judiciously, but without seeming to realize
what this does to the plausibility of Simon’s predictions, Newell and
Simon go on to note:

To date the work on chess programs has not shed much new light on these
higher-level concepts.**

The attitude of Newell and Simon is typically ambiguous here. Do
they think that better static evaluators—that is, better heuristics for
generating plausible moves—could simulate zeroing in? Their continued
belief in the possibility of a mechanical chess master suggests they. do.
However, their analysis of master play, based on the work of de Groot,
should be grounds for pessimism. (As we have seen, de Groot himself
says he does not have much hope for substantial improvement of heuris-
tic chess programs.)

Newell and Simon note that

De Groot finally succeeded in separating strong from weak players by using
perceptual tests involving the reproduction of chess positions after brief exposure
to them (3-7 seconds). The grandmaster was able to reproduce the positions
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perfectly, and performance degraded appreciably with decrease in chess ability.
De Groot was led to propose that perceptual abilities and organization were an
important factor in very good play.*

In the article we have already discussed, chess master Hearst casts
some further light on this perceptual process and why it defies program-
ming:

Apparently the master perceives the setup in large units, such as pawn structure

of cooperating pieces. . . . When he does make an error, it is often one of putting
a piece on a very desirable square for that type of position.*

Hearst sums up his view as follows:

Because of the large number of prior associations which an experienced player
has acquired, he does not visualize a chess position as a conglomeration of
scattered squares and wooden pieces, but as an organized pattern (like the
“Gestalt,” or integrated configuration, emphasized by the Gestalt psycholo-

gists).”’

Applying these ideas to our original protocol, we can conclude that
our subject’s familiarity with the overall chess pattern and with the past
moves of this particular game enabled him to recognize the lines of force,
the loci of strength and weakness, as well as specific positions. He sees
that his opponent looks vulnerable in a certain area (just as one familiar
with houses in general and with a certain house sees it as having a certain
sort of back), and zeroing in on this area he discovers the unprotected
Rook. This move is seen as one step in a developing pattern.

There is no chess program which even tries to use the past experience
of a particular game in this way. Rather, each move is taken up anew
as if it were an isolated chess problem found in a book. This technique
is forced upon programmers, since a program which carried along infor-
mation on the past position of each piece would rapidly sink under the
accumulating data. What is needed is a program which selectively carries
over from the past just those features which were significant in the light
of its present strategy and the strategy attributed to its opponent.*** But
present programs embody no long-range strategy at all.

In general what is needed is an account of the way that the background
of past experience and the history of the current game can determine
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what shows up as a figure and attracts a player’s attention. But this
gestaltist notion of figure and ground has no place in explicit step-by-step
computation.

Since this global form of “information processing” in which informa-
tion, rather than being explicitly considered remains on the fringes of
consciousness and is implicitly taken into account, is constantly at work
in organizing our experience, there is no reason to suppose that in order
to discover an undefended Rook our subject must have counted out
rapidly and unconsciously until he arrived at the area in which he began
consciously counting out. Moreover, there are good reasons to reject this
assumption, since it raises more problems than it solves.

If the subject has been unconsciously counting out thousands of alter-
natives with brilliant heuristics to get to the point where he focuses on
that Rook, why doesn’t he carry on with that unconscious process all the
way to the end, until the best move just pops into his consciousness?
Why, if the unconscious counting is rapid and accurate, does he resort
to a cumbersome method of slowly, awkwardly, and consciously count-
ing things out at the particular point where he spots the Rook? Or if, on
the other hand, the unconscious counting is inadequate, what is the
advantage of switching to a conscious version of the same process?

This sort of teleological consideration—while not a proof that uncon-
scious processing is nonheuristic—does put the burden of proof on those
who claim that it is or must be. And those who make this claim have
brought forward no arguments to support it. There is no evidence,
behavioral or introspective, that counting out is the only kind of “infor-
mation processing” involved in playing chess, that “the essential nature
of the task [is] search in a space of exponentially growing possibilities.”*’
On the contrary, all protocols testify that chess involves two kinds of
behavior: (1) zeroing in, by means of the overall organization of the
perceptual field, on an area formerly on the fringes of consciousness, and
which other areas still on the fringes of consciousness make interesting;
and (2) counting out explicit alternatives.

This distinction clarifies the early success and the later failure of work
in cognitive simulation. In all game-playing programs, early success is
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attained by working on those games or parts of games in which heuristi-
cally guided counting out is feasible; failure occurs at the point where
complexity is such that global awareness would be necessary to avoid an
overwhelming exponential growth of possibilities to be counted.

AMBIGUITY TOLERANCE VS. CONTEXT-FREE PRECISION

Work on game playing revealed the necessity of processing “informa-
tion” which is not explicitly considered or excluded, that is, information
on the fringes of consciousness. Work in language translation has been
halted by the need for a second nonprogrammable form of “information
processing”: the ability to deal with situations which are ambiguous
without having to transform them by substituting a precise description.

We have seen that Bar-Hillel and Oettinger, two of the most respected
and best-informed workers in the field of automatic language translation,
agree in their pessimistic conclusions concerning the possibility of fur-
ther progress in the field. Each has realized that in order to translate a
natural language, more is needed than a mechanical dictionary—no
matter how complete—and the laws of grammar—no matter how so-
phisticated. The order of the words in a sentence does not provide
enough information to enable a machine to determine which of several
possible parsings is the appropriate one, nor do the surrounding words
—the written context—always indicate which of several possible mean-
ings is the one the author had in mind.

As Oettinger says in discussing systems for producing all parsings of
a sentence acceptable to a given grammar:

The operation of such analyzers to date has revealed a far higher degree of
legitimate syntactic ambiguity in English and in Russian than has been an-
ticipated. This, and a related fuzziness of the boundary between the grammatical
and the non-grammatical, raises serious questions about the possibility of effec-
tive fully automatic manipulations of English or Russian for any purpose of
translation or information retrieval.°

Instead of claiming, on the basis of his early partial success with a
mechanical dictionary, and later (with Kuno and others) with syntac-
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tic analyzers, that in spite of a few exceptions and difficulties, the mystery
surrounding our understanding of language is beginning to dissolve,
Oettinger draws attention to the “very mysterious semantic processes
that enable most reasonable people to interpret most reasonable sen-
tences unequivocally most of the time.”*!

Here is another example of the importance of fringe consciousness.
Obviously, the user of a natural language is not aware of many of the
cues to which he responds in determining the intended syntax and mean-
ing. On the other hand, nothing indicates that he considers each of these
cues unconsciously. In fact, two considerations suggest that these cues
are not the sort that could be taken up and considered by a sequential
or even a parallel program.***

First, there is Bar-Hillel’s argument, which we shall later study in
detail (Chapter 6), that there is an infinity of possibly relevant cues.
Second, this suggests that perhaps it is not primarily a question of cues
at all. In any particular context most of the abstractly conceivable am-
biguities do not arise. The sentence is heard in the appropriate way
because the context organizes the perception; and since sentences are not
perceived except in context they are always perceived with the narrow
range of meanings the context confers. The common stream of sounds
which is the same in each context and must be disambiguated is a
problem for computers, not human beings.

Insofar as cues are relevant we must remember that natural language
is used by people involved in situations in which they are pursuing
certain goals. These extralinguistic goals, which need not themselves be
precisely stated or statable, provide some of the cues which reduce the
ambiguity of expressions as much as is necessary for the task at hand.
A phrase like “stay near me” can mean anything from “press up against
me” to “stand one mile away,” depending upon whether it is addressed
to a child in a crowd or a fellow astronaut exploring the moon. Its
meaning is never unambiguous in all possible situations—as if this ideal
of exactitude even makes sense—but the meaning can always be made
sufficiently unambiguous in any particular situation so as to get the
intended result. Wittgenstein makes this pragmatic point:
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We are unable clearly to circumscribe the concepts we use; not because we don’t
know their real definition, but because there is no real “definition” to them. To
suppose that there must be would be like supposing that whenever children play
with a ball they play a game according to strict rules.**

Our ability to use a global context to reduce ambiguity sufficiently
without having to formalize (that is, eliminate ambiguity altogether)
reveals a second fundamental form of human “information processing,”
which presupposes the first. Fringe consciousness takes account of cues
in the context, and probably some possible parsings and meanings, all of
which would have to be made explicit in the output of a machine. Our
sense of the situation, however, allows us to exclude most possibilities
without their ever coming up for consideration. We shall call the ability
to narrow down the spectrum of possible meanings by ignoring what, out
of context, would be ambiguities, “ambiguity tolerance.”

Since a human being uses and understands sentences in familiar
situations, the only way to make a computer that can understand ac-
tual utterances and translate a natural language may well be, as Tur-
ing suspected, to program it to learn about the world. Bar-Hillel re-
marks: “I do not believe that machines whose programs do not
enable them to learn, in a sophisticated sense of this word, will ever
be able to consistently produce high-quality translations.”* When oc-
casionally artificial intelligence enthusiasts admit the difficulties con-
fronting present techniques, the appeal to learning is a favorite pana-
cea. Seymour Papert of M.L.T., for example, has recently claimed
that one cannot expect machines to perform like adults unless they
are first taught, and that what is needed is a machine with the child’s
ability to learn. This move, however, as we shall see, only evades the
problem.

In the area of language learning, the only interesting and successful
program is Feigenbaum’s EPAM (Elementary Perceiver and Memo-
rizer). EPAM simulates the learning of the association of nonsense sylla-
bles, which Feigenbaum calls a simplified case of verbal learning.** The
interesting thing about nonsense syllable learning, however, is that it is
not a case of language learning at all. Learning to associate nonsense
syllables is, in fact, acquiring something like a Pavlovian conditioned
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reflex. The experimenter could exhibit “DAX” then “JIR,” or he could
flash red and then green lights; as long as two such events were associated
frequently enough, one would learn to anticipate the second member of
the pair. In such an experiment, the subject is assumed to be completely
passive. In a sense, he isn’t really learning anything, but is having some-
thing done to him. Whether the subject is an idiot, a child, or an adult
should ideally make no difference in the case of nonsense syllable learn-
ing. Ebbinghaus, at the end of the nineteenth century, proposed this form
of conditioning precisely to eliminate any use of meaningful grouping or
appeal to a context of previously learned associations.

It is no surprise that subject protocol and machine trace most nearly
match in this area. But it is a dubious triumph: the only successful case
of cognitive simulation simulates a process which does not involve com-
prehension, and so is not genuinely cognitive.

What is involved in learning a language is much more complicated and
more mysterious than the sort of conditioned reflex involved in learning
to associate nonsense syllables. To teach someone the meaning of a new
word, we can sometimes point at the object which the word names.
Augustine, in his Confessions, and Turing, in his article on machine
intelligence, assume that this is the way we teach language to children.
But Wittgenstein points out that if we simply point at a table, for exam-
ple, and say “brown,” a child will not know if brown is the color, the
size, or the shape of the table, the kind of object, or the proper name of
the object. If the child already uses language, we can say that we are
pointing out the color; but if he doesn’t already use language, how do
we ever get off the ground? Wittgenstein suggests that the child must be
engaged in a “form of life” in which he shares at least some of the goals
and interests of the teacher, so that the activity at hand helps to delimit
the possible reference of the words used.

What, then, can be taught to a machine? This is precisely what is in
question in one of the few serious objections to work in artificial intelli-
gence made by one of the workers himself. A. L. Samuel, who wrote the
celebrated checkers program, has argued that machines cannot be intelli-
gent because they can only do what they are instructed to do. Minsky
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dismisses this objection with the remark that we can be surprised by the
performance of our machines.** But Samuel certainly is aware of this,
having been beaten by his own checkers program. He must mean some-
thing else, presumably that the machine had to be given the program by
which it could win, in a different sense than children are taught to play
checkers. But if this is his defense, Samuel is already answered by Mi-
chael Scriven. Scriven argues that new strategies are “ ‘put into’ the
computer by the designer . . . in exactly the same metaphorical sense that
we put into our children everything they come up with in their later
life.”’*” Still, Samuel should not let himself be bullied by the philosophers
any more than by his colleagues. Data are indeed put into a machine but
in an entirely different way than children are taught. We have just seen
that when language is taught it is not, and, as we shall see in Chapter
6, cannot be, precisely defined. Our attempts to teach meaning must be
disambiguated and assimilated in terms of a shared context. Learning as
opposed to memorization and repetition requires this sort of judgment.
Wittgenstein takes up this question as follows:

Can someone be a man’s teacher in this? Certainly. From time to time he gives
him the right tip. . . . This is what learning and teaching are like here. . . . What
one acquires here is not a technique; one learns correct judgements. There are
also rules, but they do not form a system, and only experienced people can apply
them right. Unlike calculation rules.***

It is this ability to grasp the point in a particular context which is true
learning; since children can and must make this leap, they can and do
surprise us and come up with something genuinely new.

The foregoing considerations concerning the essential role of context
awareness and ambiguity tolerance in the use of a natural language
should suggest why, after the success of the mechanical dictionary,
progress has come to a halt in the translating field. Moreover, since, as
we have seen, the ability to learn a language presupposes the same
complex combination of the human forms of “information processing”
needed to understand a language, it is hard to see how an appeal to
learning can be used to bypass the problems this area must confront.
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ESSENTIAL/INESSENTIAL DISCRIMINATION VS. TRIAL-AND-ERROR
SEARCH

Work in problem solving also encounters two functions of thought:
one, elementary and piecemeal, accounts for the early success in the field;
another, more complex and requiring insight, has proved intractable to
stepwise programs such as Simon’s General Problem Solver. For simple
problems it is possible to proceed by simply trying all possible combina-
tions until one stumbles on the answer. This trial-and-error search is
another example of a brute-force technique like counting out in chess.
But, just as in game playing, the possibilities soon get out of hand. In
problem solving one needs some systematic way to cut down the search
maze so that one can spend one’s time exploring promising alternatives.
This is where people rely on insight and where programmers run into
trouble.

If a problem is set up in a simple, completely determinate way, with
an end and a beginning and simple, specifically defined operations for
getting from or.¢ to the other (in other words, if we have what Simon calls
a “simple formal problem”), then Simon’s General Problem Solver can,
by trying many possibilities, bring the end and the beginning closer and
closer together until the problem is solved. This would be a successful
example of means-ends analysis. But even this simple case presents many
difficulties. Comparing the machine print-out of the steps of a GPS
solution with the transcript of the verbal report of a human being solving
the same problem reveals steps in the machine trace (explicit searching)
which do not appear in the subject’s protocol. And Simon asks us to
accept the methodologically dubious explanation of the missing steps in
the human protocol that “many things concerning the. task surely oc-
curred without the subject’s commenting on them (or being aware of
them)”* and the even more arbitrary assumption that these further
operations were of the same elementary sort as those verbalized. In fact,
certain details of Newell and Simon’s article, “GPS: A Program That
Simulates Human Thought,” suggest that these further operations are
not like the programmed operations at all.
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In one of Simon’s experiments, subjects were given problems in formal
logic and a list of rules for transforming symbolic expressions and asked
to verbalize their attempt to solve the problems. The details of the rules
are not important; what is important is that at a point in the protocol
the subject notes that he applies the rule (A - B—>A) and the rule
(A - B—»B), to the conjunction ( —R v —P) - (R v Q). Newell and
Simon comment:

The subject handled both forms of rule 8 together, at least as far as his comment
is concerned. GPS, on the other hand, took a separate cycle of consideration for
each form. Possibly the subject followed the program covertly and simply re-
ported the two results together.*

Possibly, however, the subject grasped the conjunction as symmetric
with respect to the transformation operated by the rule, and so in fact
applied both forms of the rule at once. Even Newell and Simon admit
that they would have preferred that GPS apply both forms of the rule
in the same cycle. Only then would their program provide a psychologi-
cal theory of the steps the subject was going through. They wisely refrain,
however, from trying to write a program which could discriminate be-
tween occasions when it was appropriate to apply both forms of the rule
at once and those occasions when it was not. Such a program, far from
eliminating the above divergence, would require further processing not
reported by the subject, thereby increasing the discrepancy between the
program and the protocol. Unable thus to eliminate the divergence and
unwilling to try to understand its significance, Newell and Simon dismiss
the discrepancy as “an example of parallel processing.”'*

Another divergence noted by Newell and Simon, however, does not
permit such an evasion. At a certain point, the protocol reads: . . . I
should have used rule 6 on the left-hand side of the equation. So use 6,
but only on the left-hand side.” Simon notes:

Here we have a strong departure from the GPS trace. Both the subject and GPS
found rule 6 as the appropriate one to change signs. At this point GPS simply
applied the rule to the current expression; whereas the subject went back and
corrected the previous application. Nothing exists in the program that corre-
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sponds to this. The most direct explanation is that the application of rule 6 in
the inverse direction is perceived by the subject as undoing the previous applica-
tion of rule 6.5

This is indeed the most direct explanation, but Newell and Simon do
not seem to realize that this departure from the trace, which cannot be
explained away by parallel processing, is as detrimental to their theory
as were the discrepancies in the movements of the planets to the
Ptolemaic system. Some form of thinking other than searching is taking
place!

Newell and Simon note the problem: “It clearly implies a mechanism
(maybe a whole set of them) that is not in GPS,”* but, like the ancient
astronomers, they try to save their theory by adding a few epicycles.
They continue to suppose, without any evidence, that this mechanism is
just a more elaborate search technique which can be accommodated by
providing GPS with “a little continuous hindsight about its past ac-
tions.”>* They do not realize that their assumption that intelligent behav-
ior is always the result of following heuristic rules commits them to the
implausible view that their subject’s decision to backtrack must be the
result of a very selective checking procedure. Otherwise, all past steps
would have to be rechecked at each stage, which would hopelessly en-
cumber the program.

A more scientific approach would be to explore further the implica-
tions of the five discrepancies noted in the article, in order to determine
whether or not a different form of “information processing” might be
involved. For example, Gestalt pyschologist Max Wertheimer points out
in his classic work, Productive Thinking, that the trial-and-error account
‘of problem solving excludes the most important aspect of problem-
solving behavior, namely a grasp of the essential structure of the prob-
lem, which he calls “insight.”’* In this operation, one breaks away from
the surface structure and sees the basic problem—what Wertheimer calls
the ‘““deeper structure”—which enables one to organize the steps neces-
sary for a solution. This gestaltist conception may seem antithetical to
the operational concepts demanded by artificial intelligence, but Minsky
recognizes the same need in different terms:
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The ability to solve a difficult problem hinges on the ability to split or transform
it into problems of a lower order of difficulty. To do this, without total reliance
on luck, requires some understanding of the situation. One must be able to
deduce, or guess, enough of the consequences of the problem statement to be able
to set up simpler models of the problem situation. The models must have enough
structure to make it likely that there will be a way to extend their solutions to
the original problem.*

Since insight is necessary in solving complex problems and since what
Minsky demands has never been programmed, we should not be sur-
prised to find that in the work of Newell and Simon this insightful
restructuring of the problem is surreptitiously introduced by the pro-
grammers themselves. In The Processes of Creative Thinking, Newell,
Shaw, and Simon introduce “the heuristics of planning” to account for
characteristics of the subject’s protocol lacking in a simple means-ends
analysis.

We have devised a program . . . to describe the way some of our subjects handle
O. K. Moore’s logic problems, and perhaps the easiest way to show what is
involved in planning is to describe that program. On a purely pragmatic basis,
the twelve operators that are admitted in this system of logic can be put in two
classes, which we shall call “essential” and “‘inessential” operators, respectively.
Essential operators are those which, when applied to an expression, make “large”
changes in its appearance—change “P v P” to “P,” for example. Inessential
operators are those which make “small” changes—e.g., change “P v Q” to
“Q v P.” As we have said, the distinction is purely pragmatic. Of the twelve
operators in this calculus, we have classified eight as essential and four as inessen-
tial. . . .

Next, we can take an expression and abstract from it those features that relate
only to essential changes. For example, we can abstract from “P v Q” the
expression (PQ), where the order of the symbols in the latter expression is
regarded as irrelevant. Clearly, if inessential operations are applied to the ab-
stracted expressions, the expressions will remain unchanged, while essential
operations can be expected to change them. . . .

We can now set up a correspondence between our original expressions and
operators, on the one hand, and the abstracted expressions and essential opera-
tors, on the other. Corresponding to the original problem of transforming a into
b, we can construct a new problem of transforming @’ into b’, where a’' and b’
are the expressions obtained by abstracting a and b respectively. Suppose that
we solve the new problem, obtaining a sequence of expressions, a'c'd’ . .. b'.
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We can now transform back to the original problem space and set up the new
problems of transforming a into ¢, ¢ into d, and so on. Thus, the solution of the
problem in the planning space provides a plan for the solution of the original
problem.*’

No comment is necessary. One merely has to note that the actual pro-
gram description begins in the second paragraph. The classification of
the operators into essential and inessential, the function Wertheimer
calls “finding the deeper structure” or “insight,” is introduced by the
programmers before the actual programming begins.

This sleight of hand is overlooked by Miller, Galanter, and Pribram
in Plans and the Structure of Behavior, a book which presents a psycho-
logical theory influenced by Newell, Shaw, and Simon’s work. Miller et
al. begin by quoting Polya, who is fully aware of the necessary role
insight plays in problem solving:

In his popular text, How to Solve It, Polya distinguishes . . . phases in the heuristic
process:

—First, we must understand the problem. We have to see clearly what the data
are, what conditions are imposed, and what the unknown thing is that we are
searching for.

—Second, we must devise a plan that will guide the solution and connect the
data to the unknown.*®

Miller et al. then minimize the importance of phase I, or rather simply
decide not to worry about it.

Obviously, the second of these is most critical. The first is what we have described
in Chapter 12 as the construction of a clear Image of the situation in order to
establish a test for the solution of the problem; it is indispensable, of course, but
in the discussion of well-defined problems we assume that it has already been
accomplished.*

Still the whole psychological theory of problem solving will not be
worth much if there is no way to bring step one into the computer model.
Therefore, it is no surprise that ten pages later, after adopting Simon’s
means-ends analysis, we find Miller et al. referring with relief to Simon’s
“planning method,”* presumably the very paragraphs we have just dis-
cussed:
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A second very general system of heuristics used by Newell, Shaw, and Simon
consists in omitting certain details of the problem. This usually simplifies the task
and the simplified problem may be solved by some familiar plan. The plan used
to solve the simple problem is then used as the strategy for solving the original,
complicated problem. In solving a problem in the propositional calculus, for
example, the machine can decide to ignore differences among the logical connec-
tives and the order of the symbols. . . .

But, as we have seen, it is not the machine that decides, but Newell,
Shaw, and Simon, themselves. To speak of heuristics here is completely
misleading, since no one has succeeded in formulating the rules which
guide this preliminary choice or even in showing that at this stage, where
insight is required, people follow rules. Thus we are left with no com-
puter theory of the fundamental first step in all problem solving: the
making of the essential/inessential distinction. Only those with faith
such as that of Miller et al. could have missed the fact that Simon’s
“planning method,” with its predigesting of the material, poses the prob-
lem for computer simulation rather than provides the solution.

This human ability to distinguish the essential from the inessential in
a specific task accounts for the divergence of the protocol of the problem-
solving subjects from the GPS trace. We have already suggested that the
subject applies both forms of rule 8 together because he realizes at this
initial stage that both sides of the conjunction are functionally equiva-
lent. Likewise, because he has grasped the essential function of rule 6,
the subject can see that a second application of the rule simply neutral-
izes the previous one. As Wertheimer notes:

The process [of structuring a problem] does not involve merely the given parts
and their transformations. It works in conjunction with material that is structur-
ally relevant but is selected from past experience. . . .%

Since game playing is a form of problem solving we should expect to
find the same process in chess playing, and indeed we do. To quote
Hearst:

De Groot concluded from his study that differences in playing strength depend
much less on calculating power than on “skill in problem conception.” Grand-
masters seem to be superior to masters in isolating the most significant features
of a position, rather than in the total number of moves that they consider.
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Somewhat surprisingly, de Groot found that grandmasters do not examine more
possibilities on a single move than lower-ranked experts or masters (an average
of two to four first moves per position) nor do they look further ahead (usually
a maximum of six to seven moves ahead for each). The grandmaster is somehow
able to “see” the core of the problem immediately, whereas the expert or lesser
player finds it with difficulty, or misses it completely, even though he analyzes
as many alternatives and looks as many moves ahead as the grandmaster.

In 1961, as we have seen, Minsky was already aware of these problems.
But his only hope was that one would discover a planning program
which would use more of the same sort of heuristic searching on a higher
level:

When we call for the use of “reasoning,” we intend no suggestion of giving up
the game by invoking an intelligent subroutine. The program that administers
the search will be just another heuristic program. Almost certainly it will be
composed largely of the same sorts of objects and processes that will comprise
the subject-domain programs.®

But such a planning program itself would require a distinction between
essential and inessential operators. Unless at some stage the programmer
himself introduces this distinction, he will be forced into an infinite
regress of planning programs, each one of which will require a higher-
order program to structure its ill-structured data. At this point, the
transition from the easy to the difficult form of “information proces-
sing,” Minsky makes the typical move to learning.

The problem of making useful deductions from a large body of statements (e.g.
about the relevance of different methods to different kinds of problems) raises a
new search problem. One must restrict the logical exploration to data likely to
be relevant to the current problem. This selection function could hardly be
completely built in at the start. It must develop along with other data ac-
cumulated by experience.®

But thus far no one has even tried to suggest how a machine could
perform this selection operation, or how it could be programmed to learn
to perform it, since it is one of the conditions for learning from past
experience.

Feigenbaum, in a recent appraisal of work done since Computers and
Thought, notes the glaring lack of learning programs:



Phase | (1957-1962) Cognitive Simulation / 119

The Al field still has little grasp of the machine learning problem for problem
solvers. For many years, almost the only citation worth making was to Samuel’s
famed checker playing program and its learning system. (Great interest arose
once in a scheme proposed by Newell, Shaw, and Simon for learning in GPS,
but the scheme was never realized.) Surprisingly, today we face the same situa-
tion.¢

This lack of progress is surprising only to those, like Feigenbaum, who
do not recognize the ability to distinguish the essential from the inessen-
tial as a human form of “information processing,” necessary for learning
and problem solving, yet not amenable to the mechanical search tech-
niques which may operate once this distinction has been made. It is
precisely this function of intelligence which resists further progress in the
problem-solving field.

It is an illusion, moreover, to think that the planning problem can be
solved in isolation; that essential/inessential operations are given like
blocks and one need only sort them out. It is easy to be hypnotized by
oversimplified and ad hoc cases—like the logic problem—into thinking
that some operations are essential or inessential in themselves. It then
looks as if we can find them because they are already there, so that we
simply have to discover a heuristic rule to sort them out. But normally
(and often even in logic) essential operations are not around to be found
because they do not exist independently of the pragmatic context.

In the light of their frank inevitable recourse to the insightful predi-
gesting of their material, there seems to be no foundation for Newell,
Shaw, and Simon’s claim that the behavior vaguely labeled cleverness or
keen insight in human problem solving is really just the result of the
judicious application of certain heuristics for narrowing the search for
solutions. Their work with GPS, on the contrary, demonstrates that all
searching, unless directed by a preliminary structuring of the problem,
is merely muddling through.

Ironically, research in Cognitive Simulation is a perfect example of
so-called intelligent behavior which proceeds like the unaided GPS. Here
one finds the kind of tinkering and ad hoc patchwork characteristic of
a fascination with the surface structure—a sort of tree-climbing with
one’s eyes on the moon. Perhaps it is just because the field provides no
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example of insight that some people in Cognitive Simulation have mis-
taken the operation of GPS for intelligent behavior.

PERSPICUOUS GROUPING VS. CHARACTER LISTS

A computer must recognize all patterns in terms of a list of specific
traits. This raises problems of exponential growth which human beings
are able to avoid by proceeding in a different way. Simulating recognition
of even simple patterns may thus require recourse to each of the funda-
mental forms of human “information processing” discussed this far. And
even if in these simple cases artificial intelligence workers have been able
to make some headway with mechanical techniques, patterns as complex
as artistic styles and the human face reveal a loose sort of resemblance
which seems to require a special combination of insight, fringe conscious-
ness, and ambiguity tolerance beyond the reach of digital machines. It
is no wonder, then, that work in pattern recognition has had a late start
and an early stagnation.
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