FreeBSD Release Engineering
Table of Contents
	1. Introduction to the FreeBSD Release Engineering
 Process
	2. General Information and Preparation
	3. Release Engineering Terminology	3.1. The Code Slush
	3.2. The Code Freeze
	3.3. The KBI/KPI
 Freeze

	4. Website Changes During the Release Cycle	4.1. Website Changes Before the Release Cycle Begins
	4.2. Website Changes During BETA or
 RC
	4.3. Ports Changes During BETA,
 RC, and the Final
 RELEASE

	5. Release from head/	5.1. FreeBSD “ALPHA” Builds
	5.2. Creating the stable/12/ Branch

	6. Release from stable/	6.1. FreeBSD stable Branch Code Slush
	6.2. FreeBSD BETA Builds
	6.3. Creating the releng/12.0/ Branch

	7. Building FreeBSD Installation Media	7.1. Release Build Scripts	7.1.1. The release.sh Script
	7.1.2. The thermite.sh Wrapper
	Script

	7.2. Building FreeBSD Development Snapshots
	7.3. Building FreeBSD Releases

	8. Publishing FreeBSD Installation Media to Project Mirrors	8.1. Staging FreeBSD Installation Media Images
	8.2. Publishing FreeBSD Installation Media

	9. Wrapping up the Release Cycle	9.1. Post-Release Errata Notices
	9.2. Handoff to the FreeBSD Security Team

	10. Release End-of-Life	10.1. Website Updates for End-of-Life

FreeBSD Release Engineering
Glen Barber
 The
	 FreeBSD Foundation

 Rubicon
	 Communications, LLC (Netgate)
<gjb@FreeBSD.org>

Legal NoticeLast modified on 2020-09-30 15:54:17 +0000 by Glen Barber.Abstract
This article describes the release engineering process of
	the FreeBSD Project.

 [

	 Split HTML
	
 /
 Single HTML
]
 1. Introduction to the FreeBSD Release Engineering
 Process
Development of FreeBSD has a very specific workflow. In
 general, all changes to the FreeBSD base system are committed to
 the head/ branch, which reflects the top of the source
 tree.
After a reasonable testing period, changes can then be
 merged to the stable/ branches. The default minimum
 timeframe before merging to stable/ branches is three
 (3) days.
Although a general rule to wait a minimum of three days
 before merging from head/, there are a few special
 circumstances where an immediate merge may be necessary, such as
 a critical security fix, or a bug fix that directly inhibits the
 release build process.
After several months, and the number of changes in the
 stable/ branch have grown significantly, it is time to
 release the next version of FreeBSD. These releases have been
 historically referred to as “point”
 releases.
In between releases from the stable/ branches,
 approximately every two (2) years, a release will be cut
 directly from head/. These releases have been
 historically referred to as “dot-zero”
 releases.
This article will highlight the workflow and
 responsibilities of the FreeBSD Release Engineering Team for both
 “dot-zero” and “point”'
 releases.
The following sections of this article describe:
	Section 2, “General Information and Preparation”
	General information and preparation before
	 starting the release cycle.

	Section 4, “Website Changes During the Release Cycle”
	Website Changes During the Release Cycle

	Section 3, “Release Engineering Terminology”
	Terminology and general information, such as the
	 “code slush” and “code
	 freeze”, used throughout this document.

	Section 5, “Release from head/”
	The Release Engineering process for a
	 “dot-zero” release.

	Section 6, “Release from stable/”
	The Release Engineering process for a
	 “point” release.

	Section 7, “Building FreeBSD Installation Media”
	Information related to the specific procedures to
	 build installation medium.

	Section 8, “Publishing FreeBSD Installation Media to Project Mirrors”
	Procedures to publish installation medium.

	Section 9, “Wrapping up the Release Cycle”
	Wrapping up the release cycle.

2. General Information and Preparation
Approximately two months before the start of the release
 cycle, the FreeBSD Release Engineering Team decides on a schedule for the release.
 The schedule includes the various milestone points of the
 release cycle, such as freeze dates, branch dates, and build
 dates. For example:
	Milestone	Anticipated Date
	head/ slush:	May 27, 2016
	head/ freeze:	June 10, 2016
	head/ KBI freeze:	June 24, 2016
	doc/ tree slush [1]:	June 24, 2016
	Ports quarterly branch [2]:	July 1, 2016
	stable/12/ branch:	July 8, 2016
	doc/ tree tag [3]:	July 8, 2016
	BETA1 build starts:	July 8, 2016
	head/ thaw:	July 9, 2016
	BETA2 build starts:	July 15, 2016
	BETA3 build starts [*]:	July 22, 2016
	releng/12.0/ branch:	July 29, 2016
	RC1 build starts:	July 29, 2016
	stable/12/ thaw:	July 30, 2016
	RC2 build starts:	August 5, 2016
	Final Ports package builds [4]:	August 6, 2016
	Ports release tag:	August 12, 2016
	RC3 build starts [*]:	August 12, 2016
	RELEASE build starts:	August 19, 2016
	RELEASE announcement:	September 2, 2016

Note:
Items marked with "[*]" are "as
	needed".

	The doc/ tree slush is coordinated by
	 the FreeBSD Documentation Engineering Team.

	The Ports quarterly branch used is determined by when
	 the final RC build is planned. A new
	 quarterly branch is created on the first day of the quarter,
	 so this metric should be used when taking the release cycle
	 milestones into account. The quarterly branch is created by
	 the FreeBSD Ports Management Team.

	The doc/ tree is tagged by the
	 FreeBSD Documentation Engineering Team.

	The final Ports package build is done by the
	 FreeBSD Ports Management Team after the final (or what is expected to be
	 final) RC build.

Note:
If the release is being created from an existing
	stable/ branch, the KBI
	freeze date can be excluded, since the KBI
	is already considered frozen on established
	stable/ branches.

When writing the release cycle schedule, a number of things
 need to be taken into consideration, in particular milestones
 where the target date depends on predefined milestones upon
 which there is a dependency. For example, the Ports Collection
 release tag originates from the active quarterly branch at the
 time of the last RC. This in part defines
 which quarterly branch is used, when the release tag can happen,
 and what revision of the ports tree is used for the final
 RELEASE build.
After general agreement on the schedule, the FreeBSD Release Engineering Team
 emails the schedule to the FreeBSD Developers.
It is somewhat typical that many developers will inform
 the FreeBSD Release Engineering Team about various works-in-progress. In some cases,
 an extension for the in-progress work will be requested, and
 in other cases, a request for “blanket approval”
 to a particular subset of the tree will be made.
When such requests are made, it is important to make sure
 timelines (even if estimated) are discussed. For blanket
 approvals, the length of time for the blanket approval should
 be made clear. For example, a FreeBSD developer may request
 blanket approvals from the start of the code slush until the
 start of the RC builds.
Note:
In order to keep track of blanket approvals, the FreeBSD Release Engineering Team
	uses an internal repository to keep a running log of such
	requests, which defines the area upon which a blanket approval
	was granted, the author(s), when the blanket approval expires,
	and the reason the approval was granted. One example of this
	is granting blanket approval to release/doc/ to all FreeBSD Release Engineering Team
	members until the final RC to update the
	release notes and other release-related documentation.

Note:
The FreeBSD Release Engineering Team also uses this repository to track pending
	approval requests that are received just prior to starting
	various builds during the release cycle, which the Release
	Engineer specifies the cutoff period with an email to the FreeBSD
	developers.

Depending on the underlying set of code in question, and
 the overall impact the set of code has on FreeBSD as a whole, such
 requests may be approved or denied by the FreeBSD Release Engineering Team.
The same applies to work-in-progress extensions. For
 example, in-progress work for a new device driver that is
 otherwise isolated from the rest of the tree may be granted
 an extension. A new scheduler, however, may not be feasible,
 especially if such dramatic changes do not exist in another
 branch.
The schedule is also added to the Project website, in the
 doc/ repository, in
 head/en_US.ISO8859-1/htdocs/releases/12.0R/schedule.xml.
 This file is continuously updated as the release cycle
 progresses.
Note:
In most cases, the schedule.xml can
	be copied from a prior release and updated accordingly.

In addition to adding schedule.xml to
 the website, head/share/xml/navibar.ent and
 head/share/xml/release.ent are also updated
 to add the link to the schedule to various subpages, as well as
 enabling the link to the schedule on the Project website index
 page.
The schedule is also linked from
 head/en_US.ISO8859-1/htdocs/releng/index.xml.
Approximately one month prior to the scheduled “code
	slush”, the FreeBSD Release Engineering Team sends a reminder email to the
 FreeBSD Developers.
Once the first builds of the release cycle are available,
 update the beta.local.where entity in
 head/en_US.ISO8859-1/htdocs/releases/12.0R/schedule.xml.
 replacing IGNORE with
 INCLUDE.
Note:
If two parallel release cycles are happening at once, the
	beta2.local.where entity may be used
	instead.

3. Release Engineering Terminology
This section describes some of the terminology used throughout
 the rest of this document.
3.1. The Code Slush
Although the code slush is not a hard freeze on the tree,
 the FreeBSD Release Engineering Team requests that bugs in the existing code base take
 priority over new features.
The code slush does not enforce commit approvals to the
 branch.
3.2. The Code Freeze
The code freeze marks the point in time where all commits to
 the branch require explicit approval from the FreeBSD Release Engineering Team.
The FreeBSD Subversion repository
 contains several hooks to perform sanity checks before any
 commit is actually committed to the tree. One of these hooks
 will evaluate if committing to a particular branch requires
 specific approval.
To enforce commit approvals by the FreeBSD Release Engineering Team, the Release
 Engineer updates
 base/svnadmin/conf/approvers, and commits
 the change back to the repository. Once this is done, any
 change to the branch must include an “Approved by:”
 line in the commit message.
The “Approved by:” line must match the second
 column in base/svnadmin/conf/approvers,
 otherwise the commit will be rejected by the repository
 hooks.
Note:
During the code freeze, FreeBSD committers are urged to
	follow the Change
	 Request Guidelines.

3.3. The KBI/KPI
 Freeze
KBI/KPI stability
 implies that the caller of a function across two different
 releases of software that implement the function results in the
 same end state. The caller, whether it is a process, thread, or
 function, expects the function to operate in a certain way,
 otherwise the KBI/KPI
 stability on the branch is broken.
4. Website Changes During the Release Cycle
This section describes the changes to the website that should
 occur as the release cycle progresses.
Note:
The files specified throughout this section are relative to
 the head/ branch of the
 doc repository in
 Subversion.

4.1. Website Changes Before the Release Cycle Begins
When the release cycle schedule is available, these files
 need to be updated to enable various different functionalities
 on the FreeBSD Project website:
	File to Edit	What to Change
	share/xml/release.ent	Change beta.upcoming
	 from IGNORE to
	 INCLUDE
	share/xml/release.ent	Change % beta.upcoming
	 from IGNORE to
	 INCLUDE
	share/xml/release.ent	Change beta.testing
	 from IGNORE to
	 INCLUDE
	share/xml/release.ent	Change % beta.testing
	 from IGNORE to
	 INCLUDE

4.2. Website Changes During BETA or
 RC
When transitioning from PRERELEASE to
 BETA, these files need to be updated to
 enable the "Help Test" block on the download page.
 All files are relative to head/ in the
 doc repository:
	File to Edit	What to Change
	en_US.ISO8859-1/htdocs/releases/12.0R/schedule.xml	Change % beta.local.where
	 IGNORE to
	 INCLUDE
	share/xml/release.ent	Update % betarel.vers to
	 BETA1
	share/xml/news.xml	Add an entry announcing the
	 BETA
	en_US.ISO8859-1/htdocs/security/advisory-template.txt	Add the new BETA,
	 RC, or final
	 RELEASE to the template
	en_US.ISO8859-1/htdocs/security/errata-template.txt	Add the new BETA,
	 RC, or final
	 RELEASE to the template

Once the releng/12.0/ branch is created, the various
 release-related documents need to be generated and manually
 added to the doc/ repository.
Within release/doc,
 invoke make(1) to generate
 errata.html,
 hardware.html,
 readme.html, and
 relnotes.html pages, which are then added
 to doc/head/en_US.ISO8859-1/htdocs/releases/X.YR/,
 where X.Y represents the major and
 minor version number of the release.
The fbsd:nokeywords property must be set
 to on on the newly-added files before the
 pre-commit hooks will allow them to be added to the
 repository.
Note:
The relevant release-related documents exist in the
	doc repository for
	FreeBSD 12.x and later.

4.3. Ports Changes During BETA,
 RC, and the Final
 RELEASE
For each build during the release cycle, the
 MANIFEST files containing the
 SHA256 of the various distribution sets, such
 as base.txz, kernel.txz,
 and so on, are added to the
 misc/freebsd-release-manifests port. This
 allows utilities other than bsdinstall(8), such as
 ports-mgmt/poudriere, to safely use these
 distribution sets by providing a mechanism through which the
 checksums can be verified.
5. Release from head/
This section describes the general procedures of the FreeBSD
 release cycle from the head/ branch.
5.1. FreeBSD “ALPHA” Builds
Starting with the FreeBSD 10.0-RELEASE cycle, the notion
 of “ALPHA” builds was
 introduced. Unlike the BETA and
 RC builds, ALPHA builds
 are not included in the FreeBSD Release schedule.
The idea behind ALPHA builds is to
 provide regular FreeBSD-provided builds before the creation of the
 stable/ branch.
FreeBSD ALPHA snapshots should be built
 approximately once a week.
For the first ALPHA build, the
 BRANCH value in
 sys/conf/newvers.sh needs to be changed
 from CURRENT to ALPHA1.
 For subsequent ALPHA builds, increment each
 ALPHAN value by
 one.
See Section 7, “Building FreeBSD Installation Media” for information on
 building the ALPHA images.
5.2. Creating the stable/12/ Branch
When creating the stable/ branch, several changes
 are required in both the new stable/ branch and the
 head/ branch. The files listed are relative to the
 repository root. To create the new stable/12/ branch
 in Subversion:
% svn cp ^/head stable/12/
Once the stable/12/ branch has been committed, make
 the following edits:
	File to Edit	What to Change
	stable/12/UPDATING	Update the FreeBSD version, and remove the notice
	 about WITNESS
	stable/12/contrib/jemalloc/include/jemalloc/jemalloc_FreeBSD.h	#ifndef MALLOC_PRODUCTION
#define MALLOC_PRODUCTION
#endif

	stable/12/lib/clang/llvm.build.mk	Uncomment -DNDEBUG
	stable/12/sys/*/conf/GENERIC*	Remove debugging support
	stable/12/sys/*/conf/MINIMAL	Remove debugging support
	stable/12/release/release.conf.sample	Update SRCBRANCH
	stable/12/sys/*/conf/GENERIC-NODEBUG	Remove these kernel configurations
	stable/12/sys/arm/conf/std.arm*	Remove debugging options
	stable/12/sys/conf/newvers.sh	Update the BRANCH value to
	 reflect BETA1
	stable/12/share/mk/src.opts.mk	Move REPRODUCIBLE_BUILD from
	 __DEFAULT_NO_OPTIONS to
	 __DEFAULT_YES_OPTIONS
	stable/12/share/mk/src.opts.mk	Move LLVM_ASSERTIONS from
	 __DEFAULT_YES_OPTIONS to
	 __DEFAULT_NO_OPTIONS (FreeBSD 13.x
		and later only)
	stable/12/libexec/rc/rc.conf	Set dumpdev from
	 AUTO to NO (it is
	 configurable via bsdinstall(8) for those that want
	 it enabled by default)
	stable/12/release/Makefile	Remove the
	 debug.witness.trace entries

Then in the head/ branch, which will now become
 a new major version:
	File to Edit	What to Change
	head/UPDATING	Update the FreeBSD version
	head/sys/conf/newvers.sh	Update the BRANCH value to
	 reflect CURRENT, and increment
	 REVISION
	head/Makefile.inc1	Update TARGET_TRIPLE and
	 MACHINE_TRIPLE
	head/sys/sys/param.h	Update __FreeBSD_version
	head/gnu/usr.bin/cc/cc_tools/freebsd-native.h	Update FBSD_MAJOR and
	 FBSD_CC_VER
	head/contrib/gcc/config.gcc	Append the
	 freebsd<version>.h
	 section
	head/lib/clang/llvm.build.mk	Update the value of
	 OS_VERSION
	head/lib/clang/freebsd_cc_version.h	Update
	 FREEBSD_CC_VERSION
	head/lib/clang/include/lld/Common/Version.inc	Update
	 LLD_REVISION_STRING
	head/Makefile.libcompat	Update LIB32CPUFLAGS

6. Release from stable/
This section describes the general procedures of the FreeBSD
 release cycle from an extablished stable/ branch.
6.1. FreeBSD stable Branch Code Slush
In preparation for the code freeze on
 a stable branch, several files need to be
 updated to reflect the release cycle is officially in
 progress. These files are all relative to the top-most level of
 the stable branch:
	File to Edit	What to Change
	sys/conf/newvers.sh	Update the BRANCH value to
	 reflect PRERELEASE
	Makefile.inc1	Update TARGET_TRIPLE
	lib/clang/llvm.build.mk	Update OS_VERSION
	Makefile.libcompat	Update LIB32CPUFLAGS
	gnu/usr.bin/groff/tmac/mdoc.local.in	Add a new .ds entry for the FreeBSD
	 version, and update
	 doc-default-operating-system
	 (FreeBSD 11.x and earlier only)

In the doc repository, also update
 head/en_US.ISO8859-1/htdocs/releases/12.0R/Makefile.hardware,
 switching the value of _BRANCH to
 BETAX,
 RCX, or
 RELEASE, respectively.
6.2. FreeBSD BETA Builds
Following the code slush, the next phase of the release
 cycle is the code freeze. This is the point at which all
 commits to the stable branch require explicit approval from
 the FreeBSD Release Engineering Team. This is enforced by pre-commit hooks in the
 Subversion repository by editing
 base/svnadmin/conf/approvers to include
 a regular expression matching the stable/12/ branch for
 the release:
^/stable/12/	re
^/releng/12.0/	re
Note:
There are two general exceptions to requiring commit
	approval during the release cycle. The first is any change
	that needs to be committed by the Release Engineer in order
	to proceed with the day-to-day workflow of the release cycle,
	the other is security fixes that may occur during the release
	cycle.

Once the code freeze is in effect, the next build from the
 branch is labeled BETA1. This is done by
 updating the BRANCH value in
 sys/conf/newvers.sh from
 PRERELEASE to
 BETA1.
Once this is done, the first set of BETA
 builds are started. Subsequent BETA builds
 do not require updates to any files other than
 sys/conf/newvers.sh, incrementing the
 BETA build number.
6.3. Creating the releng/12.0/ Branch
When the first RC (Release Candidate)
 build is ready to begin, the releng/ branch is created.
 This is a multi-step process that must be done in a specific
 order, in order to avoid anomalies such as overlaps with
 __FreeBSD_version values, for example. The
 paths listed below are relative to the repository root. The
 order of commits and what to change are:
% svn cp ^/stable/12/ releng/12.0/
	File to Edit	What to Change
	releng/12.0/sys/conf/newvers.sh	Change
	 BETAX
	 to RC1
	releng/12.0/sys/sys/param.h	Update __FreeBSD_version
	releng/12.0/etc/pkg/FreeBSD.conf	Replace latest with
	 quarterly as the default package
	 repository location
	releng/12.0/release/pkg_repos/release-dvd.conf	Replace latest with
	 quarterly as the default package
	 repository location
	stable/12/sys/conf/newvers.sh	Update
	 BETAX with
	 PRERELEASE
	stable/12/sys/sys/param.h	Update __FreeBSD_version
	svnadmin/conf/approvers	Add a new approvers line for the releng
	 branch as was done for the stable branch

% svn propdel -R svn:mergeinfo releng/12.0/
% svn commit releng/12.0/
% svn commit stable/12/
Now that two new __FreeBSD_version values
 exist, also update
 head/en_US.ISO8859-1/books/porters-handbook/versions/chapter.xml
 in the Documentation Project repository.
After the first RC build has completed
 and tested, the stable/ branch can be
 “thawed” by removing (or commenting) the
 ^/stable/12/ entry in
 svnadmin/conf/approvers.
Following the availability of the first
 RC, FreeBSD Bugmeister Team should be emailed to
 add the new FreeBSD -RELEASE to the
 versions available in the drop-down menu
 shown in the bug tracker.
7. Building FreeBSD Installation Media
This section describes the general procedures producing FreeBSD
 development snapshots and releases.
7.1. Release Build Scripts
This section describes the build scripts used by FreeBSD Release Engineering Team
 to produce development snapshots and releases.
7.1.1. The release.sh Script
Prior to FreeBSD 9.0-RELEASE,
	src/release/Makefile was updated to
	support bsdinstall(8), and the
	src/release/generate-release.sh script
	was introduced as a wrapper to automate invoking the
	release(7) targets.
Prior to FreeBSD 9.2-RELEASE,
	src/release/release.sh was introduced,
	which heavily based on
	src/release/generate-release.sh included
	support to specify configuration files to override various
	options and environment variables. Support for configuration
	files provided support for cross building each architecture
	for a release by specifying a separate configuration file for
	each invocation.
As a brief example of using
	src/release/release.sh to build a single
	release in /scratch:
/bin/sh /usr/src/release/release.sh
As a brief example of using
	src/release/release.sh to build a single,
	cross-built release using a different target directory, create
	a custom release.conf containing:
release.sh configuration for powerpc/powerpc64
CHROOTDIR="/scratch-powerpc64"
TARGET="powerpc"
TARGET_ARCH="powerpc64"
KERNEL="GENERIC64"
Then invoke src/release/release.sh
	as:
/bin/sh /usr/src/release/release.sh -c $HOME/release.conf
See release(7) and
	src/release/release.conf.sample for more
	details and example usage.
7.1.2. The thermite.sh Wrapper
	Script
In order to make cross building the full set of
	architectures supported on a given branch faster, easier, and
	reduce human error factors, a wrapper script around
	src/release/release.sh was written to
	iterate through the various combinations of architectures and
	invoke src/release/release.sh using
	a configuration file specific to that architecture.
The wrapper script is called
	thermite.sh, which is available in the
	FreeBSD Subversion repository at
	svn://svn.freebsd.org/base/user/gjb/thermite/,
	in addition to configuration files used to build
	head/ and stable/12/ development
	snapshots.
Using thermite.sh is covered in Section 7.2, “Building FreeBSD Development Snapshots” and Section 7.3, “Building FreeBSD Releases”.
Each architecture and individual kernel have their own
	configuration file used by release.sh.
	Each branch has its own defaults-X.conf
	configuration which contains entries common throughout each
	architecture, where overrides or special variables are set
	and/or overridden in the per-build files.
The per-build configuration file naming scheme is in the
	form of
	${revision}-${TARGET_ARCH}-${KERNCONF}-${type}.conf,
	where the uppercase variables are equivalent to what
	make(1) uses in the build system, and lowercase variables
	are set within the configuration files, mapping to the major
	version of the respective branch.
Each branch also has its own
	builds-X.conf configuration, which is
	used by thermite.sh. The
	thermite.sh script iterates through each
	${revision}, ${TARGET_ARCH},
	${KERNCONF}, and ${type} value, creating
	a master list of what to build. However, a given
	combination from the list will only be built if the
	respective configuration file exists, which is where the
	naming scheme above is relevant.
There are two paths of file sourcing:
	builds-12.conf
	 -> main.conf
This controls thermite.sh
	 behavior

	12-amd64-GENERIC-snap.conf
	 ->
	 defaults-12.conf
	 -> main.conf
This controls release/release.sh
	 behavior within the build chroot(8)

Note:
The
	 builds-12.conf,
	 defaults-12.conf,
	 and main.conf configuration files exist
	 to reduce repetition between the various per-build
	 files.

7.2. Building FreeBSD Development Snapshots
The official release build machines have a specific
 filesystem layout, which using ZFS,
 thermite.sh takes heavy advantage of with
 clones and snapshots, ensuring a pristine build
 environment.
The build scripts reside in /releng/scripts-snapshot/scripts
 or /releng/scripts-release/scripts
 respectively, to avoid collisions between an
 RC build from a releng branch versus
 a STABLE snapshot from the respective stable
 branch.
A separate dataset exists for the final build images,
 /snap/ftp. This
 directory contains both snapshots and releases directories.
 They are only used if the EVERYTHINGISFINE
 variable is defined in main.conf.
Note:
The EVERYTHINGISFINE variable name was
	chosen to avoid colliding with a variable that might be
	possibly set in the user environment, accidentally enabling
	the behavior that depends on it being defined.

As thermite.sh iterates through the
 master list of combinations and locates the per-build
 configuration file, a ZFS dataset is created
 under /releng, such as
 /releng/12-amd64-GENERIC-snap.
 The src/, ports/, and
 doc/ trees are checked out to separate
 ZFS datasets, such as /releng/12-src-snap, which are
 then cloned and mounted into the respective build datasets.
 This is done to avoid checking out a given tree more than
 once.
Assuming these filesystem paths,
 thermite.sh would be invoked as:
cd /releng/scripts-snapshot/scripts
./setrev.sh -b stable/12/
./zfs-cleanup.sh -c ./builds-12.conf
./thermite.sh -c ./builds-12.conf
Once the builds have completed, additional helper scripts
 are available to generate development snapshot emails which are
 sent to the freebsd-snapshots@freebsd.org
 mailing list:
cd /releng/scripts-snapshot/scripts
./get-checksums.sh -c ./builds-12.conf | ./generate-email.pl > snapshot-12-mail
Note:
The generated output should be double-checked for
	correctness, and the email itself should be PGP signed,
	in-line.

Note:
These helper scripts only apply to development snapshot
	builds. Announcements during the release cycle (excluding the
	final release announcement) are created from an email
	template. A sample of the email template currently used can
	be found here.

7.3. Building FreeBSD Releases
Similar to building FreeBSD development snapshots,
 thermite.sh would be invoked the same way.
 The difference between development snapshots and release builds,
 BETA and RC included, is
 that the chroot(8) configuration files must be named with
 release instead of snap as
 the "type", as mentioned above.
In addition, the BUILDTYPE and
 types must be changed from
 snap to release in
 defaults-12.conf
 and
 builds-12.conf,
 respectively.
When building BETA,
 RC, and the final RELEASE,
 also statically set BUILDSVNREV to the
 revision on the branch reflecting the name change,
 BUILDDATE to the date the builds are started
 in YYYYMMDD format. If the
 doc/ and ports/ trees have
 been tagged, also set PORTBRANCH and
 DOCBRANCH to the relevant tag path in the
 Subversion repository, replacing HEAD with
 the last changed revision. Also set
 releasesrc in
 builds-12.conf
 to the relevant branch, such as stable/12/ or
 releng/12.0/.
During the release cycle, a copy of
 CHECKSUM.SHA512 and
 CHECKSUM.SHA256 for each architecture are
 stored in the FreeBSD Release Engineering Team internal repository in addition to being
 included in the various announcement emails. Each
 MANIFEST containing the hashes of
 base.txz, kernel.txz,
 etc. are added to
 misc/freebsd-release-manifests in the Ports
 Collection, as well.
In preparation for the release build, several files need to
 be updated:
	File to Edit	What to Change
	sys/conf/newvers.sh	Update the BRANCH value to
	 RELEASE
	UPDATING	Add the anticipated announcement date
	lib/csu/common/crtbrand.c	Replace __FreeBSD_version with
	 the value in
	 sys/sys/param.h

After building the final RELEASE, the
 releng/12.0/ branch is tagged as release/12.0.0/ using the
 revision from which the RELEASE was built.
 Similar to creating the stable/12/ and releng/12.0/
 branches, this is done with svn cp. From the
 repository root:
% svn cp ^/releng/12.0/@r306420 release/12.0.0/
% svn commit release/12.0.0/
8. Publishing FreeBSD Installation Media to Project Mirrors
This section describes the procedure to publish FreeBSD
 development snapshots and releases to the Project mirrors.
8.1. Staging FreeBSD Installation Media Images
Staging FreeBSD snapshots and releases is a two part
 process:
	Creating the directory structure to match the hierarchy
	 on ftp-master
If EVERYTHINGISFINE is defined in the
	 build configuration files, main.conf in
	 the case of the build scripts referenced above, this happens
	 automatically in the chroot(8) after the build is
	 complete, creating the directory structure in ${DESTDIR}/R/ftp-stage
	 with a path structure matching what is expected on
	 ftp-master. This is equivalent to
	 running the following in the chroot(8) directly:
make -C /usr/src/release -f Makefile.mirrors EVERYTHINGISFINE=1 ftp-stage
After each architecture is built,
	 thermite.sh will
	 rsync the ${DESTDIR}/R/ftp-stage
	 from the build chroot(8) to /snap/ftp/snapshots or
	 /snap/ftp/releases on
	 the build host, respectively.

	Copying the files to a staging directory on
	 ftp-master before moving the files
	 into pub/ to begin
	 propagation to the Project mirrors
Once all builds have finished, /snap/ftp/snapshots, or
	 /snap/ftp/releases
	 for a release, is polled by
	 ftp-master using
	 rsync to /archive/tmp/snapshots or
	 /archive/tmp/releases,
	 respectively.
Note:
On ftp-master in the FreeBSD
	 Project infrastructure, this step requires
	 root level access, as this step must
	 be executed as the archive user.

8.2. Publishing FreeBSD Installation Media
Once the images are staged in /archive/tmp/, they are ready to
 be made public by putting them in /archive/pub/FreeBSD. In order
 to reduce propagation time, pax(1) is used to create hard
 links from /archive/tmp
 to /archive/pub/FreeBSD.
Note:
In order for this to be effective, both /archive/tmp and /archive/pub must reside on the
	same logical filesystem.

There is a caveat, however, where
 rsync must be used after pax(1)
 in order to correct the symbolic links in pub/FreeBSD/snapshots/ISO-IMAGES
 which pax(1) will replace with a hard link, increasing the
 propagation time.
Note:
As with the staging steps, this requires
	root level access, as this step must be
	executed as the archive user.

As the archive user:
% cd /archive/tmp/snapshots
% pax -r -w -l . /archive/pub/FreeBSD/snapshots
% /usr/local/bin/rsync -avH /archive/tmp/snapshots/* /archive/pub/FreeBSD/snapshots/
Replace snapshots with
 releases as appropriate.
9. Wrapping up the Release Cycle
This section describes general post-release tasks.
9.1. Post-Release Errata Notices
As the release cycle approaches conclusion, it is common
	to have several EN (Errata Notice)
	candidates to address issues that were discovered late in the
	cycle. Following the release, the FreeBSD Release Engineering Team and the
	FreeBSD Security Team revisit changes that were not approved prior to
	the final release, and depending on the scope of the change in
	question, may issue an EN.
Note:
The actual process of issuing ENs is
	 handled by the FreeBSD Security Team.

To request an Errata Notice after a release cycle has
	completed, a developer should fill out the Errata
	 Notice template, in particular the
	Background, Problem
	 Description, Impact, and if
	applicable, Workaround sections.
The completed Errata Notice template should be emailed
	together with either a patch against the releng/
	branch or a list of revisions from the stable/
	branch.
For Errata Notice requests immediately following the
	release, the request should be emailed to both the FreeBSD Release Engineering Team and
	the FreeBSD Security Team. Once the releng/ branch has been
	handed over to the FreeBSD Security Team as described in Section 9.2, “Handoff to the FreeBSD Security Team”, Errata Notice requests
	should be sent to the FreeBSD Security Team.
9.2. Handoff to the FreeBSD Security Team
Roughly two weeks following the release, the Release
	Engineer updates svnadmin/conf/approvers
	changing the approver column from re to
	(so|security-officer) for the
	releng/12.0/ branch.
10. Release End-of-Life
This section describes the website-related files to update
 when a release reaches EoL
 (End-of-Life).
10.1. Website Updates for End-of-Life
When a release reaches End-of-Life, references to that
	release should be removed and/or updated on the
	website:
	File	What to Change
	head/en_US.ISO8859-1/htdocs/index.xsl	Remove &u.relXXX.announce;
		and &u.relXXX.current;
		references.
	head/en_US.ISO8859-1/htdocs/releases/index.xml	Move the &u.relXXX.*; macros from the
		supported release list to the Legacy Releases
		list.
	head/en_US.ISO8859-1/htdocs/releng/index.xml	Update the appropriate releng branch to refelect
		the branch is no longer supported.
	head/en_US.ISO8859-1/htdocs/security/security.xml	Remove the branch from the supported branch
		list.
	head/en_US.ISO8859-1/htdocs/where.xml	Remove the URLs for the release.
	head/share/xml/navibar.ent	Remove &u.relXXX.announce;
		and &u.relXXX.current;
		references.
	head/en_US.ISO8859-1/htdocs/security/advisory-template.txt	Remove references to the release and releng
		branch.
	head/en_US.ISO8859-1/htdocs/security/errata-template.txt	Remove references to the release and releng
		branch.

OEBPS/trademarks.xhtml
FreeBSD is a registered trademark of
 the FreeBSD Foundation.

Intel, Celeron, Centrino, Core, EtherExpress, i386,
 i486, Itanium, Pentium, and Xeon are trademarks or registered
 trademarks of Intel Corporation or its subsidiaries in the United
 States and other countries.

Many of the designations used by
 manufacturers and sellers to distinguish their products are claimed
 as trademarks. Where those designations appear in this document,
 and the FreeBSD Project was aware of the trademark claim, the
 designations have been followed by the “™” or the
 “®” symbol.

