Design elements of the FreeBSD VM system
Table of Contents
	1. Introduction
	2. VM Objects
	3. SWAP Layers
	4. When to free a page
	5. Pre-Faulting and Zeroing Optimizations
	6. Page Table Optimizations
	7. Page Coloring
	8. Conclusion
	9. Bonus QA session by Allen Briggs
 <briggs@ninthwonder.com>

Design elements of the FreeBSD VM system
Matthew Dillon

	 <dillon@apollo.backplane.com>

	

Revision: e194334c79Legal NoticeLegal NoticeLast modified on 2021-01-08 14:04:42 +0100 by Daniel Ebdrup Jensen.Abstract
The title is really just a fancy way of saying that I am going to
	attempt to describe the whole VM enchilada, hopefully in a way that
	everyone can follow. For the last year I have concentrated on a number
	of major kernel subsystems within FreeBSD, with the VM and Swap
	subsystems being the most interesting and NFS being “a necessary
	chore”. I rewrote only small portions of the code. In the VM
	arena the only major rewrite I have done is to the swap subsystem.
	Most of my work was cleanup and maintenance, with only moderate code
	rewriting and no major algorithmic adjustments within the VM
	subsystem. The bulk of the VM subsystem's theoretical base remains
	unchanged and a lot of the credit for the modernization effort in the
	last few years belongs to John Dyson and David Greenman. Not being a
	historian like Kirk I will not attempt to tag all the various features
	with peoples names, since I will invariably get it wrong.

 [

	 Split HTML
	
 /
 Single HTML
]
 1. Introduction
Before moving along to the actual design let's spend a little time
 on the necessity of maintaining and modernizing any long-living
 codebase. In the programming world, algorithms tend to be more
 important than code and it is precisely due to BSD's academic roots that
 a great deal of attention was paid to algorithm design from the
 beginning. More attention paid to the design generally leads to a clean
 and flexible codebase that can be fairly easily modified, extended, or
 replaced over time. While BSD is considered an “old”
 operating system by some people, those of us who work on it tend to view
 it more as a “mature” codebase which has various components
 modified, extended, or replaced with modern code. It has evolved, and
 FreeBSD is at the bleeding edge no matter how old some of the code might
 be. This is an important distinction to make and one that is
 unfortunately lost to many people. The biggest error a programmer can
 make is to not learn from history, and this is precisely the error that
 many other modern operating systems have made. Windows NT® is the best example
 of this, and the consequences have been dire. Linux also makes this
 mistake to some degree—enough that we BSD folk can make small
 jokes about it every once in a while, anyway. Linux's problem is simply
 one of a lack of experience and history to compare ideas against, a
 problem that is easily and rapidly being addressed by the Linux
 community in the same way it has been addressed in the BSD
 community—by continuous code development. The Windows NT® folk, on the
 other hand, repeatedly make the same mistakes solved by UNIX® decades ago
 and then spend years fixing them. Over and over again. They have a
 severe case of “not designed here” and “we are always
 right because our marketing department says so”. I have little
 tolerance for anyone who cannot learn from history.
Much of the apparent complexity of the FreeBSD design, especially in
 the VM/Swap subsystem, is a direct result of having to solve serious
 performance issues that occur under various conditions. These issues
 are not due to bad algorithmic design but instead rise from
 environmental factors. In any direct comparison between platforms,
 these issues become most apparent when system resources begin to get
 stressed. As I describe FreeBSD's VM/Swap subsystem the reader should
 always keep two points in mind:
	The most important aspect of performance design is what is
 known as “Optimizing the Critical Path”. It is often
 the case that performance optimizations add a little bloat to the
 code in order to make the critical path perform better.

	A solid, generalized design outperforms a heavily-optimized
 design over the long run. While a generalized design may end up
 being slower than an heavily-optimized design when they are
 first implemented, the generalized design tends to be easier to
 adapt to changing conditions and the heavily-optimized design
 winds up having to be thrown away.

Any codebase that will survive and be maintainable for
 years must therefore be designed properly from the beginning even if it
 costs some performance. Twenty years ago people were still arguing that
 programming in assembly was better than programming in a high-level
 language because it produced code that was ten times as fast. Today,
 the fallibility of that argument is obvious — as are
 the parallels to algorithmic design and code generalization.
2. VM Objects
The best way to begin describing the FreeBSD VM system is to look at
 it from the perspective of a user-level process. Each user process sees
 a single, private, contiguous VM address space containing several types
 of memory objects. These objects have various characteristics. Program
 code and program data are effectively a single memory-mapped file (the
 binary file being run), but program code is read-only while program data
 is copy-on-write. Program BSS is just memory allocated and filled with
 zeros on demand, called demand zero page fill. Arbitrary files can be
 memory-mapped into the address space as well, which is how the shared
 library mechanism works. Such mappings can require modifications to
 remain private to the process making them. The fork system call adds an
 entirely new dimension to the VM management problem on top of the
 complexity already given.
A program binary data page (which is a basic copy-on-write page)
 illustrates the complexity. A program binary contains a preinitialized
 data section which is initially mapped directly from the program file.
 When a program is loaded into a process's VM space, this area is
 initially memory-mapped and backed by the program binary itself,
 allowing the VM system to free/reuse the page and later load it back in
 from the binary. The moment a process modifies this data, however, the
 VM system must make a private copy of the page for that process. Since
 the private copy has been modified, the VM system may no longer free it,
 because there is no longer any way to restore it later on.
You will notice immediately that what was originally a simple file
 mapping has become much more complex. Data may be modified on a
 page-by-page basis whereas the file mapping encompasses many pages at
 once. The complexity further increases when a process forks. When a
 process forks, the result is two processes—each with their own
 private address spaces, including any modifications made by the original
 process prior to the call to fork(). It would be
 silly for the VM system to make a complete copy of the data at the time
 of the fork() because it is quite possible that at
 least one of the two processes will only need to read from that page
 from then on, allowing the original page to continue to be used. What
 was a private page is made copy-on-write again, since each process
 (parent and child) expects their own personal post-fork modifications to
 remain private to themselves and not effect the other.
FreeBSD manages all of this with a layered VM Object model. The
 original binary program file winds up being the lowest VM Object layer.
 A copy-on-write layer is pushed on top of that to hold those pages which
 had to be copied from the original file. If the program modifies a data
 page belonging to the original file the VM system takes a fault and
 makes a copy of the page in the higher layer. When a process forks,
 additional VM Object layers are pushed on. This might make a little
 more sense with a fairly basic example. A fork()
 is a common operation for any *BSD system, so this example will consider
 a program that starts up, and forks. When the process starts, the VM
 system creates an object layer, let's call this A:
[image: A picture]
A represents the file—pages may be paged in and out of the
 file's physical media as necessary. Paging in from the disk is
 reasonable for a program, but we really do not want to page back out and
 overwrite the executable. The VM system therefore creates a second
 layer, B, that will be physically backed by swap space:

On the first write to a page after this, a new page is created in B,
 and its contents are initialized from A. All pages in B can be paged in
 or out to a swap device. When the program forks, the VM system creates
 two new object layers—C1 for the parent, and C2 for the
 child—that rest on top of B:

In this case, let's say a page in B is modified by the original
 parent process. The process will take a copy-on-write fault and
 duplicate the page in C1, leaving the original page in B untouched.
 Now, let's say the same page in B is modified by the child process. The
 process will take a copy-on-write fault and duplicate the page in C2.
 The original page in B is now completely hidden since both C1 and C2
 have a copy and B could theoretically be destroyed if it does not
 represent a “real” file; however, this sort of optimization is not
 trivial to make because it is so fine-grained. FreeBSD does not make
 this optimization. Now, suppose (as is often the case) that the child
 process does an exec(). Its current address space
 is usually replaced by a new address space representing a new file. In
 this case, the C2 layer is destroyed:

In this case, the number of children of B drops to one, and all
 accesses to B now go through C1. This means that B and C1 can be
 collapsed together. Any pages in B that also exist in C1 are deleted
 from B during the collapse. Thus, even though the optimization in the
 previous step could not be made, we can recover the dead pages when
 either of the processes exit or exec().
This model creates a number of potential problems. The first is that
 you can wind up with a relatively deep stack of layered VM Objects which
 can cost scanning time and memory when you take a fault. Deep
 layering can occur when processes fork and then fork again (either
 parent or child). The second problem is that you can wind up with dead,
 inaccessible pages deep in the stack of VM Objects. In our last example
 if both the parent and child processes modify the same page, they both
 get their own private copies of the page and the original page in B is
 no longer accessible by anyone. That page in B can be freed.
FreeBSD solves the deep layering problem with a special optimization
 called the “All Shadowed Case”. This case occurs if either
 C1 or C2 take sufficient COW faults to completely shadow all pages in B.
 Lets say that C1 achieves this. C1 can now bypass B entirely, so rather
 then have C1->B->A and C2->B->A we now have C1->A and C2->B->A. But
 look what also happened—now B has only one reference (C2), so we
 can collapse B and C2 together. The end result is that B is deleted
 entirely and we have C1->A and C2->A. It is often the case that B will
 contain a large number of pages and neither C1 nor C2 will be able to
 completely overshadow it. If we fork again and create a set of D
 layers, however, it is much more likely that one of the D layers will
 eventually be able to completely overshadow the much smaller dataset
 represented by C1 or C2. The same optimization will work at any point in
 the graph and the grand result of this is that even on a heavily forked
 machine VM Object stacks tend to not get much deeper then 4. This is
 true of both the parent and the children and true whether the parent is
 doing the forking or whether the children cascade forks.
The dead page problem still exists in the case where C1 or C2 do not
 completely overshadow B. Due to our other optimizations this case does
 not represent much of a problem and we simply allow the pages to be
 dead. If the system runs low on memory it will swap them out, eating a
 little swap, but that is it.
The advantage to the VM Object model is that
 fork() is extremely fast, since no real data
 copying need take place. The disadvantage is that you can build a
 relatively complex VM Object layering that slows page fault handling
 down a little, and you spend memory managing the VM Object structures.
 The optimizations FreeBSD makes proves to reduce the problems enough
 that they can be ignored, leaving no real disadvantage.
3. SWAP Layers
Private data pages are initially either copy-on-write or zero-fill
 pages. When a change, and therefore a copy, is made, the original
 backing object (usually a file) can no longer be used to save a copy of
 the page when the VM system needs to reuse it for other purposes. This
 is where SWAP comes in. SWAP is allocated to create backing store for
 memory that does not otherwise have it. FreeBSD allocates the swap
 management structure for a VM Object only when it is actually needed.
 However, the swap management structure has had problems
 historically:
	Under FreeBSD 3.X the swap management structure preallocates an
 array that encompasses the entire object requiring swap backing
 store—even if only a few pages of that object are
 swap-backed. This creates a kernel memory fragmentation problem
 when large objects are mapped, or processes with large runsizes
 (RSS) fork.

	Also, in order to keep track of swap space, a “list of
 holes” is kept in kernel memory, and this tends to get
 severely fragmented as well. Since the “list of
 holes” is a linear list, the swap allocation and freeing
 performance is a non-optimal O(n)-per-page.

	It requires kernel memory allocations to take place during
 the swap freeing process, and that creates low memory deadlock
 problems.

	The problem is further exacerbated by holes created due to
 the interleaving algorithm.

	Also, the swap block map can become fragmented fairly easily
 resulting in non-contiguous allocations.

	Kernel memory must also be allocated on the fly for additional
 swap management structures when a swapout occurs.

It is evident from that list that there was plenty of room for
 improvement. For FreeBSD 4.X, I completely rewrote the swap
 subsystem:
	Swap management structures are allocated through a hash
 table rather than a linear array giving them a fixed allocation
 size and much finer granularity.

	Rather then using a linearly linked list to keep track of
 swap space reservations, it now uses a bitmap of swap blocks
 arranged in a radix tree structure with free-space hinting in
 the radix node structures. This effectively makes swap
 allocation and freeing an O(1) operation.

	The entire radix tree bitmap is also preallocated in
 order to avoid having to allocate kernel memory during critical
 low memory swapping operations. After all, the system tends to
 swap when it is low on memory so we should avoid allocating
 kernel memory at such times in order to avoid potential
 deadlocks.

	To reduce fragmentation the radix tree is capable
 of allocating large contiguous chunks at once, skipping over
 smaller fragmented chunks.

I did not take the final step of having an
 “allocating hint pointer” that would trundle
 through a portion of swap as allocations were made in order to further
 guarantee contiguous allocations or at least locality of reference, but
 I ensured that such an addition could be made.
4. When to free a page
Since the VM system uses all available memory for disk caching,
 there are usually very few truly-free pages. The VM system depends on
 being able to properly choose pages which are not in use to reuse for
 new allocations. Selecting the optimal pages to free is possibly the
 single-most important function any VM system can perform because if it
 makes a poor selection, the VM system may be forced to unnecessarily
 retrieve pages from disk, seriously degrading system performance.
How much overhead are we willing to suffer in the critical path to
 avoid freeing the wrong page? Each wrong choice we make will cost us
 hundreds of thousands of CPU cycles and a noticeable stall of the
 affected processes, so we are willing to endure a significant amount of
 overhead in order to be sure that the right page is chosen. This is why
 FreeBSD tends to outperform other systems when memory resources become
 stressed.
The free page determination algorithm is built upon a history of the
 use of memory pages. To acquire this history, the system takes advantage
 of a page-used bit feature that most hardware page tables have.
In any case, the page-used bit is cleared and at some later point
 the VM system comes across the page again and sees that the page-used
 bit has been set. This indicates that the page is still being actively
 used. If the bit is still clear it is an indication that the page is not
 being actively used. By testing this bit periodically, a use history (in
 the form of a counter) for the physical page is developed. When the VM
 system later needs to free up some pages, checking this history becomes
 the cornerstone of determining the best candidate page to reuse.

For those platforms that do not have this feature, the system
	actually emulates a page-used bit. It unmaps or protects a page,
	forcing a page fault if the page is accessed again. When the page
	fault is taken, the system simply marks the page as having been used
	and unprotects the page so that it may be used. While taking such page
	faults just to determine if a page is being used appears to be an
	expensive proposition, it is much less expensive than reusing the page
	for some other purpose only to find that a process needs it back and
	then have to go to disk.

FreeBSD makes use of several page queues to further refine the
 selection of pages to reuse as well as to determine when dirty pages
 must be flushed to their backing store. Since page tables are dynamic
 entities under FreeBSD, it costs virtually nothing to unmap a page from
 the address space of any processes using it. When a page candidate has
 been chosen based on the page-use counter, this is precisely what is
 done. The system must make a distinction between clean pages which can
 theoretically be freed up at any time, and dirty pages which must first
 be written to their backing store before being reusable. When a page
 candidate has been found it is moved to the inactive queue if it is
 dirty, or the cache queue if it is clean. A separate algorithm based on
 the dirty-to-clean page ratio determines when dirty pages in the
 inactive queue must be flushed to disk. Once this is accomplished, the
 flushed pages are moved from the inactive queue to the cache queue. At
 this point, pages in the cache queue can still be reactivated by a VM
 fault at relatively low cost. However, pages in the cache queue are
 considered to be “immediately freeable” and will be reused
 in an LRU (least-recently used) fashion when the system needs to
 allocate new memory.
It is important to note that the FreeBSD VM system attempts to
 separate clean and dirty pages for the express reason of avoiding
 unnecessary flushes of dirty pages (which eats I/O bandwidth), nor does
 it move pages between the various page queues gratuitously when the
 memory subsystem is not being stressed. This is why you will see some
 systems with very low cache queue counts and high active queue counts
 when doing a systat -vm command. As the VM system
 becomes more stressed, it makes a greater effort to maintain the various
 page queues at the levels determined to be the most effective.
An urban
 myth has circulated for years that Linux did a better job avoiding
 swapouts than FreeBSD, but this in fact is not true. What was actually
 occurring was that FreeBSD was proactively paging out unused pages in
 order to make room for more disk cache while Linux was keeping unused
 pages in core and leaving less memory available for cache and process
 pages. I do not know whether this is still true today.
5. Pre-Faulting and Zeroing Optimizations
Taking a VM fault is not expensive if the underlying page is already
 in core and can simply be mapped into the process, but it can become
 expensive if you take a whole lot of them on a regular basis. A good
 example of this is running a program such as ls(1) or ps(1)
 over and over again. If the program binary is mapped into memory but
 not mapped into the page table, then all the pages that will be accessed
 by the program will have to be faulted in every time the program is run.
 This is unnecessary when the pages in question are already in the VM
 Cache, so FreeBSD will attempt to pre-populate a process's page tables
 with those pages that are already in the VM Cache. One thing that
 FreeBSD does not yet do is pre-copy-on-write certain pages on exec. For
 example, if you run the ls(1) program while running vmstat
	1 you will notice that it always takes a certain number of
 page faults, even when you run it over and over again. These are
 zero-fill faults, not program code faults (which were pre-faulted in
 already). Pre-copying pages on exec or fork is an area that could use
 more study.
A large percentage of page faults that occur are zero-fill faults.
 You can usually see this by observing the vmstat -s
 output. These occur when a process accesses pages in its BSS area. The
 BSS area is expected to be initially zero but the VM system does not
 bother to allocate any memory at all until the process actually accesses
 it. When a fault occurs the VM system must not only allocate a new page,
 it must zero it as well. To optimize the zeroing operation the VM system
 has the ability to pre-zero pages and mark them as such, and to request
 pre-zeroed pages when zero-fill faults occur. The pre-zeroing occurs
 whenever the CPU is idle but the number of pages the system pre-zeros is
 limited in order to avoid blowing away the memory caches. This is an
 excellent example of adding complexity to the VM system in order to
 optimize the critical path.
6. Page Table Optimizations
The page table optimizations make up the most contentious part of
 the FreeBSD VM design and they have shown some strain with the advent of
 serious use of mmap(). I think this is actually a
 feature of most BSDs though I am not sure when it was first introduced.
 There are two major optimizations. The first is that hardware page
 tables do not contain persistent state but instead can be thrown away at
 any time with only a minor amount of management overhead. The second is
 that every active page table entry in the system has a governing
 pv_entry structure which is tied into the
 vm_page structure. FreeBSD can simply iterate
 through those mappings that are known to exist while Linux must check
 all page tables that might contain a specific
 mapping to see if it does, which can achieve O(n^2) overhead in certain
 situations. It is because of this that FreeBSD tends to make better
 choices on which pages to reuse or swap when memory is stressed, giving
 it better performance under load. However, FreeBSD requires kernel
 tuning to accommodate large-shared-address-space situations such as
 those that can occur in a news system because it may run out of
 pv_entry structures.
Both Linux and FreeBSD need work in this area. FreeBSD is trying to
 maximize the advantage of a potentially sparse active-mapping model (not
 all processes need to map all pages of a shared library, for example),
 whereas Linux is trying to simplify its algorithms. FreeBSD generally
 has the performance advantage here at the cost of wasting a little extra
 memory, but FreeBSD breaks down in the case where a large file is
 massively shared across hundreds of processes. Linux, on the other hand,
 breaks down in the case where many processes are sparsely-mapping the
 same shared library and also runs non-optimally when trying to determine
 whether a page can be reused or not.
7. Page Coloring
We will end with the page coloring optimizations. Page coloring is a
 performance optimization designed to ensure that accesses to contiguous
 pages in virtual memory make the best use of the processor cache. In
 ancient times (i.e. 10+ years ago) processor caches tended to map
 virtual memory rather than physical memory. This led to a huge number of
 problems including having to clear the cache on every context switch in
 some cases, and problems with data aliasing in the cache. Modern
 processor caches map physical memory precisely to solve those problems.
 This means that two side-by-side pages in a processes address space may
 not correspond to two side-by-side pages in the cache. In fact, if you
 are not careful side-by-side pages in virtual memory could wind up using
 the same page in the processor cache—leading to cacheable data
 being thrown away prematurely and reducing CPU performance. This is true
 even with multi-way set-associative caches (though the effect is
 mitigated somewhat).
FreeBSD's memory allocation code implements page coloring
 optimizations, which means that the memory allocation code will attempt
 to locate free pages that are contiguous from the point of view of the
 cache. For example, if page 16 of physical memory is assigned to page 0
 of a process's virtual memory and the cache can hold 4 pages, the page
 coloring code will not assign page 20 of physical memory to page 1 of a
 process's virtual memory. It would, instead, assign page 21 of physical
 memory. The page coloring code attempts to avoid assigning page 20
 because this maps over the same cache memory as page 16 and would result
 in non-optimal caching. This code adds a significant amount of
 complexity to the VM memory allocation subsystem as you can well
 imagine, but the result is well worth the effort. Page Coloring makes VM
 memory as deterministic as physical memory in regards to cache
 performance.
8. Conclusion
Virtual memory in modern operating systems must address a number of
 different issues efficiently and for many different usage patterns. The
 modular and algorithmic approach that BSD has historically taken allows
 us to study and understand the current implementation as well as
 relatively cleanly replace large sections of the code. There have been a
 number of improvements to the FreeBSD VM system in the last several
 years, and work is ongoing.
9. Bonus QA session by Allen Briggs
 <briggs@ninthwonder.com>
	9.1.
	What is “the interleaving algorithm” that you
	 refer to in your listing of the ills of the FreeBSD 3.X swap
	 arrangements?

		FreeBSD uses a fixed swap interleave which defaults to 4. This
	 means that FreeBSD reserves space for four swap areas even if you
	 only have one, two, or three. Since swap is interleaved the linear
	 address space representing the “four swap areas” will be
	 fragmented if you do not actually have four swap areas. For
	 example, if you have two swap areas A and B FreeBSD's address
	 space representation for that swap area will be interleaved in
	 blocks of 16 pages:
A B C D A B C D A B C D A B C D

FreeBSD 3.X uses a “sequential list of free
	 regions” approach to accounting for the free swap areas.
	 The idea is that large blocks of free linear space can be
	 represented with a single list node
	 (kern/subr_rlist.c). But due to the
	 fragmentation the sequential list winds up being insanely
	 fragmented. In the above example, completely unused swap will
	 have A and B shown as “free” and C and D shown as
	 “all allocated”. Each A-B sequence requires a list
	 node to account for because C and D are holes, so the list node
	 cannot be combined with the next A-B sequence.
Why do we interleave our swap space instead of just tack swap
	 areas onto the end and do something fancier? It is a whole
	 lot easier to allocate linear swaths of an address space and have
	 the result automatically be interleaved across multiple disks than
	 it is to try to put that sophistication elsewhere.
The fragmentation causes other problems. Being a linear list
	 under 3.X, and having such a huge amount of inherent
	 fragmentation, allocating and freeing swap winds up being an O(N)
	 algorithm instead of an O(1) algorithm. Combined with other
	 factors (heavy swapping) and you start getting into O(N^2) and
	 O(N^3) levels of overhead, which is bad. The 3.X system may also
	 need to allocate KVM during a swap operation to create a new list
	 node which can lead to a deadlock if the system is trying to
	 pageout pages in a low-memory situation.
Under 4.X we do not use a sequential list. Instead we use a
	 radix tree and bitmaps of swap blocks rather than ranged list
	 nodes. We take the hit of preallocating all the bitmaps required
	 for the entire swap area up front but it winds up wasting less
	 memory due to the use of a bitmap (one bit per block) instead of a
	 linked list of nodes. The use of a radix tree instead of a
	 sequential list gives us nearly O(1) performance no matter how
	 fragmented the tree becomes.

	9.2.
	How is the separation of clean and dirty (inactive) pages
	 related to the situation where you see low cache queue counts and
	 high active queue counts in systat -vm? Do the
	 systat stats roll the active and dirty pages together for the
	 active queue count?
I do not get the following:
It is important to note that the FreeBSD VM system attempts
	 to separate clean and dirty pages for the express reason of
	 avoiding unnecessary flushes of dirty pages (which eats I/O
	 bandwidth), nor does it move pages between the various page
	 queues gratuitously when the memory subsystem is not being
	 stressed. This is why you will see some systems with very low
	 cache queue counts and high active queue counts when doing a
	 systat -vm command.

		Yes, that is confusing. The relationship is
	 “goal” verses “reality”. Our goal is to
	 separate the pages but the reality is that if we are not in a
	 memory crunch, we do not really have to.
What this means is that FreeBSD will not try very hard to
	 separate out dirty pages (inactive queue) from clean pages (cache
	 queue) when the system is not being stressed, nor will it try to
	 deactivate pages (active queue -> inactive queue) when the system
	 is not being stressed, even if they are not being used.

	9.3.
	 In the ls(1) / vmstat 1 example,
	 would not some of the page faults be data page faults (COW from
	 executable file to private page)? I.e., I would expect the page
	 faults to be some zero-fill and some program data. Or are you
	 implying that FreeBSD does do pre-COW for the program data?

		A COW fault can be either zero-fill or program-data. The
	 mechanism is the same either way because the backing program-data
	 is almost certainly already in the cache. I am indeed lumping the
	 two together. FreeBSD does not pre-COW program data or zero-fill,
	 but it does pre-map pages that exist in its
	 cache.

	9.4.
	In your section on page table optimizations, can you give a
	 little more detail about pv_entry and
	 vm_page (or should vm_page be
	 vm_pmap—as in 4.4, cf. pp. 180-181 of
	 McKusick, Bostic, Karel, Quarterman)? Specifically, what kind of
	 operation/reaction would require scanning the mappings?
How does Linux do in the case where FreeBSD breaks down
	 (sharing a large file mapping over many processes)?

		A vm_page represents an (object,index#)
	 tuple. A pv_entry represents a hardware page
	 table entry (pte). If you have five processes sharing the same
	 physical page, and three of those processes's page tables actually
	 map the page, that page will be represented by a single
	 vm_page structure and three
	 pv_entry structures.
pv_entry structures only represent pages
	 mapped by the MMU (one pv_entry represents one
	 pte). This means that when we need to remove all hardware
	 references to a vm_page (in order to reuse the
	 page for something else, page it out, clear it, dirty it, and so
	 forth) we can simply scan the linked list of
	 pv_entry's associated with that
	 vm_page to remove or modify the pte's from
	 their page tables.
Under Linux there is no such linked list. In order to remove
	 all the hardware page table mappings for a
	 vm_page linux must index into every VM object
	 that might have mapped the page. For
	 example, if you have 50 processes all mapping the same shared
	 library and want to get rid of page X in that library, you need to
	 index into the page table for each of those 50 processes even if
	 only 10 of them have actually mapped the page. So Linux is
	 trading off the simplicity of its design against performance.
	 Many VM algorithms which are O(1) or (small N) under FreeBSD wind
	 up being O(N), O(N^2), or worse under Linux. Since the pte's
	 representing a particular page in an object tend to be at the same
	 offset in all the page tables they are mapped in, reducing the
	 number of accesses into the page tables at the same pte offset
	 will often avoid blowing away the L1 cache line for that offset,
	 which can lead to better performance.
FreeBSD has added complexity (the pv_entry
	 scheme) in order to increase performance (to limit page table
	 accesses to only those pte's that need to be
	 modified).
But FreeBSD has a scaling problem that Linux does not in that
	 there are a limited number of pv_entry
	 structures and this causes problems when you have massive sharing
	 of data. In this case you may run out of
	 pv_entry structures even though there is plenty
	 of free memory available. This can be fixed easily enough by
	 bumping up the number of pv_entry structures in
	 the kernel config, but we really need to find a better way to do
	 it.
In regards to the memory overhead of a page table verses the
	 pv_entry scheme: Linux uses
	 “permanent” page tables that are not throw away, but
	 does not need a pv_entry for each potentially
	 mapped pte. FreeBSD uses “throw away” page tables but
	 adds in a pv_entry structure for each
	 actually-mapped pte. I think memory utilization winds up being
	 about the same, giving FreeBSD an algorithmic advantage with its
	 ability to throw away page tables at will with very low
	 overhead.

	9.5.
	Finally, in the page coloring section, it might help to have a
	 little more description of what you mean here. I did not quite
	 follow it.

		Do you know how an L1 hardware memory cache works? I will
	 explain: Consider a machine with 16MB of main memory but only 128K
	 of L1 cache. Generally the way this cache works is that each 128K
	 block of main memory uses the same 128K of
	 cache. If you access offset 0 in main memory and then offset
	 128K in main memory you can wind up throwing away the
	 cached data you read from offset 0!
Now, I am simplifying things greatly. What I just described
	 is what is called a “direct mapped” hardware memory
	 cache. Most modern caches are what are called
	 2-way-set-associative or 4-way-set-associative caches. The
	 set-associatively allows you to access up to N different memory
	 regions that overlap the same cache memory without destroying the
	 previously cached data. But only N.
So if I have a 4-way set associative cache I can access offset
	 0, offset 128K, 256K and offset 384K and still be able to access
	 offset 0 again and have it come from the L1 cache. If I then
	 access offset 512K, however, one of the four previously cached
	 data objects will be thrown away by the cache.
It is extremely important…
	 extremely important for most of a processor's
	 memory accesses to be able to come from the L1 cache, because the
	 L1 cache operates at the processor frequency. The moment you have
	 an L1 cache miss and have to go to the L2 cache or to main memory,
	 the processor will stall and potentially sit twiddling its fingers
	 for hundreds of instructions worth of time
	 waiting for a read from main memory to complete. Main memory (the
	 dynamic ram you stuff into a computer) is
	 slow, when compared to the speed of a modern
	 processor core.
Ok, so now onto page coloring: All modern memory caches are
	 what are known as physical caches. They
	 cache physical memory addresses, not virtual memory addresses.
	 This allows the cache to be left alone across a process context
	 switch, which is very important.
But in the UNIX® world you are dealing with virtual address
	 spaces, not physical address spaces. Any program you write will
	 see the virtual address space given to it. The actual
	 physical pages underlying that virtual
	 address space are not necessarily physically contiguous! In fact,
	 you might have two pages that are side by side in a processes
	 address space which wind up being at offset 0 and offset 128K in
	 physical memory.
A program normally assumes that two side-by-side pages will be
	 optimally cached. That is, that you can access data objects in
	 both pages without having them blow away each other's cache entry.
	 But this is only true if the physical pages underlying the virtual
	 address space are contiguous (insofar as the cache is
	 concerned).
This is what Page coloring does. Instead of assigning
	 random physical pages to virtual addresses,
	 which may result in non-optimal cache performance, Page coloring
	 assigns reasonably-contiguous physical pages
	 to virtual addresses. Thus programs can be written under the
	 assumption that the characteristics of the underlying hardware
	 cache are the same for their virtual address space as they would
	 be if the program had been run directly in a physical address
	 space.
Note that I say “reasonably” contiguous rather
	 than simply “contiguous”. From the point of view of a
	 128K direct mapped cache, the physical address 0 is the same as
	 the physical address 128K. So two side-by-side pages in your
	 virtual address space may wind up being offset 128K and offset
	 132K in physical memory, but could also easily be offset 128K and
	 offset 4K in physical memory and still retain the same cache
	 performance characteristics. So page-coloring does
	 not have to assign truly contiguous pages of
	 physical memory to contiguous pages of virtual memory, it just
	 needs to make sure it assigns contiguous pages from the point of
	 view of cache performance and operation.

OEBPS/legalnotice.xhtml
This article was originally published in the January 2000 issue of
	DaemonNews. This
	version of the article may include updates from Matt and other authors
	to reflect changes in FreeBSD's VM implementation.

OEBPS/trademarks.xhtml
FreeBSD is a registered trademark of
 the FreeBSD Foundation.

Linux is a registered trademark of
 Linus Torvalds.

Microsoft, IntelliMouse, MS-DOS,
 Outlook, Windows, Windows Media and Windows NT are either
 registered trademarks or trademarks of Microsoft Corporation in the
 United States and/or other countries.

Motif, OSF/1, and UNIX are
 registered trademarks and IT DialTone and The Open Group are
 trademarks of The Open Group in the United States and other
 countries.

Many of the designations used by
 manufacturers and sellers to distinguish their products are claimed
 as trademarks. Where those designations appear in this document,
 and the FreeBSD Project was aware of the trademark claim, the
 designations have been followed by the “™” or the
 “®” symbol.

