CHAPTER 2 REPRESENTATIONS OF BASIC BOOLEAN
TRANSFORMATIONS

ABSTRACT. Orthogonal transformations of {—1,1}™ are restrictions to {—1,1}™
of orthogonal transformations of the real n-dimensional space R™ that map
{—1,1}" onto itself. Corresponding equivalent transformations of {0,1}", that
is, Boolean transformations, are called Boolean isometries. A minimal Boolean
transformation is a one which has the minimum number of coordinates changed
under it among isometrically equivalent transformations. A self-dual Boolean
transformation is a one that commutes with the complementation of all coor-
dinates. The possible graphs of one-to-one self-dual transformations are com-
pletely determined. Any self-dual Boolean transformation can be expressed
by Boolean functions which are concerned with only those points whose co-
ordinates are changed by the transformation. A circular transformation is a
one which commutes with rotations of coordinates, and if it is self-dual, then
only one Boolean function can represent it. A skew-circular transformation is
similarly defined and represented.

2.1 BOOLEAN ISOMETRIES

Boolean transformations of Q™ are simplest transformations and play a funda-
mental role in computer systems. They are ubiquitous in computer science and
discrete mathematics. However, a general theory that supports various results
in different branches has not been established. In this chapter, we describe rep-
resentations of Boolean transformations belonging to some basic classes. These
representations are used in the following chapters as basic devices for the present
study of threshold transformations and neural networks.

A simple Boolean transformation is a permutation of coordinates. If 7 is a
permutation of N, i.e. an element of SYM(IN), then 7 defines the permutation Hr
of the coordinates of Q™ by the Poélya action H, as described in Chapter 1.3, by

(HT) (21,22, ., Zpn) = (X711, T7—19, .., Tr—1p,)

We omit the Pélya action H hereafter and write 7z in place of (H7)z for an element
x of Q™. Another simple transformation of Q" is a complementation of coordinates.
Let J~ for J = {s,t,..,w} C N denote the complementation of the sth, tth,..,wth
coordinates defined by

J 7 = (T1, ey Ty ooy Tty ooy Ly ey Ty ).

If J is a one element-set {s}, then J~ is denoted by s~. Also N~ is denoted by =.
For the composition of a permutation of coordinates 7 and a complementation
J~, we have

Jr(x1, 20,0y n) = J (Tpo11,Tro19, e, Trm1y)
- (x'rflla vy Wp—lgy ey Lp—1lgy ey W Lp—1lgy, "axT*In)

= T({Tﬁls,’rilt, . Tﬁlw}*(:cl, T2y ey Tny))-
1
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Therefore,
J r=7r(r"')", ie. 7K~ = (7K)" 7, (2.1.1)
The inverse of 7J~ is, therefore,
(rJ) ' = (J)lrt=g 77t
= (rJ). (2.1.2)
For the composition of oJ~ and 7K, we have
oJ orK~ = or(t7'J)"K~
= or(r71J+K)". (2.1.3)

We have also obtained:

Proposition 2.1.1 The set O(Q") of all products of a finite number of permu-
tations and complementations of coordinates of Q™ consists of n!2™ elements, each
uniquely expressed as a product 7J~, where 7 is a permutation of N, and J~ is a
complementation. Further, O(Q") is a transformation group for Q™.

The identity transformation of Q™ will be denoted by I. Clearly (=)=t = =. If
x = (x1,22,..,T,) € Q", then =z is called the complement of . Then we have

ST = T= for every T of O(Q").

Let B the set of all Boolean functions from Q™ to Q. The group O(Q™) further
defines the Pdlya action on B by

(Tfla = f(T ),
for each T € O(Q") and f € B. It is clear from the definition that = € f if and
only if Tx € T'f. In other words, (T'f)~11 = T(f~'1), so that the application of T
to a function f is equivalent to the application of T to the set f through the Pélya
action on Q™. For example, the set =f is the set of complements of all points of
f~'1, while the set ~f = f~10.

Sometimes it is more convenient to use the set {—1,1}"™ in place of Q™ = {0,1}"
and to consider a corresponding transformation of {—1,1}" for a transformation of
Q". This is made possible by the bijection between {—1,1}" and Q™ obtained by
the function Sgn from the real n-dimensional space R™ onto {—1,1}" defined by

. 1 if y; > 0,
(Sen(y)): —{ 1 ifg <0,

or the function Bool from R™ onto Q™ defined by

1 ifxz; >0,
(Bool(z)); = { 0 ifa; <0,

The Hamming distance dp is defined on both Q™ and {—1,1}" as

di(2,y) = [{i | i # yi}|-

When both Q™ and {—1,1}" are imbedded in R"™, they represent geometric n-
dimensional cubes or n-cubes with each element being their vertex and each pair
(z,y) of elements such that dgy(z,y) = 1 being their edge.

If Sgn is restricted to Q™ and Bool is restricted to {—1,1}", then

Bool = Sgn~.
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A transformation F' of Q™ and a transformation G of {—1,1}" is equivalent if
G =Sgno FoSgn !,

that is, the following diagram is commutative.

Sgn | | Sgn
{-1, 1} G {-1,1}".
The transformation of {—1, 1}" corresponding to the transformation J~ = {s,t,..,w}~

of Q™ is the inversion of corresponding coordinates. We will use the same symbols
for these operations in {—1,1}"™. Threfore,

ny = {Satw'aw}i(yl,y%"ayn)
= (yla"7_y37"a_yt7"7_y’wa"7yn)'

However, N~ is the scalar multiplication by —1 in R"™, so that it is denoted by
— when no confusion occurs. Applying a permutation 7 to a point y € {—1,1}"
by the Pélya action is made by multiplying y by a particular n x n orthogonal
matrix P over R such that each row has only one non-zero element, which is 1, and
each column has only one non-zero element, which is 1. Also applying an inversion
J~ to y is made by multiplying y by a diagonal matrix D such that D;; = —1 if
i€ J,and Dy = 1if i ¢ J. Therefore, PD is a matrix representing an orthogo-
nal transformation of R™ with respect to the basis {10 --0,010 - -0,...,0--01} that
maps {—1,1}" onto itself. Conversely, let T' be an orthogonal transformation of
R” that maps {—1,1}" onto itself. If a point ¢ € R™ is the center of a face of
the n-cube {—1,1}", then ¢; = 1 or —1 for some ¢ and ¢; = 0 for every other 4,
and ¢ must be sent into the center of a face by T'. Also since the set of n centers
{10 --0,010 - -0,..,0 - -01} constitutes an orthogonal basis of R"™, the matrix rep-
resenting T' with respect to this basis is PD for some P and D described above.
Thus we have obtained:

Proposition 2.1.2 The set O({—1,1}") of transformations of {—1,1}" that are
equivalent to elements of O(Q™) is the set of all orthogonal transformations of R™
that map {—1,1}"™ onto itself, each transformation being expressed by a multipli-
cation by an orthogonal matrix such that each row has only one non-zero element,
which is 1 or —1, and each column has only one non-zero element, which is 1 or
—1.

By the above proposition, an element of O(Q™) is called a (Boolean) isometry
of Q™ hereafter; an element of O({—1,1}") is called an orthogonal transformation.
Note that O({—1,1}") is the same as O(Q™) as a group and well known as a fi-
nite reflection subgroup of O(R™), the group of orthogonal transformations of R™
(see e.g. Grove & Benson, 1985). Further, the following Proposition 2.1.4 shows
O({—1,1}") is the set of all one-to-one linear transformations that map {—1,1}"
onto itself.

Lemma 2.1.3 v € {-1,1}" and v = (v + ... + v™)/(n — 2) for linearly
independent vectors v € {—1,1}", then dy(v,v?) = 1 for every i = 1,...,n.
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Proof. Let v € {—1,1}" and v = (v + ... + v(™)/(n — 2) for linearly independent
vectors vV € {—1,1}". Let v = 11---1 without loss of generality. Then (vgi) +...+
v,(f)) -(n—2) =1for every i = 1,..,n. Let the number of —1s in {’Uj(-l), ...,vj(-n)} be k.
Then (n—k)—k = n—2, so that k = 1 for every j. Suppose the number of —1s in v(*)
is more than 1 for some 7. Then there exists some I such that v = 11---1 = v. Let
I = 1 without loss of generality. Then (1—1/(n—2))v™® = (v + ... +0™)/(n—-2)
contrary to the linear independence of v, ..., v(™). Therefore, dg (v,v®) = 1 for
every ¢ = 1,...,m. ([l

Proposition 2.1.4 If T is a one-to-one linear transformation of R™ that maps
{=1,1}" onto itself, then T is an orthogonal transformation.

Proof. This proposition is clear for n < 2. Let T be a one-to-one linear transfor-
mation of R”™ that maps {—1,1}" onto itself for n > 3. Let v = 1---1,00) =
—11--1,0® =1-11--1,...,0™ =1-.1 - 1. Since v = (v 4 ... + ™M) /(n — 2),
and T is linear, Tv = (Tv™ + .. + Tv™)/(n — 2). Tv and Tv® are elements of
{=1,1}" for every i. Since T is one-to-one, and v@ are linearly independent, Tv(*
are also linearly independent. Therefore, by Lemma 2.1.3, dH(Tv,Tv(i)) =1 for
every i = 1,...,n and Tv® # Tvl) for every i # j. Therefore, (Tv®, Tv®) =
n = (v, v®) for every i and (Tv®, TvW)) =n —4 = (v 1)) for every i # j.
On the other hand, {v™),...,v(™} is a basis of R™. Therefore, T is an orthogonal
transformation. O

Proposition 2.1.5 Any isometry T € O(Q™) can be decomposed as a disjoint
composition
T=o01Jy ©..00d, O,
where o; is a cyclic permutation, J; C Caro; for each ¢ = 1,...,k, and Jx11 C
N\ |, Caro;, and ¢ is the identity on N\, Caro;.

Proof. Let T be an isometry of Q™. Then T is expressed as T' = 7.J~ by Proposition
2.1.1, where 7 € SYM(N) and J C N. If 7 is not the identity permutation, then,
by Proposition 1.2.2 of Chapter 1, 7 = 01 ®... ® 0, where g; is a cyclic permutation
of length at least 2, and Caro; and Carc; are disjoint if ¢ # j. Let J; = J N Caro;
for each i = 1,..,k, and Jy41 = J N (N\ Y, Caro;). Then T can be expressed by
the disjoint composition shown above. O

As a group, O(Q") is also the wreath product of SYM(IN) by the SYM({—1,1})
(see Krishnamurthy, 1986 or Williamson, 1985 for the definition of the wreath prod-
uct). In this case, O(Q™) can be regarded as a transformation group on the 2n-point
set {1,—1,2,—-2,..,n,—n}. The transformation is defined by 7J~z = (Sgnz)7|x| if
|z| ¢ J, and 7J-x = —(Sgnz)7|x| if |z| € J. However, we are always concerned
with transformations on Q™ or {—1,1}", so that reducing the domain of transfor-
mations in this way will not help us.

2.2 MINIMAL AND MAXIMAL TRANSFORMATIONS

In the present study, we are mainly concerned with threshold transformations
that are not isometries of Q™. However, in order to characterize non- isometrical
transformations, we investigate their relations to isometries.
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Transformations F' and G of Q" are called isometrically equivalent if there exist
isometries S and T of Q™ such that G = SFT. Clearly, a transformation is an
isometry if and only if it is isometrically equivalent to the identity. If G = T~ FT
for an isometry T, then G is called isometrically similar to F. In this case, the
graphs of F' and G are not only isomorphic under the isomorphism induced by T, but
also T preserves the Euclidean distance and hence the Hamming distance between
every pair of points. If G = SFT for isometries S and T, then G = T~ TSF)T.
Therefore, the graph of any transformation isometrically equivalent to F' is obtained
from F by applying an isometry after F, if we regard two isomorphic graphs induced
by an isometry T as the same. If F' and G are transformations of {—1,1}", and if
G = SFT for some orthogonal transformations S and T of {—1,1}", then G is called
orthogonally equivalent to F. If G = T~'FT for some orthogonal transformation
T of {—1,1}", then G is called orthogonally similar to F'.

As shown by Proposition 2.1.4, orthogonal transformations of {—1,1}" are the
only one-to-one linear transformations of R™ that map {—1,1}" onto itself. There-
fore, by reducing non-isometrical transformations to the isometrically equivalent
simplest forms, we may be able to extract some nonlinear aspects, such as reflected
in their graphs, that are unique to the non-isometrical transformations.

First we introduce the variation of F' denoted by Var(F') for a transformation F'
of Q™ as the total number of coordinates that change under F. That is,

Var(F) = Z dy(z, Fz).

zeEQn

Example 2.2.1 Var(I) =0, Var(5) =n - 2™

Proposition 2.2.2 If F' and G are isometrically similar, then Var(F') = Var(G).

Proof. If T is an isometry, then

Var(T7'FT) = Y du(e, (T7'FT)z)
— x;:ndH(Tx,T(T_lFT)x)
_ IE dy (T, F(Tz))
— gpg/dH(y,Fy):Vaf(F)
yeqQn

O

We call a Boolean transformation F' minimal, if Var(F) < Var(TF) for every
isometry T. We call a minimal transformation F' uniquely minimal, if TF is not
minimal for any non-identity isometry 7'. Similarly, we call a Boolean transforma-
tion F' mazimal, if Var(F) > Var(T'F) for every isometry 7. We call a maximal
transformation F' uniquely mazximal, if TF is not maximal for any non-identity
isometry T'.

Let F and G be isometrically equivalent and uniquely minimal; then G = SFT
for some isometries S and T'. Therefore, G = T~'TSFT. Since G is minimal, T'SF
is minimal. Since F is uniquely minimal, 7S = I. Therefore G = T~'FT. The
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discussion above is summarized in the following theorem.

Theorem 2.2.3 If F' is a Boolean transformation, then there exists an isometry
S such that SF' is minimal. If F and G are uniquely minimal and isometrically
equivalent, then F' and G are isometrically similar.

Example 2.2.4 If T is an isometry, then T is isometrically equivalent to the
identity transformation I, which is uniquely minimal, and 7" is isometrically equiv-
alent to the uniquely maximal transformation =.

Proposition 2.2.5 F' is minimal if and only if =F is maximal. F is uniquely
minimal if and only if =F' is uniquely maximal.

Proof. We have dy(x,=y) =n—dg(x,y) for every z,y € Q™. Therefore, the proof
is clear from Var(=F) = n - 2" — Var(F). O

2.3 SELF-DUAL TRANSFORMATIONS

A Boolean function f defined on Q" is called self-dual, if =f = —f. Similarly,
a transformation F' of Q™ is called self-dual, if F= = =F. The transformation G
of {—1,1}" equivalent to a self-dual transformation of Q" satisfies —G = G— and
is also called self-dual. Let F be expressed as F = (Fi,..., F,,), where F; = p;F.
Then, F' is self-dual if and only if F; is self-dual for every i.

Example 2.3.1 If 7 is a permutation of N, then 7 and =7(= 77) are self-dual.
Conversely, if T is a self-dual isometry of Q", then T' = 7 or =7 for a permutation
7 of N.

If F and G are self-dual, then F'G is clearly self-dual. Further, by the following
proposition, the set of all self-dual one-to-one transformations of Q™ is a transfor-
mation group.

Proposition 2.3.2 If F is a one-to-one self-dual transformation, then (=F)~! =
=F~! and F~! is also self-dual.

Proof. Let F be one-to-one and self-dual. Then =F=F~! = FF~! = [. Therefore,
(5F)~1 = =F~1. On the other hand, (=F)~! = F~!571 = F~15 50 that = F~! =
F1= O

Now, we shall describe graphs of one-to-one self-dual transformations, though
they are rather obvious and partly described in Ishii (1970). We call a self-dual
transformation H elementary, when if H = FF® G, and both F and G are self-dual,
then F or G is the identity I. From these definitions the following proposition is
clear.

Proposition 2.3.3 Any self-dual transformation is a disjoint composition of one
or several elementary self-dual transformations.

The graph of any one-to-one transformation of a finite set consists of a set of
disjoint cycles. In general, let A = {(s1,¢1), ..., (Sk, tx)}, where s; > 1 and ¢t; > 1 are
integers for every i, t; # t; for i # j, and s1-t1+... + s -t = 2. We call A a cycle
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structure for Q™. We say that the cycle structure A is realized by a transformation
F of Q", or that the cycle structure CS(F) of F is A, and write CS(F) = A, if
the set of all cycles of GRAPH(F') consists of s1 t1-cycles, ... , and si tg-cycles. A
subset C' of Q" such that =C = C is called a complete set.

Proposition 2.3.4 If F' is an elementary one-to-one self-dual transformation
which is not the identity, then CS(F') = {(1,¢), (2" — t,1)} for some even t > 2,or
CS(F) = {(2,1),(2" — 2t,1)} for some t > 2. Conversely, the cycle structure
{(1,%), (2™ —¢,1)} for some even s > 2, and the cycle structure {(2,?), (2™ —2t,1)}
for some ¢ > 2 are realized by some elementary self-dual transformations of Q™.

Proof. Let g be a point on a t-cycle such that ¢ > 2 of an elementary one-to-one
self-dual transformation F. If =¢ is in the same cycle, then =(Fq) = F(5¢) and
Fq are in the same cycle. Inductively, if x is any point on this cycle, then =z is
also on the same cycle. Therefore, in this case, ¢ is even, and this cycle and loops
form GRAPH(F). If ¢ is on another cycle, then F™gq is on the first cycle and
=(F™q) = F™(5q) is on the second cycle for every m. The two cycles and loops
form GRAPH(F'). Conversely, if ¢ is a positive integer, consider a complete set
C C Q™ such that |C] = 2t, and let C = AU B such that ANB =0 and if x € A
then =x € B and if z € B then =z € A. Construct a transformation F' composed
of fixed points and one t-cycle ranging over A. G = F' ©® =F= is elementary and
self-dual, and CS(G) = {(2,t), (2™ — 2t,1)}. If ¢ is even, consider G defined above
for a complete set C such that |C| = ¢t. For a point ¢ in C, define H as Hq = G(=¢),
and H(=¢q) = Gq and Hx = Gz for every other z. H is elementary and self-dual
and CS(H) = {(1,t), (2" —¢,1)}. O

Theorem 2.3.5 The necessary and sufficient condition for a cycle structure
{(s1,t1), .., (Sk, tr)} such that sy -t1 + ... + sk - ty, = 2™ to be realized by a self-dual
transformation of Q™ is that t;s; is even for every 1.

Proof. By decomposing one-to-one self-dual transformations into elementary self-
dual transformations we obtain the necessary part. For the sufficiency, express Q"
as a mutually disjoint union of s; complete sets with ¢; elements for even ¢; and s;/2
complete sets with 2¢; elements for odd t; and the rest of Q™. Following the proof
of Proposition 2.3.4, construct self-dual elementary transformations composed of
fixed points and one t;-cycle for even ¢; and two t;-cycles for odd t¢; ranging over
each complete set. The disjoint composition of these elementary transformations
realizes the given cycle structure. (]

2.4 [ |-REPRESENTATIONS

Assume that the transformation F' = (Fi,..., F},) of Q", where F; = p;F, is
self-dual. A necessary and sufficient condition for x € Q™ to be a point such that
xz; =1 and (Fx); = 0 is that « € p; - —~F;. Let f; be defined as

fi=pi-—F; (2.4.1)

for every i. Then —f; = —(p; - =F;) = —p; V F;, so that p; - —f; = p; - F;. Also
:‘fi = (pi . _‘Fi):‘ = (pz:‘) . (_‘Fi:‘) = p; - Fi- Since Fz =D Fz vV -p; - Fi, we obtain
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Conversely, for any Boolean function f; such that f; = p; - f; for every i, let F;
be defined by (2.4.2). Then

-=F = =((pim) - (=fi7) V fi)

(=((pim) - (=fim)) - ~fi

(i V fim) - =fi=pi -~ fi V (fim) -~ fi

However, (f;=) - fi = ((pi - fi)™) - pi - fi = —=pi - (fi=) - pi - fi = 0. Therefore,
- = F,

so that F' = (I, ..., F,,) is a self-dual transformation. Further,

pi-—F = pi-—pi-~fiV fim) =pi- i fi) - (=fim)

pi- (7pi vV fi) - (=(pi - fi)7) =pi- fi- (0 V (2fi)
= fivVfi-~fim=fi

Therefore, (2.4.1) is satisfied.

Consequently, any self-dual transformation F' such that F' = (F1,..., F},) will be
represented by a [ ]-representation as

F = [fi, e ful, (2.4.3)

where if x = (21, ...,2,) € f; then 2; = 1, and the relations between F; and f; are
given above by (2.4.1) and (2.4.2).

Example 2.4.1 Let F = [p1 - p2 - p3, —p1 - P2, ~P1 - —P2 - p3] be a transformation
of Q3. We express F in the following tables.

fol| ofs = —1-2 1 =2 _ oy
fs | =fs —~1--2-3]1-2--3 010 ] 101
001 | 110

Then we obtain GRAPH(F):

101 — 111 — 011 — 001

T |
110 < 100 « 000 « 010

The advantage of the form (2.4.3) is not only its absorption of F;’s self-duality.
We have clearly

n
CarF = | J(fiu=fi).
I=1
In fact, the points of f;, whose ith coordinate is 1, are transformed into points
whose ith coordinate is 0, while the points of =f; , whose ith coordinate is 0, are
transformed into points whose ith coordinate is 1. And these are all the changes
on Q™ when F is applied. Therefore, if F' is self-dual and represented as [f1, ..., fa],
then clearly

Var(F) =2 Z | fil.- (2.4.4)
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Further, if F = [f1,..., fu], G = [91,---, 9], and CarF and CarG are disjoint, then
F+G=[fiVagi,- [fnVgn]- Now, let F; be a Boolean function expressed as

Fi=pi-giV (=pi) - hi, (2.4.5)
for some g;, h; : QN\' — Q. Then

fi = Pi- "Fi (246)
= Pi Y-
Further,
-=F; = =(opi- (957) Vi (hi™))
(pi V =gi=) - (=pi V —hi=)
= pi- (7hi=)V pi - (mgim) V (2hi=) - (mgi)
pi - (0hi=) V =i - (2g:7) Vi - (2hi=) - (—gi) V i - (hiT) - (—gio)
= pi- (5hi7) vV pi - (2gi7).
Therefore, -=F; = F;, if and only if h; = —g;=, that is,
Fy=pi gV —pi-(—7g:). (2.4.7)
Proposition 2.4.2 If F = [f, ..., f,] then
TF= [f17"7fk—1apk . _‘fk:afk-‘rla 7fn}

Proof. Let k= F = [g1, -, 9k .-, gn)- Then g = pg - ~(—=F)) = px - Fi. by (2.4.1), so
that gr. = pr - (Pr - ~fx V 2fk) = pr - ~fk Vi - (5fk) by (2.4.2). Since (Sf)r =1
implies (=), = 1, i.e. xp = 0, we have py - (5fx) = 0. Therefore, g = pg - —f.
Clearly g; = f; for any other i. O

Notation If F = [f1, ..., f], then fi|1 is the function from QN to Q defined
by
(fill)z = fi(z,1),
where (, 1) is the point of QYN obtained by adding the ith coordinate 1 to z, i.e.

Py(z,1) =2 and pi(z,1)=1.
Proposition 2.4.3 If F = [f1, ..., fn] then
FEZ = [k f1, e - (03(fk[1)), -, k™ ful-
Proof. Let Fk— = [g1,.., gk, .-, gn]. If i # k, then

g = pi-~(Fk™);

pi - —pi(Fk™)

(pi - —(piF))k~

fik~ by (2.4.1)

k™ fi. Polya action

pr - (k)

pr - (—pr(FET))

pr - (2o - Sk V S fr)ET) by (2.4.2)

Pk - E( ~(pr - = fk) - == fe)kT)
(

9k

P (e V fr) - = fk)E7)
= pr - ((=pr -2k V i =2 fe)k7).
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Since
P (fik™) =pr - ((r- fr)E™) = o1 - (0ek™) - (fuk™) = pr - (=px) - (fek™) =0,
g = pr-((=pk -2 fr)kT)
= prpr (07 fR)k7)
= pe- (fen)k7) Polya action
= pr- (=fe(N\K)7)
= pr- (e (1)) (N\E)7)
= pr- ((Fpr V- (=(fe]1)))(N\E)7)
= pr - (7pok vV (fel1)7)
= pr- (=(fel1)=)
= pr- (3(fk]1))- Polya action
O
If F={f1,..., fn] then
Fk™ = [k fi, o pi - (02 frl 1), s k7 ful-
Proof. Let Fk~ = [g1, .., Gk, --» gn]- If i # k, then
g9 = ~(Fk™);
= pi-pilFkT
= (pi-piF)k™
= fik™
= Lk fi
g = pr-(FE7 )k
= pr- (peFkT)
= pr- (0 -~ fe VSfe)kT)
= pr-((0pr -~ fr) -2 fe)k™)
= pi-(((kpr V fro) -2 fe)k™)
= pr- ((px -2V fe - 22 fe)kT).
if x

If gy = 1 then xx = 1. But

yr = 1. Therefore,

9k

Pk -
Pk -
Pk -
Pk -
Pk -
Pk -

(
(
(
(
(
(

= 1 then fyk~z = 0, since fry = 1 implies

(mpx - = f)kT) = pr - pr - (57 fk)ET)
—fu)kT) = pi - (0 f(N\K) )

—(px - (fk|1))(N\]f)_)

(=pr V(= (f6]1)))(N\K) )

—pr V= (fk1)7) = pr - (=(fel1)7)

== (fk[1))-

Let ' =[f1,.., fm) and G =
tions of Q™ and QY, where M = {1,....m} and N = {m +1,..,m +n}. Then the
direct product F x G, which is the transformation of QMY is also self-dual and

represented by

FxG=

O

[9n+1, -, gm-tn] be respectively self-dual transforma-

[f1oPryees fn © Prty Gma1 © Py ooy Gmtn © P (2.4.8)
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Example 2.4.4 Let F = [p; - p2 + p3,—p1 - P2, p1 - —p2 - p3] and and G =
[p4 - ps, ~pa - ps] be respectively transformations of Q12:3} and Q{45}.
GRAPH(F) is illustrated in Example 2.4.1. GRAPH(G) is

11 — 01
1 l
10 « 00

Then
F x G =[p1-p2-p3,7p1 D2, D1~ "P2 - P3,P4 - D5, P4 - D5-
GRAPH(F x G) is

10110 — 11111 — 01101 — 00100 — 00010 <« 01000

T !
11010 10011
1 !
10000 11001
T !

01011 — 00001 <« 00111 « 01110 <« 11100 « 10101,
01001 — 00000 — 10010 — 11011 — 11101 « 10111
T !

00101 01100
T !

01111 00110
T !

10100 — 11110 « 11000 +« 10001 <« 00011 « 01010.

2.5 CIRCULAR AND SKEW-CIRCULAR TRANSFORMATIONS

Let p be the cyclic permutation (1,2,..,n) of N. The transformation p defined
by the Pdlya action on Q™ is the right rotation of coordinates of Qm, that is,
p(x1,22, ., Tpn) = (Tp,x1,..,Tn—1) for every x = (21,22,..,2,) € Q™. A transfor-
mation F' of Q" is called circular, if Fp = pF. A transformation G is isometrically
similar to a circular transformation, if and only if G satisfies Go = oG for some
n-cyclic permutation o = (s1, S2, .., Sn)-

If F and G are circular, then clearly F'G is also circular. If F' is circular and
one-to-one, then Fp = pF ie. p~'F~1 = F~1p~1 By applying p to the left and
right of each side of the last equation, we obtain F~1p = pF~1, so that F~! is also
circular.

Let F = (Fy,..., F,) be a transformation of Q", where F; = p;F. Then pF =
(Fp, F1y ...y Frimq), while Fp = (Fip, Fap, ..., Fup) = (p7 L F1,p t Fy, ..., p~ 1 F,,) There-
fore, F' is circular if and only if F; = pF;_; for every ¢, that is,

F,=p7'F (2.5.1)

for every i. Further,

Proposition 2.5.1 A self-dual transformation F' = [f1, ..., f], where f; = p; -
—F}, is circular if and only if

fi=p"h (2.5.2)
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Proof. From (2.5.1) it follows that F' is circular and self-dual, if and only if

F = [pi-=Fi,pa-~(pF1), . pi - =0 Fuy s pn - = (0" )
= [p1-FL,p(p1-—F1), 0 p 7 (01 2 F), s 0" (1 FY)
Therefore, F' is circular and self-dual if and only if (2.5.2) holds. O
We briefly write
F=(f)
for = [f,..,p" 1 f, ..., p" "1 f], where p; - f = f. From (2.4.4),
Var(F) = 2n|f|. (2.5.3)

Theorem 2.5.2 Let F' = (f) be a circular self-dual transformation. Then (i)
F is isometrically equivalent to a circular minimal self-dual transformation. (ii) If
|f| <2773 then F is minimal. (iii) If |f| < 2773, then F is uniquely minimal.
Proof. Let F' = (F1,..., F,), where F; = p,F. (i) Suppose |p1 - ~F;| < |p1 - ~F1|. If
o = p~I 7! then oF is circular, and (¢ F); = F}, so that |p; -=(cF)1| = [p1-~Fj| <
|p1-—F1|. Therefore, by (2.5.3) we have Var(oF') < Var(F). Let a new F' be the oF.
Similarly, if |p1 - Fj| < |p1-—F1|, then (0=)F is circular, and Var((c=)F) < Var(F).
Then let a new F be the (07)F. Repeat the above procedure until there is no such
j as above. Then we obtain a transformation that is isometrically equivalent to F',
circular, and minimal.
(ii) Let j # 1. We have

Ip1-—~F;| = |p1-pj-~Fjl+[p1-—p; - ~Fj
= [51-p; - ~E) + |p1 - —pj - 2 F]
= |=p1-—pi - Fjl 4 (Ipy - —psl = lpo - —ps - ),
because F} is self-dual. Therefore,
lpr - —Fy| > 2" —|f],

since [p1 - =p;| = 2"7% and [=p1 - —p; - Fj|+ [p1-—p; - Fj| = |=p; - Fy| = | f|. Similarly
lp1 - Fj| > 2772 — |f| and |p; - F1| = 2"~! — |f|. By (i), there exists an isometry
T such that TF is minimal, circular, and self-dual. Therefore, if |f| < 2773, then
Var(TF) > 2n- (2772 — |f]) > 2n- (272 — 273) = 2n,- 273 > 2p|f| = Var(F), so
that F' is minimal.
(iii) is clear from the proof of (ii). O

Example 2.5.3 n is even (n = 2m). F = (f),

J=p1 DPm "Pmt1 " "D2m-
GRAPH(F) consists of loops and one n-cycle, which is
1---10---0—o01---10---0—..—1---10---01 - 1---10---0.

F' is uniquely minimal for n > 4.

In later chapters we will encounter some self-dual transformations F' of Q™ which
are not circular but commutative with pn™, that is, Fpn™ = pn~ F. We call such
a transformation skew-circular. Skew-circular transformations are self-dual, since

(pn=)" ==
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Proposition 2.5.4 A self-dual transformation F = [f1,..., f»], where f; = p; -
—F}, is skew-circular if and only if

fi = (pn™)"" L fy for every .

Proof. Let F' = (Fy,..., F,) be a self-dual transforma-tion, where F; = p;F. Then
on~ F = (=F,, F1,...,F,_1), while Fpn~™ = (Fipn—, Fapn~, ..., F,pn~). Therefore,
F' is commutative with pn~ if and only if

Fi = =Fu(pn™) " =-pn"F,,

F, = F(n ) t=p F,

Fy = Fpn”)"' = (pn )’ Fy,

F, = anl(pn_)_l = (pn_)n_th

From the last equation, it follows that pn~F,, = (pn~)"F; = =F; = —F}, which
is the_ﬁrst equation. Therefore, F' is commutative with pn~ if and only if F; =
(pn=) "L Fy for every i. If F is represented as F' = [fy, ..., f], then this is equivalent
to

fi = pi-—Fi=pi-—(pn ) 'Fy
(pn™) " p1 - (pn )T (= FY)
= (") Hpr-—F)
(™) i

O

F=[f,...(pn7)" f, ..., (pn™)" "1 f], where p;-f = £, is hereafter briefly denoted
by
F={f)
Then (2.5.3) also holds.

Example 2.5.5 F = ({f)),
f=p1-pi-pn
GRAPH(F) consists of loops and one 2n-cycle, for example, for n = 4,
1111 — 0111 — 0011 — 0001

T !
1110 — 1100 — 1000 — 0000
11019, 10110, 10019, 10100,
01019, 01100, 00100, 01000.

A transformation isometrically similar to this transformation was first given by
Masters and Mattson (1966).

Let T be an isometry of Q™. As described in Section 2.1, T is uniquely expressed
as a product T = 7J~ of a permutation 7 and a complementation J~. Let T be
circular, then, by definition, 7J~p = prJ~. Therefore, by (2.1.1), 7p(p~1J)~ =
pTJ~, so that 7p = pr and p~'J = J. The first equation implies 7 is a linear
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permutation of slope 1, i.e. 7 = p* for some k € Z,. From the second equation
follows J = N or (). Therefore

T = p* or T = pk= for some k. (2.5.4)

Conversely, it is clear that any T that satisfies (2.5.4) is a circular transformation.
Next, we determine skew-circular isometries. First, if 7 is a permutation of N, and
if L and M are subsets of N, then it is clear that

T(L+M) = 7(L)+7(M). (2.5.5)
Lemma 2.5.6 Let p = (1,2,..,m) and i # j are elements of N,,,. Then
Xhp 1X = (i}, (2.5.6)

ifandonly if X ={i+1,...,5} or X ={j +1,...,4}.

Proof. The if part is clear. To prove the only if part, suppose that both X and Y are
solutions of (2.5.6). Then X+p !X = Y+p~ 1Y, sothat (X+p 1 X)+(Y+p 1Y) =
0, ie. (X+Y)+p 1 (X+Y) =0 by (2.5.5). Therefore, X+Y = ) or X+Y = N,,,,
ie. Y=XorY =X° (]

Let T'= 7J~ be a skew-circular isometry of Q™. Then, by definition, 7J " pn~ =
pn~1J~. Therefore, by (2.1.1), Tpp~tJ4+n" = prJ+77In", so that 7p = pr and
p~'Jd4n = J+r7'n. From the first equation follows 7 = p* for some k € Z,,.
Then, from the second equation follows J+p~1J = {n — k}+{n}. Therefore, by
Lemma 2.5.6, J={n—k+1,...,n} or J ={1,...,n — k}, so that

T=p"{n—k+1,.,n} or T = p"{1,...,n — k}~ for some k. (2.5.7)

Conversely, it is clear that any T satisfies (2.5.7) is a skew-circular transformation.
Thus we have obtained the following proposition.

Proposition 2.5.7 Let T be an isometry of Q™. Then (i) T is circular if and
only if T = p* or T = pF= for some k. (ii) T is skew-circular if and only if
T=p{n—k+1,.,n}" or T =p*{1,...,n — k}~ for some k.

2.6. FLOW GRAPHS

Let a transformation F' of Q™ be commutative with any element 7 of a group G
acting on Q™. For a subset S of Q", let [S] denote Orbg S. Then, a transformation
F~ of the orbit set {[z] | € Q™} is naturally defined by F~[z] = [Fz]. We call
F~ the flow of F. For example, if F is self-dual and circular, then G is {p, =), that
is, the group generated by the rotation p and complementation =.

An outline of the flow F~ can be described by a flow graph with an arc set
A such that (i) If (X,Y) € A, then X and Y are orbits, that is, X = [C] and
Y = [D] for some C and D, and X C CarF and FX NY # 0; (ii) If z € CarF,
then there exists an arc (X,Y) € A such that € X and Fx € Y; (iii) Any cycle
X — ... = Z — X (including a loop) of GRAPH(F'"™) is a subgraph of the flow
graph. (iv) Any cycle X — ... = Z — X (including a loop) of the flow graph is a
cycle of GRAPH(F™).

Note that all cycles and loops as well as some asymptotic properties of F™~ are
described by this flow graph. In particular, if F' is one-to-one, then F™ is com-
pletely represented. In the following example, a Boolean function is expressed with
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skipped p; for example, 1-2-(=3V4) denotes p1 -pa - (—ps Vps). A Boolean function
[ also denotes the set f~(1), and ~ denotes ~, -.

Example 2.6.1 Let F = (f), f = 1-2-3-6, be a transforma-tion of Q°. Since
F is circular self-dual, CarF = [f]. We have

f=1-2-326 = 1-2-3-(4v5)--6U1-2-3--4--5--6,

1-2-3-(4v5)-—6) —p —1-2-3-(4V5)- -6,
1-2-3--4--5--6) —p -1-2-3-4--5--6~1-2-3--4--5--6,
-1-2.-3-(4v5)--6 = -1-2.3-4--5--6U-1-2-3-4-5--6U—-1-2-3--4-5--6,

-1-2-3-4.5--6 —p —-1--2:3-4:5--6~1-2-3--4.--5:-6,
-1-2-3--4-5--6 ¢ CarF.
Therefore, a flow graph of F is

[1-2-3-—-4--5--6]0

/ T
[1-2-3-(4V5)-6] — [-1-2-3-4.5.-6
N

[-1-2-3--4.5- 6],

that is,
[1-2-3--4--5--6]9
/! T
[1-2-3-(4Vv5)-6] — [1-2:3-4--5--6]
N

[1-2--3-4--5-—6].



