
CHAPTER 4 THRESHOLD FUNCTIONS AND
TRANSFORMATIONS

Abstract. The first two sections describe basic properties and combinatorial
characterization of threshold functions. One-to-one threshold transformations
of {0, 1}n are self-dual. A self-dual Boolean transformation is a threshold
transformation if and only if each of the Boolean functions that represent the
transformation in a [ ]-representation introduced in Chapter 2.4 is a threshold
function. Then in the last two sections, we construct minimal one-to-one
threshold transformations which are circular or skew-circular. As a result, it
is found out that each of them is reflective through some isometries of order 2,
so that it is isometrically equivalent to a threshold transformation such that
its graph consists of 2-cycles and loops, and its inverse is also a threshold
transformation.

4.1 Basic properties of threshold functions

A Boolean function f : Qn → Q = {0, 1} is called a threshold function, if the sets
f and ¬f are separated by a hyperplane in the real n- dimensional space Rn. In
other words, f is a threshold function, if there exist a real n-vector w = (w1, ..., wn)
and a real number θ such that

fx = bool(wx− θ), (4.1.1)

where wx = w1 · x1 + ... + wn · xn, the inner product of w and x, and

bool(u) =
{

1 if u > 0,
0 if u ≤ 0.

Here w is called the weight vector and θ is called the threshold value of f . Threshold
functions f and g are called simultaneously realizable, if both can be defined with the
same weight vector. A threshold transformation F of Qn is a natural generalization
of a threshold function from Qn to Q such that each piF is a threshold function.

Since the pioneering work of McCulloch and Pitts (1943), a great number of the-
oretical and experimental studies (e.g. Arimoto, 1963; Amari, 1972; Goles-Chacc,
1980; Goles & Olivos, 1981; Hopfield, 1982; Goles, Fogelman-Soulie & Pellegrin,
1985; Cottrell, 1988; Blum, 1990; Blessloff & Taylor, 1991 etc.) have been made
on neural networks. The information process on neural networks is mathematically
summarized as threshold transformations. However, their mathematical properties
are yet to be clarified by rigorous analysis. In practical models, important transfor-
mations are those whose iterative operations transform a subset whose points share
a certain common pattern into a smaller set. Although these transformations are
not one- to-one, we deal with one-to-one transformations in the first place, hoping
the study will help us with general threshold transformations. In particular our goal
in this chapter is to investigate simple threshold transformations that are minimal,
one-to-one, and circular.

Various properties of threshold transformations should reflect those of a thresh-
old functions. Therefore, we describe these properties with or without proof in the
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2 CHAPTER 4 THRESHOLD FUNCTIONS AND TRANSFORMATIONS

first two sections of this chapter as basic properties and combinatorial characteriza-
tions. Most of these results were obtained in the 1960s and contained in Hu (1965)
and Muroga (1971). Some of them are main propositions, and others are minor but
used later in this book.

Proposition 4.1.1 Let f be a threshold function: Qn → Q. Then (i) ¬f
is a threshold function, (ii) ¬̄f is a threshold function, and (iii) F and ¬¬̄f are
simultaneously realizable.

Proof. We have a real n-vector w and a real number θ such that fx = 1 iff wx−θ >
0. Therefore, fx = 0 that is (¬f)x = 1 iff wx−θ ≤ 0, that is, −wx+θ ≥ 0. Since Qn

is a finite set, there exists η ≥ θ such that −wx+ θ ≥ 0 iff −wx+η > 0. Therefore,
(¬f)x = 1 iff (−w)x − η > 0, so that ¬f is a threshold function. (ii) fx = 1 iff
wx − θ > 0 implies that f(¬̄x) = 1 iff w(¬̄x) − θ > 0, that is, w(l − x) − θ > 0,
that is, (−w)x− (θ − wl) > 0, where l is the n-vector such that li = 1 for every i.
Therefore, f ¬̄ that is, ¬̄f is a threshold function. (iii) is clear from the above proof
of (i) and (ii). ¤

Proposition 4.1.2 If f is a threshold function: Qn → Q and pj is the projection
function: Qn → Q, then pj ∨ f , ¬pj ∨ f , pj · f , and ¬pj · f are threshold functions:
Qn → Q.

Proof. Let f be a threshold function. Then there exists a real n-vector w and a
real number θ such that fx = 1 iff wx− θ > 0.

Let δ > n ·max|wi|+ |θ|, and let vj = wj + δ, vi = wi for every i 6= j. Then, if
xj = 1, then vx− θ = wx− θ + δ > 0; if xj = 0, then vx− θ = wx− θ. Therefore,
xj = 1 or fx = 1, if and only if vx− θ > 0, so that pj ∨ f is a threshold function.
Further, ¬pj · f = ¬(pj ∨ ¬f), so that ¬pj · f is a threshold function.

Let η = (n − 1)max|wi| − θ, and let vj = wj + η, vi = wi for every i 6= j, and
ζ = θ + η. Then, if xj = 1, then vx − ζ = wx − θ; if xj = 0, then vx − ζ =
w1x1 + .. + wj−1xj−1 + wj+1xj+1 + .. + wnxn− θ− η ≤ (n− 1)max|wi| − θ− η = 0.
Therefore, xj = 1 and fx = 1, if and only if vx− ζ > 0, so that pj · f is a threshold
function. Further, ¬pj ∨ f = ¬(pj · ¬f), so that ¬pj ∨ f is a threshold function. ¤

Proposition 4.1.3 Let f be a Boolean function: Qn → Q and pn+1 be the
projection: Q{n+1} → Q. If f · pn+1 or f ∨ pn+1 is a threshold function, then f is
a threshold function.

Proposition 4.1.4 (Muroga, Toda, & Takasu, 1961; Winder, 1962; Muroga,1971,
Theorem 8.1.1.2) If f : Qn → Q and g : Qn → Q are simultaneously realizable
threshold functions, then h : Qn+1 → Q defined by h = (¬pn+1) · f ∨ pn+1 · g is a
threshold function from Qn+1 to Q.

Proposition 4.1.5 If f is a threshold function, then fT and Tf are threshold
functions for any isometry T of Qn.

Notation For a set of Boolean functions or variables {.}, let Sm{.} denote the
disjunction of all conjunctions of m elements of {.}. For example, S2{p1, p2, p3} =
p1 · p2 ∨ p1 · p3 ∨ p2 · p3.
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Proposition 4.1.6 If f is a threshold function: Qn → Q, then

g = Sk{pn+1, .., pn+m} ∨ Sk−1{pn+1, .., pn+m} · f
is a threshold function: Qn+m → Q.

Proof. Let f be a threshold function. Then there exists a real n-vector w and a
real number θ such that fx = 1 iff wx− θ > 0. In order to prove the proposition,
it is sufficient to determine the threshold vector (w, v) such that v = (δ, δ, ..δ) and
a threshold value η for g. Then it is sufficient to determine δ and η such that

(1) wx + kδ > η for any x,
(2) wx + (k − 1)δ > η iff wx > θ,
(3) wx + (k − 2)δ ≤ η for any x.

(2) is equivalent to wx + (k − 1)δ + θ > θ + η iff wx > θ. Therefore, let

(k − 1)δ + θ = η. (4.1.2)

Then (2) is satisfied. By substituting (4.1.2) for η in (1) and (3), we obtain
min(wx) + kδ > (k − 1)δ + θ, i.e.

δ > −min(wx) + θ, (4.1.3)

and max(wx) + (k − 2)δ ≤ (k − 1)δ + θ, i.e.

δ ≥ max(wx)− θ. (4.1.4)

Therefore, let
δ > max(

∑

i

|wi|+ θ,
∑

i

|wi| − θ). (4.1.5)

Then (4.1.3) and (4.1.4) are satisfied. Thus we determined desired δ and η by
(4.1.5) and (4.1.2). ¤

Proposition 4.1.7 If f is a threshold function: QN → Q, M is a proper subset
of N, and a is an element of QM , then f |a is a threshold function: QN\M → Q.

Proof. Let f be a threshold function. Then there exists a real n-vector w and a
real number θ such that fx = 1 iff wx− θ > 0. Therefore, (f |a)x = f(a, x) = 1 iff
(PMw)a + (PN\Mw)x− θ > 0, i.e.

(PN\Mw)x− (θ + (PMw)a) > 0.

Therefore, f |a is a threshold function with the weight vector PN\Mw and the thresh-
old value θ + (PMw)a. ¤

4.2 Combinatorial properties

A Boolean function f is called m-summable, if there exist a(1), ..., a(k) and
b(1), ..., b(k) such that 2 ≤ k ≤ m, and a(i) ∈ f , b(i) ∈ ¬f for every i such that
1 ≤ i ≤ k, a(i) ∈ f (i) ∈ ¬f , for every i such that 1 ≤ i ≤ k, and

k∑

i=1

a(i) =
k∑

i=1

b(i),

where the sums are performed in Rn. If f is not m-summable, f is called m-
asummable. If f is m-summable for some m, f is called summable. If f is not
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summable, f is called asummable. The following proposition characterizes thresh-
old functions in place of linear separability of f expressed by (4.1.1).

Proposition 4.2.1 (Elgot 1961; Chow 1961) A Boolean function f is a threshold
function if and only if f is asummable.

Proof. In the definition of threshold functions in Section 1, the condition that f
and ¬f are separated by a hyperplane in the real n-space Rn can be replaced
with the fact that f and ¬f are separated by a hyperplane in the rational n-space.
Further, the latter condition is equivalent to the fact that the convex hull of f and
the convex hull of ¬f are disjoint. The last condition is equivalent to the fact that
f is asummable. ¤

Corollary 4.2.2 If a Boolean function f is a threshold function, then f is 2-
asummable.

Attempts to characterize a threshold function combinatorially in place of linear
separability had been made to replace the linear separability conditions (4.1.1),
which is described in terms of the weight vector and the threshold value. Unfor-
tunately, there is no such combinatorial expression that describes a necessary and
sufficient condition for a Boolean function to be a threshold function. For example,
the asummability condition described by Proposition 4.2.1 involves an unlimited
number of equations. Therefore, only some necessary conditions for threshold func-
tions are available. We describe here some of these necessary but not sufficient
conditions in the following because of their own value, but we use only Corollaries
4.2.2 and 4.2.4 in this book.

Let f be a Boolean function defined on Qn. If

f |q ⊆ f |¬̄q or f |¬̄q ⊆ f |q
for every q ∈ QM for every M ⊆ N such that |M | ≤ k, then f is called k-
monotonic. In particular, f is called unate if k = 1, and f is called completely
monotonic if k = n. The following theorem due to Elgot (1961) gives a condition
equivalent to 2-asummability. The proof is also found in Muroga (1971, Chapter 3).

Theorem 4.2.3 (Elgot, 1961) A Boolean function of Qn is 2-asummable if and
only if it is completely monotonic.

Proof. Assume that f is 2-summable. By definition, there exists x, y ∈ f and
u, v ∈ ¬f such that x + y = u + v. Then xi = yi = ui = vi if and only if (x + y)i

is 0 or 1. Let K = {i | xi = yi = ui = vi}, L = {i | i /∈ K and xi = ui}, and
M = {i | i /∈ K and xi 6= ui}. Then N is the union mutually disjoint K, L, and M .
Further, neither L nor M is empty, since x is either u or v otherwise, contrary to the
fact x ∈ f and u, v ∈ ¬f . Let PKx = a, PLx = b, and PMx = c. Then, x = (a, b, c),
y = (a, ¬̄b, ¬̄c), u = (a, b, ¬̄c), z = (a, ¬̄b, c). Considering x and v, (a, c) ∈ f |b and
(a, c) ∈ ¬f |¬̄b = ¬(f |¬̄b), so that f |b ⊆ f |¬̄b does not hold. Considering y and u,
(a, ¬̄c) ∈ f |¬̄b and (a, ¬̄c) ∈ ¬f |b = ¬(f |b), so that f |¬̄b ⊆ f |b. Therefore, f is not
completely monotonic.

Conversely, assume that f is not completely monotonic. By definition, there
exists a such that neither f |a ⊆ f |¬̄a nor f |¬̄a ⊆ f |a. Therefore, there exist b
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and c such that (b, a) ∈ f , (b, ¬̄a) ∈ ¬f , (c, ¬̄a) ∈ f , and (c, a) ∈ ¬f . Since
(b, a) + (c, ¬̄a) = (b, ¬̄a) + (c, a), f is 2-summable. ¤

Corollary 4.2.4 (Muroga, Toda, & Takasu, 1960) If f is a threshold function
defined on Qn and k ∈ N, then either f |0 or f |1 is a subset of the other, and both
are threshold functions, where 0, 1 ∈ Qk.

Another combinatorial condition for 2-asummability was given by Yajima and
Ibaraki in terms of prime implicants of the Boolean function:

Theorem 4.2.5 (Yajima & Ibaraki, 1968) A Boolean function f is 2-asummable,
if and only if (i) f is unate and (ii) if u1 ·u2 ·w and v1 ·v2 ·w are any prime implicants
of f , where terms u1 · u2 and v1 · v2 contain no common projection pi, then there
exists a prime implicant z of f such that z ⊆ u1 · v1 · w or z ⊆ u2 · v2 · w.

Proposition 4.2.6 If a point q and ¬q belong to a threshold function f from
Qn to Q, then |f | ≥ 2n−1 + 1.

Proof. If both q and ¬̄q belong to f , then the 2-asummability condition for f
requires that for any r ∈ Qn, either r or ¬̄r or both belong to f . ¤

The following Theorem (Ueda, 1977, 1979) gives a necessary condition for a
Boolean function to be a threshold function in terms of the stabilizer of f . Let f
be a Boolean function from Qn to Q. Let i and j be elements of N. We define the
binary relation ºf by

i ºf j if i = j or f |10 ⊇ f |01,

where 10 and 01 are elements of Q{i,j}. Further, we define

i ∼f j if i ºf j and j ºf i.

Proposition 4.2.7 (Winder, 1962; Muroga, Toda, & Takasu, 1961) The binary
relation ºf is a preorder, i.e. reflective and transitive, and hence the binary relation
∼f is an equivalence relation on N.

Theorem 4.2.8 (Ueda, 1977, 1979) Let f be 2-monotonic Boolean function de-
fined on Qn. Then N is partitioned into sets M1, ..., Mk for some k such that the sta-
bilizer of f is the direct product of the k symmetric groups SYM(M1), .., SYM(Mk).

Proof. Let a permutation σ ∈ SYM(N) be an element of the stabilizer of f . Let σ
be expressed by the disjoint composition of permutations as σ = τ ¯ ..¯ υ¯ ..¯ω.
Let τ = (s1, ..., sh). Since f is 2-monotonic, the preorder ºf is total, i.e. i ºf j or
j ºf i for every pair i, j of N, and ∼f is an equivalence relation on N by Proposition
4.2.7. Let the set of all equivalence classes determined by ∼f be {M1, ..., Mk}.

If s1 ºf s2 then σs1 ºσf σs2, so that s2 ºf s3, since σf = f . Therefore,
s1 ºf s2 ºf ... ºf sh ºf s1, and hence s1 ∼f s2 ∼f ... ∼f sh. Similarly if s2 ºf s1

then s1 ∼f s2 ∼f ... ∼f sh. Therefore, all non-fixed elements on each cycle υ of
the disjoint composition are elements of some equivalence class Mj .

Now let i ∼f j, i 6= j. Then by the definition of ∼f , f |10 = f |01. Therefore,
(i, j)f = f for the interchange (i, j) ∈ SYM(N). Therefore, the stabilizer of f is
the direct product of SYM(M1), ..., SYM(Mk). ¤
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4.3 Basic properties of transformations

A Boolean transformation F of Qn is called a threshold transformation, if Fi =
piF is a threshold function for every i. That is, there exists an n × n real matrix
W and real column n-vector h such that

Fx = Bool(Wx− h), (4.3.1)

where

(Bool(x))i =
{

1 if xi > 0,
0 if xi ≤ 0,

for every i. Here W is called the weight matrix and h is called the threshold vector
of F . Now, we consider the set {−1, 1} in place of Q = {0, 1}. As described
in Chapter 2.1, a transformation F of Qn and a transformation G of {−1, 1}n is
equivalent, if G = Bool−1 ◦ F ◦ Bool or F = Sgn−1 ◦G ◦ Sgn, where

(Sgn(y))i =
{

1 if yi > 0,
−1 if yi ≤ 0,

that is, the following diagram is commutative.

Qn F−→ Qn

Sgn ↓ ↓ Sgn
{−1, 1}n

−→
G {−1, 1}n.

If Bool and Sgn are respectively restricted to {−1, 1}n and Qn, then

Bool(x) = (1/2)(x + l) and Sgn(y) = 2y − l,

where l is the column n-vector whose every coordinate is 1. Therefore, if F is a
threshold transformation defined by (4.3.1), then

Gy = Sgn(Bool(W (1/2(y + l))− h))
= Sgn(W (1/2(y + l))− h)
= Sgn(Wy − (2h−Wl)).

Generally, H is said to be a threshold transformation of {−1, 1}n if there is a real
n× n matrix V and a real n-vector r such that

Hy = Sgn(V y − r). (4.3.2)

Here V is called the weight matrix and s is called the threshold vector of H. Thus
we showed that, in the above commutative diagram, if F is a threshold transfor-
mation, then G is a threshold transformation defined with the same weight matrix
W . Conversely, let H be defined by (4.3.2). Then the corresponding equivalent
transformation J is

Jx = Bool(Sgn(V (2x− l)− r))
= Bool(Sgn(V x− (1/2)(V l + r)))
= Bool(V x− (1/2)(V l + r)).

Therefore J is a threshold transformation defined by the same weight matrix V . An
advantage of using {−1, 1}n for threshold functions and transformations in place
of Qn is apparent in the following propositions and theorem.

Proposition 4.3.1 Let H be a threshold transformation of {−1, 1}n defined
by (4.3.2). If the threshold vector r is the zero vector, and if there is no point y
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in {−1, 1}n such that (V y)i = 0 for some i, then H is self-dual. Conversely, if
H is self-dual, then Hy = Sgn(V y), and there is no point of {−1, 1}n such that
(V y)i = 0 for some i.

Proof. Let Hy = Sgn(V y) for every y. Then (H−)y = H(−y) = Sgn(V (−y)) =
Sgn(−(V y)) for every y. If there is no point y of {−1, 1}n such that (V y)i = 0
for some, then Sgn(−(V y)) = −Sgn(V y) = −Hy, so that H− = −H, that is H is
self-dual.

Conversely, let H be self-dual and Hy = Sgn(V y − r) for every y. Then by
slightly changing r, we can obtain r′ such that Hy = Sgn(V y − r′) and there
is no point y such that (V y − r′)i = 0 for some i. Then, −Sgn(V (−y) − r′) =
Sgn(−(V (−y) − r′)) = Sgn(V y + r′) and −Sgn(V (−y) − r′) = Sgn(V y − r′), so
that Sgn(V y + r′) = Sgn(V y − r′) for every y. If r′i 6= 0, then (V y)i > |r′i| or
(V y)i < −|r′i|, so that Sgn((V y)i − r′i) = Sgn((V y)i) and there is no y such that
(V y)i = 0. Therefore, Hy = Sgn(V y), and there is no y such that (V y)i = 0 for
some i. ¤

The following Proposition 4.3.2 (i) shows that the set of the Boolean isometries
is a subset of the one-to-one threshold transformations. As defined in Chapter 2.2,
transformations F and G of Qn are called isometrically equivalent if there exist
isometries S and T of Qn such that G = SFT . The following Proposition 4.3.2
(ii) shows that if F is a threshold transformation and G is isometrically equivalent
to F , then G is also a threshold transformation. The set of all Boolean isometries
is the subgroup of the transformation group consisting of all one-to-one self-dual
transformations. The following Theorem 4.3.3 shows that the set of the one-to-one
threshold transformations is a subset of the set of the one-to-one self-dual transfor-
mations.

Proposition 4.3.2 (i) Orthogonal transformations are threshold transforma-
tions. (ii) If F is a threshold transformation and T is an orthogonal transformation,
then FT and TF are threshold transformations. (iii) If F is an threshold transfor-
mation, then F is orthogonally equivalent to a minimal threshold transformation.

Proof. (i) If T ∈ O{−1, 1}n then there exists an orthogonal matrix A such that
Ty = Ay = Sgn(Ay) for every y.

(ii) Let G be a threshold transformation of {−1, 1}n defined Gy = Sgn(V y− r),
and let T ∈ O{−1, 1}n defined by Ty = Ay, where V and A are n× n real matrix,
and r is a real n-vector. Then

(GT )y = Sgn(V (Ay)− r) = Sgn((V A)y − r),
(TG)y = ASgn(V y − r) = ASgn(V y − r′),

where r′ is obtained by modifying r so that there is no point y ∈ {−1, 1}n such
that (V y − r′)i = 0 for some i. Then

(TG)y = Sgn(A(V y − r′)) = Sgn((AV )y −Ar′).
(iii) is clear from (ii) and the definition of minimal transformations. ¤

Theorem 4.3.3 One-to-one threshold transformations are self-dual.

Proof. Let F = (F1, ..., Fn), where Fi = piF , be a one-to-one threshold transforma-
tion of Qn; then |¬Fi| = |Fi|. Therefore, if a point q and its complement ¬̄q belong
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to Fi, then another point r and its complement ¬̄r must be in ¬Fi. This contradicts
the 2-asummability of Fi, because (q + ¬̄q)/2 = (r + ¬̄r)/2 in Rn. Therefore, Fi is
self-dual, so that F is self-dual. ¤

Proposition 4.3.4 Let a self-dual Boolean function Fi : Qn → Q be defined as

Fi = pi · gi ∨ ¬pi · (¬¬̄gi).

for a Boolean function gi : QN\i → Q. Then Fi is a threshold function if and only
if gi is a threshold function.

Proof. If gi is a threshold function, then gi and ¬¬̄gi are simultaneously realizable
threshold functions by Proposition 4.1.1 (iii). Therefore, Fi is also a threshold
function according to Proposition 4.1.4. If Fi is a threshold function, clearly gi is
also a threshold function. ¤

Corollary 4.3.5 A self-dual Boolean transformation F represented as [f1, ..., fn]
is a threshold transformation, if and only if fi is a threshold function for every i.

The above corollary implies that 〈f〉 is a threshold transformation if and only if
f is a threshold function, and 〈〈f〉〉 is a threshold transformation if and only if f is
a threshold function. Finally, the following two propositions are clear.

Proposition 4.3.6 Let G be a threshold transformation of Qn+1. If the trans-
formations H and L of Qn are defined by Hi(x1, ..., xn) = Gi(x1, ..., xn, 1) and
Li(x1, ..., xn) = Gi(x1, ..., xn, 0) for i = 1, .., n, then H and L are threshold trans-
formations.

Proof. There exists a real (n + 1) × (n + 1) matrix E and a real (n + 1)-vector h
such that

Gx = Bool(Ex− h).
Let hi′ = hi − Ein+1 and E′ij = Eij for 1 ≤ i, j ≤ n. Then clearly

Hx = Bool(E′x− h′).
Therefore, H is a threshold transformation. ¤

Proposition 4.3.7 Let L and M be disjoint subsets of N. If F is a threshold
transformation of QL, and if G is a threshold transformation of QM . Then the
direct product of F and G is a threshold transformation.

Proof. The proof is clear from the definitions of threshold transformations and the
direct product. ¤

Proposition 4.3.8 If |fk| ≤ 2n−2 for F = [f1, ..., fn], then

(fk|1) ⊆ ¬¬̄(fk|1).

Proof. Assume that (fk|1) ⊆ ¬¬̄(fk|1), i.e. ¬(fk|1) ⊇ ¬̄(fk|1) does not hold. Then
there exists some x such that PN\kx ∈ ¬̄(fk|1) and PN\kx ∈ (fk|1). Therefore, by
Proposition 4.2.6, |f | = ¬̄(fk|1) ≥ 2n−1 + 1. ¤

Corollary 4.3.9 If F = [f1, ..., fn] is a self- dual minimal threshold transforma-
tion, then

(fi|1) ⊆ ¬¬̄(fi|1)for every i.



CHAPTER 4 THRESHOLD FUNCTIONS AND TRANSFORMATIONS 9

Proof. Assume that (fk|1) ⊆ ¬¬̄(fk|1) does not hold for some k. Then by Propo-
sition 4.3.8, |fk| ≥ 2n−2 + 1. Then |¬̄(fk|1)| = |fk| ≥ 2n−2 + 1. Therefore,
|¬̄(fk|1)| < |fk|. Hence, F is not minimal, because Var(k−F ) < VarF by Proposi-
tion 2.4.3. ¤

4.4 Circular one-to-one transformations

Let F = 〈f〉 for Qn be a circular threshold transformation, then F is isometri-
cally equivalent to a circular minimal self-dual transformation 〈g〉 by Theorem 2.5.2
of Chapter 2. Further 〈g〉 is a threshold transformation by Proposition 4.3.2 (ii)
of the present chapter. Therefore, in this section we construct minimal, circular,
one-to-one threshold transformations.

There are two naive approaches for obtaining a one-to-one threshold transfor-
mations. One is to construct a one-to-one transformation first and modify it to
a threshold transformation. The other is to construct a threshold transformation
first and modify it to a one-to-one transformation.

We exclude from here compressible transformations, which are described in
Chapter 5.2. In the follwing Examples, F = 〈f〉 is a transformation of Qn.

Notation In this section, µ ∈ SYM(N) denotes the linear permutation of coef-
ficients (−1, 2), that is,

µ = (2, n)(3, n− 1) · · · (i, n− i + 2) · · · ([(n− 1)/2 + 1, n + 1− [((n− 1)/2]).

Example 4.4.1 n is odd (n = 2m + 1).

f = p1 · · · pm+1 · ¬pm+2 · · · ¬p2m+1.

GRAPH(F ) consists of one 2n-cycle and loops. E.g.

11100 → 01100 → 01110 → 00110 → ...

→ 11000 → 11100.

For n = 3, F is isometrically equivalent to the compressible transformation 〈p1 ·p2 ·
p3〉. F is uniquely minimal for n ≥ 5.

As a generalization of Example 4.4.1, we now determine a condition for the
transformation F = 〈f〉 of Qn for n = 2m + 1 such that

f = p1 · q2 · ... · qn, where qi = pi or ¬pi for every i

to be one-to-one.
Let f = {x}, a one-element set, where x = (1, x2, ..., xn). We assume Fx =

(0, x2, ..., xn). In order to determine a condition for F (CarF ) = CarF , suppose
Fx = ¬̄ρnh−1x for 0 < h− 1 < n. Then

p1x = 1, 1−x = ¬̄ρh−1x, (4.4.1)

that is,
(0, x2, ..., xn) = (¬xn+2−1+, ..,¬xn, 0,¬x2, ..,¬xn+2−(h+1)),

that is,

¬x1 = 0 = ¬xn+2−h, x2 = ¬xn+2−(h−1), .., xh−1 = ¬xn, xh = 0, xh+1 = ¬x2, .., xn = ¬xn+2−(h+1),

that is,
xh = 0, xh+(h−1) = ¬xh, xh+2(h−1) = ¬xh+(h−1), ...,

xn+2−h = ¬xn+2−(h+(h−1)),¬x1 = 0 = ¬xn+2−h,
(4.4.2)
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If h− 1 is relatively prime with n, the system of equations (4.4.2) sequentially and
uniquely determines xi from xh to x1 by step h − 1 of their subscripts. Further,
the values of xi change n − 1 times as the values of xi are determined from xh to
x1. Since n− 1 is even, xi is consistently determined for every i.

Example 4.4.2 n = 7 and h − 1 = 2. The equation 1−x = ¬̄(ρ)2x for x =
(1, x2, .., x7) is

¬x1 = 0 = ¬x6, x2 = ¬x7, x3 = 0, x4 = ¬x2, x5 = ¬x3, x6 = ¬x4, x7 = ¬x5,

that is,

x3 = 0, x5 = ¬x3, x7 = ¬x5, x2 = ¬x7, x4 = ¬x2, x6 = ¬x4,¬x1 = 0 = x6.

The solution is x = 1100110.
Now assume 0 < h− 1 < n is relatively prime with n, and let x be the solution

of (4.4.1). Then

(¬̄ρh−1)2x = (¬̄ρh−1)(1−x)
= (¬xn−h+2, ..,¬xn, 1,¬x2, ..,¬xn−h+1)

= h−¬̄(ρh−1x)
= h−1−x.

In general,

(¬̄ρh−1)ix = (1 + (i− 1)(h− 1))−(1 + (i− 2)(h− 1))−...(1 + (h− 1))−1−x
for any positive integer i.

(4.4.3)
Therefore, (¬̄ρh−1)ix for i = 1, .., 2n− 1 are all different from x.

Let f = {x} and F = 〈f〉. Then

Fx = 1−x = ¬̄ρh−1x,

and F is one-to-one with one 2n-cycle.
To test whether F is reflective or not, suppose F is reflective through µ. Then

µFx = ¬̄x by Proposition 3.4.2. That is,

(0, xn,xn−1, .., x2) = (0,¬x2,¬x3, .., xn),

so that xi = ¬xn+2−i, for every i ≥ 2, that is,x = ¬̄1−µx.
we transform the system of equations (4.4.1) by replacing x with ¬̄1−µx. Then

we have
p1(¬̄1−µx) = 1, 1−(¬̄1−µx) = ¬̄ρh−1(¬̄1−µx). (4.4.4)

By (4.4.2), (4.4.4) is equivalent to

¬xn+2−h = 0,¬xn+2−(h+h−1) = xn+2−h,¬xn+2−(h+2(h−1)) = xn+2−(h+(h−1)), ...,
¬xh = xh+(h−1),¬x1 = 0 = xh.

(4.4.5)
Clearly, (4.4.5) is equivalent to (4.4.2). That is, the system of equations (4.4.1) is
invariant under the transformation ¬̄1−µ, so that the solution x of (4.4.1) is also
invariant under ¬̄1−µ, i.e. ¬̄1−µx = x.

Now let F = 〈f〉 for f = {x}. Then

µFx = (0, xn, xn−1, .., x2), while ¬̄x = (0,¬x2,¬x3, ...¬xn).
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. Therefore,
µFx = ¬̄x,

since ¬̄1−µx = x. Also
λF (f ∪ ¬̄f)c ∩ ¬̄f = ∅,

since λF is one-to-one. Therefore, by Proposition 3.4.2, F is reflective through any
linear permutation of order 2. Thus we obtained the following theorem.

Theorem 4.4.3 Assume 0 < h − 1 < n is relatively prime with odd n. Then
there exists a one-to-one reflective transformation F = 〈f〉 of Qn such that

f = p1 · α2q2 · ... · αnqn, where αi = IQ or ¬ for every i,

F = ¬̄ρh−1 on CarF .

In this case, f is uniquely determined by (4.4.2). F has one 2n-cycle.

Note that F = ¬̄ρh−1 on CarF does not gurantee F to be reflective, although
any isometry is reflective. For example, let f = {1110010, 1001011, 1000110} and
F = 〈f〉. Then F = ¬̄ρ2 on CarF , but F is not reflective.

Example 4.4.4 For Example 4.4.2, we have F = 〈f〉, f = 1 ·2 · ¬3 · ¬4 ·5 ·6 · ¬7.
The 14-cycle of F is

1100110 → 0100110 → 0110110 → 0110010 → 0110011 → 0010011 → 0011011
↑ ↓

1100100 ← 1101100 ← 1001100 ← 1001101 ← 1001001 ← 1011001 ← 0011001

Example 4.4.5 Let F = 〈f〉 be a transformation described in Theorem 4.4.3
and let F 2 = 〈g〉. Let f = {x}. Then F 2x = {1, h}−x by (4.4.3), so that

g = {x, ¬̄ρ−(h−1)x}.
On the other hand, 1−x = ¬̄ρ(h−1)x, so that

¬̄ρ−(h−1)1−x = x,

(ρ−(h−1)1)−¬̄ρ−(h−1)x = x,

¬̄ρ−(h−1)x = (ρ−(h−1)1)−x.

Therefore,
g = {x, (ρ−(h−1)1)−x}.

Therfore, F 2 is a threshold transformation. Similarly, F 3 is athreshold transforma-
tion.

Example 4.4.6 n is even (n = 2m, n ≥ 4). We start from a one-to-one trans-
formation F = 〈f〉 defined by

f = p1 · · · pm+1 · ¬pm+2 · · · ¬p2m ∨ p1 · · · pm−1 · ¬pm · · · ¬p2m.

Then we add

g = p1 · · · pm · ¬pm+1 · · · ¬p2m ∨ p1 · · · pm−1 · ¬pm · · · ¬p2m.

to get a threshold transformation

H = 〈f〉 ¯ 〈g〉 = 〈h〉.
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Then
h = p1 · .. · pm−1 · (pm ∨ ¬pm+1) · ¬pm+2 · .. · ¬p2m.

GRAPH(H) consists of three n-cycles and loops. E.g.

1100 → 0110 → 0011 → 1001 → 1100,

1110 → 0111 → 1011 → 1101 → 1110,

1000 → 0100 → 0010 → 0001 → 1000.

For n = 4, H is not minimal and isometrically equivalent to the compressible trans-
formation 〈p1 · p2 · p3 · p4〉. H is uniquely minimal for n ≥ 6.

In the following, we construct one-to-one circular transformations of small di-
mensions, and then modify them to general dimensions if possible. In F = 〈f〉, f
is expressed with skipped p in these examples.

Example 4.4.7 Start with 110010 and add 110100 to create a one-to-one trans-
formation. Then, to make it a threshold transformation, add 110110 to obtain

f = 1 · 2 · ¬3 · (4 ∨ 5) · ¬6

GRAPH(F ) consists of three 6-cycles and loops. The flow graph is

[1 · 2 · ¬3 · 4 · ¬5 · ¬6]∂, [1 · 2 · ¬3 · 4 · 5 · ¬6]∂.

f can be generalized to

f = 1 · 2 · ¬3 · 4 · (¬5 ∨ ¬6) · 7 · ¬8,

f = 1 · 2¬3 · 4 · ¬5 · (6 ∨ 7) · ¬8 · 9 · ¬10,

f = 1 · 2¬3 · 4 · ¬5 · 6 · (¬7 ∨ ¬8) · 9 · ¬10 · 11 · ¬12,

and so on. In general, GRAPH(F ) consists of three 2m-cycles and loops.
f can also be generalized to

f = 1 · .. ·m · ¬(m + 1) · .. · ¬(2m− 1)
·(2m ∨ (3m− 1)) · ((2m + 1) · .. · 3m− 2) · (¬(3m) · .. · ¬(4m− 2).

GRAPH(F ) consists of three (4m− 2)-cycles and loops.

Example 4.4.8 Start with 111010. Add 101000, 101110, and 100010 to create
a one-to-one transformation having the cycle Orbρ111010. Then add 101010 and
111000 and get a one-to-one threshold transformation F defined by

f = 1 · 3 · ¬4 · ¬6 ∨ 1 · (3 ∨ ¬4) · ¬2 · 5 · ¬6.

GRAPH(F ) consists of three 6-cycles, one 2-cycle and loops. A flow graph is

[1 · 2 · 3 · ¬4 · 5 · ¬6]∂, [1 · 2 · 3 · ¬4¬5¬6]∂, [1 · ¬2 · 3 · ¬4 · 5 · ¬6]∂.

Example 4.4.9

f = 1 · 2 · ¬3 · ¬6 ∨ 1 · 2 · 4 · ¬5 · ¬6 ∨ 1 · ¬3 · 4 · ¬5 · ¬6.

GRAPH(F ) consists of four 6-cycles, two 3-cycles and loops. A flow graph is

[1 · 2 · 3 · 4 · ¬5 · ¬6]∂, [1 · 2 · ¬3 · 4 · 5 · ¬6]∂, [1 · 2 · ¬3 · 4 · ¬5 · ¬6]∂.

Example 4.4.10

f = 1 · 2 · ¬3 · ¬6 ∨ 1 · 2 · ¬5 · ¬6 ∨ 1 · ¬3 · 4 · ¬5 · ¬6.
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GRAPH(F ) consists of five 6-cycles, two 3-cycles and loops. A flow graph is

[1 · 2 · 3 · 4 · ¬5 · ¬6]∂, [1 · 2 · 3 · ¬4 · ¬5 · ¬6]∂,
[1 · 2 · ¬3 · 4 · ¬5 · ¬6]∂, [1 · 2 · ¬3 · 4 · 5 · ¬6]∂.

Example 4.4.11

f = 1 · 2 · 3 · ¬4 · ¬5 ∨ 1 · 2 · 3 · ¬4 · ¬6 ∨ 1 · 2 · ¬4 · ¬5 · ¬6 ∨ 1 · 3 · ¬4 · ¬5 · ¬6.

GRAPH(F ) consists of six 4-cycles, one 6-cycle and loops. A flow graph is

[1 · 2 · 3 · 4 · ¬5 · ¬6] ↔ [1 · 2 · 3 · ¬4 · 5 · ¬6], [1 · 2 · 3 · ¬4 · ¬5 · ¬6]∂.

Example 4.4.12

f = 1 · 2 · ¬5 · ¬6 ∨ 1 · 2 · 3 · ¬4 · ¬6.

GRAPH(F ) consists of three 6-cycles, two 12-cycle and loops. A flow graph is

[1 · 2 · 3 · 4 · ¬5 · ¬6]∂, [1 · 2 · 3 · ¬4 · ¬5 · ¬6]∂,

[1 · 2 · 3 · ¬4 · 5 · ¬6] ↔ [1 · 2 · ¬3 · 4 · ¬5 · ¬6].

Example 4.4.13

f = 1 · 2 · ¬3 · ¬6 ∨ 1 · 2 · 4 · ¬5 · ¬6.

GRAPH(F ) consists of five 6-cycles and loops. The flow graph is

[1 · 2 · 3 · 4 · ¬5 · ¬6]∂, [1 · 2 · ¬3 · 4 · 5 · ¬6]∂, [1 · 2 · ¬3 · 4 · ¬5 · ¬6]∂.

Example 4.4.14

f = 1 · 2 · ¬3 · ¬6 ∨ 1 · 2 · ¬5 · ¬6.

GRAPH(F ) consists of six 6-cycles and loops. A flow graph is

[1 · 2 · 3 · 4 · ¬5 · ¬6]∂, [1 · 2 · 3 · ¬4 · ¬5 · ¬6]∂,
[1 · 2 · ¬3 · 4 · 5 · ¬6]∂, [1 · 2 · ¬3 · 4 · ¬5 · ¬6]∂.

Example 4.4.15 n ≥ 4.

f = p1 · p2 · Sn−3{p3, ..., pn}.
If n is even, GRAPH(F ) consists of two n-cycles, one 2-cycle and loops. E.g.

1110 → 0010 → 1011 → 1000 → 1110,

1101 → 0100 → 0111 → 0001 → 1101,

1111 → 0000 → 1111.

If n is odd, GRAPH(F ) consists of one 2n-cycle, one 2-cycle and loops. E.g.

11110 → 00010 → 11011 → 01000
→ 01111 → 00001 → 11101 → 00100

10111 → 10000 → 11110,

11111 → 00000 → 11111.

Example 4.4.16 n = 4m + 2, m ≥ 1.

f = p1 · · · pm+1 · ¬pm+2 · · · ¬p2m+1 · p2m+3 · · · p3m+1 · ¬p3m+3

· · ·¬p4m+2 · (p2m+2 ∨ p3m+2).
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GRAPH(F ) consists of three n-cycles and loops. E.g.

110100 → 010110 → 010011 → 011001
→ 001101 → 100101 → 110100,

101001 → 101100 → 100110 → 110010
→ 011010 → 001011 → 101001,

110110 → 010010 → 011011 → 001001
→ 101101 → 100100 → 110110.

Example 4.4.17 f is defined recursively as follows, where f = f (n) for Qn:

f (4) = p1 · p2 · ¬p3 · ¬p4,

f (5) = p1 · p2 · ¬p4 · ¬p5.

f (n) = p1 · p2 · ¬pn−1 · ¬pn ∨ f (n−2) · ¬pn.

The proof that f is a one-to-one threshold transformation is described in the
following.

Proposition 4.4.18 f of Example 4.4.17 is a threshold function.

Proof. f (n) can be expressed as f (n) = p1 · p2 · ¬pn · (¬pn−1 ∨ f (n−2)). If f (n−2) is
a threshold function, then f (n) is a threshold function by Proposition 4.1.2. ¤

Lemma 4.4.19 A point x = (x1, ..., xn) belongs to f (n) if and only if (i)
x1 = x2 = 1, xn = 0, and (ii) there exist consecutive 0s in x, and there exist
no consecutive 1s after the last consecutive 0s and before x1.

Proof. This characterization of f follows from its recursive definition above. ¤
Lemma 4.4.20 µFf ⊆ ¬̄f .

Proof. Let x ∈ f . (i) If x = 111x3 · · · xn−10, then Fx = 011(Fx)4 · · · (Fx)n−10, so
that µFx ∈ ¬̄f by Lemma 4.4.19. Similarly, (ii) If x = 1100x5 · · ·xn−10, then Fx =
0110(Fx)5 ···(Fx)n−10, so that µFx ∈ ¬̄f . (iii) If x = 110101···0100x2m+1 ···xn−10
then Fx = 0101 · · · 0110(Fx)2m+1 · · · (Fx)n−10, so that µFx ∈ ¬̄f . (iv) If
x = 110101 · · · 011x2m · · · xn−10, then Fx = 010101 · · · 011(Fx)2m · · · (Fx)n−10,
so that µFx ∈ ¬̄f . ¤

Lemma 4.4.21 µF (f ∨ ¬̄f)c ∩ ¬̄f = ∅.
Proof. Let x /∈ f ∪ ¬̄f . If x1 = 1, then (µFx)1 = 1, so that µFx /∈ ¬̄f . Let x1 = 0.
Then (Fx)1 = 0, since x /∈ ¬̄f . (i) Let (x1, x2) = 00. Then ((Fx)1, (Fx)2) =
00, so that (µFx)n = 0, and hence µFx /∈ ¬̄f . (ii) Let (x1, x2) = 01. (iia) If
x ∈ ρf then (Fx)2 = 0, so that (µFx)n = 0, and hence µFx /∈ ¬̄f . Let x /∈ ρf .
(iib) Let x3 = 0. If xn = 1, then (Fx)n = 1, so that (µFx)2 = 1, and hence
µFx /∈ ¬̄f . Let xn = 0. Let the first same consecutive elements be (xi, xi+1) = 00,
i.e. x = 010 · · · 10100xi+2 · · · 0. Then Fx = 010 · · · 10100(Fx)i+2 · ··, so that
µFx = 0(Fx)n · · · 00101 · · · 01 /∈ ¬̄f . Let the first same consecutive elements be
(xi, xi+1) = 11. Then x = 010 · · ·1011xi+2 · · ·0. Then Fx = 010 · · ·1001(Fx)i+2 · ··,
so that µFx /∈ ¬̄f . (iic) Let x3 = 1. Since x = 011x4 · ·· /∈ ρf , xn = 1. Therefore,
Fx = 01(Fx)3 · · · 1, so that µFx = 01(µFx)3 · ·· /∈ ¬̄f . ¤
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Proposition 4.4.22 F is reflective through µ.

Proof. Apply the results of Lemmas 4.4.20 and 4.4.21 to Proposition 3.4.2 of Chap-
ter 3. ¤

From Propositions 4.4.18 and 4.4.22 it follows that

Proposition 4.4.23 The transformation of Example 4.4.17 is a one-to-one
threshold transformation.

Proposition 4.4.24 Any transformation F in this section is reflective through
any linear permutation of slope −1. In particular, F−1 is isometrically similar to
F and a threshold transformation.

Proof. Let F = 〈f〉. We have already proved that F of Example 4.4.17 is reflective
through any linear permutation of slope −1. It is easily confirmed that µFx ∈ ¬̄f
for every x ∈ f and µFx /∈ ¬̄f for every x /∈ f ∨ ¬̄f for the other examples.
Therefore, by Proposition 3.4.2 of Chapter 3, F is reflective through any linear
permutation of slope −1. ¤

Corollary 4.4.25 Any transformation in this section is isometrically equivalent
to threshold transformations whose graphs consist of 2-cycles and loops.

4.5 Skew-circular one-to-one transformations

In this section, we construct minimal, skew-circular, one-to-one threshold trans-
formations. All transformations F = 〈〈f〉〉 of Qn in the examples of this section are
threshold transformations, since f are threshold functions. They are also mutually
isometrically non-equivalent and uniquely minimal.

Notation Let λ and µ ∈ SYM(N) denote the linear permutations of coefficients
(−1, 1) and (−1, 2) respectively, that is,

λ = (1, n) · (2, n− 1) · · · (i, n− i + 1) · · · ([n/2], n− [n/2] + 1),
µ = (2, n) · (3, n− 1) · · · (i, n− i + 2) · · · ([(n− 1)/2] + 1, n + 1− [(n− 1)/2]).

Example 4.5.1 F = 〈〈f〉〉, where f = p1 · · · pi · · · pn, is a one-to-one threshold
transformation, which is reflective through λ. Further, CS(F ) = {(1, 2n), (2n −
2n, 1)}.

As a generalization of Example 4.5.1, we now determine a condition for the
transformation F = 〈〈f〉〉 of Qn such that f = p1 · q2 · ... · qn, where qi = pi or ¬pi

for every i, to be one-to-one.
Let f = {x} , a one-element set, where x = (1, x2, .., xn). We assume Fx =

(0, x2, .., xn). In order to determine a condition for F (CarF ) = CarF , suppose
Fx = (ρn−)h−1x for 0 < h− 1 < 2n. Then

p1x = 1, 1−x = (ρn−)h−1x. (4.5.1)

If 0 < h− 1 < n, then

(0, x2, .., xn) = (¬xn+2−h, ..,¬xn, 1, x2, .., xn+2−(h+1)),
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that is,

¬x1 = 0 = ¬xn+2−h, x2 = ¬xn+2−(h−1), ..., xh−1 = ¬xn,
xh = 1, xh+1 = x2, ..., xn = xn+2−(h+1),

that is,

xh = 1, xh+(h−1) = αhxh, xh+2(h−1) = αh+(h−1)xh+(h−1), ..,
xn+2−h = αn+2−(h+(h−1))xn+2−(h+(h−1)), ¬x1 = 0 = ¬xn+2−h,

(4.5.2)

where

αi =
{ ¬ for n + 2− (h− 1) ≤ i ≤ n,

IQ (identity) for 2 ≤ i ≤ n + 2− (h + 1).

In particular, the number of i such that αi = ¬ is h− 2.
If n < h− 1 < 2n, then for h′ = h− n,

(0, x2, ..., xn) = (xn+2−h′ , .., xn, 0,¬x2, ..,¬xn+2−(h′+1)),

that is,

xh′ = 0, xh′+(h′−1) = α′h′xh′ , xh′+2(h′−1) = α′h′+(h′−1)xh′+(h′−1), ..,

xn+2−h′ = α′n+2−(h′+(h′−1))xn+2−(h′+(h′−1)), ¬x1 = 0 = xn′+2−h′ ,
(4.5.2)′

where

α′i =
{

IQ for n + 2− (h′ − 1) ≤ i ≤ n,
¬ for 2 ≤ i ≤ n + 2− (h′ + 1),

particularly the number of i such that αi = ¬ is n− h′.
If 0 < h − 1 < n is relatively prime with n, the system of equations (4.5.2)

sequentially and uniquely determines xi from xh = 1 to ¬x1 = 0 by step h − 1 of
their subscripts. Further, the values of xi change h−1 times as the values of xi are
determined from xh to x1. Therefore, if h− 1 is relatively prime with 2n, then xi

is consistently determined for every i.
Similarly, if 0 < h′ − 1 < n, h′ − 1 is relatively prime with n, and n− h′ is even

(i.e. n < h−1 < 2n and h−1 is relatively prime with 2n), then (4.5.2)’ is uniquely
solved.

Consequently (4.5.1) is uniquely solved if 0 < h < 2n and h is relatively prime
with 2n.

Example 4.5.2 Let n = 7 and h − 1 = 9. The equation 1−x = (ρ7−)9 =
¬̄(ρ7−)2x for x = (1, x2, .., x7) is

¬x1 = 0 = x6, x2 = x7, x3 = 0, x4 = ¬x2,
x5 = ¬x3, x6 = ¬x4, x7 = ¬x5,

that is,

x3 = 0, x5 = ¬x3, x7 = ¬x5, x2 = x7,
x4 = ¬x2, x6 = ¬x4,¬x1 = 0 = x6.

The solution is x = 1001100.
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Now assume 0 < h− 1 < 2n and h− 1 is relatively prime with 2n, and let x be
the solution of (4.5.1). Then

((ρn−)h−1)2x = (ρn−)h−1(1−x)
= (¬xn−h+2, ..,¬xn, 0, x2, .., xn−h+1)

= h−((ρn−)h−1x)
= h−1−x.

In general,

(ρn−)i(h−1)x = (1 + (i− 1)(h− 1))−(1 + (i− 2)(h− 1))−...(1 + (h− 1))−1−x
for every positive integer i.

(4.5.3)
Therefore, (ρn−)i(h−1)x for i = 1, .., 2n−1 are all different from x and (ρn−)n(h−1)x =
¬̄x. Let f = {x} and F = 〈〈f〉〉. Then

Fx = 1−x = (ρn−)h−1x,

and F is one-to-one with one 2n-cycle.
Now we transform the system of equations (4.5.1) by replacing x with µx. Then

we have
p1(µx) = 1, 1−µx) = ¬̄(ρn−)h−1(µx). (4.5.5)

If 0 < h− 1 < n, then by (4.5.2), (4.5.5) is equivalent to

xn+2−h = 1, xn+2−(h+h−1) = εhxn+2−h, xn+2−(h+2(h−1)) = εh+(h−1)xn+2−(h+(h−1)), ...,
xh = εn+2−(h+(h−1))xh+(h−1), x1 = 0 = ¬xh.

(4.5.6)
If 2 ≤ i ≤ n + 2− (h + 1), then

n + 2− (h− 1)− (n + 2) + (h + 1) ≤ n + 2− (h− 1)− i ≤ n + 2− (h− 1)− 2,

so that 2 ≤ n + 2 − (h + 1). Therefore, if i + j = n + 2 − (h − 1), then εi = εj by
(4.5.3). Therefore, (4.5.6) is equivalent to (4.5.2). That is, the system of equations
(4.5.1) is invariant under µ, so that the solution x of (4.5.1) is also invariant under
µ, i.e. µx = x. The same is true for n < h < 2n.

Now let F = 〈〈f〉〉 for f = {x}. Then

λFx = (xn, xn−1, .., x2, 0), while ¬̄(ρn−)n−1x = (x2, x3, ...xn, 0).

Therefore,
λFx = ¬̄(ρn−)n−1x,

since µx = x. Also
λF (f ∪ ¬̄f)c ∩ ¬̄(ρn−)n−1f = ∅,

since λF is one-to-one. Therefore, by Proposition 3.4.5, F is reflective through
(ρn−)iλ for every i. Thus we obtained the following theorem.

Theorem 4.5.3 Assume 0 < h− 1 < 2n is relatively prime with 2n, Then there
exists a one-to-one reflective transformation F = 〈〈f〉〉 of Qn such that

f = p1 · α2q2 · ... · αnqn, where αi = IQ or ¬ for every i,

F = (ρn−)h−1 on CarF .

In this case, f is uniquely determined by (4.5.2) or (4.5.2)’. F has one 2n-cycle.
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Example 4.5.4 For Example 4.5.2, we have F = 〈〈f〉〉, f = 1·¬2·¬3·4·5·¬6·¬7.
The 14-cycle of F is

1001100 → 0001100 → 0011100 → 0011000 → 0011001 → 0111001
→ 0110001 → 0110011 → 1110011 → 1100011 → 1100111

→ 1100110 → 1000110 → 1001110 → 1001100.

Example 4.5.5 Consider F of Example 4.5.1. Then F 2 = 〈〈p1 · · · ·pn−1〉〉 is a
one-to-one threshold transformation. F 2 is reflective through λ, since F is reflective
through λ. CS(F 2) = {(2, n), (2n − 2n, 1)}. Further, F 3 = 〈〈p1 · · · pn−2 · (pn−1 ∨
¬pn−1)〉〉 is also an incompressible and inexpansible threshold transformation that
is reflective through λ.

Example 4.5.6 Let F = 〈〈f〉〉 be the self-dual transformation of Qn defined by

f = p1 · p2 · Sn−4{p3, p4, ..., pn−1} · pn.

The proof of the reflectiveness and hence one-to-one of F is given in the following.

Lemma 4.5.7 Let F of Example 4.5.6 be [f1, ..., fn]. If i 6= j, then fi ∩ (fj ∨
¬̄fj) = ∅.
Proof. fi = (ρn−)i−1f by definition. First, f1 ∩ fi = ∅ for every i 6= 1 by the
following reasons: x ∈ f2 implies x1 = 0, while x ∈ f1 implies x1 = 1; x ∈ f3

implies x2 = 0, while x ∈ f1 implies x2 = 1. If i ≥ 4, then x ∈ fi implies that
the density of x is less than n − 2, while the density of any x ∈ f1 is n − 1 or n.
Next, fi = (ρn−)i−1f1 and fj = (ρn−)i−1fj−i+1, and (ρn−)i−1 is one-to-one, so
that fi ∩ fj = ∅ for every i 6= j. Similarly, we can show that fi ∩ ¬̄fj = ∅ for every
i 6= j. ¤

Lemma 4.5.8 λ(CarF ) ⊆ CarF in Example 4.5.6.

Proof. Let fi be decomposed as fi = gi ∨ hi, where

g1 = p1 · p2 · p3 · · · pn−2 · ¬pn−1 · pn,

h1 = p1 · p2 · Sn−5{p3, p4, ..., pn−2} · pn−1 · pn.

gi = (ρn−)i−1g1 for every i,

hi = (ρn−)i−1h1 for every i.

Then it can be shown that λgi = ¬̄gn−i+4 or gn−i+4, and λhi = ¬̄hn−i+2 or
hn−i+2 for every i. For example, suppose 4 ≤ i ≤ n− 1. Then

gi = pi · pi+1 · · · pn · ¬p1 · · · ¬pi−3 · pi−2 · ¬pi−1.

λgi = pn−i+1 · pn−i · · · p1 · ¬pn · ¬pn−1 · · · ¬pn−i+4 · pn−i+3 · ¬pn−i+2

= ¬pn−i+4 · ¬pn−i+5 · · · ¬pn · p1 · · · pn−i+1 · ¬pn−i+2 · pn−i+3

= ¬̄gn−i+4.

hi = pi · pi+1 · Sn−5{pi+2, .., pn,¬p1, ..,¬pi−3} · ¬pi−2 · ¬pi−1.

λhi = pn−i+1 · pn−i · Sn−5{pn−i−1, .., p1,¬pn, ..,¬pn−i+4} · ¬pn−i+3 · ¬pn−i+2

= ¬pn−i+2 · ¬pn−i+3 · Sn−5{¬pn−i+4, ..,¬pn, p1, .., pn−i−1} · pn−i · pn−i+1

= ¬̄hn−i+2.

Therefore, λ(CarF ) ⊆ CarF . ¤
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Proposition 4.5.9 F in Example 4.5.6 is a one-to-one threshold transformation,
which is reflective through λ.

Proof. F is clearly a threshold transformation. To prove that F is reflective through
λ, we will show that (i) λFfi ⊆ ¬̄fλi for every i and (ii) λF (fi ∪ ¬̄fi)c ∩ ¬̄fλi = ∅
for every i. (i) Let x ∈ fi for some i. Then if 2 ≤ i ≤ n− 1, then

xi · xi+1 · Sn−4{xi+2, .., xn,¬x1, ..,¬xi−2} · ¬xi−1 = 1.

¬̄fλi = ¬̄fn−i+1

= ¬pn−i+1 · ¬pn−i+2 · Sn−4{¬pn−i+3, ..,¬pn, p1, .., pn−i−1} · pn−i.

By Lemma 4.5.7,
λFx = (xn, .., xi+1,¬xi, xi−1, .., x1).

Therefore,

fλi¬̄(λFx) = xi · ¬xi−1 · Sn−4{¬xi−2, ..,¬x1, xn, .., xi+2} · xi+1 = 1,

that is, λFx ∈ ¬̄fλi. Similarly, if x ∈ fi for i = 1 or n, then λFx ∈ ¬̄fλi. (ii)
Let x /∈ fi ∪ ¬̄fi. (iia) If x ∈ fj ∪ ¬̄fj for some j 6= i then λFx ∈ fλj ∪ ¬̄fλj

by (ii), so that λFx /∈ ¬̄fλi by Lemma 4.5.7. (iib) Let x /∈ fj ∪ ¬̄fj for every j.
Then x is a fixed point of F , so that λFx = λx. Suppose λFx ∈ ¬̄fk for some
k. Then λx ∈ ¬̄fk, so that x = λ(λx) ∈ ¬̄fl for some l by Lemma 4.5.8, which is
a contradiction. Consequently, by Proposition 3.3.2 of Chapter 3, F is reflective
through λ. ¤

Example 4.5.10 Let n = 5 and F = 〈〈1 ·3 ·4 · (¬2∨¬5)〉〉. GRAPH(F ) consists
of three 10-cycles and two loops. The flow graph is

[1 · 2 · 3 · 4 · 5] ↔ [1 · ¬2 · 3 · 4 · 5], [1 · 2 · ¬3 · 4 · 5]∂.

F is reflective through λ.

Example 4.5.11 The following transformations 〈〈f (i)〉〉 of Qi are expected to
be one-to-one and reflective through λ.

f (4) = 1 · 2 · (3 ∨ 4), f (6) = 1 · 2 · (3 ∨ 4 · (5 ∨ 6)), ...

f (5) = 1 · 2 · (3 ∨ 4 · 5), f (7) = 1 · 2 · (3 ∨ 4 · (5 ∨ 6 · 7)), ...

Open Question All one-to-one minimal threshold transformations we have
so far are reflective through some isometries of order 2 as well as all isometries.
Whether it is true for all minimal one-to-one threshold transformations is an open
question.


