
CHAPTER 9 ATTRACTORS IN NON-AUTONOMOUS NEURAL
NETWORKS

Abstract. Non-autonomous primitive dynamical neural networks (PDNNs)
that incorporate a spontaneous firing rate of 1/2 per unit time are constructed.
The concept of attractors is redefined so that they should be invariant under
shifts in arrival of the periodic input sequence. If asymptotic properties for
an attractor depend on both initial states and input, then the attractor is
called bi-dependent. Then we show how non-autonomous PDNNs described
in Chapter 6 are modified by input in corresponding non-autonomous PDNNs,
so that a non-attractive limit cycle becomes a bi-dependent attractive cyclic
orbit, a non-unique attractor becomes unique, and an attractor consisting of
more than one cycles becomes an attractive cyclic orbit.

9.1 Introduction

In the last two chapters, we introduced McCulloch-Pitts networks of self-oscillatory
neurons with spontaneous firing rates 1/2 and 1/3 respectively, and showed the ex-
istence of attractors. In the first order neural networks described in Chapter 6,
N = {1, 2, ..., n} represents neurons, and the state space {−1, 1}N of the PDNN
(primitive dynamical neural network) is a finite metric space with the integer-valued
Hamming distance dH . The PDNN of spontaneous firing rate 1/2 is a finite state
dynamical system (FSDS) on the state space {−1, 1}N generated by the threshold
transformation F of {−1, 1}N defined by

Fx = Sgn(Ex), x(t + 1) = F (x(t)).

This model is autonomous, that is, stable periodic firing patterns that are repre-
sented by attractors are completely determined by the efficacy matrices of synaptic
connections and the initial states of the neurons at time t = 0. However, the dy-
namics of any biological system depends on information that changes at every time
and that is input from the outside of the system, from neurons of other nervous
systems and/or from external stimulus. Further, in autonomous networks, if a
minimal attractor consists of more than one cycle, then there are some fluidity of
shifting from one pattern to another caused by noise, even with a change in firing
rate in some cases. This problem may be solved only in a non-autonomous model
with input from outside the network.

Therefore, we want here to construct a PDNN in which x(t+1) ∈ X = {−1, 1}N
depends on x(t) and the external input r(t). Let us assume that r(t) ∈ Y =
{−1, 1}N′, where N′ = {n + 1, n + 2, ..., 2n} is the set of external input elements,
and that r(t) is a periodic sequence defined as r(t) = Vt%k by some k-sequence
V = (V0, ..., Vk−1) in Y .

The elemens of N′ represent receptor neurons or interneurons. Let the synaptic
connections between N and N′ be represented by an efficacy matrix C. Then we
define

F (x, y) = Sgn(Ex + Cy), (9.1.1)
x(t + 1) = F (x(t), r(t)). (9.1.2)
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In this case, for each given input V , a dynamical system ϕV on X = {−1, 1}n

generated by F and V is defined as ϕV : X×Z+ → X, ϕV (x, t) = x(t), and x(0) = x.
As in Chapter 6, if x(t) = −x(t−1) for every t, then the orbit x(0), x(1), ... is called
neutral.

In the following, both {−1, 1}N and {−1, 1}N′ are identified with {−1, 1}n. The
input k-sequence V may be expressed as V = (i1w1, i2w

2, .., ijw
j) such that i1+...+

ij = k and wh ∈ {−1, 1}n. For example, for n = 2, V = ((1, 1), (1, 1), (−1, 1), (−1,−1), (−1,−1)) =
(2(1, 1), 1(−1, 1), 2(−1,−1)).

We are concerned with properties that are invariant under shifts in arrival of the
input k-sequence. Therefore, we apply the definition of attractors given in the next
section, which should also be referred to for the following discussion.

There are two extreme cases in the dynamical system ϕV . The first case is that
minx∈{−1,1}N |Eix| is sufficiently greater than maxj |Cij | for every i so that x(t+1) =
Sgn(Ex(t)). In this case we have an autonomous PDNN described in Chapter 6.
The second case is that minj |CiVj | is sufficiently greater than maxj |Eij | for every i
so that x(t+1) = Sgn(Cr(t)). In this case, the sequence (Sgn(CV0), ..., Sgn(CVk−1))
is clearly an attractor. For example, if V is a k-sequence of period p, and if C = cI,
where I is the identity matrix, such that c is sufficiently greater than |Ei| for every
i, then x(t + 1) = r(t), so that V is a unique attractor. However, we are not
interested in such extreme cases and concerned with only bi-dependent attractors.

Section 9.2 formally defines various concepts concerning autonomous and non-
autonomous PDNNs and particularly attractors. Section 9.3 describes Boolean
representations of non-autonomous PDNNs. The existence of bi-dependent attrac-
tive loops is shown in Section 9.4. The existence of bi-dependent, attractive, cyclic
orbits in skew-circular PDNNs is shown in Section 9.6. In the final Section 9.7, we
show how a non-unique attractor in a cicular autonomous PDNN becomes unique
but bi-dependent in a corresponding non-autonomous PDNN.

9.2 Definition of attractors

A sequence V of X is called periodic if there exists some k such that Vi = Vi%k for
every i = 0, 1, .... The minimal such k is called the period, and V is denoted by the
k-sequence (V0, V1, .., Vk−1); in particular, if Vi 6= Vj for every i 6= j, 0 ≤ i, j ≤ k−1
then V is called cyclic (See Chapter 6.1).

Let X and Y be finite metric spaces. Let F be a mapping: X×Y → X and V =
(V0, V1, .., Vk−1) be a k-sequence of Y . Then F defines a mapping ϕV : X×Z+ → X
by

ϕV (x, 0) = x,

ϕV (x, t) = F (ϕV (x, t− 1), V(t−1)%k) for t ≥ 1,

Then ϕV is called a finite-state dynamical system (FSDS) on X generated by F and
input V . If x is a point of X and W = σjV for some j, then the sequence

OrbF,V x = (ϕV (x, 0), ϕV (x, 1), ϕV (x, 2), ...)

is called an orbit starting at the point x. If S is a subset of X, then OrbF,V S denotes
the set of all orbits starting at some x ∈ S. Further, let PO(F, V ) denote the set
of all periodic orbits in the FSDS ϕV . A periodic orbit W = (W0,W1, .., Wm−1) ∈
PO(F, V ) is called a limit orbit of x and denoted by ΩF,V x, if there exists some
j ∈ Z+ such that j ≡ 0 mod k and ϕV (x, t) = W(t−j)%m for every t ≥ j. For
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a subset S of X, ΩF,V S is the union
⋃

x∈S ΩF,V x. Let σ denote the round shift
defined by σW = (W1, ..., Wm−1,W0) for any m-sequence W = (W0, W1, ..,Wm−1)
of any length m. Further, if Φ = {U, ..,W}, then let σΦ = {σU, ..., σW}.

Definition 9.2.1 A subset Φ of PO(F, V ) is called attractive or an attractor in
the FSDS generated by F and V , if there exists some neighborhood Uε(ImΦ) such
that

(1) F (Uε(ImΦ)×V) ⊆ UεImΦ.
(2) ΩF,σjV (Uε(ImΦ)) = σjΦ for any j.

In particular, if Φ consists of one periodic orbit, the periodic orbit is called
an attractor. The basin for an attractor Φ is the set of all points x such that
ΩF,σjV x ∈ σjΦ for any j. If the basin for an attractor is not the entire space
X, then the attractor is called dependent on initial states. If an attractor in the
FSDS generated by F and V is not an attractor in the FSDS generated by F and
some input V ′, then the attractor is called dependentoninput. If an attractor is de-
pendent on both initial states and input, then the attractor is called bi−dependent.

9.3 Boolean and extended representations

Let l and o be the elements of Qn such that li = 1 and oi = 0 or every i. The
mapping F : {−1, 1}n×{−1, 1}n → {−1, 1}n defined by (9.1.1) can be represented
by an equivalent mapping G : Qn ×Qn → Qn defined by

G = Bool ◦ F ◦ Sgn.

Specifically,
G(x, y) = Bool(2(Ex + Cy)− (E + C)l), (9.3.1)

since Sgnx = 2x− l if x ∈ Qn. Further, (9.1.2) is replaced by

x(t + 1) = G(x(t)), s(t)), (9.3.2)

where s = Boolr.
Let pi and qi be respectively the projection functions: Qn×Qn → Q defined by

pi(x, y) = xi, qi(x, y) = yi.

Let G : Qn×Qn → Qn and G = (G1, ..., Gn), where Gi = pi ◦G. G can be further
represented by

G = [g1, ..., gn], where gi = pi · ¬Gi. (9.3.3)
The extended representation G# of G is defined as in the previous chapters by

(G#x)i =
{

dSH(PN\{i}x, gi|1) if xi = 1,
dSH(PN\{i}x, (¬̄gi)|0) if xi = 0

for i = 1, .., n. It is clear that

xi 6= (Gx)i if and only if (G#x)i ≤ 0.

If T is an isometry of Qn, then T also defines an isometry of Qn×Qn by T (x, y) =
(Tx, Ty). With this definition, let Tg be defined for an isometry of Qn and a
function g : Qn × Qn → Q by the Pólya action as Tg = g ◦ T−1. Let ρ be the
circular permutation (1, 2, .., n) of N. A mapping G : Qn × Qn → Qn is called
circular if G ◦ ρ = ρ ◦G. G is called skew-circular if G ◦ ρn− = ρn− ◦G. Then G
is circular iff gi = ρI−1g1 for every i in (9.3.3); G is denoted by 〈g1〉 in this case. G
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is skew-circular if and only if gi = (ρn−)i−1g1 for every i; G is denoted by 〈〈g1〉〉 in
this case.

As in previous chapters, if a group G acts on a set X, then an equivalence
relation ∼G on X can be defined by x ∼G y if there is an element τ ∈ G such
that τx = y. Each equivalence class with respect to the equivalence relation ∼G,
that is, OrbGx is denoted by [x]. Also, OrbGx for a subset S ⊆ X is denoted by
[S]. Further, the equivalence relation ∼G is extended to the set of all non-empty
subsets of X, that is, A ∼G B if OrbGA = OrbGB.

As in Chapter 6, it is often more convenient to consider −F in place of F
in (9.1.1), or equivalently, ¬̄G in place of G in (9.3.1). Note that F (x, y) =
−F (−x,−y), that is, G(x, y) = ¬̄G(¬̄x, ¬̄y). Therefore, as shown in the follow-
ing diagram, an orbit x of ϕV generated by G and V can be obtained from a
corresponding orbit x′ of ψV ′ generated by ¬̄G and V ′, where V ′i = ¬̄Vi if i is
even, V ′i = VI if i is odd, and x′(0) = ¬̄x(0). Specifically, x(t) = ¬̄x′(t) if t is even,
and x(t) = x′(t) if t is odd.

ϕV ψV ′
x(0), x′(0) = ¬̄x(0),
V0. V ′0 = ¬̄V0.
x(1) = G(x(0)), v0), x′(1) = ¬̄G(x′(0), v′0)

= ¬̄G(¬̄x(0), ¬̄V0)
= x(1),

V1. V ′1 = V1.
x(2) = G(x(1), v1), x′(2) = ¬̄G(x′(1), V ′1)

= ¬̄G(x(1), v1)
= ¬̄x(2),

V2. V ′2 = ¬̄V2.
x(3) = G(x(2), v2), x′(3) = ¬̄G(x′(2), v′2)

= ¬̄G(¬̄x(2), ¬̄V2)
= x(3),

V3. V ′3 = V3.
....... .........

9.4. Attractive loops

Let d(x) be the density of x ∈ Qm, i.e. d(x) = |{i | xi = 1}|.

Example 9.4.1 Let Eij = ε > 0 for every i 6= j and C = εL in (9.1.1), where
Lij = 1 for every i, j.

Lemma 9.4.2 In the PDNN of Example 9.4.1, the transformation G defined by
(9.3.1) is

G =





< p1 >, if 0 < ε < 1/(2n− 1);
< p1 · S1(¬p2, ..,¬pn,¬q1, ..,¬qn) >, if 1/(2n− 1) < ε < 1/(2n− 3);
< p1 · S2(¬p2, ..,¬pn,¬q1, ..,¬qn) >, if 1/(2n− 3) < ε < 1/(2n− 5);
. . . . . .

Proof. Gi(x, y) = Bool((2(d(x · y))− 2n− 1)ε− 1), if xi = 1. Therefore, (x, y) ∈ gi

if and only if xi = 1 and (2d(x · y) − 2n − 1)ε − 1 < 0. Then, (x, y) ∈ gi iff (xi =
1, d(x·y) ≤ 2n, and ε < 1/(2n−1)), or (xi = 1, d(x·y) ≤ 2n−1, and ε < 1/(2n−3))
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or (xi = 1, d(x ·y) ≤ 2n−2, and ε < 1/(2n−5)), or so forth. Therefore, the results
of this lemma is obtained. ¤

Let 0 < 1/(2n − 3) < ε < 1/(2n − 5) in Example 9.4.1. Then by Lemma 9.4.2,
< p1·S2(¬p2, ..,¬pn,¬q1, ..,¬qn) >. Therefore, (l) is a unique attractive loop for the
input 1-sequence V = (l), since G(x, l) = x if and only if x = l, and G(U1(l), l) = l.
Similarly, (o) is a unique attractive loop for the input 1-sequence V = (o). On the
other hand, (l) is a loop for V = (i−l), but if x ∈ U1(l), then G(x, i−l) = ¬̄x and
G(¬̄x, i−l) = x. Therefore, (l) is not an attractor for V = (i−l). However, the
asymptotic properties of this PDNN are not completely determined by its input.
For example, if x ∈ U2(l), then G(x, l) = ¬̄x and G(¬̄x, l) = x, that is, x is on a
neutral orbit and does not converge to the attractor (l). Therefore, this attractor
is bi-dependent.

Next, let 0 < 1/(2n − 5) < ε < 1/(2n − 7). If V = (l), then l is a unique
attractive loop for V , since G(U2l, l) = l. Similarly, (o) is a unique attractive loop
for V = (o), and l is an attractor for V = (i−l). Further, l is also an attractor
for V = (i−l), since G(U1l, i

−l) = l. But if x ∈ U1l, then G(x, {i, j}−l) = −x and
G(−x, {i, j}−l) = x for i 6= j. Therefore, l is not an attractor for V = ({i, j}−l)
such that i 6= j. In summary, we have obtained:

Theorem 9.4.3 There exists a PDNN that has a bi-dependent attractive loop.

9.5. An attractiveness condition

Let H : Qn ×Qn → Qn and V = (V0, V1, .., Vk−1) be a cyclic sequence in Qn.
Then H can define a transformation HV of Qn×V by HV (x, Vi) = (H(x, Vi), V(i+1)%k).
Let T be an isometry of Qn such that TVi = V(i+1)%k for every i. Then HV (x, Vi) =
(H(x, Vi), TVi).

Further, let H be commutative with T , i.e. H ◦ T = T ◦ H. Then HV is
commutative with T . Let [S] for a subset S of Qn ×Qn denote Orb〈T 〉S. Then,
as described in Chapter 2.6, HV defines a transformation H∼

V of [Qn × V] by
H∼

V [x, y] = [HV (x, y)]. Under these conditions, the following proposition holds.

Proposition 9.5.1 Let W = (W0,W1, .., Wk−1) be a cyclic sequence in Qn

such that TWi = W(i+1)%k with the length k being the same as that of V . Let
H∼

V [UεW×V] ⊆ [UεW×V] for some ε > 0, and assume that CY(H∼
V |[UεW×V])

consists of some loops [Y1, V0]∂, .., [Ym, V0]∂ for Yi ∈ W. Then Φ = OrbT {Y1, .., Ym}
is an attractor of H.

Proof. (i) For the proof of H(UεImΦ ×V) ⊆ UεImΦ, let (x, Vi) ∈ UεImΦ ×V =
UεW ×V. Then [x, Vi] ∈ [UεW ×V], so that H∼

V [x, Vi] ∈ [UεW ×V]. Therefore,
H(x, Vi) ∈ [UεW]. Since [UεS] = Uε[S] for any S, and W is 〈T 〉-invariant,we have
H(x, Vi) ∈ UεW = UεImΦ.

(ii) For the proof of ΩH,σjV (UεImΦ) = σjΦ for any j, let x ∈ UεImΦ =
UεW. Then, in GRAPH(H∼

V |[UεW × V]), [x, Vj ] → [(H(x, Vj), V(j+1)%k)] →
... → [Wu, V0]∂ for some u such that Wu = Yi for some i. Therefore, (x, Vj) →
(H(x, Vj), V(j+1)%k) → ... → (W(u+s)%k, Vs → (W(j+u)%k, Vj) → ... for some s.
Therefore, ΩH,σjV x = σjOrbT Yi. Therefore, ΩH,σjV (UεImΦ) = σjΦ. ¤
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9.6. Attractors in skew-circular PDNNs

Example 9.6.1

E =




−1 ε · · · · ε
−ε −1 ε· · · ε
−ε −ε −1 ε · · ε
· · · · · · ·
· · · · · · ·
−ε · · · · −ε −1




, (9.6.1)

where n ≥ 5 and 1/(n− 1) < ε < 1/(n− 3), and C = δI.

In Example 9.6.1, if δ = 0, then the transformation G defined by (9.3.1) is

G = 〈〈p1 · S1{¬p2, ..,¬pn}〉〉,

which is independent of any input V and generates an autonomous PDNN. More
specifically in this case, if G′ is the transformation of Qn defined by G′x = G(x, a)
for any a, then ¬̄G′ = 〈〈p1 ·p2 · · · pn)〉〉, so that GRAPH(¬̄G′) consists of loops and
the unique 2n-cycle:

W = (l, ..., (ρn−)i−1l, ..., (ρn−)2n−1l).

Therefore, this cycle is not attractive in the autonomous FSDS generated by ¬̄G′.
Now, we assume (n− 1)ε− 1 < δ and 1− (n− 3)ε < δ < 1− (n− 5)ε. Then

G = 〈〈p1 · (S2{¬p2, ..,¬pn} ∨ ¬q1)〉〉.

Let H = ¬̄G. Then

H = 〈〈h1〉〉, h = p1 · q1 · Sn−2{p2, .., pn}.

Therefore, xi = 1 and Hi(x, y) = 0, iff yi = 1 and (x = {1, .., i − 1}−l or x =
j−{1, .., i− 1}−l), where j 6= i.

Let ai = i%2 for every i. Then

Sn−2{p2, .., pn}((ρn−)−(i−1)a) = 0,

so that (ρn−)−(i−1)h(a, y) = 0 for every i for any y. Therefore, H(a, y) = a for any
y; similarly H(¬̄a, y) = ¬̄a for any y, that is, (a) and (¬̄a) are loops for any input
sequence.

Now consider the points l of W and let li denote 1, .., i−l and oi denote 1, .., i−o.
We have l1 = (o1)1 = 1, Sn−2{p2, .., pn}l = 1, and (o1)i = 0 for any i 6= 1.
Therefore, H(l, o1) = l1, so that

H((ρn−)i−1l, (ρn−)i−1o1) = (ρn−)i−1l1 = (ρn−)il.

Therefore, W is a periodic orbit in the FSDS generated by H and the input

V = (o1, ρn−o1, ..., (ρn−)2n−1o1).
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H is skew-circular, that is, commutative with T = ρn−. The values of the
extended representation H#(l, y) for y ∈ V are

H#(l, o1) = (0, 1, 2, ..., n− 1),

H#(l, o2) = (0, 0, 2, 3, ..., n− 1),

H#(l, o3) = (0, 0, 1, 3, 4, ..., n− 1),

H#(l, o4) = (0, 0, 1, 2, 4, 5, ..., n− 1),
.. ...

H#(l, on−1) = (0, 0, 1, 2, ..., n− 3, n− 1),

H#(l, l) = (0, 0, 1, 2, ..., n− 3, n− 2),

H#(l, l1) = (1, 0, 1, 2, ..., n− 2),

H#(l, l2) = (1, 1, 1, 2, 3, ..., n− 2),

H#(l, l3) = (1, 1, 2, 2, 3, ..., n− 2),

H#(l, l4) = (1, 1, 2, 3, 3, 4, ..., n− 2),
.. ...

H#(l, ln−1) = (1, 1, 2, ..., n− 2, n− 2),

H#(l, ln) = (1, 1, 2, , ..., n− 2, n− 1),

Therefore, in GRAPH(H∼
V ),

[l, l] → [l, on−1] → [l, on−2] → ... → [l, o2]
↓

[2−l, l2] ← [l, l1] [l, o1]∂
↑

[l, l2] → [l, l3] → ... → [l, ln−1] → [l, ln]

(9.6.2)

Now, consider H(j−l, y) for 3 ≤ j ≤ n−1 and y ∈ V. First for y = l, on−1, .., o1,

(H#(j−l, y))1 = 0,

(H#(j−l, y))2 ≥ 1,

(H#(j−l, y))i ≥ 2 if 3 ≤ i 6= j.

Therefore, [j−l, y] → [1−l, ρn−y] = [l, y] or

[j−l, y] → [1, j−l, ρn−y] = [(j − 1)−l, y],

so that
[j−l, y] → ... → [2−l, y] or
[j−l, y] → ... → [k−l, y] for some k.

(9.6.3)

On the other hand, for y = l1, l2, .., ln,

(H#(j−l, y))1 ≥ 1,

(H#(j−l, y))2 ≥ 1,

(H#(j−l, y))i ≥ 2 if 3 ≤ i 6= j.

Therefore,
[j−l, y] → [l, ρn−y] or [j−l, y] → [j−l, ρn−y],

so that
[j−l, y] → ... → [j−l, o1] or
[j−l, y] → ... → [l, lk] for some k ≥ 2. (9.6.4)
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Now, consider H(2−l, y) for y ∈ V. First for y = l, on−1, .., o3,

(H#(2−l, y))1 = 0,

(H#(2−l, y))2 = n− 2,

(H#(2−l, y))3 = 0,

(H#(2−l, y))i ≥ 1 if i ≥ 4.

Therefore,
[2−l, y] → [l3, ρn−y] = [l, (ρn−)−2y]. (9.6.5)

Next, H#(2−l, o2) = (0, n− 2, 1, 2, .., n− 2), so that

[2−l, o2] → [l2, o3] = [l, o1]. (9.6.6)

Also, H#(2−l, o1) = (0, n− 3, 1, 2, .., n− 2), so that

[2−l, o1] → [l2, o2] = [l, o]. (9.6.7)

On the other hand, for y = l3, .., l6,

(H#(2−l, y))1 ≥ 1,

(H#(2−l, y))2 = n− 3,

(H#(2−l, y))i ≥ 1 if i ≥ 3.

Therefore,
[j−l, y] → [2−l, ρn−y] → .. → [2−, o1]. (9.6, 7)

Further, H#(2−l, l2) = (1, n− 3, 0, 1, .., n− 3), so that

[(n− 2)−l, l] = [2, 3−l, l3] ← [2−l, l2]. (9.6.8)

Also, H#(2−l, l1) = (1, n− 2, 0, 1, 2, .., n− 3), so that

[(n− 2)−l, on−1] = [2, 3−l, l2] ← [2−l, l1]. (9.6.9)

Therefore, H∼
V [U1W × V] ⊆ [U1W × V], and CY(H∼

V |[U1W × V]) consists of a
unique loop [l, o1]∂. To confirm this, it suffices to check the limit cycles of all ver-
tices incident to the left arrows ← in (9.6.2), (9.6.8), and (9.6.9). Therefore, by
Proposition 9.5.1, W is an attractor. By translating from H into G = ¬̄H, we have
obtained:

Theorem 9.6.2 In the PDNN generated by E of (9.6.1) and the input cyclic
sequence

V = (l1, (ρn−)(n+1)l1, .., (ρn−)(n+1)(i−1)l1, ...),

the cyclic orbit

W = (o, (ρn−)(n+1)o, .., (ρn−)(n+1)(i−1)o, ...)

is a bi-dependent attractor. If the initial state is either a or ¬̄a, where ai = i%2,
then every neuron performs spontaneous firing for any input.

In the above theorem, if n is even, then both V and W are cyclic 2n-sequences,
since n + 1 and 2n are relatively prime. If n is odd, then both V and W are cyclic
n-sequences, since gcd(n + 1, 2n) = 2. In this case,

W ′ = (o1, (ρn−)(n+1)o1, .., (ρn−)(n+1)(n−1)o1)
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is an attractor in the PDNN generated by E and input

V ′ = (l2, (ρn−)(n+1)l2, .., (ρn−)(n+1)(n−1)l2).

In both cases, note that each attractor consists of one cyclic orbit. Therefore, there
is no possibility of shifting from one cyclic orbit to another within an attractor,
caused by some noise, unlike in some autonomous neural networks. Computational
results expect that U1(W) is the basin for the attractor and that the limit orbit of
any point outside the basin is neutral.

9.7 Attractors in circular PDNNs

As an example of autonomous circular transformations, we showed the existence
of a non-unique attractive 2m-cycle in Chapter 7 (Example 7.1.2). We also showed
the existence of a non-unique attractor consisting of two (2m− 1)-cycles (Example
7.1.4). In this section we show how an autonomous network is modified by input
in a corresponding non-autonomous network, so that such a non-unique attractor
becomes a unique but bi-dependent attractor. The bi-dependence means that as-
ymptotic properties for this attractor are not completely dictated by the input and
are also dependent on initial states. Corresponding to Example 7.1.2 of Chapter
7, the following example shows the existence of a bi-dependent non-autonomous
circular threshold transformation having a unique attractor.

Example 9.7.1 Let n = 2m, and let H =< h >: Q2m×Q2m → Q2m be defined
by

h = p1 · pm · ¬p2m · ¬q1 · qm · ¬q2m.

In Example 9.7.1, xi = 1 and Hi(x, y) = 0, iff xi+m−1 = 1, xi+2m−1 = 0, yi = 0,
yi+m−1 = 1, and xi+2m−1 = 0.

Let ρ be the cyclic permutation (1, 2, .., 2m). Let o be the zero vector of Q2m

and oi be defined as in the previous sections. Let W be the 2m-sequence

W = (om, ρom, ..., ρ2m−1om).

Let v = ρ−1lm−1 and let the input 2m-sequence V be

V = (v, ρv, ..., ρ2m−1v).

We have

H(ρiom, v) =





ρρiom if 0 ≤ i ≤ m− 3,
ρiom+1 if i = m− 2,
ρiom if m− 1 ≤ i ≤ 2m− 1.

(9.7.1)

Therefore, for any i such that 0 ≤ i ≤ m − 3, H(ρjρiom, ρjv) = ρj+1ρiom for any
j. Therefore,

OrbH,V (ρiom) = (ρiom, ρi+1om, ..., ρi−1om) = σiW ∈ PO(H, V )

for 0 ≤ i ≤ m− 3. Let
Φ = {σiW |0 ≤ i ≤ m− 3}.

Our objective is to prove Φ is an attractor in the FSDS generated by H and V .
Let

Ci = {x | x ∈ Q2m, dH(ρmx, x) = 2i}.
Then clearly H(x, y) = x for any x ∈ C0 for any y ∈ Q2m; in particular, (x) is a
loop for the input σiV for any i.
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Lemma 9.7.2 Cc
0 = Um−1W, where the prefix c denotes the complement of a

subset.

Proof. For x ∈ Q2m, let j be such that nj = |{i | i ≤ m, (ρjx)i = 1}| is the
maximum. Let y = ρjx. Let

α = |{i | i ≤ m, yi = 1, ym+i = 0}|,
β = |{i | i ≤ m, yi = 0, ym+i = 1}|,
γ = |{i | i ≤ m, yi = 1, ym+i = 1}|,
δ = |{i | i ≤ m, yi = 0, ym+i = 0}|.

Let x ∈ Cc
0. Then x ∈ Ck for some k ≥ 1, so that β < α. Therefore, dH(y, om) =

2β + γ + δ < α + β + γ + δ = m. Therefore, y ∈ Um−1o
m, so that x ∈ Um−1W.

Conversely, let x ∈ Um−1W. Then 2β + γ + δ ≤ m− 1, so that β < α. Therefore,
α ≥ 1, so that x ∈ Cc

0. ¤

The following Lemmas are clear.

Lemma 9.7.3 (i) If xi−1 = xm+i−1, then

(Hi(x, v),Hm+i(x, v)) = (xi, xm+i)

for every i. (ii) If (Hi(x, v),Hm+i(x, v)) = (0, 1) then

(xi−1, xm+i−1) = (0, 1) or (xi−1, xm+i−1) = (0, 1)

for every i.

Lemma 9.7.4 (i) If (xi, xm+i) = (0, 1) for some 1 ≤ i ≤ m, then

(Hi(x, v),Hm+i(x, v)) = (0, 1).

(ii) If (x1, xm+1) = (0, 1), then

(H2(x, v),Hm+2(x, v)) = (0, 1).

Lemma 9.7.5 (i) If (xi, xm+i) = (1, 0) for some 1 ≤ i ≤ m, and (xi−1, xm+i−1) 6=
(0, 1), then

(Hi(x, v),Hm+i(x, v)) = (1, 0).
(ii) If (xi, xm+i) = (1, 0) for some 1 ≤ i ≤ m− 2, and (xi−1, xm+i−1) = (0, 1), then

(Hi(x, v),Hm+i(x, v)) = (0, 1).

Lemma 9.7.6 (i) If (xm, x2m) = (1, 0), then

(Hm(x, v),H2m(x, v)) = (1, 0) and (H1(x, v), Hm+1(x, v)) = (0, 1).

(ii) If (xm−1, x2m−1) = (1, 0) and (xm−2, x2m−2) = (0, 1), then

(Hm−1(x, v),H2m−1(x, v)) = (1, 1).

(iii) If (xm−2, x2m−2) = (1, 1) and (xm−3, x2m−3) = (0, 1), then

(Hm−2(x, v),H2m−2(x, v)) = (0, 1).
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In Example, 9.7.1, H is circular, so that H is commutative with T = ρ. Further,
TVi = V(i+1)%k for every i. Therefore, the transformation HV of Qn×V defined by
HV (x, Vi) = (H(x, Vi), V(i+1)%k) is commutative with ρ. Let [S] for a subset S of
Qn×Qn denote Orb〈ρ〉S. Then, we have [Um−1W×V] = [Um−1W×v]. Therefore,
[Um−1W ×V] = [Cc

0 × v] by Lemma 9.7.2. We write x → y if y = ρ−1H(x, v) i.e.
HV (x, v) = ρ(y, v) in the following. Now let x ∈ Cc

0.
Case 1: Assume there is no i such that 1 ≤ i ≤ m and (xi, xm+i) = (0, 1). Let

1 ≤ k ≤ m be the minimum k such that (xk, xm+k) = (1, 0). Then, by Lemma 9.7.3
(i), x → ... → x′, where (x′1, x′m+1) = (1, 0). If there is some j such that 2 ≤ j ≤ m
and (x′j , x′m+j) = (0, 1), then go to Case 2. Suppose there is no j such that
2 ≤ j ≤ m and (x′j , x′m+j) = (0, 1). Let x′ → x′′. First, let (x′m, x′2m) = (1, 0).
Then, by Lemma 9.7.6 (i), (x′′m, x′′2m) = (x′′m−1, x′′2m−1) = (1, 0). Further,
there is no j such that 1 ≤ j ≤ m − 2 and (x′′j , x′′m+j) = (0, 1) by Lemma 9.7.3
(ii). Therefore, x′′ → ... → om. If (x′m, x′2m) 6= (1, 0), so that x′m = x′2m, then
(x′′m, x′′2m) = (0, 1) by Lemma 9.7.3 (i), and we go to Case 2.

Case 2: Assume (xk, xm+k) = (0, 1) for some 1 ≤ k ≤ m. Then x → ... → x′,
where (x′1, x′m+1) = (0, 1) by Lemma 9.7.4 (i). Let x′ → x′′. Then (x′′1, x′′m+1) =
(0, 1) by Lemma 9.7.4 (ii), and (x′′m, x′′2m) = (1, 0) by Lemma 9.7.4 (i). Let
x′′ → y. Then, (y1, ym+1) = (0, 1) by Lemma 9.7.4 (ii), (ym−1, y2m−1) = (1, 0) by
Lemma 9.7.6 (i), and (ym, y2m) = (1, 0) by Lemma 9.7.4 (i). Let y → y′.

Suppose (ym−2, y2m−2) = (0, 1). Then, (y′m−3, y′2m−3) = (0, 1) by Lemma
9.7.4 (i), (y′m−2, y′2m−2) = (1, 1) by Lemma 9.7.6 (ii), (y′m−1, y′2m−1) = (1, 0)
by Lemma 9.7.6 (i), (y′m, y′2m) = (1, 0) by Lemma 9.7.4 (i), and (y′1, y′m+1) =
(0, 1) by Lemma 9.7.4 (ii). Let y′ → y′′. Then, (y′′m−4, y′′2m−4) = (0, 1) by
Lemma 9.7.4 (i), (y′′m−3, y′′2m−3) = (0, 1) by Lemma 9.7.6 (iii), (y′′m−2, y′′2m−2) =
((y′′m−1, y′′2m−1) = (1, 0) by Lemma 9.7.5 (i), (y′′m, y′′2m) = (1, 0) by Lemma 9.7.4
(i), and (y′′1, y′′m+1) = (0, 1) by Lemma 9.7.4 (ii). Therefore, y′′... → ρm−3om.

Suppose (ym−2, y2m−2) 6= (0, 1). Then (y′m−2, y′2m−2) = (y′m−1, y′2m−1) =
(1, 0) by Lemma 9.7.5 (i), (y′m, y′2m) = (1, 0) by Lemma 9.7.4 (i), and (y′1, y′m+1) =
(0, 1) by Lemma 9.7.4 (ii). Therefore, y′ → y′′, where (y′′m−2, y′′2m−2) = (y′′m−1, y′′2m−1) =
(y′′m, y′′2m) = (1, 0), and (y′′1, y′′m+1) = (0, 1). Let y′′ → z. Then (zm−3, z2m−3) =
(1, 0) or (0, 1) by Lemma 9.7.5 (i), (ii), (zm−2, z2m−2) = (zm−1, z2m−1) = (zm, z2m) =
(1, 0), and (z1, zm+1) = (0, 1). Therefore, z → ... → ρiom for some 1 ≤ i ≤ m− 3.

Therefore, Φ is an attractor in the FSDS generated by H of Example 9.7.1 and
the input V . By translating from H into ¬̄H, we have obtained:

Theorem 9.7.7 In the PDNN generated by ¬̄H for Example 9.7.1 and the
input cyclic sequence Orbρ¬̄ρ−1om−1, Orbρm+1{ρi(m+1)lm|0 ≤ i ≤ m − 3} is a bi-
dependent attractor. Further, any point of C0 is on a neutral orbit, and Cc

0 is the
basin for the attractor.


