return to main page
ATTENTION !  May be best viewed by INTERNET EXPLORER 5.0 or HIGHER
THE  THEOREM  OF   EL'BAIS   STATES  THAT ;


Binomial coefficient  C(x,y)  is given by --->    

PART-1
If    d , t   are  finite  integers  such  that  (t ³ d)   and  n   is  an  integer  going  to
Infinity. and  i   stands  for  then  we may define p by  the  following relation.

 
Where  ( ln )  stands for  Natural  logarithm.

The real part converges to p , while the coefficient of the imaginary part converges to zero.

Please click here to see the related Mathematica program
This theorem has many interesting properties . If  (t - d = 0) that  is d=t  then
it  is  enough  to only  give  n=1  value  ,   p  will  converge  to real   p .
But as  (t - d)   increases  we need  more  and  more  n , (up to infinity at last)
to converge  the  p for  a  certain  accuracy  to   hold .


PART-2
If    d , t   are  finite  integers  such  that  (t ³ d)   and  n   is  an  integer  going  to
Infinity. and  i   stands  for  then  we may define p by  the  following relation.

 
 

Where  ( ln )  stands for  Natural  logarithm.

The real part converges to p , while the coefficient of the imaginary part converges to zero.

Please click here to see the related Mathematica program
This theorem has many interesting properties . If  (t - d = 0) that  is d=t  then
it  is  enough  to only  give  n=1  value  ,   p  will  converge  to real   p .
But as  (t - d)   increases  we need  more  and  more  n , (up to infinity at last)
to converge  the  p for  a  certain  accuracy  to   hold .


PART-3
If    d , t   are  finite  integers  such  that  (t ³ d)   and  n   is  an  integer  going  to
Infinity. and  i   stands  for  then  we may define p by  the  following relation.

 

Where  ( ln )  stands for  Natural  logarithm.

The real part converges to p , while the coefficient of the imaginary part converges to zero.

Please click here to see the related Mathematica program
This theorem has many interesting properties . If  (t - d = 0) that  is d=t  then
it  is  enough  to only  give  n=1  value  ,   p  will  converge  to real   p .
But as  (t - d)   increases  we need  more  and  more  n , (up to infinity at last)
to converge  the  p for  a  certain  accuracy  to   hold .

It is obvious that anybody may play with the summation limits , since it doesn't make any difference as one of the variables
in the summation limits goes to infinity. But before doing this we strongly advice to think carefully. Because  there is a
reason for these strange limits; as you approximate one or two of the variables to one or  zero , you may lose some of the
correct answers on  singular  points ;  Such as  (d=1 , t=1 , n=1 ) . You will discover some additional singular points as
you exprience  more ond more on these functions. After all , the success of a theorem or a formula depends on the output
that it produces on any odd or singular input that is given to it.

return to main page