return to main page
ATTENTION !  May be best viewed by INTERNET EXPLORER 5.0 or HIGHER
THEOREM OF EL'HAYY3  STATES THAT ;

Ratio  Hayy3(n) -->1  ,   as n-->Infinity  ,  where  Hayy3(n) is  defined  as below .
(SUM OF THE POWERS , EQUAL  TO  A  POWER  AT INFINITY)   theorem is  analysed  in following .

Let (d, m1, m2,m3 , t) are any finite integers, then the functions  a1(n),a2(n),a3(n) ,b(n)
are defined as  follows where    n    is  another integer  going  to  infinity.
and         

Binomial coefficient  C(x,y)  is given by --->    


In  fact  theorem  of  El'Hayy3  may  be  obtained from  El'KAyyum






It is obvious that anybody may play with the summation limits , since it doesn't make any difference as one of the variables
in the summation limits goes to infinity. But before doing this we strongly advice to think carefully. Because  there is a
reason for these strange limits; as you approximate one or two of the variables to one or  zero , you may lose some of the
correct answers on  singular  points ;  Such as  (d=1 , t=1 , n=1 ) . You will discover some additional singular points as
you exprience  more ond more on these functions. After all , the success of a theorem or a formula depends on the output
that it produces on any odd or singular input that is given to it.
 
t > d for converging
For  finite  values  of   n ,  Hayy3(n)   is  an  almost  ONE  .  At   n = Infinity  , Hayy3(n)   is  exactly   ONE.
Please click  here  to see the related Mathematica program

 

If      d=1       then  ;          ,     As  n=> Infinity


Please try to develop the necessary formulas for 


return to main page