Zeta related functions

(Wavelike nature of Riemann's Zeta function)

Theorem of El'Melik

Throughout this page z(x)   is equivalent to  Zeta(x);   a , t  any real number.      ,  | x | = Absolute value of  (x)    ,    ln(x) = natural logarithm of (x).  Following sets of  identities for the  z(x)   values have been developed recently ; In here "c"  is  "finite", but it may also approach "infinity", in that case the leftmost terms will be;    |z(a + i.t)|2  , while rightmost terms in eqn1 and eqn2 will be;   z(2.a)   .

 

 

 

Please note that  Eqn3  is obtained by the summation of  eqn1 and eqn2.

eqn1 may be controlled by  a  "mathematica 2.1" program

eqn2 may be controlled by  a  "mathematica 2.1" program

eqn3 may be controlled by  a  "mathematica 2.1" program

 


Zeta related functions


If  we  put;  t=0  in eqn3,  then we'll have the famous Euler sums,  "c"  is  "finite" 

 

 

Euler_sum    may be controlled by  a  "mathematica 2.1" program


If   we put;  t=0,  and  "a"  negative in eqn3,  then we'll have the famous Gaussian sums,  "c"  is  "finite" 

 

 

 

 

 

Gaussian_sum    may be controlled by  a  "mathematica 2.1" program Please note that  the power "a" need not to be an 

"integer". "a"  may  be  any "real"  number  like  "p"  or  "e". 

That means,  we can compute   OR      as well as  integer powers.

 


If  we  put;  t=0,  and  a =  (-2.m)  and  c =  infinity   in  eqn3,  then  we'll  have the  famous condition  z(-2.m) = 0   (m=1,2,3,4,......). 

 

 

 

Please note that the above condition is not so easy to visualize, but it is a reality. However, If  "c"  is  finite it can never be realised.


Relation of   (p4 /120)   with double summation series ;

 

 

 this relation  may be controlled by a mathematica 2.1 program


 Relation of   (p2 /6)  with double summation  series ;

 

 

this relation  may be controlled by a mathematica 2.1 program


Relation of   z(2.a) with double summation series  ;

 

 

this relation  may be controlled by a mathematica 2.1 program


 Relation of   z(awith double summation series ;

 

 

this relation  may be controlled by a mathematica 2.1 program


Relation of   (z(a))2 - z(2.a)   with double summation  series ;

 

 

If   (a = 0.6268176...)     then,  left side of eqn.  becomes zero, hence the right hand function will also be zero.

this relation  may be controlled by a mathematica 2.1 program

 


 

Some significant limiting forms of the double summation series ;