return to main page

                 In order to make the other mathematicians to pay  their attention at  these theorems , our group has  decided  to  give  a  certain  prize  to  the  first  one (and only the first one) who is able to disprove any  of  them . This  prize is   999.00 $ (Nine Hundred And Ninety Nine U.S. Dollars) .
                Although every theorem  is accompanied with a Mathematica program , we  know that , it is very difficult to believe at some of  them , since they  are  involving  irrational  OR  transcendent numbers in NUMBERS THEORY . If any of the mathematicians oppose to any  one of  them ,  we strongly  encourage  to  do  this  NOW. Before  doing such  an  attempt  (he or she)  should  better construct  original  programs at some other  language or mathematica .
                In constructing original programs , please keep in  mind  that  some of  the  theorems are accuracy sensitive ; that is, you should give enough accuracy in your computations to reach correct results   (Such theorems are stated in their mathematica programs test sheets).

           The prize will be give under the following terms or premises:

1- If  there is a disproove , the first one who detects the  fault will be given the  prize.

2- Minor  computation  and  printing  mistakes  are  not  counted .

3- The occurrance of  Carmichael numbers  are not  counted  as  a  disproval .  since
nobody yet knows the smallest Carmichael number or if there exist any Carmichael
number  in  these  strange  systems at all.

4- The presence of mistakes due to the inadequacy of   your computer  is  not  either
counted . You   should  use  suitable  computers  to  give  enough  accuracy  for    big
numbers  or  primes .

5- The   detection   of    the  presence  of  any  of  the theorems  in  other  literatures
WILL  NOT  be  counted   as  an  eligibility  to  obtain    any   prize ,   since   at    the
beginning  of   front   page  we  have  stated  that   we   don't  know  any  information
relating the   presence  of   these  theorems   in  any   other  book or  literature.   In
case   of    such   cross    presence   please  inform   us by  any   means .  so  that   we
can  WITHDRAW  the  cross  existing  name  and  the  theorem .

The method of delivery

                The one who forwards the first disproove should publish it publicly in a web page, web  site  or  appropriate   listserv . The  disproove  will   be  discussed  by   the  whole   mathematical  community and if found correct , one has to wait till these theorems are published in the periodical.Then we'll pay him or her the sum.

return to main page