1. Find an anti-derivative of f(x) = sec² (e^(3x))
a. tan (e^(3x)) + c b. sec³(e^(3x))/9 + c
c. tan (e^(3x))/3 + c d. csc² (e^(3x))/3 + c
2. Use a third degree Taylors polynomial for f(x) = sin x at x = 0 to estimate f(1).
a. 7/6 b. 5/6
c. .8415 d. .7425
3. If y’ = x – xy, find y.
a. y = -e ^ (1/2 x² + c) –1
b. y = e ^ (-1/2 x²) + c
c. y = -e ^ (-1/2 x² + c) + 1
d. y = e ^ (1/2 x²) +c
4. Find the derivative of y = ln (e^(3x) + cos² x).
a. (3e^(3x) - 2cos x sin x )/(e^(3x) + cos² x)
b. (3e^(3x))/(e^(3x) + cos² x)
c. 1/(e^(3x) + cos² x)
d. (3e^(3x) - 2 cos x sin x)/(e^(3x) + cos²x)
5.
Find the speed at t = 2 when x is defined by x(t) = 3t + 4 and y is defined
by y(t) = 3t²-10.
a. 3.865
b. 6
c. 4
d. 4.25
Grade yourself
1. c
2. c
3. a
4. a
5. c