|
Binomial means the sum (or difference) of two terms.
Expansion of (x + y)n, where n is any rational number, is called the binomial expansion.
If n is a positive integer, then
(x + y)n = xn + nxn - 1y + |
¾¾¾¾ 2! |
xn - 2y2 + |
¾¾¾¾¾¾¾ 3! |
xn - 3y3 + ¼ + yn. |
If n is not a positive integer, then we have
(1 + x)n = 1 + nx + |
¾¾¾¾ 2! |
x2 + |
¾¾¾¾¾¾¾ 3! |
x3 + ¼. |
Replace x by -x to get the corresponding expansions for (1 + x)-1 and (1 + x)-2.
Example 1: Find the first four terms of (2 - x)-2, stating the set of values of x for which the expansion is valid.
Solution:
(2 - x)-2 | = | 2-2(1 - x/2)-2 | ||||||||||||||||||||||||
= |
|
|||||||||||||||||||||||||
= | 1/4 + (1/4)x + (3/16)x2 + (1/8)x3 + ¼. |
Example 2: Give the binomial expansion, for small x, of (1 + x)1/4
up to and including the term in x2, and simplify the coefficients.
By putting x = 1/16 in your expression,
show that 4Ö17
» 8317/4096.
Solution:
|
|
||||
(1 + x)1/4 =
|
1 + | ¾ | x + | ¾¾¾¾¾ | x2 + ¼ |
|
|
||||
=
|
1 + x/4 - 3x2/32 + ¼. |
|
|
||||
(1 + 1/16)1/4 =
|
1 + | ¾¾ | - | ¾¾¾¾ | + ¼ |
|
|
||||
(17/16)1/4 »
|
8317/8192 | ||||
\ 4Ö17
»
|
8317/4096. |
|
||
Example 3: Expand | ¾¾¾¾¾¾¾ | as a series |
|
Solution:
|
||
Expressing | ¾¾¾¾¾¾¾ | as partial fractions gives |
|
|
|
|
|||
¾¾¾¾¾¾¾ | = |
|
+ |
|
|
|
|
|
|||
= | 3(1 + 3x)-1 + 2(1 - 2x)-1. |
(1 + 3x)-1 | = | 1 - 3x + (3x)2 - (3x)3 + ¼ |
= | 1 - 3x + 9x2 - 27x3 + ¼. |
(1 - 2x)-1 | = | 1 + 2x + (2x)2 + (2x)3 + ¼ |
= | 1 + 2x + 4x2 + 8x3 + ¼. |
|
|||
\ | ¾¾¾¾¾¾¾ | = | 3[1 - 3x + 9x2 - 27x3 + ¼] |
|
+ 2[1 + 2x + 4x2 + 8x3 + ¼] | ||
= | 5 - 5x + 35x2 - 65x3 + ¼. |
|3x| < 1 | and | |2x| < 1 |
|x| < 1/3 | and | |x| < 1/2 |
|