|
Large-Signal State Space Averaged Equations:
VL = (Vi
- KT*Vo)*D - (KL*Vo)*(1
- D)
(Equation 1a)
IL = KT*Io*D
+ KL*Io*(1 - D)
(Equation 1b)
Small-Signal State Space Averaged Equations:
vL = D*vi + [Vi + Vo*(KL
- KT)]*d + [D*(KL - KT) - KL]*vo
(Equation 2a)
iL = [KL - (KL - KT)*D]*io
- Io*(KL - KT)*d
(Equation 2b)
Define the mismatch parameter J as:
J = KL - KT
(Equation 3)
Therefore, in terms of J,
vL = D*vi + [Vi + Vo*J]*d
+ [D*J - KL]*vo
(Equation 2c)
iL = [KL - J*D]*io - Io*J*d
(Equation 2d)
From this, we can get the steady state transfer function as follows:
Vi*D = KT*Vo*D + (KL*Vo)*(1
- D)
Vi*D = KT*Vo*D + KL*Vo
- KL*Vo*D
Vi*D = Vo*[KT*D + KL
- KL*D]
Vi*D = Vo*[D*(KT - KL)
+ KL]
Vi*D = Vo*[KL - D*J]
Vo / Vi = D/[KL - D*J] (Equation 1d) |
Substituting Equations 2c, 2d, 5, and 6 into Equation 4 yields:
[Vi + Vo*J]*d + [D*J - KL]*io*Zo
= {[KL - J*D]*io - Io*J*d}*L*s
(Equation 4a)
Rearranging:
[KL - J*D]*[Zo + L*s]*io = [Vi
+ Vo*J + Io*J*L*s]*d
(Equation 4b)
Rearranging again, we get the transfer function:
io/d = {Vi + Vo*J + Io*J*L*s}/{[KL - J*D]*[Zo + L*s]} (Equation 4c) |
Otherwise (when KL and KT are arbitrary) we get
a zero at:
Vi + Vo*J + Io*J*L*sz =
0 (Equation 7a)
sz = -{Vi + Vo*J}/{Io*J*L}
(Equation 7b)
This zero may be in the LHP or RHP since J may be plus or minus.
To find the conditions where the zero crosses into the RHP as a function
of J,
set the zero location equal to zero as follows:
sz = 0 when
Vi + Vo*J0 = 0
(Equation 8a)
or when
J0 = -Vi / Vo
(Equation 8b)
The position of the zero can be visualized by plotting sz
versus J as shown below.
|
back to Switched Mode Power Supply Notes index