Data Model for Document Transformation and
Assembly (Extended Abstract)

Makoto Murata'

Fuji Xerox Information Systems Co., Ltd., KSP 9A7, 2-1 Sakado 3-chome,
Takatsu-ku, Kawasaki-shi, Kanagawa-ken, Japan 213
murata@fxis.fujixerox.co. jp

Abstract. This paper shows a data model for transforming and as-
sembling document information such as SGML or XML documents. The
biggest advantage over other data models is that this data model simulta-
neously provides (1) powerful patterns and contextual conditions, and (2)
schema transformation. Patterns and contextual conditions capture con-
ditions on subordinates and those on superiors, siblings, subordinates of
siblings, etc, respectively, and have been recognized as highly important
mechanisms for identifying document components in the document pro-
cessing community. Meanwhile, schema transformation has been, since
the RDB, recognized as crucial in the database community. However, no
data models have provided all three of patterns, contextual conditions,
and schema transformation.

This data model is based on the forest-regular language theory. A schema
is a forest automaton and an instance is a finite set of forests (sequences
of trees). Since the parse tree set of an extended-context free gram-
mar is accepted by a forest automaton, this model is a generalization
of Gonnet and Tompa’s grammatical model. Patterns are captured as
forest automatons; contextual conditions are pointed forest representa-
tions (a variation of Podelski’s pointed tree representations). Controlled
by patterns and contextual conditions, an operator creates an instance
from an input instance and also creates a reasonably small schema from
an input schema. Furthermore, the created schema is often minimally
sufficient; any forest permitted by it may be generated by some input
instance.

1 Introduction

Document information, such as SGML or XML documents, is typically organized
for particular purposes. However, the same information can be, if reorganized,
utilized for different purposes. For example, Northwest may want to reorga-
nize document information provided by Boeing and McDonnell-Douglas so as to
efficiently maintain their airplanes in their own manner. Transformation and as-
sembly of SGML/XML documents are expected to provide such reorganization,
and have attracted strong interest in the SGML/XML community.

It is an exciting challenge to provide a data model for such transformation
and assembly. Obviously, such models must capture ordered and heterogenous hi-
erarchies of SGML/XML documents as well as the flexible schemas called DTD’s

(Document Type Definitions). We further believe that such models must provide
patterns and contextual conditions as well as schema transformation. Patterns
and contextual conditions are well recognized in the document processing com-
munity, while schema transformation has been quite common in the database
community. However, to the best of our knowledge, no data models have com-
bined all three of patterns, contextual conditions, and schema transformation
simultaneously.

Patterns and contextual conditions help to identify interesting nodes of
SGML/XML documents. In our terminology, a pattern is a condition on (im-
mediate or non-immediate) subordinate nodes. For example, given PODDP’98
papers, we might want to retrieve sections containing the word “preliminar-
ies” in their titles. Here a pattern is containing sections whose titles contain
“preliminaries”. In our terminology, a contertual condition is a condition on
non-subordinates such as (immediate or non-immediate) superiors, siblings, and
subordinates of siblings, etc. For example, assume that we are interested only in
those sections of document database papers. Then, we want to introduce a con-
textual condition: the section must be directly or indirectly subordinate to a paper
node such that its title node contains the word “document”. Many SGML/XML
transformation engines ! support such patterns and contextual conditions. Aca-
demic papers on document retrieval via patterns and contextual conditions are
surveyed by Baeza-Yates and Navarro [3].

On the other hand, many data models provides schema transformation. For
example, the projection operator of the RDB not only creates an instance (a
set of tuples) but also a schema, which is a schema with fewer attributes. The
created instance is guaranteed to conform to the created schema, although the
schema is constructed only from the input schema (without considering the in-
stance). Schema transformation is highly important for at least two reasons.
First, a programmer can combine operators repeatedly, since he or she knows
the intermediate schema created by each operator. He or she only has to make
sure that the next operator is applicable to this intermediate schema. Second,
queries designed for a database schema are applicable to any database instance
of this schema. The instance returned by the query conforms to the schema
created from the database schema.

We believe that schema transformation combined with patterns and contex-
tual conditions will become extremely important for document transformation
and assembly. For example, if our operator renames top-level segments as chap-
ters, the created schema should allow chapters as top-level components only and
allow segments as non-top-level components only. (Here “top-level segments” is
a contextual condition.) If our operator renames lowest-level segments as top-
ics, the created schema should allow topics as the lowest-level components only.
(Here “lowest-level segments” is a pattern.) Such schemas allow documents to
be transformed and assembled repeatedly. To the best of our knowledge, none
of the existing data models provides such schema transformation.

! See http://uww.sil.org/sgml/publicSW.html#conversion.

On the basis of the forest-regular language theory [11,13] (a branch of the
tree automaton theory [7]), we present a new data model that combines pat-
terns, contextual conditions, and schema transformation. A forest is an ordered
sequence of trees. A schema is a forest automaton and an instance is a finite set
of forests. A pattern is captured by a forest automaton; a contextual condition
is captured by a pointed forest representation (a variation of pointed tree repre-
sentations [12]). Given a query based on a pattern and contextual condition, we
can construct a reasonably small schema. In many cases, the constructed schema
is minimally sufficient; any forest permitted by this schema may be generated
from some input instance.

The mathematically clean properties of forest-regular languages help to de-
velop an equivalent algebra and rule-based language. First, the class of forest-
regular languages is closed under boolean operations. Along with the fact that
an instance is a set of forests rather than a single forest, this closure property
provides boolean operators readily. Second, this class is also closed under con-
catenation and root removal. This closure property provides forest composition
and decomposition operators. (Observe that we would lose this property if we
used trees rather than forests.) Furthermore, our algebra can easily mimic the
relational algebra and any query is in PTIME, although we defer the proof to
the full paper for space limitation.

The rest of this paper is organized as follows. Section 2 discusses related
work on document database systems. Section 3 introduces forests and forest
automatons, and then defines schemas and instances. Sections 4 presents an
algebraic language called the forest algebra, and Section 5 demonstrates two
examples of document transformation. Section 6 presents a rule-based language
called forestlog.

2 Related Work

There have been a number of data models for structured documents, and they are
surveyed by Baeza-Yates and Navarro [3]. Most of these models concentrate on
retrieval rather than transformation and assembly. Furthermore, little attention
has been paid to schema transformation combined with patterns and contextual
conditions.

Regarding those works which provide schema transformation, there have been
two approaches. One approach uses complex value models [2] or object-oriented
models [14]. The other approach [6,8, 9] uses grammars and parse trees.

Complex value models extend the relational data model by allowing sets and
nesting of sets and tuples. Other constructors such as bags and lists are often
introduced. Object-oriented models further extend complex value models by in-
troducing OID’s, class hierarchies, methods, etc. Both types of models provide
algebras, calculus, and rule-based languages, which are equally expressive. They
are elegant extensions of the relational algebra, the relational calculus, and dat-
alog, respectively.

Several attempts have been made to capture hierarchies of structured docu-
ments with complex value models or object-oriented models. Probably, the most
notable example is by Christophides et al. [5]. They use O2 as a basis and fur-
ther introduce ordered tuples and marked unions so as to capture hierarchies of
SGML/XML documents. However, as a result of combining these mechanisms,
the representation of a hierarchy becomes complex. For example, the sibling re-
lationship is hard to utilize, as marked unions and OID’s intrude. Furthermore,
modifications to a DTD, even when the new DTD permits all documents permit-
ted by the current DTD, lead to cumbersome update of database instances. This
model introduces contextual conditions on ancestors, but schema transformation
does not take full advantage of them, thus providing loose schemas.

An entirely different approach provides grammatical models ([1, 6, 8, 9] among
others). A schema in a grammatical model is an extended context-free gram-
mar. An instance of this schema is a derivation tree. This approach naturally
captures SGML/XML documents. However, none of the existing models pro-
vides schema transformation combined with patterns and contextual conditions.
Gonnet and Tompa [8] provide powerful operators, but the result of a query
does not have an associated schema. Further, no declarative query languages are
provided. Abiteboul, Cluet, and Milo [1] provide schema transformation, but do
not provide schema transformation combined with patterns and contextual con-
ditions. Gyssens et al. [9] provide an equivalent algebra and calculus, but both
are complex and operators are too primitive. Neither their algebra nor calculus
are natural extensions of the RDB. Weak patterns are provided, but contextual
conditions are not. Colby et al. [6] provide a powerful algebra, but does not
provide declarative languages. This algebra is not a natural extension of the
RDB. Patterns are rather powerful, but contextual conditions are weak. Schema
transformation and patterns are combined , but the created schemas tend to be
loose (i.e., they allow unnecessary documents).

3 Schemas and Instances

In preparation, we define forests and forest automatons. Let X' be a finite set
of symbols and let X be a finite set of variables. We assume that > and X are
disjoint and they do not contain (or).

A forest over X and X is a string (€ (XUXU{(,) })*) of the forms as below:

— € (the null forest),

-z (z € X),

a{u) (a € ¥, and u is a forest), or
wv (u and v are forests).

Examples of forests are a{z), a(e) b(b(e) z), and a(e) b{z b(b{e) z) c(e)). Ob-
serve that symbols in X' are used as labels of non-leaf nodes of forests and that
variables in X are used as those of leaf nodes.

The set of forests over X and X is denoted by F[X, X]. A tree is a forest of
the form a(u). We abbreviate a(e) as a. Thus, the second example is abbreviated
as ab(bx).

A deterministic forest automaton (DFA) M over a finite set X and a finite
set X (disjoint from X) of variables is a 4-tuple <@, ¢, a, F>, where:

— () is a finite set of states,

— ¢ is a function from X to @,

— « is a function from X x Q* to @ such that for every ¢ € @ and =z € X,
{nge - qx | k>0,a(a,q1q2 ... qx) = q} is regular, and

— Fis a regular set (called the final state sequence set) over Q.

Given a forest in F[X, X]|, we execute M in the bottom-up manner. First,
we assign a state to every leaf node that is labeled with a variable. This is done
by computing ¢(z), where z is the variable. Then, we repeatedly assign a state
to every node whose subordinate nodes have assigned states. This is done by
computing a(a,q1qs2 - . -qx), where a is the label of the node and ¢1qs . ..qx is
the sequence of states assigned to the subordinate nodes. Consider the top-level
nodes in the given forest and the sequence of those states assigned to them. If
this state sequence is an element of the final state sequence set, that forest is
accepted by M.

The language accepted by M, denoted L(M), is the set of forests accepted by
M. If a set of forests is accepted by some DFA, this set is forest-regular. As in
the string case, there are non-deterministic forest automatons and forest-regular
expressions. Almost all of the clean properties of regular languages apply to
forest-regular languages.

Before we define schemas and instances, we have to consider one difference
between the automaton theory and database theory. Although our X' and X are
both finite, the database theory uses countably infinite sets. For example, the
RDB theory typically uses a countably infinite set label for attributes. Specific
RDB schemas or instances use only finite subsets of label, but one may introduce
new symbols at any time as label is countably infinite. The RDB theory uses
another countably infinite set dom, which contains constants such as integers
or strings. An RDB instance has such constants as attribute values.

We follow the database theory approach and use two countably infinite sets
label and dom. They are disjoint and do not contain (or). In the SGML/XML
terminology, label is the set of names and dom is the set of character data.

Accordingly, we extend the definition forests. A forest over label and dom
is a string (€ labelUdom U { {, } })*) of the forms as below:

€ (the null forest),

z (z € dom),

a{u) (a € label, and u is a forest), or
wv (u and v are forests).

The sets of forests over label and dom is denoted by F[label, dom)].

In the database theory, a special symbol ¢(¢ label U dom) is typically used
in schemas as place holders for constants. An instance of this schema is a finite
set of objects that can be obtained by replacing ¢t with constants in dom.

We also use a special symbol ¢ for representing schemas. Symbol ¢ is com-
parable to #PCDATA of SGML/XML. Keyword #PCDATA occurs only in DTD’s,

and do not occur in documents. Documents contain character data when the
corresponding portion of the DTD is #PCDATA.

Now, we are ready to define schemas and instances. A schema is a DFA M
over a finite subset of label and a singleton {t}. Two schemas are equivalent
if they accept the same language. An instance over M is a finite subset I of
F[label, dom] such that each forest in I is obtained from some forest in L(M)
by replacing ¢ with constants in dom; difference occurrences of ¢ need not be
replaced with the same constant. Note that an instance is not a forest but rather
a set of forests. A database schema is a collection of schemas { My, Mo, ..., M,,}.
A database instance over this database schema is a collection {Iy,I,..., I},
where I; is an instance of M;.

4 Forest Algebra

We recursively define queries. Let ¢ and ¢o be queries, and let a be a label
in label. The value of ¢; is denoted I(q;) and the schema of ¢; is denoted
M (q1). Value I(q) is an instance of M(g;). Observe that schema DFA’s can be
effectively constructed for all operators.

Basic Values: A variable denoting an (extensional) instance of some schema M
is a query. The value is that instance and the schema is M.

Constant values: For every constant ¢ in dom, {c} is a query. The schema is a
DFA that accepts {t}.

Basic set operations: ¢ N gz, ¢1 Uqo, and ¢ — g2 are queries. Their values are
defined in the obvious manner. The schemas of ¢; N g2 and ¢; U g2 are DFA’s
that accept L(M(q1)) N L(M(q2)) and L(M(q1)) U L(M(qg2)), respectively. The
schema of g1 — g2 is M (q1).

Forest composition and decomposition operations:

— concat(qi,q2) and addroot(a,q;) are queries. These operators come from
the definition of terms.
The values are {ujus | u1 € I(q1),u2 € I(g2)} and {a(u) | u € I(q1)}, re-
spectively. The schema DFA’s accept {ujusz | w1 € L(M(q1)),us € L(M(g2))}
and {a(u) | u € L(M(q1))}, respectively.

— q1/4q2, ¢1\q2, and removeroot(a,q;) are queries. These operators are de-
structors corresponding to the above constructors.
The values are {v | u1 = vug,u; € I(q1),us € I(g2)}, {v | u1 = ugv,uy €
I(q1),u2 € I(g2)}, and {u | a{u) € I(q1)}, respectively. The schema DFA’s
accept {v | ur = vug,u1 € L(M(q1)),u2 € L(M(q2))}, {v | u1 = usv,u1 €
L(M(q)),uz € L(M(g2))}, and {u | au) € L(M(q))}, respectively

— subtree(q;) is a query. This operator retrieves subtrees. It can be compared
to the powerset operator in complex object models, although our operator
does not require exponential time.

The value is the set of all trees v such that v is a subtree of some element
in I(q1). The schema is a DFA that accepts {v | v is a subtree of u,u €
L(M(q1))}-

— prod(a, q1,q2) is a query. This operator constructs higher forests. It comes
from the definition of forest-regular expressions, which is beyond the scope
of this paper.

The value is the set of all forests v for which there exist u; € I(g;) and
us € I(ga2) such that v is obtained by replacing each occurrence of a as a
leaf in uy by wus. Different occurrences of a must be replaced with the same
forest 2.

The schema is a DFA that accepts the set of all forests v for which there
exists u; € L(M(q1)) such that v is obtained by replacing each occurrence
of a as a leaf in u; by some element in L(M(g2))-

— rewrite(a,i,v,q;) and genrewrite(a,v’,q;) are queries, where i is a non-
negative integer, v is a forest over label and dom U {u1, 2, ... , p; }, and v’
is a forest over label and dom U {u1, 2}. These operators rewrite forests
and are variations of tree homomorphisms [7].

The value of rewrite(a,i,v,q1) is the set of forests in I(g;) rewritten with
a,i,v. Each node in a forest is replaced with v, if the label of the node is
a and the number of its subordinates is 7. The result of rewriting the j-th
subtree of the node is assigned to variable p; in v (1 < j < 4). Likewise,
the value of genrewrite(a, v, q;) is the set of forests in I(g;) rewritten with
a,v. Each node in a forest is replaced with v if the label of the node is a.
The result of rewriting the subordinates is assigned to variable p; and the
mirror image of that result is assigned to variable pus.

As the schemas of rewrite(a,i,v,q;) and genrewrite(a,v,q), we would
like to construct DFA’s that accept {rewrite(a,i,v,u) | v € L(M(q1))}
{genrewrite(a,v,u) | u € L(M(q))}, respectively. Unfortunately, this is
not always possible, since these sets are not always forest-regular. (Just like
{p"qp™ | n=1,2,...} is not regular.) However, we can construct larger but
reasonably small DFA’s. (Just like we can construct a string automaton that
accepts {p"qp™ | m,n = 1,2,...}.) Such construction is given by Gécseg
and Steinby [7].

Operators based on patterns and contextual conditions:

— select(M, q) is a query, where M is a deterministic DFA over a finite subset
of label and a finite subset of dom U {¢, u}. This operator comes from the
RDB and pattern matching.

The value of select(M,qy) is the set of all u in I(¢q;) such that u can be
obtained from some forest in L(M) by replacing ¢ and p with constants.
Different occurrences of ¢ need not be replaced with the same constant.

% Forest regular expressions actually differ from our prod operator in that different
occurrences of a need not be replaced with the same forest. Our operator is designed
so that it can be mimicked by our rule-based language forestlog.

Meanwhile, all occurrences of p must be replaced with the same constant,
thus providing equality conditions.

The schema of select(M, ¢;) is a DFA that accepts L(M (q1)) N {f(u) | u €
L(M)}, where f is a projection that replaces x4 and constants with ¢.
mark(a,C,P,q1) is a query, where a is a label in label, C is a contextual
condition (see below), and P is a pattern (see below). The role of this oper-
ator is to locate nodes that satisfy patterns and contextual conditions and
then rename these nodes.

This operator is the most complicated in our algebra, but is also the source of
its expressiveness. We introduce this operator only informally. Our previous
paper [10] shows a formal definition, the algorithms for pattern matches
and contextual condition testing, and the effective construction of an output
schema ([10] is restricted to binary tress though).

In preparation, we study pointed forests and pointed forest representations
(a variation of pointed trees and pointed tree representations [12]). A pointed
forest over a finite alphabet X' and a finite set X of variables is a forest over
X} and X such that one node is special and that its subordinates is the null
forest. For example, pgr and p{¢r) are pointed forests, where ¢ is a special
node. (Remember that ¢ is an abbreviation of a(e).) A pointed base forest
is a pointed forest such that its special node is a top-level node. A pointed
forest is uniquely decomposed into a sequence of pointed base forests. For
example, p{gzr{syt))u is uniquely decomposed into $yt, qzr, pu.

A pointed base forest representation is a triplet (Li,a, Ls), where Ly, Lo
are forest-regular languages over X and X, and a is a symbol in X. A set of
pointed base forests {ujaus | u1 € Li,us € Ly} is represented by (L1, a, L2).
A pointed forest representation is a regular expression over a finite set of
pointed base forest representations. The represented language is the set of
pointed forests w such that the decomposition of w, which is a sequence of
pointed base forests, can be derived from the regular expression and pointed
base forest representations. For example, (F[X, X],p, F[X, X])* represents
the set of pointed forests such that the special node and all its superiors are
labeled with p.

A contextual condition C is a pointed forest representation over a finite subset
of label and a finite subset of domU {¢}. The envelope of a node in a forest
is the result of removing the subordinates of that node and making the node
special. A node in a forest satisfies a contextual condition if the envelope of
that node is obtained from some element of L(C) by replacing occurrences
of t with constants in dom.

A pattern P is a pair of (1) a DFA M over a finite subset of label and a finite
subset of dom U {t}, and (2) a strongly unambiguous regular expression e
that represents the final state sequence of M. (For any string, there is at
most one way to generate this string from a strongly unambiguous regular
expression. For example, p* is strongly unambiguous, but (p*)* is not.) Some
subexpressions of e, including e itself, have associated labels in label. A node
matches a pattern if the subordinate forest of that node is obtained from some
forest in L(M) by replacing ¢ with constants in dom.

Now, let us define the value of mark(a,C,P,q;). It is the set of forests that
are derived from some forest in (g) as follows: for every node that satisfies
C and matches P, we relabel that node with a and introduce nodes corre-
sponding to labeled subexpressions of strongly unambiguous regular expres-
sion e. Each of these nodes has the label associated with the corresponding
subexpression.

5 Transformation Examples

This section shows two examples of document transformation. Observe that our
queries provide not only database instances but also schemas. The first example
demonstrates that our algebra has realistic applications. The second example
demonstrates that our schema transformation takes full advantage of patterns
and contextual conditions.

5.1 Manipulation of Dictionary Entries

This example is inspired by the OED shortening project [4]. We would like to
extract interesting entries of a dictionary. Every entry is represented by an SGML
document that conforms to a DTD as below:

<!ELEMENT ENTRY (HEADLINE, SENSEx) >
<!ELEMENT HEADLINE (#PCDATA)>

<!ELEMENT SENSE (DEFINITION,QUOTE*)>
<!ELEMENT DEFINITION (#PCDATA)>

<!ELEMENT QUOTE (AUTHOR?, TEXT) >
<!ELEMENT AUTHOR (#PCDATA)>

<!ELEMENT TEXT (#PCDATA)>

We consider each entry as a forest and the dictionary as an instance. We
first construct a schema DFA from the above DTD, but we do not present it for
space limitation.

We would like to retrieve all entries that contain quotations from Shake-
speare. This is done by a query select(M,z), where z is a variable repre-
senting the original dictionary. Pattern M is a deterministic forest automaton
<{ro,r1,7m2}, K, B, L((ro|r1|r2)*r2(ro|ri|r2)*)} > over X' and {¢, “Shakespeare”}
(“Shakespeare” € dom), where

Y = {ENTRY, HEADLINE, SENSE, DEFINITION, QUOTE, AUTHOR, TEXT},

() = {ro (x =1)

r1 (z = “Shakespeare”), and

(a = AUTHOR,u = r1)
Bla,u) = 1y (u € L((ro|r1|r2) ra2(rolrilr2)*))
(otherwise) .

10

Other than a shortened dictionary (a set of forests), this query constructs a
schema DFA for shortened dictionaries. A minimum DTD constructed from this
DFA is as below:

<!ELEMENT ENTRY (HEADLINE, SENSE+) >
<!ELEMENT HEADLINE (#PCDATA)>

<!ELEMENT SENSE (DEFINITION,QUOTE*)>
<!ELEMENT DEFINITION (#PCDATA)>

<!ELEMENT QUOTE (AUTHOR, TEXT) >
<!ELEMENT AUTHOR (#PCDATA)>

<!ELEMENT TEXT (#PCDATA)>

5.2 Renaming Top-Level and Bottom-Level Segments

Consider documents containing segments. Each segment contains a title and

some paragraphs, and also contains segments recursively. We want to rename

top-level segments as sections and lowest-level segments as topics. As in the pre-

vious example, we would like to transform not only documents but also schemas.
Our schema is a DFA <@Q,¢,«, F> over X' and {t}, where:

Y = {Doc, Seg, Tt1,Par},
Q = {qdom (segs tt1, Qpar; Gt qdeadend};
L(t) = G,

Gaoc (a =Doc,u € L(¢Zeg))
Useg (a = Seg,u € L(qre1 Gpar icg))
aa,u) = 4 gua (a =Ttl,u =q)
Qpar (a = Par,u = q)
Jaeadena (Otherwise), and
F = {gane} -

and an equivalent DTD is as below:

<IELEMENT Doc (Seg*)>

<IELEMENT Seg (Ttl, Par*, Seg*)>
<I'ELEMENT Ttl (#PCDATA)>
<IELEMENT Par (#PCDATA)>

First, we rename top-level segments as sections by the mark operator. Our
contextual condition is a pointed forest representation (F[X, {t}],Doc, F[X, {t}])
(F[X,{t}],Seg,F[X, {t}]). Our pattern is a minimum DFA that accepts F[X, {t}]
and a strongly unambiguous regular expression representing the final state se-
quence of this DFA.

Second, we rename lowest-level segments as topics by the mark operator
again. Our contextual condition is a pointed forest representation
(F[X, {t}],Doc, F[X, {t}])(F[X, {t}],Seg, F[X, {t}])*. Our pattern is a minimum

11

DFA that accepts F[X — {Seg}, {t}] and a strongly unambiguous regular expres-
sion representing the final state sequence of this DFA.
Other than a set of transformed documents, these operators create a schema

DFA <@',/,d/, F'> over X' and {t}, where:

X" = {Doc, Seg, Tt1, Par, Sec, Tpc},

Q, = {qdom (Iseg) Gtt1, qpar; (sec) qtpc; qt, qdeadend};

Ll (t) = qt,

a =Doc,u € L
a =Sec,u € L

G5ec))

et q;ar (qseg|qtpc)*))
et q;ar (qseg|qtpc)*))
Grt1 q;ar))
a=Ttl,u =gq)

a =Par,u = q)

(qdoc
qSeC
Gseg a = Seg,u € L

(
(
(
o (a,u) = ¢ Gupe (a =Tpc,u€ L
(
(
(

~ T~~~

Jet1

Gpar

\ Qdeadena (Otherwise), and

FI = {qdoc} .

and a DTD equivalent to this schema is as below:

<!ELEMENT Doc (Secx*)>

<!ELEMENT Sec (Ttl, par*, (Seg | Tpc)*)>
<!ELEMENT Seg (Ttl, par*, (Seg | Tpc)*)>
<VELEMENT Tpc (Ttl, par)>

<!ELEMENT Ttl (#PCDATA)>

<!ELEMENT Par (#PCDATA)>

Observe that this schema allows Sec nodes only as subordinates of the Doc
node and that Tpc elements are not allowed to have surordinate Seg or Tpc
elements. In other words, this schema is minimally sufficient.

6 Forestlog

Although this data model does not have tuples, it is possible to introduce an
equivalent rule-based language called forestlog. We introduce forestlog only in-
formally. The formal definition and the equivalence proof are left to the full
paper.

The key idea is to impose three conditions so as to enable the conversion of
a logic program into an algebraic query. Condition 1: each literal in the body
of a standard rule has one and only one variable. Condition 2: the variable in a
literal occurs only once in that literal. Condition 3: any variable in a standard
rule must occur in some positive literal in the body and also occurs in the rule
head.

A wariable is an element of a countably infinite set var. An intentional pred-
icate is the name of a relation instance computed by rules. An extentional pred-
icate is the name of a relation instance stored in the database.

12

A literal is either:

— S(u) or =S (u) (positive literal or negative literal), where S is an extentional
or intentional predicate and w is a forest over label and var Udom in which
only one variable occurs and it occurs once and only once, or

— M(x) (“M matches z”), where M is the first parameter of the operator
select and z is a variable.

A rule head is of the form S(u), where S is an intentional predicate and u is
either:

— a forest over label and dom U var,

— prod(a,z,y), where a is a label, and z, y are variables,

— rewrite(a,i,v,), where a, i, v are the first, second, third parameters of the
operator rewrite, respectively, and z is a variable,

— genrewrite(a, v, x), where a and x are the first and second parameters of
the operator genrewrite, respectively, and z is a variable,

— mark(a,C, P, z), where a, C, P are the first, second, third parameters of the
operator mark, respectively, and z is a variable.

A rule is either a standard rule or an ad-hoc rule. A standard rule is of the
form head < Ay, As, ..., A,,, where head is a rule head and Ay, A, ..., A,, are
literals. Any variable in the rule must occur in the rule head and must occur in
some positive literal in the body.

An ad-hoc rule is of the form S(x) < A, R (y), where (1) S is an intentional
predicate, (2) A is either Ra(xy), Ro(yz), or subtree(z,y) (“x is a subtree of
y”), and (3) Ry, Ry are intentional or extensional predicates.

A (non-recursive) program is a sequence of rules. More than one rule may have
the same predicate in the head. Any intentional predicate used in the body of
a rule must be defined by the preceding rules. The intentional predicate defined
by the last rule is the target predicate. The semantic of programs, rules, head,
and literals are defined in the obvious manner.

7 Conclusion

We have presented a data model that provides patterns and contextual condi-
tions as well as schema transformation. Patterns and contextual conditions have
been heavily used by SGML/XML transformation engines, while schema trans-
formation is common in the database theory. But none of the previous works
provides all three of patterns, contextual conditions, and schema transforma-
tion. We believe that this data model provides a theoretical foundation of future
SGML/XML database systems.

However, there are many remaining issues. First, we do not really know if
our operators are powerful enough. There might be some other useful operator
that cannot be mimicked by our operators. Second, in order to perform pattern
matching and contextual condition checking without scanning the entire docu-
ment, we probably have to impose some restrictions on patterns and contextual
conditions. Such restrictions help to provide index files for examining patterns
and contextual conditions.

13

Acknowledgment 1 deeply appreciate Prof. Dirk Van Gucht for his extensive dis-
cussion and guidance during my stay in Indiana University. Prof. Ethan Munson
and Mr. Paul Prescod gave me very helpful comments on an earlier version of
this paper.

References

1. Abiteboul, S., Cluet, S., Milo, T.: Querying and updating the file. VLDB 93 19
(1993) 73-84

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)

3. Baeza-Yates, R., Navarro, G.: Integrating contents and structure in text retrieval.
SIGMOD Record 25:1 (1996) 67-79

4. Blake, G., Bray, T., Tompa, F.: Shortening the OED: Experience with a grammar-
defined database. ACM TOIS 10:3 (1992) 213-232

5. Christophides, V., Abiteboul, S., Cluet, S., Scholl, M.: From structured documents
to novel query facilities. SIGMOD Record 23:2 (1994) 313-324

6. Colby, L., Van Gucht, D., Saxton, L.: Concepts for modeling and querying list-
structured data. Information Processing & Management 30:5 (1994) 687-709

7. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadd (1984)

8. Gonnet, G., Tompa, F.: Mind your grammar: a new approach to modeling text.
VLDB ’87 13 (1987) 339-346

9. Gyssens, M., Paredaens, J., Van Gucht, D.: A grammar-based approach towards
unifying hierarchical data models. STAM Journal on Computing 23:6 (1994) 1093—
1137

10. Murata, M.: Transformation of documents and schemas by patterns and contextual
conditions. Lecture Notes in Computer Science 1293 (1997) 153-169

11. Pair, C., Quere, A.: Définition et etude des bilangages réguliers. Information and
Control 13:6 (1968) 565-593

12. Podelski, A.: A monoid approach to tree automata. In Tree Automata and Lan-
guages North-Holland (1992) 41-56

13. Takahashi, M.: Generalizations of regular sets and their application to a study of
context-free languages. Information and Control 27 (1975) 1-36

14. Zdonik, S., Maier, D.: Readings in Object-Oriented Database Systems. Morgan
Kaufmann (1990)

