
PIC0

A Programming Language for 10F2xx Series PIC Microcontrollers

Version 1.0

Ron Kneusel
ron@kneusel.org

27-Dec-2006

1/11

Table of Contents
Overview..3
Why?.. 3
Supported Devices... 3
Getting Started... 3
Syntax and Semantics.. 8

Processor Type.. 8
Configuration...8
Numbers.. 8
Equates.. 8
Function Definition... 9
Statements... 9
Loops... 10
Conditional Statements..10

Library Routines.. 11
Inlined Assembly Code..11
Examples..11

2/11

Overview
PIC0 (pronounced “pico”) is a simple programming language intended to provide an alternative to pure
assembly or C for the 8-bit 10F2xx series microcontrollers from Microchip. PIC0 is a compiler to
assembly which is then assembled using MPLAB or gpasm. Since the compiler is written in pure
Python it will run equally well on any platform. I called it PIC0 for “pico” meaning very small and
PIC-zero meaning it is for the simplest of PIC processors.

Why?
Why not? It was fun to write and I do use it when possible for the small projects I do with the 10F
series chips. In real life I'm a developer of medical imaging software, some hardware stuff but mostly
analysis algorithms and image processing, and I play around with these little chips for fun. I don't
mind using assembly but thought it would be fun to see if I could make something that made good use
of the very limited resources these chips have.

Supported Devices
At present, the compiler works with these chips: 10F200, 10F202, 10F204, 10F206, 10F220, and
10F222. If no processor is declared in the source code it defaults to 10F200.

Getting Started
Here's a simple PIC0 program to flash three LEDs connected to GPIO.0, GPIO.1, and GPIO.2. The
circuit is trivial: connect one LED each to pins 3, 4, and 5 of the PIC, then to ground. Connect +5V to
Vdd (pin 2) and ground to Vss (pin 7).

The PIC0 source code is (line numbers added):

001 ; Processor
002 p10f206
003
004 ; Config
005 IntRC_OSC
006 WDT_OFF
007 CP_OFF
008 MCLRE_OFF
009
010 ; Equates
011 equ[
012 test 0x12 ; LED pattern
013 delay 0x13 ; outer delay counter
014 delay0 0x14 ; inner delay counter
015]
016
017 ;--
018 ; wait
019 ;
020 [wait ; (delay --)
021 delay!

3/11

022 {
023 0 delay0!
024 {
025 delay0--
026 delay0@ ?0break
027 }
028 delay--
029 delay@ ?0break
030 }
031]
032
033 ;--
034 ; lights
035 ;
036 [lights ; (pattern --)
037 test!
038 GPIO/2 GPIO/1 GPIO/0 ; turn all LEDs off
039 if(test^2) GPIO^2 then
040 if(test^1) GPIO^1 then
041 if(test^0) GPIO^0 then
042]
043
044 ;--
045 ; main
046 ;
047 [main
048 W->R0 OSCCAL! ; store oscillator calibration value (in W)
049 OSCCAL/0 ; disable INTOSC/4 on GPIO.2
050 0 GPIO! ; clear GPIO
051 0 CMCON0! ; disable comparator
052 0b00001000 R0->W tris ; set GPIO directions
053 0b11000000 R0->W option ; set options
054
055 ; Loop forever
056 {
057 0b100 lights 100 wait
058 0b010 lights 100 wait
059 0b001 lights 100 wait
060 }
061]

this source code should be in the distribution as flash.pic0.

A PIC0 program consists of a series of tokens, whitespace and comments. Tokens are non-whitespace
characters, ie, printing characters, separated by one or more spaces, newlines, or tabs. Comments begin
with a “;” and extend to the end of the current line. There are several sections to a PIC0 program, and
they can appear in any order. All variables are global and are declared in the “equ[...]” section using
the equate name followed by the memory location assigned to it. See lines 011..015 above. Numbers
in PIC0 are assumed decimal unless they are of the form 0xff for C style hexadecimal or 0b1011 for
binary. All numbers are considered unsigned and must be in the range [0,255]. PIC0 programs can
declare the processor that will be used by placing a P10F2xx token in the source outside of a function
or equate declaration. Also, the configuration for the processor, those things given on the __CONFIG
line in the assembly code, can be given in a like manner using the names, case-sensitive, that the
assembler expects. See lines 001-008 above.

Functions are declared using this syntax:

4/11

[<name> <body>]

where <name> is the name of the function and <body> are the statements making up the body of the
function. There must be, at minimum, a “main” function declared, as in C. This function can be
declared anywhere in the source code. The example above defines three functions: main, lights, and
wait. So, the smallest possible PIC0 program is: [main] which will declare an empty main
function and nothing else.

Let's take a closer look at the main function:

047 [main
048 W->R0 OSCCAL! ; store oscillator calibration value (in W)
049 OSCCAL/0 ; disable INTOSC/4 on GPIO.2
050 0 GPIO! ; clear GPIO
051 0 CMCON0! ; disable comparator
052 0b00001000 R0->W tris ; set GPIO directions
053 0b11000000 R0->W option ; set options
054
055 ; Loop forever
056 {
057 0b100 lights 100 wait
058 0b010 lights 100 wait
059 0b001 lights 100 wait
060 }
061]

the first two instructions (line 048) take the current contents of the W register, which will be the
oscillator calibration value, and put it into the OSCCAL register. The PIC0 compiler is aware of all the
standard names for registers, etc. and will even flag when a register is used that isn't available on the
given processor. For example, trying to use A/D registers with a 10F204, etc.

PIC0 supports up to two implied arguments to functions. It declares the first two RAM locations as R0
and R1 for register zero and one. These are loaded implicitly by referencing a number or contents of an
equate with the compiler handling the assignment. So, the W->R0 instruction will take the contents of
the W register and place it into R0. Then, the assignment to OSCCAL is done using “!” as a suffix to
indicate how the equate should be used. In this case, “!” means to take the contents of R0 and put it
into the OSCCAL register.

Line 049 clears bit zero of the OSCCAL register. Bit reference, set, and clear instructions use suffixes
on equates with “.” for bit reference (to R0), “^” for bit set, and “/” for bit clear. For example,

myequ.3 put the value of bit 3 of myequ into R0
myequ^6 set bit 6 of myequ
myequ/1 clear bit 1 of myequ

Direct assignment to an equate is done by placing the number in R0 and using the “!” suffix. This has a
flavor similar to Forth but PIC0 is not stack-based and there can be no space between the equate and
the “!” suffix. Therefore, lines 050 and 051 set GPIO and CMCON0 to zero, respectively.

Lines 052 and 053 set up the chip configuration for the TRIS and OPTION registers. They use the R0-
>W command which is the opposite of W->R0. So, 0b1000 (decimal 8) is placed into W so that it will

5/11

be used by the tris instruction and 0b11000000 (decimal 192) is placed into the OPTION register. A
few instructions will be saved by using inlined assembly code here and in the “W->R0 OSCCAL!”
statement in line 048. See the file dice.pic0 for an example of this.

Let's look at the lights function as it introduces some new syntax:

036 [lights ; (pattern --)
037 test!
038 GPIO/2 GPIO/1 GPIO/0 ; turn all LEDs off
039 if(test^2) GPIO^2 then
040 if(test^1) GPIO^1 then
041 if(test^0) GPIO^0 then
042]

This function expects one argument in R0. If we look at main again we see that before lights is
called a number is placed into R0. This is the usual way to supply an argument to a function. If a
second argument is required they would both be given before the function name. If another number is
given after the second the compiler “wraps” around and that number replaces the first one put into R0.
The compiler is able to see when a function or other action has happened and resets this so that the
proper register, either R0 or R1, will be set the next time. If a function leaves a result in R0, that result
can be preserved by using an underscore (“_”) character. So, for example, to add two numbers and
then subtract a number from their result: 1 2 + _ 4 - since the “_” causes the 4 to be put into R1
and not R0.

So, the argument to lights is stored in test. This is strictly unnecessary as nothing in lights
would cause R0 to be over written so it would be possible to save a few instructions by replacing
“test” with “R0” in this case. After storing the pattern of LEDs all three LEDs are turned off by
clearing the respective bits in GPIO (line 038). Then, bits of test are checked to see if that LED
should then be turned back on. This is the new syntax:

if(test^2) GPIO^2 then

the first token is a bit-test if. There can be no whitespace in this statement because of the parsing rules.
The form is:

if(<equate><op><bit#>)

with every part required. The <equate> is a defined equate or system equate (ie, those defined in the
include files used by the assembler). The operation, <op> is either a “^” for testing if the given bit is
set or a “/” for testing if a given bit is clear. This mirrors the bit set and bit clear suffixes. Naturally,
<bit#> is the bit number to test, 0..7, and must be given in decimal. Only if the if(...) is true
will the body of the if statement be executed (everything up to the “then”). In this case, if a particular
bit of test is set, the corresponding bit of GPIO will be set thereby turning that LED on.

The wait function illustrates loops:

020 [wait ; (delay --)
021 delay!

6/11

022 {
023 0 delay0!
024 {
025 delay0--
026 delay0@ ?0break
027 }
028 delay--
029 delay@ ?0break
030 }
031]

This function just kills time (a timer could have been used here, of course). There are two loops here
denoted by “{“ and “}”. Loops in PIC0 repeat infinitely. You have to break out of them using one of
the break keywords. The outer loop counts delay down to zero while the inner loop counts from 255
down to 0 each time. Looking at the inner loop:

023 0 delay0!
024 {
025 delay0--
026 delay0@ ?0break
027 }

we see delay0 set to 0 and then a loop that breaks when delay0 is exactly zero. The ?0break
keyword breaks out of the inner-most loop when the value of R0 is 0. The ?break instruction would
break when the value is 1 (not non-zero). There is also an unconditional break and corresponding
continue instructions: cont, ?cont, ?0cont. Yes, one could replace ?0break with 0= if
break then but the former saves many instructions as it doesn't require including the library
function 0=, a subroutine.

To compile the file, thereby creating flash.asm, use:

python pic0.py flash.pic0

assuming Python to be properly installed and in your path. For Windows, you can copy the Python
executable to the C:\WINDOWS folder.

To assemble the output use MPLAB or install gpasm, the GNU version, which runs just fine under
Windows and Unix:

gpasm flash.asm

the resulting flash.hex file is now ready to download to a 10F206 chip. Connect the LEDs and
power and all should be well. The resulting object file uses 73 of the 512 memory locations on the
chip.

7/11

file:///C:/WINDOWS

Syntax and Semantics

A complete description of the syntax and semantics for PIC0 is given here.

Processor Type
A single token, outside of any function and equate definition, which tells the compiler which processor
is the target. Only the first one found is used. If not present, the compiler assumes the target is the
10F200. Possible tokens are (case irrelevant): P10F200, P10F202, P10F204, P10F206,
P10F220, and P10F222.

Configuration
Configuration parameters as given in the __CONFIG section of an assembly file, with one additional.
Must be given as listed, case matters: IntRC_OSC, WDT_OFF, CP_OFF, MCLRE_OFF, plus any
others understood by the assembler. Must be given as tokens anywhere in the source but outside of an
equate or function definition.

The additional configuration option is no_sleep which tells the compiler to not end the main
function with a sleep instruction. This could have been used in the example above to save one
instruction since the main function enters an infinite loop.

Numbers
All numbers are unsigned bytes, 0..255. If no prefix is given they are assumed to be decimal. A 0x
prefix indicates hexadecimal and a 0b prefix indicates binary. Numbers are used as arguments to
functions and as values assigned to equates. Bit operations and bit-if statements must use equates, not
numbers.

Equates
Equates associate a number with an identifier. They are defined in equ[...] sections which can
appear at any position in the source code. The body of the equate section is a set of pairs of tokens:
<equate> <value>. For example,

equ[aaa 0x11 bbb 0b1111 ccc 10]

defines three equates and associated values.

8/11

Function Definition
Functions are defined as: [<name> <body>] with <name> being the name of the function and
<body> being the statements that make up the function. All functions are compiled to subroutine calls
and may make use of library routines which are inlined whenever possible. A function may call
another function if the first function has been called from main and the second function does not call
another user-defined function nor a library routine that has been implemented as a function. This
second condition might be a bit tricky as while some library routines are always implemented as
subroutines (eg, 0=) others are inlined unless referenced too often in which case they are implemented
as subroutines as well. All in all, be careful when a function calls a function. This is a consequence of
the two-level hardware return stack which is part of all 10F2xx series chips. See “Getting Started”
above for examples of function definitions. At a minimum, a main function must be defined. The
name of a function, or equate for that matter, is restricted to what the assembler will recognize as a
valid label.

Statements
PIC0 is simple enough that the term “statements”, aside from loops and conditional statements,
encompasses only function calls, bit reference, set, and clear operations, and storing and fetching from
an equate. Two arguments are tracked automatically by the compiler. This means that to call a
function that accepts one argument, which will be in R0, use:

123 one_arg

to call a function that accepts two arguments, which will be in R0 and R1, respectively, use:

123 234 two_args

if three or more arguments are required, use an equate to hold them. If a function returns a value it is
placed in R0. Library routines do this. If a user-defined function is to return a value it must place it in
an equate, which might be R0, or R1, or both to return two values. Recall that R0 and R1 are declared
by the compiler to occupy the first two RAM locations of the given processor. Use an underscore, “_”,
to indicate that whatever is in R0 should stay there and that the next argument should be put into R1
(two “_” will preserve both R0 and R1). This is useful for expressions: 1 2 + _ 1 -, etc.

To store the current value of R0 in an equate place a “!” suffix: 123 A! The compiler is smart
enough to optimize this operation to save unnecessary instructions. Similarly, to return the value in an
equate us an “@” suffix: A@ myfunc to place the contents of A in R0 and then call myfunc.

Bit operations include returning the current value of a specific bit of an equate (including system
equates), setting a specific bit and clearing a specific bit. These are done via suffixes on the equate
name:

abc.3 put the value of bit 3 of abc into R0
abc^3 set bit 3 of abc

9/11

abc/3 clear bit 3 of abc

Loops
Loops in PIC0 are defined as: { <body> } where <body> is the statements that make up the body
of the loop. Loops can be nested. All loops are infinite and must be exited by one of the break
instructions. The next iteration of a loop can be done by one of the continue instructions.

The break instructions are:

break unconditional break from the inner-most loop
?break break only if the current value of R0 is 1
?0break break only if the current value of R0 is 0

with corresponding continue instructions:

cont jump from here to the head of the inner-most loop
?cont jump to head of loop only if R0 is 1
?0cont jump to head of loop only if R0 is 0

equivalent syntax (using C syntax) for various loop structures are:

for(i=10; i > 0; i—) ==> 10 i! { i myfunc i-- i@ ?0break }
 myfunc(i);

for(i=0; i < 10; i++) ==> 0 i! {
 myfunc(i); i@ myfunc i++

 i@ 10 = ?break }

while (i == 2) ==> { i 2 = ?0break myfunc i! }
 i = myfunc();

Conditional Statements
The traditional IF .. THEN .. ELSE structure is supported in PIC0 but using the Forth style of:

<condition> if <true_part> else <false_part> then

where <condition> is any code that leaves a 1 or 0 in R0 (true or false). If the <condition> is
true (1) then the <true_part> of the statement is executed. If not, then the <false_part> is
executed, if given. The if statement ends with the then keyword. And alternate keyword for if is
present, 0if. This tests for R0 being 0 instead of 1 and if so, the <true_part> is executed. If
statements may be nested.

10/11

Library Routines

Inlined Assembly Code
Sometimes it is necessary to include pure assembly code in a function. This is done using the asm{
... } syntax where everything between the “asm{“ and “}” tokens is passed as is to the output file
using “\” as a line break. For example, since the microcontroller starts up with the oscillator
calibration value in W the first instruction ought to put that value in the OSCCAL register. The
example above used:

W->R0 OSCCAL!

Which compiles to 3 instructions:

movwf R0
movf R0,w
movwf OSCCAL

where with inline assembly two of these instructions can be eliminated by using:

asm{ movwf OSCCAL }

similarly, the instructions in the example above which set the TRIS and OPTION registers could be
done more effectively in assembly:

asm{ movlw b'00001000' \ ; set GP3 as input, others output
 tris GPIO \
 movlw b'11000000' \
 option }

thereby saving several instructions. See dice.pic0. Note that lines in the inlined assembly code are
separated by backslash characters, “\”.

Examples
Several example program are included in the distribution:

flash.pic0 flash three LEDs, on after the other
dice.pic0 a binary “dice” with a switch connected to GPIO.3 and LEDs on GPIO0,1, and 2
stop.pic0 the same circuit as in flash.pic0 but using green, yellow, and red to act as a stoplight
timer.pic0 an example of a flashing LED using the timer module of a 10F200

These illustrate most of the features of PIC0.

11/11

	Overview
	Why?
	Supported Devices
	Getting Started
	Syntax and Semantics
	Processor Type
	Configuration
	Numbers
	Equates
	Function Definition
	Statements
	Loops
	Conditional Statements

	Library Routines
	Inlined Assembly Code
	Examples

