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Introduction

About This Guide

This guide describes how to use IRIS POWER C™. It is written for software
programmers/developers who want to make efficient use of the IRIX™ multiprocessors
to execute code in parallel. This guide assumes that you understand how
multiprocessors work and have a working knowledge of parallel programming.

Note: IRIS POWER C is written IRIS Power C in the remainder of this guide.

For resources on parallel programming, see “Reference Material” in this introduction.

What Is IRIS Power C?

IRIS Power C is a C compiler that automatically analyzes sequential code to determine
where loops can run in parallel and then generates object code that can use multiple
processors. It enables you to recompile existing serial C programs so that they run
efficiently on multiprocessor computers without time-consuming hand recoding.
Consequently, your original programs remain portable; you don’t have to be concerned
about the specifics of the system.

What Is the IRIS Power C Analyzer?

The IRIS Power C Analyzer (PCA) is a C code optimization preprocessor that detects
potential parallelism in C code. PCA can insert explicit compiler directives that allow the
data-independent code to run in parallel. You can use PCA with the C compiler or as a
standalone product. Preparing code to run parallel (concurrentization) is not the only
way PCA can improve the performance of your code. PCA optimizations include:

• Concurrentization

• Local variable identification
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• Sum, dot-product, MAX and MIN reduction recognition

• Loop reordering

• Loop unrolling

• Induction variable recognition

• Global forward substitution

• Variable lifetime analysis

• Dead-code elimination

• Procedure in-lining

• Memory management

PCA’s conversion process is designed to operate effectively without your intervention.
You can send PCA-generated code directly to the compiler. In this sense, PCA is more a
part of the compilation process than a standalone tool.

Document Overview

This guide contains the following chapters and appendices:

Chapter 1, “Compiling with IRIS Power C,” explains the command-line options to use at
analysis time to alter PCA defaults, such as instructing PCA to set optimization levels or
enable/disable a feature.

Chapter 2, “How to Use IRIS Power C,” describes how to compile programs with Power
C, interpret the PCA listing files, and use Power C to run programs in parallel.

Chapter 3, “PCA Command-Line Options,” details the options to use to customize
output, such as limiting the depth of an in-line expansion.

Chapter 4, “Power C Analyzer Directives,” explains directives that give PCA additional
information (about the input program) that PCA cannot determine.

Chapter 5, “Multiprocessing C Compiler Directives,” describes how to use the
multiprocessor C compiler to produce code that can run concurrently.
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Chapter 6, “PCA Transformations,” offers examples of PCA transformations of ordinary
C code into explicit parallel syntax.

Chapter 7, “In-lining and Interprocedural Analysis,” explains command-line options
and in-line pragmas you can use to in-line functions or to perform Inter-procedural
Analysis.

Chapter 8, “The PCA Listing,” describes PCA’s listings and messages to users.

Appendix A, “Improving PCA Performance,” lists suggestions to use when customizing
PCA for a particular program.

Appendix B, “Data-Dependence Analysis,” describes data dependence analysis and
explains how PCA uses this information to determine if a given loop can run safely in
parallel.

Appendix C, “Run Time Environment Variables,” describes the run time options
available to control execution of your code.

Related Documentation

The following Silicon Graphics® documents contain information relevant to Power C:

• C Language Reference Manual, Mountain View, California, Silicon Graphics, Inc.,
1995, (part number 007-0701-nnn) documents the syntax and semantics of the C
programming language as implemented on the IRIS-4D™ Series workstations. It
documents previous releases of the Silicon Graphics C compilers as well as the
ANSI C compiler.

• C++ Programmer’s Guide, Mountain View, California, Silicon Graphics, Inc., 1995,
(part number 007-0704-nnn) describes how to use the Silicon Graphics C++
compiler environment. It discusses the two native C++ compilers for producing 32-
and n32/64-bit objects, respectively.

• Reference pages for Power C. For information on Power C, see the pca(1) reference
page. For information about multiprocessing, see the mpc(1) reference page. mpc is
a source-to-source C translator that transforms code containing parallel directives,
inserted by pca or by hand, into parallel C code containing calls to the C
multiprocessing library.
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Reference Material

Parallel Programming

• Introduction to Parallel Programming, Steven Brawer, San Diego, California, Academic
Press, Inc., 1989 (ISBN 0-12-128470-0), describes general parallel programming
concepts. Although the examples are in FORTRAN, most of the concepts described
also relate to Power C.

• Topics in IRIX Programming, Mountain View, California, Silicon Graphics, Inc., 1989,
(part number 007-2478-nnn) documents models of parallel computation as
implemented on Silicon Graphics multiprocessor computer systems.

Data Dependence

• Advanced Compiler Optimization for Supercomputers, David Padua and Michael Wolfe,
Communications of the ACM, Volume 29, No. 12, December 1986.

• Data Dependence and Its Application to Parallel Processing, Michael Wolfe and Utpal
Banerjee, International Journal of Parallel Programming, Volume 16, No. 2, April
1988.

• Optimizing Supercompilers for Supercomputers, Michael Wolfe, Ph.D. Thesis,
Department of Computer Science, Report No. 82-1009, University of Illinois,
Urbana, Illinois, October, 1982.

Style Conventions

The conventions used in the guide help make information easy to access and understand.
The following list defines the notation and syntax conventions:

italic Indicates arguments in a command line that you must replace with a
valid value. In text it is used to indicate commands, document titles, file
names, glossary items, new terms, and variables.

courier Indicates computer output and program listings.

courier bold Indicates computer input and non-printing keys.

[ ] Brackets enclose optional command arguments. Do not enter the
brackets.

. . . An ellipsis indicates that the preceding optional items can appear more
than once in succession.
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( ) Parentheses enclose items. Enter them exactly as shown.

{ } Braces enclose items from which you must select exactly one. Do not
enter the braces.

| The vertical bar separates items from which you can choose one.

For example,

–optimize=integer

means that for the optimize option, you must substitute an integer representing the level
of optimization you want, such as

–optimize=2

This guide uses lowercase letters for PCA command-line options; command-line options
are not case sensitive. File name parameters, however, are case sensitive.
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Chapter 1

1. Compiling with IRIS Power C

You can use IRIS Power C (PCA) in two ways:

• As a standalone analysis tool, pca(1). Passing options directly to PCA and using it as
a standalone analyzer are explained in Chapter 3, “PCA Command-Line Options.”
You can also refer to the pca(1) reference page for information.

• As a phase of the C Compiler, cc(1). This chapter describes how to use Power C with
the C compiler (cc) to produce code that runs in parallel. When you use Power C
this way, you simply pass pca options to cc.

Table 1-1 lists the options you can pass to cc.

In many cases, you will invoke pca as an option to cc. You can also change the PCA
default settings and pass options to pca as part of a cc compilation. To do this, just pass
these options via the –WK mechanism. For more information on the cc compiler and the
–WK options, refer to cc(1) in the IRIX User’s Reference Manual.

Compiler Command-Line Syntax

The C compiler command-line syntax is:

cc [argument] -pca [list|keep] [–WK,–option[=value]

Table 1-1 Power C Options to cc

Option to cc Function

–pca Run Power C Analyzer (pca) and the multiprocessing compiler (mpc)

–pca list All of the above plus generate a listing file

–pca keep All of the above plus keep the mp source file

–WK,options Pass options to pca

–mp Run the multiprocessing compiler only
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[,–option[=value]]...] filename.c

Each option and its description appears in Table 1-2.

For example, to compile a C program with –pca and the option –lo=l, enter:

cc -pca -WK,-lo=l prog.c

The –lo (listoptions) option is described in Chapter 3, “PCA Command-Line Options”.

Table 1-2 Power C Command-Line Options to cc

Option Description

cc Invokes the C compiler that compiles, optimizes, assembles, and link edits the
program.

argument Passes an argument to cc (see cc(1) for the arguments and their descriptions).

–pca Invokes the pca optimizer that concurrentizes C by restructuring certain parts of
code and adding parallel programming directives where possible.

list Produces the annotated pca listing file, file.l. The content of this file varies
depending on the value of the –lo command-line option (see “listoptions” in
Chapter 3). The default is to produce no listing file.

keep Produces the file containing the concurrentized C source code, file.m, that is
accepted by the compiler.

–WK, Allows you to pass pca options on the command line. Do not insert a space between
–WK, and the option(s). If you specify multiple options, separate each with a
comma (,).

–option Allows you to specify a pca command-line option listed in Table 1-3 and explained
in Chapter 3, “PCA Command-Line Options.”

value Sets a value for a command-line option (see Chapter 3, “PCA Command-Line
Options” for values).

filename.c Uses the specified file as the C source file. The file name must have a .c suffix.
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Generating a Listing File

You can generate several types of files when you compile your program. To generate a
PCA listing file, use the list option. This option produces file.l, which contains the
annotated pca listing of the parts of the program that can (and cannot) run in parallel on
multiprocessors. Chapter 2, “How to Use IRIS Power C,” has an example of a listing file.
The content of this file varies depending on the value of the –lo command-line option
(see “listoptions” in Chapter 3). The default is to produce no listing file.

Generating mp Source and Listing Files

To generate a multiprocessing source file as well as a listing file, use the keep option. This
option produces an intermediate file, file.M, that is accepted by the compiler. Chapter 2,
“How to Use IRIS Power C” has an example of an intermediate multiprocessing source
file.

You can find information about multiprocessing in the mpc(1) reference page. mpc is a
source-to-source C translator that transforms code containing parallel directives,
inserted by pca(1) or by hand, into parallel C code containing calls to the C
multiprocessing library.
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Passing Options to PCA

To pass options to PCA, send the –WK, option to cc. The options are listed in Table 1-3.

Table 1-3 PCA Command_line Options

Purpose Long Name Short Name Default Value

Run code in
parallel

concurrentize

noconcurrentize

minconcurrent=n

conc

nconc

mc=n

concurrentize

concurrentize

minconcurrent=1000

Optimize code arclimit=n
address_resolution_level=n
limit=n
machine=list
nomachine

optimize=n
roundoff=n
scalaropt=n
syntax=[a|k]

unroll=n
unroll2=n

arclm=n
arl=n
lm=n
ma=list
nma

o=n
r=n
so=n
sy=[a|k]

ur=n
ur2=n

arclimit=2000

arl=1

limit=5000

machine=s

machine=s

optimize=5

roundoff=0

scalaropt=4

syntax=a

unroll=4

unroll2=100

In-lining and
Inter-procedure
Analysis

inline[=names]

ipa[=names]

inline_create=file
ipa_create=file
inline_from_files=list
inline_from_libraries=list
ipa_from_files=list
ipa_from_libraries=list
inline_depth[=n]

inline_looplevel[=n]

ipa_looplevel[=n]

inline_manual

ipa_manual

inl[=names]

ipa[=names]

incr=file
ipacr=file
inff=list
infl=list
ipaff=list
ipafl=list
ind[=n]

inll[=n]

ipall[=n]

inm

ipam

(off)

(off)

(off)

(off)

current source file

(off)

current source file

(off)

ind=2

inll=2

ipall=2

(off)

(off)
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For more information on the command-line options, see Chapter 3, “PCA
Command-Line Options.” For in-lining and interprocedural analysis (IPA), see
Chapter 7, “In-lining and Interprocedural Analysis.”

Input/Output cmp=file
nocmp

input[=file]

list=file
nolist

cmp=file
ncmp

i[=file]

l=file
nl

see text

see text

see text

nolist

nolist

Listing cmpoptions=list
nocmpoptions

lines=n
listoptions=list
listingwidth=<80|132>

cp=list
ncp

ln=n
lo=list
lw=<80,132>

nocmpoptions

nocmpoptions

lines=55

(no listing)

80

Memory
Management

cacheline=n
cachesize=n
dpregisters=n
fpregisters=n
setassociativity=n

chl=n
chs=n
dpr=n
fpr=n
sasc=n

chl=64

chs=64

dpr=12

fpr=12

sasc=1

Invariant IF
Floating

each_invariant_if_growth=n
max_invariant_if_growth=n

eiifg=n
miifg=n

eiifg=20

miifg=500

Command Line
Options for
Portability

DOLLAR

FLOAT

SIGNED

VOLATILE

PROCESSORS

INLINE_AND_COPY

STDIO

P

INLC

STDIO

off

off

off

off

P=0

off

off

Table 1-3 (continued) PCA Command_line Options

Purpose Long Name Short Name Default Value
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Summary

This chapter described the pca options that you can pass to the cc compiler. You can also
pass these options directly to PCA, and use it as a standalone analyzer. Chapter 3, “PCA
Command-Line Options” explains each PCA option in detail and describes how to use
the Analyzer.

Before turning to Chapter 3, “PCA Command-Line Options” however, continue with
Chapter 2, “How to Use IRIS Power C,” which tells you how to interpret the .L and .M
files, and explains how to use Power C to get more of a program to run in parallel.
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2. How to Use IRIS Power C

This chapter describes how to use IRIS Power C to get the maximum amount of code to
run in parallel. You can use the Power C Analyzer either in conjunction with the cc
compiler (as Chapter 1, “Compiling with IRIS Power C” explained) or as a standalone
analyzer (as described in Chapter 3, “PCA Command-Line Options”).

What does PCA do to your code? It inserts directives into the code that tells the compiler
to run loops in parallel. It does not change the logic of your program although, if
requested, it will rewrite portions of the program to run faster. This chapter explains
what happens to the code when you use pca and explains how to use pca as an analyzer.

The Power C Analyzer is a powerful tool that can:

• direct C code to run in parallel

• determine data dependencies

• distribute well-behaved loops and certain other code across multiprocessors

• optimize source code

Power C is neither an extension to the C language nor a way to concurrentize any
arbitrary C program. Furthermore, if the Power C directives are removed or ignored,
then the code becomes a valid serial program. This allows full source code compatibility
with other non-multiprocessing systems.

Compiling Programs with PCA

This section explains some of the ways to use PCA and what happens during the stages
of compilation. Figure 2-1 shows the program flow through the C compiler. When you
compile a program you have the option of specifying –pca (the Power C Analyzer and
multiprocessing compiler) or –mp (the multiprocessing compiler only).
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Figure 2-1 Power C Process Flow

The first stage invokes cpp to handle cpp directives. (For more information, see cpp(1) in
the IRIX User's Reference Manual.) If you specify –pca, PCA puts directives into the cpp
output that allows data-independent loops to run in parallel. As explained in Chapter 1,
“Compiling with IRIS Power C” you can use the list and keep options to direct PCA to
generate a listing file (with the suffix .L) and/or an intermediate multiprocessing source
file (with the suffix .M). Also, you can hand-insert directives into the code prior to

pca

cpp

ccom or
accom

ccom_mp or
accom_mp

C
source

ucode

ugen
uopt

object

ld

executable

C' C''

listing

-pca

-mp

libraries

    mp
libraries

-pca
-mp

cc

Driver
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compilation. Finally, the multiprocessing C compiler compiles the transformed
PCA-generated file to produce an executable object file. You can run this executable on
any Silicon Graphics IRIS system (single or multiprocessor); the executable will adapt to
the number of processors present at execution.

Figure 2-2 shows how PCA internally processes the C source code. PCA parses the
source into an internal representation, performs data dependency analysis and
transformations, generates C source code from the internal representation, and produces
intermediate C code.

Figure 2-2 PCA Processing Flow

If you specify the multiprocessing compiler, with the –mp or –pca options, it identifies
parallel directives, rewrites the parallel code with explicit runtime calls, processes the C
code, and generates the executable object. Figure 2-3 shows this code flow.

C
source
code

Parse source into

Perform analysis

Generate C source code

C'
 source

code

internal representation

and transformations

from internal representation
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Figure 2-3 Multiprocessing Compiler Flow

   C

source

object

 preprocessing

Identify parallel
directives

 Rewrite parallel code
 with explicit runtime

 calls

Perform normal "C"
processing

 code generation

 temp
source
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Different Ways of Concurrentizing Code

You can use Power C in different ways to produce concurrentized code: automatically,
manually, and iteratively. If you use Power C automatically as a phase of compilation,
PCA concurrentizes parts of the code that it determines will safely run in parallel and
then compiles the code. You will probably invoke pca this way when you first begin using
Power C. Figure 2-4 shows the process flow.

Figure 2-4 Using  –pca

Rather than using the Power C Analyzer, you can enter directives manually to
concurrentize the code. This method is shown in “Examples” on page 21 toward the end
of this chapter. Figure 2-5 shows the program flow when you hand insert the
multiprocessing directives.

C
source
code

cc -pca

multiprocessing
executable
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Figure 2-5 Inserting Directives Manually

In addition to the automatic and manual methods of compilation, you can also use Power
C iteratively, as shown in Figure 2-6. This method is best for getting the maximum
amount of code to run in parallel.

hand insertion of
multiprocessing

directives

C'

C
source
code

cc -mp

multiprocessing
executable
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Figure 2-6 Using PCA Iteratively

Now that you have seen the different ways you can use Power C, the next step is to figure
out how further to concurrentize the maximum amount of code. The sections that follow
illustrate the iterative method outlined in Figure 2-6, and describe how Power C can help
to optimize a program and run more of it in parallel.

C
source
code

multiprocessing
executable

cc –pca C'

pca –lo=l
analysis

report

modification/rewriting
portions of code
and/or insertion of pca
directives
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Using the Listing File

First, use the listing file to see exactly which loops were concurrentized. To generate a
listing file, use the list option. (Refer to Chapter 1, “Compiling with IRIS Power C” for
more information on the list option.) The listing file contains the annotated pca listing of
the parts of the program that can (and cannot) run in parallel on multiprocessors. The
content of this file varies depending on the value of the –lo command-line option (see
“listoptions” in Chapter 3).

For example, suppose you have a simple C program named test.c that looks like this:

int a[1000], sum;
void example_3_2_2 ()
{
    int i;
    sum = 0;
    for (i=0; i<1000; i++)
        a[i] = i;
    for (i=0; i<1000; i++)
        sum += a[i];
    printf ("The sum is %d\n", sum);
}

Now, let PCA do the work for you. Compile the program by passing the –pca option to
cc, and generate a listing file by using the list option.

To compile the program, enter:

cc -c -pca list test.c

which produces a PCA listing file, test.L.
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The listing file looks similar to this:

---------------------------Loop Table--------------------------

Nest
Loop Message Level Contains Lines
===============================================================

for i                         1    6-7 "test.c"
   Original Loop Split Into Sub-Loops
   1. Concurrent & Enhanced Scalar
                              1    6-7, 9 "test.c"
   Line:6 Loop unrolled 4 times to improve scalar performance.
   Line:6 Loop has been fused with others to reduce overhead.
   2. Enhanced Scalar         1    6, 9 "test.c"
   Line:6 Loop unrolled 4 times to improve scalar performance.
   Line:9 Data dependence involving this line
   due to variable"sum".
   Line:9 Loop has been fused with others to reduce overhead.

for i                         1    8-9 "test.c"

             2 loops total

             1 loops concurrentized
             1 this loop has been fused with other loops

PCA was able to concurrentize the first for loop. In this case, initialization of array a was
executed in parallel on the available processors. PCA was unable to concurrentize the
second loop, hence the “preferred scalar mode” message. However, in subsequent
sections, you will see how to get PCA to concurrentize the other for loop. (For more
information on the listing file, see Chapter 8, “The PCA Listing.”)

Using the Listing and mp Source Files

To generate a multiprocessing source file as well as a listing file, use the keep option.
(Refer to Chapter 1, “Compiling with IRIS Power C” for more information on the keep
option.) This option produces a test.L file and an intermediate file, test.M.

To generate these files, enter:

cc -c -pca keep test.c
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which yields a listing file, test.L, and an intermediate file containing concurrentized C
source code, test.M. The content of the file, test.M, appears in the example that follows:

int a[1000];
int sum;
void example_3_2_3( )

{
    int i;
    int _Kii1;
    sum = 0;
#pragma parallel shared(a) local(_Kii1)
#pragma pfor iterate(_Kii1=0;1000;1)
    for ( _Kii1 = 0; _Kii1<=999; _Kii1++ ) {
        a[_Kii1] = _Kii1;
    }

    for ( _Kii1 = 0; _Kii1<=999; _Kii1++ ) {
        sum +=  a[_Kii1];
    }

    printf( "The sum is %d\n", sum );
}

The test.M file shows that PCA finds it can run a for loop in parallel. PCA inserts the
directives:

#pragma parallel shared(a) local(_Kii1)

and

#pragma pfor iterate(_Kii1=0;1000;1)

into the code. The #pragma parallel tells the multiprocessing C compiler to start a parallel
region. The phrase shared(a) tells the compiler that all processes that execute the for loop
share the array a. The phrase local(_Kii1) indicates that every process executing the loop
has a local variable _Kii1.

The #pragma pfor tells the compiler that the next for loop can run in parallel, and the
loop statements are executed on the processors available. The phrase iterate gives the
multiprocessing C compiler the information it needs to uniquely identify the iterations
of the loop and partition them to particular threads of execution.
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Getting More Code to Run in Parallel

As you can see in the previous examples, using PCA without options has some
drawbacks. If roundoff error is not critical, the second for loop should also be able to
safely run in parallel. All that’s needed is to pass an option to pca, specifically the
–roundoff (–r) option. To do this, enter:

cc -pca keep -WK,-r=2 test.c

The –r=2 option tells PCA to mark reductions to run concurrently. See Chapter 3, “PCA
Command-Line Options” for details on the –roundoff option.

After execution, both loops were concurrentized. The listing file looks similar to this:

---------------------------Loop Table--------------------------

                               Nest
Loop Message                   Level Contains Lines
===============================================================

for i 1     6-7 "test.c"
  1. Concurrent & Enhanced Scalar 1     6-7, 9 "test.c"
  Line:6 Loop has been fused with others to reduce overhead.

for i 1     8-9 "test.c"

             2 loops total

             1 loops concurrentized
             1 this loop has been fused with other loops

The intermediate file, test.M, now looks like this:

int a[1000];
int sum;
void example_3_2_4(  )

{
    int i;
    int _Kii1;
    int sum1;

    sum = 0;
#pragma parallel shared(a, sum) local(_Kii1, sum1)
    {
        sum1 = 0;
#pragma pfor iterate(_Kii1=0;1000;1)
        for ( _Kii1 = 0; _Kii1<=999; _Kii1++ ) {
            a[_Kii1] = _Kii1;
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            sum1 +=  a[_Kii1];
        }
#pragma critical
        {
            sum +=  sum1;
        }
    }
    printf( "The sum is %d\n", sum );
}

It's easy to see where PCA found it could run more code in parallel. PCA expanded the
previously inserted directives:

#pragma parallel shared(a) local(i)

to

#pragma parallel shared(a, sum) local(_Kii1, sum1)

and inserted a new directive:

#pragma critical

into the code. The #pragma parallel is expanded to include sum and sum1. The #pragma
critical instructs each thread to add its partial sum, sum1 to sum, one at a time.

Using PCA to Run Programs in Parallel

As you learned in the previous section, the Power C Analyzer automatically identifies
loops in a C program that can run safely in parallel. For a few programs, you may be able
to use PCA automatically to make a significant part of the code run in parallel. And to
make the program more efficient, you can pass PCA options to cc, such as the -roundoff
option that was used in the previous example. However, for most programs, you will
also want to make small code changes that let PCA run more of the code in parallel.
Often, the changes are easy to make.

The PCA listing indirectly supplies information about when and where to modify your
code. The more you know about where your program spends much of its time, and the
better you understand the PCA listings, the easier it is to recognize where small changes
to the source code can produce more parallel code.
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How Does the Power C Analyzer Work?

When you use the Power C Analyzer, PCA does a data-dependency analysis on the code.
During this analysis, PCA looks for for loops with the property that each iteration of the
loop is independent of all other iterations. Because each iteration of the loop is
self-contained, the system can execute the iterations in any order (or even simultaneously
on separate processors) and get the same answer after running all iterations as it would
running the iterations serially.

When PCA finds a loop that has the property of data independence, it knows it can safely
run the loop in parallel. When PCA finds a loop that has iterations that could depend on
other iterations, it cannot run the loop in parallel, but PCA can tell you what is causing
the problem. You can use directives to get around the problem, if you know that there are
no real data dependencies.

Finally, if PCA is unable to run the loop in parallel, you can often modify your program
to make it safe to run in parallel.

Getting Started

When trying to find loops to run in parallel, review the listing file and focus your efforts
on the areas of the code that use the bulk of the run time. You cannot significantly
improve the performance of your program by spending a lot of time trying to parallelize
a routine that used only 1% of its run time.

Profiling the Code

To find out where your code spends its time, take an execution profile of the program.
Use either pc-sample profiling by using cc(1) with the –p option, or basic block profiling
by using pixie(1). The application program is then run to gather performance data, and
prof(1) is used to generate a profile report from the collected data. For details on these
commands, see the IRIX User’s Man Pages and the IRIS-4D Series Compiler Guide.

You can do the profiling in two ways. The first is the conservative approach, where you
take a profile of the original (nonparallel) job. Then you run in parallel only the loops that
account for most of the run time. This approach reduces the chances that something may
go wrong because it makes fewer changes to the code. It also focuses most of the effort
into the smallest number of lines of code.
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The second approach is more aggressive. After running the program through PCA,
profile the resultant multiprocessed job. Use this approach if you think that PCA does a
good job with the existing program (for example, a converted program that already runs
well on traditional vector architectures). Many such programs run in parallel very well
without additional effort. You can then focus on the routines with which PCA has a
problem.

After you decide on an approach, use the profile data to direct your efforts to the most
time-consuming routines. Once you find such a routine, submit it alone to PCA. If the
routine is in the middle of a large file, consider using csplit(1) to isolate that routine.
Compile it with the –pca list option, and examine the listing file. The PCA listing
identifies which loops PCA can and cannot run in parallel. For the latter, the listing also
tells why PCA could not convert the loop for parallel execution.

Interpreting the PCA Listing

At times, PCA may not run a loop in parallel. PCA generates messages in the listing that
complain about the code. One message is:

dependencies prevent parallelism

This message means that PCA believes data dependencies exist in the loop. The listing
also names the variables PCA believes are involved in the dependence. Dependencies
can be simple to complex, so deal with each dependency on an individual basis.

PCA may generate another message:

unoptimizable function/subroutine call

This message means that the loop includes a call to an external procedure or function.
Because PCA cannot see into that other routine, it must assume that the routine contains
data dependencies. To change this assumption, either use in-lining or interprocedural
analysis (described in Chapter 7, “In-lining and Interprocedural Analysis”) or, if you
know the routine is safe to run in parallel, insert the concurrent, concurrent call, or no
side effects directives.
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Examples

The following examples show how inserting directives into the C source code produces
code that runs in parallel.

Permutation Index

This example uses the file permute.c, which contains the following C code:

void example_3_4_1 (double a[], double b[], long index[])
{
    long i;
#pragma distinct (a[], b[], index[])
#pragma concurrent
    for (i=0; i<10000; i++)
        a[index[i]] += b[i];
}

Two directives have been inserted into the code; without these directives, PCA cannot
produce concurrentized code. The #pragma distinct tells PCA that no data dependencies
occur between a, b, and index; that is, these objects do not overlap. The #pragma
concurrent tells PCA to ignore assumed dependencies in the next loop. (See Chapter 4,
“Power C Analyzer Directives,” for a complete description of these pragmas.)

Compiling permute.c:

cc -pca keep permute.c

produces the listing file, permute.L, which looks similar to this:

-----------------------  Loop Table  --------------------------

Nest
Loop          Message                Level  Contains Lines
===============================================================
for i                                1      6-7 "permute.c"
   1. Concurrent & Enhanced Scalar   1      6-7 "permute.c"

             1 loops total
             1 loops concurrentized
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The intermediate multiprocessing file, permute.M, looks like this:

void permute( double a[], double b[], long index[] )
{
    long i;
#pragma parallel shared(index, a, b) local(i)
#pragma pfor iterate(i=0;10000;1)
    for ( i = 0; i<=9999; i++ ) {
        a[index[i]] +=  b[i];
    }
}

PCA was able to safely run the loop in parallel. PCA inserted #pragma parallel shared and
#pragma pfor iterate. If you can guarantee that the values of index[i] are always different
for each value of i, then there is no dependence (each iteration would get a different
location in a). A permutation vector is a list of numbers, each of which is different from
all the others. If you know that a is a permutation vector, then data independence exists.
An example of a permutation index is a list of objects in which each object appears
exactly once.

Note: PCA cannot check the truth of directives. When you use a directive, you must be
certain that the directive is always true for all possible input data.

Function Call

The next example has #pragma concurrent call inserted into the code. This pragma tells
PCA that the function calls in the next loop are safe to run in parallel. The file sub.c
contains:

double a[10000], b[10000];
void sub (double [], double [], long);
void example_3_4_2 ()
{
    long i;
#pragma concurrent call
    for (i=0; i<10000; i++)
        sub (a, b, i);
}
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The listing file, sub.L, looks similar this:

----------------------  Loop Table  ---------------------------

Nest
Loop        Message                Level  Contains Lines
===============================================================
for i                              1      7-8 "sub.c"
    1. Concurrent & Enhanced Scalar1      7-8 "sub.c"

1 loops total
             1 loops concurrentized

After compilation, the intermediate file, sub.M, looks like this:

double a[10000];
double b[10000];
void sub( double [], double [], long  );
void sub(  )
{
    long i;
#pragma parallel shared(a, b) local(i)
#pragma pfor iterate(i=0;10000;1)
    for ( i = 0; i<=9999; i++ ) {
        sub( a, b, i );
    }
 }

PCA was able to safely run the loop in parallel. PCA inserted #pragma parallel shared
and #pragma pfor iterate into the code.

Summary

PCA provides a great deal of information about the dependencies of loops in a C
program. Often, PCA can use the information to run loops automatically in parallel.
However, when PCA is unable to convert the code automatically for parallel execution,
you can often tell it more information that allows it to mark the code to run in parallel.
Often, you'll have to make only small changes to the code or add a PCA command-line
option to transform a program into an efficient parallel version.

To learn more about PCA command-line options and how to use PCA as a standalone
analyzer, turn to Chapter 3, “PCA Command-Line Options.”
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3. PCA Command-Line Options

This chapter explains how to use the Power C Analyzer and describes the pca
command-line options (also see the pca(1) reference page).

Chapter 2 described how to use PCA by passing –pca and its options to the C compiler.
In this mode, PCA is run as a phase of compilation. PCA analyzes the code, adds parallel
directives, and then compiles the program.

This chapter explains how to run PCA as a standalone analysis tool. By using pca and
reviewing its analysis report, you can try different options and/or code modifications to
see their effect on your program. Once you have reached optimum parallelism, you can
do a final compilation with the –pca option.

pca Command-Line Syntax

The pca command-line syntax is:

/usr/lib/pca [ options ] ... filename.c

When you specify a command-line option, you can use the long name, short name, or any
portion of the name that uniquely identifies the command (for example, –roundoff or –r).
If a command-line option appears more than once on the command line, PCA uses the
last occurrence—except for input/output options. PCA does not accept multiple
occurrences of input/output options.

The command-line options described in this chapter appear in lowercase letters;
however, PCA is not case sensitive.
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Table 3-1 lists the pca command-line options. The first column defines the functional
category of the option: concurrentization, general optimization, in-lining and
interprocedural analysis, input/output, and listing. The next three columns list the long
name, short name, and default values of each option.

Table 3-1 pca Command-Line Options

Purpose Long Name Short Name Default Value

Run code in
parallel

concurrentize

noconcurrentize

minconcurrent=n

conc

nconc

mc=n

concurrentize

concurrentize

minconcurrent=1000

Optimize code arclimit=n

address_resolution_level=n
limit=n
machine=list
nomachine

optimize=n
roundoff=n
scalaropt=n
syntax=[a|k]

unroll=n
unroll2=n

arclm=n
arl=n
lm=n
ma=list
nma

o=n
r=n
so=n
sy=[a|k]

ur=n
ur2=n

arclimit=2000

arl=1

limit=5000

machine=s

machine=s

optimize=5

roundoff=0

scalaropt=3

syntax=a

unroll=4

unroll2=100

In-lining and
Inter-procedural
 Analysis

inline[=names]

ipa[=names]

inline_create=file
ipa_create=file
inline_from_files=list
inline_from_libraries=list
ipa_from_files=list
ipa_from_libraries=list
inline_depth[=n]

inline_looplevel[=n]

ipa_looplevel[=n]

inline_manual

ipa_manual

inl[=names]

ipa[=names]

incr=file
ipacr=file
inff=list
infl=list
ipaff=list
ipafl=list
ind[=n]

inll[=n]

ipall[=n]

inm

ipam

(off)

(off)

(off)

(off)

current source file

(off)

current source file

(off)

ind=2

inll=2

ipall=2

(off)

(off)
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The following pages explain each option giving its short name, long name, and default,
and whether or not you can disable it by using the no ([n]) notation. In-lining and
Interprocedural Analysis are explained in Chapter 7, “In-lining and Interprocedural
Analysis.”

Input/Output cmp=file
nocmp

input[=file]

list=file
nolist

cmp=file
ncmp

i[=file]

l=file
nl

see text

see text

see text

nolist

nolist

Listing cmpoptions=list

nocmpoptions

lines=n
listoptions=list
listingwidth=<80|132>

cp=list

ncp

ln=n
lo=list
lw=<80,132>

nocmpoptions

nocmpoptions

lines=55

(no listing)

80

Memory
Management

cacheline=n
cachesize=n
dpregisters=n
fpregisters=n
setassociativity=n

chl=n
chs=n
dpr=n
fpr=n
sasc=n

chl=64

chs=64

dpr=6

fpr=12

sasc=1

Invariant IF
Floating

each_invariant_if_growth=n
max_invariant_if_growth=n

eiifg=n
miifg=n

eiifg=20

miifg=500

Command Line
Options for
Portability

DOLLAR

FLOAT

SIGNED

VOLATILE

PROCESSORS

INLINE_AND_COPY

STDIO

P

INLC

STDIO

off

off

off

off

P=0

off

off

Table 3-1 (continued) pca Command-Line Options

Purpose Long Name Short Name Default Value
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PCA runs after the standard C preprocessor. The code examples in this chapter show the
original code (before the preprocessor) and the PCA-transformed code (with some of the
C preprocessor additions stripped off for clarity).

Concurrentization Options

Concurrentization is the process by which PCA converts code to execute concurrently (in
parallel) on multiple processors.

concurrentize

The syntax for this option is:

–[n]conc
–[no]concurrentize (long name)
–conc (default value)

The –concurrentize option tells PCA to mark eligible loops to run concurrently (in
parallel). The –noconcurrentize option tells PCA not to mark loops to run in parallel but
does not prohibit any of the other optimizations that PCA can make.

minconcurrent

The syntax for this option is:

–mc=n
–minconcurrent=n   (long name)
–mc=1000           (default value)

Executing a loop in parallel incurs overhead that varies with different loops. If a loop has
little work, parallel execution might be slower than serial execution because of the
overhead. However, beyond a certain level, you can improve performance through
parallel execution. This level is passed to PCA with the –minconcurrent option.

The range of values for the –minconcurrent option is:

>=0
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The higher the –minconcurrent value, the larger (more iterations, more statements, or
both) the loop body must be in order to run concurrently. To disable this feature and run
all possible code in parallel, use the command-line option –minconcurrent=0.

At analysis time, PCA estimates the amount of computation inside a loop. You can see
this estimate in the Loop Summary (see Chapter 8, “Loop Table (l)”) in the “iteration
workload” column. This estimate is roughly the number of operators plus the number of
operands, excluding the loop index. The product of the workload in each iteration times
the number of iterations is considered to be the amount of work of the loop, and this is
the value that is compared with the –minconcurrent value. If the loop bounds are
constant and the estimated amount of work is greater than the –minconcurrent value,
PCA generates concurrent code for the loop. Otherwise, it leaves the loop serial.
However, if the for loop bounds are not known at compilation time, PCA generates an if
expression in the parallel pragma. The compiler interprets this expression as a request to
generate two loops, one concurrentized and one left serial, which are checked at runtime
to decide whether or not to execute the loop in parallel.

The following loop illustrates this feature with the –minconcurrent default:

int a[], b[], c[], n;
void example_4_2_2 ()
{
    int i;
    for (i=0; i<n; i++) {
        a[i] = b[i] + c[i];
    }
}

becomes:

int a[];
int b[];
int c[];
int n;
void example_4_2_2(  )

{
    int i;
#pragma parallel if(n > 201) byvalue(n) shared(a, b, c) local(i)
#pragma pfor iterate(i=0;n;1)
    for ( i = 0; i<n; i++ ) {
        a[i] = b[i] + c[i];
    }
}
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The Loop Summary (from the listing file) shows what PCA concurrentized.

----------------------------Loop Table-------------------------

                              Nest
Loop         Message             Level    Contains Lines
===============================================================
for i                            1        5-7 "example_4_2_2.c"
   1. Concurrent                 1        5-7 "example_4_2_2.c"

PCA calculates that the amount of “work” being done by each iteration is 5 units. At run
time, if the iteration count n is less than or equal to 200 (1000/5), the concurrent loop is
executed serially; otherwise it is executed in parallel.

If you specify –minconcurrent=0 on the command line, the if(n > 201) clause will be left
out of the #pragma parallel, and the loop will always execute in parallel.

Optimization Options

The following sections explain each optimization command-line option.

syntax

The syntax for the syntax option is:

-sy=[a|k]

-syntax=[a|k] (long name)

-syntax=a (default value)

The syntax option allows you to select the dialect of C that PCA expects. The default
dialect is ANSI C (–syntax=a). Specifying –syntax=k instructs PCA to accept traditional,
K&R C.

If you don’t specify a dialect, PCA will adjust to the actual dialect used in your source.
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address_resolution_level

The syntax for this option is:

–arl=n
–address_resolution_level=n        (long name)
–arl=1 (default value)

The –address_resolution_level option lets you control the assumptions that PCA makes
about memory aliases. Table 3-2 lists the levels of control.

An associated directive, #pragma arl=n, has the same meaning as the –arl command-line
option (see Chapter 4, “Power C Analyzer Directives,” for details).

Each of the levels described in Table 3-2 is cumulative; that is, specifying arl=3 includes
all the actions of arl=1, arl=2, as well as arl=3.

Table 3-2 Address Resolution Levels, arl

Value Description

0 Make no assumptions about memory aliases.

1 Assume that there are no pointer self-references (the default); that is, a pointer will not
contain its own address. Self-referencing pointers are not common, and this level avoids
the problem in loops such as:

int *p

...

for ( i=0; i<n; i++ ) }

    p[i] = a[i];

    }

In the example, there could be dependencies from the first iteration to the other iterations
since p[0] might be &p.

2 Assume that none of the objects represented by the parameters overlap in memory; that
is, each argument is distinct from the other. This is equivalent to #pragma distinct for all
parameters (see Chapter 4, “Power C Analyzer Directives,” for a description of #pragma
distinct).

This is not true for most C functions, and PCA will assume there is (or could be) parameter
aliasing unless you specify arl=2 or greater.
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scalaropt

The syntax for this option is:

–so=n
–scalaropt=n (long name)
–scalaropt=2 (default value)

The –scalaropt option sets the level of scalar optimization PCA will perform. Scalar
optimizations include dusty-deck transformations, dead code elimination, and loop unrolling.

The parameter sets the optimization level as described in Table 3-3.

Scalar optimizations are discussed in detail in “Scalar Optimizations” in Chapter 6.

3 Assume globals, parameters, and locals form distinct groups. The memory locations
referred to using local variables will be different from the memory locations referred to
using global variables, and both of these will be different from the memory locations
referred to through parameters. For example:

float *a;

f(x)

float x[1000];

{

   int i;

   float f[1000];

   for ( i=0; i<1000; i++ ) {

      a[i] = x[i] + f[i];

}

   }

pca will not concurrentize this loop unless you specify arl=3 (or greater), which indicates
that the arrays a, f, and x are distinct.

4 Assume that there are no aliases for objects; that is, all pointers/arrays are distinct from
each other. If pointers are used, only one name is used to reference an object.

Table 3-2 (continued) Address Resolution Levels, arl

Value Description
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limit

The syntax for this option is:

–lm=n
–limit=n (long name)
–lm=5000 (default value)

PCA estimates how much time it would need to analyze each loop-nest construct. If a
nest of loops is too deep, PCA ignores the outer loop and recursively visits the inner
loops until it finds a nest of loops that is not too deep. The –limit option is the upper
threshold of the amount of work that controls what PCA thinks is “too deep.”

Larger loop-nest limits might allow PCA to convert the outer loops of a deeply nested
loop structure to run in parallel. (Running the outermost loop in parallel usually results
in the best performance increase.) But larger loop-nest limits can increase the analysis
time. The limit does not correspond to the for loop-nest level. It is an estimate of the
number of loop orderings that PCA can generate from a loop-nest. The –limit option
resets this internal limit.

Note: This limit is adequate for most programs. If your program is extremely complex,
you might want to increase this limit.

Table 3-3 Scalar Optimization Levels

Value Description

0 Perform no scalar optimizations.

1 Perform only simple scalar optimizations, such as dead-code elimination, global forward
substitution, and dusty-deck IF transformations. Perform code floating if –roundoff
>=1.

2 Perform the full range of scalar optimizations. Remove floating invariant IFs from loops.
Recognize induction variables. Reroll loops, expand arrays, peel loops, perform loop
fusion.

3 Enable memory management if –roundoff=3. Allow dead code elimination of
unnecessary program fragments during output conversion. Other optimizations might
expose more dead code.
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arclimit

The syntax for this option is:

–arclm=n
–arclimit=n (long name)
–arclm=2000 (default value)

The –arclimit option sets the size of the “dependence arc data structure” that PCA uses
to perform data-dependence analysis. (See Appendix B, “Data-Dependence Analysis,”
for a description of data-dependence analysis.) This data structure is dynamically
allocated on a loop-nest by loop-nest basis.

The formula PCA uses to estimate the number of dependence arcs for a given loop-nest
is:

array_size = max (#_of_statements * 4, arclimit value)

PCA assumes that each statement will have four dependence arcs (a worst-case
estimate).

When you include the Loop Summary in the listing file (–listoptions=l), PCA marks any
loop that was too complex for the dependence data structure to hold the information. The
following example shows the Loop Summary (from the listing file for a PCA run with the
value –arclimit=200). In this example, PCA detected that the given loop, which
contained 123 statements, had too many dependence arcs for the data structure as
allocated. The storage that was allocated for the dependence arc array had been:

max(123 * 4 , 200) = 492
The Loop Summary looks like this:
---------------------------Loop Table--------------------------

                               Nest
Loop         Message          Level    Contains Lines
===============================================================
for i                         1      5-129 "example_4_3_5a.c"
    1. Scalar                 1      5-129 "example_4_3_5a.c"
             Line:5  Data dependence analysis aborted due to
insufficient storage for graph arcs.

Suppose for the above example, you change the –arclimit value to something greater
than 492. PCA might be able to optimize the given loop provided that there are no
data-dependence violations. The next example shows the Loop Summary after setting
–arclimit=2000.
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--------------------------Loop Table---------------------------

                               Nest
Loop         Message          Level    Contains Lines
===============================================================

for i 1      5-129 "example_4_3_5b.c"
    1. Concurrent 1      5-129 "example_4_3_5b.c"

The maximum valid –arclimit value is 2000. If you specify a value greater than 2000, PCA
defaults to allocating 2000 for the data-dependence array. PCA gives no warning when
it does this.

machine

The syntax for this option is:

–[n]ma=list
–[no]machine=list    (long name)
-ma=s (default value)

The –machine option is list-valued. It has three valid values: n, o, and s. Table 3-4 defines
these values.

Table 3-4 machine Values

Value Description

n Prefer nonstride-1 array access over stride-1 array access. For some arrays, nonstride-1 array
access provides the best performance.

o Do not consider innermost loops for parallel execution. If a loop does not do very much,
running the loop in parallel might take longer than running the loop serially because of
the overhead. PCA makes decisions concerning the overhead:benefit ratio when it
evaluates a loop for parallel execution. If the loop bounds are unknown at analysis time,
PCA might generate concurrent code for innermost loops (depending on the
minconcurrent value), a practice that might be inefficient for the actual loop bounds.

s Prefer a for loop that generates stride-1 (contiguous) references over one that generates
nonstride-1 operands when PCA must choose only one to mark for parallel execution. This
option typically generates the most efficient code, and is the default.
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If you change the machine option to include choices other than the default value
(–machine=s), you must also include the default value s if it is still to be in effect. For
instance, if you want to tell PCA not to try to run inner loops concurrently (option value
o) but to consider all other eligible loops for parallel execution (option value s) you must
specify

–machine=os

If you specify –machine=o, you enable NO-INNER-LOOPS, but disable the default
(prefer stride-1) option. You can use any combination of the three choices, except for the
self-contradicting combination of s (prefer stride-1) and n (prefer nonstride-1).

To disable the options, on the command line, enter:

–nomachine

optimize

The syntax for this option is:

–o=n
–optimize=n (long name)
–o=5 (default value)

The –optimize option sets the optimization level, ranging from the integer 0 (minimum
optimization) to the integer 5 (maximum optimization). Each optimization level is
cumulative: level 5 performs all optimizations made by the previous levels. Table 3-5
describes optimization levels.

A higher optimization level results in more optimization along with increased analysis
time. Many programs written for a parallel processing environment do not need
advanced transformations; with these programs, a lower optimization level is enough.
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roundoff

The syntax for this option is:

–r=n
–roundoff=n         (long name)
–r=0                (default value)

The –roundoff option allows control of whether or not PCA runs reductions (for
example, the summing of an array of values) in parallel. When a reduction runs serially,
all operations occur in the same order, so the roundoff error is the same from one
execution of the code to the next. But when a reduction runs in parallel, the separate
threads of execution do not do all the operations in the same order as the serial version.
Thus, the roundoff error can differ from that of the serial version. Furthermore, the

Table 3-5 Optimization Levels

Value Description

0 Do not mark code for parallel execution.

1 Mark eligible code for parallel execution.

2 Apply for loop interchanging techniques and recognize sum reductions as safe for parallel
execution. (PCA doesn’t mark sum reduction loops for parallelization unless
roundoff=2.) Use lifetime analysis to determine when the code needs last- value
assignment of scalars to make a loop safe to run in parallel. Use more powerful
data-dependence tests to find more loops that can run safely in parallel.

3 Recognize linear recurrences as safe for parallel execution. Use loop interchanging, when
possible, to improve memory referencing. This level also allows loop interchanging for
triangular loops. Use special case data- dependence tests to find more loops that can run
safely in parallel. Recognize special index sets, (wrap-around variables) as safe for parallel
execution.

4 Split a loop in two, if necessary, to break a data-dependence arc. Use exact
data-dependence tests to find more loops that are safe to run in parallel. Enable loop
unrolling.

5 Transform two adjacent loops into a single loop. Use data-dependent tests to allow fusion
of more loops than possible with standard techniques.
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roundoff error of the multiprocess version can vary from one run to the next. Often,
roundoff error is not important.

Unfortunately, some algorithms (for example, branching on an exact match) are sensitive
to even small differences in roundoff error. If your code is sensitive to roundoff error, you
can tell PCA not to allow reductions in the code it converts to run in parallel. This
guarantees that the results of the multiprocess code is always the same as the serial
version. In fact, that is the reason that the default value of roundoff is 0 (no arithmetic
reductions).

Each –roundoff level is cumulative (level 3 performs everything up to and including this
level). Table 3-6 describes the roundoff levels.

unroll and unroll2

The syntax is:

–ur=n
–unroll=n             (long name)
–ur=4                 (default value)
–ur2=n–unroll2=n      (long name)
–ur2=100              (default value)

Table 3-6 roundoff Levels

Value Description

0 Do not convert reductions to run in parallel (the default). In particular, PCA does not
convert arithmetic recurrences and arithmetic reductions (such as SUM and PRODUCT)
to run in parallel. PCA can still convert nonarithmetic reductions to run in parallel (such
as MAX of a vector).

1 Allow PCA to simplify expressions with operands that are between binary and unary
operators. Allow expression simplification due to forward substitution. Allow code
floating, if the scalaropt switch is ≥ 1. The same as 0 for reductions.

2 Allow PCA to mark reductions to run concurrently. Allow loop interchanging around
arithmetic reductions. Perform concurrent reductions with pre-scheduled concurrent
loops and local accumulation of reduction results. Thus, the answers can vary from one
execution to the next.

3 Recognize real (float) induction variables. Enable memory management if scalaropt=3.
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The –unroll and –unroll2 options control how PCA unrolls scalar inner loops. In most
cases, when PCA cannot convert loops to execute concurrently, PCA can unroll the loop
to improve performance. (More work per iteration with fewer iterations gives less
overhead.) Set –optimize=4 to enable the –unroll and –unroll2 options. Table 3-7
describes unroll values.

For example, the default (4,100) means at most four iterations, and a maximum work per
unrolled iteration of 100.

You can control unrolling in two ways. The first is to use the number of iterations, and
the second is to use the “work per unrolled iteration” factor. To use the “work per
unrolled iteration” factor, PCA analyzes a given loop by computing an estimate of the
computational work that is inside the loop for ONE iteration. This rough estimate is
based on the following criteria:

number of assignments +

number of if statements +

number of subscripts +

number of arithmetic operations

The following example assumes unroll=8 and unroll2=100.

int a[], b[], n;
void example_4_3_9 ()
{
    int i;
    for (i=0; i<n; i++)
        a[i] = b[i] / a[i-1];
}

Table 3-7 unroll Values

Value Description

0 Use the default values to unroll.

1 Do no unrolling.

n>=2 At most, unroll n iterations.
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This example has:

1 assignment

0 ifs

3 subscripts

1 arithmetic operator

----------------------------

5 is the weighted sum (the work for 1 iteration)

PCA then divides this into 100 to give an unroll factor of 20. But eight was specified for
the maximum number of unrolled iterations. PCA takes the minimum of the two values
(8) and unrolls that many iterations. The maximum number of iterations that PCA can
unroll is 100. If you request more than that number, PCA gives no warning of its inability
to comply.

In the case of an unknown number of iterations, PCA generates two loops—the primary
unrolled loop and a cleanup loop to insure that the number of iterations in the main loop
is a multiple of the unrolling factor.
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For example:

int a[];
int b[];
int n;
void example_4_3_9(  )

{
    int i;
    int _Kii1;

    _Kii1 = (n)%(8);
    for ( i = 0; i<_Kii1; i++ ) {
        a[i] = b[i] / a[i-1];
    }
    for ( i = _Kii1; i<n; i+=8 ) {
        a[i] = b[i] / a[i-1];
        a[i+1] = b[i+1] / a[i];
        a[i+2] = b[i+2] / a[i+1];
        a[i+3] = b[i+3] / a[i+2];
        a[i+4] = b[i+4] / a[i+3];
        a[i+5] = b[i+5] / a[i+4];
        a[i+6] = b[i+6] / a[i+5];
        a[i+7] = b[i+7] / a[i+6];
    }
}

Input-Output Options

The following sections explain the function of each option that affects PCA’s
input-output file selection.

cmp

The syntax for this option is:

–[n]cmp=file
–[no]cmp=file              (long name)
standard output (the default)

The –cmp (compile file) option tells PCA to write the optimized C program to a file. If
you specify –cmp=file, PCA writes the transformed C to the specified file. The default file
for the transformed code is standard output.
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If you use –cmp without a file name, PCA writes the transformed code to file.M, where
file is the input file name from the command line with the trailing .c (if any) stripped off.
(See the following description of the –input option for a special case.)

To tell PCA not to generate a C output file, enter

–nocmp

on the command line.

input

The syntax for this option is:

–i=file
–input=file     (long name)
no default

Usually, you will simply include the input file name on the command line. The
–input=file option is an alternative way of specifying the input file.

Specifying –input without a file name tells PCA to read the source file from standard
input. Then PCA writes the transformed code and (optional) listing file to standard output
unless you use the –cmp and –list options to give explicit file names.

list

The syntax for this option is:

–[n]l=file
–[no]list=file   (long name)
–nolist          (the default)

The –list option tells PCA where to write the listing you request when you use the
–listoptions option. If you specify –list=file, PCA writes the listing to the specified file. To
explicitly disable generation of the listing file, enter

–nolist on

on the command line.
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If you specify –list without a file name, PCA writes the listing file to file.L, where file is
the input file name with the trailing .c (if any) stripped off. (See the previous description
of the –input option for a special case.)

If you do not use the –list option, but do use –listoptions=list, PCA writes the listing file
to standard output. PCA writes all diagnostic messages, syntax errors, and so forth, to
standard error.

Listing Options

The following sections explain the function of each listing option. You must use these
options in conjunction with the –list option.

listingwidth

This option sets the maximum line length for the listing file produced by PCA. The
syntax for this option is:

–lw=[132|80]
–listingwidth=[132|80] (long name)
–lw=80 (the default)

The line length affects the format of the loops summary table (produced by –lo=l) and
the PCA options table (–lo=k). The default line length is 80, convenient for use on most
terminals. The 132 column width is optimal for most line printers. No other values are
allowed at present.

cmpoptions

The syntax for this option is:

-[n]cp=i
-[no]cmpoptions=i      (long version)
-ncp                   (default value)

The cmpoptions flag specifies additional information for inclusion in the transformed
(.cmp) file. PCA currently supports only the i value for cmpoptions, which directs PCA
to include special line-number directives.
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Special line numbers are # line directives which can appear in the transformed program
file to reference line numbers of the original source code. The line in the transformed
code immediately following a “# line” comment is either the transformed version of the
referenced line, or a line inserted by PCA just before the referenced line. PCA includes
the name of the source file in the form it appeared in on the command line.

In the unrolled loop below, the for in the original source code was on line 7, and the
assignment on line 8:

# line 7 "../csource/unr5.c"
   for ( i = il + 1; i<=n; i+=3) {
      a[i] = b[i] / a[i-1]
# line 8 "../csource/unr5.c"
      a[i+1] = b[i+1] / a[i];
# line 8 "../csource/unr5.c"
      a[i+2] = b[i+2] / a[i+1];
# line 8 "../csource/unr5.c"
   }

lines

The syntax for this option is:

–ln=n
–lines=n             (long name)
–ln=55               (default value)

The –lines option tells PCA to paginate the listing file for printing. Use the –lines option
to change the number of lines printed per page. The –lines=0 option tells PCA to
paginate only at subroutine boundaries.

listoptions

The syntax for this option is:

–lo=list
–listoptions=list     (long name)
no listing            (the default)

The –listoptions option tells PCA what information to include in the listing file.
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Table 3-8 describes the –listoptions values.

The transformed code is always recorded in the transformed code file, whether or not
you request a listing file.

Table 3-8 listoptions Values

Value Description

c Print the Calling Tree of the entire program.

i Insert line numbers into transformed code referencing line numbers of the original.

k Print PCA options used at the end of the listing.

l Print the loop-by-loop optimization table.

n Print program unit names, as processed, in the error file.

p Print the analysis performance statistics.

s Summarize loop optimizations.
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Memory Management Options

These options set parameters which PCA uses to optimize memory hierarchy usage. You
can obtain better optimization of memory reference patterns if you know how much data
can be kept in fast memory, such as cache or arithmetic registers, and the costs of moving
data in the memory hierarchy. To enable memory management, you must set
–scalaropt=3 and –roundoff=3.

cacheline

The syntax of this option is:

-chl=n
-cacheline=n        (long version)
-chl=16             (default value)

Use the cacheline option to inform PCA of the width in bytes of the memory channel
between cache and main memory.

cachesize

The syntax of this option is:

-chs=n
-cachesize=n        (long version)
-chs=64             (default value)

Use the cachesize option to inform PCA of the size in kilobytes of the cache memory.

dpregisters

The syntax of this option is:

-dpr=n
-dpregisters=n       (long version)
-dpr=6               (default value)

The dpregisters option specifies the number of double-precision floating point registers
each processor has.
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spregisters

The syntax of this option is:

-spr=n
-spregisters=n      (long version)
-spr=12             (default value)

The spregisters option specifies the number of single-precision floating point registers
each processor has.

setassociativity

The syntax of this option is:

-sasc=n
-setassociativity=n  (long version)
-sasc=1              (default value)

The setassociativity option provides information on the mapping of physical addresses
in main memory to cache pages. The default, 1, specifies that a datum in main memory
can be placed in only one place in cache. If this cache page is in use, its current contents
must be dropped in order to copy the new page into cache.

Invariant IF Floating Options

You can use two options to control how much code expansion PCA will allow when
expanding invariant-IF loops. The options are each_invariant_if_growth and
max_invariant_if_growth. Use these options to control the code growth of a program
unit, that is, a subroutine, function, or main procedure. Each option has a
product-specific default.

The syntax of these options is given in Table 3-9.

Table 3-9 Invariant-IF Options

Long Form Short Form Valid Range Default Value

each_invariant_if_growth= eiifg= 0–100 50

max_invariant_if_growth= miifg= 0–1000 500
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for (i= …) {
   section-1
   if ()
      section-2
   else
      section-3
   section-4
}

The each_invariant_if_growth option controls the allowed sizes of sections 1 and 4,
where size is the number of user-visible executable statements. If sections 1 and 4 are
smaller than the value of each_invariant_if_growth, then the invariant IF will be floated
as shown below:

if () then
   for (i= …) {
      section-1
      section-2
      section-4
   }
else
   for (i= …) {
      section-1
      section-3
      section-4
   }

The max_invariant_if_growth option sets a threshold that acts as a regulatory
mechanism for the invariant-IF transformation. Whenever code growth (measured in
user-visible executable statements) in a program unit has exceeded this threshold, PCA
will only perform invariant-IF floating in that program unit if there is no code replication.
In the example above, no code replication would be necessary in the original loop nest if
sections 1 and 4 were absent.

Command Line Options for Portability

These options are provided for the sake of easy portability among compilers. Note that
there are currently no short versions of these options names.
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DOLLAR, (no short name), (off)

The dollar command line option allows dollar signs to be used as identifiers under both
ANSI C and Kernighan and Ritchie C.

For example, the following program will work correctly under either ANSI mode or
Kernighan and Ritchie mode if the dollar option is enabled.

int $i=121961;
main(){
printf("$i is %d.\\n",$i);
}

FLOAT, (no short name), (off)

Under Kernighan and Ritchie C, all variables declared as type float are promoted to type
double before arithmetic operations are performed on them.

The float option prevents this promotion to double, that is, all variables declared as type
float remain type float.

This option is ignored under ANSI C, since the default behavior of ANSI C treats float
variables as float with no promotion to double.

SIGNED, (no short name), (off)

By default, a variable declared as type char is interpreted as an unsigned char. The
signed option causes variables declared as type char to be interpreted as type signed
char.

This option is sometimes necessary when porting code from other platforms whose C
compiler defaults char to signed char.

VOLATILE, (no short name), (off)

The volatile option indicates that all variables are implicitly volatile.

Use of this option severely limits the optimization that can be done.
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PROCESSORS, P, P=0

The kap option optimizes for an unknown number of processors.

Certain of the concurrency optimizations require knowing the number of processors that
are available. If this number is known at compile time, the generated code is more
efficient.

If integer is 1, kap turns off concurrency.

INLINE_AND_COPY, INLC, (off)

The inline_and_copy option functions like the inline option except that if all CALLs or
references to a subprogram are inlined, the text of the routine is not optimized but is
rather copied unchanged to the transformed code file. This option is intended for use
when inlining routines from the same file as the call and has no special effect when the
routines being inlined are taken from a library or another source file.

After a subprogram has been inlined everywhere it is used, leaving it unoptimized saves
compilation time. When a program involves multiple source files, the unoptimized
routine will still be available in case one of the other source files contains a reference to
it, so no errors will result.

Note: The inline_and_copy algorithm assumes that all CALLs and references to the
routine precede it in the source file.

If the routine is referenced after the text of the routine and that particular call site cannot
be inlined, the unoptimized version of the routine will be invoked.

STDIO, STDIO, (off)

The stdio qualifier instructs kap to perform strength reduction on calls to certain
functions in the standard I/O library.

Programs which use functions such as printf heavily will generally have improved I/O
performance when this is done.

The -scalaropt=3 option is required to enable this transformation.
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Summary

This chapter described the details of the pca command-line options and explained how
to use PCA as a standalone analyzer to mark code to run on multiple processors. The next
four chapters present additional ways of obtaining concurrentized code. These chapters
describe:

• PCA directives that you can insert into the code

• Compiler directives that the multiprocessing C compiler recognizes

• PCA transformations that optimize concurrentization of a loop

• In-lining and interprocedural analysis that streamline function calls
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4. Power C Analyzer Directives

You can use directives to provide additional information about a program that PCA
cannot derive from its analysis of the program. Although you can use PCA without
directives, they improve the optimization results. Directives provide information only.
However, PCA notes the information in a directive and takes that information into
consideration when trying to identify data dependencies. Table 4-1 lists PCA directives
and their durations.

Table 4-1 PCA Directives

PCA Directive Duration

#pragma serial next loop

#pragma concurrent next loop

#pragma concurrent call next loop

#pragma set chunksize (n) next loop

#pragma set numthreads (n) next loop

#pragma set schedtype (type) next loop

#pragma no side effects (name[name...]) program unit

#pragma distinct (name,name[name...]) program unit

#pragma arl(n) selectable

#pragma inline [here][routine][global] [(name[name..])] selectable

#pragma ipa [here][routine][global] [(name[name..])] selectable

#pragma padding (variable list) program unit

#pragma storage order (variable list) program unit
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To understand how PCA interprets directives, first consider “assumed” data
dependences. For example, consider the loop:

for (i=0; i<n; i++) X[i] = X[i-1] + X[m];

In this loop, X is an array, n and m are scalars, and nothing is known about the
relationship between n and m. Two types of data dependencies occur. Between X[i] and
X[i-1] there is a forward dependence, and the distance is known to be 1. Between X[i] and
X[m], PCA tries to find a relation but cannot, because it does not know the value of m in
relation to n. The second dependence is called an assumed dependence, because it is
assumed to exist but cannot be proven to exist.

If you know that the assumed data dependency was incorrect, you can tell PCA so by
using a directive. If no definite data dependencies exist, PCA can convert the loop to run
in parallel.

Use caution when using a directive because PCA cannot check the truth of an assertion
implied by the directive. If you make an untrue assertion, PCA may run a
data-dependent loop in parallel. This situation is very dangerous, because such code can
intermittently produce the wrong answer.

The following sections describe each of these directives.
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#pragma serial

This directive forces the loop immediately following it to be serial, and restricts
optimization by forcing all enclosing loops to also be serial. The syntax for this directive
is:

#pragma serial

PCA can still optimize loops that are inside the serial loop, but not enclosing the serial
loop. Consider the code:

  for (i=0; i<N; i++)
    for (j=0; j<N; j++) {
#pragma serial
      for (k=0; k<N; k++)
         x[i][j][k] = x[i][j][k] * y[i][j];
      for (k=0; k<N; k++)
         x[i][j][k] = x[i][j][k] + z[i][k];
     }

The directive forces the i and j loops, and the first k loop to be serial. PCA can still
optimize the second k loop, but it does not distribute (interchange) the i or j loops to try
to get an optimizable loop. PCA always honors the #pragma serial directive. This directive
is in effect only for the next loop.

#pragma concurrent

Use the #pragma concurrent directive to tell PCA to ignore assumed dependences in the
following loop. The syntax for this directive is:

#pragma concurrent

If the loop contains definite dependencies in addition to the assumed dependencies, PCA
does not convert the loop to run in parallel. In this case, the example on the previous
example would be left serial, because it has a known dependence.

Note: PCA does not generate code that executes in parallel (concurrently) if you use the
–noconcurrentize command line option.

This directive is in effect only for the next loop.
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#pragma concurrent call

Use the #pragma concurrent call directive to tell PCA that the function calls in the
following loop are safe to execute in parallel.

The syntax for this directive is:

#pragma concurrent call

PCA ignores all potential data dependences due to the function argument(s). This
directive applies only to the immediately following loop and not to any nested or
surrounding loops. Put a #pragma concurrent call directive before each concurrentizable
loop with function references. Be sure that the functions called do not introduce data
dependencies.

A better way to concurrentize a loop with function calls is to use either #pragma no side
effects or interprocedural analysis. IPA directs PCA to determine the true data
dependencies and not rely on user assessment. IPA is explained in Chapter 7, “In-lining
and Interprocedural Analysis.”

#pragma set chunksize, #pragma set numthreads, and #pragma set schedtype

These pragmas tell PCA which values to use for chunksize, numthreads, and schedtype.

The syntax for each of these directives is:

#pragma set chunksize (n)
#pragma set numthreads (n)
#pragma set schedtype (type)

For chunksize, the range of values for n is 1 to 1,000,000. For numthreads, the range of
values for n is 1 to 255. If PCA sees values larger than these, it will assume the maximum
and generate a warning message. If PCA sees values smaller that 1, it will generate a
warning message and ignore the pragma.

The schedtype types are:

• simple

• dynamic

• interleave
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• gss

• runtime

Refer to xx #pragma parallel for a complete description of num-threads, and #pragma
pfor for descriptions of chunksize and schedtype.

#pragma no side effects

C functions frequently produce more information than just the returned value. Changing
values of arguments via pointers or arrays, changing global data, and I/O can make a
function unsafe to run concurrently.

The #pragma no side effects directive tells PCA to assume that all of the named functions
are safe to execute concurrently. This means that the functions perform no I/O and that
they modify only local variables.

The syntax for this directive is:

#pragma no side effects ( name [,name...] )

If you pass pointers or array names to the function and use this directive, PCA assumes
that the memory locations they represent are not modified. The functions named must
be declared before the directive.
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#pragma arl

Use #pragma arl (address resolution level) to control the assumptions PCA makes about
memory aliases. The syntax for this directive is:

#pragma arl(n)

where n is the level of control. Table 4-2 describes the levels of control.

The directive has the same meaning as the –arl command-line option. See Chapter 3,
“PCA Command-Line Options” for more information on this option and the levels of
control.

When this directive appears inside a function (between the outer { and } of a function
definition), it applies only to that function. If the directive appears outside a function, it
sets the default value to be used for all functions that follow.

The command-line option is equivalent to a pragma at the beginning of the file and is
thus overridden by other #pragma arl directives in the file.

Table 4-2 Address Resolution Levels, #pragma arl

Value Description

0 Make no assumptions about memory aliases.

1 Assume there are no pointer self-references (the default).

2 Assume function arguments are distinct from each other.

3 Assume local pointer/arrays are distinct from global pointers/arrays.

4 Assume all pointers/arrays are distinct from each other.



#pragma distinct

59

#pragma distinct

Use #pragma distinct to indicate that two objects do not overlap.

The syntax for this directive is:

#pragma distinct (expr1,expr2[,expr3,expr4...])

where

expr1, expr2... represent objects.

The form of the expressions allowed is:

id a variable

*id what a pointer variable points to

id [] the array whose name is id

All variables involved must be previously declared. For example, for pointer p and array
a, you can assert:

#pragma distinct (*p, a[])

if *p never overlaps with a[i] for any i used in the program.

The range of the directive is the function where it was made and all succeeding functions.
If the assertion is made about local variables or parameters, it will have no effect beyond
the immediate function. These variables cannot be used outside the immediate function.

#pragma inline and #pragma ipa

Use the inline and ipa directives to select manually which function(s) to in-line or perform
interprocedural analysis on and at which call sites. The syntax is:

#pragma [no]inline [here][routine][global] [( name[,name...])]
#pragma [no]ipa [here][routine][global] [( name[,name...])]

If either of these directives appears with a name list, all occurrences of the named
functions will be in-lined/analyzed, if possible, in all references within the scope of the
directive. If the directive appears without a list of functions, all function references are



60

Chapter 4: Power C Analyzer Directives

eligible. (See Chapter 7, “In-lining and Interprocedural Analysis” for more information
about these pragmas.)

The no forms turn off in-lining and IPA of the named function(s). The scope keywords are
interpreted as:

here applies only to the next statement

routine applies to the rest of the program unit

global applies to the rest of the input file

You can terminate the routine and global scopes by the corresponding no directives. (Or
terminate a noinline directive with an appropriate inline directive.)

These pragmas can override the –inline, –ipa, –inline_looplevel, and –ipa_looplevel
command-line options. You can use #pragma inline and #pragma ipa in addition to, or in
place of, command-line controlled in-lining/interprocedural analysis.

Note: The inline_man or ipa_man command-line option must be specified for the
corresponding directive to be enabled (see Chapter 7, “In-lining and Interprocedural
Analysis” for more information).

Memory Management pragmas

PCA supports two memory management directives, #pragma padding and #pragma storage
order. PCA uses these output directives to pass information on data layout to the compiler
or to itself (if you are using PCA to process a program interactively). If PCA processes a
program more than once, it will use the information in the directives inserted in previous
runs to direct its cache usage optimizations.

#pragma padding

Use the padding directive to identify the listed arrays and scalar variables as objects
which PCA created for the purpose of data alignment. PCA uses this directive when it
reprocesses a program; the compiler will ignore this directive. The syntax of #pragma
padding is:

#pragma padding (variable1 [, variable2 …])
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The following rules govern the use of the padding directive.

• You can use more than one padding directive within a single program unit.

• The padding directive will be placed immediately after the declarations section of
the program unit (the main function or called function).

• A padding object can be routine-local or external.

• A padding object can not be a dummy argument to the procedure or function.

#pragma storage order

The storage order directive specifies the relative order in which storage should be
allocated for the listed routine-local variables and arrays. PCA can reduce cache
collisions by positioning the arrays correctly. The C compiler currently ignores the
storage order directive.

The syntax of #pragma storage order is:

#pragma storage order (variable1 [, variable2 …])

The rules governing the use of #pragma storage order are:

• You can use more than one storage order directive per program unit. Each directive
can be interpreted separately.

• The storage order directives will be placed directly after the declaration section of
the program unit.

• An object listed in a storage order must be local to the program unit.

• An object listed in a storage order must not be:

– mentioned in another storage order directive

– an external variable or array

– a dummy argument to the procedure or function

PCA can generate as many #pragma storage order directives as it considers useful.

To interpret a storage order directive, the compiler must place the named objects in
memory in the order listed. For example:

   float a1[100], a2[3], a3[200]
#pragma storage order (a1,a2,a3)
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On a machine with 4 bytes per float variable, the compiler would place the variables as
follows:

• a1 would be placed at some address X.

• a2 would be placed at X + 100*4.

• a3 would be placed at X + 100*4 + 3*4

Note that both static and automatic storage schemes are allowed, so as long as all of the
objects in a single storage order are placed in the same scheme.

The padding and storage order directives often appear together, as in the following
example.

   double _Kdd13[770];
   double _Kdd14[770];

#pragma padding(_Kdd14, _Kdd13)
#pragma storage order(c, _Kdd13, b, _Kdd14, a)

Parallelizing Loops that Deal with Linked Lists

When dealing with elements of linked lists, PCA allows you to parallelize:

• loops in which each iteration processes a different member of the list and the
computations for each element are independent of each other, that is, they can be
computed in any order.

• loops in which each iteration processes a different member of the list and the
computations for each element are to a large extent independent of each other, but
have a small portion of the code which has to be processed in the order in which the
elements appear in the list.

Two pragmas support these two cases: #pragma plist, and #pragma ordered.
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#pragma plist

Syntax:

#pragma plist unordered (list vars.; initialize shared; initialize
local; condition; increment) for (initialize shared, initialize
local; condition; increment)
{
   ... /* loop body */
}

#pragma ordered

Syntax:
#pragma plist ordered (list vars.; initialize shared; initialize
local; condition; increment) for (initialize shared, initialize
local; condition; increment)
{
   ... /* unordered loop body 1 */
#pragma ordered
   {
      ... /* ordered loop body */
   }
   ... /* unordered loop body 2 */
}

Note: For both the above cases, the increment operation can be performed anywhere
without any side effect other than that of modification of the loop variable.

The following example shows an unordered loop, which uses #pragma plist unordered,
and an ordered loop, which uses #pragma ordered.

#define N 100 #define LOOP 10
#define ERROR 5

typedef struct st_1 *sptr;

struct st_1 {
   sptr next;
   int data;
};

sptr head;

main ()
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{
   sptr list = 0;
   double sum2;
   int cnt;
   int i, j, k, t;
   double sum1;
   double psum;
   int pcnt;

   int error = 0;
   head = (sptr) malloc (sizeof (struct st_1));
   head->data = N;
   for (list = head, i = 1; i < N; i++) {
      list->next = (sptr) malloc (sizeof (struct st_1));
      list = list->next;
      list->data = (N - i);
   }
   list->next = 0;

   sum1 = 0;
   for (list = head, i = 0; list; i++, list = list->next) {
      if (list->data != N - i) {
         printf ("Mismatch: i = %d, data = %d\n", i, list->data);
         break;
      }
      sum1 += list->data;
   }
   printf ("SUM1 = %le\n", sum1);

   for (i = 0; (i < LOOP) && (error < ERROR); i++) {
      sum2 = 0;
      cnt = 0;
#pragma parallel shared (list, head, sum2, cnt) local (psum, pcnt, t)
      {
#pragma plist ordered (list; list=head, sum2 = 0, cnt = 0; psum = 0,
pcnt = 0; list; list = list->next;)
         for (list= head, sum2 = 0, cnt = 0, psum = 0, pcnt = 0;
             list;
             list = list->next)
         {
#pragma ordered
            {
               pcnt++;
               psum += list->data;
            }
         }
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#pragma critical
         {
            sum2 += psum;
            cnt += pcnt;
            printf ("sum2 = %le, psum = %le, pcnt = %d\n",
                     sum2, psum, pcnt);
         }
      }
      if (sum2 != sum1) {
         error++;
         printf ("ERROR: i = %d, count = %d, SUM2 = %le\n",i,
                 cnt, sum2);
      }
      printf ("\n");
   }
}
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5. Multiprocessing C Compiler Directives

In addition to the usual interpretation performed by any other C compiler, the
multiprocessing C compiler can process explicit multiprocessing directives to produce
code that can run concurrently on multiple processors. Table 5-1 lists the multiprocessing
directives used when processing code in parallel regions.

Use the pragmas described in this chapter if you are using PCA for automatic
parallelization, or are using the O32 C compiler. If you are not using automatic
parallelization and are using the N32 C compiler, use the MP pragmas documented in
Chapter 11 in the C Language Reference Manual.

The multiprocessing C compiler does not know whether you or PCA (or a combination
of the two) put the directives in the code. The multiprocessing C compiler does not check
for or warn against data dependencies that have been violated. That kind of analysis is
left to PCA.

Table 5-1 Multiprocessing C Compiler Directives

Pragma Description

#pragma parallel Start a parallel region

#pragma pfor Mark a for loop to run in parallel

#pragma one processor Execute statement on only one processor

#pragma critical Protect access to critical statement(s)

#pragma independent Start independent code section that executes in parallel with other code
in the parallel region

#pragma synchronize Stop threads until all threads reach here

#pragma enter gate Note threads that have reached here

#pragma exit gate Stop threads until all threads have passed the matching #pragma enter
gate
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After the multiprocessing directives are inserted (either by the multiprocessing C
compiler or by you), you can pass the code through PCA. The directives and their
associated code will remain unchanged and pass directly through to the .out file, but
unrelated sections of code will be optimized.

Why Use Parallel Regions?

To understand many of the multiprocessing C compiler directives, consider the concept
of a parallel region. On some systems, a parallel region is merely a single loop that runs
in parallel. However, with Power C, a parallel region can include several loops and/or
independent code segments that execute in parallel.

Using large parallel regions can improve the performance of your code in ways not
possible merely by executing a series of isolated loops in parallel. For example, parallel
regions save some of the processing overhead associated with preparing each region to
run in parallel. In addition, parallel regions do not force synchronization at the end of
each of the contained loops.

Thus, if a thread finishes its work early, it can go on to execute the next section of code—
providing that the next section of code is not dependent on the completion of the
previous section. However, when creating parallel regions, you need more sophisticated
synchronization methods than you need for isolated parallel loops.

#pragma plist

#pragma ordered

Table 5-1 Multiprocessing C Compiler Directives

Pragma Description
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New Multiprocessing Compiler Directives

PCA does not recognize or generate directives that were only recently added to the
multiprocessing C compiler. If PCA finds one of these new multiprocessing C compiler
directives in your code, it prints a warning message and discards it. This guide clearly
notes the new directives that are not processed by PCA. In future releases, PCA will
recognize (and where appropriate, generate) these new directives. Thus, you should feel
free to use these new directives in your code, but add them only after you have finished
with PCA.

Coding Rules of Pragmas

Power C pragmas are modeled after the Parallel Computing Forum (PCF) directives for
parallel FORTRAN. The PCF directives define a broad range of parallel execution modes
and provide a framework for defining C pragmas.

Some changes have been made to make the pragmas more C-like:

• Each pragma starts with #pragma and follows the conventions of ANSI-C for
compiler directives. You may use white space before and after the #, and you must
sometimes use white space to separate the words in a pragma, as with C syntax. A
line that contains a pragma can contain nothing else (code or comments).

• Pragmas apply to only one succeeding statement. If a pragma applies to more than
one statement, you must make a compound statement. C syntax lets you use curly
braces, { }, to do this. Because of the differences between C syntax and FORTRAN, C
can omit the PCF directives that indicate the end of a range (for example, END
PSECTIONS).

• If you put a variable on a local list, it is as if you declared a variable of the same type
and name inside the parallel statement.

• The pfor pragma replaces the PARALLEL DO directive because the for statement
in C is more loosely defined than the FORTRAN DO statement.

To make it easier to use pragmas, you can put several keywords on a single pragma line,
or spread the keywords over several lines. In either case, you must put the key words in
the correct order, and each pragma must contain an initial keyword.
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For example:

#pragma parallel shared(a,b,c, n) local(i) pfor
#pragma iterate(i=0;n;1)
for (i=0; i<n; i++) a[i]=b[i]+c[i];

does the same thing as:

#pragma parallel
#pragma shared( a )
#pragma shared( b, c, n )
#pragma local( i )
#pragma pfor
#pragma iterate(i=0;n;1)

for (i=0; i<n; i++) a[i]=b[i]+c[i];

Parallel Regions

A parallel region consists of a number of work-sharing constructs. Currently, Power C
supports the following work-sharing constructs:

• a loop executed in parallel

• an independent code section executed in parallel with the rest of the code in the
parallel region

• “local” code run (identically) by all threads

• code executed by only one thread

• code run in “protected mode” by all threads

In addition, Power C supports two types of explicit synchronization:

• synchronize

• enter/exit gate

A simple parallel region consists of only one work-sharing construct, usually a loop. (A
parallel region consisting of only a serial section or independent code is a waste of time.)

A parallel region of code can contain sections that execute sequentially as well as sections
that execute concurrently. A single large parallel region has a number of advantages over
a series of isolated parallel regions: each isolated region executes a single loop in parallel.
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At the very least, the single large parallel region can help reduce the overhead associated
with moving from serial execution to parallel execution.

Large mixed parallel regions also let you avoid the forced synchronization that occurs at
the end of each parallel region. The large mixed parallel region also allows you to use
pragmas that execute independent code sections that run concurrently.

To start a parallel region, use the parallel pragma. To mark a for loop to run in parallel, use
the pfor pragma. To start an independent code section that executes in parallel with the
rest of the code in the parallel region, use the independent pragma.

Figure 5-1 shows the execution of a typical parallel program with parts running in
sequential and parallel mode.
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Figure 5-1 Program Execution
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When you or PCA start a program, nothing actually runs in parallel until it reaches a
parallel region. Then multiple threads begin (or continue, if this isn’t the first parallel
region), and the program runs in parallel mode. When the program exits a parallel
region, only a single thread continues (sequential mode) until the program again enters
a parallel region and the process repeats.

The synchronization needs within a simple parallel region are simple; you can use the
critical or one processor pragma to handle them.

The following subsections describe these directives.

#pragma parallel

To start a parallel region, use the parallel pragma. This pragma has a number of modifiers,
but to run a single loop in parallel, the only modifiers you usually use are shared,
byvalue, and local. These options tell the multiprocessing C compiler which variables to
share between all threads of execution and which variables should be treated as local.

The code that comprises the parallel region is delimited by curly braces ({ }) and
immediately follows the parallel pragma and its modifiers.

The syntax for this pragma is:

#pragma parallel shared (variables) byvalue (variables)
#pragma local (variables) optional modifiers
{ code }

The parallel pragma has six modifiers: shared, byvalue, local, if, ifinline, and
numthreads.

Their syntax is:

shared ( variable names )
byvalue ( variable names )
local ( variable names )
if ( integer valued expr )
[no]ifinline
numthreads ( expr )
numthreads (percent=expr)
numthreads (expr)
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Where:

shared Tells the multiprocessing C compiler the names of all the variables that
the threads must share. (If PCA creates a parallel region, it does this for
you.)

byvalue Puts a variable in the variable names list after this option to tell the
multiprocessing C compiler that it can pass those shared variables as
values rather than by reference. This fine-tuning option helps the
multiprocessing C compiler optimize code. PCA will generate this
variable as appropriate. However, used incorrectly, this option can
generate erroneous code.

Be careful what you put in this variable list or you may generate
incorrect code.

You can put a variable in this list only if the variable is:

• a scalar

• not already in the shared list

• read only

local Tells the multiprocessing C compiler the names of all the variables that
must be private to each thread. (When PCA sets up a parallel region, it
does this for you.)

if Lets you set up a condition that is evaluated at run time to determine
whether or not to run the statement(s) serially or in parallel. At compile
time, it is not always possible to judge how much work a parallel region
does (for example, loop indices are often calculated from data supplied
at run time). Avoid running trivial amounts of code in parallel because
you cannot make up the overhead associated with running code in
parallel. PCA will also generate this condition as appropriate.

If the if condition is false (equal to zero), then the statement(s) runs
serially. Otherwise, the statement(s) run in parallel.

[no]ifinline Helps the multiprocessing C compiler optimize code when you also use
the if option. This option is a fine-tuning option. Using the ifinline
option (which is the default unless you use noifinline) causes a slight
increase in code size but faster execution. This feature is turned off if you
use noifinline (that is, the code is smaller but a little slower).

numthreads (min=expr; max=expr)
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numthreads (percent=expr)

numthreads (expr)

Tells the multiprocessing C compiler the number of available threads to
use when running this region in parallel. (The default is all the available
threads.)

The min clause instructs the compiler that this section is not to run in
parallel unless at least expr threads are available.

The max clause indicates that at most expr threads out of the available
threads should be used. The actual number used is the smaller of expr
and the number of threads available.

The percent clause instructs the compiler to use expr percent of the
available threads.

In general, you should never have more threads of execution than you
have processors, and you should specify numthreads with the
MPC_NUM_THREADS environmental variable at run time (see
Appendix C, “Run Time Environment Variables”). If you want to run a
loop in parallel while you run some other code, you can use this option
to tell the multiprocessing C compiler to use only some of the available
threads.

The usage #pragma numthreads (expr) is equivalent to #pragma
numthreads (max=expr).

expr should evaluate to a positive integer.

For example, to start a parallel region in which to run the following code in parallel:

for (idx=n; idx; idx--) {
a[idx] = b[idx] + c[idx];

}

you or PCA must enter:

#pragma parallel shared( a, b, c ) byvalue(n) local( idx )

or:

#pragma parallel
#pragma shared( a, b, c )
#pragma byvalue(n)
#pragma local(idx)
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before the statement or compound statement (code in curly braces, { }) that comprises the
parallel region.

Any code within a parallel region but not within any of the explicit parallel constructs
(pfor, independent, one processor, and critical) is termed local code. Local code typically
modifies only local data and is run by all threads.

Figure 5-2 shows local code execution.

Figure 5-2 Execution of Local Code Segments
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#pragma pfor

Use #pragma pfor to run a for loop in parallel only if the loop meets all of these
conditions:

• All the values of the index variable can be computed independently of the
iterations.

• All iterations are independent of each other—that is, data used in one iteration does
not depend on data created by another iteration. A quick test for independence: if
the loop can be run backwards, then chances are good the iterations are
independent.

• The number of iterations is known (no infinite or data-dependent loops) at
execution time.

• The pfor is contained within a parallel region.

If the code after a pfor is not dependent on the calculations made in the pfor loop, there
is no reason to synchronize the threads of execution before they continue. So, if one
thread from the pfor finishes early, it can go on to execute the serial code without waiting
for the other threads to finish their part of the loop.

The #pragma pfor directive takes several modifiers; the only one that is required is iterate.
Figure 5-3 shows #pragma parallel, which starts a parallel region and tells the
multiprocessing C compiler that the i variable must be local (private) to each processor.
#pragma pfor tells the compiler that each iteration of the loop is unique and to partition
the iterations among the threads for execution.

The syntax for #pragma pfor is:

#pragma pfor iterate ( ) optional modifiers
for ...
  { code ... }

The pfor pragma has three modifiers. Their syntax is:

iterate( index variable=expr1; expr2; expr3 )
schedtype ( type )
chunksize  ( expr )

Figure 5-3 shows parallel code segments using #pragma pfor.
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Figure 5-3 Parallel Code Segments Using #pragma pfor
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For example, for the for loop

for (idx=n; idx; idx--) {
    a[idx] = b[idx] + c[idx];
}

the iterate modifier to pfor should be:

iterate(idx=n;n;-1)

This loop counts down from the value of n, so the starting value is the
current value of n. The number of trips through the loop is n, and the
increment is -1.

schedtype (type)
Tells the multiprocessing C compiler how to share the loop iterations
among the processors. The schedtype chosen depends on the type of
system you are using and the number of programs executing (see
Table 5-2).

Figure 5-4 shows how loop iterations can vary.

Table 5-2 Choosing a schedtype

Single-User System * Multiuser System

simple (iterations take same amount of time) gss (data-sensitive iterations vary slightly)

gss (data-sensitive iterations vary slightly) dynamic (data-sensitive iterations vary greatly)

dynamic (data-sensitive iterations vary
greatly)

* If you are on a single-user system but are executing multiple
   programs, select the scheduling from the Multiuser column.
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Figure 5-4 Variance of Loop Iterations

You can use the following valid types to modify schedtype:

simple (the default) tells the run time scheduler to partition the iterations
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If I iterations remain and P threads are working on them, the piece size
is roughly:

I/(2P) + 1

Programs with triangular matrices should use gss.

Figure 5-5 shows the effects of the different types of loop scheduling.

Figure 5-5 Loop Scheduling Types
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chunksize (expr)
Tells the multiprocessing C compiler how many iterations to define as a
chunk when you use the dynamic or interleave modifier (described
above).

expr should be positive integer, and should evaluate to the following
formula:

number of iterations
--------------------

X

where X  2* - 10* the number of threads. Select 2* the number of threads
when iterations vary slightly and 10* the number of threads when
iterations vary greatly. Performance gain may diminish after 10*.

To run the example:

for (idx=n; idx; idx--){
   a[idx] = b[idx] + c[idx];
}

in parallel, PCA or you must enter the pragmas:

#pragma parallel
#pragma shared( a, b, c )
#pragma byvalue(n)
#pragma local(idx)
#pragma pfor iterate(idx=n;n;-1)
for (idx=n; idx; idx--){
   a[idx] = b[idx] + c[idx];
}

#pragma one processor

A #pragma one processor directive causes the statement that follows it to be executed by
exactly one thread.

The syntax of this pragma is:

#pragma one processor
{ code }
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Figure 5-6 shows code executed by only one thread. No thread may proceed past this
code until it has been executed.

Figure 5-6 One Processor Segment
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#pragma critical

Sometimes the bulk of the work done by a loop can be done in parallel, but the entire loop
cannot run in parallel because of a single data-dependent statement. Often, you can
move such a statement out of the parallel region. When that is not possible, you can
sometimes use a lock on the statement to preserve the integrity of the data.

In Power C, use the critical pragma to put a lock on a critical statement (or compound
statement using { }). When you put a lock on a statement, only one thread at a time can
execute that statement. If one thread is already working on a critical protected statement,
any other thread that wants to execute that statement must wait until the other thread
has finished executing it. Figure 5-7 shows critical segment execution.

Note: The current release of Power C allocates one global lock that is shared among all
#pragma critical directives by default. Most uses of the critical pragma are to protect
access to a very limited set of data, data that is usually referenced in many places in the
program. By sharing one lock, all references by all guarded statements are properly
protected. See “The lock Clause” on page 92 for more information.
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Figure 5-7 Critical Segment Execution
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#pragma independent

Running a loop in parallel is a class of parallelism sometimes called “fine-grained
parallelism” or “homogeneous parallelism.” It is called homogeneous because all the
threads execute the same code on different data. Another class of parallelism is called
“coarse-grained parallelism” or “heterogeneous parallelism.” As the name suggests, the
code in each thread of execution is different.

Ensuring data independence for heterogeneous code executed in parallel is not always
as easy as it is for homogeneous code executed in parallel. (And assuring data
independence for homogeneous code is not a trivial task.)

The independent pragma has no modifiers. Use this pragma to tell the multiprocessing
C compiler to run code in parallel with the rest of the code in the parallel region.
Figure 5-8 shows an independent segment with execution by only one thread. However,
other threads may proceed past this code as soon as it starts execution.
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Figure 5-8 Independent Segment Execution

The syntax for #pragma independent is:

#pragma independent
{ code }

Note: The Power C Analyzer does not yet know how to generate this new pragma. Do
not include it in code that you intend to pass through PCA. Insert this pragma only after
you are finished with PCA.
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•
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Synchronization

To account for data dependencies, it is sometimes necessary for threads to wait for all
other threads to complete executing an earlier section of code. Two sets of directives
implement this coordination: #pragma synchronize and #pragma enter/exit gate.

#pragma synchronize

A #pragma synchronize tells the multiprocessing C compiler that within a parallel
region, no thread can execute the statements that follows this pragma until all threads
have reached it. This directive is a classic barrier construct. Figure 5-9 shows this
synchronization.

Figure 5-9 Synchronization

The syntax for this pragma is:

#pragma synchronize

...

#pragma parallel ...
{ ...
#pragma synchronize
  ...
} ...
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#pragma enter gate and #pragma exit gate

You can use two additional pragmas to coordinate the processing of code within a
parallel region. These additional pragmas work as a matched set. They are #pragma
enter gate and #pragma exit gate.

A gate is a special barrier. No thread may exit the gate until all threads have entered it.
Figure 5-10 shows execution using gates.

Figure 5-10 Execution Using Gates

This construct gives you more flexibility when managing dependencies between the
work-sharing constructs within a parallel region.

...

#pragma parallel ...
{ ...
#pragma enter gate (x)
  ...
#pragma exit gate (x)
  ...
} ...
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For example, suppose you have a parallel region consisting of the work-sharing
constructs A, B, C, D, E, and so forth. A dependency might exist between B and E such
that you could not execute E until all the work on B was completed, as shown below:

#pragma parallel ...
{
..A..
..B..
..C..
..D..
..E.. (depends on B)
}

One way to handle this would be to put a synchronize before E. But this directive is
wasteful if all the threads have cleared B and are already in C or D. All the faster threads
would pause before E until the slowest thread completed C and D:

#pragma parallel ...
{
..A..
..B..
..C..
..D..
#pragma synchronize
..E..
}

To reflect this dependency, put a #pragma enter gate (name) after B and a #pragma exit
gate (name) before E. Putting the enter gate after B tells the system to note which threads
have completed the B work-sharing construct. Putting the exit gate pragma prior to the
E work sharing construct tells the system to allow no thread into E until all threads have
cleared B.

#pragma parallel ...
{
..A..
..B..
#pragma enter gate (foo)
..C..
..D..
#pragma exit gate (foo)
..E..
}
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#pragma enter gate

The syntax of this pragma is:

#pragma enter gate ( name )

name is a name you create to uniquely identify the work construct controlled
by this pragma.

For example, construct D might be dependent on construct A, and construct F might be
dependent on construct B, but you would not want to stop at construct D because all the
threads had not cleared B. By using enter/exit gate pairs, you can make subtle
distinctions about which construct is dependent on which other construct.

Put this pragma after the work-sharing construct that all threads must clear before the
#pragma exit gate of the same name.

Note: The Power C Analyzer does not yet know how to generate this new pragma. Do
not include it in code that you intend to pass through PCA. Insert this pragma only after
you are finished with PCA.

#pragma exit gate

The syntax of this pragma is:

#pragma exit gate( name )

Put this pragma before the work-sharing construct that is dependent on the #pragma
enter gate of the same name. No thread enters this work-sharing construct until all
threads have cleared the work-sharing construct controlled by the corresponding
#pragma enter gate of the same name.

Note: The Power C Analyzer does not yet know how to generate this new pragma. Do
not include it in code that you intend to pass through PCA. Insert this pragma only after
you are finished with PCA.
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The lock Clause

The pragma lock clause lets you control the lock to be used during the execution of the
various parallel code segments.

The syntax of this pragma is:

lock (locktype)

where locktype can have one of the following values:

block use a lock exclusively for the block representing this parallel code
segment

region use a lock that is unique to the parallel region

global use a lock that is unique to the parallel runtimes

others use a lock that is provided by you. The name, in this case, should
correspond to a user-defined variable. It is your responsibility to acquire
and dispose of the lock.

For a critical region outside of a parallel region, region and block are not valid lock types.
If you don’t specify the lock directive, the default values are:

• For a critical segment, a global lock is assumed.

• For other segments, a block lock is assumed.
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6. PCA Transformations

Source transformations applied by PCA convert ordinary C code into explicit concurrent
syntax. This chapter describes some of the rules and conditions that must be met for a
loop to be successfully optimized. This chapter also describes the possible
transformations in this process:

• Loop Concurrentization

• Loop Reordering

• Scalar Optimizations

• Loop Rerolling

• Loop Unrolling

• Loop Fusion

• Memory Management for Data Locality
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Loop Concurrentization

The following subs discuss how PCA treats reductions and local variables when it
converts the loop to run concurrently (in parallel).

PCA searches the submitted code for for loops that are safe to run in parallel and inserts
a directive before eligible loops. The simplest cases occur when the statements of the loop
have no loop-carried dependence. For example:

int a[], b[], c[], d[], n;
void example_7_1 ()
{
    int i;
    for (i=0; i<n; i++) {
        a[i] = b[i] + c[i];
        if (d[i])
            a[i] = a[i] / d[i];
    }
}
becomes:
int a[];
int b[];
int c[];
int d[];
int n;
void example_7_1(  )

{
    int i;

#pragma parallel if(n > 84) byvalue(n) shared(a, b, c, d) local(i)
#pragma pfor iterate(i=0;n;1)
    for ( i = 0; i<n; i++ ) {
        a[i] = b[i] + c[i];
        if (d[i]) {
            a[i] /=  d[i];
            }
    }

}
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Reductions

Loops that involve reductions can run in parallel only if you synchronize access to the
reduced value. For example, if a reduction performed some calculation on the elements
of an array and then summed the results, you need to synchronize access to the sum.
Only one thread of execution at a time should access the sum. This type of
synchronization is perhaps the most common. The following example illustrates how
PCA typically transforms a sum reduction to run in parallel. You must set –roundoff=3
to enable sum reductions. For example:

int b[], c[], n, sum;
void example_7_1_1 ()
{
    int i;
    for (i=0; i<n; i++) {
        sum += b[i] + c[i];
    }
}
becomes:
int b[];
int c[];
int n;
int sum;
void example_7_1_1(  )

{
    int i;
    int sum1;
#pragma parallel if(n > 126) byvalue(n) shared(c, b, sum) local(i)
reduction(sum1)
    {
        sum1 = 0;
#pragma pfor iterate(i=0;n;1)
        for ( i = 0; i<n; i++ ) {
            sum1 +=  b[i] + c[i];
        }
#pragma critical
        {
            sum +=  sum1;
        }
    }
}

To produce the sum, PCA produces a local partial sum (sum1) for each thread of
execution and then sums these partial sums in a controlled manner.
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Local Variables

To generate concurrent code for a loop, PCA sometimes needs to use temporary
variables. Each independent thread of execution needs its own set of temporary
variables. PCA allocates local variables (temporaries) to the separate threads of execution
by putting variable names in the local clause of the #pragma parallel that starts the parallel
region. For example:

int a[], b[], c[], d[], n;
void example_7_1_2 ()
{
    int i, t;
    for (i=0; i<n; i++) {
        t = a[i] + b[i];
        c[i] = t * 2.335;
        d[i] = t * 3.221;
    }
}
becomes:
int a[], b[], c[], d[], n;
void example_7_1_2(  )
{
    int i;
    int t;
    int _Kii1;
    _Kii1 = (n)%(4);
    for ( i = 0; i<_Kii1; i++ ) {
        t = a[i] + b[i];
        c[i] = t * 2.335;
        d[i] = t * 3.221;
    }
#pragma parallel if(n>38) byvalue(_Kii1,n) shared(a,b,c,d) local(t,i)
#pragma pfor iterate(i=_Kii1;(n-_Kii1+3)/4;4)
    for ( i = _Kii1; i<n; i+=4 ) {
        t = a[i] + b[i];
        c[i] = t * 2.335;
        d[i] = t * 3.221;
        t = a[i+1] + b[i+1];
        c[i+1] = t * 2.335;
        d[i+1] = t * 3.221;
        t = a[i+2] + b[i+2];
        c[i+2] = t * 2.335;
        d[i+2] = t * 3.221;
        t = a[i+3] + b[i+3];
        c[i+3] = t * 2.335;
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        d[i+3] = t * 3.221;
    }
}

Loop Reordering

Sometimes, PCA cannot convert an outer for loop to execute concurrently, but it can
convert an inner loop. In these cases, PCA attempts to interchange the loops in the for
nest, which increases the amount of work that each thread of execution does and
improves the efficiency of the code. For example:

int a[][1000], b[][1000], n;
void example_7_2 ()
{
    int i, j;
    for (j=0; j<n; j++)
        for (i=0; i<n; i++)
            a[j][i] = a[j-1][i] + b[j][i];
}
becomes:
int a[][1000];
int b[][1000];
int n;
void example_7_2(  )
{
    int i;
    int j;
    int _Kii1;
#pragma parallel byvalue(n) shared(a, b) local(_Kii1, i, j)
#pragma pfor iterate(i=0;n;1)
    for ( i = 0; i<n; i++ ) {
        _Kii1 = (n)%(4);
        for ( j = 0; j<_Kii1; j++ ) {
            a[j][i] = a[j-1][i] + b[j][i];
        }
        for ( j = _Kii1; j<n; j+=4 ) {
            a[j][i] = a[j-1][i] + b[j][i];
            a[j+1][i] = a[j][i] + b[j+1][i];
            a[j+2][i] = a[j+1][i] + b[j+2][i];
            a[j+3][i] = a[j+2][i] + b[j+3][i];
        }
    }
 }
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Scalar Optimizations

PCA uses the following standard optimizations to enhance performance of the
concurrent code it generates.

• Induction Variable Recognition

• Global Forward Substitution

• Loop Peeling

• Lifetime Analysis

• Invariant if Floating

• Derived Assertions

• Dead Code Elimination

Induction Variable Recognition

Induction variables are integers that are incremented or decremented by the same amount
for each for loop iteration. Auxiliary loop induction variables, such as j and k shown in
the examples that follow, are recognized. For example:

int a[], b[], n;
void example_7_3_1 ()
{
    int i, j, k;
    for (i=0; i<n; i++) {
        a[j] = b[k];
        j++;
        k += 2;
    }
}

becomes:

int a[];
int b[];
int n;
void example_7_3_1(  )

{
    int i;
    int j;
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    int k;
    int _Kii2;
    _Kii2 = k;
#pragma parallel if(n > 53) byvalue(n, j, _Kii2) shared(a, b) local(i)
#pragma pfor iterate(i=0;n;1)
    for ( i = 0; i<n; i++ ) {
        a[j+i] = b[_Kii2+i*2];
    }
}

Global Forward Substitution

A global forward substitution pass finds relationships between variables that do not
necessarily depend on the loop index variables. Consider n and npl in this example:

int a[][1000], m, n;
void example_7_3_2 ()
{
    int i, np1;
    np1 = n + 1;
    for (i=0; i<m; i++) {
        a[i][n] = a[i-1][np1];
    }
}

PCA determines that npl depends only on n, and not on the loop index variable. It breaks
the apparent data dependence, and makes the loop parallel:

int a[][1000];
int m;
int n;
void example_7_3_2(  )

{
    int i;
    int np1;
 #pragma parallel if(m > 91) byvalue(m, n) shared(a) local(i)
#pragma pfor iterate(i=0;m;1)
    for ( i = 0; i<m; i++ ) {
        a[i][n] = a[i-1][(n+1)];
    }
}
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Loop Peeling

There are occasions when you will want to use a trick known as a “wrap-around”
variable. For example, you might be using an array to simulate a cylindrical coordinate
system (where the left edge of the array is adjacent to the right edge). In the following
example, the variable jml wraps around partway through the loop.

nt a[], b[], n;
void example_7_3_3 ()
{
    int j, jm1;
    jm1 = n;
    for (j=0; j<n; j++) {
        b[j] = (a[j] + a[jm1]) / 2;
        jm1 = j;
    }
}

In the first iteration, jm1 is n. In all iterations except for j=1, the value of jm1 is j-1. Thus,
jm1 is an induction variable for the loop after the first iteration. By peeling off the first
iteration of the loop, the jm1 induction variable can be exploited.

For example:

int a[][1000];
int m;
int n;
void example_7_3_2(  )

{
    int i;
    int np1;
 #pragma parallel if(m > 91) byvalue(m, n) shared(a) local(i)
#pragma pfor iterate(i=0;m;1)
    for ( i = 0; i<m; i++ ) {
        a[i][n] = a[i-1][(n+1)];
    }
}

PCA can peel off several iterations where multiple wrap-around variables exist.
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Lifetime Analysis

In general, when PCA inserts a temporary local variable in a thread of execution, PCA
must assign the last value of the temporary variable to the original scalar. When you set
optimize to 2 or higher (see Chapter 3, “PCA Command-Line Options”). PCA does a
lifetime analysis to determine if the value of the original scalar is used outside the loop. It
also eliminates dead code, as described in the section on dead code removal. (See “Dead
Code Elimination” on page 104.)

If the variable is reused within the compilation unit, the last value of the scalar is
assigned as shown in the following code segment. For example:

int a[], b[], c[], n;
void example_7_3_4 ()
{
    int i, x, y;
    for (i=0; i<n; i++) {
        x = a[i];
        y = b[i];
        c[i] = x + y;
    }
    printf (" x=%d \\n", x);
}
becomes:
int a[],  b[],  c[];
int n;
void example_7_3_4(  )

{
    int i;
    int x;
    int y;
    int _Kii1;
    _Kii1 = ((n)>(0) ? (n) : (0));
#pragma parallel if(n > 101) byvalue(n) shared(c, a, b) local(i)
#pragma pfor iterate(i=0;n;1)
    for ( i = 0; i<n; i++ ) {
        c[i] = a[i] + b[i];
    }
    if (_Kii1 > 0)
        x = a[_Kii1-1];
    printf( " x=%d \\n", x );
}
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Invariant if Floating

When an if condition is invariant in the loop, PCA often can move the if statement
outside the loop, further improving the performance of the code. You need to set
–optimize=4 or higher for this optimization to occur.

For example:

int a[], b[], c[], n, x;
void example_7_3_5 ()
{
    int i;
    for (i=0; i<n; i++) {
        a[i] = b[i] + c[i];
        if (x > 0)
            a[i] *= x;
    }
}

becomes:

int a[],  b[],  c[];
int n,  x;

void example_7_3_5(  )
{
    int i;
    if (x > 0) {
#pragma parallel if(n > 101) byvalue(n, x) shared(a, b, c) local(i)
#pragma pfor iterate(i=0;n;1)
        for ( i = 0; i<n; i++ ) {
            a[i] = b[i] + c[i];
            a[i] *=  x;
        }

    } else {
#pragma parallel if(n > 201) byvalue(n) shared(a, b, c) local(i)
#pragma pfor iterate(i=0;n;1)
        for ( i = 0; i<n; i++ ) {
            a[i] = b[i] + c[i];
        }
        }
}
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Derived Assertions

PCA can derive some information about the relative values of scalar integers from the if
and assignment statements in the program. For example:

int a[], b[], m, n;
void example_7_3_6 ()
{
    int i;
    if (m > n) {
        for (i=0; i<n; i++) {
            a[i] = a[i+m] + b[i];
        }
    }
}

becomes:

int a[], b[], m, n;
void example_7_3_6(  )

{

    int i;
    if (m > n) {
#pragma parallel if(n > 143) byvalue(n, m) shared(a, b) local(i)
#pragma pfor iterate(i=0;n;1)
        for ( i = 0; i<n; i++ ) {
            a[i] = a[i+m] + b[i];
        }
        }
}

The transformation is legal because the loop can be executed only when the value of m is
greater than n.
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Dead Code Elimination

When you set the -scalaropt option to 1 or higher, PCA performs dead code elimination.
To get the full benefit of dead code elimination, combine it with optimizations such as
subprogram in-lining (function call expansion) and forward substitution. These
optimizations expose useless or unreachable code that PCA cannot otherwise see. PCA
will also perform the following optimizations:

• Removal of unreachable code. For example:

float x, y;
void example_7_3_7a ()
{
    goto hop;
    x = 2.0;
hop:
    y = 13.0;
}

becomes:

float x;
float y;
void example_7_3_7a(  )

{
hop:
    y = 13.0;
}

• Removal of zero-trip and empty for loops. For example, the following code is
deleted completely:

float x, y;
void example_7_3_7b ()
{
    int i;
    for (i=10; i<2; i++)
        x = x + y;
}
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• Elimination of resolved conditionals. For example:

float x;
void example_7_3_7c ()
{
    if (12 > 10)
        x = 1.0;
    else
        x = 2.0;
}

Because the true branch is always taken, this code becomes:

float x;
void example_7_3_7c(  )
{
    x = (float)(1.0);
}

• Removal of unnecessary or unprofitable code. (scalaropt must be ≥ 2 and
optimize≥2 for this optimization.) PCA performs lifetime analysis to determine the
reaching definitions of variables and removes unused definitions.

void example_7_3_7d ()
{
    float x, y;
    y = 5.0; /* no subsequent use of local variable y */
    x = 3.0; /* variable x redefined */
    x = 4.0;
    printf ("%g \n", x);
}

becomes:

void example_7_3_7d(  )
{

float x;
float y;
x = (float )(4.0);
printf( "%g \n", x );

}
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Loop Rerolling

Many programs have loops that were unrolled manually over several iterations to
amortize the cost of the test and branch at each iteration of the for loop. Before PCA can
evaluate these unrolled loops for parallel execution, the loops must be rerolled to a
simpler form. See the following dusty-deck transformations.

int a[], b[], c[], n;
void example_7_4a ()
{
    int i;
    for (i=0; i<n; i+=2) {
        a[i] = b[i] + c[i];
        a[i+1] = b[i+1] + c[i+1];
    }
}

PCA recognizes this iteration as an unrolled loop and rerolls it before evaluating it for
parallel execution, as follows:

int a[], b[], c[], n;
void example_7_4a(  )

{
    int i;
#pragma parallel if(n > 199) byvalue(n) shared(a, b, c) local(i)
#pragma pfor iterate(i=0;(n+1)/2*2;1)
    for ( i = 0; i<=(n + 1) / 2 * 2 - 1; i++ ) {
        a[i] = b[i] + c[i];
    }
}

PCA can also recognize unrolled summations (with –roundoff=3):

int b[], c[], n, sum;
void example_7_4b ()
{
    int i;
    for (i=0; i<n; i+=2) {
        sum += b[i] + c[i];
        sum += b[i+1] + c[i+1];
    }
}
and reroll them:
int b[], c[], n, sum;
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void example_7_4b(  )
{
    int i;
    int sum1;
#pragma parallel if(n > 125) byvalue(n) shared(c, b, sum) local(i)
reduction(sum1)
    {
        sum1 = 0;
#pragma pfor iterate(i=0;(n+1)/2*2;1)
        for ( i = 0; i<=(n + 1) / 2 * 2 - 1; i++ ) {
            sum1 +=  b[i] + c[i];
        }
#pragma critical
        {
            sum +=  sum1;
        }
    }
}

Loop Unrolling

Unrolling of for loops is the standard manual optimization technique that creates more
statements in a small loop by repeating the original statement. PCA can automatically
unroll both serial and parallel loops to speed execution. Unrolling a loop involves
duplicating the loop body one or more times within the loop, adding an increment (or
changing the increment that was already in the loop), and possibly inserting code before
the loop to execute the excess iterations of the loop (the “cleanup code”).

If the loop bounds are constant and the iteration count of the loop is small, PCA can
eliminate the loop entirely and replace it with copies of the loop body, or PCA can omit
the cleanup code. To enable loop unrolling, set the –scalaropt command-line option to 2.

The following example was run with –unroll=8, and –unroll2=1000. (See Chapter 3,
“PCA Command-Line Options” for more information on these command-line options.)
If the loop bounds are unknown at compilation time, PCA might analyze a loop.
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For example:

int a[], b[], c[], n;
void example_7_5a ()
{
    int i;
    for (i=0; i<n; i++) {
        a[i] = b[i] + c[i];
    }
}

is unrolled as:

int a[], b[], c[], n;
void example_7_5a(  )

{
    int i;
    int _Kii1;

    _Kii1 = (n)%(8);
    for ( i = 0; i<_Kii1; i++ ) {
        a[i] = b[i] + c[i];
    }
#pragma parallel if(n > 201) byvalue(_Kii1, n) shared(a, b, c) local(i)
#pragma pfor iterate(i=_Kii1;(n-_Kii1+7)/8;8)
    for ( i = _Kii1; i<n; i+=8 ) {
        a[i] = b[i] + c[i];
        a[i+1] = b[i+1] + c[i+1];
        a[i+2] = b[i+2] + c[i+2];
        a[i+3] = b[i+3] + c[i+3];
        a[i+4] = b[i+4] + c[i+4];
        a[i+5] = b[i+5] + c[i+5];
        a[i+6] = b[i+6] + c[i+6];
        a[i+7] = b[i+7] + c[i+7];
    }
 }
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But if the loop iteration count is constant and small, PCA can remove the loop entirely.
For example:

int a[], b[], c[];
void example_7_5b ()
{
    int i;
    for (i=0; i<5; i++) {
        a[i] = b[i] + c[i];
    }
}

becomes:

int a[], b[], c[];
void example_7_5b(  )

{
    int i;
    a[0] = b[0] + c[0];
    a[1] = b[1] + c[1];
    a[2] = b[2] + c[2];
    a[3] = b[3] + c[3];
    a[4] = b[4] + c[4];
}

Loop Fusion

Loop fusion is a conventional compiler optimization that transforms two adjacent loops
into a single loop. The use of data-dependence tests allows fusion of more loops than is
possible with standard techniques. You must use –scalaropt=2 to enable loop fusion.

In the following example, the first two loops are fused and concurrentized together.
Fusing these loops reduces for-loop overhead and the amount of synchronization
required. PCA recognizes that the third loop must execute after the first two and does not
fuse it with the others.
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For example:

int a[], b[], c[], d[], n;
void example_7_6 ()
{
    int i;
    for (i=0; i<n; i++) {
        a[i] = b[i] + c[i];
    }
    for (i=0; i<n; i++) {
        a[i] = a[i] + d[i];
    }
    for (i=0; i<n; i++) {
        d[i] = a[i+1];
    }
}

becomes:

int a[], b[], c[], d[], n;
void example_7_6(  )
{
    int i, _Kii1;
#pragma parallel if(n > 50) byvalue(n) shared(a, b, c, d) local(_Kii1,
i)
    {
#pragma pfor iterate(_Kii1=0;n;1)
        for ( _Kii1 = 0; _Kii1<n; _Kii1++ ) {
            a[_Kii1] = b[_Kii1] + c[_Kii1];
            a[_Kii1] +=  d[_Kii1];
        }
#pragma synchronize
#pragma pfor iterate(i=0;n;1)
        for ( i = 0; i<n; i++ ) {
            d[i] = a[i+1];
        }
    }
}
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Memory Management for Data Locality

The following sections describe PCA’s memory management options and how it uses
them. The options available are:

• cachesize—use this option to pick block sizes, that is, the sizes of the sections in the
cache.

• cacheline—use this option to inform PCA of the width in bytes of the memory
channel between cache and main memory.

• fpregisters and spregisters—use these options to pick unrolling factors, and to
make sure registers are not overflowed when unrolling.

• setassociativity—use this option to decide which memory management algorithm
to use.

Memory Management Techniques

PCA can enhance your program’s performance on machines that use cache memory. It
uses a combination of memory padding, loop blocking, loop interchanging, and outer loop
unrolling to optimize re-use of operands in memory. You can enable memory
management by setting scalaropt 3 and roundoff 3. (The default settings are scalaropt=3
and roundoff=0.)

PCA improves memory access patterns in loops processing arrays by working on small
sections of the arrays that fit into cache and give large cache hit ratios. You can control
the sizes of these array sections by using the memory management command-line
options. The default settings for these options are the standard characteristics of the
machine the code is targeted for. The default settings will produce the best results for
most programs. However, in some specialized cases you might want to modify the
settings to adjust the array section sizes.

PCA determines at runtime which of two memory management algorithms to use,
depending on the settings for cacheline and setassociativity. The default algorithm
keeps square blocks of data in cache, while the other keeps long, narrow blocks of data
in cache.
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The example below shows how loop blocking, loop interchanging, and loop unrolling
can be used to improve the performances of this matrix multiplication code. The PCA
command-line options used to analyze it were o=3, so=2, r=3, and arl=2. The arl option
is set because the arrays are function arguments and PCA assumes by default that they
might overlap.

double matm(n,a,b,c)
int n;
double a[200][200],b[200][200],c[200][200];
{
   int i,j,k;
   for (i=0; i<n; i++)
      for (j=0; j<n; j++) {
         a[i][j] = 0.0;
         for (k=0; k<n; k++)
            a[i][j] = a[i][j] + b[i][k]*c[k][j];
      }
   return (a[3][5]);
}

becomes:

double matm( n, a, b, c )
    int n;
    double  (*a)[200];
    double  (*b)[200];
    double  (*c)[200];

{
    int i;
    int j;
    int k;
    int _Kii1;
    int _Kii2;
    int _Kii3;
    int _Kii4;
    int _Kii5;
    int _Kii6;
    int _Kii9;
    double _Kdd1;
    int _Kii10;
    int _Kii11;
    double _Kdd2;
    int _Kii12;
    double _Kdd3;
    int _Kii13;
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    double _Kdd4;
    int _Kii14;
    double _Kdd5;
    int _Kii15;
    double _Kdd6;
    int _Kii16;
    double _Kdd7;
    int _Kii17;
    double _Kdd8;
    int _Kii18;
    double _Kdd9;
    int _Kii19;
    double _Kdd10;
    int _Kii20;
    double _Kdd11;
    int _Kii21;
    int _Kii22;
    double _Kdd12;
    int _Kii23;
    int _Kii24;
    int _Kii25;
    int _Kii26;
    int _Kii27;
    int _Kii28;

    _Kii10 = n - 1;
    _Kii27 = n / 10;
#pragma parallel byvalue(n, _Kii10) shared(a) local(i, j)
#pragma pfor iterate(i=0;n/10;10)
    for ( i = 0; i<=n - 10; i+=10 ) {
        for ( j = 0; j<=_Kii10; j++ ) {
            a[i][j] = 0.0;
            a[i+1][j] = 0.0;
            a[i+2][j] = 0.0;
            a[i+3][j] = 0.0;
            a[i+4][j] = 0.0;
            a[i+5][j] = 0.0;
            a[i+6][j] = 0.0;
            a[i+7][j] = 0.0;
            a[i+8][j] = 0.0;
            a[i+9][j] = 0.0;
        }
    }
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    _Kii1 = _Kii27 * 10;
    _Kii11 = n - 1;
    for ( i = _Kii1; i<=_Kii11; i++ ) {
        _Kii26 = (_Kii11 + 1)%(3);
        for ( j = 0; j<_Kii26; j++ ) {
            a[i][j] = 0.0;
        }
        for ( j = _Kii26; j<=_Kii11; j+=3 ) {
            a[i][j] = 0.0;
            a[i][j+1] = 0.0;
            a[i][j+2] = 0.0;
        }
    }
    _Kii2 = n;
    _Kii5 = 0;
    _Kii3 = (_Kii2 - 1)%(546) + 1;
    _Kii4 = _Kii3;
    _Kii22 = n - 1;
    _Kii25 = n - 10;
    _Kii24 = n - 1;
    _Kii28 = (_Kii25 + 10) / 10;
    for ( _Kii6 = 1; _Kii6>=_Kii2; _Kii6+=546 ) {
        _Kii21 = _Kii5 + _Kii4 - 1;
        for ( k = 0; k<=_Kii25; k+=10 ) {
            _Kii12 = k + 1;
            _Kii13 = k + 2;
            _Kii14 = k + 3;
            _Kii15 = k + 4;
            _Kii16 = k + 5;
            _Kii17 = k + 6;
            _Kii18 = k + 7;
            _Kii19 = k + 8;
            _Kii20 = k + 9;
#pragma parallel byvalue(_Kii22, k, _Kii12, _Kii13, _Kii14, _Kii15,
_Kii16, _Kii17, _Kii18, _Kii19, _Kii20, _Kii5, _Kii21)
#pragma         shared(b, a, c) local(_Kdd1, _Kdd2, _Kdd3, _Kdd4,
_Kdd5, _Kdd6, _Kdd7, _Kdd8, _Kdd9, _Kdd10, _Kdd11, i, j)
#pragma pfor iterate(i=0;_Kii22+1;1)
            for ( i = 0; i<=_Kii22; i++ ) {
                _Kdd2 = b[i][k];
                _Kdd3 = b[i][_Kii12];
                _Kdd4 = b[i][_Kii13];
                _Kdd5 = b[i][_Kii14];
                _Kdd6 = b[i][_Kii15];
                _Kdd7 = b[i][_Kii16];
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                _Kdd8 = b[i][_Kii17];
                _Kdd9 = b[i][_Kii18];
                _Kdd10 = b[i][_Kii19];
                _Kdd11 = b[i][_Kii20];
                for ( j = _Kii5; j<=_Kii21; j++ ) {
                    _Kdd1 = a[i][j];
                    _Kdd1 +=  _Kdd2 * c[k][j];
                    _Kdd1 +=  _Kdd3 * c[_Kii12][j];
                    _Kdd1 +=  _Kdd4 * c[_Kii13][j];
                    _Kdd1 +=  _Kdd5 * c[_Kii14][j];
                    _Kdd1 +=  _Kdd6 * c[_Kii15][j];
                    _Kdd1 +=  _Kdd7 * c[_Kii16][j];
                    _Kdd1 +=  _Kdd8 * c[_Kii17][j];
                    _Kdd1 +=  _Kdd9 * c[_Kii18][j];
                    _Kdd1 +=  _Kdd10 * c[_Kii19][j];
                    _Kdd1 +=  _Kdd11 * c[_Kii20][j];
                    a[i][j] = _Kdd1;
                }
            }

        }
        _Kii9 = _Kii28 * 10;
        _Kii23 = _Kii5 + _Kii4 - 1;
#pragma parallel byvalue(_Kii24, _Kii5, _Kii23, _Kii9) shared(b, a, c)
local(_Kdd12, i, j, k)
        {
            for ( k = _Kii9; k<=_Kii24; k++ ) {
#pragma pfor iterate(i=0;_Kii24+1;1)
                for ( i = 0; i<=_Kii24; i++ ) {
                    _Kdd12 = b[i][k];
                    for ( j = _Kii5; j<=_Kii23; j++ ) {
                        a[i][j] +=  _Kdd12 * c[k][j];
                    }
                }
#pragma synchronize
            }
        }
        _Kii5 +=  _Kii4;
        _Kii4 = 546;
    }
    return a[3][5];
}
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7. In-lining and Interprocedural Analysis

This chapter provides additional information about the PCA command-line options and
in-line pragmas that you can use to inline functions and perform interprocedural analysis.

In-lining is the process of replacing a function reference with the text of the function. This
process eliminates the overhead of the function call, and can assist other optimizations
by making relationships between function arguments, returned values, and the
surrounding code easier to find.

Interprocedural analysis is the process of inspecting called functions for information on
relationships between arguments, returned values, and global data. This process can
provide many of the benefits of in-lining without replacing the function reference.

Table 7-1 lists the in-lining options.

Table 7-1 In-lining Options

In-lining–Purpose Long Name Short Name Default Value

Specify routine to in-line inline[=name[,name...]] inl[=names] off

Create preprocessed library inline_create=lib.klib incr=lib.klib off

Define inlinable routines inline_from_files=list inff=list current source file

Specify library from inline_from_libs=list infl=list off

which to in-line

Specify call nest level inline_depth[=n] ind[=n] ind=2

Specify for loop-nest level inline_looplevel[=n] inll[=n] inll=2

Specify manual control inline_manual inm off
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Table 7-2 lists the IPA options.

The rest of this chapter covers the in-lining and interprocedural analysis command-line
options and pragmas, related command-line options, examples of their use, and
information on program constructs that inhibit in-lining. In-lining and interprocedural
analysis are symmetrical from the command-line standpoint–you use related sets of
commands and pragmas for them. (Many places that say in-lining apply to both in-lining
and interprocedural analysis.)

In-lining and IPA Command-Line Options

In-lining has two phases:

1. Define the universe of in-linable routines.

2. Select which routines in that universe to in-line or analyze.

The from_files and from_libs options define the universe of in-linable routines. The
inline, ipa, and looplevel options select which of the available routines are to be
in-lined/analyzed. The create options set up collections of routines for inclusion in later
PCA runs.

The subsections that follow define the syntax for in-lining and interprocedural analysis
command-line options. The short forms of their names appear in square brackets ([ ]).

Table 7-2 Interprocedural Analysis Options

IPA–Purpose Long Name Short Name Default Value

Specify routine to analyze ipa[=name[,name...]] ipa[=names] off

Create preprocessed library ipa_create=lib.klib ipacr=lib.klib off

Define routines for IPA ipa_from_files=list ipaff=list current source file

Specify library from ipa_from_libs=list ipafl=list off

which to do IPA

Specify for loop-nest level ipa_looplevel[=n] ipall[=n] ipall=2

for IPA

Specify manual control ipa_manual ipam off
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The inline_from and ipa_from Options

The inline_from and ipa_from options take the following form:

-inline_from_files=list            [-inff=list]
-inline_from_libraries=list        [-infl=list]
-ipa_from_files=list               [-ipaff=list]
-ipa_from_libraries=list           [-ipafl=list]

where list is one or more of the following:

• source file name

• library file name

• directory

Separate each item in the list by commas. Do not use shell wild card characters in the list
of files and directories. The default is current source file. Different types of files are
distinguished by their extensions. For example:

-inline_from_files=xj.c,yy.c,../mrtn

looks for routines in the C source files xj.c and yy.c, and in C source files in the directory
../mrtn. (Including the directory ../mrtn is equivalent to the UNIX® notation ../mrtn/*.c).
All source files that contain C preprocessor directives must be preprocessed by the cc
compiler before being in-lined or analyzed.

The from_libraries versions of these options take as their arguments lists of function
libraries and directories containing such libraries.

PCA recognizes the type of file by its extension, or lack of one (see Table 7-3 for the file
types).

Table 7-3 File Types

File Extension Type of File

.c C source file

.klib Library from inline/ipa_create

other Directory
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Two special abbreviations are:

dash (–) A dash specifies the current source file (as listed on the command line,
or specified in a –input=file command-line option).

period ( .) A period specifies the current working directory.

Specifying a nonexistent file or directory is a command-line error.

If you specify multiple from_files and from_libraries options, their lists are
concatenated to get a bigger universe.

Routine name references are resolved by a search in the order that files appear in
from_files and from_libraries options on the command line. Libraries are searched in
their original lexical order. Multiple from_files and from_libraries lists are searched in
the order in which they appear on the command line.

Creating and Using Libraries

To create a preprocessed library, use the following syntax:

-inline_create=library_name.klib      [-incr=lib_name.klib]
-ipa_create=library_name.klib         [-ipacr=lib_name.klib]

To specify a library file to in-line from, use:

-inline_from_libraries=list           [–infl=list]
-ipa_from_libraries=list              [–ipafl=list]

The default source for routines to put into the library is the current source file. If you
specify inline_from (ipa_from), the routines in the listed files are the ones put into the
library. This provides a method to combine or expand libraries. Just include the old
library(ies) and any new file(s) in an inline_from (ipa_from) option.

Routines are included in libraries in the order in which they appear in the input file(s).
This order guarantees that if multiple routines with the same name are in the same source
file, the one chosen for in-lining will be the one you expect from the algorithm under
inline_from, described previously.

A library created with inline_create will work for in-lining or IPA, since it is just partially
reduced source code. However, a library made with ipa_create may not appear in an
–inline_from=list. Such use is flagged with a warning message.
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If no library name is given, the name used is file.klib, where file is the input file name with
any trailing .c stripped off.

When creating a library, only one create option may be given. That is, only one library
may be created per PCA run. If the library file existed prior to running PCA, it is
overwritten. When you specify this option on the command line, no transformed code
file will be generated. See the previous description of the from_libraries options for
information on using libraries created with these options.

If you don’t specify an inline (ipa) option, the default is to include all the functions in the
source file in the library, if possible. See “Conditions That Inhibit In-lining” on page 134
later in this chapter for a list of conditions that can prevent a function from being in-lined.

An example of in-lining from the library created above is included in the section of
examples later in this chapter.

Naming Specific Routines

To specify the names of particular routines to in-line, use:

-inline[=name[,name...]]          [-inl=name,...]
-ipa[=name[,name...]]             [-ipa=name,...]

The default is all routines in the function universe. You can specify this by any inline_from
(ipa_from) option, subject to the looplevel setting.

In-lining and IPA are off by default, that is, if no in-lining (IPA) options are specified and
no in-lining (IPA) directives are found in the source code, no in-lining (IPA) is performed.

If you omit inline (ipa) from the command line, automatic selection of routines to in-line
is disabled. You can manually select functions to in-line (analyze) with the
–inline_manual (–ipa_manual) options and the inline and ipa pragmas.

If you specify inline (ipa) on the command line without a list of routine names, then all
routines in the in-lining (IPA) universe are eligible, subject to the looplevel value.

If you specify inline (ipa) on the command line with a list of routine names, then only the
listed routines are eligible, subject to the looplevel value.
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for Loop Level

To set a minimum for loop nest level for function call expansion, use:

-inline_looplevel[=n]          [-inll[=n]]
-ipa_looplevel[=n]             [-ipall[=n]]

Use the looplevel option to limit in-lining and interprocedural analysis to just functions
that are referenced in nested loops, where the reduced function call overhead or
enhanced optimization will be multiplied.

The argument is defined from the most deeply nested leaf of the call tree.

The default, 2, restricts in-lining (interprocedural analysis) to the best-seeming candidate
routines.

For example:

main
{
  ...
   a();  ------>  a() {...}
}

  ..
 for (..) {
   for (..) {
    b();  --------->  b() {
   }                    for (..) {
 }                        for (..) {
                            c();  -------> c() {...}
                          }
                        }
                      }

The call to b is inside a doubly nested loop and is more profitable to expand than the call
to a. The call to c is quadruply nested, so in-lining c yields the biggest gain of the three.
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The argument is defined from the most deeply nested function reference:

–inline_looplevel=1
Only the functions referenced in the most deeply nested call site(s) may
be expanded (function c in the previous example). If more than one
function call is at the same loop-nest level, all of them are selected when
that level is included.

–inline_looplevel=2
Only function calls at the most deeply nested level and one loop less
deeply nested may be expanded.

–inline_looplevel=3
Level 3 is required to in-line function b, since its call is two loops less
nested than the call to function c.

A value of 3 or greater causes c to be in-lined into b, then the new b to be
in-lined into the main program.

–inline_looplevel (or –inline_looplevel=large number)
A large number permits in-lining at any nesting level. The calling tree
written to the listing file with –listoptions=c includes the nesting depth
level of each call in each program unit and the aggregate nesting depth
(the sum of the nesting depths for each call site, starting from the main
program). Use this information to identify the best functions for
in-lining.

A function that passes the looplevel test is in-lined everywhere it is used, even places
that are not in deeply nested loops. If some, but not all, invocations of a function are to
be expanded, use the inline and ipa pragmas just before each function call that is to be
expanded (see the next section).

Because in-lining increases the size of the code, the extra paging and cache contention
can actually slow down a program. Restricting in-lining to functions used in for loops
multiplies the benefits of eliminating function call overhead for a given amount of code
space expansion. (If in-lining appears to slow an application, investigate the problem
using IPA, which has little effect on code space and the number of temporary variables.)
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Manual Control

To instruct PCA to recognize the #pragma [no]inline and #pragma [no]ipa directives, use
these options:

-inline_manual             [-inm]
-ipa_manual                [-ipam]

This allows manual control over which functions are in-lined/analyzed at which call
sites (see the following section, “In-lining Pragmas” on page 124).

The default is to ignore these pragmas. To enable these pragmas, include –inline_manual
(–ipa_manual) on the command line.

Since #pragma [no]inline and #pragma [no]ipa are not affected by the looplevel
command-line options, you can use them either with or without the command-line
control.

In-lining Pragmas

The inline/ipa pragmas tell PCA to in-line (or perform interprocedural analysis on) the
named functions. The syntax is:

#pragma [no]inline [here][routine][global] [(name[,name...])]
#pragma [no]ipa [here][routine][global] [(name[,name...])]

These pragmas tell PCA whether or not to in-line/analyze the named functions. These
pragmas combine next-line, entire routine, and global (entire program) scope. If you omit
these optional elements, all functions referenced on the next line of code that are in the
in-lining/analyzing universe are in-lined on that one line.

These pragmas are disabled by default. Enable them with the –inline_manual and
–ipa_manual command-line options. They are independent of the other in-lining and
IPA command-line options, and you can use them instead of, or in addition to,
command-line controlled in-lining.
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Keywords: here, routine, and global

The keywords, here, routine, and global are described below.

here If you include the scope keyword here, or if you don't specify any scope,
the pragma applies only to the next statement.

routine If you include the scope keyword routine, the pragma applies to the rest
of the routine, or until a corresponding no appears. (Or, if the first
pragma was a noinline (noipa), until the corresponding inline (ipa)
pragma.)

global If you include the scope keyword global, or if the pragma appears
before any lines of source code, the pragma applies to the entire file, or
until toggled with the corresponding no pragma. (Or, if the first pragma
was a noinline (noipa), until the corresponding inline (ipa) pragma.)
Typically, global pragmas appear only at the top of the source file. The
same routine name may not appear in both global in-lining and global
IPA lists, either by pragmas or the inline (ipa) options.

These keywords must appear in lowercase, as function names are case sensitive. The
optional names are function names. If any functions are named in the directive, it applies
only to them. If no function names are given, the pragma applies to all functions. The
parentheses around the function names are not required if the list of function names is
empty.

If a #pragma inline or #pragma ipa names a routine not in the universe, a warning message
is issued, and the pragma is ignored.

Listing File Additions

You can print the calling tree with the –listoptions=c option.

–listoptions=c

The optional calling tree includes the loop-nest depth level of each function call. The
metric uses the convention of the –inline_looplevel and –ipa_looplevel options. The
farthest-out leaf is 1, and higher values trace back to the main program.
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In-lining/IPA Examples

The following code examples demonstrate a few of the possibilities for using the features
described in this chapter. Because PCA undergoes constant enhancement, the code that
your version of PCA produces may not be identical to the code in these examples. The
temporary variable names, in particular, can change without substantially altering the
transformed code.

Unless otherwise noted, the following examples were run with the –optimize and
–scalaropt options set to:

-o=0 -so=0

to show the in-lining more clearly. If you specify nonzero values, the functions are first
in-lined or analyzed, and then the concurrentization/ddusty-deck transformations (see
Chapter 3, “PCA Command-Line Options”) are applied. In some cases, C preprocessor
additions or code modifications were removed to make the examples simpler.

In-lining Example–Same Source File

The following example demonstrates in-lining both with –inline=matm (only the
function matm will be in-lined), and with –inline (both functions are in-lined). The PCA
output includes optimized versions of both functions, in addition to the expanded main
program. An example source file follows:

void example_8_4_1 ()
{
    int i, n;
    double a[200][200], b[200][200], c[200][200];
    double cksum, matm();

    setup (b, 200);

    setup (c, 200);
    for (n=25; n<200; n=n+25) {
        cksum = matm (n, a, b, c);
        printf ("For N=  %d   checksum= %q \\n", n, cksum);
    }
}

void setup (double e[200][200], int n)
{
    int i, j;



In-lining/IPA Examples

127

    for (i=0; i<n; i++)
        for (j=0; j<n; j++)
            e[i][j] = ((i + 7*j) % 10) / 10.0;

    return;
}

double matm (int n, double a[200][200], double b[200][200], double
c[200][200])
{
    int i, j, k;

    for (i=0; i<n; i++)
        for (j=0; j<n; j++) {
            a[i][j] = 0.0;
            for (k=0; k<n; k++)
                a[i][j] = a[i][j] + b[i][k]*c[k][j];
        }

    return (a[3][5]);
}

This is the main program generated by –inline=matm:
void example_8_4_1(  )
{
    int i, n;
    double a[200][200];
    double b[200][200];
    double c[200][200];
    double cksum;
    double matm( );
    setup( b, 200 );
    setup( c, 200 );
    for ( n = 25; n<=199; n+=25 ) {
        cksum = matm( n, a, b, c );
        printf( "For N=  %d   checksum= %q \\n", n, cksum );
    }
}
void setup( double e[][200], int n )
{
    int i;
    int j;
    for ( i = 0; i<n; i++ ) {
        for ( j = 0; j<n; j++ ) {
            e[i][j] = ((i + j * 7) % 10) / 10.0;
        }
    }
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    return ;
}
double matm( int n, double a[][200], double b[][200], double c[][200] )
{
    int i;
    int j;
    int k;
    double _Kdd1;
    for ( i = 0; i<n; i++ ) {
        for ( j = 0; j<n; j++ ) {
            a[i][j] = 0.0;
            _Kdd1 = a[i][j];
            for ( k = 0; k<n; k++ ) {
                _Kdd1 +=  b[i][k] * c[k][j];
            }
            a[i][j] = _Kdd1;
        }
    }
    return a[3][5];
}

This is the output generated by –inline:

void example_8_4_1(  )
{
    int i;
    int n;
    double a[200][200];
    double b[200][200];
    double c[200][200];
    double cksum;
    double matm( );
    setup( b, 200 );
    setup( c, 200 );
    for ( n = 25; n<=199; n+=25 ) {
        cksum = matm( n, a, b, c );
        printf( "For N=  %d   checksum= %q \\n", n, cksum );
    }
}
void setup( double e[][200], int n )
{
    int i;
    int j;
    for ( i = 0; i<n; i++ ) {
        for ( j = 0; j<n; j++ ) {
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            e[i][j] = ((i + j * 7) % 10) / 10.0;
        }
    }
    return ;
}
double matm( int n, double a[][200], double b[][200], double c[][200] )
{
    int i;
    int j;
    int k;
    double _Kdd1;
    for ( i = 0; i<n; i++ ) {
        for ( j = 0; j<n; j++ ) {
            a[i][j] = 0.0;
            _Kdd1 = a[i][j];
            for ( k = 0; k<n; k++ ) {
                _Kdd1 +=  b[i][k] * c[k][j];
            }
            a[i][j] = _Kdd1;
        }
    }
    return a[3][5];
}

In-lining Example with a Library

The next example demonstrates the creation of a library and in-lining functions from it,
a two-step process.

First step: Create the library.

The file subfil.c contains these two functions:

extern double sin (double);
#pragma no side effects (sin)

void mkcoef (double coef[], int n)
{
    int i;

    for (i=0; i<n; i++)
        coef[i] = 1.0 / (i + 1);
}

double yval (double x, double coef[], int n)
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{
    double sum;
    int i;
    sum = 0.0;

    for (i=0; i<n; i++)
        sum = sum + coef[i] * sin ((i + 1) * x);

    return (sum);
}

Run the file through the C preprocessor to create the file subfil.cpp:

/usr/lib/cpp subfil.c > subfil.cpp

Then execute the PCA command:

/usr/lib/pca  -inline_create=subfil.klib   -list=subfil.L subfil.cpp

This creates a library file with the two functions, and a listing file subfil.L, which contains
only a list of routines and whether or not each was saved in the library:

function mkcoef -- saved
function yval -- saved

Second step: Inline the functions into a calling program.

The file sqwv.c contains the main program:

void example_8_4_2 ()
{
    double coef[15], y[2000], yval();
    int i;

    mkcoef (coef, 15);
    for (i=0; i<2000; i++)
        y[i] = yval ((i + 1) * 0.001 * 3.14159, coef, 15);

    for (i=0; i<2000; i=i+10)
       printf ("%f %f %f %f %f %f %f %f %f %f \\n",y[i],y[i+1],
y[i+2], y[i+3], y[i+4], y[i+5], y[i+6], y[i+7], y[i+8],
y[i+9]);
}
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Run the commands:

/usr/lib/cpp sqwv.c > sqwv.cpp

/usr/lib/pca -infl=subfil.klib -o=0 -d=0 sqwv.cpp \

-cmp=sqwv.cmp

This puts the following into the file sqwv.cmp:

void example_8_4_2(  )
{
    double coef[15];
    double y[2000];
    double yval( );
    int i;
    double _Kdd1[129];
#pragma padding(_Kdd1)
#pragma storage order(y, _Kdd1, coef)
    mkcoef( coef, 15 );
    for ( i = 0; i<=1999; i++ ) {
        y[i] = yval( (i + 1) * 0.001 * 3.14159, coef, 15 );
    }
    for ( i = 0; i<=1999; i+=10 ) {
        printf( "%f %f %f %f %f %f %f %f %f %f \\n", y[i], y[i+1],
y[i+2], y[i+3], y[i+4], y[i+5], y[i+6], y[i+7], y[i+8], y[i+9]
             );
    }
}

In the previous example, all other optimizations were turned off to show the expansion
more clearly. If you specify non-zero values for the –optimize, –scalaropt, and –roundoff
options, PCA first in-lines the routines, then performs the optimizations in the usual
manner.

IPA Example

In the following example, the variables n and np1 have a simple relationship. This
relationship is hidden behind a function call, however, so PCA normally will not try to
concurrentize the loop in the main program.
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When you specify the –ipa=rxgfs command-line option, PCA will inspect the named
function for information on the relationship of its arguments and returned value and the
surrounding code. The assumed dependence is lifted, and the loop can be safely
concurrentized.

If a function cannot be in-lined (this simple one can be), or if you don’t want to in-line it,
it can often still be analyzed for its effects on the calling routine.

The next example looks like this:

void example_8_4_3 ()
{
    int np1, i, m, n;
    int a[100][100];

    np1 = rxgfs(n);
    for (i=0; i<m; i++) {
        a[i][n] = a[i-1][np1];
    }
}

int rxgfs(int n)
{
    return (n+1);
}

When run with the default values for –optimize and –scalaropt, the example becomes
(the function is not shown):

void example_8_4_3(  )
{
    int np1;
    int i;
    int m;
    int n;
    int a[100][100];
    np1 = rxgfs( n );
    for ( i = 0; i<m; i++ ) {
        a[i][n] = a[i-1][np1];
    }
}
int rxgfs( int n )
{
    return (n + 1);
}
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Notes on In-lining and IPA

You may perform either in-lining or interprocedural analysis in a PCA run. If you want to
in-line some routines and use IPA for others, you must do this in two PCA runs.

• Routines to be in-lined must pass all the criteria (–inline=–inline_looplevel) to be
in-lined. (See the following section for the exception to this rule.)

• The #pragma [no]inline and #pragma [no]ipa directives, when enabled, override the
in-lining/IPA command-line options.

• A #pragma inline global directive without a function name list instructs PCA to
in-line every function it can regardless of the –inline and –inline_looplevel
settings.

• A #pragma noinline global directive instructs PCA not to in-line anything, regardless
of the –inline and –inline_looplevel settings.

No in-lining or interprocedural analysis will be performed if the primary source file is
stdin. (See the description of the –input command-line option in Chapter 3, “PCA
Command-Line Options” for more information on specifying the primary source file.)

When you specify a library with –inline_from_libraries, routines may be taken from that
library for in-lining into the source code. No attempt is made to in-line routines from the
source file into routines from the library.

For example, if the main program calls function bb, which is in the library, and bb calls
function dd, which is in the source file, then bb can be in-lined into the main program,
but PCA will not attempt to in-line dd into the text from library routine bb.

A library created with –inline_create will work for in-lining or IPA, since it is just
partially reduced source code, but a library made with –ipa_create may not appear in a
–inline_from_libs=list. It is flagged with a warning message.

In-lining and interprocedural analysis are slow, memory-intensive activities. Using
–inline_looplevel (in-line all available functions everywhere they are used) for a large
set of in-linable routines for a large source file can absorb significant system resources.
For most programs, specifying a small value for –inline_looplevel and/or a small
number of routines with –inline= will provide most of the benefits of in-lining.
(Specifying a small value also applies to the corresponding IPA options.)
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Conditions That Inhibit In-lining

This section lists conditions that inhibit the in-lining of functions, whether from a library
or source file. (See the preceding section for notes on the use of the in-lining
command-line options and pragmas.) Conditions that inhibit in-lining include:

• unresolved name conflicts (which usually indicate an incorrect program)

• a function that is too long (> 600 lines)
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8. The PCA Listing

This chapter describes the types of information available in the optional PCA listing, and
the classes of messages that PCA produces. To help you determine PCA’s status and
efficiency, use the –listoptions= option to list the optimizations PCA performed. For
example, in some cases PCA may tell you that it could have converted any of three loops
to concurrent execution but that it converted only the one it considered most profitable.

At times PCA may not convert a loop to concurrent execution because the loop does so
little work that it is not worth the small overhead of parallel execution. Because these
changes can produce correct but unexpected code, PCA puts a note in the listing to
explain its output.

PCA does not produce a listing file unless you request it.

listoptions

The –listoptions= command-line option tells PCA what information to include in the
listing and error files. The listing file can contain any combination of options.

Each listoptions option is summarized in Table 8-1.

Table 8-1 Listing File Options

Value Description

c Print the Calling Tree of the entire program.

i Insert line numbers in the transformed code referencing line numbers of the original.

k Print PCA options used at the end of the listing.

l Print the loop-by-loop optimization table.

n Print program unit names, as processed, in the error file.
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You can enter multiple arguments on the command line; separate each with a comma.
The following subsections describe the arguments to –listoptions.

Calling Tree (c)

PCA lists the calling tree after all program units have been compiled. The program unit
information for each calling tree consists of the functions it calls and the routines where
that program unit itself is called. An example follows.

CALLING TREE

line#         routines         at nest    max. aggregate nest

1           function example_9_1_1
6              call mkcoef        0               0
8              call yval          1               0
11             call printf        1               0

18           function mkcoef

26           function yval
34             call sin           1               0

example_9_1_1
    mkcoef
    yval
        sin
    printf
 CODE MODULES

 example_9_1_1 called from
 mkcoef    called from  example_9_1_1
 printf    called from  example_9_1_1
 sin       called from  yval
 yval      called from  example_9_1_1

p Print the analysis performance statistics.

s Summarize loop optimizations.

Table 8-1 (continued) Listing File Options

Value Description
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Insert Line Numbers (i)

The –listoptions=i switch directs PCA to insert line number references into the
transformed code. The line number indicates that the labeled line is either the same as
that line in the original code or is derived from it. These make relating constructs in the
original and transformed codes easier. In the unrolled loop that follows, the for in the
original code was on line 7, and the assignment was on line 8.

# 1  "example_9_1_2.c"
int a[];
# 1 "example_9_1_2.c"
int b[];
# 1 "example_9_1_2.c"
int n;
# 2  "example_9_1_2.c"
void example_9_1_2(  )

{
# 4 "example_9_1_2.c"
    int i;
    int _Kii1;

# 5  "example_9_1_2.c"
    _Kii1 = (n)%(3);
# 5  "example_9_1_2.c"
    for ( i = 0; i<_Kii1; i++ ) {
        a[i] = b[i] / a[i-1];
    }
# 5  "example_9_1_2.c"
    for ( i = _Kii1; i<n; i+=3 ) {
        a[i] = b[i] / a[i-1];
# 6  "example_9_1_2.c"
        a[i+1] = b[i+1] / a[i];
# 6  "example_9_1_2.c"
        a[i+2] = b[i+2] / a[i+1];
    }
}
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PCA Options (k)

The PCA Options table lists the settings of the command-line options related to
optimization that were used for this program unit.

Options Used for this Program Unit

ADDRESSRESOLUTION=1 ARCLIMIT=2000
CACHELINE=64 CACHESIZE=64
CMPOPTIONS= CONCURRENTIZEACKV
DPREGISTERS=12 EIIFG=20
FPREGISTERS=12 INLINE_DEPTH=2
INLINE_LOOPLEVEL=2 IPA_LOOPLEVEL=2
LIMIT=5000 LINES=55
LISTINGWIDTH=80 MACHINE=S
MIIFG=500NO INLINE MINCONCURRENT=1000
NO INLINE_CREATE NO INLINE_FROM_FILE
NOINLINE_FROM_LIBRARIES NO INLINE_MANUAL
NO IPA NO IPA_CREATE
NO IPA_FROM_FILES NO IPA_FROM_LIBRARIES
NO IPA_MANUAL OPTIMIZE=5
ROUNDOFF=0 SCALAROPTIMIZE=3
SETASSOCIATIVITY=1 SYNTAX=A
UNROLL=4 UNROLL2=100
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Loop Table (l)

The loop table shows what PCA did with each for loop. If PCA could not optimize the
loop, PCA lists the reason.

---------------------------Loop Table--------------------------

Nest
Loop    Message Level     Contains Lines
===============================================================

 for i 1   5-6 "example_9_1_4.c"
        Original Loop Split Into Sub-Loops
   1. Enhanced Scalar 1   5-6, 8 "example_9_1_4.c"
        Line:5 Cleanup loop for loop unrolling.
        Line:8 Loop has been fused with others to reduce
               overhead.
   2. Concurrent & Enhanced Scalar 1   5-6, 8 "example_9_1_4.c"
        Line:5 Loop has been fused with others to reduce
               overhead.
        Line:5 Loop unrolled 4 timestoimprove scalar performance.

for i                              1      7-8 "example_9_1_4.c"

Name (n)

The program unit names, as processed, are printed in the error file.

FILE: example_9_1_5.c
    Function: example_9_1_5
    Function: mkcoef
    Function: yval
0 errors in file example_9_1_5.c
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Analysis Performance Statistics (p)

The analysis performance statistics list the number of lines in the program unit, the
analysis time in seconds, and the analysis rate in lines per minute. The listing also
summarized this information after all program units have been analyzed.

Compilation Statistics For the Routine example_9_1_6
   14  Lines in Program Unit
 0.29  CPU Time
 2896  Lines Per Minute
    0  Symbol Cache File Writes
    0  Symbol Cache File Reads
    0  Source Save File Reads
    0  Source Save File Writes
    0  Source Save File Opens
    0  Name Table File Writes
    0  Name Table File Reads

Cumulative Compilation Statistics
   15  Lines in Source File
    1  Program Units in Source File
 0.30  CPU Time
 3000  Lines Per Minute
    0  Symbol Cache File Writes
    0  Symbol Cache File Reads
    0  Source Save File Reads
    0  Source Save File Writes
    0  Source Save File Opens
    0  Name Table File Writes
    0  Name Table File Reads

Summary Table (s)

The summary table shows how many loops appeared in the program unit, how many
loops PCA optimized, and how PCA optimized the loops.

             3 loops total

             1 loops concurrentized
             1 preferred scalar mode
             1 this loop has been fused with other loops
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Syntax Error/Warning Messages

PCA tries to match the syntax error and warning messages of the compiler with which it
runs. A file that would cause the compiler to issue a syntax error should cause PCA to
issue a syntax error.

When PCA finds a syntax error, it stops reading the input file after it finishes reading the
current function definition. PCA does not send the problem function to the output file,
so only code without syntax errors appears in the transformed code file.

When illegal syntax (or any other error) is found, PCA writes a message to standard error.
For example, if the code contains an undeclared variable, you get the error:

Error: line 13: file example_9_2.c: idx undefined.
 PCA -- Syntax Errors Detected

PCA also writes syntax warning messages to standard error, but optimization proceeds.
PCA issues syntax warning messages for constructs that are illegal but whose intent is
clear.
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A. Improving PCA Performance

This appendix is designed to help you improve PCA’s performance for a particular
application. Table A-1, which follows, lists common goals and offers suggestions for
possible improvements.

PCA is a tool to optimize C code and, as with any tool, it performs best when you are
familiar with its features and the details of how it works. The PCA default settings can
usually improve the performance of your code significantly. However, you can
sometimes get larger performance improvements if you know when to use directives and
alternate option settings.

Table A-1 Improving PCA Performance

Goal Action

Recognize reductions and recurrences as safe
to run in parallel.

Turn on roundoff option.

Convert more loops to run in parallel. Turn up optimize option. Use arl option. Turn
on roundoff option. Use directives.

Prevent PCA from converting to parallel
execution a large number of inner loops
containing a small number of iterations.

Use machine=o.

Eliminate dusty-deck transformations. Turn down scalaropt option

Create a more informative listing. Use –lo=ls or other listing options under the
listoptions command-line option. (See the list
option description for how to get a listing file.)

Force PCA to ignore assumed data
dependences and convert the loop to run in
parallel.

Use #pragma concurrent

Allow PCA to convert loops to run in parallel
even though those loops contain function calls.

Enable in-lining or interprocedural analysis, or
use no side effects or concurrent call directives
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B. Data-Dependence Analysis

This appendix provides a brief explanation of data dependence—the criterion that PCA
uses to determine if a given loop should run in parallel. PCA determines dependencies
between variables and arrays in loop iterations, and bases decisions on this information
automatically, informing the user (via the listing file) only of those dependencies that
prevent optimization.

PCA uses a data-dependence graph that shows where data values are generated and
where they are used within a loop or loop nest. The data-dependence graph is processed
(with simple graph traversal techniques) to find potential problem areas, which appear
as cycles in the graph. Each data-dependence cycle is carefully examined to see if it can
be broken and the loop executed in parallel, or if part or all of the loop must be executed
serially.

For a list of in-depth studies on data dependence, see the list of reference material in the
Introduction.

Varieties of Data Dependence

The three kinds of data dependence are flow dependence, anti-dependence, and output
dependence. The notation S1, S2, and SN denote statement 1, statement 2, and statement
N, respectively. In each example, S2 is dependent on S1, due to variable x.

Flow Dependence

Data dependence from an assignment to a use of a variable is called flow dependence (or
true dependence).

For Example:

(S1):     x = 3;

(S2):     y = x;
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Anti-Dependence

Data dependence from use of a variable to a later reassignment of that variable is called
anti-dependence.

For Example:

(S1):    y = x;

(S2):    x = 3;

Output Dependence

Data dependence from an assignment of a variable to a later reassignment of that
variable is called output dependence.

For Example:

(S1):    x = 3;

(SN):    x = 4;

Input and Output Sets

To determine data dependence, it is necessary to form the input and output sets for the
given statements.

The input set, IN(S1), denotes the set of input items of S1 (items whose values may be
read by S1). The output set, OUT(S1), denotes the set of output items (scalar variables or
array elements) of statement S1 (items whose values may be changed by S1). The IN and
OUT sets for the assignment statement in the loop are:

      for (i=1; i<=10; i++
S1:   x[i] = a[i + 1] * b;

      IN[S1] = {a[2], a[3], a[4], ..., a[11], b}
      OUT[S1] = {x[1], x[2], x[3], ..., x[10]}

In practice, PCA often approximates the IN and OUT sets because the actual loop bounds
are frequently unknown at compile time.
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Data-Dependence Relations

For any two statements, S1 and S2, one of the three types of data-dependence relations
may be true, or the statements may be data independent.

If some item X is in OUT(S1) and X is in IN(S2) and S2 is to use the value of X computed
in S1, then S2 is flow dependent on S1, as in example 1 of “Varieties of Data Dependence”
on page 145.

If some item x is in IN(S1) and x is in OUT(S2), but S1 is to use the value of x before it is
changed by S2, then S2 is anti-dependent on S1, as in example 2 of “Varieties of Data
Dependence” on page 145.

If some item x is in OUT(S1) and x is in OUT(S2) and the value computed by S2 is to be
stored after the value computed by S1 is stored, S2 is output dependent on S1, as in
example 3 of “Varieties of Data Dependence” on page 145.

Anti-dependence and output-dependence relations are sometimes inadvertently caused
by programmers’ coding practices. These dependencies can often be removed by more
careful coding.

Data-Dependence Direction Vectors

The direction vector is defined as a sequence of direction vector elements (one element
for each loop enclosing both statements involved in the dependence arc).

The following symbols are direction vector elements:

<    =    >    <=    >=    <>    *

The next example shows a loop:

    Loops      Line
+---------     10    for ( i=1; i<n ; i++) {
|              11      a[i] = b[i] + c[i];
|              12      c[i] = a[i-1] - 1;
|_________     13    }
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If line 12 in iteration I" depends on line 11 in iteration I', the element of the direction
vector for loop I is shown in Table B-1.

In the previous example, the dependence for variable a has a direction vector of <,
because the dependence flows from iteration I' to iteration I'+1 and I' < I'+1. For
example, the dependence on a[1] flows from iteration 1 to iteration 2, and 1 < 2. The data
dependence for the variable c has a direction vector of = because the dependence stays
in the same iteration of the loop (from iteration I' to iteration I").

Loop-Carried Dependence

A dependence is said to be carried by a loop if the corresponding direction vector
element for that loop has a directional component (<, <=, <>, or *). Loop-carried
dependence is an important concept for discovering when the iterations of the loop can
be executed concurrently. If no loop-carried dependencies exist, all iterations of that loop
can be executed in parallel without synchronization.

Table B-1 Direction Vector Elements

Direction Vector Element When

< I' must be < I"

= I' must be = I"

> I' must be > I"

<= I' must be < or = I"

>= I' must be > or = I"

<> I' must not = I"

* no relation between I' and I" can be proven
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Data-Dependence Example

The following loop cannot be vectorized or concurrentized directly.

for ( i=1; i<=n; i++) {
   a[i] = b[i] + 2;
   c[i] = a[i+1] + d[i];
}

An anti-dependence on a exists from the second assignment statement to the first. If this
loop were directly concurrentized, some executions of the first statement would precede
those of the second, and the anti-dependence would be violated. (The values a[2] through
a[N] would be incorrect.)
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C. Run Time Environment Variables

Table C-1 lists the run time environment variables.

Table C-1 Run Time Environment Variable

Variable Default Description

MPC_BLOCKTIME 1000000 Thread wait time before blocking

MPC_BLOCKTYPE SLEEP Thread action after waiting (YIELD or SLEEP)

MPC_CHUNK[SIZE] none Size of loop chunks

MPC_GANG ON Control of gang scheduling (ON or OFF)

MPC_MAX_BLOCKS 64 Maximum control blocks in parallel region

MPC_NUM_THREADS # CPUs Number of parallel threads

MPC_SCHEDTYPE
(or INTERLEAVE)

simple Loop schedule type (SIMPLE, DYNAMIC, GSS,
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inlr,  50
Compiler Command-Line Syntax,  1
compiler directives,  69
Compiling Programs with PCA,  7
concurrentization,  94
Concurrentization Options,  28
concurrentize,  28
control blocks in parallel region,  151
Control of gang scheduling (ON or OFF),  151
courier,  xvi
courier bold,  xvi

D

data dependence, anti,  146
data dependence, assumed,  132
data dependence, direction vectors,  147
data dependence, flow,  145
data dependence, loop-carried,  148
data dependence, varieties of,  145
Data-Dependence Analysis,  145

Data-Dependence Direction Vectors,  147
Data-Dependence Example,  149
Data-Dependence Relations,  147
data locality,  111
dead code elimination,  101, 104
derived assertions,  103
directives, inlining/IPA,  124
document contents summary,  xiv
dpregisters,  46
dynamic,  80

E

each_invariant_if_growth,  47
ellipsis,  xvi
Environment Variable,  151
error messages,  141
examples, inlining,  126

F

Flow Dependence,  145
for loop,  77
for Loop Level,  122
FORTRAN, parallel,  70
forward substitution,  99
Function Call,  22

G

global forward substitution,  99
global keyword,  125
gss,  80
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H

here keyword,  125
How to Use IRIS Power C,  7

I

–i=file,  42
if,  74
if statements, derived assertions,  103
independent code section,  70
induction variables,  98
Inhibit Inlining,  134
inline_and_copy,  50
inline_from and ipa_from Options,  119
inlining,  104

unreachable routines,  50
with deletion,  50

inlining, depth control,  122
inlining, examples,  126
inlining, global pragmas,  125
inlining, library,  129
inlining, loop level,  122
inlining, name conflict,  120
inlining, nested,  122, 123
inlining, notes and caveats,  133
inlining, pragmas,  124
inlining, recursive,  123
inlining, specific functions,  121
Inlining Example with a Library,  129
input,  42
Input and Output Sets,  146
Input-Output Options,  41
Insert Line Numbers (i),  137
interleave,  80

Interpreting the PCA Listing,  20
invariant if floating,  102
Invariant IF Floating Options,  47
IPA, examples,  126
IPA, functions,  121
IPA, nested,  122
IPA, notes and caveats,  133
IPA, pragmas,  124
IPA Example,  131
italic,  xvi
iterate,  78

K

Keywords
here, routine, and global,  125

L

library,  129
lifetime analysis,  101, 105
limit,  33
line numbers",  137
lines,  44
list,  42
Listing File,  3, 14
Listing Options,  43
listingwidth,  43
listoptions,  44, 125, 135
–lm=n,  33
–ln=n,  44
–lo=list,  44
local,  74
"local" code run (identically) by all threads,  70
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local variables,  96
Loop-Carried Dependence,  148
loop concurrentization,  94
loop executed in parallel,  70
loop fusion,  109
looplevel,  122
loop peeling,  100
loop reordering,  97
loop rerolling,  106
Loop schedule type (SIMPLE, DYNAMIC, GSS, or

INTERLEAVE),  151
Loop Table (l),  139
loop unrolling,  107

M

machine,  35
max_invariant_if_growth,  47
–mc=n,  28
memory aliases.,  31
memory management,  46, 111
memory management, pragmas,  60
memory management options,  46
messages, analysis performance statistics,  140
messages, insert line numbers,  137
messages, syntax error/warning,  141
minconcurrent,  28
mp Source and Listing Files,  3
mp Source Files,  15
Multiprocessing C Compiler Directives,  67
multiprocessing compiler directives,  69

N

name conflict, inlining,  120
NO-INNER-LOOPS,  36
nonstride-1,  35
notation and syntax conventions,  xvi
Number of parallel threads,  151
numthreads,  74
numthreads (percent=expr),  73

O

–o=n,  36
Optimization Options,  30
optimizations, derived assertions,  103
optimizations, global forward substitution,  99
optimizations, lifetime analysis,  101
optimizations, loop peeling,  100
optimize,  36
Output Dependence,  146
overview of chapters and appendices,  xiv

P

Parallel Computing Forum,  70
parallel region,  70
parallel regions,  68, 70
parentheses,  xvii
Passing Options to PCA,  4
PCA Command-Line Options,  5
pca Command-Line Syntax,  25
PCA Listing,  135
PCA Options (k),  138
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PCF,  70
performance customization,  143
performance improvement,  143
Permutation Index,  21
Power C

Analyzer,  xiii
description,  xiii
related documenation,  xv

pragma, parallel C,  70
pragma, PCA-generated,  70
pragma arl,  58
pragma concurrent,  55
pragma concurrent call,  56
pragma critical,  84
pragma distinct,  59
pragma enter gate,  89
pragma enter gate and .i.pragma exit gate
pragma exit gate.,  89
pragma independent,  71, 86
pragma inline and pragma ipa
pragma no side effects,  57
pragma one processor,  82
pragma ordered
pragma padding
pragma parallel,  71, 73
pragma pfor,  71, 77
pragma plist
pragmas, coding rules,  69
pragmas, inlining/IPA,  124
pragmas, scope,  125
pragma serial,  55
pragma set chunksize,  56
pragma set numthreads,  56
pragma set schedtype,  56
pragma storage order

pragma synchronize,  88
Profiling the Code,  19

R

–r=n,  37
reductions,  95
related documentation,  xv
resolved conditionals,  105
roundoff,  37
routine keyword,  125
Run Programs in Parallel,  18
runtime,  80
Runtime Environment Variables,  151

S

Same Source File,  126
scalaropt,  32, 104
scalar optimizations,  98
schedtype (type),  79
scope, inlining/IPA pragmas,  125
setassociativity,  47
simple,  80
Size of loop chunks,  151
–so=n,  32
spregisters,  47
stride-1,  35
style conventions,  xvi

notations,  xvi
syntax,  xvi

Summary Table (s),  140
sum reductions,  95
Synchronization,  88
syntax convention
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braces,  xvii
brackets,  xvi
courier,  xvi
courier bold,  xvi
ellipsis,  xvi
italics,  xvi
parentheses,  xvii
vertical bar,  xvii

Syntax Error/Warning Messages,  141

T

The lock Clause,  92
Thread action after waiting (YIELD or SLEEP),  151
Thread wait time before blocking,  151
transformations,  93
transformations, derived assertions,  103
transformations, global forward substitution,  99
transformations, inlining,  126
transformations, IPA,  126
transformations, lifetime analysis,  101
transformations, local variables,  96
transformations, loop concurrentization,  94
transformations, loop peeling,  100
transformations, reductions,  95
true dependence,  145

U

unreachable code,  104
unresolved name conflicts,  134
unroll and unroll2,  38
–ur=n,  38
–ur2=n,  38

V

Varieties of Data Dependence,  145
vertical bar,  xvii

Z

zero-trip,  104
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