
POWER Fortran Accelerator™

User’s Guide

Document Number 007-0715-060

POWER Fortran Accelerator™ User’s Guide
Document Number 007-0715-060

CONTRIBUTORS

Written by Chris Hogue and David Graves
Edited by Janiece Carrico
Production by Gloria Ackley
Engineering contributions by Bron Nelson, Deb Caruso, and Mike Humphrey

© Copyright 1991–1994, Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/
or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights are reserved under the Copyright Laws of the
United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline
Blvd., Mountain View, CA 94039-7311.

Silicon Graphics and IRIS are registered trademarks, and POWER Fortran
Accelerator, POWER Series, and IRIX are trademarks of Silicon Graphics, Inc. Cray is
a trademark of Cray Research. VAST is a trademark of Pacific Sierra Research, Inc.
VMS is a trademark of Digital Equipment Corporation.

Kuck and Associates, Inc., is the supplier of the optimizer used in this product.

iii

Contents

Introduction xi
Organization xi
Related Documentation xii
Typographical Conventions xiii

1. Overview of PFA 1
Overview 1
Strategy for Using PFA 3
Command Line Options 3
Directives 4
Assertions 6
Summary 7

2. How to Use PFA 9
Overview 9
Compiling Programs With PFA 10
Using PFA Directly 15

3. Utilizing PFA Output 17
Overview 17
Formatting the Listing File 19

Paginating the Listing 19
Specifying Information to Include 20
Disabling Message Classes 21

iv

Contents

Interpreting Default Listing Information 21
Viewing the Listing File 22
Field Descriptions 22

Sample Listing Files 27
Indirect Indexing 27
Function Call 30
Reductions 32

4. Customizing PFA Execution 37
Overview 37
Controlling Code Execution 38

Running Code in Parallel 38
Specifying a Work Threshold 38

Controlling PFA Code Transformations 39
Controlling Size/Complexity Thresholds 39
Setting the Optimization Level 40
Controlling Variations in Round Off 42
Controlling the Number of Scalar Optimizations 42
Enabling Loop Unrolling 43
Memory Management Transformations 44

Performing Inlining and Interprocedural Analysis 46
Specifying Routines for Inlining or IPA 47
Specifying Where to Search for Routines 47
Creating a Library 48
Specifying Occurrences 49
Conditions That Prevent Inlining or IPA 50

Controlling Fortran Language Elements 50
Global Assumptions 50
Debugging Lines 51
DO Loop Execution 51
Variable Saving Across Invocations 52
Significant Columns 52
Fortran Standard 52

v

Controlling Directives and Assertions 53
Selecting Directives and Assertions 53

Controlling PFA I/O 54
Obsolete Syntax 55

5. Fine-Tuning PFA 57
Overview 58
Fine-Tuning Inlining and IPA 58
Circumventing PFA 60

C$ DOACROSS 60
C$& 60

Running Code Serially 61
C*$* ASSERT DO (SERIAL) 61
CDIR$ NEXT SCALAR 61
C*$* ASSERT DO PREFER (SERIAL) 61

Running Code in Parallel 62
C*$*[NO]CONCURRENTIZE 62
CVD$ CONCUR 62
C*$* ASSERT DO PREFER (CONCURRENT) 62

Ignoring Data Dependencies 63
C*$* ASSERT DO (CONCURRENT) 63
CDIR$ IVDEP 63
C*$* ASSERT CONCURRENT CALL 64
C*$* ASSERT NO RECURRENCE 64
C*$* ASSERT PERMUTATION 64

Using Equivalenced Variables 65
Using Aliasing 65

C*$* ASSERT [NO] ARGUMENT ALIASING 65
C*$* ASSERT RELATION 66

vi

Contents

A. PFA Command Line Options 67
Overview 67
Options Summary 69
Obsolete Syntax 88

B. PFA Directives 91
Standard Directives 92
Cray Directives 99
VAST Directives 99

C. PFA Assertions 101

Glossary 105

Index 109

vii

Figures

Figure 2-1 Compiling With PFA 14

ix

Tables

Table 1-1 PFA Directives 5
Table 1-2 PFA Assertions and Their Duration 7
Table 2-1 PFA Command Line Options 12
Table 3-1 Listing File Include Options 20
Table 3-2 Listing File Message Disabling Options 21
Table 3-3 Listing File DO Loop Delimiters 23
Table 3-4 PFA Action Abbreviations 25
Table 3-5 Reduction Types 35
Table 4-1 Inlining and IPA Search Command Line Options 47
Table 4-2 Obsolete Options 55
Table 4-3 Obsolete Options and Their Equivalents 55
Table A-1 PFA Command Line Options 68
Table A-2 ARCLIMIT Option 69
Table A-3 ASSUME Option 70
Table A-4 CONCURRENTIZE Option 70
Table A-5 DIRECTIVES Option 71
Table A-6 DLINES Option 72
Table A-7 FORTRAN Option 72
Table A-8 INLINE Option 72
Table A-9 INLINE_CREATE Option 73
Table A-10 INLINE_DEPTH Option 73
Table A-11 INLINE_FROM_FILES Option 74
Table A-12 INLINE_FROM_LIBRARIES Option 74
Table A-13 INLINE_LOOPLEVEL Option 75
Table A-14 INLINE_MAN Option 75
Table A-15 INPUT Option 76
Table A-16 IPA Option 76

x

Tables

Table A-17 IPA_CREATE Option 76
Table A-18 IPA_FROM_FILES Option 77
Table A-19 IPA_FROM_LIBRARIES Option 77
Table A-20 IPA_LOOPLEVEL Option 78
Table A-21 IPA_MAN Option 78
Table A-22 LIMIT Option 79
Table A-23 LINES Option 79
Table A-24 LIST Option 80
Table A-25 LISTOPTIONS Option 80
Table A-26 MINCONCURRENT Option 81
Table A-27 NOCONCURRENTIZE Option 81
Table A-28 NODIRECTIVES Option 82
Table A-29 NODLINES Option 82
Table A-30 NOONETRIP Option 82
Table A-31 ONETRIP Option 83
Table A-32 OPTIMIZE Option 83
Table A-33 ROUNDOFF Option 84
Table A-34 SAVE Option 85
Table A-35 SCALAROPT Option 85
Table A-36 SCAN Option 86
Table A-37 SUPPRESS Option 86
Table A-38 SYNTAX Option 87
Table A-39 UNROLL Option 87
Table A-40 UNROLL2 Option 88
Table A-41 Obsolete Options 88
Table A-42 Obsolete Options and Their Equivalents 89

xi

Introduction

This guide describes the features of the Silicon Graphics POWER Fortran
Accelerator TM (PFA). For details about analyzing a program and converting
it for use on a multiprocessor system, refer to Chapter 5, “Fortran
Enhancements for Multiprocessors,” of the Fortran 77 Programmer’s Guide.

Organization

This guide contains the following chapters and appendixes:

Chapter 1, “Overview of PFA,” explains the basic mechanism for invoking
PFA and includes a description of PFA’s listing and intermediate files.

Chapter 2, “How to Use PFA,” explains how to use PFA directly and as part
of a Fortran compile.

Chapter 3, “Utilizing PFA Output,” explains output produced by PFA: the
intermediate file and the listing file.

Chapter 4, “Customizing PFA Execution,”describes how to use command
line options to optimize PFA execution.

Chapter 5, “Fine-Tuning PFA,” describes how to optimize code by using
PFA directives and assertions.

Appendix A, “PFA Command Line Options,” lists the five types of PFA
command line options: parallelization, optimization, Fortran 77 language
control, directives, and listing.

Appendix B, “PFA Directives,” lists the PFA directives you can use to
modify the features of PFA, that is, directives to increase the optimization
level, increase the size of the loop that PFA can analyze, or use more

xii

Introduction

sophisticated (and time-consuming) ways of resolving superficial data
dependencies that prevent PFA from identifying a loop for parallel
execution.

Appendix C, “PFA Assertions,” lists the PFA assertions you can include in a
program to provide information that PFA needs to identify loops that can
run in parallel, despite apparent but sometimes non-existent data
dependencies.

The Glossary lists and defines terminology related to PFA.

Related Documentation

The following documents contain information relevant to PFA:

• Fortran 77 Programmer’s Guide, Silicon Graphics, Inc., document number
007-0711-030.

• Fortran 77 Language Reference Manual, Silicon Graphics, Inc., document
number 007-0710-040.

• IRIS-4D Series Compiler Guide, Silicon Graphics, Inc., document number
007-0905-030.

Typographical Conventions

xiii

Typographical Conventions

This guide uses the following conventions and symbols:

The following conventions and symbols are used in the text to describe the
form of Fortran statements:

Bold Indicates literal command line options, filenames,
keywords, function/subroutine names, pathnames, and
directory names.

Italics Represents user-defined values. Replace the item in italics
with a legal value. Italics are also used for command names,
manual page names, and manual titles.

Courier Indicates command syntax, program listings, computer
output, and error messages.

Courier bold

Indicates user input.

[] Enclose optional command arguments.

() Surround arguments or are empty if the function has no
arguments following function/subroutine names.
Surround manual page section in which the command is
described following IRIX commands.

| Sseparates two or more optional items.

... Indicates that the preceding optional items can appear more
than once in succession.

IRIX shell prompt for the superuser.

% IRIX shell prompt for users other than superuser.

xiv

Introduction

Here is an example illustrating the syntax conventions.

C*$*[NO]IPA [(name [,name...])] {HERE|ROUTINE|GLOBAL}

The previous syntax statement indicates that:

• The keyword C*$* NOIPA or C*$*IPA must be written as shown.

• You can specify one or more name, each separated by a comma and all
between parentheses.

• You must specify one of the following: HERE, ROUTINE, or GLOBAL.

The following statements are valid examples of the described syntax:

C*$* IPA(ALPHA,BETA) HERE

C*$* NOIPA GLOBAL

1

Chapter 1

1. Overview of PFA

This chapter contains the following sections:

• “Overview” describes how PFA operates and suggests procedures for
using it.

• “Strategy for Using PFA” explains when and how to use PFA.

• “Command Line Options” lists and describes the command line
options.

• “Directives” explains what a directive is and lists the supported
directives.

• “Assertions”explains what an assertion is and lists the supported
assertions.

• “Summary” is a short summary of the capabilities of PFA.

Overview

PFA is a Fortran 77 source-to-source preprocessor that enables you to run
existing Fortran 77 programs efficiently on the Silicon Graphics POWER
SeriesTM multiprocessor systems. PFA analyzes a program and identifies
loops that do not contain data dependencies. Such loops are safe to execute
in parallel (concurrently). PFA automatically inserts special compiler
directives in a modified copy of the original source code. (PFA produces a
number of files containing code and other information you need to run a
program concurrently on multiple processors.)

2

Chapter 1: Overview of PFA

Interpreting the PFA-generated compiler directives, the Silicon Graphics
Fortran 77 compiler can generate code to split loop processing across all the
available multiple processors. Because the directives inserted by PFA look
like standard Fortran 77 comment statements, PFA does not affect the
portability of the code to non–Silicon Graphics, Inc. (SGl), systems.

In addition, you do not need a multiprocessor system to develop under PFA
(although there is a slight performance loss when running multiprocessed
code on a single-processor system). You can develop and test a Fortran 77
program using PFA on any IRIS-4DTM Series workstation (including
single-processor systems) and then execute the program on a multiprocessor
system. The executable code automatically adjusts itself to use all the
processors available on the workstation at run time. (You can also manually
specify the number of processors to use; see the Fortran 77 Programmer’s
Guide.) However, simply passing code through PFA rarely produces all the
increased performance available. There are often easily removed data
dependencies that prevent PFA from running a loop in parallel. Using the
listing file, optionally generated by PFA, you can find the real or potential
data dependencies that prevented PFA from running a loop in parallel. Refer
to Chapter 3, “Utilizing PFA Output,” for details about the listing file.

If the data dependency is real, you can often remove the dependency by
making a small change to the code. If the data dependency was apparent but
not real, you can explicitly instruct PFA to run the code in parallel by
inserting PFA assertions. These assertions look like Fortran 77 comments.

With PFA, you select the code to convert to run in parallel. Thus, you can
convert the whole program or key parts of it by adding PFA directives
manually or by having PFA convert only selected files. In addition, you can
run PFA on some, all, or none of a program’s source files. The object files
produced using PFA are fully compatible with other object files. You can
freely combine them with object files that you prepared manually for
parallel execution and with object files that run only serially.

Strategy for Using PFA

3

Strategy for Using PFA

Use PFA to identify which loops of a Fortran 77 program can be run safely
in parallel. In some instances, PFA alone makes a significant amount of the
code run in parallel. However, for many programs simple code changes let
PFA automatically run more of the code in parallel.

Knowing when and where to modify your code means understanding the
information in the PFA listing. Understanding the PFA listing will make it
easy to recognize where small changes to the code can make big differences
in how much code can run in parallel. Refer to Chapter 3, “Utilizing PFA
Output”,” for information.

PFA analyzes a program for data dependence. During this analysis, PFA
looks for Fortran 77 DO loops in which each iteration of the loop is
independent of all other iterations. If each iteration of the loop is
self-contained, the system can execute the iterations in any order (or even
simultaneously on separate processors) and produce the same result after
running all iterations.

When PFA finds a loop with data independence, PFA knows it can safely run
the loop in parallel. When PFA finds a loop that contains iterations that are
dependent on other iterations, it cannot safely run the loop in parallel but
can tell you what is causing the problem. If PFA cannot run the loop in
parallel, the listing file will explain where PFA encountered problems.

Command Line Options

To customize the way PFA executes an entire program, you can specify
various command line options when you run PFA directly or when you
specify PFA as part of a compile (Chapter 2, “How to Use PFA,” explains
both procedures). The five functional categories of command line options are

• parallel execution

• general optimization

• Fortran 77 language control

4

Chapter 1: Overview of PFA

• directive control

• listing

Chapter 4, “Customizing PFA Execution,” explains when and how to use the
various options, and Appendix A, “PFA Command Line Options,” provides
a complete summary.

Directives

PFA directives enable, disable, or modify a feature of PFA. Essentially,
directives are command line options specified within the input file instead
of on the command line. Unlike command line options, directives have no
default setting. To invoke a directive, you must either toggle the directive on
or set a desired value for its level.

PFA directives allow you to specify PFA options in addition to, or instead of,
command line options. Directives placed on the first line of the input file are
called global directives. PFA interprets them as if they appear at the top of each
program unit in the file. Use global directives to ensure that the program is
compiled with the correct command line options. Directives appearing
anywhere else in the file apply only until the end of the current program
unit. PFA resets the value of the directive to the global value at the start of
the next program unit. (Set the global value using a command line option or
a global directive.)

Some command line options act like global directives. Other command line
options override directives. Many PFA directives have corresponding
command line options. If you specify conflicting settings in the command
line and a directive, PFA chooses the most restrictive setting. For Boolean
options, if either the directive or the command line has the option turned off,
it is considered off. For options that require a numeric value, PFA uses the
minimum of the command line setting and the directive setting.

Table 1-1 lists the directives supported by PFA. In addition to the standard
directive, PFA supports the CrayTM and VASTTM directives listed in the table.
PFA maps these directives to corresponding PFA assertions. Refer to
Chapter 5, “Fine-Tuning PFA”,” for details.

Directives

5

Refer to Appendix B, “PFA Directives,” for a list and description of PFA
directives.

Table 1-1 PFA Directives

Standard Cray VAST

C*$*ARCLIMIT(n) CDIR$ NEXT SCALAR CVD$ CONCUR

C*$*CONCURRENTIZE CDIR$ IVDEP CVD$LSTVAL

C*$*INLINE CFVD$NOLSTVAL

C*S*IPA

C*$*LIMIT(n)

C*$*MINCOMCURRENT(n)

C*$*NONCONCURRENTIZE

C*$*NOINLINE

C*$*NOIPA

C*$*OPTIMIZE(n)

C*$*ROUNDOFF(n)

C*$*SCALAR OPTIMIZE(n)

C*$*UNROLL(n)

C*$*UNROLL(n,m)

C$DOACROSS

C$&

6

Chapter 1: Overview of PFA

Assertions

Assertions provide PFA with additional information about the source
program. Sometimes assertions can improve optimization results. Use them
only when speed is essential.

Because PFA does not check the correctness of assertions, they can be unsafe.
If you specify an incorrect assertion, the PFA-generated code might give
different answers from the scalar program. If you suspect unsafe assertions
are causing problems, use the -NODIRECTIVE command line option or the
C*$* NO ASSERTIONS directive to tell PFA to ignore all assertions.

As with a directive, PFA treats an assertion as a global assertion if it comes
before all comments and statements in the file. That is, PFA treats the
assertion as if it were repeated at the top of each program unit in the file.

C*$* ASSERT RELATION (name .xx. name) assertions include variable
names. If you specify them as global assertions, a program uses them only
when those variable names appear in COMMON blocks or are dummy
argument names to the subprogram. You cannot use global assertions to
make relational assertions about variables that are local to a subprogram.

Many assertions, like directives, are active until the end of the program unit
(or file) or until you reset them. Other assertions are valid only for the DO
loop before which they appear (such as C*$* ASSERT DO PREFER
(CONCURRENT)). This type of assertion applies to the next DO loop but
not to any loop nested inside it.

Summary

7

Table 1-2 lists PFA assertions and their duration.

Summary

PFA provides information about the dependencies of loops in a Fortran 77
program. Often, PFA can use the information to run loops in parallel
automatically. But when PFA is not able to convert the code for parallel
execution automatically, it can tell you where it ran into problems. Often,
you need only make a small change to remove the dependencies that
prevent the loop from running in parallel. The better you understand the
information PFA gives you, the better equipped you will be to transform the
program into an efficient parallel version.

For more information about parallel processing in general, see Chapter 5 in
the Fortran 77 Programmer’s Guide. Especially recommended are the sections
“Analyzing Data Dependencies for Multiprocessing” and “Breaking Data
Dependencies” for information about recognizing and repairing data
dependency problems.

Table 1-2 PFA Assertions and Their Duration

Assertion Duration

C*$* ASSERT DO (SERIAL) Next Loop

C*$* ASSERT DO (CONCURRENT) Next Loop

C*$* ASSERT DO PREFER (SERIAL) Next Loop

C*$* ASSERT DO PREFER (CONCURRENT) Next Loop

C*$* ASSERT [NO] EQUIVALENCE HAZARD Until Reset

C*$* ASSERT [NO] ARGUMENT ALIASING Until Reset

C*$* ASSERT RELATION (name .xx. name) Next Loop

C*$* ASSERT CONCURRENT CALL Next Loop

C*$* ASSERT NO RECURRENCE Next Loop

C*$* ASSERT PERMUTATION (name) Next Loop

9

Chapter 2

2. How to Use PFA

This chapter contains the following sections:

• “Overview” describes how to prepare for using PFA.

• “Compiling Programs With PFA” explains how to run PFA as part of a
Fortran compile.

• “Using PFA Directly”explains how to run PFA independent of the
Fortran driver.

Overview

Simply running a program through PFA might buy you some improved
performance, but you can get far more if you understand the PFA listing.
From the listing, you can often identify small problems that prevent a loop
from running safely in parallel. With a relatively small amount of work, you
can remove these data dependencies and dramatically improve the
program’s performance.

When trying to find loops to run in parallel, focus your efforts on the areas
of the code that use the bulk of the run time. Spending time trying to run in
parallel a routine that uses only 1 percent of the run time of the program
cannot significantly improve the performance of your program.

To determine where your code spends its time, take an execution profile of
the program. Use either pc-sample profiling (through the -p option to f77(1))
or basic block profiling (through pixie(1)). Refer to Chapter 2, “Improving
Program Performance,” of the IRIS-4D Compiler Guide for details about
profiling.

10

Chapter 2: How to Use PFA

There are two schools of thought about profiling: conservative and
optimistic. The conservative approach takes a profile of the original
(nonparallel) job. You then run in parallel only the loops that account for
most of the run time. The more optimistic approach runs the entire program
through PFA and then profiles the resulting multiprocessed job. The
conservative approach reduces the chances that something might go wrong
because it makes fewer changes to the code. It also focuses on the smallest
number of lines of code that have the greatest effect.

Use the optimistic approach when you think that PFA will do a good job
with the existing program. You will save time by letting PFA do what it can.
You can then focus on those routines where PFA had a problem. One
situation in which PFA frequently does a good job is when you convert
programs that already run well on traditional vector architectures. Many
such programs run in parallel without additional effort.

Whichever approach you choose, use the profile to focus your efforts on the
most time-consuming routines. Once you find a time-consuming routine,
submit that routine alone to PFA. If the routine is in the middle of a large file,
consider using fsplit(1) to isolate the individual routine. Compile the routine
with the –pfa keep option, and examine the listing file. The PFA listing
identifies the loops that PFA can and cannot run in parallel. For loops that
cannot run in parallel, the PFA listing also tells you why it could not convert
the loop for parallel execution.

Compiling Programs With PFA

The following is the command line syntax for compiling a Fortran 77
program with PFA and command line options. You can pass these options to
PFA by adding the –WK option to the f77 command line. It invokes the
various processing phases that compile, optimize, assemble, and link edit
the program. For more information about the –WK option, see the f77(1)
manual page.

Compiling Programs With PFA

11

Syntax

f77 -pfa[{list|keep}][-WK,-option[=value][,-option[=value]]...]
[-pfaprepass,-option[=value][,-option[=value]] ...] filename.f

where

–pfa Invokes the POWER Fortran Accelerator, pfa. Enables any
multiprocessing directives.

list Runs pfa and generates an annotated listing of the parts of
the program that can (and cannot) run in parallel on
multiple processors. The listing file has the suffix .l.

keep Runs pfa, generates the listing file (.l), and saves the
intermediate transformed Fortran 77 program. The
intermediate file has the suffix .m.

–WK Passes the specified command line options to PFA. Do not
enter spaces between -WK and any of the hyphens, options,
equal signs, and values that follow it.

–option Specifies a PFA command line option listed in Table 2-1, for
example, -IGNOREOPTIONS.

value Specifies a value for a command line option, for example,
10.

–pfaprepass Passes the code through PFA an extra time. The first time
through (the prepass), PFA uses the options specified in the
–pfaprepass option but does not insert C$ DOACROSS
directives. The output of this operation is then passed back
through PFA, using the options specified in the –WK
option. Only rarely should you need to use this option, and
there is good reason to avoid it. Normally, PFA does all it
can in a single run-through. In rare circumstances an extra
pass can be beneficial. However, the PFA algorithms do not
necessarily converge, and multiple passes over the code can
change it for the worse.The syntax of this option is the same
as the -WK option.

filename.f Specifies the Fortran 77 source program. The filename must
always use the .f suffix.

12

Chapter 2: How to Use PFA

Table 2-1 lists the PFA command line options. Although the table lists the
options in uppercase, you can specify them in lowercase as well.

Note: You can replace many of the PFA command line options listed in
Table 2-1 with in-code directives. For information on these directives, see
Chapter 5, “Fine-Tuning PFA,” and Appendix B, “PFA Directives.”

Table 2-1 PFA Command Line Options

Reference Long Name Short Name Default Value

Parallelization [NO]CONCURRENTIZE

MINCONCURRENT=n

[N]CONC

MC=n

CONCURRENTIZE

MINCONCURRENT=500

Optimization ARCLIMIT

LIMIT=n

OPTIMIZE=n

ROUNDOFF=n

SCALAROPT=n

UNROLL=n

UNROLL2=n

ARCLM=n

LM=n

O=n

R=n

SO=n

UR=n

UR22=n

ARCLIMIT=5000

LIMIT=20000

OPTIMIZE=5

ROUNDOFF=0

SCALAROPT=3

UNROLL=4

UNROLL2=100

Fortran 77
Language

Control

ASSUME=list

[NO]DLINES

[NO]ONETRIP

SAVE=c

SCAN=n

SYNTAX=c

AS=list

[N]DL

[N]l

SV=c

SCAN=n

SY=c

ASSUME=EL

NODLINES

NOONETRIP

SAVE=A

SCAN=72

(option off)

Compiling Programs With PFA

13

Inlining and
Interprocedural
Analysis

INLINE[=list]

IPA[=names]

INLINE_CREATE=name

IPA_CREATE=name

INLINE_FROM_FILES=list

IPA_FROM_FILES=list

INLINE_FROM_LIBRARIES=l
ist

IPA_FROM_LIBRARIES=list

INLINE_LOOP_LEVEL=n

IPA_LOOP_LEVEL=n

INLINE_MAN

IPA_MAN

INLINE_DEPTH

IN

IPA

INCR=name

IPACR=name

INFF=list

IPAFF=list

INFL=list

IPAFL=list

INLL=n

IPALL=n

INM

IPAM

IND

(option off)

(option off)

(option off)

(option off)

(option off)

(option off)

(option off)

(option off)

(INLL=10

IPALL=10

(option off)

INLL=10

IPALL=10)

IND=10

Directives [NO]DIRECTIVES=list [N]DR=list DIRECTIVES=AKSV

I/O INPUT=file.f

[NO]FORTRAN=file

[NO]LIST=file

file.f

[N]F=file

[N]L=file

file.f

F=file.m

L=file.l

Listing LINES=n

LISTOPTIONS=list

SUPPRESS=list

LN=n

LO=list

SU=list

LINES=55

LISTOPTIONS=OL

(option off)

Obsolete CREATE

LIBRARY=file

[NO]EXPAND=list

LIMIT2=n

CR

LIB=file

EX=list

LM2=n

(option off)

(option off)

(option off)

LM2=5000

Table 2-1 (continued) PFA Command Line Options

Reference Long Name Short Name Default Value

14

Chapter 2: How to Use PFA

Example

To compile the Fortran 77 program prog.f with PFA and the -UNROLL=8
option, enter

% f77 -pfa -WK,-UNROLL=8 prog.f

Figure 2-1 shows what happens when you compile a Fortran 77 program
with PFA. The first pass invokes the macro preprocessor cpp to handle cpp
directives. (For more information, see the cpp(1) manual page.) PFA then
takes the cpp output and inserts code that runs data-independent loops in
parallel. PFA can also generate a listing file (with the .l suffix) and an
intermediate file (with the .m suffix). For details, refer to Chapter 3,
“Utilizing PFA Output.”

Finally, the Fortran 77 compiler, f77, compiles the transformed
PFA-generated file to produce an object file.

Figure 2-1 Compiling With PFA

cpp

PFA

f77

Object File (.o)

Fortran 77 Source (.f)

Listing File (.1)

Intermediate File (.m)

Using PFA Directly

15

Using PFA Directly

Although you normally run PFA as part of an f77 compile, the two instances
when you should run PFA directly are

• When creating an inlining or IPA library (refer to Chapter 4,
“Customizing PFA Execution.”)

• If you want to “capture” the output of PFA and review it to determine
further optimizations

Running the pfa(1) command directly, using the following syntax, produces
both the .m and the .l files.

Syntax

/usr/lib/pfa [-option [-option]...] filename.f

where

-option Specifies a PFA command line option listed in Table 2-1, for
example, -INLINE.

filename.f Specifies the Fortran 77 source program. The filename must
have the .f suffix.

Example

The following command runs PFA directly using the -unroll and -roundoff
options:

% /usr/lib/pfa -ur=4 -r=2 sample.f

17

Chapter 3

3. Utilizing PFA Output

This chapter contains the following sections:

• “Overview” discusses the PFA output files and provides examples of
them.

• “Formatting the Listing File” explains how to change the format of the
standard listing file.

• “Interpreting Default Listing Information” explains the contents of the
listing file.

• “Sample Listing Files” provides sample listing files along with an
interpretation of each.

Overview

PFA generates two files, a listing file (.l) and an intermediate file (.m).
Invoking PFA as part of a Fortran compilation produces a line-numbered
listing file when you use the -pfa list option. If you specify the -keep option,
PFA produces both the numbered listing file and the intermediate file. PFA
automatically produces both files when you invoke it directly. (For details
about invoking PFA, refer to Chapter 2, “How to Use PFA.”)

For example, consider the following program, sample.f:

 subroutine sample (a,b,c)
 dimension a(1000),b(1000),c(1000)
 do 10 i = 1, 1000
10 a(i) = b(i) + c(i)
 end

18

Chapter 3: Utilizing PFA Output

Compiling sample.f as follows

% f77 -pfa keep sample.f

generates the following listing file, sample.l:

Actions Do Loops Line
DIR 1 # 1 “sample.f”
 2 subroutine sample(a,b,c)
 3 dimension
a(1000),b(1000),c(1000)
c +-------- 4 do 10 i = 1,1000
 *_______ 5 10 a (i) = b(i) + c(i)
 6 end
Abbreviations Used
 DIR directive
 C concurrentized
Loop Summary

 From To Loop Loop
Loop# line line label index Status
1 4 5 DO 10 I concurrentized

and the intermediate file, sample.m:

1 “sample.f”
1 “sample.f”
 subroutine sample(a,b,c)
 DIMENSION A(1000), B(1000), C(1000)
3 “sample.f”
C$DOACROSS SHARE(A,B,C),LOCAL(I)
3 “sample.f”
 DO 2 I=1,000
4 “sample.f”
 A(I) = B(I) + C(I)
4 “sample.f”
 2 CONTINUE
 end

Formatting the Listing File

19

PFA placed a C before the first statement of the DO loop in the listing file,
sample.l. The Abbreviations Used table shows that C stands for
“concurrentized,” which means that PFA determined that it can safely run
the loop in parallel. The Loop Summary table at the bottom of sample.l
shows that the status of the loop is concurrentized.

PFA inserted the statement starting with C$DOACROSS before the DO
statement in the intermediate file, sample.m. The Fortran 77 compiler
directive C$DOACROSS tells f77 that the next DO loop can run in parallel.
The phrase SHARE (A,B,C) informs the Fortran 77 compiler that all
processes that execute the DO loop share the arrays A, B, and C. The phrase
LOCAL(I) indicates that every process executing the DO loop keeps a local
variable I. The lines of the form # 4 "sample.f" are called line number
directives. They relate the transformed source back to the original source.

Note: The first line number directive appears in the listing because it was
actually added by cpp before PFA ran.

Formatting the Listing File

You customize a PFA listing file by

• paginating the listing

• selecting the information to be printed

• disabling specific message classes

Paginating the Listing

The -LINES=n option (or -LN=n) paginates the listing for printing. Use this
to change the number of lines per page. Specifying -LINES=0 paginates at
subroutine boundaries.

If you do not specify the -LINES option, PFA prints 55 lines per page.

20

Chapter 3: Utilizing PFA Output

Specifying Information to Include

The -LISTOPTIONS=list option (or -LO=list) specifies the information to
include in the listing file (.l), where list is any combination of the options in
Table 3-1.

Table 3-1 Listing File Include Options

Value Produces

C Calling tree at the end of the program listing.

I Transformed program file annotated with line numbers in the
source program. Error messages and debugging information can
refer to the original source rather than the transformed source.
Running PFA as part of an f77 compile automatically adds this
option.

K Print out of the PFA options used at the end of each program unit.

L Loop-by-loop optimization table.

N Program unit names, as processed, to the standard error file. This
option is added automatically as part of an f77 -v compilation.

O Annotated listing of the original program.

P Processing performance statistics.

S Summary of optimization performed.

T Annotated listing of the transformed program.

Interpreting Default Listing Information

21

Disabling Message Classes

Use the -SUPPRESS=list option (or -su=list) to disable individual classes of
PFA messages that are normally included in the listing (.l) file. These
messages range from syntax warnings and error messages to messages
about the optimizations performed. list is any combination of the options in
Table 3-2.

If you do not specify this option, PFA prints messages of all classes.

Interpreting Default Listing Information

Knowing when and where to modify your code means understanding the
information in the PFA listing. This understanding allows you to recognize
where small changes to the source code will make a big difference in how
much code is run in parallel.The PFA-generated listing file lists the
optimizations PFA made to the code. For example, a message could say that,
although three loops could have run in parallel, PFA converted only the one
it determined most profitable.

This section explains how to view the listing file online and then lists and
describes the various fields.

Table 3-2 Listing File Message Disabling Options

Value Message Class Disabled

D Data dependence

E Syntax error

I Information

N Unable to run loop in parallel

Q Questions

S Standard messages

W Warning of syntax error (PFA adds the -SUPPRESS=W option
automatically if you use the -w option to f77)

22

Chapter 3: Utilizing PFA Output

Viewing the Listing File

The listing file is in 132-column format. To view the file, open a window with
132 columns and 40 rows by entering

% wsh -s132,40

Field Descriptions

This section explains the contents of the .l file when you use the default
values for the -LISTOPTIONS command line option (that is, O and L).

A default PFA file listing includes

• line numbers

• DO loop markings

• footnotes

• syntax errors/warning messages

• action summary

Line Numbers

A statement in the PFA listing labeled with a line number, such as 21, is the
same as line 21 from the original program or has been derived from that line.
These line numbers are useful when inspecting the PFA-transformed
program listing and when debugging. PFA sometimes generates several
lines of code from a single line of the original program; in this case, each new
line of code is labeled with the same number as the line of the original
program from which it was generated. Consequently, many lines of the
PFA-transformed program listing carry the same number because they are
related to one line of the original program listing.

Interpreting Default Listing Information

23

DO Loop Marking

The listing file displays DO loops graphically in a column headed DO
Loops. The PFA surrounds each DO loop (up to nest level 10) with a loop
delimiter character. Each character listed in Table 3-3 has a specific meaning.

A statement contained within n DO loops has n of these loop delimiters on
that line.

For example,

DO Loops Line
+------- 173 DO 100 M=2,MAX(MFLD,2)
| 174 IADR = ISECT(M)
| 175 IADR1= ISECT(M-1)
| 176 PNM(IADR)=(ANM(IADR) *PNM(IADR1))
|_______ 177 100 PPNM(IADR)= -(ANM(IADR) *PNM(IADR1))

Footnotes

PFA uses the footnotes listing to give important details concerning its
actions. PFA numbers and prints the footnotes at the bottom of each
program unit under the Footnote List heading. References to the footnotes
are displayed in the listing under the Footnotes column. For example, this
footnote

13 DD 1790 IF (B(I) .LE. 6) IB(J*I) = I+J

appears under Footnote List at the end of the program unit

13: data dependence Data dependence involving this line due
 to variable IB.

Table 3-3 Listing File DO Loop Delimiters

Character Denotes

| Generic DO loop

* PFA can run loop in parallel

! Syntax error

24

Chapter 3: Utilizing PFA Output

In this example, 13 is the footnote number, DD (data dependence) is the
explanation for PFA’s action, and the IF statement on line 1790 refers to the
original source line number.

Syntax Errors/Warning Messages

When a program has syntax errors, the listing file describes the error next to
the lines that start with the symbol ### in the Footnotes column. These
messages are also printed to stderr, which will usually be your terminal.

For example,

Footnotes Actions DO Loops Line
 1 SUBROUTINE Z(A,B,N)
 2 REAL A(N), B(N)
 +------- 3 DO 20 I=1,N
 ! 4 X=A(I)
 ! 5 Y=B(I)
 ! ______ 6 20 C(I)=X+Y
line (6)
error Array not declared or statement function declared
 after executable statements.
error A do loop ends on a non-executable statement.
 7 PRINT *,X
 8 END

Action Summary

When PFA translates or modifies a statement, it uses abbreviations in the
Actions column of the listing file to identify the statements. PFA lists an
abbreviated explanation of its actions at the bottom of the listing. For the
DIR and V classes, the class itself serves as the message and no detailed
messages follow. All other classes have associated messages.

Interpreting Default Listing Information

25

Table 3-4 lists and explains the values that can appear in the Actions column.

Table 3-4 PFA Action Abbreviations

Value Meaning

DD (Data Dependence) Indicates that data dependence prevented PFA from
running this statement in parallel.

DIR (Directive) Used in conjunction with the footnotes and concerns
compiler directives. If you code a compiler directive and that line does
not have the DIR abbreviation in the listing, PFA will not recognize the
directive. Check the setting of the -DIRECTIVES command line option
and the syntax of the directive.

E (Error) Indicates syntax errors. These messages can refer to missing or
extra characters, illegal keywords, or text placed in the wrong column.
PFA cannot do anything with such code. The intermediate (.m) file
contains a copy of this program unit that PFA has not modified.

EX (Extension) Shows where a construct in the original program is not
allowed in the language PFA produces. In some cases, an operation or
type is allowed in the input language but not in the output language.

INF (Information) Provides noncritical information.

I (Insertion) Indicates that PFA added a statement.

LR (Loop Reordering) Indicates that PFA has modified a Fortran 77
statement in the process of interchanging loops. If during optimization
PFA ascertains that an outer loop would be more efficient as an inner
loop, and it can legally reorder the loops, PFA places the outer loop
inside. In the process of this reordering, PFA might have to change loop
bounds (for triangular loops), distribute loops, or float IF assignments.
Only the statements modified for the exchange are marked.

MIS (Miscellaneous) Indicates that some PFA information has been lost. This
message does not always mean that something is wrong with the
program.

NX (Nonconcurrent Statement) Indicates that PFA did not try or was unable
to run the statement in parallel. For example, when a subroutine call is
involved in a loop, PFA generates this message.

26

Chapter 3: Utilizing PFA Output

NO (Program Too Large—Not Optimized) Indicates that the program unit
being processed is too large for PFA to optimize, because of PFA’s data
structure size limitations. When PFA optimizes programs, it adds
statements that might also overflow the fixed-size tables. In either case,
PFA stops optimization and passes the original program to the
intermediate (.m) file, informing you of this action. For PFA to process
the unit, you must split the program into smaller sections.

OE (Option Error) Indicates a syntax error in a PFA option. This error does
not stop processing of a program unit.

OTF (Output Translation Failure) Marks statements that have constructs that
exist in the input language but that cannot be represented in the output
language.

Q (Question) Indicates that PFA tried to optimize a loop nest but
discovered a data dependence it could not break at compile time without
further information. You can usually answer this question with an
appropriate assertion.

SO (Scalar Optimization) Marks places in the transformed listing where PFA
has optimized a scalar loop.

STD (Standardized) Marks where PFA changed a program to improve the
chance of finding code that it can optimize. This is often a conversion
from an IF/GOTO into a block IF, loop rerolling, and conversion of an
IF loop to a DO loop.

TE (Translator Error) Indicates an internal PFA error. PFA writes the
notification to the standard error file and writes a trace back to the output
file. Notify SGI if you see this sort of bug (so it can be corrected) and, if
possible, send SGI the code that caused the trace back as well as the trace
back itself. If you can reproduce the error in a small program unit, send
that small program unit as well.

W (Warning) Contains syntax warnings.

Table 3-4 (continued) PFA Action Abbreviations

Value Meaning

Sample Listing Files

27

Sample Listing Files

This section contains a few simple examples of Fortran code and the
corresponding PFA output. An actual source program would be much
larger, and a single loop could contain several of the cases illustrated here.
However, even in a large loop, you can deal with each problem individually.

Indirect Indexing

PFA cannot determine if it can run a loop in parallel when the code uses
indirect indexing. A loop is indirectly indexed when it uses the value from
some auxiliary array as the index value rather than the DO loop variable.

The Fortran 77 code

subroutine foo2(w,b,index,n)
real w(n), b(n)
integer index(n)

do i = 1, n
w(index(i)) = w(index(i)) + b(i)

enddo
end

when submitted to PFA, results in the listing file

 10
 11
 12 subroutine foo2(w,b,index,n)
 13 real w(n), b(n)
 14 integer index(n)
 15
1 Q +------- 16 do i = 1, n
2 DD ! 17 w(index(i)) = w(index(i)) +
b(i)
 !_______ 18 enddo
 19 end

Abbreviations Used
DD data dependence
Q question

28

Chapter 3: Utilizing PFA Output

Footnote List
1: question Is INDEX a permutation vector?
2: data dependence Data dependence involving this line due
 to variable W.
DO Loop Summary

loop# from to DO label index workload status
1 16 18 DO I dependencies prevent
 parallelism

DD in the Actions column on line 17 of the listing warns that the variable w
might carry a dependency. A dependency exists when one iteration of the
loop writes to a location that is used by a different iteration of the loop. In
this example, if the values of index(i) are ever the same for different values
of i, then different iterations might use the same location in w. Therefore, this
code contains a possible data dependence.

If you can guarantee that the values of index(i) are always different for each
value of i, then there is no dependence (each iteration uses a different
location in w). Question one on the Footnote List asks if index(i) is different
for every value of i. A permutation vector is a list of numbers, each of which
is different from the others. If you know that index is a permutation vector,
then the loop is data-independent. An example of a permutation vector is a
list of objects in which each object appears exactly once.

Sample Listing Files

29

Explicitly state that index is a permutation vector by adding an assertion in
the source

subroutine foo2(a,b,index,n)
real a(n), b(n)
integer index(n)
c*$*assert permutation (index)

do i = 1, n
a(index(i)) = a(index(i)) + b(i)

enddo
end

Now the listing file shows that PFA finds the loop safe to run in parallel
(indicated by the * DO loop delimiter)

Actions DO Loops Line
DIR 1 # 1 “foo2.f”
 2 subroutine foo2(a,b,index,n)
 3 real a(n), b(n)
 4 integer index(n)
 5
DIR 6 c*$*assert permutation (index)
C +------ 7 do i= 1, n
 * 8 a(index(i)) = a(index(i)) +
b(i)
 *______ 9 enddo
 10 end

Abbreviations Used

DIR directive
C concurrentized

Loop Summary

 From To Loop Loop
Loop# line line label index Status
1 7 9 Do I concurrentized

Note: As with all assertions, PFA does not verify the truth of this assertion.
When you make an assertion, be certain that the assertion is always true for
all possible input data.

30

Chapter 3: Utilizing PFA Output

Function Call

This example shows what happens when a loop contains a call to an external
routine. The Fortran 77 code

subroutine foo3 (a,b,c,n)
real a(n), b(n), c(n)
external force

do i = 1, n
a(i) = force (b(i), c(i))

enddo
end

generates the listing

Actions DO Loops Line
DIR 1 # 1 “foo3.f”
 2 subroutine foo3(a,b,c,n)
 3 real a(n), b(n), c(n)
 4 external force
 5
NCS +------ 6 do i = 1, n
NO NCS ! 7 a(i) = force(b(i), c(i))
 !______ 8 enddo
 9 end

Abbreviations Used
NO not optimized
DIR directive
NCS non-concurrent-stmt

Footnote List
1: not optimized No optimizable statements found.
2: not optimized Unoptimizable call to “FORCE” found.

Loop Summary

 From To Loop Loop
Loop# line line label index Status
1 6 8 Do I unoptimizable
 call (FORCE)

Sample Listing Files

31

Calling the function force prevents PFA from automatically running the loop
in parallel. PFA identifies the function call as a non-concurrent-stmt. By its
nature, a nonconcurrent statement prevents PFA from assuming the loop is
safe to run in parallel because PFA cannot see into the routine to look for data
dependencies.

If you know that force generates no data dependencies, then explicitly state
this fact for the nonconcurrent statement

subroutine foo3(a,b,c,n)
real a(n), b(n), c(n)
external force
c*$*assert concurrent call

do i = 1, n
a(i) = force(b(i), c(i))

enddo
end

Now that PFA knows that the nonconcurrent statement involves no data
dependency, PFA will find the loop safe to run in parallel.

There is one subtlety in using the concurrent call assertion. When you use
this assertion, PFA makes no attempt to examine the called routine; it simply
assumes that it is safe. However, PFA is still left with the problem of correctly
declaring the variables in the loop to be either SHARE or LOCAL. (PFA does
the best it can, but it can sometimes be fooled.) For example,

subroutine tricky (a,b,c,n,m)
real a(*), b(*)
external my_function

c*$*assert concurrent call

do i = 1, n
a(i) = my_function (b(i), m)

b(i) = a(i) + m
enddo
m = 0
end

32

Chapter 3: Utilizing PFA Output

The question is whether the variable m should be SHARE or LOCAL. If the
routine my_function only reads the old value of m, then it should be
SHARE. If my_function writes a new value of m, then it should be LOCAL.
In the absence of any more clues, PFA must go by what it can see; and what
it can see is that within the loop, there are no visible assignments to m, and
so PFA will declare it to be SHARE. If in fact my_function is writing the
value of m, then this is incorrect. In this case, to give PFA the hint it needs,
add a visible assignment to m at the top of the loop.

For example, consider the following code:

do i = 1, n
 m = 0
 a(i) = my_function(b(i), m)
b(i) = a(i) + m

enddo

Here, PFA can see an assignment to m and so will declare it to be LOCAL.
Note that if my_function is both reading the old value and writing a new
value of m, then it was not legal to parallelize the loop.

Reductions

This example shows how PFA produces a single value from a set of values.
Because the entire set of values is reduced to a single value, these operations
are called reductions.

Consider the Fortran 77 code

subroutine foo4(a,b,n,sum)
real a(n), b(n), sum

sum = 0.0
do i = 1, n

sum = sum + a(i)*b(i)
enddo
end

Sample Listing Files

33

Using the previous code as input, PFA produces the listing file

DIR 1 # 1 “foo4.f”
 2 subroutine foo4(a,b,n,sum)
 3 real a (n), b(n), sum
 4
 5 sum = 0.0
 +----- 6 do i = i, n
1 DD ! 7 sum = sum + a(i)*b(i)
 !_____ 8 enddo
 9 end

Abbreviations Used
DD data dependence
DIR directive

Footnote List
1: data dependence Data dependence involving this
 line due to variable “SUM”.

Loop Summary
 From To Loop Loop
Loop# line line label index Status
1 6 8 Do I scalar mode preferable

Because different iterations of the loop read and write the same location (the
variable sum), there is a dependence. However, this is a special case. Because
sum just accumulates a total, you can accumulate subtotals in parallel and
then combine the subtotals at the end.

Because the parallel version of the code adds the elements together in a
different order than the single-process version, the round-off errors
accumulate differently for the two versions of the code. Thus, the answer can
differ slightly as you vary the number of processes used to run the code. In
fact, if you use the dynamic scheduling option for the code, the answer
might vary slightly from one run of the program to the next, even if you use
the same number of processes on the same machine.

Most applications can safely ignore this variation in round-off error. If you
do not care about this round-off error, you can tell PFA to use parallel
subtotals. To tell PFA not to worry about round-off error, you can use either
the C*$*ROUNDOFF=2 directive or the f77/pfa command line option -WK,
-roundoff=2.

34

Chapter 3: Utilizing PFA Output

The resulting listing file is

DIR 1 # 1 “foo4.f”
 2 subroutine foo4(a,b,n,sum)
 3 real a(n), b(n), sum
 4
 5 sum = 0.0
C +------ 6 do i = 1, n
 * 7 sum = sum + a(i)*b(i)
 *______ 8 enddo
 9 end

Abbreviations Used
DIR directive
C concurrentized

Loop Summary

 From To Loop Loop
Loop# line line label index Status
1 6 8 Do I concurrentized

Be aware that the round-off error produced by the parallel reduction
operation is not necessarily any worse than the round-off error already
present in the original serial version. It will simply be different. If your
application did not worry about the round-off error in the original, there is
no reason to suppose that it should worry about it in the parallel version. If,
on the other hand, your application takes special steps to reduce round off
(for example, adding the numbers together in order from smallest absolute
value to largest), then you should not use parallel reductions.

Sample Listing Files

35

The previous example is called a sum reduction because the reduction
operator is +. Table 3-5 shows the types of reductions PFA supports.

All these reductions are under the control of the -ROUNDOFF command
line option, even though technically the min and max reductions do not
involve round-off problems.

Table 3-5 Reduction Types

Type Operator Example

Sum + sum = sum + expression

Product * p = p* expression

Min min() a = min(a, expression)

Max max() x = max(x, expression)

37

Chapter 4

4. Customizing PFA Execution

This chapter contains the following sections:

• “Overview” explains when to optimize PFA execution.

• “Controlling Code Execution” describes how to control whether PFA
runs eligible loops in parallel.

• “Controlling PFA Code Transformations” describes how to control the
various transformations performed by PFA.

• “Performing Inlining and Interprocedural Analysis” describes inlining
and interprocedural analysis and explains how and when to perform
these procedures.

• “Controlling Fortran Language Elements” explains how to control
standard Fortran elements with command line options to PFA.

• “Controlling Directives and Assertions” explains how to override PFA
directives and assertions with command line options.

• “Controlling PFA I/O” explains how to customize the names of PFA
input and output files.

• “Obsolete Syntax” lists obsolete PFA command line options.

Overview

To customize how PFA executes an entire program, you can specify various
command line options when you run PFA directly or when you specify PFA
as part of a compile. Chapter 2, “How to Use PFA,” explains both
procedures. For a complete summary of the PFA command line options,
refer to Appendix A, “PFA Command Line Options.”

38

Chapter 4: Customizing PFA Execution

Controlling Code Execution

When modifying most programs to allow loops to run in parallel, modify the
code so that PFA can automatically run the loop in parallel. Avoid forcing the
loop to run in parallel by directly inserting a C$DOACROSS directive. If
you force code to run in parallel, you (and not PFA) need to verify that no
subsequent modification inserts data dependencies. Forcing these data
dependencies in code to run in parallel can produce serious (and
difficult-to-find) errors. Rewriting the loop so that PFA recognizes the loop
as safe to run in parallel allows PFA to check future modifications for
potential data dependencies.

This section describes how to control whether eligible loops are run in
parallel and how to specify a work threshold for loops.

Running Code in Parallel

The -CONCURRENTIZE option (or -C) converts eligible loops to run in
parallel. This is the default value for this option. The
-NOCONCURRENTIZE option (or -NCONC) prevents PFA from
converting loops to run in parallel.

Specifying a Work Threshold

The -MINCONCURRENT=n option (or -MC=n) specifies the minimum
amount of work needed inside the loop to make executing a loop in parallel
profitable. The integer n is a count of the number of operations (for example,
add, multiply, load, store) in the loop, multiplied by the number of times the
loop will be executed.

If the loop does not contain at least this much work, the loop will not be run
in parallel. If the loop bounds are not constants, an IF clause will be
automatically added to the PFA-generated C$ DOACROSS directive to test
at run time if sufficient work exists.

If you do not specify this option, PFA runs all loops containing 500 or more
operations in parallel.

Controlling PFA Code Transformations

39

For example, given the original loop

 do 2 i =1,n
 x(i) = y(i) * z(i)
2 continue

PFA generates the following transformed loop:

C$DOACROSS IF (N .GT. 100), SHARE (N,X,Y,Z), LOCAL(I)
 DO 3 I=1,N
 x(i) = y(i)*z(i)
3 CONTINUE

The IF clause ensures that n is large enough to make running the loop in
parallel profitable (otherwise, PFA will run the loop serially). If the loop
bound is a small constant (such as 10) instead of n, PFA would not generate
a DOACROSS statement for the loop and the listing file will state that the
loop does not contain enough work. Conversely, if the bound is a large
constant (such as 100), then PFA generates the DOACROSS statement
without the IF clause.

Controlling PFA Code Transformations

This section discusses the various ways in which you can control the
standard transformations that PFA performs.

Controlling Size/Complexity Thresholds

You can control the thresholds for internal table size and routine complexity
in order to analyze larger and more complex routines.

Controlling Internal Table Size

The -ARCLIMIT=n option (or -ARCLM=n) controls the size of the internal
table used to store data dependence information (arcs). If this table
overflows, PFA stops analyzing the loop and the PFA listing file shows the
message

too many stmts/dd arcs

40

Chapter 4: Customizing PFA Execution

Increasing ARCLIMIT might allow PFA to analyze the loop but at the cost
of additional processing time.

Specifying a Complexity Limit

The -LIMIT=n option (or -LM=n) controls the amount of time PFA can
spend trying to determine whether a loop is safe to run in parallel. PFA
estimates how much time is required to analyze each loop nest construct. If
an outer loop looks like it would take too much time to analyze, PFA ignores
the outer loop and recursively visits the inner loops.

Larger limits often allow PFA to generate parallel code for deeply nested
loop structures that it might not otherwise be able to run safely in parallel.
However, with larger limits PFA can also take more time to analyze a
program. (The limit does not correspond to the DO loop nest level. It is an
estimate of the number of loop orderings that PFA can generate from a loop
nest.) This option has the same effect as the global C*$* LIMIT(n) directive.

Note: You do not usually need to change these limits.

Setting the Optimization Level

The -OPTIMIZE=n option (or -O=n) sets the optimization level. The higher
you set the optimization level, the more code is optimized and the longer
PFA runs. Programs that are written for running in parallel often do not need
advanced transformation. With these programs, a lower optimization level
is enough. Valid values for n are

0 Avoids converting loops to run in parallel.

1 Converts loops to run in parallel without using advanced
data dependence tests. Enables loop interchanging.

2 Determines when scalars need last-value assignment using
lifetime analysis. Also uses more powerful data
dependence tests to find loops that can run safely in
parallel. This level allows reductions in loops that execute
concurrently but only if the -ROUNDOFF option is set to 2.
(Refer to the following section for details about the
-ROUNDOFF option.)

Controlling PFA Code Transformations

41

3 Breaks data dependence cycles using special techniques
and additional loop interchanging methods, such as
interchanging triangular loops. This level also implements
special-case data dependence tests.

4 Generates two versions of a loop, if necessary, to break a
data-dependent arc. This level also implements more-exact
data dependence tests and allows special index sets (called
wraparound variables) to convert more code to run in
parallel.

5 Fuses two adjacent loops if it is legal to do so (that is, there
are no data dependencies) and if the loops have the same
control values. In certain limited cases, this level recognizes
arrays as local variables. This level is the default.

This option has the same effect as the global C*$* OPTIMIZE(n) directive
described in Chapter 5, “Fine-Tuning PFA.”

Note: If you want to use the -UNROLL command line option, set the
-OPTIMIZE option to 4 or higher (the default optimization level is above
this threshold).

42

Chapter 4: Customizing PFA Execution

Controlling Variations in Round Off

The -ROUNDOFF=n option (or -R=n) controls the amount of variation in
round off that PFA will allow. Valid values for n are the integers

0–1 Suppresses any round-off transformations. This is the
default.

2 Allows reductions to be performed in parallel. The valid
reduction operators are addition, multiplication, min, and
max. This value is one of the most commonly specified user
options.

3 Recognizes REAL induction variables. Permits memory
management transformations (refer to “Memory
Management Transformations” on page 44).

When executing reductions in parallel, PFA processes values in a different
order from the original serial code. Round-off errors accumulate differently
and produce a slightly different answer. Some algorithms are sensitive to
this variation, and so, by default, PFA does not run reductions in parallel.
Usually, these tiny variations are irrelevant, and you can allow PFA to
process a reduction in parallel allowing more loops to be run in parallel.

Controlling the Number of Scalar Optimizations

The -SCALAROPT=n option (or -SO=n) controls the amount of standard
scalar optimizations attempted by PFA. Valid values for n are the integers

0 Performs no scalar transformations.

1 Enables dead code elimination, pulling loop invariants,
forward substitution, and conversion of IF-GOTO into
IF-THEN-ELSE.

2 Enables induction variable recognition, loop unrolling, loop
fusion, array expansion, scalar promotion, and floating
invariant IF tests. (Loop fusion also requires
-OPTIMIZE=5.)

Controlling PFA Code Transformations

43

3 Enables the memory management transformations (refer to
“Memory Management Transformations” on page 44).
(Memory management also requires -ROUNDOFF=3.) This
is the default value.

Enabling Loop Unrolling

The -UNROLL=n option (or -UR=n) unrolls scalar inner loops when PFA
cannot run the loops in parallel. n specifies the number of times to replicate
the loop body. The default is 4. Specify a small power of two for the unroll
value, such as two, four, or eight. Disable unrolling by setting -UNROLL=1.

The -UNROLL2=m option (or -UR2=m) allows you to adjust the number of
operations used by the -UNROLL option. Selecting a larger value for
-UNROLL2 allows PFA to unroll loops containing more calculations. This
form of unrolling applies only to the innermost loops in a nest of loops. You
can unroll loops whether they execute serially or concurrently.

PFA counts the number of array references and arithmetic operations in the
loop. It unrolls the loop until it reaches either the number of operations
specified by the -UNROLL2 option or the number of iterations specified by
-UNROLL.

When PFA unrolls a loop, it replicates the body of the loop a certain number
of times, making the loop run faster. However, unrolling loops also increases
the program size.

For example, if the original program is

do i = 1,100
 a(i) = b(i) + c(i)*d(i)
enddo

the unrolled program (unrolling of order 4) is

do i = 1,100,4
 a(i) = b(i) + c(i)*d(i)
 a(i+1) = b(i+1) + c(i+1)*d(i+1)
 a(i+2) = b(i+2) + c(i+2)*d(i+2)
 a(i+3) = b(i+3) + c(i+3)*d(i+3)
enddo

44

Chapter 4: Customizing PFA Execution

The second (unrolled) version runs faster than the original version. The
reason for the improvement is that SGI processors have separate add and
multiply hardware, allowing addition and multiplication operations to run
simultaneously. In the original program, the processor has to do the
multiplication, wait for it to complete, then do the addition. In the second
case, the processor can do the first multiplication, wait for it to complete,
then overlap the second multiplication and the first addition, then the third
multiplication and the second addition, and so on.

The additions require nearly no additional time because all but the last one
are completed within the time it takes the (previous) multiplication to
complete. If the loop already contains many computations (for example,
many lines of code, many additions and multiplications), then unrolling it
might help a little but not much.

Memory Management Transformations

When -ROUNDOFF and -SCALAROPT are both set to 3, PFA attempts to
do outer loop unrolling (to improve register utilization) and automatic loop
blocking (also called tiling) to improve cache utilization.

Outer loop unrolling is a standard hand-optimization technique. Note that
the -UNROLL and -UNROLL2 options apply to inner-loop unrolling.
Outer-loop unrolling can occur even if inner-loop unrolling is disabled.

Loop blocking is a complex transformation that is applicable when the loop
nesting depth is greater than the dimensions of the data arrays being
manipulated. The canonical example is the simple matrix multiply, where a
three-deep nest of loops operates on two-dimensional arrays.

The simple method repeatedly sweeps over the entire array. If the array is
too large to fit into the cache, this can result in a large amount of memory
traffic. A better method is to break the arrays up into blocks, where each
block is small enough to fit into the cache, and then sweep over each block
in turn (rather than over the whole array). The code to do this is often ugly
and complicated. PFA attempts to ease the burden of writing block-style
algorithms by automatically generating the block version from the simple
version. Note, however, that blocking does not help the more common case
where the algorithm touches each array element exactly once (for example,

Controlling PFA Code Transformations

45

a two-dimensional array inside of a two-deep loop nest). Because in this case
the data is not being reused, blocking does not apply.

For example, given the loop nest

do k =1,n
 do j= 1,n
 do i =1,n
 a(i,j) = a(i,j) + b(i,k)*c(k,j)
 enddo
 enddo
enddo

using the option -r=3, PFA produces the listing below:

 II3 = 1
 II1 = MOD (N - 1, 682) + 1
 II2 = II1
 II10 = N - 7
 II11= (II10 + 7) / 8
 DO 4 II4=1, N, 682
 II8 = II3 + II2 - 1
 DO 2 K=1, II10, 8
C$DOACROSS SHARE(N,K,C,II3,II8,A,B),LOCAL(DD1,DD2,C$& DD3,
DD4,DD5,DD6,DD7,DD8,DD9,J,I)
 DO 2 J=1,N
 DD2 = C(K,J)
 DD3 = C(K+1,J)
 DD4 = C(K+2,J)
 DD5 = C(K+3,J)
 DD6 = C(K+4,J)
 DD7 = C(K+5,J)
 DD8 = C(K+6,J)
 DD9 = C(K+7,J)
 DO 2 I=II3, II8, 1
 DD1 = A(I,J)
 DD1 = DD1 + B(I,K) * DD2
 DD1 = DD1 + B(I, K+1) * DD3
 DD1 = DD1 + B(I, K+2) * DD4
 DD1 = DD1 + B(I, K+3) * DD5
 DD1 = DD1 + B(I, K+4) * DD6
 DD1 = DD1 + B(I, K+5) * DD7
 DD1 = DD1 + B(I, K+6) * DD8
 DD1 = DD1 + B(I, K+7) * DD9
 A(I,J) = DD1

46

Chapter 4: Customizing PFA Execution

2 CONTINUE
 II7 = II11 * 8 + 1
 II9 = II3 + II2 - 1
 DO 3 K=II7, N, 1
C$DOACROSS SHARE(N,K,C,II3,II9,A,B),LOCAL(DD10,J,I)
 DO 3 J=1,N
 DD10 = C(K,J)
 DO 3 I=II3,II9,1
 A(I,J) = A(I,J) + B(I,K) * DD10
3 CONTINUE
 II3 = II3 + II2
 II2 = 682
4 CONTINUE

Obviously, PFA’s version is more complicated than the original, but it runs
significantly faster.

Performing Inlining and Interprocedural Analysis

Function and subroutine calls create an obstacle to parallelization. PFA
provides three ways of dealing with this obstacle:

• Assert that the external routine is safe for concurrent execution (see
“C*$* ASSERT CONCURRENT CALL” on page 64).

• Inline the routine by replacing the call to the external routine with the
actual code.

• Perform interprocedural analysis (IPA) by analyzing the external
routine ahead of time and using the results of that analysis when a
reference to the routine is encountered.

Inlining and IPA tend to be slow, memory-intensive operations. Attempting
to inline all routines everywhere they occur can take a lot of time and use a
lot of system resources. Inlining should usually be restricted to a few
time-critical places.

Performing Inlining and Interprocedural Analysis

47

This section discusses the three steps for inlining or IPA:

1. Specify which routines will be inlined (or interprocedurally analyzed).

2. Specify which source files and libraries will be searched to find the
routines.

3. Specify which occurrences of those routines are to be inlined (or
analyzed).

Specifying Routines for Inlining or IPA

PFA supports the -INLINE=list option (or -IN=list) that specifies the
routines to be inlined and the -IPA=list option for IPA. list is a
colon-separated list of routines to be inlined. For example,

-INLINE=jump:more

If you do not specify list, PFA will attempt to inline all eligible routines.

Specifying Where to Search for Routines

The options listed in Table 4-1 tell PFA where to search for the routines
specified with the -INLINE or -IPA option. If you do not specify either
option, PFA searches the current source file by default.

If one of the names in list is a directory, then all appropriate files in that
directory will be used. PFA assumes files with the extension .f are Fortran
source and files with the extension .klib are PFA-produced libraries.

Table 4-1 Inlining and IPA Search Command Line Options

Long Option Name Short Option Name Default Value

-INLINE_FROM_FILES=list -INFF=list Current Source File

-IPA_FROM_FILES=list -IPAFF=list Current Source File

-INLINE_FROM_LIBRARIES=list -INFL=list None

-IPA_FROM_LIBRARIES=list -IPAFL=list None

48

Chapter 4: Customizing PFA Execution

Specify multiple files and directories with the same option by using a
colon-separated list. For example,

-INLINE_FROM_FILES=file1:file2:file3

Note: These options by themselves do not initiate inlining or IPA. They only
specify where to look for the routines. Use them in conjunction with the
appropriate -INLINE or -IPA option.

Creating a Library

When performing inlining and IPA, PFA analyzes the routines in the source
program. Normally, inlining is done directly from a source file. However,
when inlining the same set of routines in many different programs, it is more
efficient to create a preanalyzed library of the routines. Use the
-INLINE_CREATE =name option (or -INCR=name) to create a library of
prepared routines (for later use with the -INLINE_FROM_LIBRARIES
option). PFA assigns a name to the library file it creates; for maximum
compatibility, use the filename extension .klib: for example, samp.klib.

The -IPA_CREATE=name option (or -IPACR=name) is the analogous option
for IPA.

The library used to do IPA does not have to be generated from the same
source that will be linked into the running program. Using this capability
can cause errors, but it can also be useful. For example, you could write a
library of hand-optimized assembly language routines, then construct a
PFA-compatible IPA library using Fortran routines that mimic the behavior
of the assembly code. Thus, you can do parallelism analysis with IPA
correctly but still call the hand-optimized assembly routines. Use the
following procedure to create and use a PFA library:

1. Create a library by passing the source program directly through pfa.
Library creation is done by PFA and should not be done at the same
time as an ordinary compilation. For example, the following command
line creates a library called samp.klib for the source program samp.f:

% /usr/lib/pfa -INLINE_CREATE=samp.klib samp.f

2. Compile the program with pfa:

% f77 -pfa keep -WK,-INFL=samp.klib samp.f

Performing Inlining and Interprocedural Analysis

49

Note: Libraries created for inlining contain complete information and can be
used for inlining or IPA. Libraries created for IPA contain only summary
information and can be used only for IPA.

Specifying Occurrences

The loop level, depth, and manual options allow you to control which
occurrences of the routines specified with the -INLINE or -IPA option are
actually dealt with when the -INLINE or -IPA options are used.

Loop Level

The -INLINE_LOOPLEVEL=n (or -INLL=n) and -IPA_LOOPLEVEL=n (or
-IPALL=n) options allow you to limit PFA to work only on occurrences
within deeply nested loops. Thus, a value of 1 restricts PFA to deal with
routines only at the single-most deeply nested level; a value of 2 restricts
PFA to the deepest and second-deepest levels; and so on.

To determine most deeply nested, PFA constructs a call graph to account for
nesting due to loops that occur farther up the call chain. If you do not specify
either option, the loop level is 10.

Depth

The -INLINE_DEPTH=n (or -IND) option restricts the number of times PFA
will continue to attempt inlining on already inlined routines. For example,
suppose you use PFA to inline the routine foo. However, foo itself contains
a call to bar. Should PFA now attempt a second inlining depth and inline
bar? And if bar calls baz, should PFA inline three deep? This option provides
control over this process, as routines are only inlined to the specified depth.

As a special case, if you specify the value –1, only routines that do not
reference other routines are inlined (that is, only leaf routines are inlined).
Note that the extension to –2, –3, and so on is not supported, only –1. Note
also that there is no -IPA_DEPTH option.

50

Chapter 4: Customizing PFA Execution

Manual

The -INLINE_MAN option turns on recognition of the C*$*INLINE
directive. This directive (described in Chapter 5, “Fine-Tuning PFA”) allows
you select individual occurrences of routines to be inlined. -IPA_MAN is the
analogous option for the C*$*IPA directive (also described in Chapter 5,
“Fine-Tuning PFA.”).

Conditions That Prevent Inlining or IPA

Several conditions make a routine ineligible for inline expansion or IPA:

• Dummy arguments do not match the actual arguments in number,
type, shape, or size.

• The calling program and called routine have conflicting declarations for
the same COMMON block.

• The calling program and the called routine have conflicting
EQUIVALENCE statements.

• The routine to be inlined has a SAVE, ENTRY, or NAMELIST
statement.

• The routine to be inlined has a DATA loaded variable.

• The routine to be inlined is too long (the limit is about 600 lines).

Controlling Fortran Language Elements

This section explains how to control various Fortran 77 language elements.

Global Assumptions

The -ASSUME=list option (or -AS=list) controls certain global assumptions
of a program. list consists of any combination of the following values:

E Allows equivalence variables to refer to the same memory
location inside one loop. For more information, see
Chapter 5, “Fine-Tuning PFA.”

Controlling Fortran Language Elements

51

L Instructs PFA to use a temporary variable within the
optimized loop and assign the last value to the original
scalar if PFA determines that scalar can be reused before it
is assigned. This value is important when a scalar is
assigned in a loop run in parallel. For more information, see
Chapter 5, “Fine-Tuning PFA.”

P Allows for parameter aliasing in a subprogram. For more
information, see Chapter 5, “Fine-Tuning PFA.”

By default, PFA assumes that a program conforms to the ANSI (and VMSTM)
standard; therefore, the default is -ASSUME=EL.

Debugging Lines

The -DLINES option tells PFA to treat the letter D in column one as if the
letter were a character space. PFA then parses the rest of that line as a normal
Fortran 77 statement. The -NODLINES option tells PFA to treat these lines
as though they were comments. These options are useful for excluding or
including debugging lines. f77 passes this option to PFA automatically when
you specify the f77 -d_lines option.

DO Loop Execution

The -ONETRIP option (or -l) provides compatibility with older versions of
Fortran where a DO loop is always executed at least once. The
-NOONETRIP (or -N1) option conforms to the Fortran 77 standard.

This option, which is the default, does not execute a DO loop whose
termination condition is initially satisfied. f77 passes the -ONETRIP option
to PFA automatically when you specify the f77 -one_trip option.

52

Chapter 4: Customizing PFA Execution

Variable Saving Across Invocations

The -SAVE=c option (or -SV=c) specifies whether a procedure’s variables are
saved across invocations. c is one of the following values:

A Performs a lifetime analysis on a procedure’s variables to
determine those that need to have their value saved across
invocations of the procedure. When it finds such a variable,
PFA generates a SAVE statement for the variable.

M Does not generate SAVE statements. This is the default
value.

Significant Columns

The -SCAN=n option controls the number of columns that PFA assumes to
be significant. PFA ignores anything beyond the specified column number.
The default value for n is 72. Specifying any of the following f77 options
automatically sets this option: -col72, -col120, or -extend_source.

Fortran Standard

Setting the -SYNTAX=c option (or -SY=c) alters the interpretation of the
Fortran input to be in compliance with other standards. c is one of the
following values:

A Interprets the source in strict compliance with the ANSI
Fortran 77 standard.

V Interprets the source in compliance with the VMS Fortran
standard but without the additional SGI extensions.

If you do not specify this option, PFA uses the same rules as the standard SGI
Fortran compiler (refer to the Fortran 77 Programmer’s Guide for details).

Controlling Directives and Assertions

53

Controlling Directives and Assertions

This section discusses the options you can use to select whether PFA accepts
a specific directive or assertion. You can use these options to override
directives and assertions that are specified in the source program.

Selecting Directives and Assertions

The -DIRECTIVES=list option specifies the directives and assertions to
accept. The -NODIRECTIVES option tells PFA to ignore all directives and
assertions. This option is useful when you suspect unsafe directives are
causing problems with program execution.

Note: Some directives are called assertions because they assert program
characteristics that PFA cannot verify. (For example, an assertion could
assert that subroutine x contains no data dependencies.) However, you
might want PFA to use it when optimizing. Refer to Chapter 1, “Overview
of PFA,”for more information about directives and assertions.

Valid values for list are any combination of the values

A Accepts assertions.

C Accepts Cray CDIR$ directives; CDIR$IVDEP ignores
certain data dependencies in a loop. But because of
differences between SGI hardware and a Cray machine,
these data dependencies are not always safe to ignore on
SGI hardware. To be safe, PFA does not recognize the
CDIR$IVDEP directive by default. You can, at your own
risk, turn on Cray-directive recognition, which will cause
PFA to treat this Cray directive as if it were a C*$*ASSERT
DO (CONCURRENT) assertion.

K Accepts C*$* directives.

54

Chapter 4: Customizing PFA Execution

S Accepts C$ directives. PFA recognizes the directives
C$DOACROSS, C$, and C$&. (For more information, see
the Fortran 77 Programmer’s Guide.) If a C$DOACROSS
directive appears, PFA does not examine or alter the loop to
which the directive applies. This allows you to mix code
that you converted to parallel execution with code that PFA
converted to parallel execution.

V Accepts VAST CVD$ directives.

For example, specifying -DIRECTIVES=K enables PFA directives only,
whereas -DIRECTIVES=CK enables both Cray and PFA directives. Adding
A to the DIRECTIVES sequence also enables PFA assertions. Any
combination of options is acceptable.

If you do not specify either option, PFA will accept all assertions, PFA C*$*
directives, all C$ directives, and VAST CVD$ directives.

Controlling PFA I/O

This section describes command line options you can use to name PFA input
and output. You do not need to use these options unless you want to change
the default names. In particular, some versions of the make(1) utility assume
that files ending in .1 are lex(1) input files. To perform automatic makes
without overwriting the PFA listing file, use a different suffix for the listing
filename.

Use the -INPUT=file.f option to specify the name of the Fortran source
program PFA input file. If you do not specify this option, PFA assumes that
a command line argument not preceded by a dash is the input filename.

The -FORTRAN=file option specifies the name of the PFA intermediate file
(that is, the transformed source). If you do not specify this filename, PFA
names the intermediate file.m, where file is the name of the input file. For
details about the intermediate file, refer to Chapter 3, “Utilizing PFA
Output.”

Obsolete Syntax

55

The -LIST=file option specifies the name of the PFA listing file. If you do not
specify this filename, PFA names the listing file file.l, where file is the name
of the input file. For details about the listing file, refer to Chapter 3,
“Utilizing PFA Output.”

Obsolete Syntax

Table 4-2 lists obsolete PFA command line options.

PFA now accepts new syntax for some of the command line options
(particularly the syntax for inlining). For compatibilIty with the older
versions, these options are translated into their newer equivalents in
Table 4-3. Whenever possible do not use the older syntax; support for it
might be withdrawn in the future.

Table 4-2 Obsolete Options

Long Option Name Short Option Name Default Value

-EXPAND -X, -EX off

-CREATE -CR off

-LIBRARY -LIB off

-LIMIT2 -LM2 5000

Table 4-3 Obsolete Options and Their Equivalents

Old Version New Version

-EXPAND=A -INLINE

-EXPAND=M -INLINE_MAN

-LIBRARY=name -INLINE_FROM_LIBRARIES=name

-CREATE -LIBRARY=name -INLINE_CREATE=name

-LIMIT2=n -ARCLIMIT=n

57

Chapter 5

5. Fine-Tuning PFA

This chapter contains the following sections:

• “Overview” explains how to fine-tune program execution using
directives and assertions.

• “Fine-Tuning Inlining and IPA” describes how to use directives to use
inlining and IPA more specifically than with command line options.

• “Circumventing PFA” explains how to use directives to bypass PFA’s
analysis and leave areas of code unchanged.

• “Running Code Serially” explains how to use directives and assertions
to stop PFA from running specific code in parallel.

• “Running Code in Parallel” explains how to use directives and
assertions to tell PFA that it is safe to run specific parts of code in
parallel.

• “Ignoring Data Dependencies” explains how to tell PFA that apparently
data-dependent code is safe to run in parallel.

• “Using Equivalenced Variables” explains how to assert that your code
uses or does not use equivalenced variables.

• “Using Aliasing” describes the assertions used with aliasing.

58

Chapter 5: Fine-Tuning PFA

Overview

After you run a Fortran source program through PFA once, you can use
directives and assertions to fine-tune program execution. The listing file will
show where and why PFA did not parallelize the code.

You can use directives and assertions to force PFA to execute portions of
code in various ways. Command line directives apply to the program as a
whole.

If you want finer control for parallelizing a critical loop or inlining a
particular occurrence of a routine, specify directives and assertions directly
in the code. You can also use directives and assertions to keep PFA from
converting code to run in parallel. In other cases you might want to explicitly
force PFA to run segments of code in parallel even though it normally would
not.

Fine-Tuning Inlining and IPA

Chapter 4, “Customizing PFA Execution,” explains how to use inlining and
IPA on an entire program (refer to “Performing Inlining and Interprocedural
Analysis” on page 46). You can fine-tune inlining and IPA using the
C*$*[NO] INLINE and C*$*[NO] IPA directives.

The C*$* [NO] INLINE directive behaves much the same as the -INLINE
command line option, but with the directive you can specify which
occurrences of a routine are actually inlined. The format for this directive is

C*$*[NO]INLINE [(name[,name ...])] {HERE|ROUTINE|GLOBAL}

where

name Specifies the routines to be inlined. If you do not specify a
name, this directive will affect all routines in the program.

HERE Applies the INLINE directive only to the next line;
occurrences of the named routines on that next line are
inlined.

ROUTINE Inlines the named routines everywhere they appear in the
current routine.

Fine-Tuning Inlining and IPA

59

GLOBAL Inlines the named routines throughout the source file.

The C*$*NOINLINE form overrides the -INLINE command line option and
so allows you to selectively disable inlining of the named routines at specific
points.

Example

In the following code fragment, the C*$*INLINE directive inlines the first
call to beta but not the second.

 do i =1,n
C*$*INLINE (beta) HERE
 call beta (i,1)
 enddo
 call beta (n, 2)

Using the specifier ROUTINE rather than HERE inlines both calls. This
routine must be compiled with the -inline_man command line option for the
C*$* INLINE directive to be recognized.

The C*$* [NO] IPA directive is the analogous directive for interprocedural
analysis. The format for this directive is

C*$*[NO]IPA [(name [,name...])] {HERE|ROUTINE|GLOBAL}

60

Chapter 5: Fine-Tuning PFA

Circumventing PFA

Sometimes you might need to hand-tune a DO loop so that it will run in
parallel. Use the directives in this section to prevent PFA from analyzing
your modified code.

C$ DOACROSS

The C$ DOACROSS directive tells the Fortran 77 compiler to generate
parallel code for the following loop. When PFA encounters this directive on
input, it does not modify the accompanying loop and therefore does not
interfere with any hand-tuning.

C$ DOACROSS is the standard method for parallelism in Fortran. This
directive is the same directive that PFA generates as a result of its analysis.
Refer to the Fortran 77 Programmer’s Guide for more information about the
C$ DOACROSS directive and its optional clauses.

PFA runs the following code as it appears:

C$ DOACROSS
 DO 10 I=1, 100
 A(I) = B(I)
10 CONTINUE

C$&

The C$& directive continues the C$ DOACROSS directive onto multiple
lines, for example,

C$DOACROSS SHARE(ALPHA, BETA, GAMMA, DELTA,
C$& EPSILON, OMEGA), LASTLOCAL (I, J, K, L, M, N),
C$& LOCAL(XXX1, XXX2, XXX3, XXX4, XXX5, XXX6, XXX7,
C$& XXX8, XXX9)

Running Code Serially

61

Running Code Serially

Use the following assertions and directives to keep PFA from running
specific code in parallel.

C*$* ASSERT DO (SERIAL)

The C*$* ASSERT DO (SERIAL) assertion tells PFA to run the specified
loop serially. PFA does not try to convert the specified loop to run in parallel.
It also does not try to run any enclosing loop in parallel. However, PFA can
still convert any loops nested inside the serial loop to run in parallel.

CDIR$ NEXT SCALAR

Silicon Graphics PFA supports the corresponding Cray directive, CDIR$
NEXT SCALAR. PFA interprets this directive as if it were a C*$* ASSERT
DO (SERIAL) assertion and generates scalar code for the next DO loop.

C*$* ASSERT DO PREFER (SERIAL)

The C*$* ASSERT DO PREFER (SERIAL) assertion indicates that you want
to execute a DO loop in serial mode. This assertion directs PFA to leave the
DO loop alone, regardless of the setting of the optimization level. You can
use this assertion to control which loop (in a nest of loops) PFA chooses to
run in parallel. The following example program segment shows how to use
the assertion:

 DO 100 I = 1, N
C*$*ASSERT DO PREFER (SERIAL)
 DO 100 J = 1, M
 A(I,J) = B(I,J)
100 CONTINUE

In the DO loop above, the assertion requests that the J loop be serial. In this
construction, PFA tries to run the I loop in parallel but not the J loop. This
capability is useful when you know the value of M to be very small or less
than N. This assertion applies only to the DO loop that appears directly after
the assertion.

62

Chapter 5: Fine-Tuning PFA

Running Code in Parallel

This section explains the directives and assertions that allow PFA to
determine that specific areas of code are safe to run in parallel.

C*$*[NO]CONCURRENTIZE

The C*$*[NO]CONCURRENTIZE directive converts eligible loops to run in
parallel. The NO version prevents PFA from converting loops to run in
parallel. These directives, when specified globally, have the same effect as
the -CONCURRENTIZE and -NOCONCURRENTIZE options (see
Chapter 2, “How to Use PFA.”).

CVD$ CONCUR

PFA supports the VAST directive CVD$CONCUR. This directive runs a
loop in parallel to optimize performance. PFA interprets this directive as if it
were the C*$*CONCURRENTIZE directive.

C*$* ASSERT DO PREFER (CONCURRENT)

The C*$* ASSERT DO PREFER (CONCURRENT) assertion directs PFA to
run a particular nested loop in parallel if possible. PFA runs another of the
nested loops in parallel only if a condition prevents running the selected
loop in parallel.

Consider the following code:

C*$* ASSERT DO PREFER (CONCURRENT)
 DO 100 I = 1, N
 DO 100 J = 1, M
 A (I, J) = B (I, J)
100 CONTINUE

This code directs PFA to prefer to run the I loop in parallel. However, if a
data dependence conflict prevents running the I loop in parallel, PFA might
run the J loop in parallel. The C*$* ASSERT DO PREFER (CONCURRENT)
assertion applies only to the DO loop immediately before it.

Ignoring Data Dependencies

63

Ignoring Data Dependencies

PFA avoids running code in parallel that it believes to be data-dependent.
Use the assertions described in the following sections to override this
behavior.

C*$* ASSERT DO (CONCURRENT)

The C*$* ASSERT DO (CONCURRENT) assertion tells PFA to ignore
assumed data dependencies. Normally, PFA is conservative about
converting loops to run in parallel.

When PFA analyzes a loop to see if it is safe to run in parallel, it categorizes
the loop into one of three groups:

• yes (loop is safe to run in parallel)

• no

• not sure

Normally, PFA does not run “not sure” loops in parallel. It assumes there are
data dependencies. C*$* ASSERT DO (CONCURRENT) tells PFA to go
ahead and run “not sure” loops in parallel.

Note: If PFA identifies a loop as containing definite (as opposed to assumed)
data dependencies, it does not run the loop in parallel even if you specify a
C*$* ASSERT DO (CONCURRENT) assertion.

CDIR$ IVDEP

PFA interprets the Cray directive CDIR$ IVDEP as if it were a C*$* ASSERT
DO (CONCURRENT) assertion. Some dependencies that are safe to run on
Cray hardware are not safe to run on SGI hardware. Therefore, recognition
of this assertion is turned off by default.

64

Chapter 5: Fine-Tuning PFA

C*$* ASSERT CONCURRENT CALL

The C*$* ASSERT CONCURRENT CALL tells PFA to ignore assumed
dependencies that are due to a subroutine call or a function reference.
However, you must ensure that the subroutines and referenced functions are
safe for parallel execution. This assertion applies to all subroutine and
function references in the accompanying loop, which must appear on the
next line.

C*$* ASSERT NO RECURRENCE

The C*$* ASSERT NO RECURRENCE(variable) assertion tells PFA to
ignore all data dependencies associated with variable. PFA ignores not just
assumed dependencies (as with the C*$* ASSERT DO (CONCURRENT)
assertion) but also real dependencies. Use this assertion to force PFA to
parallelize a loop when other, gentler means have failed. Use this assertion
with caution, as indiscriminate use can result in illegal parallel code.

C*$* ASSERT PERMUTATION

The C*$* ASSERT PERMUTATION(array) assertion tells PFA that array
contains no repeated values. This assertion permits PFA to run in parallel
certain kinds of loops that use indirect addressing, for example,

DO I = 1, N
 A(INDEX(I)) = A(INDEX(I)) + B(I)
ENDDO

You can run this loop in parallel only if the array INDEX has no repeated
values (so that each INDEX (I) is unique). PFA cannot determine this, so it
does not run such a loop in parallel. However, if you know that every
element of INDEX() is unique, you can insert the following line before the
loop to permit PFA to run the loop in parallel:

C*$* ASSERT PERMUTATION (INDEX)

Using Equivalenced Variables

65

Using Equivalenced Variables

The C*$* ASSERT NO EQUIVALENCE HAZARD assertion tells PFA that
your code does not use equivalenced variables to refer to the same memory
location inside one loop nest. Normally, EQUIVALENCE statements allow
your code to use different variable names to refer to the same storage
location. The -ASSUME=E command line option acts like the global C*$*
ASSERT EQUIVALENCE HAZARD assertion (see “Global Assumptions”
on page 50 in Chapter 4). The C*$* ASSERT EQUIVALENCE HAZARD
assertion is active until you reset it or until the end of the program unit.

Using Aliasing

PFA has several assertions for use with aliasing.

C*$* ASSERT [NO] ARGUMENT ALIASING

The C*$* ASSERT [NO] ARGUMENT ALIASING assertion allows PFA to
make assumptions about subprogram arguments in a program. According
to the Fortran 77 standard, you can alias a variable only if you do not modify
(that is, write to) the aliased variable.

The following subroutine violates the standard, because variable A is aliased
in the subroutine (through C and D) and variable X is aliased (through X and
E):

COMMON X,Y
REAL A,B
CALL SUB (A, A, X)
...
SUBROUTINE SUB(C,D,E)
COMMON X,Y
X = ...
C = ...
...

66

Chapter 5: Fine-Tuning PFA

The command line option -ASSUME=P acts like a global C*$* ASSERT
ARGUMENT ALIASING assertion (see Chapter 4, “Customizing PFA
Execution.”). A C*$* ARGUMENT ALIASING assertion is active until it is
reset or until the next routine begins.

C*$* ASSERT RELATION

The C*$* ASSERT RELATION(name.xx.name) assertion indicates the
relationship between two variables or between a variable and a constant.
name is the variable or constant, and xx is any of the following: GT, GE, EQ,
NE, LT, or LE. This assertion applies only to the next DO statement.

Consider the following code:

 DO 100 I = 1, N
 A (I) = A (I+M) + B (I)
100 CONTINUE

If you know that M is greater than N, use the following assertion to give this
information to PFA:

C*$* ASSERT RELATION (M .GT. N)
 DO 100 I = 1, N
 A (I) = A (I +M) + B (I)
100 CONTINUE

Knowing that M is greater than N, PFA can generate parallel code for this
loop. If at run time, M is less than N, the answers produced by the code run
in parallel could differ significantly from the answers produced by the
original code run serially.

Note: Many relationships of this type can be cheaply tested for at run time.
PFA will attempt to answer questions of this sort by generating an IF
statement that explicitly tests the relationship at run time. Occasionally, PFA
may need assistance, or you may want to squeeze that last ounce of
performance out of some critical loop by asserting some relationship rather
than repeatedly checking it at run time.

67

Appendix A

A. PFA Command Line Options

This appendix contains the following sections:

• “Overview”

• “Options Summary”

• “Obsolete Syntax”

This appendix lists and describes the options to PFA. The default settings are
satisfactory for most programs. However, you can alter the defaults to
customize output. PFA accepts several command line options. Table A-1 lists
the default settings for each option.

Overview

Table A-1 summarizes the PFA command line options. The Reference
column lists the functional categories of the following options:

• parallel execution

• general optimization

• Fortran 77 language control

• directive control

• listing

The next three columns list the long names, short names, and default values
of the options. Following the table is an explanation of each option,
including the option’s long and short names, its default, and, if applicable,
the long and short names for the NO version of the option.

68

Appendix A: PFA Command Line Options

Note: You can replace many of the PFA command line options described in
this chapter with in-code directives.

Table A-1 PFA Command Line Options

Reference Long Name Short Name Default Value

Parallelization [NO]CONCURRENTIZE

MINCONCURRENT=n

[N]CONC

MC=n

CONCURRENTIZE

MINCONCURRENT=500

Optimization ARCLIMIT

LIMIT=n

OPTIMIZE=n

ROUNDOFF=n

SCALAROPT=n

UNROLL=n

UNROLL2=n

ARCLM=n

LM=n

O=n

R=n

SO=n

UR=n

UR22=n

ARCLIMIT=5000

LIMIT=20000

OPTIMIZE=5

ROUNDOFF=0

SCALAROPT=3

UNROLL=4

UNROLL2=100

Fortran 77 Language

Control

ASSUME=list

[NO]DLINES

[NO]ONETRIP

SAVE=c

SCAN=n

SYNTAX=c

AS=list

[N]DL

[N]l

SV=c

SCAN=n

SY=c

ASSUME=EL

NODLINES

NOONETRIP

SAVE=A

SCAN=72

(option off)

Inlining and
Interprocedural
Analysis

INLINE[=list]

IPA[=names]

INLINE_CREATE=name

IPA_CREATE=name

INLINE_FROM_FILES=list

IPA_FROM_FILES=list

INLINE_FROM_LIBRARIES=list

IPA_FROM_LIBRARIES=list

INLINE_LOOP_LEVEL=n

IPA_LOOP_LEVEL=n

INLINE_MAN

IPA_MAN

INLINE_DEPTH

IN

IPA

INCR=name

IPACR=name

INFF=list

IPAFF=list

INFL=list

IPAFL=list

INLL=n

IPALL=n

INM

IPAM

IND

(option off)

(option off)

(option off)

(option off)

(option off)

(option off)

(option off)

(option off)

(INLL=10

IPALL=10

(option off)

INLL=10

IPALL=10)

IND=10

Options Summary

69

Options Summary

This section lists and defines all PFA command line options alphabetically.

ARCLIMIT

The -ARCLIMIT option, described in Table A-2, controls the size of the
internal table used to store data dependence information (arcs).

Directives [NO]DIRECTIVES=list [N]DR=list DIRECTIVES=AKSV

I/O INPUT=file.f

[NO]FORTRAN=file

[NO]LIST=file

file.f

[N]F=file

[N]L=file

file.f

F=file.m

L=file.l

Listing LINES=n

LISTOPTIONS=list

SUPPRESS=list

LN=n

LO=list

SU=list

LINES=55

LISTOPTIONS=OL

(option off)

Obsolete CREATE

LIBRARY=file

[NO]EXPAND=list

LIMIT2=n

CR

LIB=file

EX=list

LM2=n

(option off)

(option off)

(option off)

LM2=5000

Table A-2 ARCLIMIT Option

 Long Option Name Short Option Name Default Value

-ARCLIMIT=n -ARCLM=n 5000

Table A-1 (continued) PFA Command Line Options

Reference Long Name Short Name Default Value

70

Appendix A: PFA Command Line Options

ASSUME

The -ASSUME option, described in Table A-3, controls certain global
assumptions of a program.

You can also use various assertions to control these assumptions. list is any
combination of the following values:

E Means that equivalence variables can refer to the same
memory location inside one loop.

L Is important when a scalar is assigned in a loop run in
parallel. If ASSUME is L, PFA uses a temporary variable
within the optimized loop and assigns the last value to the
original scalar if PFA determines that scalar can be reused
before it is assigned.

P Allows for parameter aliasing in a subprogram.

CONCURRENTIZE

The -CONCURRENTIZE option, described in Table A-4, converts eligible
loops to run in parallel.

See also NOCONCURRENTIZE.

Table A-3 ASSUME Option

 Long Option Name Short Option Name Default Value

-ASSUME=list -AS=list EL

Table A-4 CONCURRENTIZE Option

Long Option Name Short Option Name Default Value

-CONCURRENTIZE -C -CONCURRENTIZE

Options Summary

71

DIRECTIVES

The -DIRECTIVES option, described in Table A-5, specifies the directives
and assertions to accept.

list consists of any combination of

A Accepts assertions.

C Accepts Cray CDIR$ directives. Because of differences
between SGI and Cray hardware, certain data dependencies
that CDIR$IVDEP ignores in a loop are not always safe to
ignore on SGI hardware. PFA does not recognize the
CDIR$IVDEP directive by default. You can, however, turn
on Cray-directive recognition, which will cause PFA to treat
the Cray directive as a C*$*ASSERT DO (CONCURRENT)
assertion.

K Accepts PFA C*$* directives.

S Accepts C$ directives. PFA recognizes the directives C$&C,
C$, and $DOACROSS. (For more information, see the
Fortran 77 Programmer’s Guide.) If a C$DOACROSS
directive appears, PFA does not examine or alter the loop to
which the directive applies. This allows you to mix code
you converted to parallel execution with code that PFA
converted to parallel execution.

V Accepts VAST CVD$ directives.

See also NODIRECTIVES.

Table A-5 DIRECTIVES Option

 Long Option Name Short Option Name Default Value

-DIRECTIVES=list -DR=list AKSV

72

Appendix A: PFA Command Line Options

DLINES

The -DLINES option, described in Table A-6, tells PFA to treat letter D in
column one as if the letter were a character space.

PFA then parses the rest of that line as a normal Fortran 77 statement. See
also NODLINES.

FORTRAN

The -FORTRAN option, described in Table A-7, specifies the name of the
PFA-transformed source.

filename is the name of the Fortran source.

INLINE

The -INLINE option, described in Table A-8, specifies the routines to be
inlined.

If this option is given with a (colon-separated) list of routine names, then
only those routines will be inlined. If it is given without a list of names, then
PFA will attempt to inline all eligible routines.

Table A-6 DLINES Option

Long Option Name Short Option Name Default Value

-DLINES -DL -NODLINES

Table A-7 FORTRAN Option

 Long Option Name Short Option Name Default Value

-FORTRAN=filename -F=filename filename. m

Table A-8 INLINE Option

Long Option Name Short Option Name Default Value

-INLINE[=list] -IN[=list] none

Options Summary

73

INLINE_CREATE

The -INLINE_CREATE option, described in Table A-9, creates a library of
prepared routines for later use with the -INLINE_FROM_LIBRARIES
option.

You are not required to create a library to do inlining; you can inline directly
from a source file.

Constructing a library will save time if the inlining operation is to be done
repeatedly. PFA analyzes the current source file and places the appropriate
information into the file named with the -INLINE_CREATE option. For
maximum compatibility, the filename extension .klib is recommended: for
example, samp.klib.

INLINE_DEPTH

The -INLINE_DEPTH option, described in Table A-10, restricts the number
of times PFA will continue to attempt inlining on already inlined routines.

This option controls this process, as routines are only inlined to the specified
depth.

As a special case, if you specify the value –1, only routines that do not
reference other routines are inlined (that is, only leaf routines are inlined).
The only valid negative number is –1; do not specify –2, –3, and so on. Note
that there is no -IPA_DEPTH option.

Table A-9 INLINE_CREATE Option

Long Option Name Short Option Name Default Value

-INLINE_CREATE=name -INCR=name option off

Table A-10 INLINE_DEPTH Option

Long Option Name Short Option Name Default Value

-INLINE_DEPTH=n -IND=n 10

74

Appendix A: PFA Command Line Options

INLINE_FROM_FILES

The -INLINE_FROM_FILES option, described in Table A-11, specifies
where to look for routines named in the -INLINE option.

Files with the extension .f are assumed to be Fortran source, while files with
the extension .klib are assumed to be PFA-produced libraries. Specify
multiple files and directories by using a colon-separated list.

Note: This option alone does not initiate inlining. It only specifies where to
look for the routines. Use this option with the -INLINE option.

INLINE_FROM_LIBRARIES

The -INLINE_FROM_LIBRARIES option, described in Table A-12,
specifies where to look for the routines named in the -INLINE option.

Files with the extension .f are assumed to be Fortran source, while files with
the extension .klib are assumed to be PFA-produced libraries. Specify
multiple libraries by using a colon-separated list.

Note: This option alone does not initiate inlining. It only specifies where to
look for the routines. Use this option with the -INLINE option.

Table A-11 INLINE_FROM_FILES Option

Long Option Name Short Option Name Default Value

-INLINE_FROM_FILES=list -INFF=list current source file

Table A-12 INLINE_FROM_LIBRARIES Option

Long Option Name Short Option Name Default Value

-INLINE_FROM_LIBRARIES=list -INFF=list current source file

Options Summary

75

INLINE_LOOPLEVEL

The -INLINE_LOOPLEVEL option, described in Table A-13, restricts PFA
occurrences within deeply nested loops.

Thus, a value of 1 restricts PFA to deal with routines only at the singlemost
deeply nested level; a value of 2 restricts PFA to the deepest and
second-deepest levels; and so on.

To determine what is most deeply nested, PFA constructs a call graph to
account for nesting due to loops that occur farther up the call chain.

INLINE_MAN

The -INLINE_MAN option, described in Table A-14, turns on recognition of
the C*$*INLINE directive.

The C*$*INLINE directive allows you select individual occurrences of
routines to be inlined.

Table A-13 INLINE_LOOPLEVEL Option

Long Option Name Short Option Name Default Value

-INLINE_LOOPLEVEL=n -INLL=n 10

Table A-14 INLINE_MAN Option

Long Option Name Short Option Name Default Value

-INLINE_MAN -INM option off

76

Appendix A: PFA Command Line Options

INPUT

The -INPUT option, described in Table A-15, specifies the name of the PFA
input file.

It is not necessary to precede the input filename with this option; PFA
assumes that a command line argument not preceded by a dash is the input
filename.

IPA

The -IPA option, described in Table A-16, specifies the routine’s IPA.

If this option is given with a colon-separated list of routine names, then only
those routines will be IPAed. If it is given without a list of names, then PFA
will attempt to IPA all eligible routines.

IPA_CREATE

The -IPA_CREATE option, described in Table A-17, creates a library of
prepared routines for later use with the -IPA_FROM_LIBRARIES option.

Table A-15 INPUT Option

Long Option Name Short Option Name Default Value

-INPUT=filename.f -I=filename.f filename.f

Table A-16 IPA Option

Long Option Name Short Option Name Default Value

-IPA[=list] -IPA[=list] none

Table A-17 IPA_CREATE Option

Long Option Name Short Option Name Default Value

-IPA_CREATE=name -IPACR=name option off

Options Summary

77

You are not required to create a library to do inlining; you can inline directly
from a source file. Constructing a library will save time if the inlining
operation is to be done repeatedly. PFA analyzes the current source file and
places the appropriate information into the file named with the
-INLINE_CREATE option. For maximum compatibility, the filename
extension .klib is recommended: for example, samp.klib.

Libraries created for IPA only contain summary information and so can be
used only for IPA.

IPA_FROM_FILES

The -IPA_FROM_FILES option, described in Table A-18, specifies where to
look for the routines named in the -IPA option.

Files with the extension .f are assumed to be Fortran source, while files with
the extension .klib are assumed to be PFA-produced libraries. Specify
multiple files using a colon-separated list.

Note: This option alone does not initiate IPA. It only specifies where to look
for the routines. Use this option in conjunction with the -IPA option.

IPA_FROM_LIBRARIES

The -IPA_FROM_LIBRARIES option, described in Table A-19, specifies
where to look for the routines named in the -IPA option.

Table A-18 IPA_FROM_FILES Option

Long Option Name Short Option Name Default Value

-IPA_FROM_FILES=list -IPAFF=list current source file

Table A-19 IPA_FROM_LIBRARIES Option

Long Option Name Short Option Name Default Value

-IPA_FROM_LIBRARIES=list -IPAFL=list none

78

Appendix A: PFA Command Line Options

Files with the extension .f are assumed to be Fortran source, while files with
the extension .klib are assumed to be PFA-produced libraries. Specify
multiple libraries by using a colon-separated list.

Note: This option alone does not initiate IPA. It only specifies where to look
for the routines. Use this option in conjunction with the -IPA option.

IPA_LOOPLEVEL

The -IPA_LOOPLEVEL option, described in Table A-20, restricts PFA to
occurrences within deeply nested loops.

A value of 1 restricts PFA to routines only at the singlemost deeply nested
level; a value of 2 restricts PFA to the deepest and second-deepest levels; and
so on. To determine what is most deeply nested, PFA constructs a call graph
to account for nesting due to loops that occur further up the call chain.

IPA_MAN

The -IPA_MAN option, described in Table A-21, turns on recognition of the
C*$*IPA directive.

The C*$*IPA directive allows you select individual occurrences of routines
to be IPAed.

Table A-20 IPA_LOOPLEVEL Option

Long Option Name Short Option Name Default Value

-IPA_LOOPLEVEL=n -IPALL=n 10

Table A-21 IPA_MAN Option

Long Option Name Short Option Name Default Value

-IPA_MAN -IPAM option off

Options Summary

79

LIMIT

The -LIMIT option, described in Table A-22, reduces PFA processing time by
limiting the amount of time PFA can spend on trying to determine whether
a loop is safe to run in parallel.

PFA estimates how much time is required to analyze each loop nest
construct. If an outer loop looks like it would take too much time to analyze,
PFA ignores the outer loop and recursively visits the inner loops.

Larger limits often allow PFA to generate parallel code for deeply nested
loop structures that it might not otherwise be able to run safely in parallel.
However, with larger limits PFA can also take more time to analyze a
program. (The limit does not correspond to the DO loop nest level. It is an
estimate of the number of loop orderings that PFA can generate from a loop
nest.)

LINES

The -LINES option, described in Table A-23, paginates the listing for
printing.

Use this option to change the number of lines per page. Specifying -LINES=0
paginates at subroutine boundaries.

Table A-22 LIMIT Option

Long Option Name Short Option Name Default Value

-LIMIT=n -LM=n LIMIT=5000

Table A-23 LINES Option

Long Option Name Short Option Name Default Value

-LINES=n -LN=n LINES=55

80

Appendix A: PFA Command Line Options

LIST

The -LIST option, described in Table A-24, specifies the name of the PFA
listing file.

filename is the name of the Fortran source.

LISTOPTIONS

The -LISTOPTIONS option, described in Table A-25, specifies the
information to include in the listing file (.l).

list consists of any combination of

C Calling tree at the end of the program listing.

I Transformed program file annotated with line numbers in
the source program. Error messages and debugging
information can refer to the original source rather than the
transformed source. When PFA is run as part of an f77
compilation, this option is added automatically.

K PFA option used at the end of each program unit.

L Loop-by-loop optimization table.

N Program unit names, as processed, to the standard error file.
This option is added automatically as part of an f77 -v
compilation.

O Annotated listing of the original program.

P Processing performance statistics.

Table A-24 LIST Option

Long Option Name Short Option Name Default Value

-LIST=filename -L=filename LIST=filename.l

Table A-25 LISTOPTIONS Option

Long Option Name Short Option Name Default Value

-LISTOPTIONS=list -LO=list OL

Options Summary

81

S Summary of optimization performed.

T Annotated listing of the transformed program.

MINCONCURRENT

The -MINCONCURRENT option, described in Table A-26, establishes the
minimum amount of work needed inside the loop to make executing a loop
in parallel profitable.

If the loop does not contain at least this much work, the loop will not be run
in parallel. If the loop bounds are not constants, an IF clause will be
automatically added to the PFA-generated DOACROSS directive to test at
run time whether sufficient work exists.

The MINCONCURRENT value is a count of the number of operations (for
example, add, multiply, load, store) in the loop, multiplied by the number of
times the loop will be executed.

NOCONCURRENTIZE

The -NOCONCURRENTIZE option, described in Table A-27, prevents PFA
from converting loops to run in parallel.

See also CONCURRENTIZE.

Table A-26 MINCONCURRENT Option

Long Option Name Short Option Name Default Value

-MINCONCURRENT=n -MC=n 500

Table A-27 NOCONCURRENTIZE Option

Long Option Name Short Option Name Default Value

-NOCONCURRENTIZE -NCONC none

82

Appendix A: PFA Command Line Options

NODIRECTIVES

The -NODIRECTIVES option, described in Table A-28, tells PFA to ignore
all directives and assertions.

See also DIRECTIVES.

NODLINES

The -NODLINES option, described in Table A-29, tells PFA to treat lines
starting with D as though they were comments.

See also DLINES.

NOONETRIP

The -NOONETRIP option, described in Table A-30, conforms to the Fortran
77 standard, which specifies that a DO loop whose termination condition is
initially satisfied is not executed.

See also ONETRIP.

Table A-28 NODIRECTIVES Option

Long Option Name Short Option Name Default Value

-NODIRECTIVES -NDR none

Table A-29 NODLINES Option

Long Option Name Short Option Name Default Value

-NODLINES -NDL -NODLINES

Table A-30 NOONETRIP Option

Long Option Name Short Option Name Default Value

-NOONETRIP -N1 -NOONETRIP

Options Summary

83

ONETRIP

The -ONETRIP option, described in Table A-31, allows compatibility with
older versions of Fortran where a DO loop is always executed at least once.

See also NOONETRIP.

OPTIMIZE

The -OPTIMIZE option, described in Table A-32, sets the optimization level.

The higher you set the optimization level, the more code is optimized and
the longer PFA runs.

Valid values for n are the integers

0 Avoids converting loops to run in parallel.

1 Converts loops to run in parallel without using advanced
data dependence tests. Enables loop interchanging.

2 Determines when scalars need last-value assignment using
lifetime analysis. Also uses more powerful data
dependence tests to find loops that can be run safely in
parallel. This level allows reductions in loops that execute
concurrently, but only if -ROUNDOFF is set to 2.

3 Breaks data dependence cycles using special techniques
and additional loop interchanging methods, such as
interchanging triangular loops. This level also implements
special-case data dependence tests.

Table A-31 ONETRIP Option

Long Option Name Short Option Name Default Value

-ONETRIP -1 -NOONETRIP

Table A-32 OPTIMIZE Option

Long Option Name Short Option Name Default Value

-OPTIMIZE=n -O=n 5

84

Appendix A: PFA Command Line Options

4 Generates two versions of a loop, if necessary, to break a
data dependence arc. This level also implements more exact
data dependence tests and allows special index sets (called
wraparound variables) to convert more code to run in
parallel.

5 Fuses two adjacent loops if it is legal to do so (no data
dependencies) and if the loops have the same control
values. In certain limited cases, this level recognizes arrays
as local variables. Level 5 also tells PFA to try harder to take
the outermost loop possible (of a set of nested loops) and
run it in parallel.

Note: If you want to use the -UNROLL command line option, you must set
the -OPTIMIZE option to 4 or higher (the default optimization level is above
this threshold).

ROUNDOFF

The -ROUNDOFF option, described in Table A-33, controls whether PFA
runs a reduction operation in parallel.

Valid values for n are

0–1 Suppresses any round-off changing transformations.

2 Allows reductions to be performed in parallel. The valid
reduction operators are addition, multiplication, min, and
max. -ROUNDOFF=2 is one of the most common user
options.

3 Recognizes REAL induction variables. Permits the memory
management transformations.

Table A-33 ROUNDOFF Option

Long Option Name Short Option Name Default Value

-ROUNDOFF=n -R=n 0

Options Summary

85

SAVE

Table A-34 describes the -SAVE option.

Either of the following values are valid for c:

A Performs lifetime analysis on a procedure‘s variables to try
and determine those that need to have their value saved
across invocations of the procedure. When it finds such a
variable, PFA generates a SAVE statement for the variable.
This is the default value.

M Does not generate SAVE statements.

SCALAROPT

The -SCALAROPT=n option, described in Table A-35, controls the amount
of standard scalar optimizations attempted by PFA.

Valid values for n are

0 Performs no scalar transformations.

1 Enables dead code elimination, pulling loop variables,
forward substitution, and conversion of IF-GOTO into
IF-THEN-ELSE.

2 Enables induction variable recognition, loop unrolling, loop
fusion, array expansion, scalar promotion, and floating
invariant IF tests. (Loop fusion also requires
-OPTIMIZE=5.)

Table A-34 SAVE Option

Long Option Name Short Option Name Default Value

-SAVE=c -SV=c A

Table A-35 SCALAROPT Option

Long Option Name Short Option Name Default Value

-SCALAROPT=n -SO=n 3

86

Appendix A: PFA Command Line Options

3 Enables the memory management transformations.
(Memory management also requires -ROUNDOFF=3.)

SCAN

The -SCAN option, described in Table A-36, controls the number of columns
that are assumed to be significant (PFA ignores anything beyond the
specified column).

Specifying any of the following f77 options automatically sets this option:
-col72, -col120, or -extend _source.

SUPPRESS

The -SUPPRESS option, described in Table A-37, lets you individually
disable classes of PFA messages that are normally included in the listing (.l)
file.

These messages range from syntax warnings and error messages to
messages about the optimizations performed.

list is of any combination of the following:

D Data dependence

E Syntax error

I Information

N Not able to run loop in parallel

Table A-36 SCAN Option

Long Option Name Short Option Name Default Value

-SCAN=n -SCAN=n 72

Table A-37 SUPPRESS Option

Long Option Name Short Option Name Default Value

-SUPPRESS=list -SU=list option off

Options Summary

87

Q Questions

S Standard messages

W Warning of syntax error (PFA adds the -SUPPRESS=W
option automatically if you use the -w option to f77)

SYNTAX

Setting the -SYNTAX option, described in Table A-38, alters the
interpretation of the Fortran input to be in compliance with other standards.

c is any of the following values:

A Interprets the source in strict compliance with the ANSI
Fortran 77 standard.

V Interprets the source in compliance with the VMS Fortran
standard but without the additional SGI extensions.

UNROLL

The -UNROLL option, described in Table A-39, unrolls scalar inner loops
when PFA cannot run the loops in parallel.

When PFA unrolls a loop, it replicates the body of the loop a certain number
of times, making the loop run faster. (In previous releases of PFA the default
value was 1.)

Table A-38 SYNTAX Option

Long Option Name Short Option Name Default Value

-SYNTAX=c -SY=c SGI Fortran syntax

Table A-39 UNROLL Option

Long Option Name Short Option Name Default Value

-UNROLL=n -UR=n 4

88

Appendix A: PFA Command Line Options

UNROLL2

The -UNROLL2 option, described in Table A-40, allows you to adjust the
number of operations used by the -UNROLL option.

Selecting a larger value for -UNROLL2 allows PFA to unroll loops
containing more calculations.

This form of unrolling applies only to the innermost loops in a nest of loops.
You can unroll loops whether they execute serially or concurrently.

f 77 passes this option to PFA automatically when you specify the f77 -d lines
option.

Obsolete Syntax

Table A-41 describes obsolete PFA syntax.

This version of PFA has altered some of the command line syntax
(particularly the syntax for inlining).

Table A-40 UNROLL2 Option

Long Option Name Short Option Name Default Value

-UNROLL2=m -UR2=m 50

Table A-41 Obsolete Options

Long Option Name Short Option Name Default Value

-EXPAND=list -X=list, -EX=list option off

-CREATE -CR option off

-LIBRARY=file -LIB=file option off

-LIMIT2=n -LM2 5000

Obsolete Syntax

89

For compatibility with the older versions, Table A-42 lists the options that
are translated into their newer equivalents.

Whenever possible do not use this older syntax. Support for it might be
withdrawn in the future.

Table A-42 Obsolete Options and Their Equivalents

Old Version New Version

-EXPAND=A -INLINE

-EXPAND=M -INLINE_MAN

-LIBRARY=name -INLINE_CREATE=name

-LIMIT2=n -ARCLIMIT=n

91

Appendix B

B. PFA Directives

This appendix contains the following sections:

• “Standard Directives”

• “Cray Directives”

• “VAST Directives”

This appendix lists and describes the three types of PFA directives:

• Standard

• Cray

• VAST

Chapter 1, “Overview of PFA,” describes the purpose of directives. For
details about how to use directives, refer to Chapter 5, “Fine-Tuning PFA.”

92

Appendix B: PFA Directives

Standard Directives

This section lists and describes the following standard PFA directives
alphabetically:

• C*$*ARCLIMIT

• C*$*CONCURRENTIZE

• C*$*INLINE

• C*$*IPA

• C*$*LIMIT

• C*$*MINCONCURRENT

• C*$*NOCONCURRENTIZE

• C*$*NOINLINE

• C*$*NOIPA

• C*$*OPTIMIZE

• C*$*ROUNDOFF

• C*$*SCALAR OPTIMIZE

• C*$*UNROLL

• C$*DOACROSS

• C$&

C*$* ARCLIMIT

The C*$*ARCLIMIT(n) directive controls the size of the internal table used
to store data dependence information (arcs). n is an integer. This directive,
when specified globally, has the same effect as the -ARCLIMIT command
line option.

C*$* CONCURRENTIZE

The C*$*CONCURRENTIZE directive converts eligible loops to run in
parallel. This directive, when specified globally, has the same effect as the
-C*$*CONCURRENTIZE command line option. See also
C*$*NOCONCURRENTIZE.

Standard Directives

93

C*$* INLINE

The C*$*INLINE directive behaves much like the -INLINE command line
option but specifies which occurrences of a routine are actually inlined. The
format for this directive is

C*$* INLINE [(name[,name ...])] {HERE | ROUTINE | GLOBAL}

where

name Specifies the routines to be inlined. If you do not specify a
name, all routines will be affected.

HERE Inlines only to the next line; occurrences of the named
routines on that next line are inlined.

ROUTINE Inlines the named routines everywhere they appear in the
current routine.

GLOBAL Inlines the named routines throughout the source file.

See also C*$*NOINLINE.

For details about inlining, refer to Chapter 4, “Customizing PFA Execution.”
For details about using the C*$*INLINE directive, refer to Chapter 5,
“Fine-Tuning PFA.”

C*$* IPA

The C*$* IPA directive behaves much like the -IPA command line option but
specifies on which occurrences of a routine to use IPA. The format for this
directive is

C* $ * IPA [(name [, name ...])] {HERE|ROUTINE|GLOBAL}

where

name Specifies the routines to be IPAed. If you do not specify a
name, all routines will be affected.

HERE Uses IPA only on occurrences of the named routines that
appear on the next line.

ROUTINE Uses IPA on the named routines everywhere they appear in
the current routine

94

Appendix B: PFA Directives

GLOBAL Uses IPA on the named routines throughout the source file.

See also C*$*NOIPA.

For details about interprocedural analysis, refer to Chapter 4, “Customizing
PFA Execution.” For details about using the C*$*IPA directive, refer to
Chapter 5, “Fine-Tuning PFA.”

C*$* LIMIT

The C*$*LIMIT(n) directive reduces PFA processing time by limiting the
amount of time PFA can spend on trying to determine whether a loop is safe
to run in parallel. PFA estimates how much time is required to analyze each
loop nest construct. If an outer loop looks like it would take too much time
to analyze, PFA ignores the outer loop and recursively visits the inner loops.

Larger limits often allow PFA to generate parallel code for deeply nested
loop structures that it might not otherwise be able to run safely in parallel.
However, with larger limits PFA can also take more time to analyze a
program. (The limit does not correspond to the DO loop nest level. It is an
estimate of the number of loop orderings that PFA can generate from a loop
nest.)

This directive, when specified globally, has the same effect as the -LIMIT
command line option.

C*$* MINCONCURRENT

The C*$*MINCONCURRENT(n) option establishes the minimum amount
of work needed inside the loop to make executing a loop in parallel
profitable. n is a count of the number of operations (for example, add,
multiply, load, store) in the loop, multiplied by the number of times the loop
will be executed. If the loop does not contain at least this much work, the
loop will not be run in parallel. If the loop bounds are not constants, an IF
clause will be automatically added to the PFA-generated C$ DOACROSS
directive to test at run time if sufficient work exists.

Standard Directives

95

C*$* NOCONCURRENTIZE

The C*$*NONCONCURRENTIZE option prevents PFA from converting
loops to run in parallel. See also C*$*CONCURRENTIZE.

C*$* NOINLINE

The C*$*NOINLINE directive behaves much like the -NOINLINE
command line option, but with the directive you can specify which
occurrences of a routine are not inlined. The format for this directive is

C*$* NOINLINE [(name [,name ...])] {HERE|ROUTINE|GLOBAL}

where

name Specifies the routines to be inlined. If you do not specify a
name all routines will be affected.

HERE Disables inlining of occurrences of the named routines only
on the next line.

ROUTINE Disables inlining of the named routines everywhere they
appear in the current routine.

GLOBAL Disables inlining of the named routines throughout the
source file.

C*$*NOINLINE overrides the -INLINE command line option and so allows
you to disable inlining of the named routines at specific points.

C*$* NOIPA

The C*$*NOIPA directive behaves much like the -NOIPA command line
option, but with the directive you can specify on which occurrences of a
routine to not use IPA. The format for this directive is

C*$* NOIPA [(name [, name ...])] { HERE|ROUTINE|GLOBAL}

where

name Specifies the routines to disable IPA. If you do not specify a
name all routines will be affected.

HERE Disables IPA of occurrences of the named routines only on
the current routine

96

Appendix B: PFA Directives

ROUTINE Disables IPA of the named routines everywhere they appear
in the current routine.

GLOBAL Disables IPA of the named routines throughout the source
file.

C*$*NOIPA overrides the -IPA command line option and so allows you to
disable IPA of the named routines at specific points.

C*$*OPTIMIZE

The C*$*OPTIMIZE(n) directive sets the optimization level. The higher the
optimization level, the more code is optimized and longer PFA runs. Valid
values for n are the integers

0 Avoids converting loops to run in parallel.

1 Converts loops to run in parallel without using advanced
data dependence tests. Enable loop interchanging.

2 Determines when scalars need last-value assignment using
lifetime analysis. Also uses more powerful data
dependences tests to find loops that can run safely in
parallel. This level allows reductions in loops that execute
concurrently but only if the round-off setting is at least 2.

3 Breaks data dependence cycles using special techniques
and additional loop interchanging methods, such as
interchanging triangular loops. This level also implements
special-case data dependence tests.

4 Generates two versions of a loop, if necessary, to break a
data dependent arc. This level also implements more exact
data dependence tests and allows special index sets (called
wraparound variables) to convert more code to run in
parallel.

5 Fuses two adjacent loops if it is legal to do so (no data
dependencies) and if the loops have the same control
values. In certain limited cases, this level recognizes arrays
as local variables. Level 5 also tells PFA to try harder to run
the outermost loop possible (of a set of loops) in parallel.

Standard Directives

97

Note: If you want to use unrolling, set the optimize level to at least 4 (the
default optimization level is above this threshold).

C*$*ROUNDOFF

The C*$*ROUNDOFF(n) directive controls whether PFA runs a reduction
operation in parallel. Valid values for n are

0–1 Suppresses any round-off changing transformations.

2 Allows reductions to be performed in parallel. The valid
reduction operators are addition, multiplication, min, and
max. -ROUNDOFF=2 is one of the most common user
options.

3 Recognizes REAL induction variables. Permits the memory
management transformations.

C*$*SCALAR OPTIMIZE

The C*$*SCALAR OPTIMIZE (n) directive controls the amount of standard
scalar optimizations attempted by PFA. Valid values for n are

0 Performs no scalar transformations.

1 Enables dead code elimination, pulling loop invariants,
forward substitution, and conversion of IF-GOTO into
IF-THEN-ELSE.

2 Enables induction variables recognition, loop unrolling,
loop fusion, array expansion, scalar promotion, and floating
invariant IF tests. (Loop fusion also requires
-OPTIMIZE=5.)

3 Enables the memory management transformations.
(Memory management also requires -ROUNDOFF=3.)

98

Appendix B: PFA Directives

C*$*UNROLL

The C*$*UNROLL (n) directive unrolls scalar inner loops when PFA cannot
run the loops in parallel. When PFA unrolls a loop, it replicates the body of
the loop a certain number of times, making the loop ran faster. In this form,
n has the same meaning as in the -UNROLL=n command line option.

The C*$*UNROLL(n, m) option allows you to adjust the number of
operations used when unrolling. In this form, n is as above and m is as in the
-UNROLL2=m command line option.

This form of unrolling applies only to the innermost loops in a nest of loops.
You can unroll loops whether they execute serially or concurrently.

C$ DOACROSS

The C$ DOACROSS directive tells the Fortran 77 compiler to generate
parallel code for the loop that immediately follows the directive. Putting this
directive in the original source marks the loop to run in parallel and signals
PFA not to modify the loop.

Note: PFA generates the C$ DOACROSS directive and inserts it into the
code as the result of PFA’s parallelism analysis.

C$&

The C$& directive continues the C$ DOACROSS directive onto multiple
lines.

Cray Directives

99

Cray Directives

PFA supports the following Cray directives:

• CDIR$ IVDEP

• CDIR$ NEXT SCALAR

CDIR$ IVDEP

PFA interprets the CDIR$ IVDEP directive as if it were a C*$* ASSERT DO
(CONCURRENT) assertion. (Refer to Appendix C, “PFA Assertions,” for
details.)

CDIR$ NEXT SCALAR

CDIR$ NEXT SCALAR is a Cray directive that generates scalar code for the
next DO loop. PFA interprets this directive as if it were a C*$* ASSERT
DO(SERIAL) assertion. (Refer to Appendix C, “PFA Assertions,” for
details.)

VAST Directives

PFA supports the CVD$CONCUR VAST directive. The CVD$CONCUR
directive runs a loop in parallel to optimize performance. PFA interprets this
directive as if it were the C*$*CONCURRENTIZE directive (described in
“Standard Directives” on page 92).

101

Appendix C

C. PFA Assertions

This appendix lists and describes the following PFA assertions
alphabetically:

• C*$* ASSERT ARGUMENT ALIASING

• C*$* ASSERT DO (SERIAL)

• C*$* ASSERT DO (CONCURRENT)

• C*$* ASSERT DO PREFER (SERIAL)

• C*$* ASSERT DO PREFER (CONCURRENT)

• C*$* ASSERT EQUIVALENCE HAZARD

• C*$* ASSERT NO ARGUMENT ALIASING

• C*$* ASSERT NO EQUIVALENCE HAZARD

• C*$* ASSERT RELATION (name .xx. name)

• C*$* ASSERT CONCURRENT CALL

• C*$* ASSERT NO RECURRENCE

• C*$* ASSERT PERMUTATION (name)

Chapter 1, “Overview of PFA,” describes the purpose of assertions. For
details about using assertions, refer to Chapter 5, “Fine-Tuning PFA.”

102

Appendix C: PFA Assertions

C*$* ASSERT ARGUMENT ALIASING

The C*$* ASSERT ARGUMENT ALIASING assertion allows PFA to make
assumptions about subprogram arguments in a program. According to the
Fortran 77 standard, you can alias a variable only if you do not modify (that
is, write to) the aliased variable. This assertion tells PFA that the subprogram
on the following line violates the Fortran 77 standard in this regard.

C*$* ASSERT DO (SERIAL)

The C*$* ASSERT DO (SERIAL) assertion tells PFA to run the specified
loop serially. PFA does not try to convert the specified loop to run in parallel.
Nor does it try to run any enclosing loop in parallel. However, PFA can still
convert any loops nested inside the serial loop to run in parallel.

C*$* ASSERT DO (CONCURRENT)

The C*$* ASSERT DO (CONCURRENT) assertion tells PFA to ignore
assumed data dependencies. Normally, PFA is conservative about what
loops it converts run in parallel. When PFA analyzes a loop to see if it is safe
to run in parallel, it categorizes the loop into one of three groups:

• yes (loop is safe to run in parallel)

• no

• not sure

Normally, PFA does not run “not sure” loops in parallel. C*$* ASSERT DO
(CONCURRENT) tells PFA to go ahead and run “not sure” loops in parallel.

Note: If PFA identifies a loop as containing definite (as opposed to assumed)
data dependencies, it does not run the loop in parallel even if a C*$*
ASSERT DO (CONCURRENT) assertion precedes the loop.

C*$* ASSERT DO PREFER (SERIAL)

The C*$* ASSERT DO PREFER (SERIAL) assertion indicates that you want
to execute a DO loop in serial mode. This assertion directs PFA to leave the
DO loop alone, regardless of the setting of the optimization level. You can
use this assertion to control which loop (in a nest of loops) PFA chooses to
run in parallel.

103

C*$* ASSERT DO PREFER (CONCURRENT)

The C*$* ASSERT DO PREFER (CONCURRENT) assertion runs a
particular nested loop in parallel whenever possible. PFA runs other nested
loops in parallel only if a condition prevents running the selected loop in
parallel.

The C*$* ASSERT DO PREFER (CONCURRENT) assertion applies only to
the DO loop that it precedes. PFA does not generate parallel code if you use
the -NOCONCURRENTIZE command line option or the C*$*
NOCONCURRENTIZE directive.

C*$* ASSERT EQUIVALENCE HAZARD

The C*$* ASSERT EQUIVALENCE HAZARD assertion allows equivalence
variables to refer to the same memory location inside one loop. This
assertion, when specified globally, has the same effect as the -ASSUME=E
command line option. The C*$* ASSERT EQUIVALENCE HAZARD
assertion is active until you reset it or until the end of the program unit. See
also C*$* ASSERT NO EQUIVALENCE HAZARD.

C*$* ASSERT CONCURRENT CALL

C*$* ASSERT CONCURRENT CALL tells PFA to ignore assumed
dependencies that are due to a subroutine call or a function reference.
However, you must ensure that the subroutines and referenced functions are
safe for parallel execution. This assertion applies to all subroutine and
function references in the immediately following loop.

C*$* ASSERT NO ARGUMENT ALIASING

The C*$* ASSERT NO ARGUMENT ALIASING assertion allows PFA to
make assumptions about subprogram arguments in a program. According
to the Fortran 77 standard, you can alias a variable only if you do not modify
(that is, write to) the aliased variable.

104

Appendix C: PFA Assertions

C*$* ASSERT NO EQUIVALENCE HAZARD

The C*$* ASSERT NO EQUIVALENCE HAZARD assertion tells PFA that
your code does not use equivalenced variables to refer to the same memory
location inside one loop nest. Normally, EQUIVALENCE statements allow
your code to use different variable names to refer to the same memory
location.

C*$* ASSERT NO RECURRENCE

The C*$* ASSERT NO RECURRENCE (variable) assertion tells PFA to
ignore all data dependencies associated with variable. PFA ignores not just
assumed dependencies (as with the C*$* ASSERT DO (CONCURRENT)
assertion) but also real dependencies. Use this assertion to force PFA to
parallelize a loop when other, gentler means have failed. Use this assertion
with great caution, as indiscriminate use can result in illegal parallel code.

C*$* ASSERT PERMUTATION

The C*$* ASSERT PERMUTATION(array) assertion tells PFA that array
contains no repeated values. This assertion permits PFA to run in parallel
certain kinds of loops that use indirect addressing.

C*$* ASSERT RELATION

The C*$* ASSERT RELATION (name1 .xx. name2) assertion explicitly states
the relationship between name1 and name2. name1 and name2 are two
variables or a variable and a constant, and xx is any of the following: GT, GE,
EQ, NE, LT, or LE. This assertion applies only to the DO statement it
precedes.

If you specify this assertion globally, the program uses the assertion only
when name1 and name2 appear in COMMON blocks or are dummy
argument names to the subprogram.

105

Glossary

action summary

The portion of the listing file that summarizes PFA’s actions.

assertion

A PFA directive that asserts something about the program. For example, an
assertion can assert that a particular array is a permutation vector. PFA does
not verify the validity of assertions.

data independence

When no iteration of a loop writes to a memory location that is read or
written by any other iteration of that loop.

directive

A command, specified within the source file, that requests a particular action
from PFA. For example, directives enable, disable, or modify a feature of
PFA.

global assertion

An assertion that is placed on the first line of the input file. PFA interprets
global assertions as if they appear at the top of each program unit in the file.
See also, assertion.

global directive

Directives that are placed on the first line of the input file. PFA interprets
global directives as if they appear at the top of each program unit in the file.
See also, directive.

inlining

The process of replacing a call to an external routine with the actual code.

106

Glossary

intermediate file

A transformed version of a Fortran source program generated by PFA. This
file name has the suffix .m.

interprocedural analysis (IPA)

The process of analyzing an external routine ahead of time and using the
results when the routine is referenced.

listing file

An annotated listing of the parts of a source program that can and cannot
run in parallel on multiple processor generated by PFA. This file has the
suffix .1.

max reduction

A reduction that uses the max() intrinsic function. See also, reduction.

min reduction

A reduction that uses the min() intrinsic function. See also, reduction.

parallelize

Manipulating code so that it can be run in parallel.

permutation index

A permutation vector used to index into an array. Because all the numbers
in the permutation vector are different, when used as indexes they all refer
to different array elements.

permutation vector

Any list of numbers that are all different.

POWER Fortran Accelerator (PFA)

A source-to-source preprocessor that analyzes a program and identifies
loops that do not contain data dependencies.

product reduction

A reduction that uses the multiply operator *. See also, reduction.

107

profiling

A process that produces detailed information about program execution,
such as details about areas of code where most of the execution time is spent.
The prof(1) command produces profiling information.

reduction

An operation that reduces a set of values to one value.

round-off error

The inaccuracy resulting from rounding off values in a calculation.

sum reduction

A reduction that uses the add operator +. See also, reduction.

109

Index

A

action summary, 24, 105
addressing

indirect, 104
aliasing

with assertions, 65
–ARCLIMIT command line option, 39, 69
assertions

C*$* ASSERT ARGUMENT ALIASING, 65, 102
C*$* ASSERT CONCURRENT CALL, 64, 103
C*$* ASSERT DO (CONCURRENT), 63, 102
C*$* ASSERT DO (SERIAL), 61, 102
C*$* ASSERT DO PREFER (CONCURRENT), 62,

103
C*$* ASSERT DO PREFER (SERIAL), 61, 102
C*$* ASSERT EQUIVALENCE HAZARD, 103
C*$* ASSERT NO ARGUMENT ALIASING, 65,

103
C*$* ASSERT NO EQUIVALENCE HAZARD, 104
C*$* ASSERT NO RECURRENCE, 64, 104
C*$* ASSERT PERMUTATION, 64, 104
C*$* ASSERT RELATION, 66, 104
definition, 105
duration of, 7
for aliasing, 65
purpose of, 6
selecting, 53

–ASSUME command line option, 50, 65, 70
automatic loop blocking, 44

C

C$ DOACROSS, 60, 98
C$&, 60, 98
C*$* ARCLIMIT, 92
C*$* ASSERT ARGUMENT ALIASING, 65, 102
C*$* ASSERT CONCURRENT CALL, 64, 103
C*$* ASSERT DO (CONCURRENT), 63, 102
C*$* ASSERT DO (SERIAL), 61, 102
C*$* ASSERT DO PREFER (CONCURRENT), 62, 103
C*$* ASSERT DO PREFER (SERIAL), 61, 102
C*$* ASSERT EQUIVALENCE HAZARD, 103
C*$* ASSERT NO ARGUMENT ALIASING, 65, 103
C*$* ASSERT NO EQUIVALENCE HAZARD, 104
C*$* ASSERT NO RECURRENCE, 64, 104
C*$* ASSERT PERMUTATION, 64, 104
C*$* ASSERT RELATION, 66, 104
C*$* CONCURRENTIZE, 62, 92
C*$* INLINE, 58, 93

enabling recognition of, 50
C*$* IPA, 93

enabling recognition of, 50
C*$* LIMIT, 94
C*$* MINCONCURRENT, 94
C*$* NOCONCURRENTIZE, 62, 95
C*$* NOINLINE, 58, 95
C*$* NOIPA, 95

110

Index

C*$* OPTIMIZE, 96
C*$* ROUNDOFF, 97
C*$* SCALAR OPTIMIZE, 97
C*$* UNROLL, 98
CDIR$ IVDEP, 53, 63, 99
CDIR$ NEXT SCALAR, 61, 99
columns

specify number, 52
compiling programs with PFA, 10
–CONCURRENTIZE command line option, 70
conditions that prevent inlining/IPA, 50
controlling code execution, 38

running code in parallel, 38
specifying a work threshold, 38

controlling Fortran language elements, 50
Cray directives, 99

CDIR$ IVDEP, 99
CDIR$ NEXT SCALAR, 99
enabling recognition of, 53
see also directives, 99

creating a library, 48
customizing PFA execution, 37

controlling code execution, 38
overview, 37

CVD$ CONCUR, 62

D

data dependencies
ignoring, 63

data independence, 105
debugging lines

excluding and including, 51
default listing information interpretation

action summary, 24
DO loop marking, 23
field descriptions, 22

footnotes, 23
line numbers, 22
syntax error/warning messages, 24
viewing the listing file, 22

directives
C$ DOACROSS, 60, 98
C$&, 60, 98
C*$* ARCLIMIT, 92
C*$* CONCURRENTIZE, 62, 92
C*$* INLINE, 58, 93
C*$* IPA, 93
C*$* LIMIT, 94
C*$* MINCONCURRENT, 94
C*$* NOCONCURRENTIZE, 62, 95
C*$* NOINLINE, 58, 95
C*$* NOIPA, 95
C*$* OPTIMIZE, 96
C*$* ROUNDOFF, 97
C*$* SCALAR OPTIMIZE, 97
C*$* UNROLL, 98
CDIR$ IVDEP, 63, 99
CDIR$ NEXT SCALAR, 61, 99
CVD$ CONCUR, 62
definition, 105
purpose of, 4
selecting, 53

–DIRECTIVES command line option, 53, 71
–DLINES command line option, 51, 72
DO loop

controlling execution, 51
marking in listing file, 23

E

enabling loop unrolling, 43
equivalenced variables

using, 65
error messages

in listing file, 24

111

example
PFA command line, 14
using PFA directly, 15

F

fine-tuning inlining and IPA, 58
footnotes

in listing file, 23
formatting the listing file, 19
–FORTRAN command line option, 54, 72
Fortran standard

specifying, 52
function call

PFA listing generated, 30

G

global assertion, 105
global assumptions, 50
global directive, 105

I

indirect addressing, 104
indirect indexing, 27
–INLINE command line option, 47, 72
–INLINE_CREATE command line option, 48, 73
–INLINE_DEPTH command line option, 49, 73
–INLINE_FROM_FILES command line option, 47,

74
–INLINE_FROM_LIBRARIES command line

option, 47, 74
–INLINE_LOOPLEVEL command line option, 75
–INLINE_MAN command line option, 50, 75

inlining, 105
conditions that prevent, 50
fine-tuning, 58
manual, 50
performing, 46
specifying depth in loops, 49
specifying location of routines, 47
specifying loop level, 49
specifying routines, 47

–INPUT command line option, 54, 76
intermediate file, 106
internal table

controlling size, 39
interprocedural analysis (IPA), 106

conditions that prevent, 50
fine-tuning, 58
manual, 50
performing, 46
specifying location of routines, 47
specifying loop level, 49
specifying routines, 47

–IPA command line option, 47, 76
–IPA_CREATE command line option, 48, 76
–IPA_FROM_FILES command line option, 47, 77
–IPA_FROM_LIBRARIES command line option, 47,

77
–IPA_LOOPLEVEL command line option, 78
–IPA_MAN command line option, 50, 78

L

library
creating for inlining and IPA, 48

–LIMIT command line option, 40, 79
–LINES command line option, 79
–LIST command line option, 55, 80
listing file, 106

112

Index

action summary, 24
error/warning messages, 24
field descriptions, 22
footnotes, 23
include options, 20
interpreting default information, 21
samples, 27-34
viewing, 22

listing file formatting, 19
disabling message classes, 21
paginating the listing, 19
specifying information to include, 20

–LISTOPTIONS command line option, 80
loop blocking, 44
loop unrolling

enabling, 43
loops

controlling execution, 51

M

max reduction, 106
memory management transformations, 44
messages

in listing file, 24
min reduction, 106
–MINCONCURRENT command line option, 81

N

–NOCONCURRENTIZE command line option, 81
–NODIRECTIVES command line option, 82
–NODLINES command line option, 51, 82
–NOONETRIP command line option, 51, 82

O

obsolete options, 55
obsolete syntax, 88
–ONETRIP command line option, 51, 83
optimization

scalar
controlling, 42

setting levels, 40
–OPTIMIZE command line option, 40, 83
overview of PFA, 1

P

paginating the listing file, 19
parallelize, 106
permutation index, 106
permutation vector, 106
PFA, 106

action summary, 24
assertions, 101-104

duration, 7
purpose of, 6

circumventing, 60
command line example, 14
command line options, 3-4, 67
command line syntax, 11
compiling with, 10
controlling code transformations, 39
customizing execution, 38
definition, 1
directives, 91-99

purpose of, 4
table of, 5

interpreting default listing, 21

113

naming input and output, 54
overview of usage, 9
specifying routines, 49
strategy for using, 3
summary, 7
table of action abbreviations, 25
table of command line options, 12
using directly, 15
utilizing output, 17

PFA command line option
–ARCLIMIT, 39, 69
–ASSUME, 50, 65, 70
–CONCURRENTIZE, 70
–DIRECTIVES, 53, 71
–DLINES, 51, 72
–FORTRAN, 54, 72
–INLINE, 47, 72
–INLINE_CREATE, 48, 73
–INLINE_DEPTH, 49, 73
–INLINE_FROM_FILES, 47, 74
–INLINE_FROM_LIBRARIES, 47, 74
–INLINE_LOOPLEVEL, 75
–INLINE_MAN, 50, 75
–INPUT, 54, 76
–IPA, 47, 76
–IPA_CREATE, 48, 76
–IPA_FROM_FILES, 47, 77
–IPA_FROM_LIBRARIES, 47, 77
–IPA_LOOPLEVEL, 78
–IPA_MAN, 50, 78
–LIMIT, 40, 79
–LINES, 79
–LIST, 55, 80
–LISTOPTIONS, 80
–MINCONCURRENT, 81
–NOCONCURRENTIZE, 81
–NODIRECTIVES, 82
–NODLINES, 51, 82
–NOONETRIP, 51, 82

–ONETRIP, 51, 83
–OPTIMIZE, 40, 83
–pfa, 11
–pfaprepass, 11
–ROUNDOFF, 42, 84
–SAVE, 52, 85
–SCALAROPT, 42, 85
–SCAN, 52, 86
–SUPPRESS, 86
–SYNTAX, 87
–UNROLL, 43, 87
–UNROLL2, 43, 88
–WK, 11

–pfa command line option, 11
PFA overview of operation, 1
–pfaprepass command line option, 11
POWER Fortran Accelerator (PFA), 106
product reduction, 106
profiling, 107

R

reductions
definition, 107
example of, 32
sum, 35
types of, 35

round off
controlling variations, 42
error, 107

–ROUNDOFF command line option, 42, 84
routines

specifying for PFA, 49
specifying where to search, 47

running code in parallel, 38, 62
running code serially, 61

114

Index

S

sample listing files, 27
function call, 30
indirect indexing, 27
reductions, 32

–SAVE command line option, 52, 85
scalar optimizations

controlling amount attempted, 42
–SCALAROPT command line option, 42, 85
–SCAN command line option, 52, 86
setting optimization level, 40
significant columns

specifying, 52
specifying a complexity limit, 40
specifying a work threshold, 38
specifying routines for inlining or IPA, 47
standard directives, 92-98

see also directives
strategy for using PFA, 3
sum reduction, 35, 107
–SUPPRESS command line option, 86
–SYNTAX command line option, 87
syntax conventions, xiii

T

tiling, 44

U

–UNROLL command line option, 43, 87
–UNROLL2 command line option, 43, 88

V

variables
equivalenced, 65
saving across invocations, 52

VAST directives, 99
enabling recognition of, 54
see also directives, 99

viewing the listing file, 22

W

warning messages
in listing file, 24

–WK command line option, 11
work threshold

specifying, 38

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-0715-060.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

