CASEVision/Tracker 2.0
Design Guide

Document Number 007-1664-020

CONTRIBUTORS

Written by Margaret-Anne Halse
Production by Gloria Ackley
Engineering contributions by Pete Orelup

© Copyright 1993, Silicon Graphics, Inc.— All Rights Reserved

This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/
or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Silicon Graphics is a registered trademark and CASEVision and IRIX are trademarks
of Silicon Graphics, Inc. UNIX is a registered trademark of UNIX System
Laboratories. X Window System is a trademark of Massachusetts Institute of
Technology. OSF/Motif is a trademark of Open Software Foundation. ClearCase is a
registered trademark of Atria Software, Inc. Raima and Raima Data Manager are
trademarks of Raima Corporation. ToolTalk is a trademark of Sun Microsystems, Inc.

CASEVision/Tracker 2.0 Design Guide
Document Number 007-1664-020

Contents

Introduction Xxiii
About This Guide xiii

Introduction to Tracker System Design 1
Tracker Terminology 1
Application Views 2
Display Areas 4
Transitions 4
Tracker Design Tools 4
The PDL File 5
The Data Manipulation Language 5
The tvgen Program 6
The app-defaults File 7
Tracker Design Cycle 7
Using Starter Systems 9

Using the Process Description Language (PDL) 11
The PDL File 11

Application Components 12

PDL Structure 12
Field Declarations 15

Field Types 15

Declaring Fields with like 20

Declaring Entities 20

Fields Declared by Tracker 21

Field Declaration Example 21

Contents

Transition Declarations 23
Transition Example 25
Declaring States 26
Declaring Rules and Actions 27
Predefined Methods 29
View Declarations 36
View Format 36
User Interface Formatting 38
Formatting Example 41
Defining a Control Bar 43
Defining a Query Results Area 43
Defining a Request Form Area 45
Defining Field Pop-up Menus 49
Help Declarations 51
Creating a Help Declaration 51
Help Declaration Locations in the PDL File 52
Help Implementation Strategy 54

3. Using the Data Manipulation Language (DML) 57
Tracker Database Overview 58
Database Structure 58
Access to the Database 60
Controlling Database Access 61
DML Statements 62
General Characteristics of DML Statements 63
Specifying Literal Values 63
Select Statement 66
Nested Select Statements 69
Insert Statement 70
Update Statement 70
Delete Statement 71
Locking Statements 71

4. Tutorial—A Basic Tracking System 73
Analyzing the samplel PDL File 74
samplel PDL File 74
samplel Field Declarations 76
samplel Transition Declarations 76
samplel View Declaration 78
Generating a Tracker Application 79
Expanding the samplel Application 80
Adding a Field Declaration 81
Adding a Field to a View 82
Adding a State 83
Adding a Transition 85

5. Installing RTS Applications 87
Procedures for Installing RTS Applications 87

Step One 88

Step Two 88

Step Three 89

Step Four 89

Step Five 90

Step Six 91

Step Seven 92

6. Advanced Design Techniques 93
Using Dates 94

Representing Date Values 94
Input Formats 94
Display Formats 98
Comparing Dates 98
Date Entry in PDL 99
Date Entry in DML 99

Contents

Customizing Resources 99
Naming Applications, Widgets, and Resources 100
Using Names 101
Personal Tracker Resources 103
Using the exec Functions 106
Executing UNIX Commands from PDL 106
Executing DML Select Statements 107
Importing Data 108
Basics 109
Text Output from Your Old Database 112
Preparing Translation Scripts 114
The Translation Script 115
The Resulting DML 125

7. Configuration Management 127

The checkout/checkin Model 128
Updating Databases 129
Using the Reporting Capabilities 130
Configuration Tools 130
Setting Up a bug_task Utility 131

The Integration Architecture 131
The Trigger Scripts 132
checkout Triggers 133
checkin Triggers 134
uncheckout Trigger 135

Using the ClearCase/Tracker Integration 136
Scenario 1: A Typical Bug-fixing Session 136
Scenario 2: Setting Up a Bug Task 137
Scenario 3: Cancelling Work In Progress 138
Scenario 4: An Incomplete Cycle 139
Scenario 5: An lllegal State 140
Scenario 6: Using an Alternate Policy File 140

vi

Using the find_fixes Utility 141
Recovering from Database Update Failures 143
Preparing VOB Databases 144

The policy vars.sh File 145

RTS PDL Files with On-line Help 149
Tracker.pdl 150

rtsapprove.pdl 176

rtsrespond.pdl 179

rtssubmit.pdl 182

Index 185

Vii

Figures

Figure 1-1 Major Parts of rtsquery, a Typical Tracker Window 2
Figure 1-2 rtsfiles, a Typical Tracker Auxiliary View Window 3
Figure 1-3 Overview of Tracker Database Access 5

Figure 1-4 Generating and Installing Tracker Applications 6
Figure 1-5 State Transition Diagram for a Request in rtsquery 8
Figure 2-1 Format for a PDL File 14

Figure 2-2 Entries in the Journal Field 19

Figure 2-3 Field declarations for the PDL file 22

Figure 2-4 Format for the Transitions Section in PDL File 24
Figure 2-5 Format for the Views Section of PDL File 36

Figure 2-6 Typical Declarations in the Views Section of a PDL File 42
Figure 2-7 Portion of PDL Defining Modes Menu 43

Figure 2-8 Portion of PDL Defining Query Results Area 44
Figure 2-9 Portion of PDL Defining Request Form Area 46
Figure 2-10 An example of a three-column display 49

Figure 2-11 Portion of PDL Defining Status Field 50

Figure 2-12 Help Locations at Beginning of PDL File 52

Figure 2-13 Help Locations in Transitions and Views Sections 53
Figure 2-14 Typical Tracker On-line Help Hierarchy 55

Figure 3-1 RTS Database with Entity Classes 59

Figure 3-2 Relation of DML to Tracker and PDL 60

Figure 4-1 samplel User Interface 74

Figure 4-2 samplel PDL File 75

Figure 4-3 Adding a Field Declaration 81

Figure 4-4 Changing a View Declaration 82

Figure 4-5 Original State Transitions of a Request in samplel 83
Figure 4-6 State Transitions after Adding State 84

Figures

Figure 4-7
Figure 4-8
Figure 6-1
Figure 7-1
Figure 7-2

Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6

Transition Declarations after New State 85
Transition Declarations after New Transition 86
Input Format 113

Updating ClearCase and Tracker Databases 128

Database Modifications by ClearCase/Tracker
Integration 129

Checkout Mechanism 133

Checkin Mechanism 135

Complex Version Tree with FIXES Attributes 142
Typical Mail Message to Tracker Administrator 143

Tables

Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 2-7
Table 2-8
Table 2-9
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 6-1
Table 6-2
Table 7-1
Table A-1
Table A-2
Table A-3

Tracker Field Types 15

Logical Operators 27

External Methods 30

Methods for Testing Field Data 31

Methods for Retrieving Field Data 32
Methods for Making Field Comparisons 33
Methods for Changing Field Values 34
Methods for Calculating with Field Values 35
Predefined Feature Names 41

Implicit Typing Examples 64

Explicit Typing Examples 65

lllegal Formats 65

Comparison Operators 67

Date Interpretation Examples 95

Time Zone Interpretation 97

Script Files 132

Tracker-Specific Environmental Variables 146
Policy Environmental Variables 146
Miscellaneous Environmental Variables 147

xi

About This Guide

Introduction

This guide describes CASEVision™/Tracker 2.0, a highly flexible tool from
Silicon Graphics, Inc.®, that enables software organizations to create their
own tracking systems for bugs and enhancement requests. It is intended for
the designers of such systems. It is assumed that the designer has had
exposure to one or more high-level programming languages and
understands the concepts of database design and administration.

CASEVision/Tracker 2.0 runs on IRIX™ 5.1. For system and memory
requirements, please refer to the CASEVision/Tracker 2.0 Release Notes.

This guide has the following chapters:

Chapter 1, “Introduction to Tracker System Design,” defines the
Tracker terminology and gives an overview of the design cycle and
tools.

Chapter 2, “Using the Process Description Language (PDL),” describes
the structure of the PDL and the contents of the PDL file, including help
declarations.

Chapter 3, “Using the Data Manipulation Language (DML),” gives an
overview of the database structure and sets out the characteristics of
DML statements.

Chapter 4, “Tutorial—A Basic Tracking System,” steps users through
the process of creating and modifying a Tracker application.

Chapter 5, “Installing RTS Applications,” details the procedure for
installing RTS applications.

xiii

Introduction

Xiv

Chapter 6, “Advanced Design Techniques,” discusses advanced
techniques such as using dates, customizing resources, using the exec
functions, and importing data from external databases.

Chapter 7, “Configuration Management,” outlines the checkout/checkin
model and describes how to use the ClearCase/Tracker integration.

Appendix A, “The policy_vars.sh File,” defines the environment
variables used by Tracker applications and stored in this file.

Appendix B, “RTS PDL Files with On-line Help,” gives the complete
text of the four .pdl files, including the on-line help text.

Chapter 1

Tracker Terminology

Introduction to Tracker System Design

CASEVision/Tracker 2.0 is a highly flexible tool that enables software
organizations to create their own systems for tracking bugs and
enhancement requests. There is no need to change your current method of
making and tracking requests. Unlike commercial off-the-shelf systems,
which are usually limited to a specific methodology and are difficult to
modify, Tracker systems can be built from the ground up or from one of the
starter systems provided.

The starter systems are rtsquery, a full-featured tracking system, and samplel,
a more rudimentary system that can be used as a building block.

This chapter covers these topics:

= Tracker terminology

= Tracker design tools

= Tracker design cycle

To understand Tracker system design, itis helpful to know a few of the terms
used in Tracker. The term request refers to the type of data that you are
tracking in the system, typically bug reports or requests for enhancement
(RFE). A full report contains all the information associated with the request,
such as submitter, owner, priorities, and dates.

Chapter 1: Introduction to Tracker System Design

Modes Menu

Menu bar

Control bar

Query results
area

Request

formarea —

Application Views

The program that a user runs to access a request is an application. A view is a
window for inspecting or changing a request. An application generally has
a main view with most of the request information and one or more auxiliary
views (see definition below). The main view is special in several ways: it
appears when you first start the application, whereas auxiliary views are
windows that open from the Views menu in the main view. Exiting the main
view exits the entire application, while exiting an auxiliary view merely
closes that one window.

Figure 1-1 shows rtsquery, the starter application provided by Silicon
Graphics Inc., which is a typical Tracker main view.

e] [| o el e |

P P P B P

Figure 1-1 Major Parts of rtsquery, a Typical Tracker Window

Tracker Terminology

The main sections of the window are labeled. Report #, Description, and Type
in the request form area represent typical fields.

If you want different main views for different types of users, you can create
supplementary applications. A supplementary application uses the same
request database as the main application but has a different main view and
potentially different auxiliary views. Supplementary applications can serve
as filters for users doing specific tasks that don’t require all of the fields (see
definition below).

Auxiliary views supplement the main view and are used for special data or
for users who require limited information or functionality. RTSfiles, for
example in Figure 1-2, lets users enter the names of files in which a bug has
been located into its three fields: Found in:, Resolved in:, and Fixed Releases:.
The bug itself is listed at the top.

Figure 1-2 rtsfiles, a Typical Tracker Auxiliary View Window

Chapter 1: Introduction to Tracker System Design

Tracker Design Tools

Display Areas

Within a window, there are display areas, which are groupings of related
fields, enclosed by boxes. A field is a piece of information in a request. A field
that has multiple lines may have a sash control. A sash is a small square
“knob” near the right edge of a window that lets users change the size of a
multi-line field by dragging it up or down. Fields are discussed in detail in
“Field Declarations” and display areas are discussed in “View Declarations”
in Chapter 2.

Transitions

A transition is an operation performed through a view that changes the
request either in terms of status or data. Transitions are accessed from the
Modes menu in the view’s control bar (see Figure 1-1). Note that the selections
“Query” and “Display” also appear in the Modes menu but are used for
inspection rather than request modification.

A transition can have associated rules and actions. A rule is a required
condition necessary for the transition to take place. For example, rtsquery
requires a description entry for submitting requests. An action is an
operation performed as part of the transition. For example, when a request
is submitted, the submit date changes to the current date.

Transitions are discussed in detail in “Transition Declarations” in Chapter 2.

A Tracker request tracking system has a graphical user interface (GUI) and a
database of requests. Tracker provides these tools for designing a system:

= process description language (PDL)
= data manipulation language (DML)
= Tracker application generator (tvgen)

= Tracker X resources file (app-defaults)

Tracker Design Tools

The PDL File

At the heart of a Tracker request tracking system is the PDL file, a file coded
in the process description language. A single PDL file can define a complete
request tracking system, including the data to be recorded, the operations
allowed on that data, rules controlling those operations, automatic actions
performed by the system, and the application from which users can access
the request database. The PDL is discussed in Chapter 2, “Using the Process
Description Language (PDL).”

The Data Manipulation Language

The data manipulation language (DML) is an interface to the Tracker database.
It is similar to SQL and other fourth-generation database query languages.
All queries and database transactions are made through the DML. The
system administrator controls access to the database through the DML, and
can set permissions for individuals who need to make modifications to the
database using DML. Figure 1-3 illustrates database access in Tracker.

winterm

dml> select ...

|
GUI (PDL) shell window

Request
database

N

Figure 1-3 Overview of Tracker Database Access

Chapter 1: Introduction to Tracker System Design

Most users access the database from a Tracker application window
(generated from a PDL file). You can also access the DML directly from a
shell for more complex queries on the database, report generation, and batch
database modifications. The DML is hidden from users in the GUI. Database
access is discussed in Chapter 3, “Using the Data Manipulation Language
(DML).”

The tvgen Program

The tvgen program generates Tracker application files from PDL files, as
shown in Figure 1-4. It produces a script containing user-editable views, a
Tracker database with supporting files and directories, an app-defaults file
containing user interface resources, and help files. Field and transition
definitions are stored in the database. After you run tvgen, you can make
changes to any of the new files.

Finally, each user must run tvinstall to create links to the application files.
Installation using tvgen and tvinstall is described in Chapter 4, “Tutorial—A
Basic Tracking System.”

pdl file
script file database files app-defaults file help files
(contains views) (fields, transitions)
installed links

to application files

Figure 1-4 Generating and Installing Tracker Applications

Tracker Design Cycle

Tracker Design Cycle

The app-defaults File

The app-defaults file lets you fine-tune many aspects of the appearance and
behavior of the applications. Tracker provides a number of predefined
features that can be selected through the PDL. You can make other
adjustments to the app-defaults file as well before distributing the complete
applications to the users. For more information, see “Customizing
Resources” in Chapter 6, “Advanced Design Techniques.”

The designer of the request tracking system typically performs the following
steps to build a request tracking system for an organization:

1.

Identify all the information to be tracked, the users, groups, and any
special needs they have.

Define the desired request tracking and approval process. In particular,
define the different states of a request as it goes through the process. (A
state transition or data flow diagram may be useful.)

The state transition diagram for requests in the rtsquery system is
shown in Figure 1-5.

Determine whether to use one of the starter systems supplied by Silicon
Graphics or build a new system from scratch.

Note: As with other programming methods, sometimes it is easier to
modify an existing system than to create a new one.

Develop a PDL file to match the desired process.

Compile the PDL file and specify the request database by using the
tvgen utility.

tvgen checks the syntax, creates an empty database if necessary, loads
the PDL into the request database, takes care of on-line help, and stores
the application in a subdirectory called tools for mounting or copying to
other systems.

The application’s name is based on the name of the main view defined
in the PDL file, shifted to all lower case (the convention for IRIX
commands). For more information, see the tvgen man page.

Chapter 1: Introduction to Tracker System Design

Nonexistence

SUBMIT_BUG SUBMIT_RFE

! !

-~
AWAITING_RESPONSE g

REJECT DUPLICATE

RESOLVE REDO

—™{(_ AWAITING_APPROVAL RE-OPEN
APPROVE
Y
CLOSED
DELETE

'

DELETED

Figure 1-5 State Transition Diagram for a Request in rtsquery

Using Starter Systems

Using Starter Systems

6. Provide further customization if desired.

Typical customizations at this point include resource settings in the
app-defaults file (hamed tools/Tracker.adinstall) or addition of any external
scripts used by applications. For more information, see Chapter 6,
“Advanced Design Techniques.”

7. Letusers access the new application.

The tools subdirectory, created in the database directory by tvgen,
should be copied or NFS-mounted onto each user’s system (it does not
matter where). Then, run the script tvinstall on the user’s system to
complete the installation.

When the system is fully installed, the user can start the application
generated by tvgen by entering its name on the command line.

Note that the Tracker starter systems do not come already installed. Before
you can use them, you must install samplel and/or rtsquery by following the
instructions in Chapters 4 (for samplel) or 5 (for rtsquery).

Chapter 2

The PDL File

Using the Process Description Language (PDL)

The field declarations, transition definitions, and graphical user interface for
Tracker applications are specified by using a special process description
language (PDL). This chapter describes the PDL and consists of:

e PDL file

= Field declarations

= Transition declarations
= View declarations

« Help declarations

A PDL file (a file coded in the process description language) defines a
complete request tracking system, including the data to be recorded, the
operations allowed on that data, rules controlling those operations,
automatic actions performed by the system, and the application from which
users can access the request database.

After you have gathered the information necessary for defining your
process, you can put together your PDL file.

11

Chapter 2: Using the Process Description Language (PDL)

12

Application Components

Specifically, Tracker allows you to define the following for a system:

« fields in the request

« transitions, in terms of:

name
prior state and new state
rules

actions

= views (the windows used to access request information). Some typical
display areas in view windows are:

control bar
guery results area

request form area, the rows of request information to be displayed,
including labels and fields

= help information accessible through the on-line help system

PDL Structure

The declarations and top-level expressions in the PDL resemble those in a
block-structured language such as C. The blocks are delimited by braces ({}).
Declarations are separated by semicolons (;).

White space, including newlines, is ignored. Comments are allowed, using
either the C form (/* comment */) or the C++ form (//comment).

You can use the #include, #define, and #ifdef C preprocessor constructs.

The PDL File

A PDL file has three major sections (which must be declared in this order):

1. Field declarations, where the fields in the request are named and where
their types are declared.

2. Transition declarations, which define the states through which requests
can pass and the rules for controlling the process.

3. View declarations, where the GUI applications to interact with the
request database are defined.

The format for a PDL file is shown in Figure 2-1. Help declarations, that is,
the information on help cards in the on-line help system, can be made for
most items in a PDL file. Since they take up a lot of space, the help
declarations are not shown in Figure 2-1. They are described in “Field
Declarations” later in this chapter.

Note: The PDL files for supplementary applications contain view

declarations only, since they use the same field and transition declarations as
their main view PDL files.

13

Chapter 2: Using the Process Description Language (PDL)

Field
declarations

Transition
declarations

View
declarations

14

}

L}

L}
Figure 2-1

- fields {

entity-class entityname;
fieldname: fieldtype; // comment

r transitions {

transitionname (priorstate => newstate) {
rules {
fieldname.method || fieldname.method ||

}

actions {
fieldname.method,;

}
rules
actions {}

[views {

viewname (titletext) {
display (titletext) {
control-bar {
transitions transitionname, ...
}
}
gresults (titletext) {
index listfields,...;
}
display (titletext) {
row { tuple, tuple, ...}

}
}

viewname (titletext) {
display (titletext) {
row { tuple, tuple, ...}

Format for a PDL File

Field Declarations

Field Declarations

Fields are defined by type at the beginning of the PDL file. You can declare
fields that display in the user interface as well as fields for internal purposes
such as scratch variables. Note that you declare only fields in this section.
You specify default values for fields (and other manipulations) in the view
declarations section.

Field Types

The field types available in Tracker are shown in Table 2-1. Those types that
display predefined values through the “Values” item in the field menus are
indicated. The “Values” menu is displayed when the user clicks the right
mouse button on a field.

Table 2-1 Tracker Field Types

Type Name Comments
boolean Holds boolean data (true/false). Displayed as either True or
False . Accepts entries of True, False, T ,or F. The

“Values” menu item displays “True” and “False.”

dat e Tracker accepts a wide range of formats for dates and times. To
see the full range, refer to “Using Dates” in Chapter 6,
“Advanced Design Techniques.”

file Holds a file name. The “Values” menu item displays a pop-up
file selection dialog. If a file name is entered through the GUI,
the file must exist.

The file type has special implications for ClearCase® users
(see “Using file with ClearCase” below).

int Holds a 32-bit signed integer.

journal Holds multiple lines of text. Allows the system administrator
to maintain a history of the changes made to any request.
Instead of overwriting the current information, changes are
appended to the existing history, for as long as the request is
active. See “Using the journal Field” below.

list-of Holds a list of any of the other scalar field types.

15

Chapter 2: Using the Process Description Language (PDL)

16

Table 2-1 (continued) Tracker Field Types

Type Name Comments

long-text Holds multiple lines of text. Intended for fields containing
explanations. There is no “Values” menu item but there is an
“Edit...” item for using an external editor.

one-of Holds an enumeration value, that is, one of a set of predefined
values. Values are separated by commas and can be legal
identifiers or quoted, single-line text. Its use is described in
detail below. The “Values” menu item displays either a
sub-menu or a pop-up selection dialog, depending on the
number of values.

short-text Used for single-line text. Intended for short entries.

Using file with ClearCase

When entering a file in a field of type file, Tracker responds as follows:
- for a plain file: it verifies that the file exists.

« forafile in a ClearCase Versioned Object Base (VOB): Tracker verifies
that the file exists, determines which version is selected by the current
ClearCase view, and records the version information in the file field.

The menu for file fields includes two items useful for obtaining information
about ClearCase files, available if the field has a valid value and the file
referred to is a VOB file. They are “Describe” and “History,” both accessible
from the “Actions” sub-menu. They use ToolTalk™ to communicate with
ClearCase. “Describe” executes the cleartool describe -long and
“History” executes the cleartool Ishistory command on the file referred
to by the field. Both commands display their results in a tty window, created
as needed, which is separate from the Tracker application. Subsequent
command results appear there as well.

Field Declarations

Using one-of Fields

The default one-of list is a closed set from which a user must select one of the
pre-defined values shown in the “Values” menu or dialog box. You can
specify an open one-of set by entering an ellipsis (...) immediately (no
comma) after the last value. Use open sets to specify the values used most
often and to allow entry of non-predetermined values.

A one-of field may contain any single-line text value. In PDL, one-of field values
may appear either as identifiers or as single-line quoted strings. A legal
identifier must begin with an alpha character (upper or lower case). It may
include letters, the underscore (), and digits, in any order. You may not
begin a legal identifier with $, since the $ prefix marks predefined fields or
environment variables.

A single-line quoted string value may use the full character set. You can mix
legal identifiers with quoted literal strings in a one-of field definition. For
example;

X: one-of
a, b, ¢, '123’, 'sarah’, '4.0.1" ...

The short-text values let you pull in values from external programs by using
the exec commands (see “Using the exec Functions” in Chapter 6,
“Advanced Design Techniques”). It also lets you cross-assign values
between fields. You can use the setValue method to set the one-of field value
to short-text. For example, suppose that the Submitter field is a one-of field
with the values being a list of engineers in a particular group. You can set the
value to default to the current user of the application (SUSER), which is a
short-text field.

If a one-of field has 25 values or less (default), Tracker creates a cascading
submenu off its “Values” menu item in the GUI. If there are more than 25
values, Tracker builds a selection dialog box that presents the user with a
scrolled list from which to choose a value.

To change the default setting for the number of fields required for a scrolled

list, you must set the maxAssistValues resource in the app_defaults file (see
“Personal Tracker Resources” in Chapter 6, “Advanced Design Techniques.”

17

Chapter 2: Using the Process Description Language (PDL)

18

Duplicated Values for one-of Fields

There are two limitations on using one-of fields:

= The same value cannot appear in more than one closed enumeration in
a one-of field. You can, however, share an entire enumeration between
two fields by listing both field names in the same declaration or by
using like (see below).

= You may not use the same identifier for a one-of field value and a state
identifier. If you do, Tracker produces an error message indicating that
the state identifier is a duplicate name. Transition states are discussed in
more detail in “Transition Declarations.”

Using the journal Field

Figure 2-2 shows the history of the actions taken on a request in a Tracker
application. The actions SUBMIT_BUG, ASSIGN, and RESOLVE are
recorded, along with the date and the submitter’s name. Note that you
cannot customize the format of the entryheader when you design your
application; Tracker creates the headings automatically.

Field Declarations

¥fochar core dunps when I click on the "Execute" button.

Render: GL: X request = 3.0, error code = 3
Render: ERROR #93 Error in communication with window server: ERR_WMANIPC

The following message is reported:

Fixed in last night’s build.

Fri Sep 17 16:43:54 1993
scrisbin@solaris. esd. sgi. com

Fri Sep 17 16:15:36 1993
scriabin@solaris. esd. sgi

Fri Sep 17 16:13:37 1993
scriabin@solaris. esd. sgi

SUEMIT EUG

Figure 2-2 Entries in the Journal Field

You can write anything you like to the body of the journal entry using
setValue(). The RTS example PDL file stores only the transition name in the
journal entry body, using:

history.setValue($TRANSITION.text);

This is an example of a more complex journal entry:

tmpShortText.setValue(

execFilter('echo “Transition from state $STATE_old
to $STATE™));

history.setValue(tmpShortText.value);

Figure 2-3 shows the field declaration for a journal field.

19

Chapter 2: Using the Process Description Language (PDL)

20

Declaring Fields with like

The key word like lets you share a field type between two fields and apply
different help text.

For example;

fieldnamel: fieldtypel
help { helpcardspecl};
fieldname2: like fieldnamel
help { helpcardspec2};

In the example, fieldname2 has the same type as fieldnamel, that is, fieldtypel.
It uses a different help card specification, helpcardspec2.

Declaring Entities

At the beginning of the field declaration section, the following entry can
appear:

entity-class entityname;

Tracker fields in a PDL file are grouped into an entity for direct access from
DML. To specify a custom name for an entity, you must declare it here;
otherwise, the default name tracker_request is used.

The concept of entities in the database is covered in more detail in Chapter 3,
“Using the Data Manipulation Language (DML).”

Entity Identification

Tracker automatically assigns an entity identification number
(3ENTITY_ID) to each new request as it is submitted to the database.
Because the ID number is assigned prior to the execution of any actions, its
value can be used in an action to set the value of other variables. For
example, where report_number is of typeint :

actions {
report_number.setValue($ENTITY_ID.value);

Field Declarations

Fields Declared by Tracker

The following fields are predeclared and controlled solely by Tracker:

= $STATE holds the current state of the request.

= $TRANSITION is set to the name of the current transition.

= S$ENTITY_ID is a unique integer assigned to each request when it is
entered into the system.

Environment variables are also available as predeclared fields. They can be
changed by the PDL and used in transition rules and actions through the
external methods (see “External Methods.” later in this chapter).

Field Declaration Example

The code segment in Figure 2-3 shows the field declarations for the PDL file
used to generate the rtsquery application.

Each declaration shows the field on the left and its type on the right. Notice
how the short-text type is used for short entries and how long-text is used for
the multiple-line fields. Fields with the one-of designator are followed by the
defined set of values.

21

Chapter 2: Using the Process Description Language (PDL)

fields {
report_number: int;
submitter: short-text;

submit_date: date;
recommendation: one-of
DEFERRAL, REJECTION, RESOLUTION, DUPLICATION;

type: one-of
BUG, RFE;
priority: one-of
LOW, MEDIUM, HIGH,;
owner: short-text;
project: one-of

#include "projects.h" // This include file contains the
/I list of projects. Edit it to
// change the list of known projects.

system: one-of
SYSTEM_1, SYSTEM_2, SYSTEM_3;
found_in: list-of short-text;
summary: short-text;
description: long-text;

is_duplicate_of: int; //pr-num
interested_parties:list-of short-text;

due_date: date;
close_date: date;
reopen_date: date;
resolved_in: list-of file;

resolution_description:long-text;
fixed_releases: list-of short-text;

approver: short-text;
history: journal
/I These fields are not visible to the users
czar: short-text;
bboard: short-text;
notify_list: list-of short-text;

}

Figure 2-3 Field declarations for the PDL file

22

Transition Declarations

Transition Declarations

Transitions are the operations performed on a request to change its state or
data. To declare a transition, do the following:

Enter the name of the transition in the transitions section of the PDL
file. This name will appear in the Modes menu and will be enabled for
appropriate states.

Define the change in state (if any) as a result of this transition.
Define any rules required for the transition to take place.
Define any actions that result from the operation.

Define global actions and rules for your transition group. These are
specified at the bottom of the transitions section and are applied to all
transitions after the local rules or actions are applied to the individual
transition.

Define on-line help as desired. You can define help for the transitions,
individually and as a group, for a set of rules belonging to a transition,
for a set of actions belonging to a transition, and for the global rules and
transitions.

Note: Wherever you provide help text for a rule or an action you can use
the key word include-pdl to include the actual rules or actions
declarations in the help card,; this is recommended only for sophisticated
end users or for debugging transitions.

The format for the transitions section is shown in Figure 2-4. Reserved words
are shown in normal font; variables are shown in italics. On-line help
declarations are also shown.

23

Chapter 2: Using the Process Description Language (PDL)

Transition group
help declaration

transitions {

Local transition
declarations

Global rules and
actions declarations

24

L}

help {
helpcardspec;
3

transitionname (priorstate => newstate) {

help {
helpcardspec
h

]

]

rules {
help {

k

fieldname.method ||

actions {

helpcardspec W

]

fieldname.method ||

seny

help {

k

fieldname.method;

}

transitionname ... W

helpcardspec 1

rules {
help {
helpcardspec
3

fieldname.method ||

}

actions {

|
]

fieldname.method ||

aery

help {
helpcardspec
3

fieldname.method;

Figure 2-4

|
]

Format for the Transitions Section in PDL File

transition declaration

transition
help declaration

rules declaration
rules help declaration

rule condition

actions declaration
actions help declaration

action

other transitions
global rules declaration

global rules
help declaration

global actions
declaration

global actions
help declaration

Transition Declarations

Transition Example

The following code segment provides an example of how transitions are
declared. The code segment is the declaration for the RESOLVE transition in
the rtsquery application. RESOLVE is used when a request has been executed
and needs to be signed off by the approving authority.

RESOLVE(AWAITING_RESPONSE=>AWAITING_APPROVAL) {
help {
help-title 'RESOLVE Transition’;
short-help-title 'RESOLVE’;
fixed-width-help-text’
Use RESOLVE to close out a request. RESOLVE takes a
request from the AWAITING_RESPONSE state to the
AWAITING_APPROVAL state.’;
%
rules {
resolution_description.isSet;
resolved_in.isSet;

}

actions {
recommendation.setValue(RESOLUTION);

}
}

The first line contains the transition name RESOLVE and the change of state,
from AWAITING_RESPONSE to AWAITING_APPROVAL.

The help declaration (which is optional) comes next. Notice that this
example has a full title and a short title. The fixed-width option is also used
in the help text declaration. This option is described in “Creating a Help
Declaration” later in this chapter.

Transition declarations can have a rules section for establishing information
required for the transition and an action section for specifying what takes
place as a result of the transition. Tracker also provides methods, that is,
operations on fields, that are useful in creating rules and actions.

In the example, the rules section contains two rules, both of which must be
true for the transition to be performed. They both use the isSet method.

25

Chapter 2: Using the Process Description Language (PDL)

26

The rule

resolution_description.isSet;
requires that the Resolution field in the main view be filled in.

The line

resolved_in.isSet;
requires that the Resolved in field in the RTS files view be entered.

The actions section has only one action in this example. It uses the setValue
method to change the Recommendation field to the value RESOLUTION,
signifying that the request has been resolved.

Declaring States

Request states are declared inside parentheses that follow transition names,
separated by the transition operator, =>, as follows:

(priorstate (priorstate), => newstate)

These are the options for using the transition operator:
(=>statename) creates the request where none previously existed.

(priorstate=>newstate)
signifies a change from the prior state to the new state. Both
states must be specified.

(=>) signifies that any prior state is permitted and that there is no
change in state as a result of this transition.

(Sl' Sz, S3 ...:>S4)
the prior state can be any one of Sy, Sy, S3, etc. All prior states
go to one new state, that is, S,. For example, a number of
different states could all go to CLOSE. All states must be
specified.

RTS transitions such as “NOTIFYME” and “EDIT” have no required states.
Transitions for creating new requests require a new state but no prior state.

Transition Declarations

Caution: If you use the same state in more than one transition, it must
match in case and spelling; otherwise, different versions of the name will be
interpreted as different states.

The rtsquery application (see Appendix B) defines these states:

« AWAITING_RESPONSE

= AWAITING_APPROVAL

e CLOSED

e DELETED

Declaring Rules and Actions

After the transition’s state change is declared, you declare the rules, if any,
and the resulting actions, if any. Tracker supplies predefined methods for

declaring rules and actions. Tracker also lets you use the following logical
operators (shown in Table 2-2), borrowed from the C language.

Table 2-2 Logical Operators

Operator Description

&& and

11 or

! not

? ternary (if ... then ... else ...) For example,
priority.setValue(product_released.value ? 3 : 5)
sets priority to 3 if product_released istrue orto5if
product_released is false

All the operators except the && (and) operator function in top-level rules.
The use of && is restricted to embedded expressions in the PDL file; for
example:
tes{
xis(xsefValue(nameisSet ? addressisSet && companyisSet:
} Fekse))

27

Chapter 2: Using the Process Description Language (PDL)

28

For more information on anding top-level conditions, refer to “Rules” below.

In addition, Tracker automatically provides actions setting the $STATE field
to the new state and the STRANSITION field to the transition name.

Rules

Rules are declared after the state declaration; they are preceded by the key
word rules and are enclosed by braces ({}). In the transition example, the
RESOLVE transition has these rules:

rules {
resolution_description.isSet;
resolved_in.isSet;

}

They require that there be entries in both the Resolution field and the Resolved
in field.

An individual rule is terminated by a semicolon (;) and consists of one or
more conditions. You define conditions using the boolean Tracker methods.
An individual condition can be ored with other conditions, using the
operator | |. This means that the entire rule (terminated by the semicolon) is
satisfied if any one (or more) of the individual conditions is satisfied. Rules
separated by semicolons (;) are effectively anded together, that is, all of the
rules must be satisfied in order to permit the transition.

If all conditions are not met, the transition will not be permitted (its Apply
button will not be enabled) and incorrect fields will be highlighted
accordingly. It is useful to think of a rule as having top-level and
secondary-level conditions. A top-level condition is the main part of a rule; the
secondary level refers to conditions inside nested expressions. When a rule
is not met, only the fields in top-level rules are highlighted. The fields at the
secondary level are not highlighted. For example, consider the rule:

owner.is(submitter.value);

The rule means that the owner value must be the same as the submitter. If this
condition is not met, then the owner field (which is a top-level rule) will be
highlighted. The submitter field is in a nested expression and will not be
highlighted. It is a good idea to explain such relationships between fields in

Transition Declarations

an on-line help card, either in the transition help card or the associated rule
help card if it exists.

Actions

Actions immediately follow rules. They are preceded by the key word
actions. Actions can change the values of fields. Like rules, they are defined
in terms of methods. Where rules mainly use boolean methods, actions use
boolean methods only to set values subject to conditions.

Predefined Methods

The predefined methods are presented in Table 2-3 through Table 2-8
according to these categories:

= external methods

= methods for testing field data

= methods for retrieving field data

= methods for making field comparisons

= methods for changing field values

= methods for field value computations

= methods for changing field characteristics

29

Chapter 2: Using the Process Description Language (PDL)

External Methods

Three methods provide access to shell commands (and environment
variables) external to the PDL: execCommand, execFilter, and execSelect. They
take a single string parameter and are not associated with fields. These
methods are described in Table 2-3. For more information, see “Using the
exec Functions” in Chapter 6, “Advanced Design Techniques.”

Table 2-3 External Methods

Method Description

execCommand Returns the completion status of the command as a
boolean value. It is most useful when the output of the
command is not required by the PDL, but the exit status of
the command may control further PDL execution or
indicate the validity of field data in a rules section.

execFilter Returns the output of the command executed as a
long-text value. It is most useful in the actions section of
transitions. For example, use it to capture the output of a
command and assign it to a field.

execSelect Given a DML (data manipulation language) select
statement with semicolon (;) terminator, returns a
long-text value. The select statement is executed. If the
result is a single record, the value of the first field in the
select statement is the return value; otherwise, the return
value is the empty string.

Here are some useful Tracker environment variables, accessible through the
external methods:

= S$FIELD_LIST is set to name all the fields of the request (structured as a
string with names separated by spaces).

< $MODIFIED_FIELDS is set to name all fields that have changed.

= S$<fieldname> is created for each field of the request, using the name of
the field as the name of the variable and generally containing the value
of the field.

e S$<fieldname>_old holds the former value of the field if it changes. The
field name also appears in $SMODIFIED_FIELDS.

30

Transition Declarations

= $<fieldname>_file contains the actual value of a field if it is too long for
the $<fieldname> variable. In this case, $<fieldname> contains the single !
character and $<fieldname>_file contains the actual field value(s).

= $<fieldname>_old_file holds the former value of a long field if it changes.
(In such a case, $<fieldname>_old contains the single! character.)

Methods for Testing Field Data

The methods for testing field data are called against a field, for example:
description.isSet

They do not take parameters and do not accept the empty parentheses that
C uses: for example, description.isset() is incorrect. They are

predicates; they return a boolean result, so they can be used in rules. The
methods are listed in Table 2-4.

Table 2-4 Methods for Testing Field Data

Method Description

<fieldname>.changed Any field type. Determines whether it has been changed
during the current editing session.

<fieldname>.isSet Any field type. Determines whether the field is presently
set (some fields may not yet have been filled in).

<fieldname>.not Must be a field of type boolean . If the field is set to
True , then this says false; if the field is False , this says
true.

In addition, you can test any field of type boolean with the value method
(described in Table 2-11), as in this example:

boolfield.value;
If boolfield is true, then this rule will be satisfied; if boolfield is false, or

if it is unset, this rule will be unsatisfied (boolfield will be highlighted in
the GUI).

31

Chapter 2: Using the Process Description Language (PDL)

Methods for Retrieving Field Data

The methods in Table 2-5 return other types of data in addition to booleans.
They are used only inside expressions within parameter lists, typically in
conjunction with a boolean method. Since there are no side effects from these
methods, they are not appropriate for use as top-level methods in actions,

although this is legal.

Table 2-5

Methods for Retrieving Field Data

Method

Description

<fieldname>.fname

<fieldname>.length

<fieldname>.old

<fieldname>.size

<fieldname>.text

<fieldname>.value

Any field type. Returns the name of the field.

Must be a field of type list . Returns the number of items

in a list.

Any field type. Returns the value of this field in the
database, even if the user has made changes (but has not
yet committed them to the database).

For a text string, tells how long it is.
Returns a text string representation of any kind of field.

Returns the value of the field, represented as the
appropriate type.

Methods for Making Field Comparisons

The methods for making field comparisons are called against a field and take
an expression as a parameter.

32

Transition Declarations

For example,

priority.isGreater(3)

tests whether the priority field is greater than the value 3. These methods are

shown in Table 2-6.

Table 2-6 Methods for Making Field Comparisons

Method

Description

<fieldname>.is(expr)

<fieldname>.is_cf(expr)

<fieldname>.isLess(expr)

<fieldname>.isLessEq(expr)

<fieldname>.isGreaterEq(expr)

<fieldname>.isGreater(expr)

<fieldname>.isNot(expr)

Checks to see if the value of the field is expr.

fieldname and expr must be strings. Checks to see if
they’re the same value, but with case folding
(ignoring case).

Can be performed on most types, but only where
fieldname is the same type as expr. Checks whether
fieldname is less than expr, according to their types.

Can be performed on most types, but generally
only where fieldname is the same type as expr.
Checks whether fieldname is less than or equal to
expr, according to their types.

Can be performed on most types, but generally
only where fieldname is the same type as expr.
Checks whether fieldname is greater than or equal to
expr, according to type.

Can be performed on most types, but generally
only where fieldname is the same type as expr.
Checks whether fieldname is greater than expr,
according to their types.

Can be performed on most types, but generally
only where fieldname is the same type as expr.
Checks whether fieldname is not equal to expr,
according to their types (opposite of “is”).

33

Chapter 2: Using the Process Description Language (PDL)

34

Methods for Field Value Computations

The methods for field value computations let you perform computations
using field values. They take an expression, which can contain nested
methods as well. For example, the action

due_date.is(due_date.setDefault('now + 30:00:00:00"));

computes the value of the expression ('now + 30:00:00:00’), which is
equal to the current date plus 30 days, sets that value as a default in the date
field, and uses that value if another has not been entered.

These methods have two categories: methods that actually change the field
values and methods that perform calculations with field values.

Table 2-7 shows the methods for changing field values.

Table 2-7 Methods for Changing Field Values

Method Description
<fieldname>.setValue(expr) Sets the value of the field to expr.
<fieldname>.unsetValue Causes the field to have no assigned value. A

subsequent isSet method will return false

<fieldname>.setDefault(expr) Sets the field to the value expr if the field value has
not yet been set.

<fieldname>.append(expr) Applies to lists only, adding expr to the end of the
list. Resulting expression is the list itself.

<fieldname>.remove(expr) Applies to lists only, removing the nth value from
the list where n = expr. Return expression is a
boolean :true if item is removed and false ifn
is greater than the number of items in the list.

Transition Declarations

Table 2-8 shows the methods for performing calculations with field values.

Table 2-8 Methods for Calculating with Field Values

Method Description

<fieldname>.subscript(expr) Applies to lists only, returning the value of the
field whose subscript = expr. The result type is the
base type of the list.

If expr is greater than the number of items in the
list, the list field will be unset, that is, it will no
longer have values and isSet will return false

<fieldname>.and(expr) Both must be boolean. Returns true if both are
true; false otherwise.

<fieldname>.or(expr) Both must be boolean. Returns true if either is
true; false otherwise.

<fieldname>.add(expr) Both must be integers. Returns the sum of the two.

<fieldname>.subtract(expr) Both must be integers. Returns the difference of
the two.

<fieldname>.multiply(expr) Both must be integers. Returns the product of the
two.

<fieldname>.divide(expr) Both must be integers. Returns the result of

dividing fieldname by expr.

Methods for Changing Field Characteristics

Currently, there is only one such method:
<fieldname>.setReadOnly

This method takes a boolean argument; it defaults to ReadOnly (true). It can
be invoked in any type of field and its action is to render the field read-only
in the GUI. This means the user cannot modify the data in the field, although
the PDL code itself may still do so.

The action of this method lasts only for the current transition. Once the
transition has been applied or cancelled, the field reverts to its original state.

35

Chapter 2: Using the Process Description Language (PDL)

View Declarations

The formats for Tracker windows are declared in the views section in the
PDL file. You can declare any number of views to be applied to the same data
in the request tracking system. You can also permit end users to customize
their windows.

View Format

The views section is identified by the key word views. The declaration of the
main view is first, followed by any auxiliary view declarations. Each view
has a name, a title declaration enclosed in parentheses, and a body section
enclosed by braces in which various labels, fields, and controls are declared.
The general format for the views section is shown in Figure 2-5.

Views key word views {
View name mainviewname (titletext) {
|

Title declaration

displayfeaturename: display (titletext) {

Control bar displayfeaturename: control-bar {
declaration transitions transitionname, ...}

L }

B displayfeaturename: gresults (titletext) { o
Query results queryresultfields,...; | Main view
area declaration } body section

= displayfeaturename: display (titletext) {
rowfeaturename: row { tuple, tuple, ...}

Form area
declaration

}

- }
viewname (titletext) {

displayfeaturename: display (titletext) {
Auxiliary view rowfeaturename: row { tuple, tuple, ...}
declaration Aucxiliary view

} | body section

}
Figure 2-5 Format for the Views Section of PDL File

36

View Declarations

View Name

The main view name declared in the PDL file:
= appears in the title bar
= serves as the X11 application class name to

— retrieve resources from each user’s personal resource file (usually
~/.Xdefaults)

— select an application’s app-defaults file
— select the icon used for the application by 4Dwm

= isused to invoke the application (after conversion to all lower case)

The auxiliary view names appear as items in the Views menu in the main
view and also in their respective title bars.

View Title Section

Each view can have a title declaration, within the parentheses following the
view name. If the title declaration is empty, no title will be drawn above the
view. In declaring a title, you can use strings inside single quotes and field
names defined in the fields declaration section. The strings and field values
are assembled into a one-line title at the top of the entire view.

Fields that display in a title are not editable inside the title area. You can use
white space to separate items, in which case they are positioned next to each
other, or you can use one or more commas to separate them. To stretch a title
so that it reaches across the window, use commas; these add padding so that
all the comma-separated sections are of equal width.

View Body

The body of the view is enclosed in braces and declares the features of the
window, that is, labels, fields, controls, and associated on-line help. A
window is defined feature by feature from top to bottom. Tracker provides a
number of key words to make the process easier.

37

Chapter 2: Using the Process Description Language (PDL)

38

The key word display lets you define an area within the window. You can
specify a title, defined in the same way as the title of the entire view. You can
also select resources to control both the appearance of the display as a whole
and items within the display area. See “Feature Names” in the next section.

Within the view body, you can also declare the control bar, which contains
the Modes menu, button controls, and the query results area for displaying
request summaries matching the query criteria.

The key word row helps you organize fields and their labels, entered as
literal strings called tuples, into a row. Similar to title declarations, the items
in a row are specified with or without comma separators. Padding is added
at the commas, so that the groups separated by commas are evenly spaced.
If the row is inside a display, the first literal string in each group is treated as
a label. The width of a given column is expanded according to the longest
label in the display. Rows can be given names, which are used in resource
selection, but do not display any title text. Tuples are discussed in “Defining
a Request Form Area” later in this chapter.

User Interface Formatting

Tracker provides two mechanisms for formatting the interface:

< PDL key words for defining application-specific parts of the user
interface

= predefined feature names attached to X11 widgets

Display Key Words

Tracker supplies a number of key words to let you declare the standard
features of Tracker applications. These are the reserved words and their
meanings in PDL files.

views {}

Designates the start of the views section. All view specifications for this
application are inside the braces.

View Declarations

display () {}

Groups the items specified inside the braces as a defined (formatting)
area. The parentheses contain the title, if any.

control-bar ()
{transitions ...}

Displays the control bar, including the Modes menu (see Figure 2-7).
The parentheses contain the title, if any. The braces contain the
transition commands in the Modes menu. If you want to include all of
the defined transitions, enter the key word transitions with no other
entries. If you want a subset of the transitions, enter them explicitly
after transitions . If you leave the braces empty, there will be no
transitions; effectively, you will have a query-only application.

These conditions will cause error messages:
< invalid transition names

= duplicate transition names in the list

= more than one control bar declaration

gresults ()
{index ...}

Displays the query results area (see Figure 2-8). The parentheses
contain the title, if any. The title defaults to the field name. Insert fields
to be displayed in the summary line inside the braces after the key
word index . Data in this area is aligned in columns, and you can define
the width of each column, and add a custom title to it. For example, the
PDL file in the sample RTS system has this query results definition:

gresults() {
index type:3:'Type’
$SENTITY_ID:5:ID#
$STATE:20:'State’
owner:20:’Owner’
summary::’Summary’;

3

The first four field definitions are followed by a width (number of
characters) and a title string. The last column defaults to the total width
permissible. Any part of the field definition left blank will use the
default width and/or title. These field definitions need not be set out on
individual lines; they can be listed sequentially.

39

Chapter 2: Using the Process Description Language (PDL)

40

An error message is displayed if there is no gresults declaration or if
there is more than one.

In order for the users to sort on a field in the GUI, the field must be
placed in the declaration for the query result area. Users can only sort
on one field at a time.

row {..};

Displays items specified inside the braces in a row. Each row is divided
into a set of tuples, which is a combination of fields and/or
string-literal labels, typically one label and its associated field. The
tuples are separated by commas. A single column contains one tuple.

For more information, refer to “Defining a Request Form Area” later in
this chapter.

Feature Names

A feature name identifies an element in the user interface and is attached to
the X11 widget that implements the display, which in turn retrieves
resources. Feature names precede the PDL key words (described in the
previous section) and are followed by colons. A number of useful
appearance variations are provided in the standard Tracker application
defaults file.

The feature names applied to views, displays, and rows are used to select
resources that fine tune the appearance and behavior of the interface. Due to
the hierarchical way in which X11 manages resources, a name attached to a
view or display can also be used to select resources for contained display
items that are nested several layers deep.

For example, if a view named viewOne contains an unnamed display, which
in turn contains an unnamed row, which finally contains a certain field, you
can specify resources for that field in the resource file or the application
defaults file by the name viewOne, and they will be correctly applied to the
field.

Specifying Application Resources

Resources specified by the application name itself generally take precedence
over those specified by the application class name. Resources specified in

View Declarations

individual users’ resource files generally take precedence over those
specified in the application defaults file.

Complete details on resource selection are located in the Xlib Programming
Manual for Version 1lunder “Managing User Preferences.”

A number of resources are defined in the Tracker application default file
(and included in the application defaults file generated for Tracker
applications). To use them, you must give the indicated hame to the feature
you want controlled (or to a display or row that contains it). Predefined
feature names are illustrated in Table 2-9.

Table 2-9 Predefined Feature Names

Names Description
oneRowList Defines a list field that is one row high.
fatBox Draws a high-visibility rectangle around the specified

display area to set it off from the rest of the interface.

oneRowLongText Defines a long-text field to be the specified number of rows.
twoRowLongText

fourRowLongText

eightRowLongText

sixteenRowLongText

threeColumnDisplay Defines a display area to be the specified number of
fourColumnDisplay ~ columns.

For more information on feature names, refer to “Using Dates” in Chapter 6,
“Advanced Design Techniques.”

Formatting Example

Figure 2-6 shows the declarations in the views section of a PDL file. The
rtsquery application has two views: RTSQuery and RTSFiles. The main view
has three customizable display areas: a control bar, a query results area, and
a request form area. The auxiliary view RTSfiles is used to list files so it has a
simple structure of three long-text fields and their labels.

41

Chapter 2: Using the Process Description Language (PDL)

View label

RTSQuery view declaration

Control bar

views {

RTSQuery(){

display () {
control-bar() {

Query results area declaration

Request form area declaration

Resource tag

transitions SUBMIT_BUG, SUBMIT_RFE, ASSIGN,
FORWARD, NOTIFYME, EDIT, DEFER, RESOLVE,
REJECT, DUPLICATE, REDO, APPROVE, REOPEN,
DELETE;

h

Query_ResuIts: gresults() {
index type'# $ENTITY_ID, $STATE, owner,
summary;

b
Header: display() {
row{ ‘Report#:' $ENTITY_ID,
'Status:' $STATE,
‘Type:' type};)
row{ ‘Submitter:' submitter,
'‘Date:' submit_date,
'Recommend:' recommendation};
row{ 'Project:' project,
'Priority:" priority,
'‘Owner:' owner};

Resource tag

oneRowList:

row{ 'System:'system,
‘Notify:" interested_parties,
'Due Date:' due_date};

row{ 'Close Date:' close_date,
'Reopen Date:' reopen_date,
'‘Approver:' approver};

row{ 'Summary:' summary},

row{ 'Description:'"'"};

fourRowLongText:
row{ description};

Resource tag

RTSFiles view declaration

42

row{ 'Resolution:''"};
fourRowLongText:
row{ resolution_description};

}

}
RTSFiles(type'# $ENTITY_ID, $STATE, owner,
summary) {
row{'Found in:""', " '};
row{found_in};
row{'Resolved in:""*, " '};
row{resolved_in};
row{'Fixed Releases:'"'',,,,.};
row{fixed_releases};
}
}

Figure 2-6 Typical Declarations in the Views Section of a PDL File

View Declarations

Defining a Control Bar

Control bars are identified by the reserved word control-bar. They use the
reserved word transitions to specify the selections in the Modes menu. In the
control bar, you have the ability to define which transitions are available in
the Modes menu (as shown in Figure 2-7).

[RTSQuery(){
display () {
control-bar() {
transitions SUBMIT_BUG, SUBMIT_RFE, ASSIG
FORWARD, RESOLVE, REJECT, DEFER,
DUPLICATE, NOTIFYME, REDO, EDIT,
APPROVE, REOPEN, DELETE;

Figure 2-7 Portion of PDL Defining Modes Menu

Defining a Query Results Area

Query results areas are indicated by the key word gresults(), which is
preceded by the tag for the area. Following gresults() is the declaration of
information to appear in each line of the list, enclosed by braces.

Figure 2-8 shows the part of the PDL file that declares the query results area
for rtsquery with the corresponding display area. Notice that the declaration
uses the two predefined fields $STATE and $ENTITY_ID. The numbers
enclosed by colons (:) indicate the width of each column.

43

Chapter 2: Using the Process Description Language (PDL)

44

Type
Bug #
State
Owner

Summary

In the display area, numeric fields such as ID# are right-justified, and text
fields are left-justified.

Format

Tracker provides two icons in the query results area. A small rectangle next
to a request in the list indicates that the request has been displayed in the
form area. A check mark indicates that the request has been edited (see Bug

#1 in Figure 2-8).

RTSQuery(){

Query_Results: gresults() {
index type:3:'Type’
SENTITY_ID:5:'ID#
$STATE:20:'State’
owner:20:’Owner’
summary::’Summary’

—awy | [cwe| [y | | [Fe| [Ned] [pev] [ues]

P P P

*

Figure 2-8 Portion of PDL Defining Query Results Area

View Declarations

Setting Defaults

Two entries in the app-defaults file affect the query results area. The entry

*query_results.visibleltemCount:5

sets the number of lines to display at startup (request summaries) in the
query results to five. If your end users prefer a different initial size, you can
change this entry.

When you perform a query on the request database, Tracker retrieves the
first 50 entities that it finds so that it doesn’t need to perform another
retrieval until the user scrolls past the fiftieth line. The entry

*QueryFetchCount: 50

controls the number of summaries retrieved. Retrieving more entities slows
the initial query results area display but the trade-off is that you have more
entities to scroll through. If performance on queries becomes a problem, you
can adjust the fetch quantity.

Defining a Request Form Area

The rtsquery request form area uses the key word display to specify the items
that make up the form in the GUI. The form area in the main view body
section of the PDL file is identified by this key word (see Figure 2-5). Fields
are declared in the row in which they appear from left to right, separated by
commas.

Fields are declared in the form of tuples. Here is a description of a typical
lay-out for fields and labels. However, it is not the only way, and you can
experiment as much as you wish.

Each tuple contains the field name and a label. The label for the field is
entered first, enclosed in single quotes, followed by the name of the field as
declared at the beginning of the PDL file. Figure 2-9 shows the code in the
PDL file and the resulting view window.

45

Chapter 2: Using the Process Description Language (PDL)

~ display() {
row{'Report #:’ SENTITY_ID,
‘Status:” $STATE,
‘Type:’ type, .
'Submitter:’ submitter};
row{'Date:’ submit_date,
'Recommend:’ recommendation,
'Project:’ project,
'Priority:’ priority};
oneRowList:
row{’Owner:’ owner,
'System:’ system,
'Notify:" interested_parties,
'Due Date:’ due_date};
row{'Close Date:’ close_date,
'Reopen Date:’ reopen_date,
"Approver:’ approver,
'Dup of:’ is_duplicate_of};
row{'Summary:’ summaryy};

}

display() {
row{'Description:’ " '};
fourRowLongText:
row{description};

display() {
row{’Resolution:’ " '};
fourRowLongText:
row{resolution_description};

Figure 2-9 Portion of PDL Defining Request Form Area

46

View Declarations

Customizing the Request form Area

You can arrange the request form area in any way you like by using tuples
in the row statement. If a row consists of a single tuple, that tuple will be
expanded to fill the row. For example, this format

row{'Description’ 'hello there’}

fills the row. If you divide the row up into several tuples, the row width is
evenly divided among the tuples. For example, this format

row{'Description’ ’hello there’, , }

would cause the first tuple, consisting of 'Description’ and 'hello
there’ , to use one third of the full row width. The other two tuples are
empty, so the rest of the row will be empty.

You can use empty strings within a tuple to get a similar effect. For example,
row{’Found in:" ", " '};

creates two tuples of equal width in the row. The first tuple contains the text

“Found in:” plus a specified amount of space. The second tuple contains
only white space. If you use this format:

row{’Found in:’};
the text fills up the row completely.
To calculate the amount of space required for each item in a tuple, consider

these guidelines.

= Literal strings default to their actual width in characters, but may
expand to fill available space.

= Text and text field widgets (which are used to enter field data) have a
preferred width determined by the application defaults or other
resources.

= Tuple spacing is affected by the lay-out of corresponding tuples in the
rows above and below.

The tuple is laid out from left to right, with a single space between items. The
last item is then “attached” to the rightmost edge of the tuple and the tuple
is stretched to fill its allotted space in the row.

47

Chapter 2: Using the Process Description Language (PDL)

When the width of the tuple is adjusted, you may have a larger space
opening up between the rightmost item and its neighboring item to the left.
The amount of space created will depend on how wide the tuple is, which in
turn depends on the row width and number of tuples in the row. This
example shows how to use tuples to left-justify a label:

display() {
row{'Resolution:’ ' '};
fourRowLongText:
row{resolution_description};

}

The first row contains one tuple with two items, the label 'Resolution:’

and the space '’ . The label will occupy a 10-character space starting from
the left, and is separated from the space item by a 1-character space. The
space item then expands to fill the rest of the row.

In addition to your custom settings, Tracker adjusts the width of tuples so
that they form justified columns in a display. A tuple in a given columnin a
row is always allotted the width of the widest item in that column.

For example, in this three-column display with three rows, the width of the
second column will be equivalent to the width of the 'Recommendation:’
tuple in the third row:

threeColumn: display() {

row{'Report #’ $SENTITY_ID,
‘Status:’ $STATE,
'Priority:’ priority};

row{' Type:’ type,
'Submitter:’ submitter,
'Owner:’ owner};

row{’'Date:’ submit_date,
'Closed:’ close_date,
'Recommendation:’ recommendation h

}

Figure 2-10 shows how display appears on the screen.

48

View Declarations

Figure 2-10 An example of a three-column display

Defining Field Pop-up Menus

When a user holds down the right mouse button over a field, a menu
appears displaying the commands “Reuse,” “Revert,” “Clear,” and,
optionally, “Values” as an aid to filling in the field.

The “Reuse” command reuses the last value displayed in the field.

The “Revert” command reverts to the prior value for the request.

The “Clear” command clears the field.

If the field type (as declared in the Fields section of the PDL file) uses the
“one-of” designator, then the selection “Value” appears with a rollover
menu that contains the declared set of values.

Users can select a value from the menu or type directly into the field.

You can “tear off” the rollover menu by clicking on the perforation line at the
top of the menu. It then appears as a freestanding menu (see Figure 2-11).

The field declaration and view declaration for the Status field are shown in
Figure 2-11, along with the resulting pop-up and rollover menus.

49

Chapter 2: Using the Process Description Language (PDL)

fields {

*s'fatus: one-of
AWAITING_RESPONSE, AWAITING_APPROVAL, CLOSED, DELETED;

}

views {
RTSQuery () {

row{

—Sfatus status};

L
—»>

Figure 2-11 Portion of PDL Defining Status Field

50

Help Declarations

Help Declarations

If you are making major modifications to the RTS applications or creating
your own tracking system, you need to provide on-line help to your users.
Tracker provides the same on-line help system available in all CASEVision
environments. If you are unfamiliar with the operation of on-line help,
please refer to the CASEVision Environment Guide.

On-line helpis easily provided by making help declarations in the PDL files.
You can create help cards for such topics as:

= the entire application

= fields as a group and individually

= transitions as a group and individually

< rules and actions individually within transitions and globally

= all and individual views

= individual display areas

= control bar

e query results area

= rows in adisplay

Running tvgen (and rtsgen) automatically creates a hierarchy of on-line help

based on the help declarations. Users can search for help by topic or by
clicking the item on the screen while in context-sensitive help mode.

Creating a Help Declaration

To create a help declaration, use this general format:

help {
help-title ’ fulltitle’;
short-help-title ’ shorttitle’; //optional
help-text’ helpbody’;

2

51

Chapter 2: Using the Process Description Language (PDL)

52

top-level system help

The entry following help-title is the complete title for the help topic. This
title appears in the help index.

If you prefer a shorter version of the title in the graphic help browser, add the
short-help-title line with an abbreviated version of the title. The help
information is entered after the key word help-text . All of the text must be
enclosed within single quotes. By default, help text appears in proportional
font; if you prefer fixed width spacing for your help text, then use the key
word fixed-width-help-text in place of the key word help-text

In addition, you can specify that the actual rules and actions declarations for
a transition appear in a help card by using the key word include-pdl ; this
is covered in more depth in the “Transition Declarations” section.

Note: If you wish to enter a single quote (apostrophe) in help text, you must
precede it with a backslash (\).

For the sake of conciseness, the entries inside the braces following the key

word help are presented as the single term helpcardspec (short for help card
specification) in this guide.

Help Declaration Locations in the PDL File
The location of the help cards in the on-line help hierarchy is a function of

the declarations in the PDL file. The locations for help declarations are
shown in Figure 2-12 and Figure 2-13.

help { helpcardspec}

fields {

top-level field help

individual field help

help { helpcardspec};
fieldname: fieldtype
help { helpcardspec};

}
Figure 2-12 Help Locations at Beginning of PDL File

Help Declarations

transitions {

top-level transition help

help { helpcardspec};
transitionname (priorstate => newstate) {

individual transition help

help { helpcardspec};
rules {

rules help for individual transition

actions help for individual transition

help { helpcardspec};

fieldname.method || fieldname.method || ...;

global rules help
for all transitions

global actions help

for all transitions

}
actions {
help { helpcardspec};
fieldname.method;
}
}
rules {
help { helpcardspec};
fieldname.method || fieldname.method ||
}
actions {
help { helpcardspec};
fieldname.method;
}
}
views {

application help

individual view help

help { helpcardspec};
viewname (titletext) {

help { helpcardspec};
control-bar (titletext) {
help { helpcardspec};

control-bar help

query results help

display area help

row help

transitions transitionname, ...
}
gresults (titletext) {
help { helpcardspec};
index listfields,...;
}
display (titletext) {
help { helpcardspec};
row {
help { helpcardspec};
tuple, tuple, ...
}

ey

Figure 2-13 Help Locations in Transitions and Views Sections

53

Chapter 2: Using the Process Description Language (PDL)

54

Help Implementation Strategy

In providing on-line help, you are not just documenting isolated
features—you are building a system for providing information to your
users. Users get information from the on-line help system in two modes:
context-sensitive mode and browsing mode. This section covers

= the help card hierarchy
= top-level help card strategy

= bottom-level help card strategy

The Help System Hierarchy

It is important to remember that on-line help has a hierarchical structure.
Figure 2-14 shows a typical Tracker hierarchy; it represents the hierarchy
from a user’s point of view. The stacked help cards in the diagram indicate
that there can be multiple help cards and subtrees at that location. The order
in which the help cards appear (top to bottom and left to right) correspond
to the sequence in which they are declared in the PDL files, except for the
help cards that are shown in the illustration in white. These cards are
actually declared elsewhere in the hierarchy, where they appear in gray; they
are in the hierarchy redundantly as a convenience for users.

Top-level Help Card Strategy

In a Tracker application, you must declare the top-level system help card (at
the beginning of the PDL file) and the top-level view help card (at the
beginning of the view declaration section). If these are missing, you will get
warning messages when tvgen (and rtsgen) is run; more importantly, your
end users may get error messages if they try to use on-line help.

Atthe top level, itis important to make the resulting hierarchy easy for users
to find what they are looking for. The top-level system help card file forms

the root of the on-line help hierarchy. Below it are the top-level cards for the
fields and transitions and the application help cards, which group the views.

Help Declarations

Top-level
system
help card
1
Top-level . Top-level
field ﬁ]%ﬁl'cca;'r%n transition
help card p help card
—1 —
Field Transition
help card help card
— el |
View Rules help Actions help
help card card card
Control-bar Query results Display
help card help card help card
Row
Transition help card
help card
= sl]
Rules help Actions help Field
card card help card

Figure 2-14 Typical Tracker On-line Help Hierarchy

Note that the help cards for individual fields and transitions (rules and
actions included) can appear redundantly in the hierarchy, under the
top-level field and transition cards and in the view subtrees that contain
them. These help cards are actually declared in the fields section and
transitions section of the PDL file respectively. These cards are shown in
Figure 2-14 in white.

Itis a good ideato include a help card for the control-bar in each application.
The control-bar help card groups all relevant transition help cards as
subtopics under the control-bar help card. If the user selects any item in the
control-bar using context-sensitive help, help on the set of transitions
provided by the application will be readily available in the subtopics
window of the help viewer.

55

Chapter 2: Using the Process Description Language (PDL)

56

Bottom-level Help Card Strategy

At the bottom level, you should provide detailed information for the
individual transition cards on how the particular transition relates to the
overall tracking process. You can describe the rules and actions in the card
in the transition help card or separately in the associated rules and actions
help cards.

Use help declarations for individual fields to clarify the intended use of the
field and to give suggestions for using specific values for the field. The field
help declarations appear at the bottom of the view help hierarchy. They are
grouped under the containing row if you declare it; otherwise, they appear
under the containing display area. If you declare neither the containing row
nor display area, then the field help declarations are grouped directly under
the view help card.

After adding or changing help declarations in the PDL, you can review the
changes by running the application (after running tvgen and tvinstall) and by
selecting items in the “Help” menu. Select “Browser” in the help viewer
window to examine your help hierarchy.

Caution: tvgen does not remove help cards from the <databasedir>/tools/help
directory before generating new on-line help. If you rename (or remove) an
application in your system, you should remove the corresponding subtree in
<databasedir=>/tools/help.

Chapter 3

Using the Data Manipulation Language (DML)

The data manipulation language (DML) provides an interface to the Tracker
database. It is similar to SQL and other fourth-generation database query
languages. DML runs on top of Raima Data Manager™ from Raima
Corporation. DML supports both database query and modification. DML
complements the Tracker graphical user interface (GUI) by enabling more
complex queries on the database, report generation, and batch database
modifications.

This chapter covers these topics:

e Overview

= Specifying literal values

= Select statement

= |nsert statement

« Update statement

= Delete statement

= Locking statements

= Transaction statements

57

Chapter 3: Using the Data Manipulation Language (DML)

Tracker Database Overview

58

This section explains the structure of Tracker databases, tells you how to
invoke DML, relates DML to the rest of Tracker, and summarizes the basic
DML statements.

Caution: DML lets you modify data and enter new records directly. To
avoid the potential hazards of entering bad data, its modification features
should be used sparingly and by the Tracker system administrator only. If
you do change data using DML, make sure that any affected PDL files are
updated accordingly.

Database Structure

Unlike many database systems, a Tracker database has no explicit schema or
rigid structure, which lets it adapt readily to the changes that occur as an
application matures.

Data in a Tracker database is stored in fields. Each field has a name, a value,
and a type. The database field types are the same as the PDL field data types.

Fields are organized into entities or records. Each entity represents
something from the real world, such as a bug report, project list, or project
team, and the fields represent that item’s properties or attributes. Every
entity has a field named $ENTITY_ID that contains a permanent integer
value that is assigned automatically by the database upon creation.

Entity Classes

A single database can hold different classes of entities. Each entity class (only
one per PDL file) has a unique name, which is declared in the PDL file at the
beginning of the field declaration section. If no declaration is made, the name
defaults to tracker_request.

An entity can belong to only one entity class; its SENTITY_ID uniquely
identifies it within its class. Since entities from different classes in the same
database can have the same $SENTITY_ID value, both the $SENTITY_ID and
the entity class must be known to uniquely identify an entity.

Tracker Database Overview

tracker_request entity class

Entity Fields

Although the entities within a class tend to have the same set of fields, this
is not required by the Tracker database. An entity cannot have more than one
field with a given name. However, different entities can have fields with the
same name; fields with the same name can be of the same or different types.

As an example, the RTS database has two entity classes: one named
tracker_request (the default) and the other named project (see Figure 3-1).
Entities in the tracker_request entity class represent requests in the database.
Potentially, they can use all of the fields defined in the PDL.

ENTITY ID: 4003 |
r{ SENTITY ID: 4002 |
ENTITY ID- 4001 |
gl $ENTITY_ID: 4000
" 7| g report_number: 500

I | submitter: jones

$ENTITY ID: 2003 |
SENTITY ID: 2002 |
p| SENTITY_ID: 2001

project entity class

n| project_name: red
manager: smith

Figure 3-1 RTS Database with Entity Classes

59

Chapter 3: Using the Data Manipulation Language (DML)

The actual information depends on which field values were entered. The
entities in the project entity class are used to keep track of project names and
managers.

When you enter a new entity into a database, you can enter a value for any
field declared in the PDL file. You can also enter new fields if you have a
special requirement.

Access to the Database

Queries from the graphical user interface are transmitted in DML to the
database and can access only fields defined in the associated PDL file. From
the DML interface, you can use PDL field definitions or you can define your

own fields.

Figure 3-2 illustrates the relation of the dml program to the two interfaces.

winterm
dml> select ...

e e R R

GUI (PDL) shell window

Request
database

N

Figure 3-2 Relation of DML to Tracker and PDL

60

Tracker Database Overview

The dml Program

The program dml provides access to the Tracker database using the DML.
You can use dml interactively to post ad-hoc queries and to modify the
database, or as a script interpreter to generate reports or implement batch
processing of the Tracker database.

DML Shell Commands

Two shell commands, dmlrpt and dmicount, are provided to demonstrate the
use of scripts. dmlrpt creates a list of entities containing specified fields.
dmlcount counts the entities in a database containing a given field condition.

dml, dmlrpt, and dmlcount are described in more detail in the man pages.

Controlling Database Access

The database designer or system administrator can control who is able to
make changes to a database through DML. This is done by means of the
UNIX file permissions on a file called Tracker.sec in the database directory.
The Tracker.sec file is the control point for access to the database. Its
permissions, which match those on the database, provide security for the
information in the database.

When a database is created, the creator can set the file permissions on
Tracker.sec to give read and/or write permission to selected people or groups.
Tracker sets the initial permissions to give ownership to the person who is
running tvgen.

Each database has its own Tracker.sec file, which may allow different users
access. For example, database A may have file permissions which give
read/write permission to the owner, but read permission only to everyone
else (-rw-r--r--), and database B may give read/write access to the
owner and specified group, but no access to others (-rw-rw----). A user
without read permission for a particular database cannot even start the DML
interpreter program, dml.

Note: If you use databases created with an earlier version of Tracker (version
1.0 or 1.0.1), you can add a Tracker.sec file to these databases if you wish.

61

Chapter 3: Using the Data Manipulation Language (DML)

DML Statements

62

Required Permissions

In order to use the select statement, a user must have read permission in the
database. To make any modifications using update, insert, or delete, a user
must have write permission in the database.

If the Tracker.sec file is deleted or missing, users are given access at the default
level, which is read-only. If authorized users have difficulty gaining
unrestricted access, check to see that:

= a Tracker.sec file with the correct file permissions is in the database
directory

= the server and the user’s system are running the same version of
Tracker

Access Through PDL

PDL already has the capability for restricting access to certain users. As a
database client, the GUI has read/write access to the database. It is
advisable, therefore, to continue writing PDL code to restrict user access
where desired. Restricting access to the database via DML does not eliminate
the need to control access via PDL.

This section describes how to specify literal values and documents these
DML statements:

« select
* insert
e update
* delete

e |ock/unlock

= begin/end transaction

DML Statements

General Characteristics of DML Statements
All DML statements are terminated by a semi-colon character.

It is important when using DML to specify the names of the fields exactly,
since incorrect field names can be interpreted as non-existent or new. If you
don’t have a copy of the PDL field declarations handy, you can select a single
entity designating * as the field list and get the proper spellings. Refer to
“Select Statement” for more information.

Specifying Literal Values

For your convenience, DML provides alternatives for entering literal values
in statements:

Implicit typing Certain types of literal values can be entered in a simple
format and DML will interpret them automatically.

Explicit typing You can also enter the literals with their types to eliminate
ambiguity.

Nested select statements
DML also lets you use a nested select statement to specify a
list of integers.

Implicit Typing

DML provides implicit interpretation of certain types of literal values. Other
types must be specified explicitly. To eliminate ambiguity, you can always
specify types explicitly. The DML command line option-dml lets you turn
on value typing automatically, otherwise it defaults to value typing off.

The effect of using the command is that all field values retrieved from the
database are displayed with explicit type information. For example,

dml> value typing on;

dml> select SENTITY_ID from tracker_request where SENTITY_ID
<3;

$ENTITY_ID: int '1’

63

Chapter 3: Using the Data Manipulation Language (DML)

64

If value typing is off, the same select query produces the result:

$ENTITY_ID: 1

Table 3-1 demonstrates those types that are typed implicitly.

Table 3-1 Implicit Typing Examples

Examples Comments and Implied Type

999 Numbers are assumed to be integers, of

1 type int

” Text inside single quotes is taken as

'your text’ short-text. Use a backslash (\) if you need

'3 lines long with an

escaped apostrophe\!

in the second line.'

true
false

Jusr/tmp/xxx
saturn:/usr/lib

foobar

1720793
Jun 10 1993 06:17PM

Wed Jun 10 18:19:22 PDT 1993

(1,2,3)
(a’’b’’c?)

to embed an apostrophe.

boolean types

file types

Strings that don’t fall into any other
categories are assumed to be identifiers of
type one-of

date types

Strings inside parentheses, separated by
commas, are assumed to be a list of some
type.These examples are respectively
list-of int and list-of short-text.

DML Statements

Explicit Typing

Explicitly typed entries contain a field type name followed by a quoted
string. The quoted string must contain a literal value. Table 3-2 shows
examples of explicit typing.

Table 3-2 Explicit Typing Examples

Examples Comments
int’99’ Explicit integer.
long-text ’hello’ Explicit long-text specification. long-text cannot be

implicitly specified.

date '1993’ Certain date formats are recognized only by using this
form. This example would be considered an integer if
not explicitly specified.

one-of "select’ Lets you specify select as a string rather than as a DML
keyword.

short-text 'Joe\’s A backslash inside quotes lets you specify a literal
apostrophe.

(one-of 'RED’, Explicitly typed literals can be used in lists.

one-of '"GREEN’,
one-of 'BLUE’)

Use explicit typing to lessen the chance of the literal being interpreted in an
unexpected way. Be sure, however, that the entry inside the quotes correctly
matches the specified type. Table 3-3 demonstrates the incorrect use of
explicit typing.

Table 3-3 Illegal Formats

Examples Comments

int 'not-an-integer’ The quoted value has no valid integer interpretation.
date 'not-a-date’ The quoted value has no valid date interpretation.
boolean 'maybe’ The quoted value has no valid boolean

interpretation.

65

Chapter 3: Using the Data Manipulation Language (DML)

66

Select Statement

The select statement queries the Tracker database and returns field values. It
includes an optional order by statement that lets you sort the items within
each field in ascending or descending order.

The general form is:

select field-list from entity-class;

field-list names the Tracker fields returned by the query for each selected
entity. This form selects all entities of class entity-class. The optional
additions to this statement, shown in square brackets, are:

select field-list from entity-class
[order by field1 descending , field2, ...];

select field-list from entity-class [where condition];

The items in the fields listed in order by without a modifier will be sorted in
the default order, which is ascending. To sort in descending order, add the
keyword descending after the field name. The condition expression in the
second form determines which entities are selected by the query. For
example, the statement:

select SENTITY_ID, Customer, Submit_date from bug where
Engineers_pri = 1;
order by Submit_date descending;

returns a table containing the SENTITY_ID, Customer, and Submit_date fields
for all bugs with Engineers_pri equal to 1, and listed according to date of
submission. For example:

SENTITY_ID: 40274
customer: acme
submit_date:Wed Jun 10 21:57:33 1992

$ENTITY_ID: 39567
customer: xyzco
submit_date: Fri May 29 10:09:00 1992

You can substitute an asterisk (*) for field-list in a select statement, which then
retrieves all fields for qualifying entities:

select * from bug where Engineers_pri = 1;

DML Statements

Typically, entities do not have data in all available fields. When performing
a query, the DML retrieves those fields named in the field list that do exist

and ignores the entity’s empty fields.

The condition expression can contain multiple field comparisons combined

using the and, or, and not operators and is not limited to equality
comparisons.
For example,

select $ENTITY_ID, Customer, Submit_date from bug where
(Engineers_pri > 1 and Type = BUG) or

(Engineers_pri < 4 and Type = RFE) or

(Type <> BUG and Type <> RFE and Priority = P1);

Table 3-4 lists the available comparison operators.

Table 3-4 Comparison Operators

Operator Name Applicable Types

= equal to All field types

<> not equal to

< less than int, short-text, long-text
<= less than or equal to

> greater than

>= greater than or equal to

match regular expression match long-text, journal fields
contains list contains element list-of fields

contains any list contains any from list

contains only list contains only from list

=null unset or non-existent test All field types

<> null set or existing test

The following example further illustrates comparison operators:

select SENTITY_ID from bug where
Engineers_pri = null and //unset fields match
Type = [BUG, TAKEN] and //Type=BUG or Type=TAKEN
Severity = [1, 5:10]; //Severity=1 or is
/Ibetween 5 and 10

67

Chapter 3: Using the Data Manipulation Language (DML)

68

Value ranges take the form

[cons value: value, ...]

They are recognized only within value lists, that is, inside square brackets
(ID. For example,

Severity = 5:10

is not legal; rather, you must use the following form:
Severity = [5:10]
The match comparison operator allows regular expression matching in text

fields. The regular expression must be supplied as a quoted string literal in
the form described by the regcmp(3X) man page. For example, the query:

select owner from bug where summary match ‘[Ww]indow";

retrieves all entities whose summary fields contain the word window or
Window.

The contains operator determines if a list-of field contains a specified list
element. For example, the query:

select * from project where engineers contains 'billy’;
retrieves all project entities where the engineers field includes billy.

The contains any operator is similar to contains; it is used to specify multiple
list elements to be contained within the list-of field. Thus, the supplied literal
value must be a list itself. It is equivalent to Ored contains statements. For
example,

select * from project where engineers contains any
(‘billy", 'bob");

is equivalent to:

select * from project where engineers contains 'billy' or

engineers contains 'bob’;

The contains only operator determines if the list-of field contains some subset
of elements from the supplied list. If a field contains any elements not found

DML Statements

in the supplied list, the entity is not selected. For example, the following
statement:

select * from project where engineers contains only
('fred', 'bob");

will select only entities whose engineers field is one of the following (ignoring
duplicate elements):

0 /I empty list

(‘fred")

(‘bob’)

(‘fred’, 'bob")

(‘bob’, 'fred’)

Both contains any and contains only can substitute a nested select statement for

a list. The nested select builds an integer list from the $ENTITY_ID fields of
the selected entities and uses that list in the enclosing expression.

For example, consider the clause
... where project_ids contains any (select SENTITY_ID from

projects where name match 'TV’;

The SENTITY_ID values for those projects matching the string TV are
substituted into the where clause.

Nested Select Statements

Nested select statements offer an alternative to specifying lists of integers in
DML statements. The select statement return value must be of type list-of int.

In evaluating a nested select, DML first executes the nested select statement,
then builds an integer list from the SENTITY_ID fields of the selected
entities, and uses the list in the enclosing expression.

Currently, only the SENTITY_ID fields of the selected entities can be used in
the enclosing expression. Even if the field list in the nested select selects
another field or fields, the $SENTITY_ID fields always construct the list that
evaluates the enclosing expression.

69

Chapter 3: Using the Data Manipulation Language (DML)

70

For example, consider the clause

... where project_ids = (select SENTITY_ID from projects
where name match 'TV’;

The $SENTITY_ID values for those projects matching the string TV are
substituted into the where clause. The where clause is true if the variable
project_ids equals the list of qualifying projects.

Insert Statement

The insert statement is used to add new entities to the database. The two
general forms are:

insert into entity-class set fieldl = wvaluel, ... fieldN = valueN;

insert into entity-class set fieldl = valuel, ... fieldN = valueN
where condition;

Each field = value pair creates a field in the database and assigns it a value.
The insert statement automatically creates a SENTITY_ID field and assigns it
a unique integer value within the class; it cannot appear explicitly in the list
of field assignments. For example, consider the statement:

insert into bug set Id = 45799, System = SCR,
Customer ='John Doe, Inc.’, Description = long-text
'‘Description with embedded newlines.";

It creates a new entity with five fields: the four specified explicitly and the
$ENTITY_ID field.

The second form of the insert statement adds a new entity to the database if
no entity matching the where clause already exists. If one or more entities
matching the where clause do exist, they are updated as if an update statement
had been executed and no new entity is created.

Update Statement

The update statement is used to modify existing entities. The general form is:

update entity-class set fieldl = valuel, ... fieldN = valuel
where condition;

DML Statements

Each field assignment in the list is applied to all existing entities selected by
the condition expression. The condition expression is identical to that
described for the select statement. For example, the statement:

update bug set Engineers_pri = 3
where Engineers_pri = 2;

modifies all bugs with Engineers_pri equal to 2, changing the Engineers_pri
field to 3.

Delete Statement

The delete statement removes entities and their fields from the database. The
general form is:

delete entity-class where condition;
The where clause holds the condition necessary to delete the request from the

database. Use the delete statement with caution so that you don’t
inadvertently remove good data.

Locking Statements

The lock and unlock statements obtain shared, non-exclusive locks on the
specified entities. A locked entity can be modified only by the holder of the
lock, although other users can read its field values. Any attempt to update or
delete a locked entity will generate an error from the DML processor.

The general form of the statement is:
lock entity_classl where conditionl

[, entity_class2 where condition2 ...];
or

unlock entity classl where conditionl

[, entity_class2 where condition2 ...];

The Tracker GUI automatically locks and unlocks entities as needed to
guarantee that the edits made by the user can be committed to the database.
All locks are released when the holder disconnects from a Tracker database.

71

Chapter 3: Using the Data Manipulation Language (DML)

72

Transaction Statements

The begin and end transaction statements are used to combine a series of
database modifications into an atomic operation; if any part of a transaction
cannot be performed, then none of it is performed. They are used as follows:

begin transaction;
dml statement;
dml statement;

end transaction;
You cannot nest transactions.

The use of transactions can have a dramatic effect on the performance of
certain database operations. For example, in creating a script to import a
large number of entities, say more than 100, performance can be improved
by grouping the insert statements into transactions with several insert
statements per transaction. Without grouping into explicit transactions, each
statement that modifies the database is treated as a transaction. By reducing
the total number of transactions through grouping, the resources needed to
accomplish a large task can be reduced.

Chapter 4

Tutorial—A Basic Tracking System

This chapter provides a tutorial based on samplel, a basic tracking system,

and covers these topics:
= Analyzing the samplel PDL file
= Using tvgen and tvinstall to generate samplel

= Expanding the samplel application

73

Chapter 4: Tutorial—A Basic Tracking System

Analyzing the samplel PDL File

The samplel tracking system is a useful tool that teaches you how to build
your own tracking system. The user interface for samplel is shown in
Figure 4-1.

P P

Figure 4-1 samplel User Interface

samplel PDL File

The PDL file samplel.pdl is located in /usr/Tracker/samples and is listed in
Figure 4-2.

Like all PDL files, samplel has sections for field declarations, transition

declarations, and view declarations. samplel is a simple application, so there
are no auxiliary views.

74

Analyzing the samplel PDL File

[fields {

submitter: short-text;

submit_date: date;

owner: short-text

Field declarations priority: one-of LOW, MEDIUM, HIGH;

project: one-of PROJECT_1, PROJECT_2, PROJECT _3..;
description: long-text;

close_date: date;

transitions {
SUBMIT(=>AWAITING_RESPONSE) {
rules {
description.isSet;

actions {
submit_date.setValue('now’);
submitter.setValue($USER.value);

RESOLVE(AWAITING_RESPONSE=>CLOSED) {
Transition declaratons ————— rules {

description.changed;

}
REJECT(AWAITING_RESPONSE=>CLOSED) {
rules {
description.changed;

EDIT(=>) {
}

r views {
Samplel1(){
control-bar() {
transitions;

h

gresults() {
index $SENTITY_ID ' ’, $STATE ', owner,
‘ submitted by ‘, submitter;

, , display() {
View declarations row{’Report #” $ENTITY_ID, 'Status:’ $STATE,

‘Owner:’ owner, 'Submitter:’ submitter};
row{'Date:’ submit_date,'Project:’ project,
"Priority:’ priority, 'Closed:’ close_date};
row{'Description:’ " '};

row{description};

}
}

Figure 4-2 samplel PDL File
75

Chapter 4: Tutorial—A Basic Tracking System

76

Let’s analyze the samplel PDL file, piece by piece. For details on the
meaning of each term and its use, refer to Chapter 2, “Using the Process
Description Language (PDL).”

samplel Field Declarations

The field declaration follows:

fields {
submitter: short-text;
submit_date: date;
owner: short-text
priority: one-of LOW, MEDIUM, HIGH,;
project: one-of PROJECT_1, PROJECT_2, PROJECT _3...;
description: long-text;
close_date: date;

}

The samplel PDL file has seven field declarations:

submitter is a short-text field; it lets users enter any text with no
restrictions except size (one line only).

submit_date is a date type fields; Tracker ensures that the entry is in a
proper date format.

close_date is a date type field.

owner is a short-text field like submitter.

priority is one-of field, limiting the user to the three selections: LOW,

MEDIUM, and HIGH.

project is also a one-of field, but the ellipsis at the end makes it an

open rather than closed enumeration. Thus, users can select

one of the three selections or enter their own.

description is a long-text field, thus permitting multiple lines of text.

samplel Transition Declarations

The transition declarations follow the field declarations in PDL files. Each
transition declaration requires a state change declaration, which can be

Analyzing the samplel PDL File

simply the transition operator in a declaration (=>) , indicating no state
change with any current state valid. Rules and actions are optional.

The transition declarations for samplel follow:

transitions {
SUBMIT(=>AWAITING_RESPONSE) {
rules {
description.isSet;

}

actions {
submit_date.setValue('now);
submitter.setValue($USER.value);
}
}
RESOLVE(AWAITING_RESPONSE=>CLOSED) {
rules {
description.changed;

}
}
REJECT(AWAITING_RESPONSE=>CLOSED) {
rules {
description.changed;

}

}
EDIT(=>) {

}
samplel has four transitions: SUBMIT, RESOLVE, REJECT, and EDIT.

SUBMIT takes a request from a nonexistent state to
AWAITING_RESPONSE. Its only rule is that there must be an entry in the
description field. This is accomplished through the isSet method:

description.isSet;

SUBMIT has two actions:
The declaration
submit_date.setValue('now);

has the effect of setting the submit_date field to the value of ‘now’, which
is replaced by the current date and time.

77

Chapter 4: Tutorial—A Basic Tracking System

The action declaration
submitter.setValue($USER.value);

forces the submitter field to the current user.

RESOLVE and REJECT have similar declarations. They both take a request
from AWAITING_RESPONSE to CLOSED. Both incorporate one rule; the
description must change. Its purpose is to cause the user to provide an
explanation when resolving or rejecting the request.

The EDIT transition is open-ended in nature. The state does not change and
EDIT can be applied to requests in any state. It has no rules or actions. You
can declare no rules or actions with empty braces with or without the key
words. In the example we simply use empty braces after the state
declaration.

samplel View Declaration

The view declaration for samplel is as follows:

views {
Samplel()}{
control-bar() {
transitions;
3
gresults() {
index $ENTITY_ID ', $STATE ' ’, owner,
‘ submitted by , submitter;
3
display() {
row{’'Report #:" SENTITY_ID, 'Status:’ $STATE,
‘Owner:’ owner, 'Submitter:’ submitter};
row{'Date:’ submit_date,'Project:’ project,
"Priority:’ priority, 'Closed:’ close_date};
row{'Description:’ " '};
row{description};
}
}
}

The example has one view called Samplel that has declarations for a
standard control bar, query results area, and request form area.

78

Generating a Tracker Application

The control bar is specified to use all four transitions, since the transitions
key word is used with no transition names specified.

The query results area sets up an index of the request number (equal to the
$ENTITY_ID variable), the state ($STATE), owner, and submitter. In the GUI,
the area is divided into four columns, each with a title indicating the type of
data it displays. The data in text columns is left-justified and vertically
aligned. Data in numeric columns is right-justified.

The first two rows have four fields, plus a label for each one. The first two
fields, Report # and Status, are predefined. The next six fields use field
declarations from the beginning of the PDL file. The string 'Description’

is used as a label, padded with trailing white space (* ‘), as described in the
section on tuples (see “Defining a Request Form Area” in Chapter 2).

Generating a Tracker Application

Before you can run samplel, use tvgen to compile it and then use tvinstall to
create the links from the public directories to the application directories.
Here are the steps for generating sample:

1. Become super-user.

2. Create a test directory and copy the PDL file samplel.pdl from the
/usr/Tracker/samples directory to your test directory.

3. From any directory, type:
tvgen <yourTestDirPath>/db <yourTestDirPath>/samplel.pdl

where the expression <yourTestDirPath>is the absolute path to your test
directory. (If samplel.pdl is in your database directory, you can use a
relative path.)

Running tvgen creates a script called samplel in
/yourTestDirPath/db/tools/bin, a number of database files in
lyourTestDirPath/db, help files in <yourTestDirPath>/db/tools/help, and an
app-defaults file called Samplel in <yourTestDirPath>/db/tools/lib/X11.

4. Then type:

tvinstall <yourTestDirPath> /db/tools

79

Chapter 4: Tutorial—A Basic Tracking System

As before, <yourTestDirPath> must be an absolute path. Running
tvinstall has the following effects:

= All directories and executable files in
<yourTestDirPath>/db/tools/bin are linked into /usr/local/bin.

= All directories and files in <yourTestDirPath>/lib are linked into
{usr/local/lib.

= Allfiles in <yourTestDirPath>/db/tools/lib/X11/app-defaults are linked
into /usr/lib/X11/app-defaults.

= Allfiles in <yourTestDirPath>/db/tools/lib/images are linked into
Jusr/lib/images.

= The files in<yourTestDirPath>/db/tools/help are linked into
Jusr/lib/onlineHelp.

= The on-line help database is rescanned and any currently running
help server is killed.

5. To run samplel, at the shell prompt, type:
lusr/local/bin/samplel
You can add /usr/local/bin to your path so that in future you need only
type samplel to run the application.

Note: The end users must rcp or NFS-mount the tools directory (...db/tools)
onto their own systems. They then install the default Tracker subsystems on
their systems and run tvinstall to set up the required links from the tools
directory to their systems.

Expanding the samplel Application

80

The samplel example assumes a simple tracking process in which the owner
closes his or her own requests. This section introduces the concept of an
approval authority, which adds a level of complexity to the application by
adding another transition state, APPROVE.

The two existing intermediate states are AWAITING_RESPONSE and
CLOSED. When a third intermediate state, AWAITING_APPROVAL, is
added, the other transitions may also have to be rerouted.

Expanding the samplel Application

New field

To incorporate an approver, follow these steps:
= declare a field named Approver
= add the Approver field to the main view

= add an intermediate state called AWAITING_APPROVAL and change
the affected transitions accordingly

e add a new transition named APPROVE

These steps are detailed in the following sections. You can edit your samplel
PDL file accordingly.

Adding a Field Declaration

To add a field declaration, you:
= specify an internal field name
= select atype for it

« edit the field declarations section of the PDL file.

A complete list of field types is provided in Table 2-1 in Chapter 2. In this
example, we add a field named approver of type short-text, (see Figure 4-3).

fields {
submitter: short-text;
submit_date: date;
owner: short-text
priority: one-of LOW, MEDIUM, HIGH,;
project: one-of PROJECT_1, PROJECT_2, PROJECT _3..;;
description: long-text;
close_date: date;

approver: short-text;

}

Figure 4-3 Adding a Field Declaration

81

Chapter 4: Tutorial—A Basic Tracking System

82

Adding a Field to a View

Once you have defined a field, you need to add it to the user interface, by
editing the view declarations portion of the PDL file.

In this example, we add a tuple that comprises the approver field and the
“Approver” label. There are currently eight short fields in two groups of
four, plus the larger description field.

To keep things symmetrical, change the view to three rows of three fields
each, adding the approver field last (see Figure 4-4).

views {
Samplel(¥{

control-bar() {
transitions;

2

gresults() {
index $SENTITY_ID '’, $STATE ' ', owner,
‘ submitted by *, submitter;

2

display() {
row{’Report #:" $ENTITY_ID, 'Status:” $STATE,

‘Owner:’ owner};
row{’Submitter:” submitter
‘Date:’ submit_date, Project:’ project];
row{Priority:’ priority, 'Closed:’ close_date
New tuple "Approver:’ approver;

row{'Description:’ " '};
row{description};

}

}
}

Figure 4-4 Changing a View Declaration

Expanding the samplel Application

Adding a State

Adding a new state is tricky because it actually changes the process. All
transitions that enter or leave that state have to be changed accordingly.
NEED MORE EXPLANATION

Figure 4-5 shows the state transitions of a request as samplel was originally
designed.

SUBMIT

AWAITING_RESPONSE

REJECT RESOLVE

Y Y

Figure 4-5 Original State Transitions of a Request in samplel

To implement the notion of an approval authority, you need to add an
intermediate state called AWAITING_APPROVAL after the owner is
through with the request, and prior to its being closed. This is shown in
Figure 4-6.

83

Chapter 4: Tutorial—A Basic Tracking System

SUBMIT

Y

AWAITING_RESPONSE

REJECT RESOLVE

AWAITING_APPROVAL

APPROVE

Y

Figure 4-6 State Transitions after Adding State

Asaresult, you need to change the RESOLVE and REJECT transitions so that
instead of going from AWAITING_RESPONSE to CLOSED, they go to
AWAITING_APPROVAL. The transition declarations are shown in

Figure 4-7.

84

Expanding the samplel Application

Change CLOSED to
AWAITING_APPROVAL

Change CLOSED to
AWAITING_APPROVAL

transitions {
SUBMIT(=>AWAITING_RESPONSE) {
rules {
description.isSet;

}

actions {
submit_date.setValue('now);
submitter.setValue($USER.value);

}

}
RESOLVE(AWAITING_RESPONSE=>AWAITING_APPROVAL) {

rules {
description.changed;

}

}
REJECT(AWAITING_RESPONSE=>AWAITING_APPROVAL) {

rules {
description.changed,;

}
EDIT(=>) {

}
}

Figure 4-7 Transition Declarations after New State

Adding a Transition

You now need to create a new transition called APPROVE that takes a
request from the AWAITING_APPROVAL state to CLOSED. To set a
condition requiring the approver to add an explanation to the description for
closing the request, add the rule:

description.changed;

You can also add an action:
close_date.setValue('now’);
This sets the closed date to the date on which the APPROVE transition is

performed. Figure 4-8 shows the transitions section after you have added
the new rule and action.

85

Chapter 4: Tutorial—A Basic Tracking System

Add APPROVE
transition declaration

Figure 4-8

86

transitions {
SUBMIT(=>AWAITING_RESPONSE) {
rules {
description.isSet;
}
actions {
submit_date.setValue('now’);
submitter.setValue($USER.value);
}
}
RESOLVE(AWAITING_RESPONSE=>AWAITING_APPROVAL) {
rules {
description.changed;
}
}
REJECT(AWAITING_RESPONSE=>AWAITING_APPROVAL) {
rules {
description.changed;
}
APPROVE(AWAITING_APPROVAL=>CLOSED) {
rules {
description.changed;
}
actions {
close_date.setValue('now’);
}
}
EDIT(=>) {
}
}

Transition Declarations after New Transition

Chapter 5

Installing RTS Applications

This chapter explains how to install the RTS applications and describes the
basic customization.

Procedures for Installing RTS Applications

If you are installing RTS applications, you typically follow these steps.

1.
2.

Install the Tracker software (see Step One).
As superuser, run rtsgen by typing:
/usr/Tracker/RTS/rtsgen dbdir

See Step Two.

As superuser, run tvinstall to perform the necessary links:
tvinstall <dbdir>/tools

See Step Three.

As superuser, run rtsquery by typing:
/usr/local/bin/rtsquery

See Step Four.

Edit the projects.h file (see Step Five).

Edit the Tracker.pdl file (see Step Six).

Rerun rtsgen, tvinstall, and the applications to see the effects of your
changes (see Step Seven).

87

Chapter 5: Installing RTS Applications

88

Step One

The installation procedures are covered in depth in the CASEVision/Tracker
Release Notes and the IRIS® Software Installation Guide. You will need to install
all of the Tracker subsystems, the CASEVision environment, and ToolTalk.
The system that runs the database server needs the Tracker.sw.designer,
Tracker.sw.designerLinks, and Tracker.sw.rts subsystems as well.

After you have installed the Tracker software, you will have the following
PDL files in /usr/Tracker/RTS:

e Tracker.pdl

e rtsapprove.pdl

e rtssubmit.pdl

rtsrespond.pdl

projects.h

The Tracker.pdl file specifies the main application rtsquery; the others specify
the supplementary applications corresponding to their names. The projects.h
file holds project names and managers and is included by the Tracker.pdl file.

The installation process also installs the script file rtsgen in
/usr/Tracker/RTS. rtsgen generates the RTS applications, based on the PDL
files.

Step Two
The expression dbdir is the absolute path to your database directory. You

cannot use a relative path. If dbdir is not specified, then the files are stored in
Jusr/Tracker/db.

Procedures for Installing RTS Applications

rtsgen allows these qualifiers:

< -v for verbose output

< - for forced override of existing files

= -n for echo with no execution

= -h for help, that is, the usage note

< -d for debug mode, useful if you change the rtsgen script

The specified directory now contains the Tracker.pdl file, the other PDL files,
and the projects.h file; use these versions for subsequent modifications. This

directory also contains the database files, which are named Tracker with
various extensions appended.

The script files rtsquery, rtssubmit, rtsrespond, and rtsapprove are stored in
<dbdir>/tools/bin. The help files are stored in <dbdir>/tools/help. The four
app-defaults files Rtsapprove, Rtsquery, Rtsrespond, and Rtssubmit are stored in
<dbdir>/tools/lib/X11/app-defaults.

Step Three

tvinstall creates these links:
e <dbdir>/tools/bin => /usr/local/bin
e <dbdir>/tools/lib => /usr/local/lib

= <dbdir>/tools/lib/X11/app-defaults =>
Jusr/lib/X11/app-defaults

= <dbdir>/tools/lib/images => /usr/lib/images

e <dbdir>/tools/help => /usr/lib/onlineHelp

In addition, the on-line help database is rescanned and any currently
running help server is killed.

Step Four

Note: You can add /usr/local/bin to your directory path so that in future you
need only type rtsquery to run the application.

89

Chapter 5: Installing RTS Applications

90

You should familiarize yourself with rtsquery and the supplementary
applications to see how the RTS applications accommodate your needs. For
additional information on their operation, refer to CASEVision/Tracker User’s
Guide, RTS Applications.

Step Five

The projects.h file contains placeholder values for projects and their
associated managers. The actual file follows:

I

/I project.h

1

/I This file is included by Tracker.pdl, the RTS PDL.

/I Replace the sample data below with projects you wish
/I to track. Make sure to separate the project name and
/l project manager on each line with a comma and ’//’

/I as is done in the sample data.

/I Project Name Project Manager

PROJECT_1, // managerl
PROJECT_2, // manager2

/I No comma on the last line!
PROJECT_3 // manager3

Replace the PROJECT * and manager* placeholders with values appropriate
to your organization. Use commas after the project names except for the last
one. Use adouble slash (//) to separate the manager’s name from the project
name. The manager’s name is not used in the PDL file but is stored in the

database when you run rtsgen. Here is an example of a changed projects.h file:

/I Project Name Project Manager
Acme, // Robinson

Framis // Uyeno

Procedures for Installing RTS Applications

Step Six

The Tracker.pdl file has a number of placeholder values that you need to
change.

Change the following #define statements:
#define CZAR ’root’
#define BBOARD 'root’

Set the CZAR symbol to the email address of the tracking system
administrator. Set the symbol BBOARD to the email address of the person
responsible for screening and assigning requests, if appropriate. For
example,

#define CZAR 'Nicholas’

#define BBOARD 'Howard’

Change the placeholder values in the System field declaration and its help
text:

system: one-of

SYSTEM_1, SYSTEM_2, SYSTEM_3

Change the help text for the Project field.

Review the rule regarding the Due Date field for both the SUBMIT_BUG and
SUBMIT_RFE transitions. They both use the rule:
due_date.is(due_date.setDefault('now +30:00:00:00%);

This rule sets the Due Date field to 30 days from the current date. Change the
value 30:00:00:00 as appropriate.

91

Chapter 5: Installing RTS Applications

92

Step Seven

Now that you have made some basic changes, you should have a feel for
modifying the RTS applications. The process is the same for major changes.

When the tracking system is ready for the end users, you need to make the
tools directory available to them, using NFS, rcp, rdist, or other means. The
users then need to run inst to install Tracker.sw.user and Tracker.sw.userLinks.
Finally, they must run tvinstall giving the tools directory as an argument to
create the necessary links.

Chapter 6

Advanced Design Techniques

This chapter tells you how to employ advanced techniques when designing

a system with Tracker. It covers the following topics:

Using dates
Customizing resources
Using the exec functions
Importing data

Preparing translation scripts

93

Chapter 6: Advanced Design Techniques

Using Dates

94

Date and time information is an important part of bug and enhancement
request tracking systems, as it is for most database applications. The date on
which a request is submitted, the due date for resolving the problem, and the
actual fix date are just a few of the uses for date and time values in
Tracker-based applications.

Tracker provides the date field type to support date and time data storage
and manipulation. Date values are stored in Tracker databases, used in
gueries, displayed, and entered in a variety of formats.

Representing Date Values

Date field values represent a point in time to the nearest second. They do not
represent a time interval such as six seconds or two days. Because they rely on
UNIX time data types and function calls, date values represent times only
since January 1st, 1970. Date values are ordered from this starting point, the
lowest value, and increase toward later dates. Therefore, a date that occurs
after a second date will have a higher value.

Input Formats

Internally, Tracker represents dates as integers—a convenient form for
storage and retrieval. For data entry purposes, however, other formats are
preferred.

Tracker provides a wide variety of date input formats. Dates can be supplied
with as little information as the year or month, or specified to the nearest
second. You can enter dates as a base time point plus or minus a time
interval. You can also specify expressions for the current year, month, day;,
hour, or second.

Using Dates

Table 6-1 provides an example of the various values possible for a given
date, along with the Tracker interpretation.

Table 6-1 Date Interpretation Examples

Date Input Tracker Interpretation

7/28/93 Tue Jul 28 00:00:00 PDT 1993
July 28, 1993 Tue Jul 28 00:00:00 PDT 1993
July 28 1993 Tue Jul 28 00:00:00 PDT 1993
28-July-92 Tue Jul 28 00:00:00 PDT 1993

July 28 10:00 1993
10:00 July 28 1993
July 28

July 28 10PM

July 28 10PM EDT
July 1993

July

1993

10PM

10:30:59 PM

today

now

this year

this month

today + 30:00:00:00
July 28 - 72:00:00

Tue Jul 28 10:00:00 PDT 1993
Tue Jul 28 10:00:00 PDT 1993
Tue Jul 28 00:00:00 PDT 1993
Tue Jul 28 22:00:00 PDT 1993
Tue Jul 28 19:00:00 PDT 1993
Wed Jul 1 00:00:00 PDT 1993
Wed Jul 1 00:00:00 PDT 1993
Wed Jan 1 00:00:00 PST 1993
Tue Jul 28 22:00:00 PDT 1993
Tue Jul 28 22:30:59 PDT 1993

Tue Jul 28 00:00:00 PDT 1993—Start of current day.
Equivalent to “this day.”

Tue Jul 28 11:10:14 PDT 1993—Current time to the
nearest second.

Wed Jan 1 00:00:00 PST 1993—Start of current year.
Wed Jul 1 00:00:00 PDT 1993—Start of current month.
Thu Aug 27 00:00:00 PDT 1993—30 days from today.

Sat Jul 25 00:00:00 PDT 1993—72 hours before July
28th of the current year.

95

Chapter 6: Advanced Design Techniques

96

Now let’s examine the rules Tracker uses to understand date input.

Year

The year can be expressed as a 4-digit number or as a 1- or 2- digit number
representing the year in the current century. For example, “92”” means 1993,
“44” is illegal (1944 is before 1970), and “1” is illegal now, but anytime after
the beginning of the next century will mean “2001.”

Month

The month can be either a number from 1 to 12 or a month name or a 3-letter
month abbreviation. Case is not considered.

Day of the Month

The day of the month is expressed as a number from 1 to 31.

Day of the Week

The day of the week can be included in date input, but is not used to
interpret the date. In fact, the day of the week is ignored in date input. The
day of the week can be a day of the week name or a 3-letter abbreviation.

Time of Day

The syntax for specifying the time of day is:
HH[:MM[:SS]]] am_or_pm][timezone]

The minute and second are optional, as are the AM or PM designator and the
time zone. If neither AM nor PM is included in the time of day, the hour is
interpreted on a 24-hour basis. If a time zone is not specified, the current
local time zone is used. The time zone can be either a 3-letter time zone name
or a 4-digit offset from GMT (now known as Coordinated Universal Time or
UTC).

Using Dates

The recognized time zones are shown in Table 6-2.

Table 6-2 Time Zone Interpretation

Time Zone Difference in Hours from GMT

GMT (Greenwich Mean Time) 0
GST (Greenwich Standard Time) 0
GDT (Greenwich Daylight Time) 0

EST (Eastern Standard Time) -5
EDT (Eastern Daylight Time) -4
CST (Central Standard Time) -6
CDT (Central Daylight Time) -5
MST (Mountain Standard Time) -7
MDT (Mountain Daylight Time) -6
PST (Pacific Standard Time) -8
PDT (Pacific Daylight Time) -7
BST (British Summer Time) 1
MET 1
EET 2
JST 9

Date Plus or Minus Interval

You can specify a date in relative terms by adding or subtracting a time
interval from a given base date. The adjustment always follows the base date
and is specified as follows:

+|-[[[DD:]HH:]MM:]SS

97

Chapter 6: Advanced Design Techniques

98

Current Time References

The current date and time can be referenced in date input. Tracker supports
these current date and time reference forms:

= this second (also now)

= this minute

= this hour

= this day (also today)

= thismonth

* thisyear

Display Formats

Date display formats are as various as the input formats. Tracker designers
and end users can customize the date display formats to meet their
individual needs.

Tracker uses cftime(3C) to format date values for display. The
environment variable CFTIME is used to alter the date display format. See
the cftime(3C) man page for details on setting CFTIME environment
variable.

Comparing Dates

Tracker uses these operators to compare date values: <, <=, =, >=, > and <>,
These are especially useful in DML. When a date field is compared with a
literal date value, the granularity of the literal date value controls the
granularity of the comparison. For example, consider the DML statement:

select * from tracker_request where due_date = July 1993;
The literal date value is specified only to the month. The query will therefore

match all due_date values anytime during that month, that is, from July 1 to
July 31. Consider the statement:

select * from tracker_request where due_date = July 28 1993;

Customizing Resources

Customizing Resources

The date value is a specific day and will match due dates from midnight to
23:59:59 of that day.

If the date is fully specified, as in:

select * from tracker_request where due_date = Jul 29

09:25:27 1993

then the match must be exact.

These date rules also apply to DML and the Tracker GUI.

Date Entry in PDL

Date values must be enclosed within single quotes when entered into PDL.
For example:

due_date.setValue('now + 30:00:00:00);

Date Entry in DML

You need not use quotation marks for date values in DML. Date values can
be quoted using the explicit typing conventions for DML, for example:

select * from tracker_request where reopen_date = date
'10:30PM’;

However, using quotes around date values is sometimes necessary to enable
the DML interpreter to parse the statement correctly.

Asis true for any X11 application, CASEVision/Tracker applications such as
rtsquery have a large number of resources that control their appearance and
behavior. Default values for these resources are provided in an application
defaults file, stored in the directory

Jusr/lib/X11/app-defaults

99

Chapter 6: Advanced Design Techniques

100

If you want to change any of these values for your own environment, you
can set new values for them in your own resource file:

~/.Xdefaults

However, handling resources in Tracker applications is slightly harder than
handling other X11 applications. The widget names, and even the name of
the application itself, are generally customized by the system designer, so
this guide cannot refer to them directly.

X11 resource customization is a complex subject. This section is not a
complete guide. One of the best sources for further information is the Xlib
Programming Manual, by Adrian Nye, Volume One of the O’Reilly X Window
System Series.

Naming Applications, Widgets, and Resources

Your first step in customizing resources is to determine the name of the
application, which is the name of the command that you type to bring up the
application. This name also appears in the window title bar when you run
the application. The main application shipped with Tracker is named
rtsquery, and that name is used throughout this section. You can also use a
name of your choice.

Everything in X11 has two names. The “name” mentioned above is actually
the instance name; there is also a class name. The class name is sometimes
shared by several instances (similar to a family name). This is more often
true of widget and resource names than of application names; it is never true
of Tracker application names.

Each auxiliary view (accessed from the main view’s Views menu) in an
application has an instance name, which appears in the title bar. The class
name of an auxiliary view is the class name of the IRIS IM™ widget used to
implement the view: XmForm; the auxiliary view class name is not related to
its instance name. (IRIS IM is Silicon Graphics’s port of the industry-
standard OSF/Motif™ for use on Silicon Graphics systems.)

All of the individual widgets that make up the application also have names,
both instance and class. The system designer may have assigned names to
some of the application’s widgets in the PDL file that defines the application.

Customizing Resources

You can use the UNIX command more to look at the application file,
Jusr/local/bin/rtsquery, and see these names. Tracker automatically assigns
names to any widgets that are not specifically named by the designer. The
generated names are not easy to predict, so they will probably not be useful
to you.

Finally, the resources have both instance names and class names. The
instance name of a resource tells you what it actually does; the class name
generally tells you what kind of information it is. For example, the resource
useSmallFonts (instance name) controls whether rtsquery uses the smaller of
its two sets of fonts. The class name is boolean (as is true for many other
resources), which tells you that it takes values such as True and true (meaning
use small fonts), or False and false (meaning do not use small fonts).

Using Names

Names, especially the application names, are used throughout X11. In this
section only two uses are discussed.

Naming Application Default Files

You can use the application class name as the name of the application
defaults file. Since rtsquery’s class name is Rtsquery, its application defaults
file is in /usr/lib/X11/app-defaults/Rtsquery.

Setting Resource Values

You can also use all of these names to set resource values. To set a resource,
you name:

< the widget for which you want to set the resource

= the name of the resource itself

< the value to which you want the resource set

If the resource is used only by one widget, or if you want to set it for all

widgets that use it, you can omit the widget name; all widgets using that
resource will pick up the set value.

101

Chapter 6: Advanced Design Techniques

102

Since there are many widgets in an application, several widgets often end up
with the same name. To clarify which one you want, you can specify the
widget hierarchy that contains the particular widget. Widgets are arranged
inside one another, like a set of bowls in graduated sizes, and this structure
is directly reflected in the PDL text that you find in the application file. A
large widget makes up each whole window (called the view) and contains all
of the other widgets. Arranged inside and completely filling the view are
several display widgets, which create the sashes that allow you to change
their height. Inside each display widget are other widgets: control-bars, rows,
and so on. If you look at your application and the application file side by
side, you should have no trouble matching the features and identifying the
names that the system designer has assigned.

To set a resource for some widgets of a given kind, but not for others of the
same kind, you need to specify the names of some of the containing widgets,
as well as the name of the widget you actually wish to control. This is done
with a limited sort of wild-carding. For example, to exactly specify a
particular widget, you can specify the application name and all the widget
names down to the end, as in:

app.widgOne.widgTwo.widgThree.resource: value

Or, more commonly, you can leave out some or all of the widget names,
replacing them with an asterisk:

app*widgThree.resource: value

Since an application defaults file is only used by the “right” applications,

you don’t need to specify even the application name. Most resources are
specified like this:

*widgThree.resource: value

You can use this simple form in your ~/.Xdefaults file too, as long as you are
sure no other applications will use the value. But it is generally safer to
include the application name.

You can also set resources for all data of a particular type, which includes
data in lists that do not have widgets. To do this, you must concatenate the
type name (from the PDL fields section) and the resource itself:

Rtsquery*file_fileDisplayStyle: \
FileDisplayVobStorage

Customizing Resources

Resources that you set in your own resource file usually take precedence
over settings in the application defaults file. However, precedence is also
based upon exactly how the resource is specified. To override a setting from
the application defaults file, follow these steps:

1. Copy the line from the application defaults file into your .Xdefaults file.
2. Add the application name before the asterisk.
3. Change the value (the part after the colon).
4. Reload your resources, either by logging out or by typing
xrdb -load ~/.Xdefaults
5. Restart the application.

Personal Tracker Resources

This section lists the resources you’ll most likely want to set in a Tracker
application.

instanceName: DefaultValue

Where appropriate, the description will mention which kinds of widgets use
this resource. Where this is not mentioned, the resources control the
behavior of the entire application.

executeStartupQuery: True

By default, if the file ~/.<appname>-query (or the file specified by the resource
*startupQueryFileName) is found upon startup, the query stored there (by
the application’s Query menu “Save As Default” item) is executed
immediately so that the application comes up displaying its results. Setting
this resource to False prevents this.

uselnvalidDataDialogs: True

All widgets that display data from the database obey this resource. If invalid
data is entered into such a widget during an edit and this resource is set to
true , a highlight is drawn around the field and a dialog is popped up to
explain the error.

103

Chapter 6: Advanced Design Techniques

104

uselnvalidQueryDialogs: True

All widgets that display data from the database obey this resource. If invalid
data is entered into such a widget during a query and this resource is set to
true , a highlight is drawn around the field and a dialog is popped up to
explain the error.

fileDisplayStyle: FileDisplayVobMount

All widgets that display data of type file obey this resource. File names that
name a file in a CASEVision/ClearCase Versioned Object Base (VOB) can be
displayed in two formats. The default format, FileDisplayVobMount ,isa
standard ClearCase version-extended pathname, which includes the file
system path to the file and the version information, for example:

Ivobs/CASE/usr/src/foo.c@@/main/37

This format is familiar to most users. If displayed on a system where the
VOB is mounted in another location, it will show the new location. If
displayed on a system without the VOB mounted, or even without
ClearCase installed, the string displayed to the last person who edited the
file will be used.

The other display format, FileDisplayVobStorage , shows where the VOB
is actually located, for example:

(vobhost:/storage/CASE)/usr/src/foo.c@ @/main/37

This presentation can be useful to administrators investigating user
complaints that the first form names a file that doesn’t exist.

queryFetchCount: 50

This resource controls the number of entities retrieved from the database

each time the query results pane is updated. Setting this resource higher than
the default may improve the scrolling performance of query results. Setting
it too high may increase the delay before the first query results are displayed.

Customizing Resources

maxAssistValues: 25

This resource applies to the layout of the field value options in the GUI. If the
number of options is 25 (the default) or fewer, they appear on a rollover
submenu reached from the “Values” menu item on the field menu. If there
are more than 25 options, Tracker displays them in a scrolling list. You can
set the default at which the scrolling list appears to any number you choose.

keyboardFocusPolicy: explicit

This setting means that you must click the mouse button in a field before you
can enter data. Setting it to pointer means that you can type into whichever
field is under the mouse pointer.

XmForm.traversalOn: True

This setting means that you can move from one input field to another using
<CtrlTab> (move forward) and <ShiftTab> (move backward). <Tab> also
moves you forward from single line fields, but in multiline fields it merely

inserts a tab. Setting it to False means you must move the mouse pointer to
another field to enter data in it.

scheme: Lascaux

A scheme is a set of coordinated colors, fonts, and other properties. A
number of schemes are provided in the CASEVision environment (installed
along with Tracker). You select which scheme your CASEVision applications
use by setting this resource. The default scheme, Lascaux, matches many
other IRIX tools. You can preview the other schemes with cvscheme, which is
also a part of CASEVision. (For more information, see the cvscheme man page
or the CASEVision Environment Guide.)

useSmallFonts: True

Every scheme provides two entire sets of fonts. By default, Tracker
applications use the set of smaller fonts because Tracker windows tend to be
large and cluttered with the larger fonts. If you prefer the bigger fonts, set
this resource to False .

105

Chapter 6: Advanced Design Techniques

Using the exec Functions

106

The Tracker PDL provides many built-in facilities for implementing
applications. It supports data, process, and GUI definition. The PDL does
not, however, provide everything an application designer might need to
implement Tracker applications. Some applications may require resources
external to the PDL. The exec functions let you access external resources, thus
allowing hybrid applications to be constructed.

The exec functions are PDL functions that provide access to UNIX commands
and the DML language. The next section examines the exec functions for
UNIX command access.

Executing UNIX Commands from PDL

Two exec functions provide access to UNIX commands. They are
execCommand and execFilter. execCommand executes a UNIX command and
returns its exit status. execFilter also executes a UNIX command, but it
returns the standard output of the command instead of the exit status.

The execCommand and execFilter functions are very useful in implementing
Tracker applications, and the next example uses execFilter to demonstrate
this. Suppose you define a field, id_string, that you wish to contain a short
identifying string for each bug. You want this field to be filled in
automatically upon submission of the bug report with the SENTITY_ID field
value and the submitter field value, as follows:

4-john

This cannot be accomplished with the standard methods provided for PDL
fields, but you can use execFilter to execute the UNIX command echo and save
the result into the id_string field. The PDL source to do this looks like this:

actions {
id_string.setValue(
execFilter(“/binfecho $ENTITY_ID-$submitter”));

}

Both execFilter and execCommand make the values of all fields available in
environment variables. Thus $SENTITY_ID and $submitter reference
environment variables hold the values of the two fields $ENTITY_ID and

Using the exec Functions

submitter respectively. Both also store all long-text field values in temporary
files. The name of the temporary file is made available in an environment
variable named <fieldname>_file, and the value of the environment variable
fieldname is set to the special value ! (exclamation point) to signify the field’s
special treatment.

Both execFilter and execCommand make other information available in
environment variables. The variable FIELD_LIST contains the names of all
the request fields. The variable MODIFIED_FIELDS contains the names of
all fields whose values have been changed by the current transition, either
by user actions or by PDL methods like setValue. For those fields in the
MODIFIED_FIELDS list, the old values are also available in variables named
<fieldname>_old, or in the temporary file named in the <fieldname>_old_file
variable for long-text fields.

For an example usage of the execCommand function, see the RTS main
application PDL file, /usr/Tracker/RTS/Tracker.pdl. This file uses execCommand
to execute the shell script rts_notify. See the shell script for examples of using
environment variables to access field data.

Executing DML Select Statements

The execSelect function is used to execute a DML select statement against the
Tracker database from PDL. Its argument is the complete select statement
text, and its return value is the result of the query.

This example of execSelect usage appears in /usr/Tracker/RTS/Tracker.pdl:

tempShortText.

setValue(execFilter('echo “select manager from project

where name = "$project”;™));

owner.setValue(owner.isSet ?

owner.value :

(project.isSet ?
owner.setValue(execSelect(tempShortText.value)) :
owner.setValue(execFilter('/bin/echo $bboard")));

In this example, execSelect retrieves the name of the project manager from the
database. The request is then conditionally assigned to the project manager.
First the select statement itself is constructed using execFilter with echo to
insert the project field’s value into the select statement text.

107

Chapter 6: Advanced Design Techniques

Importing Data

108

The result of this execFilter is stored in a temporary scratch field and then
later used as the argument to execSelect. The result of the execSelect is then
used to set the value of the owner field.

The execSelect function is useful only when the result of the query is a single
field value from a single request. If the select statement results in more than
one request being selected, then execSelect returns no value. If more than one
field is selected, only the first field mentioned in the select statement is
returned.

Most users do not have the luxury of creating a new request tracking system.
By the time you decide you need a product like Tracker, you already have a
collection of defect reports. Once you have formalized your tracking process
into a Tracker system, you will need to copy the information from your old
system into your new Tracker system.

If your old system is on-line and capable of producing text files in a fairly
consistent format, you should be able to build a tool to import your data into
your Tracker system. This section presents one such tool, which was used at
Silicon Graphics to import the entire Silicon Graphics bug history, over
40,000 bugs, from a previous system into our Tracker system. The example
uses real data, including one of the actual bugs filed against Tracker during
early development (now fixed).

You may find it easy to do your import in a two-step process:
1. Move the data into Tracker.

2. Use dml(1) interactively to clean up any minor problems that arise
during import.

This is usually quicker than polishing your import script until it’s flawless
and loading and reloading the database while you test it. You can make your
script do the entire job, if the effort seems justified. The script presented here
is in continuous unattended use, importing data on an hourly basis from the
old system (which is still in use in some parts of Silicon Graphics). Some of
the lessons learned while developing this script may save you some trouble
in developing your script.

Importing Data

Basics

The basic approach you’ll use is to translate your data into the Tracker Data
Manipulation Language (DML). DML is similar to many fourth generation
database languages, such as SQL. It lets you enter, examine, and modify the
data in the database. You can write an application that reads your current
database directly, translates the data into DML, and feeds the DML to the
interpreter, dml. More likely, however, you’ll need to go through an
intermediate text format, as outlined here.

First take a look at the DML aspects that are particularly important during
an import; if you’re able to translate directly from one to the other, that may
be all you will need.

Explicit Typing

When importing data, it’s best to explicitly type the data. This is an optional
DML feature because most data values are automatically recognized as
belonging to a particular type; however, explicit typing, can clear up
ambiguities, such as the difference between short-text and long-text values.
More importantly, while you’re importing data from another system, some
data might not match expectations—either Tracker’s expectations, or the
expectations you had when you wrote the import script. Explicit typing
helps to ensure that such surprises don’t slip past you into the Tracker
database. Even if you take the approach recommended above, you'll at least
want to know that there is a problem.

Explicit typing is accomplished by enclosing the data item in single quotes
(apostrophes), and preceding it with the type name, that is, the name used
to declare the field in the PDL file. Both long-text and short-text string types
already require the surrounding quotes; you need to add only the
type-name.

Duplicate Suppression

Your first attempt to import a large database may not be flawless, but you
should be able to import a majority of your data easily, and then focus on the
few reports with difficulties. You don’t want to discard the reports you’ve
inserted correctly, yet you don’t want to turn one real report into two records
in the database.

109

Chapter 6: Advanced Design Techniques

110

You should focus your attention on getting the import script right, rather
than on remembering exactly which reports worked and which failed. The
DML includes a very useful construct for this sort of situation, the insert
...where statement (this is not in standard SQL).

A normal insert statement creates a new record unconditionally, which is
fine for the first time, but not so good when you’re doing updates. The
update ... where statement updates records already in the database, but
does nothing if the record described in the where clause doesn’t already
exist. If only these two statements were available, you would be required to
know the exact state of your database at all times and to adjust your import
process accordingly. This is inconvenient during an import.

The insert ... where statement solves the problem. It’s a synthesis of the
insert statement and the update statement: if one or more records can be
found that match the where clause, then it behaves as an update statement,
changing the existing record(s) and creating no new ones. If, however, no
such record exists, insert ... where behaves as an insert statement,
creating one new record with all the values included in the statement.

When you’re importing a block of data using your import script, you’ll
probably encounter a few reports that cause problems in some way. Often,
you can make a minor enhancement to your import script, and re-import the
same block of reports. If you’ve written your script to use insert ...

where , the reports that succeeded before will merely update themselves to
the same values; the reports that failed before will be inserted now.

To use insert ... where effectively, you’ll need to know the field(s) of the
incoming reports that uniquely identify them. (Your Tracker database
assigns an $SENTITY_ID uniquely to each report, but you won’t know that
value for the incoming data, so it can’t be used here.) Your old system may
already have a sequence number or something similar. If not, you may be
able to create a unique key using several fields. For example, if your old
system records who originally submits a given report, and also records the
time of submission fairly precisely, the submitter plus submission time will
probably be unique because no single person can submit more than one
report per second.

Importing Data

Multiline Data

Some fields values may cover more than one line. For example, nearly every
system has at least one field where the problem is described, which is usually
more than a single line. Similarly, lists of items can span several lines. The
example presented here uses nawk(1) to translate the text, however, and nawk
is primarily line-oriented. A problem arises: you’ll be writing this nawk
script to recognize certain lines that identify fields and their values in the
input, but you don’t want to be misled by similar text buried within a body
of text.

The solution used here is to notice when a multiline item begins; its
beginning is easily recognized in the same way any other field value is
recognized. A flag is set, indicating that the parsing is currently somewhere
within a multiline item. A few rules concerned with noticing the end of such
an item appear at the top of the script (so that they’re considered before the
general rules); these rules match only while the flag is set. These rules are
principally responsible for recognizing the end of the multiline data.

Embedded Quotes

The string data itself may contain quotes besides the quotes used to delimit
it. The DML requires that such a quote has a backslash in front of it, like this:
(\’). This in turn makes backslashes special: they, too, require backslashes in
front of them.

Performance Considerations

If you have so many defect reports to import that you're considering writing
ascriptto do it, you can probably determine how long this script will take to
run. You can improve the performance of your script by making it surround
groups of insertions in transactions; otherwise, each individual insertion
will be a transaction by itself, which is time-consuming for the server. The
exact number of reports you include in a given transaction isn’t too critical
in this context; grouping at least ten together is advantageous, but above that
the rate of gain begins to fall off. If you make the transactions too large (say,
hundreds of reports), things will slow down because the server grows too
large (storing the pending transaction) and begins to page unduly.
Twenty-five reports per transaction seemed to be a good compromise.

111

Chapter 6: Advanced Design Techniques

112

Text Output from Your Old Database

Your first requirement is to deal with the text output from your old database.
The details of the format are not too important, since you’ll be writing a
translator anyway; make sure, though, that the format is easy to translate:

Start each new field on a separate line.

Start each line with the name of the field as you’ve declared it in the
PDL.

Use consistent punctuation style.

If at all possible, enquote the string values in this text so that strings
begin and end with an apostrophe, and embedded apostrophes are
escaped with backslashes.

The input format for this example is shown in Figure 6-1. Several details of
this format are worth pointing out:

The line of asterisks is part of the output; it precedes each report (called
incidents in this system).

The incident_id is the unique identifier for the old system.

The data is enquoted, but is not entirely consistent; some integers are
quoted, some are not.

Fields whose values are potentially multiline (such as description) have
a double colon; all other fields have a single colon.

There are many fields in this form. In fact, the system as a whole has
even more than these; when a field is blank for a given report, this text
copy simply ignores that field.

Finally, notice that the first two lines of the description can be easily
mistaken for field values. The older system that was being replaced here was
based upon netnews and email messages—simple text messages that were
read by an administrator to sort out details such as priority and assigned
engineer. This stylized form of text entry made that job easier.

Importing Data

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkhkkkkkkkkkkkkhkkkkkkkk

incident_id : 106064

submitter : ‘jackr’

submitter_machine : ‘dblues’

opened_date : ‘May 04 1993 03:00AM’

category : ‘software’

classification : ‘rfe’

summary : ‘RFE: Mouse motion posts redundant popups’
priority : ‘4’

reproducible : T

SGlLonly: T

message_id : ‘kcamfic@sgi.sgi.com’

newsgroups : ‘sgi.engr.case.bugs’

released_product : T

reported_by customer: T

tvbug_id : 38969

description :: ‘assign to: jackr

priority: 4

When there\'s a syntax error in the entry form, every time
the mouse passes through that field, another copy of the
error message is popped up.

Since we expect mouse motion while these alerts are up
(context-sensitive help and so on), this is tacky. Perhaps
each pane or field could keep track of whether it already
has an alert up? Does the Vk message thingie return the
widget ID (so you could check if it\'s still alive)?’
resolution_id : 106064

project : ‘tracker’

status : ‘closed’

dev_priority : ‘4’

assigned_engineer : ‘johnt’

fixed_by : ‘jackr’

closed_date : ‘May 21 1993 01:13AM’
age : 79

fix_description :: ‘fixed by previous take
modified_date : ‘May 21 1993 12:13PM’
modified_user : ‘jackr’

)

Figure 6-1 Input Format

113

Chapter 6: Advanced Design Techniques

Preparing Translation Scripts

Keep your PDL file handy while preparing your translation script so that
you can easily generate the code necessary to include the explicit typing. The
fields section of the PDL file used in this system follows.

fields {

Product : short-text;
SGI_only : boolean;
alpha : short-text;

assigned_engineer : short-text;

assigned_group : short-text;

category : one-of software, hardware,
documentation ...;

classification : one-of bug, rfe, note;

closed_date : date;

command : short-text;

description : long-text;

doc_affected : short-text;

fix_descriptio : long-text;

fix_policy : short-text;

fixed_by : short-text;

incident_id :int;

irix_release : short-text;

machine : short-text;
message_id : short-text;
model_cpu : short-text;
model_gfx : short-text;

modified_date : date;

modified_user : short-text;

newsgroups : list-of one-of sgi_engr_case_bugs,
sgi_bugs_compilers,
sgi_bugs_dogwood,
sgi_bugs_cypress,
sgi_bugs_printware,
sgi_bugs_lonestar

opened_date : date;

peripheral : short-text;

priority, dev_priority, CSD_priority : int;

product_version : short-text;

project : short-text;

released_product : boolean;

reported_by_customer : boolean;

114

Preparing Translation Scripts

reproducible : boolean;
resolution_id : short-text;
submitter . short-text;
submitter_domain : short-text;
submitter_machine : short-text;

summary : short-text;
to_incident_id : short-text;
importdate : date;

}

The Translation Script

The translation tool in this case is merely a nawk script that recognizes each
field by name and translates each one in a separate nawk production. This
approach enables you to clearly recognize when an unexpected field comes
along. This inflates the script quite a bit, with repetitious and uninteresting
text. Most of the useful details are either at the head or at the tail.

Here are a few highlights of the script, the text of which follows immediately
afterwards.

= The script expects to be run with one or more file names in its
command line. A verbose flag, -v, may be provided first, producing
some diagnostic output. You’ll probably be doing a lot of diagnosing of
this script, as you learn what your data actually looks like (instead of
what you thought it looked like); you can include any debugging aids.

= A collection of nawk functions are defined at the beginning:

= rpt() merely reports a message to stderr so that it doesn’t get mixed
into the output stream, which is probably being fed to dml.

= error() reports a message, annotated as an error, which is an
important distinction, even when you’re both the author and the
user of the script.

= barf() reports an error and also arranges to skip the rest of the
current incident.

= beginbug() performs initial tasks at the beginning of each bug.

= where() emits the where clause of the insert ... where statement
used to put the data into the Tracker database. As you’ll see below,

115

Chapter 6: Advanced Design Techniques

116

the incident_id is noted when encountered in the body of the input,
so it may be used here. where() is only used from within.

endbug(), performs necessary closing tasks. The counters
maintained here keep track of when to close one transaction and
open another.

intval(), enumval(), boolval(), strval(), Istrval(), and dateval() all
reformat the input format into the proper format for each particular
data type.

startLongText() is called whenever a long-text field is encountered.
The test at the top checks if the field actually has only one line of
text. If there are several lines, then the flag InLongText is set.

Two productions follow, guarded with by the InLongText flag. They
recognize two different kinds of transitions from one report to the
next.

The (skipbug == True) production implements the skipping of
unparsable data set up by barf(). A production guarded by the flag
InBugHeader is concerned with skipping the blank lines that follow
the line of asterisks that begin a bug. The final InLongText line
recognizes and passes through the lines that make up the body of a
long-text field. They also notice the end of the field (notice the
careful handling of apostrophes and back slashes).

A long string of trivial productions follows, each of which
recognizes one particular field and calls the appropriate formatting
routine (intval() and the other routines described above).

Eventually, the exception conditions are handled (delineated by a
long comment line consisting of hash marks).

The END production is executed by nawk when it runs out of input
data. In addition to ending the current bug as it would have if a
new bug had been encountered, END deals with the possibility that
the input set is not an exact multiple of the number of reports being
bundled into a transaction. In this case, the end transaction is not
printed by endbug; this would result in an error, and the entire
transaction would not be performed, so END adds it.

Preparing Translation Scripts

Here is the translation script.
#!/bin/ksh

if [“$1” = -v]] ; then
shift

verbose=-v

else

verbose=

fi

/usr/bin/nawk *

func rpt(msg) {
system(“echo >&2 “ msg);
}

func error(msg) {
rpt(“ERROR: “msg);

}

func barf(reason) {

error("\W” FILENAME “\\\", line “ FNR *“: error: “ reason);

skipbug = True;

next;

}

func beginbug() {

if (counter == 0) {

printf “begin transaction;\n”;

}

printf “insert into tracker_request set \n”;

}

func where() {

printf “ where incident_id = “incident_id;
printf “;\n”

}

func endbug() {

Do nothing on first pass (a trick to handle startup)
Elsewise, print the where-clause.

Once in a while, also end the transaction (and set
counter == 0,

to trigger beginbug() to start a new one).
if (counter == -1) {

counter = 0;

else if (counter == 24) {

where();
printf “end transaction;\n”;

117

Chapter 6: Advanced Design Techniques

counter = 0;
fullcount +=1;

}

else {

printf “importdate = “importdate”™\n”;
where();

counter += 1,
fullcount +=1;

}

incident_id = 0O;
tvbug_id = 0;
}
func intval() {
gsub(“\",™,$0);
return “int ‘\""$3"\"";
3
func enumval() {
gsub(*“\"",™);
gsub(*,”,"\", one-of \'"");
$1 ="

$2 ="

$3 = “one-of \""$3;
return $0™\""”;

h

func boolval() {
gsub(“\"",™ $0);

if ($3=1){

return “boolean \"True'\"”;
}

else {

return “boolean \"False'\"";
5

J3

func strval() {

$1 = "$1;

$2 = “= short-text”;
return $0;

J5

func Istrval() {

$1 = “$1;

$2 = “= long-text”;
return $0;

func dateval() {
$1 = “date”;

118

Preparing Translation Scripts

$2 =

gsub(“AM”,™,$0);

gsub(“PM”,™ $0);

return $0;

h

func startLongText() {

if ($0 ~ /*[M\'\"$/) {

print “”;

}

else{

InLongText = True;

}

}

BEGIN {

True = 1;

False = 0;

Set things to recognize the new one

InBugHeader = True;

InLongText = False;

skipbug = False;

counter = -1;

fullcount = 0;

}

(InLongText != True) && ($0 ~ /"Results for pvquery
command:/) {

if (verbose=="-v") {

rpt(“\""$0™\™);

}

next;
3
(InLongText != True) && ($0 ~
A8 Y W W S S S S e W W S e G b W R S e Rl b W R S
R e e R R R A R A W I
endbug();

beginbug();

skipbug = False;

InBugHeader = True;

next;
}
(skipbug == True) {next;}
(InBugHeader == True) && ($0 ~ /"$/) {
Skip

InBugHeader = False;

next;

}

119

Chapter 6: Advanced Design Techniques

120

(InLongText == True){

print $0;

if (B0 ~ /'L T*$D) ||

(B0 ~ /XL D))

(B0 ~ /AMNWNT 1*$) {
print “”;

InLongText = False;

3

next;

}

/Mvbug_id : / {

tvbug_id = $3;

next;

}

/Nincident_id : /{

integer

incident_id = intval();

print “incident_id = “intval()”,”;
#rpt(“Incident: “incident_id);
next;

}

/NCSD_priority : \"/ {

print “CSD_priority = “intval()”,”;
next;

}

I"SGI_only : /{

bool

print “SGI_only = “boolval()”,”;
next;

}

/Mage 1 /{

next; # Ignore this computed value
}

/Nalpha : \" {

print strval()”,”;

next;

}

/Nassigned_engineer : \"/ {
print strval()”,”;

next;

}

/Massigned_group : \"/ {
print strval()”,”;

next;

}

Preparing Translation Scripts

["category : \"/ {

software (hardware?)

print “category = “enumval()”,”;
next;

}

/"classification : \"/ {

bug, rfe

print “classification = “enumval()”,”;
next;

}

/"closed_date : \"/{

date

print “closed_date = “dateval()”,”;
next;

}

/A"command : \"/ {

person

print strval()”,”;

next;

}

/Mdescription @ \"/ {

long-text

print Istrval();

startLongText();

next;

}

/"dev_priority : ‘\"/ {

print “dev_priority = “intval()”,”;
next;

}

/"doc_affected : ‘\"/ {

print strval()”,”;

next;

}

/Mix_description :: \"/ {

print Istrval();

startLongText();
next;

}

/Mix_policy : \"/ {
gsub(“-","_",$0)
print strval()”,”;
next;

}

[Mixed_by : \"/ {

121

Chapter 6: Advanced Design Techniques

122

person
print strval()”,”;
next;
}
/hirix_release : \"/ {
short-text
print strval()”,”;
next;
}
/"machine : \"/ {
string
print strval()”,”;
next;
}
/"message_id : \"/{
short-text
print strval()”,”;
next;
}
/"model_cpu : \"/ {
string
print strval()”,”;
next;
}
/"model_gfx : \"/{
string
print strval()”,”;
next;

}

/"modified_date : \"/ {

date

print “modified_date = “dateval()",”;
next;

}

/"modified_user : ‘\"/ {

person

print strval()”,”;

next;

}
/"newsgroups : \"/{

list-of one-of

gsub(“\\.”,”_",$0);

print “newsgroups = (“enumval()”),”;
next;

}

Preparing Translation Scripts

/"opened_date : ‘\"/ {

date

print “opened_date = “dateval()”,”;
next;

}

/Mperipheral : \"/ {

print strval()”,”;

next;

}

[Npriority @ \"/{

print “priority = “intval()”,”;
next;

}

/Mproduct : / {

list-of short-text?

$1 = “Product”;

print strval()”,”;

next;

}

/"product_version : \"/{
person

print strval()”,”;

next;

}

/Mproject : \"/ {

print strval()”,”;

next;

}

/"released_product : / {
bool

print “released_product = “boolval()”,”;

next;

}

/"reported_by_customer : / {
bool

print “reported_by_customer = “boolval()”,”;

next;

}

/*reproducible : / {

bool

print “reproducible = “boolval()”,”;
next;

}

/"resolution_id : / {

integer

123

Chapter 6: Advanced Design Techniques

print “resolution_id = “intval()”,”;
next;

}

/"status @ \"/ {

print “6STATE = “enumval()”,”;
next;

}

/"submitter : \"/ {

login

print strval()”,”;

next;

}

/"submitter_domain : \"/ {

string

print strval()”,”;

next;

}

/"submitter_machine : \"/ {

string

print strval()”,”;

next;

}

/"summary : \"/ {

short-text

print strval()”,”;

next;

}

R R T T T R T ST
/"No incidents match criteria$/ {exit;}
/"8l {next;}

INNTE V)

untested

error(“Unrecognized long text in incident “ incident_id
“* $0);

print strval();

startLongText();

next;

}

{

error(“Unrecognized short text in incident “ incident_id “:
* $0);

print strval()”,”;

next;

}
END{

124

Preparing Translation Scripts

endbug();

if (counter !'=0) {

endbug wont have noticed we need a transend here.
print “end transaction;”;

k

if (verbose=="-v") {
rpt(“Total incidents imported: “fullcount);
}

}
‘ importdate="$(/bin/date)” verbose=${verbose} “$@"

The Resulting DML

Here is the DML text produced for the sample incident, after passing
through the filter.

begin transaction;
insert into tracker_request set
incident_id = int ‘106064’,
submitter = short-text ‘jackr’,
submitter_machine = short-text ‘dblues’,
opened_date = date ‘May 04 1993 03:00’,
category = one-of ‘software’,
classification = one-of ‘rfe’,
summary = short-text ‘RFE: Mouse motion posts redundant
syntax-warning popups’,
priority = int ‘4’,
reproducible = boolean ‘True’,
SGI_only = boolean ‘True’,
message_id = short-text ‘kcamfic@sgi.sgi.com’,
newsgroups = (one-of ‘sgi_engr_case_bugs’),
released_product = boolean ‘True’,
reported_by_customer = boolean ‘True’,
description = long-text ‘assign to: jackr
priority: 4
When there\'s a syntax error in the entry form, every time
the mouse passes through that field, another copy of the
error message is popped up.

125

Chapter 6: Advanced Design Techniques

126

Since we expect mouse motion while these alerts are up
(context-sensitive help and so on), this is tacky. Perhaps
each pane or field could keep track of whether it already
has an alert up? Does the Vk message thingie return the
widget ID (so you could check if it\'s still alive)?’

resolution_id = int ‘106064,
project = short-text ‘tracker’,
$STATE = one-of ‘closed’,
dev_priority = int ‘4’,
assigned_engineer = short-text ‘johnt’,
fixed_by = short-text ‘jackr’,
closed_date = date ‘May 21 1993 01:13’,
fix_description = long-text ‘fixed by previous take’

modified_date = date ‘May 21 1993 12:13’,
modified_user = short-text ‘jackr’,
importdate = Wed Jul 22 16:37:16 PDT 1993
where incident_id = int ‘106064’;
end transaction;

Chapter 7

Configuration Management

This chapter describes the integration of Atria® Software’s ClearCase
configuration management system with Silicon Graphics Inc.’s Tracker
bug-tracking tools. The ClearCase/Tracker Integration provides each
application with tools for exchanging information about bugs and
bug-fixing activity. It updates the Tracker database automatically, and
provides reporting capabilities for both the ClearCase and Tracker user.

This integration is designed to work specifically with the RTS sample
application, and is dependent on the state and field hames used in RTS. It
can be modified to work with custom-designed applications by changing
information in the trigger scripts, which are described later in this chapter.

Note: The integration system files are contained in the Tracker.sw.clearcase
subsystem. You can install this subsystem only if you have ClearCase
already installed. For more information, see the Tracker 2.0 Release Notes.
This chapter covers these topics:

= The purpose of the integration

= The integration architecture

= The trigger scripts

= Checkout and checkin triggers

= Some typical tasks performed with the integration

127

Chapter 7: Configuration Management

128

The checkout Icheckin Model

The checkout/checkin model is ClearCase’s standard mechanism for
managing the growth of an element’s version tree: checkout creates an
editable copy of afile in a user’s view; checkin adds a new version to the
element’s version tree.

The ClearCase/Tracker Integration extends this model to include
information about bug fixing. When checking out a file, a developer enters a
bug number. The checkout succeeds only if the bug number can be validated
against an existing Tracker bug report. Information about the checkout is
recorded in a ClearCase versioned object base, or VOB, in the form of an event
record and attributes (see Figure 7-1). In the Tracker database, the update
appears in the “Resolved in:” field.

ClearCase
versioned object
base (VOB)

ClearCase commands
update VOB database with
event records and attributes

The Tracker database is
updated at checkout

\)
Bug Report

Tracker :
database Resolved in:

Figure 7-1 Updating ClearCase and Tracker Databases

When checking in a file, a developer enters a bug number again. This begins
the same validation sequence that was performed before: the checkin
succeeds only if a corresponding Tracker bug report exists. Both the VOB

database and Tracker database are updated to reflect the file’s change in
condition.

Not every checkin constitutes a “fix,” however. The developer can create
“checkpoint” (intermediate) versions of a source file during the course of
bug-fixing work. Only the final version “fixes” the bug, not the intermediate
versions.

A developer can also cancel a checkout with the uncheckout command,
removing information about the checkout from both the VOB database and
Tracker database.

The integration does not impose a hard connection between a ClearCase
checkin (a state transition) and a “fixed bug” (a status). It includes tools to
create a closer connection, but the decision to call a bug “fixed” remains a site
policy decision.

Updating Databases

When you install the ClearCase/ Tracker Integration, it prepares ClearCase
VOBs for use with Tracker (see Figure 7-2). The integration creates attribute
types and trigger types in ClearCase VOBSs. The attribute types are used to
track changes to source files as they proceed through the bug-fixing
life-cycle, from “work in progress” (WIP attribute) to “fixed” (FIXES
attribute).

ClearCase VOB Database

Attribute Types:
« WIP
* FIXES

Trigger Types:

« tracker_pre_co_trig

« tracker_post_co_trig
« tracker_pre_ci_trig

« tracker_post_ci_trig

« tracker_pre_unco_trig

Figure 7-2 Database Modifications by ClearCase/Tracker Integration

129

Chapter 7: Configuration Management

130

The trigger types implement the mechanism through which ClearCase and
Tracker communicate and update their databases. For details on this
mechanism, see “The Integration Architecture” in the next section.

Using the Reporting Capabilities

The integration provides ClearCase users with tools for tracking status:

« The find_wip script lists every version of an element with the WIP
attribute. For example:

% find_wip base.c
base.c@@/main/CHECKEDOUT WIP 3
base.c@@/main/ports/2 WIP 6

= Thefind_fixes script lists every bug that a particular version of an
element fixes, using values of the FIXES attribute. For example:

% find_fixes base.c
Version base.c@ @/main/5 fixes the following bugs:
2363

Note: Each version can have only one instance of the FIXES attribute, but
this does not mean that it can fix only one bug. For more details, see “Using
the find_fixes Utility” later in this chapter.

Configuration Tools

The ClearCase/ Tracker Integration includes a tool for enforcing site policies.
It takes the form of an editable “policy file” (default: policy_vars.sh), which

defines UNIX environment variables used by the integration software. The
environment variables, which can be set in one or more policy files, include:

* bug number request policy:
determines if a user must specify a bug number when checking out or
checking in a file

= user validation policy:
determines if a user must be authorized to work on a bug, or if anyone
can work on the bug (no validation)

The Integration Architecture

The Integration Architecture

< “incomplete cycle” policy:
determines how the system responds when operations occur out of
order; for example, if the checkin bug number is different from the
checkout bug number

A complete list of the environment variables and their purpose is given in
Appendix A, “The policy_vars.sh File.”

You can set other environment variables in the policy file, such as the Tracker
Administrator’s name, the character used to “checkpoint” element versions
(“no bug-fix” character), and other general items.

You can also let different groups of ClearCase users have different policy
files. For example, you might set up a policy file for a new development
group that does not require users to enter a bug number. Or, you could set
up a policy file that updates a completely different Tracker database.

Setting Up a bug task Utility

The integration allows ClearCase users to set up a work environment called
a bug task. The bug_task utility establishes task parameters, which include a
bug number and a ClearCase view-tag.

The bug_task utility creates a process that is attached to a specified view.
While working in that process, you need not enter a bug number during
checkout or checkin; the task’s bug number is used automatically.

UNIX shell scripts, DML macros, and ClearCase triggers form the basis of
the integration mechanism. Together, they allow ClearCase and Tracker to
exchange information and affect each other’s behavior. The integration
creates global-element triggers in each VOB database, including:

= apre-op and post-op checkout trigger:
(tracker_pre_co_trig, tracker_post_co_trig

e apre-op and post-op checkin trigger:
tracker_pre_ci_trig, tracker_post_ci_trig

131

Chapter 7: Configuration Management

132

= apre-op uncheckout trigger:
tracker_pre_unco_trig

Each trigger runs a shell script. The pre-op trigger exit status determines if
the operation proceeds or is cancelled.

The Trigger Scripts

The trigger scripts described in the following sections depend on several
Tracker-specific scripts that access the Tracker database. If you want to use
the integration for a customized database, you must modify the scripts
accordingly.

All integration files, including the scripts, are located in /usr/atria/tracker.
Table 7-1 lists each script and its purpose.

Table 7-1 Script Files

Script Name Purpose

validate_bug Verifies that:

- the bug number entered by a user actually exists in the
Tracker database

- itis an “open” bug, that is, AWAITING_RESPONSE
inform_ci Informs Tracker about a checkin to fix a bug. It updates the

“resolved_in” field of the bug and adds the name of the
checked-in file to the “resolved_in” list.

inform_co, Inform Tracker about a checkout or uncheckout. They

inform_unco make no change to the Tracker database. They are provided
so that the system administrator can extend the integration
if desired.

The Integration Architecture

checkout Triggers

The shell script run by the pre-op checkout trigger prompts you for a bug
number, and then invokes a DML macro to validate the request with Tracker.
The validation comprises these checks:

= the bug number exists

< no illegal state prevents the checkout

If these conditions are met, the script exits with a success status, and the
checkout proceeds. The shell script run by the post-op checkout trigger

attaches the WIP=bug_number attribute to the checked-out version.
Figure 7-3 illustrates the checkout mechanism.

Tracker Bug Report
database Bug ID: 7
% cleartool checkout -nc foo.c Assigned to
\l, Jones

pre-operation trigger requests bug number:
What bug number will you be fixing? 7

i

pre-operation trigger Verifies reqUes! —ifmm——DN\L (read)
\1, bug exist?
no illegal state?

A

Everything OK? checkout succeeds!

v

post-operation trigger attaches WIP
attribute

ClearCase VOB
database

g

WIP=7 i

foo.c@@/main/CHECKEDOUT

Figure 7-3 Checkout Mechanism

133

Chapter 7: Configuration Management

134

If the checkout request cannot be validated (for example, because the user
was unauthorized to work on the bug), the pre-op trigger exits with a failure
status, and the checkout is cancelled.

checkin Triggers

The shell script run by the pre-op checkin trigger checks the specified
version for the WIP attribute and, if it exists, prompts you for the bug
number that the version fixes. Entering the “no bug-fix” character (by
default, 0) “checkpoints” the version: the checkin proceeds with no change
to the attribute or to the Tracker database. Attribute manipulations by the
post-op checkin trigger are suppressed.

Entering a bug number invokes the same validation procedure that occurs at
checkout. If the request is valid, the script exits with a success status, and the
checkin proceeds.

The shell script run by the post-op checkin trigger removes all
WIP=bug_number attributes from the element.

Note: It is possible for many versions to have the same WIP attribute value.

Then, it attaches the FIXES=bug_number attribute to the checked-in version.
The script also invokes a DML macro to update the Tracker database with a
bug report. If several versions had the WIP=bug_number attribute, the DML
macro deletes the corresponding checkout records from Tracker, leaving
only the most recent checkout record intact.

Figure 7-4 illustrates the checkin mechanism.

If a checkin request cannot be validated, the pre-op trigger exits with a
failure status, and the checkin is cancelled. The post-op trigger sends mail to
the Tracker Administrator explaining the problem and showing the failed
DML commands. The Administrator can rerun these commands at a later
time.

For more details, see “Recovering from Database Update Failures” later in
this chapter.

The Integration Architecture

Tracker

Bug Report
database grep

Bug ID: 7

% cleartool checkin -nc foo.c

\

pre-operation trigger requests bug number:
What bug number have you fixed? 7

pre-operation trigger verifies request ~ ~#———DML (read)
bug exist?

Everything OK? checkin succeeds! no illegal state?

\

post-operation trigger replaces WIP
attribute with FIXES attribute and writes
bug report

DML (write)

ClearCase VOB
database

Figure 7-4 Checkin Mechanism

uncheckout Trigger

The shell script run by the pre-op uncheckout trigger checks the specified
version for the WIP attribute. If the version does not have a WIP attribute,
the uncheckout proceeds normally.

The uncheckout command itself removes the WIP attribute (if any) from the

checked-out version; there is no need for the trigger to perform this
operation.

135

Chapter 7: Configuration Management

Using the ClearCase/Tracker Integration

136

This section presents some typical usage scenarios for the
ClearCase/ Tracker Integration.

Scenario 1: A Typical Bug-fixing Session

A customer-reported problem has been assigned bug number 6 in Tracker.
The bug involves several source files, including parser.h, main.c, and base.c.
Using ClearCase, a developer begins working on parser.h.

1.

The developer checks out parser.h, and provides the bug number:

% cleartool checkout -nc parser.h

What bug number will you be fixing? (0 for none) 6
Tracker: Successful verification.

Created attribute "WIP" on "parser.h@ @/main/CHECKEDOUT".
Checked out "parser.h" from version "/main/4".

After editing the file, he “checkpoints” the element by entering the “no
bug-fix” character:

% cleartool checkin -c "checkpoint" parser.h
What bug number have you fixed? (0 for none) [6] 0
Checked in "parser.h" version "/main/5".

The developer checks out parser.h again, and resumes working on bug
6. Instead of entering an explicit bug number, he accepts the default
value by pressing <Enter> :

% cleartool checkout -c "resume conditionalizing work™

parser.h

What bug number will you be fixing? (0 for none) [6]

RETURN

Tracker: Successful verification.

Created attribute "WIP" on "parser.h@ @/main/CHECKEDOUT".
Checked out "parser.h" from version "/main/5".

Before getting to work, he checks status with the find_wip utility to see if
parser.h has been edited to fix other bugs:

% find_wip parser.h
parser.h@@/main/5 WIP 6
parser.h@@/main/CHECKEDOUT WIP 6

Using the ClearCase/Tracker Integration

5. The developer checks in parser.h, indicating that it fixes bug 6:

% cleartool checkin -c "conditionalized parameters"

parser.h

What bug number have you fixed? (0 for none) [6] < Rtn>

Tracker: Successful verification.

Removed attribute "WIP" from
"ltut_vobs/soap/parser.h@ @/main/6".

Removed attribute "WIP" from
"/tut_vobs/soap/parser.h@@/main/5".

Created attribute "FIXES" on
"/tut_vobs/soap/parser.n@ @/main/6".

Checked in "parser.h" version "/main/6".

6. The developer verifies that the bug fix was recorded in the VOB:

% find_fixes parser.h
Version parser.h@ @/main/6 fixes the following bugs:
6

Scenario 2: Setting Up a Bug Task

Note: A developer is assigned to work on bug 5. The fix involves several
files, so he or she decides to set up a bug task to make the job easier. The
project leader has instructed everyone to make fixes in the bug-fix view.

1. The developer runs the bug_task utility to establish task parameters and
start the task:

% bug_task

What bug number will you be fixing? 5
What view will you be using? [arb] bugfix
Starting task to fix bug "5" in view "bugfix".

Please exit shell when done.

Note: bug_task stores the bug number in the TASK_ BUGNUM
environment variable. You can set this environment variable manually,
and not be prompted for a bug number when you checkout or checkin a
file.

2. Before getting started, the developer checks the view:

% cleartool pwv
Working directory view: bugfix
Set view: bugfix

137

Chapter 7: Configuration Management

138

The developer checks out the first of several files involved with the fix:

% cleartool checkout -nc main.c

Tracker: Successful verification.

Created attribute "WIP" on "main.c@ @/main/CHECKEDOUT"
Checked out "main.c" from version "/main/5".

The developer checks in the file when ready:

% cleartool checkin -c "fixed init error" main. c
Tracker: Successful verification.

Removed attribute "WIP" from "/vobs/soap/main.c@ @/main/6".
Created attribute "FIXES" on "/vobs/soap/main.c@ @/main/6".
Checked in "main.c" version "/main/6".

When all files have been checked in, the developer terminates the
bug_task by exiting the process:

Y%exit

% cleartool pwv

Working directory view: arb
Set view: arb

Scenario 3: Cancelling Work In Progress

A developer checks out a file with the wrong bug number, and cancels the
checkout.

1.

The developer performs the checkout, specifying bug 4:

% cleartool checkout -nc base.c

What bug number will you be fixing? (0 for none) 4
Tracker: Successful verification.

Created attribute "WIP" on "base.c@ @/main/CHECKEDOUT"
Checked out "base.c" from version "/main/1".

The developer checks the file’s status with find_wip, and realizes the
mistake:

% find_wip base.c
base.c@@/main/CHECKEDOUT WIP 4

(The mistake might just as easily have been noticed at checkout time.)

Using the ClearCase/Tracker Integration

The developer cancels the checkout, and checks the file’s status again:

% cleartool uncheckout -rm base.c
Checkout cancelled for "base.c".

% find_wip base.c

There are no WIP attributes on this element.

Scenario 4: An Incomplete Cycle

A site allows developers to checkout a file with one bug number and check
it in with another (an “incomplete cycle”). A developer checks a file out and
begins working on bug 3. Later, he or she checks the file in as the fix for bug 4.

1.

The developer checks out the file, specifying bug number 3:

% cleartool checkout -nc base.c

What bug number will you be fixing? (0 for none) 3
Tracker: Successful verification.

Created attribute "WIP" on "base.c@ @/main/CHECKEDOUT"
Checked out "base.c" from version "/main/2".

The developer really fixes bug 4, so he or she checks the file in with that
bug number. When warned about the incomplete cycle, he or she
indicates the intention of continuing anyway:

% cleartool checkin -c "increased buffer size" base.c
What bug number have you fixed? (0 for none) [3] 4
Tracker: Warning: A check out has not been done.
Do you wish to continue despite the warnings? [no] yes
Changing WIP value from 3 to 4
Removed attribute "WIP" from
"/tut_vobs/soap/base.c@@/main/CHECKEDOUT".
Created attribute "WIP" on
"/tut_vobs/soap/base.c@ @/main/CHECKEDOUT".
Removing Checkout record for 3 from Bugtracking Database

Removed attribute "WIP" from
"/tut_vobs/soap/base.c@ @/main/3".

Created attribute "FIXES" on
"/tut_vobs/soap/base.c@ @/main/3".

Checked in "base.c" version "/main/3".

139

Chapter 7: Configuration Management

140

Scenario 5: An lllegal State

The Tracker Administrator has defined an illegal state that prevents a file
from being checked in if the bug is closed. A developer tries to checkin a
bugfix, but the Tracker bug status is “CLOSED”:

% cleartool checkin -c "changed ifdef, line 15" base.h

What bug number have you fixed? (0 for none) [7] 7
Tracker: Error: Bug Status CLOSED for bugid 7 is illegal for
checkin

cleartool: Warning: Trigger "tracker_pre_ci_trig" has

refused to let checkin proceed.

cleartool: Error: Unable to check in "base.h".

To checkin the file, the developer must specify another bug number,
“checkpoint” the version (for example, by entering 0), or cancel the checkout
with the uncheckout command.

Scenario 6: Using an Alternate Policy File

A site has two Tracker databases: one for tracking alpha project bugs, another
for tracking beta project bugs. The alpha project team uses the default policy
file, policy_vars.sh. The beta project team uses an alternate policy file,
/usr/atria/tracker/alt_policy_vars.sh.

The integration software uses policy vars.sh automatically, unless the
ALT_POLICY environment variable is set. Therefore, alpha team members
begin work with no special preparation. beta team members set the
ALT_POLICY environment variable in their shell startup script:

setenv ALT_POLICY /usr/atria/tracker/alt_policy_vars.sh

(Cshell)
ALT_POLICY=/usr/atria/tracker/alt_policy_vars.sh
(Bourne shell)

export ALT_POLICY

Using the find_fixes Utility

Using the find_fixes Utility

Scenario 7: Bypassing the Integration

A site allows developers to omit the bug number when they checkout or
checkin a file. The “no bugfix” character is 0 (the default value). A new
project has started, and the development team wants to bypass the
integration mechanism altogether. Each team member sets the
TASK_BUGNUM environment variable to 0:

% setenv TASK_BUGNUM 0 (Cshell)
% TASK_BUGNUM=0 (Bourne shell)
% export TASK_BUGNUM

As an alternative, each team member starts a bug task with bug number 0.

The find_fixes utility compiles a list of bug fixes from values of the FIXES
attribute. It uses the following algorithm to determine the list of bugs that a
particular version of an element fixes:

= First, it lists the FIXES attribute value for the specified version (if any).

= Then, it lists the FIXES attribute value for any of that version’s
ancestors.

= Finally, it lists the FIXES attribute value for any merge contributor that
produced the specified version, or any of its ancestors.

find_fixes recursively processes merge contributor versions to determine
their list of bug fixes: it examines their ancestor versions, any merge
contributors that produced them, and so on.

To illustrate the find_fixes algorithm, consider the version tree in Figure 7-5.

Several versions have the FIXES attribute — some on the main branch, others
on subbranches.

141

Chapter 7: Configuration Management

142

main
branch

®

Orarert ©
G ® O
OING B S—

ranch3

N\

FIXES=9

FIXES=17 (2) ®@ ® (D)
m‘erger\
FIXES=23 (5) (2 Fixes=45

Figure 7-5 Complex Version Tree with FIXES Attributes

find_fixes returns the following list of bug fixes for the latest version on the
main branch:

% find_fixes foo.c
Version foo.c@ @/main/5 fixes the following bugs:
45234

The listing includes bug 45 because that fix was merged into an ancestor
version of foo.c@@/main/LATEST, which itself, fixes bug 23 (also listed). It
includes bug 4 because that fix was also made in one of foo.c’s ancestor
versions.

find_fixes returns the list of bug fixes below for the latest version on the
branch2 branch:

% find_fixes foo.c@ @/main/branch2/LATEST
Version foo.c@ @/main/branch2/2 fixes the following bugs
174

The listing includes bug 17 because the latest version on the branch2 branch
fixes that bug. It includes bug 4 because that fix was made in an ancestor
version of foo.c@@/main/branch2/2.

Recovering from Database Update Failures

Neither listing includes bug 9, however (fixed on the branch3 branch),
because neither of the specified versions have “inherited” that fix.

Recovering from Database Update Failures

If the Tracker database cannot be updated during a ClearCase checkout,
checkin, or uncheckout (for example, because the Tracker database server
went down), ClearCase triggers send mail to the Tracker Administrator
(value of BUGTRACK_ADMIN environment variable).

Figure 7-6 shows a typical mail message, which explains the problem and
includes the DML macro that failed.

Administrator,

Theoperation"checkin"ofthefile "/view/pete/vobs/testvob/foo.c@ @/main/2
failed to be recorded in the Tracker database "/usr/tmp/RTS".

peteo was working on bug "1".

The exact DML statement that failed was:

DML macro update tracker_request set resolved_in =
(file ’Iview/pete/vobs/testvob/foo.c@@/main/2’) where $SENTITY_ID = 1;

This message sent automatically by the ClearCase/Tracker
bugtracking integration trigger.

Figure 7-6 Typical Mail Message to Tracker Administrator

You can recover the lost transaction (for example, a ClearCase checkin) by
rerunning the DML macro manually.

143

Chapter 7: Configuration Management

Preparing VOB Databases

144

Set a view:
% cleartool setview < any view-tag >

As the VOB owner or root user, run the vob_prep script over each VOB to
be integrated with Tracker. The script takes one or more full pathname
arguments; you can specify any pathname within the VOB. For
example, these commands prepare three VOBs for use with Tracker:

% su

Password: <enter root password>

vob_prep /vobs/scomp /vobs/soap /vobs/gui
Installing types for ClearCase/Tracker integration into
/vobs/scomp.

Created trigger type "tracker_pre_co_trig".
Created trigger type "tracker_post_co_trig".
Created trigger type "tracker_pre_ci_trig".
Created trigger type "tracker_post_ci_trig".
Created trigger type "tracker_pre_unco_trig".
Created attribute type "WIP".

Created attribute type "FIXES".

. similar output for /vobs/soap and /vobs/gui

(optional) Instruct other ClearCase users to run vob_prep over any of
their own VOBs that they want integrated with Tracker.

Appendix A

The policy vars.sh File

This appendix lists the environment variables contained in the policy_vars.sh
file that you can use to configure the ClearCase/Tracker Integration. They
are listed in three tables:

= Tracker-specific environment variables
= environment variables that help establish and enforce site policies

= environment variables that set miscellaneous system parameters

145

Appendix A: The policy_vars.sh File

Table A-1 lists the Tracker-specific environmental variable that can be set in
the policy_vars.sh file. This variable is also used by commands such as dml.

Table A-1 Tracker-Specific Environmental Variables

Environmental Variable Description Values
TVBUGBASE UNIX directory for Tracker any UNIX pathname
database. default: Zusr/Tracker/db

Table A-2 lists the policy environmental variables in the policy vars.sh file.

Table A-2 Policy Environmental Variables

Environmental Variable Description Values
BUGNUM_REQ_CO must user enter a bug TRUE, FALSE
number on checkout? default: FALSE
BUGNUM_REQ_CI must user enter a bug TRUE, FALSE
number on checkin? default: FALSE
BUG_NONE no bugfix string; used only if any character string

BUGNUM_REQ_CO and default: "0"
BUGNUM_REQ_CI both
have “FALSE” value

BUGTRACK_ADMIN user to receive mail when Tracker Administrator’s
update of Tracker database =~ UNIX login name, or any
fails other valid UNIX login

name
default: root

146

Table A-2 (continued) Policy Environmental Variables

Environmental Variable Description

Values

CYCLE determines handling of an
incomplete cycle (for example,
user enters one bug number
on checkout, and another bug
number on checkin)

VALIDATE_BUG bug-validation command,
executed at checkout and
checkin

NONE: allow incomplete
cycle

WARN: display message
and proceed

ERROR: abort ClearCase
operation

default: WARN

validate_bug $CYCLE
validate_bug $CYCLE
$CLEARCASE_USER

default: first form (no
validation of username
against “Assigned to” field
in Tracker database)

Table A-3 lists miscellaneous environmental variables.

Table A-3 Miscellaneous Environmental Variables

Environmental Variable Description

Values

MKTYPE_COMMENT creation comment for
meta-data types

PRE_CI_TRIG ClearCase pre-operation
POST_CI_TRIG and post-operation trigger
PRE_CO_TRIG type names for checkin,
POST_CO_TRIG checkout, and uncheckout
PRE_UNCO_TRIG commands

WIP_NAME “work in progress”
attribute type

FIXES_NAME “fixed problem” attribute

type

any character string
default: “Created for use
with bug tracking triggers.”

any valid ClearCase trigger
name

defaults: tracker_pre_ci_trig
tracker_post_ci_trig
tracker_pre_co_trig
tracker_post_co_trig
tracker_pre_unco_trig

any valid ClearCase
attribute name
default: WIP

any valid ClearCase
attribute name
default: FIXES

147

Appendix B

RTS PDL Files with On-line Help

This appendix contains the code listings for the RTS PDL files with the
on-line help text embedded. These files are also available in
Jusr/Tracker/RTS. The files are:

< Tracker.pdl (the main file for rtsquery)
* rtsapprove.pdl

e rtsrespond.pdi

e rtssubmit.pdl

149

Appendix B: RTS PDL Files with On-line Help

Tracker.pdl

150

T

I

IFe Tradkerpd

/' Desaripion: RTS defaukpd

I Thisisthemaserpdfiethatdefinesthefields
I andtansiionsforthe RTS. EachRTSgppindudes
I anoherpdfiethatdefinesisviens.
TAUhor: Pele Orelp

ICregied: RiApr10092949PDT 1992
MNanguege: Text

I

1/(C) Copyright 1992, Siioon Graphics, Inc.

I

I/ Permissionto use, copy, modify, and distrbute this sofware for

Il any purpose except pubication and wihoutfee is hereby granted,
I provided thattthe albove copyright natice appearinal copies of

I the sofwere.

T

IMhisdefine shoud be changed iothe lognname ormal alas of
Ithe Tradeerfaditztor.

#oefine CZAR oot

IThisdefine should be changed to containthe loginname or mall

Il diasforthe person (or persons) responsbie for assigning owner
IHoreports enteredwihoutan owner or proectfield.

#define BBOARD Yoot

T
IMoplevelHep
T
hep{
help-ite Request Tracking Sysem Overview/,
helpext
The Request Tradking Systemn (RTS) providess four pplcations for
aooessing requests (bugs or RFES) inrequest database:

Tracker.pdl

*1tsguery - the main appication, it provides ful funcionalty
*tssUbmit-a spedialized appication for submiting new

requesis

*srespond - aspedalized application forresponding
requessyou have received

*isapprove - aspedialized appication for approving requests
affer resolution or rekection by the oaner

Noate that all appications permityou o bronse requessinthe
database. Onlyitsauery provides all the detaiks, the athers supply
subsaisaftherequestdaia’; }

T
1 Feld Dedarations
M
fieids{
hep{

heppite Fed Enty;

shothepiie Feld Entry;

hepiext
AlfieldsnRTS dsplay amenuifthe rightmouse butonisheld
doanwhiethe cursorisinthefield. fthere are predefinedvalues
forthefield, aselecion caled "Values ' dsplays thetacoesses a
cascadingmenuwiththe value seections. Formore hefp, ook up the
spediicfield.

Whenyou selectatransiionfromthe Modes menu, all required fields
are highighted. Ifyouenteraninvaidvalue forafield, thefield
becomes highightedwhenyouleavett

Whenconducing queries, you can enter anexact value or an expression
usig one ofthese operalors:

=o<<=>>= equellyandineguelly et
metch reguarexpressonmaich
conainsfany|only] - pediicistvalue; choice ofvalles,
multipe
spediicvalles
=nd|<nd estwhethervalbeis setexsts)or
not
[valL,val,..valN] testwhethervaleisequaltooneof
akstofvaues
%s!a”lrarge:erdarge,...]rargedﬂm‘,

151

Appendix B: RTS PDL Files with On-line Help

152

T
//RepotNumber Fed
T
repot number. it /Equalto$ENTITY IDhy
/defauit
hep{

hejp-ife Report#Feld;

shorthepp-ife Report##Feld;

heppext
The Repart#field dsplays the ID assigned b the request. You
cannatchangethisvalle.

Whenyouareinquerymode, thefield becomes ediiable and you can
enteraspedicvalue, arange ofvalues, oranexpresson.

SeeasoRTS Feldshep:
¥

T
I'Submitter Feld
M
Submiter: shotiext /person
hep{
help-iie' Submitter Feld;
sharthelpiie Submiter Feld!;
heppiext
The Submiteerfield displays the: personwho created he recuest. Ay
extstingisvaid

Whenyouare nquerymode, you canenteraspedic value, arange of
vales, oran expression.

SeeasoFed Enty hepcard:
¥
L
/DeteFed
T
sbmtdee dae
hep{
help-iile Date Feld;
shorthebiile Date Field:
hepiext

The Datefield contains the date onwhich the reguiestis submitied.

Tracker.pdl

Whenyousubmiarequest, the currentdate is enered auiomatically.
Whenentering dates, you can use suchforms as. mmddiyy; month day,
year; daymonthyyear; day month; ime. Youcanaksoenterthe
variables'today* and'how’". You can use addiive expressons such as
(ioday +days)and (month day - hhmmiss).

When parforming queriesinvolving dates, you can ener. arange, such
as|datedeie], an operaior such as < (before) or> (after); the
variables'thisyear' and'this month!'; or any ofthe previously
mentioned expressions. Foracomplete istof date opiions, seethe
manpageforciime.

SeeasoFed Enty hepcard:
¥

T
I/Recommendation Hed
T
recommendation: one-of
DEFERRAL, REJECTION, RESOLUTION, DUPLICATION
heb{

hejpiie Recommendation Feld;

shorthelpitle Recommendation Feld;

helpext
The Recommendation field indicates the recommended dispostion ofthe:
requestas ofthe mostrecenttranstion: DEFER (DEFERRAL), REJECT

(REJECTION), RESOLVE (RESOLUTION), and DUPLICATE (DUPLICATION). These
recommendations are entered aLtomaicaly by the transiion.

SeeaksoFed Eny hepcard:
¥

T
ITypeFed
T
type: oneof
BUG,RFE
hep{

helle Type Feld:;

shothelpite Type Feld;

hepext
The Typefiedindicatesthe type ofrequiest BUG for bug reportand
RFE forrequestforenhancement. Yourtradkding sysiemadministrator
may haveimplemented addiional types. To chedkforthese, hod doawn
the rightmouse butonwhie the cursorisinthe typefieldand

153

Appendix B: RTS PDL Files with On-line Help

154

Selct'Valles' D display al alonable types.

SeeasoFed Entyhepcard:
¥
Y
IIPriory Fied
T
LOW, MEDIUM, HIGH
help{

hepext
The Priorty field indicates the designated priority for this request.
Thesandardvalues are LOW, MEDIUM, and HIGH. Yourraddng sysiem
administraior may have implermenied diferent prioriies. To chedkdor
these, had donn the rightmouse butonwhie the cursorisinthe
priority field and select"Values ' to display al dlonable

SeeasoFedEntryhepcard;

3
T
JOwrerFeld
T

owner. shottedt /person
hep{
help-ile Owner Feld;
shothelpile Owner Feld;
hepext
The Ownerfield displays the person responshie forimplementing this
request Anytextstingisvald.

Whenyouare nquerymode, you canenteraspedic value, arange of
values, oran expression.

SeeasoFed Enty hepcard:
¥

Tracker.pdl

I

/IProjectFietd

A

poect onedf

#nduce'proedtsh I Thisindude fle contains he st of
projects.
JEdkitochangethe itafknonn
Jprojects.

hep{
hepext

The Proectfield indicates the proectiowhich the requestis
assgned. The placehalder values: PROJECT_1, PROJECT_2,andPROJECT_3
areinslediniialy. Yourtraddng sysiemadminstratorhas
Jprobably mplemented difierent proect names. To checkior these, hod
doantheightmouse butionwhie the cursorisinthe proectfield
andseledtValues "o display al alonebe proedts.

SeeakoFed Enty hepcard:
3

I
I1SysemFed
T
ssem oned
SYSTEM 1,SYSTEM 2 SYSTEM 3
hep{
hepile' Sysen Feld,;
shothelpile Sysem Feld!

hepext
The Sysemfieldindicates the sysemowhichthe requestis
assgned. The pacehadervales, SYSTEM 1, SYSTEM 2, andSYSTEM 3ae
instlediniialy. Yourtracking sysiem administrator has probably
implemenied diferent system names. To chedkforthese, had doanthe
fightmouse butonwhie the cursorisinthe systemfield and select
"Values 't display al alonable systems.

SeealsoFed Enty hepcard:
¥

155

Appendix B: RTS PDL Files with On-line Help

M
IFoundinFed
M
foud it kofshotiexdt /istofproduct
hep{

helpite FoundinFeld;

shothelpile FoundinFeld:

heppext
The Foundinfield indicates the location(s) ofthe bug or
enhancement

SeealoFed Enry hejpcard;
3
T
I'Summary Feld
T
summay. shotiext
hep{
hepile Summary Feld!
shothelpdite Summary Feld;
helpext
The Summaryfied desarbesthe requestinasinge ine. Whenyou
submitarequest, thisfield defauis o the fistine ofthe request
desaipion, uness you have made anoverridng entry. You canedit
thisineatanytime. Thesummaty ineinformationappearsinthe
quetyresUiis area duning quieries.

SeealsoFed Enty hepcard:
¥

T
/' Desoripion Fed
T
desaription: longrext
hep{

help-tite Desaiption Feld;

shothelpiie Desoription Feld;

helpext
The Desaripiionfield contains a complete explanation of the request
Youcanenerasmanylinesasneeded lfyouhave setetherthe
SMNEDITOR or SEDITOR erMonmentvariables, thenthe rightouiton
menuforthefieldwl heve an'Bdit.." seecion thetlets you
enterthe desaiptioninyour defauttediorandimport tinio the
field

156

Tracker.pdl

SeeasoFed Enty hepcard:
¥

A
/IDupoiFiedd
A
s dupicaie of it /peum
hep{
helpdile Dupof Feld,;
shothepile DupofFiedt;

helpext
The Dup dffiedis only usedwhenyou are executing the DUPLICATE
transiion. Youuse DUPLICATE whenyoufed thatanewrequestisa
dupicate ofaprevious request. If o, youmustenter the repart
number ofthe previous requestinthe dup of fieldinorder o mark
the newrequestas adupicate.

SeeaksoFed Eny hepcard:
¥

T
INaifyFed
I
neresied pates: skofshotiedt /is:ofperson
hep{
helo-tile Noify Feld;
sharthelpite Notfy Feld;
hepext
The Naiifyfieldis used to add interested paries tothe kst of
peopetobe naiiedwhen changes cocurothe request. Inially,
the lstcontains the submitier, owner, andraddng sysem

SeealsoFed Enty hepcard:
¥

Ty
/IDueDateFed
T,
due date: e
hep{
hejpiie Due Daie)
shothelp-ile Due Date!
hepiext
The Due Date field contains the date by which the requestisintendeed

157

Appendix B: RTS PDL Files with On-line Help

158

tohefxed. Whenyousubmitareques, the cumentdate pus 30days
isenteredautomaticaly. Yourtracking systeem administrator may have
impementedadifierentdefauttdate.

Whenentering dates, you can use suchforms as: mmiddiyy; month day,
year, day-monirvyear; day monih; ime. Youcanalsoenterthe
variables 'today" and'how’". You canuse addiive exressions such as
(today +days) and (month day -hhmmss).

When performing quefiesinvolving dates, you canenter arange, such
as[datedae]; an operator such as < (before) or> (afier); the
variables"thisyear and"this monih'; orany ofthe previously
mentioned expressions. Foracomplete istof date opiions, seethe
manpegefordime.
SeealoFeld Entryhejpcard;

¥

T
//Close Date Feld
T
dose dae: date
hep{

hejpiie Close Dete,

shothelpite Close Dete,

helpext
The Close date field coniains the daie onwhich the requestis dosed.
Whenyouapprove areguest, the cunent date isentered automatically.

Whenentering dates, you can use suchforms as: mmiddiyy; month day,
year, day-monirkyear; day monih; ime. Youcanalsoenterthe
variables 'today* and'how’". You canuse addiive expressions suchas
(today +days)and (month day -hhmmss).

When performing queriesinvolving dates, you can ener: arange, such
as[datedaie]; an operator suchas < (before) or> (dfer), the

variables thisyear' and'this monthi’; or any ofthe previously
mentioned expressions. Foracomplete istof date opiions, seethe
manpegefordime.

SeealsoFed Enty hepcard:
¥

Tracker.pdl

T ———

/IReopenFed
M
reopen_cete: dae
hep{

help-tite Reopen Dete;

shorthelpHite Reopen Date;

heppiext
The Reopen date field contains the date onwhich the deferred requiest
istobereopened

Whenentering dates, you can use suchforms as. mmiddiyy; month day,
year, daymoniryear; daymonih; ime. Youcanalsoenterthe
variables 'today* and"'how’". You canuse addiive expressons such as
(today +days)and (month day - hhmmiss).

When performing queriesinvolving daties, you can enier: arange, such
as [oeteite] an operator suchas < (oefore) or> (efter); he
variablesthisyear' and'ths monthi’; or any ofthe previously
mentioned expressions. Foracomplete st ofdate opiions, seethe
manpegefordime.

SeealsoFed Enty hepcard:
3

T
IResolved InFeld
T
resoved it koffie /istoffie
hep{
hepite Resolved InFeld;
shothelp-tie Resolved I
heptext
The Resoved infied lets you enter fles used toimplementthe
request. Youcanselectthefie acoessformatthroughthe
fightutton menu. The iexdtfomat s you enerfies astext

stingsinside parenthese separated by spaces. The istfomeat kets
youernterand deletefiesinasoolabe kst

SeealsoFed Enty hepcard:
¥

159

Appendix B: RTS PDL Files with On-line Help

T
I/ResouionFeld
T

The Resolutionfield contains ane explanation ofimplemenizion ofthe
request Youcanenterasmany ines as needed. ffyou have seteiher

the SWINEDITOR or SEDITOR envionmertvariables, then the rightouiton
menuforthefiedwl haveanEdt.” sekecionthatletsyou

enterthe resolution explanation inyour defauitediiorand importt

nothefied

SeealsoFed Entyhepcard:
¥

T
IFxedinFed
T

fxed rdeases. Itofshotexdt /isof

Mprodct
help{

help-ie Fixed In Feld:;

shathelpiiie Fxed In;

heppext
The Fixed infield lets you identify the product release nwhich he
requestisimplemented

SeeasoFed Enty hepcard:
¥

T
I Approver Fed
T
approver; shotext /person
hep{
heltle’ Approver Feld,;
sharthepile’Approver,
helpext
The Approverfieldidentiies the personwith approval athoriy over
thisrequest

160

Tracker.pdl

SeeasoFed Enty hepcard:
¥

M

IINondispayeble Fiekts
A

I Thesefidsare natvisbietothe users
czar. shottext; /person
bboard: shottext, /person
noffy kst srofshotied; Jlistof

Jperson
empShofTed shottex;
}
Ty
I Mranstion Secion
H——————
-~
hep{
helpie Transtion Ovenview/;
I ——
heptext

Toperfomoperations inthe RTS appications, you choose the desired
ediingmode fromthe Modes menu, editthe appropriate fields, and
dickthe <gpply command>bution (he thid fom the letinthe:

control area) to execute the aperation or the Canoel buiton tovod

i

The RTS process begnswith submiting arequest, using eiherthe
SUBMIT_BUG or SUBMIT_RFE transiion, which puisthe requestinthe
AWAITING RESPONSE siate. The nextsiepissaeenngtherequest Use
REJECT ifthe requestisinvaid, DEFER to posipone the fix, DUPLICATE
ifanearier request coversthe suggestion, or RESOLVE bindicate

thetthe requesthas beenexecuted.

Atthis pornt, the requestisinthe AWAITING_APPROVAL staie. The
approver canissue a REDO ifthe request has notbeen satisfied, which
reumstherequestiothe AWAITING RESPONSE sate. Ifthe ixis
takesthe requestiothe CLOSED state. Whena DEFERRed requestis
APPROVH], itentersthe CLOSED state, butwilbe REOPENed by the
onnerlae.

161

Appendix B: RTS PDL Files with On-line Help

Aflerawaiting period, the tradking sysiem adminstrator removes the
requestiomthe database using the DELETE transiion;
3

A
/SUBMIT BUG Transiion
A

SUBMIT_BUGE>AWAITING. RESPONSE)Y{
hep{
hejpiie' SUBMIT_BUG Transtion;
shothelpie SUBMIT_BUG;
heptext
SUBMIT_BUG creates anewrequest oftype BUG.

Priorsiaie nonexisent Newsiaie ANAITING RESPONSE
Defauitfields:

1 The Daefedissetiothe aurent e

2 The Typefedlisseto BUG.

3 The Slbmiterfedis setiothe cumrentuser.

4, The Summary iedlissetio e frstine ofthe descripion.

Rue requirements:
1 The desaripionfield musthave anentry.
Adions:

1 Theonnerssetivtheenteredvalue arifnatentered iothe
proectmanager fknown oraheise o theracking system
adminstrator’,
¥
ues{
submt_dateis(submit_date setDefaui(now));
typeistypeseDelauiBUG));
submiteris(submiter setDefauiFUSER value));
summaty ssummary setDefalifdescriptionvalue));
I'Bxpectsomeadioninonemonth
due _daeisdue_datesetDefauinon+30:00:00:00));

162

Tracker.pdl

adtions{
bboard setValueBBOARD),
Ifthe onnerisnotsetbutapropctwes entered, then
I'setthe onrertothe propatmanager. ffno project
IIwes entered, then setonner o the bug board.
tempShorText

selvalue(execHier(

echo'selectmanagerfiom proedtwhere name =\Soroedt,)
onnersefvaleonnersSet?

onnervale:

(propectisSet?
onwnerseivalelexecSeedempShotTextvale):
ownersefvaleiexecHier(binecho $hboad))));

} tempSharfTextsetvalue();
}

I
/ISUBMIT_RFE Transiion
A

SUBMIT_RFEE>AWATING RESPONSE){
help{
helpiile SUBMIT_RFE Transiion
shothepile SUBMIT RFE:
hepiext

SUBMIT_RFE crestes anewrequestoftype RFE.

Priorsiaie nonexisent Newsiaie ANAITING RESPONSE
Defauitfields:

1 The Detefield s settothe cumentdate.

2 TheTypefedissstio RFE.

3. The Submiterfieldis setio the curent usey.
4. The Summary field s setto the frstine of the desaripion.

Ruerequirements:

1 The desaripionfield musthave anentry.

163

Appendix B: RTS PDL Files with On-line Help

Adions:

1 Theownerissettothe entered value orifnotenterediothe
yect managerfknonwn orathewise o the traddng system
adminsrator;
¥

ues{

esrlonsSet

submit_ dateis(submit_datesetDefaut(non));
typess(ypeseDelau(RFE))

submiteris(submiter setDefauiUSER value));
summaryissummary setDefauitidesaripionvale));
I'Bxpectsomeadioninonemonth
due_daieis(due_date setDefauitnow+30:00:0000));

adions{
bboard sefValueBBOARD),
Ifthe ownerisnatsetbutaproectwes enered, then
I'setthe onrertothe proectmanager. fnoproect
IIwesentered, then setoanertothe bug board.
tempShafTexd

selvalue(execHier(

echo"selectmarnegerfiom proectwhere neme =\goroedt);
onwnersefValeonnersSet?

ownervale:

(proectisSet?
onnersefValueiexecSeedtermpShatTextvalue) :
ownersefvalue(execHier(binecho $oboard)));

} tempSharfTextsetvale();
}

M
JASSIGN Transiion
T ————

ASSIGNAWAITING_RESPONSE=AWAITING_RESPONSE){
hep{
hep-ie ASSIGN Transiiort;
shothelpile ASSIGN;
hepext
ASSIGN esiabishesthe onnerandadue date forthe request

164

Tracker.pdl

Prior siate: AWAITING_RESPONSE - Newsiaie: AWAITING RESPONSE
Defauitfields: none
Ruie requiremens:

1 Theremustbeanentryinthe Ownerfield.
2 Theremustbe anentryinthe Due Datefield.

Adions.none;
¥
ues
ownersSe;
due_dateisSet;
}
}

T
J/FORWARD Transiion
T
FORWARDAWAITING RESPONSE=>AWAITING RESPONSE){
hep{
help-ile FORWARD Transort;
shothelpie FORWARD;,
hepext
FORWARD estabishes achange hownershp ofthe request.

Priorsiaie: AWAITING RESPONSE - Newstate: AVAITING_RESPONSE
DefaLitfelds:none
Rue requiremens:
1 The Onnerfied mustbe changed.
Adions:noneg;

¥
rues{

onwnerchanged;

}
}

165

Appendix B: RTS PDL Files with On-line Help

166

T —
/RESOLVE Transiion
T

RESOLVEAWAITING RESPONSE=>AWAITING APPROVAL)Y{
hep{
help-iie RESOLVE Transtion;
shothepile RESOLVE,
heppiext
RESOLVE sissued bythe requestonner o indcate thet the request
hasbeenexecuted and s ready for approvel

Prior siate: AWAITING_RESPONSE - Newsizie: AWAITING._ APPROVAL

Defauitfields: none
Ruie requiremens:

1 Theremustbe anentryinthe Resolution field.
2 Theremustbe oneormore veld fles enteredinthe Resovedin
field.

Adions:

1 The Recommendationfieldis setto RESOLUTION;
3
tues{
resoluion_desariptionisSet;
resoved insSet
}
adtions{
recommendation sefVaue(RESOLUTION);
}
}

A ————_———
/REJECT Transiion
T — D

REJECTAWATING RESPONSE=SAWAITING APPROVAL){
hep{
hepile REJECT Transiion
shorthepile REJECT:
hepiext

Tracker.pdl

REJECT sissued by the requestonnerpindicate thatthe requestis
natconsdered and needs to be confimed through the APPROVE
transiion) as such by the approver.

Prior siaie: AWAITING RESPONSE - Newsiate: AWAITING APPROVAL
Defauitfields: none

Ruerequiremens:

1 Theremustbe anenttyinthe Resolution field.

Adions,

1 The Recommendaionfeld is setto REJECTION,
¥

T ——_—
/DEFER Transtion
T

DEFER(AWAITING RESPONSE=AWAITING APPROVAL){
hep{
help-iie DEFER Transiion;
shothepiie DEFER;
heppiext
DEFER sissued by the requestonner o indicate thet the recuiest
shouid be posiponed o the suiggested date. This posiponementneeds o
be confmed (through the APPROVE transiion) by the approver.

Priorstaie: AWAITING_ RESPONSE - Newstate: AVAITING_APPROVAL
Defautfields.none
Ruie requirements:

1 Theremustbe anentryinthe Resolution field.
2 Theremustbe anentryinthe Reopendatefield.

167

Appendix B: RTS PDL Files with On-line Help

168

Adions:

1. The Recommendationfield is setto DEFERRAL,
¥
ues{
resolution_desariptionisSet;
feopen deteisSet
}
adions{
recommendation.sefValueDEFERRAL);
}
}

T
J/DUPLICATE Transiion
M

DUPLICATE(AWAITING RESPONSE=AWAITING APPROVAL){
hep{

help-iie DUPLICATE Transtion;

shothep-ile DUPLICATE:

hepext
DUPLICATE isissued by the requestownerioindicaie thetan earfer
requestmade the same suggestion and that this requestis unnecessary.
The DUPLICATE transiion needs o be confimed (hrough the APPROVE
transiion) by the approver.

Priorstate: AWAITING RESPONSE - Newstate: AWAITING_APPROVAL

Defauitfields: none
Rue requirements:

1 Theremustbe anentryinthe Resolutionfield.
2 Theremustbeanentry inthe Dup offield, indicaiing the earier

Adions:

1 The Recommendation field is setto DUPLICATION;
¥
tues{
resolution_desaripionisSet;
i5_duplicate_ofisSet;
}

Tracker.pdl

adtions{
recommendationsefvaue(DUPLICATION);
}
}

T ———_——
/NOTIFY Transiion
T —

NOTIFYMESS)
hep{
help-ile NOTIFY Transiior;
shothepile NOTIFY'
helptext
NOTIFYME addsanewuseribthe it ofuserstobeinformedwhen

dhangesocauriothisrequest

Prior sigte: any Newstate any
Defauitfields: none

Rue requirements.none

Adions:

1 Thenameinthe Natfy field is added o the ist ofinterested
parfesforthisrequest;

¥
adions{

inerested parties appendGUSER EX3);
}

}
M
J/REDO Transiion
H—
REDOAWAITING_APPROVAL=AWAITING RESPONSE){
hep{
help-tite REDO Transiion;
shothelpie REDO;
hepext
AnapproverissuesaREDOwhenarequesthas notbeenadequetely
satisied sothatthe requestisretumed tothe oaner.

Prior staie: AVAITING. APPROVAL Newstzte: AWAITING. RESPONSE

169

Appendix B: RTS PDL Files with On-line Help

170

Defautields.none

Rue requirements.none

T
JEDIT Transiion
T
EDITE=)
hep{

help-iie EDIT Transiort;

shothelple BEDIT;

hepext
EDIT letsyouchange the curentvalues offieldsinthe request.
Priorstaie:any Newsiate: any

Defaultields: none

Ruie requiements.none

}
M

I APPROVE Transiion
A —————

APPROVE(AWAITING APPROVAL=>CLOSED){
hep{
hejpiie APPROVE Transtion;
hepext
APPROVE s only accesshie o those autharized o approve requiests.
APPROVE changesthe siate ofthe request iom AWAITING_ APPROVAL o
CLOSED. Priorsaie: AWAITING APPROVAL Newstate: CLOSED

Tracker.pdl

Defauitfields: none
Rue requirements.none
Adiors;

1 The Approverfiedis settothe enteredvale orifnone, othe
cumrentuser.
2 The Close date fieldis settothe cunentdate
3
adions{
approversetValue(gpproversSet ?
approvervale:
SUSERVaLE),
dose_datesetvaue(non);
}
}

T —
/REOPEN Transtion
T

REOPEN(CLOSED=>AWAITING_RESPONSE){
hep{

help-iie REOPEN Transtior;

shathepile REOPEN,;

hepext
REOPEN susedtoopenareguestthathasbeendeferred.
Priorsiate CLOSED Newstate: AWVAITING_RESPONSE
Defauitfields: none
Ruie requirements.none

Adions.none’;
¥
}

171

Appendix B: RTS PDL Files with On-line Help

T —
/DELETE Transiion
T

D:;E{FE(O_OSEDDDE_EI'ED){
help-iie DELETE Transtion;
shothepiie DELETE,
heppiext
DELETE susedibremove arequestiomthe request database. tis
valdforthe racking sysiemadminstratoronly.

Priorsiate CLOSED Newstate: DELETED
Defauitfields: none

Ruie requiremens:

1 Curentusermustbe the tradking systemadministator.

Adions.none’}
¥
tues{
SUSERKCZAR),
}
}

M
/Global Rues and Adionsfor Al Transiions
T —

ues{
hep{
help-ite Global Rues and Adiors;
shothelpite Giobal Ruesand Adiors;;
helpext
These ies and adions are appled o al ransiions.
Rue requiremens:
1 Repatnumber cannatbe changed afier the requesthasbeen
submitted

2. The Recommendation field cannothe ediied. ftisset
autometicaly.

172

Tracker.pdl

Adions:

1 Addthe onnerand submiter o the ist ofinterested pariestobe
notied when changes ooourothe request;
3

I Therepat_numbercanonlybe changedaspartof
Jsubrmission.

STRANSITIONSSUBMIT_BUG)|
STRANSITIONSSUBMIT RFE)||

freport_ numberchanged;

recommendation.changed;
}

adions{
Iftherepot numberisnatset thensetitiothe value
Jofthe $SENTITY_IDfekd.
H'repart_numbersefValue(repart_numbersSet?
I repot_numbervalue : SENTITY _IDyvale),
I'Bxecute the natiier to send mal as appropriate.
I
czarselVaue(CZAR),

naify_istsetvaue(nierested pariesvale);
natily_istappendoanervale);
naify_istappend(submitervale);
}_@m"md/tﬂfﬂﬂbﬂs_rmw;
}]
views{
hep {
helile Yisquery Views;
shathepriettscuery Views,
hepext
Thertsouery viewles youaocess the request database. Ithasfour
manareas. Fomtopiobatomtheseare:

*menu bar-foraccessngmenus

*control ber-select ediing mode fromthe mode menu, ener
datainthe appropriate fiekds, and compleie ransadion by
dddingthe command third bution fromlef). Right four
butions are for seleding requess nquery resUiis area,
*query resuls area - ists requests resuling fomacuery
*requestiormarea - contains detaled requestinfomation

173

Appendix B: RTS PDL Files with On-line Help

174

Thertslesviewis an audiary view ofthe riscuery application.
tconainsarequestom areawih threefields. Thesefields kst
thefles assodatedwiharequest Formarehelp,look upthehelp
cadsfortheindvidualfields.
3
RTSQuery({
dispay O{
conrotoer(){
heb{
help-le Control Bar'
shorthelpite Control Bar'
hepiext
The contrdl bar consists ofthe Modes menu, the Cancel and <apply
command>buttons, and the four query kst control buittons.

Toperfomoperations inthe RTS applcations, you choose the desied
mode fromthe Modes menu, editthe appropriate fields, and dickthe:
<gpply command>buiton (he third fom the lettinthe control area)
execute the operation orthe Canodl butiontovod it The <apply
commanc>button label changes asthe mode, seleded fromthe Modes

menu, changes.

The istoontral buttons contral the seledion ofreguesis nthe
queryresuisarea

¥
Indude alransiions
"
¥
3
gresuls))
indextype, ¥ $ENTITY_ID, $STATE, onner, summaty;
¥

fourCoumn: display(){
ron{Repart# SENTITY_ID,
Sats! $STATE,
Type'type,
‘Submiter? submiter;
ron{Date’ submit._date,
‘Recommend! recommendation,

Tracker.pdl

ron{Resouion’"}
fouRonLongText
} roffesolion_descrpion;
}

RTSFies(ype #$ENTITY_ID"$STATE " oner"'summany){

cispiay/({
ronMFoundin™,'};

} rongound_ing;

dispay(){
ro{Resohvedin™,'};
ronfresohved inf;

175

Appendix B: RTS PDL Files with On-line Help

rtsapprove.pdl

176

T

I

IHe: appovepd

// Desaription: RTS gpprovalpd

I Thispdfiedeinesthereportapprova apps GUI
TAuhor. PeteOrelp

/Creaied: FiApr10092949PDT 1992

MNanguage: PDL

I

1(C) Copyight 1992, Sioon Graphics, Inc.

1

I/ Permissonto use, copy, modify, and distrbute this sofwere for
I any purpose except pubication and wihoutfee is hereby granted,
I provided thett the albove copyright natioe appearinal copies of
' thesofwere.

I

M

1

views{
RTSApprove({
hep{

helpile sapprove View!;

shothelpHite sapprove View/,

helptext
The rtisapprovewindow isa supplementary application for approving
fixed requests. Thetransiions avaiable nrtsapprove are: APPROVE,
NOTIFYME, REDO,and EDIT.

thesfourmainareas. Fomtoptobatomthese are:

*menubar-foracoessngmenus
*control bar-selectediing mode from the mode menu, ener data
inthe appropriate fields, and complete ransaction by dicking
the command ¢hird button from lef). Right four butions are for
seledingrequesisinquery resuls area,
*quety resulis area - ists requesis resuling fromacquery
*requestiormarea - contains detaled requestiniomation
reevantforresponding o requiests. Thisindudes aResolution
field forexplaning the ixto the requestandaResolvedin
fiedthetidentiies the fles thet have changed as a resuitof
therequest;
¥

rtsapprove.pdl

conrooer(){
hep{
help-tie Control Ba;
shorthelpite Control Bar'
helpext
The control ber consisis afthe Modes menu, the Cancel and <apply
commanc>buttons, and the four query kst control buittons.

Toperfomoperations inthe RTS applications, you choose the desied
mode fomthe Modes menu, editthe approprite fields, and dick the
<apply command>buiton (he thid fom the lettinthe control area)
pexecute the operation orthe Canoel butiontovodic. The <apply
commanck>button label changes asthe mode, seleded fromthe Modes

menu, changes.

The istcontral buttons contral the seledion ofreguesis inthe:
queryresulsarea;
¥
transtions APPROVE, NOTIFYME, REDO, EDIT;
¥
dsplay ({
oresus){
indextype, # $ENTITY_ID, $STATE, owner, summary;
3
¥
dsplay(){
roMRepart# SENTITY_ID,
Saus'$STATE};
Date’'submit_daie};
ron{Type:type,
Recommend recommendation);
ron{Proect’proed,
oneRowdist
ronM{Sysiem'sysem,
Notfyinterested parties);
ron{Owner’ onne,
DueDate!due_dae);
ronr{Duplcateof’ts_duplcate of,
Re-OpenDate’ regpen date);
TOW{ADIOVEY. appIover,
} roM{Summary’ summary};
dsplay(){

177

Appendix B: RTS PDL Files with On-line Help

178

ron{Description’"};
fouRonLongText
ronfdesarption);

display(){

fouRowLogTet
roffesolion_descrpion;
dspiay(){

ron{Resovedin’*};
ronfresoled inf

rtsrespond.pdl

rtsrespond.pdl

T

/)

IHe: respondpd

// Desaription: RTS responsepd

I Thispdfiedeinesthe repartresponse apps GUI
TAuhor. PeteOrelp

ICeated: RiApr10092949PDT 1992

MNanguage: PDL

/)

1(C) Copyight 1992, Sioon Graphics, Inc.

/)

I/ Permissionto use, copy, modify, and distrbute this sofwere for
I any purpose except pubication and wihoutfee is hereby granted,
I provided thett the albove copyright natioe appearinal copies of
I the solwere.

/)

T

/)

views{
RTSRespond({
hep{

help-ite srespond View;

shathelpHite Hsrespond View);

helptext
The rtsrespondwindowis asupplementary application for responding
torequesisintherequestdatabese. Itisinended forrecuest
owners. Thetransiions avaiable initsrespond are: NOTIFYME,

lthesfourmainareas. Fomtop o batomthese are:

*menubear-foracoessngmenus
*control bar-select ediing mode from the mode menu, enter data
inthe appropriste fiedds, and complete transadion by dicking
the command ¢hird button from lef). Right four butions are for
seleding requessnquety resLis area,
*query resulis area - ists requesis resuling fromacquery
*requestiormarea - contains detaled requestiniomation
reevarnt forresponding o requiests. Thisindudes aResolution
field forexpianing the ix o the requestanda Resolvedin
field thetidentiies the flies that heve changed as aresutt of
therequest;

179

Appendix B: RTS PDL Files with On-line Help

¥

controHoer(){

help{
heple ConrolBar:
shorthelpile Contral Bar:
hepiext

The contrdl bar consists ofthe Mades menu, the Cancel and <apply
command>buttons, and the four query st control buittons.

Toperfomoperationsinthe RTS applications, you choose the desied
modefromthe Modes menu, editthe appropriate fields, and dickthe:
<gpply command>buiton (he third fom the lettinthe control area)
pexecute the operation orthe Canodl butiontovod it The <apply
commanc>button label changes asthe mode, seleded fromthe Modes

menu, changes.

The istcontral buttons contral the seledion ofreguesis inthe:
queryresuisarea

¥

¥
transiions NOTIFYME, FORWARD, EDIT, DEFER, RESOLVE,
REJECT, DUPLICATE;

display {

¥

180

oresuls){
indextype, ¥ $ENTITY_ID, $STATE, onrer, summaly;

¥

rtsrespond.pdl

181

Appendix B: RTS PDL Files with On-line Help

rtssubmit.pdl

182

T

I

IHe; submitpd

// Desaription: RTS submitalpd

I Thispdfiedeinesthe report submissonappsGUI
TAuhor. PeteOrelp

/Creaied: FiApr10092949PDT 1992

MNanguage: PDL

I

1(C) Copyight 1992, Sioon Graphics, Inc.

1

I/ Permissonto use, copy, modify, and distrbute this sofwere for
I any purpose except pubication and wihoutfee is hereby granted,
I provided thett the albove copyright natioe appearinal copies of
' thesofwere.

I

M

1

views{
RTSSubmi)
hep{

helpie issubmit View,

shathelpHite tssubmit View,

hepext’
Thertssubmitwindowis asupplementary application for areating new
requessnthe request databiase. The ransiions avalablen
rissubmitare: SUBMIT_BUG, SUBMIT_RFE, ASSIGN, FORWARD, NOTIFYME, and
EDIT.

lthesfourmainareas. Fomtop o batomthese are:

*menubear-foracoessngmenus
*control bar-select ediing mode fromthe mode menu, enter data
inthe appropriste fiedds, and complete transadion by dicking

the command ¢hird buiton from lef). Right four butions are for
seleding requessnquety resLis area,
*query resulis area - ists requesis resuling fromacquery
*requestiormarea - contains detaled requestinfomiation
relevantfor submiting requests. ThisindudesaFoundinfield
foridentifying the location ofthe request’;

¥

rtssubmit.pdl

conrooer(){
hep{
help-tie Control Ba;
shorthelpite Control Bar'
hepext
The control ber consisis afthe Modes menu, the Cancel and <apply
commanc>buttons, and the four query kst control buittons.

Toperfomoperations inthe RTS applications, you choose the desied
mode fomthe Modes menu, editthe approprite fields, and dick the
<apply command>buiton (he thid fom the lettinthe control area)
pexecute the operation orthe Canoel butiontovodic. The <apply
commanck>button label changes asthe mode, seleded fromthe Modes

menu, changes.

The istcontral buttons contral the seledion ofreguesis inthe:
qQuetyresuis area;
¥
transtions SUBMIT_BUG, SUBMIT_RFE, ASSIGN, FORWARD,
NOTIFYME, EDIT,
¥
dispay ({

oresuls({
ndextype # $ENTITY_ID", $STATE",onner”,

183

Appendix B: RTS PDL Files with On-line Help

184

fouRonLongText
ronfdesarption);

dspiay(){
ronM{Foundin’"};
oneRowList

ronfiound_in};

Index

Symbols

#define, 12
#ifdef, 12
#include, 12

A

action
defined, 4

actions, 23
operators, 27

add method, 35
and method, 35
append method, 34

application

defined, 2
application resources, specifying, 40
attribute types, 129
auxiliary view

defined, 3
AWAITING_APPROVAL state, 27
AWAITING_RESPONSE state, 27

B

begin statement, 72
boolean field type, 15

bug number request policy, 130, 146
bug_task utility, 131

C

changed method, 31

checkin command, 128, 146, 147

checkin triggers, 134

checkout command, 128, 146, 147

checkout triggers, 133

checkout/checkin model, 128

ClearCase, see configuration management, 127
CLOSED state, 27

configuration management

attribute types, 129
bug number request policy, 130, 146
bug_task utility, 131
checkin command, 128, 146, 147
checkin triggers, 134
checkout command, 128, 146, 147
checkout triggers, 133
checkout/checkin model, 128
database update failure recovery, 143
FIXES attribute, 129, 130, 134, 141, 147
incomplete cycle policy, 131, 147
policy file, 130, 146
trigger scripts, 132

inform_ci, 132

inform_co, 132

inform_unco, 132

185

Index

validate_bug, 132
trigger types, 130
uncheckout command, 129, 135, 147
uncheckout triggers, 135
user validation policy, 130
WIP attribute, 129, 130, 133, 134, 135, 147

control bar, 4
declaration, 43

control-bar, 39
controlling database access, 62

D

data manipulation language, 5, 57, 72

database access, 60
controlling, 62

database security, 62
database structure, 58

database update failure recovery, configuration
management, 143

date field type, 15
delete statement, 71
DELETED state, 27
design procedures in Tracker, 7
display, 38
display, 39
display area
defined, 4
display key words, 38
divide method, 35

DML, 57 through 72
defined, 5

dml program, 61
DML statements, 62
dmlcount script, 61
dmlrpt script, 61

186

E

eightRowLongText, 41
end statement, 72

entity class
general format, 20

$ENTITY field, 21
nested select statements, 69

environment variables, 21
execCommand method, 30
execFilter method, 30
execSelect method, 30
explicit typing, 65

F

fatBox, 41
feature names, 40

field
defined, 4

field characteristics, changing, 35
field declaration, 15 through 21

defined, 13

example, 76, 81
field pop-up menus, 49
field type

boolean, 15

date, 15

file, 15

int, 15

journal, 15,18

list-of, 15

one-of, 16, 18

short-text, 16
$FIELD_LIST, 30
file field type, 15
find_fixes, 130, 141

find_wip, 130

FIXES attribute, 129, 130, 134, 141, 147

fname method, 32

form area declaration, 45
fourColumnDisplay, 41
fourRowLongText, 41

G

generating PDL files, 6
global rules and actions, 23

H

help declaration, 51 through 56

implicit typing, 63
incomplete cycle policy, 131, 147
index, 39

insert statement, 70
int field type, 15

is method, 33

is_cf method, 33
isGreater method, 33
isGreaterEq method, 33
isLess method, 33
isLessEq method, 33
isNot method, 33

isSet method, 31

J

journal field type, 15, 18

L

length method, 32

list-of field type, 15

literal value specification, 63
explicit typing, 65
implicit typing, 63

lock statement, 71

logical operators, 27

M

method, read-only, 35

methods
add, 35
and, 35
append, 34
changed, 31
divide, 35
execCommand, 30
execFilter, 30
execSelect, 30
fname, 32
is, 33
is_cf, 33
isGreater, 33
isGreaterEq, 33
isLess, 33
isLessEq, 33
isNot, 33
isSet, 31

187

Index

length, 32

multiply, 35

not, 31

old, 32

or, 35

remove, 34

setDefault, 34

setReadOnly, 35

setValue, 34

size, 32

subscript, 35

subtract, 35

text, 32

transitions, 29 through 35

unsetValue, 34

value, 32
methods, testing data, 31
Modes menu, 4
SMODIFIED_FIELDS, 30

multiply method, 35

N

nested select statement, 69
not method, 31

(0]

old method, 32
on-line help, 23

one-of field type, 16, 18
oneRowlList, 41
oneRowLongText, 41

operators
transitions, 27

or method, 35

188

P

PDL, 11,50
defined, 5
key words, 38

PDL file, 11
definitions, 11
example, 74
field declaration, 13, 15, 21
general format, 14, 52
generation, 6
help declaration, 51, 56
supplementary applications, 13
transition declaration, 13
view declaration, 13

policy file, 130, 146
policy_vars.sh, 130, 146
predeclared fields, 21
predefined feature names, 40

printing query results, see CASEVision/Tracker User’s
Guide

process description language, 5, 11 through 50

Q

gresults, 39, 43
query results declaration, 43

query results, printing, see CASEVision/Tracker User’s
Guide

R

read-only fields, 35
remove method, 34

request
defined, 1

row, 40

rule
defined, 4

rules
operators, 27
transition declarations, 23

S

samplel example, 73 through 86
scrolling list, 105

security, database, 62
security,database, 61, 62

select statement, 66
nested, 69

setDefault method, 34

setReadOnly method, 35

setValue method, 34

short-text field type, 16
sixteenRowLongText, 41

size method, 32

sorting feature, 40

specifying application resources, 40
state change, 23, 26, 27

state declaration
example, 83

S$STATE field, 21,28
state transition diagram, 8
subscript method, 35
subtract method, 35

supplementary application, 13
defined, 2

T

testing field data, methods, 31
text method, 32
threeColumnDisplay, 41
top-level rules, operators, 27

Tracker
database access, 60
database security, 61, 62
database structure, 58

Tracker design procedures, 7
Tracker.sec, 61

Tracker.sec, 62

transaction statements, 72

transition
defined, 4
example, 25

methods, 29 through 35
operators, 27

transition declaration
actions, 23
control bar, 43
defined, 13
example, 76, 85
field pop-up menus, 49
form area, 45
general format, 24
global rules and actions, 23

on-line help, 23
query results, 43
rules, 23

state change, 23, 26 through 27
views, 36 through 50

$TRANSITION field, 21
transitions, 39
transitions, 39

189

Index

trigger scripts, 132 w
inform_ci, 132
inform_co, 132 WIP attribute, 129, 130, 133, 134, 135, 147

inform_unco, 132
validate_bug, 132

trigger types, 130 X
tuples, 38 _
definition, 40 X widgets, 40
tvgen, 6
example, 79

twoRowLongText, 41

U

uncheckout command, 129, 135, 147
uncheckout triggers, 135

unlock statement, 71

unsetValue method, 34

update statement, 70

user validation policy, 130

Vv

value method, 32
versioned object bases (VOBs), 128, 129, 144
view

body, 37

defined, 2

format, 36

name, 37

title, 37

view declaration, 36 through 50
defined, 13
example, 78

views, 38
VOBs, see versioned object bases

190

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

General impression of the document

Omission of material that you expected to find
Technical errors

Relevance of the material to the job you had to do

Quiality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-1664-020.

Thank you!

Three Ways to Reach Us

To send your comments by electronic mail, use either of these addresses:
— On the Internet: techpubs@sgi.com
— For UUCP mail (through any backbone site): [your_site]!sgiltechpubs

To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

To send your comments by traditional mail, use this address:

Technical Publications

Silicon Graphics, Inc.

2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

