
Graphics Library Programming Guide
Volume II

Document Number 007-1702-020

Contributors

Written by Patricia McLendon
Illustrated by Dan Young, Howard Look, and Patricia McLendon
Edited by Steven W. Hiatt
Production by Derrald Vogt
Engineering contributions by John Airey, Kurt Akeley, Dan Baum, Rosemary Chang,
Howard Cheng, Tom Davis, Bob Drebin, Ben Garlick, Mark Grossman, Michael Jones,
Seth Katz, Phil Karlton, George Kong, Erik Lindholm, Howard Look, Rob Mace, Martin
McDonald, Jackie Neider, Mark Segal, Dave Spalding, Gary Tarolli, Vince Uttley, and
Rolf Van Widenfelt.

© Copyright 1992, Silicon Graphics, Inc.— All Rights Reserved

This document contains proprietary and confidential information of Silicon Graphics,
Inc. The contents of this document may not be disclosed to third parties, copied, or
duplicated in any form, in whole or in part, without the prior written permission of
Silicon Graphics, Inc.

Restricted Rights Legend

Use, duplication, or disclosure of the technical data contained in this document by the
Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the Rights
in Technical Data and Computer Software clause at DFARS 52.227-7013 and/or in
similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement.
Unpublished rights reserved under the Copyright Laws of the United States.
Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd., Mountain
View, CA 94039-7311.

Graphics Library Programming Guide
Document Number 007-1702-020

Silicon Graphics, Inc.
Mountain View, California

Silicon Graphics, the Silicon Graphics logo, and IRIS are registered trademarks and IRIS
Graphics Library, Geometry Engine, Geometry Pipeline, IRIX, 4D, MicroPixel,
Personal IRIS, IRIS Indigo, XS, XS24, Elan, RealityEngine, and SkyWriter are
trademarks of Silicon Graphics, Inc.
Ada is a registered trademark of the Ada Joint Program of the United States of America
Ethernet is a registered trademark of Xerox Corporation
OSF/Motif is a trademark of the Open Software Foundation
Spaceball is a trademark of Spatial Systems, Inc.
UNIX is a registered trademark of AT&T Bell Labs
X Window System and Athena Widgets are trademarks of the Massachusetts Institute
of Technology.

iii

Contents

Introduction...xxi
How to Use This Guide .. xxii

How to Use the Sample Programs.......................... xxii
Typographical Conventions xxiii
What this Guide Contains....................................... xxiii

How to Use the On-line Manual Pages.....................................xxv
Using Man Pages from the Toolchest......................xxv
Using Man Pages from an IRIX Shellxxv

Suggestions for Further Reading ... xxvi

1. Graphics Development Environment ...1-1
1.1 Using the Graphics Library and System Libraries1-1

1.1.1 System Libraries ..1-2
1.1.2 Include Files ...1-2

1.2 Using the X Window System...1-2
1.3 Programming in C...1-4

1.3.1 Using the ANSI C Standard.......................................1-4
1.3.2 Compiling C Programs...1-4

1.4 GL Program Structure ..1-5
1.4.1 Initializing the System ..1-6
1.4.2 Getting Graphics Information1-7
1.4.3 Global State Attributes ...1-10
1.4.4 Exiting the Graphics Environment1-10

iv

2. Drawing ..2-1
2.1 Drawing with the GL..2-1

2.1.1 Vertex Subroutines..2-2
2.1.2 Points...2-7
2.1.3 Lines ..2-8
2.1.4 Polygons ...2-12
2.1.5 Point-Sampled Polygons ..2-17
2.1.6 Meshes ..2-21
2.1.7 Controlling Polygon Rendering..............................2-29

2.2 Old-Style Drawing ..2-30
2.2.1 Basic Shapes ...2-31
2.2.2 Nonrecommended Old-Style Subroutines2-37

3. Characters and Fonts ...3-1
3.1 Drawing Characters ..3-2

3.1.1 Determining the Current Character Position..........3-2
3.1.2 Drawing Character Strings ..3-3
3.1.3 Clipping Character Strings ..3-3
3.1.4 Getting Character Information..................................3-4

3.2 Creating a Font ..3-7
3.2.1 Defining the Font...3-9
3.2.2 Selecting the Font ..3-12
3.2.3 Querying the System for Font Information3-14

4. Display and Color Modes ..4-1
4.1 Color Display ...4-2

4.1.1 Bitplanes ...4-3
4.1.2 Dithering...4-4

4.2 RGB Mode ..4-5
4.2.1 Setting and Getting the Current Color

in RGB Mode..4-7
4.3 Gouraud Shading ..4-8

v

4.4 Color Map Mode ...4-15
4.4.1 Setting the Current Color

in Color Map Mode...4-17
4.4.2 Getting Color Information

in Color Map Mode...4-18
4.4.3 Gouraud Shading in Color Map Mode4-19
4.4.4 Blinking...4-21

4.5 Onemap and Multimap Modes...4-22
4.6 Gamma Correction..4-23

5. User Input ..5-1
5.1 Event Handling ...5-1

5.1.1 Queueing ..5-3
5.1.2 Polling ...5-7

5.2 Input Devices ...5-10
5.2.1 Buttons ..5-11
5.2.2 Valuators ..5-12
5.2.3 Keyboard Devices ...5-13
5.2.4 Window Manager Tokens..5-14
5.2.5 Spaceball Devices ...5-15
5.2.6 Controlling Devices ..5-16

5.3 Video Control...5-17

6. Animation...6-1
6.1 Understanding How Animation Works6-1

6.1.1 Single Buffer Mode ...6-2
6.1.2 Double Buffer Mode ...6-2

6.2 Creating an Animation...6-2
6.2.1 Setting Modes for Animation6-3
6.2.2 Swapping Buffers ..6-3
6.2.3 Swapping Multiple Buffers..6-3
6.2.4 Maximizing Animation Performance.......................6-6

vi

7. Coordinate Transformations ..7-1
7.1 Coordinate Systems ..7-2
7.2 Projection Transformations..7-4

7.2.1 Perspective Projection...7-4
7.2.2 Window Projection ...7-9
7.2.3 Orthographic Projections ...7-10

7.3 Viewing Transformations ..7-12
7.3.1 Viewpoint in Polar Coordinates..............................7-13
7.3.2 Viewpoint along a Line of Sight..............................7-14

7.4 Modeling Transformations ..7-16
7.4.1 Rotation...7-17
7.4.2 Translation..7-17
7.4.3 Scaling...7-18

7.5 Controlling the Order of Transformations7-19
7.5.1 Current Matrix Mode (mmode)7-19

7.6 Hierarchical Drawing with the Matrix Stack7-20
7.7 Viewports, Screenmasks, and Scrboxes7-26
7.8 User-Defined Transformations..7-29
7.9 Additional Clipping Planes ...7-30

8. Hidden-Surface Removal...8-1
8.1 z-buffering ..8-2

8.1.1 Controlling z Values ...8-7
8.1.2 Clearing the z-buffer and the Bitplanes

Simultaneously ..8-8
8.2 Using z-buffer Features for Special Applications...................8-10

8.2.1 Drawing into the z-buffer...8-10
8.2.2 Alternative Comparisons

and z-buffer Writemasks..8-14
8.3 Stenciling ..8-16
8.4 Eliminating Backfacing Polygons ...8-21
8.5 Alpha Comparison..8-22

vii

9. Lighting ..9-1
9.1 Introduction to GL Lighting ..9-2

9.1.1 Color..9-2
9.1.2 Reflectance..9-3

9.2 Setting Up GL Lighting ..9-4
9.2.1 Defining Surface Normals..9-5
9.2.2 Defining Lighting Components9-6

9.3 Binding Lighting Definitions...9-11
9.4 Changing Lighting Settings ...9-12
9.5 Default Settings ...9-13
9.6 Advanced Lighting Features ...9-14

9.6.1 Attenuation ..9-14
9.6.2 Spotlights..9-16
9.6.3 Two-Sided Lighting ..9-17
9.6.4 Fast Updates to Material Properties9-18
9.6.5 Transparency ...9-21
9.6.6 Lighting Multiple GL Windows..............................9-21

9.7 Lighting Performance ...9-22
9.7.1 Restrictions on ModelView, Projection, and

User-Defined Matrices..9-22
9.7.2 Computational Considerations9-23

9.8 Color Map Lighting ..9-24
9.9 Sample Lighting Program..9-25

10. Framebuffers and Drawing Modes..10-1
10.1 Framebuffers ..10-1

10.1.1 Normal Framebuffer...10-2
10.1.2 Overlay Framebuffer ..10-3
10.1.3 Underlay Framebuffer..10-3
10.1.4 Pop-up Framebuffer..10-3
10.1.5 Left and Right Stereo Framebuffers........................10-4

10.2 Drawing Modes ...10-5

viii

10.3 Writemasks...10-7
10.3.1 How Writemasks Work..10-8
10.3.2 Writemask Subroutines ..10-9
10.3.3 Sample Writemask Programs................................10-10

10.4 Configuring Overlay and Underlay Bitplanes......................10-15
10.5 Cursor Techniques ..10-17

10.5.1 Types of Cursors..10-17
10.5.2 Creating and Using Cursors10-19
10.5.3 Cursor Subroutines ...10-20
10.5.4 Sample Cursor Program...10-21

11. Pixels...11-1
11.1 Pixel Formats ...11-2
11.2 Reading and Writing Pixels Efficiently....................................11-3

11.2.1 Pixel Addressing ...11-4
11.2.2 Reading Pixels..11-5
11.2.3 Writing Pixels...11-7

11.3 Using pixmode ..11-10
11.3.1 Shifting Pixels ..11-10
11.3.2 Expanding Pixels...11-11
11.3.3 Adding Pixels...11-11
11.3.4 Pixels Destined for the z-Buffer11-12
11.3.5 Changing Pixel Fill Directions...............................11-12

11.4 Subimages within Images ..11-13
11.5 Packing and Unpacking Pixel Data ..11-14
11.6 Order of Pixel Operations ..11-16
11.7 Old-Style Pixel Access ..11-16

11.7.1 Reading Pixels..11-17
11.7.2 Writing Pixels...11-18

ix

12. Picking and Selecting...12-1
12.1 Picking ..12-1

12.1.1 Defining the Picking Region....................................12-3
12.1.2 Using the Name Stack ..12-4

12.2 Selecting..12-8

13. Depth-Cueing and Atmospheric Effects..13-1
13.1 Depth-Cueing ..13-1

13.1.1 Setting Up Depth–Cueing..13-2
13.1.2 Depth-Cueing in Colormap Mode..........................13-4
13.1.3 Depth-Cueing in RGBmode.....................................13-6
13.1.4 Sample Depth-Cueing Program..............................13-7

13.2 Atmospheric Effects ..13-10
13.2.1 Fog ...13-11
13.2.2 Fog Characteristics ..13-12
13.2.3 Fog Calculations ..13-12
13.2.4 Fog Parameters ..13-14

14. Curves and Surfaces ..14-1
14.1 Introduction to Curves ...14-2

14.1.1 Parametric Curves...14-2
14.1.2 Polynomial Curves..14-5
14.1.3 Parametric Spline Curves...14-5

14.2 B-Splines ...14-6
14.2.1 Control Points ..14-6
14.2.2 Basis Functions ..14-7
14.2.3 Knots ...14-8
14.2.4 Weights ...14-10

14.3 GL NURBS Curves..14-11
14.4 NURBS Surfaces ..14-13

14.4.1 Geometric Surfaces ...14-16
14.4.2 Color Surfaces ..14-17
14.4.3 Texture Surfaces ..14-17

14.5 Trimming NURBS Surfaces ...14-18

x

14.6 NURBS Properties...14-21
14.7 Sample NURBS Program ...14-22
14.8 Old-Style Curves and Surfaces..14-28

14.8.1 Old-Style Curves ...14-28
14.8.2 Drawing Old-Style Curves14-29
14.8.3 Drawing Old-Style Surfaces14-33

15. Antialiasing ...15-1
15.1 Sampling Accuracy ...15-1

15.1.1 Subpixel Positioning ...15-4
15.1.2 How Subpixel Positioning Affects Lines15-4

15.2 Blending..15-5
15.3 One-Pass Antialiasing—the Smooth Primitives15-10

15.3.1 High-Performance Antialiased
Points—pntsmooth ...15-10

15.3.2 High-Performance Antialiased
Lines—linesmooth ..15-15

15.3.3 High-Performance Antialiased
Polygons—polysmooth ..15-22

15.4 Multipass Antialiasing with the Accumulation Buffer........15-30
15.4.1 Configuring the Accumulation Buffer15-30
15.4.2 Using the Accumulation Buffer15-31

15.5 Antialiasing on RealityEngine Systems15-36
15.5.1 Multisample Antialiasing.......................................15-37
15.5.2 Configuring Your System for Multisampling.....15-37
15.5.3 How Multisampling Affects Rendering15-42
15.5.4 Using Advanced Multisample Options15-44

xi

16. Graphical Objects ..16-1
16.1 Creating an Object...16-1
16.2 Working with Objects...16-4

16.2.1 Drawing an Object ..16-4
16.2.2 Bounding Boxes...16-7
16.2.3 Editing Objects...16-8
16.2.4 Using Tags..16-9
16.2.5 Inserting, Deleting, and Replacing

within Objects ..16-10
16.2.6 Managing Object Memory16-12
16.2.7 Mapping Screen Coordinates

to World Coordinates ...16-13

17. Feedback..17-1
17.1 Feedback on IRIS-4D/GT/GTX Systems.................................17-4
17.2 Feedback on the Personal IRIS and IRIS Indigo17-6
17.3 Feedback on IRIS-4D/VGX, SkyWriter,

and RealityEngine Systems..17-7
17.4 Feedback Example ..17-8
17.5 Additional Notes on Feedback..17-10

18. Textures ...18-1
18.1 Texture Basics ..18-2

18.1.1 2-D Textures ...18-3
18.1.2 3-D Textures ...18-4
18.1.3 How to Set Up Texturing ...18-6

18.2 Defining a Texture...18-6
18.2.1 Using Texture Components.....................................18-7
18.2.2 Loading a Texture Array..18-9
18.2.3 Defining and Binding a Texture............................18-11
18.2.4 Selecting the Texel SIze ..18-13

18.3 Using Texture Filters ..18-16
18.3.1 Minification Filters ..18-17
18.3.2 Using Magnification Filters18-21

xii

18.4 Using the Sharpen and DetailTexture Features....................18-23
18.4.1 Using the Sharpen Feature.....................................18-23
18.4.2 Using DetailTextures ..18-27

18.5 Texture Coordinates ...18-32
18.5.1 Assigning Texture Coordinates Explicitly...........18-32
18.5.2 Generating Texture Coordinates
Automatically ..18-33
18.5.3 Texture Lookup Tables...18-35
18.5.4 Improving Interpolation Results

on VGX Systems ..18-37
18.6 Texture Environments ..18-39
18.7 Texture Programming Hints ...18-42
18.8 Sample Texture Programs..18-45

19. Using the GL in a Networked Environment19-1
19.1 Introduction ...19-1

19.1.1 Protocol ...19-2
19.1.2 Writing GL Programs to Use

Network Transparent Features19-2
19.1.3 Establishing a Connection..19-4
19.1.4 Using rlogin..19-4

19.2 Limitations and Incompatibilities...19-5
19.2.1 The callfunc Routine ...19-5
19.2.2 Pop-up Menu Functions...19-5
19.2.3 Interrupts and Jumps..19-5

19.3 Using Multiple Server Connections ...19-6
19.3.1 Establishing and Closing Multiple Network

Connections..19-6
19.3.2 Graphics Input...19-9
19.3.3 Local Graphics Data..19-9
19.3.4 Sample Program - Multiple Connections

on a Local Host ..19-9
19.4 Configuration of the Network Transparent Interface..........19-12

19.4.1 inetd...19-12
19.4.2 dgld ...19-13

xiii

19.5 Error Messages ..19-13
19.5.1 Connection Errors ...19-14
19.5.2 Client Errors ...19-14
19.5.3 Server Errors ..19-15
19.5.4 Exit Status...19-16

A. Scope of GL Subroutines .. A-1

B. Global State Attributes.. B-1

C. Transformation Matrices ..C-1
C.1 Translation...C-1
C.2 Scaling and Mirroring..C-1
C.3 Rotation..C-2
C.4 Viewing Transformations ...C-3
C.5 Perspective Transformations ..C-4
C.6 Orthographic Transformations ..C-5

D. GL Error Messages ... D-1

E. Using Graphics and Share Groups.. E-1

Index... Index-1

xiv

xv

Figures

Figure 2-1 Simple Convex Polygon ...2-12
Figure 2-2 Simple Concave Polygon ...2-13
Figure 2-3 Another Simple Concave Polygon..2-13
Figure 2-4 Nonsimple Polygon ..2-14
Figure 2-5 Another Nonsimple Polygon...2-14
Figure 2-6 Bowtie Polygon..2-14
Figure 2-7 Non–Point-Sampled Polygons ..2-17
Figure 2-8 Point-Sampled Polygons ..2-19
Figure 2-9 Point-Sampled Polygon with Edges

Exactly on Pixel Centers ...2-19
Figure 2-10 Point Sampling Anomaly...2-20
Figure 2-11 Simple Triangle Mesh...2-21
Figure 2-12 Example of swaptmesh() Construction.................................2-23
Figure 2-13 Another swaptmesh() Example..2-24
Figure 2-14 Mesh of Quadrilateral Strips ...2-28
Figure 2-15 Equivalent T-mesh ..2-28
Figure 2-16 Clipping Behavior of PYM_LINE ..2-29
Figure 3-1 How Character Strings are Clipped ...3-4
Figure 3-2 Bitmask for the Character A ..3-7
Figure 3-3 Character Bitmap Created with defrasterfont()3-8
Figure 4-1 Gouraud Shaded Triangle..4-10
Figure 7-1 Coordinate Systems ..7-2
Figure 7-2 Frustum...7-6
Figure 7-3 Clipping Planes ...7-8
Figure 7-4 The window() Projection Transformation7-9

xvi

Figure 7-5 The ortho() Projection Transformation7-10
Figure 7-6 The polarview() Viewing Transformation..........................7-13
Figure 7-7 The lookat() Viewing Transformation7-14
Figure 7-8 Modeling Transformations ..7-16
Figure 7-9 Effects of Sequence of Translations and Rotations...............7-18
Figure 8-1 Overlapping Polygons..8-2
Figure 10-1 Writemask ..10-8
Figure 10-2 Example Cursors ...10-18
Figure 13-1 Depth-Cued Cube ...13-1
Figure 13-2 Viewing Volume Showing Clipping Planes

and a Depth-Cued Line ..13-3
Figure 13-3 Color Ramp ..13-4
Figure 14-1 Parametric Curve as a Mapping ...14-3
Figure 14-2 Cross-plot ...14-4
Figure 14-3 Spline...14-5
Figure 14-4 Influence of Control Points on a Curve14-6
Figure 14-5 A B-Spline with Its Control Polygon......................................14-6
Figure 14-6 Moving a Control Point to Change

the Shape of a B-Spline ...14-7
Figure 14-7 Basis Functions for an Example Cubic B-Spline14-8
Figure 14-8 Basis Functions for a Cubic B-Spline

with a Multiple Interior Knot ..14-8
Figure 14-9 B-Spline Relationships..14-9
Figure 14-10 Increasing the Weight of a Control Point

Increases Its Influence...14-10
Figure 14-11 Representing a Circle with NURBS14-12
Figure 14-12 Parametric NURBS Surface..14-13
Figure 14-13 Trimmed Surface ...14-18
Figure 14-14 Trimming Curves ..14-19
Figure 15-1 Antialiased Line...15-3
Figure 15-2 Example Multisample Patterns ...15-37
Figure 15-3 Flexible Framebuffer Configuration.....................................15-39
Figure 16-1 Sphere Defined as an Object ..16-3
Figure 16-2 Drawing a Hierarchical Object ..16-6
Figure 16-3 Bounding Boxes...16-7

xvii

Figure 17-1 Effects of Clipping on Feedback ...17-3
Figure 18-1 Textures for Wood and Water...18-2
Figure 18-2 Fully Textured Scene ..18-3
Figure 18-3 Mapping from 2-D Texture Space

to 3-D Object Space ...18-4
Figure 18-4 3-D Texture...18-4
Figure 18-5 Extracting an Arbitrary Planar Texture

from a 3-D Texture Volume...18-5
Figure 18-6 Example of a Tree Created with a 2-component Texture....18-8
Figure 18-7 Structure of a Texture Array..18-9
Figure 18-8 Texture Minification ...18-16
Figure 18-9 Texture Magnification ..18-16
Figure 18-10 Texture Minification ...18-17
Figure 18-11 MIPmap ..18-17
Figure 18-12 Texture Magnification ..18-21
Figure 18-13 LOD Extrapolation Curves ..18-25
Figure 18-14 Clamping the LOD Extrapolation...18-26
Figure 18-15 LOD Interpolation Curves ...18-29

xviii

xix

Tables

Table 1-1 System Types and Graphics Library Versions..........................1-8
Table 1-2 Tokens for Graphics Resource Inquiries....................................1-9
Table 2-1 Vertex Subroutines..2-3
Table 2-2 Sequence of Vertices in a Mesh ...2-22
Table 2-3 Rectangle Subroutines ..2-32
Table 2-4 Screen Box Subroutines ..2-34
Table 2-5 Circle Subroutines ...2-34
Table 2-6 Arc Subroutines ...2-36
Table 2-7 Old-Style Point Subroutines ..2-38
Table 2-8 Old-Style Move and Draw Subroutines...................................2-39
Table 2-9 Old-Style Filled Polygon Move and Draw Subroutines........2-40
Table 2-10 Old-Style Polygon and Filled Polygon Subroutines2-41
Table 3-1 cmov() Subroutines ..3-3
Table 4-1 Bitplane Configurations

of Silicon Graphics Workstations..4-3
Table 4-2 The Color (c) Family of Subroutines ..4-7
Table 4-3 Default Color Map ..4-16
Table 5-1 Class Ranges in the Device Domain ...5-10
Table 5-2 Input Buttons ...5-11
Table 5-3 Input Valuators..5-12
Table 5-4 Window Manager Event Tokens ..5-14
Table 5-5 Spaceball Input Buttons ...5-15
Table 5-6 Monitor Types ...5-19
Table 5-7 Video Register Values...5-20
Table 5-8 Live Video Digitizer Commands ..5-21

xx

Table 8-1 Maximum and Minimum z-buffer Values.................................8-8
Table 8-2 Values of zfunction() for Personal IRIS czclear()8-9
Table 10-1 Overlay and Underlay Bitplane Configurations10-16
Table 11-1 Hints for readdisplay()...11-5
Table 15-1 Blending Factors ..15-6
Table 15-2 Tokens for Selecting Accumulation

Multisample Patterns..15-45
Table 17-1 IRIS-4D/G/GT/GTX Feedback Data.......................................17-4
Table 18-1 Texture Components ..18-7
Table 18-2 Texture Image Array Format...18-10
Table 18-3 Texture Component Configuration

for Different Texel Sizes ...18-14
Table 18-4 Formulas for Computing DetailTexture Filters18-30
Table 18-5 The t() Subroutine...18-33
Table 18-6 Texture Look-up Table Actions...18-36
Table 18-7 TV_MODULATE Equations ...18-40
Table 18-8 TV_BLEND Equations..18-40
Table 18-9 TV_DECAL Equations..18-41
Table 19-1 Error Values ...19-14
Table 19-2 DGL Client Exit Values ..19-15
Table 19-3 DGL Server Exit Value ...19-16
Table A-1 GL State Types... A-1
Table A-2 Scope of GL Subroutines .. A-2
Table B-1 Default Color Map Values .. B-1
Table B-2 Keys to Information in Table B-3 ... B-2
Table B-3 Global State Attribute Defaults .. B-2
Table D-1 GL Error Messages and Probable Causes................................ D-1

Graphics Library Programming Guide 13-1

Chapter 13

13. Depth-Cueing and Atmospheric Effects

This chapter introduces you to two techniques that contribute to the
perception of 3-D in your scenes: depth-cueing and atmospheric effects.

• Section 13.1, “Depth-Cueing,”describes how to use depth-cueing in
RGB mode and in colormap mode.

• Section 13.2, “Atmospheric Effects,” shows you how to create
atmospheric effects such as fog and haze.

13.1 Depth-Cueing

When you look at objects in the real world, it is your eye’s ability to perceive
depth—depth perception, that makes you aware of the 3-D nature of objects and
lets you judge the relative distance of objects. The illusion of depth perception
can be created on the 2-D screen by depth-cueing images. Depth-cueing
modifies an object’s color based on its distance from the viewer. Figure 13-1
shows how a cube looks when it is depth-cued.

Figure 13-1 Depth-Cued Cube

13-2 Depth-Cueing and Atmospheric Effects

Two methods of depth-cueing are presented in this chapter: color replacement
and color blending.

Color replacement makes objects closer to the viewer brighter than those far
away from the viewer. Depth-cueing makes an image appear 3D by replacing
the color of all points, lines, and polygons with colors determined by their z
values.

Color blending blends true object color with another color, where the blend ratio
is determined by the depth of the object. You can use color blending for
depth-cueing, but color blending is better known as a technique for simulating
atmospheric phenomena such as fog and smoke. (See Section 13.2)

Note: Depth-cueing and lighting cannot be used simultaneously.

13.1.1 Setting Up Depth–Cueing

To set up depth-cueing in your GL application:

1. Set the proper modes:

shademodel(GOURAUD); — this is the default

2. Define a range of z values that describes the viewing volume that is
subject to depth-cueing.

3. Clear the z-buffer to the maximum z value and clear the screen color to
the background color.

4. Turn depth–cueing on.

5. Specify a mapping of z values to color.

6. Draw objects that are to be depth-cued.

Defining the Boundaries for Depth-Cueing

You need to tell the GL where in your viewing volume you want objects to be
depth-cued. Doing so establishes a reference for mapping the maximum and
minimum color intensities. The near and far clipping planes establish the
reference for the color mapping.

Graphics Library Programming Guide 13-3

Figure 13-2 shows how the minimum and maximum z values are mapped to
the brightest and dimmest colors within a viewing volume.

Figure 13-2 Viewing Volume Showing Clipping Planes and a Depth-Cued Line

Use the lsetdepth() subroutine to define the near and far z values that form
the boundary z values used for depth-cueing within a viewing volume. The C
specification for lsetdepth() is:

void lsetdepth(long near, long far)

The valid range of near and far depends on the state of the GLC_ZRANGEMAP
compatibility mode you set. You use the glcompat() subroutine with the
argument GLC_ZRANGEMAP to set the compatibility:

glcompat(GLC_ZRANGEMAP)

If glcompat(GLC_ZRANGEMAP) is set to 0, the valid range for near and far
depends on the graphics hardware: the z minimum is the value returned by
getgdesc(GD_ZMIN) and the z maximum is the value returned by
getgdesc(GD_ZMAX). If GLC_ZRANGEMAP is set to 1, the minimum is 0x0 and the
maximum is 0x7FFFFF, and this range is mapped to whatever range the
hardware supports. You should always explicitly set
glcompat(GLC_ZRANGEMAP) because its default state depends on the machine
type.

zmaxzmin

near

far

13-4 Depth-Cueing and Atmospheric Effects

Turning Depth-Cueing On/Off

Use the depthcue() subroutine to turn depth-cue mode on and off. The ANSI
C specification for depthcue is:

void depthcue(Boolean mode)

When you specify TRUE, all lines, points, characters, and polygons that the
system draws are depth-cued. When you specify FALSE, depth-cue mode is
off. Rendering in depth-cue mode may be somewhat slower, so turn off
depth-cueing when you don’t need it.

Querying the System for Depth-Cueing Mode

Use the subroutine getdcm() to query the system about whether depth-cueing
is on or off. The ANSI C specification for getdcm() is:

boolean getdcm(void)

TRUE means depth-cue mode is on; FALSE means depth-cue mode is off.

Specify a mapping of z values to color by using either the lshaderange() or
lRGBrange() command. In colormap mode, use 1shaderange() to describe a
mapping from z values to color index values. In RGB mode, use 1RGBrange()
to describe a mapping from z values to RGB values.

13.1.2 Depth-Cueing in Colormap Mode

When you use depth-cueing in color map mode, the GL uses the colors that
you define in the z value mapping when it draws the geometry. You need to
create a color ramp for depth-cueing in color map mode. Figure 13-3 shows a
typical color ramp.

Figure 13-3 Color Ramp

highin lowin

brightest dimmest

Graphics Library Programming Guide 13-5

Create a color ramp by specifying the color values at each end of the ramp, and
how the colors are incremented.

Use the mapcolor() subroutine to load your color ramp into the color map.
(See Chapter 4 for information on using mapcolor().

Use the lshaderange() subroutine to define the mapping from z value to
color.

The ANSI C specification for lshaderange() is:

void lshaderange(Colorindex lowin, Colorindex highin,
 long znear, long zfar)

Specify the low-intensity color map index (lowin) and the high-intensity color
map index (highin) in the lshaderange() subroutine. These values are
mapped to the near and far z values that you specify for znear and zfar.

lshaderange() defines the entire transformation range. The brightest color is
mapped to znear and the dimmest color is mapped to zfar. The color of lines or
points extending beyond znear and zfar are clamped to the brightest and
dimmest values respectively. Screen z values nearer than znear map to highin
and screen z values farther than zfar map to lowin.

The values of znear and zfar should correspond to or lie within the range of z
values specified by lsetdepth(). If near < far, then znear should be less than
zfar. If near > far, then znear should be greater than zfar. In other words, the
range [near, far] that you define in lsetdepth() should bound the range [znear,
zfar] that you define in lshaderange().

The entries for the color map between lowin and the highin should reflect the
appropriate sequence of intensities for the color being drawn.

When a depth-cued point is drawn, its z value is used to determine its intensity.
When a depth-cued line is drawn, the color intensity along the line is linearly
interpolated from the intensities of its endpoints, which are determined from
their z values.

You can achieve higher resolution if the near and far clipping planes bound the
object as closely as possible.

13-6 Depth-Cueing and Atmospheric Effects

The following equation yields the color map index for a point with a z
coordinate of z. Note that this equation yields a nonlinear mapping when z is
outside the range of [znear, zfar]. Because depth-cued lines are linearly
interpolated between endpoints, an endpoint outside the range of [znear, zfar]
can result in an undesirable image.

(EQ 13-1)

13.1.3 Depth-Cueing in RGBmode

When you use depth-cueing in RGB mode, the GL uses the colors that you
define in the z value mapping when draws the geometry.

You use the lRGBrange() subroutine to set the range of colors to use for
depth-cueing in RGB mode. The C specification for lRGBrange is:

void lRGBrange (short rmin, short gmin, short bmin, short
rmax, short gmax, short bmax, long zmin, long zmax)

Specify the minimum and maximum values to be stored in the color bitplanes,
and the near and far z values to which the colors are mapped. rmin and rmax
are the minimum and maximum values stored in the red bitplanes. Likewise,
gmin, gmax, bmin, and bmax define the minimum and maximum values stored
in the green and blue bitplanes, respectively. znear and zfar define the z values
that are mapped linearly into the RGB range. z values nearer than znear are
mapped to rmax, gmax, and bmax; z values farther than zfar are mapped to rmin,
gmin, and bmin.

colorz
lowin highin–

zfar znear–
---------------------------------- 

  z znear–() highin,+











=

highin,

lowin, if zfar z≤()

if z znear≤()

if znear z zfar≤ ≤()

Graphics Library Programming Guide 13-7

13.1.4 Sample Depth-Cueing Program

This sample program, depthcue.c, draws a cube filled with points that rotates as
you move the mouse. Because the image is drawn in depth-cue mode, the
edges of the cube and the points inside the cube that are closer to the viewer
are brighter than the edges and points farther away.

#include <stdio.h>
#include <math.h>
#include <gl/gl.h>
#include <gl/device.h>

#define RGB_BLACK 0x000000

#define X 0
#define Y 1
#define Z 2
#define XY 2
#define XYZ 3

#define CORNERDIST 1.8 /* center to furthest corner of cube */
#define EYEDIST 3*CORNERDIST /* center to eye */

#define NUMPOINTS 100

float points[NUMPOINTS][XYZ];
long corner[8][XYZ] = {

{-1, -1, -1},
{-1, 1, -1},
{ 1, -1, -1},
{ 1, 1, -1},
{-1, -1, 1},
{-1, 1, 1},
{ 1, -1, 1},
{ 1, 1, 1}

};
int edge[12][2] = {

{0, 1}, {1, 3}, {3, 2}, {2, 0},
{4, 5}, {5, 7}, {7, 6}, {6, 4},
{0, 4}, {1, 5}, {2, 6}, {3, 7},

};

void drawcube()
{

int i;

13-8 Depth-Cueing and Atmospheric Effects

for (i = 0; i < 12; i++) {
bgnline();

v3i(corner[edge[i][0]]);
v3i(corner[edge[i][1]]);

endline();
}

}

void drawpoints()
{

int i;

bgnpoint();
for (i = 0; i < NUMPOINTS; i++)

v3f(points[i]);
endpoint();
drawcube();

}
main()
{

long maxscreen[XY];
Device mdev[XY];
short mval[XY];
float rotang[XY];
short val;
int i;
if (getgdesc(GD_BITS_NORM_DBL_RED) == 0) {
fprintf(stderr, “Double buffered RGB not available on this machine \n”);
return 1;
}
prefsize(400, 400);
winopen(“depthcue”);
doublebuffer();
RGBmode();
gconfig();
cpack(RGB_BLACK);
clear();
swapbuffers();
qdevice(ESCKEY);
maxscreen[X] = getgdesc(GD_XPMAX) - 1;
maxscreen[Y] = getgdesc(GD_YPMAX) - 1;
mdev[X] = MOUSEX;
mdev[Y] = MOUSEY;
mmode(MVIEWING);
window(-CORNERDIST, CORNERDIST, -CORNERDIST, CORNERDIST,

 EYEDIST, EYEDIST + 2*CORNERDIST);

Graphics Library Programming Guide 13-9

lookat(0.0, 0.0, EYEDIST + CORNERDIST, 0.0, 0.0, 0.0, 0);
/* map the current machine’s z range to 0x0 -> 0x7fffff */
glcompat(GLC_ZRANGEMAP, 1);
/* set up the mapping of screen z values to cyan intensity */
lRGBrange(0, 15, 15, 0, 255, 255, 0x0, 0x7fffff);
/* have screen z values control the color */
depthcue(TRUE);
/* generate random points */
for (i = 0; i < NUMPOINTS; i++) {

points[i][X] = 2.0 * (drand48() - 0.5);
points[i][Y] = 2.0 * (drand48() - 0.5);
points[i][Z] = 2.0 * (drand48() - 0.5);

 }
while (!(qtest() && qread(&val) == ESCKEY && val == 0)) {
cpack(RGB_BLACK);
clear();
getdev(XY, mdev, mval);
rotang[X] = 4.0 * (mval[Y] - 0.5 * maxscreen[Y]) / maxscreen[Y];
rotang[Y] = 4.0 * (mval[X] - 0.5 * maxscreen[X]) / maxscreen[X];
rot(rotang[X], ‘x’);
rot(rotang[Y], ‘y’);
drawpoints();
swapbuffers();

 }
 gexit();
 return 0;
}

13-10 Depth-Cueing and Atmospheric Effects

13.2 Atmospheric Effects

You can create a variety of atmospheric effects on IRIS Indigo, IRIS-4D/VGX,
SkyWriter, and RealityEngine systems. Atmospheric detail adds realism to
visual simulations and provides interesting depth perception effects. You can
simulate fog, smoke, haze and air pollution by varying the color and density
of the atmosphere in your scene. In this section, the term “fog” is used to mean
any of these atmospheric conditions.

The GL creates atmospheric effects by modifying the color of the objects in
your scene based on their distance from the viewer. Object color is blended
with fog color to determine the apparent color perceived by the viewer.

When fog is present, objects at close range to the viewer appear in true color.
True color is the color an object would be in the absence of fog—that is, the
color of the object computed after lighting, shading, and texture mapping (if
any). Distant objects look “washed out” as the object color is blended with the
fog color, which gives the appearance of seeing the object “through” the fog.
There is a certain point in the distance where the fog completely obscures the
object.

As an example, consider looking down the runway at an approaching
airplane. On a clear sunny day, the airplane is seen in full detail, limited only
by your visual acuity (the resolution of your eye). On a foggy day, your view
of the airplane is impaired and its apparent color is a combination of its true
color and the fog color. As the airplane approaches, your eye begins to detect
its true color.

Depth-cueing is another effect possible with fog. When you blend an object’s
true color with the scene background color, an object moving away from the
viewer appears to fade into the background. An advantage of this method over
using depthcue()/1shaderange() is that it is independent of the color of the
viewed objects—you have to call lshaderange() each time the object color
changes, whereas fogvertex() need only be called when the background
color changes.

Graphics Library Programming Guide 13-11

13.2.1 Fog

You define and enable fog with the fogvertex() subroutine. You call
fogvertex() once to set up the fog parameters, then you turn the fog on with
another call to fogvertex(). Fog is currently available only on Indigo, VGX,
SkyWriter, and RealityEngine systems, so you should call
getgdesc(GD_FOGVERTEX) to determine the fog capability of the machine
when writing fog applications.

To use fog in your application:

1. Use getgdesc() to determine the fog capabilities of your machine.

2. Set up the proper modes for fog:

RGBmode()
mmode(MVIEWING)

Note: Remember to call gconfig() if you change to RGB mode from
colormap mode.

3. Define the fog characteristics.

fogvertex(mode, params)

Note: Defining a fog effect does not enable it. This must be done with a
separate call.

4. Turn fog on.

fogvertex(FG_ON, dummy)

The ANSI C specification for fogvertex() is:

void fogvertex(long mode,float *params);

You use the mode argument to indicate whether you are defining, enabling, or
disabling fog effects. You specify the fog characteristics in the params array.
params is an array of floating point values.

13-12 Depth-Cueing and Atmospheric Effects

13.2.2 Fog Characteristics

Fog characteristics define the color and density of the fog. You can specify
uniformly distributed fog, where the fog has a uniform density throughout, or
you can specify linearly blended (interpolated) fog, where the fog begins at a
certain point and becomes so dense that it is opaque in the distance.

For uniformly distributed fog, you specify a fog density between 0.0 and 1.0
and the fog color. A fog density of 0.0 represents no fog at all—the object’s
apparent color is the same as its true color. Increasing positive values increase
the fog density. The maximum fog density is 1.0. For a fog density of 1.0, fog
totally obscures the true color of the viewed object at a distance of one unit in
eye coordinates. This is the reference to which fog density values are
normalized.

The proportion of the object’s true color that contributes to the apparent color
is called the blend factor. When you enable fog effects, the blend factor is
computed at the vertices of each graphics primitive. The vertex blend factors
are then interpolated to determine the blend factor at the interior pixels of the
graphics primitive.

SkyWriter and RealityEngine systems allow you to specify per-pixel fog
calculations, which is more accurate than interpolation. To maximize the
accuracy of the fog, minimize the ratio of the distance to the far clipping plane
to the distance to the near clipping plane. In other words, you specify near and
far such that the near and far clipping panes are as close together as possible.
In addition, you need to specify the maximum lsetdepth() range for your
machine by calling lsetdepth(getgdesc(GD_ZMIN), getgdesc(GD_ZMAX)).

13.2.3 Fog Calculations

The blend factor (fog) is calculated according to one of the three equations that
follow. The first two equations calculate fog in eye coordinates for uniformly
distributed fog. The third equation calculates fog varying linearly with
distance, given the distance at which the fog begins and the distance at which
the fog becomes opaque. Each of these methods allow you to indicate
per-vertex or per-pixel fog calculations.

Graphics Library Programming Guide 13-13

Exponential fog: (EQ 13-2)

Exponential-squared fog: (EQ 13-3)

Linear fog: (EQ 13-4)

where:

fog is the computed fog blending factor (0 ≤ fog ≤ 1).

density is the fog density.

Zeye is the eye space Z coordinate (always negative) of the pixel or
vertex being fogged.

start_fog is the distance from the viewer where the fog begins to appear.

end_fog is the distance from the viewer where the fog becomes
opaque.

The pixel color, Cp, is combined with fog color, Cf, to give apparent color, C:

(EQ 13-5)

where:

fog is the computed fog blending factor, (0 ≤ fog ≤ 1).

C is the resultant color.

Cp is the incoming pixel color, which may be Gouraud or flat
shaded and possibly textured.

Cf is the fog color.

fog 1 e–() 5.5 density Zeye⋅ ⋅()=

fog 1 e–() 5.5– density Zeye⋅() 2⋅()=

fog 1
end_fog Zeye+()

end_fog start_fog–()
---–=

C Cp 1 fog–()⋅ Cf fog⋅+=

13-14 Depth-Cueing and Atmospheric Effects

13.2.4 Fog Parameters

Based on the effect you want to achieve, you enter one of the following
symbolic constants for mode in fogvertex():

FG_VTX_EXP Fog is computed at each vertex of the primitive (EQ 13-2).

FG_PIX_EXP Fog is computed at each pixel of the primitive (EQ 13-2).

FG_VTX_EXP2 Fog is computed at each vertex of the primitive (EQ 13-3).

FG_PIX_EXP2 Fog is computed at each pixel of the primitive, (EQ 13-3).

FG_VTX_LIN Fog is computed at each vertex of the primitive (EQ 13-4).

FG_PIX_LIN Fog is computed at each pixel of the primitive (EQ 13-4).

To enable or disable fog effects, use the following:

FG_ON Enable the previously defined fog effect.

FG_OFF Disable fog effects. This is the default.

You specify four floating point values in the params array for uniformly
distributed fog (FG_VTX_EXP, FG_PIX_EXP, FG_VTX_EXP2, or FG_PIX_EXP2):

density Density(thickness) of fog (0.0 ≤ density ≤ 1.0).

r Red component of fog (0.0 ≤ r ≤ 1.0).

g Green component of fog (0.0 ≤ g ≤ 1.0).

b Blue component of fog (0.0 ≤ b ≤ 1.0).

You specify five values in the params array for linearly blended fog
(FG_VTX_LIN, or FG_PIX_LIN):

start_fog Distance in eye coordinates to start of fog.

end_fog Distance in eye coordinates where fog becomes completely
opaque.

r Red component of fog (0.0 ≤ r ≤ 1.0).

g Green component of fog (0.0 ≤ g ≤ 1.0).

b Blue component of fog (0.0 ≤ b ≤ 1.0).

Graphics Library Programming Guide 14-1

Chapter 14

14. Curves and Surfaces

This chapter describes how to draw curves and surfaces using Non-uniform
Rational B-splines (NURBS). NURBS are useful for creating the types of smooth
curves and surfaces that you see on airplane wings, cars, and machinery. You
can render NURBS with color, lighting, and texture.You can also cut holes in
the interior of a NURBS surface to create more complex surfaces.

• Section 14.1, “Introduction to Curves,” develops the background and
terminology for curves and surfaces.

• Section 14.2, “B-Splines,” discusses characteristics of B-Splines.

• Section 14.3, “GL NURBS Curves,” tells you how to draw NURBS curves.

• Section 14.4, “NURBS Surfaces,” tells you how to draw NURBS surfaces.

• Section 14.5, “Trimming NURBS Surfaces,” tells you how to cut holes in
NURBS surfaces.

• Section 14.6, “NURBS Properties,”describes how NURBS are rendered.

• Section 14.8, “Old-Style Curves and Surfaces,” describes the GL method
of defining curves and surfaces that was used in previous releases of the
software. This section is included for compatibility only—all new
development should use the GL NURBS method.

The GL draws NURBS curves by efficiently approximating them with line
segments, and it draws NURBS surfaces by efficiently approximating them
with polygon meshes. This means you can use the GL commands for
transformations, lighting, and hidden-surface removal to control how NURBS
curves and surfaces are drawn, just as you do with other GL primitives.

To see an interactive NURBS curve demonstration, use the Demos Toolchest on
your workstation to look at Curves and NURBS under GL Demos.

14-2 Curves and Surfaces

You can develop an intuitive understanding about NURBS by studying the
text and accompanying illustrations presented in this chapter. For a more
rigorous mathematical treatment, consult the “Suggestions for Further
Reading” at the end of this chapter.

14.1 Introduction to Curves

This section discusses curves. First, basic curve information is presented, then
B-Splines are discussed, and finally, NURBS are introduced. Once understood,
principles learned about curves are easily extended to surfaces.

14.1.1 Parametric Curves

The most commonly used representation for curves (and for surfaces) is the
parametric form, which is the one used in the GL; it is discussed in detail in the
next section. You may be aware of other forms such as implicit or algebraic. An
implicit or algebraic representation is of the form:

(EQ 14-6)

The following explicit representation is an alternative to the implicit form:

(EQ 14-7)

In this case, x is the independent variable and y is the dependent variable.

In the parametric representation, the coordinate functions x,y, (and z) are all
explicit functions of a parameter. In this chapter, this parameter is called u.

f x y,() 0=

y f x()=

Graphics Library Programming Guide 14-3

In Figure 14-1, the function maps points from a subset of the real line ℜ,
to model coordinates (which can be 2-D, 3-D, or 4-D).

Figure 14-1 Parametric Curve as a Mapping

Call this vector-valued function the curve , which is defined for values
of u in a given subset of the real line:

(EQ 14-8)

As u takes on values from umin to umax, a parametric curve is traced out.

Each coordinate on the curve is a function of the parameter u.
Let u* represent a specific value of u. The coordinates of the curve at that
value of u are obtained by evaluating the functions x, y, and z at u*:

(EQ 14-9)

F u()

umin umax

y

x

z

Parametric curve

F u()

F umin()

F umax()

Parameter coordinates
Model coordinates

C

C u() x u() y u() z u(), ,() ,= whereu umin umax,[] ℜ∈ ∈

C u∗() x∗ y∗ z∗, ,() ,= x∗ x u∗() y∗, y u∗() z∗, z u∗()= = =where

14-4 Curves and Surfaces

Figure 14-2 is called a cross-plot. A cross-plot helps you visualize how values
from the real line are mapped to a parametric curve.

Figure 14-2 Cross-plot

The upper right graph in Figure 14-2 is a plot of a curve in 2-D model
coordinates (x,y). The upper left graph is a plot of the y coordinate as a
function of the parameter u: (). Likewise, the lower right graph is a plot
of x as a function of u that is drawn with u on the vertical axis ().

For a particular value of u, u*, the corresponding and are
found, as shown by the arrows from the u axis to the functions. By drawing
horizontal and vertical lines as shown, the point (x*,y*) is located on the
parametric curve.

x∗ x u∗()=

y∗ y u∗()=

u∗

u∗

C u∗() x∗ y∗,()=

x as a function of u

y coordinate

x coordinate

y as a function of u Parametric curvey

x

u

u

y

x

u y u(),
x u() u,

y u∗() x u∗()

Graphics Library Programming Guide 14-5

14.1.2 Polynomial Curves

Curves can be represented mathematically as polynomials. The equations
below, showing x and y as functions of u are examples of cubic polynomials.
The degree of the polynomial is 3, because the highest exponent is 3.

(EQ 14-10)

The ai’s and bi’s in the polynomials above are called coefficients, also known
as control points. Notice that the total number of coefficients in each polynomial
is one greater than the degree. This number is also called the order of the
polynomial. Order is equal to the degree plus one, so these are polynomials of
order 4.

Putting the two polynomials into the parametric representation of the
curve , gives you a parametric cubic polynomial curve:

(EQ 14-11)

14.1.3 Parametric Spline Curves

You can join polynomials together to make a piecewise polynomial, which gives
you more flexibility in shaping the curve. This piecewise polynomial is called
a spline. The order of a spline is defined as the maximum order of the
component polynomial pieces. Generally, each polynomial has the same order.
If necessary, you can elevate the order of the lower degree polynomials to the
order of the highest order piece, using a process called degree elevation (See
“B-Spline Basics” in Curves and Surfaces for Computer Aided Geometric Design).
The breakpoints where the polynomial pieces are joined are called knots.

Figure 14-3 Spline

x u() a0 a1u a2u2 a3u3+ + +=

y u() b0 b1u b2u2 b3u3+ + +=

C

C u() x u() y u(),()=

Spline
y

x
Knots

u

ith interval in the domain

ith polynomial

14-6 Curves and Surfaces

14.2 B-Splines

A B-Spline is a compact representation for piecewise polynomials. In the
previous section, you learned that the knots of a spline tell you where one
polynomial segment ends and a new one begins. This section describes how to
shape the curve segments.

14.2.1 Control Points

Associated with a B-Spline is a set of points called control points. You use
control points to shape the curve. Control points are like magnets—they pull
the curve into a certain shape (see Figure 14-4).

Figure 14-4 Influence of Control Points on a Curve

Connecting the control points in order forms a control polygon. The B-Spline lies
close to its control polygon, as shown in Figure 14-5.

Figure 14-5 A B-Spline with Its Control Polygon

Graphics Library Programming Guide 14-7

Moving a control point influences the shape of the curve segment near it.
Figure 14-6 shows how the shape of the B-Spline changes when you move one
of its control points.

Figure 14-6 Moving a Control Point to Change the Shape of a B-Spline

The curve is really a weighted average of the influence of the control points.
The notation below represents this concept mathematically:

(EQ 14-12)

In this representation, the di’s are the control points and the Bi(u)’s are known
as basis functions.

14.2.2 Basis Functions

Basis functions determine how much the control points influence the curve,
which control points influence the curve and where the curve is influenced by
each control point. These rules govern basis functions used in the GL:

1. There is a basis function corresponding to each control point.

2. Basis functions are positive (they attract rather than repel the curve).

3. The curve is defined only where order number of basis functions are
defined.

4. At most, only order number of basis functions are non-zero at a time.

5. At any u in the domain, the basis functions add up to exactly 1.

6. The number of knots equals the number of control points plus the order.

7. The knots are given in a non-decreasing sequence.

C u() diBi u()∑=

14-8 Curves and Surfaces

Figure 14-7 shows an example of the basis functions for a cubic B-Spline. The
basis functions in this example are uniformly spaced and are identical, except
for a translation. Since the order is 4, the curve is defined only for values of u
where all four basis functions are defined (nonzero), within the shaded area.

Figure 14-7 Basis Functions for an Example Cubic B-Spline

14.2.3 Knots

Knots determine how and where the basis functions are defined. The knots in
the example shown in Figure 14-7 are placed at 0,1,2,3,4,5,6, and 7. This series
of numbers is called the knot sequence. A knot sequence is specified as a series
of non-decreasing real numbers. There can be multiple knots, where two or
more knots have the same value. The term knot multiplicity is used to refer to
the number of knots that have the same value for any one location.

Increasing the knot multiplicity causes the curve to move closer to the
corresponding control point. At a knot multiplicity equal to order-1, the curve
passes through the control point. In general, there may be a discontinuity in
the curve at the point where the knot multiplicity is equal to the order.

Figure 14-8 shows an example of the basis functions for a cubic B-Spline with
a multiple interior knot. The knot multiplicities are listed below the u-axis and
each basis function is numbered. A knot of multiplicity of 3 exists at u=5. The
basis functions always sum to 1, so as u approaches 5, basis function
4, , is increasing in value, while the other basis functions are decreasing
in value. At u=5, B4=1 and all the other basis functions are zero.

Figure 14-8 Basis Functions for a Cubic B-Spline with a Multiple Interior Knot

0 1 2 3 4 5 6 7

B4 u()

1

u

5

Basis Functions Curve
Corresponding

Knot multiplicity

control points

Graphics Library Programming Guide 14-9

Figure 14-9 shows the relationships between the B-Spline and its basis
functions, control points, and knots.

Figure 14-9 B-Spline Relationships

Review the rules governing B-Spline basis functions as you study the figure.

In this example of a cubic B-Spline, there are 8 control points and consequently
there are 8 basis functions, which are numbered 0 through 7. (Rule 1)

The basis functions are positive (they attract the curve). (Rule 2)

The curve is defined where order number (4 in this case) of basis functions are
defined. (Rule 3)

There are at most order number (4) of non-zero basis functions; for example, at
u=5.25, the only non-zero basis functions are B1, B2, B3, and B4. (Rule 4)

Summing the basis functions (B1+B2+B3+B4) at u=5.25 gives:

.00390625 + .313802 + .611979 + .0703125 = 1 (Rule 5)

The numbers below the u axis in the basis function plot represent the knot
multiplicity. Adding up these numbers gives you the total number of knots. In
this example, the number of knots (12) equals the number of control points (8)
plus the order (4). (Rule 6)

The knot sequence (0,0,0,0,3,6,9,12,15,15,15,15) is non-decreasing. (Rule 7)

Basis functions

B-Spliney as a function of u

x as a function of u

y

xu

u

u

x

y

u=5.25

B3=.611979
B2=.313802
B4=.0703125
B1=.00390625

14-10 Curves and Surfaces

The B-Spline in Figure 14-9 has knot multiplicities equal to its order (4) at the
first and last knots. This causes the B-Spline to interpolate (pass through) the
first and last control points. By using this technique, you can make a B-Spline
go through its endpoints, which is useful for joining B-Spline segments.

14.2.4 Weights

When you want to create a curve that is influenced more by a particular control
point than by the others, you can assign a weight to alter that point’s influence.

The polynomial curves that you have learned about so far have had equally
weighted control points. When you increase the weight of a control point, you
increase its influence on the curve. When the weight of one control point
increases, the influence of the other nearby control points decreases. (Rule 5)

Figure 14-10 shows the same B-Spline as Figure 14-9 with increased weight at
the third control point (d2). This control point now exerts more influence on the
curve. The greater influence can also be seen in the corresponding basis
function (B2). B2 is now much larger than the other 3 basis functions. This
means that d2 now has more influence than its nearby control points. In the
magnet analogy of control points, this is equivalent to having a strong magnet
at d2 and much weaker magnets of equal strengths at the other control points.

Note: Use positive values for weights.

.

Figure 14-10 Increasing the Weight of a Control Point Increases Its Influence

Basis Functions

B-Spliney as a function of u

x as a function of u

Increased weight

Increased influence

d1

d0

d2

d3 d4

d5 d6

d7

Decreased influence

y

xu

u

u

x

y

Graphics Library Programming Guide 14-11

14.3 GL NURBS Curves

So far, you have learned that curves can be represented with parametric
polynomials. You know that polynomials can be joined to create a B-spline.
You have seen how control points shape a B-spline and how knots and basis
functions contribute to the definition of a B-Spline. You now have the
information you need to understand what a NURBS representation is:

Non-Uniform Knots do not have to be spaced at equal intervals.

Rational Ratio of polynomials (see Note below) allows the weights of
the control points to be specified.

B-Spline B-Spline, basis functions are used.

Note: Throughout this discussion, polynomial is used, rather than
nonrational, to signify curves whose control points are equally
weighted (have x,y,z coordinates, but no (or equal) w coordinates).

Use the nurbscurve() subroutine to draw GL NURBS curves, by specifying
the knot sequence, the control points, and the order. As in other GL
constructions, call the nurbscurve() subroutine between a
bgncurve()/endcurve() pair

The ANSI C specification for nurbscurve() is:

void nurbscurve(long knot_count, double knot_list, long
offset, double *ctlarray, long order, long type);

where:

knot_count is the number of knots in knot_list

knot_list is an array of knot_count non-decreasing knot_values

offset is the offset in bytes between successive control points

ctlarray is an array of control points

order is the order of the curve (degree +1)

type is the type of curve, either N_V3D for a polynomial (x,y,z)
curve, or N_V3DR for a rational (x,y,z,w) curve

Note: There are two other curve types, N_P2D and N_P2DR, used as trimming
curves. See Section 14.5, “Trimming NURBS Surfaces.”

14-12 Curves and Surfaces

Follow these rules for NURBS:

• knot_count = number of control points + order

• offset allows control points to be part of a structure

• control point coordinates are of form (x,y,z) for polynomial curves,
(wx,wy,wz,w) for rational curves

• use positive weights

• maximum order is getgdesc(GD_NURBS_ORDER)

The following code fragment defines and draws a NURBS curve:

double ctlpts[4][3]={{-.75,-.75,0.0},{-.5,.75,0.0},{.5,.75,0.0},{.75,-.75,0.0}};
double knots[8] = {0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0};
bgncurve();

nurbscurve(8, knots, 3*sizeof(double), &ctlpts[0][0], 4, N_V3D);
endcurve();

NURBS have many interesting properties, for example, you can represent
conic sections (circles, parabolas, ellipses, hyperbolas) exactly with NURBS.
Figure 14-11 shows how to represent a circle with a quadratic NURBS curve:

double knots[14] = {0.0,0.0,0.0,2.5,2.5,5.,5.,7.5,7.5,10.,10.,10.}
double control_points[][4]={{9.,5.,0.1,},{6.369,6.369,0.,.708},{,5.,9.,0.,1.},
{.708,6.369,0.,.708}, {1.,5.,0.,1.}, {.708,.708,0.,.708}, {5.,1.,0.,1.},
{6.369,.708,0.,.708}, {9.,5.,0.,1.}};

Figure 14-11 Representing a Circle with NURBS

(5,9,1)

(5,1,1)

(1,5,1) (9,5,1)

9
2

2
------- 9

2
2

------- 2
2

-------, , 
 

9
2

2
------- 2

2
------- 2

2
-------, , 

 

2
2

------- 9
2

2
------- 2

2
-------, , 

 

2
2

------- 2
2

------- 2
2

-------, , 
 

y

xu

u

u

x

y

Graphics Library Programming Guide 14-13

14.4 NURBS Surfaces

A parametric surface is traced out as the two parameters u and v take on
values in the domain (shaded region of the real plane), as shown in
Figure 14-12. Parametric surfaces are analogous to the parametric curves you
learned about in the beginning of the chapter, except that the domain now has
two parameters, the basis functions are now three-dimensional, and the
control points now connect to form a control net.

Figure 14-12 Parametric NURBS Surface

To create a NURBS surface, call nurbssurface() within a
bgnsurface()/endsurface() pair.

There are three types of NURBS surfaces in the GL:

• Geometric surface - defines the geometry of the surface

• Color surface - defines the color of the surface as a NURBS surface

• Texture surface - defines the texture of the surface as a NURBS surface

Define one (and only one) geometric surface within each bgn/endsurface

pair. You can optionally specify one color surface and one texture surface per
geometric surface.

If you do specify a color and/or texture surface, the defined color/texture is
applied to the NURBS surface in the same way that color-per-vertex or texture
mapping is applied to polygons. Defining a color or texture NURBS surface is
one way to apply color and texture to NURBS surfaces, but it is not the only
way. See Chapter 4, “Display and Color Modes” and Chapter 18, “Texture” for
more information about defining colors and textures.

u

v

x

y

zDomain Surface

Control Net

14-14 Curves and Surfaces

You can also use the standard lighting models when rendering NURBS
surfaces. With no other modifications, the NURBS surface appears in the
currently bound material and with the currently bound lights and lighting
model.

To draw a NURBS surface, specify:

• Control points - an array of data of the appropriate type for the surface

• Knots - a set of non-decreasing numbers for each parameter

• Order - (degree + 1) for each of the two surface parameters

There may be a different order and different knot sequence for each parameter.

As in the curve case, certain dependencies exist between the surface orders, the
knot counts, and the number of control points. You specify the surface orders
and the knot counts to determine the number and arrangement of the control
points.

If Ou and Ov are the surface orders in the u and v directions, and if Ku and Kv

are the knot counts in those directions, then the control points form an array of
size:

The ANSI C specification for nurbssurface is:

void nurbssurface(long u_knot_count, double u_knots[],
long v_knot_count, double v_knots[],
long u_offset, long v_offset,
double *ctlarray,
long u_order, long v_order, long type);

The arguments to nurbssurface() are:

u_knot_count number of knots in the u parameter of the domain

u_knot array of u_knot_count nondecreasing knot values

v_knot_count number of knots in the v parameter of the domain

v_knot array of v_knot_count non-decreasing knot values

u_offset offset in bytes between successive control points in ctlarray in
the u parameter of the domain

v_offset offset in bytes between successive control points in ctlarray in
the v parameter of the domain

Ku Ou–() Kv Ov–()×

Graphics Library Programming Guide 14-15

ctlarray array of control points

u_order order of the surface in u

v_order order of the surface in v

type type of surface, indicated by one of these types:

N_V3D control points define a geometric surface in double-precision
coordinates of the form (x, y, z).

N_V3DR control points define a geometric surface in double-precision
homogeneous coordinates of the form (wx, wy, wz, w).

N_C4D control points define a color surface in double-precision color
components of the form (R, G, B, and A).

N_C4DR control points define a color surface in double-precision color
components that are in homogeneous form.

N_T2D control points define a texture surface in double-precision
texture coordinates that exist in a two-dimensional (s and t)
texture space.

N_T2DR control points define a texture surface in double-precision
texture coordinates that are in homogeneous form.

Note: When specifying control points, the coordinates must be appropriate
for type. That is, if you specify type N_V3D for the point geometry,
ctlarray must contain elements in the form of (x, y, z) triples. If you
specify N_C4D, ctlarray must contain an array of (R, G, B, A)
components in double-precision form.

This interface is powerful in that the only requirement is that the x, y, z, and w
coordinates of a control point are placed in successive memory locations.
However, the control points themselves need not be contiguous. The data can
be part of a larger data structure, or the points can form part of a larger array.

For example, suppose the data appears as follows:

struct ptdata {
 long tag1, tag2; double x, y, z, w;
 }

points[4][4][3];

To use offsets, set u_offset to 4*3*sizeof(double), v_offset to
3*sizeof(double), and ctlarray to &points[0][0][0].

14-16 Curves and Surfaces

14.4.1 Geometric Surfaces

To draw a geometric surface, call nurbssurface() between a
bgnsurface()/endsurface() pair and specify the surface type as N_V3D or
N_V3DR.

For example, to define a geometric surface for which you have specified the
knot sequence as knots and the control points as ctlpoints, use:

double ctlpoints[4][4][3];
double knots[8] = {0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0};

/*
Initializes the control points of the surface to a small hill.
The control points range from -3 to +3 in x, y, and z
*/
void init_surface(void)
{

int u, v;

for (u = 0; u < 4; u++)
{

for (v = 0; v < 4; v++)
{

ctlpoints[u][v][0] = 2.0*((double)u - 1.5);
ctlpoints[u][v][1] = 2.0*((double)v - 1.5);

if ((u == 1 || u == 2) && (v == 1 || v == 2))
ctlpoints[u][v][2] = 3.0;

else
ctlpoints[u][v][2] = -3.0;

}
}

}
bgnsurface();

nurbssurface(
8, knots,
8, knots,
4*3*sizeof(double), 3*sizeof(double),
&ctlpoints[0][0][0],
4, 4,
N_V3D);

endsurface();

Graphics Library Programming Guide 14-17

14.4.2 Color Surfaces

To specify a color surface, you use the same syntax as you do for a geometric
surface, but you specify the type as N_C4D or N_C4DR. The color that you
specify as a color surface has no effect when lighting is on (unless you have
called lmcolor() with an appropriate argument), just as color commands
have no effect on polygons when lighting is on. The color surface has no
underlying geometry of its own; it is simply a property that is applied to the
NURBS surface.

14.4.3 Texture Surfaces

To specify a texture surface, you use the same syntax as you do for a geometric
surface, but you specify the type as N_T2D or N_T2DR. For texture mapping, the
texture surface passed to the nurbssurface() call must contain an array of s
and t texture coordinates that are associated with the texture surface.

The texture is applied to the NURBS surface, taking into account the current
color defined by the current lighting model, in conjunction with the color
defined by a color nurbssurface() call. You must call texbind to define a
current texture for the texture coordinates to have any effect. For more
information on defining textures, see Chapter 18, “Texture Mapping”.

Note: For color and texture surfaces, the number, spacing, or sequence of the
control points is completely independent of the number, spacing, or
sequence of the control points that define the geometric surface.

14-18 Curves and Surfaces

14.5 Trimming NURBS Surfaces

You can trim a NURBS surface to define its visible regions. The trimming
information is mapped to model space along with the surface, as shown in
Figure 14-13. A trimming loop defines the trim regions (shown in white) in the
domain (shown in gray). Trimming loops can be composed of one or more
trimming curves.

Figure 14-13 Trimmed Surface

Trimming curves, also called edges, are defined in the domain of the NURBS
surface. Each edge has a head and a tail. The edge runs in the direction
indicated starting at its tail and ending at its head.

You can define trimming curves with NURBS curves, using nurbscurve(), or
with piecewise linear curves (a series of line segments), using pwlcurve(), or
any combination of the two.

A trimming loop is a closed, oriented curve, defined in the domain, composed
of edges that meet head-to-tail. Trimming loops are specified within the
bgnsurface()/endsurface() block that defines the geometric surface.

Use the orientation of the trimming curve to indicate which regions of the
surface to display:

• If the edges of the trimming curve run clockwise, the region of the
NURBS surface that lies inside of the trimming curve is not displayed.

• If the edges of the trimming curve run counterclockwise, the region of the
NURBS surface that lies inside of the trimming curve is displayed.

0.0 1.0
u

1.0

v

x

y

z

Trimmed regions

Graphics Library Programming Guide 14-19

You can define a trimming loop with a single NURBS curve, or with a
piecewise linear curve, or with a series of curves (of either type) joined
head-to-tail.

Figure 14-14 shows some trimming curves and loops. If you nest trimming
loops, as shown in Figure 14-14, you must specify the outer-most loop as
counterclockwise.

Figure 14-14 Trimming Curves

The following pseudocode creates the trimming curves shown in Figure 14-14:

bgnsurface();
nurbssurface(...);
bgntrim();

pwlcurve(...); /* A */
endtrim();
bgntrim();

pwlcurve(...); /* B */
endtrim();
bgntrim();

nurbscurve(...); /* C */
endtrim();
bgntrim();

nurbscurve(...); /* D */
pwlcurve(...); /* D’ */

endtrim();
bgntrim();

pwlcurve(...); /* E */
endtrim();

endsurface();

A

B

C

D’

D

E

14-20 Curves and Surfaces

The following rules apply to trimming curves and trimming loops:

• Each trimming loop is surrounded by a bgntrim()/endtrim() pair.

• Each trimming loop must be closed; that is, the coordinates of the first
and last points of the trimming curve must be identical (within a
tolerance of 10-6).

• Within a multi-segment trimming loop, the trimming curves must
connect head-to-tail. This means that the last point of each curve segment
must touch the first point of the next segment, and the last point of the
last segment must touch the first point of the first segment.

• Trimming loops can neither touch nor intersect (except at their end
points, which must touch).

• The outer loop of a nested trim sequence must be counter-clockwise.

• The trim space is the parameter space as defined by the knot sequence.
For example, for a surface with identical u and v knot sequences
(0,0,0,0,10,10,10,10), with no trimming information provided the trim
region is effectively an isoparametric square with corners at (0,0) and
(10,10).

To specify a NURBS trimming curve, use nurbscurve(), with N_P2D data for
polynomial (u,v) curves or N_P2DR data for rational (wu,wv,w) curves.

To specify a piecewise linear trimming curve, use pwlcurve():

void pwlcurve(long n, double *data, long offset, long type);

n number of points in the trimming curve

data array of points on the trimming curve

offset offset in bytes between points in the array

type type of curve, use N_ST

An offset allows the data points to be part of an array of larger structural
elements. pwlcurve() searches for the nth coordinate pair beginning at
data_array + n * offset.

The trim curve is drawn in the domain by connecting each point in the data
array to the next point. If this pwlcurve() is the only curve forming a
trimming loop, it is important to increment the trim point count as it is to
duplicate the last point—in other words, although the last and first points are
identical, they must be specified and counted twice.

Graphics Library Programming Guide 14-21

14.6 NURBS Properties

NURBS properties control the rendering of NURBS curves and surfaces for the
current window. You can set and query NURBS properties on a per-window
basis. Use setnurbsproperty() to define the current NURBS properties. Use
getnurbsproperty() to query the system for the current NURBS properties.

 The ANSI C specifications for these two functions are:

void setnurbsproperty(long property, float value)

void getnurbsproperty(long property, float *value)

For maximum generality, express the value of a property in floating point. For
some properties, only integer values make sense, but you must still pass them
in floating point form.

Each property has a reasonable default value, but can be changed to affect the
accuracy of some part of the rendering.

The NURBS properties are:

N_PIXEL_TOLERANCE

A positive floating point value that bounds the maximum
length (in pixels) of an edge of a line segment generated in the
tessellation (breaking down into triangles) of a curve or a
polygon generated in the tessellation of a surface.

N_ERRORCHECKING

A Boolean value that, when TRUE, instructs the GL to send
NURBS-related error messages to standard error.

N_DISPLAY An enumeration that dictates the surface rendering format; it
affects surfaces only. Possible values are N_FILL,
N_OUTLINE_POLY, and N_OUTLINE_PATCH. N_FILL
instructs the GL to fill all polygons generated in the
tessellation of the surface. N_OUTLINE_POLY instructs the
GL to outline all polygons generated. N_OUTLINE_PATCH
instructs the GL to outline the boundary of all surface patches
and trim curves.

N_CULLING A Boolean value that, when TRUE, instructs the GL to discard
before tessellation all patches that are outside the current
viewport.

14-22 Curves and Surfaces

14.7 Sample NURBS Program

This sample program, nurbs.c, draws a lighted nurbs surface. Use the mouse to
toggle the trimming curve on and off.

/*
 * nurbs.c
 */

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

#define S_NUMKNOTS8 /* number of knots in each dimension of surface*/
#define S_NUMCOORDS3 /* number of surface coordinates, (x,y,z) */
#define S_ORDER4 /* surface is bicubic, order 4 for each parameter */
#define T_NUMKNOTS12 /* number of knots in the trimming curve */
#define T_NUMCOORDS3 /* number of curve coordinates, (wx,wy,w) */
#define T_ORDER3 /* trimming curve is rational quadratic */

/* number of control points in each dimension of NURBS */
#define S_NUMPOINTS(S_NUMKNOTS - S_ORDER)
#define T_NUMPOINTS(T_NUMKNOTS - T_ORDER)
/* trimming */
int trim_flag = 0;

long zfar;

doublesurfknots[S_NUMKNOTS] = {
-1., -1., -1., -1., 1., 1., 1., 1.
};

double ctlpoints[S_NUMPOINTS][S_NUMPOINTS * S_NUMCOORDS] = {
-2.5, -3.7, 1.0,
-1.5, -3.7, 3.0,
 1.5, -3.7, -2.5,
 2.5, -3.7, -.75,

-2.5, -2.0, 3.0,
-1.5, -2.0, 4.0,
 1.5, -2.0, -3.0,
 2.5, -2.0, 0.0,

-2.5, 2.0, 1.0,
-1.5, 2.0, 0.0,
 1.5, 2.0, -1.0,

Graphics Library Programming Guide 14-23

 2.5, 2.0, 2.0,

-2.5, 2.7, 1.25,
-1.5, 2.7, .1,
 1.5, 2.7, -.6,
 2.5, 2.7, .2
};

doubletrimknots[T_NUMKNOTS] = {
0., 0., 0., 1., 1., 2., 2., 3., 3., 4., 4., 4.
};

double trimpoints[T_NUMPOINTS][T_NUMCOORDS] = {
 1.0, 0.0, 1.0,
 1.0, 1.0, 1.0,
 0.0, 2.0, 2.0,
-1.0, 1.0, 1.0,
-1.0, 0.0, 1.0,
-1.0, -1.0, 1.0,
 0.0, -2.0, 2.0,
 1.0, -1.0, 1.0,
 1.0, 0.0, 1.0,
};

float idmat[4][4] = {
1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0
};

main()
{
 long dev;
 short val;

 init_windows();
 setup_queue();
 init_view();
 make_lights();

 set_scene();
 setnurbsproperty(N_ERRORCHECKING, 1.0);
 setnurbsproperty(N_PIXEL_TOLERANCE, 50.0);
 draw_trim_surface();

14-24 Curves and Surfaces

 while(TRUE) {
while(qtest()) {
 dev=qread(&val);
 switch(dev) {

case ESCKEY:
 gexit();
 exit(0);
 break;
case WINQUIT:
 gexit();
 dglclose(-1); /* this for DGL only */
 exit(0);
 break;
case REDRAW:
 reshapeviewport();
 set_scene();
 draw_trim_surface();
 break;
case LEFTMOUSE:
 if(val)

trim_flag = !trim_flag; /* trimming */
 break;
default:
 break;

 }
}
set_scene();
draw_trim_surface();

 }
}

init_windows()
/*--
 * Initialize all windows
 *--
 */
{
 if (getgdesc(GD_BITS_NORM_DBL_RED) <= 0) {
 fprintf(stderr, “nurbs: requires double buffered RGB which is “
 “unavailable on this machine\n”);
 exit(1);
 /* NOTREACHED */
 }
 winopen(“nurbs”);
 wintitle(“NURBS Surface”);
 doublebuffer();

Graphics Library Programming Guide 14-25

 RGBmode();
 gconfig();
 zbuffer(TRUE);
 glcompat(GLC_ZRANGEMAP, 0);
 zfar = getgdesc(GD_ZMAX);
}

setup_queue()
/*--
 * Queue all devices
 *--
 */
{
 qdevice(ESCKEY);
 qdevice(RIGHTMOUSE);
 qdevice(WINQUIT);
 qdevice(LEFTMOUSE);/* trimming */
}

init_view()
/*--
 * Initialize view and lighting mode
 *--
 */
{
 mmode(MPROJECTION);
 ortho(-4., 4., -4., 4., -4., 4.);

 mmode(MVIEWING);
 loadmatrix(idmat);

}

set_scene()
/*--
 * Clear screen and rotate object
 *--
 */
{
 lmbind(MATERIAL, 0);
 RGBcolor(150,150,150);
 lmbind(MATERIAL, 1);

 czclear(0x00969696, zfar);

 rotate(100, ‘y’);

14-26 Curves and Surfaces

 rotate(100, ‘z’);
}

draw_trim_surface()
/*--
 * Draw NURBS surface
 *--
 */
{
 bgnsurface();

nurbssurface(
 sizeof(surfknots) / sizeof(double), surfknots,
 sizeof(surfknots) / sizeof(double), surfknots,
 sizeof(double) * S_NUMCOORDS,
 sizeof(double) * S_NUMPOINTS * S_NUMCOORDS,
 ctlpoints,
 S_ORDER, S_ORDER,
 N_V3D
);
/* trimming */
if(trim_flag) {
 bgntrim();
 /* trim curve is a rational quadratic nurbscurve (circle) */

 nurbscurve(
sizeof(trimknots) / sizeof(double),
trimknots,
sizeof(double) * T_NUMCOORDS,
trimpoints,
T_ORDER,

 N_P2DR
);

 endtrim();
}

 endsurface();
 swapbuffers();
}

make_lights()
/*--
 * Define material, light, and model
 *--
 */
{
 /* initialize model and light to default */
 lmdef(DEFLMODEL,1,0,0);
 lmdef(DEFLIGHT,1,0,0);

Graphics Library Programming Guide 14-27

 /* define material #1 */
 {
 static float array[] = {

EMISSION, 0.0, 0.0, 0.0,
AMBIENT, 0.1, 0.1, 0.1,
DIFFUSE, 0.6, 0.3, 0.3,
SPECULAR, 0.0, 0.6, 0.0,
SHININESS, 2.0,
LMNULL

 };
 lmdef(DEFMATERIAL, 1, sizeof(array)/sizeof(array[0]), array);
 }

 /* turn on lighting */
 lmbind(LIGHT0, 1);
 lmbind(LMODEL, 1);
 lmbind(MATERIAL, 1);
}

Suggestions for Further Reading

For a basic introduction to curves and surfaces:

Foley, J.D., A. van Dam, S. Feiner, and J.D. Hughes, “Representing Curves and
Surfaces,” in Computer Graphics Principles and Practice, 2d ed., Addison Wesley
Publishing Company Inc., Menlo Park, 1990.

For a comprehensive treatment, including derivations:

Farin, G., Curves and Surfaces for Computer Aided Geometric Design, Academic
Press, 2d ed., New York, 1990.

14-28 Curves and Surfaces

14.8 Old-Style Curves and Surfaces

This section describes the methods used for drawing curves and surfaces prior
to the 4D1-3.2 release of the Graphics Library software. These techniques are
still supported for compatibility with programs written for earlier versions of
the software.

Note: Use of these statements is not recommended. All new development
should use the GL NURBS method.

The techniques presented in this section have limited capabilities. Old-style
curves are restricted to cubic splines (degree 3, order 4) only. Each polynomial
segment is presented to the drawing subroutines one at a time.

Old-style surfaces are restricted to bicubic wireframe surfaces only, and each
surface patch is presented to the drawing subroutines one at a time.

14.8.1 Old-Style Curves

The curves in most applications are too complex to be represented by a single
curve segment and instead must be represented by a series of curve segments
joined end-to-end. To create smooth joints, you must control the positions and
curvatures at the endpoints of curve segments.

The shape of the curve segment is determined by a function of a set of four
control points. The IRIS approximates the shape of a curve segment with a
series of straight line segments.

A set of constraints expresses how the shape of the curve segment relates to the
control points. For example, a constraint might be that one endpoint of the
curve segment is located at the first control point, or that the tangent vector at
an endpoint lies on the line segment formed by the first two control points.
This constraint information is used to define a basis matrix for the curve.

The old-style IRIS curve facility is based on the parametric cubic curve. Three
classes of cubic curves are available:

• Bezier

• Cardinal spline

• B-spline

Graphics Library Programming Guide 14-29

The characteristics of each of these curves are summarized next.

Bezier Cubic Curve

A Bezier cubic curve segment passes through the first and fourth control points
and uses the second and third points to determine the shape of the curve
segment. Of the three kinds of curves, the Bezier form provides the most
intuitive control over the shape of the curve.

Cardinal Spline Cubic Curve

A Cardinal spline curve segment passes through the two interior control points
and is continuous in the first derivative at the points where segments meet.
The curve segment starts at the second point and ends at the third point, and
uses the first and fourth points to define the shape of the curve. The
mathematical derivation of the Cardinal spline basis matrix can be found in
James H. Clark, Parametric Curves, Surfaces and Volumes in Computer Graphics
and Computer-Aided Geometric Design, Technical Report No. 221, Computer
Systems Laboratory, Stanford University.

B-Spline Cubic Curve

In general, a B-spline curve segment does not pass through any control points,
but is continuous in both the first and second derivatives at the points where
segments meet. Thus, a series of joined B-spline curve segments is smoother
than a series of Cardinal spline segments.

14.8.2 Drawing Old-Style Curves

You can create complex curved lines by joining several curve segments
end-to-end. The curve facility provides the means for making smooth joints
between the segments.

You draw an old-style curve segment by specifying:

• a set of four control points

• a basis, which defines how the system uses the control points to
determine the shape of the segment

14-30 Curves and Surfaces

To draw an old-style curve segment:

1. Define and name a basis matrix with defbasis():

void defbasis(short id, Matrix mat);

The matrix mat is saved and is associated with the identifier id. Use id
in subsequent calls to curvebasis() and patchbasis().

2. Select a defined basis matrix (defined by defbasis()) as the current basis
matrix with curvebasis():

void curvebasis(short basisid);

3. Specify the number of line segments used to approximate each curve
segment with curveprecision():

void curveprecision(short nsegments);

When crv(), crvn(), rcrv(), or rcrvn() executes, a number of straight
line segments (nsegments) approximates each curve segment. The greater
the value of nsegments, the smoother the curve, but the longer the
drawing time.

4. Draw the curve segment using the current basis matrix, the current curve
precision, and the four control points with crv() (rcrv() draws a
rational curve).

void crv(Coord geom[4][3]);

When you call crv(), a matrix M is built from the geometry G (the control
point array), the current basis Mb, and the current precision n, as shown below:

The bottom row of the resulting transformation matrix identifies the first of n
points that describe the curve.

6
n3
----- 0 0 0

6
n3
----- 2

n2
----- 0 0

1
n3
----- 1

n2
----- 1

n
--- 0

0 0 0 1

MbG

Graphics Library Programming Guide 14-31

A forward difference algorithm is used to iterate the matrix to generate the
remaining points in the curve. Each iteration draws one line segment of the
curve segment. At each iteration, the first row is added to the second row, the
second row is added to the third row, and the third row is added to the fourth
row. The fourth row is then output as one of the points on the curve.

/* This is the forward difference algorithm */
/* M is the current transformation matrix */
move (M[3][0]/M[3][3], M[3][1]/M[3][3], M[3][2]/M[3][3]);
/* iteration loop */
for (cnt = 0; cnt < iterationcount; cnt++) {
 for (i=3; i>0; i--)

 for (j=0; j<4; j++)
 [j] = M[i][j] + M[i-1][j];

 draw(M[3][0]/M[3][3], M[3][1]/M[3][3], M[3][2]/M[3][3]);
}

Each iteration draws one line segment of the curve. For the precision matrix
shown, these points are generated:

The iteration loop of the forward difference algorithm is implemented in the
Geometry Pipeline. You can use curveit() to access the forward difference
algorithm, making it possible to generate a curve directly from a forward
difference matrix:

void curveit(short iterationcount);

curveit() iterates the current matrix (the one on top of the matrix stack)
iterationcount times. Each iteration draws one of the line segments that
approximate the curve. curveit() does not execute the initial move in the
forward difference algorithm. A move(0.0,0.0,0.0) call must precede
curveit() so that the correct first point is generated from the forward
difference matrix.

Note: To get the numbers to use for the basis matrix Mb, see the sample
program patch1.c at the end of the next section.

0 0 0 1, , ,() 1
n
--- 

  3 2
n
--- 

  2 1
n
--- 1, , , 

  2
n
--- 

  3 2
n
--- 

  2 2
n
--- 1, , , 

  3
n
--- 

  3 3
n
--- 

  2 3
n
--- 1, , , 

  ..., , , ,

14-32 Curves and Surfaces

Drawing a Series of Curve Segments

You use crvn() to draw a series of cubic spline segments using the current
basis, precision, and a series of n control points. Calling crvn() has the same
effect as programming a sequence of crv() calls with overlapping control
points.

void crvn(long n, Coord geom[][3]);

The control points specified in geom determine the shapes of the curve
segments and are used four at a time. If the current basis is a B-spline, Cardinal
spline, or a basis with similar properties to these types of curves, the curve
segments are joined end-to-end and appear as a single curve.

When you call crvn() with a Cardinal spline or B-spline basis, it produces a
single curve. However, calling crvn() with a Bezier basis produces several
separate curve segments. As with crv() and rcrv(), a precision and basis
must be defined before calling crvn() or rcrvn. This is true even if the
routines are compiled into objects. See Chapter 16 for more information on
graphical objects.

Rational Curves

The IRIS graphics hardware actually works in homogeneous coordinates x, y,
z, and w, where 3-D coordinates are given by xw, yw, and zw. The homogeneous
character of the system is not obvious because w is normally the constant 1.

The w coordinate can also be expressed as a cubic function of the parameter t,
so that the 3-D coordinates of points along the curve are given as a quotient of
two cubic polynomials. The only constraint is that the denominator for all
three coordinates must be the same. When w is not the constant 1, but some
cubic polynomial function of t, the curves generated are usually called rational
cubic splines.

The basis definitions for rational cubic splines are identical to those for cubic
splines, as are the precision specifications. The only difference is that the
geometry matrix must be specified in four-dimensional homogeneous
coordinates.

Use rcrv() to draw rational curves:

void rcrv(Coord geom[4] [4]);

Graphics Library Programming Guide 14-33

rcrv() draws a rational curve segment using the current basis matrix, the
current curve precision, and the four control points specified in its argument.
rcrv() is analogous to crv() except that w coordinates are included in the
control point definitions.

rcrvn() takes a series of n control points and draws a series of rational cubic
spline curve segments using the current basis and precision:

void rcrvn(long n, Coord geom[][4]);

The control points specified in geom determine the shapes of the curve
segments and are used four at a time.

14.8.3 Drawing Old-Style Surfaces

A surface patch appears on the screen as a wireframe of curve segments. A set
of user-defined control points determines the shape of the patch. You can
create complex surfaces by joining several patches into one large patch. You
can also create a complex surface consisting of several joined patches by using
overlapping sets of control points and the B-spline and Cardinal spline curve
bases.

The method for drawing old-style surfaces is similar to that for drawing
curves. You draw an old-style wireframe surface patch by specifying:

• a set of 16 control points

• the number of curve segments to be drawn in each direction of the patch

• the two bases that define how the control points determine the shape of
the patch

The IRIS old-style surface facility is based on the parametric bicubic surface.
Bicubic surfaces can provide continuity of position, slope, and curvature at the
points where two patches meet.

The points on a bicubic patch are defined by varying the parameters u and v
from 0 to 1. If one parameter is held constant and the other is varied from 0 to
1, the result is a cubic curve. Thus, you can create a wireframe patch by holding
u constant at several values and using the IRIS curve facility to draw curve
segments in one direction, and then doing the same for v in the other direction.

14-34 Curves and Surfaces

To draw a surface patch:

1. Define the appropriate curve bases using defbasis(). A Bezier basis
provides intuitive control over the shape of the patch. The Cardinal spline
and B-spline bases allow smooth joints to be created between patches.

2. Specify a basis matrix (defined by defbasis()) for the u and v parametric
directions of a surface patch with patchbasis():

void patchbasis(long uid, long vid);

The u basis and the v basis do not have to be the same. patch() uses
the current u and v when it executes.

3. Specify the number of curve segments to be drawn in each direction with
patchcurves:

void patchcurves(long ucurves, long vcurves);

A different number of curve segments can be drawn in each direction.

4. Specify the precisions for the curve segments in each direction with
patchprecision():

void patchprecision(long usegments, long vsegments);

The precision is the minimum number of line segments
approximating each curve segment and can be different for each
direction. The actual number of line segments is a multiple of the
number of curve segments being drawn in the opposing direction.
This guarantees that the u and v curve segments that form the
wireframe actually intersect.

5. Draw the surfaces with patch or rpatch():

void patch(Matrix geomx, Matrix geomy, Matrix geomz);
void rpatch(Matrix geomx, Matrix geomy, Matrix geomz, Matrix geomw);

rpatch() is the same as patch, except it draws a rational surface patch. The
curve segments in the patch are drawn using the current linestyle, linewidth,
color, and writemask.

The arguments geomx, geomy, and geomz are 4x4 matrices containing the
coordinates of the 16 control points that determine the shape of the patch.
geomw specifies the rational component of the patch to rpatch().

Graphics Library Programming Guide 14-35

The sample program patch1.c shows the number to use for each type of basis
matrix discussed and it uses them to draw a surface patch.

#include <gl/gl.h>

#define X 0
#define Y 1
#define Z 2
#define XYZ 3

#define BEZIER 1
#define CARDINAL 2
#define BSPLINE 3

Matrix beziermatrix = {
{-1.0, 3.0, -3.0, 1.0},
{ 3.0, -6.0, 3.0, 0.0},
{-3.0, 3.0, 0.0, 0.0},
{ 1.0, 0.0, 0.0, 0.0}

};

Matrix cardinalmatrix = {
{-0.5, 1.5, -1.5, 0.5},
{ 1.0, -2.5, 2.0, -0.5},
{-0.5, 0.0, 0.5, 0.0},
{ 0.0, 1.0, 0.0, 0.0}

};

Matrix bsplinematrix = {
{-1.0/6.0, 3.0/6.0, -3.0/6.0, 1.0/6.0},
{ 3.0/6.0, -6.0/6.0, 3.0/6.0, 0.0},
{-3.0/6.0, 0.0, 3.0/6.0, 0.0},
{ 1.0/6.0, 4.0/6.0, 1.0/6.0, 0.0}

};

Matrix geom[XYZ] = {
{ { 0.0, 100.0, 200.0, 300.0},
{ 0.0, 100.0, 200.0, 300.0},
{700.0, 600.0, 500.0, 400.0},
{700.0, 600.0, 500.0, 400.0}, },

{ {400.0, 500.0, 600.0, 700.0},
{ 0.0, 100.0, 200.0, 300.0},
{ 0.0, 100.0, 200.0, 300.0},
{400.0, 500.0, 600.0, 700.0}, },

14-36 Curves and Surfaces

{ {100.0, 200.0, 300.0, 400.0},
{100.0, 200.0, 300.0, 400.0},
{100.0, 200.0, 300.0, 400.0},
{100.0, 200.0, 300.0, 400.0}, },

};

main()
{

int i, j;

prefsize(400, 400);
winopen(“patch1”);
color(BLACK);
clear();
ortho(-100.0, 800.0, -100.0, 800.0, -800.0, 100.0);

 /* define 3 types of bases */
 defbasis(BEZIER, beziermatrix);
 defbasis(CARDINAL, cardinalmatrix);
 defbasis(BSPLINE, bsplinematrix);

 /*
 * seven curve segments will be drawn in the u direction
 * and four in the v direction
 */
 patchcurves(4, 7);

 /*
 * the curve segments in u direction will consist of 20 line
segments
 * (the lowest multiple of vcurves greater than usegments) and
the curve
 * segments in the v direction will consist of 21 line
segments (the
 * lowest multiple of ucurves greater than vsegments)
 */
 patchprecision(20, 20);

 /* the patch is drawn based on the sixteen specified control
points */

patchbasis(BEZIER, BEZIER);
color(RED);
patch(geom[X], geom[Y], geom[Z]);

 /*

Graphics Library Programming Guide 14-37

 * another patch is drawn using the same control points but a
different
 * basis
 */

patchbasis(CARDINAL, CARDINAL);
color(GREEN);
patch(geom[X], geom[Y], geom[Z]);

 /* a third patch is drawn */
patchbasis(BSPLINE, BSPLINE);
color(BLUE);
patch(geom[X], geom[Y], geom[Z]);

 /* show the control points */
color(WHITE);
for (i = 0; i < 4; i++) {

for (j = 0; j < 4; j++) {
pushmatrix();
translate(geom[X][i][j], geom[Y][i][j],

geom[Z][i][j]);
circf(0.0, 0.0, 3.0);

popmatrix();
}

}

 sleep(10);
 gexit();
 return 0;
}

14-38 Curves and Surfaces

Graphics Library Programming Guide 15-1

Chapter 15

15. Antialiasing

This chapter describes methods for reducing display artifacts.

• Section 15.1, “Sampling Accuracy,” describes how to smooth scan
conversion by enabling primitives to be drawn offset from pixel
centers.

• Section 15.3, “One-Pass Antialiasing—the Smooth Primitives,” describes
methods for antialiasing RGB images using a pixel-filling technique.

• Section 15.4, “Multipass Antialiasing with the Accumulation Buffer,”
describes techniques for quickly generating antialiased points, lines, and
polygons.

• Section 15.5, “Antialiasing on RealityEngine Systems,” describes the
advanced multiple sampling feature of RealityEngine systems.

15.1 Sampling Accuracy

You may have noticed that lines displayed on a monitor appear to be made of
a stairstep series of dots that make the line look jagged. Lines appear jagged
because the true mathematical line is approximated by a series of points that
are forced to lie on the pixel grid. Except in a few special cases (horizontal,
vertical, and 45-degree lines) many of the approximating pixels are not on the
mathematical line. Near-horizontal and near-vertical lines appear especially
jagged, because their pixel approximations are a sequence of exactly
horizontal or vertical segments, each offset one pixel from the next.

The jaggedness that you see is called aliasing, and techniques to eliminate or
reduce aliasing are called antialiasing.

15-2 Antialiasing

The following program, jagged.c, illustrates the aliasing problem.

/* Drag a color map aliased line with the cursor.*/

#include <gl/gl.h>
#include <gl/device.h>

#define WINSIZE 400

Device devs[2] = {MOUSEX,MOUSEY};
float orig[2] = {100.,100.};

main()
{

short val, vals[2];
long xorg, yorg;
float vert[2];

prefsize(WINSIZE, WINSIZE);
winopen("jagged");
mmode(MVIEWING);
ortho2(-0.5, WINSIZE-0.5, -0.5, WINSIZE-0.5);
doublebuffer();
gconfig();
qdevice(ESCKEY);
getorigin(&xorg, &yorg);

while (!(qtest() && qread(&val) == ESCKEY && val == 0)) {
color(BLACK);
clear();
getdev(2,devs,vals);
vert[0] = vals[0] - xorg;
vert[1] = vals[1] - yorg;
color(WHITE);
bgnline();

v2f(orig);
v2f(vert);

endline();
swapbuffers();

}
gexit();
return 0;

}

This example draws a line from the point (100,100) to the current cursor
position. Move the cursor around, and notice how jagged the line appears,

Graphics Library Programming Guide 15-3

especially when it is nearly horizontal or nearly vertical. Even at angles far
from vertical or horizontal there is some jaggedness, although it is not as
noticeable.

The line you see on the screen is aliased because it is composed of discrete
pixels, each set either to the color of the line or to the background color. A
much better approximation can be developed by considering the exact
mathematical line to be the center line of a rectangle of width one, extending
the full length of the line. A correct, antialiased sampling of this rectangle onto
the pixel grid takes into account the fraction of each pixel that is obscured by
the rectangle, rather than simply selecting the pixels most obscured by it. Each
pixel is then set to a color between the color of the line and the color of the
background, based on the fraction of the pixel that is obscured, or covered, by
the line’s rectangle.

To correctly sample a point, line, or polygon, the fraction of every pixel
covered by the exact projection of the primitive must be computed, and that
fraction must be used to determine the color of the resulting pixel. Because
mathematical points and lines have no area, and therefore cannot be sampled,
it is necessary to define a geometry to be used for their sampling. Points are
best thought of as circles of diameter one, centered around the exact
mathematical point. Lines are rectangles of width one, centered around the
exact mathematical line.

Figure 15-1 shows an antialiased line.

Figure 15-1 Antialiased Line

A .040510
B .040510
C .878469
D .434259
E .007639
F .141435
G .759952

A

C

F

B ED

G IH

J K ML

N

H .759952
I .141435
J .007639
K .434258
L .878469
M .040510
N .040510

15-4 Antialiasing

15.1.1 Subpixel Positioning

Vertices, after they have been transformed and projected to screen coordinates,
are rounded to the nearest pixel center, rather than being treated with full
precision. A prerequisite for accurate scan conversion of points, lines, and
polygons is ensuring that their vertices are projected to the screen with subpixel
precision. When you enable subpixel() mode, you defeat the default
behavior of rounding projected vertices to the nearest pixel center. Exact vertex
position is made available to the sampling hardware.

Use subpixel() to control the placement of point, line, and polygon vertices
in screen coordinates:

void subpixel(Boolean b)

When subpixel() is FALSE, vertices are snapped (aligned) to the center of the
nearest pixel after they have been transformed to screen coordinates. When
subpixel() is TRUE, vertices are positioned with fractional precision.

The default setting for subpixel() depends on the system type. On IRIS
Indigo Entry, XS, XS24, and Elan systems, polygons are always drawn with
MicroPixel™ subpixel accuracy, regardless of the setting of subpixel(). On
VGX, VGXT, SkyWriter, and RealityEngine systems, the default for
subpixel() is FALSE, but performance is enhanced when subpixel
positioning is enabled. It is thus a good idea to call subpixel(TRUE) when
writing GL applications for these systems.

15.1.2 How Subpixel Positioning Affects Lines

In addition to its effect on vertex position, subpixel() also modifies the scan
conversion of lines. Specifically, non-subpixel-positioned lines are drawn
closed, meaning that connected line segments both draw the pixel at their
shared vertex. subpixel-positioned lines are drawn half open, meaning that
connected line segments share no pixels. Thus subpixel-positioned lines
produce better results when logicop or blendfunction() are used, but will
produce different, possibly undesirable results in 2-D applications where the
endpoints of lines have been carefully placed.

For example, using the standard 2-D projection shown below,
subpixel-positioned lines match non–subpixel-positioned lines pixel for pixel,
except that they omit either the right-most or top-most pixel.

Graphics Library Programming Guide 15-5

ortho2(left–0.5, right+0.5, bottom–0.5,top+0.5);
viewport (left,right,bottom,top);

Thus the non-subpixel-positioned line drawn from (0,0) to (0,2) fills pixels
(0,0), (0,1), and (0,2), while the subpixel-positioned line drawn between the
same coordinates fills only pixels (0,0) and (0,1).

On IRIS Indigo systems, subpixel-positioned lines are drawn closed rather that
half-open. subpixel() is not supported by all models for all primitives. Refer
to the subpixel() man page for details.

15.2 Blending

The pixel color value in the frame buffer is replaced with the incoming pixel
color when pixels are drawn. When operating in RGB mode, however, it is
possible to replace the color components of the frame buffer (destination) pixel
with values that are a function of both the incoming (source) pixel color
components and of the current frame buffer color components. This operation
is called blending. Not all systems support blending. See the blendfunction(3G)
man page for details.

The antialiasing techniques described in Section 15.3 require blending when
operating in RGB mode. Blending has other uses, including drawing
transparent objects, and compositing images. Blending is specified with the
blendfunction() command:

void blendfunction (long sfactr,long dfactr);

The blendfunction() arguments sfactr and dfactr specify how destination
pixels are computed, based on the incoming (source) pixel values and the
current framebuffer values. The token specified for sfactr selects the blending
factor used to scale the contribution from the source RGBA values. The token
specified for dfactr selects the blending factor used to scale the contribution
from the destination RGBA values.

Note: RealityEngine systems provide the ability to specify a constant color
for blending. Use blendcolor() to set the values of the color
components for the blending functions BF_CA, BF_MCA, BF_CC, and
BF_MCC.

15-6 Antialiasing

Blending factors sfactr and dfactr are chosen from the list of tokens in
Table 15-1.

Token Calculated Value Notes

BF_ZERO 0.0

BF_ONE 1.0

BF_SA Source Alpha/ 255

BF_MSA 1.0 – (source Alpha/ 255)

BF_DA Source Alpha/ 255 Requires alpha bitplanes

BF_MDA 1.0 – (source Alpha / 255) Requires alpha bitplanes

BF_SC Source RGBA / 255 dfactr only

BF_MSC 1.0 – (source RGBA/ 255) dfactr only

BF_DC Destination RGBA/ 255 sfactr only

BF_MDC 1.0 – (destination RGBA/ 255) sfactr only

BF_MIN_SA_MDA Min (BF_SA, BF_MDA) Requires alpha planes,
changes expression

BF_CC Constant RGBA/255 RealityEngine only

BF_MCC 1-(constant RGBA/255) RealityEngine only

BF_CA Constant alpha/255 RealityEngine only

BF_MCA 1-(constant alpha/255) RealityEngine only

BF_MIN Min(1, destination RGBA/source RGBA) RealityEngine only

BF_MAX Max(1, destination RGBA/source RGBA) RealityEngine only

Table 15-1 Blending Factors

Graphics Library Programming Guide 15-7

All the blending factors are defined to have values between 0.0 and 1.0
inclusive. In most cases, this range is obtained by dividing a color component
value, in the range 0 through 255, by 255. The blending arithmetic is done such
that a blending factor with a value of 1.0 has no effect on the color component
that it weights. Also, a blending factor of 0.0 forces its corresponding color
component to 0. Because the weighting factors are all positive, and because
each weighted sum is clamped to 255, colors blend toward white, rather than
wrapping back to low-intensity values.

Each frame buffer color component is replaced by a weighted sum of the
current value and the incoming pixel value. This sum is clamped to a
maximum of 255.

By default, sfactr is set to BF_ONE and dfactr is set to BF_ZERO, resulting in
simple replacement of the framebuffer color components:

Rdestination = Rsource
Gdestination = Gsource
Bdestination = Bsource
Adestination = Asource

When blendfunction() is called with sfactr set to a value other than BF_ONE,
or dfactr set to a value other than BF_ZERO, a more complex expression defines
the frame buffer replacement algorithm.

Rdest = min (255, ((Rsource * sfactr) + (Rdest * dfactr)))
Gdest = min (255, ((Gsource * sfactr) + (Gdest * dfactr)))
Bdest = min (255, ((Bsource * sfactr) + (Bdest * dfactr)))
Adest = min (255, ((Asource * sfactr) + (Adest * dfactr)))

Blending factors BF_DA, BF_MDA, and BF_MIN_SA_MDA require alpha bitplanes
for correct operation. Blending functions specified without using these three
symbolic constants work correctly, regardless of the availability of alpha
bitplanes.

Use the following command, testing for a nonzero return value, to determine
if your machine has alpha bitplanes:

getgdesc(GD_BITS_NORM_SNG_ALPHA)

15-8 Antialiasing

Blending factors BF_SC, BF_MSC, BF_DC, and MF_MDC weight each color
component by the corresponding weight component. For example, you can
scale each framebuffer color component by the incoming color component
with the blending function:

blendfunction (BF_DC,BF_ZERO)

Rdestination = min (255, (Rsource * (Rdestination / 255)))
Gdestination = min (255, (Gsource * (Gdestination / 255)))
Bdestination = min (255, (Bsource * (Bdestination / 255)))
Adestination = min (255, (Asource * (Adestination / 255)))

The special blending factor BF_MIN_SA_MDA is intended to support polygon
antialiasing, as described in Section 15.3.3. It must be used only for sfactr, and
only while dfactr is BF_ONE. In this case, the blending equations are:

blendfunction (BF_MIN_SA_MDA,BF_ONE)

Rdestination = min (255, ((Rsource * sfactr) + Rdestination)
Gdestination = min (255, ((Gsource * sfactr) + Gdestination)
Bdestination = min (255, ((Bsource * sfactr) + Bdestination)
sfactr = min ((Asource/255), (1.0 - (Adestination/255)))
Adestination = sfactr + Adestination

This special blending function accumulates pixel contributions until the pixel
is fully specified, then allows no further changes. Frame buffer alpha bitplanes,
which must be present, store the accumulated contribution percentage, or
“coverage”.

Although many blending functions are supported, the following function
stands out as the single most useful one.

blendfunction (BF_SA,BF_MSA)

It weights incoming color components by the incoming alpha value, and frame
buffer components by one minus the incoming alpha value. In other words, it
blends between the incoming color and the frame buffer color, as a function of
the incoming alpha. This function renders transparent objects by drawing
them correctly when they are drawn in sorted order from farthest to nearest,
specifying opacity as incoming alpha.

Graphics Library Programming Guide 15-9

This sample program, blendcircs.c, illustrates image composition. Three
colored circles are blended such that the first one is weighted by 0.5, the second
by 0.35, and the third by 0.15. The blending function blendfunction

(BF_SA,BF_ONE) is used, causing the colors to be added to each other, rather
than blended. The order in which the circles are drawn makes no difference.
Because the three weights add up to exactly 1.0, no clamping is done.

#include <stdio.h>
#include <gl/gl.h>
#define WINSIZE 400
#define RGB_BLACK 0x000000
#define RGB_RED 0x0000ff
#define RGB_GREEN 0x00ff00
#define RGB_BLUE 0xff0000
main()
{

if (getgdesc(GD_BITS_NORM_SNG_RED) == 0) {
fprintf(stderr, "Single buffered RGB not available\n");
return 1;

}
if (getgdesc(GD_BLEND) == 0) {

fprintf(stderr, "Blending not available\n");
return 1;

}
prefsize(WINSIZE, WINSIZE);
winopen("blendcircs");
mmode(MVIEWING);
RGBmode();
gconfig();
mmode(MVIEWING);
ortho2(-1.0, 1.0, -1.0, 1.0);
glcompat(GLC_OLDPOLYGON, 0);
blendfunction(BF_SA, BF_ONE);
cpack(RGB_BLACK);
clear();
cpack(0x80000000 | RGB_RED); /* red with alpha=128/255 */
circf(0.25, 0.0, 0.7);
sleep(2);
cpack(0x4f000000 | RGB_GREEN); /* green with alpha=79/255 */
circf(-0.25, 0.25, 0.7);
sleep(2);
cpack(0x30000000 | RGB_BLUE); /* blue with alpha=48/255 */
circf(-0.25, -0.25, 0.7);
sleep(10);
gexit();
return 0;

15-10 Antialiasing

}

15.3 One-Pass Antialiasing—the Smooth Primitives

Aliasing artifacts are especially objectionable in image animations, because
jaggies often introduce motion unrelated to the actual direction of motion of
the primitives. The techniques described in this section improve the sampling
quality of primitives without requiring that the primitives be drawn more than
once. These techniques therefore perform well enough to animate complex
scenes.

Note: Not all systems support smoothing and not every system supports
every type of smooth primitive, so refer to the man pages for details
about smoothing on different systems.

Modes are provided to support the drawing of antialiased points and lines in
both color map and RGB modes. Because their interactions are more critical to
the antialiasing quality, antialiased polygons are supported only in the more
general RGB mode. If you are drawing an image composed entirely of points
and/or lines, the routines in this section are always the right choice for
antialiasing. If you include polygons in the image, you should consider both
the techniques described in this section and the multipass accumulation
technique described in Section 15.4.

15.3.1 High-Performance Antialiased Points—pntsmooth

By default, IRIS-4D Series systems sample points by selecting and drawing the
pixel nearest the exact projection of the mathematical point. You can enable
subpixel sampling and use pntsmooth() to draw antialiased points.

subpixel(TRUE);
pntsmooth(SMP_ON);

When you enable subpixel() mode, you defeat the default behavior of
rounding projected vertices to the nearest pixel center. Exact point position is
made available to the sampling hardware. By enabling pntsmooth() mode,
you replace the default sampling of points with coverage sampling of a
unit-diameter* circle centered around the exact mathematical point position.
All that remains is instructing the system on how to use the computed pixel

Graphics Library Programming Guide 15-11

coverage to blend between the background color and the point color at each
pixel. This instruction differs based on whether the drawing is done in color
map mode or in RGB mode.

When you enable pntsmooth() while in color map mode, the antialiasing
hardware uses computed pixel coverage to replace the 4 least significant bits
of the point’s color. Therefore, for color map antialiased points to blend
correctly, you must initialize a 16-entry colormap block (whose lowest entry
location is a multiple of 16) to a ramp between the background color (lowest
index) and the point color (highest index). Before drawing points, clear the
background to the same color used as background in the colormap ramp.

When you draw a point with a color index in the range of the specified ramp,
pixels in the area of the exact mathematical point are written with color indices
that select ramp values based on the fraction of the pixel that is obscured by
the point’s unit-diameter circle. Because the sampling hardware modifies only
the 4 least significant bits of the point’s color, you can initialize and use
multiple color ramps, each with a different point color, in the same image.
Note that all ramps must blend to the same background color, which must be
the color of the background used for the image.

This sample program, pnt.cm.c, illustrates the difference in image quality when
you use pntsmooth() and subpixel() together to antialias color map points.
The antialiased points and lines drawn by these example programs look better
if you set gamma correction to 2.4, instead of the default value of 1.7.

/*
* Drag a string of color map antialiased points with the cursor.
* Disable antialiasing while the left mouse button is depressed.
* Disable subpixel positioning while the middle mouse button is depressed.
*/

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

#define WINSIZE 400
#define RAMPBASE 64 /* avoid the first 64 colors */
#define RAMPSIZE 16

* pntsize() and pntsizef() also affect antialiased points, but may not support the range
of sizes supported by aliased points. See the pntsize(3G) man page for details.

15-12 Antialiasing

#define RAMPSTEP (255 / (RAMPSIZE-1))
#define MAXPOINT 25

Device devs[2] = {MOUSEX,MOUSEY};

Graphics Library Programming Guide 15-13

main()
{

short val, vals[2];
long i, xorg, yorg;
float vert[2], x, y, interp;
if (getgdesc(GD_PNTSMOOTH_CMODE) == 0) {
fprintf(stderr, "Color map mode point antialiasing not available\n");
return 1;
}
if (getgdesc(GD_BITS_NORM_DBL_CMODE) < 8) {
fprintf(stderr, "Need 8 bitplanes in doublebuffer color map mode\n");
return 1;
}
prefsize(WINSIZE, WINSIZE);
winopen("pntsmooth.index");
mmode(MVIEWING);
ortho2(-0.5, WINSIZE-0.5, -0.5, WINSIZE-0.5);
doublebuffer();
gconfig();
qdevice(ESCKEY);
qdevice(LEFTMOUSE);
qdevice(MIDDLEMOUSE);
getorigin(&xorg, &yorg);
for (i = 0; i < RAMPSIZE; i++)

mapcolor(i + RAMPBASE, i * RAMPSTEP, i * RAMPSTEP, i * RAMPSTEP);
while (!(qtest() && qread(&val) == ESCKEY && val == 0)) {

color(RAMPBASE);
clear();
getdev(2,devs,vals);
x = vals[0] - xorg;
y = vals[1] - yorg;
pntsmooth(getbutton(LEFTMOUSE) ? SMP_OFF : SMP_ON);
subpixel(getbutton(MIDDLEMOUSE) ? FALSE : TRUE);
color(RAMPBASE+RAMPSIZE-1);
bgnpoint();

for (i=0; i<=MAXPOINT; i++) {
 interp = (float)i / (float)MAXPOINT;
 vert[0] = 100.0 * interp + x * (1.0 - interp);
 vert[1] = 100.0 * interp + y * (1.0 - interp);
 v2f(vert);

}
endpoint();
swapbuffers();

}
gexit();
return 0;

15-14 Antialiasing

}

Notice how smoothly the antialiased points move as you move the cursor.
Now defeat the antialiasing by pressing the left mouse button, and notice that
the points move less smoothly, and that they do not line up nearly as well as
the antialiased points. The image quality degrades in exactly the same way
when you defeat subpixel positioning by pressing the middle mouse button.

The antialiased points look good when they are not drawn touching each
other. However, when you move the cursor near the lower-left corner of the
window, causing the points to bunch together, the image quality again
degrades. This is because pixels that are obscured by more than one point take
as their value the color computed for the last point drawn. There is no general
solution to the problem of overlapping primitives while drawing in color map
mode.

The problem of overlapping primitives is handled well when antialiasing in
RGB mode. When you enable pntsmooth() in RGB mode, the antialiasing
hardware uses computed pixel coverage to scale the alpha value of the point’s
color. If the alpha value of the incoming point is 1.0, scaling it by the computed
pixel coverage results in a pixel alpha value that is directly proportional to
pixel coverage. For RGB antialiased points to draw correctly, set
blendfunction() to merge new pixel color components into the frame buffer
using the incoming alpha value.

This sample program, pnt.rgb.c, illustrates RGB mode point antialiasing.

/*
 * Drag a string of RGB antialiased points with the cursor.
 * Change from a merge-blend to an accumulate-blend when the left
 * mouse button is depressed.Use the "smoother" antialiasing sampling
 * algorithm when the middlemouse button is depressed.
 */

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

#define WINSIZE 400
#define MAXPOINT 25

Device devs[2] = {MOUSEX,MOUSEY};

main()
{

Graphics Library Programming Guide 15-15

short val, vals[2];
long i, xorg, yorg;
float vert[2], x, y, interp;

if (getgdesc(GD_PNTSMOOTH_RGB) == 0) {
fprintf(stderr, "RGB mode point antialiasing not available\n");
return 1;

}
prefsize(WINSIZE, WINSIZE);
winopen("pntsmooth.rgb");
mmode(MVIEWING);
ortho2(-0.5, WINSIZE-0.5, -0.5, WINSIZE-0.5);
doublebuffer();
RGBmode();
gconfig();
qdevice(ESCKEY);
qdevice(LEFTMOUSE);
qdevice(MIDDLEMOUSE);
getorigin(&xorg, &yorg);
subpixel(TRUE);
while (!(qtest() && qread(&val) == ESCKEY && val == 0)) {

cpack(0);
clear();
getdev(2,devs,vals);
x = vals[0] - xorg;
y = vals[1] - yorg;
cpack(0xffffffff);
blendfunction(BF_SA,getbutton(LEFTMOUSE) ? BF_ONE : BF_MSA);
pntsmooth(getbutton(MIDDLEMOUSE)?(SMP_ON | SMP_SMOOTHER) :SMP_ON);
bgnpoint();

for (i=0; i<=MAXPOINT; i++) {
interp = (float)i / (float)MAXPOINT;
vert[0] = 100.0 * interp + x * (1.0 - interp);
vert[1] = 100.0 * interp + y * (1.0 - interp);
v2f(vert);

}
endpoint();

swapbuffers();
}
gexit();
return 0;

}

Unlike the color map antialiased points, the RGB antialiased points look good
when they are bunched together. This is because RGB blending allows
multiple points to contribute to a single pixel in a meaningful way.

15-16 Antialiasing

In this demonstration a blend function that interpolates between the incoming
and frame buffer color components, based on the incoming alpha, is used by
default.

blendfunction(BF_SA,BF_MSA)

Press the left mouse button to switch to a blend function that simply
accumulates color, again scaled by incoming alpha:

blendfunction(BF_SA,BF_ONE)

The difference between blendfunction(BF_SA,BF_MSA) and
blendfunction(BF_SA,BF_ONE) is more apparent when you draw lines (see
Section 15.3.2). In this demonstration, note that bunched points are a little
brighter when you select the accumulating blending function.

You can switch from the standard antialiasing sampling algorithm to a
“smoother” algorithm by pressing the middle mouse button. Not all systems
support the higher-quality point sampling algorithm. Refer to the
pntsmooth() manual page for details. This algorithm modifies more pixels
per antialiased point than does the standard antialiasing algorithm. As a
result, it produces slightly higher-quality antialiased points, at the price of
slightly reduced performance. Set the “smoother” algorithm by calling

pntsmooth(SMP_ON | SMP_SMOOTHER);

Because RGB mode antialiased points are blended into the frame buffer, they
can be drawn in any color and over any background. Unless you want to draw
transparent, antialiased points, however, be sure to specify alpha as 1.0 when
drawing antialiased RGB points.

15.3.2 High-Performance Antialiased Lines—linesmooth

By default, IRIS-4D Series systems sample lines by selecting and drawing the
pixels nearest the projection of the mathematical line.You can enable subpixel
sampling and use linesmooth() to draw antialiased lines.

subpixel(TRUE);
linesmooth(SML_ON);

Graphics Library Programming Guide 15-17

By enabling linesmooth() mode, you replace the default sampling of lines
with coverage sampling of a unit-width* rectangle centered around the exact
mathematical line. All that remains is instructing the system on how to use the
computed pixel coverage to blend between the background color and the line
color at each pixel. This instruction differs based on whether the drawing is
done in color map mode or in RGB mode.

When you enable linesmooth() while in color map mode, the antialiasing
hardware uses computed pixel coverage to replace the 4 least significant bits
of the line’s color. Therefore, for color map antialiased lines to appear correct,
you must initialize a 16-entry colormap block (whose lowest entry location is
a multiple of 16) to a ramp between the background color (lowest index) and
the line color (highest index). Before drawing lines, clear the background to the
same color used as background in the color map ramp.

When you draw a line with a color index in the range of the specified ramp,
pixels in the area of the exact mathematical line are written with color indices
that select ramp values based on the fraction of the pixel that is obscured by
the line’s unit-width rectangle. Because the sampling hardware modifies only
the 4 least significant bits of the line’s color, you can initialize and use multiple
color ramps, each with a different line color, in the same image. Note that all
ramps must blend to the same background color, which must be the color of
the background used for the image.

Note: To improve antialiasing performance on the IRIS Indigo, set
zsource(ZRC_COLOR).

* linewidth() and linewidthf() also affect antialiased lines, but may not support the
range of sizes supported by aliased lines. See the linewidth(3G) man page for details.

15-18 Antialiasing

This sample program, line.cm.c, illustrates the difference in image quality
when you use linesmooth() and subpixel() together to antialias color map
lines. The program draws a single straight line, made up of several individual
line segments.

/*
 *Drag a string of color map antialiased line segments with the cursor.
 *Disable antialiasing while the left mouse button is depressed.
 *Disable subpixel positioning while the middle mouse button is depressed.
 */

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

#define WINSIZE 400
#define RAMPBASE 64 /* avoid the first 64 colors */
#define RAMPSIZE 16
#define RAMPSTEP (255 / (RAMPSIZE-1))
#define MAXVERTEX 10

Device devs[2] = {MOUSEX,MOUSEY};

main()
{

short val, vals[2];
long i, xorg, yorg;
float vert[2], x, y, interp;

if (getgdesc(GD_LINESMOOTH_CMODE) == 0) {
fprintf(stderr, "Color map mode line antialiasing not available\n");
return 1;
}
if (getgdesc(GD_BITS_NORM_DBL_CMODE) < 8) {
fprintf(stderr, "Need 8 bitplanes in doublebuffer color map mode\n");
return 1;
}
prefsize(WINSIZE, WINSIZE);
winopen("linesmooth.index");
mmode(MVIEWING);
ortho2(-0.5, WINSIZE-0.5, -0.5, WINSIZE-0.5);
doublebuffer();
gconfig();
qdevice(ESCKEY);
qdevice(LEFTMOUSE);
qdevice(MIDDLEMOUSE);

Graphics Library Programming Guide 15-19

getorigin(&xorg, &yorg);
for (i = 0; i < RAMPSIZE; i++)

mapcolor(i + RAMPBASE, i * RAMPSTEP, i * RAMPSTEP, i * RAMPSTEP);

while (!(qtest() && qread(&val) == ESCKEY && val == 0)) {
color(RAMPBASE);
clear();
getdev(2,devs,vals);
x = vals[0] - xorg;
y = vals[1] - yorg;
linesmooth(getbutton(LEFTMOUSE) ? SML_OFF : SML_ON);
subpixel(getbutton(MIDDLEMOUSE) ? FALSE : TRUE);
color(RAMPBASE+RAMPSIZE-1);
bgnline();

for (i=0; i<=MAXVERTEX; i++) {
interp = (float)i / (float)MAXVERTEX;
vert[0] = 100.0 * interp + x * (1.0 - interp);
 vert[1] = 100.0 * interp + y * (1.0 - interp);
v2f(vert);

}
endline();

swapbuffers();
}
gexit();
return 0;

}

Notice how smooth the edges of the antialiased lines are, and how smoothly
they move as you move the cursor. Now defeat the antialiasing by pressing the
left mouse button, and notice that the lines become jagged. When you defeat
subpixel positioning by pressing the middle mouse button, the individual line
segments that make up the long line remain antialiased, but they no longer
combine to form a single straight line. This is because the endpoints of the
segments have been coerced to the nearest pixel centers, which are rarely on
the exact mathematical line. Thus, you can antialias lines, unlike points, while
subpixel() mode is FALSE. However, the image quality is still greatly
enhanced when you enable subpixel positioning of vertices.

Like color map antialiased points, color map antialiased lines interact poorly
when they intersect on the screen. The problem of overlapping primitives is
handled well when antialiasing in RGB mode. When you enable
linesmooth() in RGB mode, the antialiasing hardware uses computed pixel
coverage to scale the alpha value of the line’s color. If the alpha value of the
incoming line is 1.0, scaling it by the computed pixel coverage results in a pixel
alpha value that is directly proportional to pixel coverage.

15-20 Antialiasing

For RGB antialiased lines to draw correctly, set blendfunction() to merge
new pixel color components into the frame buffer using the incoming alpha
value.

This sample program, line.rgb.c, illustrates RGB mode line antialiasing:

/*
 * Rotate a pinwheel of antialiased lines drawn in RGB mode.
 * Change to the "smoother" sampling function when the left mouse button
 * is depressed.
 * Change to the "end-corrected" sampling function when the middle mouse
 * button is depressed.
 * Change to a "color index like" blend function when the i-key is pressed.
 * Change from merge-blend to accumulate-blend when the a-key is depressed.
 * Disable subpixel positioning when the s-key is depressed.
 */

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

#define WINSIZE 400
#define MAXLINE 48
#define ROTANGLE (360.0 / MAXLINE)

float vert0[2] = {0.0,0.0};
float vert1[2] = {0.8,0.0};

main()
{

int i;
int smoothmode;
short val;

if (getgdesc(GD_LINESMOOTH_RGB) == 0) {
fprintf(stderr, "RGB mode line antialiasing not available\n");
return 1;

}
prefsize(WINSIZE, WINSIZE);
winopen("linesmooth.rgb");
mmode(MVIEWING);
ortho2(-1.0,1.0,-1.0,1.0);
doublebuffer();
RGBmode();
gconfig();
qdevice(ESCKEY);

Graphics Library Programming Guide 15-21

qdevice(LEFTMOUSE);
qdevice(MIDDLEMOUSE);

while (!(qtest() && qread(&val) == ESCKEY && val == 0)) {
cpack(0);
clear();
cpack(0xffffffff);
smoothmode = SML_ON;
if (getbutton(LEFTMOUSE))

smoothmode |= SML_SMOOTHER;
if (getbutton(MIDDLEMOUSE))

smoothmode |= SML_END_CORRECT;
linesmooth(smoothmode);
if (getbutton(IKEY))

blendfunction(BF_SA,BF_ZERO);
else if (getbutton(AKEY))

blendfunction(BF_SA,BF_ONE);
else

blendfunction(BF_SA,BF_MSA);
subpixel(getbutton(SKEY) ? FALSE : TRUE);
pushmatrix();
rot(getvaluator(MOUSEX) / 25.0,’z’);
for (i=0; i<MAXLINE; i++) {

bgnline();
v2f(vert0);
v2f(vert1);

endline();
rot(ROTANGLE,’z’);

}
popmatrix();
swapbuffers();

}
gexit();
return 0;

}

Notice that the RGB mode antialiased lines look good where they intersect at
the center of the pinwheel. This is because RGB blending allows multiple lines
to contribute to a single pixel in a meaningful way. In this demonstration a
blend function that interpolates between the incoming and frame buffer color
components, based on the incoming alpha, is used by default:

blendfunction(BF_SA,BF_MSA)

15-22 Antialiasing

You can switch to a blend function that simply accumulates color, again scaled
by incoming alpha, by pressing the <A> key:

blendfunction(BF_SA,BF_ONE)

This blending function makes the slight noise at the center of the pinwheel
disappear, because these pixels all accumulate and clamp at full brightness.
This technique works well with white lines on a black background, but does
not do well in other situations.

You can simulate the appearance of color map mode lines by pressing the <I>
key, which forces a blending function that overwrites pixels:

blendfunction(BF_SA,BF_ZERO);

When you defeat subpixel positioning of line endpoints by pressing the <S>
key, the pinwheel ceases to behave like a rigid object, and instead appears to
wiggle and twist as it is rotated.

You can switch from the standard antialiasing sampling algorithm to a
“smoother” algorithm by pressing the left mouse button. Not all systems
support the higher-quality line sampling algorithm. Refer to the man page for
details. This algorithm modifies more pixels per unit line length than does the
standard antialiasing algorithm. As a result, it produces slightly higher-quality
antialiased lines, at the price of slightly reduced performance. Set the
“smoother” algorithm by calling linesmooth (SML_ON | SML_SMOOTHER).

Notice that when it is selected, lines at all angles appear to have the same
width, and the “cloverleaf” pattern at the center of the pinwheel disappears.
When you rotate the pinwheel with the left mouse button pressed, the only
image artifact that remains is the sudden changing of line length observed at
the ends of the lines. Press the middle mouse button to select a sampling
algorithm that correctly samples line length as well as line cross-section.
Invoke this “end-corrected” algorithm by calling linesmooth(SML_ON |

SML_END_CORRECT).

When you select both “smoother” and “end-correct”, the rotating pinwheel
appears absolutely rigid, with even width lines and no jagged edges.

Because RGB antialiased lines are blended into the frame buffer, they can be
drawn in any color over any background. Unless you want to draw
transparent, anti-aliased lines, however, be sure to specify alpha as 1.0 when
drawing antialiased RGB lines.

Graphics Library Programming Guide 15-23

Note: Because RGB antialiased lines are blended, they interact well at
intersections. However, when two RGB antialiased lines are drawn
between the same vertices, the line quality is reduced noticeably.
When the polygons in a standard geometric model are drawn as lines,
either explicitly or using polymode, lines at the edges of adjacent
polygons are drawn twice, and therefore do not antialias well in RGB
mode. For best results, modify the database traversal so that edges of
adjacent polygons are drawn only once.

15.3.3 High-Performance Antialiased Polygons—polysmooth

By default, IRIS-4D Series systems sample polygons by selecting and drawing
the pixels whose exact center points are within the boundary described by the
projection of the mathematical polygon edges.

You can enable subpixel sampling and use polysmooth() to draw antialiased
polygons.

subpixel(TRUE);
polysmooth(PYSM_ON);

When you enable subpixel mode, you defeat the default behavior of rounding
projected vertices to the nearest pixel center. Exact polygon vertex positions
are made available to the sampling hardware. By enabling polysmooth()

mode, you replace the default sampling of polygons with coverage
sampling—the fraction of each pixel covered by the polygon is computed. All
that remains is instructing the system how to use the computed pixel coverage
to blend between the background color and the polygon color at each pixel.
Because this blending operation is more critical for polygon antialiasing than
it is for point or line antialiasing, polygon antialiasing is supported only in
RGB mode, not in color map mode.

This sample program, poly.rgb.c, draws a single antialiased triangle:

/*
 * Rotate a single antialiased triangle drawn in RGB mode.
 * Disable antialiasing when the left mouse button is depressed.
 * Disable subpixel positioning when the middle mouse button is depressed.
 */

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

15-24 Antialiasing

#define WINSIZE 400

float vert0[2] = {0.0,0.0};
float vert1[2] = {0.8,0.0};
float vert2[2] = {0.4,0.4};

main()
{

short val;

if (getgdesc(GD_POLYSMOOTH) == 0) {
fprintf(stderr, "polygon antialiasing not available\n");
return 1;

}
prefsize(WINSIZE, WINSIZE);
winopen("polysmooth.rgb");
mmode(MVIEWING);
ortho2(-1.0,1.0,-1.0,1.0);
doublebuffer();
RGBmode();
gconfig();
qdevice(ESCKEY);
qdevice(LEFTMOUSE);
qdevice(MIDDLEMOUSE);
blendfunction(BF_SA,BF_MSA);
while (!(qtest() && qread(&val) == ESCKEY && val == 0)) {

cpack(0);
clear();
cpack(0xffffffff);
polysmooth(getbutton(LEFTMOUSE) ? PYSM_OFF : PYSM_ON);
subpixel(getbutton(MIDDLEMOUSE) ? FALSE : TRUE);
pushmatrix();
rot(getvaluator(MOUSEX) / 25.0,’z’);
rot(getvaluator(MOUSEY) / 10.0,’x’);
bgnpolygon();

v2f(vert0);
v2f(vert1);
v2f(vert2);

endpolygon();
popmatrix();
swapbuffers();

}
gexit();
return 0;

}

Graphics Library Programming Guide 15-25

Move the cursor left and right to rotate the triangle, and note the smoothness
of its edges. When you move the cursor toward the top of the screen, the
triangle rotates away from you until it becomes perpendicular to your viewing
direction. Note that when it is perpendicular, it disappears completely. This is
because the projection of a triangle on edge covers no area on the screen, and
therefore all pixel coverages are zero.

When you press the left mouse button, the triangle is drawn aliased. When you
press the middle mouse button, the triangle vertices are no longer
subpixel-positioned. Notice that the edges remain smooth, but that the triangle
motion is no longer smooth, and the triangle no longer appears rigid.

This simple example of a single antialiased triangle drawn on a black
background works correctly with the standard blending function:

blendfunction(BF_SA,BF_MSA)

However, when multiple antialiased triangles are drawn with adjacent edges,
the standard blending function no longer produces good results.

This sample program, poly2.rgb.c, draws a bowtie-shaped object, constructed
of four triangles in a planar mesh:

/*
 * Rotate a patch of antialiased triangles drawn in RGB mode.
 * Disable special polygon-blend when the left mouse button is depressed.
 * Disable subpixel positioning when the middle mouse button is depressed.
 */

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

#define WINSIZE 400

float vert0[2] = {0.0,0.0};
float vert1[2] = {0.0,0.4};
float vert2[2] = {0.4,0.1};
float vert3[2] = {0.4,0.3};
float vert4[2] = {0.8,0.0};
float vert5[2] = {0.8,0.4};

15-26 Antialiasing

main()
{
 short val;

if (getgdesc(GD_POLYSMOOTH) == 0) {
fprintf(stderr, "polygon antialiasing not available\n");
return 1;

}
prefsize(WINSIZE, WINSIZE);
winopen("polysmooth2.rgb");
mmode(MVIEWING);
ortho(-1.0,1.0,-1.0,1.0,-1.0,1.0);
doublebuffer();
RGBmode();
gconfig();
qdevice(ESCKEY);
qdevice(LEFTMOUSE);
qdevice(MIDDLEMOUSE);
polysmooth(PYSM_ON);
shademodel(FLAT);
while (!(qtest() && qread(&val) == ESCKEY && val == 0)) {

cpack(0);
clear();
cpack(0xffffffff);
if (getbutton(LEFTMOUSE))

blendfunction(BF_SA,BF_MSA);
else

blendfunction(BF_MIN_SA_MDA,BF_ONE);
subpixel(getbutton(MIDDLEMOUSE) ? FALSE : TRUE);
pushmatrix();
rot(getvaluator(MOUSEX) / 25.0,’z’);
rot(getvaluator(MOUSEY) / 10.0,’x’);
bgntmesh();

v2f(vert0);
v2f(vert1);
v2f(vert2);
v2f(vert3);
v2f(vert4);
v2f(vert5);

endtmesh();
popmatrix();
swapbuffers();

 }
gexit();
return 0;

}

Graphics Library Programming Guide 15-27

Notice that the internal edges of the four triangles that make up the bowtie are
visible. Press the left mouse button, enabling the special polygon blending
function, and note that these internal edges disappear. They are visible when
you use the standard blending function because the standard blending
function operates with uncorrelated coverages, such as those generated by
antialiased points and lines.

Two adjacent polygons generate pixel coverages that are highly
correlated—they always sum to 100% for pixels covered by the shared
edge—and are therefore inappropriate for the standard blending function.
Consider, for example, a pixel that is covered 60% by the first polygon that
intersects it, and 40% by a second polygon adjacent to the first. Assuming
white polygons and a black background, the first polygon raises the pixel
intensity to 0.6, which is the correct value. However, the second polygon raises
the pixel intensity to only 0.76, rather than to 1.0 as is desired. This is because
the standard blending function assumes that the 60% and 40% coverages are
uncorrelated, so 60% of the additional 40% is assumed to have been covered
by the original 60%. Thus in uncorrelated coverage arithmetic, 60% plus 40%
equals 76%, not 100%.

The special blending function blendfunction(BF_MIN_SA_MDA,BF_ONE)

works with correlated coverages, the kind generated by antialiased polygon
images. As the example code illustrated, the correlated blend does a good job
with polygonal data. It is, however, much more difficult to use correlated
blending than uncorrelated blending.

The requirements for using the correlated blending function are:

• You must have alpha bitplanes.

• You must draw polygons in order from the nearest to the farthest (not
farthest to nearest as in the other antialiasing examples).

• You must not draw backfacing polygons (use backface()).

• The background color bitplanes, including the alpha bitplanes, must be
cleared to zero before drawing starts.

• If the background is any color other than black, it must be filled as a
polygon (i.e. not with a clear() command) after all polygons are drawn.

• You must draw all primitives (points, lines, and polygons) using the
correlated blending function.

15-28 Antialiasing

The correlated blending function works by accumulating pixel coverage in the
frame buffer alpha bitplanes. The coverage granted each pixel write is limited
by the total remaining at that pixel. When no coverage is left, additional writes
to that pixel are ignored.

Because polygons must be drawn in depth-sorted order, you cannot use the
z-buffer to eliminate hidden surfaces. Thus, polygon antialiasing, unlike point
and line antialiasing, requires significant changes to the way the object data are
traversed. It is therefore more difficult to use than are point and line
antialiasing. If performance is not an absolute requirement, the accumulation
buffer technique described in Section 15.4 is a better choice for polygon
antialiasing.

This sample program, poly3.rgb.c, demonstrates correct polygon antialiasing of
two cubes against a non-black background:

/*
 * Rotate two antialiased cubes in RGB mode.
 * Disable antialiasing by depressing the left mouse button.
 */

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

#define WINSIZE 400
#define SIZE (0.2)
#define OFFSET(0.5)
#define CUBE0 OFFSET
#define CUBE1 (-OFFSET)

float vert0[4] = {-SIZE,-SIZE, SIZE};
float vert1[4] = { SIZE,-SIZE, SIZE};
float vert2[4] = {-SIZE, SIZE, SIZE};
float vert3[4] = { SIZE, SIZE, SIZE};
float vert4[4] = {-SIZE, SIZE,-SIZE};
float vert5[4] = { SIZE, SIZE,-SIZE};
float vert6[4] = {-SIZE,-SIZE,-SIZE};
float vert7[4] = { SIZE,-SIZE,-SIZE};

float cvert0[2] = {-1.0,-1.0};
float cvert1[2] = { 1.0,-1.0};
float cvert2[2] = { 1.0, 1.0};
float cvert3[2] = {-1.0, 1.0};

Graphics Library Programming Guide 15-29

main()
{

short val;
float xang;

if (getgdesc(GD_POLYSMOOTH) == 0) {
fprintf(stderr, "polygon antialiasing not available\n");
return 1;

 }
prefsize(WINSIZE, WINSIZE);
winopen("polysmooth3.rgb");
mmode(MVIEWING);
ortho(-1.0,1.0,-1.0,1.0,-1.0,1.0);
doublebuffer();
RGBmode();
gconfig();
device(ESCKEY);
qdevice(LEFTMOUSE);
blendfunction(BF_MIN_SA_MDA,BF_ONE);
subpixel(TRUE);
backface(TRUE);
shademodel(FLAT);

while (!(qtest() && qread(&val) == ESCKEY && val == 0)) {
cpack(0);
clear();
polysmooth(getbutton(LEFTMOUSE) ? PYSM_OFF : PYSM_ON);
pushmatrix();
xang = getvaluator(MOUSEY) / 5.0;
rot(xang,’x’);
rot(getvaluator(MOUSEX) / 5.0,’z’);
if (xang < 90.0) {

drawcube(CUBE0);
drawcube(CUBE1);

} else {
drawcube(CUBE1);
drawcube(CUBE0);

}
popmatrix();
drawbackground();
swapbuffers();

}
gexit();
return 0;

}

15-30 Antialiasing

drawcube(offset)
float offset;
{

pushmatrix();
translate(0.0,0.0,offset);
bgntmesh();

v3f(vert0);
v3f(vert1);
cpack(0xff0000ff);
v3f(vert2);
v3f(vert3);
cpack(0xff00ff00);
v3f(vert4);
v3f(vert5);
cpack(0xffff0000);
v3f(vert6);
v3f(vert7);
cpack(0xff00ffff);
v3f(vert0);
v3f(vert1);

endtmesh();
bgntmesh();

v3f(vert0);
v3f(vert2);
cpack(0xffff00ff);
v3f(vert6);
v3f(vert4);

endtmesh();
bgntmesh();

v3f(vert1);
v3f(vert7);
cpack(0xffffff00);
v3f(vert3);
v3f(vert5);

endtmesh();
popmatrix();
}

drawbackground() {
cpack(0xffffffff);
bgnpolygon();

v2f(cvert0);
v2f(cvert1);
v2f(cvert2);
v2f(cvert3);

endpolygon();
}

Graphics Library Programming Guide 15-31

Note that the nearer cube is drawn first, that cube faces are not sorted because
back face elimination handles the sorting of convex solids, and that the
background is drawn last as a single polygon.

When you press the left mouse button, antialiasing is disabled, but the
correlated blend function remains enabled. Otherwise, the drawing order of
the primitives would have to be changed.

15.4 Multipass Antialiasing with the Accumulation Buffer

This section describes techniques for computing pixel area coverage for
various primitives, and using this coverage information to blend pixels into
the framebuffer. This technique, called accumulation, is an iterative process that
converges on a very accurate image. It easily handles all combinations of
points, lines, and polygons, but it cannot typically be used to generate an
interactive image. Accumulation also has applications in other advanced
rendering techniques.

Accumulation is somewhat like blending, in that multiple images are
composited to produce the final image. It differs from blending, however, in
that its operation is completely separated from the rendering of a single frame.
The accumulation buffer is an extended range bitplane bank in the normal
frame buffer. You do not draw images into it; rather, images drawn in the front
or back buffer of the normal frame buffer are added to the contents of the
accumulation buffer after they are completely rendered.

15.4.1 Configuring the Accumulation Buffer

Before you can use the accumulation buffer, you must allocate bitplanes for it.
acsize() specifies the number of bitplanes to be allocated for each color
component in the accumulation buffer:

void acsize(long planes)

The number of bits that can be allocated to the accumulation buffer varies,
depending on the system type. Sizes of 0 and 16 are used for most IRIS-4D
systems, IRIS Indigo uses 32, and RealityEngine uses either a 12-bit unsigned
or 24-bit signed accumulation buffer.

15-32 Antialiasing

Color components in the accumulation buffer are signed values, so the range
for each component depends on the size of the accumulation buffer. For
example, a 16-bit accumulation buffer actually allocates 64 bitplanes, 16 each
for red, green, blue, and alpha. You must call gconfig() after acsize() to
activate the new specification.

15.4.2 Using the Accumulation Buffer

After bitplanes have been allocated for the accumulation buffer, you can use
the acbuf() command to add the contents of the front or back bitplanes of the
normal frame buffer to the accumulation buffer, and to return the
accumulation buffer contents to either the front or back bitplanes. Call
acbuf() only while the normal frame buffer is in RGB mode.

acbuf() operates on the accumulation buffer, which must already have been
allocated using acsize() and gconfig(). When op is AC_CLEAR, each
component of the accumulation buffer is set to value. When op is
AC_ACCUMULATE, pixels are taken from the current readsource() (front,
back, or z-buffer). Pixel components red, green, blue and alpha are each scaled
by value, which must be in the range -256.0 value 256.0, and added to the
current contents of the accumulations buffer.

Finally, when op is AC_RETURN, pixels are taken from the accumulation buffer.
Each pixel component is scaled by value, which must be in the range 0.0
through 1.0, clamped to the integer range 0 through 255, and returned to the
currently active drawing buffer (as specified by the frontbuffer(),
backbuffer(), and zdraw commands). All special pixel
operations—including z-buffer, blending function, logical operation,
stenciling, and texture mapping—are ignored during this transfer. (These
commands implement several other accumulation buffer operations. See the
man pages for details on these operations.)

Accumulation buffer pixels map one-to-one with pixels in the window. All
accumulation buffer operations affect the pixels within the viewport, limited
by the screen mask and by the edges of the window itself. Like front, back, and
z-buffer pixels, accumulation buffer pixels corresponding to window pixels
that are obscured by another window, or are not on the screen, are undefined.

You can use the accumulation buffer to average many renderings of the same
scene into one final image. By jittering the viewing frustum slightly for each

Graphics Library Programming Guide 15-33

image, you can produce a single antialiased image as the result of many
averaged images. For this to work, you must:

1. Completely render the image for each pass, including using the z-buffer
to eliminate hidden surfaces, if appropriate.

2. Enable subpixel positioning of all primitives used (see subpixel).

3. Slightly perturb the viewing frustum before rendering each image. By
slightly perturbing the projection transformation before rendering each
image, you can effectively move the sample position in each pixel away
from the pixel center. This is particularly easy to implement when you
use an orthographic projection.

This sample program, acbuf.rgb.c, draws an antialiased circle using a 2-D
orthographic projection:

/*
*Draw an antialiased circle using the accumulation buffer.
*Disable antialiasing when the left mouse button is depressed.
*Disable subpixel positioning when the middle mouse button is depressed.
*/

#include<stdio.h>
#include<gl/gl.h>
#include<gl/device.h>

#defineWINSIZE100
#defineSAMPLES3
#defineDELTA(2.0/(WINSIZE*SAMPLES))

main()
{

longx,y;
shortval;

if(getgdesc(GD_BITS_ACBUF)==0){
fprintf(stderr,"accumulation buffer not available\n");
return1;

}
prefsize(WINSIZE,WINSIZE);
winopen("acbuf.rgb");
mmode(MVIEWING);
glcompat(GLC_OLDPOLYGON,0); /*point sample the circle*/
doublebuffer();
RGBmode();
acsize(16);

15-34 Antialiasing

gconfig();
qdevice(ESCKEY);
qdevice(LEFTMOUSE);
qdevice(MIDDLEMOUSE);

while(!(qtest() && qread(&val) == ESCKEY && val==0)){
subpixel(getbutton(MIDDLEMOUSE) ? FALSE : TRUE);
if(getbutton(LEFTMOUSE)){
drawcirc(0.0,0.0);
}else{

acbuf(AC_CLEAR,0.0);
for(x=0;x<SAMPLES;x++){
for(y=0;y<SAMPLES;y++){
drawcirc((x-(SAMPLES/2))*DELTA,(y-(SAMPLES/2))*DELTA);
acbuf(AC_ACCUMULATE,1.0);
}

}
acbuf(AC_RETURN,1.0/(SAMPLES*SAMPLES));
}
swapbuffers();

}
gexit();
return0;

}
drawcirc(xdelta,ydelta)

floatxdelta,ydelta;
{
ortho2(-1.0+xdelta,1.0+xdelta,-1.0+ydelta,1.0+ydelta);
cpack(0);
clear();
cpack(0xffffffff);
circf(0.0,0.0,0.8);

}

The circle is drawn nine times on a regular three-by-three grid. After the ninth
accumulation, the resulting image is returned to the back buffer, and the
buffers are swapped, making the antialiased circle visible. Note that the edges
of the circle are smooth, and that when you press the left mouse button, the
edges become jagged (aliased). Also note the reduction in image quality when
you defeat subpixel positioning by pressing the middle mouse button.

Graphics Library Programming Guide 15-35

Some other points about this sample program:

• The orthographic projection is perturbed by multiples of DELTA, a
constant that is a function of the ratio of units in orthographic
coordinates to window coordinates, and of the resolution of the
subsampling.

Note that you cannot use the viewport to jitter the sample points, both
because the viewport is specified with integer coordinates, and because
pixels near the viewport boundary would sample incorrectly.

• Old polygon mode is defeated. Otherwise the circle would be drawn with
the old fill style, rather than the new point-sampled style. Point sampling
and subpixel positioning are both required to use the accumulation buffer
accurately.

• Each drawing pass clears the back buffer to black, then draws the circle.
In general, all drawing operations (such as clearing and using the
z-buffer) must be duplicated for each pass.

You can perform accumulation buffer antialiasing with perspective projections
as well as orthographic projections. The following subroutines do all the
arithmetic required to implement pixel jitter using the perspective and
window projection calls:

#include <math.h>

void subpixwindow(left,right,bottom,top,near,far,pixdx,pixdy)
float left,right,bottom,top,near,far,pixdx,pixdy;

{
short vleft,vright,vbottom,vtop;
float xwsize,ywsize,dx,dy;
int xpixels,ypixels;
getviewport(&vleft,&vright,&vbottom,&vtop);
xpixels = vright - vleft + 1;
ypixels = vtop - vbottom + 1;
xwsize = right - left;
ywsize = top - bottom;
dx = -pixdx * xwsize / xpixels;
dy = -pixdy * ywsize / ypixels;
window(left+dx,right+dx,bottom+dy,top+dy,near,far);

}

void subpixperspective(fovy,aspect,near,far,pixdx,pixdy)
Angle fovy;

15-36 Antialiasing

float aspect, near, far, pixdx, pixdy;

{
float fov2,left,right,bottom,top;
fov2 = ((fovy*M_PI) / 1800) / 2.0;
top = near / (fcos(fov2) / fsin(fov2));
bottom = -top;
right = top * aspect;
left = -right;

subpixwindow(left,right,bottom,top,near,far,pixdx,pixdy);
}

In many applications, you can condition use of the accumulation buffer on
user input. For example, when mouse position determines view angle, you can
accumulate and display a progressively higher-quality antialiased image
while the mouse is stationary. At any time during an antialiasing
accumulation, the contents of the accumulation buffer represent a better image
than the aliased image. You might choose a sample pattern that optimizes the
intermediate results, then display each intermediate result, rather than waiting
for the accumulation to be complete.

The antialiasing example implements a box filter—samples are evenly
distributed inside a square pixel, and each sample has the same effect on the
resulting image. Antialiasing filter quality improves when the samples are
distributed in a circular pattern that is larger than a pixel, perhaps with a
diameter of 0.75 pixels or so. You can further improve the filter quality by
shaping it as a symmetric Gaussian function, either by changing the density of
sample locations within the circle, or by keeping the sample density constant
and assigning different weights to the samples. The weight of a sample is
specified by value when you call acbuf(AC_ACCUMULATE, value). A
circularly symmetric Gaussian filter function yields smoother edges than does
a unit-size box filter.

See /usr/people/4Dgifts/examples/acbuf for examples of different filters.

Regardless of the filter function, fewer samples are required to achieve a given
antialiasing quality level when the samples are distributed in a random
fashion, rather than in regular rows and columns.

The accumulation buffer has many rendering applications other than
antialiasing. For example, to limit depth of field, you can average images
projected from slightly different viewpoints and directions. To produce motion
blur, you can average images with moving objects rendered in different

Graphics Library Programming Guide 15-37

locations along their trajectories. To implement a filter kernel, you can
convolve images with rectcopy() and the accumulation buffer. Because the
accumulation buffer operates on signed color components, and clamps these
components to the display range of 0 through 255 when they are returned to
the display buffer, you can implement filters with negative components in
their kernels.

Additional details of the theory and use of the accumulation buffer, as well as
example images, are available in “The Accumulation Buffer: Hardware
Support for High-Quality Rendering,” in SIGGRAPH’90 Conference
Proceedings, Volume 24, Number 3, August 1990.

15.5 Antialiasing on RealityEngine Systems

This section discusses advanced features that are available only on systems
with RealityEngine graphics, so you may want to skip to Chapter 16 if you do
not have one of these systems.

The techniques discussed in the previous sections of this chapter suggest some
different ways to reduce aliasing. RealityEngine graphics offers high
performance on all the traditional antialiasing methods presented in the
previous sections of this chapter. In addition, RealityEngine supports real-time
antialiasing through the advanced feature of multisampling.

The scan conversion hardware in most graphics systems samples points, lines,
and polygons with a single sample located at the center of each pixel. See
Chapter 2 for more information on point-sampling.

When these single-sampled primitives are rendered, aliasing artifacts can
appear. Aliasing occurs because the pixels that are only partially covered by
the primitive do not get colored if the center of the pixel is not covered.

Not having enough sample points within the pixel to adequately determine
the amount of pixel coverage is called undersampling, which results in an
aliased image. A sufficient sampling method accounts for the areas of all the
polygons that contribute to the shading of each pixel, rather than just a single
sample point. That way, the pixel can be accurately shaded to a value that
represents all polygons that are visible within that pixel.

15-38 Antialiasing

15.5.1 Multisample Antialiasing

In single-pass multisample antialiasing, up to 16 subsamples can be evaluated
at each pixel without repeatedly rendering the frame and accumulating the
results. Multisampling provides for greater accuracy when rendering
primitives while still maintaining a high level of geometry performance.
Depth and stencil values are also evaluated and stored at each subsample, if
those features are enabled.

Figure 15-2 shows example dot patterns for multisampling. Each dot
represents a subsample within a single pixel. The example dot patterns shown
here are not very efficient sampling locations. The actual sample patterns used
by the hardware are efficient.

Figure 15-2 Example Multisample Patterns

15.5.2 Configuring Your System for Multisampling

In its default configuration, the standard framebuffer is configured to store a
single value at each pixel. In multisampling, the multisample framebuffer is
configured to store 0, 4, 8, or 16 subsamples for each pixel. The default
multisample size is zero, corresponding to point-sampling.

Storage for multiple subsamples is allocated from graphics memory, as is
storage for framebuffers and other features. Rather than limit the way you can
use multisampling with other features by establishing fixed boundaries for
memory partitions, RealityEngine allows a flexible configuration that lets you
choose the combination of features that best suits your application needs.

Your RealityEngine system contains either 1, 2, or 4 Raster Manager (RM)
boards. The base configuration contains one RM board. Each additional RM
increases the pixel throughput, the memory for graphics features, and the
amount of screen resolution available from a variety of user-selectable video
formats. One additional RM lets you use either advanced graphics features
such as multisampling, or lets you select a high-resolution video format. The

Default single sample 4 Subsamples 8 Subsamples 16 Subsamples

Graphics Library Programming Guide 15-39

maximum configuration of four RMs provides both advanced graphics
features and high screen resolution.

To set up multisampling, you must configure the multisample buffer with the
number of samples to use. The combination of the number of RMs installed in
your system, the depth of the color framebuffer (either 8 bits or 12 bits per
component), the screen resolution, and the use of other features such as
z-buffering, stereo buffering, or stenciling determines the number of samples
available.

The framebuffer resolution that you select can affect the features that are
available, such as the number of subsamples you can use, or whether color
computations are performed at 8 or 12 bits per component. You can balance the
trade-off between screen real estate and sample size to suit your needs.

Multisampling can be used only in RGB mode when the draw mode is
NORMALDRAW. Because it is not possible to allocate a multisample buffer in color
index mode, multisample() is always ignored in color index mode. When a
multisample buffer is configured, multisampling is enabled by default.

Selecting the Number of Samples

Evaluating a greater number of samples provides more accuracy. You can
select 0, 4, 8, or 16 samples per pixel. Use mssize() to configure the number of
subsamples in the multisample buffer. mssize() takes three arguments:

samples Number of subsamples to use, dependent on system
configuration. Use either 0 (default single sampling), 4, 8, or
16.

zsise Number of bits of z-buffer data to store at each subsample.
Use either 0 or 32.

ssize Number of bits of stencil data to store at each subsample. Use
either 0, 1, or 8.

The GL allocates framebuffer memory when you request rendering modes.
When you issue a gconfig(), the system attempts to honor all of your
requests. If the system is unable to honor all of the requests, it may reduce the
sample size or disable the use of other options such as the accumulation buffer
or stereo buffering. For example, you may be granted the requested number of
multisamples, but not a hardware accumulation buffer. In that case, a software
accumulation buffer is substituted for the hardware accumulation buffer.

15-40 Antialiasing

Another example is a request for 4 multisamples and stereo double buffering.
If not enough resources are available to supply all of these requests, the
multisample size request may be approved, but stereo buffering may be
denied.

Figure 15-3 shows a conceptual diagram of how graphics memory, screen
resolution, and framebuffer requests determine the configuration granted.

Figure 15-3 Flexible Framebuffer Configuration

REALITYENGINE

1 RM
40 MB Image Memory
80 M Pixels/sec.

80 MB Image Memory
160 M Pixels/sec.

160 MB Image Memory
320 M Pixels/sec.4 RM

2 RM

SiliconGraphics

STANDARD
HIGH RES

NTSC
PAL

HDTV
MULTIPLE CHANNELS

GLFRAMEBUFFER
REQUESTS

Configuration
grantedTotal memory Total pixels

Bytes
available

per
pixel

getgconfig();

gconfig()

doublebuffer();/
singlebuffer();

mssize();

stereobuffer();/
monobuffer();

RGBsize();

acsize();

stensize();

zbsize();

Graphics Library Programming Guide 15-41

The GL makes reasonable assumptions about the priority of the requests when
it allocates memory.

You can query the system for the resources actually received. Use
getgconfig() to read back the framebuffer configuration. getgconfig()
returns the configured size of a buffer in the current drawmode.

Programs should be coded to request their most desirable configuration first,
then back off and try configurations that are less stringent, but still acceptable.

The following sample code fragment illustrates this heuristic approach to
configuring the RealityEngine framebuffer.

#include <gl/gl.h>

main()
{

winopen("Request");

/*this code requests 8 multisamples, but is willing to accept 4 or none*/
RGBmode(); /* RGB mode */
doublebuffer(); /* double buffering */
zbsize(0); /* deallocate main zbuffer */
mssize(8,32,0); /* 8 multisamples with zbuffer */
gconfig();

/* check for at least 4 multisamples */
if (getgconfig(GC_MS_SAMPLES) < 4)
{

/* did not get enough multisamples */
mssize(0,0,0); /* remove multisample request */
zbsize(32); /* restore main zbuffer */
gconfig();

}
}

Note: As illustrated in the sample code, be sure to restore the z-buffer if
multisampling is not used.

Freeing Standard Framebuffer Memory

If an mssize() request is honored, the configuration requests for the z-buffer
and stenciling apply to the multisample buffer rather than the standard
framebuffer. However, memory is not automatically deallocated from the

15-42 Antialiasing

standard framebuffer memory for z-buffer and stencil usage. Therefore, you
should free this memory by setting the standard z-buffer size, as well as the
standard stencil size, to zero. The default stencil size is already zero unless you
have changed it, but the default z-buffer size is 32 bits.

Note: Unless you need the standard z-buffer in addition to the multisample
buffer, deallocate memory from the standard z-buffer and stencil
planes when using multisampling. The default 32-bit z-buffer on the
main framebuffer uses up valuable memory that may be needed for
multisampling. If multisampling is not going to be used—perhaps
because a multisample request was requested, but not
granted—remember to restore the z-buffer size to 32 bits.

Use zbsize() and stensize() to allocate/deallocate z-buffer and stencil
memory from the standard framebuffer.

zbsize(n) specifies the number of z-buffer bits allocated for
the standard framebuffer. When using
multisampling, no z-buffer data is stored with the
standard framebuffer sample.

stensize(n) specifies the number of stencil bits allocated for
the standard framebuffer. When using
multisampling, no stencil data is stored with the
standard framebuffer sample.

You can use RGBsize() to reduce the color resolution in order to gain more
memory for framebuffer requests. Specify the number of bits to be allocated
per component. RealityEngine supports either 8 or 12 bits per component.

Summary

The following list summarizes the steps involved in using multisampling:

1. Set the drawing and color modes for normal drawing and RGB color:

drawmode(NORMALDRAW); (default)

RGBmode();

2. Specify the other framebuffer modes:

singlebuffer() (default) or doublebuffer();

monobuffer() (default) or stereobuffer();

Graphics Library Programming Guide 15-43

3. Specify the number of samples:

mssize(samples,zsize,ssize);

4. Deallocate z-buffer and stencil bits from the main framebuffer:

stensize(0);

zbsize(0)

5. Configure the GL:

gconfig();

6. Enable multisampling:

multisample(TRUE); (default)

Note: multisample() can be called at any time during the rendering of a
scene, except between bgn/end calls. Mixing multisampling and
default sampling in the same scene is permitted but not
recommended. The reason for this is that while the color information
in the standard framebuffer is continuously updated with
multisample data, the standard z-buffer is not. Therefore, z data
updated at subsample locations is lost while multisampling is turned
off.

15.5.3 How Multisampling Affects Rendering

The multisample buffer is a part of the color framebuffer. multisample()
should be called only while drawmode is NORMALDRAW. Multisampling affects
the results of rendering when multisampling is enabled (TRUE) and when the
draw mode is NORMALDRAW.

When multisample is true, rendered primitives directly affect the samples in
the multisample buffer. Immediately after the multisample locations at a pixel
are modified, the front and/or back framebuffer colors are written with the
“average” value of the multisample color values. No change is made to the
standard z-buffer or stencil buffer that may be associated with the color
buffers, and their contents do not affect rendering operations.

The framebuffer modes of alpha test, blending, dithering, and writemask
affect the modification of the individual subsamples, and have no effect on the
transfer of the average color value to the front or back color buffers.
Conversely, buffer enables frontbuffer(), backbuffer(), leftbuffer(),

15-44 Antialiasing

and rightbuffer() have no effect on the modification of the individual
multisample locations; they affect only the transfer of the average color.

There are no special clear commands for the multisample buffer. Rather, the
standard clear(), zclear(), sclear(), and czclear() commands affect the
multisample buffer much as they affect the standard color, stencil, and z
buffers. Clear modifies the enabled color buffers, and always modifies the
color portion of each multisample location. zclear() operates on all
multisample z locations. sclear() operates on all multisample stencil
locations. czclear() behaves like clear()/zclear(), except that the z value
is specified.

When multisample() is false, polysmooth(), linesmooth(), and
pntsmooth() can be used with no performance degradation. However, unlike
smooth primitives, multisampling does antialias geometry at intersection and
interpenetration points.

Note: Antialiased primitives using the smooth rendering modes
pntsmooth(), linesmooth(), and polysmooth() are superceded by
multisampling— that is, these modes are undefined when
multisampling is on. However, blendfunction() is still operational,
which can adversely affect rendering performance in multisample
mode. Therefore, for the best performance when multisampling, you
should turn blendfunction() off when not performing blending.
Don’t use blendfunction() for antialiasing along with
multisampling. This is especially applicable when porting previously
developed code that used smooth primitives and blending for
antialiasing to RealityEngine.

Multisampled Points

Until circles are implemented, points are sampled into the multisample buffer
as squares centered on the exact point location.

Multisampled Lines

Lines are sampled into the multisample buffer as rectangles centered on the
exact zero-area segment. The rectangle width is equal to the current linewidth.
Its length is exactly equal to the length of the segment. The rectangles of
colinear, abutting line segments abut exactly, so no subsamples are missed or
drawn twice near the shared vertex.

Graphics Library Programming Guide 15-45

Multisampled Polygons

Polygons are sampled into the multisample buffer much as they are into the
standard single-sample buffer. A single color value is computed for the entire
pixel, regardless of the number of subsamples at that pixel. Each multisample
location is then written with this color if and only if it is geometrically within
the exact polygon boundary.

If the z-buffer is enabled, the correct depth value at each multisample location
is computed and used to determine whether that sample should be written or
not. If stencil is enabled, the test is performed at each multisample location.

Polygon pattern bits apply equally to all multisample locations at a pixel. All
sample locations are considered for modification if the pattern bit is 1. None
are considered if the pattern bit is zero.

Pixels are sampled into the multisample buffer by treating each pixel as an
xzoom × yzoom square, which is then sampled just like a polygon.

15.5.4 Using Advanced Multisample Options

You can generate special effects with advanced multisample options, which
generally apply to a very specific application. Example applications include:

• Using the accumulation buffer with multisampled images.

• Using a multisample mask to select writeable sample locations.

• Using alpha values to feather-blend texture edges.

Accumulating Multisampled Images

The accumulation buffer averages several samples obtained by storing
multiple renderings of the same primitive, each with the primitive offset by a
specific amount, a technique known as jittering.

Just as the default single-sample location is the center of each pixel, there are
default locations for the multiple sample points, located in a cluster
surrounding the center of each pixel. The default locations are chosen to
produce optimum rendering quality for single-pass rendering.

15-46 Antialiasing

Superlative image quality can be achieved when several multisampled images
are composited using the accumulation buffer. Each rendering pass should use
a slightly different sample pattern. These patterns have been selected to
produce optimum rendering quality for the corresponding number of passes.

Accumulating multisample results can also extend the capabilities of your
system. For example, if you have only enough resources to allow 4
subsamples, but you are willing to render the image twice, you can achieve the
same effect as multisampling with 8 subsamples.

Use mspattern() to select the sample pattern. Select the sample pattern for
mspattern() according to the number of rendering passes to accumulate.
Table 15-2 lists the tokens for selecting accumulation multisample patterns.

The pattern should be changed only between complete rendering passes. It
should not be changed between the time clear()/czclear() is called and the
time that the rendered image is complete.

The following example configures the framebuffer with both a multisample
buffer and an accumulation buffer for a 2-pass rendering:

RGBmode();
doublebuffer();
acsize(12);
mssize(4,32,0);
zbsize(0);
gconfig();
lsetdepth(getgdesc(GD_ZMAX),getgdesc(GD_ZMIN));
zfunction(ZF_GEQUAL);

Pattern Token Purpose

MSP_DEFAULT Default multisample pattern

MSP_2PASS_0 First pass of a 2-pass accumulation

MSP_2PASS_1 Second pass of a 2-pass accumulation

MSP_4PASS_0 First pass of a 4-pass accumulation

MSP_4PASS_1 Second pass of a 4-pass accumulation

MSP_4PASS_2 Third pass of a 4-pass accumulation

MSP_4PASS_3 Fourth pass of a 4-pass accumulation

Table 15-2 Tokens for Selecting Accumulation Multisample Patterns

Graphics Library Programming Guide 15-47

zbuffer(TRUE);
multisample(TRUE);
mspattern(MSP_2PASS_0);
czclear(0,0);
/* draw the scene */
acbuf(AC_CLEAR_ACCUMULATE,1.0);
mspattern(MSP_2PASS_1);
czclear(0,0);
/* draw the scene again */
acbuf(AC_ACCUMULATE,1.0);
acbuf(AC_RETURN,0.5);
swapbuffers();

To maintain greater precision in the accumulation buffer, substitute the
following values in the acbuf() commands:

acbuf(AC_CLEAR_ACCUMULATE,2.0);
acbuf(AC_ACCUMULATE,2.0);
acbuf(AC_RETURN,0.25);

or, for even greater precision, use the following values:

acbuf(AC_CLEAR_ACCUMULATE,4.0);
acbuf(AC_ACCUMULATE,4.0);
acbuf(AC_RETURN,0.0625);

This is because only 8 bits out of 12 are accumulated when using a value
of 1.0, 9 bits are accumulated when using a value of 2.0, and so on—up to
a maximum of 12 bits with acsize(n).

Using a Multisample Mask

You can use a mask to specify a subset of multisample locations to be written
at a pixel. This feature is useful for implementing fade-level-of-detail in visual
simulation applications. Multisample masks can be used to perform the
blending from one model to the next by rendering the additional data in the
detail model using a steadily increasing percentage of subsamples as the
viewpoint nears the object.

The mask specifies the ratio of writable and non-writable locations at each
pixel. However, it does not single out specific locations for writing. Mask
values range from 0 to 1, where 0 indicates that no locations are to be written
and 1 indicates that all sample locations are to be written.

15-48 Antialiasing

You can also set a Boolean to create the inverse mask. For example,
msmask(0.75, FALSE) will generate a mask that allows 75% of the samples to
be written, and msmask(0.75, TRUE) will generate a mask that allows the
other 25% of the samples to be written.

Using Alpha and Color Blending Options

Multisampling can be used to solve the problem of blurred edges on textures
with irregular edges, such as trees, that require extreme magnification. When
the texture is magnified, the edges of the tree look artificial, as if the tree is a
paper cutout. You can feather the edges to make them look more natural by
including alpha in the multisample mask.

By using msalpha() and afunction() together, you can represent objects
such as trees, bridges, and fences with pictures of those objects superimposed
on top of a simple rectangle polygon. The see-through effect is achieved by
enabling alpha blending and afunction() to ignore the area of the polygon
not covered by the texture. See Chapter 18 to learn more about using textures.

You can use msalpha() to specify whether you want alpha values to be
included in the multisample mask.

When msalpha is set to MSA_MASK or MSA_MASK_ONE while multisampling is
enabled, alpha values generated by rasterization are converted to multisample
masks immediately prior to the per-pixel alpha test. At each pixel, the resulting
multisample mask is logically ANDed with the mask specified by msmask.
Only multisample locations enabled by the resulting mask are considered for
modification.

If msalpha is set to MSA_MASK_ONE, the alpha value presented to alpha test and
to each multisample location is the maximum value supported by the
framebuffer configuration, effectively 1.0.

When msalpha is set to MSA_ALPHA, no change is made to the alpha values
generated by rasterization or to the mask specified by msmask().

None of the multisample options— msmask(), msalpha() or
mspattern()—has any effect when multisample is FALSE, but they are
maintained for potential future use.

Graphics Library Programming Guide 16-1

Chapter 16

16. Graphical Objects

This chapter describes the subroutines that you use to build hierarchies of
drawing modules so you can draw geometry that has multiple instances of the
same figure. You often want to group together a sequence of drawing
subroutines and give it an identifier. The entire sequence can then be repeated
with a single reference to the identifier rather than by repeating all the drawing
subroutines. In the Graphics Library, such sequences are called graphical
objects; in other systems they are sometimes known as display lists.

• Section 16.1, “Creating an Object,” tells you how to define the
drawing modules that create an object.

• Section 16.2, “Working with Objects,” describes the subroutines you use
to edit objects and mark them for special operations.

16.1 Creating an Object

A graphical object is a list of graphics primitives (drawing subroutines) to
display. For example, a drawing of an automobile can be viewed as a
compilation of smaller drawings of each of its parts: windows, doors, wheels,
and so on. Each part (for example, a wheel) might be a graphical object—a
series of point(), line(), and polygon() subroutines.

To make the automobile a graphical object, you first create objects that draw its
parts—a wheel object, a door object, a body object, and so on. The automobile
object is a series of calls to the part objects, which together with appropriate
rotation, translation, and scale subroutines, put all the parts in their correct
places.

16-2 Graphical Objects

To create a graphical object, you call makeobj(), call the same drawing
subroutines you would normally call to draw the object, and then call
closeobj(). Between the makeobj() and closeobj() calls, drawing
subroutines do not result in immediate drawing on the screen; rather, they are
compiled into the object that is being created.

Thus, a graphical object is a list of primitive drawing subroutines to be
executed. Drawing the graphical object consists of executing each routine in
the listed order. There is no flow control, such as looping, iteration, or
condition tests, except for tests that determine whether or not objects are in the
viewport, as illustrated in Figure 16-3, in Section 16.2, “Working with Objects.”

Note: Not all GL subroutines can be included within a graphical object. A
general rule is to include drawing subroutines and not to include
subroutines that return values. If you have a question about a
particular routine, see the man page for that command.

makeobj

makeobj() creates a graphical object:

void makeobj (Object obj)

The argument obj is a 31-bit integer that is associated with the object. If obj is
the number of an existing object, the contents of that object are deleted.

When makeobj() executes, the object number is entered into a symbol table
and an empty graphical object is created. Subsequent graphics subroutines are
compiled into the graphical object instead of being executed immediately.
makeobj() creates a new object containing Graphics Library subroutines
between makeobj() and closeobj()

closeobj

closeobj() terminates the object definition and closes the open object:

void closeobj(void)

All the subroutines in the graphical object between makeobj() and
closeobj() are part of the object definition.

Graphics Library Programming Guide 16-3

If you specify a numeric identifier that is already in use, the system replaces
the existing object definition with the new one. To ensure that your object’s
numeric identifier is unique, use isobj() and genobj().

Figure 16-1 shows the sphere defined as a graphical object that is created by the
following code:

Object obj;
makeobj(sphere=genobj ());
for (phi=0; phi<PI; phi+=PI/16) {
 bgnclosedline();
 for(theta=0; theta<2*PI; theta+=PI/18) {
 vert[0] = sin(theta) * cos(phi);
 vert[1] = sin(theta) * sin(phi);
 vert[2] = cos(theta);
 v3f(vert);
 }
 endclosedline();
}
closeobj();

Figure 16-1 Sphere Defined as an Object

16-4 Graphical Objects

isobj

isobj() tests whether there is an existing object with a given numeric
identifier. Its argument obj specifies the desired numeric identifier. isobj()
returns TRUE if an object exists with the specified numeric identifier and
FALSE if none exists.

genobj

genobj() generates a unique numeric identifier:

Object genobj(void)

genobj() is useful in naming objects when it is impossible to anticipate what
the current numeric identifier will be when the routine is called.

delobj

delobj() deletes an object:

delobj(Object obj)

The system frees all memory storage associated with the deleted object. The
numeric identifier is undefined until it is reused to create a new object. The
system ignores calls to deleted or undefined objects.

16.2 Working with Objects

You can draw, modify, and delete objects. The following sections describe
those operations.

16.2.1 Drawing an Object

Once you create an object, you can draw it with a single callobj() command.

callobj() draws a created object on the screen:

void callobj(Object obj)

Graphics Library Programming Guide 16-5

The argument obj takes the numeric identifier of the object you want to draw.

Use callobj() to call one object from inside another. You can draw more
complex pictures when you use a hierarchy of simple objects. For example, the
program below uses a single callobj(pearl) to draw the object, a string of
pearls, by calling the previously defined object pearl seven times.

Object pearl = 1, pearls = 2
makeobj(pearl);
 color(BLUE);
 for(angle=0; angle<3600; angle=angle+300) {
 rotate(300, 'y');
 circ(0.0, 0.0, 1.0);
 }
closeobj();
makeobj(pearls);
 for(i=0; i<7; i=i+1) {
 translate(2.0, 0.0, 0.0);
 color(i);
 callobj(pearl);
 }
closeobj();

The system does not save global attributes before callobj() takes effect.
Thus, if an attribute, such as color, changes within an object, the change can
affect the caller as well. You can use pushattributes() and
popattributes() to preserve global attributes across callobj().

As another example of using simple objects to build more complex objects, a
solar system can be defined as a hierarchical object. Calling the object
solarsystem draws all the other objects named in its definition (the sun, the
planets and their orbits.

When you call a complex object, the system draws the whole hierarchy of
objects in its definition. Because the system draws the whole object solarsystem
it can draw objects that are not visible in the viewport.

Operations known as pruning and culling guarantee that only the objects that fit
within the viewport are drawn. Culling determines which parts of the picture
are less than the minimum feature size, and thus too small to draw on the
screen. Pruning calculates whether an object is completely outside the
viewport.

16-6 Graphical Objects

Figure 16-2 shows the solar system. The diagram below the solar system is a
hierarchy diagram, also called a tree. Branches in the tree represent calling
subroutines.

Figure 16-2 Drawing a Hierarchical Object

solarsystem sun sphere

planets

filled circle
circle
filled circle
circle

planets

filled circle
circle
filled circle
circle

Graphics Library Programming Guide 16-7

16.2.2 Bounding Boxes

Bounding boxes can be used to surround objects with irregular surfaces to
make it easier to test them for pruning and culling.

Figure 16-3 shows some of the solarsystem objects surrounded by their
bounding boxes. The bounding boxes can perform pruning to determine
which objects are partially within the viewport.

Figure 16-3 Bounding Boxes

bbox2

bbox2() determines whether or not an object is within the viewport, and
whether it is large enough to be seen, by performing pruning and culling:

void bbox2(Screencoord xmin, Screencoord ymin,
 Coord x1, Coord y1, Coord x2, Coord y2)

bbox2() takes as its arguments an object space bounding box (x1, y1, x2, y2) in
object coordinates, and minimum horizontal and vertical feature sizes (xmin,
ymin) in pixels. The system calculates the bounding box, transforms it to screen
coordinates, and compares it with the viewport. If the bounding box is
completely outside the viewport, the subroutines between bbox2 and the end
of the object are ignored.

2D bounding boxes

viewport

16-8 Graphical Objects

If the bounding box is within the viewport, the system compares it with the
minimum feature size. If it is too small in both the x and y dimensions, the rest
of the subroutines in the object are ignored. Otherwise, the system continues
to interpret the object.

16.2.3 Editing Objects

You can change an object by editing it. Editing requires that you identify and
locate the drawing subroutines you want to change. You use two types of
subroutines when you edit an object:

edit add, remove, or replace drawing subroutines

tag identify locations of drawing subroutines within an object

If you have to edit graphical objects frequently, you should build your own
custom data structures and traversal subroutines, rather than use graphical
objects. The editing subroutines that follow are best suited for infrequent and
simple editing operations.

editobj

To open an object for editing, use editobj():

void editobj(Object obj)

A pointer acts as a cursor that appends new subroutines. The pointer is
initially set to the end of the object. The system appends graphics subroutines
to the object until either a closeobj() or a pointer positioning routine
objdelete(), (objinsert(), or objreplace()) executes.

The system interprets the editing subroutines following editobj(). Use
closeobj() to terminate your editing session. If you specify an undefined
object, an error message appears.

getopenobj

To determine if any object is open for editing, use getopenobj():

Object getopenobj(void)

If an object is open, it returns the object's id. It returns -1 if no object is open.

Graphics Library Programming Guide 16-9

16.2.4 Using Tags

Tags locate items within a graphical object that you want to edit. Editing
subroutines require tag names as arguments. STARTTAG is a predefined tag that
goes before the first item in the list; it marks the beginning of the list. STARTTAG
does not have any effect on drawing or modifying the object. Use it only to
return to (find) the beginning of the list.

ENDTAG is a predefined tag that is positioned after the last item on the list; it
marks the end of the list. Like STARTTAG, ENDTAG does not have any effect on
drawing or modifying the object. Use it to find the end of the graphical object.
When you call makeobj() to create a list, STARTTAG and ENDTAG automatically
appear. You cannot delete these tags. When an object is opened for editing,
there is a pointer at ENDTAG, just after the last routine in the object. To perform
edits on other items, refer to them by their tags.

maketag

You can use tags to mark items you may want to change. You explicitly tag
subroutines with maketag():

void maketag(Tag t)

Specify a 31-bit numeric identifier for t. The system places a marker (tag)
between two items. You can use the same tag name in different objects.

newtag

newtag() also adds tags to an object, but uses an existing tag to determine its
relative position within the object. newtag() creates a new tag that is offset
beyond the other tag by the number of lines given in its argument offst.:

void newtag(Tag newtg, Tag oldtg, Offset offst)

istag

istag() tells whether a given tag is in use within the current open object:

Boolean istag(Tag t)

istag() returns TRUE if the tag is in use, and FALSE if it is not. The result is
undefined if there is no currently open object.

16-10 Graphical Objects

gentag

gentag() generates a unique integer to use as a tag within the current open
object:

Tag gentag(void)

deltag

deltag() deletes tags from the object currently open for editing:

void deltag(Tag t)

Note: You cannot delete the special tags STARTTAG and ENDTAG.

16.2.5 Inserting, Deleting, and Replacing within Objects

The subroutines objinsert(), objdelete(), and objreplace() allow you to
add, delete, or replace subroutines in a graphical object.

objinsert

Use objinsert() to add subroutines to an object at the location specified in t.:

void objinsert(Tag t)

objinsert() positions an editing pointer on the tag you specify in t. The
system inserts graphics subroutines immediately after the tag. To terminate
the insertion, use closeobj() or another editing routine (objdelete(),
objinsert(), objreplace()).

objdelete

objdelete() removes subroutines from the current open object:

void objdelete(Tag tag1, Tag tag2)

objdelete() removes everything between tag1 and tag2, deletes subroutines
and other tag names, and leaves the pointer at the end of the object after it
executes. For example, objdelete(STARTTAG, ENDTAG) deletes every
drawing routine. objdelete() is ignored if no object is open for editing.

Graphics Library Programming Guide 16-11

objreplace

objreplace() combines the functions of objdelete() and objinsert():

void objreplace(Tag t)

This provides a quick way to replace one drawing routine with another that
occupies the same amount of space in the graphical object. Its argument is a
single tag, t. Graphics subroutines that follow objreplace() overwrite
existing subroutines until a closeobj() or editing routine (objinsert(),
objreplace(), objdelete()) terminates the replacement.

Note: objreplace() requires that the new routine to be exactly the same
length in characters as the previous one. Use objdelete() and
objinsert() for more general replacement.

Example—Editing an Object

The following is an example of object editing. First, the object star is defined:

makeobj(star);
color(GREEN);
maketag(BOX);
recti(1, 1, 9, 9);
maketag(INNER);
color(BLUE);
poly2i(8, Inner);
maketag(OUTER);
color(RED);
poly2i(8, Outer);
maketag(CENTER);
color(YELLOW);
pnt2i(5, 5);

closeobj();
editobj(star);

circi(1, 5, 5);
objinsert(BOX);
recti(0, 0, 10, 10);
objreplace(INNER);
color(GREEN);

closeobj();

16-12 Graphical Objects

The object resulting from the editing session is equivalent to an object created
by the following code:

makeobj(star);
color(GREEN);
maketag(BOX);
recti(0, 0, 10, 10);
recti(1, 1, 9, 9);
maketag(INNER);
color(GREEN);
poly2i(8, Inner);
maketag(OUTER);
color(RED);
poly2i(8, Outer);
maketag(CENTER);
color(YELLOW);
pnt2i(5, 5);
circi(1, 5, 5);

closeobj();

16.2.6 Managing Object Memory

Editing can require large amounts of memory. The subroutines compactify()
and chunksize() perform memory management tasks.

compactify

As memory is modified by the various editing subroutines, an open object can
become fragmented and be stored inefficiently. When the amount of wasted
space becomes large, the system automatically calls compactify() during the
closeobj() operation.

compactify() allows you to perform the compaction explicitly:

void compactify(Object obj)

Unless you insert new subroutines in the middle of an object, compaction is
not necessary.

Note: compactify() uses a significant amount of computing time. Do not
call it unless the amount of available storage space is critical; use it
sparingly when performance is a consideration.

Graphics Library Programming Guide 16-13

chunksize

chunksize() lets you specify the minimum chunk of memory necessary to
accommodate the largest number of vertices you want to call:

void chunksize(long chunk)

If there is a memory shortage, you can use chunksize() to allocate memory
for an object. chunksize() specifies the minimum amount of memory that the
system allocates to an object. The default chunk is 1020 bytes. When you specify
chunk, its size should vary according to the needs of the application. As the
object grows, more memory is allocated in units of size chunk. Call
chunksize() only once after winopen(), and before the first makeobj().

16.2.7 Mapping Screen Coordinates to World Coordinates

This section describes how to map screen coordinates to world coordinates.

mapw

mapw() takes a 2-D screen point and maps it onto a line in 3-D world space. Its
argument vobj contains the viewing, projection, and viewport transformations
that map the current displayed objects to the screen.

mapw() reverses these transformations and maps the screen coordinates back
to world coordinates. It returns two points (wx1, wy1,wz1) and (x2, wy2, wz2),
which specify two different points on the line. The length of the line is
arbitrary. sx and sy specify the screen point to be mapped.

void mapw(Object vobj, Screencoord sx, Screencoord sy, Coord *wx1,Coord *wy1,
Coord *wz1, Coord *wx2, Coord *wy2, Coord *wz2)

mapw2

mapw2() is the 2-D version of mapw(). In two dimensions, the system maps
screen coordinates to world coordinates rather than to a line. Again, vobj
contains the projection and viewing transformations that map the displayed
objects to world coordinates; sx and sy define screen coordinates. wx and wy
return the corresponding world coordinates. If the transformations in vobj are
not 2D (i.e., not orthogonal projections), the result is undefined.

void mapw2(Object vobj, Screencoord sx, Screencoord sy, Coord *wx,Coord *wy)

16-14 Graphical Objects

Graphics Library Programming Guide 17-1

Chapter 17

17. Feedback

This chapter describes methods used to get hardware feedback during the
drawing process. Because this is a special topic with limited applications, you
may want to skip this chapter on the first reading.

• Section 17.1, “Feedback on IRIS-4D/GT/GTX Systems,” describes
feedback on those systems.

• Section 17.2, “Feedback on the Personal IRIS and IRIS Indigo,” describes
feedback on those systems.

• Section 17.3, “Feedback on IRIS-4D/VGX, SkyWriter, and RealityEngine
Systems,” describes feedback on those systems.

• Section 17.4, “Feedback Example,” demonstrates feedback.

• Section 17.5, “Additional Notes on Feedback,” discusses additional
information.

Feedback is a system-dependent mechanism that uses the Geometry Pipeline
to do calculations and to return the results of those calculations to the user
process. From a hardware point of view, the net result of most Graphics
Library calls is to send a series of commands and data down the Geometry
Pipeline. In the pipeline, points are first transformed, clipped, and scaled, then
lighting calculations are performed and colors are computed. Next, the points,
lines, and polygons are scan-converted, and finally, pixels in the bitplanes are
set to the appropriate values.

Note: Feedback is different on each IRIS-4D Series system. Avoid using the
feedback mechanism unless it is absolutely necessary.

There are, however, a few places where feedback might be valuable. If you
have code that draws an object on the screen, and you would like to draw the

17-2 Feedback

same picture on a plotter with a different resolution than that of the screen, you
can change only the viewport() subroutine (which controls the scaling of
coordinates) so that it scales to your plotter coordinates, and then draw the
picture in feedback mode. The transformed data returned to your process can
often be interpreted and used to drive a plotter. feedback() puts the system
into feedback mode, and any set of graphics subroutines can then be issued,
followed by endfeedback(). All the commands and data that come out of the
Geometry Engine subsection are as a result stored in a buffer supplied when
the initial call to feedback() was made.

When the system is put into feedback mode, the Graphics Library commands
send exactly the same information into the front of the pipeline, but the
pipeline is short-circuited, and the results of some of the calculations are
returned before the standard drawing process is complete. The pipeline can be
broken down into many distinct stages, the first of which is composed of
Geometry Engine™ processors. The Geometry Engines transform, clip, and
scale vertices to screen coordinates, and do the basic lighting calculations. In
feedback mode, the raw output from the Geometry Engines is sent back to the
host process, and no further calculations are done.

The hardware that makes up the Geometry Engine subsection of the pipeline
is different on the various IRIS workstation models. The command and data
format differs and certain calculations are done on some systems and not on
others. In spite of object code compatibility, the results of feedback are not
compatible. If you use feedback, your code must be written differently for
every system, and each time a new system is introduced, it will probably have
to be modified.

Almost all feedback-type calculations can easily be done in portable host
software. After a feedback session, the feedback buffer can contain any or all
of the following data: points, lines, moves, draws, polygons, character move,
passthrough(), z-buffer, linestyle(), setpattern(), linewidth(), and
lsrepeat() values.

On the IRIS-4D/VGX, Iris Indigo, and Personal IRIS, feedback() returns
32-bit floating point values instead of 16-bit integers. On all other IRIS-4D
Series systems, feedback() returns 16-bit integers.

In feedback mode, all the graphical subroutines are transformed, clipped, and
scaled by the viewport, and all lighting calculations are done. Because of
clipping, more or fewer vertices might appear in the feedback buffer than were
sent in. A three-sided polygon can come out with up to nine sides. due to

Graphics Library Programming Guide 17-3

clipping against all six clipping planes—even more side if user -defined
arbitrary clipping planes are enabled (see Chapter 8).

Figure 17-1 shows the effect clipping has on feedback.

Figure 17-1 Effects of Clipping on Feedback

The sequence:

becomes:

2

3

4

1

a)

A

B

C

bgnline(<A>)
bgnline()
bgnline(<C>)
endline

bgnline(<1>)
bgnline(<2>)
bgnline(<3>)
bgnline(<4>)
endline

The sequence:

becomes:

2

3

4

1
b) A

B

C

bgnpolygon(<A>)
bgnpolygon()
bgnpolygon(<C>)
endpolygon

bgnpolygon(<1>)
bgnpolygon(<2>)
bgnpolygon(<3>)
bgnpolygon(<4>)
bgnpolygon(<5>)
bgnpolygon(<6>)
endpolygon

5

6

17-4 Feedback

Because the length of the output is not generally predictable from the input,
passthrough marks divisions in the input data. For example if you send this
sequence:

v3f(A);
passthrough(1);
v3f(B);
passthrough(2);
v3f(C);
passthrough(3);
v3f(D);

the parsed information in the feedback buffer might look like this:

transformed point (X)
passthrough (1)
passthrough (2)
transformed point (Y)
passthrough (3)

Point X is the transformed version of point A, and point Y is the transformed
version of point C. Points B and D must have been clipped out.

The feedback data types are in the file gl/feed.h for your reference. All returned
information is raw and system-specific.

17.1 Feedback on IRIS-4D/GT/GTX Systems

Feedback data occurs in groups of 8n+2 shorts, where n is the number of
vertices involved, as shown in Table 17-1.

Short # Data

1 <data type>

2 <count>

3 through (count+2) <vertex data>

Table 17-1 IRIS-4D/G/GT/GTX Feedback Data

Graphics Library Programming Guide 17-5

The vertex data is always arranged in groups of 8 (so count is a multiple of 8)
and contain the values:

x, y, zhigh, zlow, r, g, b, alpha

x is the screen (not window) x-coordinate, y-1024 is the screen y-coordinate,
(zhigh<<16)+zlow is the z-coordinate, and, r, g, b, and alpha are the red, green,
blue, and alpha values.

By the time the data makes it through the geometry hardware, all the
transformations have been done to it, including translations to put the data in
the proper window. In the IRIS-4D/GT/GTX, the hardware screen
y-coordinates begin at 1024 (for the bottom of the screen) and increase to 2047.
Thus, 1024 must be subtracted to get what you would consider the screen
y-coordinate.

24 bits of z-coordinate data is returned in two 16-bit chunks. The two chunks
must be concatenated to get the full 24 bits of data. Finally, the red, green, blue,
and alpha values are the colors that would be written into the frame buffer at
the vertex. In RGB mode, all values vary between 0 and 255; in color map
mode, the color index is sent as the red value and is in the range
0 to 4095. In color map mode, the values in the green, blue and alpha
components are meaningless.

There are five possible kinds of data type: FB_POINT, FB_LINE, FB_POLYGON,
FB_CMOV, and FB_PASSTHROUGH.

FB_POINT 24
x1, y1, zhigh1, zlow1, r1, g1, b1, alpha1
x2, y2, zhigh2, zlow2, r2, g2, b2, alpha2
x3, y3, zhigh3, zlow3, r3, g3, b3, alpha3

FB_LINE and FB_POLYGON are similar. FB_CMOV and FB_PASSTHROUGH always
have 8 shorts of data as follows:

FB_CMOV 8
x1, y1, zhigh1, zlow1, r1, g1, b1, alpha1
value, junk, junk, junk, junk, junk, junk, junk

17-6 Feedback

17.2 Feedback on the Personal IRIS and IRIS Indigo

The Personal IRIS and IRIS Indigo has the following feedback tokens defined
in gl/feed.h:

FB_POINT
FB_MOVE
FB_DRAW
FB_POLYGON
FB_CMOV
FB_PASSTHROUGH
FB_ZBUFFER
FB_LINESTYLE
FB_SETPATTERN
FB_LINEWIDTH
FB_LSREPEAT

Each group of feedback data begins with one of the above tokens to indicate
data type. Vertex data for points, lines, and polygons always appears in groups
of six floating-point values:

x, y, z, r, g, b

x and y are screen (not window) coordinates, z is the z value, and r, g, b are the
red, green, and blue (RGB) values.

The RGB values are the colors that would be written into the frame buffer at
the vertex. In RGB mode, all values vary between 0 and 255. In color map
mode, the r value is the color index (between 0 and 4095) and the g and b values
are ignored.

If a move, draw, or point (as in this example) comes out of the Geometry
Pipeline, the returned data consists of seven floats:

FB_POINT
x, y, z, r, g, b

For polygons, feedback data includes a count number as well as the data type
number. This number indicates how many of the next float values apply to the
polygon. There are six for each vertex, so this number is always a multiple of
six (6, 12, etc.).

Graphics Library Programming Guide 17-7

For example, the returned data for a triangle consists of 20 floats:

FB_POLYGON 18.0
x1, y1, z1, r1, g1, b1
x2, y2, z2, r2, g2, b2
x3, y3, z3, r3, g3, b3

The 18.0 indicates three vertices with six values in each; the 18 values follow.

FB_CMOV returns only three floats of data:

FB_CMOV
x, y, z

The rest of the commands (FB_PASSTHROUGH, FB_ZBUFFER, FB_LINESTYLE,
FB_SETPATTERN, FB_LINEWIDTH, FB_LSREPEAT) return only one float. For
example, FB_PASSTHROUGH returns:

FB_PASSTHROUGH
value

17.3 Feedback on IRIS-4D/VGX, SkyWriter, and RealityEngine Systems

The IRIS-4D/VGX and SkyWriter systems return 32-bit floating point numbers
in feedback mode. The feedback data is in the following format:

<data type> <count> <count words of data>

There are five data types: FB_POINT, FB_LINE, FB_POLYGON, FB_CMOV, and
FB_PASSTHROUGH. The actual values of these data types are defined in gl/feed.h.
Following is the feedback format:

FB_POINT, count (9.0), x, y, z, r, g, b, a, s, t.
FB-LINE, count (18.0), x1, y1, z1, r1, g1, b1, a1, s1, t1, x2,
y2, z2, r2, g2, b2, a2, s2, t2.
FB_POLYGON, count (27.0), x1, y1, z1, r1, g1, b1, a1, s1, t1,
x2, y2, z2, r2, g2, b2, a2, s2, t2, x3, y3, z3, r3, g3, b3,
a3, s3, t3.
FB_PASSTHROUGH, count (1.0), passthrough.
FB-CMOV, count (3.0), x, y, z.

The x and y values are in floating point screen coordinates, the z value is the
floating point transformed z. Red, green, blue, and alpha are floating point
values ranging from 0.0 to 255.0 in RGB mode. In color map mode, the color

17-8 Feedback

index is stored in the red value and ranges from 0.0 to 4095.0. The green, blue,
and alpha values are undefined in color map mode. The s and t values are in
floating point texture coordinates.

RealityEngine returns the following feedback data for points, lines, and
triangles:

x,y,z /* position */
r,g,b,a /* color */
s,t,u,q /* texture */

17.4 Feedback Example

The following program transforms some simple geometric figures and the
results are returned in a buffer.

In this example, feedback() puts the system to into feedback mode, and tells
the system to return all data into the buffer (either fbuf or sbuf, depending on
the machine type). In addition, the 110 indicates that the size of the buffer is
110 data items. If more than 110 items of data are generated, only the first 110
are saved. The geometry is drawn (in feedback mode), and endfeedback()

ends the feedback session. endfeedback() returns the total number of items
returned in the buffer. If an overflow occurs, the system returns a error. Finally,
the loop at the end prints out the contents of the feedback buffer.

#include <stdio.h>
#include <string.h>
#include <gl/gl.h>

#define BUFSIZE 110

float vert[3][2] = {
{0.1, 0.2},
{0.7, 0.4},
{0.2, 0.7}

};

void drawit()
{

pushmatrix();
color(WHITE);
bgnpolygon();

v2f(vert[0]);

Graphics Library Programming Guide 17-9

v2f(vert[1]);
v2f(vert[2]);

endpolygon();
translate(0.1, 0.1, 0.0);
color(RED);
bgnline();

v2f(vert[0]);
v2f(vert[1]);
v2f(vert[2]);

endline();
translate(0.1, 0.1, 0.0);
color(GREEN);
bgnpoint();

v2f(vert[0]);
v2f(vert[1]);
v2f(vert[2]);

endpoint();
popmatrix();

}
/* feedback buffer is an array of floats on Personal Iris and
VGX */
Boolean floatfb()
{

char model[12];
Boolean isPI, isVGX;
gversion(model);
isPI = (strncmp(&model[4], “PI”, 2) == 0);
isVGX = (strncmp(&model[4], “VGX”, 3) == 0);
return (isPI || isVGX);

}

main()
{

short sbuf[BUFSIZE];
float fbuf[BUFSIZE];
void *buf;
long i, count;
Boolean hasfloatfb;
foreground();
prefsize(400, 400);
winopen(“feedback”);
color(BLACK);
clear();
ortho2(0.0, 1.0, 0.0, 1.0);
hasfloatfb = floatfb();
drawit();

17-10 Feedback

if (hasfloatfb)
buf = fbuf;

else
buf = sbuf;

feedback(buf, BUFSIZE);
drawit();
count = endfeedback(buf);
if (count == BUFSIZE) {

printf(“Feedback buffer overflow\n”);
return 1;

}
else

printf(“Got %d items:\n”, count);
for (i = 0; i < count; i++) {

if (hasfloatfb)
 printf(“%.2f”, fbuf[i]);
else

 printf(“%d”, sbuf[i]);
if (i % 8 == 7)

printf(“\n”);
else

printf(“\t”);
}
printf(“\n”);
sleep(10);
gexit();
return 0;

}

17.5 Additional Notes on Feedback

Any graphics subroutines can be called between feedback() and
endfeedback(), but only subroutines generating points, lines, polygons,
cmovs, or passthroughs can generate values in the feedback buffer. If, for
example, you are writing code to generate both a display and data for a plotter,
certain data can be lost (polygon patterning, for example). If it is necessary to
use this information in the plotting package, you should encode it somehow
into passthrough() commands.

Also note that subroutines such as curve(), patch(), and mesh(), generate
feedback buffer data, because they are converted in the graphics pipeline into
a series of lines or polygons.

Graphics Library Programming Guide 18-1

Chapter 18

18. Textures

This chapter describes the texture capabilities of the IRIS GL. Texture is not
available on every system. If you are not using a system that supports texture,
you may want to skip to Chapter 19, “Using the GL in a Networked
Environment.”

Some systems perform texturing in software, and others have special
hardware for texturing. Systems that use software texturing do not exhibit the
same level of texture performance as systems that use hardware texturing, so
plan carefully when using texture on systems that use software texturing.

• Section 18.1, “Texture Basics,” begins by introducing some
terminology that you need to know to understand textures.

• Section 18.2, “Defining a Texture,” tells you how to define a texture and
how to optimize image quality.

• Section 18.3, “Using Texture Filters,” describes how to use filters to
modify how textures are treated by the system.

• Section 18.4, “Using the Sharpen and DetailTexture Features,” describes
two advanced texture features that are available on RealityEngine
systems.

• Section 18.5, “Texture Coordinates,” tells you how to assign texture
coordinates to define a mapping into object space.

• Section 18.6, “Texture Environments,” tells you how to set the texture
environment to modify the color and opacity of textured polygon pixels.

• Section 18.7, “Texture Programming Hints,” presents strategies for
achieving the maximum texture mapping performance from the GL.

• Section 18.8, “Sample Texture Programs,” contains two sample programs
that illustrate two different ways of using textures.

18-2 Textures

18.1 Texture Basics

Texture adds realism to an image. You can use texture in a variety of ways to
enhance visual information. Use texture to:

• show the material of an object. For example, wrap a wood grain
pattern around a rectangular solid to create a block of wood.

• create patterned surfaces such as brick walls and fabrics by repeating
textures across a surface.

See the brick.c sample program in Section 18.8, “Sample Texture
Programs,” for an example of how to create a brick texture.

• simulate physical properties for scientific visualization applications. For
example, temperature data represented by color can be mapped onto an
object to show thermal gradients.

See the heat.c sample program in Section 18.8 for an example of how to
use texture to show a thermal gradient.

• simulate lighting effects such as reflections for photo-realistic images.

Figure 18-1 shows an example of some textures that can be used to represent
water, wood planks, and the end of a wood board. The water and wood plank
textures are photos. The wood cross-section texture is a synthetically
generated collection of light and dark hues.

Figure 18-1 Textures for Wood and Water

Water texture Wood plank texture Wood cross-section

Graphics Library Programming Guide 18-3

Figure 18-2 shows how these textures are applied to objects in a 3-D scene.

Figure 18-2 Fully Textured Scene

Textures are usually specified in two dimensions for most applications.
RealityEngine systems allow three-dimensional textures. Definitions and uses
of 2-D and 3-D textures follow.

18.1.1 2-D Textures

Texture mapping is a technique that applies an image to an object’s surface as if
the image were a decal or cellophane shrink-wrap. The image exists in a
coordinate system called the texture space. The coordinate axes S and T define
a 2-D texture space. A texture is a function that is defined on the interval 0 to 1
along both axes in the texture space. The individual elements of a texture are
called texels. Texels are indexed with (s,t) coordinate pairs.

18-4 Textures

Figure 18-3 shows how a simple stripe texture is defined in 2-D texture space
and mapped to 3-D object space. The mapping describes where the texels are
placed in object space. This is not always a one-to-one mapping to screen
pixels, as you will see later.

Figure 18-3 Mapping from 2-D Texture Space to 3-D Object Space

18.1.2 3-D Textures

This section describes an advanced feature that is available only on
RealityEngine systems, so you may want to skip to section Section 18.1.3,
“How to Set Up Texturing,” if you do not have one of these systems.

RealityEngine systems let you specify 3-D textures. Figure 18-4 shows a 3-D
texture. Three-dimensional textures can also be thought of as an array of 2-D
textures, as illustrated by the diagram on the right of the 3-D texture.

Figure 18-4 3-D Texture

0.0 1.0
S

1.0

T

X

Y

Z

Texture space
Object space

t

s

Mapping
texel

0,0,0
1,0,0

0,1,0 1,1,0 s

t

1,1,10,1,1

1,0,1
0,0,1

r

Graphics Library Programming Guide 18-5

The 3-D texture is mapped into (s,t,r) coordinates such that its lower left back
corner is (0,0,0) and its upper right front corner is (1,1,1).

3-D textures can be used for

• Volume rendering.

• Examining a 3-D volume one slice at a time.

• Animating textured geometry—for example, people that move.

Texel values defined in a 3-D coordinate system form a texture volume.
Textures can be extracted from this volume by intersecting it with a 3-D plane,
as shown in Figure 18-5.

Figure 18-5 Extracting an Arbitrary Planar Texture from a 3-D Texture Volume

The resulting texture, which is applied to a polygon, is the intersection of the
volume and the plane. You determine the orientation of the plane by
supplying, or by having the GL supply, texture coordinates.

T

18-6 Textures

18.1.3 How to Set Up Texturing

This list provides an overview of the steps used to set up texturing.

1. Use getgdesc(GD_TEXTURE) to determine whether your system supports
texturing.

2. Create a texture by defining a texture image.

3. Specify a set of texture properties that describes the number of
components in the texture and how the texture should be filtered.

4. Assign texture coordinates to the vertices of geometric primitives, either
explicitly or automatically, to define a mapping from texture space to
geometry in object space.

5. Choose a texture environment that specifies how texture values should
modify the color and opacity of an incoming shaded pixel. You can use
this feature to indicate whether you want the texture to be completely
opaque on top of the pixel, let some of the pixel color show through, or
mix the pixel color with the texture.

Each of these steps is discussed in detail in the following sections.

18.2 Defining a Texture

A texture function consists of an image defined as an array of texels and a set
of parameters that determines how samples are derived from the image. The
texture image can be any image that you have constructed, scanned in, or
captured from the screen.

Regardless of its dimensions, the texture image is mapped into an (s,t,[r])
coordinate range such that its lower-left-back corner is (0.,0.,[0.]) and its
upper-right-front corner is (1.,1., [1.]).

Note: For a 2-D texture, r is always ignored.

Graphics Library Programming Guide 18-7

18.2.1 Using Texture Components

The elements of the texture array are constructed with one to four components
per texel. Table 18-1 lists the texture types and the components for each type.

Intensity is used to show color variations (shades) within the same color value.
Alpha is used to indicate the transparency of the color.

Suggestions for choosing a texture type to achieve certain effects follow.

Use a 1-component texture to create subtle variations in surfaces. For example,
vary the intensity of a brown shade to turn plain brown hills into hills with
shades of light to dark brown. You can also use a 1-component texture with a
texture environment to create blended textures, such as a blue-and-white sky.
The wood and the water in Figure 18-2 are examples of 1-component textures.

Use a 2-component texture to create surfaces with subtle color variations on
geometry that has irregular edges. For example, use a 2-component texture to
create a tree with many shades of green. The 2-component texture used for the
foliage varies in intensity, creating different shades of green from light to dark.
Another 2-component texture is used for the trunk, which has different shades
of brown. 1-component and 2-component textures are sufficient for
representing many types of objects and are effective because they use less
memory than 3- and 4-component textures.

Alpha, the other component of the 2-component texture, is used to indicate
how transparent the texture is. Commands that determine how alpha affects
the manner in which a texture is drawn include afunction(),
blendfunction(), and on Reality Engine, msalpha().

Note: On RealityEngine, use multisampling with the msalpha() feature
rather than afunction() to define the edges of the tree.

Texture Type Components

1-component Intensity

2-component Intensity, Alpha

3-component Red, Green, Blue

4-component Red, Green, Blue, Alpha

Table 18-1 Texture Components

18-8 Textures

Figure 18-6 shows an example of a tree created with a 2-component texture.
The tree is a single rectangular polygon that has a scanned photo of a tree
superimposed on it. This polygon can be rotated about the center of the trunk,
as shown by the outlines, so that it is always facing the viewer.

Figure 18-6 Example of a Tree Created with a 2-component Texture

Representing complex surfaces by texturing simple polygons rather than by
creating complex geometry with multiple polygonal faces can achieve greater
realism and better performance. You can experiment with the performance
trade-off between the number of polygons and the use of texturing to get the
best possible solution for your application.

Graphics Library Programming Guide 18-9

18.2.2 Loading a Texture Array

Textures are loaded into a memory array that the system accesses when
rendering the textured surface. Figure 18-7 shows how the texture array is
constructed for an 8-bit–per-component image.

Figure 18-7 Structure of a Texture Array

I1 I2 I3

I4 I5 I6

I7 I8 I9

A1 I1 A2

A3 I3

A4 I4 A5

A6 I6

A7 I7 A8

A9 I9

I2

I5

I8

B1 G1 R1

G2 R2

R3

B4 G4

G5 R5 B6

R6

B2

G6

G8 R8 B9

R9

G9

B3 G3

B7 G7 R7 B8

R4 B5

A1 B1 G1

A2 B2

R1

G2 R2

A3 B3 G3

A4 B4

R3

G4 R4

A6 B6 G6 R6

A7 B7 G7

A8 B8

R7

G8 R8

A9 B9 G9 R9

A5 B5 G5 R5

n + 0

n + 1

n + 2

n + 0

n + 1

n + 2

n + 3

n + 4

n + 5

n + 0

n + 1

n + 2

n + 3

n + 4

n + 5

n + 6

n + 7

n + 8

n + 0

n + 1

n + 2

n + 3

n + 4

n + 5

n + 6

n + 7

n + 8

3 Component

4 Component

1 Component

2 Component

7 8 9

4 5 6

1 2 3

t

s

Texture

Byte address

Word
address

0 1 2 3

18-10 Textures

Figure 18-7 shows a texture consisting of 9 texels, which are numbered 1
through 9. The texels fill the texture from left to right, bottom to top. The
component information for each texel is stored as a packed array of unsigned
long words. This is the same format used by lrectread().

In Figure 18-7, the boxes represent blocks of memory. A long word is 32 bits,
and each byte of texture information requires 8 bits. Therefore, 4 bytes of texel
information can fit into each long word. Each row of texel information must be
long word-aligned, so the end of the row must be byte-padded to the end of
each long word. The diagram shows how the array is packed for an
8-bit–per-component texture of 1-, 2-, 3-, or 4- components, consisting of 9
texels.

Table 18-2 summarizes the relationships between texel component and byte
ordering.

For each polygon pixel to be textured, the texture function generates texture
components (color, intensity, alpha) based on the texel type, the texture map
coordinates of the pixel’s center, and the area in texels onto which the pixel
maps. The properties that you specify for the texture function determine how
the texture image is sampled and how the texture function is evaluated outside
the range (0.,0.,[0.]), (1.,1.,[1.]).

Note: All geometry including polygons, lines, points, and character strings
are texture-mapped. Character strings always have the texture
coordinates (0.,0.,[0.]).

Components Pixel Type Byte Ordering
(low-order to high-order)

1-Component Intensity I0, I1, I2, I3, I4,...

2-Component Intensity-Alpha A0, I0, A1, I1, A2,...

3-Component Red, Green, Blue B0, G0, R0, B1, G1,...

4-Component Red, Green, Blue, Alpha A0, B0, G0, R0, A1,...

Table 18-2 Texture Image Array Format

Graphics Library Programming Guide 18-11

18.2.3 Defining and Binding a Texture

Textures use the define/bind paradigm that was introduced in Chapter 9.

Use texdef2d() or texdef3d() to define a texture and texbind() to activate a
texture.

Textures can be redefined by calling texdef2d() or texdef3d() with the
index of a previously defined texture. As with materials, only one texture can
be active, or bound, at a time. The binding process and defining process are
separated for performance reasons—it takes substantially less time to bind a
texture than it takes to define one.

The ANSI C specifications for texdef2d() and texdef3d() are:

void texdef2d(long index, long nc, long width, long height,
unsigned long *image, long np, float props)

void texdef3d(long index, long nc, long width, long height,
long depth, unsigned long *image, long np, float props)

where:

index is a unique index, or name, that identifies the texture. Index 0
is reserved as a null definition, and it cannot be redefined.

nc is the number of components per texel (1, 2, 3, or 4).

width is the width of the texture image in texels.

height is the height of the texture image in texels.

depth is the depth of the texture image in texels.

image is a word-aligned array containing the texel data.

np is the number of symbols and floating point values in the props
array, including the termination symbol TX_NULL. If np is zero,
it is ignored, but operations over network connections are
more efficient when np is correctly specified.

props is an array of floating point symbols and values that define
how to interpret the texture function. The props array contains
a sequence of symbols, each followed by the appropriate
number of floating point values. The last symbol in the array
must be TX_NULL, which terminates the array.

18-12 Textures

The following code fragment illustrates how to use texdef2d() to define a 2-D
brick texture:

float texprops[] = {TX_MINFILTER, TX_POINT,
 TX_MAGFILTER, TX_POINT,
 TX_WRAP,TX_REPEAT, TX_NULL};

texdef2d(1, 1, 8, 8, bricks, 7, texprops);

The current texture, bricks in this case, is bound using the texbind() call:

texbind(TX_TEXTURE_0, 1);

In this example, the array texprops explicitly specifies TX_MINFILTER, the filter
function that is used for minifying texture when the pixel being textured maps
onto an area greater than one texel, and TX_MAGFILTER, the filter function that
is used when the pixel being textured maps to an area less than or equal to one
texel. See Section 18.3, “Using Texture Filters,” for a discussion of minification
and magnification filters. In the brick example, TX_MINFILTER and
TX_MAGFILTER are both set to use point-sampling filters.

TX_WRAP, which specifies what to do when the (s,t,[r]) coordinates are outside
the range 0.0 through 1.0, is set to TX_REPEAT. TX_REPEAT specifies that only the
fractional parts of the texture coordinates are used, thereby creating a
repeating pattern. TX_REPEAT is the default. By setting TX_WRAP to TX_REPEAT,
the small 8×8 pattern is repeated across the polygon, creating an entire wall of
bricks.

You can specify the wrapping behavior per coordinate, rather than globally:

TX_WRAP_S specifies the wrapping behavior only for the s texture coordinate.

TX_WRAP_T specifies the wrapping behavior only for the t texture coordinate.

TX_WRAP_R specifies the wrapping behavior only for the r texture coordinate.

If you replace TX_REPEAT with TX_CLAMP, you see the brick pattern only once
on the polygon, where the (s, t) coordinates are in the range (0.,1.). The edges
of the texture are smeared across the rest of the polygon. TX_CLAMP is useful for
preventing wrapping artifacts when mapping a single image onto an object.

TX_TILE, a property that is not used in the brick example, supports mapping
of high-resolution images with multiple rendering passes. By splitting the
texture into multiple pieces, each piece can be rendered at the maximum
supported texture resolution. For example, to render a scene with 2× texture

Graphics Library Programming Guide 18-13

resolution, texdef2d() is called four times. Each call includes the entire
image, but specifies a different subregion of that image to be converted into a
texture.

TX_TILE is followed by four floating point coordinates that specify the x and y
coordinates of the lower-left corner of the subregion, then the x and y
coordinates of the upper-right corner of the subregion. The original texture
image continues to be addressed in the range 0,0 through 1,1. However, the
subregion occupies only a fraction of this space, and pixels that map outside
the subregion are not drawn.

To divide the image both horizontally and vertically into quadrants, the
corners of the subregions should be (0,0 .5,.5), (.5,0 1,.5), (0,.5 .5,1), and (.5,.5
1,1). The scene is then drawn four times, each time calling texbind() with the
texture ID of one of the four quadrants. In each pass, only the pixels whose
texture coordinates map within that quadrant are drawn.

If the image, or the specified subregion of the image, is larger than what can be
handled by the hardware, it is reduced to the maximum supported size
automatically, with no indication other than the resulting visual quality.
Because subregions are specified independently, they should all be the same
size. Otherwise, some subregions may be reduced while others are not.

18.2.4 Selecting the Texel SIze

This section describes an advanced feature that is available only on
RealityEngine systems, so you may want to skip to Section 18.3, “Using
Texture Filters,” if you do not have one of these systems.

RealityEngine supports three internal texel sizes: 16-bit, 32-bit, and 64-bit. You
can change this internal format to select the texel size that best suits your
application needs. There is a trade-off between image quality and speed. The
fill rate is inversely proportional to the texel size; thus, the fill rate doubles
when the texel size is halved.

The default texel size for 1- and 2-component textures is 16 bits. The default
texel size for 3- and 4-component textures is 32 bits.

18-14 Textures

Each of the texel sizes is available with 12, 8, or 4 bits per component.
Table 18-3 shows the configurations possible, and the symbols for selecting
those configurations for the different texel sizes.

Use 16-bit texels for the fastest performance and to reduce memory usage.
16-bit texels with TX_RGBA_4 provide high performance and good image
quality, but if you don’t need alpha, use TX_RGB_5 for even better image
quality, because it increases the color resolution.

Use the 64-bit texel size for the highest resolution for color computations, for
example, in low-light-level simulations. This format provides 12-bit per
component capability for R,G,B,A texture maps. The advantage of 12 bits per
component is that it increases the number of color levels for each component
from 256 to 4096, greatly enhancing the precision of the color computation.

Use the 32-bit texel size when you want to balance performance halfway
between speed and image quality.

The texel size and bit configuration of the texture components are set as
internal and external format hints in the props array of the texdef2d() and
texdef3d() commands.

Use TX_INTERNAL_FORMAT in the props array as a hint to trade image quality
for speed. This hint affects the precision used internally in texture function
computations. Because the performance of texture function implementations
is typically constrained by texel accesses per screen pixel, you can specify a
smaller internal texel size and often realize performance gain.

Texel Size 1-component 2-component 3-component 4-component

16-bit TX_I12_A4 TX_I12_A4,
TX_IA_8

TX_RGB_5 TX_RGBA_4

32-bit TX_IA_12 TX_RGBA_8 TX_RGBA_8

64-bit TX_RGB_12 TX_RGBA_12

Table 18-3 Texture Component Configuration for Different Texel Sizes

Graphics Library Programming Guide 18-15

The tokens for TX_INTERNAL_FORMAT are:

TX_I_12A_4 specifies that a 1- or 2-component texture should be computed
with at least 12 bits for intensity and 4 bits for alpha. Texel
size: 16 bits.

TX_IA_8 specifies that a 2-component texture should be computed
with at least 8 bits for intensity and 8 bits for alpha. Texel size:
16 bits.

TX_RGB_5 specifies that a 3-component texture should be computed
with at least 5 bits for red and blue and at least 6 bits for green.
Texel size: 16 bits.

TX_RGBA_4 specifies that a 4-component texture should be computed
with at least 4 bits per component. texel size: 16 bits.

TX_IA_12 specifies that a 2-component texture should be computed
with at least 12 bits per component. Texel size: 24 bits; may be
rounded up to 32 bits.

TX_RGBA_8 specifies that a 3- or 4-component texture should be computed
with at least 8 bits per component.Texel size: 32 bits.

TX_RGBA_12 specifies that a 4-component texture should be computed
with at least 12 bits per component.Texel size: 64 bits.

TX_RGB_12 specifies that a 3-component texture should be computed
with at least 12 bits per component. Texel size: 48 bits,
rounded to 64 bits.

TX_EXTERNAL_FORMAT specifies the size of the image components:

TX_PACK_8 specifies that the image is composed of 8-bit components. This
is the default.

TX_PACK_16 specifies that the image is composed of 16-bit components.

When the external format is larger than the internal format, the most
significant bits of the external format pixel are used. When the external format
is smaller than the internal format, the most significant bits of the external
format pixel are replicated in the lower order bits of the internal format. Thus,
three 8-bit external format components with the hexadecimal values AB,FF,00
become the three 12-bit internal format components with the hexadecimal
values ABA,FFF,000.

The next section describes the filters that can be specified in the props array.

18-16 Textures

18.3 Using Texture Filters

During the texture mapping process, the texture function computes texture
values based on the (s,t, [r]) texture coordinates at the center of the polygon
pixel that is being textured and the area in texture space onto which the pixel
maps. One of two filtering algorithms is used, depending on the size of this
area.

If the area is greater than the area of 1 texel, as shown in Figure 18-8, the texture
is minified to fit the screen pixel and the texture function’s minification filter is
used. Specify the minification filter with the TX_MINFILTER parameter.

Figure 18-8 Texture Minification

If the area is less than the area of 1 texel, as shown in Figure 18-9, the texture is
magnified to fill the screen pixel and the texture function’s magnification
algorithm is used. Specify the magnification filter with the TX_MAGFILTER
parameter.

Figure 18-9 Texture Magnification

Minification and magnification filters are discussed in detail in the sections
that follow.

Texture Polygon

Texture Polygon

Graphics Library Programming Guide 18-17

18.3.1 Minification Filters

Minification filters are used when multiple texels correspond to a single screen
pixel, as shown in Figure 18-10.

Figure 18-10 Texture Minification

In most cases, the best minification results are obtained by using a MIPmap to
minify the texture.

MIPmap Minification Filters

Figure 18-11 shows a MIPmap. MIP comes from a Latin term that means
“many things in a small place.” A MIPmap stores an array of prefiltered
versions of the texture image.

Figure 18-11 MIPmap

1 2 3
4 5 6
7 8 9

Texture Polygon

Original Texture

1/4

1/16

1/64

etc.

1 pixel

Pre-Filtered Images

18-18 Textures

Each image in the array has half the resolution of the image before it, but it still
maps into the texture coordinate range (0.,0.) to (1.,1.). Thus, the first image in
the MIPmap has a 1-to-1 texel-to-pixel correspondence. The second image has
a 4-to-1 correspondence, the third image, 16-to-1, and so on.

For any minification factor, there is one image in the MIPmap whose texels
map closely to an area in texture space that is less than or equal to the area that
the pixel being textured maps into. This image has the appropriate resolution,
so samples interpolated from this image do not have undersampling artifacts.

Each of the MIPmap filters works differently. The default minification filter for
systems other than RealityEngine is TX_MIPMAP_LINEAR or a filter of equal
performance, but better quality. Prefiltered versions of the image, when
required by the minification filter, are computed automatically by the GL.

RealityEngine uses high-performance trilinear MIPmap filtering by default.
Simultaneous parallel memory access allows the eight samples needed for
trilinear interpolation to be retrieved with a single memory access.

Trilinear interpolation is one of the highest quality texture functions available.
It produces images that look sharp when viewed from close range and that
remain stable under all circumstances. In addition, there is no perceptible
transition in the image as the textures move relative to the eyepoint.

RealityEngine also performs quadlinear MIPmap filtering of 3-D textures. This
is effectively a trilinear interpolation of a 3-D texture, automatically
generating a series of 3-D volumes, each 1/8 smaller than the one above. The
interpolation is performed between the 8 adjacent pixels in the MIPmap from
the two closest-bounding volume levels and then blended between the two
results, thus achieving a four-way interpolation.

Select the filter to use based on the type of application you are creating and the
quality and. performance results you want. Refer to Section 18.7, “Texture
Programming Hints,” for additional information on selecting a filter.

Note: Because the high-performance MIPmap filters available on
RealityEngine are superior to other MIPmap minification filters, the
GL always uses TX_MIPMAP_TRILINEAR for MIPmapping 2-D textures
and TX_MIPMAP_QUADLINEAR for MIPmapping 3-D textures for
applications running on a RealityEngine, no matter what filter is
specified in the props array.

Graphics Library Programming Guide 18-19

To select a minification filter, use the token TX_MINFILTER, followed by a single
symbol that specifies the minification filter. Values for TX_MINFILTER are listed
below, with descriptions of what they do.

Note: Filters marked with an asterisk(*) are currently available only on
RealityEngine systems.

TX_MIPMAP_POINT

chooses a prefiltered version of a 2-D texture, based on the
number of texels that correspond to 1 screen pixel. The value
of the pixel that is nearest to the (s,t,r) mapping onto that
image is used to color the pixel.

TX_MIPMAP_LINEAR

chooses the two prefiltered versions of a 2-D texture that have
the nearest texel-to-screen pixel correspondence. A weighted
average of the values of the pixel in each of these images that
is nearest to the (s,t,r) mapping onto that image is used to
color the pixel.

TX_MIPMAP_BILINEAR

chooses a prefiltered version of a 2-D texture, based on the
number of texels that correspond to 1 screen pixel. The
weighted average of the values of the 4 pixels nearest to the
(s,t) mapping onto that image is used to color the pixel.

TX_MIPMAP_TRILINEAR

chooses the prefiltered version of the 2-D texture whose texel
size most closely corresponds to screen pixel size. A weighted
average of the values of the pixels nearest to the mapping onto
that image is used to color the pixel.

For 2-D textures, TX_MIPMAP_TRILINEAR chooses the two
prefiltered versions of the image that have the nearest
texel-to-screen pixel size correspondence. A weighted
average of the values of the 4 pixels in each of these images
that are nearest to the (s,t) mapping onto that image is
computed. The weighted averages from the two levels are
then themselves interpolated.

For 3-D textures, this filter is analogous to MIPMAP_BILINEAR

for the 2-D textures—that is, the filter chooses the prefiltered
MIPmap image whose texel size most closely corresponds to
screen pixel size and uses the weighted average of the values
of the 8 pixels nearest to the (s,t,r) mapping onto that image.

18-20 Textures

Note: TX_MIPMAP_TRILINEAR is available only on
SkyWriter, VGXT, and RealityEngine systems.

TX_MIPMAP_QUADLINEAR*

chooses the two prefiltered versions of a 3-D texture that have
the nearest texel-to-screen pixel size correspondence. A
weighted average of the 8 pixels in each of these images that
are nearest to the (s,t,r) mapping onto that image is computed.
The weighted averages from the two levels are then
themselves interpolated.

TX_MIPMAP_FILTER_KERNEL*

specifies an 8x8x8 kernel to use as a separable symmetric filter
to generate MIPmap levels. Because it is separable and
symmetric, only one dimension needs to be specified. The
eight floating point values that follow the token specify the
kernel. The default that is used for implementations which do
not correct for perspective distortion is 0.0, 0.0, 0.125, 0.375,
0.375, 0.125, 0.0, 0.0. The default that is used for
implementations which correct for perspective distortion is
0.0, -0.03125, 0.05, 0.48125, 0.48125, 0.05, -0.03125, 0.0. This
filter blurs less than the others.

Other Minification Filters

Minification can be performed without MIPmapping. To minify textures
without using a MIPmap, select one of these filters:

Note: Filters marked with an asterisk(*) are currently available only on
RealityEngine systems.

TX_POINT uses the value of the texel, in either a 2-D or 3-D texture, that
is nearest to the (s,t,r) mapping onto the texture to color the
pixel.

TX_BILINEAR uses a weighted average of the values of the 4 texels in a 2-D
texture that are nearest to the (s,t) mapping onto the texture.

TX_TRILINEAR*uses a weighted average of the values of the 8 texels of a 3-D
texture that are nearest to the (s,t,r) mapping onto the texture.

TX_BICUBIC* computes a smoothly weighted average of a 4×4 region of
texels in a 2-D texture that are nearest to the (s,t) mapping
onto the texture.

Graphics Library Programming Guide 18-21

The drawback of using either the TX_POINT or the TX_BILINEAR filter for
minification is that only 1, or 4, of the texture pixels that map onto the area of
the pixel being textured are considered in the texture value computation. If the
texture is mapped so that it is shrunk by a factor greater than two, it may
exhibit scintillation, a shimmering or swimming motion as if it is not tacked
firmly to the surface, or it may appear to have a moire pattern on top of it.

Aliasing artifacts such as these result from undersampling— not including in
the texture value computation the contributions of all of the texture pixels that
map onto the pixel being textured. Artifacts caused by undersampling can be
alleviated by using one of the MIPmap filters.

To see how MIPmap filtering reduces aliasing and blockiness, change the
texprops array of the brick texture to:

float texprops[] = {TX_MINFILTER, TX_MIPMAP_BILINEAR,
TX_MGFILTER, TX_BILINEAR, TX_WRAP,TX_REPEAT, TX_NULL};

Sometimes you may not want the blurring that results from MIPmap filtering,
as is frequently the case when texture alpha is used as a geometry
approximating template—for example, in defining the outline of a row of
trees. In these circumstances, TX_BILINEAR is a good minification filter choice
on systems other than RealityEngine. RealityEngine supports a feature called
SharpenTexture, described in Section 18.4, “Using the Sharpen and
DetailTexture Features,” to maintain the crispness of edges on textured
geometry.

18.3.2 Using Magnification Filters

Magnification filters are used when multiple screen pixels correspond to 1
texel, as shown in Figure 18-12.

Figure 18-12 Texture Magnification

1 2 3
4 5 6
7 8 9

Texture Polygon

18-22 Textures

To select a magnification filter, use the token TX_MAGFILTER, followed by a
single symbol that specifies the magnification filter. Values for TX_MAGFILTER
are listed below, with descriptions of what they do.

Note: Filters marked with an asterisk (*) are currently available only on
RealityEngine systems.

TX_POINT Used for either 2-D or 3-D textures to select the value of the
texel nearest to the (s,t,[r]) mapping onto the screen pixel of
the polygon that is being textured. For example, in
Figure 18-12, TX_POINT selects texel number 7 for texturing
the highlighted polygon pixel.

On systems other than RealityEngine, TX_POINT is generally
faster than TX_BILINEAR, but has the drawback that mapped
textures can appear boxy because there is not as smooth a
transition between the texels as there is with TX_BILINEAR. If
the texture image does not have sharp edges, this effect
might not be noticeable.

TX_BILINEAR Used for 2-D textures, to select the weighted average of the
values of the 4 texels nearest to the (s,t) mapping onto the
texture. For example, in Figure 18-12, TX_BILINEAR would
cause a weighted average of texels 4, 5, 7, and 8 to be used to
color the screen pixel.

TX_TRILINEAR*Used for 3-D textures, to select the weighted average of the
values of the 8 texels nearest to the (s,t,r) mapping onto the
texture.

TX_BICUBIC* Used for 2-D textures, to compute a smooth weighted average
of a 4×4 region of texels nearest to the (s,t) mapping onto the
texture.

See the texdef(3G) man page for the formulas used to compute filter
parameters.

See Section 18.4, “Using the Sharpen and DetailTexture Features,” for
information on three additional magnification filters— TX_SHARPEN,
TX_ADD_DETAIL, and TX_MODULATE_DETAIL—that can be used for enhancing
the image quality of magnified textures on RealityEngine systems.

Graphics Library Programming Guide 18-23

18.4 Using the Sharpen and DetailTexture Features

This section describes an advanced feature that is available only on
RealityEngine systems, so you may want to skip to Section 18.5, “Texture
Coordinates,” if you do not have one of these systems.

The appearance of a textured surface can vary, depending on whether it is seen
from a distance or close up. For example, from a distance you see the lane
markings and reflectors on a road, but close to its surface you see only gravel
and tar.

There are two types of problems that occur when the eyepoint is close to a
textured surface:

• The texture lacks sufficient detail for close-ups.

• The texture image is out of focus as a result of over-magnification.

RealityEngine provides solutions for these problems with Sharpen and
DetailTexture. These two features enable low-resolution textures to be as crisp
as high-resolution textures without taking up a lot of texture storage space.

Sharpen works best when the high-frequency information is used to represent
edge information. A stop sign is an example of this type of texture—the edges
of the letters have distinct outlines. Magnification normally causes the letters
to blur, but Sharpen keeps the edges crisp.

DetailTexture works best for a texture with high-frequency information that is
not strongly correlated to its low-frequency information. This occurs in images
that have a uniform color and texture variation throughout, such as a field of
grass or a wood panel with a uniform grain.

18.4.1 Using the Sharpen Feature

Textures must often be magnified for close-up views. However, not all textures
can be magnified without looking blurry or artificial. The fine details of a
texture, such as the precise edges of letters on a sign, are supplied by
high-frequency image data within a high-resolution image. When the
high-frequency data is missing, the image is blurred.

Sharpen uses the top two levels of a MIPmap to extrapolate high-frequency
information beyond the texture image in the top level of the MIPmap.

18-24 Textures

Sharpen lets you use a lower resolution texture map, yet preserve the
sharpness of the edges in the original image. This allows you to use less texture
storage per texture.

Sharpen maintains edges that bilinear magnification normally blurs. For
example, Sharpen works exceptionally well for textures such as the stop sign
and for textures whose alpha represents geometry with intricate edges, such as
a tree. During the magnification process the edges are extrapolated and they
stay crisp.

To use Sharpen, specify the TX_SHARPEN token for TX_MAGFILTER.

How Sharpen is Computed

The GL computes a Level-of-Detail (LOD) factor at each pixel it textures. LOD
is the magnification factor above the base level. LOD n is a 2n magnification.
For example, if a 512×512 base texture is LOD 0, its LOD (−1) texture is
256×256.

To produce a sharpened texel n LODs above the base texture, the GL adds n
times the weighted difference between the texel at LOD 0 and LOD (−1) to
LOD 0, or

LODn = LOD0 + weight(n) * (LOD0 - LOD(-1))

where:

n is the number of levels of extrapolation.

weight(n) is the sharpening multiplier function.

LOD 0 is the base texture.

LOD (−1) is the texture at half resolution.

By default, the GL uses a linear extrapolation function, where weight(n) = n.

Graphics Library Programming Guide 18-25

Customizing the Sharpen Function

Sharpen can cause ringing in some textures when they are magnified too
much. The weight can be varied to create a nonlinear LOD extrapolation curve
and/or the extrapolation function can be clamped to reduce the ringing.

Figure 18-13 shows LOD extrapolation curves as a function of weight and
magnification factors.

The curve on the left is the default linear extrapolation, where weight(n)=1∗ n.
The curve on the right is a nonlinear extrapolation, where the weight function
is modified to control the amount of sharpening so that less sharpening is
applied as the magnification factor increases.

Figure 18-13 LOD Extrapolation Curves

Use TX_CONTROL_POINT to specify control points for shaping the sharpen
function.The first control point specifies the LOD, and the second control point
specifies a weight multiplier for that magnification level.

For example, to gradually ease the sharpening effect—use a nonlinear LOD
extrapolation curve, as shown on the right in Figure 18-13—with these control
points:

TX_CONTROL_POINT, 0., 0.,
TX_CONTROL_POINT, 1., 1.,
TX_CONTROL_POINT, 2., 1.7,
TX_CONTROL_POINT, 4., 2.0,

0 1 2 3 0 1 2 3

22

n

2n Magnification

Weight

n

2n Magnification

Weight

Default LOD extrapolation Custom LOD extrapolation

44

18-26 Textures

If a texture exhibits ringing when it is magnified with Sharpen—for example,
beyond a 6× magnification, you can set the TX_CONTROL_CLAMP to clamp at the
maximum allowable extrapolation.

Figure 18-14 shows how the default linear extrapolation on the left can be
clamped at an arbitrary LOD value, 2.5 in this case, beyond which
extrapolation is clamped.

Figure 18-14 Clamping the LOD Extrapolation

Specify a clamp at LOD 2.5 as follows:

TX_CONTROL_CLAMP, 2.5

You can sharpen the alpha or the color of a texture independently by explicitly
setting the magnification filter to use for color and alpha. For example, use the
following functions to maintain the precise edges of a geometry described by
alpha such as a tree, while allowing the colors to blur:

TX_MAGFILTER_ALPHA, TX_SHARPEN,
TX_MAGFILTER_COLOR, TX_BILINEAR,

0 1 2 3

2

n

2n Magnification

Weight

Default LOD extrapolation

4 0 1 2 3

2

n

2n Magnification

Weight

Clamped LOD extrapolation

4

TX_CONTROL_CLAMP

Graphics Library Programming Guide 18-27

18.4.2 Using DetailTextures

Ideally, you would always use textures that have high enough resolution to
allow magnification without bluriness. High-resolution textures maintain
realistic image quality for both close-up and distant views. For example, in a
high-resolution road texture, both the large features, such as potholes, oil
stains, and lane markers that are visible from a distance, as well as the asphalt
of the road surface, look realistic no matter where the viewpoint is.

Unfortunately, a high-resolution road texture with that much detail may be as
large as 2K×2K, which exceeds the maximum texture storage capacity of the
system. Making the image close to or equal to the maximum allowable size still
leaves little or no memory for the other textures in the scene.

RealityEngine provides a solution for representing the 2K×2K road texture
with the DetailTexture feature.

How DetailTexture Works

The detail elements of a texture, such as the asphalt in a road texture, are the
high-frequency components of a high-resolution image. Because the
high-frequency detail is virtually the same across a texture such as a road, the
high-frequency detail from any portion of the image can be used as the
high-frequency detail across the entire image.

Using the same high-frequency detail across the entire image allows the
high-resolution image to be represented with the combination of a
low-resolution image and a small high-frequency detail image, which is called
a DetailTexture. RealityEngine can combine these two images on-the-fly to
create an approximation of the high-resolution image.

Creating a DetailTexture and a Low-Resolution Texture

You can convert a high-resolution image into a low-resolution image and a
DetailTexture in the following manner:

Make the low-resolution image by shrinking the high-resolution image to the
desired resolution. You can then extract the high-frequency detail from the
high-resolution image by scaling the low-resolution image back up to the size
of the high-resolution image, then subtracting it from the original
high-resolution image.

18-28 Textures

The result is a difference image that contains only the high-frequency details of
the image. You can use any 256×256 subimage of this difference image as a
DetailTexture.

For example, follow these steps to create a 512×512 low-resolution texture, and
a DetailTexture from a 2K×2K high-resolution image:

1. Make the low-resolution image as follows:

Use izoom or other resampling program to make the low-resolution image
by shrinking the high-resolution image by 2n. In this example, n is 2, so
the resolution of the low-resolution image is 512×512. This band-limited
image has had the n highest frequency bands of the original image
removed from it.

2. Make the DetailTexture as follows:

1. Use subimage, or other tool to select a 256×256 region of the original
high-resolution image, 2K×2K in this case, whose n highest frequency
bands are characteristic of the image as a whole.

For example, rather than choosing a subimage from the lane
markings, choose an area in the middle of a lane.

2. Optionally, you can make this image self-repeating along its edges to
eliminate the seams.

3. Make a blurry version of this 256×256 subimage.

First, shrink the 256×256 subimage by 2n, to 64×64 in this case.

Now, scale the resulting image back up to 256×256.

This image is blurry because it is missing the two highest frequency
bands present in the two highest levels of detail (LOD).

4. Subtract the blurry subimage from the original subimage. This signed
difference image has only the 2 highest frequency bands.

5. Add a bias to make the image unsigned. If the original image has 8
bits per component, add 128. If the original image has 12 bits per
component, add 2048. This is the DetailTexture.

6. Define and bind the low-resolution texture and the DetailTexture. See
“Defining and Binding the DetailTexture” for instructions.

Graphics Library Programming Guide 18-29

How DetailTexture is Computed

The GL computes the Level-of-Detail (LOD) at each pixel it textures. LOD is
the magnification factor above the base level. LOD n is a 2n magnification. In
the road example, the 512x512 base texture is LOD 0. The DetailTexture
combined with the base texture represents LOD 2, which is called the
maximum-detail texture.

When a pixel’s LOD is between 0 and 2, the GL linearly interpolates between
the texture as it looks at LOD 0 and LOD 2. Linearly interpolating between
more than 1 LOD can result in aliasing. To minimize aliasing between the
known LODs, the GL lets you specify a nonlinear interpolation curve.

Setting the Detail Control Points

Figure 18-15 shows the default linear interpolation and a nonlinear
interpolation curve that minimizes aliasing when interpolating between two
LODs.

Figure 18-15 LOD Interpolation Curves

The basic strategy is to use very little of the maximum-detail texture until the
LOD is within 1 LOD of the maximum-detail texture. More of the information
from the maximum-detail texture can be used as the LOD approaches LOD2.
At LOD 2, the full amount of detail is used, and the resultant texture exactly
matches the high-resolution texture.

Use TX_CONTROL_POINT to specify control points for shaping the curve.

0 1 2 3

1

0 1 2 3

Default LOD interpolation Custom LOD interpolation

1

n n
LOD = 2n Magnification LOD = 2n Magnification

Weight Weight

(3., 1.1)

(1.,.3)

(2., 1.)

Values of
TX_CONTROL_POINTs

18-30 Textures

The parameters for TX_CONTROL_POINT are LOD and weight, where weight is
used in the functions listed in Table 18-4 to control how the DetailTexture is
combined with the base texture.

The following control points can be used to create a nonlinear interpolation, as
shown in Figure 18-15, for the road texture example:

TX_CONTROL_POINT, 0.0, 0.0,
TX_CONTROL_POINT, 1.0, 0.3,
TX_CONTROL_POINT, 2.0, 1.0,
TX_CONTROL_POINT, 3.0, 1.1,

Notice that making the weight at LOD 3 greater than 1.0 extends the
extrapolation beyond the maximum-detail texture, which prevents the texture
from blurring beyond a 4× magnification.

Defining and Binding the DetailTexture

For a texture to be used as a DetailTexture, it is bound to the
TX_TEXTURE_DETAIL target rather than the familiar TX_TEXTURE_0 target, and
used with a texture that has TX_ADD_DETAIL or TX_MODULATE_DETAIL as a
magnification filter.

Use TX_DETAIL in the props array to define a DetailTexture. TX_DETAIL is
followed by five values, J, K, M, N, and scramble. J and K must be equal and M
and N must be equal. Currently, J and K must both be 4 and scramble must be
zero.

M and N describe the mapping of the DetailTexture to the base texture and are
given by the following formula:

(EQ 18-1)

where n is the number of frequency bands, or LODs, in the DetailTexture.

TX_MAGFILTER Formula

TX_ADD_DETAIL Factor(n) = weight(n) ∗ DetailTexture

TX_MODULATE_DETAIL Factor(n) = weight(n) * DetailTexture * base

Table 18-4 Formulas for Computing DetailTexture Filters

M N, 256
28 n–
------------=

Graphics Library Programming Guide 18-31

In the 2K×2K road texture example, the 256×256 detail texture maps to a 64×64
area of the 512×512 low-resolution texture, so the TX_DETAIL parameters for
the detail texture are:

TX_DETAIL, 4.,4.,64.,64.,0,

The magnification filter for the low-resolution texture is:

TX_MAGFILTER, TX_ADD_DETAIL

or

TX_MAGFILTER, TX_MODULATE_DETAIL

When a texture is used as a DetailTexture, the properties MINFILTER,
MAGFILTER, MAGFILTER_COLOR, MAGFILTER_ALPHA, TX_WRAP, TX_WRAP_S,
TX_WRAP_T, TX_WRAP_R, TX_MIPMAP_FILTER_KERNEL, TX_CONTROL_POINT,
TX_CONTROL_CLAMP, and TX_TILE have no effect.

Note: The DetailTexture must have the same number of components and the
same number of bits per component as the base texture.

The following code fragment provides another example of how to use a
DetailTexture:

To define and bind a a DetailTexture, use these properties:

TX_DETAIL, 4., 4., 4., 4., 0, TX_NULL

To apply a DetailTexture to another texture, use:

#define MAX_DETAIL 1.0

TX_MAGFILTER, TX_MODULATE_DETAIL,
TX_CONTROL_POINT, 0., 0.0,
TX_CONTROL_POINT, 0.5, 0.05,
TX_CONTROL_POINT, 2., 0.4,
TX_CONTROL_POINT, 5., MAX_DETAIL,
TX_CONTROL_CLAMP, MAX_DETAIL.

/* a detail texture must be bound and a base texture must be bound */
texbind(TX_TEXTURE_DETAIL, detail_texture_id);
texbind(TX_TEXTURE_0, texture_id);

Note: You cannot bind one DetailTexture to another DetailTexture.

18-32 Textures

18.5 Texture Coordinates

This section describes how to map textures onto object geometry using texture
coordinates and how texture coordinates are generated at screen pixels.

To define a texture mapping, you assign texture coordinates to the vertices of
a geometric primitive, a process called parameterization. You can either assign
texture coordinates explicitly with the t() subroutines, or let the system
automatically generate and assign texture coordinates using the texgen()
subroutine. You can also use a NURBS texture as described in Chapter 14.

The current texture matrix transforms the texture coordinates. This matrix is
set while in mmode(MTEXTURE) and is a standard transformation matrix.

The final step generates (s,t, [r, q]) at every pixel center inside a geometric
primitive by interpolating between the vertex texture coordinates as it fills the
geometric primitives during scan conversion.

Note: On RealityEngine, a full 3-D projective transformation is supported.

The IRIS-4D/VGX uses hardware to interpolate texture coordinates linearly.
Although hardware interpolation is very fast, it is incorrect for perspective
projections. The scrsubdivide() subroutine improves interpolation—and
consequently image quality—for perspective projections on the VGX.

SkyWriter, VGXT, and RealityEngine systems use an enhanced hardware
interpolation that does not require the use of scrsubdivide(). IRIS Indigo
Entry, XS, XS24, and Elan can perform the perspective correction in software if
getgdesc(GD_TEXTURE_PERSP) = 1.

18.5.1 Assigning Texture Coordinates Explicitly

Use the t() subroutines to specify individual texture coordinates explicitly.
The argument you specify for t() is a 2-, 3-, or 4-element array whose type can
be short, long, float, or double. Like vertex coordinates, texture coordinates can
be 2-D, 3-D, or 4-D. Specify the texture coordinates s, t, q, and r in that order for
the array. The default for r is 0 and the default for q is 1.

Note: 3-D and 4-D texture coordinates are currently supported only on
RealityEngine.

Graphics Library Programming Guide 18-33

Table 18-5 lists the formats for the t() subroutine.

Call the t() subroutines within a bgnpolygon()/endpolygon() sequence to
texture individual vertices, as illustrated below.

bgnpolygon();
t2f (coord1);
v3f (vertex1);
t2f (coord2);
v3f (vertex2);
t2f (coord3);
v3f (vertex3);
t2f (coord4);
v3f (vertex4);

endpolygon();

18.5.2 Generating Texture Coordinates Automatically

The texgen() subroutine generates texture coordinates as a function of object
geometry. Coordinates are generated on a per-vertex basis and override
coordinates specified by the t() commands. You can independently control
the generation of either or both texture coordinates. If you generate only one
coordinate, the other is specified by the t() subroutines.

texgen() can compute the distance of a vertex from a reference plane and
calculate texture coordinates proportional to this distance.

The following form of the plane equation is used to define the reference plane:

(EQ 18-2)

 Array Type 2-D 3-D 4-D

Short integer t2s() t3s() t4s()

Long integer t2i() t3i() t4i()

Float t2f() t3f() t4f()

Double t2d() t3d() t4d()

Table 18-5 The t() Subroutine

Ax By Cz D+ + + 0=

18-34 Textures

Where the plane normal is the vector (EQ 18-3)

and the plane constant is D.

For example, the plane X=Y that passes through the origin is {1., -1., 0., 0.}.

The TG_LINEAR mode defines the reference plane in object coordinates so that
the parameterization is fixed with respect to object geometry. For example, use
TG_LINEAR to texture terrain for which sea level is the reference plane. In this
case, the altitude of a terrain vertex is its distance from the reference plane. Use
TG_LINEAR to make the vertex altitude index the texture so that white snow is
mapped onto peaks and green grass is mapped onto foothills.

The following code fragment illustrates how to use the TG_LINEAR function to
generate s coordinates proportional to vertex distance from the object
coordinate plane. The first call to texgen() defines the generation algorithm
for the s coordinate. The second call activates coordinate generation so that the
system generates an s coordinate for each vertex.

float tgparams[] = {1., -1., 0., 0.};
texgen(TX_S, TG_LINEAR, tgparams);
texgen(TX_S, TG_ON, tgparams);

The TG_CONTOUR mode defines the specified plane in eye coordinates. The
ModelView matrix in effect at the time of mode definition transforms the plane
equation. Thus, the transformation matrix is not necessarily the same as that
applied to vertices. This mode establishes a “field” of texture coordinates that
can produce dynamic contour lines on moving objects.

The TG_SPHEREMAP mode defines parameters for reflection mapping, by
generating texture coordinates based on the vertex and current normal. This
causes a reflection of the nearby surrounding environment to map to the
surface.

A
B
C

Graphics Library Programming Guide 18-35

18.5.3 Texture Lookup Tables

This section describes an advanced feature that is available only on
RealityEngine systems, so you may want to skip to Section 18.6, “Texture
Environments,” if you do not have one of these systems.

RealityEngine supports the use of a texture lookup table (TLUT) for translating
texture function outputs. Texture function outputs are used by the texture
environment to modify the screen pixel color. The texture environment
function is defined by tevdef() and selected by tevbind().

For textures up to 8-bit per component, 1- or 2-component textures can
reference an 8-bit lookup table of 8-bit per component R,G,B,A values to
produce full-colored and translucent imagery from intensity textures. This
saves memory space and increases the overall texture capacity of the system.

The texture lookup table is defined by tlutdef() and selected by tlutbind().

The ANSI C specification for tlutdef() is:

void tlutdef(long index, long nc, long len,
unsigned long *table, long np, float *props)

where:

index is the name of the texture look-up table being defined. Index
0 is reserved as a null definition, and cannot be redefined.

nc is the number of components per table entry.

len is the length of table in table entries.

table is a long-word aligned array of packed nc, 8-bit, component
table entries.

np is the number of symbols and floating point values in props,
including the termination symbol TL_NULL. If np is zero, it is
ignored. Operation over network connections is more efficient
when np is correctly specified, however.

props is an array of floating point symbols and values that define the
texture look-up table. props must contain a sequence of
symbols, each followed by the appropriate number of floating
point values. The last symbol must be TL_NULL.

18-36 Textures

The ANSI C specification for tlutbind() is:

void tlutbind(long target, long index)

where:

target is the texture resource to which the texture function definition
is to be bound. The only appropriate resource is TL_TLUT_0.

index is the name of the texture function that is being bound. Name
is the index passed to texdef2d() when the texture function
is defined.

By default, texture look-up table definition 0 is bound to TL_TLUT_0. Texture
look-up table use is enabled when a texture function definition other than 0 is
bound to TX_TEXTURE_0, a texture environment definition other than 0 is
bound to TV_ENV_0, and a texture look-up table definition other than 0 is
bound to TL_TLUT_0.

Table 18-6 shows the relationship between the number of components in the
texture look-up table, the number of components in the texture, and the
resultant action.

TLUT nc Texture nc Action

2 1 I looks up I,A

2 I,A looks up I,A

3 R,G,B passes through unchanged

4 R,G,B,A passes through unchanged

 3 1 I looks up R,G,B

2 I,A passes through unchanged

3 R,G,B looks up R,G,B

4 R,G,B,A passes through unchanged

 4 1 I looks up R,G,B,A

2 I looks up R,G,B; A looks up A.

3 R,G,B,B looks up R,G,B,A

4 R,G,B,A looks up R,G,B,A

Table 18-6 Texture Look-up Table Actions

Graphics Library Programming Guide 18-37

The following code fragment demonstrates how to use texture lookup tables:

maketable4()
{
 int i;
 unsigned long table[256];
 float tlutps[] = {TL_NULL};

/* inverts colors */
 for (i = 0; i < 256; i++){
 table[i] = ((255-i)<<24) | ((255-i)<<16) | ((255-i)<<8) | ((255-i));
 }
 tlutdef(4,4,256,table,0, tlutps);
 tlutbind(0,4);
}

18.5.4 Improving Interpolation Results on VGX Systems

This section describes a technique that applies only to IRIS-4D/VGX systems,
so you might want to skip to Section 18.6, “Texture Environments,” if you do
not have one of these systems.

On the VGX, texture coordinates are linearly interpolated in screen space by
hardware the same way color is interpolated. Although this produces fast
rendering, it is mathematically incorrect for perspective projections. For
example, you can modify the sample program by replacing the ortho()
subroutine with perspective(600, 1., 1., 16.), which introduces
perspective distortion. Because of incorrect interpolation, textures no longer
appear fixed to a surface but shift as the surface moves. This effect is called
swimming.

Swimming occurs because texture coordinates are interpolated after the
perspective division (in screen coordinates) when they should be interpolated
in eye coordinates. Because the VGX hardware does not support eye
coordinate interpolation, you can use screen subdivision to improve texture
coordinate interpolation. Screen subdivision can also improve the accuracy of
fog by correctly interpolating w (see Chapter 13).

18-38 Textures

Note: On systems other than VGX, you should not use scrsubdivide()
because the texture coordinates are already interpolated correctly in
eye coordinates.

Use scrsubdivide to turn screen subdivision on or off. Use SS_OFF to turn
off subdivision, which is the default.

Use the SS_DEPTH algorithm to subdivide polygons and lines into smaller
pieces. Colors, texture coordinates, and the homogeneous coordinate w at
newly generated vertices are correctly interpolated in eye coordinates rather
than in screen coordinates. Because incorrect interpolation is limited to smaller
pieces, error globally decreases and image quality increases. Consequently,
you can “tune” image quality by modifying the amount of subdivision.

Note: scrsubdivide() is most effective for large, nontessellated polygons
and lines. Highly tessellated surfaces (for example, curved surfaces)
have, in essence, already been subdivided and thus benefit little from
further subdivision.

SS_DEPTH subdivision slices screen coordinate polygons and lines by a fixed
grid in z. Spacing between z planes is constant throughout the grid and is
determined by the three scrsubdivide() parameters: maximum screen z,
minimum screen size, maximum screen size. The first value in the parameter
list specifies the desired distance between subdivision planes in units set by
lsetdepth().

If polygon slices generated using this metric span a distance in pixels less than
minimum screen size, the distance between subdivision planes is increased
until the slices are larger than the minimum screen size. This can occur when
a polygon is oriented edge-on, so that it spans little screen distance.

If polygon slices generated using the maximum screen z metric span a distance
in pixels greater than maximum screen size, the distance between subdivision
planes is decreased until the slices are smaller than the maximum screen size.
This parameter is often useful for polygons that face the viewer and suffer
from too little subdivision.

In practice, the minimum and maximum screen size parameters are used to
keep slices from becoming too small or too big, respectively. However, these
parameters can introduce situations in which polygons that share an edge are
sliced by differently spaced grids. This generates T-vertices that can cause pixel
dropout along the shared edges. To avoid T-vertices, you can “turn off” the

Graphics Library Programming Guide 18-39

screen size parameters by setting them to 0 so that only the maximum screen
Z parameter is used. You can turn off any parameter by setting it to 0. For
example, a parameter list of {0., 0., 10.} specifies subdivision every 10 pixels.

The following code fragment illustrates how to use screen subdivision:

float scrparams[] = {0., 0., 10.};
scrsubdivide(SS_OFF, scrparams);

To turn on screen depth subdivision, change the SS_OFF mode to SS_DEPTH.
With the parameter list of {0., 0., 10.}, the quadrilateral is subdivided every 10
pixels and the image quality is improved. You can view the tessellation
produced by scrsubdivide() by drawing only the polygon outlines, using
the polymode(PYM_LINE) subroutine (see Chapter 2).

18.6 Texture Environments

A texture environment specifies how texture values modify the color and
opacity of an incoming shaded pixel. Use the tevdef() subroutine to define a
texture environment and the tevbind() subroutine to enable the texturing
environment. As with texbind(), there can be only one texture environment
bound (active) at a time.

There are three texture environment types:

TV_MODULATE Modulates the polygon surface with the texture. This is the
default environment and is valid for 1-, 2-, 3-, and
4-component textures.

TV_BLEND Interpolates between the polygon color and a constant color
based on the texel intensity. This environment is valid for 1-
and 2-component textures only.

TV_DECAL Applies the texture on top of the polygon color wherever
texture alpha is nonzero.

The ANSI C specification for tevdef() is:

tevdef(long index, long np, float props[])

where:

index is the unique index(name) for the texture environment.

18-40 Textures

np is the number of elements in the props array.

props is a array of floating point constants that defines how the
texture is combined with incoming pixels to color screen
pixels.

The texture environment function takes a shaded, incoming pixel color
(Rin,Gin,Bin,Ain) and computed texture values (Rtex,Gtex,Btex,Atex) as input, and
outputs a new color (Rout,Gout,Bout,Aout). The equations for each environment
are listed in the tables that follow the environment description.

TV_MODULATE multiplies the incoming color components by texture values,
according to the equations listed in Table 18-7.

TV_BLEND blends the incoming color and the active texture environment
color, which is a single RGBA constant (Rconst,Gconst,Bconst,Aconst)
according to the equations used for TV_BLEND in Table 18-8.
The texture environment color is specified with the TV_COLOR
parameter.

1-component 2-component 3-component 4-component

Table 18-7 TV_MODULATE Equations

Output Color 1-component 2-component

Red

Green

Blue

Alpha

Table 18-8 TV_BLEND Equations

Rout Rin Itex⋅= Rout Rin Itex⋅= Rout Rin Rtex⋅= Rout Rin Rtex⋅=

Gout Gin Itex⋅= Gout Gin Itex⋅= Gout Gin Gtex⋅= Gout Gin Gtex⋅=

Bout Bin Itex⋅= Bout Bin Itex⋅= Bout Bin Btex⋅= Bout Bin Btex⋅=

Aout Ain= Aout Ain Atex⋅= Aout Ain= Aout Ain Atex⋅=

Rout Rin 1 Itex–()⋅ Rconst Itex⋅+= Rout Rin 1 Itex–()⋅ Rconst Itex⋅+=

Gout Gin 1 Itex–()⋅ Gconst Itex⋅+= Gout Gin 1 Itex–()⋅ Gconst Itex⋅+=

Bout Bin 1 Itex–()⋅ Bconst Itex⋅+= Bout Bin 1 Itex–()⋅ Bconst Itex⋅+=

Aout Ain= Aout Ain Atex⋅=

Graphics Library Programming Guide 18-41

TV_COLOR specifies the constant color used by the TV_BLEND
environment. Four floating point values, in the range 0.0
through 1.0, must follow this symbol. These values specify
Rcon, Gcon, Bcon, and Acon. By default, all are set to 1.0.

TV_DECAL uses texture alpha (referred to as Atex in the equations below)
is used to blend the incoming color and the texture color,
according to the blend equations in Table 18-9

TV_COMPONENT_SELECT

allows the use of one or two components from a texture with
more components. Some GL implementations may allow 4
component textures with a very small component size, such
as 4 bits, which is smaller than the smallest addressable
datum. Therefore, a 4 component texture with 4 bits per
component may be used as four separate 1-component
textures, or two 2-component textures, and so on.

The token is followed by one choice from the following:

TV_I_GETS_R uses the red component of a 4-component texture as a
1-component texture.

TV_I_GETS_G uses the green component of a 4-component texture as a
1-component texture.

TV_I_GETS_B uses the blue component of a 4-component texture as a
1-component texture.

TV_I_GETS_A uses the alpha component of a 4- or 2-component texture.

Output Color 3-component 4-component

Red

Green

Blue

Alpha

Table 18-9 TV_DECAL Equations

Rout Rtex= Rout Rin 1 Atex–()⋅ Rtex Atex⋅+=

Gout Gtex= Gout Gin 1 Atex–()⋅ Gtex Atex⋅+=

Bout Btex= Bout Bin 1 Atex–()⋅ Btex Atex⋅+=

Aout Ain= Aout Ain=

18-42 Textures

18.7 Texture Programming Hints

After you understand the basics of the IRIS GL texture routines, the following
hints can be useful in getting the optimal performance from your system.

Most of these hints apply to RealityEngine, but because of the texturing
capabilities of RealityEngine, some do not apply and are so noted.
RealityEngine systems feature dedicated texture memory, rather than using
framebuffer memory for textures. This provides the ability to display complex,
texture-mapped scenes at fast frame rates, thereby improving image quality
without sacrificing performance.

RealityEngine provides 4Mbytes of standard, on-line texture memory, stored
as two banks of 2Mbyte memory areas. Different texture types and modes can
be mixed together within the memory storage space. Built-in texture storage
algorithms store textures sequentially in memory for maximum efficiency.
The minimum texture size on RealityEngine is 2×2, and the maximum size is
1024×1024. The system can store two R,G,B,A full-color 1024×1024 textures
with 16-bit texels.

Overall Hints

• Turn off texturing when you are not drawing textured geometry.

Remember to turn off texturing when drawing nontextured
geometry. Not supplying texture coordinates does not disable
texturing. Texturing is disabled only with one of the following
subroutine calls: texbind(TX_TEXTURE_0,0) or
tevbind(TV_ENV0,0).

• Texturing works only in RGB mode.

The behavior of texturing is not defined in color index mode.

• Most texture calls are illegal between bgn/end sequences.

With the exception of the t() commands, the texture subroutines
described in this chapter cannot be called inside of bgn/end
sequences such as bgnpolygon()/endpolygon().

Graphics Library Programming Guide 18-43

Hints for Using texdef2d

• Use images whose dimensions are powers of two whenever possible.

Internally, the GL works only with images whose dimensions are
powers of 2. texdef2d automatically resizes images as necessary. To
avoid resizing, pass texdef2d() images that have widths and
heights that are powers of 2.

• Use as few components as necessary.

The more components a texture has, the longer it takes to map the
texture onto a polygon. For optimal speed, use as few components as
possible. This applies to RealityEngine unless you specify an internal
format. If you are not taking advantage of a texture’s alpha, define the
texture as a 1- or 3-component texture. If you do not need a full-color
texture, define the texture with one or two components.

• Use the simplest filter you need.

The per-pixel speed of the texture filter functions is related to the
number of interpolations the filter has to perform. The filters in order
from fastest to slowest are TX_POINT, TX_MIPMAP_POINT,
TX_MIPMAP_LINEAR, TX_BILINEAR, TX_MIPMAP_BILINEAR,
TX_MIPMAP_TRILINEAR and TX_TRILINEAR, TX_BICUBIC and
TX_MIPMAP_QUADLINEAR.

There is some overhead per polygon for using MIPmap filters. If a
scene has a large number of textured polygons, or if the polygons are
subdivided finely, performance is improved if MIPmap filters are not
used.

• Keep the texture size below the recommended maximum.

Textures that exceed the maximum dimensions of the graphics
hardware are resized to the maximum dimensions. The maximum
dimensions for textures using MIPmapping are half of those that do
not. The effect is that large textures using MIPmapping are more
blurry than those that do not.

• Be aware that texdef2d() copies the texture image to memory.

The image passed to texdef2d() is copied. All other data associated
with the texture, such as its MIPmap, are saved with it in the user’s
memory space until the texture is redefined or the program exits.

18-44 Textures

Hints for Using texbind

• Bind textures as infrequently as possible.

texbind can be a time-consuming operation, especially if the texture
is not resident in the graphics hardware. To achieve maximum
performance, draw all of the polygons that use the same texture
together.

• Texture caching.

Hardware texture memory is a finite resource managed by the IRIX
kernel. The kernel guarantees that the currently bound texture of a
program resides in this memory, whenever the program owns the
graphics pipe. Beyond that, the kernel keeps as many additional
textures as possible in the hardware texture memory. When a texture
is bound, if it is not resident in the texture memory and there is not
enough room remaining for this texture, one or more of the resident
textures are swapped out. To minimize the frequency of this
swapping, use smaller textures or try to switch them less often.

Hints for Using scrsubdivide

• Use scrsubdivide() only on VGX systems.

• Turn on scrsubdivide() only when you need it.

Because scrsubdivide() generates many polygons from each
incoming polygon, it is wise to turn off this feature when it is not
needed, such as when you are drawing non–texture-mapped
polygons or highly tessellated texture-mapped polygons.

• Use only as much subdivision as you need.

Choose the scrsubdivide() parameters carefully. For maximum
performance, use only as much subdivision as is necessary. Textures
without high frequencies need less subdivision than those with high
frequencies.

Hints for Using alpha

• Use afunction(), and/or msalpha() on RealityEngine for fast drawing
of objects with texture alpha.

Graphics Library Programming Guide 18-45

When the alpha component of a texture is used to approximate a
geometry (such as when a texture is used to describe a tree), the
polygons must be blended into the scene in sorted order to properly
realize the coverage defined by the alpha component. This sorting
and blending requirement can be removed by using afunction().
afunction(0, AF_NOTEQUAL) specifies that only pixels with nonzero
alpha be drawn. See the afunction() man page for more details. On
VGXT, afunction(128, AF_GREATER) works well.

• Alphaless systems.

Systems without alpha memory also lack storage for a fourth texture
component. On such systems, the alpha component of 4-component
textures always appears to be 255. 1- and 3-component textures
behave the same on systems with or without alpha.

18.8 Sample Texture Programs

This sample program, brick.c, creates a brick texture and lets you toggle
scrsubdivide() with the mouse, to view texture “swimming.”

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

float texprops[] = {TX_MINFILTER, TX_POINT,TX_MAGFILTER, TX_POINT,
TX_WRAP, TX_REPEAT, TX_NULL};

/* Texture color is brick-red */
float tevprops[] = {TV_COLOR, .75, .13, .06, 1., TV_BLEND, TV_NULL};

/* Subdivision parameters */
float scrparams[] = {0., 0., 10.};

unsigned long bricks[] = /*Define texture image */
{0x00ffffff, 0xffffffff,
 0x00ffffff, 0xffffffff,
 0x00ffffff, 0xffffffff,
 0x00000000, 0x00000000,
 0xffffffff, 0x00ffffff,
 0xffffffff, 0x00ffffff,
 0xffffffff, 0x00ffffff,
 0x00000000, 0x00000000};

18-46 Textures

/* Define texture and vertex coordinates */
float t0[2] = {0., 0.}, v0[3] = {-2., -4.,0.};
float t1[2] = {16., 0.}, v1[3] = {2., -4.,0.};
float t2[2] = {16., 32.}, v2[3] = {2., 4.,0.};
float t3[2] = {0., 32.}, v3[3] = {-2., 4.,0.};

main()
{

short val;
int dev, texflag;

if (getgdesc(GD_TEXTURE) == 0) {
fprintf(stderr, “texture mapping not availble on this machine\n”);
return 1;

}
keepaspect(1, 1);
winopen(“brick”);
subpixel(TRUE);
RGBmode();
doublebuffer();
gconfig();
qdevice(ESCKEY);
qdevice(LEFTMOUSE);
qenter (LEFTMOUSE, 0);
mmode(MVIEWING);
perspective(600, 1., 1., 10.);
texdef2d(1, 1, 8, 8, bricks, 0, texprops);
tevdef(1, 0, tevprops);
texbind(TX_TEXTURE_0, 1);
tevbind(TV_ENV0, 1);
texflag = getgdesc(GD_TEXTURE_PERSP);
translate(0., 0., -6.); /* Move poly away from viewer */

while (!(qtest() && qread(&val) == ESCKEY && val == 0)) {
while (TRUE){

while(qtest()){
dev = qread(&val);
switch(dev){

case ESCKEY: exit(0);
break;

case REDRAW: reshapeviewport();
break;

Graphics Library Programming Guide 18-47

/* Screen subdivision - use it only if you have a VGX.
 Push the leftmouse button to see "swimming" on VGX’s */

case LEFTMOUSE:
if (val){

switch(texflag){
case 0: scrsubdivide(SS_OFF, scrparams);

 break;
case 1: printf("Your machine corrects in hardware\n");

 break;
}

}
else

switch(texflag){
case 0: scrsubdivide(SS_DEPTH, scrparams);

 break;
case 1: break;

}
break;

} /* end main switch */
} /* end qtest */

cpack(0x0);
clear();
pushmatrix();
rotate(getvaluator(MOUSEX)*5,'y');
rotate(getvaluator(MOUSEY)*5,'z');
cpack(0xffcccccc);
bgnpolygon();

t2f(t0); v3f(v0);
t2f(t1); v3f(v1);
t2f(t2); v3f(v2);
t2f(t3); v3f(v3);

endpolygon();
popmatrix();
swapbuffers();

}
texbind(TX_TEXTURE_0, 0); /* Turn off texturing */
}

18-48 Textures

This sample program, heat.c, illustrates texture mapping in color map mode.

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

/* Texture environmnet */
float tevprops[] = {TV_MODULATE, TV_NULL};

/* RGBA texture map representing temperature as color and
 * opacity */
float texheat[] = {TX_WRAP, TX_CLAMP, TX_NULL};
/* Black->blue->cyan->green->yellow->red->white */
unsigned long heat[] = /* Translucent -> Opaque */

{0x00000000, 0x55ff0000, 0x77ffff00, 0x9900ff00,
 0xbb00ffff, 0xdd0000ff, 0xffffffff};

/* Point sampled 1 component checkerboard texture */
float texbgd[] = {TX_MAGFILTER, TX_POINT, TX_NULL};

unsigned long check[] =
{0xff800000, /* Notice row byte padding */
 0x80ff0000};

/* Subdivision parameters */
float scrparams[] = {0., 0., 10};

/* Define texture and vertex coordinates */
float t0[] = {0., 0.}, v0[] = {-2., -4., 0.};
float t1[] = {.4, 0.}, v1[] = { 2., -4., 0.};
float t2[] = {1., 0.}, v2[] = { 2., 4., 0.};
float t3[] = {.7, 0.}, v3[] = {-2., 4., 0.};

Graphics Library Programming Guide 18-49

main()
{

long device;
short data, sub = 0;

if (getgdesc(GD_TEXTURE) == 0){
fprintf(stderr,

"Texture mapping not available on this machine\n");
return 1;

}
keepaspect(1,1);
winopen("heat");
RGBmode();
doublebuffer();
gconfig();
subpixel(TRUE);
lsetdepth(0x0, 0x7fffff);

blendfunction(BF_SA, BF_MSA); /* Enable blending */

mmode(MVIEWING);
perspective(600, 1, 1., 16.);

/* Define checkerboard */
texdef2d(1, 1, 2, 2, check, 0, texbgd);
/* Define heat */
texdef2d(2, 4, 7, 1, heat, 0, texheat);
tevdef(1, 0, tevprops);
tevbind(TV_ENV0, 1);

translate(0., 0., -6.);
qdevice(ESCKEY);

/* Determine if machine does perspective correction */
if (getgdesc(GD_TEXTURE_PERSP) != 1) sub = 1;

18-50 Textures

while(TRUE) {
if(qtest()){

device = qread(&data);
switch(device){

case ESCKEY: texbind(TX_TEXTURE_0, 0); /* Turn off texturing */
exit(0);
break;

case REDRAW: reshapeviewport();
break;

}
 }
 cpack(0x0);
 clear();

/* Subdivision off */
 if (sub) scrsubdivide(SS_OFF, scrparams);
 texbind(TX_TEXTURE_0, 1); /* Bind checkerboard */
 cpack(0xff102040); /* Background rectangle color */

 bgnpolygon(); /* Draw textured rectangle */
t2f(v0); v3f(v0); /* Notice vertex */
t2f(v1); v3f(v1); /* coordinates are used */
t2f(v2); v3f(v2); /* as texture coordinates */
 t2f(v3); v3f(v3)

 enpolygon();

 pushmatrix();
rotate(getvaluator(MOUSEX)*5, 'y');
rotate(getvaluator(MOUSEY)*5, 'x');

 /* Screen subdivision - use it only if you have a VGX */
 if (sub) scrsubdivide(SS_DEPTH, scrparams);
 texbind(TX_TEXTURE_0, 2); /* Bind heat */
 cpack(0xffffffff); /* Heated rectangle base color */
 bgnpolygon(); /* Draw textured rectangle */

t2f(t0); v3f(v0);
t2f(t1); v3f(v1);
t2f(t2); v3f(v2);
 t2f(t3); v3f(v3);

 endpolygon();

 popmatrix();
 swapbuffers();
}

}

Graphics Library Programming Guide 19-1

Chapter 19

19. Using the GL in a Networked Environment

Network transparency is a built-in feature of the GL that allows a process on
one IRIS workstation to display graphics either locally or over the network on
a remote IRIS workstation.

19.1 Introduction

The network-transparent feature of the GL lets systems share the work load for
graphics applications and lets servers without graphics capabilities use
graphical tools.

For example, consider running a flight simulation to test a new aircraft design.
You want to run a complex mechanical analysis with a simultaneous real-time
animation. The mechanical analysis requires a “number-crunching” system
and the animation requires a fast graphics display system. The two systems
can share the work load, each doing the task for which it is best suited, in a
client-server relationship, resulting in a more balanced work load and better
overall performance.

The client/server model of the network-transparent GL allows remote display
of graphics output. In the above example, a 4Server, acting as the client,
performs the calculations for the mechanical analysis and sends the graphics
calls over the network to an IRIS-4D workstation, acting as the graphics server,
to display the flight animation.

19-2 Using the GL in a Networked Environment

19.1.1 Protocol

Network transparency is based on the Distributed GL (DGL) protocol that is
built into the shared GL. The DGL protocol has two parts:

• a call mechanism built into the shared GL

• a graphics server to service requests made by DGL clients

In this chapter, the client application, which is linked with the shared GL, is
called the DGL client and the graphics server is called the DGL server. In the
DGL client, the DGL protocol sends tokens in a byte stream to the graphics
server over the Ethernet® or other communication medium. The graphics
server decodes the byte stream and calls the GL subroutines to display the
graphics.

There is a separate product for running GL applications on non-IRIS hosts; see
the documentation that comes with that option for more information.

19.1.2 Writing GL Programs to Use Network Transparent Features

Existing GL programs do not contain any calls that specifically invoke the DGL
server. However, these programs can still be run remotely without modifying
the source code, simply by relinking them with the shared GL (-lgl_s) and by
linking with the Sun library (-lsun) if the Network Information Service (NIS)
is desired.

Writing a network-transparent GL program is no different than writing a
standalone GL program, except for optimizing performance.

Graphics calls are buffered from the client to the server, so you must flush the
buffer periodically. The subroutine gflush() flushes the client buffer so GL
calls can be received by the server.

gflush

The DGL client buffers calls to GL subroutines for efficient block transfer to the
graphics server. The subroutine gflush() explicitly flushes the
communication buffers and delivers all the untransmitted graphics data that
is in the buffer to the graphics server.

Graphics Library Programming Guide 19-3

GL subroutines that return data implicitly flush the communication buffers. In
most programs, the implicit flushing that is performed by subroutines that
return data is usually sufficient.

Note: All programs that are run over the network must call gflush() if the
last command is a drawing command. No drawing is guaranteed to
happen until gflush() is called.

The following situation illustrates a typical use of gflush():

A program calls some Graphics Library subroutines that are buffered and not
flushed. The program then either computes or blocks for a while, waiting for
non-graphic I/O. gflush() must be called if the results of the buffered GL
subroutines are to be seen on the host display before and during the pause.

Another reason for using gflush() is to reduce display jerkiness. If the client
is computing data and then sending the data to the graphics server without
implicit or explicit flushes, the data will arrive at the graphics server in large
batches. The server may process this data very quickly and then wait for the
next large batch of data. The rapid processing of GL subroutines followed by
a pause results in an undesirable “jerky” appearance. In these cases it is
probably best to call gflush() periodically. For example, a logical place to call
gflush() is after every swapbuffers() call.

Note: Performing too many flushes can adversely effect performance.

finish

finish() is useful when there are large network and pipeline delays.
finish() blocks the client process until all previous subroutines execute. First,
the communication buffers on the client machine are flushed. On the graphics
server, all unsent subroutines are forced down the Geometry Pipeline to the
bitplanes, then a final token is sent and the client process blocks until the token
goes through the pipeline and an acknowledgment is sent to the graphics
server and forwarded to the client process.

The following example illustrates a typical use of finish():

A client calls GL subroutines to display an image. The subroutines all fit into
the server’s network buffers and the image takes 30 seconds to render. The
client wants to wait until the image is completely displayed on the server’s
monitor before a message can be displayed on the client’s terminal. gflush()

19-4 Using the GL in a Networked Environment

flushes the buffers, but does not wait for the server to process the buffers.
finish() flushes the buffers and waits not only for the server to process all the
graphics subroutines, but for the Geometry Pipeline to finish as well.

19.1.3 Establishing a Connection

To establish a connection, the client must have permission to connect to the
graphics server. Permission is verified as it is for X clients. See the xhost man
page for more information about client authentication procedures.

A server connection is established according to these rules:

1. If any of the following environment variables is defined, the server name
is the value of the defined variable highest in the following list:

1. DISPLAY

2. DGLSERVER

3. REMOTEHOST

2. If none of these environment variables are defined, then the server name
is set to the client’s hostname.

Note: The environment variables DGLTYPE and DGLTSOCKET are used for
Silicon Graphics internal debugging purposes.

19.1.4 Using rlogin

If you use rlogin to log in remotely to an IRIS workstation, REMOTEHOST is
defined. If DGLSERVER is undefined, the DGL protocol by default establishes
a connection back to the last remote system where you ran rlogin. For example,
if you rlogin from system A to system B and then rlogin from system B to
system C, REMOTEHOST is set to B on system C. In this example the default
graphics connection is B.

Graphics Library Programming Guide 19-5

19.2 Limitations and Incompatibilities

The network-transparent GL has a few limitations and incompatibilities with
the previous releases of the GL that was used strictly for local imaging. These
limitations may prevent a GL application from executing properly only when
remote connections are used.

19.2.1 The callfunc Routine

The callfunc() subroutine does not function in a GL program that is run
remotely. Any references to callfunc() will result in a run-time error when
executing the program.

19.2.2 Pop-up Menu Functions

A maximum of 16 unique callback functions are supported. Freeing pop-up
menus does not free up callback functions. If you use too many callback
functions, you get the client error:

dgl error (pup): too many callbacks

19.2.3 Interrupts and Jumps

You cannot interrupt the execution of a remotely called GL subroutine or
pop-up menu callback function without returning back to that subroutine
before calling another subroutine. This illegal condition typically results when
you set an alarm or timer interrupt to go off and then block the program with
a qread() call. If the signal handler does not return to the qread(),
unpredictable results are likely (for example, it does a longjmp(3C) to some
non-local location).

19-6 Using the GL in a Networked Environment

19.3 Using Multiple Server Connections

Connections to multiple graphics servers from one GL client program are
supported and there are mechanisms for creating, multiplexing, and
destroying server connections. You can use GL or mixed-model (X Window
System and GL) subroutines for managing multiple server connections. Server
processes normally reside on different server machines, but they can also
reside on the same machine.

There are advantages to using multiple graphics servers, for example, some
applications may require multiple windows, each with very high resolution
graphics. Multiple windows on the same server must share one screen’s
resolution; however, with the network transparent feature of the GL, an
application can control multiple servers, each of which can devote its full
screen resolution to its windows.

Another possible application for multiple servers is improving performance
when displaying multiple views of complex objects. If multiple views are
displayed on multiple servers, performance is linearly increased by the
number of servers. For example, an application can create a display list for a
car on each of the servers that includes material and lighting parameters. Each
server is given a different set of viewing parameters and then used to display
the object.

A slight variation of the previous example is to have each server display a
different representation of the object. For example, one server displays a
depth-cued wireframe mesh of the car, another server displays a flat shaded
polygonal representation of the car, and a third server displays a smooth
shaded lighted surface representation of the car. If the display list for each of
these representations is very large, multiple servers can eliminate or reduce
paging, because each server needs only the display list for its representation.

19.3.1 Establishing and Closing Multiple Network Connections

The subroutines dglopen() and dglclose() allow a GL program to open and
close graphics connections to server machines. You don’t have to use these
subroutines if your application is running on a single server because there is a
default connection procedure, but you must use them if you are connecting to
multiple servers.

Graphics Library Programming Guide 19-7

Using dglopen to Open a Connection

dglopen() opens a connection to a graphics server, and makes it the current
connection. After a connection is established, all graphics preferences, input,
and output are directed to that connection.

Communication remains enabled over the connection either until the
connection is closed, or until a different connection is opened. A remote
connection is closed by calling dglclose() with the server identifier returned
by dglopen(). A different connection is selected by calling a subroutine that
takes a graphics window identifier as an input parameter. The server
connection associated with that graphics window identifier becomes the
current connection.

To establish a connection, the client host must have permission to connect to
the graphics server. Permission is verified as it is for X clients (see the xhost
man page for more information about client authentication procedures).

To open a connection, you call dglopen() with a pointer to the server name
(svname) and the type of connection you want.

Specify the server name as follows:

[[username]password@]hostname[:server[.screen]]

The username and password parameters are ignored; they are included for
compatibility only. The hostname must be an Internet host name recognized by
gethostbyname. If the connection succeeds, dglopen() returns the server
identifier, a non-negative integer. Otherwise, dglopen() indicates a failure by
returning a negative integer, the absolute value of which indicates the reason
for failure.

Two types of connections are supported:

• DGLLOCAL is a direct connection to the local graphics hardware. This
type of connection is not supported on client systems without IRIS
graphics hardware.

• DGLTSOCKET is a TCP/IP socket connection to a remote host.

Because you can mimic the behavior of a remote connection by using a
DGLTSOCKET connection on a single machine, you can use the
DGLTSOCKET connection during the development process to debug a
remote application without connecting to another machine.

19-8 Using the GL in a Networked Environment

The following sequence of events occurs when a DGLTSOCKET connection is
attempted:

1. The service sgi-dgl is looked up in /etc/services to get a port number. If the
service is not found, then an error occurs.

2. The server’s name is looked up in /etc/hosts or by the Network
Information Service (NIS) to get an Internet address. If the host is not
found, then an error occurs.

3. An Internet stream socket is created and some of its options are set.

4. A connection to the server machine is attempted with a small time-out. If
the connection is refused, the timeout is doubled and the connection
retried. If after several tries, the connection is still refused, an error occurs.

5. A successful connection is made and the server’s Internet daemon
invokes a copy of the graphics server. The graphics server process inherits
the socket for communicating with the client program.

6. The graphics server uses the X authentication model to verify the login.
Authentication is accomplished by the same mechanism as for X clients.
See xhost(1) for more details.

7. The server process’s group and user ID are changed according to the
entry in /etc/passwd.

Using dglclose to Close a Connection

To destroy a graphics server process and its connection, call dglclose() with
the server identifier returned by dglopen(). This terminates the graphics server
process, freeing system resources, for example, open windows, that had been
allocated and closes the graphics connection, freeing associated system
resources on the client machine. Calling dglclose() with a negative server
identifier closes all graphics server connections.

After dglclose(), there is no current connection. In order to resume
rendering, you have to select another valid connection by calling a routine that
takes a graphics window id as a parameter (such as winset) or you have to
open another connection with dglopen(). Although it is not necessary, it is
recommended that dglclose(-1) be called before exiting a GL application.
This ensures that the graphics server processes exit cleanly.

Graphics Library Programming Guide 19-9

19.3.2 Graphics Input

Each graphics server has its own keyboard, mouse, and optional dial and
button box. The graphics input subroutines qtest(), qread(), qdevice(),
getvaluator(), setvaluator(), and noise() execute on the current
graphics server. The client program can therefore solicit input from multiple
keyboards and mice. For most programs, it will make sense to get input from
only one graphics server. In all cases, the programmer must make sure that the
connection to the current graphics server is set correctly when graphics input
is solicited.

19.3.3 Local Graphics Data

Each server process runs a separate copy of the GL and has its own local set of
graphics data. For example, linestyles, patterns, fonts, materials, lights, and
display list objects are local to each graphics server. When graphics data is
defined, it is defined only on the current graphics server; other servers do not
define it. You must be careful to reference local graphics data only on the server
where it is defined. If a display list or font is used on multiple servers, it must
be defined on each server.

19.3.4 Sample Program - Multiple Connections on a Local Host

This sample program illustrates how to establish multiple connections on a
local host to solicit multiple graphics input.

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>
#include <sys/types.h>
#include <sys/time.h>

static void DoLoop();

long main(int argc, char *argv[])
{

int i;
long wid1, wid2;
fd_set readfds;
long gl_fd1, gl_fd2;
int nfound;

19-10 Using the GL in a Networked Environment

dglopen ("", DGLTSOCKET); /* force socket connection to local host */
wid1 = winopen("win 1");
qdevice(INPUTCHANGE);
qdevice(LEFTMOUSE);
qdevice(ESCKEY);
qdevice(REDRAW);

RGBmode();
gconfig();
cpack(0xff00ff);
clear();
finish();

dglopen ("", DGLTSOCKET); /* force socket connection to local host */
wid2 = winopen("win 2");
qdevice(INPUTCHANGE);
qdevice(LEFTMOUSE);
qdevice(ESCKEY);
qdevice(REDRAW);

RGBmode();
gconfig();
cpack(0x00ffff);
clear();
finish();

FD_ZERO(&readfds);

winset (wid1);
if ((gl_fd1 = qgetfd()) < 0) {

printf(“bad file descriptor %d\n”, gl_fd1);
exit(-1);

}

winset (wid2);
if ((gl_fd2 = qgetfd()) < 0) {

printf(“bad file descriptor %d\n”, gl_fd2);
exit(-1);

}

while(1) {
FD_SET(gl_fd2, &readfds);
FD_SET(gl_fd1, &readfds);
nfound = select (getdtablesize(), &readfds, 0, 0, 0);
printf(“select nfound = %d\n”, nfound);

Graphics Library Programming Guide 19-11

if (FD_ISSET(gl_fd1, &readfds)) {
 winset(wid1);
 DoLoop();

}

if (FD_ISSET(gl_fd2, &readfds)) {
 winset(wid2);
 DoLoop();

}
}

}

static void DoLoop()
{

long dev;
short val;

while (qtest()) {
dev = qread(&val);
switch(dev) {

case INPUTCHANGE:
printf(“INPUTCHANGE; wid = %d\n”, val);
break;

case LEFTMOUSE:
printf(“LEFTMOUSE; val = %d\n”, val);
break;

case REDRAW:
printf(“REDRAW; wid = %d\n”, val);
winset(val);

clear();
finish();
break;

case ESCKEY:
gexit();
exit(-1);

}
}

}

19-12 Using the GL in a Networked Environment

19.4 Configuration of the Network Transparent Interface

The DGL protocol software consists of two parts: a client library and a graphics
server daemon. The client library is built into the shared GL (/usr/lib/libgl_s.a)
and the graphics server daemon is /usr/etc/dgld. The DGL protocol gets an
Internet port number from /etc/services, which has an entry for sgi-dgl (see
services(4)).

19.4.1 inetd

The graphics server daemon for TCP socket connections is automatically
started by inetd(1M). inetd reads its configuration file to determine which
server programs correspond to which sockets. The standard configuration file,
/usr/etc/inetd.conf, has an entry for sgi-dgl. When a request for a connection is
made:

1. The service sgi-dgl is looked up in /etc/services to get a port number. If the
service is not found, then an error occurs.

2. The server’s name is looked up in /etc/hosts or by the Network
Information Service (NIS) to get an Internet address. If the host is not
found, then an error occurs.

3. An Internet stream socket is created and some of its options are set.

4. A connection to the server machine is attempted with a small timeout
allowance. If the connection is refused, the timeout is doubled and the
connection retried. If after several tries, the connection is still refused, an
error occurs.

5. A successful connection is made and the server’s Internet daemon
invokes a copy of the DGL graphics server. The graphics server process
inherits the socket for communicating with the DGL client program.

6. The graphics server uses the X authentication model to verify the login.
Authentication is accomplished by the same mechanism as for X clients
(see xhost(1)).

7. The server process’s group and user ID are changed according to the
entry in /etc/passwd.

Graphics Library Programming Guide 19-13

19.4.2 dgld

The dgld daemon is the server for remote graphics clients. The server provides
both a subprocess facility and a networked graphics facility. dgld is started by
inetd when a remote request is received.

Local connections are not controlled by dgld; instead, a client program running
on an IRIS host calls GL subroutines directly on the host machine. No
authentication is performed for local connections.

TCP socket connections are serviced by the Internet server daemon inetd. inetd
listens for connections on the port indicated in the sgi-dgl service specification.
When a connection is found, inetd starts dgld as specified by the file
/usr/etc/inetd.conf and gives it the socket.

19.5 Error Messages

Error messages are output to a message file. The message file defaults to stderr.
Error messages have the following format:

pgm-name error (routine-name): error-text

pgm-name is either dgl for client errors or dgld for server errors.

routine-name is the name of the system service or internal routine that failed
or detected the error.

error-text is an explanation of the error.

19-14 Using the GL in a Networked Environment

19.5.1 Connection Errors

Table 19-1 lists the internally generated error values (defined in <errno.h>) that
are reported when a connection fails.

19.5.2 Client Errors

Client error messages are output to stderr. For example, if NIS is not enabled
and /etc/hosts does not include an entry for the server host foobar, the following
error message is output when a connection to is requested:

dgl error (gethostbyname): can’t get name for foobar

If the client detects a condition that is fatal, it exits with an errno value that best
indicates the condition. If a system call or service returns an error number
(errno or h_errno), this number is used as the exit number.

Error Value Explanation

ENODEV type is not a valid connection type

EACCESS login incorrect or permission denied

EMFILE too many graphics connections are
currently open

ENOPROTOOPT DGL service not found in /etc/services

EPROTONOSUPPORT DGL version mismatch

ERANGE invalid or unrecognizable number
representation

ESRCH window manager is not running on the
graphics server

Table 19-1 Error Values

Graphics Library Programming Guide 19-15

Table 19-2 lists all exit values that are internally generated (not the result of a
failed system call or service).

The EIO value, accompanied by the message

dgl error (comm): read returned 0

usually means that communication with the server has been interrupted or
was not successfully established. The configuration of the server machine
should be checked (see Section 19.4).

19.5.3 Server Errors

Server error messages are output to stderr by default. For example, if /etc/hosts
does not include an entry for the client host, the following error messages are
be output:

dgld error (gethostbyaddr): can’t get name for 59000002
dgld error (comm_init): fatal error 1

The standard inetd.conf file runs the graphics server with the I and M options.
The I option informs the graphics server that it was invoked from inetd and
enables output of all error messages to the system log file maintained by
syslogd(1M). The M option disables all message output to stderr.

If the DGL server is not working properly, check the system log file for error
messages. Each entry in the SYSLOG file includes the date and time, identifies
the program as dgld, and includes the process identification number (PID) for
the server process. The rest of the error message is the text of the error message.

Exit Value Explanation

ENOMEM out of memory

EIO read or write error

Table 19-2 DGL Client Exit Values

19-16 Using the GL in a Networked Environment

19.5.4 Exit Status

When the dgld graphics server exits, the exit status indicates the reason for the
exit. A normal exit has an exit status of zero. A normal exit occurs when either
the client calls dglclose() or when zero bytes are read from the graphics
connection. The latter case can occur when the client program exits without
calling dglclose() or terminates abnormally.

A non-zero exit status implies an abnormal exit. If the graphics server program
detects a condition that is fatal, it exits with an errno value that best indicates
the condition. If a system call or service returned an error number (errno or
h_errno), this number is used as the exit number.

Table 19-3 lists all exit values that are internally generated (not the result of a
failed system call or service).

Exit Value Explanation

0 normal exit

ENODEV invalid communication connection type

ENOMEM out of memory

EINVAL invalid command line argument

ETIMEDOUT connection timed out

EACCESS login incorrect or permission denied

EIO read or write error

ENOENT invalid Graphics Library routine number

ENOPROTOOPT dgl/tcp service not found in /etc/services

ERANGE invalid or unrecognizable number
representation

Table 19-3 DGL Server Exit Value

Graphics Library Programming Guide A-1

Appendix A

A. Scope of GL Subroutines

This appendix lists all the GL subroutines and defines the scope of each
subroutine. Each of the GL subroutines has a scope that determines how it
affects system resources. Subroutines can affect the state of the currently
selected framebuffer, the state of the current window, the state of the current
process, or the state of the current graphics connection.

The state types listed in Table A-1 define the scope of GL subroutines. State
types describe the system resource on which the subroutine operates.

State type Description

Colormap There is a separate screen-wide color map for each framebuffer

Display A collection of screens and input devices

Framebuffer A particular set of bitplanes; draw mode dependent

Graphics connection Graphics client/server connection by dglopen or by default

mmode dependent Depends on the current matrix mode

Obsolete No longer supported, not recommended

Process User’s GL application

Renders Renders into current framebuffer, which is selected by
drawmode or affects a non-modal framebuffer state, such as
texture coordinates, trimming curves

Screen Collection of framebuffers, color maps, and video hardware

Textport Affects a different process from the caller's window

Table A-1 GL State Types

A-2 Scope of GL Subroutines

Table A-2 lists the state type of each GL programming subroutine.

GL Subroutine State Type Comments

acbuf() Window

acsize() Framebuffer

addtopup() Graphics connection

afunction() Window

arc()* Renders

attachcursor() Display

backbuffer() Framebuffer Attribute

backface() Window

bbox2()* Window *Represents a family of subroutines

bgnclosedline() Renders

bgnline() Renders

bgnpoint() Renders

bgnpolygon() Renders

bgnqstrip() Renders

bgnsurface() Renders

bgntmesh() Renders

bgntrim() Renders

blankscreen() Screen

blanktime() Screen

blendcolor() Window

blendfunction() Window

blink() Colormap

blkqread() Graphics connection

Table A-2 Scope of GL Subroutines

Graphics Library Programming Guide A-3

c()* Framebuffer Attribute,
OK to call between bgn/end,
*Represents a family of subroutines

callfunc() Process Not supported over DGLTSOCKET
connections

callobj() Graphics connection

charstr() Renders

chunksize() Graphics connection

circ()* Renders *Represents a family of subroutines

clear() Renders

clearhitcode() Window

clipplane() Window

clkoff() Display

clkon() Display

closeobj() Graphics connection

cmode() Framebuffer Attribute, Takes effect when
gconfig() is executed

cmov()* Window *Represents a family of subroutines

color()* Framebuffer Attribute,
OK to call between bgn/end,
*Represents a family of subroutines

compactify() Graphics connection

concave() Window

cpack() Framebuffer Attribute,
OK to call between bgn/end

crv() Renders

crvn() Renders

curorigin() Graphics connection

GL Subroutine State Type Comments

Table A-2 (continued) Scope of GL Subroutines

A-4 Scope of GL Subroutines

cursoff() Window

curson() Window

curstype() Graphics connection

curvebasis() Window

curveit() Renders

curveprecision() Window

cyclemap() Colormap

czclear() Renders

dbtext() Display

defbasis() Graphics connection

defcursor() Graphics connection

deflfont() Graphics connection

deflinestyle() Graphics connection

defpattern() Graphics connection

defpup() Graphics connection

defrasterfont() Graphics connection

delobj() Graphics connection

deltag() Graphics connection

depthcue() Window

dglclose() Process

dglopen() Process

dither() Window

dopup() Graphics connection

doublebuffer() Framebuffer Takes effect when gconfig() is
executed

GL Subroutine State Type Comments

Table A-2 (continued) Scope of GL Subroutines

Graphics Library Programming Guide A-5

draw()* Renders *Represents a family of subroutines

drawmode() Window Attribute

editobj() Graphics connection

endclosedline() Renders

endcurve() Renders

endfeedback() Window

endfullscrn() Renders

endline() Renders

endpick() Window

endpoint() Renders

endpolygon() Renders

endpupmode() Obsolete

endqstrip() Renders

endselect() Window

endsurface() Renders

endtmesh() Renders

endtrim() Renders

feedback() Window

finish() Window

fogvertex() Window

font() Window Attribute

foreground() Process Applies to next winopen(),
swinopen(),
winconstraints() call

freepup() Graphics connection

GL Subroutine State Type Comments

Table A-2 (continued) Scope of GL Subroutines

A-6 Scope of GL Subroutines

frontbuffer() Framebuffer Attribute

frontface() Window

fudge() Graphics connection Applies to next winopen(),
swinopen(),
winconstraints() call

fullscrn() Window

gammaramp() Screen

gbegin() Graphics connection

gconfig() Window

genobj() Graphics connection

gentag() Graphics connection

getbackface() Window

getbuffer() Framebuffer

getbutton() Display

getcmmode() Window

getcolor() Framebuffer Attribute

getcpos() Window

getcursor() Window

getdcm() Window

getdepth() Obsolete

getdescender() Window Attribute

getdev() Graphics connection

getdisplaymode() Framebuffer Attribute

getdrawmode() Window

getfont() Window Attribute

GL Subroutine State Type Comments

Table A-2 (continued) Scope of GL Subroutines

Graphics Library Programming Guide A-7

getgconfig() Window

getgdesc() Screen

getgpos() Window

getheight() Window Attribute

gethitcode() Window

getlsbackup() Window Attribute

getlsrepeat() Window Attribute

getlstyle() Window Attribute

getlwidth() Window Attribute

getmap() Framebuffer

getmatrix() mmode dependent

getmcolor() Colormap

getmmode() Window

getmonitor() Screen

getmultisample() Window

getnurbsproperty() Window

getopenobj() Graphics connection

getorigin() Window

getothermonitor() Obsolete

getpattern() Window

getplanes() Window

getport() Obsolete

getresetls() Window

getscrbox() Window

getscrmask() Window

GL Subroutine State Type Comments

Table A-2 (continued) Scope of GL Subroutines

A-8 Scope of GL Subroutines

getshade() Obsolete

getsize() Window

getsm() Window Attribute

getvaluator() Display

getvideo() Screen

getviewport() Window

getwritemask() Framebuffer Attribute

getwscrn() Window

getzbuffer() Framebuffer

gexit() Graphics connection

gflush() Window

ginit() Graphics connection

glcompat() See below

GLC_OLDPOLYGON Window

GLC_ZRANGEMAP Graphics connection

glresources()

glxchoosevisual() Graphics connection

glxgetconfig() Graphics connection

glxlink() Graphics connection

glxunlink() Graphics connection

glxwindone() Graphics connection

glxwinset() Graphics connection

greset() Window

gRGBcolor() Framebuffer Attribute

gRGBcursor() Obsolete

GL Subroutine State Type Comments

Table A-2 (continued) Scope of GL Subroutines

Graphics Library Programming Guide A-9

gRGBmask() Framebuffer Attribute

gselect() Window

gsync() Window

gversion() Screen

iconsize() Graphics connection Applies to next winopen(),
swinopen(),
winconstraints() call

icontitle() Window

imakebackground() Graphics connection Applies to next winopen(),
swinopen(),
winconstraints() call

initnames() Window

ismex() Obsolete

isobj() Graphics connection

isqueued() Graphics connection

istag() Graphics connection

keepaspect() Graphics connection Applies to next winopen(),
swinopen(),
winconstraints() call

lampoff() Display

lampon() Display

lcharstr() Renders

leftbuffer() Framebuffer Attribute

linesmooth() Window

linewidth() Window Attribute

linewidthf() Window

GL Subroutine State Type Comments

Table A-2 (continued) Scope of GL Subroutines

A-10 Scope of GL Subroutines

lmbind() See below

BACKMATERIAL Window

MATERIAL Window OK to call between bgn/end

LMODEL Window

LIGHT Window

lmcolor() Window OK to call between bgn/end

lmdef() See below

DEFMATERIAL Graphics connection

DEFLMODEL Graphics connection

DEFLIGHT Graphics connection

loadmatrix() mmode dependent

loadname() Window

logicop() Window

lookat() mmode dependent

lrectread() Window

lrectwrite() Window

lRGBrange() Window

lsbackup() Window

lsetdepth() Window

lshaderange() Window

lsrepeat() Window Attribute

lstrwidth() Window Attribute

makeobj() Graphics connection

maketag() Graphics connection

GL Subroutine State Type Comments

Table A-2 (continued) Scope of GL Subroutines

Graphics Library Programming Guide A-11

mapcolor() Colormap There is a separate screen-wide color
map for each framebuffer

mapw() Window

mapw2() Window

maxsize() Graphics connection Applies to next winopen(),
swinopen(),
winconstraints() call

minsize() Graphics connection Applies to next winopen(),
swinopen(),
winconstraints() call

mmode() Window

monobuffer() Framebuffer Attribute

move()* Renders *Represents a family of subroutines

msalpha() Window

msmask() Window

mspattern() Window

mssize() Framebuffer

mswapbuffers() Window

multimap() Framebuffer Takes effect when gconfig() is
executed

multisample() Window

multmatrix() mmode dependent

n()* Window *Represents a family of subroutines,
OK to call between bgn/end

newpup() Graphics connection

newtag() Graphics connection

nmode() Window

GL Subroutine State Type Comments

Table A-2 (continued) Scope of GL Subroutines

A-12 Scope of GL Subroutines

noborder() Graphics connection Applies to next winopen(),
swinopen(),
winconstraints() call

noise() Graphics connection

noport() Graphics connection Applies to next winopen(),
swinopen(),
winconstraints() call

normal() Obsolete

nurbscurve() Renders

nurbssurface() Renders

objdelete() Graphics connection

objinsert() Graphics connection

objreplace() Graphics connection

onemap() Framebuffer Takes effect when gconfig() is
executed

ortho() mmode dependent

ortho2() mmode dependent

overlay() Window Takes effect when gconfig() is
executed

pagecolor() Textport

passthrough() Window

patch() Renders

patchbasis() Window

patchcurves() Window

patchprecision() Window

pclos() Renders

pdr()* Renders *Represents a family of subroutines

GL Subroutine State Type Comments

Table A-2 (continued) Scope of GL Subroutines

Graphics Library Programming Guide A-13

perspective() mmode dependent

pick() Window

picksize() Window

pixmode() Window

pmv()* Renders *Represents a family of subroutines

pnt()* Renders *Represents a family of subroutines

pntsize() Renders

pntsizef() Renders

pntsmooth() Window

polarview() mmode dependent

polf()* Renders *Represents a family of subroutines

poly()* Renders *Represents a family of subroutines

polymode() Window

polysmooth() Window

popattributes() Window

popmatrix() mmode dependent

popname() Window

popviewport() Window

prefposition() Graphics connection Applies to next winopen(),
swinopen(),
winconstraints()() call

prefsize() Graphics connection Applies to next winopen(),
swinopen(),
winconstraints() call

pupmode() Obsolete

pushattributes() Window

GL Subroutine State Type Comments

Table A-2 (continued) Scope of GL Subroutines

A-14 Scope of GL Subroutines

pushmatrix() mmode dependent

pushname() Window

pushviewport() Window

pwlcurve() Renders

qcontrol() Display

qdevice() Graphics connection

qenter() Graphics connection

qgetfd() Graphics connection

qread() Graphics connection

qreset() Graphics connection

qtest() Graphics connection

rcrv()* Renders *Represents a family of subroutines

rdr()* Renders *Represents a family of subroutines

readdisplay() Graphics connection

readpixels() Renders

readRGB() Renders

readsource() Framebuffer

rect()* Renders *Represents a family of subroutines

rectcopy() Renders

rectread() Renders

rectwrite() Renders

rectzoom() Renders

resetls() Window

reshapeviewport() Window

GL Subroutine State Type Comments

Table A-2 (continued) Scope of GL Subroutines

Graphics Library Programming Guide A-15

RGBcolor() Framebuffer Attribute, OK to call between
bgn/end

RGBcursor() Obsolete

RGBmode() Framebuffer OK to call between bgn/end,
Attribute

RGBrange() Obsolete

RGBwritemask() Framebuffer Attribute

ringbell() Display

rmv()* Renders *Represents a family of subroutines

rot() mmode dependent

rotate() mmode dependent

rpatch() Renders

rpdr()* Renders *Represents a family of subroutines

rpmv()* Renders *Represents a family of subroutines

sbox()* Renders *Represents a family of subroutines

scale() mmode dependent

sclear() Framebuffer

scrbox() Window

screenspace() Window

scrmask() Window

scrnattach() Display

scrnselect() Graphics connection

scrsubdivide() Graphics connection

setbell() Window

setcursor() Window

setdblights() Display

GL Subroutine State Type Comments

Table A-2 (continued) Scope of GL Subroutines

A-16 Scope of GL Subroutines

setdepth() Obsolete

setlinestyle() Window Attribute

setmap() Framebuffer

setmonitor() Screen

setnurbsproperty() Window

setpattern() Window Attribute

setpup() Graphics connection

setshade() Obsolete

setvaluator() Display

setvideo() Screen

shademodel() Window Attribute

shaderange() Obsolete

singlebuffer() Framebuffer Takes effect when gconfig() is
executed

smoothline() Obsolete

spclos() Obsolete

splf()* Renders *Represents a family of subroutines

stencil() Framebuffer

stensize() Framebuffer

stepunit() Graphics connection Applies to next winopen(),
swinopen(),
winconstraints() call

stereobuffer() Framebuffer Attribute

strwidth() Window Attribute

subpixel() Window

swapbuffers() Window

GL Subroutine State Type Comments

Table A-2 (continued) Scope of GL Subroutines

Graphics Library Programming Guide A-17

swapinterval() Window

swaptmesh() Window

swinopen() Window

swritemask() Framebuffer

t()* Window *Represents a family of subroutines

tevbind() Window

tevdef() Graphics connection

texbind() Window

texdef2d() Graphics connection

texdef3d() Graphics connection

texgen() Window

textcolor() Textport

textinit() Textport

textport() Textport

tie() Graphics connection

tlutbind() Window

tpoff() Textport

tpon() Textport

translate() mmode dependent

underlay() Window Takes effect when gconfig() is
executed

unqdevice() Graphics connection

v()* Renders *Represents a family of subroutines

videocmd() Screen

viewport() Window

GL Subroutine State Type Comments

Table A-2 (continued) Scope of GL Subroutines

A-18 Scope of GL Subroutines

winattach() Obsolete

winclose() Window

winconstraints() Window

windepth() Window

window() mmode dependent

winget() Window

winmove() Window

winopen() Window

winpop() Window

winposition() Window

winpush() Window

winset() Window

wintitle() Window

wmpack() Framebuffer Attribute

writemask() Framebuffer Attribute

writepixels() Renders

writeRGB() Renders

xfpt()* Renders *Represents a family of subroutines

zbsize() Framebuffer

zbuffer() Framebuffer

zclear() Framebuffer

zdraw() Framebuffer

zfunction() Framebuffer

zsource() Framebuffer

zwritemask() Framebuffer

GL Subroutine State Type Comments

Table A-2 (continued) Scope of GL Subroutines

Graphics Library Programming Guide B-1

Appendix B

B. Global State Attributes

This appendix lists the initial values and the defaults for the GL global state
attributes.

Table B-1 lists the default color map values.

Index Name RGB Values

Red Green Blue

0 BLACK 0 0 0

1 RED 255 0 0

2 GREEN 0 255 0

3 YELLOW 255 255 0

4 BLUE 0 0 255

5 MAGENTA 255 0 255

6 CYAN 0 255 255

7 WHITE 255 255 255

All others Unnamed Unchanged Unchanged Unchanged

Table B-1 Default Color Map Values

B-2 Global State Attributes

Table B-2 lists the keys to the supplemental information in Table B-3.

Table B-3 lists the global state attributes and their defaults.

Key Description

A Is pushed and popped on the attributes stack

G Takes effect when gconfig() is called

V Can be changed between bgn and end calls: bgnpoint(), bgnline(),
bgnclosedline(), bgnpolygon(), bgnqstrip() and bgntmesh()

Table B-2 Keys to Information in Table B-3

Attribute Initial Value Key

acsize() 0 G

afunction() 0, AF_ALWAYS

backbuffer() FALSE A

backface() FALSE

blendfunction() BF_ONE, BF_ZERO

character position Undefined

clipplane() CP_OFF

cmode() TRUE A, G

color() 0 A, V

concave() FALSE

curveprecision() Undefined

depth range getgdesc(GD_ZMIN),getgdesc(GD_ZMAX)

depthcue() FALSE

dither() DT_ON

doublebuffer() FALSE G

drawmode() NORMALDRAW A

Table B-3 Global State Attribute Defaults

Graphics Library Programming Guide B-3

feedback mode Off

fogvertex() FG_OFF

font 0 A

frontbuffer() TRUE A

frontface() FALSE

full screen mode Off

glcompat() See below

GLC_OLDPOLYGON 1

GLC_ZRANGEMAP 1 (B and G models)

0 (other models)

graphics position Undefined

leftbuffer() TRUE

linesmooth() SML_OFF

linestyle() 0 (solid) A

linewidth() 1 A

lmcolor() LMC_COLOR V

lmbind() See below

BACKMATERIAL 0

LIGHTn 0

LMODEL 0

MATERIAL 0

logicop() LO_SRC

lsrepeat() 1 A

mapcolor() No entries changed

Attribute Initial Value Key

Table B-3 (continued) Global State Attribute Defaults

B-4 Global State Attributes

matrix See below

ModelView Undefined

Projection Undefined

Single ortho2 matching window size

Texture Undefined

mmode() MSINGLE

monobuffer() Enabled

msalpha() MSA_ALPHA()

msmask() 1.0, 0

mspattern() MSP_DEFAULT

mssize() 0 G

multimap() FALSE G

multisample() TRUE

name stack Empty

nmode() NAUTO

normal vector Undefined V

onemap() TRUE G

overlay() 2 G

patchbasis() Undefined

patchcurves() Undefined

patchprecision() Undefined

pattern 0 (solid) A

pick mode Off

picksize() 10×10

pixmode() Standard

Attribute Initial Value Key

Table B-3 (continued) Global State Attribute Defaults

Graphics Library Programming Guide B-5

pntsmooth() SMP_OFF

polymode() PYM_FILL

polysmooth() PYSM_OFF

readsource() SRC_AUTO

rectzoom() 1.0,1.0

rightbuffer() FALSE

RGB color All components 0 when RGBmode is entered

RGB shade range Undefined

RGBsize() 12

RGBmode() FALSE G A

RGB writemask 0xFF when RGB is entered A,V

scrbox() SB_RESET

scrmask() Set to size of window

scrsubdivide() SS_OFF

select mode Off

shade range 0,7, getgdesc(GD_ZMIN),getgdesc(GD_ZMAX)

shademodel() GOURAUD A

singlebuffer() TRUE G

stencil() Disabled

stensize() 0 G

stereobuffer() Disabled

swritemask() All stencil planes enabled

tevbind() 0 (off)

texbind() 0 (off)

texgen() TG_OFF

Attribute Initial Value Key

Table B-3 (continued) Global State Attribute Defaults

B-6 Global State Attributes

underlay() 0 G

viewport() Set to size of window

writemask() All bitplanes enabled A

zbsize() 32

zbuffer() FALSE

zdraw() FALSE A

zfunction() ZF_LEQUAL

zsource() ZSRC_DEPTH

zwritemask() All z-buffer planes enabled

Attribute Initial Value Key

Table B-3 (continued) Global State Attribute Defaults

Graphics Library Programming Guide C-1

Appendix C

C. Transformation Matrices

Transformation commands create the following matrices.

C.1 Translation

C.2 Scaling and Mirroring

Translate Tx Ty Tz, ,()

1 0 0 0

0 1 0 0

0 0 1 0

Tx Ty Tz 1

=

Scale Sx Sy Sz, ,()

Sx 0 0 0

0 Sy 0 0

0 0 Sz 0

0 0 0 1

=

C-2 Transformation Matrices

C.3 Rotation

Rotx θ()

1 0 0 0

0 θcos θsin 0

0 θsin– θcos 0

0 0 0 1

=

Roty θ()

θcos 0 θsin– 0

0 1 0 0

θsin 0 θcos 0

0 0 0 1

=

Rotz θ()

θcos θsin 0 0

θsin– θcos 0 0

0 0 1 0

0 0 0 1

=

Graphics Library Programming Guide C-3

C.4 Viewing Transformations

Polarview dist azim inc twist, , ,() Rotz azim–() Rotx inc–() Rotz twist–() Trans 0.0 0.0 dist–, ,()⋅ ⋅ ⋅=
lookat vx vy vz px py pz twist, , , , , ,() trans vx– vy– vz–, ,() roty θ() rotx ϕ() rotz twist–()⋅ ⋅ ⋅=

θsin
px vx–

px vx–() 2 pz vz–() 2+
--=

θcos
vz pz–

px vx–() 2 pz vz–() 2+
--=

ϕsin
vy py–

px vx–() 2 py vy–() 2 pz vz–() 2+ +
---=

ϕcos
px vx–() 2 pz vz–() 2+

px vx–() 2 py vy–() 2 pz vz–() 2+ +
---=

C-4 Transformation Matrices

C.5 Perspective Transformations

perspective fov aspect near far, , ,()

fov
20
-------- 

 cot

aspect
----------------------- 0 0 0

0
fov
20
-------- 

 cot 0 0

0 0 far near+
far near–
-----------------------– 1–

0 0 2 far near⋅ ⋅
far near–

-----------------------------– 0

=

window left right bottom top near far, , , , ,()

2 near⋅
right left–
------------------------- 0 0 0

0
2 near⋅

top bottom–
------------------------------ 0 0

right left+
right left–
------------------------- top bottom+

top bottom–
------------------------------- far near+

far near–
-----------------------– 1–

0 0 2 far near⋅ ⋅
far near–

-----------------------------– 0

=

Graphics Library Programming Guide C-5

C.6 Orthographic Transformations

ortho left right bottom top near far, , , , ,()

2
right left–
------------------------- 0 0 0

0
2

top bottom–
------------------------------ 0 0

0 0 2
far near–
-----------------------– 0

right left+
right left–
-------------------------– top bottom+

top bottom–
-------------------------------– far near+

far near–
-----------------------– 1

=

ortho2 left right bottom top, , ,()

2
right left–
------------------------- 0 0 0

0
2

top bottom–
------------------------------ 0 0

0 0 1– 0

right left+
right left–
-------------------------– top bottom+

top bottom–
-------------------------------– 0 1

=

C-6 Transformation Matrices

Graphics Library Programming Guide D-1

Appendix D

D. GL Error Messages

This appendix lists of error messages used in the Graphics Library. Errors are
listed by the error number that is output by the system when your program has
an error. A probable cause is listed for each error, except for errors that are
listed as “not documented”.

This information is intended to be a suggestion about what you should
consider when debugging your program. The cause listed may not be the
reason you received that particular error message, but you should check your
program for the listed condition before proceeding with debugging.

No. Error Probable Cause

1 ERR_SINGMATRIX The matrix given cannot be inverted.
Usually caused by scaling a zero value,
or setting near or far planes to 0, or to
equal values.

2 ERR_OUTMEM Ran out of memory, malloc failed.

3 ERR_NEGSIDES Program attempted to generate a
polygon with less than zero sides.

4 ERR_BADWINDOW Values for left-right, top-bottom, or
far-near were probably switched. The
left, top, and far values must be greater
than right, bottom, and near values.

5 ERR_NOOPENOBJ Program attempted to edit an object
when there was no object to edit.

6 ERR_NOFONTRAM Obsolete.

Table D-1 GL Error Messages and Probable Causes

D-2 GL Error Messages

7 ERR_FOV fovy must be greater than 1.0 and less
than or equal to 1800. Note: the fovy
should be ten times the angle than is
the result of the tangent of the window
width and the distance from viewer to
screen for best results, that is, fovy for
a full screen seen 2 feet away should
be about 337 (inverse tan of 16/24).

8 ERR_BASISID Pointers to the matrices being used for
precision or curve type bspline,
cardinal, or bezier are not equivalent
or the pointer is null. Also, possibly
one of the basis id’s was not found, an
undefined basis number is used.

9 ERR_NEGINDEX Not documented.

10 ERR_NOCLIPPERS Does not occur on IRIS 4D systems

11 ERR_STRINGBUG Not documented.

12 ERR_NOCURVBASIS Basis for the curve must be set before
drawing the curve.

13 ERR_BADCURVID Not documented.

14 ERR_NOPTCHBASIS Basis for the patch must be set before
drawing the patch.

15 ERR_FEEDPICK Not documented.

16 ERR_INPICK Program is already picking, can’t try to
pick twice at same time.

17 ERR_NOTINPICK Program not in pick mode when trying
to end feedback or end pick or select
mode.

18 ERR_ZEROPICK The size of the picking region is
non-positive.

19 ERR_FONTBUG Not documented.

20 ERR_INRGB Program attempted to set mapcolor or
writemask while in RGBmode.

No. Error Probable Cause

Table D-1 (continued) GL Error Messages and Probable Causes

Graphics Library Programming Guide D-3

21 ERR_NOTINRGBMODE Program attempted to use a RGBmode
routine while not in RGBmode.

22 ERR_BADINDEX Color is not within valid index range.

23 ERR_BADVALUATOR Program attempted to use a
non-existing valuator.

24 ERR_BADBUTTON Program attempted to access an illegal
button number.

25 ERR_NOTINDBMODE Program should be in dial button box
mode to call current procedure.

26 ERR_BADINDEXBUG Not documented.

27 ERR_ZEROVIEWPORT The values for {x1|y1} are larger than
{x2|y2} in the definition of screen
coordinates. Thus, the size of the
viewport is too small.

28 ERR_DIALBUG Not Documented.

29 ERR_MOUSEBUG Not Documented.

30 ERR_RETRACEBUG Not Documented.

31 ERR_MAXRETRACE Program attempted to execute more
than the maximum number of retrace
events allowed.

32 ERR_NOSUCHTAG The tag chosen is not in the hash table
or at the beginning of the object set up.
It cannot be found.

33 ERR_DELBUG Not documented.

34 ERR_DELTAG Program attempted to delete a
non-existent or incorrect tag.

35 ERR_NEGTAG Object tag is less than zero.

36 ERR_TAGEXISTS Program attempted to create an object
with an index number that already
exists.

No. Error Probable Cause

Table D-1 (continued) GL Error Messages and Probable Causes

D-4 GL Error Messages

37 ERR_OFFTOOBIG Offset is too large, program attempted
to step beyond edge of object.

38 ERR_ILLEGALID Program attempted to make an object
with an id that is negative.

39 ERR_GECONVERT Not documented.

40 ERR_BADAXIS Axis must be named with
{x|X|y|Y|z|Z} anything else will
give error.

42 ERR_BADDEVICE The graphics manager couldn’t be
reached. This is a fatal error.

44 ERR_PATCURVES Not documented.

45 ERR_PATPREC Not documented.

46 ERR_CURVPREC Not documented.

47 ERR_PUSHATTR The attribute stack is full, pop or clear
attribute stack first.check for
unbalanced code.

48 ERR_POPATTR The attribute stack is empty,
something must be put there first.
Check for unbalanced code.

49 ERR_PUSHMATRIX The matrix stack is full. Clear or pop
first. Check for unbalanced code.

50 ERR_POPMATRIX The matrix stack is empty, something
must be put there first.check for
unbalanced code.

51 ERR_PUSHVIEWPORT The viewport stack is full, pop or clear
viewport stack first. Check for
unbalanced code.

52 ERR_POPVIEWPORT The viewport stack is empty,
something must be put there first.
Check for unbalanced code.

53 ERR_SIZEFIXED Object size is frozen, chunksize cannot
change after start of object definition.

No. Error Probable Cause

Table D-1 (continued) GL Error Messages and Probable Causes

Graphics Library Programming Guide D-5

54 ERR_SETMONITOR Not documented. {illegal monitor
type?}

55 ERR_CHANGEINDEX0 Program was attempting to redefine
the default style of
{line|cursor|font|etc}, change index 0
to some other value.

56 ERR_BADPATTERN Bad size of pattern, only use 16, 32 or
64

67 ERR_CURSORNOTFOUND An invalid cursor name was given,
check and change value.

58 ERR_FONTHOLES Not documented.

59 ERR_REPLACE Program attempted to replace past end
of object.

60 ERR_STARTFEED Not documented.

61 ERR_CYCLEMAP Not documented.

62 ERR_TAGINREPLACE Program attempted to make a tag in
replace mode. only replace graphics
commands

63 ERR_TOOFEWPTS The Program attempted to create a
rational curve with less than 4 points.

64 ERR_UNDEFINEDCHAR Not documented.

65 ERR_BADCURSOR Bad size, only use 16, or 32 or default
cursor types.

66 ERR_NOTINCOLORMODE To use getcursor, program must be in
proper mode. Not documented.

67 ERR_UNKNOWNCMDLENGTH Routine fell through the case statement
for checking size of number of polygon
points. New command must be same
length as the old command.

68 ERR_INFEEDBACK Program trying to enter feedback
when in feedback mode.

No. Error Probable Cause

Table D-1 (continued) GL Error Messages and Probable Causes

D-6 GL Error Messages

69 ERR_DURINGFEEDBACK Program trying to exit feedback when
not in feedback.

70 ERR_DURINGSELECT System failure occurred in endpick.

71 ERR_ARGMISMATCH Buffer specified in endfeedback,
end pick or select, must be same as
buffer started with

72 ERR_TOOMANYARGS Program attempted to use more than
ten arguments in a function call. This is
error.

73 ERR_OBJNOTFOUND There is no header or no valid header
in the object the Program called.object
was invalid.

74 ERR_MAKEROOMINREPLACEMODE Program attempted to reorganize
display list entries while in replace
mode.This is a error.

75 ERR_UNABLETOOPEN The gid value given to the hardware is
invalid or less than 0.

76 ERR_QUEUINGDEVICE Program attempted to queue a
non-existing device.

77 ERR_UNQUEUINGDEVICE Program attempted to unqueue a
non-existing device.

78 ERR_GETBUTTONERROR Program attempted to get a
non-existing button value.

79 ERR_GETVALUATORERROR Program attempted to get an invalid
valuator.

80 ERR_SETVALERROR Program attempted to set an invalid
valuator.

81 ERR_TIEERROR Program attempted to tie a non-valid
device id.

82 ERR_NOISEERROR Not documented.

83 ERR_ATTACHCURSOR Not documented.

No. Error Probable Cause

Table D-1 (continued) GL Error Messages and Probable Causes

Graphics Library Programming Guide D-7

84 ERR_MAPDEVICE Not documented.

85 ERR_WINATTACH Not documented.

86 ERR_NOSUCHWINDOW Program attempted to switch to or
close an invalid window.

87 ERR_CLOSEDLASTWINDOW Not documented.

88 ERR_LINESTYLENOTFOUND Not documented.

89 ERR_PATTERNNOTFOUND Not documented.

90 ERR_NULLWSINCLONING Not documented.

91 ERR_USERERROR Error message, used for anything that
won’t fit in other messages

92 ERR_NOFONTFOUND The name of the font given was not
found, check the list in /usr/lib/fmfonts

93 ERR_WMANIPC Message being sent to the window
manager was too large.

94 ERR_INPUTOPEN Not documented.

95 ERR_RESETINGQ Program attempted to reset a
non-valid queue id.

96 ERR_GETTP Program attempted to access an
non-valid textport id.

97 ERR_TOOMANYSIDES Program attempted to create a
polygon with more than 255 vertices.

98 ERR_INVALIDMODE Program attempted to enter an invalid
mode.

99 ERR_INVALIDPARENT There is no parent state for current
window.

106 ERR_NOWIN No window manager running.

No. Error Probable Cause

Table D-1 (continued) GL Error Messages and Probable Causes

D-8 GL Error Messages

Graphics Library Programming Guide E-1

Appendix E

E. Using Graphics and Share Groups

Graphics is a shared attribute among processes that share virtual address
space by using the sproc system call. Prior to IRIX release 3.3, only a single
thread of a share group could perform a winopen() and be allowed access to
the graphics pipe. The flexibility of having any thread performing a graphics
call may result in increased performance for those applications that take
advantage of this feature, but there are a number of caveats that the
programmer should be aware of. This appendix describes the potential
problems and how to avoid them.

The graphics pipe on all architectures is a memory mapped device—that is,
loads and stores to memory locations send commands and data to the
hardware. Thus the graphics hardware is a region of virtual memory that is
made accessible to a graphics process once it has done a winopen() call. The
semantics of the PR_SADDR option of sproc are extended so that children created
with this option share this virtual address space as well as sharing regular
memory. Because access to other graphics resources (input queues, and so on)
is done through open file descriptors, the PR_SFDS option should be enabled
as well.

The resulting effect is that when one thread performs a graphics call, it is as if
all threads perform the call. For example, if one process performs a winopen(),
all threads in the share group have access to the new window. If any thread
performs a winset(), any succeeding graphics call by any other thread is
applied to the new window. A color() call sets the display color for all
threads, and so on.

Unlike the library routines in libmpc.a, no code has been added to the IRIS GL
to prevent simultaneous access by separate processes to either GL data
structures or to the graphics pipe. Because the programming model presented
by the GL is fundamentally modal, the responsibility for the definition and

E-2 Using Graphics and Share Groups

protection of critical regions must be owned by the application program. For
example, suppose that one process within the share group wants to perform
the following sequence, each for a different polygon:

bgnpolygon(), v3f(), v3f(), ... endpolygon()

As soon as the process has made the bgnpolygon() call, any other process in
the share group may not perform a GL call until the first process has
performed the corresponding endpolygon() call. Thus, the application code
must make the above sequence a critical region in each process, in order to
ensure that the two processes do not interleave their sequences of calls. The
routines described in ussetlock that use test-and-set style spinlocks are one
effective way of enforcing the synchronization.

The effects of failing to synchronize access to the graphics pipe and associated
data structures are unpredictable. At the least, some display anomalies will
occur. The most catastrophic result is unexpected shutdown of the window
manager and the graphics subsystem.

There are two other rules to follow when using graphics share groups. These
are issues with the current implementation and may not apply to a future
release. First, the process that performed the initial winopen() must remain
alive while any thread performs GL calls. Second, unless a foreground() hint
call is made prior to the winopen(), the winopen() call should happen prior
to any call to sproc. This is because winopen() by default places a process in the
background by calling fork and having the original parent process die. The fork
will cause the new process to exit the share group. Delaying the sproc until after
the winopen() creates the share group after graphics has been initialized.

This list summarizes the rules for sharing graphics among processes:

1. Perform a sproc call with sharing options PR_SADDR and PR_SFDS.

2. Treat all atomic sequences of GL calls as critical regions.

3. The process that did the first winopen() must not exit until all threads are
finished performing GL calls.

4. Perform the sproc call after the winopen() call unless the foreground()
call is used.

Graphics Library Programming Guide Index-1

Index

A

acbuf, 15-31
accumulation buffer, 15-30 through 15-36
acsize, 15-30
addressing

frame buffer memory, 6-1
frame buffers, 10-1
pixels, 11-4

afunction, 8-22, 18-45
algebraic representations, 14-2
aliasing, definition of, 15-1
ALPHA, 9-21
alpha

bitplanes, 15-7
blending, 8-22 through 8-26
hints for texture, 18-45
of material, 9-21

AMBIENT, 9-8, 9-9
ambient light, 9-4, 9-9
ambient property, fast update of, 9-20
animation, 6-1 through 6-8

flicker, 6-2
frame rate, 6-3
gsync not recommended, 6-8
maximizing performance, 6-6
setting swap interval for, 6-7
setting up, 6-3

anomalies, display, 2-20
ANSI C, 1-1, 1-4

-cckr non-ANSI compatibility flag, 1-4
antialiasing, 15-1 through 15-36

box filter, 15-35
definition, 15-1
Gaussian filter, 15-35
lines, 15-15
multipass, 15-30 through 15-36
onepass, 15-10 through 15-30
on RealityEngine, 15-36 through 15-47
polygons, 15-22
RGB lines caution, 15-22
RGB mode, 15-13
subpixel, 15-4 through 15-5

approximating surfaces
non-planar polygons, 2-16

apropos, xxv
arc/arcf, 2-36
arcs, 2-35
aspect ratio, 7-5

maintaining, 7-6
asymmetric viewing volume, 7-9, 7-11
Athena widgets, 5-2
atmospheric effects, 13-10 through 13-14
attachcursor, 5-6
ATTENUATION, 9-15
ATTENUATION2, 9-15

Index-2 Index

attenuation of a spotlight, 9-17
attenuation of light, 9-14
azimuth, 7-13

B

B-Spline, 14-6
interpolate control points, 14-10
old-style curve, 14-29
relationships, 14-9

back buffer, 6-1, 6-6
backbuffer, 6-2

and zdraw, 8-10
backface, 8-22
backface removal, 8-21 through 8-22
backfacing polygons, 8-21
BACKMATERIAL, 9-18, 9-20
basis functions, 14-7, 14-8
basis matrix, 14-28
bbox2, 16-7
Bezier cubic curve, 14-29
bgnclosedline/endclosedline, 2-9
bgncurve/endcurve, 14-11
bgnline/endline, 2-8
bgnpoint/endpoint, 2-7
bgnpolygon/endpolygon, 2-15
bgnqstrip/endqstrip, 2-27
bgnsurface/endsurface, 14-13
bgntmesh/endtmesh structure, 2-21
bgntrim/endtrim structure, 14-20
bicubic patch, 14-33
binary compatibility, 1-4
binding lighting, 9-11
bitmask, 3-7, 3-8
bitplane

selecting for drawing, 10-1
writemasks, 10-7

bitplanes, 4-15, 6-2, 8-3
allocating for accumulation, 15-30
color, 4-3
configuring, 10-15 through 10-16
definition, 10-1
overlay, 10-3
underlay, 10-3

bits per pixel, 4-3, 4-5
blankscreen, 5-18
blanktime, 5-18
blendfuction, 15-5
blendfunction, 15-4
blending, 15-5 through 15-9

correlated, 15-26
texture colors, 18-41

blinking, 4-21
blkqread, 5-5
blurring effect of texture MipMap, 18-21
bounding box, 16-7
bowtie polygon, 2-15

rendering, 2-16
box filter, 15-35
buffer

picking, 12-2
querying mode of, 6-7
writing to back, 6-6

buffers
swapping, 6-3
swapping multiple, 6-3

button
polling, 5-8
reading, 5-6

buttons, 5-11
byte stream, 19-2

Graphics Library Programming Guide Index-3

C

cc, 1-4
-cckr, 1-4
c3s, 4-7
caching of texture memory, 18-45
calculations, precision of, 2-16
callbacks limited for remote operation, 19-5
callfunc, 19-5
callobj, 16-4
Cardinal spline curve, 14-29
cartesian floating point coordinates, 7-2
C compiler, 1-4
changing currently bound definitions, 9-13
changing defined objects, 16-8
changing lighting settings, 9-12 through 9-13
changing pixel fill directions, 11-12
changing the color map, 4-16
character, 3-2

bitmasks, 3-8
clipping, 3-4
transformations, 3-6

charstr, 3-2
choosing items on the screen, 12-1
choosing parameters for ortho, 7-11
chunk, 16-13
chunksize, 16-12
circ/circf, 2-34
circle, representing with NURBS, 14-12
circles, 2-34
clearing stencil planes, 8-19
client/server model, 19-1
clip coordinates, 7-3
clipping

characters, 3-4
effect on feedback, 17-3
gross, 3-4

clipping planes, 7-5, 7-8, 7-9, 8-7
user-defined, 7-30

clipplane, 7-30
clkoff, 5-16
clkon, 5-16
closed line, definition, 2-8
closeobj, 16-2, 16-8
closing an object definition, 16-2
closing a window, 5-14
cmov, 3-2
coefficients, 14-5
color, 4-1 through 4-25

blending, 15-5 through 15-9
how monitors display, 4-2
how the GL calculates for lighting, 9-6
in lighted scenes, 9-2
mode, 4-3
NURBS surface, 14-13, 14-17
smooth variation, 4-9

color, 4-17, 10-5
color data, 8-bit, 4-5
color display correction, 4-23
colorf, 4-17
color guns, 4-2
color index, 4-17
color index mode, see color map mode
color map

assigning in multimap mode, 4-22
changing, 4-16
default, 4-16
getting index of in multimap mode, 4-22
getting values of, 4-18

color map mode, 4-15 through 4-20
antialiased points, 15-11
depth-cueing, 13-4
lighting, 9-24
querying, 4-22

color mode
querying, 4-8

Index-4 Index

color ramp, 13-5
compactify, 16-12
compatibility, 1-9
GLC_OLDPOLYGON, 2-31

compiling C programs, 1-4
concave, 2-13
concave polygon, 2-13
configuration, remote, 19-12
configuring overlay/underlay

bitplanes, 10-15 through 10-17
conic sections, representing

with NURBS, 14-12
connection, 19-4

default, 19-4
permission, 19-4
TCP, 19-12

contour texture, 18-35
control net, 14-13
control points, 14-5, 14-6

agree with data type, 14-15
size of array, 14-14

control polygon, 14-6
convex polygon, 2-12
coordinates

cartesian, 7-2
clip, 7-3
eye, 7-3
normalized, 7-3
object, 7-2
window, 7-3
world, 7-3

coordinate systems, 7-2 through 7-3
copying pixels, 11-7
correlated blending function, 15-26
cpack, 4-7
C programming language, xxi, 1-4
creating a cursor, 10-19
creating a font, 3-7 through 3-10
creating a glowing surface, 9-4

creating an object, 16-2
creating highlights with lighting, 9-3
creating queue entries, 5-4
cross-hair cursor, 10-17
cross-plot, 14-4
cubic polynomials, 14-5
culling

definition, 16-5
NURBS, 14-21

curorigin, 10-20
current character position, 3-2

finding, 3-4
current graphics position, 2-37
current matrix, 7-16
current normal, 9-5
current texture matrix, 18-33
cursoff, 5-6
curson, 5-6
cursor, 5-6

creating, 10-19
cross-hair, 10-17
default, 10-17
defining a glyph, 10-20
defining the type, 10-20
finding, 5-7
hardware, 10-17
mask, 10-17
mode, 10-6
origin, 10-20
turning on/off, 5-6
types, 10-17

cursor devices, 5-13
CURSORDRAW, 10-6
cursors, 10-17 through 10-23
curstype, 10-20
curves

old-style, 14-28, 14-28 through 14-33
cyclemap, 4-22
czclear, 8-8, 8-9

Graphics Library Programming Guide Index-5

D

daemon, 19-12
dgld, 19-13
inetd, 19-13

dbtext, 5-17
decal textures, 18-42
default connection for remote operation, 19-4
default cursor, 10-17
default settings for lighting, 9-13
defcursor, 10-20
defining a creen region for selecting, 12-8
defining a cursor glyph, 10-20
defining a material, 9-8
defining a viewing point, 7-13
deflinestyle, 2-10
defpattern, 2-16
defrasterfont, 3-8
degree elevation of poynomials, 14-5
deleting an object, 16-4
delobj, 16-4
deltag, 16-10
demos

NURBS Curve, 14-1
Trimmed NURBS, 14-1

density of fog, 13-12
dependent variable, 14-2
depth-cueing, 13-1 through 13-10

in color map mode, 13-4
optimizing resolution for, 7-5

depth-cueing in RGB mode, 13-6
DEPTHCHANGE, 5-14
depthcue, 13-4
depth perception, 13-1
DetailTexture, 18-27 through 18-32
determining the maximum z value, 8-7
determining the minimum z value, 8-7

device
disabling queing, 5-4
finding out if queued, 5-4
initialization, 5-16
queueing, 5-4
Spaceball, 5-15

device domain, 5-10
devices, 5-10 through 5-17

ghost, 5-13
labeling dial and button box, 5-17

DGL client, 19-2
dgld daemon, 19-13
DGL protocol, 19-2, 19-12
DGLSERVER, 19-4
DGL server, 19-2
DGLTSOCKET, 19-4
DGLTYPE, 19-4
dial and button box, 5-17
difference image, 18-28
DIFFUSE, 9-8
diffuse reflectance, 9-3
diffuse reflection, fast update, 9-20
disabling queueing for a device, 5-4
discontinuity, 14-8
DISPLAY, 1-2, 1-3, 19-4
display

getting mode, 6-7
hostname, 1-3

display anomalies, 2-20
displaying graphics over the network,

19-1 through 19-16
display lists, 16-1
distance-squared attenuation, 9-15
distortion

from non-planar polygons, 2-16
in color dispalys, 4-23

dither, 4-4
dithering, 4-4

Index-6 Index

doublebuffer, 6-2
double buffering, 6-1
double buffer mode, 6-1, 6-2
draw, 2-39
drawing, 2-1 through 2-37, 3-2

arcs, 2-35
characters, 3-2
circles, 2-34
cursors, 10-17 through 10-23
meshes, 2-21 through 2-28
mode, 10-5 through 10-7
object in display list, 16-4
old-style, 2-30 through 2-42
on top of pixels, 10-1
points, 2-7
polygons, 2-15
polylines, 2-8
rectangles, 2-32
setting bitplane destination, 10-5
underneath pixels, 10-1

drawing mode, 10-1
drawmode, 10-6

pixel access, 11-4
driving a plotter with feedback, 17-2

E

8-bit color data, 4-5
editobj, 16-8
effect of clipping on feedback, 17-3
electrons, 4-2
emission, 9-4
EMMISION, 9-9
emptying the event queue, 5-3
enabling queueing for adevice, 5-4
endclosedline, 2-9
endline, 2-8
endpick, 12-2

endpoint, 2-7
endpolygon, 2-15
endqstrip, 2-27
endselect, 12-8
ENDTAG, 16-9
endtmesh, 2-21
environment variable

DISPLAY, 1-2
environment variables

for remote operation, 19-4
equation

depth-cued color, 13-6
fog, 13-12
size of control point array for NURBS, 14-14

error
floating point, 2-16
roundoff, 2-4

error messages
remote, 19-13

establishing a remote connection, 19-4
Ethernet, 19-2
eye coordinate system, 7-3

F

4Dwm, 1-2, 1-3
fast updates to material, 9-18
fat polygons, 2-19
feedback, 17-1 through 17-10

data types, 17-2
effect of clipping, 17-3
IRIS-4D/GT/GTX, 17-4
IRIS-4D/VGX, 17-7
IRIS Indigo, 17-6
Personal IRIS, 17-6
sample program, 17-8

feedback, 17-2
field of view, 7-5

Graphics Library Programming Guide Index-7

finding out if a device is queued, 5-4
finding the cursor, 5-7
finding the monitor type, 5-18
finish, 19-3
flicker, cause of in animation, 6-2
floating point calculations, 7-5
floating point precision, 2-16
fog, 13-10 through 13-14

density, 13-12
equation, 13-13
modes, 13-14
per-pixel, 13-12

fog characteristics, 13-12
fogvertex, 13-10, 13-14
font

creating, 3-7 through 3-10
selecting, 3-12

Font Manager Library, 1-4
fonts, 3-7 through 3-14
frame buffer, 4-3, 4-17, 6-1

standard, 10-2
frame buffers, 10-1 through 10-7

RealityEngine, 10-2
frame rate, 6-3
front-facing polygons, 2-24
front buffer, 6-1
frontbuffer, 6-2
zdraw, 8-10

frontface, 8-22
frustum, 7-5, 7-9, 7-10

G

gamma correction, 4-23
gamma ramp, 4-24
gammaramp, 4-23, 4-24
Gaussian filter for antialiasing, 15-35

gconfig
doublebuffer, 6-2
multimap, 4-22
onemap, 4-22
RGBmode, 4-5
singlebuffer, 6-2

generating a numeric identifier
for an object, 16-4

genobj, 16-4
gentag, 16-10
geometric surface, 14-16

NURBS, 14-13
geometry
bgn/end structure of, 2-2
definition, 2-1

Geometry Engine, 17-2
Geometry Pipeline, 1-1

feedback, 17-1
remote operation considerations, 19-3

getbackface, 8-22
getbuffer, 6-7
getbutton, 5-8
getcmmode, 4-22
getcolor, 10-5
getcpos, 3-4
getcursor, 5-7, 10-21
getdcm, 13-4
getdev, 5-8
getdisplaymode, 6-7
getdrawmode, 10-7
getfont, 3-14
getgdesc, 1-7
GD_BITS, 4-3, 10-2
GD_BITS_NORM_SING_ALPHA, 15-7
GD_CIFRACT, 4-4
GD_DITHER, 4-4
GD_FOGVERTEX, 13-11
GD_LIGHTING_TWOSIDE, 9-17
GD_PIXPERSPECT, 18-33

Index-8 Index

GD_POLYMODE, 2-30
GD_ZMAX, 8-7
GD_ZMIN, 8-7

getgpos, 2-37, 7-3
getlstyle, 2-10
getlwidth, 2-11
getmap, 4-22
getmatrix, 7-29
getmcolor, 4-18, 10-5
getmonitor, 5-18
getnurbsproperty, 14-21
getopenobj, 16-8
getothermonitor, 5-19
getscrbox, 7-29
getscrmask, 7-28
getting color information, 4-18
getting font information, 3-14
getting the size of the viewport, 7-27
getvaluator, 5-7
getvideo, 5-20
getviewport, 7-27
getwritemask, 10-10
getzbuffer, 8-3
gflush, 2-2, 19-2
ghost devices, 5-13
GLC_OLDPOLYGON, 2-31
GLC_ZRANGEMAP, 13-3
glcompat, 13-3
GL Demos, 14-1
global state attributes, 1-10
glresources, 5-2
GL timers, 5-12
GLX group of commands, 5-2
Gouraud shading, 4-8, 4-10, 4-12, 10-7

color map mode, 4-17
performance, 4-9

graphical object
creating, 16-2
defintion, 16-1
sample, 16-3

graphical objects, 16-1
graphics development environment, 1-1
Graphics Library, xxi

network transparency, 1-2
Graphics Library,query version, 1-8
graphics primitives, 2-1
graphics server, 19-12
graphics server daemon, 19-12
gRGBcolor, 4-8
gRGBmask, 10-10
gross clipping, 3-4
gselect, 12-8
gsync, 6-8

H

hardware
cursor, 10-17
feedback, 17-1 through 17-10
query, 1-7

haze, 13-10
hidden-surface removal, 8-1 through 8-26
hierarchical drawing, 7-20
hierarchical object, 16-5
hierarchies, 16-1
hierarchy

diagram, 16-6
highlights on surfaces, 9-3
hint
noport, 4-24
scrsubdivide, 18-45
texbind, 18-45
texdef2d, 18-44
texture caching, 18-45

Graphics Library Programming Guide Index-9

texture performance, 18-43
hits, 12-1
hostname, 1-3
how a writemask works, 10-8

I

iconsize, 5-14
immediate mode, 2-1
implicit representations, 14-2
improving lighting performance, 9-22
incident light, 9-2
include files, 1-2
independent variable, 14-2
indirect light, 9-3
inetd daemon, 19-13
infinite light source, 9-9
infinite viewpoint, 9-10
initnames, 12-5
INPUTCHANGE, 5-3, 5-14
input devices, 5-10 through 5-17

classes, 5-10
cursor, 5-13
keyboard, 5-13

input event, 5-1
input focus, 5-2

testing for change, 5-14
instructions

how to create a cursor, 10-19
how to draw a NURBS surface, 14-14
how to draw old-style surface patches, 14-33
how to set up depth-cueing, 13-2
how to set up fog, 13-11
how to set up lighting, 9-4
how to set up picking, 12-2
how to set up queueing, 5-3
how to set up texture mapping, 18-6

how to use man pages, xxv
how to use sample programs, xxii

Internet, 19-12
interpolation

texture, 18-38
interrupts limited for remote operation, 19-5
IRIS-4D/GT/GTX feedback, 17-4
IRIS-4D/VGX

clearing of z-buffer, 8-9
double-buffered overlay/underlay, 10-7
feedback, 17-7
fog, 13-10
mesh handling, 2-28
stenciling, 8-16
subpixel, 15-4
swapping multiple buffers, 6-3

IRIS Font Manager, 3-1
IRIS Indigo

allows local lights in color map mode, 9-25
backface removal, 8-21
dithering, 4-4
feedback, 17-6
fog, 13-10
no overlay/underlay on starter system, 10-1
pixel formats, 11-3
querying for perspective
correction of texture, 18-33
texture perspective correction in SW, 18-32
z-buffer in software, 8-2

IRIX, 1-1
isobj, 16-4
isqueued, 5-4
istag, 16-9
izoom, 18-29

J

jumps limited for remote operation, 19-5

Index-10 Index

K

keepaspect, 7-6
kernel

filter, 18-20
keyboard

ringing the bell, 5-17
setting duration of bell, 5-17
turning on/off key click, 5-16
turning on/off lights, 5-16

keyboard device, 5-13
knot multiplicity, 14-8
knots, 14-5, 14-8
knot sequence, 14-8

L

-lc_s, 1-4
-lfm_s, 1-4
-lgl_s, 1-4
-lm_s, 1-4
-lsun, 1-4
labeling dial and button box indicators, 5-17
lampoff, 5-16
lampon, 5-16
LCOLOR, 9-9
Level-of-Detail, 18-24, 18-29
library

shared C, 1-4
shared Graphics Library, 1-4

light
ambient, 9-4, 9-9
attenuation, 9-14
emmited, 9-4
incident, 9-2
reflected, 9-2
wavelength, 9-2

lighting, 9-1 through 9-27

binding, 9-11
changing currently bound conditions, 9-13
defaults, 9-13
enabling, 9-11
how calculated, 9-6
in color map mode, 9-24
moving a light from frame to frame, 9-13
performance, 9-22
performance of updates, 9-19
two-sided, 9-18

lighting model, 9-10
light source

targets, 9-11
light sources, 9-9
limitations of lighting in color map mode, 9-24
linear interpolation of texture, 18-38
line of sight, 7-13, 7-14
lines

antialias, 15-15
old-style, 2-39
style, 2-10
width, 2-11

linestyle
definition, 2-10
specifying, 2-10

linewidth, 2-11
linewidthf, 2-11
linking, 1-4
Live Video Digitizer, 5-21
lmbind, 9-12, 9-21
LMC_AD, 9-20
LMC_AMBIENT, 9-20
LMC_COLOR, 9-20
LMC_DIFFUSE, 9-20
LMC_EMISSION, 9-20
LMC_NULL, 9-20
LMC_SPECULAR, 9-20
lmcolor, 9-19

performance, 9-19

Graphics Library Programming Guide Index-11

lmdef, 9-7, 9-8, 9-12, 9-14, 9-21
LMNULL, 9-7
loadmatrix, 7-29
loadname, 12-4
local host, 1-3
LOCALVIEWER, 9-10
LOCALVIEWER performance, 9-23
local viewpoint, 9-10
LOD, 18-24, 18-29
logicop, 15-4
lookat, 7-12, 7-14
lrectread, 11-6, 11-16, 18-10
lrectwrite, 11-7
lRGBrange, 13-4
lsetdepth, 8-7, 13-3, 13-5
lshaderange, 13-4, 13-5, 13-10
lsrepeat, 2-11

M

makeobj, 16-2
maketag, 16-9
makewhatis, xxvi
making a light move from frame to frame, 9-13
man, xxv
man pages, xxv
mapcolor, 4-16, 10-5, 13-5
mapw, 16-13
mapw2, 16-13
mask

linestyle, 2-10
pattern, 2-16

material
defining, 9-8
different front and back, 9-18
fast updates, 9-18
transparent, 9-21

matrix mode, 7-19
matrix multiplication, 7-19
maximum z value, querying for, 8-7
MAXLIGHTS light sources limit, 9-11
memory management

objects, 16-12
texture, 18-45

meshes 2-21 through 2-28
changing vertex sequence, 2-23
drawing, 2-21
vertex sequence, 2-22

minification filters, 18-17
minimum z value, querying for, 8-7
MIPmap

filter kernel, 18-20
quadlinear, 18-18
trilinear, 18-18

mixed-model programming, 5-2
mmode, 7-20

 for fog, 13-11
MTEXTURE, 18-33
pushmatrix, 7-21

mode
color map, 4-15 through 4-20
double buffer, 6-1, 6-2
fog, 13-14
for bitplanes, 10-5
for normal frame buffer, 10-6
multimap, 4-22
onemap, 4-22
querying color, 4-8
querying for display, 6-7
RGB, 4-5 through 4-15
setting up for animation, 6-2
single buffer, 6-1, 6-2

modeling transformations, 7-16 through 7-19
ModelView matrix, 7-3, 7-19, 7-29,

9-11,9-13, 9-22

Index-12 Index

monitor
color display, 4-2
other types, 5-19
querying for type, 5-18
setting type, 5-18

Motif, 5-2
move, 2-39
MPROJECTION, 7-19
msalpha, 15-47
mspattern, 15-45
mssize, 15-38
mswapbuffers, 6-3
MTEXTURE, 7-19
multimap mode, 4-22
multimatrix mode in lighting, 9-11
multiple server I/O, 5-2
multisampling, 15-37 through 15-47
multmatrix, 7-29
MVIEWING, 7-19

N

name stack, 12-2, 12-4
naming the output file, 1-4
network-transparent feature of GL, 1-2
network-transparent GL, 19-1 through 19-16

callback limit, 19-5
configuration, 19-12
connection, 19-4
DISPLAY, 1-2
error messages, 19-13
limitations, 19-5
linking, 19-2
linking for NIS, 1-4
non-IRIS hosts product, 19-2
sample application, 19-1
server, 1-3

Network Information Service, 1-4, 19-12

network transparency, 19-1
newtag, 16-9
NIS, 1-4, 19-12
noise, 5-7, 5-12
non-IRIS hosts, 19-2
non-recommended subroutines,

2-37 through 2-42
Non-uniform Rational B-splines, 14-1
non-uniform scaling, 7-18
noport, 4-24
normal, current, 9-5
NORMALDRAW, 10-6

swapping buffers in, 6-4
writemasks, 10-9

normal frame buffer modes, 10-6
normalized coordinate system, 7-3
normals, 9-5

non-unit-length, 9-6
NTSC, 5-21
NURBS, 14-1 through 14-27

circle, 14-12
color surface, 14-17
conic sections, 14-12
cross-plot, 14-4
culling, 14-21
curve as a trimming curve, 14-20
curves, 14-11 through 14-13
definition, 14-11
enabling error messages, 14-21
formula for size of control point array, 14-14
further reading, 14-27
geometric surface, 14-16
offset in control point array, 14-15
piecewise linear trim curve, 14-20
properties, 14-21 through 14-22
surfaces, 14-13 through 14-18
tessellation, 14-21
texture surface, 14-17
trimming, 14-18 through 14-21
weight, 14-10

Graphics Library Programming Guide Index-13

nurbscurve, 14-11
nurbssurface, 14-13

O

-o, 1-4
objdelete, 16-10
object

closing a definition, 16-2
creating, 16-2
deleting, 16-4
drawing, 16-4
editing, 16-8
hierarchy, 16-5
identifying by number, 16-4
memory management, 16-12
tags, 16-9
testing for existence, 16-4

object coordinate system, 7-2
objinsert, 16-10
objreplace, 16-11
offset, 14-15
old-style

curves, 14-28, 14-28 through 14-33
drawing, 2-30 through 2-42
lines, 2-39
pixels, 11-16
points, 2-38
polygons, 2-40
polygon subroutines, 2-41
surfaces, 14-28, 14-33 through 14-34

on-line man pages, xxv
onemap mode, 4-22
opening a window, 1-6
operating system, 1-1
order of pixel operations, 11-16
order of the polynomial, 14-5
order of transformations, 7-18, 7-19
order of vertices in lighting, 9-5

origin
cursor, 10-20

ortho, 7-10, 7-11
ortho2, 2-4, 7-11, 12-3
orthographic projection, 7-4, 7-10
output file

naming, 1-4
OVERDRAW, 10-6

swapping buffers in, 6-4
writemasks, 10-9

overlapping polygons, 8-2
overlay

bitplanes, 10-3
definition, 10-1
non-recommended routines, 10-7
user-defined, 10-15

overlay, 10-15

P

packing pixel data, 11-10, 11-14
PAL, 5-21
parameter, 14-2
parameterization, in textures, 18-33
parametric bicubic surface, 14-33
parametric representations, 14-2
parametric surface, 14-13
patterns, 2-16
pclos, 2-40
pclose warning, 2-40
per-pixel fog, 13-12
performance

animation, 6-6
font, 3-1
Gouraud shading, 4-9
improving lighting, 9-22
lmcolor limitations, 9-19
optimizing polygon, 2-12

Index-14 Index

polygon rendering, 2-31
texture, 18-43 through 18-46
texture alpha, 18-45
two-sided lighting, 9-23

permission for connections, 19-4
Personal IRIS

8-bit pixel formats, 11-3
dithering, 4-4
feedback, 17-6
no overlay/underlay on B-bit models, 10-1
set Gouraud or depthcue for dithering, 4-4
speeding up czclear, 8-9

perspective, 7-5
perspective projection, 7-4
phosphors, 4-2
pick, 12-2
picking, 12-1 through 12-8

size of region, 12-4
picksize, 12-4
piecewise linear trimming curve, 14-20
piecewise polynomial, 14-5
pixel, 4-2, 4-4, 8-23

centering, 15-4
pixels

accessing, 11-2
centering, 11-4
centering on integers, 7-11
changing fill directions, 11-12
copying, 11-7
customizing operations, 11-10
formats, 11-2
formats of IRIS Indigo, 11-3
high-performance reading/writing, 11-3
old-style subroutines, 11-16
order of operations, 11-16
packing/unpacking, 11-14
setting read source, 11-4
writing, 11-7

pixmode, 11-10
PM_EXPAND, 11-11

PM_OFFSET, 11-16
PM_SHIFT, 11-10
PM_SIZE, 11-14
PM_STRIDE, 11-13
pmv, 2-40
pntsize, 2-7
pntsizef, 2-7
pntsmooth, 15-15

color map mode, 15-11
point-sampled polygons, 2-17 through 2-20
point and click interface, 12-1
point light source, 9-9
points

antialiased color map, 15-11
drawing, 2-7
old-style, 2-38
size, 2-7

polarview, 7-12, 7-13
polf, 2-41
polling, 5-2, 5-7 through 5-10

button, 5-8
multiple valuators, 5-8
valuator, 5-7

poly, 2-41
polygon

antialiased, 15-22
bowtie, 2-15
concave, 2-13
convex, 2-12
definition, 2-12
display anomalies, 2-20
distortion, 2-16
drawing, 2-15
fat, 2-19
fill patterns, 2-16
front-facing, 2-24
Gouraud shaded, 4-8
non-planar, 2-16
old-style, 2-40
optimizing performance, 2-12

Graphics Library Programming Guide Index-15

outlined in old-style drawing, 2-31
overlapping, 8-2
point-sampled, 2-17 through 2-20
rendering, 2-29
simple, 2-12
true area of, 2-19

polyline
definition, 2-8
drawing, 2-8

polymode, 2-29
polynomials, 14-5
pop-up menu callbacks

limited for remote operation, 19-5
pop-up menus, 10-3
popmatrix, 7-21
popname, 12-5
popviewport, 7-28
POSITION, 9-9, 9-17
position of a light source, 9-10
precision in hardware calculations, 2-16
primitive

character, 3-2
lighted, 9-4
line, 2-8
NURBS, 14-11
overlapping, 15-13
point, 2-7
polygon, 2-12
q-strip, 2-21, 2-27 through 2-28
smooth, 15-10
t-mesh, 2-21 through 2-27

primitives, 2-1, 2-6
program relinking to run remotely, 19-2
projection

orthographic, 7-4, 7-10
perspective, 7-4

Projection matrix, 7-5, 7-19, 7-30
projection transformations, 7-4 through 7-12

for picking, 12-3
window, 7-9

properties of NURBS, 14-21
pruning, 16-5
PUPDRAW, 10-6
pushattributes/popattributes

when calling objects, 16-5
pushmatrix, 7-21
pushname, 12-4
pushviewport, 7-28
pwlcurve, 14-20
PYM_FILL, 2-29
PYM_HOLLOW, 2-30
PYM_LINE, 2-29
PYM_POINT, 2-29

Q

q-strips, 2-27 through 2-28
definition, 2-21
reducing to triangles, 2-28

qdevice, 5-4, 5-13
qenter, 5-4
QFULL, 5-3
qgetfd, 5-5
qread

reading the queue, 5-5
remote, 19-5

qreset, 5-3, 5-5
qtest, 5-5
quadlinear MIPmap, 18-18
queing, finding out if a device is queued, 5-4
query

alpha bitplanes, 15-7
current linestyle, 2-10
depth-cueing, 13-4
font information, 3-14
system version, 1-7

Index-16 Index

queue, 5-2
creating entries, 5-4
emptying, 5-3
limit, 5-3
reading, 5-5
reading multiple entries, 5-5
resetting, 5-5
testing for event, 5-5

queueing, 5-2, 5-3 through 5-7
disabling, 5-4
enabling, 5-4
how to set up, 5-3
keyboard, 5-13
maximum efficiency, 5-3
window manager events, 5-14

quitting a window, 5-14

R

Raster Manager (RM) boards, 15-37
rational, 14-11
readdisplay, 11-5
readfds, 5-6
reading pixels, 11-4
reading location of, 5-6
reading man pages, xxv
reading multiple queue entries, 5-5
reading video registers, 5-20
README for sample programs, xxii
readsource, 11-4
RealityEngine

antialiasing, 15-36 through 15-47
bitplanes, 10-16
color, 4-5
color map size, 4-7
feedback, 17-8
fog, 13-10
framebuffers, 10-2
multisample buffer, 10-2

stenciling, 8-16
stereo buffering, 10-4
swapbuffers, 6-3
z-buffer size, 8-2

recording events, 5-12
rectangle subroutines, 2-32
rectangles, drawing, 2-32
rectcopy, 11-7
rectread, 11-5
rect/rectf, 2-32
rectwrite, 11-7
rectzoom, 11-7
REDRAW, 5-3, 5-14
REDRAWICONIC, 5-14
reducing graphics jerkiness

in remote applications, 19-3
reflectance, 9-3

diffuse, 9-3
specular, 9-3

reflected light, 9-2
reflection mapping, 18-34
remote

configuration, 19-12
connection, 19-4
error messages, 19-13
interrupts, 19-5
jumps, 19-5

remote display of graphics, 19-1
REMOTEHOST, 19-4
removing backfacing polygons, 8-22
removing frontfacing polygons, 8-22
rendering

averaging with accumulation, 15-31
bowtie polygons, 2-16
concave polygons, 2-13
improving polygon performance, 2-31
into 2 buffers, 6-3
NURBS, 14-21
polygons, 2-29

Graphics Library Programming Guide Index-17

resetting the queue, 5-5
resolution of the z-buffer, 8-3
RGB mode, 4-5 through 4-15

antialiasing, 15-13
depth-cueing, 13-6
double buffering in, 6-2
writemasks, 10-9

RGBmode, 4-5
RGBsize, 15-41
RGB triple, 4-2, 4-5, 4-7
RGBwritemask, 10-9
right-hand rule, 2-24, 9-5
ringbell, 5-17
ringing the keyboard bell, 5-17
rlogin, 19-4
rot, 7-17
rotate, 7-17
round-off errors, 11-4
roundoff error, 2-4

S

sample program
aliasing, 15-2

accumulation, 15-32
color map line, 15-17
points in color map mode, 15-11
RGB mode line, 15-19
RGB mode points, 15-13
RGB polygon, 15-22
RGB polygon corrected, 15-27
RGB polygon patch, 15-24

blending, 15-9
cursors, 10-21
depth-cueing, 13-7
drawing a hexagon, 2-15
drawing a polygon, 2-9
drawing lines, 2-5, 2-8
drawing meshes, 2-25

drawing old-style rectangles, 2-33
drawing points, 2-7
drawing with writemasks, 10-12
feedback, 17-8
NURBS, 14-22
object editing, 16-11
picking, 12-5
selecting, 12-9
vertex subroutines, 2-4
writemasks, 10-10

sample programs
where located, xxii

scale, 7-18
scaling of z coordinates, 8-7
sclear, 8-19
scrbox, 7-28
screen

setting blanking time, 5-18
turning on/off, 5-18

screen boxes, 2-33
screenmask, 3-3, 7-27
scrmask, 7-27, 11-7
scrsubdivide, 18-33, 18-38 through 18-40
searching man pages by key word, xxv
select, 5-5
selecting, 12-8 through 12-10
selecting a bitplane for drawing, 10-1
selecting region, 12-8
server, 1-3
servers, 19-1
setbell, 5-17
setcursor, 10-21
setdblights, 5-17
setlinestyle, 2-10
setmap, 4-22
setmonitor, 5-18
setnurbsproperty, 14-21
setting screen blanking time, 5-18

Index-18 Index

setting the duration of keyboard bell, 5-17
setting the monitor type, 5-18
setting up lighting, 9-4
setvaluator, 5-16
setvideo, 5-19
shademodel, 4-9
shademodel(FLAT), 4-9
shademodel(GOURAUD), 4-9
shared Graphics Library, 1-4
shared library, 1-2

C, 1-4
for network-transparent GL, 1-2

Sharpen, 18-23 through 18-27
shifting pixel data, 11-10
SHININESS, 9-8
simple polygon, 2-12
simultaneous clearing

of color and z-buffer, 8-8
singlebuffer, 6-2
single buffer mode, 6-1, 6-2
sizing the viewport, 7-26
SkyWriter

clearing of z-buffer, 8-9
double-buffered

overlay/underlay, 10-7
fog, 13-10
mesh handling, 2-28
per-pixel fog, 13-12
perspective correction

of texture in hardware, 18-33
stenciling, 8-16
subpixel, 15-4
swapping multiple buffers, 6-3
texture perspective correction, 18-32
TX_MIPMAP_TRILINEAR filter, 18-19

sleep, 2-6
smoke, 13-10
Spaceball device, 5-15
SPECULAR, 9-8

specular reflectance, 9-3
defining for material, 9-8
depends on viewpoint, 9-8

spline, 14-5
SPOTDIRECTION, 9-16
SPOTLIGHT, 9-16
spotlight, 9-16

attenuation, 9-17
direction, 9-16

sprintf, 4-7
SRC_AUTO, 11-4
SRC_BACK, 11-4
SRC_FRAMEGRABBER, 11-4
SRC_ZBUFFER, 11-4
SS_DEPTH, 18-39
stack matrix, 7-20
STARTTAG, 16-9
stencil, 8-16
stenciling, 8-16 through 8-21
stencil planes, 8-18

clearing, 8-19
enabling, 8-19

stensize, 15-41
stensize, 8-18
stereo buffering, 10-4
stowed windows, 5-14
structure, using offsets to specify data in, 14-15
strwidth, 3-5
subimage, 11-13, 18-29
subpixel, 15-4, 15-10
subpixel accuracy, 15-4 through 15-5
surface, transparent, 9-21
surface normals, 9-5
surface patch, 14-33
surfaces, old-style, 14-28, 14-33 through 14-34
swapbuffers, 6-3
swapinterval, 6-7

Graphics Library Programming Guide Index-19

swapping buffers, defining interval for, 6-7
swapping multiple buffers, 6-3
swaptmesh, 2-23, 2-24
swimming effect of texture, 18-37
swritemask, 8-19

T

3-D textures, 18-4
t-mesh, 2-21 through 2-27

definition, 2-21
t2d, 18-33
t2f, 18-33
t2i, 18-33
t2s, 18-33
tags, 16-9
TCP socket connections, 19-12
tessellation

controlling the fineness of for NURBS, 14-21
definition, 14-21

testing a window
for closure, 5-14
for quitting, 5-14
for stowing, 5-14
icon needed, 5-14
redraw needed, 5-14

testing for an existing object, 16-4
testing for button input, 5-6
testing for change of input focus, 5-14
testing the queue for events, 5-5
tevdef, 18-40
texbind, 18-11
texdef2d, 18-11
texdef3d, 18-11
texels, 18-3
texel size, 18-13
texgen, 18-33

text, drawing, 3-2
texture, 18-1 through 18-50

alpha hints, 18-45
automatic generation, 18-33 through 18-34
blending, 18-41
blurring, 18-21
components, 18-7
contour, 18-35
coordinates, 18-33 through 18-35
decals, 18-42
environment, 18-40 through 18-42
filters, 18-16 through 18-21
format of image array, 18-9
image, 18-6
interpolation, 18-38
look-up tables, 18-36
magnification, 18-16
memory management, 18-45
minification, 18-16, 18-17
MipMap filter, 18-17 through 18-21
MipMap performance, 18-44
NURBS surface, 14-13, 14-17
performance, 18-43 through 18-46
perspective correction, 18-32
reflection mapping, 18-34
repeating, 18-12
scrsubdivide hints, 18-45
setting up, 18-6
swimming, 18-37through 18-39

texture mapping
definition, 18-3

TG_CONTOUR, 18-34
TG_LINEAR, 18-34
TG_SPHEREMAP, 18-34
tie, 5-6
timer devices, 5-12
tokens, 19-2

window manager, 5-14
transformation, user-defined, 7-29
transformation matrices, 7-19
transformation matrix, 7-16, 7-19

Index-20 Index

transformations, 7-2
order of, 7-18, 7-19

translate, 7-17
transparency, 8-23, 9-21

blending, 15-5
transparent surfaces, 9-21
tree, 16-6
trilinear MIPmap, 18-18
trimming a NURBS surface,

14-18 through 14-21
trimming curves, 14-18

orientation, 14-18
piecewise linear, 14-20

trimming loop, 14-18
turning on/off

cursor, 5-6
depth-cueing, 13-4
dial and button box lights, 5-17
keyboard click, 5-16
keyboard lights, 5-16
screen, 5-18

TV_BLEND, 18-40, 18-41
TV_DECAL, 18-41, 18-42
TV_MODULATE, 18-40, 18-41
twist, 7-13, 7-14
two-sided lighting, 9-17

performance, 9-23
TWOSIDE, 9-17
TX_MAGFILTER, 18-12
TX_MINFILTER, 18-12
TX_REPEAT, 18-12
TX_TILE, 18-13
TX_WRAP, 18-12

U

UNDERDRAW, 10-6
swapping buffers in, 6-4
writemasks, 10-9

underlay
bitplanes, 10-3
definition, 10-1
non-recommended routines, 10-7
user-defined, 10-15

underlay, 10-15
unpacking pixel data, 11-10, 11-14
unqdevice, 5-4
updating active materials, 9-18
user-defined transformation, 7-29
user input in a GL program, 5-1
user interface, 5-1

V

valuator
names of, 5-12
noisy, 5-7
polling, 5-7
polling multiples, 5-8

version, querying, 1-7
vertex, 2-1

normals, 2-24
order for front-facing polygons, 2-24
subroutines, 2-2, 2-3

vertex ordering, importance of in lighting, 9-5
video, 5-17 through 5-21

enabling the LVD option, 5-21
formats, 5-21
reading registers, 5-20
setting hardware registers, 5-19

videocmd, 5-21
viewing transformation, 7-3
viewing transformations, 7-12 through 7-16

Graphics Library Programming Guide Index-21

viewpoint
defining, 7-13
for lighting, 9-10

viewport, 3-3, 7-26 through 7-29
viewport, 7-26
volume rendering, 18-5

W

wavelength of light, 9-2
weight of control points, 14-10
window

opening, 1-6
quitting, 5-14
testing for closure, 5-14
testing for iconification, 5-14
testing if redraw needed, 5-14

window, 7-9
window coordinate system, 7-3
window manager

4Dwm, 1-2, 1-3
queueing events from, 5-14

window manager tokens, 5-14
WINFREEZE, 5-14
WINQUIT, 5-14
WINSHUT, 5-14
WINTHAW, 5-14
wireframe, definition, 2-1
wmpack, 10-10
world coordinate system, 7-3
writemask, 10-7

definition, 10-7
how it works, 10-8

writemask, 10-9, 11-7
writemasks, 10-7 through 10-15
writing pixels, 11-7
writing to the z-buffer, 8-10

X

X client, 1-2
X input model, 5-2
xman, 1-2
X server, 1-2, 1-3, 5-2
xterm, 1-2
Xt routines, 5-2
X Window System, 1-2, 5-2

Z

z-buffer, 8-2 through 8-15
changing comparison test, 8-14
clearing, 8-8
enhancing resolution of, 8-3
writing directly to, 8-10

zbsize, 15-41
zbuffer, 8-3
z coordinates, scaling, 8-7
zdraw, 8-10
zfar, 8-3
zfar, 13-5
znear, 8-3
znear, 13-5
z values for depth-cueing, 13-3
zwritemask, 8-15
z-buffer
zwritemask, 8-15

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-1702-020.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

