
OpenGL® Porting Guide

Document Number 007-1797-030

OpenGL® Porting Guide
Document Number 007-1797-030

CONTRIBUTORS

Written by C J Silverio, Beth Fryer, and Jed Hartman. Revised by Renate Kempf.
Edited by Christina Cary
Production by Mike Dixon
Engineering contributions by Kurt Akeley, Allen Akin, Gavin Bell, Derrick Burns,

Dave Ciemiewicz, Tom Davis, Chris Frazier, Paul Ho, Phil Karlton, Reuel Nash,
Mark Segal, Dave Shreiner, Rolf van Widenfelt, and Mason Woo. Revised example
programs by Paul Ho.

© 1994, 1997 Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics, the Silicon Graphics logo, IRIS, IRIS Indigo, and OpenGL are
registered trademarks and IRIS InSight, GL, Graphics Library, IRIS GL, IRIX, Open
Inventor, Personal IRIS, and RealityEngine are trademarks of Silicon Graphics, Inc.
Ada is a trademark of the Ada Joint Program Office, U.S. Government. X Window
System is a trademark of Massachusetts Institute of Technology. OSF/Motif is a
trademark of the Open Software Foundation, Inc.

iii

Contents

List of Figures ix

List of Tables xi

About This Guide xiii
What This Guide Contains xiii
Where to Get More Information xiv

OpenGL Documentation xv
GLX and GLUT Documentation xvi
IRIS GL Documentation xvi
X Window System Documentation xvi
OSF/Motif Documentation xvii

Conventions Used in This Guide xvii
Typographical Conventions xvii
Function Naming Conventions xviii

Changes in This Version of the Document xviii

1. Introduction to Porting From IRIS GL to OpenGL 1
Differences Between IRIS GL and OpenGL 1
Tools and Libraries to Help Port Your Code 3
Porting IRIS GL Programs to OpenGL 4

Porting IRIS GL Programs That Use X Calls 4
Porting IRIS GL Programs With Simple Windowing 5
Porting IRIS GL Programs With Complex Windowing 5

If You’re Not Porting Your Code to OpenGL Yet 6

iv

Contents

2. Using the toogl Tool 7
Getting Started with toogl 7

Finding and Building toogl 8
Calling toogl 8
Using toogl in Batch Mode 9
What toogl Will and Won’t Do for You 9

Using xdiff or gdiff to Compare Files 9
Using toogl Effectively 10
Editing toogl Output: Areas that Need Special Attention 10

Windowing, Device, and Event Calls 11
Parentheses and Quotes 12
Defined Color Constants 12
clear() Calls 12
Get Calls 13
rotate() Calls 13
swaptmesh() Calls 13
Texturing Calls 13
def/bind Calls 14
Calls Without Direct Equivalents 14
Finding OpenGL Replacements for IRIS GL Calls 14
Performance 14

Editing toogl Output: An Example 15

3. After toogl: How to Finish Porting to OpenGL 17
Header Files 18
Porting greset() 19
Porting IRIS GL get* Commands 20

About glGet*() 21
glGet*() Conventions Used in This Book 22

Porting Commands That Required Current Graphics Positions 22
Porting Screen and Buffer Clearing Commands 23

Contents

v

Porting Matrix and Transformation Calls 24
Porting MSINGLE Mode Code 28
Porting get* Calls for Matrices and Transformations 29
Porting Viewports, Screenmasks, and Scrboxes 30
Porting Clipping Planes 30

Porting Drawing Commands 31
Porting the IRIS GL Sphere Library 31
Porting v() Commands 33
Porting bgn/end Commands 33
Porting Points 35
Porting Lines 36
Porting Polygons and Quadrilaterals 37
Porting Tessellated Polygons 41
Porting Triangles 41
Porting Arcs and Circles 42
Porting Spheres 43

Porting Color, Shading, and Writemask Commands 44
Porting Color Calls 45
Porting Shading Models 46

Porting Pixel Operations 46
Porting Depth Cueing and Fog Commands 48
Porting Curve and Surface Commands 52

NURBS Objects 52
NURBS Curves 53
Trimming Curves 54
NURBS Surfaces 54

Porting Antialiasing Calls 58
Blending 59
afunction() Test Functions 60
Antialiasing Calls 60
Accumulation Buffer Calls 61
Stencil Plane Calls 63

vi

Contents

Porting Display Lists 63
Porting bbox2() Calls 65
Achieving Edited Display List Behavior 65
Sample Implementation of a Display List 66

Porting defs, binds, and sets: Replacing ‘Tables’ of Stored Definitions 67
Porting Lighting and Materials Calls 68
Porting Texture Calls 73

Translating tevdef() 75
Translating texdef() 76
Translating texgen() 78

Porting Picking Calls 79
Porting Feedback Calls 80
Porting RealityEngine Graphics Features 83
OpenGL Extensions 87

4. OpenGL in the X Window System 89
X Window System Background 90

Function Naming Conventions 90
Two Choices for Using OpenGL and X 91

Advice for OpenGL Programs using the X Window System 92
Dealing With Window Depth and Display Mode 92
Installing Color Maps 92

Fonts and Strings 92
Using Xt and a Widget Set 94

What You Need to Know About Xt and IRIS IM 95
IRIS IM and Other Widget Sets 96
Converting Your IRIS GL Program 96
Background Reading 102

Using Xlib and GLX Commands 103
Getting Started With Xlib and GLX 103
Opening a Window With GLX 104
Using X Color Maps 105
Using X Events 106

Contents

vii

A. OpenGL Commands and Their IRIS GL Equivalents 109

B. Differences Between OpenGL and IRIS GL 139

C. OpenGL Names, Types, and Error 153
OpenGL Command Names 153
OpenGL Defined Types 155
Error Handling 156

D. Example OpenGL Program With the GLUT Library 157

E. Example Program Using Xt and a WorkProc 161

F. Example Mixed-Model Programs With Xlib 171
Example One: iobounce.c 171

IRIS GL Version of iobounce.c 171
OpenGL Version of iobounce.c 174

Example Two: zrgb.c 181
IRIS GL Version of zrgb.c 181
OpenGL Version of zrgb.c 187

Index 197

ix

List of Figures

Figure 3-1 Generic IRIS GL Translation 25
Figure 3-2 Generic OpenGL Translation 25
Figure 3-3 OpenGL Matrix Example 26
Figure 3-4 Drawing Angles: Comparing IRIS GL and OpenGL 43

xi

List of Tables

Table 3-1 Include Lines in IRIS GL and OpenGL Programs 18
Table 3-2 Include Lines for IRIS GL and OpenGL Motif Widgets 18
Table 3-3 State Attribute Groups 19
Table 3-4 Calls for Clearing the Screen 24
Table 3-5 Matrix Operations 26
Table 3-6 Matrix Modes 28
Table 3-7 Arguments for Transformation Matrix Queries 29
Table 3-8 Viewport Calls 30
Table 3-9 Clipping Plane Calls 30
Table 3-10 Calls for Drawing Quadrics 32
Table 3-11 Calls for Drawing Primitives 34
Table 3-12 Valid Commands Inside a Begin/End Structure 35
Table 3-13 Calls for Drawing Points 35
Table 3-14 Calls for Drawing Lines 36
Table 3-15 Calls for Drawing Polygons 37
Table 3-16 Polygon Modes 38
Table 3-17 Polygon Stipple Calls 39
Table 3-18 Tessellated Polygon Calls 41
Table 3-19 Calls for Drawing Triangles 42
Table 3-20 Calls for Drawing Arcs and Circles 42
Table 3-21 Calls for Drawing Spheres 44
Table 3-22 Color Calls 45
Table 3-23 Shading and Dithering 46
Table 3-24 Pixel Operations 47
Table 3-25 Calls for Managing Fog 48
Table 3-26 Fog Parameters 49
Table 3-27 Fog Modes 50

xii

List of Tables

Table 3-28 Calls for Managing NURBS Objects 52
Table 3-29 Calls for Drawing NURBS Curves 53
Table 3-30 NURBS Curve Types 53
Table 3-31 Calls for Drawing NURBS Trimming Curves 54
Table 3-32 Calls for Drawing NURBS Surfaces 54
Table 3-33 NURBS Surface Types 54
Table 3-34 Blending Calls 59
Table 3-35 Blending Factors 59
Table 3-36 Alpha Test Functions 60
Table 3-37 Calls to Draw Antialiased Primitives 60
Table 3-38 Accumulation Buffer Calls 62
Table 3-39 Accumulation Buffer Operations 62
Table 3-40 Stencil Operations 63
Table 3-41 Display List Commands 64
Table 3-42 Lighting and Materials Commands 69
Table 3-43 Material Definition Parameters 70
Table 3-44 Lighting Model Parameters 70
Table 3-45 Light Parameters 71
Table 3-46 Texture Commands 74
Table 3-47 Texture Environment Options 75
Table 3-48 IRIS GL and OpenGL Texture Parameters 77
Table 3-49 Values for IRIS GL and OpenGL Texture Parameters 77
Table 3-50 Texture Coordinate Names 78
Table 3-51 Texture Generation Modes and Planes 78
Table 3-52 Calls for Picking 79
Table 3-53 Feedback Calls 80
Table 3-54 RealityEngine Calls 83
Table A-1 IRIS GL Commands and Their OpenGL Equivalents 109
Table C-1 Command Suffixes and Corresponding Argument Types 153
Table C-2 OpenGL Equivalents to C Data Types 155
Table C-3 glGetError() Return Values 156

xiii

About This Guide

This guide tells you how to port your existing IRIS GL code to OpenGL. It

• describes how to use the toogl automatic translation script

• lists OpenGL equivalents for IRIS GL calls

• describes how to reimplement IRIS GL windowing code using the X Window
System and IRIS IM APIs (IRIS IM is the Silicon Graphics port of the
industry-standard OSF/Motif software)

• provides basic information for working with the X Window System

This guide is for developers who have been using IRIS GL. It is not an introduction to
graphics programming and it is not comprehensive OpenGL documentation. For more
complete OpenGL documentation, see “OpenGL Documentation” on page xv.

Note: This guide is written for programmers who are working in C. It doesn’t discuss
OpenGL Fortran and Ada wrappers.

What This Guide Contains

This guide includes the following chapters:

• Chapter 1, “Introduction to Porting From IRIS GL to OpenGL,” describes some of
the major differences between IRIS GL and OpenGL, lists the Silicon Graphics tools
you can use to facilitate the transition, and provides some general porting
instructions.

• Chapter 2, “Using the toogl Tool,” explains how to use the automatic translation
tool, which can do much of the porting work for you.

• Chapter 3, “After toogl: How to Finish Porting to OpenGL,” discusses IRIS GL
commands that might need some extra porting attention, giving command
equivalents and providing porting tips for each.

xiv

About This Guide

• Chapter 4, “OpenGL in the X Window System,” describes two methods for using
the X Window System™ to manage windows and events with OpenGL: using Xt
and the Silicon Graphics IRIS IM widget or using Xlib.

• Appendix A, “OpenGL Commands and Their IRIS GL Equivalents,” is a complete
alphabetical list of IRIS GL calls and their OpenGL equivalents (if an equivalent
exists) along with cross-references to documentation, where available.

• Appendix B, “Differences Between OpenGL and IRIS GL,” provides a more
complete list of the differences between OpenGL and IRIS GL than Chapter 1 offers.

• Appendix C, “OpenGL Names, Types, and Error,” explains OpenGL naming
conventions, lists OpenGL defined types, and describes error handling in OpenGL.

• Appendix D, “Example OpenGL Program With the GLUT Library,” provides an
example OpenGL program that uses the GLUT library for windowing and event
handling.

• Appendix E, “Example Program Using Xt and a WorkProc,” provides an example
OpenGL program using Xt, IRIS IM, and the Silicon Graphics widget. The program
demonstrates the use of a WorkProc for animation.

• Appendix F, “Example Mixed-Model Programs With Xlib,” provides two example
mixed-model programs using Xlib. Each program is shown in both IRIS GL and
OpenGL form.

Where to Get More Information

As you use this guide, you will probably have to refer to the OpenGL reference pages,
the IRIS GL reference pages, and the programming guides. You can read all the reference
pages online using the man command, or you can buy the printed OpenGL reference
pages. These are published in the OpenGL Reference Manual, available in bookstores (see
“OpenGL Documentation” on page xv).

Note: If you’re viewing this manual online using IRIS InSight, click any red underlined
reference page name to view the reference page.

About This Guide

xv

In addition, you may find the OpenGL documentation, GLUT documentation, IRIS GL
documentation, and window system documentation that’s listed in the following
sections helpful:

• “OpenGL Documentation” on page xv

• “GLX and GLUT Documentation” on page xvi

• “X Window System Documentation” on page xvi

• “OSF/Motif Documentation” on page xvii

OpenGL Documentation

For more information on programming in OpenGL 1.1, refer to these manuals:

• OpenGL Architecture Review Board; Renate Kempf and Chris Frazier, editors.
OpenGL Reference Manual. The Official Reference Document for OpenGL, Version 1.1.
Reading, MA: Addison Wesley Longman Inc. 1996. ISBN 0-201-46140-4

• Woo, Mason, Jackie Neider, and Tom Davis. OpenGL Programming Guide: The Official
Guide to Learning OpenGL, Version 1.1. Reading, MA: Addison Wesley Longman Inc.
1997. ISBN 0-201-46138-2

• OpenGL on Silicon Graphics Systems (Silicon Graphics manual; document number
007-2392-002)

For more information on programming in OpenGL 1.0, refer to these manuals:

• OpenGL Architecture Review Board. OpenGL Reference Manual. Reading, MA:
Addison-Wesley Publishing Company. 1992. ISBN 0-201-63276-4

• Neider, Jackie, Tom Davis, and Mason Woo. OpenGL Programming Guide. Reading,
MA: Addison-Wesley Publishing Company. ISBN 0-201-63274-8

• OpenGL on Silicon Graphics Systems (Silicon Graphics manual; document number
007-2392-001)

xvi

About This Guide

GLX and GLUT Documentation

• Kilgard, Mark J. OpenGL Programming for the X Window System. Menlo Park, CA:
Addison-Wesley Developer’s Press. 1996. ISBN 0-201-48369-9

• Pointers to the GLUT Library, to interesting technical papers, and to the
comp.graphics.opengl mailing list are on the OpenGL home page:
http://www.openGL.org/

IRIS GL Documentation

For more information on programming with IRIS GL, refer to these Silicon Graphics
manuals:

• Graphics Library Programming Guide, Volume 1 (document number 007-1210-060)

• Graphics Library Programming Guide, Volume 2 (document number 007-1702-020)

• Graphics Library Programming Tools and Techniques (document number 007-1489-030)

X Window System Documentation

For comprehensive information on the X Window System, Xlib, Xt, and X protocol, see
the Digital Press X Series:

• Scheifler, Robert W., and James Gettys, et al. X Window System: The Complete
Reference to Xlib, X Protocol, ICCCM, XLFD. Third Edition, X Version 11, Release 5,
Burlington, MA. Digital Press—Digital Equipment Corporation, 1992. ISBN
1-55558-088-2

• Asente, Paul J., and Ralph R. Swick. X Window System Toolkit: The Complete
Programmer’s Guide and Specification. Burlington MA: Digital Press—Digital
Equipment Corporation. 1992. ISBN 1-55558-051-3

Or refer to the O’Reilly X Window System Series, Volumes 1, 4, and 5:

• Nye, Adrian. Volume One: Xlib Programming Manual. Sebastopol, CA. O’Reilly &
Associates. 3rd edition July 1992. ISBN 1-56592-002-3

• Nye, Adrian, and Tim O’Reilly. Volume Four: X Toolkit Intrinsics Programming
Manual. Sebastopol, CA: O’Reilly & Associates. Second edition, 1992. ISBN
1-56592-013-9

About This Guide

xvii

• Flanagen, David (editor). Volume Five: X Toolkit Intrinsics Reference Manual.
Sebastopol, CA: O’Reilly & Associates. Third edition, April 1992. ISBN
1-56592-007-4

OSF/Motif Documentation

For information on OSF/Motif, see the Prentice-Hall OSF/Motif series:

• OSF/Motif Programmer’s Guide, Open Software Foundation, PTR Prentice-Hall, Inc.,
Englewood Cliffs, NJ.

• OSF/Motif Programmer’s Reference, Open Software Foundation, PTR Prentice-Hall,
Inc., Englewood Cliffs, NJ.

• OSF/Motif Style Guide, Open Software Foundation, PTR Prentice-Hall, Inc.,
Englewood Cliffs, NJ.

Conventions Used in This Guide

This section explains the typographical and function naming conventions used in this
guide.

Typographical Conventions

This guide uses the following typographical conventions:

Italics Filenames, IRIX command names, function parameters, and book titles.

Fixed-width Code examples and system output.

Bold Function names, with parentheses following the name—for example
glPolygonMode()—and arguments to command-line options.

Note: In all tables, regular font is used for function names. This avoids clutter in the
table, which would make it difficult to read.

xviii

About This Guide

Function Naming Conventions

This guide refers to a group of similarly named OpenGL functions by a single name,
using an asterisk to indicate all the functions whose names start the same way. For
instance, glVertex*() refers to all functions whose names begin with “glVertex”:
glVertex2s(), glVertex3dv(), glVertex4fv(), and so on.

Naming conventions for X-related functions can be confusing, because they depend
largely on capitalization to differentiate between groups of functions. For systems on
which both OpenGL and IRIS GL are available, the issue is further complicated by the
similarity in function names. Here’s a quick guide to old and new function names:

GLX*() IRIS GL mixed-model support

Glx*() IRIS GL support for IRIS IM

glX*() OpenGL support for X

GLw*() OpenGL support for IRIS IM

Note that the (OpenGL) glX*() routines are collectively referred to as “GLX”; that term
was previously used to refer to the (IRIS GL) GLX*() routines. Note, too, that
GLXgetconfig() (an IRIS GL mixed-model routine) is not the same function as
glXGetConfig() (a GLX routine). On systems with both IRIS GL and OpenGL, the
command

IRIS% man glxgetconfig

displays both reference pages, one following the other.

Changes in This Version of the Document

This version of the document has been updated in the following ways:

• All references to the aux library have been removed and replaced with references to
the GLUT library where appropriate. The aux library was never intended for
production-level code. Its removal from this document intends to discourage
programmers from continuing to use it.

• All examples were updated to use the glut library instead of the aux library.

About This Guide

xix

• This document is targeted at both OpenGL 1.0 and OpenGL 1.1 users. It refers to
OpenGL 1.1 functions where new functionality has been introduced (old references
to extensions remain where appropriate).

• Most references to reference pages are now links when viewed with IRIS Insight.

• Chapter and section overviews with links to sections or subsections have been
added.

• Appendix B, Differences Between OpenGL and IRIS GL, was updated to contain the
most recent information supplied by Mark Kilgard.

1

Chapter 1

1. Introduction to Porting From IRIS GL to OpenGL

This chapter provides an overview to porting from IRIS GL to OpenGL. It discusses the
following topics:

• “Differences Between IRIS GL and OpenGL” discusses window and event
management, some fundamental implementation differences, and naming
conventions.

• “Tools and Libraries to Help Port Your Code” on page 3 briefly explores the toogl
tool, Motif drawing area widgets, and the glx library.

• “Porting IRIS GL Programs to OpenGL” on page 4 explains how to port both a
mixed-model program (using IRIS GL and X) and an IRIS GL program that doesn’t
use X.

• “If You’re Not Porting Your Code to OpenGL Yet” on page 6 provides some advice
for programmers who don’t plan to port to OpenGL immediately.

Differences Between IRIS GL and OpenGL

One focus of OpenGL is portability. OpenGL and IRIS GL therefore differ in several
major areas. This section lists a few important ways in which OpenGL is different from
IRIS GL. A more complete list of the differences between the two languages is provided
in Appendix B, “Differences Between OpenGL and IRIS GL.”

Here are some key differences between OpenGL and IRIS GL:

• Window Management. OpenGL is window-system independent. It therefore
contains no windowing, pop up menus, event handling, color-map loading, buffer
allocation and management, font file formats, or cursor handling. These functions
are delegated to the window or operating system. You can use the GLUT library for
simple window handling under X. If you need more sophisticated windowing and
event handling calls, you have to include the relevant X Window System calls in
your program. Silicon Graphics provides some special GLX calls, where OpenGL
rendering is made available as an extension to X in the formal X sense, and an

2

Chapter 1: Introduction to Porting From IRIS GL to OpenGL

widget to help you replace your IRIS GL windowing, event, and colormap handling
calls. See Chapter 4, “OpenGL in the X Window System,” for details.

• Naming Conventions. OpenGL establishes and adheres to a standard “name
space.” OpenGL commands begin with the gl prefix (glEnable(), glTranslatef(), and
so on). This convention prevents conflict with commands from other libraries.
“OpenGL Command Names” on page 153 explains the OpenGL naming
conventions, and “OpenGL Defined Types” on page 155 lists the OpenGL defined
types with their C data type equivalents.

• State Variables. Like IRIS GL, OpenGL maintains state variables for color, fog,
texture, lighting, viewport, and so on. But OpenGL manages state variables more
directly and consistently than IRIS GL does. With OpenGL there are no tables—you
just load values directly.

Because OpenGL doesn’t keep tables of predefined lights and materials, it has no
equivalent for “binds,” although you can use display lists to get a similar effect.
“Porting defs, binds, and sets: Replacing ‘Tables’ of Stored Definitions” on page 67
explores different approaches to replacing display lists. Refer also to “Porting
Lighting and Materials Calls” on page 68 and “Porting Texture Calls” on page 73 for
more discussion and some examples.

• Display Lists. OpenGL display lists are not editable. In OpenGL, the sole purpose
of display lists is to efficiently cache OpenGL commands. As a result, IRIS GL calls
for editing display lists have no OpenGL equivalent. If your IRIS GL program edits
display lists, you have to reimplement it to some extent. “Porting Display Lists” on
page 63 lists the relevant IRIS GL calls, and “Achieving Edited Display List
Behavior” on page 65 provides some suggestions for porting code that edits display
lists.

• Fonts. IRIS GL provides calls to handle fonts and text strings. Although OpenGL
can render text, it doesn’t provide a file format for fonts. For fonts and text strings,
you can use the GLX call glXUseXFont() in conjunction with the OpenGL calls
glCallLists() and glListBase(). “Fonts and Strings” on page 92 provides suggestions
for porting fonts and strings.

• Utility Library. OpenGL provides a utility library, called the GL Utility Library
(GLU), that contains additional routines (such as NURBS and quadric surfaces
rendering routines). This library is discussed in the OpenGL Programming Guide.
Reference pages for all the routines the GLU consists of are included in the OpenGL
Reference Manual. These routines all begin with the “glu” prefix (gluDisk(),
gluErrorString(), and so on).

Tools and Libraries to Help Port Your Code

3

Tools and Libraries to Help Port Your Code

Silicon Graphics provides tools and libraries to help you port your IRIS GL program:

• The toogl tool translates your program’s IRIS GL calls to OpenGL calls. toogl does
do a lot of the translation work for you but it can’t translate everything (in
particular, it can’t translate windowing and event calls). You therefore have to edit
the output. Chapter 2, “Using the toogl Tool,” explains how to use toogl.

• The OpenGL extension to X (GLX) provides a variety of routines to help you
replace your old IRIS GL windowing, event, and font calls. Chapter 4 explains how
to use GLX. Reference pages for the GLX routines are included in the OpenGL
Reference Manual. Consider looking at the glXIntro reference page first for an
overview.

• The GLwDrawingArea and GLwMDrawingArea widgets help you port your code
to run in an X window. These widgets provide a window with the appropriate
visual and color maps needed for OpenGL, based on supplied parameters. They
also provide callbacks for redraw, resize, input, and initialization. For information
on how to use these widgets, see Chapter 4.

• The GLUT Library is a programming interface with ANSI C and FORTRAN
bindings for writing window system independent OpenGL programs. The toolkit
supports the following functionality:

– Multiple windows for OpenGL rendering

– Callback-driven event processing

– Sophisticated input devices

– An “idle” routine and timers.

– A simple cascading pop-up menu facility

– Utility routines to generate various solid and wire frame objects

– Support for bitmap and stroke fonts

– Miscellaneous window management functions, including managing overlays

You can find the GLUT library (and the associated documentation) on the OpenGL
home page http://www.opengl.org, or the Silicon Graphics OpenGL page,
http://www.sgi.com/Technology/openGL/. It is also discussed in OpenGL
Programming for the X Window System; see “Where to Get More Information” on
page xiv.

4

Chapter 1: Introduction to Porting From IRIS GL to OpenGL

Porting IRIS GL Programs to OpenGL

This section lists three porting scenarios. Select the one that best matches your situation
and complete the porting tasks listed. More information is provided in subsequent
chapters. This overview discusses the major porting tasks for different kinds of
programs:

• “Porting IRIS GL Programs That Use X Calls” on page 4

• “Porting IRIS GL Programs With Simple Windowing” on page 5

• “Porting IRIS GL Programs With Complex Windowing” on page 5

In all cases, after you’ve finished the porting tasks listed, you probably have to iteratively
compile, run, and debug your program. If necessary, run the toogl script again to catch
any IRIS GL commands that you missed. You may find it useful to refer to “Error
Handling” on page 156 which gives some basic information on error handling in
OpenGL.

Porting IRIS GL Programs That Use X Calls

If your IRIS GL program uses X for all window system calls, including windowing and
event handling, it will be relatively easy to port it to OpenGL. Here’s what you have to
do:

1. Run your program through a C beautifier (such as cb).

2. Run the toogl filter script on your code.

3. Edit toogl output. See Chapter 2 for a list of known trouble spots where you have to
port your code explicitly. See Chapter 3, “After toogl: How to Finish Porting to
OpenGL,” for specific suggestions.

4. Convert your IRIS GL X Window System calls to GLX calls.

■ If you used one of the Motif widgets, GlxDraw or GlxMDraw, switch to the
OpenGL version: GLwDrawingArea or GLwMDrawingArea. Chapter 4
discusses mixed-model programming in OpenGL and provides information
about the OpenGL version of the Silicon Graphics mixed-model widget.

■ If you didn’t use a widget, look at Appendix F, “Example Mixed-Model
Programs With Xlib.”

Porting IRIS GL Programs to OpenGL

5

■ The OpenGL Reference Manual contains an overview of the OpenGL Extension to
the X Window System. It also includes a glXIntro reference page and reference
pages for all the OpenGL/X routines.

■ OpenGL Programming for the X Window System by Mark Kilgard discusses all
aspects of using OpenGL in the X Window System environment. See “Where to
Get More Information” on page xiv for complete bibliographical information.

Porting IRIS GL Programs With Simple Windowing

If your program doesn’t use X Window System calls but does use simple windowing,
you can probably use the GLUT library to replace IRIS GL windowing, color map, and
event handling calls. This is possible if your code meets the following conditions:

• Is reasonably simple

• Conforms to Silicon Graphics recommendations

• Doesn’t use unsupported calls,

Here’s what you have to do:

1. Replace windowing and event handling calls with GLUT calls.

2. Run your program through a C beautifier (such as cb).

3. Run the toogl filter script on your code.

4. Edit toogl output. See Chapter 2 for a list of known trouble spots. You will probably
have port some of the trickier commands explicitly; see Chapter 3 for specific
suggestions.

Porting IRIS GL Programs With Complex Windowing

If your IRIS GL code doesn’t use X windowing calls and your windowing and event
handling code uses unsupported calls, doesn’t conform to Silicon Graphics
recommendations, or is complicated or unusual in scope, using the X Window System is
the best solution.

Here’s what you have to do:

1. Run your program through a C beautifier (such as cb),

2. Run the toogl filter script on your code.

6

Chapter 1: Introduction to Porting From IRIS GL to OpenGL

3. Edit toogl output. See Chapter 2 for a list of known trouble spots. You will probably
have port some of the trickier commands explicitly; see Chapter 3 for specific
suggestions.

4. Port your program to use OpenGL and X. You can do this either by using Xlib and
directly replacing calls like winopen() and qread() with their GLX equivalents, or
by using Xt along with a widget set and the OpenGL widget GLwDrawingArea. See
Chapter 4 for more information.

If You’re Not Porting Your Code to OpenGL Yet

If you’re not porting to OpenGL now, but know that you will be porting in the future, it’s
a good idea to switch to mixed-model mode now.

• Replace all GL windowing calls with GLX and X calls.

• Replace GL event handling with X event handling. Refer to the Graphics Library
Programming Tools and Techniques manual for detailed instructions.

• Learn what IRIS GL features have no OpenGL equivalents. Avoid using them in
new code, and reimplement code that does use them. Appendix A, “OpenGL
Commands and Their IRIS GL Equivalents,” lists IRIS GL commands and indicates
which commands are not supported in OpenGL.

• Replace any obsolete or unsupported calls with newer IRIS GL equivalents as soon
as possible.

7

Chapter 2

2. Using the toogl Tool

toogl (which stands for To OpenGL and is pronounced TOO-guhl) is a script that takes
IRIS GL code as input and produces commented, nearly equivalent OpenGL code as
output.

This chapter explores how to use and get the most from toogl. It explains where to find a
copy of toogl and how to use toogl most effectively. It also mentions some areas of your
IRIS GL code that might give you problems.

The chapter discusses the following topics:

• “Getting Started with toogl” explains how you can get a copy of toogl and then
explores calling toogl for one file and in batch mode.

• “Using xdiff or gdiff to Compare Files” on page 9 explains two tools that are helpful
for comparing your original IRIS GL file with the OpenGL output produced by
toogl.

• “Using toogl Effectively” on page 10

• “Editing toogl Output: Areas that Need Special Attention” on page 10

• “Editing toogl Output: An Example” on page 15

Getting Started with toogl

You can use toogl to do much of the work of translating your IRIS GL code to OpenGL
code. While toogl can’t do everything, it can do all the tedious work of changing
command names, and it can call your attention to code you have to port explicitly.

This section first explains “Finding and Building toogl,” then provides the syntax in
“Calling toogl,” and explores “Using toogl in Batch Mode.” The last section briefly
discusses “What toogl Will and Won’t Do for You.”

8

Chapter 2: Using the toogl Tool

Finding and Building toogl

A copy of toogl is in the /usr/share directory. The exact location depends on the operating
system version you are using. If you want to look at the source (it’s in C++), you can get
a copy from the OpenGL directory.

You can also get a copy of the tool from the “Contributed Tools” area of the Silicon
Graphics OpenGL home page (http://www.sgi.com/Technology/openGL/)

To build the tool, enter:

setenv OBJECT_STYLE 32
make

Warning: If you build toogl with OBJECT_STYLE set to n32 (the default on current
systems), the tool does not work!

Calling toogl

toogl syntax:

toogl [-cwq] < infile > outfile

You can use any of these options with toogl:

-c Don’t clutter up the output with comments

-w Don’t remove window manager calls like winopen(), mapcolor()

-q Don’t remove event queue calls like qread(), setvaluator()

Note: toogl doesn’t attempt to translate event queue and windowing calls. It simply
removes them, and replaces them with warning comments. The -w and -q flags merely
suppress the comments.

Keep your original source! Accidents happen.

Using xdiff or gdiff to Compare Files

9

Using toogl in Batch Mode

To process a directory full of source files automatically, you could use a shell script like
the following:

#!/bin/sh
mkdir OpenGL
for i in *.c
 do
 echo "Converting " $i " ..."
 toogl < $i > OpenGL/$i
 done

What toogl Will and Won’t Do for You

toogl is a filter that scans each line of an input file, looking for IRIS GL calls. When toogl
finds an IRIS GL function, it replaces the function with the corresponding OpenGL
function(s).

Because toogl can’t translate everything, you have to edit its output. Any time toogl
translates code that you may have to look at, check, or change, it marks the potential
problem with a comment starting with “OGLXXX”. (You can use the -c option to
suppress the comments.)

Using xdiff or gdiff to Compare Files

After you’ve converted your program using toogl, you have to edit the toogl output. You’ll
probably want to examine the differences between the toogl output and your original
program—or any other version of the program. To do so, use either gdiff or xdiff.

To use gdiff, enter:

gdiff -b file1 file2

where file1 and file2 are the names of the files you want to compare. The -b option tells
gdiff to ignore trailing blanks on lines when comparing files. You might also want to use
the -w option, which tells gdiff to ignore white space.

10

Chapter 2: Using the toogl Tool

To use xdiff, enter:

xdiff file1 file2

See the xdiff reference page for more information.

Using toogl Effectively

Here are a few suggestions for getting the most out of toogl:

• For best results, use a C beautifier (such as cb) on your code before running toogl.

• Use gdiff (or xdiff) to browse through the source and the translation simultaneously.

• toogl expects to find the matching parentheses or quotes on the same line as the
IRIS GL function.

• toogl expects to find only spaces and tabs between a function name and the opening
parenthesis. For example, the code

v3f
(foo);

will be left unchanged, as will

v3f /* comment */ (foo);

Running a C beautifier on your program before using toogl can prevent problems
like this.

• toogl expects that C comments inside the argument list of a function don’t contain
parentheses or quote characters. Faced with the following code, toogl will generate a
warning and will not do a translation:

v3f (foo /* I really mean bar “-) */);

Editing toogl Output: Areas that Need Special Attention

After you’ve run toogl on your code, you have to edit the output. Some areas are more
problematic than others—for example, v() calls usually translate quite neatly into
glVertex() calls, but texture calls often don’t translate well. This section lists some of the
general areas that are likely to need special attention. Chapter 3, “After toogl: How to
Finish Porting to OpenGL,” provides more detailed information on problem areas.

Editing toogl Output: Areas that Need Special Attention

11

This section briefly addresses the following issues:

• “Windowing, Device, and Event Calls”

• “Parentheses and Quotes”

• “Defined Color Constants”

• “clear() Calls”

• “Get Calls”

• “rotate() Calls”

• “swaptmesh() Calls”

• “Texturing Calls”

• “def/bind Calls”

• “Calls Without Direct Equivalents”

• “Finding OpenGL Replacements for IRIS GL Calls”

• “Performance”

Windowing, Device, and Event Calls

toogl can’t translate sections of code that make window manager, window configuration,
device, or event calls, or that load a color map. You have to rewrite these code sections
yourself. You can use the -w and -q options to make toogl leave this code untouched, so
you can still read it to translate it manually. If your windowing and event handling calls
are simple and straightforward, you can replace them with calls from the GLUT library.
For more information on GLUT, see the OpenGL home page http://www.OpenGL.org
or the Silicon Graphics OpenGL page http://www.sgi.com/Technology/openGL/. See
also “GLX and GLUT Documentation” on page xvi.

If your windowing and event handling calls are fairly sophisticated, you have to
incorporate the OpenGL code into X Windows directly, either using the OpenGL widget
or using Xlib. This is explained in Chapter 4, “OpenGL in the X Window System.”

12

Chapter 2: Using the toogl Tool

Parentheses and Quotes

toogl understands a little about matching parentheses and quotes. It translates

v3f(v[strlen(strcat(foo, "foo("))]);

into

glVertex3fv(v[strlen(strcat(foo, "foo("))]);

Defined Color Constants

IRIS GL provides defined color constants: BLACK, BLUE, RED, GREEN, MAGENTA,
CYAN, YELLOW, and WHITE. OpenGL does not provide these constants and toogl does
not translate them, so you have to port them explicitly.

clear() Calls

Make sure clear() calls are correctly translated. For example, assume your program clears
the window as follows:

color(BLACK);
clear();

toogl translates those two lines as follows:

glIndex(BLACK);
glClear(GL_COLOR_BUFFER_BIT);

The above code fragment is incorrect for these reasons:

• OpenGL does not provide the color constant BLACK

• OpenGL maintains a clear color that’s distinct from the drawing color.

A better translation is the following:

glIndex(0);
glClearIndex(0);
glClear(GL_COLOR_BUFFER_BIT);

Editing toogl Output: Areas that Need Special Attention

13

Get Calls

toogl does not always translate IRIS GL “get” calls (such as getdepth(), getcolor(), and so
on) correctly. toogl translates

i = getcolor();
getdepth(&near, &far);

into

/* OGLXXX replace value with your variable */
i = glGetIntegerv(GL_CURRENT_INDEX, &value);

/* OGLXXX You can probably do better than this. */
{
 int get_depth_tmp[2];
 glGetIntegerv(GL_DEPTH_RANGE, get_depth_tmp);
 *(&near)=get_depth_tmp[0];
 *(&far)=get_depth_tmp[1];
};

This guide lists the glGet*() calls related to a particular topic in the section on that topic.
For general information on replacing get calls, see “Porting IRIS GL get* Commands” on
page 20.

rotate() Calls

The OpenGL rotation call glRotate() is different from rotate(). You will probably have to
modify the code after translating the program with toogl. See “Porting Matrix and
Transformation Calls” on page 24 for details.

swaptmesh() Calls

OpenGL has no equivalent for swaptmesh(); toogl flags occurrences of the function and
leaves it up to you to restructure your triangles.

Texturing Calls

toogl correctly translates texture coordinate calls. You have to do additional work, as
explained in “Porting Texture Calls” on page 73.

14

Chapter 2: Using the toogl Tool

Note: If you’re using OpenGL 1.1, you can take advantage of subtextures. Because toogl
was developed for OpenGL 1.0, you have to implement the use of OpenGL subtextures
yourself.

def/bind Calls

OpenGL does not keep tables of predefined lights and materials, so it has no equivalent
for “binds.” You can use display lists to mimic the behavior. See “Porting defs, binds, and
sets: Replacing ‘Tables’ of Stored Definitions” on page 67 for more information. See also
“Porting Lighting and Materials Calls” on page 68 and “Porting Texture Calls” on
page 73 for more discussion and some examples.

Calls Without Direct Equivalents

There are some IRIS GL calls that toogl cannot directly translate into OpenGL calls. arcf()
is one example. You have to port such calls explicitly. “Editing toogl Output: An
Example” on page 15 gives an example for porting a call like arcf().

Finding OpenGL Replacements for IRIS GL Calls

Appendix A, “OpenGL Commands and Their IRIS GL Equivalents,” contains a table
listing IRIS GL commands and the corresponding OpenGL commands, and tells you
where to go for more information. This table also indicates which IRIS GL calls are not
supported in OpenGL.

Performance

toogl doesn’t necessarily produce fast OpenGL code; in fact, such an automatic port
usually results in loss of performance. Details of improving OpenGL performance are
beyond the scope of the current edition of this guide; however, you can find some specific
tips in “Porting Screen and Buffer Clearing Commands” on page 23 and “Porting
Lighting and Materials Calls” on page 68.

Note: The performance chapters of OpenGL on Silicon Graphics Systems provide
additional information.

Editing toogl Output: An Example

15

Two features of OpenGL that can drastically improve performance are display lists and
direct rendering. Use these features whenever possible in OpenGL programs. For
information on display lists, see “Porting Display Lists” in Chapter 3. For information on
direct rendering, see the glXCreateContext reference page. If you aren’t careful, you may
set up indirect rendering without noticing that it’s indirect; specify direct rendering
explicitly where possible.

Here are few more tips:

• If you’re drawing independent triangles, there’s no need to put glBegin() and
glEnd() around each set of three vertices. Instead, call glBegin(GL_TRIANGLES)
and then list as many individual triangles as you need before the glEnd(). This
optimization alone can noticeably improve performance.

• If you aren’t using the depth buffer, disable it. This is particularly important when
you call glDrawPixels() or other non-3D drawing functions.

• Disable texturing when you call glDrawPixels() or any other function that
shouldn’t use textures. Otherwise, the texture overhead slows down drawing even
if you’re only drawing a bitmap.

Editing toogl Output: An Example

This section provides an example for working with toogl output.

toogl translates the call

arcf(1.0, 1.0, 0.9, 1200, 2200);

as

/* OGLXXX see gluPartialDisk man page */
gluPartialDisk(*gobj, innerRad, outerRad, slices, loops, startAng, endAng);

The IRIS GL call arcf() can’t be directly translated into an OpenGL call. The GL Utility
Library call gluPartialDisk() is the nearest equivalent, but you have to fill in its
arguments explicitly. Compare the reference pages for the two commands, or refer to the
section in this guide that discusses porting that command (in this case, “Porting Arcs and
Circles” on page 42).

16

Chapter 2: Using the toogl Tool

Those materials explain that you have to account for the following changes:

• Arcs are now quadrics and are drawn using quadric objects.

• Angles are now measured in degrees instead of tenths of degrees.

• Instead of specifying a center for your arc in the call, you now do a translation first.

• Angles are now measured on different coordinate axes. The second angle is now a
sweep angle instead of an end angle.

Your completed arcf() translation might look like this:

gluQuadricObj *arcObj;

arcObj = gluNewQuadric(void);
glTranslatef(1.0, 1.0, 0.0);
gluPartialDisk(*arcObj, 0.0, 0.9, 100, 2, -30, -100);

17

Chapter 3

3. After toogl: How to Finish Porting to OpenGL

After you run your IRIS GL program through toogl, you can use this chapter to find out
how to replace IRIS GL calls that toogl didn’t translate completely or correctly. To get the
most out of this discussion, refer to the reference pages as necessary.

The chapter discusses these topics:

• “Header Files” on page 18

• “Porting greset()” on page 19

• “Porting IRIS GL get* Commands” on page 20

• “Porting Commands That Required Current Graphics Positions” on page 22

• “Porting Screen and Buffer Clearing Commands” on page 23

• “Porting Matrix and Transformation Calls” on page 24

• “Porting Drawing Commands” on page 31

• “Porting Color, Shading, and Writemask Commands” on page 44

• “Porting Pixel Operations” on page 46

• “Porting Depth Cueing and Fog Commands” on page 48

• “Porting Curve and Surface Commands” on page 52

• “Porting Antialiasing Calls” on page 58

• “Porting Display Lists” on page 63

• “Porting defs, binds, and sets: Replacing ‘Tables’ of Stored Definitions” on page 67

• “Porting Texture Calls” on page 73

• “Porting Picking Calls” on page 79

• “Porting Feedback Calls” on page 80

• “Porting RealityEngine Graphics Features” on page 83

• “OpenGL Extensions” on page 87

18

Chapter 3: After toogl: How to Finish Porting to OpenGL

Header Files

toogl doesn’t replace header files for you, so you have to replace them yourself. This
section lists the files your IRIS GL program probably used and the OpenGL files to
replace them with.

If you use the GLUT library, you also have to include the GLUT header file:

#include <GL/glut.h>

If you use the Motif widget, replace the include lines as indicated in Table 3-2.

If you’re using Xlib and OpenGL/X calls, add

#include <GL/glx.h>

Table 3-1 Include Lines in IRIS GL and OpenGL Programs

IRIS GL Include Lines OpenGL Include Lines

#include <gl/gl.h>

#include <gl/device.h>

#include <gl/get.h>

#include <GL/gl.h>

#include <GL/glu.h>

/* X header files start here*/

#include <Xm/Xm.h>

#include <Xm/Frame.h>

#include <Xm/Form.h>

#include <X11/StringDefs.h>

#include <X11/keysym.h>

Table 3-2 Include Lines for IRIS GL and OpenGL Motif Widgets

IRIS GL Motif Widget Include Lines OpenGL Motif Widget Include Lines

For the IRIS IM version of the widget:
#include <X11/Xirisw/GlxMDraw.h>

For the IRIS IM version of the widget:
#include <GL/GLwMDrawA.h>

For the generic version of the widget:
#include <X11/Xirisw/GLxDraw.h>

For the generic version of the widget:
#include <GL/GLwDrawA.h>

Porting greset()

19

Porting greset()

OpenGL replaces the functionality of greset() with the commands glPushAttrib() and
glPopAttrib(). Use these commands to save and restore groups of state variables.

Call glPushAttrib() to indicate which groups of state variables to push onto an attribute
stack by taking a bitwise OR of symbolic constants, as follows:

void glPushAttrib(GLbitfield mask);

The attribute stack has a finite depth of at least 16.

The glPushAttrib() and glPopAttrib() calls push and pop the server attribute stacks. In
OpenGL 1.1, you can also use the functions glPushClientAttrib() and
glPopClientAttrib() to push and pop the client attribute stack.

Each constant refers to a group of state variables. Table 3-3 shows the attribute groups
with their corresponding symbolic constant names. For a complete list of the OpenGL
state variables associated with each constant, see the glPushAttrib reference page.

Table 3-3 State Attribute Groups

Attribute Constant

accumulation buffer clear value GL_ACCUM_BUFFER_BIT

color buffer GL_COLOR_BUFFER_BIT

current GL_CURRENT_BIT

depth buffer GL_DEPTH_BUFFER_BIT

enable GL_ENABLE_BIT

evaluators EGL_VAL_BIT

fog GL_FOG_BIT

GL_LIST_BASE setting GL_LIST_BIT

hint variables GL_HINT_BIT

lighting variables GL_LIGHTING_BIT

line drawing mode GL_LINE_BIT

20

Chapter 3: After toogl: How to Finish Porting to OpenGL

To restore the values of the state variables to those saved with the last glPushAttrib(), call
glPopAttrib(). The variables you didn’t save remain unchanged.

Porting IRIS GL get* Commands

IRIS GL get* calls are of this form:

int getthing();

int getthings(int *a, int *b);

Your IRIS GL program probably includes calls that look like the following:

thing = getthing();
if(getthing() == THING) { /* stuff */ }
getthings (&a, &b);

pixel mode variables GL_PIXEL_MODE_BIT

point variables GL_POINT_BIT

polygon GL_POLYGON_BIT

polygon stipple GL_POLYGON_STIPPLE_BIT

scissor GL_SCISSOR_BIT

stencil buffer GL_STENCIL_BUFFER_BIT

texture GL_TEXTURE_BIT

transform GL_TRANSFORM_BIT

viewport GL_VIEWPORT_BIT

— GL_ALL_ATTRIB_BITS

pixel storage modes GL_CLIENT_PIXEL_STORE_BITS (1.1 only)

vertex arrays and enables GL_CLIENT_VERTEX_ARRAY_BIT (1.1 only)

Table 3-3 (continued) State Attribute Groups

Attribute Constant

Porting IRIS GL get* Commands

21

OpenGL uses glGet*() calls for equivalent functionality; they look like this:

void glGetIntegerfv(NAME_OF_THING, &thing);

Table A-1 on page 109 lists the IRIS GL get functions with their OpenGL equivalents.

In general, this guide lists various parameters for glGet*() calls in the sections that
discuss topics related to those parameters. To see the parameter values related to
matrices, for example, see “Porting Matrix and Transformation Calls” on page 24.

There are other functions to query the OpenGL state, such as glGetClipPlane() and
glGetLight(). These commands are discussed in the sections on related calls, and also in
the reference pages.

About glGet*()

There are four types of glGet*() functions:

• glGetBooleanv()

• glGetIntegerv()

• glGetFloatv()

• glGetDoublev()

The functions have this syntax:

glGet<Datatype>v(value, *data)

value is of type GLenum and data of type GLdatatype. If you issue a glGet*() call that
returns types different from the expected types, each type is converted appropriately. For
a complete list of parameters, see the glGet reference page.

In addition to the basic glGet*() function, there are a number of special purpose
information retrieval functions: glGetClipPlane, glGetError, glGetLight, glGetMap,
glGetMaterial, glGetPixelMap, glGetPointerv, glGetPolygonStipple, glGetString,
glGetTexEnv, glGetTexGen, glGetTexImage, glGetTexlevelParameter,
glGetTexParameter.

22

Chapter 3: After toogl: How to Finish Porting to OpenGL

glGet*() Conventions Used in This Book

For the sake of brevity, this guide usually shortens the reference to the form

glGet*(GL_GET_TYPE)

For example,

glGetIntegerv(GL_VIEWPORT, *params);

is abbreviated as

glGet*(GL_VIEWPORT);

in tables and text (but not in code examples).

Porting Commands That Required Current Graphics Positions

OpenGL doesn’t maintain a current graphics position. IRIS GL commands that depend
on the current graphics position, such as move(), draw(), and rmv(), have no equivalents
in OpenGL.

Older versions of IRIS GL included drawing commands that relied upon the current
graphics position, though their use was discouraged in more recent versions. You have
to reimplement parts of your program if you relied on the current graphics position in
any way, or used any of the following routines:

• draw() and move()

• pmv(), pdr(), and pclos()

• rdr(), rmv(), rpdr(), and rpmv()

• getgpos()

OpenGL has a concept of raster position that corresponds to the IRIS GL current
character position. See “Porting Pixel Operations” on page 46 for more information.

Porting Screen and Buffer Clearing Commands

23

Porting Screen and Buffer Clearing Commands

OpenGL replaces a variety of IRIS GL clear() calls (such as zclear(), aclear(), sclear(), and
so on) with one: glClear(). Specify exactly what you want to clear by passing masks to
glClear().

When porting screen and buffer clearing commands, consider the following issues:

• OpenGL maintains clear colors separately from drawing colors, with calls like
glClearColor() and glClearIndex(). Be sure to set the clear color for each buffer
before making a clear call.

• Since toogl has no concept of context, it cannot correctly translate color calls
immediately preceding clear calls into glClearColor() calls. You have to translate
these calls explicitly. For example, suppose your program clears the viewport as
follows:

color(BLACK);
clear();

toogl translates those two lines as follows:

glIndex(BLACK);
glClear(GL_COLOR_BUFFER_BIT);

A better translation of this fragment the following:

glClearIndex(0);
glClear(GL_COLOR_BUFFER_BIT);

Remember that IRIS GL color constants, such as BLACK, are not defined in
OpenGL.

• Instead of using one of several differently named clear calls, you now clear several
buffers with one call, glClear(), by ORing together buffer masks. For example,
czclear() is replaced by

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

• IRIS GL respects the polygon stipple and the color write mask. OpenGL ignores the
polygon stipple but respects the write mask. czclear() ignored both the polygon
stipple and the write mask.

24

Chapter 3: After toogl: How to Finish Porting to OpenGL

Table 3-4 lists the various clear calls with their IRIS GL equivalents.

If your IRIS GL code used both gclear() and sclear(), you can instead use a single
glClear() call. As a result, your program’s performance may improve.

Porting Matrix and Transformation Calls

When porting matrix and transformation calls, consider the following issues:

• There is no single-matrix mode. OpenGL is always in double-matrix mode.

• Angles are now measured in degrees, instead of tenths of degrees.

• Projection matrix calls, like glFrustum() and glOrtho(), now multiply with the
current matrix, instead of being loaded onto the current matrix.

Table 3-4 Calls for Clearing the Screen

IRIS GL Call OpenGL Call Meaning

acbuf(AC_CLEAR) glClear(GL_ACCUM_BUFFER_BIT) Clear the accumulation buffer.

— glClearColor() Set the RGBA clear color.

— glClearIndex() Set the clear color index.

clear() glClear(GL_COLOR_BUFFER_BIT) Clear the color buffer.

— glClearDepth() Specify the clear value for the
depth buffer.

zclear() glClear(GL_DEPTH_BUFFER_BIT) Clear the depth buffer.

czclear() glClear(GL_COLOR_BUFFER_BIT |

 GL_DEPTH_BUFFER_BIT)

Clear the color buffer and the depth
buffer.

— glClearAccum() Specify clear values for the
accumulation buffer.

— glClearStencil() Specify the clear value for the
stencil buffer.

sclear() glClear(GL_STENCIL_BUFFER_BIT) Clear the stencil buffer.

Porting Matrix and Transformation Calls

25

• The OpenGL call glRotate() is different from rotate(). glRotate() lets you rotate
around any arbitrary axis, instead of being confined to the x, y, and z axes. But you
probably have to port rotate() calls explicitly, because toogl often doesn’t translate
them correctly. For example, toogl might translate

rotate(200*(i+1), ’z’);

into

glRotate(.1*(200*(i+1)), (’z’)==’x’, (’z’)==’y’,
 (’z’)==’z’);

toogl correctly switched to degrees from tenths of degrees, but didn’t correctly
handle the replacement of z with a vector for the z-axis. A better translation is

glRotate(.1*(200*(i+1), 0.0, 0.0, 1.0);

• OpenGL documentation presents matrices in a manner more consistent with
standard usage in linear algebra than did IRIS GL documentation. Specifically, in
IRIS GL documentation, vectors are treated as rows, and a matrix is applied to a
vector on the right of the vector. multmatrix() replaces the current matrix C with
C’ = MC. In OpenGL documentation, vectors are treated as columns, and a matrix
applies to a vector on the left of the vector. glMultMatrix() computes C’ = CM.

A generic IRIS GL translation is shown in the equation in Figure 3-1.

Figure 3-1 Generic IRIS GL Translation

A generic OpenGL translation is shown in the equation in Figure 3-2.

Figure 3-2 Generic OpenGL Translation

xyz1[]

1 0 0 0

0 1 0 0

0 0 1 0

Tx Ty Tz 1

x Tx+() y Ty+() z Tz+()1[]=

1 0 0 Tx
0 1 0 Ty
0 0 1 Tz
0 0 0 1

x
y
z
1

x Tx+

y Ty+

z Tz+

1

=

26

Chapter 3: After toogl: How to Finish Porting to OpenGL

The important thing is that this is a change in documentation only—OpenGL matrices
are completely compatible with the ones in IRIS GL except that they are stored in
column-major order. So, if you want the matrix shown in the equation in Figure 3-3
in your OpenGL application, you would declare it as follows:

float mat[16] = {a, e, i, m, b, f, j, n, c, g,
k, o, d, h, l, p}

Figure 3-3 OpenGL Matrix Example

• OpenGL has no equivalent to the polarview() call. You can replace such a call with a
translation and three rotations. For example, the IRIS GL call

polarview(distance, azimuth, incidence, twist);

translates to

glTranslatef(0.0, 0.0, -distance);
glRotatef(-twist * 10.0, 0.0, 0.0, 1.0);
glRotatef(-incidence * 10.0, 1.0, 0.0, 0.0);
glRotatef(-azimuth * 10.0, 0.0, 0.0, 1.0);

• The replacement for the lookat() call, gluLookAt(), takes an up vector instead of a
twist angle. toogl doesn’t translate this call correctly, so you have to port explicitly.
See the gluLookAt reference page for more information.

Table 3-5 lists the OpenGL matrix calls and their IRIS GL equivalents.

Table 3-5 Matrix Operations

IRIS GL Call OpenGL Call Meaning

mmode() glMatrixMode() Set current matrix mode.

— glLoadIdentity() Replace current matrix with the identity matrix.

loadmatrix() glLoadMatrixf(),
glLoadMatrixd()

Replace current matrix with the specified matrix.

a b c d
a f g h
i j k l
m n o p

Porting Matrix and Transformation Calls

27

OpenGL has three matrix modes, which are set with glMatrixMode(). Table 3-6 lists the
IRIS GL mmode() arguments in the first column and the corresponding arguments to
glMatrixMode() in the second column.

multmatrix() glMultMatrixf(),
glMultMatrixd()

Post-multiply current matrix with the specified matrix
(note that multmatrix() pre-multiplied).

mapw(),
mapw2()

gluUnProject() Project world space coordinates to object space (see also
gluProject()).

ortho() glOrtho() Multiply current matrix by an orthographic projection
matrix.

ortho2() gluOrtho2D() Define a two-dimensional orthographic projection
matrix.

perspective() gluPerspective() Define a perspective projection matrix.

picksize() gluPickMatrix() Define a picking region.

popmatrix() glPopMatrix() Pop current matrix stack, replacing the current matrix
with the one below it.

pushmatrix() glPushMatrix() Push current matrix stack down by one, duplicating the
current matrix.

rotate(), rot() glRotated(),
glRotatef()

Rotate current coordinate system by the given angle
about the vector from the origin through the given point.
Note that rotate() rotated only about the x, y, and z axes.

scale() glScaled(),glScalef() Multiply current matrix by a scaling matrix.

translate() glTranslatef(),
glTranslated()

Move coordinate system origin to the specified point by
multiplying the current matrix by a translation matrix.

window() glFrustum() Given coordinates for clipping planes, multiply the
current matrix by a perspective matrix.

Table 3-5 (continued) Matrix Operations

IRIS GL Call OpenGL Call Meaning

28

Chapter 3: After toogl: How to Finish Porting to OpenGL

Porting MSINGLE Mode Code

OpenGL has no equivalent for MSINGLE, single-matrix mode. Though use of this mode
has been discouraged, it was the default for IRIS GL and your program may have used
it. If it did, you have to reimplement part of it. OpenGL is always in double-matrix mode,
and is initially in GL_MODELVIEW mode.

Most IRIS GL code in MSINGLE mode looks as follows:

...
projectionmatrix();
...

projectionmatrix() is one of the following: ortho(), ortho2(), perspective(), window().
To port to OpenGL, replace the MSINGLE mode projectionmatrix() call by the following
pseudo-code:

...
glMatrixMode(GL_PROJECTION);
glLoadMatrix(identity matrix);
[one of these calls:

glFrustrum(), glOrtho(), glOrtho2(), gluPerspective()];
glMatrixMode(GL_MODELVIEW);
glLoadMatrix(identity matrix);

Table 3-6 Matrix Modes

IRIS GL Matrix Mode OpenGL Mode Meaning Min. Stack Depth

MTEXTURE GL_TEXTURE Operate on the texture matrix stack. 2

MVIEWING GL_MODELVIEW Operate on the modelview matrix
stack.

32

MPROJECTION GL_PROJECTION Operate on the projection matrix
stack.

2

Porting Matrix and Transformation Calls

29

Porting get* Calls for Matrices and Transformations

Table 3-7 maps IRIS GL matrix queries to OpenGL matrix queries.

Table 3-7 Arguments for Transformation Matrix Queries

IRIS GL Matrix
Query

OpenGL glGet*() Matrix Query Meaning

getmmode() GL_MATRIX_MODE Return the current matrix
mode.

getmatrix() in
MVIEWING mode

GL_MODELVIEW_MATRIX Return a copy of the current
modelview matrix.

getmatrix() in
MPROJECTION
mode

GL_PROJECTION_MATRIX Return a copy of the current
projection matrix.

getmatrix() in
MTEXTURE mode

GL_TEXTURE_MATRIX Return a copy of the current
texture matrix.

— GL_MAX_MODELVIEW_STACK_DEPTH Return maximum supported
depth of modelview matrix
stack.

— GL_MAX_PROJECTION_STACK_DEPTH Return maximum supported
depth of projection matrix
stack.

— GL_MAX_TEXTURE_STACK_DEPTH Return maximum supported
depth of texture matrix stack.

— GL_MODELVIEW_STACK_DEPTH Return number of matrices on
modelview stack.

— GL_PROJECTION_STACK_DEPTH Return number of matrices on
projection stack.

— GL_TEXTURE_STACK_DEPTH Return number of matrices on
texture stack.

30

Chapter 3: After toogl: How to Finish Porting to OpenGL

Porting Viewports, Screenmasks, and Scrboxes

The following IRIS GL calls have no direct OpenGL equivalent:

• reshapeviewport()

• scrbox(), getscrbox()

The IRIS GL viewport() call had as parameters the x coordinates (in pixels) for the left
and right of the viewport rectangle and the y coordinates for the top and bottom. The
OpenGL glViewport() call has as parameters the x and y coordinates (in pixels) of the
lower left corner of the viewport rectangle, as well as the rectangle’s width and height.

Table 3-8 lists the OpenGL equivalents for viewport commands.

Porting Clipping Planes

OpenGL implements clipping planes the way IRIS GL did, though you can now also
query clipping planes. Table 3-9 lists the OpenGL equivalents to IRIS GL calls.

Table 3-8 Viewport Calls

IRIS GL Call OpenGL Call Meaning

viewport(left, right,
bottom, top)

glViewport(x, y, width, height) Set the viewport.

popviewport()

pushviewport()

glPopAttrib()

glPushAttrib(GL_VIEWPORT_BIT)

Push and pop the stack.

getviewport() glGet*(GL_VIEWPORT) Return viewport dimensions.

Table 3-9 Clipping Plane Calls

IRIS GL Call OpenGL Call Meaning

clipplane(i, CP_ON, params) glEnable(GL_CLIP_PLANEi) Enable clipping on plane i.

clipplane(i, CP_DEFINE, plane) glClipPlane(
GL_CLIP_PLANEi, plane)

Define clipping plane.

— glGetClipPlane() Return clipping plane
equation.

Porting Drawing Commands

31

To turn on the scissor test, call glEnable() with GL_SCISSOR_BOX as the parameter.

Porting Drawing Commands

The following sections discuss how to port IRIS GL drawing primitives, discussing the
following topics:

• “Porting the IRIS GL Sphere Library”

• “Porting v() Commands” on page 33

• “Porting bgn/end Commands” on page 33

• “Porting Points” on page 35

• “Porting Lines” on page 36

• “Porting Polygons and Quadrilaterals” on page 37

• “Porting Tessellated Polygons” on page 41

• “Porting Triangles” on page 41

• “Porting Arcs and Circles” on page 42

• “Porting Spheres” on page 43

Porting the IRIS GL Sphere Library

The sphere library that worked with IRIS GL isn’t available for OpenGL. You can replace
sphere library calls with quadrics routines from the GLU library or with the GLUT
functions for geometric object rendering. Refer to the OpenGL Programming Guide and the

— glIsEnabled(
GL_CLIP_PLANEi)

Return true if clip plane i is
enabled.

scrmask() glScissor() Define the scissor box.

getscrmask() glGet*(GL_SCISSOR_BOX) Return the current scissor box.

Table 3-9 (continued) Clipping Plane Calls

IRIS GL Call OpenGL Call Meaning

32

Chapter 3: After toogl: How to Finish Porting to OpenGL

GLU reference pages in the OpenGL Reference Manual for details on using the GLU library.
Table 3-10 summarizes OpenGL quadrics calls.

You can use one quadric object for all quadrics you’d like to render in similar ways. The
code fragment in Example 3-1 uses two quadrics objects to draw four quadrics, two of
them textured.

Example 3-1 Drawing Quadrics Objects

GLUquadricObj *texturedQuad, *plainQuad;

texturedQuad = gluNewQuadric(void);
gluQuadricTexture(texturedQuad, GL_TRUE);
gluQuadricOrientation(texturedQuad, GLU_OUTSIDE);
gluQuadricDrawStyle(texturedQuad, GLU_FILL);

plainQuad = gluNewQuadric(void);
gluQuadricDrawStyle(plainQuad, GLU_LINE);

glColor3f (1.0, 1.0, 1.0);

Table 3-10 Calls for Drawing Quadrics

OpenGL Call Meaning

gluNewQuadric() Create a new quadric object.

gluDeleteQuadric() Delete a quadric object.

gluQuadricCallback() Associate a callback with a quadric object, for error handling.

gluQuadricNormals() Specify normals: no normals, one per face, or one per vertex.

gluQuadricOrientation() Specify direction of normals: outward or inward.

gluQuadricTexture() Turn texture coordinate generation on or off.

gluQuadricDrawstyle() Specify drawing style: polygons, lines, points, and so on.

gluSphere() Draw a sphere.

gluCylinder() Draw a cylinder or cone.

gluPartialDisk() Draw an arc.

gluDisk() Draw a circle or disk.

Porting Drawing Commands

33

gluSphere(texturedQuad, 5.0, 20, 20);
glTranslatef(10.0, 10.0, 0.0);
gluCylinder(texturedQuad, 2.5, 5, 5, 10, 10);
glTranslatef(10.0, 10.0, 0.0);
gluDisk(plainQuad, 2.0, 5.0, 10, 10);
glTranslatef(10.0, 10.0, 0.0);
gluSphere(plainQuad, 5.0, 20, 20);

Porting v() Commands

In IRIS GL, you use variations on the v() call to specify vertices. The OpenGL glVertex()
call is a direct successor of this call:

glVertex2[d|f|i|s][v](x, y);
glVertex3[d|f|i|s][v](x, y, z);
glVertex4[d|f|i|s][v](x, y, z, w);

glVertex() takes suffixes the same way other OpenGL calls do. The vector versions of the
call take arrays of the proper size as arguments. In the 2D version, z = 0 and w = 1. In the
3D version, w = 1.

Porting bgn/end Commands

IRIS GL uses the begin/end paradigm but has a different call for each graphics primitive.
For example, bgnpolygon() and endpolygon() draw polygons, and bgnline() and
endline() draw lines. In OpenGL, you use the glBegin()/glEnd() structure. OpenGL
draws most geometric objects by enclosing a series of calls that specify vertices, normals,
textures, and colors between pairs of glBegin() and glEnd() calls.

void glBegin(GLenum mode) ;
 /* vertex list, colors, normals, textures, materials */
void glEnd(void);

glBegin() takes a single argument that specifies the drawing mode, and thus the
primitive. Here’s an OpenGL code fragment that draws a polygon and then a line:

glBegin(GL_POLYGON) ;
 glVertex2f(20.0, 10.0);
 glVertex2f(10.0, 30.0);
 glVertex2f(20.0, 50.0);
 glVertex2f(40.0, 50.0);
 glVertex2f(50.0, 30.0);

34

Chapter 3: After toogl: How to Finish Porting to OpenGL

 glVertex2f(40.0, 10.0);
glEnd();

glBegin(GL_LINES) ;
 glVertex2i(100,100);
 glVertex2i(500,500);
glEnd();

In OpenGL, you draw different geometric objects by specifying different arguments to
glBegin(). These arguments are listed in Table 3-11 below, along with the IRIS GL calls
they replace (if any). There is no limit to the number of vertices you can specify between
a glBegin()/glEnd() pair.

For a detailed discussion of the differences between triangle meshes, strips, and fans, see
“Porting Triangles” on page 41.

Table 3-11 Calls for Drawing Primitives

IRIS GL Call Value of glBegin() Mode Meaning

bgnpoint() GL_POINTS Individual points

bgnline() GL_LINE_STRIP Series of connected line segments

bgnclosedline() GL_LINE_LOOP Series of connected line segments, with a segment
added between first and last vertices

— GL_LINES Pairs of vertices interpreted as individual line
segments

bgnpolygon() GL_POLYGON Boundary of a simple convex polygon

— GL_TRIANGLES Triples of vertices interpreted as triangles

bgntmesh() GL_TRIANGLE_STRIP Linked strips of triangles

— GL_TRIANGLE_FAN Linked fans of triangles

— GL_QUADS Quadruples of vertices interpreted as quadrilaterals

bgnqstrip() GL_QUAD_STRIP Linked strips of quadrilaterals

Porting Drawing Commands

35

In addition to specifying vertices inside a glBegin()/glEnd() pair, you can also specify a
current normal, current texture coordinates, and a current color. Table 3-12 lists the
commands valid inside a glBegin()/glEnd() pair.

If you use any other OpenGL command inside a glBegin()/glEnd() pair, results are
unpredictable and an error may result.

Porting Points

OpenGL has no command to draw a single point. Otherwise, porting point calls is
straightforward. Table 3-13 lists commands for drawing points.

Table 3-12 Valid Commands Inside a Begin/End Structure

IRIS GL Call OpenGL Equivalent Meaning

v2*(), v3*(), v4*() glVertex*() Set vertex coordinates.

RGBcolor(), cpack() glColor*() Set current color.

color(), colorf() glIndex*() Set current color index.

n3f() glNormal*() Set normal vector coordinates.

— glEvalCoord() Evaluate enabled one- and
two-dimensional maps.

callobj() glCallList(),

glCallLists()

Execute display list(s).

t2() glTexCoord() Set texture coordinates.

— glEdgeFlag() Control drawing edges.

lmbind() glMaterial() Set material properties.

Table 3-13 Calls for Drawing Points

IRIS GL Call OpenGL Equivalent Meaning

pnt() — Draw a single point.

bgnpoint(),

endpoint()

glBegin(GL_POINTS),

glEnd()

Interpret vertices as points.

36

Chapter 3: After toogl: How to Finish Porting to OpenGL

See the glPointSize reference page for information about related glGet*() commands.

Porting Lines

Porting code that draws lines is fairly straightforward, though you should note the
differences in the way OpenGL does stipples.

There are no tables for line stipples. OpenGL maintains only one line stipple pattern. You
can use glPushAttrib() and glPopAttrib() to switch between different stipple patterns.

pntsize() glPointSize() Set point size in pixels.

pntsmooth() glEnable(GL_POINT_SMOOTH) Turn on point antialiasing (see “Porting
Antialiasing Calls” on page 58).

Table 3-14 Calls for Drawing Lines

IRIS GL Call OpenGL Call Meaning

bgnclosedline(),

endclosedline()

glBegin(GL_LINE_LOOP)

glEnd()

Draw a closed line.

bgnline() glBegin(GL_LINE_STRIP) Draw line segments.

linewidth() glLineWidth() Set line width.

getlwidth() glGet*(GL_LINE_WIDTH) Return current line width.

deflinestyle()

setlinestyle()

glLineStipple(factor, pattern) Specify a line stipple pattern.

lsrepeat() factor argument of glLineStipple() Set a repeat factor for the line style.

getlstyle() glGet*(GL_LINE_STIPPLE_PATTERN) Return line stipple pattern.

getlsrepeat() glGet*(GL_LINE_STIPPLE_REPEAT) Return repeat factor.

linesmooth(),

smoothline()

glEnable(GL_LINE_SMOOTH) Turn on line antialiasing (see “Porting
Antialiasing Calls” on page 58).

Table 3-13 (continued) Calls for Drawing Points

IRIS GL Call OpenGL Equivalent Meaning

Porting Drawing Commands

37

Old-style line style routines are not supported by OpenGL. If you used the calls: draw(),
lsbackup(), getlsbackup(), resetls(), getresetls(), reimplement that part of your program.

For information on drawing antialiased lines, see “Porting Antialiasing Calls” on
page 58.

Porting Polygons and Quadrilaterals

When porting polygons and quadrilaterals, consider the following issues:

• There is no direct equivalent for concave(TRUE). Consider using the GLU
tessellation routines described in “Porting Tessellated Polygons” on page 41.

• Polygon modes are now set differently.

• These older polygon drawing calls have no direct equivalents in OpenGL:

– the poly() family of routines

– the polf() family of routines

– pmv(), pdr(), and pclos()

– rpmv() and rpdr()

– splf()

– spclos()

If you used these calls, reimplement that part of the program using
glBegin(GL_POLYGON).

Table 3-15 lists the OpenGL equivalents to IRIS GL polygon drawing calls.

Table 3-15 Calls for Drawing Polygons

IRIS GL Call OpenGL Equivalent Meaning

bgnpolygon(),
endpolygon()

glBegin(GL_POLYGON),
glEnd()

Vertices define boundary of a simple
convex polygon.

— glBegin(GL_QUADS), glEnd() Interpret quadruples of vertices as
quadrilaterals.

bgnqstrip(),
endqstrip()

glBegin(GL_QUAD_STRIP),
glEnd()

Interpret vertices as linked strips of
quadrilaterals.

38

Chapter 3: After toogl: How to Finish Porting to OpenGL

Setting Polygon Modes

The call for setting the polygon mode has changed slightly. The OpenGL call
glPolygonMode() allows you to specify which side of a polygon (front or back) the mode
applies to. Its syntax is

void glPolygonMode(GLenum face, GLenum mode)

face is one of the following:

The equivalents to IRIS GL polymode() calls would use GL_FRONT_AND_BACK.
Table 3-16 lists IRIS GL polygon modes and the corresponding OpenGL modes.

— glEdgeFlag()

polymode() glPolygonMode() Set polygon drawing mode.

rect(),

rectf()

glRect() Draw a rectangle.

sbox(),

sboxf()

— Draw a screen-aligned rectangle.

GL_FRONT Mode applies to front-facing polygons.

GL_BACK Mode applies to back-facing polygons.

GL_FRONT_AND_BACK Mode applies to both front- and back-facing polygons.

Table 3-16 Polygon Modes

IRIS GL Mode OpenGL Mode Meaning

PYM_POINT GL_POINT Draw vertices as points.

PYM_LINE GL_LINE Draw boundary edges as line segments.

PYM_FILL GL_FILL Draw polygon interior filled.

PYM_HOLLOW — Fill only interior pixels at the boundaries.

Table 3-15 Calls for Drawing Polygons

IRIS GL Call OpenGL Equivalent Meaning

Porting Drawing Commands

39

Setting Polygon Stipples

When porting polygon stipples, consider the following issues:

• There are no tables for polygon stipples. OpenGL keeps only one stipple pattern.
You can use display lists to store different stipple patterns.

• The polygon stipple bitmap size is always a 32 x 32 bit pattern.

• Stipple encoding is affected by glPixelStore(). See “Porting Pixel Operations” on
page 46 for more information.

Table 3-17 lists polygon stipple calls.

Enable and disable polygon stippling by passing GL_POLYGON_STIPPLE as an
argument to glEnable() and glDisable().

Example 3-2 shows an OpenGL code fragment that demonstrates polygon stippling.

Example 3-2 OpenGL Polygon Stippling

/* polys.c */
#include <GL/gl.h>
#include <GL/glu.h>

void display(void)
{
 GLubyte fly[] = {
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x03, 0x80, 0x01, 0xC0, 0x06, 0xC0, 0x03, 0x60,
 0x04, 0x60, 0x06, 0x20, 0x04, 0x30, 0x0C, 0x20,
 0x04, 0x18, 0x18, 0x20, 0x04, 0x0C, 0x30, 0x20,
 0x04, 0x06, 0x60, 0x20, 0x44, 0x03, 0xC0, 0x22,
 0x44, 0x01, 0x80, 0x22, 0x44, 0x01, 0x80, 0x22,
 0x44, 0x01, 0x80, 0x22, 0x44, 0x01, 0x80, 0x22,

Table 3-17 Polygon Stipple Calls

IRIS GL Call OpenGL Call Meaning

defpattern() glPolygonStipple() Set the stipple pattern.

setpattern() — OpenGL keeps only one polygon stipple pattern.

getpattern() glGetPolygonStipple() Return the stipple bitmap (used to return an index).

40

Chapter 3: After toogl: How to Finish Porting to OpenGL

 0x44, 0x01, 0x80, 0x22, 0x44, 0x01, 0x80, 0x22,
 0x66, 0x01, 0x80, 0x66, 0x33, 0x01, 0x80, 0xCC,
 0x19, 0x81, 0x81, 0x98, 0x0C, 0xC1, 0x83, 0x30,
 0x07, 0xe1, 0x87, 0xe0, 0x03, 0x3f, 0xfc, 0xc0,
 0x03, 0x31, 0x8c, 0xc0, 0x03, 0x33, 0xcc, 0xc0,
 0x06, 0x64, 0x26, 0x60, 0x0c, 0xcc, 0x33, 0x30,
 0x18, 0xcc, 0x33, 0x18, 0x10, 0xc4, 0x23, 0x08,
 0x10, 0x63, 0xC6, 0x08, 0x10, 0x30, 0x0c, 0x08,
 0x10, 0x18, 0x18, 0x08, 0x10, 0x00, 0x00, 0x08
 };
 GLubyte halftone[] = {
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55,
 0xAA, 0xAA, 0xAA, 0xAA, 0x55, 0x55, 0x55, 0x55
 };

 glClear (GL_COLOR_BUFFER_BIT);
 glColor3f (1.0, 1.0, 1.0); /* draw all polys in white */

/* draw 1 solid unstippled rectangle, then 2 stippled ones*/
 glRectf (25.0, 25.0, 125.0, 125.0);
 glEnable (GL_POLYGON_STIPPLE);
 glPolygonStipple (fly);
 glRectf (125.0, 25.0, 225.0, 125.0);
 glPolygonStipple (halftone);
 glRectf (225.0, 25.0, 325.0, 125.0);
 glDisable (GL_POLYGON_STIPPLE);
 glFlush ();
}

Porting Drawing Commands

41

Porting Tessellated Polygons

The GLU has routines you can use to draw concave polygons. You no longer just use
concave(TRUE) and then bgnpolygon().

To draw a concave polygon with OpenGL, follow these steps:

1. Create a tesselation object.

2. Define callbacks that will be used to process the triangles generated by the
tessellator.

3. Specify the concave polygon to be tessellated.

Table 3-18 lists the calls for drawing tessellated polygons.

For details, see the reference pages for the commands in Table 3-18.

Porting Triangles

OpenGL provides three ways to draw triangles: separate triangles, triangle strips, and
triangle fans.

Table 3-18 Tessellated Polygon Calls

GLU Call Meaning

gluNewTess() Create a new tessellation object.

gluDeleteTess() Delete a tessellation object.

gluTessCallback() —

gluBeginPolygon() Begin the polygon specification.

gluTessVertex() Specify a polygon vertex. Successive gluTessVertex() calls describe a
closed contour.

gluNextContour() Indicate that the next series of vertices describe a new contour.

gluEndPolygon() End the polygon specification.

42

Chapter 3: After toogl: How to Finish Porting to OpenGL

When porting triangles, consider the following issues:

• There’s no OpenGL equivalent for swaptmesh(). Instead, use a combination of
triangles, triangle strips, and triangle fans.

• If your IRIS GL program draws individual triangles by surrounding each triangle
with a bgntmesh() / endtmesh() pair, surround the entire group of individual
triangles with just one glBegin(GL_TRIANGLES) / glEnd() pair in your OpenGL
program, for a noticeable performance increase.

Table 3-19 lists the commands for drawing triangles.

Porting Arcs and Circles

In OpenGL, filled arcs and circles are drawn with the same calls as unfilled arcs and
circles. See the reference pages for specifics. Table 3-20 lists the IRIS GL arc and circle
commands and the corresponding OpenGL (GLU) commands.

The gluPartialDisk() call is different from the arc() call. See the gluPartialDisk reference
page for complete information.

IRIS GL arcs and circles are called disks and partial disks in OpenGL. You can do some
things with OpenGL disks and partial disks that you could not do with IRIS GL. See the

Table 3-19 Calls for Drawing Triangles

IRIS GL Call Equivalent glBegin() Argument Meaning

— GL_TRIANGLES Triples of vertices interpreted as triangles.

bgntmesh(),
endtmesh()

GL_TRIANGLE_STRIP Linked strips of triangles.

— GL_TRIANGLE_FAN Linked fans of triangles.

Table 3-20 Calls for Drawing Arcs and Circles

IRIS GL Call OpenGL Call Meaning

arc(), arcf() gluPartialDisk() Draw an arc.

circ(), circf() gluDisk() Draw a circle or disk.

Porting Drawing Commands

43

OpenGL Programming Guide and the reference pages in the OpenGL Reference Manual for
detailed information.

When porting arcs and circles, consider these issues:

• Angles are no longer measured in tenths of degrees, but simply in degrees.

• The start angle is measured from the positive y axis, and not from the x axis.

• The sweep angle is now clockwise instead of counterclockwise, as shown in
Figure 3-4.

.

Figure 3-4 Drawing Angles: Comparing IRIS GL and OpenGL

Porting Spheres

When porting spheres, consider these issues:

• In OpenGL, you cannot control the type of primitives used to draw the sphere.
Instead, you can control drawing precision by using the slices and stacks parameters.
Slices are longitudinal; stacks are latitudinal.

• Spheres are now drawn centered at the origin. Instead of specifying the location, as
you used to in sphdraw() calls, precede a gluSphere() call with a translation.

• The sphere library isn’t yet available for OpenGL—see “Porting the IRIS GL Sphere
Library” on page 31 for more information about replacing sphere library calls.

IRIS GL angles OpenGL angles
in degrees in degrees

x axis

y axis

900

1800

2700

0
x axis

y axis

0

270

180

90

44

Chapter 3: After toogl: How to Finish Porting to OpenGL

Table 3-21 lists the IRIS GL calls for drawing spheres along with the corresponding GLU
calls where available.

Porting Color, Shading, and Writemask Commands

When porting color, shading, and writemask calls, note that color map implementation
differs between OpenGL and IRIS GL and consider these issues:

• Although you can set color map indices with the OpenGL glIndex() call, OpenGL
doesn’t provide a routine for loading color map indices. See “Using X Color Maps”
on page 105 for an example code fragment that sets up a color map.

• Color values are normalized to their data type. See the glColor reference page for
details.

• There is no simple equivalent for cpack(). You can use glColor() instead, but you
have to port explicitly.

• Some calls to c() or color() may have to be translated to glClearColor() or
glClearIndex() and not glColor() or glIndex(). See “Porting Screen and Buffer
Clearing Commands” on page 23 for details.

• The RGBA writemask is not for each bit, just for each component.

• IRIS GL provided defined color constants: BLACK, BLUE, RED, GREEN,
MAGENTA, CYAN, YELLOW, and WHITE. OpenGL doesn’t provide these
constants and toogl doesn’t translate them, so you have to port them explicitly.

Table 3-21 Calls for Drawing Spheres

IRIS GL Call GLU Call Notes

sphobj() gluNewQuadric() Create a new sphere object.

sphfree() gluDeleteQuadric() Delete sphere object and free memory used.

sphdraw() gluSphere() Draw a sphere.

sphmode() — Set sphere attributes.

sphrotmatrix() — Control sphere orientation.

sphgnpolys() — Return number of polygons in current sphere.

Porting Color, Shading, and Writemask Commands

45

Porting Color Calls

Table 3-22 lists IRIS GL color calls and their OpenGL equivalents.

Note: Be careful when replacing zwritemask() with glDepthMask(): glDepthMask()
takes a boolean argument; zwritemask() takes a bitfield.

If you want to use multiple color maps, use the X colormap facilities. The functions
multimap(), onemap(), getcmmode(), setmap(), and getmap() have no OpenGL
equivalents.

Table 3-22 Color Calls

IRIS GL Call OpenGL Call Meaning

c3*(), c4*() glColor*() Sets RGB color.

color(), colorf() glIndex*() Sets the color index.

getcolor() glGet*(GL_CURRENT_INDEX) Returns the current color index.

getmcolor() XQueryColor() Gets a copy of a colormap entry’s RGB
values.

gRGBcolor() glGet*(GL_CURRENT_COLOR) Gets the current RGB color values.

mapcolor() XStoreColor() See “Using X Color Maps” on page 105.

RGBcolor() glColor() Sets RGB color.

writemask() glIndexMask() Sets the color index mode color mask.

wmpack()

RGBwritemask()

glColorMask() Sets the RGB color mode mask.

getwritemask() glGet*(GL_COLOR_WRITEMASK)

glGet*(GL_INDEX_WRITEMASK)

Gets the color mask.

gRGBmask() glGet*(GL_COLOR_WRITEMASK) Gets the color mask.

zwritemask() glDepthMask() —

46

Chapter 3: After toogl: How to Finish Porting to OpenGL

Porting Shading Models

Just like IRIS GL, OpenGL lets you switch between smooth (Gouraud) shading and flat
shading. Table 3-23 lists the calls.

Smooth shading and dithering are on by default, as in IRIS GL.

Porting Pixel Operations

When porting pixel operations, consider the following issues:

• Logical pixel operations are not applied to RGBA color buffers. See the glLogicOp
reference page for more information.

• In general, IRIS GL used the ABGR format for pixels (that is, with color components
in the order Alpha, Blue, Green, Red), while OpenGL uses the RGBA format.
Although glPixelStore() can reverse the order of bytes within a color component, it
can’t reverse the order of the components within a pixel; thus, it can’t be used to
convert IRIS GL pixels to OpenGL pixels. Instead, you must reverse the order of the
components yourself.

• When porting lrectwrite() calls, be careful to note where lrectwrite() is writing (for
instance, it could be writing to the depth buffer).

• If you wanted to read from the z-buffer in IRIS GL, you specified that buffer with
readsource() and then used lrectread() or rectread() to do the reading. If you want
to read from the z-buffer in OpenGL, you simply specify that buffer as a parameter
to glReadPixels().

Table 3-23 Shading and Dithering

IRIS GL Call OpenGL Call Meaning

shademodel(FLAT) glShadeModel(GL_FLAT) Do flat shading.

shademodel(GOURAUD) glShadeModel(GL_SMOOTH) Do smooth shading.

getsm() glGet*(GL_SHADE_MODEL) Return current shade model.

dither(DT_ON)

dither(DT_OFF)

glEnable(GL_DITHER)

glDisable(GL_DITHER)

Turn dithering on/off.

Porting Pixel Operations

47

OpenGL provides some additional flexibility in pixel operations. Table 3-24 lists calls for
pixel operations.

See the reference page for glLogicOp for a list of possible logical operations.

Here’s a code fragment that shows a typical pixel write operation:

unsigned long *packedRaster;
...
packedRaster[k] = 0x00000000;
...
lrectwrite(0, 0, xSize, ySize, packedRaster);

Here is how toogl translates the call to lrectwrite():

/* OGLXXX lrectwrite: see man page for glDrawPixels */
glRasterPos2i(0, 0);
glDrawPixels((xSize)-(0)+1, (ySize)-(0)+1, GL_RGBA,
 GL_UNSIGNED_BYTE, packedRaster);

Table 3-24 Pixel Operations

IRIS GL Call OpenGL Call Meaning

lrectread(), rectread(),

readRGB()

glReadPixels() Read a block of pixels from the frame
buffer.

lrectwrite(), rectwrite() glDrawPixels() Write a block of pixels to the frame buffer.

rectcopy() glCopyPixels() Copy pixels in the frame buffer.

rectzoom() glPixelZoom() Specify pixel zoom factors for
glDrawPixels() and glCopyPixels().

cmov() glRasterPos() Specify raster position for pixel operations.

readsource() glReadBuffer() Select a color buffer source for pixels.

pixmode() glPixelStore() Set pixel storage modes.

pixmode() glPixelTransfer() Set pixel transfer modes.

logicop() glLogicOp() Specify a logical operation for pixel writes.

— glEnable(GL_LOGIC_OP) Turn on pixel logic operations.

48

Chapter 3: After toogl: How to Finish Porting to OpenGL

After some tweaking, the finished code might look like this:

glRasterPos2i(0, 0);
glDrawPixels(xSize + 1, ySize + 1, GL_RGBA,
 GL_UNSIGNED_BYTE, packedRaster);

Porting Depth Cueing and Fog Commands

When porting depth cueing and fog commands, consider these issues:

• The fog calls have been restructured, so you have to rewrite them explicitly in most
cases. The IRIS GL call fogvertex() set a mode and parameters affecting that mode.
In OpenGL, you call glFog() once to set the mode, then again twice or more to set
various parameters.

• Depth cueing is no longer a separate feature. Use linear fog instead of depth cueing.
(This section provides an example of how to do this.) The following calls therefore
have no direct OpenGL equivalent:

– depthcue()

– lRGBrange()

– lshaderange()

– getdcm()

• To adjust fog quality, call glHint(GL_FOG_HINT).

Table 3-25 lists the IRIS GL calls for managing fog along with the corresponding OpenGL
calls.

Table 3-25 Calls for Managing Fog

IRIS GL Call OpenGL Call Meaning

fogvertex() glFog() Set various fog parameters.

fogvertex(FG_ON) glEnable(GL_FOG) Turn fog on.

fogvertex(FG_OFF) glDisable(GL_FOG) Turn fog off.

depthcue() glFog(GL_FOG_MODE,
GL_LINEAR)

Use linear fog for depth cueing.

Porting Depth Cueing and Fog Commands

49

Table 3-26 lists the arguments you can pass to glFog().

The OpenGL fog density argument differs from the IRIS GL fog density argument. They
are related as follows:

• If fogMode is EXP2:

openGLfogDensity = (IRISGLfogDensity) (sqrt(- log(1 / 255)))

• If fogMode is EXP:

openGLfogDensity = (IRISGLfogDensity) (- log(1 / 255))

where

To switch between calculating fog in per-pixel mode and per-vertex mode, use
glHint(GL_FOG_HINT, hintMode). Two hint modes are available:

GL_NICEST per-pixel fog calculation

GL_FASTEST per-vertex fog calculation

Table 3-26 Fog Parameters

Fog Parameter Meaning Default

GL_FOG_DENSITY Fog density. 1.0

GL_FOG_START Near distance for linear fog. 0.0

GL_FOG_END Far distance for linear fog. 1.0

GL_FOG_INDEX Fog color index. 0.0

GL_FOG_COLOR Fog RGBA color. (0, 0, 0, 0)

GL_FOG_MODE Fog mode. see Table 3-27

sqrt Is the square root operation.

log Is the natural logarithm.

IRISGLfogDensity Is the IRIS GL fog density.

openGLfogDensity Is the OpenGL fog density.

50

Chapter 3: After toogl: How to Finish Porting to OpenGL

Table 3-27 lists the OpenGL equivalents for IRIS GL fog modes.

Example 3-3 shows a code fragment that demonstrates depth cueing in OpenGL.

Example 3-3 Depth Cueing in OpenGL

/*
 * depthcue.c
 * This program draws a wireframe model, which uses
 * intensity (brightness) to give clues to distance.
 * Fog is used to achieve this effect.
 */
#include <stdlib.h>
#include <GL/glut.h>

/* Initialize linear fog for depth cueing.
 */
void myinit(void)
{
 GLfloat fogColor[4] = {0.0, 0.0, 0.0, 1.0};

 glEnable(GL_FOG);
 glFogi(GL_FOG_MODE, GL_LINEAR);
 glHint(GL_FOG_HINT, GL_NICEST); /* per pixel */
 glFogf(GL_FOG_START, 3.0);
 glFogf(GL_FOG_END, 5.0);
 glFogfv(GL_FOG_COLOR, fogColor);
 glClearColor(0.0, 0.0, 0.0, 1.0);

 glDepthFunc(GL_LESS);
 glEnable(GL_DEPTH_TEST);

Table 3-27 Fog Modes

IRIS GL Fog Mode OpenGL Fog Mode Hint Mode Meaning

FG_VTX_EXP,

FG_PIX_EXP

GL_EXP GL_FASTEST,

GL_NICEST

Heavy fog mode (default)

FG_VTX_EXP2,

FG_PIX_EXP2

GL_EXP2 GL_FASTEST,

GL_NICEST

Haze mode

FG_VTX_LIN,

FG_PIX_LIN

GL_LINEAR GL_FASTEST,

GL_NICEST

Linear fog mode (use for
depthcueing)

Porting Depth Cueing and Fog Commands

51

 glShadeModel(GL_FLAT);
}

/* display() draws an icosahedron.
 */
void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
 glColor3f(1.0, 1.0, 1.0);
 glutWireIcosahedron();
 glFlush();
}

void myReshape(int w, int h)
{
 glViewport(0, 0, w, h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45.0, (GLfloat)w/(GLfloat)h, 3.0, 5.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef(0.0, 0.0, -4.0); /* move object into view */
}

/* Main Loop
 */
int main(int argc, char** argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode (GLUT_SINGLE|GLUT_RGB|GLUT_DEPTH);
 glutCreateWindow(argv[0]);
 myinit();
 glutReshapeFunc(myReshape);
 glutDisplayFunc(display);
 glutMainLoop();
 return 0; /* ANSI C requires main to return int. */
}

52

Chapter 3: After toogl: How to Finish Porting to OpenGL

Porting Curve and Surface Commands

OpenGL doesn’t support equivalents to the old-style curves and surface patches. You
have to reimplement your code if it uses any of these calls:

• defbasis()

• curvebasis(), curveprecision(), crv(), crvn(), rcrv(), rcrvn(), and curveit()

• patchbasis(), patchcurves(), patchprecision(), patch(), and rpatch()

Silicon Graphics recommends that you reimplement these calls using evaluators, rather
than trying to replace them with NURBS. Refer to the OpenGL Reference Manual and to
the section “Evaluators” on page 440 of the OpenGL Programming Guide, Second Edition,
for more information on using evaluators.

NURBS Objects

OpenGL treats NURBS as objects, similar to the way it treats quadrics: you create a
NURBS object and then specify how it should be rendered. Table 3-28 lists the NURBS
object commands.

When using NURBS objects, consider the following issues:

• NURBS control points are now floats, not doubles.

• The stride parameter is now counted in floats, not bytes.

• If you’re using lighting and you’re not specifying normals, call glEnable() with
GL_AUTO_NORMAL as the parameter to generate normals automatically.

Table 3-28 Calls for Managing NURBS Objects

OpenGL Call Meaning

gluNewNurbsRenderer() Create a new NURBS object.

gluDeleteNurbsRenderer() Delete a NURBS object.

gluNurbsCallback() Associate a callback for error handling with a NURBS object.

Porting Curve and Surface Commands

53

NURBS Curves

The OpenGL calls for drawing NURBS are similar to the IRIS GL calls. You specify knot
sequences and control points using a gluNurbsCurve() call, which must be contained
within a glBeginCurve()/glEndCurve() pair.

Table 3-29 summarizes the calls for drawing NURBS curves.

Position, texture, and color coordinates are associated by presenting each as a separate
gluNurbsCurve() inside the begin/end pair. You can make no more than one call to
gluNurbsCurve() for each piece of color, position, and texture data within a single
gluBeginCurve()/gluEndCurve() pair. You must make exactly one call to describe the
position of the curve (a GL_MAP1_VERTEX_3 or GL_MAP1_VERTEX_4 description).
When you call gluEndCurve(), the curve will be tessellated into line segments and then
rendered.

Table 3-30 lists NURBS curve types.

For more information on available evaluator types, see the glMap1 reference page.

Table 3-29 Calls for Drawing NURBS Curves

IRIS GL Call OpenGL Call Meaning

bgncurve() gluBeginCurve() Begin a curve definition.

nurbscurve() gluNurbsCurve() Specify curve attributes.

endcurve() gluEndCurve() End a curve definition.

Table 3-30 NURBS Curve Types

IRIS GL Type OpenGL Type Meaning

N_V3D GL_MAP1_VERTEX_3 Polynomial curve.

N_V3DR GL_MAP1_VERTEX_4 Rational curve.

— GL_MAP1_TEXTURE_COORD_* Control points are texture coordinates.

— GL_MAP1_NORMAL Control points are normals.

54

Chapter 3: After toogl: How to Finish Porting to OpenGL

Trimming Curves

OpenGL trimming curves are similar to IRIS GL trimming curves. Table 3-31 lists the
calls for defining trimming curves.

NURBS Surfaces

Table 3-32 summarizes the calls for drawing NURBS surfaces.

Table 3-33 lists parameters for surface types.

Table 3-31 Calls for Drawing NURBS Trimming Curves

IRIS GL Call OpenGL Call Meaning

bgntrim() gluBeginTrim() Begin trimming curve definition.

pwlcurve() gluPwlCurve() Define a piecewise linear curve.

nurbscurve() gluNurbsCurve() Specify trimming curve attributes.

endtrim() gluEndTrim() End trimming curve definition.

Table 3-32 Calls for Drawing NURBS Surfaces

IRIS GL Call OpenGL Call Meaning

bgnsurface() gluBeginSurface() Begin a surface definition.

nurbssurface() gluNurbsSurface() Specify surface attributes.

endsurface() gluEndSurface() End a surface definition.

Table 3-33 NURBS Surface Types

IRIS GL Type OpenGL Type Meaning

N_V3D GL_MAP2_VERTEX_3 Polynomial curve

N_V3DR GL_MAP2_VERTEX_4 Rational curve

N_C4D GL_MAP2_COLOR_4 Control points define color surface in
(R,G,B,A) form

Porting Curve and Surface Commands

55

For more information on available evaluator types, see the glMap2 reference page.

Example 3-4 draws a trimmed NURBS surface.

Example 3-4 Drawing an OpenGL NURBS surface

/*
 * trim.c
 * This program draws a NURBS surface in the shape of a
 * symmetrical hill, using both a NURBS curve and pwl
 * (piecewise linear) curve to trim part of the surface.
 */
#include <stdlib.h>
#include <GL/glut.h>
#include <stdio.h>

GLfloat ctlpoints[4][4][3];

GLUnurbsObj *theNurb;

/*
 * Initializes the control points of the surface to a small hill.
 * The control points range from -3 to +3 in x, y, and z
 */
void init_surface(void)
{
 int u, v;

 for (u = 0; u < 4; u++) {
 for (v = 0; v < 4; v++) {
 ctlpoints[u][v][0] = 2.0 * ((GLfloat)u - 1.5);
 ctlpoints[u][v][1] = 2.0 * ((GLfloat)v - 1.5);

 if ((u == 1 || u == 2) && (v == 1 || v == 2))

N_C4DR — —

N_T2D GL_MAP2_TEXTURE_COORD_2 Control points are texture coordinates.

N_T2DR GL_MAP2_TEXTURE_COORD_3 Control points are texture coordinates.

— GL_MAP2_NORMAL Control points are normals.

Table 3-33 (continued) NURBS Surface Types

IRIS GL Type OpenGL Type Meaning

56

Chapter 3: After toogl: How to Finish Porting to OpenGL

 ctlpoints[u][v][2] = 3.0;
 else
 ctlpoints[u][v][2] = -3.0;
 }
 }
}

void nurbsError(GLenum errorCode)
{
 const GLubyte *estring;

 estring = gluErrorString(errorCode);
 fprintf (stderr, "Nurbs Error: %s\n", estring);
 exit (0);
}

/* Initialize material property and depth buffer.
 */
void init(void)
{
 GLfloat mat_diffuse[] = { 0.7, 0.7, 0.7, 1.0 };
 GLfloat mat_specular[] = { 1.0, 1.0, 1.0, 1.0 };
 GLfloat mat_shininess[] = { 100.0 };

 glClearColor(0.0, 0.0, 0.0, 0.0);
 glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
 glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
 glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);

 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_DEPTH_TEST);
 glEnable(GL_AUTO_NORMAL);
 glEnable(GL_NORMALIZE);

 init_surface();

 theNurb = gluNewNurbsRenderer();
 gluNurbsProperty(theNurb, GLU_SAMPLING_TOLERANCE, 25.0);
 gluNurbsProperty(theNurb, GLU_DISPLAY_MODE, GLU_FILL);
 gluNurbsCallback(theNurb, GLU_ERROR, (GLvoid
(CALLBACK*)())nurbsError);
}

void display(void)

Porting Curve and Surface Commands

57

{
 GLfloat knots[8] = {0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0};
 GLfloat edgePt[5][2] = /* counter clockwise */
 {{0.0, 0.0}, {1.0, 0.0}, {1.0, 1.0}, {0.0, 1.0}, {0.0, 0.0}};
 GLfloat curvePt[4][2] = /* clockwise */
 {{0.25, 0.5}, {0.25, 0.75}, {0.75, 0.75}, {0.75, 0.5}};
 GLfloat curveKnots[8] =
 {0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0};
 GLfloat pwlPt[4][2] = /* clockwise */
 {{0.75, 0.5}, {0.5, 0.25}, {0.25, 0.5}};

 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
 glPushMatrix();
 glRotatef(330.0, 1.,0.,0.);
 glScalef(0.5, 0.5, 0.5);

 gluBeginSurface(theNurb);
 gluNurbsSurface(theNurb, 8, knots, 8, knots,
 4*3, 3, &ctlpoints[0][0][0],
 4, 4, GL_MAP2_VERTEX_3);
 gluBeginTrim(theNurb);
 gluPwlCurve(theNurb, 5, &edgePt[0][0], 2, GLU_MAP1_TRIM_2);
 gluEndTrim(theNurb);
 gluBeginTrim(theNurb);
 gluNurbsCurve(theNurb, 8, curveKnots, 2,
 &curvePt[0][0], 4, GLU_MAP1_TRIM_2);
 gluPwlCurve(theNurb, 3, &pwlPt[0][0], 2, GLU_MAP1_TRIM_2);
 gluEndTrim(theNurb);
 gluEndSurface(theNurb);

 glPopMatrix();
 glFlush();
}

void reshape(int w, int h)
{
 glViewport(0, 0, (GLsizei)w, (GLsizei)h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45.0, (GLdouble)w/(GLdouble)h, 3.0, 8.0);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef(0.0, 0.0, -5.0);
}

58

Chapter 3: After toogl: How to Finish Porting to OpenGL

/* ARGSUSED1 */
void keyboard(unsigned char key, int x, int y)
{
 switch (key) {
 case 27:
 exit(0);
 break;
 }
}

/* Main Loop
 */
int main(int argc, char **argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB|GLUT_DEPTH);
 glutInitWindowSize(500, 500);
 glutInitWindowPosition(100, 100);
 glutCreateWindow(argv[0]);
 init();
 glutReshapeFunc(reshape);
 glutDisplayFunc(display);
 glutKeyboardFunc(keyboard);
 glutMainLoop();
 return 0;
}

Porting Antialiasing Calls

This section discusses topics related to antialiasing:

• “Blending”

• “afunction() Test Functions” on page 60

• “Antialiasing Calls” on page 60

In OpenGL, subpixel mode is always on, so the IRIS GL call subpixel(TRUE) is not
necessary and has no OpenGL equivalent.

Porting Antialiasing Calls

59

Blending

Blending is off by default. If you use _DA or _MDA blend functions, you have to allocate
destination alpha bits when you choose a visual. You have to use X to choose the visual,
so refer to Chapter 4.

Tip: In IRIS GL, when drawing to both front and back buffers, blending is done by
reading one of the buffers, blending with that color, and then writing the result to both
buffers. In OpenGL, however, each buffer is read in turn, blended, and then written.

Table 3-34 lists IRIS GL and OpenGL blending calls.

The calls glBlendFunc() and blendfunction() are almost identical. Table 3-35 lists the
OpenGL equivalents to the IRIS GL blend factors.

Table 3-34 Blending Calls

IRIS GL OpenGL Meaning

— glEnable(GL_BLEND) Turn on blending.

blendfunction() glBlendFunc() Specify a blend function.

Table 3-35 Blending Factors

IRIS GL OpenGL Notes

BF_ZERO GL_ZERO

BF_ONE GL_ONE

BF_SA GL_SRC_ALPHA

BF_MSA GL_ONE_MINUS_SRC_ALPHA

BF_DA GL_DST_ALPHA

BF_MDA GL_ONE_MINUS_DST_ALPHA

BF_SC GL_SRC_COLOR

BF_MSC GL_ONE_MINUS_SRC_COLOR Destination only

BF_DC GL_DST_COLOR Source only

60

Chapter 3: After toogl: How to Finish Porting to OpenGL

afunction() Test Functions

Table 3-36 lists the available alpha test functions.

Antialiasing Calls

OpenGL has direct equivalents to the IRIS GL antialiasing calls. Table 3-37 lists them.

BF_MDC GL_ONE_MINUS_DST_COLOR Source only

BF_MIN_SA_MDA GL_SRC_ALPHA_SATURATE

Table 3-36 Alpha Test Functions

afunction() glAlphaFunc()

AF_NOTEQUAL GL_NOTEQUAL

AF_ALWAYS GL_ALWAYS

AF_NEVER GL_NEVER

AF_LESS GL_LESS

AF_EQUAL GL_EQUAL

AF_LEQUAL GL_LEQUAL

AF_GREATER GL_GREATER

AF_GEQUAL GL_GEQUAL

Table 3-37 Calls to Draw Antialiased Primitives

IRIS GL Call OpenGL Call Meaning

pntsmooth() glEnable(GL_POINT_SMOOTH) Enable antialiasing of points.

linesmooth() glEnable(GL_LINE_SMOOTH) Enable antialiasing of lines.

polysmooth() glEnable(GL_POLYGON_SMOOTH) Enable antialiasing of polygons.

Table 3-35 (continued) Blending Factors

IRIS GL OpenGL Notes

Porting Antialiasing Calls

61

Use the corresponding glDisable() calls to turn off antialiasing.

In IRIS GL, you can control the quality of the antialiasing by calling

linesmooth(SML_ON + SML_SMOOTHER);

OpenGL provides similar control—use glHint():

glHint(GL_POINT_SMOOTH_HINT, hintMode);
glHint(GL_LINE_SMOOTH_HINT, hintMode);
glHint(GL_POLYGON_SMOOTH_HINT, hintMode);

hintMode is one of the following:

You could perform end correction in IRIS GL by calling

linesmooth(SML_ON + SML_END_CORRECT);

OpenGL doesn’t provide an equivalent for this call.

Accumulation Buffer Calls

You must allocate your accumulation buffer by requesting the appropriate visual with
glXChooseVisual(). For information on glXChooseVisual(), see the glXIntro and
glXChooseVisual reference pages and refer to Chapter 4.

IRIS GL allows you to draw colors in the depth buffer, so acbuf() can use that buffer as a
color source for accumulation. Some developers have used this depth-buffer reading
capability to put depth data into accumulation buffers as well. OpenGL, on the other
hand, doesn’t put color information in the depth buffer; glAccum() thus can’t read any
information from the depth buffer.

To emulate accumulation from the depth buffer (using a configuration that supports
auxiliary buffers) use the following procedure:

1. Use glReadPixels() to read from the depth buffer.

2. Massage the results as necessary.

GL_NICEST Use the highest quality smoothing.

GL_FASTEST Use the most efficient smoothing.

GL_DONT_CARE You don’t care which smoothing method is used.

62

Chapter 3: After toogl: How to Finish Porting to OpenGL

3. Draw the resulting data to an auxiliary buffer.

4. Select this auxiliary buffer with glReadBuffer(), and use glAccum() to accumulate
from that buffer.

This procedure requires caution in converting among data types.

Except as noted above, porting accumulation buffer calls is straightforward. Table 3-38
lists calls that affect the accumulation buffer.

Table 3-39 lists the IRIS GL acbuf() arguments along with the corresponding arguments
to the OpenGL glAccum() call.

Table 3-38 Accumulation Buffer Calls

IRIS GL Call OpenGL Call Meaning

acbuf() glAccum() Operate on the accumulation buffer.

— glClearAccum() Set clear values for accumulation
buffer.

acbuf(AC_CLEAR) glClear(GL_ACCUM_BUFFER_BIT) Clear the accumulation buffer.

acsize() glXChooseVisual() Specify number of bitplanes per color
component in accumulation buffer.

Table 3-39 Accumulation Buffer Operations

IRIS GL Argument OpenGL Argument

AC_ACCUMULATE GL_ACCUM

AC_CLEAR_ACCUMULATE GL_LOAD

AC_RETURN GL_RETURN

AC_MULT GL_MULT

AC_ADD GL_ADD

Porting Display Lists

63

Stencil Plane Calls

In OpenGL, you allocate stencil planes by requesting the appropriate visual with
glXChooseVisual(). (For information on glXChooseVisual(), see the glXIntro and
glXChooseVisual reference pages and refer to Chapter 4.) Otherwise, porting should be
straightforward. Table 3-40 lists calls that affect the stencil planes.

Stencil comparison functions and stencil pass/fail operations are almost equivalent in
OpenGL and IRIS GL. The IRIS GL stencil function flags are prefaced with SF, the
OpenGL flags with GL. IRIS GL pass/fail operation flags are prefaced with ST, the
OpenGL flags with GL. Compare the IRIS GL and OpenGL reference pages for further
details.

Porting Display Lists

The OpenGL implementation of display lists is similar to the IRIS GL implementation,
with two exceptions: you can’t edit display lists once you’ve created them and you can’t
call functions from within display lists.

Table 3-40 Stencil Operations

IRIS GL Call OpenGL Call Meaning

stensize() glXChooseVisual() —

stencil(TRUE, ...) glEnable(GL_STENCIL_TEST) Enable stencil tests.

stencil() glStencilOp() Set stencil test actions.

stencil(... func, ...) glStencilFunc() Set function & reference value for
stencil testing.

swritemask() glStencilMask() Specify which stencil bits can be
written.

— glClearStencil() Specify the clear value for the stencil
buffer.

sclear() glClear(GL_STENCIL_BUFFER_BIT) —

64

Chapter 3: After toogl: How to Finish Porting to OpenGL

Because you can’t edit or call functions from within display lists, these IRIS GL
commands have no equivalents in OpenGL:

• editobj()

• objdelete(), objinsert(), and objreplace()

• maketag(), gentag(), istag(), and deltag()

• callfunc()

In IRIS GL, you used the commands makeobj() and closeobj() to create display lists. In
OpenGL, you use glNewList() and glEndList(). For details on using glNewList()
(including a description of the two list modes and a list of commands that are not
compiled into the display list but are executed immediately), see the glNewList reference
page and the OpenGL Programming Guide.

Table 3-41 lists the IRIS GL display list commands with the corresponding OpenGL
commands.

Table 3-41 Display List Commands

IRIS GL Call OpenGL Call Meaning

makeobj() glNewList() Create a new display list.

closeobj() glEndList() Signal end of display list.

callobj() glCallList(), glCallLists() Execute display list(s).

isobj() glIsList() Test for display list existence.

delobj() glDeleteLists() Delete contiguous group of display lists.

genobj() glGenLists() Generate the given number of contiguous empty
display lists.

— glListBase() Get the display list base for glCallLists().

Porting Display Lists

65

Porting bbox2() Calls

The command bbox2() has no OpenGL equivalent. To port bbox2() calls, first create a
new (OpenGL) display list that has everything that was in the corresponding IRIS GL
display list except the bbox2() call. Then, in feedback mode, draw a rectangle the same
size as the IRIS GL bounding box: if nothing comes back, the box was completely clipped
and you shouldn’t draw the display list.

Achieving Edited Display List Behavior

Although you can’t actually edit OpenGL display lists, you can get a similar result by
nesting display lists, then destroying and creating new versions of the sublists. The
following OpenGL code fragment illustrates how to do this:

glNewList (1, GL_COMPILE);
 glIndexi (MY_RED);
glEndList ();
 glNewList (2, GL_COMPILE);
 glScalef (1.2, 1.2, 1.0);
glEndList ();

glNewList (3, GL_COMPILE);
 glCallList (1);
 glCallList (2);
glEndList ();
 .
 .
glDeleteLists (1, 2);
glNewList (1, GL_COMPILE);
 glIndexi (MY_CYAN);
glEndList ();
glNewList (2, GL_COMPILE);
 glScalef (0.5, 0.5, 1.0);
glEndList ();

66

Chapter 3: After toogl: How to Finish Porting to OpenGL

Sample Implementation of a Display List

Example 3-5 defines three IRIS GL display lists. One display list refers to the others in its
definition.

Example 3-5 IRIS GL Display Lists

makeobj (10); /* 10 object */
 cpack (0x0000FF);
 recti (164, 33, 364, 600); /* hollow rectangle */
closeobj ();

makeobj (20); /*20 object--various things*/
 cpack (0xFFFF00);
 circi(0,0,25); /* draw an unfilled circle */
 rectfi (100, 100, 200, 200); /* draw filled rect */
closeobj ();

makeobj (30); /* 30 -- THE MAIN OBJECT */
 callobj (10);
 cpack (0xFFFFFF);
 rectfi (400, 100, 500, 300); /* draw filled rect */
 callobj (20);
closeobj ();

/* now draw by calling the lists */
callobj(30);

Translated to OpenGL, the code from Example 3-5 might look Example 3-6.

Example 3-6 OpenGL Display Lists

glNewList(10, GL_COMPILE);
 glColor3f(1, 0, 0);
 glRecti(164, 33, 364, 600);
glEndList();

glNewList(20, GL_COMPILE);
 glColor3f(1, 1, 0); /* set color to YELLOW */
 glPolygonMode(GL_BOTH, GL_LINE); /* unfilled mode */
 glBegin(GL_POLYGON); /*use polygon to approximate circle*/
 for(i=0;i<100;i++) {
 cosine = 25 * cos(i*2*PI/100.0);
 sine = 25 * sin(i*2*PI/100.0);
 glVertex2f(cosine,sine);
 }

Porting defs, binds, and sets: Replacing ‘Tables’ of Stored Definitions

67

 glEnd();

 glBegin(GL_QUADS);
 glColorf(0, 1, 1); /* set color to CYAN */
 glVertex2i(100,100);
 glVertex2i(100,200);
 glVertex2i(200,200);
 glVertex2i(100,200);
 glEnd();
glEndList();

glNewList(30, GL_COMPILE); /* List #30 */
 glCallList(10);
 glColorf(1, 1, 1); /* set color to WHITE */
 glRecti(400, 100, 500, 300);
 glCallList(20);
glEndList();

/* execute the display lists */
glCallList(30);

Porting defs, binds, and sets: Replacing ‘Tables’ of Stored Definitions

OpenGL doesn’t have tables of stored definitions—you cannot define lighting models,
materials, textures, line styles, or patterns as separate objects as you could in IRIS GL.
Thus, there are no direct equivalents to these IRIS GL calls:

• lmdef() and lmbind()

• tevdef() and tevbind()

• texdef() and texbind()

• deflinestyle() and setlinestyle()

• defpattern() and setpattern()

However, you can use display lists to mimic the def/bind behavior. (It’s often best to
optimize by writing display lists that contain just a single material definition.)

68

Chapter 3: After toogl: How to Finish Porting to OpenGL

For example, here is a material definition in IRIS GL:

float mat[] = {
 AMBIENT, .1, .1, .1,
 DIFFUSE, 0, .369, .165,
 SPECULAR, .5, .5, .5,
 SHININESS, 10,
 LMNULL
};
lmdef(DEFMATERIAL, 1, 0, mat);
lmbind(MATERIAL, 1);

In the following code fragment, the same material is defined in a display list, referred to
by the list number in MYMATERIAL:

#define MYMATERIAL 10
/* you would probably use glGenLists() to get list numbers */
GLfloat mat_amb[] = {.1, .1, .1, 1.0};
GLfloat mat_dif[] = {0, .369, .165, 1.0};
GLfloat mat_spec[] = { .5, .5, .5, 1.0};

glNewList(MYMATERIAL, GL_COMPILE);
 glMaterialfv(GL_FRONT, GL_AMBIENT, mat_amb);
 glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_dif);
 glMaterialfv(GL_FRONT, GL_SPECULAR, mat_spec);
 glMateriali(GL_FRONT, GL_SHININESS, 10);
glEndList();

glCallList(MYMATERIAL);

Porting Lighting and Materials Calls

You probably have to port lighting and materials code explicitly, because the OpenGL
calls differ substantially from the IRIS GL calls. The OpenGL API has separate calls for
setting lights, light models, and materials.

When porting lighting and materials calls, consider the following issues:

• OpenGL has no table of stored definitions. It has no separate lmdef() and lmbind()
calls. You can use display lists to mimic the def/bind behavior. See “Porting defs,
binds, and sets: Replacing ‘Tables’ of Stored Definitions” on page 67 for an example.
Using display lists can have the added benefit of improving your program’s
performance.

Porting Lighting and Materials Calls

69

• Attenuation is now associated with each light source, rather than with the overall
lighting model.

• Diffuse and specular components are separated out in OpenGL light sources.

• OpenGL light sources have an alpha component. When porting your code, it’s best
to set the alpha component to 1.0, indicating 100% fully opaque. That way, alpha
values will be determined solely by the alpha component of your materials and the
objects in your scene will look just as they did in IRIS GL.

• In IRIS GL, you could call lmcolor() between a call to bgnprimitive() and the
corresponding endprimitive() call. In OpenGL, you can’t call glColorMaterial()
between a glBegin() and its corresponding glEnd().

Table 3-42 lists IRIS GL lighting and materials commands and the corresponding
OpenGL commands.

Table 3-42 Lighting and Materials Commands

IRIS GL Call OpenGL Call Meaning

lmdef(DEFLIGHT,...) glLight() Define a light source.

lmdef(DEFLMODEL, ...) glLightModel() Define a lighting model.

lmbind() glEnable(GL_LIGHTi) Enable light i.

lmbind() glEnable(GL_LIGHTING) Enable lighting.

— glGetLight() Get light source parameters.

lmdef(DEFMATERIAL, ...) glMaterial() Define a material.

lmcolor() glColorMaterial() Change effect of color commands
while lighting is active.

— glGetMaterial() Get material parameters.

70

Chapter 3: After toogl: How to Finish Porting to OpenGL

When the first argument for lmbind() is DEFMATERIAL, the equivalent command is
glMaterial(). Table 3-43 lists the various materials parameters you can set.

When the first argument of lmdef() is DEFLMODEL, the equivalent OpenGL call is
glLightModel(). The exception is the case when the first argument of lmdef() is
DEFLMODEL, ATTENUATION—in this case, you have to replace lmdef() with several
glLight() calls. Table 3-44 lists equivalent lighting model parameters.

a. The fourth value in the GL_DIFFUSE parameter specifies the alpha value.

b. In IRIS GL, if the specular exponent (i.e. SHININESS) is zero, then the specular component of the light is not
added in. In OpenGL, the specular component is added in anyway.

Table 3-43 Material Definition Parameters

lmdef() index glMaterial() parameter Default Meaning

ALPHA GL_DIFFUSEa

AMBIENT GL_AMBIENT (0.2, 0.2, 0.2, 1.0) Ambient color

DIFFUSE GL_DIFFUSE (0.8, 0.8, 0.8, 1.0) Diffuse color

SPECULAR GL_SPECULARb (0.0, 0.0, 0.0, 1.0) Specular color

EMISSION GL_EMISSION (0.0, 0.0, 0.0, 1.0) Emissive color

SHININESS GL_SHININESS 0.0 Specular exponent

— GL_AMBIENT_AND_
DIFFUSE

(see above) Equivalent to calling glMaterial()
twice with same values

COLORINDEXES GL_COLOR_INDEXES — Color indices for ambient,
diffuse, and specular lighting

Table 3-44 Lighting Model Parameters

lmdef() index glLightModel() Parameter Default Meaning

AMBIENT GL_LIGHT_MODEL_AMBIENT (0.2, 0.2, 0.2, 1.0) Ambient color of scene.

ATTENUATION — — See glLight().

LOCALVIEWER GL_LIGHT_MODEL_
LOCAL_VIEWER

GL_FALSE Viewer local (TRUE) or
infinite (FALSE).

TWOSIDE GL_LIGHT_MODEL_TWO_SIDE GL_FALSE Use two-sided lighting
when TRUE.

Porting Lighting and Materials Calls

71

When the first argument of lmdef() is DEFLIGHT, the equivalent OpenGL call is
glLight(). Table 3-45 lists equivalent lighting parameters.

Example 3-7 is an OpenGL code fragment that demonstrates some OpenGL lighting and
material calls, including two-sided lighting.

Example 3-7 OpenGL Lighting and Material Calls

/* Initialize lighting */
void myinit(void)
{
 GLfloat light_ambient[] = { 0.0, 0.0, 0.0, 1.0 };
 GLfloat light_diffuse[] = { 1.0, 1.0, 1.0, 1.0 };
 GLfloat light_specular[] = { 1.0, 1.0, 1.0, 1.0 };
/* light_position is NOT default value */
 GLfloat light_position[] = { 1.0, 1.0, 1.0, 0.0 };

Table 3-45 Light Parameters

lmdef() index glLight() Parameter Default Meaning

AMBIENT GL_AMBIENT (0.0, 0.0, 0.0, 1.0) Ambient intensity.

GL_DIFFUSE (1.0, 1.0, 1.0, 1.0) Diffuse intensity.

GL_SPECULAR (1.0, 1.0, 1.0, 1.0) Specular intensity.

LCOLOR

POSITION GL_POSITION (0.0, 0.0, 1.0, 0.0) Position of light.

SPOTDIRECTION GL_SPOT_DIRECTION (0, 0, -1) Spot direction.

SPOTLIGHT --

GL_SPOT_EXPONENT 0 Intensity
distribution.

GL_SPOT_CUTOFF 180 Maximum spread
angle of light
source.

DEFLMODEL,
ATTENUATION,
...

GL_CONSTANT_ATTENUATION

GL_LINEAR_ATTENUATION

GL_QUADRATIC_ATTENUATION

(1,0,0) Attenuation
factors.

72

Chapter 3: After toogl: How to Finish Porting to OpenGL

 glLightfv(GL_LIGHT0, GL_AMBIENT, light_ambient);
 glLightfv(GL_LIGHT0, GL_DIFFUSE, light_diffuse);
 glLightfv(GL_LIGHT0, GL_SPECULAR, light_specular);
 glLightfv(GL_LIGHT0, GL_POSITION, light_position);

 glFrontFace (GL_CW);
 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
 glEnable(GL_AUTO_NORMAL);
 glEnable(GL_NORMALIZE);
 glDepthFunc(GL_LEQUAL);
 glEnable(GL_DEPTH_TEST);
}

void display(void)
{
 GLdouble eqn[4] = {1.0, 0.0, -1.0, 1.0};
 GLfloat mat_diffuse[] = { 0.8, 0.8, 0.8, 1.0 };
 GLfloat back_diffuse[] = { 0.8, 0.2, 0.8, 1.0 };

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glPushMatrix ();
 glClipPlane (GL_CLIP_PLANE0, eqn); /* slice objects */
 glEnable (GL_CLIP_PLANE0);

 glPushMatrix ();
 glTranslatef (0.0, 2.0, 0.0);
 auxSolidTeapot(1.0); /* one-sided lighting */
 glPopMatrix ();

 /* two-sided lighting, but same material */
 glLightModelf (GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);
 glMaterialfv (GL_FRONT_AND_BACK, GL_DIFFUSE,
 mat_diffuse);
 glPushMatrix ();
 glTranslatef (0.0, 0.0, 0.0);
 auxSolidTeapot(1.0);
 glPopMatrix ();

 /* two-sided lighting, two different materials */
 glMaterialfv (GL_FRONT, GL_DIFFUSE, mat_diffuse);
 glMaterialfv (GL_BACK, GL_DIFFUSE, back_diffuse);
 glPushMatrix ();
 glTranslatef (0.0, -2.0, 0.0);

Porting Texture Calls

73

 auxSolidTeapot(1.0);
 glPopMatrix ();

 glLightModelf (GL_LIGHT_MODEL_TWO_SIDE, GL_FALSE);
 glDisable (GL_CLIP_PLANE0);
 glPopMatrix ();
 glFlush();
}

Porting Texture Calls

When porting texture calls, consider these issues:

• At times, a single IRIS GL texturing call has to be replaced with two or more
OpenGL calls. For those cases, edit the toogl output to use more variables than it did
before or restructure the program.

• Use glEnable() and glDisable() to turn texturing capabilities on and off. See the
reference page for details.

• OpenGL doesn’t automatically generate mipmaps for you—if you’re using
mipmaps, call gluBuild2DMipmaps() first.

• Texture size in OpenGL is more strictly regulated than in IRIS GL. An OpenGL
texture must be

2n + 2b

where n is an integer and b is

– 0, if there’s no border

– 1, if there’s a border pixel (textures in OpenGL can have 1 pixel borders)

• OpenGL 1.0 keeps no tables of textures, just a single 1D texture and a single 2D
texture. If you want to reuse your textures, put them in a display list, as described in
“Porting defs, binds, and sets: Replacing ‘Tables’ of Stored Definitions” on page 67.

• In OpenGL 1.1, you can use named textures. Use the functions glBindTexture(),
glGenTexture(), and glDeleteTextures() to work with named texture object. You
can also call glPrioritizeTextures() to have certain textures preferentially be
assigned to texture memory, and glAreTexturesResident() to determine whether a
named texture is currently in texture memory.

• In OpenGL 1.1, you can use the subtexture mechanism for more efficient texture
loading.

74

Chapter 3: After toogl: How to Finish Porting to OpenGL

• OpenGL 1.1 offers the proxy texture mechanism to let you test whether a texture
will fit into texture memory on a certain system.

Table 3-46 lists the general OpenGL equivalents to IRIS GL texture calls.

The OpenGL Programming Guide describes in detail how textures work in OpenGL. Here
are a few general tips:

• Remember to call gluBuild2DMipmaps() or gluBuild1DMipmaps() before trying
to use mipmaps.

• Use glTexParameter() to specify wrapping and filters.

• Use glTexEnv() to set up texturing environment.

• Use glTexImage2D() or glTexImage1D() to load each image.

Table 3-46 Texture Commands

IRIS GL Call OpenGL Call Meaning

texdef2d() glTexImage2D()

glTexParameter()

gluBuild2DMipmaps()

Specify a 2D texture image.

texbind() glTexParameter()

glTexImage2D()

gluBuild2DMipmaps()

Select a texture function.

tevdef() glTexEnv() Define a texture mapping environment.

tevbind() glTexEnv() Select a texture environment.

— glTexImage1D()

t2*(), t3*(), t4*() glTexCoord*() Set the current texture coordinates.

texgen() glTexGen() Control generation of texture coordinates.

— glGetTexParameter() —

— gluBuild1DMipmaps() —

— gluBuild2DMipmaps() —

— gluScaleImage() Scale an image to arbitrary size.

Porting Texture Calls

75

• Use glEnable() and glDisable() to turn texturing capabilities on and off.

See the reference page for each call for detailed information.

Translating tevdef()

Here’s an example of an IRIS GL texture environment definition that specifies the
TV_DECAL texture environment option:

float tevprops[] = {TV_DECAL, TV_NULL};
tevdef(1, 0, tevprops);

Here’s how you could translate that code to OpenGL:

glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);

Table 3-47 lists the IRIS GL texture environment options and their OpenGL equivalents.

For more detailed information on how to use these options, see the glTexEnv reference
page.

Table 3-47 Texture Environment Options

IRIS GL Option OpenGL Option

TV_MODULATE GL_MODULATE

TV_DECAL GL_DECAL

TV_BLEND GL_BLEND

TV_COLOR GL_TEXTURE_ENV_COLOR

TV_ALPHA no direct OpenGL equivalent

TV_COMPONENT_SELECT no direct OpenGL equivalent

76

Chapter 3: After toogl: How to Finish Porting to OpenGL

Translating texdef()

Here’s an example of an IRIS GL texture definition:

float texprops[] = { TX_MINFILTER, TX_POINT,
 TX_MAGFILTER, TX_POINT,
 TX_WRAP_S, TX_REPEAT,
 TX_WRAP_T, TX_REPEAT,
 TX_NULL };
texdef2d(1, 1, 6, 6, granite_texture, 7, texprops)

In the above code example, texdef() specifies the TX_POINT filter as both the
magnification and the minification filter, and TX_REPEAT as the wrapping behavior. It
also specifies the texture image, in this case an image called granite_texture.

In OpenGL, the image specification is handled by the glTexImage*() functions and
property-setting is handled by glTexParameter(). To translate to OpenGL, you’d replace
a texdef() call with a call to a glTexImage*() routine and one or more calls to
glTexParameter().

Here’s an example of one way you could translate the IRIS GL code fragment above:

GLfloat nearest [] = {GL_NEAREST};
GLfloat repeat [] = {GL_REPEAT};
glTexParameterfv(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER,
 nearest);
glTexParameterfv(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER,
 nearest);
glTexParameterfv(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S,
 repeat);
glTexParameterfv(GL_TEXTURE_1D, GL_TEXTURE_WRAP_T,
 repeat);
glTexImage1D(GL_TEXTURE_1D, 0, 1, 6, 0, GL_RGB,
 GL_UNSIGNED_SHORT,granite_tex);

Porting Texture Calls

77

Table 3-48 lists the IRIS GL texture parameters with their OpenGL equivalents. For more
detailed information on OpenGL texture parameters, see the glTexParameter reference
page.

Table 3-49 lists the possible values of the IRIS GL texture parameters along with their
OpenGL equivalents. If you used special values available only on systems with
RealityEngine™ graphics, you may have to wait for RealityEngine extensions to
OpenGL before you can translate these values exactly (see “Porting RealityEngine
Graphics Features” for further discussion). For more information on possible values of
OpenGL texture parameters, see the glTexParameter reference page.

Table 3-48 IRIS GL and OpenGL Texture Parameters

texdef(... np, ...) Option glTexParameter() Parameter Name

TX_MINFILTER GL_TEXTURE_MIN_FILTER

TX_MAGFILTER GL_TEXTURE_MAG_FILTER

TX_WRAP, TX_WRAP_S GL_TEXTURE_WRAP_S

TX_WRAP, TX_WRAP_T GL_TEXTURE_WRAP_T

— GL_TEXTURE_BORDER_COLOR

Table 3-49 Values for IRIS GL and OpenGL Texture Parameters

IRIS GL OpenGL

TX_POINT GL_NEAREST

TX_BILINEAR GL_LINEAR

TX_MIPMAP_POINT GL_NEAREST_MIPMAP_NEAREST

TX_MIPMAP_BILINEAR GL_LINEAR_MIPMAP_NEAREST

TX_MIPMAP_LINEAR GL_NEAREST_MIPMAP_LINEAR

TX_TRILINEAR GL_LINEAR_MIPMAP_LINEAR

78

Chapter 3: After toogl: How to Finish Porting to OpenGL

Translating texgen()

The functionality of texgen() is replaced by glTexGen() almost entirely, though you have
to call glEnable() and glDisable() to turn coordinate generation on and off. Table 3-50
lists the equivalents for texture coordinate names.

Table 3-51 lists texture generation mode and plane names.

With IRIS GL, you call texgen() twice: once to simultaneously set the mode and a plane
equation, and once more to enable texture coordinate generation. In OpenGL, you make
three calls: two to glTexGen() (once to set the mode, and again to set the plane equation),
and one to glEnable(). For example, if you called texgen() like this:

texgen(TX_S, TG_LINEAR, planeParams);
texgen(TX_S, TG_ON, NULL);

the equivalent OpenGL code is:

glTexGen(GL_S, GL_TEXTURE_GEN_MODE, modeName);
glTexGen(GL_S, GL_OBJECT_PLANE, planeParams);
glEnable(GL_TEXTURE_GEN_S);

Table 3-50 Texture Coordinate Names

IRIS GL Texture Coordinate OpenGL Texture Coordinate glEnable() Argument

TX_S GL_S GL_TEXTURE_GEN_S

TX_T GL_T GL_TEXTURE_GEN_T

TX_R GL_R GL_TEXTURE_GEN_R

TX_Q GL_Q GL_TEXTURE_GEN_Q

Table 3-51 Texture Generation Modes and Planes

IRIS GL Texture Mode OpenGL Texture Mode Corresponding Plane Name

TG_LINEAR GL_OBJECT_LINEAR GL_OBJECT_PLANE

TG_CONTOUR GL_EYE_LINEAR GL_EYE_PLANE

TG_SPHEREMAP GL_SPHERE_MAP —

Porting Picking Calls

79

Porting Picking Calls

All the IRIS GL picking calls have OpenGL equivalents, with the exception of
clearhitcode(). Table 3-52 lists the IRIS GL picking calls and their OpenGL counterparts.

For more information on picking, refer to the gluPickMatrix reference page and the
OpenGL Programming Guide. You can find a complete example and additional
explanation in “OpenGL Programming for the X Window System,” page 438-441. See
“GLX and GLUT Documentation” on page xvi.

Table 3-52 Calls for Picking

IRIS GL Call OpenGL Call Notes

clearhitcode() not supported Clears global variable, hitcode.

pick(),

 select()

glRenderMode(GL_SELECT) Switch to selection/picking mode.

endpick(),

endselect()

glRenderMode(GL_RENDER) Switch back to rendering mode.

picksize() gluPickMatrix()

— glSelectBuffer() Set the return array.

initnames() glInitNames() —

pushname(), popname() glPushName(), glPopName() —

loadname() glLoadName() —

80

Chapter 3: After toogl: How to Finish Porting to OpenGL

Porting Feedback Calls

Feedback under IRIS GL differed from machine to machine. OpenGL standardizes
feedback, so you can now rely on consistent feedback from machine to machine, and
from implementation to implementation. Table 3-53 lists IRIS GL and OpenGL feedback
calls.

For more information, see the reference pages or the OpenGL Programming Guide.

Example 3-8 demonstrates OpenGL feedback.

Example 3-8 Feedback in OpenGL

/*
 * feedback.c
 * This program demonstrates use of OpenGL feedback. First,
 * a lighting environment is set up and a few lines are drawn.
 * Then feedback mode is entered, and the same lines are
 * drawn. The results in the feedback buffer are printed.
 */
#include <GL/glut.h>
#include <stdlib.h>
#include <stdio.h>

/* Initialize lighting.
 */
void init(void)
{
 glEnable(GL_LIGHTING);
 glEnable(GL_LIGHT0);
}

/* Draw a few lines and two points, one of which will

Table 3-53 Feedback Calls

IRIS GL Call OpenGL Call Notes

feedback() glRenderMode(GL_FEEDBACK) Switch to feedback mode.

endfeedback() glRenderMode(GL_RENDER) Switch back to rendering mode.

— glFeedbackBuffer() —

passthrough() glPassThrough() Place a token marker in the feedback buffer.

Porting Feedback Calls

81

 * be clipped. If in feedback mode, a passthrough token
 * is issued between the each primitive.
 */
void drawGeometry(GLenum mode)
{
 glBegin(GL_LINE_STRIP);
 glNormal3f(0.0, 0.0, 1.0);
 glVertex3f(30.0, 30.0, 0.0);
 glVertex3f(50.0, 60.0, 0.0);
 glVertex3f(70.0, 40.0, 0.0);
 glEnd();
 if (mode == GL_FEEDBACK)
 glPassThrough(1.0);
 glBegin(GL_POINTS);
 glVertex3f(-100.0, -100.0, -100.0); /* will be clipped */
 glEnd();
 if (mode == GL_FEEDBACK)
 glPassThrough(2.0);
 glBegin(GL_POINTS);
 glNormal3f(0.0, 0.0, 1.0);
 glVertex3f(50.0, 50.0, 0.0);
 glEnd();
}

/* Write contents of one vertex to stdout.
*/
void print3DcolorVertex(GLint size, GLint *count, GLfloat *buffer)
{
 int i;

 printf(" ");
 for (i = 0; i < 7; i++) {
 printf("%4.2f ", buffer[size-(*count)]);
 *count = *count - 1;
 }
 printf ("\n");
}

/* Write contents of entire buffer. (Parse tokens!)
*/
void printBuffer(GLint size, GLfloat *buffer)
{
 GLint count;
 GLfloat token;

82

Chapter 3: After toogl: How to Finish Porting to OpenGL

 count = size;
 while (count) {
 token = buffer[size-count];
 count--;
 if (token == GL_PASS_THROUGH_TOKEN) {
 printf("GL_PASS_THROUGH_TOKEN\n");
 printf(" %4.2f\n", buffer[size-count]);
 count--;
 } else if (token == GL_POINT_TOKEN) {
 printf("GL_POINT_TOKEN\n");
 print3DcolorVertex (size, &count, buffer);
 } else if (token == GL_LINE_TOKEN) {
 printf("GL_LINE_TOKEN\n");
 print3DcolorVertex(size, &count, buffer);
 print3DcolorVertex(size, &count, buffer);
 } else if (token == GL_LINE_RESET_TOKEN) {
 printf("GL_LINE_RESET_TOKEN\n");
 print3DcolorVertex(size, &count, buffer);
 print3DcolorVertex(size, &count, buffer);
 }
 }
}

void display(void)
{
 GLfloat feedBuffer[1024];
 GLint size;

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 glOrtho(0.0, 100.0, 0.0, 100.0, 0.0, 1.0);

 glClearColor(0.0, 0.0, 0.0, 0.0);
 glClear(GL_COLOR_BUFFER_BIT);
 drawGeometry(GL_RENDER);

 glFeedbackBuffer(1024, GL_3D_COLOR, feedBuffer);
 glRenderMode(GL_FEEDBACK);
 drawGeometry(GL_FEEDBACK);

 size = glRenderMode(GL_RENDER);
 printBuffer(size, feedBuffer);
}

/* ARGSUSED1 */

Porting RealityEngine Graphics Features

83

void keyboard(unsigned char key, int x, int y)
{
 switch (key) {
 case 27:
 exit(0);
 break;
 }
}

int main(int argc, char **argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB);
 glutInitWindowSize(100, 100);
 glutInitWindowPosition(100, 100);
 glutCreateWindow(argv[0]);
 init();
 glutDisplayFunc(display);
 glutKeyboardFunc(keyboard);
 glutMainLoop();
 return 0;
}

Porting RealityEngine Graphics Features

Some IRIS GL features that were available only on systems with RealityEngine graphics
are unavailable in OpenGL; though several of them are supported either by OpenGL 1.1
or by an extension.

Table 3-54 lists the IRIS GL RealityEngine calls and their OpenGL counterparts.

Table 3-54 RealityEngine Calls

IRIS GL Call OpenGL Call Notes

blendcolor() glBlendColorEXT() Specify a color to blend.

convolve() glConvolutionFilter2DEXT(),
glSeparableFilter2DEXT(),
glConvolutionParameterEXT(),
glPixelTransfer()

Convolve an input image
with a kernel image.

84

Chapter 3: After toogl: How to Finish Porting to OpenGL

displacepolygon() glPolygonOffsetEXT() (OpenGL 1.0)

glPolygonOffset() (OpenGL 1.1)

Specify z displacement for
rendered polygons.

fbsubtexload() Not supported Load part or all of a texture.

gethgram() glGetHistogramEXT() Get histogram data.

getminmax() glGetMinmaxEXT() Get minimum and maximum
graphics values.

hgram() glHistogramEXT(), glResetHistogramEXT() Compute histogram of
pixel-transfer information.

ilbuffer() Not supported Allocate space for temporary
image-processing results.

ildraw() Not supported Select an ilbuffer to draw into.

istexloaded() glAreTexturesResidentEXT (OpenGL 1.0)

glAreTexturesResident (OpenGL 1.1)

Find out whether a given
texture is resident in texture
memory.

leftbuffer() glDrawBuffer(GL_LEFT) Enable left-buffer drawing.

minmax() glMinmaxEXT() Compute minimum and
maximum pixel values.

monobuffer() Superseded by selection of an appropriate
GLX visual

Select monoscopic viewing.

msalpha() glEnable(
GL_SAMPLE_ALPHA_TO_MASK_SGIS),
glEnable(
GL_SAMPLE_ALPHA_TO_ONE_SGIS)

Specify treatment of alpha
values during multisampling.

msmask() glSampleMaskSGIS() Specify a multisample mask.

mspattern() glSamplePatternSGIS() Specify a sample pattern for
multisampling.

mssize() glXChooseVisual() with attribute
GLX_SAMPLE_BUFFERS_SGIS

Configure multisample
buffer.

multisample() glEnable(GL_MULTISAMPLE_SGIS) Enable or disable
multisampling.

Table 3-54 (continued) RealityEngine Calls

IRIS GL Call OpenGL Call Notes

Porting RealityEngine Graphics Features

85

Some RealityEngine features (mostly involving texturing) don’t correspond to specific
IRIS GL functions, and thus don’t fit nicely into Table 3-54. Some such features are
supported by extensions to OpenGL; you should check at runtime to see if the relevant
extension is supported by calling glGetString(GL_EXTENSIONS) (see the glGetString
reference page for more information). Some other non-function-specific IRIS GL
RealityEngine features aren’t supported at all.

Each of the following features is supported on a given machine if the corresponding
OpenGL extension is supported. (“OpenGL Extensions” on page 87 points you to
additional information):

• The internal texture storage format (TX_INTERNAL_FORMAT in IRIS GL) is
supported by the texture extension (GL_EXT_texture). OpenGL without extensions

pixelmap() glPixelMap() Define pixel transfer lookup
tables.

pixeltransfer() glPixelTransfer() Set transfer modes.

readcomponent() glReadPixels() gives partial support; some
readcomponent() features aren’t yet
supported

Choose a component source.

rightbuffer() glDrawBuffer(GL_RIGHT) Enable drawing in right
buffer.

stereobuffer() Superseded by selection of an appropriate
GLX visual.

Select stereoscopic viewing.

subtexload() OpenGL 1.1 function glTexSubImage2D()
gives partial support (the flags parameter to
subtexload() isn’t supported)

Load part or all of a texture.

texdef3d() glTexImage3DEXT() Convert 3D image into a
texture.

tlutbind() Not supported Select a texture lookup table.

tlutdef() Not supported Define a texture lookup table.

zbsize() Superseded by selection of an appropriate
GLX visual

Specify number of bitplanes
to use for the depth buffer.

Table 3-54 (continued) RealityEngine Calls

IRIS GL Call OpenGL Call Notes

86

Chapter 3: After toogl: How to Finish Porting to OpenGL

supports a superset of the formats previously specified by
TX_EXTERNAL_FORMAT; see the glTexImage2D reference page for more
information.

• Sharpen texture is supported by the GL_SGIS_sharpen_texture extension. This was
done in IRIS GL by passing TX_SHARPEN to texdef().

• Detail texture is supported by the GL_SGIS_detail_texture extension. This was done
in IRIS GL by using the tokens TX_DETAIL, TX_ADD_DETAIL, and
TX_MODULATE_DETAIL in texdef() calls.

• The detail texture and sharpen texture extension both support control points (pairs
of level-of-detail and scale values) to control the rate at which the relevant filters are
applied (see TX_CONTROL_CLAMP and TX_CONTROL_POINT in the texdef()
reference page). However, unlike IRIS GL, OpenGL uses a separate set of control
points for each of the two filters.

• The IRIS GL ABGR pixel format is supported by the GL_EXT_abgr extension.

• Texture and texture environment definition and binding (formerly done by using
texdef(), texbind(), tevdef(), and tevbind()) are currently handled in OpenGL by
creating a display list containing a glTexImage2D() call. (No OpenGL extension is
required.)

• The texture object extension supports named textures and allows you to prioritize
textures using glPrioritizeTexturesEXT(). This functionality is also part of OpenGL
1.1.

These features are not supported in OpenGL or its extensions:

• Automatic mipmap generation is supported in the GLU library by
gluBuild2DMipmaps(), but you can’t change the default filtering used to generate
mipmap levels (see TX_MIPMAP_FILTER_KERNEL in the texdef reference page).

• Bicubic texture filtering (see the descriptions of TX_BICUBIC and
TX_BICUBIC_FILTER in the texdef reference page).

• shadows (see the descriptions of TX_BILINEAR_LEQUAL and
TX_BILINEAR_GEQUAL in the texdef() reference page, and of TV_ALPHA in the
tevdef() reference page).

• Component selection (see TV_COMPONENT_SELECT in the tevdef() reference
page).

• Texture definition from a live video stream (available in IRIS GL using the flags
argument to subtexload()).

OpenGL Extensions

87

On some platforms, the video source extension, SGIX_video_source, lets you source
pixel data from a video stream to the OpenGL renderer. The video source extension
is available only for system configurations that have direct hardware paths from the
video hardware to the graphics accelerator. On other systems, you need to transfer
video data to host memory and then call glDrawPixels() or glTex{Sub}Image() to
transfer data to the framebuffer or to texture memory.

• Fast texture definition, as performed in IRIS GL with TX_FAST_DEFINE.

• Quadlinear mipmap filtering (see TX_MIPMAP_QUADLINEAR in the texdef
reference page).

• Specifying separate alpha and non-alpha functions for texture magnification
filtering (see TX_MAGFILTER_COLOR and TX_MAGFILTER_ALPHA in the texdef
reference page).

OpenGL Extensions

For information on extensions to OpenGL, see the glintro and glxintro reference pages,
as well as the reference pages for individual functions. (For a partial list of
extension-related functions, see “Porting RealityEngine Graphics Features.”)

The manual OpenGL on Silicon Graphics Systems discusses each extension and explains
how to use it.

89

Chapter 4

4. OpenGL in the X Window System

This chapter provides some information about OpenGL programming in the X
environment. The chapter focuses on information relevant to translating IRIS GL
programs into programs using OpenGL and X—it doesn’t provide a tutorial on Xt and
IRIS IM.

This chapter discusses the following topics:

• “X Window System Background” on page 90 provides some basic information
about the X Window system and also briefly discusses porting issue, naming
conventions, and the two porting options (widget or Xlib).

• “Advice for OpenGL Programs using the X Window System” on page 92 discusses
window depth, display mode, and X colormaps.

• “Fonts and Strings” on page 92 explores using fonts in an OpenGL program.

• “Using Xt and a Widget Set” on page 94 discusses using a widget set in more detail.

• “Using Xlib and GLX Commands” on page 103 discusses using straight OpenGL in
more detail.

Several documents can help you with more detailed information (see “Where to Get
More Information” on page xiv):

• For a detailed discussion of all issues involving OpenGL and X, see “OpenGL
Programming for the X Window System” discussed under “GLX and GLUT
Documentation” on page xvi.

• For more information on the relevant features of Xt and IRIS IM, consult the
OSF/Motif series, and Digital’s X Window System Toolkit: The Complete Programmer’s
Guide and Specification, or O’Reilly’s Volumes 4 and 5 on X Toolkit Intrinsics.

• For information on OpenGL in the X Window System within a Silicon Graphics
environment, see OpenGL on Silicon Graphics Systems.

90

Chapter 4: OpenGL in the X Window System

X Window System Background

An X program can create one or more subwindows that use OpenGL for rendering. Such
a program allows full access to the capabilities of X by completely removing OpenGL
from any feature governed by the X server. You have direct control of all the areas
governed by the X server: the event handling, window control, and menus. You also use
X to handle color maps and fonts.

You can find examples of programs that use either OpenGL or IRIS GL in the usr/share
directory and through the SGI home page.

In IRIS GL, you could use IRIS GL event and window management routines, such as
winopen() or qread()—which would access the X Window System for you. In OpenGL,
you can use the GLUT library for all basic windowing and event handling routines. If the
GLUT library isn’t sufficient for your purposes, you can modify your IRIS GL code to be
an OpenGL program using GLX.

Function Naming Conventions

IRIS GL can draw in X11 windows with routines such as GLXgetconfig(), GLXlink(),
GLXunlink(), and GLXwinset(). These functions don’t have exact equivalents in
OpenGL; see Appendix A for approximate equivalents.

The naming conventions for X-related functions may be confusing, as they depend
largely on capitalization to differentiate between groups of functions:

GLX*() IRIS GL mixed-model support

Glx*() IRIS GL support for IRIS IM

glX*() OpenGL support for X

GLw*() OpenGL support for IRIS IM

Note that the glX*() routines are, collectively referred to as “GLX.” Note, too, that
GLXgetconfig() (an IRIS GL mixed-model routine) isn’t at all the same function as
glXGetConfig() (an OpenGL GLX routine). The command

IRIS% man glxgetconfig

on a system with both IRIS GL and OpenGL lists both reference pages, one following the
other.

X Window System Background

91

Two Choices for Using OpenGL and X

When integrating your OpenGL program with the X Window System, you have two
choices:

• Use the Xt toolkit and a widget set, such as IRIS IM (see “Using Xt and a Widget
Set”)

• Write your program in Xlib and OpenGL using special GLX commands (see “Using
Xlib”).

The first method, using Xt and a widget set, is easier and is commonly used by
developers. It’s recommended particularly for programmers with little or no previous
experience with X.

Note: The manual OpenGL on Silicon Graphics Systems explores both approaches in some
detail.

Whichever method you choose, you’ll find more information on programming with Xlib
and Xt in the X Window System series from O’Reilly & Associates. The material in this
chapter is intended as a supplement to the O’Reilly guides, detailing X development
features available on Silicon Graphics workstations.

Using Xt and a Widget Set

Silicon Graphics provides a widget library that simplifies programming with Xt. “Using
Xt and a Widget Set” on page 94 explains how to convert your IRIS GL program to an
OpenGL program using Xt, the IRIS Widget Library, and the GL widget,
GLwDrawingArea (Silicon Graphics also provides an IRIS IM—Motif—version of
GLwDrawingArea, called GLwMDrawingArea.)

Using Xlib

If you prefer to use Xlib without using Xt (in effect working at a lower level), refer to the
recommended references on X programming, and use the GLX routines described in the
OpenGL Reference Manual (start with the glXIntro reference page). “Using Xlib and GLX
Commands” on page 103 provides more information and contains some code examples.
Several complete programs using this method are included in Appendix F, “Example
Mixed-Model Programs With Xlib,” along with IRIS GL versions of the same programs.

92

Chapter 4: OpenGL in the X Window System

Advice for OpenGL Programs using the X Window System

This section briefly discusses two important issues:

• “Dealing With Window Depth and Display Mode”

• “Installing Color Maps”

Dealing With Window Depth and Display Mode

In OpenGL programs that use the X Window System, window depth and display mode
are window attributes that are defined when the window is created, and they cannot be
changed. To change these attributes, you must create a new window. If you need multiple
display modes in your application, you can create multiple windows, then map and
unmap them, or raise one above the others.

Installing Color Maps

It’s a good idea to call XSetWMColormapWindows(); this ensures that its color maps are
installed. If you don’t call XSetWMColormapWindows(), the default X color map is
used. Even if your program uses RGB mode, you should still call
XSetWMColormapWindows() because some hardware (such as IRIS Indigo) simulates
RGB with a color map.

Fonts and Strings

OpenGL contains no equivalents for the IRIS GL text-handling calls and Font Manager
calls. To obtain full text- and font-handling facilities, call glXUseXFont() with display
lists to get some text-display capabilities. You can also use the GLUT font rendering calls
for some more limited text- and font-handling facilities.

This section gives you an example; to use display lists to do X bitmap fonts, your
program should do the following:

1. Use X calls to load information about the font you want to use.

2. Using glXUseXFont(), generate a series of display lists, one for each character in the
font.

Fonts and Strings

93

3. Put the bitmap for one character into each display list, in the order the characters
appear in the font.

4. To print out a string, use glListBase() to set the display list base to the base for your
character series. Then pass the string as an argument to glCallLists().

The following code fragment gives you an example, using Adobe Times Medium to print
out the string “The quick brown fox jumps over a lazy dog.” It also prints out the entire
character set, from ASCII 32 to 127.

Example 4-1 OpenGL Character Rendering

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glx.h>
#include <X11/Xlib.h>
#include <X11/Xutil.h>

GLuint base;

void makeRasterFont(Display *dpy)
{
 XFontStruct *fontInfo;
 Font id;
 unsigned int first, last;
 fontInfo = XLoadQueryFont(dpy,

 "-adobe-times-medium-r-normal--17-120-100-100-p-88-iso8859-1");

if (fontInfo == NULL) {
 printf ("no font found\n");
 exit (0);
 }

 id = fontInfo->fid;
 first = fontInfo->min_char_or_byte2;
 last = fontInfo->max_char_or_byte2;

 base = glGenLists(last+1);
 if (base == 0) {
 printf ("out of display lists\n");
 exit (0);
 }
 glXUseXFont(id, first, last-first+1, base+first);
}

94

Chapter 4: OpenGL in the X Window System

void printString(char *s)
{
 glListBase(base);
 glCallLists(strlen(s), GL_UNSIGNED_BYTE, (unsigned char *)s);
}

void display(void)
{
 GLfloat white[3] = { 1.0, 1.0, 1.0 };
 long i, j;
 char teststring[33];

 glClear(GL_COLOR_BUFFER_BIT);
 glColor3fv(white);
 for (i = 32; i < 127; i += 32) {
 glRasterPos2i(20, 200 - 18*i/32);
 for (j = 0; j < 32; j++)
 teststring[j] = i+j;
 teststring[32] = 0;
 printString(teststring);
 }
 glRasterPos2i(20, 100);
 printString("The quick brown fox jumps");
 glRasterPos2i(20, 82);
 printString("over a lazy dog.");
 glFlush ();
}

Note: You can also use the OpenGL character renderer (glc) to render characters. See the
glcintro reference page for more information.

Using Xt and a Widget Set

In general, you can bypass many of the complexities of X by using the Xt toolkit and a
widget set such as IRIS IM.

When mixing OpenGL with Xt, IRIS IM, or Athena widgets, you can use the Silicon
Graphics GLwDrawingArea widget, which simplifies programming with IRIS IM or any
other widget set. The GLwDrawingArea widget is also compatible with User Interface
Language (UIL). This section explains how to use the GLwMDrawingArea widget for
embedding GL in an Xt or IRIS IM program. It discusses these topics:

Using Xt and a Widget Set

95

• “What You Need to Know About Xt and IRIS IM” on page 95

• “IRIS IM and Other Widget Sets” on page 96

• “Converting Your IRIS GL Program” on page 96

• “Background Reading” on page 102

What You Need to Know About Xt and IRIS IM

The examples shown in this chapter use Xt and IRIS IM. Although knowing Xt and
IRIS IM isn’t required to read this chapter, understanding the details of the examples
does require some Xt and IRIS IM knowledge. This chapter points out a few areas of the
Xt and IRIS IM toolkits relevant for OpenGL programmers; it doesn’t provide a tutorial
on Xt and IRIS IM.

For more information on the relevant features of Xt and IRIS IM, consult the OSF/Motif
series, and Digital’s X Window System Toolkit: The Complete Programmer’s Guide and
Specification, or O’Reilly’s Volumes 4 and 5 on the X Toolkit Intrinsics, or refer to the
OpenGL on Silicon Graphics Systems manual.

About Xt

Xt, also known as the X Toolkit Intrinsics, is a C library that provides routines for creating
and using user interface components called widgets. It’s usually easier to convert your
IRIS GL program using Xt than it is to use the low-level Xlib programming library.

Since Xt doesn’t dictate the “look and feel” of the GUI, you must use it in conjunction
with a widget set (a library of pre-built widgets), such as the Athena widget set or IRIS
IM.

About IRIS IM

IRIS IM is the Silicon Graphics port of OSF/Motif. Motif is an extensible widget set of
user interface objects, such as buttons, scroll bars, menu systems, and dialog boxes. These
widgets are accessible via a library of C routines. These widgets are supported by Xt.
Ultimately, the X Window System is the foundation for both the Motif and Athena
widget sets.

Motif is also a style guide, which describes the “look and feel” of a Motif compliant user
interface.

96

Chapter 4: OpenGL in the X Window System

IRIS IM and Other Widget Sets

This section refers frequently to IRIS IM because it is commonly used with OpenGL
programs; however, unless otherwise specified, you can use the features discussed here
with other widget sets, such as the Athena widget set. The features discussed in this
chapter exist either within the widget itself or are based on the X toolkit. You therefore
have a choice:

• Use the generic GLwDrawingArea widget.

• Use the IRIS IM (Motif) widget GLwMDrawingArea.

Combining OpenGL and Motif is made easier by a specially supplied OpenGL drawing
area widget, GLwDrawingArea. Use the GLwDrawingArea widget when integrating
your OpenGL program with Xt. The GLwDrawingArea widget sets up a configuration
for GL drawing and provides resources and callbacks that are useful to the OpenGL
programmer. The GLwDrawingArea widget also provides support for overlays.

There are actually two GLwDrawingArea widgets. The widget known as
GLwDrawingArea is a generic widget, suitable for use with any widget set that’s based
on the Xt intrinsics. There is also a version known as GLwMDrawingArea (note the M)
for use with IRIS IM programs.

The two widgets are very similar, but they do have these differences:

• GLwMDrawingArea is a subclass of the IRIS IM XmPrimitive widget, rather than
being a subclass of the Xt Core widget and, therefore, has various defaults such as
background color.

• GLwMDrawingArea understands IRIS IM traversal, although traversal is turned off
by default.

• You can create GLwMDrawingArea directly through Xt or use an IRIS IM creation
function, GlxCreateMDrawingArea().

In all other respects, the two widgets are identical. The remainder of this chapter refers
to the GlxMDraw widget, but unless otherwise specified, everything stated refers to
both.

Converting Your IRIS GL Program

This section discusses the actual conversion process:

Using Xt and a Widget Set

97

• “Finding Areas for Porting” explains how your can determine which parts of your
IRIS GL program you need to replace with X.

• “Using the OpenGL Widget” provides an example program of OpenGL inside the
OpenGL widget.

Finding Areas for Porting

When porting to OpenGL, you have to replace any IRIS GL windowing and event
handling code. One way to do this is to run toogl and then search through the output for
the toogl warnings marked “OGLXXX.” It should be reasonably straightforward to
determine which warnings relate to X.

Using the OpenGL Widget

This section shows a simple example of a program that uses the IRIS IM version of the
OpenGL widget and explains how the code works.

The generic version of the widget can be used in the same way. To compile this example,
use this command line:

% cc -O -o mixed mixed.c -lXm -lGL -lGLw -lGLU

When the OpenGL widget is initially opened, its visual must be set. In other words, you
must first declare the display mode of the visual: single or double buffer, color index or
RGBA mode. You may also specify how many bits will be used by the components of the
frame buffer: for example, depth, stencil, and accumulation bits.

In the program shown in Example 4-2, the function init_window(), which is registered
with the GlxNginitCallback callback, calls glXCreateContext() to set the visual of the
OpenGL widget. In this case, the resources for the widget are set to support RGBA and
double buffer mode. (See the fallback_resources[] array in the main() procedure.)

Example 4-2 OpenGL Program Using IRIS IM OpenGL Widget

/* mixed.c
 */

#include <Xm/Xm.h>
#include <Xm/Form.h>
#include <X11/keysym.h>
#include <X11/StringDefs.h>
#include "GL/GLwMDrawA.h"

98

Chapter 4: OpenGL in the X Window System

#include <GL/gl.h>
#include <GL/glu.h>
#include <stdio.h>
#include <stdlib.h>

static void input(Widget, XtPointer, XtPointer);
static void draw_scene_callback (Widget, XtPointer,
 XtPointer);
static void do_resize(Widget, XtPointer, XtPointer);
static void init_window(Widget, XtPointer, XtPointer);

static GLXContext glx_context;

void main(int argc, char** argv)
{
 Arg args[20];
 int n;
 Widget glw, toplevel, form;
 static XtAppContext app_context;
 static String fallback_resources[] = {
 "*glwidget*width: 300",
 "*glwidget*height: 300",
 "*glwidget*rgba: TRUE",
 "*glwidget*doublebuffer: TRUE",
 "*glwidget*allocateBackground: TRUE",
 NULL
 };

 toplevel = XtAppInitialize(&app_context, "Mixed", NULL,
 0, &argc, argv,
 fallback_resources, NULL, 0);
 n = 0;
 form = XmCreateForm(toplevel, "form", args, n);
 XtManageChild(form);

 n = 0;
 XtSetArg(args[n], XmNbottomAttachment, XmATTACH_FORM);
 n++;
 XtSetArg(args[n], XmNtopAttachment, XmATTACH_FORM);
 n++;
 XtSetArg(args[n], XmNleftAttachment, XmATTACH_FORM);
 n++;
 XtSetArg(args[n], XmNrightAttachment, XmATTACH_FORM);
 n++;

Using Xt and a Widget Set

99

 glw = GLwCreateMDrawingArea(form, "glwidget", args, n);
 XtManageChild (glw);
 XtAddCallback(glw, GLwNexposeCallback,
 draw_scene_callback, (XtPointer) NULL);
 XtAddCallback(glw, GLwNresizeCallback, do_resize,
 (XtPointer) NULL);
 XtAddCallback(glw, GLwNginitCallback, init_window,
 (XtPointer) NULL);
 XtAddCallback(glw, GLwNinputCallback, input,
 (XtPointer) NULL);

 XtRealizeWidget(toplevel);
 XtAppMainLoop(app_context);
}

static int rotation = 0;

void spin (void)
{
 rotation = (rotation + 5) % 360;
}

static void draw_scene (Widget w)
{
 GLUquadricObj *quadObj;

 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f (1.0, 1.0, 1.0);
 glPushMatrix();
 glTranslatef (0.0, 0.0, -5.0);
 glRotatef ((GLfloat) rotation, 1.0, 0.0, 0.0);

 glPushMatrix ();
 glRotatef (90.0, 1.0, 0.0, 0.0);
 glTranslatef (0.0, 0.0, -1.0);
 quadObj = gluNewQuadric ();
 gluQuadricDrawStyle (quadObj, GLU_LINE);
 gluCylinder (quadObj, 1.0, 1.0, 2.0, 12, 2);
 glPopMatrix ();

 glPopMatrix();
 glFlush();
 glXSwapBuffers (XtDisplay(w), XtWindow(w));
}

100

Chapter 4: OpenGL in the X Window System

/* Process all Input callbacks*/
static void input(Widget w, XtPointer client_data,
 XtPointer call)
{
 char buffer[1];
 KeySym keysym;
 GLwDrawingAreaCallbackStruct *call_data;

 call_data = (GLwDrawingAreaCallbackStruct *) call;

 switch(call_data->event->type)
 {
 case KeyRelease:
 /* It is necessary to convert the keycode to a
 * keysym before it is possible to check if it is
 * an escape.
 */
 if (XLookupString((XKeyEvent *) call_data->event,
 buffer, 1, &keysym,
 (XComposeStatus *) NULL) == 1
 && keysym == (KeySym) XK_Escape)
 exit(0);
 break;

 case ButtonPress:
 switch (call_data->event->xbutton.button)
 {
 case Button1:
 spin();
 draw_scene(w);
 break;
 }
 break;

 default:
 break;
 }
}

static void draw_scene_callback(Widget w, XtPointer client_data,
XtPointer call)
{
 static char firstTime = 0x1;
 GLwDrawingAreaCallbackStruct *call_data;

Using Xt and a Widget Set

101

 call_data = (GLwDrawingAreaCallbackStruct *) call;
 GLwDrawingAreaMakeCurrent(w, glx_context);

 if (firstTime) {
 glViewport(0, 0, call_data->width,call_data->height);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(65.0, (float) call_data->width /
 (float)call_data->height, 1.0, 20.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 firstTime = 0;
 }
 draw_scene (w);
}

static void do_resize(Widget w, XtPointer client_data,
 XtPointer call)
{
 GLwDrawingAreaCallbackStruct *call_data;

 call_data = (GLwDrawingAreaCallbackStruct *) call;

 GLwDrawingAreaMakeCurrent(w, glx_context);
 glViewport(0, 0, call_data->width, call_data->height);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(65.0, (GLfloat) call_data->width /
 (GLfloat)call_data->height, 1.0, 20.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

static void init_window(Widget w, XtPointer client_data,
 XtPointer call_data)
{
 Arg args[1];
 XVisualInfo *vi;
 GLUquadricObj *quadObj;

 XtSetArg(args[0], GLwNvisualInfo, &vi);
 XtGetValues(w, args, 1);
 glx_context = glXCreateContext(XtDisplay(w), vi, 0,
 GL_FALSE);
}

102

Chapter 4: OpenGL in the X Window System

It’s a good idea to always call GlxDrawingAreaMakeCurrent() to set the current widget.
In Example 4-2, GlxDrawingAreaMakeCurrent() is called from the callback functions.

Example 4-2 draws a wire frame cylinder using OpenGL. The GlxNinputCallback calls
input(), which handles mouse and keyboard input. Pressing the Escape key causes the
program to exit. Pressing Button1 (usually the left mouse button) calls spin(), which
changes the rotation of the cylinder. Then the scene is completely redrawn.

The mixed.c program has absolutely basic placement of widgets. The OpenGL drawing
area widget is attached to all sides of its parent, an IRIS IM XmForm widget. This is a
minimal arrangement—you can add additional IRIS IM widgets for a more sophisticated
interface.

You might also want to add a WorkProc (or idle) function, which executes when no other
events are occurring. A WorkProc is useful for rendering continuous motion, which
doesn’t require steady input events; for example, an animation. Appendix E, “Example
Program Using Xt and a WorkProc,” contains an example program using Xt and a
WorkProc.

Background Reading

The most complete information about OpenGL and X can be found in

Kilgard, Mark J. OpenGL Programming for the X Window System. Menlo Park, CA:
Addison-Wesley Developer’s Press. 1996. ISBN 0-201-48369-9

For more information on mixed-model programming in general, you can refer to the
OpenGL Reference Manual, which contains reference pages for the OpenGL GLX
command, as well as an introductory reference page, glXIntro.

For more detailed information on programming with Xt, see Volume IV of the X Window
System Series, X Toolkit Intrinsics Programming Manual, by Adrian Nye and Tim O’Reilly,
published by O’Reilly & Associates, Inc. (If you’re using IRIS IM, you’ll probably want
the Motif version of Volume IV.)

For more information on IRIS IM, refer to documentation on Motif, such as the
OSF/Motif Series published by Prentice Hall.

Using Xlib and GLX Commands

103

Using Xlib and GLX Commands

Using Xlib and GLX can be more complex than using Xt and a widget set, and Silicon
Graphics doesn’t recommend it unless you’re already familiar with Xlib programming.
This section provides an overview of the necessary steps for using Xlib and GLX. It also
provides some simple code examples.You’ll almost certainly need to refer to more
substantial Xlib documentation (such as the O’Reilly volumes), as well as the OpenGL
Reference Manual. The glXIntro reference page is a good starting point.

This section discusses the most important aspects of using Xlib and GLX and also
provides several example programs in the following sections:

• “Getting Started With Xlib and GLX”

• “Using X Color Maps” on page 105

• “Using X Color Maps” on page 105

• “Using X Events” on page 106

Getting Started With Xlib and GLX

Note: Another example of using XLib is included in OpenGL on Silicon Graphics Systems.

To port your OpenGL code to use Xlib and GLX calls, follow these steps:

1. Add the necessary include files to your program. (See “Header Files” on page 18 for
information on what files to include.)

2. Open a connection to a display: XOpenDisplay().

3. Choose an X visual: glXChooseVisual().

4. Create a GLX context: glXCreateContext().

5. Create an X window or pixmap: XCreateWindow().

6. Connect the GLX context to the X window: glXMakeCurrent().

104

Chapter 4: OpenGL in the X Window System

Opening a Window With GLX

Example 4-3 shows a simple way of following the steps given in the previous section.You
can find a version of this code in the glXIntro reference page. This sample is more heavily
commented than the one in the reference page and contains some additional examples.

Example 4-3 OpenGL and GLX Program

#include <X11/Xlib.h>
#include <GL/glx.h>
#include <GL/gl.h>
#include <stdio.h>

static int attributeList[] = { GLX_RGBA, None };

static Bool WaitForNotify(Display *d, XEvent *e, char *arg)
 { return(e->type == MapNotify) && (e->xmap.window == (Window)arg); }

int main(int argc, char**argv)
{
 Display *dpy;
 XVisualInfo *vi;
 Colormap cmap;
 XSetWindowAttributes swa;
 Window win;
 GLXContext cx;
 XEvent event;

/* get a connection */
 dpy = XOpenDisplay(0);
 if (!dpy) {
 fprintf(stderr, "Cannot open display.\n");
 exit(-1);
 }

/* get an appropriate visual */
 vi = glXChooseVisual(dpy, DefaultScreen(dpy),
 attributeList);
 if (!vi) {
 fprintf(stderr, "Cannot find visual with desired attributes.\n");
 exit(-1);
 }

/* create a GLX context */

Using Xlib and GLX Commands

105

 cx = glXCreateContext(dpy, vi, 0, GL_FALSE);
 if (!cx) {
 fprintf(stderr, "Cannot create context.\n");
 exit(-1);
 }

/* create a colormap -- AllocAll for color index mode */
 cmap = XCreateColormap(dpy, RootWindow(dpy, vi->screen),
 vi->visual, AllocNone);
 if (!cmap) {
 fprintf(stderr, "Cannot allocate colormap.\n");
 exit(-1);
 }

 /* create a window */
 swa.colormap = cmap;
 swa.border_pixel = 0;
 /* connect the context to the window */
 glXMakeCurrent(dpy, win, cx);

/* clear the buffer */
 glClearColor(1,1,0,1);
 glClear(GL_COLOR_BUFFER_BIT);
 glFlush();

/wait for a while */
 sleep(10);
/* exit cleanly */
 XCloseDisplay(dpy);
 exit(0);
}

Using X Color Maps

Here’s a brief example of OpenGL GLX code that demonstrates the use of color maps:

XColor xc;
display = XOpenDisplay(0);
visual = glXChooseVisual(display,
 DefaultScreen(display), attributeList);
context = glXCreateContext (display,visual,0,GL_FALSE);
colorMap = XCreateColormap (display,RootWindow(display,
 visual->screen), visual->visual, AllocAll);
/* Note: if you don’t say AllocAll, you can’t load */

106

Chapter 4: OpenGL in the X Window System

/* the color maps! */
 ...
if (index < visual->colormap_size) {
 xc.pixel = index;
 xc.red = (unsigned short)(red * 65535.0 + 0.5);
 xc.green = (unsigned short)(green * 65535.0 + 0.5);
 xc.blue = (unsigned short)(blue * 65535.0 + 0.5);
 xc.flags = DoRed | DoGreen | DoBlue;
 XStoreColor (display, colorMap, &xc);
}

Using X Events

Here’s a simple example of a program that uses Xlib and OpenGL GLX calls for event
handling:

swa.event_mask = ExposureMask | StructureNotifyMask
 | KeyPressMask | KeyReleaseMask;
do {
 XNextEvent(dpy, &event);
 switch (event.type) {
 case Expose:
 doRedraw = GL_TRUE;
 break;
 case ConfigureNotify:
 width = event.xconfigure.width;
 height = event.xconfigure.height;
 doRedraw = GL_TRUE;
 break;
 case KeyPress:
 {
 char buf[100];
 int rv;
 KeySym ks;

 rv = XLookupString(&event.xkey, buf, sizeof(buf), &ks, 0);
 switch (ks) {
 case XK_s:
 case XK_S:
 doSave = GL_TRUE;
 break;
 case XK_Escape:
 return 0;

Using Xlib and GLX Commands

107

 break;
 }
 }
 }
} while (XPending(dpy));

109

Appendix A

A. OpenGL Commands and Their IRIS GL Equivalents

Table A-1 contains a list of equivalent calls that you might find useful while porting. The
first column is an alphabetical list of IRIS GL calls, the second column contains the
corresponding calls to use with OpenGL, and the third column contains pointers to any
relevant discussion in the text.

Note: In many cases the OpenGL commands listed will function somewhat differently
from the IRIS GL commands, and the parameters may be different as well.

Be sure to refer to the OpenGL reference pages in the OpenGL Reference Manual for
detailed descriptions of the functions of the these commands and the parameters they
take.

You might also need to refer to X or IRIS IM documentation; some appropriate X and IRIS
IM manuals are listed in “Where to Get More Information” on page xiv.

Table A-1 IRIS GL Commands and Their OpenGL Equivalents

IRIS GL Call OpenGL/glu/glX Equivalent Where Discussed

acbuf() glAccum() “Accumulation Buffer Calls” on
page 61

acsize() glXChooseVisual() “Accumulation Buffer Calls” on
page 61

addtopup() glutCreateMenu,
glutAddmenuEntry,
glutAttachmenu, or use X or IRIS
IM for menus

“GLX and GLUT Documentation”
on page xvi

Chapter 4, glXIntro reference page,
X documentation, IRIS IM
documentation

afunction() glAlphaFunc() “afunction() Test Functions” on
page 60

110

Appendix A: OpenGL Commands and Their IRIS GL Equivalents

arc(), arcf() gluPartialDisk()a “Editing toogl Output: An
Example” on page 15 and “Porting
Arcs and Circles” on page 42

backbuffer() glDrawBuffer(GL_BACK) glDrawBuffer reference page

backface() glCullFace(GL_BACK) glCullFace reference page

bbox2() Not supported “Porting bbox2() Calls” on page 65

bgnclosedline() glBegin(GL_LINE_LOOP) “Porting bgn/end Commands” on
page 33 and “Porting Lines” on
page 36

bgncurve() gluBeginCurve() “NURBS Curves” on page 53

bgnline() glBegin(GL_LINE_STRIP) “Porting bgn/end Commands” on
page 33 and “Porting Lines” on
page 36

bgnpoint() glBegin(GL_POINTS) “Porting bgn/end Commands” on
page 33 and “Porting Points” on
page 35

bgnpolygon() glBegin(GL_POLYGON) “Porting bgn/end Commands” on
page 33, “Porting Polygons and
Quadrilaterals” on page 37, and
“Porting Tessellated Polygons” on
page 41

bgnqstrip() glBegin(GL_QUAD_STRIP) “Porting bgn/end Commands” on
page 33 and “Porting Polygons and
Quadrilaterals” on page 37

bgnsurface() gluBeginSurface() “NURBS Surfaces” on page 54

bgntmesh() glBegin(GL_TRIANGLE_STRIP) “Porting bgn/end Commands” on
page 33 and “Porting Triangles” on
page 41

bgntrim() gluBeginTrim() “Trimming Curves” on page 54

blankscreen() Use X for windowing. Chapter 4 and glXIntro reference
page

Table A-1 (continued) IRIS GL Commands and Their OpenGL Equivalents

IRIS GL Call OpenGL/glu/glX Equivalent Where Discussed

111

blanktime() Use X for windowing. Chapter 4 and glXIntro reference
page

blendcolor() glBlendColorEXT() “Porting RealityEngine Graphics
Features” on page 83

blendfunction() glBlendFunc() “Blending” on page 59

blink() Use GLUT or X for color maps. “GLX and GLUT Documentation”
on page xvi, Chapter 4 and glXIntro
reference page

blkqread() Use GLUT or X for event handling. “GLX and GLUT Documentation”
on page xvi, Chapter 4 and glXIntro
reference page

c3*(), c4*() glColor*() “Porting Color, Shading, and
Writemask Commands” on page 44

callfunc() Not supported. “Porting Display Lists” on page 63

callobj() glCallList() “Porting bgn/end Commands” on
page 33 and “Porting Display Lists”
on page 63

charstr() glCallLists() “Fonts and Strings” on page 92

chunksize() Not needed. “Porting Display Lists” on page 63

circ(), circf() gluDisk() “Porting Arcs and Circles” on
page 42

clear() glClear(GL_COLOR_BUFFER_BIT) “Windowing, Device, and Event
Calls” on page 11 and “Porting
Screen and Buffer Clearing
Commands” on page 23

clearhitcode() Not supported “Porting Picking Calls” on page 79

clipplane() glClipPlane() “Porting Clipping Planes” on
page 30

clkon() XChangeKeyboardControl() See X documentation.

clkoff() XChangeKeyboardControl() See X documentation.

Table A-1 (continued) IRIS GL Commands and Their OpenGL Equivalents

IRIS GL Call OpenGL/glu/glX Equivalent Where Discussed

112

Appendix A: OpenGL Commands and Their IRIS GL Equivalents

closeobj() glEndList() “Porting Display Lists” on page 63

cmode() glutInitDisplayMode,

glXChooseVisual()

GLX and GLUT Documentation,
Chapter 4 and glXIntro and
glXChooseVisual() reference pages

cmov(),

cmov2()

glRasterPos3()a,

glRasterPos2()a
“Porting Pixel Operations” on
page 46

color(), colorf() glIndex*() “Porting bgn/end Commands” on
page 33 and “Porting Color,
Shading, and Writemask
Commands” on page 44

compactify() Not needed.

concave() gluBeginPolygon()a

convolve() glConvolutionFilter2DEXT(),
glSeparableFilter2DEXT(),
glConvolutionParameterEXT(),
glPixelTransfer()

“Porting RealityEngine Graphics
Features” on page 83

cpack() glColor*()a “Porting bgn/end Commands” on
page 33 and “Porting Color,
Shading, and Writemask
Commands” on page 44

crv() Not supported. “Porting Curve and Surface
Commands” on page 52

crvn() Not supported. “Porting Curve and Surface
Commands” on page 52

curorigin() Use X for cursors. Chapter 4, glXIntro reference page,
X documentation

cursoff() Use X for cursors. Chapter 4, glXIntro reference page,
X documentation

curson() Use X for cursors. Chapter 4, glXIntro reference page,
X documentation

Table A-1 (continued) IRIS GL Commands and Their OpenGL Equivalents

IRIS GL Call OpenGL/glu/glX Equivalent Where Discussed

113

curstype() glutSetCursor, or use X for cursors GLX and GLUT Documentation,
Chapter 4, glXIntro reference page,
X documentation

curvebasis() glMap1() “Porting Curve and Surface
Commands” on page 52

curveit() glEvalMesh1() “Porting Curve and Surface
Commands” on page 52

curveprecision() Not supported. “Porting Curve and Surface
Commands” on page 52

cyclemap() Use GLUT or use X for color maps. “GLX and GLUT Documentation”
on page xvi, Chapter 4, and glXIntro
reference page

czclear() glClear(GL_COLOR_BUFFER_BIT
| GL_DEPTH_BUFFER_BIT)

“Porting Screen and Buffer Clearing
Commands” on page 23

dbtext() Not supported IRIS GL Dial and Button Box
documentation

defbasis() glMap1() “Porting Curve and Surface
Commands” on page 52

defcursor() glutSetCursor, or use X for cursors GLX and GLUT Documentation,
Chapter 4, glXIntro reference page,
X documentation

deflinestyle() glLineStipple() “Porting Lines” on page 36 and
“Porting defs, binds, and sets:
Replacing ‘Tables’ of Stored
Definitions” on page 67

defpattern() glPolygonStipple() “Porting Polygons and
Quadrilaterals” on page 37 and
“Porting defs, binds, and sets:
Replacing ‘Tables’ of Stored
Definitions” on page 67

defpup() Use GLUT or use X for menus. “GLX and GLUT Documentation”
on page xvi, Chapter 4, glXIntro
reference page, X documentation

Table A-1 (continued) IRIS GL Commands and Their OpenGL Equivalents

IRIS GL Call OpenGL/glu/glX Equivalent Where Discussed

114

Appendix A: OpenGL Commands and Their IRIS GL Equivalents

defrasterfont() GLUT font rendering functions,
glXUseXFont()a

“GLX and GLUT Documentation”
on page xvi, “Fonts and Strings” on
page 92

delobj() glDeleteLists() “Porting Display Lists” on page 63

deltag() Not supported. “Porting Display Lists” on page 63

depthcue() glFog()a “Porting Depth Cueing and Fog
Commands” on page 48

dglclose() Not needed—OpenGL is network
transparent.

dglopen() Not needed—OpenGL is network
transparent.

displacepolygon() glPolygonOffsetEXT()

glPolygonOffset()—OpenGL 1.1

“Porting RealityEngine Graphics
Features” on page 83

dither() glEnable(GL_DITHER) “Porting Color, Shading, and
Writemask Commands” on page 44

dopup() Use GLUT or use X for menus. GLX and GLUT Documentation,
Chapter 4, glXIntro reference page,
X documentation

doublebuffer() glXChooseVisual() Chapter 4 and glXIntro reference
page

draw() glBegin(GL_LINES)a “Porting Commands That Required
Current Graphics Positions” on
page 22 and “Porting Lines” on
page 36

drawmode() glXMakeCurrent()a

editobj() Not supported. “Porting Display Lists” on page 63

endclosedline() glEnd() “Porting bgn/end Commands” on
page 33 and “Porting Lines” on
page 36

Table A-1 (continued) IRIS GL Commands and Their OpenGL Equivalents

IRIS GL Call OpenGL/glu/glX Equivalent Where Discussed

115

endcurve() gluEndCurve() “Porting Curve and Surface
Commands” on page 52

endfeedback() glRenderMode(GL_RENDER) “Porting Feedback Calls” on page 80

endfullscreen() Not supported.

endline() glEnd() “Porting bgn/end Commands” on
page 33

endpick() glRenderMode(GL_RENDER) “Porting Picking Calls” on page 79

endpoint() glEnd() “Porting bgn/end Commands” on
page 33 and “Porting Points” on
page 35

endpolygon() glEnd() “Porting bgn/end Commands” on
page 33 and “Porting Polygons and
Quadrilaterals” on page 37

endpupmode() Use GLUT or use X for menus. GLX and GLUT Documentation,
Chapter 4, glXIntro reference page,
X documentation

endqstrip() glEnd() “Porting bgn/end Commands” on
page 33 and “Porting Polygons and
Quadrilaterals” on page 37

endselect() glRenderMode(GL_RENDER) “Porting Picking Calls” on page 79

endsurface() gluEndSurface() “NURBS Surfaces” on page 54

endtmesh() glEnd() “Porting bgn/end Commands” on
page 33 and “Porting Triangles” on
page 41

endtrim() gluEndTrim() “Trimming Curves” on page 54

fbsubtexload() Not supported in OpenGL 1.0. Use
glSubTexture*() in OpenGL 1.1.

“Porting RealityEngine Graphics
Features” on page 83

feedback() glFeedbackBuffer() “Porting Feedback Calls” on page 80

finish() glFinish()

Table A-1 (continued) IRIS GL Commands and Their OpenGL Equivalents

IRIS GL Call OpenGL/glu/glX Equivalent Where Discussed

116

Appendix A: OpenGL Commands and Their IRIS GL Equivalents

fogvertex() glFog() “Porting Depth Cueing and Fog
Commands” on page 48

font() See glListBase().

foreground() glutSwapBuffers,
glutPushWindow, glutPopWindow,
or use X for windowing

GLX and GLUT Documentation,
Chapter 4 and glXIntro reference
page

freepup() Use GLUT or X for menus. GLX and GLUT Documentation,
Chapter 4, glXIntro reference page,
X documentation

frontbuffer() glDrawBuffer(GL_FRONT)

frontface() See glCullFace().

fsubtexload() glCopyTexSubImage2D()—
OpenGL 1.1

fudge() Use X for windowing.

fullscrn() glutFullScreen See GLX and GLUT Documentation

gammaramp() Use GLUT or X for color maps. GLX and GLUT Documentation,
Chapter 4 and glXIntro reference
page

gbegin() Use X for windowing. Chapter 4 and glXIntro reference
page

gconfig() No equivalent (not needed). Chapter 4 and glXIntro reference
page

genobj() glGenLists() “Porting Display Lists” on page 63

gentag() Not supported.

getbackface() glGet*() “Porting IRIS GL get* Commands”
on page 20

getbuffer() glGet*() “Porting IRIS GL get* Commands”
on page 20

Table A-1 (continued) IRIS GL Commands and Their OpenGL Equivalents

IRIS GL Call OpenGL/glu/glX Equivalent Where Discussed

117

getbutton() Use X for windowing. “Porting IRIS GL get* Commands”
on page 20, Chapter 4, and glXIntro
reference page

getcmmode() glXGetCurrentContext() “Porting IRIS GL get* Commands”
on page 20, Chapter 4 and “Porting
Color, Shading, and Writemask
Commands” on page 44

getcolor() glGet*()

getcpos() glGet*() “Porting IRIS GL get* Commands”
on page 20

getcursor() Not supported. “Porting IRIS GL get* Commands”
on page 20

getdcm() glIsEnabled() “Porting IRIS GL get* Commands”
on page 20 and “Porting Depth
Cueing and Fog Commands” on
page 48

getdepth() glGet*() “Porting IRIS GL get* Commands”
on page 20

getdescender() Use X for fonts. “Fonts and Strings” on page 92 and
“Porting IRIS GL get* Commands”
on page 20

getdev() Not supported. “Porting IRIS GL get* Commands”
on page 20

getdisplaymode() glGet*() “Porting IRIS GL get* Commands”
on page 20

getdrawmode() glXGetCurrentContext() “Porting IRIS GL get* Commands”
on page 20

getfont() Use GLUT or X for fonts. GLX and GLUT Documentation,
“Porting IRIS GL get* Commands”
on page 20 and “Fonts and Strings”
on page 92

Table A-1 (continued) IRIS GL Commands and Their OpenGL Equivalents

IRIS GL Call OpenGL/glu/glX Equivalent Where Discussed

118

Appendix A: OpenGL Commands and Their IRIS GL Equivalents

getgdesc() glGet*(),

glXGetConfig(),

glXGetCurrentContext(),

glXGetCurrentDrawable()

“Porting IRIS GL get* Commands”
on page 20

getgpos() Not supported. “Porting Commands That Required
Current Graphics Positions” on
page 22 and “Porting IRIS GL get*
Commands” on page 20

getheight() Use X for fonts. GLX and GLUT Documentation,
“Fonts and Strings” on page 92 and
“Porting IRIS GL get* Commands”
on page 20

gethgram() glGetHistogramEXT() “Porting RealityEngine Graphics
Features” on page 83

gethitcode() Not supported. “Porting Picking Calls” on page 79
and “Porting IRIS GL get*
Commands” on page 20

getlsbackup() Not supported. “Porting Lines” on page 36 and
“Porting IRIS GL get* Commands”
on page 20

getlsrepeat() glGet*() “Porting IRIS GL get* Commands”
on page 20 and “Porting Lines” on
page 36

getlstyle() glGet*() “Porting IRIS GL get* Commands”
on page 20 and “Porting Lines” on
page 36

getlwidth() glGet*() “Porting IRIS GL get* Commands”
on page 20 and “Porting Lines” on
page 36

getmap(void) Not supported. “Porting IRIS GL get* Commands”
on page 20, Chapter 4 and “Porting
Color, Shading, and Writemask
Commands” on page 44

Table A-1 (continued) IRIS GL Commands and Their OpenGL Equivalents

IRIS GL Call OpenGL/glu/glX Equivalent Where Discussed

119

getmatrix() glGet*(GL_MODELVIEW_

 MATRIX),

glGet*(GL_PROJECTION_

 MATRIX)

“Porting IRIS GL get* Commands”
on page 20 and “Porting Matrix and
Transformation Calls” on page 24

getmcolor() Not supported. “Porting IRIS GL get* Commands”
on page 20, “Porting Color, Shading,
and Writemask Commands” on
page 44, Chapter 4 and glXIntro
reference page

getminmax() glGetMinmaxEXT() “Porting RealityEngine Graphics
Features” on page 83

getmmode() glGet*(GL_MATRIX_MODE) “Porting get* Calls for Matrices and
Transformations” on page 29.

getmonitor() Not supported. “Porting IRIS GL get* Commands”
on page 20

getnurbsproperty() gluGetNurbsProperty() “Porting IRIS GL get* Commands”
on page 20

getopenobj() Not supported. “Porting Display Lists” on page 63
and “Porting IRIS GL get*
Commands” on page 20

getorigin() Use X for windowing. “Porting IRIS GL get* Commands”
on page 20 and Chapter 4 and
glXIntro reference page

getpattern() glGetPolygonStipple() “Porting IRIS GL get* Commands”
on page 20 and “Porting Polygons
and Quadrilaterals” on page 37

getplanes() glGet*(GL_RED_BITS),

glGet*(GL_GREEN_BITS),

glGet*(GL_BLUE_BITS)

“Porting IRIS GL get* Commands”
on page 20

getport() Use X for windowing. “Porting IRIS GL get* Commands”
on page 20, Chapter 4, and glXIntro
reference page

Table A-1 (continued) IRIS GL Commands and Their OpenGL Equivalents

IRIS GL Call OpenGL/glu/glX Equivalent Where Discussed

120

Appendix A: OpenGL Commands and Their IRIS GL Equivalents

getresetls() Not supported. “Porting Lines” on page 36 and
“Porting IRIS GL get* Commands”
on page 20

getscrbox() Not supported. “Porting IRIS GL get* Commands”
on page 20 and “Porting Viewports,
Screenmasks, and Scrboxes” on
page 30

getscrmask() glGet*(GL_SCISSOR_BOX) “Porting IRIS GL get* Commands”
on page 20 and “Porting Viewports,
Screenmasks, and Scrboxes” on
page 30

getshade() glGet*(GL_CURRENT_INDEX) “Porting IRIS GL get* Commands”
on page 20

getsize() Use X for windowing. “Porting IRIS GL get* Commands”
on page 20, Chapter 4, and glXIntro
reference page

getsm() glGet*(GL_SHADE_MODEL) “Porting IRIS GL get* Commands”
on page 20 and “Porting Color,
Shading, and Writemask
Commands” on page 44

getvaluator() Use glutMainLoop() or use X for
event handling.

GLX and GLUT Documentation,
“Porting IRIS GL get* Commands”
on page 20, Chapter 4, and glXIntro
reference page

getvideo() Not supported. “Porting IRIS GL get* Commands”
on page 20

getviewport() glGet*(GL_VIEWPORT) “Porting IRIS GL get* Commands”
on page 20 and “Porting Viewports,
Screenmasks, and Scrboxes” on
page 30

getwritemask() glGet*(GL_INDEX_WRITEMASK) “Porting IRIS GL get* Commands”
on page 20 and “Porting Color,
Shading, and Writemask
Commands” on page 44

Table A-1 (continued) IRIS GL Commands and Their OpenGL Equivalents

IRIS GL Call OpenGL/glu/glX Equivalent Where Discussed

121

getwscrn() Use X for windowing. “Porting IRIS GL get* Commands”
on page 20, Chapter 4 and glXIntro
reference page

getzbuffer() glIsEnabled(GL_DEPTH_TEST) “Porting IRIS GL get* Commands”
on page 20

gexit() Use X for windowing.

gflush() glFlush()

ginit() Use GLUT or use X for windowing. GLX and GLUT Documentation,
Chapter 4, and glXIntro reference
page

glcompat() Not supported.

GLXgetconfig() glXChooseVisual(), glXGetConfig() Chapter 4 and glXIntro reference
page

GLXlink() Combination of glXCreateContext()
and glXMakeCurrent()

Chapter 4 and glXIntro reference
page

GLXunlink() glXMakeCurrent(display_name,
None, NULL)

Chapter 4 and glXIntro reference
page

GLXwinset() glXMakeCurrent() has some of the
functionality.

Chapter 4 and glXIntro reference
page

greset() Not supported. “Porting greset()” on page 19

gRGBcolor() glGet*(GL_CURRENT_

RASTER_COLOR)

“Porting Color, Shading, and
Writemask Commands” on page 44

gRGBcursor() Use GLUT or use X for cursors. GLX and GLUT Documentation,
Chapter 4, glXIntro reference page,
X documentation

gRGBmask() glGet*(
GL_COLOR_WRITEMASK)

“Porting Color, Shading, and
Writemask Commands” on page 44

gselect() glSelectBuffer()

Table A-1 (continued) IRIS GL Commands and Their OpenGL Equivalents

IRIS GL Call OpenGL/glu/glX Equivalent Where Discussed

122

Appendix A: OpenGL Commands and Their IRIS GL Equivalents

gsync() Use GLUt or use X for windowing. GLX and GLUT Documentation,
Chapter 4 and glXIntro reference
page

gversion() glGetString(GL_RENDERER)a Chapter 4 and glXIntro reference
page

hgram() glHistogramEXT(),
glResetHistogramEXT()

“Porting RealityEngine Graphics
Features” on page 83

iconsize() glutIconifyWindow, or use X GLX and GLUT Documentation or X
documentation for XIconSize()

icontitle() glutSetIconTitle, or use X GLX and GLUT Documentation or X
documentation for XSetIconName()

ilbuffer() Not supported. “Porting RealityEngine Graphics
Features” on page 83

ildraw() Not supported. “Porting RealityEngine Graphics
Features” on page 83

imakebackground() Use X for event handling. Chapter 4 and glXIntro reference
page

initnames() glInitNames()

ismex() Not supported.

isobj() glIsList() “Porting Display Lists” on page 63

isqueued() Use X for event handling. Chapter 4 and glXIntro reference
page

istag() Not supported. “Stencil Plane Calls” on page 63

istexloaded() glAreTexturesResident() —
OpenGL 1.1

“Porting RealityEngine Graphics
Features” on page 83

keepaspect() Use X for windowing. Chapter 4 and glXIntro reference
page

lampoff() Not supported. See X documentation for
XChangeKeyboardControl().

Table A-1 (continued) IRIS GL Commands and Their OpenGL Equivalents

IRIS GL Call OpenGL/glu/glX Equivalent Where Discussed

123

lampon() Not supported. See X documentation for
XChangeKeyboardControl().

leftbuffer() glDrawBuffer(GL_LEFT) “Porting RealityEngine Graphics
Features” on page 83

linesmooth() glEnable(GL_LINE_SMOOTH) “Porting Lines” on page 36 and
“Antialiasing Calls” on page 60

linewidth()

linewidthf*()

glLineWidth() “Porting Lines” on page 36

lmbind() glEnable(GL_LIGHTING)

glEnable(GL_LIGHTi)

“Porting bgn/end Commands” on
page 33, “Porting defs, binds, and
sets: Replacing ‘Tables’ of Stored
Definitions” on page 67, and
“Porting Lighting and Materials
Calls” on page 68

lmcolor() glColorMaterial() “Porting Lighting and Materials
Calls” on page 68

lmdef() glMaterial()

glLight()

glLightModel()

“Porting defs, binds, and sets:
Replacing ‘Tables’ of Stored
Definitions” on page 67 and
“Porting Lighting and Materials
Calls” on page 68

loadmatrix() glLoadMatrix() “Porting Matrix and Transformation
Calls” on page 24

loadname() glLoadName() “Porting Picking Calls” on page 79

logicop() glLogicOp() “Porting Pixel Operations” on
page 46

lookat() gluLookAt()a “Porting Matrix and Transformation
Calls” on page 24

lrectread() glReadPixels() “Porting Pixel Operations” on
page 46

lrectwrite() glDrawPixels() “Porting Pixel Operations” on
page 46

Table A-1 (continued) IRIS GL Commands and Their OpenGL Equivalents

IRIS GL Call OpenGL/glu/glX Equivalent Where Discussed

124

Appendix A: OpenGL Commands and Their IRIS GL Equivalents

lRGBrange() Not supported; see glFog(). “Porting Depth Cueing and Fog
Commands” on page 48

lsbackup() Not supported. “Porting Lines” on page 36

lsetdepth() glDepthRange() “Porting Depth Cueing and Fog
Commands” on page 48

lshaderange() Not supported; see glFog(). “Porting Depth Cueing and Fog
Commands” on page 48

lsrepeat() glLineStipple() “Porting Lines” on page 36

makeobj() glNewList() “Porting Display Lists” on page 63

maketag() Not supported. “Stencil Plane Calls” on page 63

mapcolor() XStoreColor() Chapter 4

mapw() gluProject() “Porting Matrix and Transformation
Calls” on page 24

maxsize() Use GLUT or use X for windowing. GLX and GLUT Documentation,
Chapter 4 and glXIntro reference
page

minmax() glMinmaxEXT() “Porting RealityEngine Graphics
Features” on page 83

minsize() Use GLUT or use X for windowing. GLX and GLUT Documentation,
Chapter 4 and glXIntro reference
page

mmode() glMatrixMode() “Porting Matrix and Transformation
Calls” on page 24

monobuffer() Superseded by selection of an
appropriate GLX visual.

glXChooseVisual() reference page
and “Porting RealityEngine
Graphics Features” on page 83

move() Not supported. “Porting Commands That Required
Current Graphics Positions” on
page 22

Table A-1 (continued) IRIS GL Commands and Their OpenGL Equivalents

IRIS GL Call OpenGL/glu/glX Equivalent Where Discussed

125

msalpha() glEnable(GL_SAMPLE_ALPHA_T
O_MASK_SGIS),
glEnable(GL_SAMPLE_ALPHA_T
O_ONE_SGIS)

“Porting RealityEngine Graphics
Features” on page 83

msmask() glSampleMaskSGIS() “Porting RealityEngine Graphics
Features” on page 83

mspattern() glSamplePatternSGIS() “Porting RealityEngine Graphics
Features” on page 83

mssize() glXChooseVisual with attribute
GLX_SAMPLE_BUFFERS_SGIS

“Porting RealityEngine Graphics
Features” on page 83

mswapbuffers() glutSwapBuffers, glxSwapbuffers GLX and GLUT Documentation or X
documentation

multimap() Use X for color maps. “Porting Color, Shading, and
Writemask Commands” on page 44,
also Chapter 4, glXIntro reference
page

multisample() glEnable(
GL_MULTISAMPLE_SGIS)

“Porting RealityEngine Graphics
Features” on page 83

multmatrix() glMultMatrix()

n3f() glNormal3fv() “Porting bgn/end Commands” on
page 33

newpup() Use GLUT or X for menus. GLX and GLUT Documentation,
Chapter 4, glXIntro reference page,
X documentation

newtag() Not supported. “Porting Display Lists” on page 63

nmode() glEnable(GL_NORMALIZE)

noborder() Use X for windowing. Chapter 4 and glXIntro reference
page

noise() Use X for event handling. Chapter 4 and glXIntro reference
page

Table A-1 (continued) IRIS GL Commands and Their OpenGL Equivalents

IRIS GL Call OpenGL/glu/glX Equivalent Where Discussed

126

Appendix A: OpenGL Commands and Their IRIS GL Equivalents

noport() Use X for windowing. Chapter 4 and glXIntro reference
page

normal() glNormal3fv()

nurbscurve() gluNurbsCurve()a “NURBS Curves” on page 53 and
“Trimming Curves” on page 54

nurbssurface() gluNurbsSurface()a “NURBS Surfaces” on page 54

objdelete() Not supported. “Stencil Plane Calls” on page 63

objinsert() Not supported. “Stencil Plane Calls” on page 63

objreplace() Not supported. “Porting Display Lists” on page 63

onemap() Use GLUT or X for color maps. “GLX and GLUT Documentation”
on page xvi, “Porting Color,
Shading, and Writemask
Commands” on page 44, and
Chapter 4 and glXIntro reference
page

ortho() glOrtho() “Porting Matrix and Transformation
Calls” on page 24

ortho2() gluOrtho2D() “Porting Matrix and Transformation
Calls” on page 24

overlay() Use GLUT overlay functions or
use X.

“GLX and GLUT Documentation”
on page xvi, Chapter 4, glXIntro
reference pages, and
glXChooseVisual()

pagecolor() Not supported.

passthrough() glPassThrough() “Porting Feedback Calls” on page 80

patch() glEvalMesh2()a “Porting Curve and Surface
Commands” on page 52

patchbasis() glMap2()a “Porting Curve and Surface
Commands” on page 52

Table A-1 (continued) IRIS GL Commands and Their OpenGL Equivalents

IRIS GL Call OpenGL/glu/glX Equivalent Where Discussed

127

patchcurves() glMap2()a “Porting Curve and Surface
Commands” on page 52

patchprecision() Not supported. “Porting Curve and Surface
Commands” on page 52

pclos() Not supported; see glEnd(). “Porting Commands That Required
Current Graphics Positions” on
page 22 and “Porting Polygons and
Quadrilaterals” on page 37

pdr() Not supported; see glVertex(). “Porting Commands That Required
Current Graphics Positions” on
page 22 and “Porting Polygons and
Quadrilaterals” on page 37

perspective() gluPerspective() “Porting Matrix and Transformation
Calls” on page 24

pick() gluPickMatrix()a and

glRenderMode(GL_SELECT)

“Porting Picking Calls” on page 79

picksize() gluPickMatrix() “Porting Matrix and Transformation
Calls” on page 24 and “Porting
Picking Calls” on page 79

pixelmap() glPixelMap() “Porting RealityEngine Graphics
Features” on page 83

pixeltransfer() glPixelTransfer() “Porting RealityEngine Graphics
Features” on page 83

pixmode() glPixelTransfer() and glPixelStore() “Porting Pixel Operations” on
page 46

pmv() Not supported; see glBegin() and
glVertex().

“Porting Commands That Required
Current Graphics Positions” on
page 22 and “Porting Polygons and
Quadrilaterals” on page 37

pnt*() glBegin(GL_POINTS)a “Porting Points” on page 35

pntsize(), pntsizef() glPointSize() “Porting Points” on page 35

Table A-1 (continued) IRIS GL Commands and Their OpenGL Equivalents

IRIS GL Call OpenGL/glu/glX Equivalent Where Discussed

128

Appendix A: OpenGL Commands and Their IRIS GL Equivalents

pntsmooth() glEnable(GL_POINT_SMOOTH) “Porting Points” on page 35 and
“Antialiasing Calls” on page 60

polarview() Not supported; see glRotate() and
glTranslate().

“Porting Matrix and Transformation
Calls” on page 24

polf() Not supported. “Porting Polygons and
Quadrilaterals” on page 37

poly() Not supported. “Porting Polygons and
Quadrilaterals” on page 37

polymode() glPolygonMode() “Porting Polygons and
Quadrilaterals” on page 37

polysmooth() glEnable(
GL_POLYGON_SMOOTH)

“Antialiasing Calls” on page 60

popattributes() glPopAttrib(), glPopClientAttrib() “Porting greset()” on page 19
explains how to use glPopAttrib()

popmatrix() glPopMatrix() “Porting Matrix and Transformation
Calls” on page 24

popname() glPopName() “Porting Picking Calls” on page 79

popviewport() glPopAttrib() “Porting Viewports, Screenmasks,
and Scrboxes” on page 30

prefposition() Use X for windowing. Chapter 4 and glXIntro reference
page

prefsize() Use X for windowing. Chapter 4 and glXIntro reference
page

pupmode() Use X for windowing. Chapter 4 and glXIntro reference
page

pushattributes() glPushAttrib(),
glPushClientAttrib()

pushmatrix() glPushMatrix() “Porting Matrix and Transformation
Calls” on page 24

pushname() glPushName() “Porting Picking Calls” on page 79

Table A-1 (continued) IRIS GL Commands and Their OpenGL Equivalents

IRIS GL Call OpenGL/glu/glX Equivalent Where Discussed

129

pushviewport() glPushAttrib(GL_VIEWPORT) “Porting Viewports, Screenmasks,
and Scrboxes” on page 30

pwlcurve() gluPWLCurve() “Trimming Curves” on page 54

qcontrol() Use X for event handling. Chapter 4 and glXIntro reference
page

qdevice() Use X for event handling. Chapter 4 and glXIntro reference
page

qenter() Use X for event handling. Chapter 4 and glXIntro reference
page

qgetfd() Use X for event handling. Chapter 4 and glXIntro reference
page

qread() Use X for event handling. Chapter 4 and glXIntro reference
page

qreset() Use X for event handling. Chapter 4 and glXIntro reference
page

qtest() Use X for event handling. Chapter 4 and glXIntro reference
page

rcrv(), rcrvn() Not supported. “Porting Curve and Surface
Commands” on page 52

rdr() Not supported. “Porting Commands That Required
Current Graphics Positions” on
page 22

readcomponent() glReadPixels() gives partial
support; some readcomponent()
features aren’t supported.

“Porting RealityEngine Graphics
Features” on page 83

readdisplay() Not supported.

readpixels() glReadPixels() “Porting Pixel Operations” on
page 46

readRGB() Not supported. “Porting Pixel Operations” on
page 46

Table A-1 (continued) IRIS GL Commands and Their OpenGL Equivalents

IRIS GL Call OpenGL/glu/glX Equivalent Where Discussed

130

Appendix A: OpenGL Commands and Their IRIS GL Equivalents

readsource() glReadBuffer() “Porting Pixel Operations” on
page 46

rect(), rectf() See glRect() and glPolygonMode(). “Porting Polygons and
Quadrilaterals” on page 37

rectcopy() glCopyPixels() “Porting Pixel Operations” on
page 46

rectread() glReadPixels() “Porting Pixel Operations” on
page 46

rectwrite() glDrawPixels() “Porting Pixel Operations” on
page 46

rectzoom() glPixelZoom() “Porting Pixel Operations” on
page 46

resetls() Not supported. “Porting Lines” on page 36

reshapeviewport() Not supported. Chapter 4 and glXIntro reference
page

RGBcolor() glColor() “Porting bgn/end Commands” on
page 33 and “Porting Color,
Shading, and Writemask
Commands” on page 44

RGBcursor() Use glutSetCursor or use X for
cursors.

GLX and GLUT Documentation,
Chapter 4, glXIntro reference page,
X documentation

RGBmode() Use X for windowing. Chapter 4 and glXIntro reference
page

RGBrange() Not supported.

RGBsize() Not supported, but the
glXChooseVisual() function does
some similar things.

glXChooseVisual() reference page

RGBwritemask() glColorMask() “Porting Color, Shading, and
Writemask Commands” on page 44

Table A-1 (continued) IRIS GL Commands and Their OpenGL Equivalents

IRIS GL Call OpenGL/glu/glX Equivalent Where Discussed

131

rightbuffer() glDrawBuffer(GL_RIGHT) “Porting RealityEngine Graphics
Features” on page 83

ringbell() Not supported. X documentation for XBell()

rmv() Not supported. “Porting Commands That Required
Current Graphics Positions” on
page 22

rot() glRotate() “Porting Matrix and Transformation
Calls” on page 24

rotate() glRotate() “Porting Matrix and Transformation
Calls” on page 24

rpatch() Not supported. “Porting Curve and Surface
Commands” on page 52

rpdr() Not supported. “Porting Commands That Required
Current Graphics Positions” on
page 22 and “Porting Polygons and
Quadrilaterals” on page 37

rpmv() Not supported. “Porting Commands That Required
Current Graphics Positions” on
page 22 and “Porting Polygons and
Quadrilaterals” on page 37

sbox(), sboxf() glRect()a “Porting Polygons and
Quadrilaterals” on page 37

scale() glScale() “Porting Matrix and Transformation
Calls” on page 24

sclear() glClear(
GL_STENCIL_BUFFER_BIT)

“Porting Screen and Buffer Clearing
Commands” on page 23 and
“Stencil Plane Calls” on page 63

scrbox() Not supported. “Porting Viewports, Screenmasks,
and Scrboxes” on page 30

screenspace() Not supported. “Porting Matrix and Transformation
Calls” on page 24

Table A-1 (continued) IRIS GL Commands and Their OpenGL Equivalents

IRIS GL Call OpenGL/glu/glX Equivalent Where Discussed

132

Appendix A: OpenGL Commands and Their IRIS GL Equivalents

scrmask() glScissor() “Porting Viewports, Screenmasks,
and Scrboxes” on page 30

scrnattach() Use X for windowing. Chapter 4 and glXIntro reference
page

scrnselect() Use X for windowing. Chapter 4 and glXIntro reference
page

scrsubdivide() Not supported.

select() glRenderMode() “Porting Picking Calls” on page 79

setbell() Not supported. X documentation for
XChangeKeyboardControl()

setcursor() glutSetCursor, or use X for cursors GLX and GLUT Documentation,
Chapter 4, glXIntro reference page,
and X documentation

setdblights() Not supported. dial and button box documentation

setdepth() glDepthRange()a

setlinestyle() glLineStipple() “Porting Lines” on page 36 and
“Porting defs, binds, and sets:
Replacing ‘Tables’ of Stored
Definitions” on page 67

setmap() Use GLUT or X for color maps. GLX and GLUT Documentation,
“Porting Color, Shading, and
Writemask Commands” on page 44,
Chapter 4, and glXIntro reference
page

setmonitor() Not supported.

setnurbsproperty() gluNurbsProperty()

setpattern() glPolygonStipple() “Porting Polygons and
Quadrilaterals” on page 37 and
“Porting defs, binds, and sets:
Replacing ‘Tables’ of Stored
Definitions” on page 67

Table A-1 (continued) IRIS GL Commands and Their OpenGL Equivalents

IRIS GL Call OpenGL/glu/glX Equivalent Where Discussed

133

setpup() Use GLUT or X for menus. GLX and GLUT Documentation,
Chapter 4, glXIntro reference page,
X documentation

setvaluator() Use GLUT or X for devices. GLX and GLUT Documentation,
Chapter 4, glXIntro reference page,
X documentation

setvideo() Not supported.

shademodel() glShadeModel() “Porting Color, Shading, and
Writemask Commands” on page 44

shaderange() glFog()

singlebuffer() Use X for windowing. GLX and GLUT Documentation,
Chapter 4 and glXIntro reference
page

smoothline() glEnable(GL_LINE_SMOOTH) “Porting Lines” on page 36

spclos() Not supported. “Porting Polygons and
Quadrilaterals” on page 37

splf() Not supported see glBegin(). “Porting Polygons and
Quadrilaterals” on page 37

stencil() glStencilFunc(), glStencilOp() “Stencil Plane Calls” on page 63

stensize() glStencilMask() “Stencil Plane Calls” on page 63

stepunit() Use X for windowing. Chapter 4 and glXIntro reference
page

stereobuffer() Superseded by selection of an
appropriate GLX visual.

glXChooseVisual() reference page
and “Porting RealityEngine
Graphics Features” on page 83

strwidth() Use X for fonts and strings. “Fonts and Strings” on page 92

subpixel() Not needed. “Porting Antialiasing Calls” on
page 58

Table A-1 (continued) IRIS GL Commands and Their OpenGL Equivalents

IRIS GL Call OpenGL/glu/glX Equivalent Where Discussed

134

Appendix A: OpenGL Commands and Their IRIS GL Equivalents

subtexload() glTexSubImage2DEXT()—OpenGL
1.0

glTexSubImage2D()—OpenGL 1.1

“Porting RealityEngine Graphics
Features” on page 83

swapbuffers() glXSwapBuffers() glXIntro and glXSwapBuffers()
reference pages

swapinterval() Not supported.

swaptmesh() Not supported;

see glBegin(GL_TRIANGLE_FAN)

“Porting Triangles” on page 41

swinopen() Use X for windowing Chapter 4 and glXIntro reference
page

swritemask() glStencilMask() “Stencil Plane Calls” on page 63

t2*(), t3*(), t4*() glTexCoord*() “Porting Texture Calls” on page 73

tevbind() glTexEnv() “Porting defs, binds, and sets:
Replacing ‘Tables’ of Stored
Definitions” on page 67 and
“Porting Lighting and Materials
Calls” on page 68

tevdef() glTexEnv() “Porting defs, binds, and sets:
Replacing ‘Tables’ of Stored
Definitions” on page 67, “Porting
Lighting and Materials Calls” on
page 68, and “Translating tevdef()”
on page 75

texbind() glTexImage2D(),

glTexParameter(),

gluBuild2DMipmaps(),

“Porting defs, binds, and sets:
Replacing ‘Tables’ of Stored
Definitions” on page 67 and
“Porting Texture Calls” on page 73

texdef2d() glTexImage2D(),

glTexParameter(),

gluBuild2DMipmaps()

“Porting defs, binds, and sets:
Replacing ‘Tables’ of Stored
Definitions” on page 67, “Porting
Lighting and Materials Calls” on
page 68, and “Translating texdef()”
on page 76

Table A-1 (continued) IRIS GL Commands and Their OpenGL Equivalents

IRIS GL Call OpenGL/glu/glX Equivalent Where Discussed

135

texdef3d() glTexImage3DEXT() “Porting RealityEngine Graphics
Features” on page 83

texgen() glTexGen() “Porting Lighting and Materials
Calls” on page 68 and “Translating
texgen()” on page 78

textcolor() Not supported.

textinit() Not supported.

textport() Not supported.

tie() Use X for event handling. Chapter 4 and glXIntro reference
page

tlutbind() Not supported. “Porting RealityEngine Graphics
Features” on page 83

tlutdef() Not supported. “Porting RealityEngine Graphics
Features” on page 83

tpoff() Not supported.

tpon() Not supported.

translate() glTranslate() “Porting Matrix and Transformation
Calls” on page 24

underlay() glXChooseVisual()

unqdevice() Use X for event handling. Chapter 4 and glXIntro reference
page

v2*(), v3*(), v4*() glVertex*() “Porting v() Commands” on page 33

videocmd() Not supported.

viewport() glViewport() “Porting Viewports, Screenmasks,
and Scrboxes” on page 30

winattach() Use GLUT or X for windowing. GLX and GLUT Documentation,
Chapter 4, and glXIntro reference
page

Table A-1 (continued) IRIS GL Commands and Their OpenGL Equivalents

IRIS GL Call OpenGL/glu/glX Equivalent Where Discussed

136

Appendix A: OpenGL Commands and Their IRIS GL Equivalents

winclose() glXDestroyContext(),
XCloseDisplay()

winconstraints() Use X for windowing. Chapter 4 and glXIntro reference
page

windepth() Use X for windowing. Chapter 4 and glXIntro reference
page

window() glFrustum() “Porting Matrix and Transformation
Calls” on page 24

winget() glXGetCurrentContext()

winmove() glutPositionWindow(), or use X for
windowing

GLX and GLUT Documentation,
Chapter 4 and glXIntro reference
page

winopen() glutShowWindow(), or use X for
windowing

GLX and GLUT Documentation,
Chapter 4 and glXIntro reference
page

winpop() glutPopWindow, or use X for
windowing

GLX and GLUT Documentation,
Chapter 4 and glXIntro reference
page

winposition() glutPositionWindow, or use X for
windowing

GLX and GLUT Documentation,
Chapter 4 and glXIntro reference
page

winpush() glutPushWindow, or use X for
windowing

GLX and GLUT Documentation,
Chapter 4 and glXIntro reference
page

winset() Use GLUT or use X for windowing. GLX and GLUT Documentation,
Chapter 4 and glXIntro and
glXMakeCurrent() reference pages

wintitle() glutSetWindowTitle, or use X for
windowing

GLX and GLUT Documentation
Chapter 4 and glXIntro reference
page

wmpack() glColorMask() Chapter 4

Table A-1 (continued) IRIS GL Commands and Their OpenGL Equivalents

IRIS GL Call OpenGL/glu/glX Equivalent Where Discussed

137

a. Note that this is not a direct equivalent of IRIS GL functionality—be careful when porting.

writemask() glIndexMask()

writepixels() glDrawPixels()

writeRGB() glDrawPixels()

xfpt*() Not supported. “Porting Picking Calls” on page 79;
“Porting Feedback Calls” on page 80

zbsize() Superseded by selection of an
appropriate GLX visual.

glXChooseVisual() reference page
and “Porting RealityEngine
Graphics Features” on page 83

zbuffer() glEnable(GL_DEPTH_TEST)

zclear() glClear(GL_DEPTH_BUFFER_BIT) “Porting Screen and Buffer Clearing
Commands” on page 23

zdraw() Not supported.

zfunction() glDepthFunc()

zsource() Not supported.

zwritemask() glDepthMask() “Porting Color, Shading, and
Writemask Commands” on page 44

Table A-1 (continued) IRIS GL Commands and Their OpenGL Equivalents

IRIS GL Call OpenGL/glu/glX Equivalent Where Discussed

139

Appendix B

B. Differences Between OpenGL and IRIS GL

This appendix contains a list of differences between OpenGL and IRIS GL in alphabetical
order. The list is based, in part, on a document by Kurt Akeley (May 1992) that was
updated by Mark Kilgard in May 1997. Each difference is given a simple concept name,
based on an IRIS GL concept, followed by a description. To look up a difference, find the
concept name in the alphabetical list and read the description.

accumulation from the z-buffer Reading from and writing to the z-buffer from the
accumulation buffer isn’t supported in OpenGL

accumulation wrapping OpenGL accumulation buffer operation is not defined when
component values exceed 1.0 or go below -1.0.

antialiased lines OpenGL stipples antialiased lines. IRIS GL does not.

arc OpenGL supports arcs in its utility library (GLU).

attribute lists The attributes pushed by IRIS GL pushattributes() differ
from any of the attribute sets that are pushed by OpenGL
glPushAttrib() and glPushClientAttrib(). Because all
OpenGL states can be read back, however, it is possible to
implement any desired push/pop semantics using the
OpenGL API.

automatic mipmap generation The OpenGL texture interface does not support automatic
mipmap generation. However, the utility library supports
automatic generation of mipmap images for both 1D and 2D
textures. See the gluBuild1DMipmaps and
gluBuild2DMipmaps reference pages.

automatic texture scaling The OpenGL texture interface does not support automatic
scaling of images to power-of-two dimensions. However,
scaling is supported by the OpenGL utility library. See the
gluScaleImage reference page.

bbox OpenGL does not support conditional execution of display
lists.

140

Appendix B: Differences Between OpenGL and IRIS GL

buffers, multiple Anything involving multiple buffers or windowing must be
done in X or with GLUT.

callfunc OpenGL does not support callback from display lists. Note
that IRIS GL also did not support this functionality when
client and server were on different platforms.

circle OpenGL supports circles in the GLU. In OpenGL both
circles and arcs (disks and partial disks) can have holes.
Subdivision of the primitives can be changed in OpenGL
and the primitives’ surface normals are available for
lighting.

clear options OpenGL really clears buffers. It does not apply most
currently specified pixel operations, such as blending and
logicop, regardless of their modes, though there are some
options that are applied. To clear using such features, you
must render a window-size polygon.

closed lines OpenGL renders all single-width aliased lines such that
abutting lines share no pixels. This means that the “last”
pixel of an independent line is not drawn.

color maps Changing the color map under OpenGL must be done using
the X color map.

color/normal flag OpenGL lighting is explicitly enabled or disabled. When
enabled, it is effective regardless of the order in which colors
and normals are specified.

Lighting cannot be enabled or disabled between OpenGL
glBegin() and glEnd() commands. If you need to disable
lighting between glBegin() and glEnd(), you must do it by
specifying zero ambient, diffuse, and specular material
reflectance. Then set the material emission to the desired
color.

color packing OpenGL has no need for cpack(); you can use four-item
vectors to specify colors instead.

141

color range with c3i() The OpenGL glColor*() routines that appear to correspond
directly to IRIS GL c3*() and c4*() routines are not actually
equivalent. For instance, the IRIS GL c3i() function took
arguments in the range [0, 255] for each color; but in
OpenGL, glColor3i() allows signed arguments with values
up to over two billion. Check the OpenGL Programming Guide
for details on argument value ranges, and use glColor3ub()
as a replacement for c3i().

concave polygons The OpenGL API does not handle concave polygons, but the
GLU library does provide support for decomposing
concave, non-self-intersecting contours into triangles. These
triangles can either be drawn immediately or returned. See
the gluNewTess reference page.

current computed color OpenGL has no notion of a current computed color. If you’re
using OpenGL as a lighting engine, you can use feedback to
obtain colors generated by lighting calculations.

current graphics position OpenGL does not maintain a current graphics position. IRIS
GL commands that depended on current graphics position,
such as relative lines and polygons, are not available in
OpenGL.

curves OpenGL does not support IRIS GL curves. Use of NURBS
curves is recommended.

defs/binds OpenGL 1.0 does not have the concept of a material, light, or
texture objects, only of material, light, and texture
properties. OpenGL programmers can use display lists to
create their own objects. In OpenGL 1.1, you can use texture
objects, as discussed in the OpenGL Programming Guide.

depthcue OpenGL provides no direct support for depth cueing.
However, its fog support is a more general capability that
you can easily use to emulate IRIS GL depthcue().

142

Appendix B: Differences Between OpenGL and IRIS GL

display list editing OpenGL display lists cannot be edited, only created and
destroyed. Because display list names are specified by the
programmer, however, it is possible to redefine individual
display lists in a hierarchy.

OpenGL display lists are designed for data caching, not for
database management. They are guaranteed to be stored on
the server in client/server environments, so they are not
limited by network bandwidth during execution.

OpenGL display lists can be called between glBegin() and
glEnd() commands, so the display list hierarchy can be
made fine enough that it can, in effect, be edited.

error checking OpenGL checks for errors more carefully than IRIS GL. For
example, all OpenGL commands that are not accepted
between glBegin() and glEnd() are detected as errors, and
have no other effect.

error return values When an OpenGL command that returns a value detects an
error, it always returns zero. OpenGL commands that return
data through passed pointers make no change to the array
contents if an error is detected.

error side effects When an OpenGL command results in an error, its only side
effect is to update the error flag to the appropriate value. No
other state changes are made. (An exception is the
OUT_OF_MEMORY error, which is fatal.)

evaluators Input and output that was done with such functions as
getbutton(), qread(), and qdevice() in IRIS GL must be done
using X calls with OpenGL, as must cursor-manipulation
functions.

feedback In OpenGL, feedback is standardized so that it doesn’t
change from machine to machine. “Porting Feedback Calls”
on page 80 explains how to port your IRIS GL feedback calls.

fog In OpenGL, you can’t use depth-cueing and fog at the same
time, because fog is used to emulate depth-cueing. IRIS GL
allows more options to fog; some OpenGL implementations
may compute fog per-vertex instead of per-fragment. Some
new extension for fog functionality will be released as
extensions to OpenGL 1.1.

143

fonts and strings OpenGL expects character glyphs to be manipulated as
individual display lists. It provides a display list calling
function that accepts a list of display list names, each name
represented as 1, 2, or 4 bytes. glCallLists() adds a
separately specified offset to each display list name before
the call, allowing lists of display list names to be treated as
strings.

This mechanism provides all the functionality of IRIS GL
fonts, and considerably more. For example, characters
consisting of triangles can be easily manipulated.

OpenGL programs can use the OpenGL Character Renderer
(GLC) library for accessing particular fonts. See the glcintro
reference page.

frontbuffer IRIS GL had complex rules for defeating rendering to the
front buffer in singlebuffer mode. OpenGL does as it is
asked in this regard.

hollow polygons OpenGL does not support hollow polygons. However, you
can use the OpenGL stencil capability to render hollow
polygons.

index clamping Where possible, OpenGL treats color and stencil indexes as
bitfields rather than numbers. Thus indexes are masked,
rather than clamped, to the supported range of the
framebuffer.

input and output I/O in OpenGL is usually handled by X calls. See Chapter 4
for more information.

integer colors Signed integer color components (red, green, blue, or alpha)
are linearly mapped to floating point such that the most
negative integer maps to -1.0 and the most positive integer
maps to 1.0. This mapping occurs when the color is
specified, before it replaces the current color.

Unsigned integer color components are linearly mapped to
floating point such that 0 maps to 0.0 and the largest
representable integer maps to 1.0. This mapping occurs
when the color is specified, before it replaces the current
color.

integer normals Integer normal components are mapped just like signed
color components, such that the most negative integer maps
to -1.0, and the most positive integer maps to 1.0.

144

Appendix B: Differences Between OpenGL and IRIS GL

invariance OpenGL guarantees certain invariances that IRIS GL does
not. For example, OpenGL guarantees that identical code
sequences sent to the same system, differing only in the
blending function specified, will generate the same pixel
fragments. (The fragments may be different if blending is
enabled and disabled, however.)

lighting equation The OpenGL lighting equation differs slightly from the IRIS
GL equation. OpenGL supports separate attenuation for
each light source, rather than a single attenuation for all the
light sources as in IRIS GL, and OpenGL regularizes the
equation so that ambient, diffuse, and specular lighting
contributions are all attenuated. In addition, OpenGL lets
you specify separate colors for the ambient, diffuse, and
specular intensities of light sources, and for the ambient,
diffuse, and specular reflectance of materials. All OpenGL
light and material colors must include an alpha value,
though only the diffuse material-color alpha value is
actually used for lighting.

Setting the specular exponent to zero does not defeat
specular lighting in OpenGL.

OpenGL supports local lights in color index mode. IRIS GL
does not.

line stipple repeat OpenGL line stipple repeat is clamped to [1, 256], while IRIS
GL clamps this value to [1, 255].

mapw() OpenGL utilities don’t directly support mapping between
object and window coordinates. If you specify the right
projection matrix and viewport, you may be able to achieve
the same effect using gluProject().

material color In IRIS GL, you could call lmcolor() between a call to
bgnprimitive() and the corresponding endprimitive() call.
In OpenGL, you can’t call glColorMaterial() between a
glBegin() and its corresponding glEnd().

Material coloring in IRIS GL it was connected with lighting
models. In OpenGL, it’s part of the OpenGL state.

145

matrix mode All OpenGL matrix operations operate on the current
matrix, rather than on a particular matrix, as do the IRIS GL
ortho(), ortho2(), perspective(), and window() commands.
All OpenGL matrix operations except glLoadIdentity() and
glLoadMatrix() multiply the current matrix rather than
replacing it (as do ortho(), ortho2(), perspective(), and
window() in IRIS GL).

mipmaps, automatic generation The OpenGL texture interface does not support automatic
generation of mipmap images. GLU does support automatic
generation of mipmap images for both 1D and 2D textures;
however, GLU mipmap generation isn’t as flexible as that of
IRIS GL. (For instance, GLU doesn’t currently allow you to
set weights for the texels when you average texels to
generate a small mipmap from a larger one.)

mixed-model For an extensive discussion of this topic, see Chapter 4,
“OpenGL in the X Window System.” Note in particular that
IRIS GL mixed-model routines had, in some cases, names
confusingly similar to unrelated OpenGL routines; see
“Function Naming Conventions” in Chapter 4 for details.

move/draw/pmove/pdraw/
pclos

OpenGL supports only glBegin/glEnd style graphics,
because it does not maintain a current graphics position. The
scalar parameter specification of the old move/draw
commands is accepted by OpenGL for all vertex related
commands, however.

mprojection mode IRIS GL did not transform geometry by the modelview
matrix while in projection matrix mode. OpenGL always
transforms by both the modelview nad the projection
matrix, regardless of matrix mode.

MSINGLE mode See the entry for “single matrix mode” in this appendix.

multi-buffer drawing OpenGL renders to each color buffer individually, rather
than computing a single new color value based on the
contents of one color buffer and writing it to all the enabled
color buffers, as IRIS GL did.

multisampling Multisampling is supported only in an extension to
OpenGL. See the OpenGL on Silicon Graphics Systems
document.

146

Appendix B: Differences Between OpenGL and IRIS GL

normals When OpenGL transforms normals, it uses the exact inverse
of the modelview matrix. Thus, all scale commands, even
scale commands with the same scale values for x, y, and z,
affect the lengths of transformed normals. Avoid calling
glScale() if you want the performance advantage of leaving
GL_NORMALIZE disabled.

NURBS OpenGL supports NURBS with a combination of core
capability (evaluators) and GLU support. GLU currently
supports only Bernstein polynomials, not all splines; in the
future, GLU may support changing the basis matrix to
handle all splines. See the gluNewNurbsRenderer reference
page.

old polygon mode Aliased OpenGL polygons are always point sampled. The
old polygon compatibility mode of the IRIS GL, where
pixels outside the polygon perimeter were included in its
rasterization, is not supported. If your code uses old
polygon mode, it’s probably for rectangles. Old polygon
mode rectangles appear one pixel wider and higher.

packed color formats OpenGL accepts colors as 8-bit components, but these
components are treated as an array of bytes rather than as
bytes packed into larger words. By encouraging array
indexing rather than shifting, OpenGL promotes
endian-invariant programming.

Just as IRIS GL accepted packed colors both for geometric
and pixel rendering, OpenGL accepts arrays of color
components for geometric and pixel rendering

patches OpenGL does not support IRIS GL patches. Use of
evaluators is recommended.

per-bit color writemask OpenGL writemasks for color components enable or disable
changes to the entire component (red, green, blue, or alpha),
not to individual bits of components. Note that per-bit
writemasks are supported for both color indexes and stencil
indexes, however.

per-bit depth writemask OpenGL writemasks for depth components enable or
disable changes to the entire component, not to individual
bits of the depth component.

147

performance The performance of an OpenGL program depends in part on
whether certain OpenGL features are used. A
straightforward port of an IRIS GL program will probably
require tuning to achieve maximum performance in
OpenGL. For some tips on maximizing OpenGL
performance, see “Performance” on page 14.

pick The OpenGL utility library includes support for generating
a pick matrix. See the gluPickMatrix reference page.

pixel coordinates OpenGL and IRIS GL agree that the origin of a window’s
coordinate system is at its lower left corner. OpenGL places
the origin at the lower left corner of this pixel, however,
while IRIS GL placed it at the center of the lower left pixel.

Note that the X Window System assumes an upper left
corner for its origin.

pixel fragments Pixels drawn by glDrawPixels() or glCopyPixels() are
always rasterized and converted to fragments. The resulting
fragments are textured, fogged, depth buffered, blended,
and so on, just as if they had been generated from geometric
points. Fragment data that are not provided by the source
pixels are augmented from the current raster position. For
example, RGBA pixels take the raster position Z and texture
coordinates. Depth pixels take the raster position color and
texture coordinates.

pixel zoom OpenGL negative zoom factors reflect about the current
graphics position. IRIS GL doesn’t define the operation of
negative zoom factors, and instead provides
RIGHT_TO_LEFT and TOP_TO_BOTTOM reflection
pixmodes. These reflection modes reflect in place, rather
than about the current raster position. OpenGL doesn’t
define reflection modes. Also, OpenGL allows fractional
zoom factors.

pixmode OpenGL pixel transfers operate on individual color
components, rather than on packed groups of four 8-bit
components as does IRIS GL. While OpenGL provides
substantially more pixel capability than IRIS GL, it does not
support packed color constructs, and it does not allow color
components to be reassigned (red to green, red to blue, and
so on) during pixel copy operations.

148

Appendix B: Differences Between OpenGL and IRIS GL

polf()/poly() OpenGL provides no direct support for vertex lists other
than display lists. Functions like polf() and poly() can easily
be implemented using the OpenGL API, however.

polygon mode OpenGL supports only filled, outlined, and dotted
polygons. There is no hollow polygon mode as in IRIS GL.
OpenGL polygon modes are specified separately for front
and back facing polygons, while IRIS GL shares a single
mode for all polygons.

polygon provoking vertex Flat shaded IRIS GL polygons took the color of the last
vertex specified, while OpenGL polygons take the color of
the first vertex specified. (Note that this is true only for the
GL_POLYGON primitive, not for triangles, triangle strips,
and other primitive types, each of which take their colors
from different vertices. See the reference page for
glShadeModel for details.)

polygon stipple In IRIS GL the polygon stipple pattern is screen-relative. In
OpenGL it is window-relative.

polygon vertex count There is no limit to the number of vertexes between
glBegin() and glEnd() in OpenGL, even for
glBegin(POLYGON). In IRIS GL polygons are limited to no
more than 255 vertexes.

readdisplay Reading pixels outside window boundaries is properly a
window system capability, rather than a renderer capability.
Silicon Graphics supports an extension to X that replaces the
IRIS GL readdisplay() command. See the XReadDisplay
reference page.

RealityEngine graphics features Many of the special RealityEngine graphics features of
IRIS GL (including multisampling and some
texture-mapping features) have been implemented as
extensions to OpenGL.

relativemove/draw/pmove/
pdraw/pclos

OpenGL does not maintain a current graphics position, and
therefore is unable to support relative vertex operations. The
semantics of such operations can easily be emulated by
using the matrix and glTranslate().

reset linestyle IRIS GL resetls() has not been supported for some time, and
is not supported by OpenGL.

149

RGBA logicop() OpenGL 1.0 does not support logical operations on RGBA
buffers. OpenGL 1.1 adds support for logical operations on
RGBA buffers.

sbox() sbox() is an IRIS GL rectangle primitive that is well defined
only if transformed without rotation, and is designed to be
faster than standard rectangles. While OpenGL does not
support such a primitive, it can be tuned to render rectangles
very quickly when the matrixes and other modes are in
states that simplify calculations.

scalar arguments All OpenGL commands that are accepted between glBegin()
and glEnd() have entry points that accept scalar arguments.
For example, glColor4f(red,green,blue,alpha).

scissor OpenGL glScissor() does not track the viewport. The IRIS
GL viewport() command automatically updates the
scrmask.

scrbox() OpenGL doesn’t support bounding box computation.

scrsubdivide() OpenGL doesn’t support explicit screen subdivision.
scrsubdivide() was used in IRIS GL to handle perspective
properly when interpolating colors and textures. Most
Silicon Graphics platforms now handle texture interpolation
correctly, but not all platforms do perspective-corrected
color interpolation.

If you notice a perspective problem in interpolation, try
specifying this hint:

 glHint(GL_PERSPECTIVE_CORRECTION_HINT,
GL_NICEST)

Under some circumstances, that may improve the
interpolation. GL_NICEST specifies quality at the expense
of speed, however, so if speed is a high priority you may be
forced to settle for linear interpolation.

single matrix mode OpenGL always maintains two matrices: the modelview
matrix and the projection matrix. While an OpenGL
implementation may consolidate these into a single matrix
for performance reasons, it must always present the
two-matrix model to the programmer. See “Porting
MSINGLE Mode Code” in Chapter 3 for more information.

specular exponent, setting to
zero

See the entry for “lighting equation” in this appendix.

150

Appendix B: Differences Between OpenGL and IRIS GL

stencil When there is no depth buffer, or when the depth buffer is
not enabled, the glStencilOp() argument zpass controls
stencil operation when the stencil test passes. The IIS GL
stencil operation is defined by its pass parameter (equivalent
to OpenGL zfail) in this case.

stereo Stereo rendering on RealityEngine graphics systems under
OpenGL is accomplished by choosing an appropriate X
visual.

subpixel mode All OpenGL rendering is subpixel positioned—subpixel
mode is always on.

swapbuffers() Anything involving multiple buffers or windowing must be
done in X or with GLUT.

swaptmesh() OpenGL does not support the swaptmesh() capability. It
does offer two types of triangle meshes, however: one that
corresponds to the default “strip” behavior of the IRIS GL,
and another that corresponds to calling swaptmesh() prior
to the third and all subsequent vertexes when using IRIS GL.

texture filtering OpenGL textures are filtered with a border when they are
clamped. IRIS GL does not use the border data in this case.

texture lookup tables Texture lookup tables aren’t supported in OpenGL 1.0 but
are supported in OpenGL 1.1.

texture scaling, automatic The OpenGL texture interface does not support automatic
scaling of images to power-of-two dimensions. However,
the GLU supports image scaling.

texturing, 3D Three-dimensional texturing is provided as part of an
extension to OpenGL.

uniform scaling If you use only unit-length normals in IRIS GL, and if the
modelview matrix is the product only of rotations and
uniform scales, you don’t need to enable normalization of
the normal vectors.

In OpenGL, however, uniform scaling does affect the length
of normal vectors, even unit-length normals

vector arguments All OpenGL commands that are accepted between glBegin()
and glEnd() have entry points that accept vector arguments.
For example, glColor4fv(v).

151

window management OpenGL includes no window system commands. It is
always supported as an extension to a window or operating
system that includes capability for device and window
control. Each extension provides a system-specific
mechanism for creating, destroying, and manipulating
OpenGL rendering contexts. For example, the OpenGL
extension to the X window system (GLX) includes roughly
ten commands for this purpose.

IRIS GL commands such as gconfig() and drawmode() are
not implemented by OpenGL.

In OpenGL, windows have static frame buffer
configurations.

window offset IRIS GL returned viewport and character position in screen,
rather than window, coordinates. OpenGL always deals
with window coordinates.

z-buffer, reading from If you wanted to read from the z-buffer in IRIS GL, you
specified that buffer with readsource() and then used
lrectread() or rectread() to do the reading. If you want to
read from the z-buffer in OpenGL, you simply specify that
buffer as a parameter to glReadPixels().

z-buffer sizing Changing the depth of the z-buffer can be done by selecting
an appropriate visual.

z rendering OpenGL does not support rendering colors to the depth
buffer. It does allow for additional color buffers, which can
be implemented using the same memory that is used for
depth buffers in other window configurations—but these
additional color buffers cannot share memory with the
depth buffer in any single configuration.

153

Appendix C

C. OpenGL Names, Types, and Error

This appendix provides some background information on OpenGL command names,
defined types, and error handling. It’s intended mainly as a quick reference. For more
detailed information, refer to the OpenGL Programming Guide.

OpenGL Command Names

This section describes the naming convention for OpenGL calls. For a complete list of
OpenGL equivalents to IRIS GL routines, see Appendix A, “OpenGL Commands and
Their IRIS GL Equivalents.”

• gl—OpenGL commands begin with the gl prefix (glEnable(), glTranslatef(), and so
on).

• glu—OpenGL Utility Library (GLU) commands begin with the glu prefix
(gluDisk(), gluErrorString(), and so on).

• glX—Commands that belong to the OpenGL extension to X (GLX) begin with the
glX prefix (glXChooseVisual(), glXCopyContext(), and so on).

• glut—Commands in the GLUT (OpenGL Utility Toolkit) library begin with a glut
prefix (glutInit, glutMenuStatusFunc, and so on).

OpenGL commands are formed by a root name, optionally followed by up to four
characters. The first character indicates the number of arguments. The second character,
or pair of characters, specifies the type of the arguments. Table C-1 lists the character
suffixes and the corresponding argument types (some of these values might be different
on a 64-bit architecture).

Table C-1 Command Suffixes and Corresponding Argument Types

Letter Type C Type

b 8-bit integer char

s 16-bit integer short

154

Appendix C: OpenGL Names, Types, and Error

The final character, if present, is v. The v indicates that the command takes a pointer to
an array of values—a vector—rather than a series of individual arguments.

IRIS GL used a similar mechanism for some commands. The predecessor to glVertex*(),
for example, was v(), which also used a suffix to specify the number and type of its
arguments.

Here are some examples of OpenGL command naming:

void glVertex2i(GLint x, GLint y);
void glVertex3f(GLfloat x, GLfloat y, GLfloat z);
void glVertex3dv(const GLdouble *v) ;

The first version of the vertex call, glVertex2i(), takes two integer arguments. The second,
glVertex3f(), is a three-dimensional version, which expects three floats. The third
version, glVertex3dv(), expects an argument in the form of a vector, which is a pointer to
an array. In this case, the array should have three elements.

i 32-bit integer long

f 32-bit floating point float

d 64-bit floating point double

ub 8-bit unsigned integer unsigned char

us 16-bit unsigned integer unsigned short

ui 32-bit unsigned integer unsigned long

Table C-1 (continued) Command Suffixes and Corresponding Argument Types

Letter Type C Type

OpenGL Defined Types

155

OpenGL Defined Types

Table C-2 lists C data types and their equivalent OpenGL defined types.

Table C-2 OpenGL Equivalents to C Data Types

C Type Equivalent OpenGL Type

bitmask value GLbitfield

boolean value GLboolean

double GLdouble

double value clamped to [0.0, 1.0] GLclampd

enumerated type GLenum

float GLfloat

float value clamped to [0.0, 1.0] GLclampf

long GLint

short GLshort

signed char GLbyte

unsigned char GLubyte

unsigned int GLuint

unsigned short GLushort

void GLvoid

156

Appendix C: OpenGL Names, Types, and Error

Error Handling

When an error occurs, OpenGL sets an error flag to the appropriate error value. You can
test error conditions using the glGetError() call, which returns the error number.
Table C-3 lists possible error values. For details, see the reference page for glGetError().

Table C-3 glGetError() Return Values

Error Description Command Ignored?

NO_ERROR No error No

INVALID_ENUM Enumerated argument out of range Yes

INVALID_VALUE Numeric argument out of range Yes

INVALID_OPERATION Operation illegal in current state Yes

STACK_OVERFLOW Command would cause a stack overflow Yes

STACK_UNDERFLOW Command would cause a stack underflow Yes

OUT_OF_MEMORY Not enough memory left to execute command Unknown

157

Appendix D

D. Example OpenGL Program With the GLUT Library

This program uses OpenGL and the GLUT library to display a planet rotating around the
sun. It demonstrates how to composite modeling transformations to draw translated and
rotated models. Pressing the left, right, up, and down arrow keys alters the rotation of
the planet around the sun.

/*
 * planet.c
 * This program shows how to composite modeling transformations
 * to draw translated and rotated models.
 * Interaction: pressing the d and y keys (day and year)
 * alters the rotation of the planet around the sun.
 */
#include <GL/glut.h>
#include <stdlib.h>

static int year = 0, day = 0;

void init(void)
{
 glClearColor(0.0, 0.0, 0.0, 0.0);
 glShadeModel(GL_FLAT);
}

void display(void)
{
 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f(1.0, 1.0, 1.0);

 glPushMatrix();
 glutWireSphere(1.0, 20, 16); /* draw sun */
 glRotatef((GLfloat)year, 0.0, 1.0, 0.0);
 glTranslatef(2.0, 0.0, 0.0);
 glRotatef((GLfloat)day, 0.0, 1.0, 0.0);
 glutWireSphere(0.2, 10, 8); /* draw smaller planet */
 glPopMatrix();
 glutSwapBuffers();
}

158

Appendix D: Example OpenGL Program With the GLUT Library

void reshape(int w, int h)
{
 glViewport(0, 0, (GLsizei) w, (GLsizei) h);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(60.0, (GLfloat)w/(GLfloat)h, 1.0, 20.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 gluLookAt(0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
}

/* ARGSUSED1 */
void keyboard (unsigned char key, int x, int y)
{
 switch (key) {
 case 'd':
 day = (day + 10) % 360;
 glutPostRedisplay();
 break;
 case 'D':
 day = (day - 10) % 360;
 glutPostRedisplay();
 break;
 case 'y':
 year = (year + 5) % 360;
 glutPostRedisplay();
 break;
 case 'Y':
 year = (year - 5) % 360;
 glutPostRedisplay();
 break;
 case 27:
 exit(0);
 break;
 default:
 break;
 }
}

int main(int argc, char **argv)
{
 glutInit(&argc, argv);
 glutInitDisplayMode(GLUT_DOUBLE|GLUT_RGB);
 glutInitWindowSize(500, 500);

159

 glutInitWindowPosition(100, 100);
 glutCreateWindow(argv[0]);
 init();
 glutDisplayFunc(display);
 glutReshapeFunc(reshape);
 glutKeyboardFunc(keyboard);
 glutMainLoop();
 return 0;
}

161

Appendix E

E. Example Program Using Xt and a WorkProc

This appendix contains an example program that uses Xt, IRIS IM, and the IRIS IM
version of the Silicon Graphics widget. The program displays a planet with a moon,
orbiting a sun, and uses a WorkProc for the animation.

/* opensolar.c
 * opensolar displays a planet with a moon, orbiting a sun.
 * To compile:
 * cc -O -o opensolar opensolar.c -lXm -lGLw -lm -lGLU -lGL
 */

#include <Xm/Xm.h>
#include <Xm/Frame.h>
#include <Xm/Form.h>
#include <X11/keysym.h>
#include <X11/StringDefs.h>
#include <GL/GLwMDrawA.h>

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glx.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "malloc.h"

typedef struct _spin {
 short year;
} SPINDATA, *SPINPTR;

/* function prototypes */
void main(int argc, char **argv);
void initCB (Widget w, XtPointer client_data,
 XtPointer call_data);
void exposeCB (Widget w, XtPointer spin,
 XtPointer call_data);
void resizeCB (Widget w, XtPointer spin,
 XtPointer call_data);

162

Appendix E: Example Program Using Xt and a WorkProc

void inputCB (Widget w, XtPointer client_data,
 XtPointer call_data);
Boolean drawWP (XtPointer spin);
void drawscene(SPINPTR spin);
void setbeachball(int stripes);
void beachball(unsigned long color1, unsigned long color2);

XtAppContext app_context;
XtWorkProcId workprocid = NULL;

GLXContext glx_context;
Display * global_display;
Window global_window;

/* main
 * This program shows a solar system, with a sun, planet, and
 * moon (in OpenGL). The user can exit with the ESCape key
 * or through the window manager menu.
 */
void main(int argc, char **argv)
{
 Arg wargs[15];
 int n;
 Widget glw, toplevel, frame, form;
 SPINPTR spin;
 static String fallback_resources[] = {
 "*frame*shadowType: SHADOW_IN", "*glwidget*width: 750",
 "*glwidget*height: 600", "*glwidget*rgba: TRUE",
 "*glwidget*doublebuffer: TRUE",
 "*glwidget*allocateBackground: TRUE", NULL
 };

 /* create main data structure, spin pointer */
 spin = (SPINPTR) malloc (sizeof (SPINDATA));
 spin->year = 0;
 toplevel = XtAppInitialize(
 &app_context, /* Application context */
 "Opensolar", /* Application class */
 NULL, 0, /* command line option list */
 &argc, argv, /* command line args */
 fallback_resources,
 NULL, /* argument list */
 0); /* number of arguments */

163

 n = 0;
 form = XmCreateForm(toplevel, "form", wargs, n);
 XtManageChild(form);

 n = 0;
 XtSetArg(wargs[n], XtNx, 30);
 n++;
 XtSetArg(wargs[n], XtNy, 30);
 n++;
 XtSetArg(wargs[n], XmNbottomAttachment, XmATTACH_FORM);
 n++;
 XtSetArg(wargs[n], XmNleftAttachment, XmATTACH_FORM);
 n++;
 XtSetArg(wargs[n], XmNrightAttachment, XmATTACH_FORM);
 n++;
 XtSetArg(wargs[n], XmNtopAttachment, XmATTACH_FORM);
 n++;
 XtSetArg(wargs[n], XmNleftOffset, 30);
 n++;
 XtSetArg(wargs[n], XmNbottomOffset, 30);
 n++;
 XtSetArg(wargs[n], XmNrightOffset, 30);
 n++;
 XtSetArg(wargs[n], XmNtopOffset, 30);
 n++;
 frame = XmCreateFrame (form, "frame", wargs, n);
 XtManageChild (frame);

 n = 0;
 glw = GLwCreateMDrawingArea(frame, "glwidget", wargs, n);
 XtManageChild (glw);
 XtAddCallback(glw, GLwNginitCallback, initCB,
 (XtPointer) NULL);
 XtAddCallback(glw, GLwNexposeCallback, exposeCB,
 (XtPointer) spin);
 XtAddCallback(glw, GLwNresizeCallback, resizeCB,
 (XtPointer) spin);
 XtAddCallback(glw, GLwNinputCallback, inputCB,
 (XtPointer) NULL);

 XtRealizeWidget(toplevel); /* instantiate it now */
 XtAppMainLoop(app_context); /* loop for events */
} /* end main() */

164

Appendix E: Example Program Using Xt and a WorkProc

/* initCB
 * The initCB subroutine initializes graphics modes and
 * transformation matrices.
 */
void initCB (Widget w, XtPointer client_data,
 XtPointer call_data)
{
 Arg args[1];
 XVisualInfo *vi;

 XtSetArg(args[0], GLwNvisualInfo, &vi);
 XtGetValues(w, args, 1);

 global_display = XtDisplay(w);
 global_window = XtWindow(w);
 glx_context = glXCreateContext(global_display, vi, 0,
 GL_FALSE);
} /* end initCB() */

/* exposeCB() and resizeCB() are called when the window
 * is uncovered, moved, or resized.
 */
void exposeCB (Widget w, XtPointer ptr, XtPointer call_data)
{
 SPINPTR spin;
 static char firstTime = 0x1;
 GLwDrawingAreaCallbackStruct *call_ptr;

 call_ptr = (GLwDrawingAreaCallbackStruct *) call_data;
 GLwDrawingAreaMakeCurrent(w, glx_context);
 if (firstTime) {
 glClearColor(0.0, 0.0, 0.0, 0.0);
 glShadeModel (GL_FLAT);
 glEnable(GL_DEPTH_TEST);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity ();
 gluPerspective(45.0, (GLfloat)(call_ptr->width)
 /(GLfloat)(call_ptr->height), 1.0, 25.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity ();
 glTranslatef(0.0, 0.0, -12.0);
 workprocid = XtAppAddWorkProc(app_context, drawWP, ptr);
 /* ptr is spin */
 firstTime = 0;

165

 }
 spin = (SPINPTR) ptr;
 drawscene(spin);
}

void resizeCB (Widget w, XtPointer ptr, XtPointer call_data)
{
 GLwDrawingAreaCallbackStruct *call_ptr;
 SPINPTR spin;

 spin = (SPINPTR) ptr;
 call_ptr = (GLwDrawingAreaCallbackStruct *) call_data;
 GLwDrawingAreaMakeCurrent(w, glx_context);
 glViewport (0, 0, (GLsizei) (call_ptr->width-1),
 (GLsizei) (call_ptr->height-1));
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity ();
 gluPerspective(45.0, (GLfloat)(call_ptr->width) /
 (GLfloat)(call_ptr->height), 1.0, 25.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity ();
 glTranslatef(0.0, 0.0, -12.0);
 drawscene(spin);
}

/* inputCB() handles all types of input from the GL widget.
 * The KeyRelease handles the ESCape key, so that it exits
 * the program.
 */
void inputCB (Widget w, XtPointer client_data,
 XtPointer call_data)
{
 char buffer[1];
 KeySym keysym;
 GLwDrawingAreaCallbackStruct *call_ptr;
 XKeyEvent *kevent;

 call_ptr = (GLwDrawingAreaCallbackStruct *) call_data;
 kevent = (XKeyEvent *) (call_ptr->event);
 switch(call_ptr->event->type) {
 case KeyRelease:
 /* Must convert the keycode to a keysym before
 * checking if it is an escape
 */

166

Appendix E: Example Program Using Xt and a WorkProc

 if (XLookupString(kevent,buffer,1,&keysym,NULL) == 1
 && keysym == (KeySym)XK_Escape)
 exit(0);
 break;
 default:
 break;
 }
}

/* drawWP() is called by the WorkProc. When the scene
 * is in automatic motion, the WorkProc calls this routine,
 * which adds 1 degree (10 tenths) to the cumulative amount
 * of rotation. drawscene() is called, so the image is
 * redrawn. It returns(FALSE) so the WorkProc does not
 * discontinue operation.
 */
Boolean drawWP (XtPointer ptr)
{
 SPINPTR spin;

 spin = (SPINPTR) ptr;
 spin->year = (spin->year + 10) % 3600;
 drawscene (spin);
 return (FALSE);
}

/* drawscene
 * drawscene calculates angles relative to the spin->year
 * and then draws sun, planet, and moon.
 */
void drawscene(SPINPTR spin)
{
 short sunangle;
 /* actual dist is 1.5e8 km; mult by 3.0e-8 fudgefactor */
 float earthdist = 4.5;
 short dayangle;
 float earthscale = 0.5;
 short monthangle;
 float moondist = 0.9;
 float moonscale = 0.2;

 glClear(GL_DEPTH_BUFFER_BIT|GL_COLOR_BUFFER_BIT);

 glPushMatrix();

167

 glRotatef(10.0, 1.0, 0.0, 0.0); /* tilt entire scene */
 glPushMatrix();
 sunangle = (spin->year*365/25) % 3600;
 /* sun rotates on axis every 25 days */
 glRotatef(.1*(sunangle), 0.0, 1.0, 0.0);
 /* cpack format color1, color2 */
 /* swapped by hand: was beachball(0x20C0FF, 0x200FFFF); */
 beachball(0xFFC02000, 0xFFFF0020);
 glPopMatrix();
 glPushMatrix();
 glRotatef(.1*(spin->year), 0.0, 1.0, 0.0);
 glTranslatef(earthdist, 0.0, 0.0);
 glPushMatrix();
 dayangle = (spin->year*50) % 3600;
 /* dayangle fudged so earth rotation can be seen */
 glRotatef(.1*(dayangle), 0.0, 1.0, 0.0);
 glScalef(earthscale, earthscale, earthscale);
 glColor3f(0.0, 0.0, 1.0);
 /* swap by hand; was beachball(0xFF0000, 0xC02000);*/
 beachball(0x0000FF00, 0x0020C000); /* earth */
 glPopMatrix();
 monthangle = (spin->year*365/28) % 3600;
 glRotatef(.1*(monthangle), 0.0, 1.0, 0.0);
 glTranslatef(moondist, 0.0, 0.0);
 glScalef(moonscale, moonscale, moonscale);
 glColor3f(1.0, 1.0, 1.0);
 /* swap by hand; was beachball(0xFFFFFF, 0xC0C0C0); */
 beachball(0xFFFFFF00, 0xC0C0C000); /* moon */
 glPopMatrix();
 glPopMatrix();
 glXSwapBuffers(global_display, global_window);
} /* end drawscene() */

/*
 * BEACHBALL
 */

/* three dimensional vector */
typedef float vector[3];
vector front = { 0.0, 0.0, 1.0 };
vector back = { 0.0, 0.0, -1.0 };
vector top = { 0.0, 1.0, 0.0 };
vector bottom = { 0.0, -1.0, 0.0 };
vector right = { 1.0, 0.0, 0.0 };

168

Appendix E: Example Program Using Xt and a WorkProc

vector left = { -1.0, 0.0, 0.0 };
vector center = { 0.0, 0.0, 0.0 };

/* Number of colored stripes. Should be even to look right */
#define BEACHBALL_STRIPES 12
/* Default number of polygons making up a stripe. Should */
/* be even */
#define BEACHBALL_POLYS 16

/* array of vertices making up a stripe */
vector stripe_point[BEACHBALL_POLYS + 3];

/* has the beachball been initialized */
Boolean beachball_initialized = FALSE;

/* Number of polygons making up a stripe */
int beachball_stripes;

/* Number of vertices making up a stripe */
int stripe_vertices;

/* Initializes beachball_point array to a stripe of unit */
/* radius. */
void setbeachball(int stripes)
{
 int i,j;
 float x,y,z; /* vertex points */
 float theta,delta_theta; /* angle from top pole to bottom*/
 float offset; /* offset from center of stripe to vertex */
 /* radius of cross-section at current latitude */
 float cross_radius;
 float cross_theta; /* angle occupied by a stripe */

 beachball_stripes = stripes;

 /* polys distributed by even angles from top to bottom */
 delta_theta = M_PI/((float)BEACHBALL_POLYS/2.0);
 theta = delta_theta;
 cross_theta = 2.0*M_PI/(float)beachball_stripes;

 j = 0;
 stripe_point[j][0] = top[0];
 stripe_point[j][1] = top[1];
 stripe_point[j][2] = top[2];
 j++;

169

 for (i = 0; i < BEACHBALL_POLYS; i += 2) {
 cross_radius = fsin(theta);
 offset = cross_radius * ftan(cross_theta/2.0);

 stripe_point[j][0] = - offset;
 stripe_point[j][1] = fcos(theta);
 stripe_point[j][2] = cross_radius;
 j++;

 stripe_point[j][0] = offset;
 stripe_point[j][1] = stripe_point[j-1][1];
 stripe_point[j][2] = stripe_point[j-1][2];
 j++;

 theta += delta_theta;
 } /* end for */

 stripe_point[j][0] = bottom[0];
 stripe_point[j][1] = bottom[1];
 stripe_point[j][2] = bottom[2];

 stripe_vertices = j + 1;

 beachball_initialized = TRUE;
}

/* Draws a canonical beachball. The colors are cpack values
 * when in RGBmode.
 */
void beachball(unsigned long c1, unsigned long c2)
{
 float angle, delta_angle;
 int i, j;

 if (! beachball_initialized)
 setbeachball(BEACHBALL_STRIPES);

 angle = 0.0;
 delta_angle = 360.0/(float)beachball_stripes;

 for (i = 0; i < beachball_stripes; i++) {
 if (i%2 == 0)
 glColor4ubv((GLubyte *)(&c1));

170

Appendix E: Example Program Using Xt and a WorkProc

 else
 glColor4ubv((GLubyte *)(&c2));
 glPushMatrix();
 glRotatef(angle, 0.0, 1.0, 0.0);
 angle += delta_angle;

 glBegin(GL_TRIANGLE_STRIP);
 for (j = 0; j < stripe_vertices; j++)
 glVertex3fv(stripe_point[j]);
 glEnd();
 glPopMatrix();
 }
}

171

Appendix F

F. Example Mixed-Model Programs With Xlib

This appendix contains two example mixed-model programs that use Xlib. Each example
program is shown first in IRIS GL, then in OpenGL.

Example One: iobounce.c

iobounce.c is a simple interactive program that bounces a ball around a 2D surface. Users
can use the mouse buttons to change the velocity of the ball. The IRIS GL version of the
program is presented first, then the OpenGL version.

IRIS GL Version of iobounce.c

The IRIS GL version of iobounce.c is a “pure” IRIS GL program; it does not contain X calls.

/* iobounce.c:
 * "pool" ball that "bounces" around a 2-d "surface".
 * RIGHTMOUSE stops ball
 * MIDDLEMOUSE increases y velocity
 * LEFTMOUSE increases x velocity
 */

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

long xmaxscrn, ymaxscrn; /* maximum size of screen in x and y */

#define XMIN 100
#define YMIN 100
#define XMAX 900
#define YMAX 700

long xvelocity = 0, yvelocity = 0;

172

Appendix F: Example Mixed-Model Programs With Xlib

main()
{
 Device dev;
 short val;
 long sizex, sizey;

 initialize();

 while (TRUE) {
 while (qtest()) {
 dev = qread(&val);
 switch (dev) {
 case REDRAW: /* redraw window re: move/resize/push/pop */
 reshapeviewport();
 ortho2(XMIN - 0.5, XMAX + 0.5, YMIN - 0.5,
 YMAX + 0.5);
 drawball();
 break;
 case LEFTMOUSE: /* increase xvelocity */
 if (xvelocity >= 0)
 xvelocity++;
 else
 xvelocity--;
 break;
 case MIDDLEMOUSE: /* increase yvelocity */
 if (yvelocity >= 0)
 yvelocity++;
 else
 yvelocity--;
 break;
 case RIGHTMOUSE: /* stop ball */
 xvelocity = yvelocity = 0;
 break;
 case ESCKEY:
 gexit();
 exit(0);
 }
 }
 drawball();
 }
}

initialize() {

 xmaxscrn = getgdesc(GD_XPMAX)-1;

Example One: iobounce.c

173

 ymaxscrn = getgdesc(GD_YPMAX)-1;
 prefposition(xmaxscrn/4,xmaxscrn*3/4,ymaxscrn/4,ymaxscrn*3/4);
 winopen("iobounce");
 winconstraints();

 doublebuffer();
 gconfig();
 shademodel(FLAT);

 ortho2(XMIN - 0.5, XMAX + 0.5, YMIN - 0.5, YMAX + 0.5);

 qdevice(ESCKEY);
 qdevice(LEFTMOUSE);
 qdevice(MIDDLEMOUSE);
 qdevice(RIGHTMOUSE);
}

drawball() {
 static xpos = 500,ypos = 500;
 long radius = 10;

 color(BLACK);
 clear();
 xpos += xvelocity;
 ypos += yvelocity;
 if (xpos > XMAX - radius ||
 xpos < XMIN + radius) {
 xpos -= xvelocity;
 xvelocity = -xvelocity;
 }
 if (ypos > YMAX - radius ||
 ypos < YMIN + radius) {
 ypos -= yvelocity;
 yvelocity = -yvelocity;
 }
 color(YELLOW);
 circfi(xpos, ypos, radius);
 swapbuffers();
}

174

Appendix F: Example Mixed-Model Programs With Xlib

OpenGL Version of iobounce.c

Thie example contains the OpenGL version of iobounce.c. Windowing and event handling
are now controlled with Xlib, rather than IRIS GL calls.

/* iobounce.c:
 *
 * "pool ball" that "bounces" around a 2-d "surface".
 * RIGHTMOUSE stops ball
 * MIDDLEMOUSE increases y velocity
 * LEFTMOUSE increases x velocity
 *
 * (ported from ~4Dgifts/example/grafix/iobounce.c)
 */

#include <GL/glx.h>
#include <GL/gl.h>
#include <GL/glu.h>
#include <stdio.h>
#include <stdlib.h>
#include <X11/keysym.h>
#include <X11/Xlib.h>
#include <X11/Xutil.h>

#define XMIN 100
#define YMIN 100
#define XMAX 900
#define YMAX 700

#define BLACK 0
#define YELLOW 3

#define LEFTMOUSE 3
#define MIDDLEMOUSE 2
#define RIGHTMOUSE 1

#define TRUE 1
#define FALSE 0

long xmaxscrn, ymaxscrn; /* maximum size of screen /*
 /* in x and y */

Display *dpy; /* The X server connection */
Atom del_atom; /* WM_DELETE_WINDOW atom */
Window glwin; /* handle to the GL window */

Example One: iobounce.c

175

XEvent event;

static void openwindow(char *);
static void drawball(void);
static void clean_exit(void);

long xvelocity = 0, yvelocity = 0;

main(int argc, char *argv[])
{
 int myExpose, myConfigure,
 myButtRelease, myKeyPress,
 myButtonNumber; /* store which events occur */
 long xsize, ysize;

 myExpose = myConfigure = myButtRelease = myKeyPress =
 myButtonNumber = FALSE;

 openwindow(argv[0]);

 while (TRUE) {

 KeySym keysym;
 char buf[4];

 /* this "do while" loop does the ‘get events’ half of the */
 /* "get events,process events" action of the infinite while. */
 /* This is to ensure the event queue is always drained before */
 /* the events that have come in are processed. */
 while (XEventsQueued(dpy,QueuedAfterReading)) { /* end "do { } while"
 * XEventsQueued(dpy,QueuedAfterReading)
 * is like qtest()--it only tells you if
 * there’re any events presently in the
 * queue.it does not disturb the event
 * queue’s contents in any way. */

 XNextEvent(dpy, &event);
 switch (event.type) {

 /* "Expose" events are sort of like "REDRAW" in gl-speak in
 * terms of when a window or a previously invisible part
 * becomes visible */
 case Expose: /* Exposures */

176

Appendix F: Example Mixed-Model Programs With Xlib

 myExpose = TRUE;
 break;

 /* "ConfigNotify" events are like "REDRAW" in terms of changes to
 * a window’s size or position.*/
 case ConfigureNotify: /* Resize GL manually */
 xsize = event.xconfigure.width;
 ysize = event.xconfigure.height;
 myConfigure = TRUE;
 break;

 /* Wait for "ButtonRelease" events so the queue doesn’t fill up
 * the way it would if the user sits on ButtonPresss. */
 case ButtonRelease:
 if (event.xbutton.button == Button1) {
 myButtonNumber = LEFTMOUSE;
 myButtRelease = TRUE;
 } else if (event.xbutton.button ==
 Button2) {
 myButtonNumber = MIDDLEMOUSE;
 myButtRelease = TRUE;
 } else if (event.xbutton.button ==
 Button3) {
 myButtonNumber = RIGHTMOUSE;
 myButtRelease = TRUE;
 } /* twirl the green sphere */
 break;

 /* "ClientMessage" is generated if the WM itself is dying
 * and sends an exit signal to any running prog. */
 case ClientMessage:
 if (event.xclient.data.l[0] == del_atom)
 clean_exit();
 break;

 /* "KeyPress" events are those that would be generated before
 * whenever queueing up any KEYBD key via qdevice. */
 case KeyPress:
 /* save out which unmodified key (i.e. the key was not
 * modified w/something like "Shift", "Ctrl", or "Alt")
 * got pressed for use below. */
 XLookupString((XKeyEvent *)&event, buf, 4, &keysym, 0);
 myKeyPress = TRUE;
 break;

Example One: iobounce.c

177

 } /* end switch (event.type) */
 }

 /* On an "Expose" event, redraw the affected pop’d or
 * de-iconized window
 */
 if (myExpose) {
 drawball(); /* draw the GL stuff */
 myExpose = FALSE; /* reset flag--queue now empty */
 }

 /* On a "ConfigureNotify" event, the GL window has either
 * been moved or resized. Respond accordingly and then
 * redraw its contents.
 */

 if (myConfigure) {
 glViewport(0, 0, xsize, ysize);
 glLoadIdentity();
 gluOrtho2D(XMIN-0.5, XMAX+0.5, YMIN-0.5, YMAX+0.5);
 drawball(); /* draw the GL stuff */
 myConfigure = FALSE; /* reset flag--queue now
 * empty */
 }

 /* On a "ButtonRelease" event, myButtonNumber stores which
 * mouse button was pressed/released and then we update
 * x/yvelocity accordingly
 * /
 if (myButtRelease) {
 if (myButtonNumber == LEFTMOUSE) { /* increase
 xvelocity */
 if (xvelocity >= 0)
 xvelocity += 3;
 else
 xvelocity -= 3;
 } else if (myButtonNumber == MIDDLEMOUSE) {
 /* increase yvelocity*/
 if (yvelocity >= 0)
 yvelocity += 3;
 else
 yvelocity -= 3;
 } else if (myButtonNumber == RIGHTMOUSE) {
 /* stop ball */
 xvelocity = yvelocity = 0;

178

Appendix F: Example Mixed-Model Programs With Xlib

 } else {
 fprintf(stderr,"ERROR: %s thinks
 mouse button # ");
 fprintf(stderr,"%d was
 pressed(?)\n",argv[0],myButtonNumber);
 }
 drawball();
 myButtRelease = FALSE;
 }

 /* On a keypress of Esc key, exit program. */
 if (myKeyPress) {
 if (keysym == XK_Escape)
 clean_exit();
 }

 drawball();

 }
}

static int attributeList[] = { GLX_DOUBLEBUFFER,
 None };
GLUquadricObj *qobj;

static Bool WaitForNotify(Display *d, XEvent *e, char *arg) {
 return (e->type == MapNotify) && (e->xmap.window ==
 (Window)arg);
}

static void openwindow(char *progname) {

 int scrnnum; /* X screen number */
 int xorig, yorig; /* window (upper-left) origin */
 XVisualInfo *vi;
 GLXContext cx;
 Colormap cmap;
 XSizeHints Winhints;/* used to fix window size */
 XSetWindowAttributes swa;
 XColor colorstruct;

 /* Connect to the X server and get screen info */
 if ((dpy = XOpenDisplay(NULL)) == NULL) {
 fprintf(stderr, "%s: cannot connect to X server %s\n",
 progname, XDisplayName(NULL));

Example One: iobounce.c

179

 exit(1);
 }
 scrnnum = DefaultScreen(dpy);
 ymaxscrn = DisplayHeight(dpy, scrnnum);
 xmaxscrn = DisplayWidth(dpy, scrnnum);

 /* get an appropriate visual */
 vi = glXChooseVisual(dpy, DefaultScreen(dpy),
 attributeList);
 if (vi == NULL) {
 printf("Couldn’t get visual.\n");
 exit(0);
 }

 /* create a GLX context */
 cx = glXCreateContext(dpy, vi, None, GL_TRUE);

 if (cx == NULL) {
 printf("Couldn’t get context.\n");
 exit(0);
 }

 /* create a colormap */
 cmap = XCreateColormap(dpy, RootWindow(dpy, vi->screen),
 vi->visual, AllocAll);

 XSync(dpy, 0);
 /* create a window */
 swa.colormap = cmap;
 swa.border_pixel = 0;

 /* express interest in certain events */
 swa.event_mask = StructureNotifyMask | KeyPressMask |
 ButtonPressMask |
 ButtonReleaseMask | ExposureMask;
 glwin = XCreateWindow(dpy, RootWindow(dpy, vi->screen),
 10, 10, 300, 300,
 0, vi->depth, InputOutput,
 vi->visual,
 CWBorderPixel|CWColormap|CWEventMask, &swa);

 XMapWindow(dpy, glwin);
 XIfEvent(dpy, &event, WaitForNotify, (char*)glwin);

 /* connect the context to the window */

180

Appendix F: Example Mixed-Model Programs With Xlib

 glXMakeCurrent(dpy, glwin, cx);

 /* express interest in WM killing this app */
 if ((del_atom = XInternAtom(dpy, "WM_DELETE_WINDOW",
 True)) != None)
 XSetWMProtocols(dpy, glwin, &del_atom, 1);

 colorstruct.pixel = BLACK;
 colorstruct.red = 0;
 colorstruct.green = 0;
 colorstruct.blue = 0;
 colorstruct.flags = DoRed | DoGreen | DoBlue;
 XStoreColor(dpy, cmap, &colorstruct);
 colorstruct.pixel = YELLOW;
 colorstruct.red = 65535;
 colorstruct.green = 65535;
 colorstruct.blue = 0;
 colorstruct.flags = DoRed | DoGreen | DoBlue;
 XStoreColor(dpy, cmap, &colorstruct);

 glLoadIdentity();
 gluOrtho2D(XMIN - 0.5, XMAX + 0.5, YMIN - 0.5, YMAX + 0.5);

 /* clear the buffer */
 glClearIndex((GLfloat)BLACK);
 qobj = gluNewQuadric();
 gluQuadricDrawStyle(qobj,GLU_FILL);
 glFlush();
}

static void drawball(void) {
 static int xpos = 500, ypos = 500;
 GLdouble radius = 14.0;

 glClear(GL_COLOR_BUFFER_BIT);
 xpos += xvelocity;
 ypos += yvelocity;
 if (xpos > XMAX - radius || xpos < XMIN + radius) {
 xpos -= xvelocity;
 xvelocity = -xvelocity;
 }
 if (ypos > YMAX - radius || ypos < YMIN + radius) {
 ypos -= yvelocity;
 yvelocity = -yvelocity;
 }

Example Two: zrgb.c

181

 glIndexi(YELLOW);
 glPushMatrix();
 glTranslatef(xpos, ypos, 0.);
 gluDisk(qobj, 0., radius, 10, 1);
 glPopMatrix();
 glXSwapBuffers(dpy, glwin);
}

/* clean_exit -- Clean up before exiting */
static void clean_exit(void)
{
 gluDeleteQuadric(qobj);
 XCloseDisplay(dpy);
 exit(0);
}

Example Two: zrgb.c

The zrgb.c example program includes depth buffering. This program won’t work on 8-bit
IRIS workstations. The IRIS GL version is presented first.

IRIS GL Version of zrgb.c

This is the IRIS GL version of zrgb.c. Like iobounce.c, this is a pure IRIS GL program.

/* zrgb.c
 *
 * This program demostrates zbuffering 3 intersecting RGB
 * polygons while in doublebuffer mode where,movement of the
 * mouse with the LEFTMOUSE button depressed will, rotate the 3
 * polygons. This is done via compound rotations allowing
 * continuous screen-oriented rotations. (See orient(),
 * and draw_scene() below). Notice the effective way there
 * is no wasted CPU usage when the user moves the mouse out
 * of the window without holding down LEFTMOUSE--there is no
 * qtest being performed and so the program simply blocks on
 * the qread statement. Press the "Esc"[ape] key to exit.
 * Please note that this program will not work on any 8-bit
 * IRIS machine.
 * ratman - 1989

182

Appendix F: Example Mixed-Model Programs With Xlib

 */

#include <stdio.h>
#include <gl/gl.h>
#include <gl/device.h>

Matrix objmat = {
 {1.0, 0.0, 0.0, 0.0},
 {0.0, 1.0, 0.0, 0.0},
 {0.0, 0.0, 1.0, 0.0},
 {0.0, 0.0, 0.0, 1.0},
};

Matrix idmat = {
 {1.0, 0.0, 0.0, 0.0},
 {0.0, 1.0, 0.0, 0.0},
 {0.0, 0.0, 1.0, 0.0},
 {0.0, 0.0, 0.0, 1.0},
};

/* Modes the program can be in */
#define NOTHING 0
#define ORIENT 1

int mode = 0;
int omx, mx, omy, my; /* old and new mouse position */
float scrnaspect; /* aspect ratio value */
long zfar; /* holds specific machine’s */
 /* maximum Z depth value */

main(argc, argv)
int argc;
char *argv[];
{
 long dev;
 short val;
 int redrawneeded=TRUE; /* Is true when the scene */
 /* needs redrawing */

 initialize(argv[0]);

 while (TRUE) {

 if (redrawneeded) {
 draw_scene();

Example Two: zrgb.c

183

 redrawneeded=FALSE;
 }

 while (qtest() || (!redrawneeded)) {

 switch(dev=qread(&val)) {

 case ESCKEY: /* exit when key is going up, */
 /* not down */
 if (val) /* this avoids the scenario */
 /* where a window */
 break; /* underneath this program’s */
 /* window--say */
 exit(0); /* another copy of this */
 /* program--getting the */
 /* ESC UP event and exiting */
 /* also. */
 case REDRAW:
 reshapeviewport();
 redrawneeded=TRUE;
 break;

 case LEFTMOUSE:
 if (val) {
 mode = ORIENT;
 omx = mx;
 omy = my;
 } else
 mode = NOTHING;
 break;

 case MOUSEX:
 omx = mx;
 mx = val;
 if (mode == ORIENT) {
 update_scene();
 redrawneeded=TRUE;
 }
 break;

 case MOUSEY:
 omy = my;
 my = val;
 if (mode == ORIENT) {
 update_scene();

184

Appendix F: Example Mixed-Model Programs With Xlib

 redrawneeded=TRUE;
 }
 break;
 }
 }
 }
}

initialize(progname)
char *progname;
{

 long xscrnsize; /* size of screen in x used
 * to set globals */
 long testifZinst;

 /*
 * This program requires the following to run:
 * -- z buffer
 * -- ability to do double-buffered RGB mode
 */
 /* Test for Z buffer */
 testifZinst = getgdesc(GD_BITS_NORM_ZBUFFER);
 if (testifZinst == FALSE) {
 fprintf(stderr,"BUMmer!--%s won’t work on ",
 progname);
 fprintf(stderr,"this machine--zbuffer option not
 installed.\n");
 exit(0);
 }
 /* Test for double-buffered RGB */
 if (getgdesc(GD_BITS_NORM_DBL_RED) == 0) {
 fprintf(stderr,"BUMmer!--%s won’t work on ",
 progname);
 fprintf(stderr,"this machine--not enough
 bitplanes.\n");
 exit(0);

 }

 /* Code to keep same aspec ratio as the screen */
 keepaspect(getgdesc(GD_XMMAX), getgdesc(GD_YMMAX));
 scrnaspect =
 (float)getgdesc(GD_XMMAX)/(float)getgdesc(GD_YMMAX);

Example Two: zrgb.c

185

 winopen(progname);
 wintitle("Zbuffered RGB #1");

 doublebuffer();
 RGBmode();
 gconfig();
 zbuffer(TRUE);
 glcompat(GLC_ZRANGEMAP, 0);
 zfar = getgdesc(GD_ZMAX);

 qdevice(ESCKEY);
 qdevice(LEFTMOUSE);
 qdevice(MOUSEX);
 qdevice(MOUSEY);
}

update_scene() {

 switch (mode) {

 case ORIENT:
 orient();
 break;
 }
}

orient () {

 pushmatrix();

 loadmatrix(idmat);

 rotate(mx-omx, ’y’);
 rotate(omy-my, ’x’);

 multmatrix(objmat);
 getmatrix(objmat);
 popmatrix();
}

draw_scene() {

 czclear(0x00C86428, zfar);

186

Appendix F: Example Mixed-Model Programs With Xlib

 perspective(400, scrnaspect, 30.0, 60.0);
 translate(0.0, 0.0, -40.0);
 multmatrix(objmat);
 rotate(-580, ’y’); /* skews original view
 * to show all polygons */
 draw_polys();

 swapbuffers();
}
float polygon1[3][3] = { {-10.0, -10.0, 0.0,},
 { 10.0, -10.0, 0.0,},
 {-10.0, 10.0, 0.0,} };

float polygon2[3][3] = { { 0.0, -10.0, -10.0,},
 { 0.0, -10.0, 10.0,},
 { 0.0, 5.0, -10.0,} };

float polygon3[4][3] = { {-10.0, 6.0, 4.0,},
 {-10.0, 3.0, 4.0,},
 { 4.0, -9.0, -10.0,},
 { 4.0, -6.0, -10.0,} };

draw_polys() {

 bgnpolygon();
 cpack(0x00000000);
 v3f(&polygon1[0][0]);
 cpack(0x007F7F7F);
 v3f(&polygon1[1][0]);
 cpack(0x00FFFFFF);
 v3f(&polygon1[2][0]);
 endpolygon();
 bgnpolygon();
 cpack(0x0000FFFF);
 v3f(&polygon2[0][0]);
 cpack(0x007FFF00);
 v3f(&polygon2[1][0]);
 cpack(0x00FF0000);
 v3f(&polygon2[2][0]);
 endpolygon();

 bgnpolygon();
 cpack(0x0000FFFF);
 v3f(&polygon3[0][0]);
 cpack(0x00FF00FF);

Example Two: zrgb.c

187

 v3f(&polygon3[1][0]);
 cpack(0x00FF0000);
 v3f(&polygon3[2][0]);
 cpack(0x00FF00FF);
 v3f(&polygon3[3][0]);
 endpolygon();
}

OpenGL Version of zrgb.c

This is the OpenGL version of zrgb.c.

/*
 * zrgb.c
 */
#include <GL/glx.h>
/*
#include <GL/gl.h>
#include <GL/glu.h>
*/
#include <stdio.h>
#include <stdlib.h>
#include <X11/keysym.h>
#include <X11/Xlib.h>
#include <X11/Xutil.h>

#define TRUE 1
#define FALSE 0

Display *dpy; /* The X server connection */
Atom del_atom; /* WM_DELETE_WINDOW atom */
Window glwin; /* handle to the GL window */
XEvent event;

/* function declarations */

static void openwindow(char *);
static void resize_buffer(void);
static void clean_exit(void);
void initGL(void);
void orient(void);
void drawScene(void);
void drawPolys(void);

188

Appendix F: Example Mixed-Model Programs With Xlib

static float objmat[16] = {
 1.0, 0.0, 0.0, 0.0,
 0.0, 1.0, 0.0, 0.0,
 0.0, 0.0, 1.0, 0.0,
 0.0, 0.0, 0.0, 1.0,
};

short ax, ay, az; /* angles for the "twirling" green
 * sphere to ride on */
long xsize, ysize; /* current size-of-window keepers */
long zfar; /* used in czclear for the machine’s
 * zbuffer max */
long buffermode; /* flag tracks current window
 * (single or double) */
double scrnaspect; /* aspect ratio value */
int xpos, ypos, oxpos, oypos; /* old and new mouse position */

main(argc,argv)
int argc;
char **argv;
{
 int myExpose, myConfigure, myButtPress, myKeyPress;
 int needToDraw = 0; /* don’t set this to true until
 * we get our first Expose event */

 myExpose = myConfigure = myButtPress = myKeyPress = FALSE;

 openwindow(argv[0]);

 /* start out making the singlebuffer window be
 * our current GL window */
 initGL(); /* do GL init stuff */

 /*
 * The event loop.
 */
 while (1) { /* standard logic: get event(s),
 * process event(s) */

 XEvent event;
 KeySym keysym;
 char buf[4];

Example Two: zrgb.c

189

 /* this "do while" loop does the ‘get events’
 * half of the "get events, process events" action
 * of the infinite while. this is to ensure
 * the event queue is always drained before the events
 * that have come in are processed.
 */

 do {

 XNextEvent(dpy, &event);
 switch (event.type) {

 /* "Expose" events are sort of like "REDRAW" in
 * gl-speak in terms of when a window becomes
 * visible, or a previously
 * invisible part becomes visible.
 */
 case Expose: /* Exposures */
 needToDraw = myExpose = TRUE;
 break;

 /* "ConfigNotify" events are like "REDRAW" in
 * terms of changes to a window’s size or position.
 */
 case ConfigureNotify: /* Resize GL manually */
 xsize = event.xconfigure.width;
 ysize = event.xconfigure.height;
 needToDraw = myConfigure = TRUE;
 break;

 /* Wait for "MotionNotify" events so the
 * queue doesn’t fill up
 */
 case MotionNotify:
 myButtPress = TRUE;
 xpos = event.xmotion.x;
 ypos = event.xmotion.y;
 break;

 /* "ClientMessage" is generated if the WM itself
 * is being gunned down and sends an exit signal
 * to any running prog.
 */
 case ClientMessage:
 if (event.xclient.data.l[0] == del_atom)

190

Appendix F: Example Mixed-Model Programs With Xlib

 clean_exit();
 break;

 /* "KeyPress" events are those that would be
 * generated before whenever queueing up any
 KEYBD key via qdevice.
 */

 case KeyPress:
 /* save out which unmodified key (i.e. the
 * key was not modified w/something like
 * "Shift", "Ctrl", or "Alt") got pressed
 * for use below.
 */
 XLookupString((XKeyEvent *)&event, buf, 4,
 &keysym, 0);
 myKeyPress = TRUE;
 break;

 } /* end switch (event.type) */

 } while (XPending(dpy)); /* end "do { } while".
 * XPending() is like
 * qtest()--it only
 * tells you if there’re
 * any events presently in
 * the queue. it does not
 * disturb queue’s contents
 * in any way.
 */

 /* On an "Expose" event, redraw the affected pop’d or
 * de-iconized window
 */
 if (myExpose) {
 resize_buffer();
 myExpose = FALSE; /* reset flag--queue now empty */
 }

 /* On a "ConfigureNotify" event, the GL window has either
 * been moved or resized. Respond accordingly and then
 * redraw its contents.
 */
 if (myConfigure) {
 oxpos = xpos;

Example Two: zrgb.c

191

 oypos = ypos;
 resize_buffer();
 myConfigure = FALSE; /* reset flag--queue now
 * empty */
 }

 if (needToDraw) {
 drawScene();
 needToDraw = FALSE;
 }

 /* On a keypress of Esc key, exit program.
 */
 if (myKeyPress) {
 if (keysym == XK_Escape)
 clean_exit();
 }

 if (myButtPress) {
 orient();
 drawScene();
 myButtPress = FALSE;
 }
 } /* end while(1) */

} /* end main */

static int attributeList[] = { GLX_RGBA,
 GLX_DOUBLEBUFFER,
 GLX_RED_SIZE, 1,
 GLX_GREEN_SIZE, 1,
 GLX_BLUE_SIZE, 1,
 GLX_DEPTH_SIZE, 1,
 None };
static int attributeList2[] = { GLX_RGBA,
 GLX_RED_SIZE, 1,
 GLX_GREEN_SIZE, 1,
 GLX_BLUE_SIZE, 1,
 GLX_DEPTH_SIZE, 1,
 None };

static Bool WaitForNotify(Display *d, XEvent *e, char *arg) {
 return (e->type == MapNotify) && (e->xmap.window ==
 (Window)arg);

192

Appendix F: Example Mixed-Model Programs With Xlib

}

XSizeHints Winhints; /* used to fix window size */

/* openwindow - establish connection to X server, get screen info, specify the
 * attributes we want the WM to try to provide, and create the GL window */
static void openwindow(char *progname) {

 XVisualInfo *vi;
 GLXContext cx;
 Colormap cmap;
 XSizeHints Winhints; /* used to fix window size*/
 XSetWindowAttributes swa;
 int scrnnum; /* X screen number */
 int xorig, yorig; /* window (upper-left) origin */
 long scrnheight;

 /* define window initial size */
 xorig = 50; yorig = 40;
 xsize = 300; ysize = 240;
 scrnaspect = xsize / (double) ysize;

 /* Connect to the X server and get screen info */
 if ((dpy = XOpenDisplay(NULL)) == NULL) {
 fprintf(stderr, "%s: cannot connect to X server %s\n",
 progname, XDisplayName(NULL));
 exit(1);
 }

 scrnnum = DefaultScreen(dpy);
 scrnheight = DisplayHeight(dpy, scrnnum);

 /* get an appropriate visual */
 vi = glXChooseVisual(dpy, DefaultScreen(dpy),
 attributeList);
 if (vi == NULL) {
 fprintf(stderr, "Unable to obtain visual
 Doublebuffered visual\n");
 vi = glXChooseVisual(dpy, DefaultScreen(dpy),
 attributeList2);
 }
 if (vi == NULL) {
 printf("Unable to obtain Singlebuffered
 VISUAL(????)\n");
 exit(0);

Example Two: zrgb.c

193

 }

 /* create a GLX context */
 cx = glXCreateContext(dpy, vi, None, GL_TRUE);

 /* create a colormap */
 cmap = XCreateColormap(dpy, RootWindow(dpy, vi->screen),
 vi->visual, AllocNone);

 /* create a window */
 swa.colormap = cmap;
 swa.border_pixel = 0;
 swa.event_mask = StructureNotifyMask | ButtonPressMask |
 ExposureMask |
 Button1MotionMask |
 KeyPressMask; /* express interest in
 * events */;
 glwin = XCreateWindow(dpy, RootWindow(dpy, vi->screen),
 xorig, yorig, xsize, ysize,
 0, vi->depth, InputOutput,
 vi->visual,
 CWBorderPixel|CWColormap|CWEventMask, &swa);

 XMapWindow(dpy, glwin);
 XIfEvent(dpy, &event, WaitForNotify, (char*)glwin);

 /* connect the context to the window */
 glXMakeCurrent(dpy, glwin, cx);

 if (!(glwin)) {
 fprintf(stderr,"%s: couldn’t create ‘parent’ X
 window\n",progname);
 exit(1);
 }

 /* define string that will show up in the window title bar
 * (and icon) */
 XStoreName(dpy, glwin, "z-buffered rgb program");

 /* specify the values for the Window Size Hints we want to
 * enforce: this window’s aspect ratio needs to stay at
 * 1:1, constrain min and max window size, and specify the
 * initial size of the window.
 */
 Winhints.width = xsize; /* specify desired x/y size of

194

Appendix F: Example Mixed-Model Programs With Xlib

 * window */
 Winhints.height = ysize;
 Winhints.min_width = xorig; /* define min and max */
 Winhints.max_width = scrnheight-1; /* width and height */
 Winhints.min_height = yorig;
 Winhints.max_height = scrnheight-1;
 Winhints.min_aspect.x = xsize; /* keep aspect to a xsize:ysize ratio */
 Winhints.max_aspect.x = xsize;
 Winhints.min_aspect.y = ysize;
 Winhints.max_aspect.y = ysize;
 /* set the corresponding flags */
 Winhints.flags = USSize|PMaxSize|PMinSize|PAspect;
 XSetNormalHints(dpy, glwin, &Winhints);

 /* express interest in WM killing this app */
 if ((del_atom = XInternAtom(dpy, "WM_DELETE_WINDOW",
 True)) != None)
 XSetWMProtocols(dpy, glwin, &del_atom, 1);

 return ;
}

/* window has been moved or resized so update viewport & CTM stuff. */
static void resize_buffer() {

 XSync(dpy, False); /* STILL NEED THIS????? */
 /* Need before GL reshape */
 scrnaspect = xsize / (double) ysize;
 glViewport(0, 0, (short) (xsize-1), (short) (ysize-1));
}

/* clean up before exiting */
static void clean_exit(void)
{
 XCloseDisplay(dpy);
 exit(0);
}

/* setup all necessary GL initialzation parameters. */
void initGL()
{
 glEnable(GL_DEPTH_TEST);
 glClearColor(0.16, 0.39, 0.78, 0.0);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 glLoadIdentity();

Example Two: zrgb.c

195

 gluPerspective(400.0, scrnaspect, 30.0, 1000.0);
}

void orient()
{
 float dx, dy;
 glPushMatrix();
 dx = xpos-oxpos;
 dy = oypos-ypos;
 glLoadIdentity();
 glRotatef((float) (0.03*(xpos-oxpos)), 1.0, 0.0, 0.0);
 glRotatef((float) (0.03*(oypos-ypos)), 0.0, 1.0, 0.0);
 glMultMatrixf(objmat);
 glGetFloatv(GL_MODELVIEW_MATRIX, objmat);

 glPopMatrix();
}

void drawScene()
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glPushMatrix();
 glTranslatef(0.0, 0.0, -40.0);
 glMultMatrixf(objmat);
 glRotatef(-220.0, 0.0, 1.0, 0.0); /* skews orig view to
 * show all polys */
 drawPolys();
 glPopMatrix();
 glFlush ();
 glXSwapBuffers(dpy, glwin);
}

float polygon1[3][3] = { {-10.0, -10.0, 0.0,},
 { 10.0, -10.0, 0.0,},
 {-10.0, 10.0, 0.0,} };

float polygon2[3][3] = { { 0.0, -10.0, -10.0,},
 { 0.0, -10.0, 10.0,},
 { 0.0, 5.0, -10.0,} };

float polygon3[4][3] = { {-10.0, 6.0, 4.0,},
 {-10.0, 3.0, 4.0,},
 { 4.0, -9.0, -10.0,},
 { 4.0, -6.0, -10.0,} };

196

Appendix F: Example Mixed-Model Programs With Xlib

void drawPolys()
{
 glBegin(GL_POLYGON);
 glColor4f(0.0, 0.0, 0.0, 0.0);
 glVertex3fv(&polygon1[0][0]);
 glColor4f(0.5, 0.5, 0.5, 0.0);
 glVertex3fv(&polygon1[1][0]);
 glColor4f(1.0, 1.0, 1.0, 0.0);
 glVertex3fv(&polygon1[2][0]);
 glEnd();

 glBegin(GL_POLYGON);
 glColor4f(1.0, 1.0, 0.0, 0.0);
 glVertex3fv(&polygon2[0][0]);
 glColor4f(0.0, 1.0, 0.5, 0.0);
 glVertex3fv(&polygon2[1][0]);
 glColor4f(0.0, 0.0, 1.0, 0.0);
 glVertex3fv(&polygon2[2][0]);
 glEnd();

 glBegin(GL_POLYGON);
 glColor4f(1.0, 1.0, 0.0, 0.0);
 glVertex3fv(&polygon3[0][0]);
 glColor4f(1.0, 0.0, 1.0, 0.0);
 glVertex3fv(&polygon3[1][0]);
 glColor4f(0.0, 0.0, 1.0, 0.0);
 glVertex3fv(&polygon3[2][0]);
 glColor4f(1.0, 0.0, 1.0, 0.0);
 glVertex3fv(&polygon3[3][0]);
 glEnd();

}

197

A

AC_ACCUMULATE, 62
AC_ADD, 62
AC_CLEAR_ACCUMULATE, 62
AC_MULT, 62
AC_RETURN, 62
acbuf(), 62
acbuf() arguments, 62
accumulation buffer, 61
accumulation buffer operations, 62
acsize(), 62
AF_ALWAYS, 60
AF_EQUAL, 60
AF_GEQUAL, 60
AF_GREATER, 60
AF_LEQUAL, 60
AF_LESS, 60
AF_NEVER, 60
AF_NOTEQUAL, 60
afunction(), 60
alpha component, lighting, 68
alpha test functions, 60
AMBIENT, 70
angles, 43
antialiasing, 58, 60

blending, 59
end correction, 61
lines, 36

points, 36
arc(), 42
arcf(), 15, 42
arcs

porting, 42
using quadrics, 32

Athena widget set, 95, 96
attenuation, 68
attribute groups, 19

B

back, polygons, 38
beautifier, cb, 10
begin and end commands, 33
bgnclosedline(), 36
bgncurve(), 53
bgn/end commands, 33
bgnline(), 36
bgnpoint(), 35
bgnpolygon(), 37
bgnqstrip(), 37
bgnsurface(), 54
bgntmesh(), 42
bgntrim(), 54
binds, 67
blend factors, 59
blendfunction(), 59

Index

198

Index

blend functions, 59
blending, 59

C

c(), 45
callbacks

concave polygons, 41
with quadric objects, 32

callfunc(), 64
callobj(), 64
cb, 10
C comments, and toogl, 10
character strings, 92
choosing visuals for blending, 59
circ(), 42
circf(), 42
circles

porting, 42
using quadrics, 32

clear(), 12
clipplane(), 30
closeobj(), 64
cmov(), 47
color, 44
color(), 44
color constants, 12, 44
COLORINDEXES, 70
color maps, 44, 92

mixed model, 90
simulating RGB with, 92
Xlib, 105

comments,toogl, 9
comparing files, 9
comparison functions

stencil, 63

concave polygons, 37, 41
cones using quadrics, 32
conversion tool, see toogl
coordinates, texture, 74
cpack(), 44
crv(), 52
crvn(), 52
current graphics position, 22
current matrix mode, 26
curvebasis(), 52
curveit(), 52
curveprecision(), 52
curves, 52

trimming, 54
types (NURBS), 53

cylinders
using quadrics, 32

czclear(), 24

D

defbasis(), 52
defined color constants, 12, 44
deflinestyle(), 36, 67
defpattern(), 39, 67
defs, 67
delobj(), 64
deltag(), 64
depthcue(), 48
depth cueing, 48
destination alpha bits, 59
device calls

toogl, 11
differences, OpenGL and IRIS GL, 1
DIFFUSE, 70

199

Index

diffuse lighting components, 68
direct rendering, 15
disks

using quadrics, 32
display lists, 63

editing, 65
example, 66
for X bitmap fonts, 92
performance of, 15

display mode, 92
dither(), 46
dithering, 46
documentation, 102

IRIS IM, xiv, 102
Motif, xiv, 102
X, xiv, 102

double-matrix mode, 24
draw(), 22
drawing commands, 31
drawing single points, 35

E

editing display lists, 65
editing toogl output, 10
editobj(), 64
EMISSION, 70
endclosedline(), 36
end commands, 33
end correction, 61
endcurve(), 53
endfeedback(), 80
endpick(), 79
endpoint(), 35
endpolygon(), 37
endqstrip(), 37

endselect(), 79
endsurface(), 54
endtmesh(), 42
endtrim(), 54
event calls and toogl, 11
event handling

mixed model, 90
Xlib, 106

extensions
video source, 87

extensions to OpenGL, 87

F

feedback(), 80
flat shading, 46
fog, 48
fog modes, 50
fogvertex(), 48
fonts

mixed model, 90
porting, 92

front, polygons, 38
function flags,stencil, 63
functions

alpha testing, 60
functions, blending, 59

G

gdiff, 9
genobj(), 64
gentag(), 64
getcmmode(), 45
getcolor(), 45

200

Index

get commands, 13, 20
getdcm(), 48
getgpos(), 22
getlsbackup(), 37
getlsrepeat(), 36
getlstyle(), 36
getlwidth(), 36
getmap(), 45
getmatrix(), 29
getmcolor(), 45
getmmode(), 29
getpattern(), 39
getresetls(), 37
getscrbox(), 30
getscrmask(), 31
getsm(), 46
getviewport(), 30
getwritemask(), 45
GL_ACCUM, 62
GL_ADD, 62
GL_ALWAYS, 60
GL_AMBIENT, 70
GL_AMBIENT_AND_ DIFFUSE, 70
GL_BLEND, 75
GL_COLOR_INDEXES, 70
GL_CONSTANT_, 71
GL_CONSTANT_ATTENUATION, 71
GL_DECAL, 75
GL_DIFFUSE, 70
GL_DONT_CARE, 61
GL_EMISSION, 70
GL_EQUAL, 60
GL_EYE_LINEAR, 78
GL_EYE_PLANE, 78
GL_FASTEST, 49, 61

GL_GEQUAL, 60
GL_GREATER, 60
GL_LEQUAL, 60
GL_LESS, 60
GL_LIGHT_MODEL_ AMBIENT, 70
GL_LIGHT_MODEL_ LOCAL_VIEWER, 70
GL_LIGHT_MODEL_ TWO_SIDE, 70
GL_LINEAR, 77
GL_LINEAR_ATTENUATION, 71
GL_LINEAR_MIPMAP_LINEAR, 77
GL_LINEAR_MIPMAP_NEAREST, 77
GL_LOAD, 62
GL_MATRIX_MODE, 29
GL_MODELVIEW, 28
GL_MODELVIEW_MATRIX, 29
GL_MODULATE, 75
GL_MULT, 62
GL_NEAREST, 77
GL_NEAREST_MIPMAP_LINEAR, 77
GL_NEAREST_MIPMAP_NEAREST, 77
GL_NEVER, 60
GL_NICEST, 49, 61
GL_NOTEQUAL, 60
GL_OBJECT_LINEAR, 78
GL_OBJECT_PLANE, 78
GL_POSITION, 71
GL_PROJECTION, 28
GL_PROJECTION_MATRIX, 29
GL_Q, 78
GL_QUADRATIC_ATTENUATION, 71
GL_R, 78
GL_RETURN, 62
GL_S, 78
GL_SHININESS, 70
GL_SPECULAR, 70

201

Index

GL_SPHERE_MAP, 78
GL_SPOT_CUTOFF, 71
GL_SPOT_DIRECTION, 71
GL_SPOT_EXPONENT, 71
GL_T, 78
GL_TEXTURE, 28
GL_TEXTURE_BORDER_COLOR, 77
GL_TEXTURE_ENV_COLOR, 75
GL_TEXTURE_MAG_FILTER, 77
GL_TEXTURE_MATRIX, 29
GL_TEXTURE_MIN_FILTER, 77
GL_TEXTURE_WRAP_S, 77
GL_TEXTURE_WRAP_T, 77
glAccum(), 62
glBegin(), 33, 35

lines, 36
polygons, 37

glBegin/glEnd
valid commands, 35

glBlendFunc(), 59
glCallList(), 64
glCallLists(), 64

fonts, 93
glClear(), 24

accumulation buffer, 62
stencil planes, 63

glClearAccum(), 24, 62
glClearDepth(), 24
glClearStencil(), 24, 63
glClipPlane(), 30
glColor(), 44
glColorMask(), 45
glColorMaterial(), 69
glCopyPixels(), 47
glDeleteLists(), 64
glDepthMask(), 45

glDisable()
antialiasing, 61
dithering, 46
fog, 48
polygon stippling, 39
textures, 73

glDrawPixels(), 47
glEdgeFlag(), 38
glEnable(), 36

antialiasing, 60
blending, 59
dithering, 46
fog, 48
lighting, 69
logicop, 47
NURBS, 52
polygon stippling, 39
stencil planes, 63
textures, 73

glEnd(), 33
and porting lines, 35
lines, 36
polygons, 37
porting, 33

glEndList(), 64
glFeedbackBuffer(), 80
glFog()

arguments, 49
porting, 48

glFrustum(), 27
glGenLists(), 64
glGet*(), 20

color index, 45
color mask, 45
line width, 36
RGB color values, 45
shade model, 46

glGetClipPlane(), 30
glGetLight(), 69

202

Index

glGetMaterial(), 69
glGetPolygonStipple(), 39
glGetTexParameter(), 74
glHint() and antialiasing, 61
glIndex(), 44
glIndexMask(), 45
glInitNames(), 79
glIsList(), 64
glLight(), 69
glLightModel(), 69
glLineStipple(), 36
glLineWidth(), 36
glListBase(), 64

fonts, 93
glLoadIdentity(), 26
glLoadMatrixd(), 26
glLoadMatrixf(), 26
glLoadName(), 79
glLogicOp(), 47
glMap1(), 53
glMaterial(), 69
glMaterial() parameters, 70
glMatrixMode(), 26
glMultMatrix(), 24
glMultMatrixd(), 27
glMultMatrixf(), 27
glNewList(), 64
glOrtho(), 27
glPassThrough(), 80
glPixelStore(), 39, 47
glPixelTransfer(), 47
glPixelZoom(), 47
glPointSize(), 36
glPolygonMode(), 38
glPolygonStipple(), 39

glPopAttrib(), 19
glPopMatrix(), 27
glPopName(), 79
glPushAttrib(), 19
glPushMatrix(), 27
glPushName(), 79
glRasterPos(), 47
glReadBuffer(), 47
glReadPixels(), 47
glRect(), 38
glRenderMode()

feedback, 80
picking, 79
select, 79

glRotate(), 24
glRotated(), 27
glRotatef(), 27
glScaled(), 27
glScalef(), 27
glScissor(), 31
glSelectBuffer(), 79
glShadeModel(), 46
glStencilFunc(), 63
glStencilMask(), 63
glStencilOp(), 63
glTexCoord(), 74
glTexEnv(), 74
glTexGen(), 74, 78
glTexImage1D(), 74
glTexImage2D(), 74
glTexParameter(), 74
glTranslated(), 27
glTranslatef(), 27
gluBeginCurve(), 53
gluBeginPolygon(), 41
gluBeginSurface(), 54

203

Index

gluBeginTrim(), 54
gluBuild1DMipmaps(), 74
gluBuild2DMipmaps(), 73, 74
gluCylinder(), 32
gluDeleteNurbsRenderer(), 52
gluDeleteQuadric(), 32, 44
gluDeleteTess(), 41
gluDisk(), 32, 42
gluEndCurve(), 53
gluEndPolygon(), 41
gluEndSurface(), 54
gluEndTrim(), 54
gluLookAt(), 26
gluNewNurbsRenderer(), 52
gluNewQuadric(), 32, 44
gluNewTess(), 41
gluNextContour(), 41
gluNurbsCallback(), 52
gluNurbsCurve(), 53, 54
gluNurbsSurface(), 54
gluOrtho2D(), 27
gluPartialDisk(), 32, 42
gluPerspective(), 27
gluPickMatrix(), 27, 79
gluProject(), 27
gluPwlCurve(), 54
gluQuadricCallback(), 32
gluQuadricDrawstyle(), 32
gluQuadricNormals(), 32
gluQuadricOrientation(), 32
GLU quadrics routines, 31
gluQuadricTexture(), 32
gluScaleImage(), 74
gluSphere(), 32, 43, 44
gluTessCallback(), 41

gluTessVertex(), 41
gluUnProject(), 27
glVertex(), 33
glViewport(), 30
GLwDraw, 91, 94
GLwMDraw, 91, 94
glXChooseVisual(), 103

accumulation buffer, 62
GLX commands, 103
glXCreateContext(), 97, 103
GlxCreateMDraw, 96
GlxDraw,IRIS IM version, 96
GlxDrawingAreaMakeCurrent(), 102
glXMakeCurrent(), 103
GlxMDraw, 96
GlxNinputCallback, 102
GLX routines, 91
glXUseXFont(), 92
gouraud shading, 46
graphics position, current, 22
greset(), 19
gRGBcolor(), 45
gRGBmask(), 45
groups, state attribute, 19

H

header files, 18
hint modes, fog, 50
how to port, 4

I

image scaling, 74
include files, 18

204

Index

initnames(), 79
installing color maps, 92
IRIS IM, 91, 94, 95

traversal, 96
IRIS IM documentation, xiv, 102
isobj(), 64
istag(), 64

L

LCOLOR, 71
lighting, 68

display lists, 68
two-sided, 71

light models, 68
linear fog, 48
lines

drawing, 36
quadric routines, 32
stipples, 36

linesmooth(), 36, 60
linewidth(), 36
lmbind(), 67, 68
lmcolor(), 69
lmdef(), 67, 68
loadmatrix(), 26
loadname(), 79
logical pixel operations, 46
logicop(), 47
lookat(), 26
lrectread(), 47
lrectwrite(), 47
lRGBrange(), 48
lsbackup(), 37
lshaderange(), 48
lsrepeat(), 36

M

makeobj(), 64
maketag(), 64
mapcolor(), 45
mapw(), 27
mapw2(), 27
material parameters, 70
materials

display lists, 68
porting overview, 68

matrices, 24
matrix modes, 27
mipmaps, 73
mixed-model programming, 90, 96

Athena widget set, 96
GlxDraw (IRIS IM version), 96
GlxMdraw, 96
installing colormaps, 92
IRIS IM, 95, 96

GlxMDraw, 96
traversal, 96

without IRIS IM, 96
Xlib, 91, 103
Xt, 95

mmode(), 26
modelview matrix, 27
modes, fog, 50
Motif documentation, xiv, 102
move(), 22
MPROJECTION, 28
MTEXTURE, 28
multimap(), 45
multiplying matrices, 25
multmatrix(), 24, 27
MVIEWING, 28

205

Index

N

normals and GLU quadrics, 32
NURBS

curve types, 53
objects, 52
surfaces, 54
surface types, 54
trimming, 54

nurbscurve(), 53, 54
nurbssurface(), 54

O

objdelete(), 64
objinsert(), 64
objreplace(), 64
onemap(), 45
OpenGL extensions, 87
OpenGL widget, 96
ortho(), 27
ortho2(), 27

P

parentheses, and toogl, 12
pass/fail operations for stencil planes, 63
passthrough(), 80
patch(), 52
patchbasis(), 52
patchcurves(), 52
patchprecision(), 52
pclos(), 22, 37
pdr(), 22, 37
performance, 14
perspective(), 27

pick(), 79
picking, 79
picksize(), 27, 79
pixel operations, 46
pixmode(), 47
pmv(), 22, 37
pnt(), 35
pntsize(), 36
pntsmooth(), 36, 60
points

antialiasing, 36
drawing single points, 35
quadric routines, 32
set point size, 36
vertices as points, 36

pol(), 37
polarview(), 26
poly(), 37
polygons, 37

arcs, circles, 42
back/front, 38
concave, 41
modes, 37, 38
quadric routines, 32
stipples, 39
tessellated, 41
triangles, 41

polymode(), 38
polynomial curve, 53, 54
polysmooth(), 60
popmatrix(), 27
popname(), 79
popviewport(), 30
porting, how to, 4
porting tools, 3
POSITION, 71
projection matrix, 27

206

Index

pushmatrix(), 27
pushname(), 79
pushviewport(), 30
pwlcurve(), 54

Q

qread(), 90
quadrics routines, 31
quadrilaterals, 37
quotes, and toogl, 12

R

rational curves, 53, 54
rcrv(), 52
rcrvn(), 52
rdr(), 22
readRGB(), 47
readsource(), 47
RealityEngine graphics, 83-87
rect(), 38
rectangles, drawing, 38
rectcopy(), 47
rectf(), 38
rectread(), 47
rectwrite(), 47
rectzoom(), 47
rendering, direct, 15
repeat factor for lines, 36
resetls(), 37
reshapeviewport(), 30
RGB, simulating with color map, 92
RGBcolor(), 45
RGBwritemask(), 45

rot(), 27
rotate(), 24, 27
rotations, 24
rpatch(), 52
rpdr(), 37
rpmv(), 22, 37

S

sbox(), 38
sboxf(), 38
scale(), 27
scaling images, 74
sclear(), 24, 63
scrbox(), 30
scrmask(), 31
select(), 79
setlinestyle(), 36, 67
setmap(), 45
setpattern(), 39, 67
sets, 67
setting matrix mode, 26
SGIX_video_source, 87
shademodel(), 46
shading, 44, 46
SHININESS, 70
single-matrix mode, 24
single points, 35
slices, spheres, 43
smoothline(), 36
smooth shading, 46
spclos(), 37
SPECULAR, 70
specular lighting components, 68
sphdraw(), 43, 44

207

Index

spheres, 43
slices, stacks, 43
sphere library, 31
using quadrics, 32

sphfree(), 44
sphgnpolys(), 44
sphmode(), 44
sphobj(), 44
sphrotmatrix(), 44
splf(), 37
SPOTDIRECTION, 71
SPOTLIGHT, 71
stacks, spheres, 43
state attribute groups, 19
state variables, saving/restoring, 19
stencil(), 63
stencil function flags, 63
stencil planes, 63
stensize(), 63
steps to porting, 4
stippled polygons, 39
stored definitions, 67
strings, 92
subpixel mode, 58
surfaces

NURBS, 54
porting, 52

surface types, NURBS, 54
swaptmesh(), 42
swritemask(), 63

T

t2(), 74
tables, 67
tessellated polygons, 37, 41

test functions, alpha, 60
tevbind(), 67, 74
tevdef(), 67, 74, 75
texbind(), 67, 74
texdef(), 67, 76
texdef2d(), 74
texgen(), 74, 78
text handling, 92
textures, 73

with quadrics, 32
TG_CONTOUR, 78
TG_LINEAR, 78
TG_SPHEREMAP, 78
toogl

and spaces, tabs, 10
calling, 7
C comments and, 10
comments, 9
device calls, 11
editing output, 10
event calls, 11
options, 8
parentheses and quotes, 12
processing entire directory, 9
tips, 10
windowing calls, 11

tools for porting, 3
transformations, 24
translate(), 27
traversal, 96
triangle fans, 41
triangles, 41
triangle strips, 41
trimming curves, 54
TV_ALPHA, 75
TV_BLEND, 75
TV_COLOR, 75

208

Index

TV_COMPONENT_SELECT, 75
TV_DECAL, 75
TV_MODULATE, 75
two-sided lighting, 71
TX_BILINEAR, 77
TX_MAGFILTER, 77
TX_MINFILTER, 77
TX_MIPMAP_BILINEAR, 77
TX_MIPMAP_LINEAR, 77
TX_MIPMAP_POINT, 77
TX_POINT, 77
TX_Q, 78
TX_R, 78
TX_S, 78
TX_T, 78
TX_TRILINEAR, 77
TX_WRAP, 77
TX_WRAP_S, 77
TX_WRAP_T, 77

U

User Interface Language, 94

V

v(), 33
vertices, 33
video source extension, 87
viewport(), 30
visuals

for blending, 59
for stencil planes, 63

W

widget sets, 91, 94
window(), 27
windows

depth, 92
toogl windowing calls, 11
Xlib, 104

winopen(), 90
wmpack(), 45
WorkProc, 102
writemask(), 45
writemasks, 44

X

X bitmap fonts, 92
XCreateWindow(), 103
X documentation, xiv, 102
X functions

XSetWMColormapWindows(), 92
Xlib, 91, 103

color maps, 105
event handling, 106
windows, 104

XmForm widget, 102
XOpenDisplay(), 103
XSetWMColormapWindows(), 92
XStoreColor(), 45
Xt, 91, 94, 95

mixed model programming, 96
X Toolkit Intrinsics See Xt $nopage$, 95

Z

zclear(), 24
zwritemask(), 45

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-1797-030.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

