
NIS Administrator’s Guide

Document Number 007-2161-002

NIS Administrator’s Guide
Document Number 007-2161-002

CONTRIBUTORS

Written by Kim Simmons, Pam Sogard, Susan Ellis and Helen Vanderberg
Edited by Nancy Schweiger and Christina Cary
Production by Kay Maitz, Julie Sheikman and Carlos Miqueo
Engineering contributions by Andrew Cherenson, Dana Treadwell, John Schimmel
Other contributions by Joe Yetter

© Copyright 1998, Silicon Graphics, Inc.-- All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and
/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94039-7311.

Silicon Graphics and IRIS are registered trademarks and IRIX is a trademark of
Silicon Graphics, Inc. NFS is a trademark of Sun Microsystems, Inc. UNIX is a
registered trademark.

iii

Contents

About This Guide xi
Using This Guide xi
Summary of Contents xii
Audience for This Guide xiii
Supplementary Documentation xiv
Typographic Conventions xiv
Product Support xiv

1. Understanding NIS 1
About NIS 2
NIS Portability 2
Client-Server Model 4
Server Hierarchy 4
NIS Maps 4
NIS Domains 5

NIS Domains and Server Directories 6
NIS and Internet Domains 6
Multiple NIS Domains 6

2. Preparing to Manage NIS 9
Daemons 10
Binding 11
NIS Database 12

Standard and Nonstandard Maps 13
Map Propagation 14

NIS and Other Network Files 16
Local Files 16
Global Files 18

iv

Contents

NIS Software Quick Reference Guide 18
NIS Daemons 18
NIS Configuration Files 19
NIS Tools 19

3. Planning Your NIS Service 21
Establishing Multiple NIS Domains 22

Domain Boundaries 22
Bridging Domain Boundaries 23
Using the Domain Name System (DNS) 23

Using /etc/nsswitch.conf 24
Establishing a Customized Update Procedure 24

Verifying ASCII File Contents 25
Selecting a Domain Name 27
Selecting the NIS Master Server 27
Selecting the NIS Slave Servers 28
General Recommendations 29

4. Setting Up and Testing NIS 31
Setting Up the NIS Master Server 32

Setting the Master Server’s Domain Name 32
Building the Master Maps 33
Starting NIS on the Master Server 34
Testing the NIS Master Server 34

Setting Up NIS Slave Servers 35
Setting the Slave Server’s Domain Name 35
Binding to Another NIS Server 35
Building the Duplicate Maps 36
Starting NIS on the Slave Server 36
Testing the NIS Slave Server 37

Contents

v

Setting Up NIS Clients 37
Setting the Domain 38
Configuring NIS on the Client 38
Starting NIS on the Client 38
Testing the NIS Client 38

5. Maintaining NIS 39
Adding a New User to a System 40
Changing NIS Passwords 42
Using Netgroups 43
Creating a Nonstandard NIS Map Manually 45

ASCII File Input 45
Standard Keyboard Input 45

Modifying NIS Maps After NIS Installation 46
Modifying a Standard NIS Map 46
Modifying a Nonstandard NIS Map 47

Preparing to Propagate Nonstandard Maps 47
Propagating an NIS Map 50

Periodic Propagation: crontab 50
Interactive Map Propagation 51

Using ypmake 51
Using ypxfr 53
Using yppush 53

Adding an NIS Slave Server 54
Changing the Master Server 55
Using Secure ypset 56

6. Troubleshooting NIS 57
Debugging an NIS Server 58

Different Map Versions 58
Isolated, One-Time Map Propagation Failures 58
Intermittent, Consistent Map Propagation Failures 59

nsd Fails 61

vi

Contents

Debugging an NIS Client 62
Command Hangs 62
NIS Command Fails 65
ypwhich Output Inconsistent 66

Before You Call for Help 67

Index 69

vii

Figures

Figure 1-1 NIS Software Implementation 3
Figure 1-2 Basic NIS Domain 5
Figure 1-3 Multiple NIS Domains 7
Figure 2-1 NIS Binding Process 12
Figure 2-2 Map Propagation Between Servers 15
Figure 3-1 Boundary Problem With Multiple Domains 22
Figure 3-2 Boundary Solutions for Multiple Domains 23

ix

Tables

Table i Contents of Each Chapter xii
Table 2-1 NIS Daemons by System Type 10
Table 2-2 Standard Set of NIS Maps 13
Table 2-3 Default Nicknames for Maps 14
Table 2-4 Local Files Consulted by NIS 16
Table 2-5 Local File Entries to Control Access 17
Table 3-1 Maps, ASCII Files, and Descriptions 25
Table 5-1 Sample User Groups 44
Table 5-2 Sample Host Groups 44

xi

About This Guide

The NIS Administrator’s Guide documents the Silicon Graphics implementation of the
network information service NIS, and reflects changes to the IRIX 6.5 operating system.

NIS is a database service that provides location information about network entities to
other network services, such as NFS. Systems with heterogeneous architectures and
operating systems can participate in the same NIS. The service can also include systems
connected to different types of networks.

This guide was formerly published under the title NFS and NIS Administration Guide and
Man Pages, and documented the Network File System (NFS), as well as NIS. Information
about NFS is now published in a separate volume called the ONC3/NFS Administrator’s
Guide.

Using This Guide

The purpose of this guide is to provide the information needed to set up and maintain
NIS. It explains the software fundamentals of the product and provides procedures to
help you install, test, and troubleshoot NIS on your network. It also contains
recommendations for planning and administering NIS.

xii

About This Guide

Summary of Contents

Table i contains a summary of each chapter in this guide and suggests how to use the
chapter.

Table i Contents of Each Chapter

Chapter Summary When to Read

Chapter 1,
“Understanding
NIS”

Introduces the vocabulary of
NIS, describes the
relationship of NIS to other
network software, and
explains how NIS domains
are organized.

Read this chapter to learn NIS
basics. If you are already
experienced with NIS, you
can skip Chapter 1.

Chapter 2,
“Preparing to
Manage NIS”

Describes the fundamental
operation of NIS and its
database.

Read this chapter for the
background required to do
the procedures in Chapter 4,
“Setting Up and Testing NIS.”

Chapter 3,
“Planning Your NIS
Service”

Presents the issues you need
to consider before you
implement NIS for your site
and offers planning
recommendations.

Review this chapter before
setting up NIS on your
network.

Chapter 4, “Setting
Up and Testing
NIS”

Contains procedures for
implementing NIS on server
and client systems and
procedures for verifying their
operation.

Use this chapter as a guide
through NIS setup tasks.

About This Guide

xiii

Audience for This Guide

To use NIS setup and maintenance information, you should have experience in these
areas:

• Setting up network services

• Assessing the needs of network users

• Maintaining hosts databases

• Understanding the UNIX filesystem structure

• Using UNIX editors

To troubleshoot NIS, you should be familiar with these concepts:

• Theory of network services

• Silicon Graphics network implementation

Chapter 5,
“Maintaining NIS”

Explains how to change NIS
and its database when
conditions in your network
change. It also contains
information on managing
security with NIS.

Refer to this chapter when
you need to update NIS
maps, implement security, or
add new users to NIS.

Chapter 6,
“Troubleshooting
NIS”

Describes problems that can
arise when maps are
propagated and when NIS
server or client software is
malfunctioning.
Recommends corrective
action for each type of
problem.

Use this chapter to identify
the source of NIS problems
and take corrective action.
Read the information in the
final section before phoning
the Silicon Graphics
Technical Assistance Center.

Table i (continued) Contents of Each Chapter

Chapter Summary When to Read

xiv

About This Guide

Supplementary Documentation

You can find supplementary information in these documents and books:

• IRIX Admin:Networking and Mail (Silicon Graphics publication) explains the
fundamentals of system and network administration for Silicon Graphics systems
on a local area network.

• ONC3/NFS Administrator’s Guide (Silicon Graphics publication) explains how to set
up and maintain Silicon Graphics’ implementation of NFS.

• Stern, Hal, Managing NFS and NIS, O’Reilly & Associates, Inc. 1991. This book
contains detailed, but not Silicon Graphics specific, information about NIS and how
to administer and use it.

Typographic Conventions

This guide uses several font conventions:

italics Italics are used for command and reference page names, filenames,
variables, hostnames, user IDs, map names, and the first use of new
terms.

Courier Courier is used for examples of system output and for the contents of
files.

Courier bold Courier bold is used for commands and other text that you are to type
literally.

Product Support

Silicon Graphics offers a comprehensive product support and maintenance program for
IRIS products. For information about using support services for this product, refer to the
release notes that accompany it.

1

Chapter 1

1. Understanding NIS

This chapter contains a general description of the Silicon Graphics implementation of the
Sun Microsystems network information service NIS. It provides an overview of NIS, an
explanation of the NIS client-server model, and an introduction to NIS domains and NIS
maps.

This chapter contains these sections:

• “About NIS” on page 2

• “NIS Portability” on page 2

• “Client-Server Model” on page 4

• “Server Hierarchy” on page 4

• “NIS Maps” on page 4

• “NIS Domains” on page 5

2

Chapter 1: Understanding NIS

About NIS

NIS is a network lookup service that provides a centralized database of information
about the network to systems participating in the service. The NIS database is fully
replicated on selected systems and can be queried by participating systems on an
as-needed basis. Maintenance of the database is performed on a central system.

The purpose of NIS is to make network administration more efficient by reducing the
risk of error and the time required to perform redundant file management tasks. For
example, maintaining the /etc/hosts database on a large network might require creating a
script to automatically copy the /etc/hosts file from a central system to all systems on the
network. It also requires setting up the appropriate access permissions on each system to
enable this file transfer; this is a redundant and time-consuming process. By contrast, on
networks using NIS, maintaining the /etc/hosts database requires modifying a single file,
typically /etc/hosts, on a single system.

On many networks, a number of information sources are available to provide
information to network applications. For this reason, most applications have a standard
lookup rule for finding the information they need. Starting with IRIX 6.5, the default
lookup order is specified in the /etc/nsswitch.conf file.

NIS can service networks with approximately 1000 systems. Larger networks can be
organized into multiple NIS service areas, or domains.

NIS Portability

NIS is an application layer service that can be used on any network using the
Transmission Control Protocol or User Datagram Protocol for transport layer services.
NIS also relies on remote procedure call (RPC) for session layer services and external data
representation (XDR) for presentation layer services. Because the NIS application adheres
to these standard network protocols, it is portable and works with a variety of vendors’
platforms.

The network protocols TCP and UDP provide the services required to transport
messages on the same system or between remote systems. TCP provides reliable,
connection-oriented transport. UDP provides unreliable, connectionless transport. TCP
and UDP are protocols that are widely accepted and used in the network environment,
making them the logical choices for NIS and several other network applications.

NIS Portability

3

RPC and XDR are services that bridge the gap between the transport layer services and
the network application. They provide the functionality required to build distributed
applications and resolve operating system and hardware architectural differences.

RPC provides a message passing scheme. It allows information to be passed between
procedure calls that do not reside in the same address space. The address space can be
located on the same system or it may reside on a remote system. In the NIS application,
RPC enables client and server processes on local or remote systems to access the NIS
database. NIS users are not aware that the procedure calls are occurring between two
different systems.

XDR translates differences that can occur between machine architectures. It allows
remote procedure calls and/or an application to interpret an RPC message independent
of machine architecture. In the NIS application, XDR services allow systems from
multiple vendors access to an NIS database located on any vendor’s system. RPC and
XDR are not exclusive to NIS. RPC and XDR are industry standards and are used in a
variety of distributed network applications.

Figure 1-1 illustrates the NIS software implementation in the context of the Open
Systems Interconnect (OSI) model.

Figure 1-1 NIS Software Implementation

application

presentation

session

transport

network

data link

physical

NIS

XDR

RPC

UDP/TCP

IP

network interface

4

Chapter 1: Understanding NIS

Client-Server Model

An NIS client is a process running on a system that requests data from an NIS database.
An NIS server is a process running on a system that provides data from the NIS database.
The terms client and server designate both processes and systems: a system is considered
a client when requesting NIS data, and it is considered a server when providing NIS data.
A system can function as a client and a server simultaneously.

Sometimes client requests are handled by NIS servers running on the same system, and
sometimes they are serviced by NIS servers running on a different system. If one NIS
server system fails, client processes obtain NIS services from another. In this way, the NIS
service remains available even when an NIS server system goes down.

Server Hierarchy

NIS servers, each of which contains a copy of the NIS database, are divided into two
groups: master servers and slave servers. A master server is the system on which NIS
databases are originally created and maintained. A slave server is a system that holds a
duplicate copy of the database. A server may be a master server with respect to one
database and a slave server with respect to another.

The master server makes updated database information available to slave servers by a
process known as propagation. Propagation ensures the consistency of database
information between the master server and its slave servers.

NIS Maps

The NIS database is composed of a group of files known as maps. Maps are created with
NIS tools that convert input files (usually standard ASCII files) to files in database record
format (see the mdbm(3B) reference page). Since data in mdbm format is faster to find
than ASCII data, using mdbm files increases NIS performance.

Each NIS map has a map name that programs use to access it. Any program using an NIS
map must recognize the format of the data it contains.

Maps are composed of keys and values. A key is a particular field in the map that the client
must specify whenever it queries the map; values are attributes of the key returned from
the query. For example, in the map called hosts.byname, the keys are the names of

NIS Domains

5

individual systems, and the values are their Internet addresses. A query on the system
triangle might return the value 192.0.2.5.

At steady state, maps throughout the network contain consistent information. In this state,
a client query receives the same answer to the query, regardless of which server responds
to it. This consistency of information allows multiple servers to operate on a network,
increasing the availability and reliability of the NIS service.

NIS Domains

An NIS domain is a collection of systems using the same NIS database. To participate in
the NIS service, a system must belong to an NIS domain.

Figure 1-2 shows the basic layout for the systems in Building 1 and a domain called eng.

Figure 1-2 Basic NIS Domain

The domain eng consists of the master server, one slave server, and three clients. One
system on the network does not participate in NIS at this time but may be included in the
domain at a later date.

 M

M = master server

S = slave server

Building 1

 S/var/yp/eng

Non-participating system System in
eng domain

6

Chapter 1: Understanding NIS

NIS Domains and Server Directories

Starting with IRIX 6.5, the NIS databases are contained in subdirectories of the NIS home
directory /var/ns/domains/eng. These subdirectories are named for the domain whose
database they contain. For example, in Figure 1-2, both servers contain the database for
the eng domain in a subdirectory named /var/yp/eng.

NIS and Internet Domains

The Internet is a registered organization of wide area networks originally funded by
DARPA (U.S. Defense Advanced Research Projects Agency). It is organized into
domains, machines grouped into networks that are given names to identify them clearly.
In the Internet naming scheme, commercial businesses in the United States are given
names that end in .com (sgi.com is one such), educational institutions use .edu, and
governmental organizations use domain names ending in .gov.

Domains within a organization are organized on the same grouping principle. For
example, in a business with the Internet domain name of dender.com, two separate NIS
domains might be finance and engineering, which would use the domain names .finance
and .eng, respectively. If you subdivided dender.com this way, the NIS domain name of
engineering would be eng.dender.com, and the NIS domain name of finance would be
finance.dender.com.

Often the Internet domain name is used as the basis for the NIS domain, a useful practise,
but not required. You can use some other NIS domain name, but you should understand
fully about domain names and their interaction with other aspects of name service before
doing so. For further details on domains, refer to IRIX Admin: Networking and Mail.

Multiple NIS Domains

Complex networks that require large NIS databases, approximately 1000 systems or
more, should be evaluated for multiple NIS domains. Factors that should be considered
when determining whether to have multiple domains are network complexity and
server availability. In addition, on networks where dynamic conditions make database
synchronization difficult, multiple domains can make NIS more reliable and easier to
maintain. NIS domains are not constrained by the topology of the network. Systems in
the same NIS domain are not necessarily on the same local area network. For
administrative or organizational reasons, it may make sense to configure large networks
as separate NIS domains such as eng and finance.

NIS Domains

7

Figure 1-3 illustrates the organization of Building 1 and Building 2 local area networks
into two domains, eng and finance.

Figure 1-3 Multiple NIS Domains

The master and slave server for the eng domain both contain a database of information
for the eng domain in /var/ns/domains/eng, and the master and slave server for the finance
domain both contain a copy of the database for the finance domain in
/var/ns/domains/finance. Notice that one system in the Building 1 local area network
belongs to the finance domain and is the master server for the finance domain.
(Chapter 2, “Preparing to Manage NIS,” contains detailed information on multiple NIS
domains.)

 M

 M

Non-participating system

M = master server

S = slave server

 S

Building 2 Building 1

System in
eng domain

 S

System in
finance domain

9

Chapter 2

2. Preparing to Manage NIS

To be prepared for managing NIS, you should understand NIS software elements and the
tools available for controlling its operation. This chapter contains the prerequisite
information. It identifies NIS client and server daemons and their interactions, and
describes a special daemon interaction called binding. It also explains how the NIS
database is created and maintained, and how local client files and global files are used
when NIS is in effect. Finally, this chapter provides a quick reference guide to NIS
software and NIS management tools.

This chapter contains these sections:

• “Daemons” on page 10

• “Binding” on page 11

• “NIS Database” on page 12

• “NIS and Other Network Files” on page 16

• “NIS Software Quick Reference Guide” on page 18

10

Chapter 2: Preparing to Manage NIS

Daemons

Which NIS daemons are running on a system depends on the system’s function in the
NIS environment: clients, master servers, and slave servers each run a particular set of
daemons.

Table 2-1 lists the daemons required for each type of system for NIS to function correctly.

The binder daemon, nsd, runs on all NIS clients. In this instance, the daemon is
responsible for remembering information necessary for communicating with the NIS
server process. See the nsd(1M) reference page for more information.

The nsd daemon also acts as the server daemon and runs on all NIS servers. It acts as the
database server and is responsible for answering client inquiries, and managing database
updates. Most NIS servers are also NIS clients; they use the NIS database information.

On the NIS master server the server process daemon, nsd, runs to answer client inquiries
and to solicit information from the NIS database. The master server also runs a second
daemon, /usr/etc/rpc.passwd, which allows NIS users to remotely modify their NIS
password with yppasswd and to modify some other password file fields with ypchpass. For
more information see the yppasswd(1) and ypchpass(1) reference pages.

On IRIX, NIS daemons are started by the master network script, /etc/init.d/network, if the
NIS daemon flags are set on (flags can be set with the chkconfig command). There are two
chkconfig flags for NIS: nsd, and ypmaster (see Chapter 4, “Setting Up and Testing NIS,”
for more details).

Table 2-1 NIS Daemons by System Type

Daemon Client Slave Master

nsd X X X

rpc.passwd X

Binding

11

Binding

In binding, a process remembers the address at which the nsd server process is listening
for requests. In the NIS environment, when an application on a client needs information
that is normally derived from certain local files, the application solicits the information
from the NIS database on a selected NIS server. The relationship between the binder
daemon, and the server daemon, determines whether or not an NIS connection is bound
or unbound. A brief summary of the binding process is given below.

To obtain the IP address and port number for the NIS server process, nsd broadcasts for
any NIS server within its domain. The first NIS server process to respond with its IP
address and port number, whether local or remote, is the process that is used to service
the request. The IP address for the physical NIS server and the port number for the NIS
server process are remembered by the nsd process and used to obtain NIS database
information.

Figure 2-1 illustrates the binding process initiated for an ls command. Before the ls
command can list the contents of a directory, it needs to translate the file’s user ID into a
user’s name. ls uses the library routine getpwuid, which accesses the local /etc/passwd file
and the NIS password file as appropriate. In an NIS environment, this entails accessing
the password map in the NIS database. Note that the general process is the same whether
binding occurs on the local system or between remote systems. For more information, see
the ls(1) and getpwuid(1) reference pages.

12

Chapter 2: Preparing to Manage NIS

Figure 2-1 NIS Binding Process

When a client boots, nsd broadcasts or multicasts, by default, to the portmap port number
for the NIS service. The portmapper forwards the packet to the NIS server, if there is one
running on the machine, which then determines whether or not it services the domain
requested. Similarly, nsd broadcasts asking for a new NIS server if the old server fails to
respond. An nsd daemon runs on both the client and the server. The ypwhich(1) command
gives the name of the server to which nsd is currently bound.

NIS Database

The NIS database is a collection of files in mdbm format. To create the database, the NIS
tool makemdbm converts input files (usually ASCII) to output files. The output files have
.m extensions. Each is a map. For example, the aliases map is composed of the file
aliases.m.

ls

getpwuid(3C)

ns_lookup(3Y){libsun

nsd

broadcast nsd

using “bound” path, get
NIS passwd information

Client

Server

"bind"

po
rt

m
ap

NIS Database

13

A typical listing of NIS database files looks like this:

bootparams.m mac.byname.m passwd.byuid.m
capability.byname.m mac.byvalue.m protocols.byname.m
clearance.byname.m mail.aliases.m protocols.bynumber.m
ethers.byaddr.m mail.byaddr.m rpc.byname.m
ethers.byname.m netgroup.byhost.m rpc.bynumber.m
group.bygid.m netgroup.byuser.m
group.byname.m netid.byname.m
group.bymember.m networks.byaddr.m
hosts.byaddr.m networks.byname.m
hosts.byname.m passwd.byname.m

Standard and Nonstandard Maps

The NIS application is capable of making and updating a particular set of maps
automatically. These are known as standard maps and are derived from regular ASCII
files. The maps included in a standard set vary with each NIS release. Nonstandard maps
are maps that have no ASCII form or maps that are created for vendor- or site-specific
applications; NIS does not automatically know how to make or update nonstandard
maps. NIS can serve any number of standard (default) and nonstandard maps.

Table 2-2 shows the standard NIS maps.

Table 2-2 Standard Set of NIS Maps

bootparams hosts.byaddr netgroup rpc.byname

capability.byname hosts.byname netid.byname rpc.bynumber

clearance.byname mac.byname networks.byaddr services.byname

ethers.byaddr mac.byvalue networks.byname services.byport

ethers.byname mail.aliases passwd.byname ypservers

group.bygid mail.byaddr passwd.byuid

group.byname netgroup.byhost protocols.byname

group.bymember netgroup.byuser protocols.bynumber

14

Chapter 2: Preparing to Manage NIS

In most cases, the format of the data in NIS default maps is identical to the format within
the ASCII files.

Some maps have default nicknames to make administration easier. The ypcat(1)
command, a general NIS database print program, with the –x option prints a list of
default map nicknames and their corresponding full names. Table 2-3 shows the list of
default nicknames and full names for maps supplied in the NIS release.

For example, the command ypcat hosts is translated into ypcat hosts.byaddr because there
is no map called hosts.

Map Propagation

Propagating an updated database from master server to slave servers ensures database
consistency between all NIS clients. Databases can be updated in two ways: periodically
with crontab and interactively from the command line (see Chapter 5, “Maintaining NIS,”
for details on map propagation methods).

The propagation process varies depending on the propagation method. For example,
when a map is updated and propagated using ypmake, ypmake looks at mdbm_parse to
determine which maps to make. mdbm_parse updates the maps and calls yppush. yppush

Table 2-3 Default Nicknames for Maps

Map Nickname Map Full Name

aliases mail.aliases

ethers ethers.byname

group group.byname

hosts hosts.byaddr

networks networks.byaddr

passwd passwd.byname

protocols protocols.bynumber

rpc rpc.bynumber

services services.byname

NIS Database

15

reads the ypservers map to determine which slave servers to contact; yppush contacts nsd
on the selected slave servers and requests ypxfr service. The slave server can now transfer
the maps with ypxfr. For more information on map propagation methods, see the cron(1),
ypmake(1M), yppush(1M), and ypxfr(1M) reference pages.

Figure 2-2 illustrates the propagation process between a master server and a slave server
using ypmake.

Figure 2-2 Map Propagation Between Servers

ypmake

mdbm_parse

yppush

nsd ypxfr

Master Server Slave Server

Transfer request

Transfer request

nsd

start

Map transferred

16

Chapter 2: Preparing to Manage NIS

NIS and Other Network Files

When a system becomes an NIS client, it completely relinquishes control over some
network-related files like passwd and aliases if the compatibility attribute is set, and
maintains varying levels of control over others. The amount of control relinquished on
certain files depends upon the NIS syntax used within the file.

These network-related files can be divided into two groups: local files and global files.
Local files are those files that NIS first checks on the local system and may continue
checking in the NIS database. Global files are those files that reside in the NIS database
and are always consulted by programs using NIS.

The next two sections discuss the local and global files consulted by NIS. More
information on these configuration files is included in the book IRIX Admin: System
Configuration and Operation.

Local Files

Table 2-4 shows the local files that NIS consults. Local files allow levels of control. For
example, a program that calls getpwent to access /etc/passwd (a local file) first looks in the
password file on your system; the NIS password file is consulted only if your system’s
password file contains a plus sign (+) entry (see the passwd reference page).

Table 2-4 Local Files Consulted by NIS

Local File

/etc/hosts.equiv

/etc/passwd

/etc/aliases

.rhosts

NIS and Other Network Files

17

The /etc/passwd file may have plus (+) or minus (–) entries to designate levels of local
control. Table 2-5 shows some examples of +/– entries for the local /etc/group and
/etc/passwd files. Note that the position of +/– entries in the files does affect processing.
The first entry, +/– or regular, is the one that is used.

In /etc/hosts.equiv, if there are + or – entries whose arguments are @ symbols and
netgroups, the NIS netgroup map is consulted; otherwise NIS is not consulted. This rule
also applies to .rhosts.

In /etc/aliases, if there is a +:+ entry, the NIS aliases map is consulted. Otherwise, NIS is not
consulted.

Table 2-5 Local File Entries to Control Access

Local File Example Entry Meaning of the Entry

/etc/passwd +: Get all password information from
the NIS password database.

+gw: Get all user account information
for gw from NIS.

+@marketing: Allow anyone in the marketing
netgroup (see “Using Netgroups”
in Chapter 5 for details) to log in
using NIS account information.

+nb::::Nancy
Doe:/usr2/nb:/bin/csh
(shown wrapped; entry is one line)

Get the user password, user ID,
and group ID from NIS. Get the
user’s name, home directory, and
default shell from the local entry.

-fran: Get all user account information
from NIS and disallow any
subsequent entries (local or NIS)
for fran.

-@engineering: Disallow any subsequent entries
(local or NIS) for all members in
the netgroup engineering.

18

Chapter 2: Preparing to Manage NIS

Global Files

All global files are controlled by the /etc/nsswitch.conf file, which determines the maps, the
methods, and the order in which they are looked up. The compatibility attribute to
override local control of a file is set in the following manner in the nsswitch.conf file:

passwd: files(compat) [notfound=return] nis

This line compels files to be searched in the historical manner: the files are parsed and if
a +/- entry is found, the next element is called. If the requested item is not found in the
file, either as a regular entry or as one of the +/- entries, then control is returned
immediately, without notification, to the next name service.

For example, previously ypserv had a flag -i pertaining to the hosts map which meant, if
a requested item was not found in the dbm files (NIS maps), then the request was
forwarded to DNS. Starting with IRIX 6.5, the server has an nsswitch.conf file just like the
client, which gives a resolve order for each map. Now the line for hosts in
/var/ns/domains/domainname/nsswitch.conf shows an entry nisserv referring to the library
for serving NIS. If you put dns after that, the name server will use DNS if a requested key
is not found in the maps:

hosts: nisserv dns

If the -i flag was previously used, the entry should exist as described. Note that ypserv
no longer works this way.

NIS Software Quick Reference Guide

This section provides a quick reference to NIS daemons, files, and tools and suggests the
reference pages you should consult for complete information. The reference pages at the
end of this guide contain detailed information on the structure of the NIS system and NIS
commands.

NIS Daemons

rpc.passwd A server process that allows users with NIS accounts to change their NIS
password and other NIS password-related fields.

nsd The daemon acts as both server and client depending on how it is
configured.

NIS Software Quick Reference Guide

19

NIS Configuration Files

/var/ns/domain
The default location of NIS database files. For more information, see the
ypfiles reference page.

/etc/config/rpc.passwd.options
Specifies an alternate NIS password filename. Default password file is
/etc/passwd. Must be used in conjunction with the
/etc/config/ypmaster.options PWFILE variable. For more information, see
the rpc.passwd reference page.

/etc/config/nsd.options
Specifies default options to use with nsd. Options that can be included in
this file are a secure mode and a cache timeout specifier. For more
information, see the nsd reference page.

NIS Tools

makemdbm A low-level tool for building an mdbm file that is a valid NIS map. You
can use makemdbm to build or rebuild databases not built from
/var/yp/mdbm_parse. You can also use mdbm_dump to disassemble a map
so that you can see the key-value pairs that comprise it. In addition, you
can modify the disassembled form with standard tools (such as editors,
awk, grep, and cat). The disassembled form is in the form required for
input back into makemdbm. See the makedbm(1M) reference page for
more information.

ypcat Lists the contents of an NIS map. Use it when you do not care which
server’s map version you see. If you need to see a particular server’s
map, use the rlogin or rsh commands to gain access to that server, and
use makemdbm.For details on ypcat, see the ypcat(1) reference page.

ypchpass Changes select NIS password fields. As the NIS user, you can change
your full name, your home directory and your default shell
environment. Use yppasswd to change your NIS password.See the
ypchpass(1) reference page for details on the distinction between the
two.

ypinit Constructs many maps from files located in /etc, such as /etc/hosts,
/etc/passwd, and others. The database initialization tool ypinit does all
such construction automatically. Also, it constructs initial versions of
maps required by the system but not built from files in /etc; an example

20

Chapter 2: Preparing to Manage NIS

is the map ypservers. Use this tool to set up the master NIS server and the
slave NIS servers for the first time. Use ypinit to construct initial versions
of maps rather than as an administrative tool for running systems.See
the ypinit(1M) reference page for details.

ypmake Builds several commonly changed components of the NIS database
from several ASCII files normally found in /etc: bootparams, passwd, hosts,
group, netgroup, networks, protocols, rpc, and services, and the file
/etc/aliases. /var/yp/ypmake.log is the log file for all ypmake activity. For
more information, see the ypmake(1M) reference page.

ypmatch Prints the value for one or more specified keys in an NIS map. Again,
you have no control over which server’s version of the map you are
seeing. See the ypmatch(1) reference page for details on using ypmatch.

yppasswd Allows NIS users to remotely change their NIS passwords.For details
refer to the yppasswd(1M) reference page.

yppoll Asks any nsd for the information it holds internally about a single
map.See the yppoll(1M) reference page for details on using yppoll.

yppush Runs on the master NIS server. It requests each of the nsd processes
within a domain to transfer a particular map, waits for a summary
response from the transfer agent, and prints out the results for each
server. For more information, see the yppush(1M) reference page.

ypset Tells an nsd process (the local one, by default) to get NIS services for a
domain from a named NIS server. By default, nsd disallows the use of
ypset. See the ypset(1M) reference page for details on enabling ypset.

ypwhich Tells you which NIS server a node is using at the moment for NIS
services, or which NIS server is master of some named map.For more
information, refer to the ypwhich(1M) reference page.

ypxfr Moves an NIS map from one NIS server to another, using NIS itself as
the transport medium. You can run it interactively, or periodically from
crontab. Also, nsd uses ypxfr as its transfer agent when it is asked to
transfer a map. You can create the file /var/yp/ypxfr.log to log all ypxfr
activity. See the ypxfr(1M) reference page for details.

In addition to these NIS tools, the rpcinfo and crontab tools are also useful for
administering NIS. For further information, please refer to the reference page for each
tools.

21

Chapter 3

3. Planning Your NIS Service

This chapter presents information to consider before you set up the NIS service on your
network. It explains how to set up multiple NIS domains (if you decide they are needed)
and identifies the files that should be up to date before NIS setup begins. It suggests how
to name a domain and how to select master and slave servers. Finally, this chapter
provides general recommendations to help you make planning decisions.

This chapter contains these sections:

• “Establishing Multiple NIS Domains” on page 22

• “Verifying ASCII File Contents” on page 25

• “Selecting a Domain Name” on page 27

• “Selecting the NIS Master Server” on page 27

• “Selecting the NIS Slave Servers” on page 28

• “General Recommendations” on page 29

22

Chapter 3: Planning Your NIS Service

Establishing Multiple NIS Domains

Before you set up NIS, determine the number of domains you need. Establishing more
than one domain is advisable if your network is very complex or requires a very large
database. You might also consider using multiple domains if your network contains a
large number of systems (say, in excess of 1000 systems).

If you decide to establish multiple domains and require interdomain communication,
your planning involves additional network considerations. Those considerations are
addressed in the remainder of this section.

Note: If you plan to establish a single domain or multiple isolated domains, you can skip
ahead to “Verifying ASCII File Contents” to proceed with your planning.

Domain Boundaries

NIS is not hierarchical in nature; it cannot resolve issues that extend beyond domain
boundaries. For example, suppose you set up two domains as shown in Figure 3-1:
shapes, which includes system client1; and colors, which includes system client2.
Without NIS, communication between client1 and client2 relies on entries in their local
/etc/hosts that provide a host name-to-address mapping.

Figure 3-1 Boundary Problem With Multiple Domains

With NIS, hostname and address information is in the hosts database on the NIS servers
for a domain. However, this name and address information is limited to domain
members. The colors database has no entry for client1 in the shapes domain, and the
shapes database has no entry for client2 in the colors domain. Consequently, when
client1 tries to contact client2, hostname resolution fails and a connection cannot be
established. While there may be a physical connection between client1 and client2, there
is no logical connection to support the communication process.

Shapes Colors

client1 client2

Establishing Multiple NIS Domains

23

Bridging Domain Boundaries

When multiple NIS domains are used, you must form a logical bridge between domains
to allow systems in different domains to communicate as shown in Figure 3-2. The logical
bridge must contain or be able to access system information for all systems on a given
network, regardless of domain. There are two ways to achieve this logical bridge: using
the Domain Name System (DNS) or using a customized update procedure.

Figure 3-2 Boundary Solutions for Multiple Domains

Using the Domain Name System (DNS)

DNS, sometimes referred to as BIND (Berkeley Internet Name Daemon) or named, is a
service that maps hostnames to IP addresses and vice-versa. DNS is concerned mainly
with hostname-address and address-hostname resolution. It was developed to support
very large scale environments and provides an accurate network depiction; it is
hierarchical in nature. When correctly set up, DNS resolves hostnames and addresses
throughout an entire network. For NIS to use DNS, DNS must be set up to know about
all systems. IRIX Admin: Networking and Mail provides detailed information on setting up
DNS.

By default, hostname resolution is done by first checking NIS. If NIS isn’t running, then
DNS is checked. If DNS isn’t running, then the local /etc/hosts file is checked. To redefine
the host resolution order, change the /etc/nsswitch.conf as described in the next section.

Shapes Colors

DNS or
customized update
procedure

client2client1

24

Chapter 3: Planning Your NIS Service

Using /etc/nsswitch.conf

The lookup order for resolving a system’s identity can be configured in a variety of ways
with /etc/nsswitch.conf. For example, a network application could resolve hostname
lookup by accessing files or databases in this order: NIS, DNS, and finally the local file.
It can be configured to check only the first service running, or to check services until a
match is found. Whatever order is specified, it becomes the default lookup order used by
routines in the standard C library, such as gethostbyname(3N), for resolving host names.

If you want applications to resolve host names via the DNS database only, put this line
in /etc/nsswitch.conf:

hosts: dns

If applications are to search only DNS and /etc/hosts, put this line in /etc/nsswitch.conf:

hosts: dns files

To specify that NIS should be checked first, then if no match is found check DNS, and if
no match is found check /etc/hosts, put this line in /etc/nsswitch.conf:

hosts: nis dns files

See the nsswitch.conf(1) reference page for more detailed information.

Establishing a Customized Update Procedure

An alternative to using DNS is to establish a procedure for updating the hosts file on all
master servers. For example, designate one system at your site to be the repository for
new system addresses and limit administration of this system to a few select people. Set
up a script and crontab entry on the designated system to copy its /etc/hosts file to the NIS
master servers on each domain at regular intervals. When each NIS master server
performs a ypmake, the host database is updated with the names and addresses for all
systems on the network, regardless of the domain. This scheme distributes an updated
list of all network systems to NIS servers, allowing clients in different domains to
communicate successfully.

While DNS is mainly for host name resolution, NIS supports multiple database maps in
addition to the hosts map. This method of setting up your own customized update
procedure is also useful if you need the same information for other maps distributed
between domains (for example, /etc/aliases).

Verifying ASCII File Contents

25

Verifying ASCII File Contents

NIS databases are built on the NIS master server from a set of ASCII files the master
server contains. A key preparation step is to ensure that the information contained in the
ASCII files is correct and up to date.

Table 3-1 lists the maps that make up the NIS database, the input files that create these
maps, and the purpose of each map in the NIS environment.

Table 3-1 Maps, ASCII Files, and Descriptions

Map Name ASCII File Description

bootparams /etc/bootparams Contains pathnames of files diskless clients
need during booting: root, swap, share,
possibly others.

capability.byname /etc/capability Contains information about the capability
each user may have when logging onto the
system.

clearance.byname /etc/clearance Contains mandatory access control labels to
allow user access to the system.

ethers.byaddr /etc/ethers Contains host names and Ethernet
addresses. The Ethernet address is the key in
the map.

ethers.byname /etc/ethers Same as ethers.byaddr, except key is host
name instead of Ethernet address.

group.bygid /etc/group Contains group security information with
group ID as key.

group.byname /etc/group Contains group security information with
group name as key.

group.bymember /etc/group Contains all groups of which a login is a
member.

hosts.byaddr /etc/hosts Contains host names and IP addresses, with
IP address as key.

hosts.byname /etc/hosts Contains host names and IP addresses, with
host name as key.

26

Chapter 3: Planning Your NIS Service

mac.byname /etc/mac Contains mandatory access control
information, with user name as key.

mac.byvalue /etc/mac Same as mac.byname, except that key is
numeric value.

mail.aliases /etc/aliases Contains aliases and mail addresses, with
aliases as key.

mail.byaddr /etc/aliases Contains mail addresses and aliases, with
mail address as key.

netgroup.byhost /etc/netgroup Contains group names, user names, and host
names, with host name as key.

netgroup.byuser /etc/netgroup Same as netgroup.byhost, except that key is
user name.

netgroup /etc/netgroup Same as netgroup.byhost, except that key is
group name.

netid.byname /etc/group,

/etc/hosts,

/etc/netid

Contains user, group, and host information,
with user name as key.

networks.byaddr /etc/networks Contains names of networks known to your
system and their IP addresses, with the
address as the key.

networks.byname /etc/networks Same as networks.byaddr, except key is name
of network.

passwd.byname /etc/passwd Contains password information with user
name as key.

passwd.byuid /etc/passwd Same as passwd.byname, except that key is
user ID.

protocols.byname /etc/protocols Contains network protocols known to your
network, with protocol name as key.

protocols.bynumber /etc/protocols Same as protocols.byname, except that key is
protocol number.

Table 3-1 (continued) Maps, ASCII Files, and Descriptions

Map Name ASCII File Description

Selecting a Domain Name

27

Selecting a Domain Name

The name you choose for your NIS domain is at your discretion; however, it should
reflect some characteristics of the network it is serving, such as its location, function, or
types of systems it contains. You can use a simple domain name, such as marketing; or,
if you are a member of the Internet and you choose to do so, you can use your Internet
domain name (such as finance.company.com) as your NIS domain name.

The domainname command sets a domain name on an NIS system. The NIS domain name
is assigned at system startup. Enter it in the domain file, /var/yp/ypdomain. Be aware that
domain names are case sensitive: marketing and Marketing are different domains. See
Chapter 4, “Setting Up and Testing NIS,” for complete instructions on setting domain
names, and the domainname (1) reference page for details of the domainname command.

Selecting the NIS Master Server

Determine the system to be the NIS master server for the domain; there is only one NIS
master server per domain. The NIS master server houses the original NIS database maps
for the domain and is the only server on which changes are made to the NIS database.
For this reason, the master server should be a very reliable and stable system. It must be
accessible via the network to both NIS clients and NIS slave servers. The master server
need not be a dedicated system; it can be responsible for other functions as well.

rpc.byname /etc/rpc Contains program number and name of
RPCs known to your system. Key is RPC
program name.

rpc.bynumber /etc/rpc Same as rpc.byname except that key is RPC
program number.

services.byname /etc/services Lists Internet services known to your
network. Key is service name.

ypservers /var/yp/ypservers Lists NIS servers known to your network.
Initially created by ypinit when master server
was built.

Table 3-1 (continued) Maps, ASCII Files, and Descriptions

Map Name ASCII File Description

28

Chapter 3: Planning Your NIS Service

This is also a good time to determine the name of the NIS password file to be used. By
default, NIS derives the database file from the ASCII version of /etc/passwd. This can be a
security hole as all system password files require a root account.

To ensure security, create a separate NIS password file that contains no root or
superuser-equivalent accounts (no UID=0). A good generic NIS password filename is
/etc/passwd.nis. If you plan to use a password file other than the default /etc/passwd, you
must tell NIS about the new filename. To do so, you must create a file to support the NIS
password file, /etc/passwd.nis: /etc/config/rpc.passwd.options. The contents of
/etc/config/rpc.passwd.options should look like this example:

cat /etc/config/rpc.passwd.options
/etc/passwd.nis

Selecting the NIS Slave Servers

Slave servers contain copies of the NIS database. The number of NIS slave servers you
assign per domain depends upon the size of the domain and the number of networks
over which your domain extends. NIS slave servers must be accessible to both NIS clients
and the NIS master server by means of the network. NIS slave servers should be reliable
systems; the degree of reliability of these systems depends on the availability of backup
slave servers.

By default, NIS clients broadcast an NIS bind request when they boot. Since broadcast
requests cannot go through gateways, you must have at least one NIS slave server on any
network where there are NIS clients. For reliability, there should be more than one NIS
slave server on any network where there are NIS clients.

Broadcasting bind requests is the default setting, but clients can specify the server they
wish to bind to at boot time. For instance, say you have a domain that encompasses many
subnets, one of which contains only one client. To avoid making that client a server, you
can specify the server the client should bind to at boot time.

To specify an NIS server at client startup, modify the /etc/nsswitch.conf file. This file
contains the resolve order and identifies the address of any NIS server. Add the
specification line to the /etc/nsswitch.conf file:

vi /etc/nsswitch.conf
(nis_servers=”1.2.3.4 5.6.7.8”)

where the number notation is the IP address of any specified server.

General Recommendations

29

General Recommendations

Below are some general recommendations for setting up NIS. Because these are only
general recommendations, you may need to tailor them to fit your specific site
requirements.

1. During the planning phase, sketch the NIS implementation for your network.
Identify the master server, slave servers, and client systems. If you have multiple
domains, include them in your drawing.

2. If your domain spreads over several networks, ensure that there are at least two
slave servers per network in case of system or network failures.

3. Create an alternate password file to be used by NIS only, that does not have any root
UIDs. For example, specify /etc/passwd.nis as the NIS password file.

4. To simplify administration and troubleshooting, maintain one and only master
server for all maps within a single domain.

5. Plan to do all database creation and modification on the master server.

31

Chapter 4

4. Setting Up and Testing NIS

Setting up NIS consists of three general procedures: setting up the master server, setting
up the slave servers, and setting up the clients. The instructions in this chapter explain
how to set up NIS by guiding you through procedures on sample NIS systems in a
sample NIS domain.

This chapter contains these sections:

• “Setting Up the NIS Master Server” on page 32

• “Setting Up NIS Slave Servers” on page 35

• “Setting Up NIS Clients” on page 37

This sample setup in this chapter is representative of what must be done to set up NIS on
any network, regardless of its specific characteristics. When you use these instructions,
substitute your own values for the ones shown in our examples. In our examples, NIS
entities have these names:

• The domain name is shapes.

• The master server name is circles.

• Slave server names are squares and triangles.

Note: Host names used in the NIS environment must be the official host names, not
nicknames. The official host name is the name returned by the hostname command. See
the hostname(1) reference page for usage details.

32

Chapter 4: Setting Up and Testing NIS

Setting Up the NIS Master Server

There are four parts to the procedure for setting up the NIS master server.

1. Setting the master server’s domain name.

2. Building the master maps.

3. Starting NIS on the master server.

4. Testing the NIS master server.

Setting the Master Server’s Domain Name

Set the system’s domain name based on your site’s configuration. Recall that the domain
name for this example is shapes. As you do this step, replace shapes with the domain
name you chose for your site.

If your site configuration consists of only NIS domains and/or the NIS domain names
are not the same as the Internet domain names, do the following:

1. Set the domain name:

echo shapes > /var/yp/ypdomain
domainname shapes

2. Verify the domain name setting with domainname:

domainname
shapes

If the domain name is correctly set, the domainname command returns the domain
name you specified in step1 of this procedure. If your output is not correct, reissue
the commands in step1.

Setting Up the NIS Master Server

33

If your site configuration consists of NIS domains and Internet domains with the same
names, do the following (the example assumes that the NIS and Internet domains are
both named widgets.com):

1. Set the official host name for the master server (the host name for our example is
circles):

echo circles.widgets.com > /etc/sys_id

2. Reboot the system:

/etc/reboot

The /var/yp/ypdomain file is not required if the domain names for the NIS and Internet
domains are the same. Also, the domain name must be part of the official host name set
in the /etc/sys_id file. If a /var/yp/ypdomain file exists, the domain name set in the
/var/yp/ypdomain file overrides the domain name specified in the /etc/sys_id file.

Building the Master Maps

The command ypinit builds NIS maps using the text files and the /var/yp/mdbm_parse. (See
Chapter 2, “Preparing to Manage NIS,” for a list of the default files that are converted to
maps in this step. See also the ypinit (1M) reference page for details of the ypinit
command.)

1. Start building the master NIS maps with the ypinit command:

circles# ./ypinit -m
We now need to contruct a list of hosts which run NIS servers.
Enter the names or addresses of these hosts one at a time,
excluding this host, then simply hit <Enter> to end the list.
Name (<Enter> to exit): slave1
Name (<Enter> to exit): slave2
Name (<Enter> to exit):
Parsing configuration files into databases.

The –m flag denotes that circles is an NIS master server.

If there is any doubt about the integrity of the database maps, always go and
rebuild the maps from scratch.

If you are creating a new master server for an already existing domain with
functioning slave servers, you must run yppush to propagate the new maps to the
slave servers (see Chapter 5, “Maintaining NIS,” for details on changing a master
server).

34

Chapter 4: Setting Up and Testing NIS

Starting NIS on the Master Server

The NIS service is available to clients as soon as you start it on the master server. You can
start NIS by any one of these methods: rebooting the NIS master server, stopping and
restarting the network with the /etc/init.d/network script, or starting the daemons
manually by giving this command:

/usr/etc/rpc.passwd /etc/passwd.nis -m passwd

Note that the rpc.passwd process initiated in this command sequence assumes the
existence of a specific NIS password file called /etc/passwd.nis. See “Selecting the NIS
Master Server” in Chapter 3 for details on setting up a nonstandard NIS password file.
See also the rpc.passwd(1M) reference page for more information on the command.

NIS master machines must be configured with the chkconfig command set on for ypserv
and ypmaster. NIS slave servers must be configured with the chkconfig command set on
for ypserv. Finally run nsadmin to restart the daemon.

To set the flags on and restart the nsd daemon, give these commands:

/etc/chkconfig ypmaster on
/etc/chkconfig ypserv on
nsadmin restart

Testing the NIS Master Server

Finally, to ensure that NIS services are functioning properly on the NIS master server,
give the ypwhich command. Since the NIS master server is also a client, it should return
with the name of the server to which it is bound. Remember, an NIS master server is
bound to itself, and it returns its own name.

ypwhich
localhost

The response localhost indicates that nsd is correctly bound to the NIS server on the
local system. Instead of localhost, it may return its name as reported by hostname. For
further details, refer to the ypwhich(1M), nsd(1M), and hostname(1) reference pages.

Setting Up NIS Slave Servers

35

Setting Up NIS Slave Servers

There are five parts to the procedure for setting up the NIS slave server. If you have more
than one NIS slave server, repeat each part of the procedure for each slave server.

1. Setting the slave server’s domain name.

2. Binding to an NIS server.

3. Building the duplicate maps.

4. Starting NIS on the slave server.

5. Testing the NIS slave server.

Setting the Slave Server’s Domain Name

Follow the instructions in “Setting the Master Server’s Domain Name” in this chapter to
complete this step.

Binding to Another NIS Server

To propagate NIS database maps from the NIS master server to a NIS slave server, the
slave server must be bound to a valid NIS server in its domain.

Since circles is a valid NIS server, this slave server binds to circles. Binding need not be
to a master server, however.

1. If the slave is on the same network as circles, halt any existing nsd, and restart nsd so
that local bind requests are honored:

killall -TERM nsd
/usr/etc/nsd -a nis_security=local

2. If the slave is not on the same network as circles, verify that the master server has an
entry in /etc/hosts on the slave server, make sure any previous nsd is halted, and start
the binding process with the specified attribute of nsd:

grep circles /etc/hosts
192.0.2.4 circles.rad.sgx.com circles
killall -TERM nsd
/usr/etc/nsd -a nis_security=local

3. Give the ypset command to point nsd at the server circles.

ypset circles

36

Chapter 4: Setting Up and Testing NIS

4. Verify that the server is bound by giving the ypwhich command:

ypwhich
circles

The output of ypwhich returns the name of the NIS server to which this server is
currently bound. The example shows that this slave server is successfully bound to
circles.

Building the Duplicate Maps

The command ypinit builds the duplicate database maps by transferring a copy of the
original maps from the NIS master server.

1. Determine which system is the master server with the ypwhich command:

ypwhich -m

Each line of output contains the name of a map and the name of the master server
where the map was created.

2. Start building NIS slave server maps with the ypinit command:

cd /var/yp
./ypinit -s circles

The –s flag specifies that this system is to be an NIS slave server and circles is the
master server.

Starting NIS on the Slave Server

The NIS service is available to clients as soon as you start it on this slave server. You can
start NIS by any one of these methods: rebooting the NIS master server, stopping and
restarting the network with the /etc/init.d/network script, or starting the daemons
manually by giving this command:

slave1# ./ypinit -s circles
Transferring map networks.byname from server circles.shapes.
Transferring map services.byname from server circles.shapes.
Transferring map passwd.byname from server circles.shapes.
Transferring map hosts.byaddr from server circles.shapes.
Transferring map ktools from server circles.shapes.
Transferring map ypservers from server circles.shapes.
Transferring map hosts.byname from server circles.shapes.
Transferring map networks.byaddr from server circles.shapes.

Setting Up NIS Clients

37

Transferring map protocols.byname from server circles.shapes.
Transferring map group.byname from server circles.shapes.
Transferring map netgroup from server circles.shapes.
Transferring map mail.aliases from server circles.shapes.
Transferring map ethers.byname from server circles.shapes.
Transferring map protocols.bynumber from server circles.shapes.
Transferring map netgroup.byhost from server circles.shapes.
Transferring map group.bygid from server circles.shapes.
Transferring map passwd.byuid from server circles.shapes.
Transferring map ethers.byaddr from server circles.shapes.
Transferring map netgroup.byuser from server circles.shapes.

The NIS maps are now available from the master server circles in the domain shapes.

Testing the NIS Slave Server

Finally, to ensure that NIS services are functioning properly on the NIS slave server, give
the ypwhich command. Since the NIS slave server is also a client, it should return with the
name of the server to which it is bound. This server can be bound to either itself or to the
NIS master server you set up in the previous section: either result is acceptable.

ypwhich
localhost

The response, localhost, indicates that nsd is correctly bound to the NIS server on the
local system. The response could have also been the name of another NIS server within
the same domain on the same local area network.

Setting Up NIS Clients

There are four parts to the procedure for setting up the NIS client. Repeat these steps for
each NIS client you need to set up:

1. Setting the domain.

2. Configuring NIS on the client.

3. Starting NIS on the client.

4. Testing the NIS client.

38

Chapter 4: Setting Up and Testing NIS

Setting the Domain

Follow the instructions in “Setting the Master Server’s Domain Name” on page 32 to
complete this step.

Configuring NIS on the Client

If the NIS service is to start automatically when this client is booted, the NIS environment
must be configured with the chkconfig command. The yp flag allows this system to access
NIS database information from an NIS server. This flag starts up the nsd daemon, which
must be running to access NIS database information. To set the flag on, give this
command:

/etc/chkconfig yp on

Edit the /etc/nsswitch.conf file, using any standard editor, by adding NIS to the hosts line:

hosts: nis dns files

Starting NIS on the Client

The NIS service operates on this client as soon as you start it. You can start NIS by any
one of these methods: rebooting this client, stopping and restarting the network with the
/etc/init.d/network script, or starting the nsd daemon manually by giving this command:

/usr/etc/nsd

Testing the NIS Client

To ensure that the NIS services are functioning properly on the NIS client, give the
ypwhich command. It should return with the name of the server to which it is bound, for
example:

ypwhich
squares

The client can be bound to any NIS server on the same network as the request is
broadcast. This client is currently bound to the server squares, which means that squares
must be on the same network as the client. If more than one NIS server is on the same
network, the client binds to the server that responds first.

39

Chapter 5

5. Maintaining NIS

This chapter explains how to maintain NIS after it is in service. It contains procedures for
adding new users to NIS, changing passwords, using netgroups, creating a nonstandard
NIS map, modifying existing maps, new maps, adding an NIS slave server, changing the
NIS master server, and increasing the security of ypset.

This chapter contains these sections:

• “Adding a New User to a System” on page 40

• “Changing NIS Passwords” on page 42

• “Using Netgroups” on page 43

• “Creating a Nonstandard NIS Map Manually” on page 45

• “Modifying NIS Maps After NIS Installation” on page 46

• “Preparing to Propagate Nonstandard Maps” on page 47

• “Propagating an NIS Map” on page 50

• “Adding an NIS Slave Server” on page 54

• “Changing the Master Server” on page 55

• “Using Secure ypset” on page 56

40

Chapter 5: Maintaining NIS

Adding a New User to a System

To add a new user to a system that is an NIS client, perform these steps:

1. On the NIS master server, add a password entry for the new user to the NIS
password file (/etc/passwd by default). (See the passwd(4) reference page, the
Personal System Administration Guide, or the book IRIX Admin: System Configuration
and Operation for more information.)

2. On the NIS master server, update the NIS passwd map on that system by entering

cd /var/yp
./ypmake passwd

3. If this user is to be a member of any netgroups, modify /etc/netgroups on the NIS
master server (see “Using Netgroups” in this chapter).

4. On the new user’s system, modify /etc/passwd in one of these ways:

• Add the same password entry as you added in step step 1 in this section.
Duplicating the entry enables the user to log in when the network is down.

• Add this password entry:

+userid

userid is the login name of the new user. When this type of entry is used, all
/etc/passwd information for this user is supplied by NIS.

• Use the Users tool of System Manager to add the new user. Choose NIS rather
than Local for each item. All /etc/passwd information for this user is supplied by
NIS.

• Add this password entry:

+

When this type of entry is used, all /etc/passwd information for all users is
supplied by NIS. Every user in the NIS password database can log in to this
system, assuming that the home directory exists.

Adding a New User to a System

41

5. Make a home directory for the new user on the user’s system:

cd parentdir
mkdir userid
chown uid userid
chgrp group userid

The variables are:

parentdir The parent directory of the home directory you are creating.

userid The login name of the user (the first field in the password entry).

uid The unique user ID number for this user (the third field in the
password entry). userid can be used instead of uid if the local
/etc/passwd entry duplicates the NIS password entry or if NIS maps
have been propagated to this system (it takes about 15 minutes after
step step 2 for updates to propagate).

group The group number for this user (the fourth field in the password
entry).

6. Finish adding the new user by setting up the user’s login environment (create .login
and .cshrc files, for example), adding him or her to groups in /etc/group, and doing
other setup tasks that are usually done at your site.

7. Have the user add a password to his or her account using yppasswd:

% yppasswd

yppasswd prompts the user to enter the new password twice.

8. If you added a complete password entry to /etc/passwd on the user’s system (the first
option in instruction step 4), have the user add his or her password to the local
/etc/passwd using passwd:

% passwd

passwd prompts for the password twice.

42

Chapter 5: Maintaining NIS

Changing NIS Passwords

In general, all NIS accounts should be password protected. This reduces the risk of
malicious or accidental data corruption. When you change your password with the
passwd command, you change the entry explicitly given in your own local /etc/passwd file.
To change your NIS password, use the yppasswd command.

1. To change the NIS password for the user tim, enter

% yppasswd tim
Changing NIS password for tim on master_name
Old password: <response not echoed>

2. Enter your old NIS password (if the account is not password protected, press
Enter.)

New password: <response not echoed>

3. Enter your new NIS password:

Retype new password: <response not echoed>

4. Reenter the new password:

NIS passwd changed on master_name

Your NIS password change has been logged on the master server and will be updated
soon. Note that it takes a little while for the change to propagate throughout the domain.

If your local password is not given explicitly but rather is pulled in from NIS with a plus
(+) entry, then the passwd command prints this error message:

Not in passwd file

In this case, you must use yppasswd to change your password.

To enable the yppasswd service, the system administrator must start up the daemon
rpc.passwd server on the system serving as the master server for the NIS password file in
your domain.

Using Netgroups

43

Using Netgroups

The /etc/netgroup file on the NIS master server contains a list of network-wide groups of
systems and users. These groups are used for administrative purposes. For example, to
define a set of users that should be given access to a specific system, you can create a
netgroup for those users.

The daemons login, mountd, rlogind, and rshd use netgroups for permission checking.
login consults them for user classifications if it encounters netgroup names in /etc/passwd.
mountd consults them for system classifications if it encounters netgroup names in
/etc/exports. rlogind and rshd consult the netgroup map for both system and user
classifications if they encounter netgroup names in hosts.equiv or .rhosts.

The NIS master server uses /etc/netgroup to generate three NIS maps: netgroup,
netgroup.byuser, and netgroup.byhost. The NIS map netgroup contains the basic information
in /etc/netgroup. The two other NIS maps contain a more specific form of the information
to speed the lookup of netgroups given the system or user.

Below is a sample /etc/netgroup file. (See the netgroup(4) reference for a description of file
format and definition of lines and fields.)

Engineering: Everyone but eric has a machine;
he has no machine.
The machine ’testing’ is used by all of hardware.
#
engineering hardware software
hardware (mercury,alan,sgi) (venus,beth,sgi) (testing,-,sgi)
software (earth,chris,sgi) (mars,deborah,sgi) (-,eric,sgi)
#
Marketing: Time-sharing on jupiter
#
marketing (jupiter,fran,sgi) (jupiter,greg,sgi)
#
Others
#
allusers (-,,sgi)
allhosts (,-,sgi)

44

Chapter 5: Maintaining NIS

Table 5-1 shows the users in each group.

Table 5-2 shows how the systems are classified.

For more details, see these reference pages: yppasswd(1), hosts.equiv(4), export(4),
passwd(4), group(4), netgroup(4), and rpc.passwd(1M).

Table 5-1 Sample User Groups

Group Users

hardware alan, beth

software chris, deborah, eric

engineering alan, beth, chris, deborah, eric

marketing fran, greg

allusers (every user in the NIS map passwd)

allhosts (no users)

Table 5-2 Sample Host Groups

Group Hosts

hardware mercury, venus, testing

software earth, mars

engineering mercury, venus, earth, mars, testing

marketing jupiter

allusers (no systems)

allhosts (all systems in the NIS map hosts)

Creating a Nonstandard NIS Map Manually

45

Creating a Nonstandard NIS Map Manually

You can use ypinit and /var/yp/local.make.script (see the ypmake(1M) reference page) to do
almost everything necessary to create and modify a map, unless you add nonstandard
maps to the database or change the set of NIS slave servers after the system is already
running. Whether you use /var/yp/local.make.script or some other procedure, the goal is
the same: a new well-formed mdbm file in the domain directory on the NIS master server.

You can create new maps in two ways: using an existing ASCII file as input or using
standard keyboard input. The next two sections demonstrate how to create a simple,
nonstandard NIS map called yourmap using each method. yourmap consists of the keys al,
bl, cl, and so on (l for left); and one set of values, ar, br, cr, and so on (r for right).

ASCII File Input

Assume the ASCII file /etc/yourmap has been created with an editor or shell script, and
that the map from /etc/yourmap is part of the database for the shapes domain. To create the
NIS map for this file, enter these commands:

cd /var/yp
makemdbm /etc/yourmap shapes/yourmap

This command sequence creates a map called yourmap in the directory
/var/ns/domains/shapes.

Standard Keyboard Input

When no original ASCII file exists, you can create the NIS map described in the previous
example from the keyboard with these commands:

cd /var/yp
makemdbm - shapes/yourmap

Enter these lines:

al ar
bl br
cl cr
<Ctrl-D>

46

Chapter 5: Maintaining NIS

The makemdbm switch is used to indicate that input is coming directly from the keyboard.
The result of your entries is the same as the previous example: a map called yourmap in
the directory /var/ns/domains/shapes.

Modifying NIS Maps After NIS Installation

To change any NIS map, you must change the databases on the master server for the
domain. The method you use to modify the map depends on whether you are changing
a standard or nonstandard map.

Modifying a Standard NIS Map

A standard NIS map is any map that has an ASCII file and is included in the
/var/yp/mdbm_parse file. The procedure for modifying a standard NIS map consists of
editing the ASCII file for the map and updating the map with ypmake on the master
server. For example, to modify the password database map, edit the ASCII file for the
map and run ypmake on the master server. To add the user tom to the password database,
perform these steps:

1. Edit the ASCII file:

vi /etc/passwd.nis

2. Add this line to the password file:

tom::2349:20:Tom Cat:/usr/people/tom:/bin/csh

3. Update the password map:

/var/yp/ypmake passwd

By default, the ypmake program updates the map on the master server based on
information contained in the make script (/var/yp/mdbm_parse and
/var/yp/local.make.script). It also propagates the updated map to all slave servers listed in
the ypservers database map.

Preparing to Propagate Nonstandard Maps

47

Modifying a Nonstandard NIS Map

Nonstandard NIS maps are databases that are specific to the application of a particular
vendor site but are not part of the NFS release. You can manually modify nonstandard
databases. You can also manually change databases that are rarely expected to change
and databases for which no ASCII form exists.

The general procedure is to use makemdbm with a switch to disassemble the map. The
disassembled map is in a form you can modify with standard tools such as awk, sed, or vi.
You then build a new map from the changed version using makemdbm.

Use this procedure to modify a nonstandard database:

1. Disassemble the map, as shown in this sample command:

cd /var/yp
makemdbm -u shapes/mymap > /var/tmp/mymap.txt

2. Edit the text file (/var/tmp/mymap.txt, in this example) with any text editor.

3. Build the new map, as shown in this sample command:

makemdbm /var/tmp/mymap.txt shapes/mymap

4. Remove the temporary ASCII file, as shown in this sample:

rm /var/tmp/mymap.txt

This procedure modifies and updates nonstandard maps but does not propagate the map
to slave servers.

Preparing to Propagate Nonstandard Maps

Preparing for propagating a nonstandard NIS map consists of setting up its dbm files in
the domain directory on each NIS server (the transfer mechanism is described in the next
section). The files must be set up correctly on the master and each slave server in the
domain.

On the NIS master server, create a new file called /var/yp/local.make.script so you can
conveniently rebuild the map. This example shows a copy of /var/yp/local.make.script to
create and push the maps auto.indirect, auto.direct, auto.master, and auto.home from the files
/etc/auto.indirect, /etc/auto.direct, /etc/auto.master, and /etc/auto.home.

48

Chapter 5: Maintaining NIS

#
auto.indirect indirect automount YP map.
auto.direct direct automount YP map.
auto.master main auto.master automount map
auto.home homedir map for automounter

INDIRECT=auto.indirect
DIRECT=auto.direct
HOME=auto.home

localall: all $(INDIRECT) $(DIRECT) $(HOME) auto.master

auto.master: auto.master.time
$(DIRECT): direct.time
$(HOME): home.time
$(INDIRECT): indirect.time

indirect.time: $(DIR)/$(INDIRECT)
 -@if [-f $(DIR)/$(INDIRECT)]; then \
 sed -e '/^#/d' $(DIR)/$(INDIRECT) | \
 $(MAKEDBM) - $(YPDBDIR)/$(INDIRECT); \
 touch indirect.time; \
 echo "Updated $(INDIRECT)"; \
 if [! $(NOPUSH)]; then \
 $(YPPUSH) $(INDIRECT); \
 echo "pushed $(INDIRECT)"; \
 else \
 : ; \
 fi \
 else \
 echo "couldn't find $(DIR)/$(INDIRECT)";\
 fi

direct.time: $(DIR)/$(DIRECT)
 -@if [-f $(DIR)/$(DIRECT)]; then \
 sed -e '/^#/d' $(DIR)/$(DIRECT) | \
 $(MAKEDBM) - $(YPDBDIR)/$(DIRECT); \
 touch indirect.time; \
 echo "Updated $(DIRECT)"; \
 if [! $(NOPUSH)]; then \
 $(YPPUSH) $(DIRECT); \
 echo "pushed $(DIRECT)"; \
 else \
 : ; \
 fi \

Preparing to Propagate Nonstandard Maps

49

 else \
 echo "couldn't find $(DIR)/$(DIRECT)";\
 fi

auto.master.time: $(DIR)/auto.master
 -@if [-f $(DIR)/auto.master]; then \
 sed -e '/^#/d' $(DIR)/auto.master | \
 $(MAKEDBM) - $(YPDBDIR)/auto.master; \
 touch auto.master.time; \
 echo "Updated auto.master"; \
 if [! $(NOPUSH)]; then \
 $(YPPUSH) auto.master; \
 echo "pushed auto.master"; \
 else \
 : ; \
 fi \
 else \
 echo "couldn't find $(DIR)/auto.master";\
 fi

home.time: $(DIR)/$(HOME)
 -@if [-f $(DIR)/$(HOME)]; then \
 sed -e '/^#/d' $(DIR)/$(HOME) | \
 $(MAKEDBM) - $(YPDBDIR)/$(HOME); \
 touch home.time; \
 echo "Updated $(HOME)"; \
 if [! $(NOPUSH)]; then \
 $(YPPUSH) $(HOME); \
 echo "pushed $(HOME)"; \
 else \
 : ; \
 fi \
 else \
 echo "couldn't find $(DIR)/$(HOME)";\
 fi

Typically, /var/yp/local.make.script filters each readable ASCII file for which a map is to be
built (such as /etc/auto.master) through awk, sed, and/or grep to make two databases
suitable for input to makemdbm. For example, the database might be stored as
/var/ns/domains/circles/auto.master.m.

To create a customized make script, /var/yp/local.make.script, use the existing /var/yp/local
make.script.demo as a source of programming examples. Make use of mechanisms already
in place in /var/yp/localmake.script.demo when deciding how to create dependencies that

50

Chapter 5: Maintaining NIS

make recognizes; specifically, using .time files allows you to see when the script was last
run for the map.

If new maps are to propagate properly on slave servers, ypxfr shell scripts must contain
the appropriate entries. To get an initial copy of the map, run ypxfr manually on each
slave server. A map must be available on all servers before clients begin to access it. If a
map is unavailable on some NIS servers, client programs may behave unpredictably. For
details on the use of make and ypxfr, refer to the make(1) and ypxfr(1M) reference pages.

Propagating an NIS Map

During slave server setup, ypinit calls ypxfr to transfer maps from the master to the new
slave server. Once the slave server is operating, maps can be transferred in two ways: by
running ypxfr periodically from crontab or by executing ypmake, ypxfr, or yppush from a
command line.

Periodic Propagation: crontab

The standard root crontab, /var/spool/cron/crontabs/root, has entries to run ypxfr
periodically from shell scripts at a suggested rate for the standard maps in your NIS
database. The crontab entries test whether the system is configured as a slave server; if the
test succeeds, the ypxfr scripts are executed. If your NIS database has only standard
maps, the default entries in root’s crontab ensures that the maps are kept reasonably up
to date. The shell scripts, by default, are run on each NIS slave server in the domain to
ensure database consistency throughout the domain. The cron shell script entries for ypxfr
look similar to the following example. Note that each entry in the crontab file must be seen
as one line. (For documentation purposes, line wraps are indicated with a backslash [\].)

If this machine is running NIS and it’s a slave server, the following
commands keep the NIS databases up-to-date.
#
13 9 * * * if /etc/chkconfig yp; then find \
/var/yp -type f -name ’xfr.*’ -mtime +1 -exec rm -f ’{}’ ’;’ ; fi
15 * * * * if test -x /var/yp/ypxfr_1ph;\
then /var/yp/ypxfr_1ph; fi
17 9,15 * * * if test -x /var/yp/ypxfr_2pd;\
then /var/yp/ypxfr_2pd; fi
19 9 * * * if test -x /var/yp/ypxfr_1pd;\
then /var/yp/ypxfr_1pd; fi

Propagating an NIS Map

51

The ypxfr shell scripts reside in /var/yp. Three standard scripts are included with the NFS
release: ypxfr_1phr, ypxfr_1pd, and ypxfr_2pd. These scripts transfer specified maps once
per hour, once per day, and twice per day, respectively. If the rates of change are
inappropriate for your environment, you can modify the root crontab to suit your needs.

Also, you should alter the crontab entries so that the exact time of the ypxfr shell
executions varies from one server to another to prevent the transfers from slowing down
the master server, the network, or both.

Typically, changes to the ypxfr shell scripts are required in these cases:

• to reflect required map update schedules for your site

• to add nonstandard maps

• if you want to transfer a map from a server other than the master (use ypxfr’s –h
option)

For more information on how to use crontab, see the crontab(1) reference page.

Interactive Map Propagation

The next three sections describe three methods of manually propagating NIS maps.

Using ypmake

NIS maps on the master server can be manually propagated using the ypmake command.
This command looks at the /var/yp/mdbm_parse and/or /var/yp/local.make.script to
determine which maps to make. The make script calls makemdbm, which updates the
maps and calls yppush. yppush reads the ypservers map to determine which slave servers
to contact, then it proceeds to contact ypserv on the selected slave servers and requests
ypxfr service. The slave server can now transfer the maps with ypxfr.

52

Chapter 5: Maintaining NIS

Use ypmake to update and propagate maps throughout your domain when you want the
change to take place immediately and don’t want to wait for cron. These are some usage
examples for ypmake:

• To update all out-of-date maps, enter

/var/yp/ypmake

• To update and propagate an out-of-date hosts.byname and hosts.byaddr map, enter

/var/yp/ypmake hosts

• To force the creation and propagation of a new passwd.byname and passwd.byuid
map, out of date or not, enter

/var/yp/ypmake -f passwd

• To rebuild all of the maps, but not push them to other servers, enter

/var/yp/ypmake -f -n

The ypmake program is also automatically called for in root’s crontab,
/var/spool/cron/crontabs/root. The entry in crontab tests whether the system is configured to
run NIS and whether it is configured as the master. If the test succeeds, cron periodically
executes the ypmake command to update and propagate maps to the appropriate slave
servers. The crontab entry looks similar to the following. Note that each entry in the
crontab file must be seen as one line. For documentation purposes, line wraps are
indicated with a backslash (\).

If this machine is a NIS master, ypmake will rotate the
log file and ensure that the databases are pushed out with
some regularity.
#
1,16,31,46 * * * * if /etc/chkconfig \
ypmaster && /etc/chkconfig yp && \
test -x /var/yp/ypmake; then \
/var/yp/ypmake; fi

Propagating an NIS Map

53

Using ypxfr

You can run ypxfr as a command on slave servers to transfer a specified map from the
master or other stable server to the requesting slave server. Typically, you run ypxfr only
in exceptional situations. For example, ypxfr is used when setting up a temporary NIS
server to create a test environment, or when an NIS slave server has been out of service
and must quickly be made consistent with the other servers.

ypxfr, as a command, has options that force map transfer and specify alternate domains
and servers from which to obtain the map. Below are examples of ypxfr command usage:

• To transfer the hosts.byaddr map from the master server for the map, enter

/var/yp/ypxfr hosts

• To force the transfer of the passwd.byname map from the slave server purple within
the domain colors, enter

/var/yp/ypxfr -f -h purple -d colors

Using yppush

While yppush is usually called by ypmake, it can also be run manually. You must run
yppush on the NIS master server. The syntax for using yppush is explained below:

• To force a copy of the map myworld with verbose messages, enter:

yppush -v myworld

• To force a copy of the map yourmap in the domain yourworld, enter

yppush -d yourworld yourmap

Use yppush to force a copy of an updated version of a specified map from the master
server to the slave servers. It can be used to move an infrequently changed, nonstandard
map from the master server to slave servers.

In any of the cases mentioned above, you can capture ypxfr’s transfer attempts and the
results in a log file. If /var/yp/ypxfr.log exists, ypxfr appends results to it. No attempt is
made to limit the log file; you are in charge of that. To turn off logging, remove the log
file. In addition, the file /var/yp/ypmake.log records ypmake transactions. This file can also
be useful for troubleshooting propagation problems.

54

Chapter 5: Maintaining NIS

Adding an NIS Slave Server

To add a new NIS slave server, you must first modify an NIS server map on the NIS
master server. If the new server has not been an NIS slave server before, you must add
the new server’s name to the map ypservers in the default domain.

This procedure explains how to add a new server to an NIS configuration:

1. On the master server, change to the /var/yp directory:

cd /var/yp

2. Create a new hosts map, if needed.

The new server’s host name and address must be in the hosts map. If the NIS slave
server you are adding is not included in the hosts map, edit /etc/hosts and save your
changes. Then, create a new hosts map:

vi /etc/hosts

Enter and save your changes:

./ypmake hosts

3. Edit the /var/ns/domains/domainname/ypservers file and add the new server’s host
name:

vi ypservers

4. Propagate the map with ypmake:

./ypmake ypservers

5. Transfer the database from the master server.

Remotely log in to the new NIS slave server. Use ypinit to transfer the database from
the NIS master server to the new slave server:

/var/yp/ypinit -s mastername

6. Perform the steps described in “Building the Duplicate Maps” on page 36. The new
slave server is ready for service after you build the duplicate maps.

Changing the Master Server

55

Changing the Master Server

To switch the master server to a different system, you must rebuild all maps to reflect the
name of the new master server and distribute the new maps to all slave servers.

To change the master server, perform these steps:

1. Set up the system that is to be the new master server as if it is to be a slave server.
See “Setting Up NIS Slave Servers” on page 35 and follow the directions in the
sections “Setting the Slave Server’s Domain Name,” “Binding to Another NIS
Server,” and “Building the Duplicate Maps.”

2. Copy the map source files from the old master server to the new master server. The
source files are listed in Table 3-1.

3. Rebuild all of the maps on the new master server, but don’t push them to other
servers:

newmaster# /var/yp/ypmake -f -n

4. Use ypxfr on the old master server to transfer each of the new maps from the new
master server to the old master server. Give this command for each of the maps
listed in Table 2-2:

oldmaster# ypxfr -h newmaster -f mapname

newmaster is the host name of the new master server and mapname is a map name
from Table 2-2. ypxfr is used for this step rather than yppush because of a security
feature of yppush. When a map is pushed to a server, that server consults its own
copy of the map to verify that the map is coming from the master server. Since the
old master server still believes that it is the master server, it won’t accept maps from
the new master server.

5. On the old master server, transfer copies of the new maps to all slave servers by
giving this command for each of the maps listed in Table 2-2:

oldmaster# yppush mapname

Maps are pushed from the old master server to the slave servers because the slave
servers’ maps still contain the old master server. The new maps contain the name of
the new master server.

56

Chapter 5: Maintaining NIS

Using Secure ypset

The ypset tool allows the root user on NIS clients to change the binding association for
the client. By default, ypset is now an attribute, and to obtain the functionality equivalent
to the previous ypserv command the function is set in this manner:

(nis_set=true)

To enable changing the binding association in the domain shapes, first verify the
domainname, then set ypset with these commands:

domainname
shapes

nsd -a (nis_set=true)

To enable changing the binding association at the server level, edit the server password
file so that it reads:

passwd (nis_set=true)

To enable changing the binding association at the local level, edit the /etc/nsswitch.conf to
include this line:

(nis_set=true)

If you desire to mimic the previous behavior of ypsetme, replace

(nis_set=true)

in the previous examples with either of the following:

(nis_set=false)

(nis_set=local)

The result is equivalent to the previous ypsetme.

Previously the file /etc/config/ypbind.options contained the –ypsetme option that enabled
ypset. Normally, the –ypsetme option should be present when creating an NIS master
because, if is not present, ypmake displays error messages when building an NIS master.
In secure installation sites, however, the –ypsetme option should be removed.

The ypset tool was designed for debugging and not for casual use. As with any network
tool that bases security on IP address checking, ypset can compromise security on
networks where packets may be introduced to the network by nontrusted individuals.

57

Chapter 6

6. Troubleshooting NIS

This chapter provides information to be used in troubleshooting the NIS environment.
The chapter is divided into two parts: problems seen on an NIS server and problems seen
on an NIS client. Each section describes general trouble symptoms followed by a
discussion of probable causes.

This chapter contains these sections:

• “Debugging an NIS Server” on page 58

• “Debugging an NIS Client” on page 62

• “Before You Call for Help” on page 67

58

Chapter 6: Troubleshooting NIS

Debugging an NIS Server

Before trying to debug an NIS server, be sure you understand the concepts in Chapter 1,
“Understanding NIS,” and Chapter 2, “Preparing to Manage NIS,” in this guide.

Different Map Versions

Since NIS works by propagating maps from the NIS master server to NIS slave servers
within the same domain, you may find different versions of a map on different servers.
Each time a map is updated, a new order number (map version) is attached to the map.
This information can be obtained with the yppoll command.

Version skew, or out-of-sync maps, between servers is normal when maps are being
propagated from the NIS master server to the slave servers. However, when the maps on
different servers remain unsynchronized even after the NIS environment has stabilized,
it usually indicates a problem.

The normal update of NIS maps is prevented when an NIS server or some gateway
system between the NIS master server and NIS slave servers is down during a map
transfer attempt. This condition is the most frequent cause of out-of-sync maps on
servers. Normal update procedures are described in Chapter 5, “Maintaining NIS.”
When all the NIS servers and all the gateways between the NIS master and NIS slave
servers are up and running, ypxfr should successfully transfer maps and all NIS servers’
maps should be in sync.

The next section describes how to use ypxfr manually to update NIS maps. If ypxfr
transfers maps successfully when it is initiated manually but still fails intermittently, it
requires additional investigation on your part, which is described in the section,
“Intermittent, Consistent Map Propagation Failures” on page 59.

Isolated, One-Time Map Propagation Failures

If a particular slave server has an isolated, one-time problem updating a particular map
or its entire map set, follow these steps to resolve the problem by running ypxfr manually:

1. ypxfr requires a complete map name rather than a nickname, so get a list of
complete map names for maps in your domain, by giving this command:

ypwhich -m

Debugging an NIS Server

59

The system returns a list of complete map names and the name of the NIS master
server for each map. Output should be similar to this output for an NIS master
server named circles:

ypservers circles
netid.byname circles
bootparams circles
mail.aliases circles
netgroup.byhost circles
netgroup.byuser circles
netgroup circles
protocols.byname circles
protocols.bynumber circles
services.byname circles
rpc.bynumber circles
networks.byaddr circles
networks.byname circles
ethers.byname circles
ethers.byaddr circles
hosts.byaddr circles
hosts.byname circles
group.bygid circles
group.byname circles
passwd.byuid circles
passwd.byname circles
mail.byaddr circles

2. For each map that is not being updated, transfer the map manually using ypxfr:

ypxfr -f map.name

map.name is the complete name of the map, for example, hosts.byname.

If ypxfr fails, it supplies an error message that points you to the problem. If it
succeeds, you should see output similar to this:

Transferred map hosts.byname from NIS_master (1091 entries).

Intermittent, Consistent Map Propagation Failures

This section describes several procedures you can use to help isolate intermittent map
propagation problems.

If the error message Transfer not done: master’s version isn’t newer appears,
check the dates on the master and slave servers.

60

Chapter 6: Troubleshooting NIS

On the NIS master server, check to ensure that the NIS slave server is included in the
ypservers map within the domain. If the slave server is not in the ypservers map, the
master server does not know to propagate any changed and updated maps automatically
to the server. If the server has the correct entry in its crontab file to have ypxfr request
updated maps from the master server, the slave server gets the updated maps, but this
action is not initiated by the NIS master server. These steps illustrate how to verify the
ypservers map:

1. Review the contents of the ASCII file used to create the ypservers map:

cat /var/yp/ypservers

If the server is not listed, add the server’s name using any standard editor.

2. Once the /var/yp/ypservers file has been edited, if necessary, ensure that the actual
map is updated on the master server. This is a special map and no attempt is made
to push it to the other servers. Give this command:

/var/yp/ypmake -f ypservers

Another possible reason for out-of-sync maps is a bad ypxfr script. Inspect root’s crontab
(/var/spool/cron/crontabs/root) and the ypxfr shell scripts it invokes (/var/yp/ypxfr_1ph,
/var/yp/ypxfr_1pd, and /var/yp/ypxfr_2pd). Typographical errors in these files can cause
propagation problems, as do failures to refer to a shell script within crontab, or failures to
refer to a map within any shell script. Also ensure that the configuration flags are on for
yp and nsd with the chkconfig command. For details see the chkconfig(1M) reference page.

Finally, if the above suggestions don’t solve the intermittent map propagation problem,
you need to monitor the ypxfr process over a period of time. These steps show how to set
up and use the ypxfr log file:

1. Create a log file to enable message logging. Give these commands:

cd /var/yp
touch ypxfr.log

This saves all output from ypxfr. The output looks much like the output from ypxfr
when run interactively, but each line in the log file is timestamped. You may see
unusual ordering in the timestamps. This is normal; the timestamp tells you when
ypxfr began its work. If copies of ypxfr ran simultaneously, but their work took
differing amounts of time, they may actually write their summary status line to the
log files in an order different from the order of invocation.

Any pattern of intermittent failure shows up in the log. Look at the messages to
determine what is needed to fix the failure. You know that you have fixed it when
you no longer receive failure messages.

Debugging an NIS Server

61

2. When you have fixed the problem, turn off message logging by removing the log
file. Give this command:

rm ypxfr.log

Note: If you forget to remove the log file, the log file grows without limit.

As a last resort and while you continue to debug, you can transfer the map using the
remote file copy command, rcp, to copy a recent version from any healthy NIS server. You
may not be able to do this as root, but you probably can do it by using the guest account
on the master server. For instance, to copy the map hosts in the domain shapes.com from
the master server circles to the slave server squares, give this command:

rcp guest@circles:/var/yp/shapes.com/hosts.* \
/var/yp/shapes.com

The escaped asterisk (*) allows the remote copy of all mdbm record files for the hosts
map.

nsd Fails

If nsd fails almost immediately each time it is started, look for a more general networking
problem. Because NIS uses RPC, the portmapper must be functioning correctly for NIS
to work.

To verify that the portmapper is functioning and that the nsd protocol is registered with
the portmapper, on the server give this command:

/usr/etc/rpcinfo -p | grep nsd

If your portmap daemon is functional, the output looks something like this:

100004 2 udp 1051 nsd
100004 2 tcp 1027 nsd
100004 1 udp 1051 nsd
100004 1 tcp 1027 nsd

If these entries are not in your output, nsd has been unable to register its services with the
portmap daemon. If the portmap daemon has failed or is not running, you get this error
message:

rpcinfo: can’t contact portmapper: Remote system error - connection
refused

62

Chapter 6: Troubleshooting NIS

If the information returned by rpcinfo does not match the information shown above or if
the error message is returned, reboot the server. Rebooting the server ensures that the
network daemons, specifically portmap and nsd, are started in the correct order. See the
nsd(1M), portmap(1M), and rpcinfo(1M) reference pages for further details.

Debugging an NIS Client

Before trying to debug an NIS server, be sure you understand the concepts in Chapter 1,
“Understanding NIS,” and Chapter 2, “Preparing to Manage NIS,” in this guide.

Command Hangs

The most common problem on an NIS client is for a command to hang and generate
SYSLOG messages such as this:

NIS v.1 server not responding for domain domain_name; still trying

NIS v.2 server not responding for domain domain_name; still trying

Sometimes many commands begin to hang, even though the system as a whole seems to
be working and you can run new commands.

The messages above indicates that nsd on the local system is unable to communicate with
nsd in the domain domain_name. This can happen as a result of any of these situations:

• The network has been disconnected on the NIS client; for example, the Ethernet
cable is unplugged.

• An incorrect domain name has been specified.

• The network or the NIS server is so overloaded that nsd cannot get a response back
to the nsd daemon within the time-out period.

• nsd on the NIS server has crashed.

• The NIS server has crashed or is unreachable via the network.

• There is a physical impairment on the local area network. Under these
circumstances, all the other NIS clients on the same local area network should show
the same or similar problems.

Debugging an NIS Client

63

A heavily loaded network and/or NIS server may be a temporary situation that might
resolve itself without any intervention. However, in some circumstances, the situation
does not improve without intervention. If intervention becomes necessary, the following
four questions help to isolate and correct the situation.

Question 1: Is the client attached to the network?

Typically, if there is a problem with the physical connection from the client to the
network, a message similar to this appears in the console window on the system:

ec0: no carrier: check Ethernet cable

If NIS commands hang and you have the message shown above, verify that the physical
connection from the client to the local area network is secure and functioning. If you do
not know how to check your physical connection, see the Owner’s Guide for your system
more details. Also check to ensure that the client is attached to the correct physical
network.

Question 2: Does the client have the correct domain set?

Clients and servers must use the same domain name if they want to belong to the same
domain. Servers supply information only to clients within their domain. The domain
names must match exactly. The domain shapes.com is not the same as the domain
SHAPES.com. Clients must use a domain name that the NIS servers for their domain
recognize.

Verify the client’s current domain name by giving the domainname command and by
looking at the contents of the file /var/yp/ypdomain, which is read at system startup.
Perform these steps to determine the client’s current domain:

1. Determine the current domain name:

domainname
current_domain_name

2. Look at /var/yp/ypdomain to determine the domain name set at system startup:

cat /var/yp/ypdomain
current_domain_name

64

Chapter 6: Troubleshooting NIS

Compare these values to those found on the servers. If the domain name on the client
differs from the domain name on the server, change the domain on the client:

1. Edit, using any standard editor, /var/yp/ypdomain to reflect the correct domain name.
This file assures that the domain name is correctly set every time the client boots.
There should be only one entry in this file:

correct_domain_name

2. Set domainname by hand so it is fixed immediately. Give this command:

domainname correct_domain_name

3. Restart nsd so that the client is bound within the correct domain. Give these
commands:

/etc/killall -HUP nsd

Question 3: Do you have enough NIS servers?

NIS servers do not have to be dedicated systems; and as multipurpose systems, they are
susceptible to load escalations. If an NIS server is overloaded, the client’s nsd process
automatically switches to another less heavily loaded server. Check to ensure that
designated servers are functioning and accessible via the network.

By default, when an NIS client boots it can only bind to a server that resides on the same
local network. It cannot bind to a server that resides on a remote network. There must be
at least one NIS server running on the local network in order for a client in the same
domain to bind. Two or more NIS servers per local network improve availability and
response characteristics for NIS services.

Question 4: Are the NIS servers up and running?

Check other clients on your local network. If several client systems have NIS-related
problems simultaneously, suspect the NIS server. It may be that the NIS server system is
down or inaccessible or that the nsd process has crashed on the NIS server.

If an NIS server crashes or becomes unavailable, it should not affect NIS performance if
there are multiple NIS servers on a network. The clients automatically switch to another
server. If there is only one server on the network, check to ensure that the server is up by
remotely logging in to the server.

Debugging an NIS Client

65

If the server is up, the problem may be that the nsd process has crashed on the server.
Give these commands to find out if nsd is running and restart it if it is not:

1. Log into the NIS server system. Look for nsd processes. Give this command:

ps -ef | grep nsd

You should see output similar to this:

root 128 1 0 Sep 13 ? 1:35 /usr/etc/nsd

2. If the server’s nsd daemon is not running, start it up by typing:

/usr/etc/nsd

3. Give the command ypwhich on the NIS server system:

ypwhich

If ypwhich returns no answer, nsd is probably not working.

4. If nsd is not working, give these commands to kill the existing nsd process and start
a new one:

/etc/killall -v -TERM nsd
/usr/etc/nsd

NIS Command Fails

Another problem that can occur on an NIS client is for a command to fail due to a
problem with the NIS daemon, nsd. These examples illustrate typical error messages you
might see when you give an NIS command and nsd has failed:

ypcat hosts
ypcat: can’t bind to NIS server for domain domain_name.
Reason: can’t communicate with nsd.
yppoll aliases
Sorry, I can’t make use of the NIS. I give up.

66

Chapter 6: Troubleshooting NIS

In addition to the error messages listed above, these general symptoms may also indicate
that the nsd process has crashed:

• Some commands appear to operate correctly while others terminate, printing an
error message about the unavailability of NIS.

• Some commands work slowly in a backup-strategy mode peculiar to the program
involved.

• Some commands do not work and/or daemons crash with obscure messages or no
message at all.

To correct this situation, the nsd process on the client must be stopped and restarted. Use
this command sequence to stop and start nsd:

/etc/killall -TERM nsd
/usr/etc/nsd

Give this command to verify that the nsd process is running:

ps -ef | grep nsd

You should see output similar to this:

root 26995 1 0 17:35:31 ? 0:00 /usr/etc/nsd

ypwhich Output Inconsistent

When you give the ypwhich command several times on the same client, the answer you
receive may vary because the NIS server has changed. This response is normal. The
binding of an NIS client to an NIS server changes over time on a busy network and when
the NIS servers are busy. Whenever possible, the system stabilizes at a point where all
clients get acceptable response time from the NIS servers. As long as the client gets NIS
service, it does not matter where the service comes from. An NIS server may get its own
NIS services from another NIS server on the network.

Before You Call for Help

67

Before You Call for Help

Before you call your support provider, please use the recommendations in this chapter
for solving your problems independently. If your problems persist and you find it
necessary to call, please have this information ready:

• System serial number.

• Operating system and NFS version numbers (from versions). Include eoe1 and nfs.

• A specific description of the problem. Write down and be prepared to provide any
error messages that might help in isolating the problem.

• Are there other vendors’ systems involved?

• What does the physical layout look like? Are there gateways?

• How many slave servers do you have per network?

• What are the names of the master server, slave server(s), and domain?

• How many systems are in your domain?

• Do you have multiple domains?

69

Index

A

adding new users, 40
automount

auto.home map, 47
auto.master map, 47

B

Berkeley Internet Name Daemon (BIND). See DNS.
binding, 11, 35

C

chkconfig utility, 10, 38, 60
client

configuring, 38
debugging, 62-66
defined, 4
file control on, 16
local files for, 17
setting up, 37-38
starting daemons on, 38
testing, 38

command failures, 62, 65
configuration flags. See chkconfig utility.
crontab tool

for database updates, 14, 24
for map propagation, 50-51

D

daemons
required for NIS, 10
starting, 34, 36, 38

database (NIS), 12, 25
dbm files, 12, 47
debugging

and portmapper functions, 61
clients, 62-66
command errors, 62, 65
domain name errors, 63
inconsistent ypwhich output, 66
map propagation failures, 58-61
network connection errors, 63
out-of-sync maps, 58
server failures, 64
server overload errors, 64
servers, 58-62
telephone help with, 67

DNS, 23
domain name

errors in, 63
selecting, 27
setting, 32, 35, 38

domainname command, 27
Domain Name System. See DNS.
domains

and Internet domains, 6, 33
defined, 5
multiple

and DNS, 23

70

Index

discussion of, 6
limitations of, 22
setting up, 22
update procedure for, 24

size limitations of, 6

E

error logging, 60
/etc/config/rpc.passwd.options file, 19, 28
/etc/config/ypbind.options file, 19, 56
/etc/hosts.equiv file, 16
/etc/hosts file, 22
/etc/init.d/network file, 10, 34, 36
/etc/netgroup file, 43
/etc/nsswitch.conf file, 24
/etc/passwd file, 16
/etc/passwd.nis file, 28
/etc/sys_id file, 33
external data representation (XDR), 2

F

files
local, 16

files. See individual filenames.
font conventions, xiv

H

home directory structure, 6
hostname command, 31
host name resolution, 23-24
host names (NIS), 31
hosts database, 22

hosts file, 22

L

local.make.script file, 14, 45, 47
logging

map transfers, 53
ypmake functions, 53
ypxfr functions, 60

login daemon, 43

M

makedbm tool
and map propagation, 14, 51
and nonstandard maps, 45
purpose of, 12

makemdbm tool
and nonstandard maps, 47

make.script file, 46
map propagation

debugging, 58-61
defined, 4
methods, 14
procedures for, 50-53

maps
creating, 45-46
defined, 4
directory structure of, 6
keys and values in, 4
modifying, 46-47
nicknames for, 14
nonstandard

creating, 45-46
defined, 13
modifying, 47

propagating. See map propagation.
See also individual map names.

71

Index

standard
defined, 13
list of, 13
modifying, 46

steady state of, 5
version errors in, 58

master server
building maps on, 33-34
changing, 55
defined, 4
selecting, 27
setting the domain on, 32
setting up, 32
starting daemons on, 34
testing, 34

mountd daemon, 43
multiple domains. See domains.

N

named daemon. See DNS.
netgroup file, 43
network connection errors, 63
NIS, defined, 2
nonstandard maps. See maps, nonstandard.
nsd daemon

and communication errors, 62
and portmapper registration, 61
and server loading, 64
restarting, 64

nsswitch.conf file, 28

O

Open Systems Interconnect (OSI) model, 3

P

passwd.nis file, 28
passwords

in /etc/passwd file, 17
on NIS accounts, 56
securing for NIS, 28

planning recommendations, 29
portability features, 2
portmapper

portmap daemon, 61
verifying on servers, 61

propagation. See map propagation.
protocols (NIS), 2

R

rcp command, 61
remote procedure call (RPC), 2
rlogind daemon, 43
rpcinfo tool, 61
rpc.passwd daemon, 42

purpose of, 10
quick reference to, 18

rpc.passwd.options file, 19, 28
rshd daemon, 43

S

server
debugging, 58-62
defined, 4
failure of, 64
hierarchy, 4
overloading, 64
See also master server and slave server.

slave server

72

Index

adding, 54
binding for setup, 35
building maps on, 36-??
defined, 4
selecting, 28
setting the domain on, 35
setting up, 35
starting daemons on, 36

standard maps. See maps, standard.
sys_id file, 33

T

tools. See individual tool names.
transfer scripts, 51
Transmission Control Protocol (TCP), 2

U

User Datagram Protocol, 2
user groups, 43
users, adding, 40
/usr/lib/aliases file, 16

V

/var/spool/cron/crontabs/root file, 50, 52
/var/yp/local.make.script file, 45, 47
/var/yp/make.script file, 46
/var/yp/ypdomain file, 27, 63
/var/yp/ypmake.log log file, 53
/var/yp/ypxfr.log log file, 53

Y

ypbind daemon
and NIS command errors, 65
primary purpose of, 10
quick reference to, 18

ypbind.options file, 19, 28, 56
ypbind tool

and server testing, 37
ypcat tool

printing map nicknames with, 14
quick reference to, 19

ypchpass tool
and NIS daemons, 10
quick reference to, 19

ypdomain file, 27, 63
ypinit tool

for duplicating maps, 36
for master maps, 33
quick reference to, 19

ypmake.log log file, 53
ypmake tool

and map propagation, 14, 51
quick reference to, 20
usage examples, 52
using, 46

ypmatch tool
and debugging, 58
quick reference to, 20

yppasswd tool
and rpc.passwd daemon, 10
changing NIS passwords, 42
quick reference to, 20

yppoll tool
for map versions, 58
quick reference to, 20

yppush tool
and map propagation, 14, 51, 53
and new maps, 33

73

Index

quick reference to, 20
usage examples, 53

ypserv daemon
and the make script, 51

ypservers map, 15, 51, 54, 60
ypsetme option, 56
ypset tool

quick reference to, 20
secure mode, 56

ypwhich tool
and binding, 12
and client testing, 38
and server testing, 34, 37
output from, 66
quick reference to, 20

ypxfr.log log file, 53
ypxfr tool

and debugging, 58
and map propagation, 15, 50, 51, 53
log file for, 60
monitoring, 60
quick reference to, 20
script errors, 60
shell scripts, 51
usage examples, 53

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-2161-002.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

NIS Administrator’s Guide

007-2161-002

NIS Administrator’s Guide

