
TPC Benchmark™ B
Full Disclosure Report for

Silicon Graphics
CHALLENGE XL Server

and ORACLE7

February 25, 1997

SiliconGraphics, Inc.
Computer Systems

Document Number 007-2221-001

ii TPC Benchmark™ B Full Disclosure

IRIX ® is a registered trademark of Silicon Graphics Computer Systems, Inc.

UNIX ® is a registered trademark of Unix Systems Laboratories, Inc.

ORACLE, SQL*DBA, SQL*Loader,SQL*Plus, and ORACLE OCI are registered trademarks of ORA-
CLE Corporation.

TPC Benchmark™ B is a trademark of the Transaction Processing Performance Council (TPC).

Copyright © 1993 Silicon Graphics Computer Systems, Inc.

All rights reserved.

TPC Benchmark™ B Full Disclosure Report for Silicon Graphics Computer Systems CHAL-
LENGE XL Server using ORACLE7.

TPC Benchmark™ B Full Disclosure iii

Abstract

This report documents the methodology and results of the TPC Bench-
mark™ B test conducted by Silicon Graphics Computer Systems, with
the assistance of ORACLE Corporation, on the Silicon Graphics Com-
puter Systems CHALLENGE XL Server using ORACLE7. All tests were
run on a CHALLENGE XL Server used as the host computer running the
IRIX (UNIX) operating system. The application code was written in C,
and compiled with IRIX-ANSI C compiler.

The standard TPC Benchmark™ B metrics, tpsB (transactions per sec-
ond) and price per tpsB (five year capital cost per measured tpsB) are
reported as required by the benchmark specification. Throughout this
report, tpsB refers to the tpsB performance metric. The next two pages
contain the executive summaries of the benchmark results for the above
system.

The results of the benchmark tests, the methodology used to produce the
results, and the calculations to produce the price per tpsB were indepen-
dently audited by Performance Metrics, Inc. of Los Gatos, CA.

Overview

TPC Benchmark™ B
Metrics

Auditor

iv

TPC-B Rev 1.2

 Total System Cost

Processor Database Manager
Number

of Users

System Components Quantity Description
Processors 28 MIPS R4400SC with 16KB I-cache, 16KB D-

cache, and 4MB combined secondary cache per
processor

Memory 2GB 4 x 512MB board with 8-way interleaving
I/O Controllers 3 POWERChannel-2 I/O Controllers (with 2 each

SCSI-2 FAST/WIDE channels)
SCSI-2 Cards 6 Each with 3 FAST/WIDE SCSI-2 Channels
Disk Racks 3 CHALLENGEvault XL racks with power supply
Total Disk Drives 148 Capacity - 277.24GB
Tape Drives 1 150MB QIC streaming tape

1 5GB 8mm tape drive
Terminals 1 System console
Miscellaneous Peripherals 1 CD-ROM drive

TPC-B Throughput

Operating System Other Software

 Price / Performance

Silicon Graphics
Computer Systems

CHALLENGE XL Server

IRIX

HEP-1.0

ORACLE

Version 7.0.15.4.1
166MIPS R4400SC

February 25, 1997

$2,875,275.20 1786.20 tpsB $1609.72 per tpsB

v

Notes:

Audited by Performance Metrics, Inc. of Los Gatos, CA.

Silicon Graphics
Computer Systems

CHALLENGE XL Server

Order Number Description Quantity Unit Price Extended Price Support (5 years)

R-45828-S4 28-cpu CHALLENGE XL Server 1 $919900.00 $919900.00 $262450.00

FTO-64UP2GB First 2GB High Density Memory 1 212576.00 212576.00 65225.00

SD8-S-2 2GB SCSI-2 FAST/WIDE System Disk 1 8900.00 8900.00 825.00

P-S-B224 CHALLENGEvault XL 224GB Disk Bundle 1 560000.00 560000.00 46200.00

P-S-B64 CHALLENGEvault XL 64GB Disk Bundle 1 296990.00 296990.00 26400.00

P8-S-2 2GB SCSI-2 FAST/WIDE Disk 4 8900.00 35600.00 3300.00

P-S-SBX2-X SCSIBOX2 for CHALLENGEvault XL 1 3750.00 3750.00 650.00

HU-PC2 POWERChannel-2 I/O Controller 2 12000.00 24000.00 8500.00

P-S-HIO SCSI-2 FAST/WIDE Interface Card 6 2500.00 15000.00 5400.00

P8-QIC-CD 150MB QIC tape & CD-ROM 1 2000.00 2000.00 1700.00

P8-T4V2 5GB 8mm Internal Drive 1 7300.00 7300.00 2650.00

P-TER2 110 VAC Programming Terminal 1 1500.00 1500.00 600.00

DK-C2-001 Destination Kit for XL Series 1 0.00 0.00 0.00

DK-T2-001 Destination Kit for CHALLENGEvault XL 3 0.00 0.00 0.00

SC4-HEP-1.0 Operating System Software and Manuals 1 0.00 0.00 0.00

SC4-IDO-5.1 IRIX development option for IRIX 5.1 1 1200.00 1200.00 0.00

CS-SWCARE-DEV Software options support (incl. IDO) 1 0.00 0.00 6000.00

Total CHALLENGE XL Costs: $2088716.00 $429900.00

ORACLE7 (XL - 192 users) 1 $230400.00 $230400.00 $138240.00

Procedural Option (XL - 192 users) 1 46080.00 46080.00 27648.00

Total ORACLE Costs: $276480.00 $165888.00

$2365196.00 $595788.00

Oracle Volume Discounts $60825.60 $24883.20

Total Discounts $60825.00 $24883.20

$2875275.20

tpsB 1786.20

$/tpsB $1609.72

February 25, 1997

TPC-B Rev. 1.2

CHALLENGE XL Server

ORACLE Software

TOTAL H/W and S/W COSTS

Discounts

TOTAL H/W and S/W COSTS (5 years)

Abstract

vi TPC Benchmark™ B Full Disclosure

xi TPC Benchmark™ B Full Disclosure

Abstract ... iii
Overview... iii
TPC Benchmark™ B Metrics .. iii
Auditor .. iii

Preface.. vii
Document Structure ... vii
TPC Benchmark™ B Overview .. viii

Clause 2 Transaction System Properties.. 2-1
2.1 Transaction System Properties (ACID) ... 2-1
2.2 Atomicity ... 2-1
2.2.1 Completed Transaction .. 2-1
2.2.2 Aborted Transaction ... 2-3
2.4.1 Completed Transaction .. 2-6
2.4.2 Aborted Transaction ... 2-6
2.5.1 Permanent Irrecoverable Failure .. 2-9
2.5.2 Instantaneous Interruption ... 2-10
2.5.3 Loss of Memory ... 2-10

Clause 3 Logical Database Design .. 3-1
3.1.1 Distribution and Partitioning ... 3-1
3.1.2 Population and Sample Contents ... 3-4
3.1.3 Type of Database ... 3-4

Clause 4 Scaling Rules... 4-1
4.1 Clause 4 Related Items... 4-1
4.1.1 Database Scaling, and Row Occurrences ... 4-1

Clause 5 Distribution,
 Partitioning, and Transaction Generation ... 5-1

5.1 Random Number Generator... 5-1
5.2 Horizontal Partitioning... 5-2

Clause 6 Residence Time... 6-1
6.1 Benchmark Performance.. 6-1
6.1.1 Throughput (tpsB) vs. Residence Time ... 6-2
6.1.2 Throughput (tpsB) vs. Concurrency .. 6-3

Clause 7 Duration of Test .. 7-1
7.3 Reproducibility .. 7-2
7.4 Measurement Period Duration ... 7-2

Clause 8 SUT Driver
 Definition .. 8-1

8.2 Driver Components.. 8-1

Clause 9 Pricing ... 9-1
9.1 System Pricing ... 9-1
9.1.1 CHALLENGE XL Server .. 9-1

Table of Contents

xii TPC Benchmark™ B Full Disclosure

9.2 Support Pricing .. 9-1
9.3 Availability .. 9-2
9.4 Priced System Configuration ... 9-2
9.5 Priced Storage Requirements... 9-2

Clause 10 Full Disclosure Checklist .. 10-1
10.2 Clause 3 Related Items... 10-2
10.3 Clause 4 Related Items... 10-2
10.4 Clause 5 Related Items... 10-2
10.5 Clause 6 Related Items... 10-3
10.6 Clause 7 Related Items... 10-3
10.7 Clause 9 Related Items... 10-4

Clause 11 Related Items... 11-1

Appendix A
Application Source Code .. A-1

 Driver ... A-1
Applications .. A-1

Appendix B
Database Definition and Load ...B-1

File Definitions for ABTH Tables ...B-1
Code for loading ABTH files...B-3
ABTH Sample Data ...B-8

Appendix C
Tunable Parameters..C-1

Operating System Tunable Parameters Parameters ...C-1
ORACLE Configuration ..C-1

Appendix D
Storage Requirements ... D-1

Disk Storage Requirements... D-1

Appendix E
Attestation Letter ...E-1

Appendix F
Supporting Documentation ..F-1

System Activity Report..F-1
ORACLE Statistics Report ..F-2

TPC Benchmark™ B Full Disclosure vii

Preface

Clause 10 of the TPC Benchmark™ B specification describes the require-
ments for a full disclosure report. The main body of this document is
organized as follows, based upon the requirements in Clause 10:

• Each portion of the main document begins with a Clause 10
requirement in an italic font. It is followed by normal font
text that explains how each result complied with the require-
ment.

• Appendix A contains the source code of the application used
to implement the benchmark.

• Appendix B describes the process that defines, creates, and
loads the ORACLE database. Also included are sample con-
tents from each database tables.

• Appendix C lists the tunable operating system, and database
parameters used in the benchmark test configuration.

• Appendix D contains the spreadsheet calculations used to
determine the storage requirements for the ACCOUNT/-
BRANCH/TELLER/HISTORY tables, eight (8) hour recov-
ery log(s) and thirty (30) days of HISTORY.

Document Structure

Preface

viii TPC Benchmark™ B Full Disclosure

TPC Benchmark™ B was developed by the Transaction Processing Per-
formance Council (TPC). It is the intent of the TPC to develop a suite of
benchmarks to measure performance of computer systems across the
spectrum of simple to complex applications. Silicon Graphics Computer
Systems, Inc. is a member of the TPC.

TPC Benchmark™ B exercises the system components necessary to per-
form tasks associated with that class of transaction processing environ-
ments emphasizing update intensive database services. Such environ-
ments are characterized by:

• Significant disk input/output

• Moderate system and application execution time

• Transaction integrity

The benchmark is not OLTP in that it does not require any terminal, net-
working, or think time. This benchmark uses terminology and metrics
which are similar to other benchmarks, originated by the TPC and others.
The only benchmark results comparable to TPC Benchmark™ B are
other TPC Benchmark™ B results. In spite of similarities to TPC-A,
TPC-B contains substantial differences which make TPC-B results not
comparable to TPC-A.

The metrics used in TPC Benchmark™ B are throughput as measured in
transactions per second (TPS), subject to a residence time constraint, and
the associated price-per-tps. The metric for this benchmark is “tpsB”. All
references to tpsB results must include both the tpsB rate and the price-
per-tpsB to be compliant with the TPC Benchmark™ B standard. Com-
parison of price/performance results disclosed in one country may not be
meaningful in another country because of pricing and product differences.

This benchmark uses a single, simple, update-intensive transaction to load
the system under test (SUT). Thus the workload is intended to reflect the
database aspects of an application, but does not reflect the entire range of
OLTP requirements typically characterized by terminal and network
input/output, and by multiple transaction types of varying complexities.
The single transaction type provides a simple, repeatable unit of work,
and is designed to exercise the basic components of a database system.

The extent to which a customer can achieve the results reported by a ven-
dor is highly dependent on how closely TPC Benchmark™ B approxi-
mates the customer application. Relative system performance of systems
derived from TPC Benchmark™ B do not necessarily hold for other
workloads or environments. Extrapolations to unlike environments are
not recommended.

A full disclosure report of the implementation details, as specified in
Clause 10, must be made available along with the reported results.

TPC Benchmark™ B
Overview

Preface

TPC Benchmark™ B Full Disclosure ix

Benchmark results are highly dependent upon workload, specific applica-
tion requirements, and systems design and implementation. Relative sys-
tem performance will vary because of these and other factors. Therefore,
TPC Benchmark™ B should not be used as a substitute for a specific cus-
tomer application benchmark when critical capacity planning and/or
product evaluation decisions are contemplated.

All performance data contained in this report was obtained in a rigorously
controlled environment, and therefore results obtained in other operating
environments may vary significantly. Silicon Graphics Computer Sys-
tems, Inc. does not warrant or represent that a user can or will achieve
similar performance expressed in transactions per second (tpsB) or nor-
malized price/performance ($K/tpsB). No warranty of system perfor-
mance or price/performance is expressed or implied in this report.

Preface

x TPC Benchmark™ B Full Disclosure

TPC Benchmark™ B Full Disclosure 2-1

2. Clause 2 Transaction System
Properties

Results of the ACIDity test (specified in Clause 2) must describe how the
requirements were met. If a database different from that which is mea-
sured is used for durability tests, the sponsor must include a statement
that durability works on the fully loaded and fully scaled database.

The TPC Benchmark™ B Standard Specification defines a set of transac-
tion processing system properties that a System Under Test (SUT) must
support during the execution of the benchmark. Those properties are Ato-
micity, Consistency, Isolation and Durability (ACID). This portion of the
document will define each of those properties and describe the series of
tests that were performed to demonstrate that the properties were met.

All of the specified ACID tests were performed on the CHALLENGE XL
Server. Except for the failure of a single durable medium, each ACID test
was performed on the measured database.

The test to fail a single durable medium with table/file data was run on the
smaller database scaled to seven hundred (700) tpsB.

The system under test must guarantee that transactions are atomic; the
system will either perform all individual operations on the data, or will
assure that no partially-completed operations have any effects on the
data.

The following tests for atomicity were successfully completed for both
regular transactions and discrete transactions.

Perform the standard TPC Benchmark™ B transaction (see Clause 1.2)
for a randomly selected account and verify that the appropriate records
have been changed in the Account, Branch, Teller, and History files/ta-
bles.

2.1 Transaction System
Properties (ACID)

2.2 Atomicity

2.2.1 Completed
Transaction

2-2 TPC Benchmark™ B Full Disclosure

A verification of a committed transaction was completed as follows:

• a random Account and Teller were selected

• the current balances for the selected Account, Teller, and the
Teller’s associated Branch were recorded

• the number of rows in the History table that contain the above
combination of Account, Branch, and Teller was recorded

• an interactive version of the TPC Benchmark™ B application
was executed that prompts a terminal for the transaction input
and allows the user the option of COMMITting or ABORT-
ing the transaction.

• the selected Account and Teller identifiers along with a ran-
dom delta amount was entered for the transaction,

• the TPC Benchmark™ B application updated the appropriate
Account, Branch, and Teller balances with the above delta
amount, inserted an appropriate entry in the History table and
prompted the user to either COMMIT or ABORT the current
transaction,

• a COMMIT request was issued from the terminal

• the TPC Benchmark™ B application COMMITted the above
transaction as requested.

After the transaction was COMMITted:

• the balances from the selected Account, Branch, and Teller
were displayed

• it was verified that the displayed balances differed from the
original balances by the delta value that was entered,

• the number of rows in the History table for the combination
of the selected Account, Branch, and Teller was displayed

• it was verified that the number of History table rows was one
greater than before the above transaction was executed,

• it was verified that the additional History row contained the
proper values from the transaction entered.

TPC Benchmark™ B Full Disclosure 2-3

Perform the standard TPC Benchmark™ B Transaction for a randomly
selected account, substituting an ABORT of the transaction for the COM-
MIT of the transaction. Verify that the appropriate records have not been
changed in the Account, Branch, Teller, and History files/tables.

A verification of an aborted transaction was completed as follows:

• a random Account and Teller were selected

• the current balances for the selected Account, Teller, and the
Teller’s associated Branch were recorded

• the number of rows in the History table that contain the above
combination of Account, Branch, and Teller was recorded

• an interactive version of the TPC Benchmark™ B application
was executed that prompts a terminal for the transaction input
and allows the user the option of COMMITting or ABORT-
ing the transaction,

• the selected Account and Teller identifiers along with a ran-
dom delta amount was entered for the transaction,

• the TPC Benchmark™ B application updated the appropriate
Account, Branch, and Teller balances with the above delta
amount, inserted an appropriate entry in the History table and
prompted the user to either COMMIT or ABORT the current
transaction,

• an ABORT request was issued from the terminal

• the TPC Benchmark™ B application ABORTed the above
transaction as requested.

After the transaction was ABORTed:

• the balances from the selected Account, Branch, and Teller
were displayed

• it was verified that the displayed balances were the same as
before the transaction was started

• the number of rows in the History table for the combination
of the selected Account, Branch, and Teller was displayed

• it was verified that the number of History table rows was no
different than before the above transaction was executed,

2.2.2 Aborted
Transaction

2-4 TPC Benchmark™ B Full Disclosure

Consistency is the property of the application that requires any execution
of a transaction to take the database from one consistent state to another.

A consistent state for the TPC Benchmark™ B database is defined to exist
when:

a) the sum of the account balances is equal to the sum of the
teller balances, which is equal to the sum of the branch bal-
ances;

b) for all branches, the sum of the teller balances within a
branch is equal to the branch balance;

c) the history file has one logical record added for each commit-
ted transaction, none for any aborted transaction, and the
sum of the deltas in the records added to the history file
equals the sum of the deltas for all committed transactions.

If data is replicated, each copy must not violate these conditions.

Due to the large size of the Account file/table, no test of its consistency is
specified.

The following tests were performed on the system under test (SUT) to
demonstrate the property of consistency.

Prior to executing the TPC Benchmark™ B transactions:

• the balance for each Branch occurrence in the database was
recorded (Initial Branch Balances),

• the sum of the above balances of all the Branches were
recorded (Initial Branch Sum),

• the sum of the Teller balances within each branch were
recorded (Initial Teller/Branch Balance),

• it was verified that the Initial Branch Balance equaled the
sum of the Initial Teller/Branch Balances for each Branch,

• the number of History rows and the sum of the History delta
values were recorded (Initial History Count and Initial His-
tory Sum),

2.3 Consistency

TPC Benchmark™ B Full Disclosure 2-5

• the TPC Benchmark™ B applications was executed and the
number of committed transactions was recorded. It was veri-
fied that the number of committed transactions was not less
than ten (10) times the number of Teller occurrences.

After the TPC Benchmark™ B application was executed:

• the sum of the balances of all Branch occurrences in the data-
base was recorded (Final Branch Sum),

• the balance for each Branch occurrence in the database was
recorded (Final Branch Balances),

• for each Branch, the sum of Teller balances associated with
the Branch was recorded (Final Teller/Branch Balance),

• for each Branch, it was verified that the Final Branch Balance
equaled the appropriate Final Teller/Branch Balance,

• the number of History rows and the sum of History row delta
values amounts were recorded (Final History Count and Final
History Sum),

• it was verified that the difference between the Final History
Count and Initial History Count was the number of transac-
tions recorded as committed,

• it was verified that the difference between the Final History
Sum and Initial History Sum equaled the difference between
the Final Branch Sum and Initial Branch Sum.

Operations of concurrent transactions must yield results which are indis-
tinguishable from the results which would be obtained by forcing each
transaction to be serially executed to completion in some order.

This property is commonly called serializability. Sufficient conditions
must be enabled at either the system or application level to ensure serial-
izability of transactions under any mix of arbitrary transactions, not just
TPC Benchmark™ B transactions. The system or application must have
full serializability enabled, i.e., repeated reads of the same records within
any committed transactions must have returned identical data when run
concurrently with any mix of arbitrary transactions.

A total of 24 isolation tests were run; that is, both COMMITted and
ABORTed transactions for the Branch, Account, and Teller tables, using
regular and discrete transactions.. The following two tables show the

2.4 Isolation

2-6 TPC Benchmark™ B Full Disclosure

steps used in performing the Isolation test for the Account table with a
COMMITted transaction (Table 2.1) and a ABORTed transaction (Table
2.2). The same steps were used to test both the Branch and Teller tables.

The aborted transaction tests (Table 2.2) follows on the next page.

Table 2.1: Isolation Test — Completed Transaction

Transaction 1 Transaction 2

Execute a TPC Benchmark™ B
transaction to update a randomly
selected Account, using the applica-
tion code described in the Atomicity
tests. Stop the transaction prior to
COMMIT.

Execute a second TPC Benchmark™
B transaction that will update the
same Account as Transaction 1 using
a different Teller and Branch. This
transaction will wait until Transac-
tion 1 completes.

COMMIT this transaction and verify
the Account balance reflects the
effect of the update.

This transaction resumes and is
COMMITted. The Account balance
reflects the effect of both Transaction
1 and Transaction 2.

Table 2.2: Isolation Test — Aborted Transaction

Transaction 1 Transaction 2

Execute a TPC Benchmark™ B
transaction to update a randomly
selected Account, using the applica-
tion code described in the Atomicity
tests. Stop the transaction prior to
COMMIT.

Execute a second TPC Benchmark™
B transaction that will update the
same Account as Transaction 1 using
a different Teller and Branch. This
transaction will wait until Transac-
tion 1 completes.

2.4.1 Completed
Transaction

2.4.2 Aborted Transaction

TPC Benchmark™ B Full Disclosure 2-7

The tested system must guarantee the ability to preserve the effects of
committed transactions and insure database consistency after recovery
from any one of the failures listed below:

• Permanent irrecoverable failure of any single durable
medium containing database, ABTH files/tables, or recovery
log data.

• Instantaneous interruption (system crash/system hang) in
processing which requires system reboot to recover.

• Failure of all or part of memory (loss of contents).

A durable medium is a data storage medium that is either:

a) an inherently non-volatile medium, e.g., magnetic disk, mag-
netic tape, optical disk, etc., or

a) a volatile medium with its own self-contained power supply
that will retain and permit the transfer of data, before any
data is lost, to an inherently non-volatile medium after the
failure of external power.

A transaction is considered committed when the transaction manager
component of the system has written the commit record(s) associated with
the transaction to a durable medium.

It is required that the system crash test and the loss of memory test
described in Clauses 2.5.3.2 and 2.5.3.3, respectively, be performed with
a full terminal load and a fully scaled database. The durable media fail-
ure tests described in Clause 2.5.3.1 may be performed on a subset of the
SUT configuration and database. For that subset, all multiple hardware
components, such as processors and disk/controllers in the full configura-

ABORT this transaction and verify
the Account balance remains
unchanged.

This transaction resumes and is
COMMITted. The Account balance
reflects only the effect of Transaction
2.

Table 2.2: Isolation Test — Aborted Transaction

Transaction 1 Transaction 2

2.5 Durability

2-8 TPC Benchmark™ B Full Disclosure

tion must be represented by either 10% or 2 each of the multiple hardware
components, whichever is greater. The database subset must be scaled to
at least 10% (minimum of 2 tps) of the fully scaled database size. The test
sponsor must state that to the best of their knowledge, a fully loaded and
fully scaled SUT and database configuration would also pass all durabil-
ity tests.

At the time of the induced failures, it is required o have multiple home and
remote transactions (see Clause5) in progress. Distributed configurations
must have distributed transactions in progress as well.

All durability tests except the durable media failure test described in
2.5.3.1, were conducted on the CHALLENGE XL Server using a fully
scaled database under full load. The durable media failure test was con-
ducted successfully on a database subset scaled greater than 10% of the
fully scaled database and, to the best of our knowledge, would also com-
plete successfully with the measured database.

The fully scaled database configuration used in the ACID tests was the
same configuration used for the TPC Benchmark™ B measurements.
Multiple home and remote transactions were in progress during the dura-
bility tests.

The Durability tests used the following procedure:

• determined the Initial Branch Sum, Initial Branch Balances,
Initial Teller/Branch Balances, Initial History Count, and Ini-
tial History Sum, as described earlier in the Consistency test,

• ran the appropriate number TPC Benchmark™ B transac-
tions,

• induced a failure from the list of single failures,

• determined the Final Branch Sum, Final Branch Balances,
Final Teller /Branch Balance, Final History Count, and Final
History Sum,

• examined the above values and relationships,

• in addition, the number of occurrences in the History tables
was compared with the count of completed transactions
recorded by the driver in the 'success' file. This ensured all
committed transactions (History tables) are also recorded as
completed in the 'success' file and none were lost because of
the induced failure.

TPC Benchmark™ B Full Disclosure 2-9

All of the Durability tests listed below completed successfully. The sum
of Teller balances associated with a particular Branch equaled that
Branch's balance before and after the execution of the benchmark. The
difference between the Final and Initial History Counts was equal to the
number of recorded committed transactions. The difference between the
Final and Initial History Sum equaled the difference between the Final
and Initial Branch Sum, and every record in the 'success' file had a corre-
sponding row occurrence in the History tables.

The failures listed below were induced on the system under test (SUT) to
demonstrate the property of Durability.

Permanent irrecoverable failure of any single durable medium containing
database, ABTH files/tables, or recovery log data.

Two irrecoverable failures were tested, one for failure of table and catalog
medium, and another for database recovery log medium.

The table and catalog medium failure was tested as follows:

• while transactions were being processed, an additional table
was created “toy-table”, and a row was inserted into it. This
table was for audit purposes to prove that recovery would
include any table that had been cataloged.

• a failure was induced by copying bad data over the sections
of the disk that stored the database catalog and another disk
containing account data. This caused appropriate error mes-
sages to appear on the console and the application to stop.

• the database was shut down,

• the backup was restored, overwriting the existing contents of
the disk, and the database was rolled forward using the recov-
ery log file,

• the count of records in the success file was compared to the
rows in the History table to verify that all transactions were
correctly recovered,

• random rows from the success file were searched out in the
History table to verify the contents were successfully recov-
ered

• the “toy-table” was accessed to verify recovery of the catalog
data.

2.5.1 Permanent
Irrecoverable
Failure

2-10 TPC Benchmark™ B Full Disclosure

The recovery log medium was mirrored. Failure of the recovery log was
tested as follows:

• while transactions were being processed, one of the mirrored
disks was physically removed from the SUT,

• processing continued unaffected and no recovery was neces-
sary.

Instantaneous interruption (system crash/system hang) in processing
which requires system reboot to recover.

Failure of all or part of memory (loss of contents).

The instantaneous interruption and loss of memory tests - which were
combined because the loss of power erases the contents of memory - were
conducted as follows:

• a consistency check was run and the file system was synchro-
nized to ensure the audit files were written to disk and would
not be lost,

• while transactions were being processed, a failure was
induced by turning off the primary power for the SUT,

• power to the SUT was restored and ORACLE was restarted,

• the database was recovered using the log file,

• the count of records in the success file was compared to the
rows in the History table to verify that all committed transac-
tions were correctly recovered.

2.5.2 Instantaneous
Interruption

2.5.3 Loss of Memory

TPC Benchmark™ B Full Disclosure 3-1

3. Clause 3 Logical Database
Design

The distribution across storage media of ABTH (Accounts, Branch, Teller,
and History) files/tables and all logs must be explicitly depicted.

This benchmark was implemented as a centralized solution accessing a
single logical and physical database. The account and history tables were
horizontally partitioned. The partitioning was completely transparent to
the application.

The benchmark and priced system configuration diagrams are shown in
Figures 3.1 and 3.2, respectively. The system’s configurations are essen-
tially the same, the only difference being the fact that the SUT utilized
148 of the 166 disk drives in its configuration. The database was origi-
nally built for 2000 branches. The test was executed against an 1800
branch subset of this database. The remaining 200 branches were isolated
on the remaining 18 disk drives. These drives were totally inactive during
the measurement period and therefore not considered to be part of the
priced configuration. A copy of the system activate report which was gen-
erated during steady state (but before opening the measurement window),
as well as a copy of the ORACLE statistics file generated during the entire
run, have been included in Appendix F.

The specific distribution of database tables (Account, Branch, Teller, and
History) and recovery log data across storage media for both the bench-
mark and priced configuration are shown in Tables 3.1 and 3.2, respec-
tively. The same allocations were used for both the benchmark and the
priced configuration. The only difference is the amount of data generated
for History and Log files during the benchmark did not completely fill all
allocated space.

3.1 Database Design

3.1.1 Distribution and
Partitioning

3-2 TPC Benchmark™ B Full Disclosure

Figure 3.2 Priced System Configurations

Figure 3.1 SUT System Configurations

T
PC

 B
enchm

ark™
 B

 Full D
isclosure

3-3

Table 3.1: SUT Data Distribution

Table 3.2: Priced Configuration Data Distribution

3-4 TPC Benchmark™ B Full Disclosure

A description of how the database was populated, along with sample con-
tents of each ABTH file/table to meet the requirements described in
Clause 3.

Appendix B shows the processes that defined, created, and populated the
ORACLE7 on-line database for TPC Benchmark™ B. Sample contents of
each database table are included in this appendix.

A statement of the type of database utilized, e.g., relational, Codasyl, flat
file, etc.

This TPC Benchmark™ B test used the ORACLE7 RDBMS relational
database software.

3.1.2 Population and
Sample Contents

3.1.3 Type of Database

TPC Benchmark™ B Full Disclosure 4-1

4. Clause 4 Scaling Rules

There are no Clause 4 Related Items required by the Full Disclosure spec-
ification. However, Clause 4 specifies scaling rules and that information
is provided here as the appropriate place to describe the database size
and scaling information.

The database was populated with the required number of row occurrences
for the Account, Branch, and Teller tables to measure for 2000.00 tpsB.
These numbers are listed in Table 4.1

The specific code used to create and populate these tables may be found in
Appendix B. Details of the space calculated for the History table and log
files may be found in Appendix D.

Table 4.1: CHALLENGE XL Server and ORACLE7 Required
Row Occurrences

Table Occurrences

Branch 2,000

Teller 20,000

Account 200,000,000

4.1 Clause 4 Related
Items

4.1.1 Database Scaling,
and Row
Occurrences

4-2 TPC Benchmark™ B Full Disclosure

TPC Benchmark™ B Full Disclosure 5-1

5. Clause 5 Distribution,
 Partitioning, and Transaction

Generation

The method of verification of the random number generator should be
described.

The UNIX functions of RAND and LRAND48 were used to generate
pseudo-random numbers. The SRAND and SRAND48 functions were
used to seed the random number generators using the process identifica-
tion number multiplied by the result of the gettime() function.

The RAND generator was used to create the random numbers used for the
Teller identifier number for both local and remote transactions.

The LRAND48 generator was used to create the Account identifiers, and
the delta amounts used in the TPC Benchmark™ B transaction.

Both of these routines generate pseudo-random numbers using a well-
known linear congruential algorithm.

The code from the driver program that accomplished this is shown below
in Figure 5.1

5.1 Random Number
Generator

5-2 TPC Benchmark™ B Full Disclosure

In addition, the History and success files were randomly searched by the
auditors for duplicates and/or patterns that would indicate the random
number generator had effected any kind of discernible pattern. None were
found.

Figure 5.1: Random Number Generators

Vendors must clearly disclose if horizontal partitioning is used. Specifi-
cally, vendors must satisfy the following:

1. Describe textually the extent of transparency of the imple-
mentation.

2. Describe which tables / files were accessed using partition-
ing.

3. Describe how partitioned tables / files were accessed.

/*
** Seed Random Number Generator.
*/
srand48(getpid() * gettime());
srand(getpid() * gettime());

/*
** Execute transactions until time is up.
*/

while(TRUE)
{

 /* Pick random amount in range -999999 to 999999: Clause 5.3.6 */
 amount = (lrand48() % 1999999) - 999999;

 /*
 ** Clause 5.3.3: For single-node systems, choose a teller at
 ** random from the entire range of tellers.
 */
 if (nhosts > 1)
 teller_no = (rand () % ((db_multiplier / nhosts) * 10)) +

(hid - 1) * (db_multiplier / nhosts) * 10;
 else
 teller_no = (rand() % tellnum) + 1;

 /*
 ** Clause 5.3.4: “Given the randomly chosen teller...the
 ** corresponding branch is determined”
 ** There are 10 tellers per branch. First teller is 1.
 */
 branch_no = ((teller_no - 1)/10) + 1;

 /*
 ** Clause 5.3.5: Account ID Generation
 ** 85% of the time, randomly choose an account from the
 ** local branch. 15% of the time, randomly choose an
 ** account from one of the other branches.
 */

 if (brannum > 1)
 {

if (rand()%100 < 85)
account_branch = branch_no;
else
 do

account_branch = (rand()%brannum) + 1;
 while (account_branch == branch_no);

 }
 else

account_branch = branch_no;

 /* There are 100,000 accounts per branch; */
 account_no = 100000*(account_branch - 1) + (lrand48()%100000) + 1;

5.2 Horizontal
Partitioning

TPC Benchmark™ B Full Disclosure 5-3

The Account and History tables were horizontally partitioned. The parti-
tioning was completely transparent to the application. The complete
description of the physical positioning of the tables may be found in
Chapter 3 under Database Design, and Distribution and Partitioning.

5-4 TPC Benchmark™ B Full Disclosure

TPC Benchmark™ B Full Disclosure 6-1

6. Clause 6 Residence Time

Report all the data specified in Clause 6, including measured and
reported tpsB, maximum and average residence time, as well as perfor-
mance curves for number of transactions vs. residence time (see clause
6.6.1) and throughput vs. level of concurrency for three data points (see
clause 6.6.5). Also, the sponsor must include the percentage of home and
remote transactions, the number and percentage of in-process transac-
tions, and the percentage of remote and foreign transactions, if applica-
ble.

Table 6.1 contains the statistics required by the above clause.

Table 6.1: CHALLENGE XL Server and ORACLE7
Performance Statistics

Measured tpsB 1786.20 tpsB

Reported tpsB 1786.20 tpsB

90th percentile Residence time <0.25 seconds

Maximum Residence Time 9.07 seconds

Average Residence Time 0.091 seconds

Percent of Home transactions 85.03 %

Percent of Remote transactions 14.97 %

Measured completed transactions 4501286

Number of in flight transactions 146

Percentage of in flight transactions 0.003 %

Concurrency at reported tpsB (CR) 162.54

Low concurrency (CL) 122.61

High concurrency (CH) 199.73

6.1 Benchmark
Performance

6-2 TPC Benchmark™ B Full Disclosure

The distribution of throughput (tpsB) vs. residence times for the transac-
tions in the benchmark test are shown below in Figure 6.1. The average
and 90th percentile residence times are noted on the graph.

6.1.1 Throughput
(tpsB) vs.
Residence Time

Figure 6.1: CHALLENGE XL Server and ORACLE7 Residence Times

Residence Time (seconds)

Residence Time Distribution

Avg. Residence Time (0.091 seconds)

90th Percentile Residence Time (0.25 seconds) T
o

ta
l

T
ra

n
sa

ct
io

n
s

TPC Benchmark™ B Full Disclosure 6-3

The tpsB vs. concurrency graph is shown in Figure 6.2. In the graph CR
denotes the concurrency at the reported rate while CL and CH denote low
and high concurrency levels, respectively. These concurrency levels are
defined as follows:

CR = reported tpsB * average residence time

.7 CR <= CL <= .8 CR and CH >= 1.2 CRt

Drivers
Average

Residence
Time

tpsB
Concurrency

Level

Concurrency
 Level

(% of CR)

CR 166 .091 1786.20 162.54 100.00

CL 124 .074 1656.99 122.61 75.43

CH 205 .121 1650.65 199.73 122.88

Table 6.2: Concurrency Computations

Level of Concurrency

T
hr

ou
gh

pu
t

(t
ps

B
)

Figure 6.2: tpsB vs. Concurrency Level

CL

CR
CH

6.1.2 Throughput
(tpsB) vs.
Concurrency

6-4 TPC Benchmark™ B Full Disclosure

TPC Benchmark™ B Full Disclosure 7-1

7. Clause 7 Duration of Test

The method used to determine that the SUT had reached a steady state
prior to commencing the measure interval should be described.

The transaction throughput rate (tpsB) was measured during trial runs to
determine the average time required to start all processes and begin a sus-
tained rate of throughput. This ramp up interval was also verified by per-
formance monitoring information. The ramp up interval of fifteen (15)
minutes was sent as a parameter to the benchmark application to assure
that the measured interval was started after a steady state was established.

A description of how the work normally performed during a sustained test
(for example checkpointing, writing redo/undo log records, etc. as
required by Clause 7.2), actually occurred during the measurement inter-
val.

During the measurement interval, the ORACLE7 RDBMS reads one
account block into the buffer cache for every transaction. On average, one
modified account block was written from the shared buffer cache for
every transaction, but this write was only necessary to free space in the
shared buffer cache, not to commit the transaction. Modified database
buffers migrated to disk on a “least recently used” basis independent of
transaction commits. In addition, every block modification was protected
by redo log records. These redo log records were written to the redo log
buffer (in memory), which were flushed to a redo log file on disk either
when the transaction committed or when the redo log buffer became full.

During a checkpoint, all modified blocks in the shared buffer cache which
had not been written to disk since the last checkpoint were physically
written to disk. A single checkpoint was performed during the measure-
ment interval.

7.1 Steady State

7.2 Work Performed
During Steady State

7-2 TPC Benchmark™ B Full Disclosure

The performance of the TPC Benchmark™ B transaction was improved
by using the BEGIN_DISCRETE_TRANSACTION procedure (See
Appendix A). This procedure streamlines transaction processing so that
short, non-distributed transactions can execute more rapidly.

During a discrete transaction, all changes made to any data were deferred
until the transaction committed. Redo information was generated, but was
stored in a separate location in memory. When the transaction issued a
commit request, the redo information was written to the redo log file
(along with other group commits) and the changes to the database block
were applied directly to the block. Once the commit completed, control
was then returned to the application.

Notice the loop construct in the transaction profile included in Appendix
A. The TPC-B transaction was implemented as a discrete transaction by
calling the BEGIN_DISCRETE_TRANSACTION procedure before the
first statement. Any error encountered during the processing of discrete
transactions caused the pre-defined exception DISCRETE_TRANSAC-
TION_FAILED to be raised. If this exception occurred, the TPC-B trans-
action was rolled back and re-executed as a normal transaction.

The discrete transaction is a fully documented performance feature in the
ORACLE7 DBA Guide. An ORACLE trigger and package were used to
retrieve the account balance. This is also documented in the ORACLE7
DBA Guide.

A description of the method used to determine the reproducibility of the
measurement results.

The benchmark was executed multiple times and the reported throughput
(tpsB) and residence time varied less than 2.65 percent between the mea-
sured runs.

A statement of the duration of the measurement period for the reported tps
(it should be at least 15 minutes and no longer than 1 hour).

Each measured run was executed for a total of 58 minutes. This included
15 minutes of ramp up time and 42 minutes of steady state. The measure-
ment interval of 42 minutes was chosen such that a single checkpoint
would occur approximately 37 minutes into the run as a result of a log file
switch For the measured run the checkpoint interval was 42:45. The
graph demonstrating steady state is shown below.

7.3 Reproducibility

7.4 Measurement
Period Duration

TPC Benchmark™ B Full Disclosure 7-3

Figure 7.1: CHALLENGE XL Server and ORACLE7 Throughput tpsB

T
h

ro
u

g
h

p
u

t
(t

p
s

B
)

Throughput Over Entire Run

Elapsed Time (minutes)

Measurement Interval

Checkpoint #1
Checkpoint #2

7-4 TPC Benchmark™ B Full Disclosure

TPC Benchmark™ B Full Disclosure 8-1

8. Clause 8 SUT Driver
 Definition

There are two forms of drivers which present transactions to the SUT: an
internal driver which resides on the SUT hardware and software. An
external driver which resides on a separate hardware and software com-
plex, and typically communicates with the SUT via a communications net-
work using a client/server remote procedure call mechanism.

The driver resided on the SUT.

A proof that the functionality and performance of the components being
emulated in the Driver System are equivalent to that of the priced system.
The sponsor must list all hardware and software functionality of the
driver and its interface to the SUT.

The Driver System provides the following functionality:

• generates the input data,

• timestamps the delivery,

• receives and timestamps the response,

• generates the success file, and

• performs the necessary accounting of the residence times.

The driver initializes the required data structures and then, for each trans-
action executed:

• generates the ABTH input values,

8.1 Models of the Target
System

8.2 Driver Components

8-2 TPC Benchmark™ B Full Disclosure

• timestamps the transaction,

• executes the TPC Benchmark™ B transaction as specified in
Clause 1.2, and

• records the transaction residency time and other pertinent sta-
tistics.

The statistics report by the driver include:

• the number of transactions submitted,

• the minimum, maximum, and average residence times for all
submitted transactions,

• a distribution of residence times in 0.25 second intervals, and

• total system throughput in 30 second intervals.

A functional diagram of the SUT is given below in figure 8.1.

...
SUT

Driver
Software

Driver
Software

Driver
Software

Driver
Software

ORACLE7 Driver

ORACLE7
DATABASE

TPC Benchmark™ B Full Disclosure 9-1

9. Clause 9 Pricing

A detailed list of hardware and software used in the priced system. Each
item must have vendor part number, description, and release/revision
level, and either general availability status or committed delivery data. If
package-pricing is used, contents of the package must be disclosed.

The total price of the entire configuration is required including: hard-
ware, software, and maintenance charges. Separate component pricing is
recommended. The basis of all discounts used shall be disclosed.

A statement of the measured tpsB, and the calculated price/tpsB.

The CHALLENGE XL Server system consists of:

• 28 R4400SC CPUs with 4MB of combined secondary cache
each,

• 2GB of main memory,

• 3 POWERchannel-2 I/O boards with 6 additional SCSI-2
cards for a total of 24 FAST/WIDE SCSI-2 channels,

• 148 disk drives of 1.92GB formatted capacity each,

• 5GB 8mm tape, QIC-150 cartridge tape, and CD-ROM.

The priced configuration contains several line items which are bundled
products. The specific contents of these packages are details in Table 9.2.

The five year support pricing for CHALLENGE XL Server:

$2,518,616.00

9.1 System Pricing

9.1.1 CHALLENGE XL
Server

9.2 Support Pricing

9-2 TPC Benchmark™ B Full Disclosure

The five year support pricing for ORACLE7:

$356,659.20

The CHALLENGE XL Server used in the benchmark and identified by
Order Number R-45828-S2 is orderable now and will be deliverable on
September 30, 1994.

The IRIX (UNIX SVR4) operating system.which was used on the SUT,,
5.1DC, is a pre-released version of IRIX HEP-1.0 which will be released
on June 30, 1994.

ORACLE7 Version 7.0.15.4.1 will be available on March 30, 1994.

All other products specified in the priced configuration are current order-
able and deliverable.

The hardware, software, and support/maintenance products priced in this
benchmark, are detailed below in Table 9.1. Also included in the table are
the measured tpsB and calculated price/tpsB.

The hardware necessary to meet the storage requirements of Clause 9.2.4
was calculated based upon the number of history records stored per page
and the measured transaction rate. The log file storage required was calcu-
lated based statistics which are generated by ORACLE for each run.
Details of the files that these calculations are based on are included in
Appendix D.

9.3 Availability

9.4 Priced System
Configuration

9.5 Priced Storage
Requirements

TPC Benchmark™ B Full Disclosure 9-3

Order Number Description Quantity Unit Price Extended Price Support (5 years)

R-45828-S4 28-cpu CHALLENGE XL Server 1 $919900.00 $919900.00 $262450.00

FTO-64UP2GB First 2GB High Density Memory 1 212576.00 212576.00 65225.00

SD8-S-2 2GB SCSI-2 FAST/WIDE System Disk 1 8900.00 8900.00 825.00

P-S-B224 CHALLENGEvault XL 224GB Disk Bundle 1 560000.00 560000.00 46200.00

P-S-B64 CHALLENGEvault XL 64GB Disk Bundle 1 296990.00 296990.00 26400.00

P8-S-2 2GB SCSI-2 FAST/WIDE Disk 4 8900.00 35600.00 3300.00

P-S-SBX2-X SCSIBOX2 for CHALLENGEvault XL 1 3750.00 3750.00 650.00

HU-PC2 POWERChannel-2 I/O Controller 2 12000.00 24000.00 8500.00

P-S-HIO SCSI-2 FAST/WIDE Interface Card 6 2500.00 15000.00 5400.00

P8-QIC-CD 150MB QIC tape & CD-ROM 1 2000.00 2000.00 1700.00

P8-T4V2 5GB 8mm Internal Drive 1 7300.00 7300.00 2650.00

P-TER2 110 VAC Programming Terminal 1 1500.00 1500.00 600.00

DK-C2-001 Destination Kit for XL Series 1 0.00 0.00 0.00

DK-T2-001 Destination Kit for CHALLENGEvault XL 3 0.00 0.00 0.00

SC4-HEP-1.0 Operating System Software and Manuals 1 0.00 0.00 0.00

SC4-IDO-5.1 IRIX development option for IRIX 5.1 1 1200.00 1200.00 0.00

CS-SWCARE-DEV Software options support (incl. IDO) 1 0.00 0.00 6000.00

Total CHALLENGE XL Costs: $2088716.00 $429900.00

ORACLE7 (XL - 192 users) 1 $230400.00 230400.00 $138240.00

Procedural Option (XL - 192 users) 1 46080.00 46080.00 27648.00

Total ORACLE Costs: $276480.00 $165888.00

$2365196.00 $595788.00

Oracle Volume Discounts $60825.60 $24883.20

Total Discounts $60825.00 $24883.20

$2875275.20

tpsB 1786.20

$/tpsB $1609.72

Table 9.1: Priced Configuration

CHALLENGE XL Server

ORACLE Software

TOTAL H/W and S/W COSTS

TOTAL H/W and S/W COSTS (5 years)

Discounts

9-4 TPC Benchmark™ B Full Disclosure

Order Number Quantity Description

R-45828-S4 1 CHALLENGE XL rack chassis

28 150 MHz MIPS R4400SC CPUs

4 MB combined sceondary cache per CPU

1 64MB memory board (replaced by FTO-64UP2GB)

1 POWERChannel-2 I/O board (includes 2 SCSI-2 FAST/WIDE channels, 1 ethernet chan-
nel, 3 RS-232C ports, 1 parallel port, and 1 RS-422 port)

1 SCSIBOX-2 disk tray (Order Number P-S-SBX2-X)

P-S-B224 2 CHALLENGEvault XL (Order Number P-S-VXL)

14 SCSIBOX-2 disk trays

112 2GB SCSI-2 FAST/WIDE disks (Order Number P8-S-2)

P-S-B64 1 CHALLENGEvault XL

4 SCSIBOX-2 disk trays

32 2GB SCSI-2 FAST/WIDE disks

Table 9.2: Bundled Item Descriptions

TPC Benchmark™ B Full Disclosure 10-1

10. Clause 10 Full Disclosure
Checklist

A statement verifying the sponsor of the benchmark and any other compa-
nies who have participated.

The benchmark is being sponsored by Silicon Graphics Computer Sys-
tems, the hardware vendor, and ORACLE Corporation, the supplier of the
database management system used.

Program listing of application code and definition language statements
for file/tables.

Appendix A contains a listing of the application (driver) programs which
were written in the “C” language. Appendix B contains the “C” source
code and SQL scripts which were used to create and load the benchmark
database.

Settings for all customer-tunable parameters and options which have
been changed from defaults found in actual products; including but not
limited to: Database options; Recovery/Commit options; Consistency/-
Locking options; System parameters; application parameters, and config-
uration parameters. Test sponsors may optionally provide a full list of all
parameters and options.

A listing of all modified operating system parameters and all database
parameters configured during the benchmark is given in Appendix C.

Configuration diagrams of both the benchmark configuration and the
priced system, and a description of the differences.

A diagram of the SUT is given in Chapter 8 and a diagram of the priced
configuration in Chapter 9.

10.1 General Item

10-2 TPC Benchmark™ B Full Disclosure

Results of the ACIDity tests must describe how the requirements were met.
If a database different from that which is measured is used for durability
tests, the sponsor must include a statement that durability works on the
fully loaded and fully scaled system.

The ACIDity tests performed are described in Chapter 2.

The distribution across storage media of ABTH files/tables and all logs
must be explicitly depicted.

Provide two functional diagrams which show CPUs, storage devices, and
the interconnections between these components. The first diagram must
correspond to the benchmark configuration and the second diagram must
correspond to the 30-day priced configuration. A separate pair of dia-
grams must be provided for each reported result.

As part of each diagram, show the percentage of the total physical data-
base which resides on each storage device for each of the ABTH files and
logs. For the benchmark configuration, show the allocation during the 8-
hour steady state. For the 30-day priced configuration, show database
allocation including storage of 30 days of history records. Data which are
duplicated on more than one device must be clearly labeled to show what
is duplicated and on which device.

The distribution of the ABTH files/tables, log, and system files is depicted
in Chapter 3. A diagram of the SUT is given in Chapter 8 and a diagram
of the priced configuration is given in Chapter 9.

A description of how the database was populated, along with sample con-
tents of each ABTH file/table to meet the requirements described in
Clause 3.

Chapter 3 contains the details of the Logical Database Design. Samples of
the ABTH file contents are shown in Appendix B.

A statement of the type of database utilized.

The benchmark was conducted using ORACLE7, a standard relational
database management system which is a product of ORACLE Corpora-
tion.

The method of verification of the random number generator should be
described.

The random number generator used is described in Chapter 5.

10.2 Clause 3
Related Items

10.3 Clause 4
Related Items

10.4 Clause 5
Related Items

TPC Benchmark™ B Full Disclosure 10-3

Report all the data specified in Clause 6.6, including maximum and aver-
age residence time, as well as performance curves for numbers of trans-
actions versus residence time and throughput versus level of concurrency
for three data points. Also, the sponsor must include the percentage of
home and remote transactions, the number and percentage of in-process
transactions, and the percentage of remote and foreign transactions, if
applicable.

Residency data, including the required graphs, are described in Chapter 6.
The graph of total system throughput is given in Chapter 7.

The method used to determine that the SUT had reached steady state
prior to commencing the measurement interval should be described.

That the SUT had achieved steady state was determined by observing the
transaction processing rate at 30 second intervals.

A description of how the work normally performed during a sustained test
actually occurred during the measurement interval.

The description of all work performed, including checkpoints, is detailed
in Chapter 7.

A description of the method used to determine the reproducibility of the
measurement results.

The benchmark result was reproduced with a variance of less than 2.65%.

A statement of the duration of the measurement period for the reported
tpsB.

The measurement period was 42 minutes.

If the driver is commercially available, then its inputs should be specified.
Otherwise, a description of the driver should be supplied.

The driver used in the benchmark is proprietary to ORACLE Corporation.
It resided on the SUT and is described in Chapter 8.

A complete functional diagram of the hardware and software of the
benchmark configuration including the driver must be provided. The
sponsor must list all hardware and software functionality of the driver
and its interface to the SUT.

Chapter 8 contains a functional diagram of the SUT.

10.5 Clause 6
Related Items

10.6 Clause 7
Related Items

10-4 TPC Benchmark™ B Full Disclosure

A detailed list of hardware and software used in the priced system. Each
item must have vendor part number, description, and released/revision
level, and either general availability status or committed delivery date. If
package-pricing is used, contents of the package must be disclosed.

The total price of the entire configuration is required including: hard-
ware, software, and maintenance changes. Separate component pricing is
recommended. The basis of all discounts shall be disclosed.

All pricing information is contained in Chapter 9.

A statement of the measured tpsB, and the calculated price/tpsB.

The CHALLENGE XL Server was measured at 1786.20 tpsB at a price of
$1609.72/tpsB.

Additional Clause 9 related items may be included in the full disclosure
report for each country specific priced configuration.

This report contains only information specific to the United States of
America.

10.7 Clause 9
Related Items

TPC Benchmark™ B Full Disclosure 11-1

11. Clause 11 Related Items

If the benchmark has been independently audited, then the auditor’s
name, address, phone number and a brief audit summary report indicat-
ing compliance must be included in the full disclosure report. A statement
should be included, specifying when the complete audit report will
become available and whom to contact in order to obtain a copy.

The Silicon Graphics Computer Systems CHALLENGE XL Server and
ORACLE7 benchmark was independently audited by Performance Met-
rics, Inc. of Los Gatos, CA The attestation letter is included in Appendix
E. A copy of the auditor’s report can be obtained from Performance Met-
rics, Inc.

11.1 Independent
Auditing

11-2 TPC Benchmark™ B Full Disclosure

TPC Benchmark™ B Full Disclosure A-1

1. Appendix A
Application Source Code

Silicon Graphics Computer Systems’ implementation of the TPC Benchmark™ B consists
of C programs that provide both driver and transaction functions. The following listings
are those C programs used for these functions.

b_drv.c:

/*==+
 | Copyright (c) 1991 Oracle Corp, Belmont, CA |
 | UNIX PERFORMANCE GROUP |
 | All Rights Reserved |
 +==+
 | FILENAME
 | b_drv.c
 | DESCRIPTION
 | TPC-B benchmark process, OCI-PL/SQL version
 +==*/

#ifndef FALSE
define FALSE 0
#endif
#ifndef TRUE
define TRUE 1
#endif

#include <stdio.h>
#include <math.h>

void waitfortrigger();
static void usage();

/*
** Global variables.
*/
long branch_no; /* Branch id. Range: 1 to (1 * database scaling) */
long teller_no; /* Teller id. Range: 1 to (10 * database scaling) */
long account_no; /* Account id. Range: 1 to (100,000 * database scaling) */

long amount; /* Amount added to the balance */
 /* Clause 5.3.6: "The Delta amount field is a random */
 /* value within [-999999, +999999]" */

double balance; /* New balance of the account record */
 /* Clause 3.2.2: "Must be capable of representing */
 /* at least 10 significant decimal digits plus sign" */

char * uid = "tpcab/tpcab"; /* Database user name and password */

 Driver
Applications

A-2 TPC Benchmark™ B Full Disclosure

int retries = 0; /* Discrete mode only: Number of retries. */

/*
** Function declarations.
*/

 /* TPC-A/B transaction functions */
extern int TPCinit();
extern int TPCexec();
extern int TPCexit();

 /* Durability test success file functions */
extern int succinit();
extern int succlog();
extern int succend();

/*
** Clause 6.3: Residence Time Constraint:
** "90% of all transactions started and completed during the measurement
** interval must have a Residence Time of less than 2 seconds."
*/
#define TPCB_FAST 2.0

main(argc, argv)
 int argc;
 char * argv[];
{

 int i;

 /*
 ** String for Audit Re-compile.
 */
 char * audit_str = "halloween";

 /*
 ** Command-line arguments.
 */
 char config[20]; /* Configuration identifier */
 char runname[15]; /* Arbitrary run name. */
 int timelimit; /* Duration of run in seconds. */
 int nproc; /* Total number of processes. */
 int proc_no; /* Process number */
 double starttime;/* Actual Starttime with trig */
 int nhosts; /* Total number of hosts/nodes */
 int hid; /* host ID (1 .. nhosts) */
 int ramp_up = 0; /* Ramp-up time in seconds. */
 int ramp_down = 0; /* Ramp-down time in seconds. */
 int db_multiplier = 1; /* Database scaling: 1 = */
 /* 1 branch, 10 tellers, 100,000 accounts */
 /*
 ** Number of account, teller, and branch entries.
 ** Defaults are for 1 TPS database.
 */

 long accnum = 100000L; /* 100,000 accounts per tps */
 long tellnum = 10L; /* 10 tellers per tps */
 long brannum = 1L; /* 1 branch per tps */

 /*
 ** Timing.
 */
 double begin_time; /* Start time for run. */
 double end_time; /* End time for run. */
 double interval_end_time; /* End of measurement interval. */
 double end_stat_time; /* End time before ramp-down. */
 int in_timing_interval = FALSE;
 int in_ramp_up = TRUE;

 /*
 ** Statistics.
 */

TPC Benchmark™ B Full Disclosure A-3

 long tr_count; /* Total # of transactions. */
 long tr_fast; /* Number of transactions with residence */
 double begin_cpu; /* Initial cpu usage. */
 double end_cpu; /* Final cpu usage. */
 /* time < TPCB_FAST */

 /*
 ** TPC-B Clause 6.6: Required reporting. See TPC-B specification.
 */

 /*
 ** Clause 6.6.1: frequency distribution of residence times
 ** "The range of the X axis must be from 0 to 5 seconds residence
 ** time. At least 20 equal non-overlapping intervals must be reported.
 ** The maximum and average residence times must also be reported.~
 */
#define NUM_TIMING_BUCKETS 20
#define MAX_SECS 5.0
#define SECONDS_PER_BUCKET ((MAX_SECS)/(NUM_TIMING_BUCKETS))
 /*
 ** Add an extra bucket to the array to hold transactions with
 ** residence time > MAX_SECS.
 */
 int timing_buckets[NUM_TIMING_BUCKETS+1];
 double tr_max; /* Longest transaction time. */
 double tr_overhead; /* Overhead of time function. */
 double tr_begin, tr_end; /* begin and end time */
 double tr_time; /* Time for 1 transaction. */
 double tr_min; /* Shortest transaction time. */
 double tr_sum; /* Sum of transaction times. */

 /*
 ** Clause 6.6.2: percentage of home and remote transactions
 */
 int remote = 0; /* Number of remote transactions */

 /*
 ** Clause 6.6.3: percentage of transactions that started but did
 ** not complete during the measurement interval. These are called
 ** in-flight transactions here.
 */
 int in_flight_transactions = 0;

 char filename[30]; /* Result file name */
 FILE * fp; /* Result file pointer */
 FILE * fpt; /* Residence time distribution file pointer */
 FILE * fpr; /* Per-process resource stats file pointer */

 int account_branch; /* Branch of the updated account */

 int success_file = FALSE; /* Write success file after every transaction */

 /*
 ** Function Declarations.
 */
 FILE * fopen();
 int atoi();
 long lrand48();

 double atof();
 double gettime();
 double getcpu();

 /* Process command-line arguments. */

 /* Required Arguments. */

 if (argc < 9)
 usage();

 /*

A-4 TPC Benchmark™ B Full Disclosure

 ** argv[1] -- Configuration name.
 ** argv[2] -- Arbitrary run name.
 */

 strcpy(config, argv[1]);
 strcpy(runname, argv[2]);

 /*
 ** argv[3] -- time limit in seconds.
 */

 timelimit = atoi(argv[3]);

 if (timelimit < 0)
 {
 printf("Invalid time limit parameter: '%s'\n", argv[3]);
 usage();
 }

 /*
 ** argv[4] -- total number of processes in the test.
 */

 if ((nproc = atoi(argv[4])) < 1)
 {
 printf("Invalid number of processes parameter: '%s'\n", argv[4]);
 usage();
 }

 /*
 ** argv[5] -- process number of this process.
 */
 if ((proc_no = atoi(argv[5])) < 1 || proc_no > nproc)
 {
 printf("Invalid process number parameter: '%s'\n", argv[5]);
 usage();
 }

 /*
 ** argv[6] -- Actual starttime including trigger.
 */
 if ((starttime = atof(argv[6])) < 1)
 {
 printf("Invalid starttime parameter: '%s'\n", argv[6]);
 usage();
 }

 /*
 ** argv[7] -- total number of hosts / nodes.
 */

 if ((nhosts = atoi(argv[7])) < 1)
 {
 printf("Invalid number of hosts parameter: '%s'\n", argv[7]);
 usage();
 }

 /*
 ** argv[8] -- host ID of this host.
 */
 if ((hid = atoi(argv[8])) < 1 || hid > nhosts)
 {
 printf("Invalid host ID parameter: '%s'\n", argv[8]);
 usage();
 }

 /*
 ** Optional Arguments.
 */

 argc -= 8; argv += 8;
 while(--argc)

TPC Benchmark™ B Full Disclosure A-5

 {
 ++argv;
 switch(argv[0][0])
 {

 case 'd':
 /*
 ** Durability test. Write to success file after every
 ** transaction.
 */
 success_file = TRUE;
 break;

 case 'e':
 /*
 ** Ramp-down time in seconds.
 */
 if ((ramp_down = atoi(++(argv[0]))) < 0)
 {
 printf("Invalid ramp down time: '%d'\n", ramp_down);
 usage();
 }
 break;

 case 's':
 /*
 ** Ramp-up time in seconds.
 */
 if ((ramp_up = atoi(++(argv[0]))) < 0)
 {
 printf("Invalid ramp up time: '%d'\n", ramp_up);
 usage();
 }
 break;

 case 'u':
 /*
 ** Database user id.
 */
 uid = ++(argv[0]);
 break;

 case 'x':
 /*
 ** Database multiplier.
 */
 if ((db_multiplier = atoi(++(argv[0]))) < 0)
 {
 printf("Invalid database size multiplier: '%d'\n",
 db_multiplier);
 usage();
 }
 /*
 ** Multiply table sizes by specified multiplier.
 */
 accnum *= db_multiplier;
 tellnum *= db_multiplier;
 brannum *= db_multiplier;
 break;

 default:
 printf("Unknown argument %s\n", argv[0]);
 usage();
 break;
 }
 }

 /*
 ** Open output file and trigger file. Do before connect
 ** because single-task programs will cd to ORACLE_HOME/dbs
 ** on connect and want output file in current directory.
 */

A-6 TPC Benchmark™ B Full Disclosure

 sprintf(filename, "tpcb_%d.log", proc_no);
 if ((fp = fopen(filename, "w")) == NULL)
 {
 printf("TPC-B Proc #%d: Can't open log file: %s.\n", proc_no,
 filename);
 exit (1);
 }

 sprintf(filename, "tpcb_%d.int", proc_no);
 if ((fpt = fopen(filename, "w")) == NULL)
 {
 printf("TPC-B Proc #%d: Can't open interval file: %s.\n", proc_no,
 filename);
 exit (1);
 }

 sprintf(filename, "tpcb_%d.get", proc_no);
 if((fpr = fopen(filename, "w")) == NULL)
 {
 fprintf(stderr, "TPC-B Proc #%d: Can't open resource file: %s.\n",
 proc_no, filename);
 exit (1);
 }

 if (success_file)
 {
 if (succinit(proc_no)<0)
 exit (1);
 }

 /*
 ** Logon to Oracle. Connect to database. Initialize SQL statements.
 */
 TPCinit(proc_no);

 if (ramp_down == 0)
 ramp_down = 1;

 /*
 ** Initialize transaction timing statistics.
 */
 tr_count = 0l;
 tr_fast = 0l;
 tr_min = 100000l;
 tr_max = 0l;
 tr_sum = 0l;
 for (i = 0; i < NUM_TIMING_BUCKETS; i++)
 timing_buckets[i] = 0;

 /*
 ** Determine overhead of gettime() function.
 */

 gettime();
 tr_overhead = 0.0;
 for (i = 0; i < 1000; i++)
 tr_overhead += gettime() - gettime();
 tr_overhead = tr_overhead/1000.0;

 /*
 ** Seed Random Number Generator.
 */
 srand48(getpid() * gettime());
 srand(getpid() * gettime());

 printf("Time %d ramp up %d ramp down %d mult %d\n",
 timelimit, ramp_up, ramp_down, db_multiplier);

 /*
 ** Sleep until start time.

TPC Benchmark™ B Full Disclosure A-7

 */
 waitfortrigger (starttime + (proc_no * 0.04));

 /*
 ** Initialize timing.
 */

 begin_time = gettime();
 begin_time += (double)ramp_up;
 interval_end_time = begin_time + (double)timelimit;
 end_time = interval_end_time + (double) ramp_down;

 /*
 ** Execute transactions until time is up.
 */

 while(TRUE)
 {

 /* Pick random amount in range -999999 to 999999: Clause 5.3.6 */
 amount = (lrand48() % 1999999) - 999999;

 /*
 ** Clause 5.3.3: For single-node systems, choose a teller at
 ** random from the entire range of tellers.
 */
 if (nhosts > 1)
 teller_no = (rand () % ((db_multiplier / nhosts) * 10)) +
 (hid - 1) * (db_multiplier / nhosts) * 10;
 else
 teller_no = (rand() % tellnum) + 1;

 /*
 ** Clause 5.3.4: "Given the randomly chosen teller...the
 ** corresponding branch is determined"
 ** There are 10 tellers per branch. First teller is 1.
 */
 branch_no = ((teller_no - 1)/10) + 1;

 /*
 ** Clause 5.3.5: Account ID Generation
 ** 85% of the time, randomly choose an account from the
 ** local branch. 15% of the time, randomly choose an
 ** account from one of the other branches.
 */

 if (brannum > 1)
 {
 if (rand()%100 < 85)
 account_branch = branch_no;
 else
 do
 account_branch = (rand()%brannum) + 1;
 while (account_branch == branch_no);
 }
 else
 account_branch = branch_no;

 /* There are 100,000 accounts per branch; */
 account_no = 100000*(account_branch - 1) + (lrand48()%100000) + 1;

 /* Get transaction start time */
 tr_begin = gettime();

 /* If ramp-up is over, get cpu time and start timing interval */
 if ((in_ramp_up == TRUE) && (tr_begin > begin_time))
 {
 begin_cpu = getcpu();
 in_ramp_up = FALSE;
 in_timing_interval = TRUE;
 }

A-8 TPC Benchmark™ B Full Disclosure

 /*
 ** Execute transaction.
 */

 if (TPCexec() < 0) {
 exit(1);
}

 /* Get transaction end time */
 tr_end = gettime();

 if (success_file)
 {
 if (succlog(proc_no,account_no,teller_no,branch_no,amount,balance))
 exit (1);
 }

 /* Compute residence time */
 tr_time = tr_end - tr_begin - tr_overhead;

 /* Calculate statistics if in the timing interval */

 if (in_timing_interval && (tr_end <= interval_end_time))
 {
 if (account_branch != branch_no)
 remote++;

 ++tr_count;

 if (tr_time < 0)
 tr_time = 0;

 if (tr_time <= TPCB_FAST)
 ++tr_fast;

 if (tr_time < tr_min)
 tr_min = tr_time;

 if (tr_time > tr_max)
 tr_max = tr_time;

 tr_sum += tr_time;

 if (tr_time >= MAX_SECS)
 timing_buckets[NUM_TIMING_BUCKETS]++;
 else
 timing_buckets[(int)(tr_time/SECONDS_PER_BUCKET)]++;
 }

 if (in_timing_interval && (tr_end >= interval_end_time))
 {
 end_stat_time = gettime();
 end_cpu = getcpu();
 in_timing_interval = FALSE;
 if (tr_end > interval_end_time)
 in_flight_transactions++;
 }

 if (tr_end > end_time)
 break;
 }

 /*
 ** Print summary to result file.
 */

 fprintf(fp, "%s %s %s %d ", config, runname, audit_str, proc_no);

 fprintf(fp, "%d %d ", tr_count, tr_fast);
 fprintf(fp, "%.2f %.2f %.2f ", begin_time, end_stat_time,
 tr_count ? tr_sum/(double)tr_count : 0.0);

TPC Benchmark™ B Full Disclosure A-9

 fprintf(fp, "%.2f %.2f %.2f ", tr_min, tr_max, end_cpu - begin_cpu);
 fprintf(fp, "%d %d %d", in_flight_transactions, remote, retries);
 fprintf(fp, " %d %d %d\n", 0, 0, 0); /* think time stats */
 fclose(fp);

 fprintf(fpt, "%s %s %s %d ", config, runname, audit_str, proc_no);
 for (i = 0; i < NUM_TIMING_BUCKETS; i++)
 fprintf(fpt, " %d", timing_buckets[i]);
 fprintf(fpt, "\n");
 fclose(fpt);

 /*
 ** Log off the database.
 */

 TPCexit();

 /*
 ** Print Getrusage result to get file.
 */
 getru(fpr, 0, config, runname, proc_no);
 getru(fpr, 1, config, runname, proc_no);
 fclose(fpr);

 if (success_file)
 {
 if (succend(proc_no))
 exit (1);
 }
 /*
 ** Exit with success.
 */
 exit(0);
}

/*
** Print program usage message.
*/
static void usage()
{
 printf("\nUsage is:\n\n");
 printf(" tpcb config runname time_limit nproc proc_no nhosts hid [options]\n");
 printf("\nwhere:\n\n");
 printf(" config Configuration identifier.\n");
 printf(" runname Run name up to 10 characters.\n");
 printf(" time_limit Elapsed time for test to run.\n");
 printf(" nproc Total number of processes.\n");
 printf(" proc_no This process number (1..nproc)\n");
 printf(" starttime start time\n");
 printf(" nhosts Total number of hosts / nodes.\n");
 printf(" hid This host ID (1..nhosts)\n");
 printf(" options:\n");
 printf(" d Durability tests: write success file.\n");
 printf(" ennn Continue nnn seconds without taking stats.\n");
 printf(" snnn Wait nnn seconds before taking stats.\n");
 printf(" uuserid Database userid.\n");
 printf(" xnnn Increase database size by multiplier.\n");
 printf("\n");
 exit(1);
}

A-10 TPC Benchmark™ B Full Disclosure

ab_trans.c:

/*==+
 | Copyright (c) 1992 Oracle Corp, Belmont, CA |
 | UNIX PERFORMANCE GROUP |
 | All Rights Reserved |
 +==*/

#include <stdio.h>

/*
** Global variables.
*/
extern long account_no; /* Account id to update */
extern long branch_no; /* Branch id to update */
extern long teller_no; /* Teller id to update */
extern long amount; /* Amount added to the balance */
extern double balance; /* New balance of the account record */
extern char * uid; /* Database user name and password */

extern int retries; /* Number of retries in the discrete transaction */

/*
** Oracle variable type definitions.
*/

#define SQLT_CHR 1 /* (ORANET TYPE) character string */
#define SQLT_NUM 2 /* (ORANET TYPE) oracle numeric */
#define SQLT_INT 3 /* (ORANET TYPE) integer */
#define SQLT_FLT 4 /* (ORANET TYPE) Floating point number */
#define SQLT_RID 11 /* rowid */
#define SQLT_DAT 12 /* date in oracle format */

/*
** Oracle cursor structure.
*/
struct csrdef
{
 short csrrc; /* return code */
 unsigned short csrft; /* function type */
 unsigned long csrrpc; /* rows processed count */
 unsigned short csrpeo; /* parse error offset */
 unsigned char csrfc; /* function code */
 unsigned char csrfil; /* filler */
 unsigned short csrarc; /* reserved, private */
 unsigned char csrwrn; /* warning flags */
 unsigned char csrflg; /* error flags */
 /* *** Operating system dependent *** */
 unsigned int csrcn; /* cursor number */
 struct { /* rowid structure */
 struct {
 unsigned long tidtrba; /* rba of first blockof table */
 unsigned short tidpid; /* partition id of table */
 unsigned char tidtbl; /* table id of table */
 } ridtid;
 unsigned long ridbrba; /* rba of datablock */
 unsigned short ridsqn; /* sequence number of row in block */
 } csrrid;
 unsigned int csrose; /* os dependent error code */
 unsigned char csrchk; /* check byte */
 unsigned char crsfill[26]; /* private, reserved fill */
};

typedef struct csrdef csrdef;
typedef struct csrdef ldadef;

void errrpt();

ldadef tpclda;
char tpchda[256];

TPC Benchmark™ B Full Disclosure A-11

#define SQLTXT \
"\
begin\
 dbms_transaction.begin_discrete_transaction;\
 loop begin\
 update account\
 set account_balance = account_balance + :dlta\
 where account_id = :acct;\
 insert into history values\
 (:tell, :bran, :acct, :dlta, sysdate,\
 '%03d-5678901234567890123456789012hiPETER');\
 update teller\
 set teller_balance = teller_balance + :dlta\
 where teller_id = :tell;\
 update branch\
 set branch_balance = branch_balance + :dlta\
 where branch_id = :bran;\
 commit;\
 :bala := tpcab_pack.account_bal;\
 exit;\
 exception\
 when dbms_transaction.discrete_transaction_failed or \
 dbms_transaction.consistent_read_failure then\
 rollback;\
 :retr := :retr + 1;\
 end;\
 end loop;\
end;\
"

csrdef * csr; /* Cursor */

/*
** TPCinit: perform database initialization. Log on to the database.
** Parse the transaction. Bind the transaction variables.
** Return 0 on success, -1 on failure.
*/
TPCinit(proc_no)
int proc_no;
{
 char sqlbuf[1024];

 /*
 ** Log on to the database
 */
 if (orlon(&tpclda, tpchda, uid, -1, (char *) -1, -1, 0))
 {
 errrpt(&tpclda);
 return -1;
 }

 if (ocicof(&tpclda))
 {
 errrpt(&tpclda);
 return -1;
 }

 /* Allocate cursor */
 csr = (csrdef *)malloc(sizeof(csrdef));
 if (csr == (csrdef *)0)
 {
 fprintf(stderr, "Error: TPCinit(): 0 returned by malloc\n");
 return -1;
 }

 /* Open cursor */
 if (ociope(csr, &tpclda, (char *)0, 0, -1, uid, -1))
 {
 errrpt(csr);

A-12 TPC Benchmark™ B Full Disclosure

 return -1;
 }

 sprintf(sqlbuf, SQLTXT, proc_no);

 /* Parse sql statement */
 if (osql3(csr, sqlbuf, -1))
 {
 errrpt(csr);
 return -1;
 }

 /* Bind variables */

 if (obndrv(csr, ":ACCT", -1, &account_no, sizeof(account_no), SQLT_INT,
 -1, (short *) -1, (char *) -1, -1, -1))
 {
 errrpt(csr);
 return -1;
 }

 if (obndrv(csr, ":BALA", -1, &balance, sizeof(balance), SQLT_FLT,
 -1, (short *) -1, (char *) -1, -1, -1))
 {
 errrpt(csr);
 return -1;
 }

 if (obndrv(csr, ":BRAN", -1, &branch_no, sizeof(branch_no), SQLT_INT,
 -1, (short *) -1, (char *) -1, -1, -1))
 {
 errrpt(csr);
 return -1;
 }

 if (obndrv(csr, ":DLTA", -1, &amount, sizeof(amount), SQLT_INT,
 -1, (short *) -1, (char *) -1, -1, -1))
 {
 errrpt(csr);
 return -1;
 }

 if (obndrv(csr, ":TELL", -1, &teller_no, sizeof(teller_no), SQLT_INT,
 -1, (short *) -1, (char *) -1, -1, -1))
 {
 errrpt(csr);
 return -1;
 }

 if (obndrv(csr, ":RETR", -1, &retries, sizeof(retries), SQLT_INT,
 -1, (short *) -1, (char *) -1, -1, -1))
 {
 errrpt(csr);
 return -1;
 }
 return 0;
}

/*
** TPCexec: Execute the transaction.
** Return 0 on success, -1 on failure.
*/
TPCexec()
{
 char msg[2048];

 if (ociexe(csr))
 {
 if (csr->csrrc)
 {
 (void) ocierr(csr, csr->csrrc, msg, 2048);
 (void) fprintf(stderr, "%s\n", msg);

TPC Benchmark™ B Full Disclosure A-13

 }
 orol(&tpclda);
 return -1;
 }
 return 0;
}

/*
** TPCexit: Close cursor and log off database.
** Return 0 on success, -1 on failure.
*/
TPCexit()
{
 /* Close cursor */
 if (ociclo(csr))
 errrpt(csr);

 /* Free cursor */
 free(csr);

 /* Log off database */
 ocilof(&tpclda);

 return 0;
}

A-14 TPC Benchmark™ B Full Disclosure

TPC Benchmark™ B Full Disclosure B-1

1. Appendix B
Database Definition and Load

ORACLE used the following “C” code to define, create and load the Account, Teller,
Branch and History tables.

ab_tab.sql:

CONNECT system/manager;
GRANT CONNECT,RESOURCE,UNLIMITED TABLESPACE TO tpcb IDENTIFIED BY tpcb;
CONNECT tpcb/tpcb;
DROP CLUSTER acluster INCLUDING TABLES;
CREATE CLUSTER acluster
(
account_id number(10,0)
)
HASHKEYS 200000000
HASH IS account_id
SIZE 138
INITRANS 2
PCTFREE 0
TABLESPACE acct
STORAGE
(
INITIAL 235M
NEXT 235M
PCTINCREASE 0
MINEXTENTS 121
);
CREATE TABLE account
(
account_id NUMBER(10,0),
branch_id NUMBER,
account_balance NUMBER,
filler VARCHAR2(97)
)
CLUSTER acluster(account_id);

CONNECT tpcb/tpcb

CREATE TABLE teller (
teller_id NUMBER(10,0),
branch_id NUMBER(10,0),
teller_balance NUMBER(10,0),
filler CHAR(97)
)
PCTFREE 40
PCTUSED 4

File Definitions for
ABTH Tables

B-2 TPC Benchmark™ B Full Disclosure

STORAGE (initial 210K next 210K pctincrease 0 minextents 48);

CREATE TABLE branch
(
branch_id NUMBER,
branch_balance NUMBER,
filler CHAR(98)
)
PCTFREE 90
PCTUSED 4
STORAGE (initial 40K next 40K pctincrease 0 minextents 121);

EXIT;
ab_hist.sql:

tpcb/tpcb

rem
rem ==+
rem Copyright (c) 1991 Oracle Corp, Belmont, CA |
rem All Rights Reserved |
rem ==+
rem FILENAME
rem ab_hist.sql
rem DESCRIPTION
rem ==*/
rem

 DROP TABLE history;

rem the following will fail
 create table history_coalesce (x number)
 tablespace hist
 storage (initial 2000M);

 CREATE TABLE history
 (
 teller_id NUMBER,
 branch_id NUMBER,
 account_id NUMBER,
 amount NUMBER,
 timestamp DATE,
 filler VARCHAR2(39)
)
 tablespace histalloc
 storage (initial 4k

 minextents 1
 pctincrease 0
 freelist groups 13
 freelists 17
) pctfree 0;

 alter table history allocate extent (size 78M freelist group 1);
 alter table history allocate extent (size 78M freelist group 2);
 alter table history allocate extent (size 78M freelist group 3);
 alter table history allocate extent (size 78M freelist group 4);
 alter table history allocate extent (size 78M freelist group 5);
 alter table history allocate extent (size 78M freelist group 6);
 alter table history allocate extent (size 78M freelist group 7);
 alter table history allocate extent (size 78M freelist group 8);
 alter table history allocate extent (size 78M freelist group 9);
 alter table history allocate extent (size 78M freelist group 10);
 alter table history allocate extent (size 78M freelist group 11);
 alter table history allocate extent (size 78M freelist group 12);
 alter table history allocate extent (size 78M freelist group 13);

 EXIT;

TPC Benchmark™ B Full Disclosure B-3

The following code was used to generate the data that loaded the Account, Teller, and
Branch tables.

ab_load.c:

/*==+
 | Copyright (c) 1992 Oracle Corp, Belmont, CA |
 | All Rights Reserved |
 +==+
 | FILENAME
 | ab_load.c
 | DESCRIPTION
 | load database tables for TPC-A or -B benchmark.
 |
 +==*/

typedef char b1;
typedef short b2;
typedef int b4;

typedef unsigned char ub1;
typedef unsigned short ub2;
typedef unsigned int ub4;

typedef ub1 text;

#include <stdio.h>

/* input data types */
#define SQLT_CHR 1 /* (ORANET TYPE) character string */
#define SQLT_INT 3 /* (ORANET TYPE) integer */

/*
** Oracle cursor structure.
*/
struct csrdef
{
 short csrrc; /* return code */
 unsigned short csrft; /* function type */
 unsigned long csrrpc;/* rows processed count */
 unsigned short csrpeo; /* parse error offset */
 unsigned char csrfc; /* function code */
 unsigned char csrfil; /* filler */
 unsigned short csrarc; /* reserved, private */
 unsigned char csrwrn; /* warning flags */
 unsigned char csrflg; /* error flags */
 /* *** Operating system dependent *** */
 unsigned int csrcn; /* cursor number */
 struct { /* rowid structure */
 struct {
 unsigned long tidtrba;/* rba of first blockof table */
 unsigned short tidpid; /* partition id of table */
 unsigned char tidtbl; /* table id of table */
 } ridtid;
 unsigned long ridbrba;/* rba of datablock */
 unsigned short ridsqn; /* sequence number of row in block
*/
 } csrrid;
 unsigned int csrose; /* os dependent error code */
 unsigned char csrchk; /* check byte */
 unsigned char crsfill[26]; /* private, reserved fill */
};

typedef struct csrdef csrdef;
typedef struct csrdef ldadef;

ldadef tpclda;
char tpchda[256];

/* SQL statements */

Code for loading
ABTH files

B-4 TPC Benchmark™ B Full Disclosure

#define SQLTXT_ACCT \
“INSERT INTO account(account_id, account_balance, branch_id, filler)\
 VALUES (:1, :2, :3, :4)”

#define SQLTXT_TELLER \
“INSERT INTO teller(teller_id, teller_balance, branch_id, filler)\
 VALUES (:1, :2, :3, :4)”

#define SQLTXT_BRANCH \
“INSERT INTO branch(branch_id, branch_balance, filler)\
 VALUES (:1, :2, :3)”

/* SQL cursor */

csrdef * csr;

#define BRANCH 1 /* Table IDs; command line arg mapped here */
#define TELLER 2
#define ACCOUNT 3

#define LOOP 100 /* Number of rows to insert before committing. */

#define INITBAL -1111111111 /* Init balance. Use all 10 digits */

#define PAD97 \
“12345678901234567890123456789012345678901234567890\
12345678901234567890123456789012345678901234567”

#define PAD98 \
“12345678901234567890123456789012345678901234567890\
123456789012345678901234567890123456789012345678”

#define MIN(a,b) ((a) < (b) ? (a) : (b))

/*==+
 | ROUTINE NAME
 | main
 | DESCRIPTION
 | main routine
 | ARGUMENTS
 | tpcbload <tablename> <#_rows_to_insert> [#_row_to_start]
 +==*/

main(argc, argv)
 int argc;
 char *argv[];
{
 char * uid = “tpcb/tpcb”;
 char * upasswd = “tpcb”;
 int tellbran; /* branch to which teller belongs */
 int acctbran; /* branch to which account belongs */
 int init_bal;
 char rowpad[128];
 int loop;/* for array inserts */
 char sqlbuf[256];
 int i, j;
 int which_table = 0; /* 1=acct, 2=teller, 3=branch */
 long nrows; /* # of rows to insert */
 long row; /* row/key-value counter */
 long start; /* starting key value */
 long end; /* ending key value */
 int loopcount; /* insert loop counter */
 int err = 0;

 void errrpt();
 double begin_time, end_time;
 double begin_cpu, end_cpu;
 static double gettime(), getcpu();

 /*
 ** Parse command line -- look for specific table to load.

TPC Benchmark™ B Full Disclosure B-5

 */

 if (argc < 3) usage();

 /*
 ** argv[1]: table name.
 */

 switch (argv[1][0])
 {
 case ‘a’:/* account table */

 which_table = ACCOUNT;
 break;

 case ‘t’:/* teller table */
 which_table = TELLER;
 break;

 case ‘b’:/* branch table */
 which_table = BRANCH;
 break;

 default:
 usage();
 break;

 }

 /*
 ** argv[2]: # of rows to insert.
 */
 if ((nrows = atoi(argv[2])) < 1)
 {
 fprintf(stderr, “Invalid number of rows to insert: ‘%d’\n”,
nrows);
 usage();
 }

 /*
 ** argv[3]: starting row # (optional).
 */

 if (argc > 3)
 {
 if ((start = atoi(argv[3])) < 1)
 {

 fprintf(stderr, “Invalid start offset: ‘%d’\n”, start);
 exit();

 }
 }
 else start = 1;
 end = start + nrows - 1;

 /*
 ** Log on to the database
 */
 if (orlon(&tpclda, tpchda, uid, -1, (char *) -1, -1, 0))

 {
 errrpt(&tpclda);
 return -1;
 }

 if (ocicof(&tpclda))
 {
 errrpt(&tpclda);
 return -1;
 }

 csr = (csrdef *)malloc(sizeof(csrdef));

 if (csr == (csrdef *)0)
 {
 fprintf(stderr, “Error: 0 returned by malloc\n”);
 exit(-1);
 }

B-6 TPC Benchmark™ B Full Disclosure

 if (ociope(csr, &tpclda, (char *)0, 0, -1, uid, -1))
 errrpt(csr);

 /* prepare the account insert cursor */
 if (which_table == ACCOUNT)
 {
 sprintf(sqlbuf, SQLTXT_ACCT);

 init_bal = INITBAL;

 strcpy(rowpad, PAD97);

 if (osql3(csr, sqlbuf, -1))
 errrpt(csr);

 if (obndrn(csr, 1, &row, sizeof(row), SQLT_INT, -1,
 (short *)NULL, -1))
 errrpt(csr);

 if (obndrn(csr, 2, &init_bal, sizeof(init_bal), SQLT_INT, -1,
 (short *)NULL, -1))
 errrpt(csr);

 if (obndrn(csr, 3, &acctbran, sizeof(acctbran), SQLT_INT, -1,
 (short *)NULL, -1))
 errrpt(csr);

 if (obndrn(csr, 4, rowpad, strlen(rowpad), SQLT_CHR, -1,
 (short *)NULL, -1))
 errrpt(csr);

 printf(“Loading ACCOUNT table with %d rows starting with %d
...\n “,

 nrows, start);
 }

 if (which_table == TELLER)
 {
 sprintf(sqlbuf, SQLTXT_TELLER);
 init_bal = INITBAL;
 strcpy(rowpad, PAD97);

 if (osql3(csr, sqlbuf, -1))
 errrpt(csr);

 if (obndrn(csr, 1, &row, sizeof(row), SQLT_INT, -1,
 (short *)NULL, -1))
 errrpt(csr);

 if (obndrn(csr, 2, &init_bal, sizeof(init_bal), SQLT_INT, -1,
 (short *)NULL, -1))
 errrpt(csr);

 if (obndrn(csr, 3, &tellbran, sizeof(tellbran), SQLT_INT, -1,
 (short *)NULL, -1))
 errrpt(csr);

 if (obndrn(csr, 4, rowpad, strlen(rowpad), SQLT_CHR, -1,
 (short *)NULL, -1))
 errrpt(csr);

 printf(“Loading TELLER table with %d rows starting with %d
...\n “,

 nrows, start);
 }

 if (which_table == BRANCH)
 {
 sprintf(sqlbuf, SQLTXT_BRANCH);
 init_bal = INITBAL;
 strcpy(rowpad, PAD98);

TPC Benchmark™ B Full Disclosure B-7

 if (osql3(csr, sqlbuf, -1))
 errrpt(csr);

 if (obndrn(csr, 1, &row, sizeof(row), SQLT_INT, -1,
 (short *)NULL, -1))
 errrpt(csr);

 if (obndrn(csr, 2, &init_bal, sizeof(init_bal), SQLT_INT, -1,
 (short *)NULL, -1))
 errrpt(csr);

 if (obndrn(csr, 3, rowpad, strlen(rowpad), SQLT_CHR, -1,
 (short *)NULL, -1))
 errrpt(csr);

 printf(“Loading TELLER table with %d rows starting with %d
...\n “,

 nrows, start);
 }

 begin_time = gettime();
 begin_cpu = getcpu();

 loopcount = 0;
 row = start;

 while (row <= end)
 {
 loop = MIN(LOOP, end - row + 1);

 for (i = 0; i < loop; i++, row++)
 {

 acctbran = ((row - 1) / 100000) + 1;
 tellbran = ((row - 1) / 10) + 1;

 if (err = oexec(csr))
 {
 orol(&tpclda);
 errrpt(csr);
 }

 }

 if (err = ocom(&tpclda))
 {

 orol(&tpclda);
 errrpt(&tpclda);

 }

 if ((++loopcount) % 50)
 printf(“.”);

 else
 printf(“ row %d committed.\n “, row - 1);

 }

 end_time = gettime();
 end_cpu = getcpu();

 printf(“Load completed. %d records processed.\n”, nrows);
 printf(“ in %10.2f real, %10.2f cpu.\n”,
 end_time-begin_time, end_cpu-begin_cpu);

 if (ociclo(csr))
 errrpt(csr);

 free(csr);

 ocilof(&tpclda);

 exit(0);

}

B-8 TPC Benchmark™ B Full Disclosure

usage()
{
 printf(“\n”);
 printf(
 “Usage: tpcbload <table_name> <#_rows_to_insert>
[starting_row_#]\n”);
 printf(“\n”);
 exit(1);
}

void errrpt(cur)
 csrdef *cur;
{
 char msg[2048];

 if (cur->csrrc)
 {
 (void) ocierr(cur, cur->csrrc, msg, 2048);
 (void) fprintf(stderr, “%s\n”, msg);
 }
 exit(0);
}

Following is a script of an SQL session which gives examples of the ABTH data:

SQL> describe account;
 Name Null? Type
 ------------------------------- -------- ----
 ACCOUNT_ID NUMBER(10)
 BRANCH_ID NUMBER
 ACCOUNT_BALANCE NUMBER
 FILLER VARCHAR2(97)

SQL> describe branch;
 Name Null? Type
 ------------------------------- -------- ----
 BRANCH_ID NUMBER
 BRANCH_BALANCE NUMBER
 FILLER CHAR(98)

SQL> describe teller;
 Name Null? Type
 ------------------------------- -------- ----
 TELLER_ID NUMBER(10)
 BRANCH_ID NUMBER(10)
 TELLER_BALANCE NUMBER(10)
 FILLER CHAR(97)

SQL> describe history;
 Name Null? Type
 ------------------------------- -------- ----
 TELLER_ID NUMBER
 BRANCH_ID NUMBER
 ACCOUNT_ID NUMBER
 AMOUNT NUMBER
 TIMESTAMP DATE
 FILLER VARCHAR2(39)

SQL> select * from account where account_id < 15;

ACCOUNT_ID BRANCH_ID ACCOUNT_BALANCE
---------- ---------- ---------------
FILLER

 1 1 -1.112E+09
1234567890123456789012345678901234567890123456789012345678901234567890123

ABTH
Sample Data

TPC Benchmark™ B Full Disclosure B-9

4567890
12345678901234567

 2 1 -1.111E+09
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 3 1 -1.111E+09

ACCOUNT_ID BRANCH_ID ACCOUNT_BALANCE
---------- ---------- ---------------
FILLER

1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 4 1 -1.112E+09
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 5 1 -1.111E+09
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890

ACCOUNT_ID BRANCH_ID ACCOUNT_BALANCE
---------- ---------- ---------------
FILLER

12345678901234567

 6 1 -1.111E+09
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 7 1 -1.111E+09
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

ACCOUNT_ID BRANCH_ID ACCOUNT_BALANCE
---------- ---------- ---------------
FILLER

 8 1 -1.111E+09
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 9 1 -1.110E+09
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

ACCOUNT_ID BRANCH_ID ACCOUNT_BALANCE
---------- ---------- ---------------
FILLER

 10 1 -1.112E+09
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

B-10 TPC Benchmark™ B Full Disclosure

 11 1 -1.111E+09
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 12 1 -1.111E+09

ACCOUNT_ID BRANCH_ID ACCOUNT_BALANCE
---------- ---------- ---------------
FILLER

1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 13 1 -1.111E+09
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 14 1 -1.111E+09
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890

ACCOUNT_ID BRANCH_ID ACCOUNT_BALANCE
---------- ---------- ---------------
FILLER

12345678901234567

14 rows selected.

SQL> select * from branch where branch_id < 15;

 BRANCH_ID BRANCH_BALANCE
---------- --------------
FILLER

 1 19039773
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
123456789012345678

 2 69921693
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
123456789012345678

 3 50627709

 BRANCH_ID BRANCH_BALANCE
---------- --------------
FILLER

1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
123456789012345678

 4 20050773
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
123456789012345678

 5 21558649
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890

TPC Benchmark™ B Full Disclosure B-11

 BRANCH_ID BRANCH_BALANCE
---------- --------------
FILLER

123456789012345678

 6 -11428302
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
123456789012345678

 7 17101009
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
123456789012345678

 BRANCH_ID BRANCH_BALANCE
---------- --------------
FILLER

 8 4056146
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
123456789012345678

 9 23973744
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
123456789012345678

 BRANCH_ID BRANCH_BALANCE
---------- --------------
FILLER

 10 38315400
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
123456789012345678

 11 14849198
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
123456789012345678

 12 3702723

 BRANCH_ID BRANCH_BALANCE
---------- --------------
FILLER

1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
123456789012345678

 13 -7663864
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
123456789012345678

 14 -50856331
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890

 BRANCH_ID BRANCH_BALANCE
---------- --------------
FILLER

B-12 TPC Benchmark™ B Full Disclosure

123456789012345678

14 rows selected.

SQL> select * from teller where teller_id < 15;

 TELLER_ID BRANCH_ID TELLER_BALANCE
---------- ---------- --------------
FILLER

 1 1 15031202
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 2 1 -13669766
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 3 1 -4448416

 TELLER_ID BRANCH_ID TELLER_BALANCE
---------- ---------- --------------
FILLER

1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 4 1 -2508623
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 5 1 -1677821
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890

 TELLER_ID BRANCH_ID TELLER_BALANCE
---------- ---------- --------------
FILLER

12345678901234567

 6 1 7677128
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 7 1 10427346
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 TELLER_ID BRANCH_ID TELLER_BALANCE
---------- ---------- --------------
FILLER

 8 1 1390624
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

TPC Benchmark™ B Full Disclosure B-13

 9 1 2263375
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 TELLER_ID BRANCH_ID TELLER_BALANCE
---------- ---------- --------------
FILLER

 10 1 4554724
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 11 2 3613648
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 12 2 13308017

 TELLER_ID BRANCH_ID TELLER_BALANCE
---------- ---------- --------------
FILLER

1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 13 2 28927289
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890
12345678901234567

 14 2 3900913
1234567890123456789012345678901234567890123456789012345678901234567890123
4567890

 TELLER_ID BRANCH_ID TELLER_BALANCE
---------- ---------- --------------
FILLER

12345678901234567

14 rows selected.

SQL> select * from history where rownum < 10;

 TELLER_ID BRANCH_ID ACCOUNT_ID AMOUNT TIMESTAMP
---------- ---------- ---------- ---------- ---------
FILLER

 16408 1641 164001585 -157665 01-NOV-93
044-5678901234567890123456789012hiPETER

 6406 641 64027858 303931 01-NOV-93
044-5678901234567890123456789012hiPETER

 14738 1474 147364646 -336077 01-NOV-93
044-5678901234567890123456789012hiPETER

 TELLER_ID BRANCH_ID ACCOUNT_ID AMOUNT TIMESTAMP
---------- ---------- ---------- ---------- ---------
FILLER

B-14 TPC Benchmark™ B Full Disclosure

 7943 795 79457944 -267376 01-NOV-93
044-5678901234567890123456789012hiPETER

 1406 141 14057548 661418 01-NOV-93
044-5678901234567890123456789012hiPETER

 2520 252 25103105 713666 01-NOV-93
044-5678901234567890123456789012hiPETER

 TELLER_ID BRANCH_ID ACCOUNT_ID AMOUNT TIMESTAMP
---------- ---------- ---------- ---------- ---------
FILLER

 6848 685 68484891 -544137 01-NOV-93
044-5678901234567890123456789012hiPETER

 4816 482 48176670 984981 01-NOV-93
044-5678901234567890123456789012hiPETER

 16809 1681 168008991 795424 01-NOV-93
044-5678901234567890123456789012hiPETER

9 rows selected.

TPC Benchmark™ B Full Disclosure C-1

1. Appendix C
Tunable Parameters

* This file contains local system settings for tunable parameters
* The parameter settings in this file replace the default values
* specified in mtune, if the new values are within the legal range
* for the parameter specified in mtune. The file contains one line
* for each parameter to be reset. The syntax for each line is

<parameter name> = <value
*parameter name: This is the external name of the tunable
*parameter used in the mtune files
*value: This field contains the new value for the tunable parameter

rlimit_rss_cur= 0x20000000
maxlkmem = 0x100000
posix_tty_defaulT= 1
resettable_clocal= 1
nproc= 500
nprofile= 500
maxup= 400
semmni= 100
semmns= 200
semmnu= 100
semmsl= 200
ndpri_hilIM= 30
syssEGSz 0x20000
maxpwent= 300

Init.ora Parameters:

PARAMETER VALUE
audit_file_dest ?/rdbms/audit
audit_trail NONE
background_dump_dest ?/rdbms/log
ccf_io_size 65536
checkpoint_process TRUE
cleanup_rollback_entries 20
commit_point_strength 1
compatible
compatible_no_recovery
control_files ?/dbs/cntrl@.dbf
core_dump_dest ?/dbs
cursor_space_for_time TRUE
db_block_buffers 33000
db_block_checkpoint_batch 512
db_block_lru_extended_statisti 0
db_block_lru_statistics FALSE
db_block_size 2048
db_domain WORLD
db_file_multiblock_read_count 8

Operating System
Tunable

Parameters

ORACLE
Configuration

C-2 TPC Benchmark™ B Full Disclosure

db_file_simultaneous_writes 4
db_files 150
db_name tpcb
db_writers 1
discrete_transactions_enabled TRUE
distributed_lock_timeout 60
distributed_recovery_connectio 200
distributed_transactions 110
dml_locks 800
enqueue_resources 835
event
fixed_date
gc_db_locks 33000
gc_files_to_locks
gc_lck_procs 1
gc_rollback_locks 20
gc_rollback_segments 20
gc_save_rollback_locks 20
gc_segments 10
gc_tablespaces 5
global_names FALSE
ifile
init_sql_files ?/dbs/sql.bsq
instance_number 0
license_max_sessions 0
license_max_users 0
license_sessions_warning 0
log_archive_buffer_size 127
log_archive_buffers 4
log_archive_dest ?/dbs/arch
log_archive_format %t_%s.dbf
log_archive_start FALSE
log_buffer 327680
log_checkpoint_interval 3567587327
log_checkpoint_timeout 0
log_checkpoints_to_alert TRUE
log_files 255
log_simultaneous_copies 28
log_small_entry_max_size 800
max_commit_propagation_delay 90000
max_dump_file_size 500
max_enabled_roles 22
max_rollback_segments 160
mts_dispatchers
mts_listener_address (address=(protocol=ipc)(key=%s
mts_max_dispatchers 5
mts_max_servers 20
mts_servers 0
mts_service
nls_currency
nls_date_format
nls_date_language
nls_iso_currency
nls_language AMERICAN
nls_numeric_characters
nls_sort
nls_territory AMERICA
open_cursors 50
open_links 4
optimizer_comp_weight 0
optimizer_mode CHOOSE
os_authent_prefix ops
os_roles FALSE
pinned_memory_size 0
post_wait_device /dev/postwait
pre_page_sga FALSE
processes 200
remote_os_authent FALSE
remote_os_roles FALSE
resource_limit FALSE
rollback_segments s1, s2, s3, s4, s5, s6, s7, s8
row_cache_cursors 10

TPC Benchmark™ B Full Disclosure C-3

row_locking default
sequence_cache_entries 10
sequence_cache_hash_buckets 7
serializable FALSE
sessions 400
shared_pool_size 7000000
single_process FALSE
small_table_threshold 4
snapshot_refresh_interval 60
snapshot_refresh_keep_connecti FALSE
snapshot_refresh_processes 0
sort_area_retained_size 52428800
sort_area_size 52428800
sort_mts_buffer_for_fetch_size 0
sort_read_fac 5
sort_spacemap_size 512
spin_count 6000
sql_trace FALSE
temporary_table_locks 400

C-4 TPC Benchmark™ B Full Disclosure

TPC Benchmark™ B Full Disclosure D-1

1. Appendix D
Storage Requirements

According to Clause 9.2.4.1 the priced configuration must contain suffi-
cient disk space to store 8 hours of log data and 30 days of history data.
This section documents the disk storage requirements of the priced con-
figuration.

The total disk space requirements can be calculated as follows:

IRIX (UNIX system files +

system swap space +

ORACLE system and control files +

ORACLE database (ABT) files +

ORACLE log data (8-hours, mirrored)+

History data (30-days)

The 8-hour log data requirement was determined as follows:

8 hours * 3600 seconds/hour * 1786.2 tpsB/second =

51,442,560 transactions

The size of a log entry - 419.34 bytes - was obtained from the ORACLE
statistics file. The total disk space required to hold 8 hours of mirrored
log data can be computed as follows:

51,442,560 transactions * 419.34 bytes/transaction =

20572.59MB (20.09GB) of disk space - unmirrored, or

2 * 20572.59MB = 41145.18MB (40.18GB) - mirrored.

Disk Storage
Requirements

D-2 TPC Benchmark™ B Full Disclosure

Disk drive capacity = 1918.2MB (formatted)

A total of 22 disk drives were dedicated to the 8-hour mirrored log
requirement with space allocated as follows:

Total space available = 22 * 1918.2MB/drive = 42200.4MB

Log space required = 41145.18MB

Unused capacity = 1055.22MB

The size of a history file entry was determined as follows:

The 30-day history file space requirement was computed as follows:

Average number of history file entries per 2K page = 26.54

30 days * 51,442,560 transactions/day = 1,543,276,800 trans.

Number of 2K blocks required =

1,543,276,800 trans. / 26.54 bytes/page = 58,149,089 blocks

= 113,572.44MB (110.91GB)

Total disk space available for the 30-day history file requirement was
computed as follows:

Total number of drives (less log drives) = 148 - 22 = 126 drives

Total disk space available = 126 drives * 1918.2MB/drive =
241693.2MB (236.03GB)

Disk space utilization:

UNIX system files: 534.6MB

Swap space: 256.0MB

ORACLE system and control files: 1738.2MB

Branch and Teller files: 900.0MB

Account files: 27178.0MB

Account index: 4350.0MB

Total space used (less log and history): 34956.8MB

Total space available for 30-day history file requirement =
241693.2MB - 34956.8MB = 206736.4MB

TPC Benchmark™ B Full Disclosure E-1

1. Appendix E
Attestation Letter

E-2 TPC Benchmark™ B Full Disclosure

TPC Benchmark™ B Full Disclosure F-1

1. Appendix F
Supporting Documentation

The following information is being included in support of section 3.1.1 -
Distribution and Partitioning - in which we stated that 18 of the drives
which were configured into the SUT were complete inactive during the
testing and, as a result, were not included in the priced configuration.

The following information, extracted from a report generated by the
UNIX™ SAR (System Activity Reporter) facility, shows the 18 subject
drives to be inactive.

09:18:54 device %busy avque r+w/s blks/s w/s wblks/s avwait
avserv
Average dks2d5 0 0.0 0 0 0 0 0.0 0.0
 dks7d3 0 0.0 0 0 0 0 0.0 0.0
 dks7d6 0 0.0 0 0 0 0 0.0 0.0
 dks72d1 0 0.0 0 0 0 0 0.0 0.0
 dks72d6 0 0.0 0 0 0 0 0.0 0.0
 dks74d8 0 0.0 0 0 0 0 0.0 0.0
 dks75d1 0 0.0 0 0 0 0 0.0 0.0
 dks75d5 0 0.0 0 0 0 0 0.0 0.0
 dks77d7 0 0.0 0 0 0 0 0.0 0.0
 dks77d8 0 0.0 0 0 0 0 0.0 0.0
 dks110d4 0 0.0 0 0 0 0 0.0 0.0
 dks112d7 0 0.0 0 0 0 0 0.0 0.0
 dks113d3 0 0.0 0 0 0 0 0.0 0.0
 dks115d6 0 0.0 0 0 0 0 0.0 0.0
 dks116d3 0 0.0 0 0 0 0 0.0 0.0
 dks116d6 0 0.0 0 0 0 0 0.0 0.0

System Activity
Report

F-2 TPC Benchmark™ B Full Disclosure

The following information was extracted from the statistics file which
was generated by ORACLE during the benchmark.

FILE_NAME READS BLOCKS_READ READ_TIME
-- --------- ---------
-- ---------
/tpc_db/file10
/tpc_db/file105
/tpc_db/file110
/tpc_db/file121
/tpc_db/file124
/tpc_db/file13
/tpc_db/file17
/tpc_db/file36
/tpc_db/file40
/tpc_db/file59
/tpc_db/file63
/tpc_db/file64
/tpc_db/file82
/tpc_db/file86
/tpc_db/file87

FILE_NAME WRITES BLOCKS_WRITTEN WRITE_TIME
-- --------- ---------
----- ----------
/tpc_db/file10
/tpc_db/file105
/tpc_db/file110
/tpc_db/file121
/tpc_db/file124
/tpc_db/file13
/tpc_db/file17
/tpc_db/file36
/tpc_db/file40
/tpc_db/file59
/tpc_db/file63
/tpc_db/file64
/tpc_db/file82
/tpc_db/file86
/tpc_db/file87

The following shows the mapping between the file names used by ORA-
CLE and the disk drive names reported by SAR. Note that the unused
drive dks2d5 is mounted on /oracache which is a disk backup of ORA-
CLE binaries.

ORACLE
Statistics Report

TPC Benchmark™ B Full Disclosure F-3

FileName or FileSys Disk Drive
------------------- --------
/oracache dks2d5
/tpc_db/file10 dks116d6
/tpc_db/file105 dks72d6
/tpc_db/file110 dks72d1
/tpc_db/file121 dks7d6
/tpc_db/file124 dks7d3
/tpc_db/file13 dks116d3
/tpc_db/file17 dks115d6
/tpc_db/file36 dks113d3
/tpc_db/file40 dks112d7
/tpc_db/file59 dks110d4
/tpc_db/file63 dks77d8
/tpc_db/file64 dks77d7
/tpc_db/file82 dks75d5
/tpc_db/file86 dks75d1
/tpc_db/file87 dks74d8

F-4 TPC Benchmark™ B Full Disclosure

