
IRIS® HIPPI Administrator’s Guide

Document Number 007-2229-005

IRIS® HIPPI Administrator’s Guide
Document Number 007-2229-005

CONTRIBUTORS

Written by Carlin Otto
Illustrated by Carlin Otto and Dan Young
Production by Carlos Miqueo
Engineering contributions by Irene Kuffel, Jim Pinkerton, Ken Powell, and Thomas

Skibo
St Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower

image courtesy of Xavier Berenguer, Animatica.

© Copyright 1994-1998, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics, the Silicon Graphics logo, IRIX, IRIS, CHALLENGE, and Onyx are
registered trademarks and IRIS InSight, Performance Co-Pilot, PowerChallenge,
CrayLink, Origin, Origin2000, and Onyx2 are trademarks of Silicon Graphics, Inc.

iii

Contents

List of Figures vii

List of Tables ix

Introduction xi
Support for Upper Layer Applications xii
Style Conventions xii
Product Support xiii
Obtaining Updated or Paper-copy Versions of This Document xiv

1. What is HIPPI? 1
Introduction to the HIPPI Protocol 1

HIPPI Terminology 1
How HIPPI Works 2
Connection Control 7
Packet and Flow Control 8
Routing 10

Logical Addressing 10
Source Addressing 13

The Protocol 18
The I-field 18
The FP Header 20
The Signals 25

HIPPI Configurations 27
Basic HIPPI Configurations 27
HIPPI Fabric Configurations 29

The HIPPI Standards and Documentation 35

iv

Contents

Implementation Details for IRIS HIPPI 37
How HIPPI Ports Are Assigned to IP Interfaces 37

On CHALLENGE and Onyx Platforms 37
On Origin and Onyx2 Platforms 38

Site Cabling 40
Application Programming Interface 42
Handling of HIPPI Protocol for HIPPI-LE 42

On Transmission 42
On Reception 46

2. Configuring IRIS HIPPI 51
Overview of Configuration Steps 51

Alphabetical Listing of All Configurable Items 51
IRIS HIPPI Without IP Support 53
IRIS HIPPI With IP Support 53

Checking If IRIS HIPPI Software Has Been Installed 55
Editing the *.sm File 55

Including/Excluding IP Support 55
Including/Excluding Bypass Functionality 56

Editing the hippi File 56
Editing the if_hip File 56
Editing the hippi.imap File 57

Local HIPPI Address Mapping 57
Destination HIPPI Address Mappings 59
I-field Templates 60

Editing IP Configuration Files 62
Enable IP Networking 62
The /etc/config/netif.options File 62
The /etc/hosts File 63
The /etc/config/ifconfig-#.options File 64

Building a New or Reconfigured Driver Into the Operating System 65

Contents

v

3. Maintaining, Monitoring, Verifying, and Troubleshooting IRIS HIPPI 67
Commands Available for IRIS HIPPI 67
Step-by-Step Instructions for Common Procedures 68

Disable or Enable IRIS HIPPI Board 68
Configure Board to Reject or Accept Connection Requests 68
Check Status 69
Disable or Enable an IP Interface 74
Change IP Network Interface Parameters 74
Change the Static ARP Table That Maps IP Addresses to I-fields 74
Display the ARP Table That Is Currently in Memory 75
Display Local HIPPI Addresses 75
Set Timeout for Source Channel Connections 76
Display ULA (MAC) Address 76

Installing a Loopback Link 77
Loopback Link for Challenge or Onyx Systems 77
Loopback for Origin and Onyx2 Systems 79

Verifying the HIPPI Subsystem 80
Verify That the Board Has Been Located by the Software 80
Verify the Board and Its HIPPI-FP Interface 81

Fast and Quick Verification Test 81
Extensive Verification Test 82

Verify an IP-over-HIPPI Interface 85
Troubleshooting 88

Troubleshoot the Board and Its HIPPI-FP Interface 88
Troubleshoot an IP Interface 88
Interpreting Status Information 89

4. IRIS HIPPI Error Messages 95
Overview of the Error Message Listing 95
Common Implications of Error Reasons 96
Alphabetical Error Message Listing 97

Index 107

vii

List of Figures

Figure 1-1 Examples of Links Between HIPPI Nodes 3
Figure 1-2 User and Control Data Carried by HIPPI-PH and

HIPPI-Serial Links 4
Figure 1-3 HIPPI Links and Connections 6
Figure 1-4 HIPPI Packets and Bursts 9
Figure 1-5 Routing Control Field With Logical Addressing 11
Figure 1-6 Routing With Logical Addressing 12
Figure 1-7 Routing Control Field (As Created by Sender) With

Source Addressing 13
Figure 1-8 Switches and Port Identifiers 14
Figure 1-9 Port Identifiers for Source Addressing 15
Figure 1-10 Routing With Source Addressing 16
Figure 1-11 How Switches Alter Source Addresses 17
Figure 1-12 I-field Format 18
Figure 1-13 HIPPI-FP Packet Format 21
Figure 1-14 FP Header Format 22
Figure 1-15 Sample HIPPI-FP Packet 23
Figure 1-16 Some Common HIPPI-FP Packets 24
Figure 1-17 HIPPI Signals Used on Each Point-to-Point Connection 25
Figure 1-18 Basic HIPPI Configuration 27
Figure 1-19 Three Variations of the Basic Configuration 28
Figure 1-20 HIPPI Fabric Configuration With One Switch 30
Figure 1-21 HIPPI Fabric Configurations With Multiple Switches 31
Figure 1-22 Complex HIPPI Fabric Configuration 32
Figure 1-23 Data Direction Used in IRIS HIPPI-Serial Dual-SC Receptacle 40
Figure 1-24 HIPPI Packet Created by IRIS HIPPI-LE 43
Figure 1-25 HIPPI Packets that IRIS HIPPI Driver Passes to HIPPI-LE 47

viii

List of Figures

Figure 2-1 Template for Creating Logical Address I-fields With
Recommended Values 60

Figure 2-2 Template for Creating Source Address I-fields With
Recommended Values 61

Figure 3-1 Installing a Copper Loopback Link Using a HIPPI Cable 77
Figure 3-2 Installing a Copper Loopback Link Using a Loopback Cable 78
Figure 3-3 Fiber-optic Loopback Connector 79
Figure 3-4 The /usr/etc/netstat -ina Display 86
Figure 4-1 Error Message Format in /usr/var/adm/SYSLOG File 96

ix

List of Tables

Table 1-1 Logical Addressing Formats 12
Table 1-2 Maximum Number of Port Identifiers in Routing Control Field 18
Table 1-3 Fields of the HIPPI I-field 19
Table 1-4 Fields of the HIPPI-FP Header 22
Table 1-5 HIPPI Signals 26
Table 1-6 Maximum Number of Switches Along Any Single Point-to-Point

Path When Using Source Addressing 34
Table 1-7 Maximum Number of Switches and Endpoints on a Network Built in

Accordance With RFC 1374, Appendix B Guidelines 34
Table 1-8 Fiber Optic Cables Available from Silicon Graphics 41
Table 1-9 Specifications and Limits for HIPPI-Serial Optics 41
Table 1-10 I-field Recommended for Use With IRIS HIPPI-LE 43
Table 1-11 FP Header Created by IRIS HIPPI-LE ULP 44
Table 1-12 D1 Data (HIPPI-LE Header) Created by IRIS HIPPI-LE 44
Table 1-13 IEEE 802.2 Header (First Bytes of D2) Created by IRIS HIPPI-LE 46
Table 1-14 I-field Accepted by IRIS HIPPI Driver for HIPPI-LE ULP 46
Table 1-15 FP Header Accepted by IRIS Driver for HIPPI-LE ULP 47
Table 1-16 D1 Data Accepted by IRIS HIPPI-LE ULP 48
Table 1-17 IEEE 802.2 Headers Accepted by HIPPI-LE ULP 49
Table 2-1 IRIS HIPPI Configurable Items 51
Table 3-1 Utilities for Monitoring and Maintaining IRIS HIPPI 67
Table 3-2 IRIS HIPPI Status Information for Copper-Based HIO Hardware 69
Table 3-3 IRIS HIPPI Status Information for Fiber Optics-Based XIO

Hardware 71
Table 3-4 Troubleshooting With Status Information: Copper-based HIO

Board 90
Table 3-5 Troubleshooting With Status Information: Fiber Optics-based XIO

Board 92

xi

Introduction

This document describes IRIS HIPPI 3.2 for IRIX 6.5 (or later).

The IRIS HIPPI product is a network interface controller board (hardware) and driver
and utilities (software) providing ANSI standards-compliant data communication
through the High-Performance Parallel Interface (HIPPI). The product provides the
following implementations:

• copper-based HIPPI-800 (HIPPI-PH) connectivity for Silicon Graphics systems that
have HIO slots (for example, CHALLENGE L and XL, PowerChallenge, Onyx, and
Power Onyx platforms), and

• fiber-optic based HIPPI-Serial connectivity for Silicon Graphics systems that have
XIO slots (for example, the Origin series and Onyx2 platforms).

The IRIS HIPPI hardware must be installed by a Silicon Graphics system support
engineer (SSE) or other person trained by Silicon Graphics. The installation instructions
(shipped, in a sealed envelope, with each IRIS HIPPI board) contains complete details for
hardware installation. The seal on the envelope must not be broken by anyone except the
SSE. For Challenge and Onyx systems, use the IRIS HIPPI Board Installation Instructions;
for Origin and Onyx2 systems, use IRIS HIPPI-Serial XIO Board Installation Instructions.

Installation and configuration of the software on all platforms can be done by customers
and/or SSEs. This document, IRIS HIPPI Administrator’s Guide (shipped with the IRIS
HIPPI software), provides software configuration details. The online IRIS HIPPI Release
Notes provide software installation instructions and late-occurring information about the
product.

xii

Introduction

Support for Upper Layer Applications

IRIS HIPPI supports the following upper layer applications:

• standard IRIX applications:
For Internet (IP) networking, IRIS HIPPI supports IP over HIPPI-LE in conformance
with RFC 1374 guidelines. All IP applications can use the IP-over-HIPPI interface,
just as they would IP over Ethernet or FDDI.

• IRIS HIPPI utilities:
IRIS HIPPI includes utilities for monitoring, maintaining, and testing the IRIS
HIPPI subsystem.

• customer-developed applications:
IRIS HIPPI provides an application programming interface (API) that customers
can use to develop their own upper-layer applications. See the online IRIS HIPPI
API Programmer’s Guide (shipped with the IRIS HIPPI software) for details.

Style Conventions

This guide uses the following stylistic conventions:

screen display

Indicates system output, such as responses to commands that you see on the screen.
Code samples, screen displays, and file contents also appear in this font.

user input

Indicates exact text that you must enter at a command line, such as commands, options,
and arguments to commands.

variable
Indicates generic, place-holding variable names. Can indicate a user input variable,
where you must replace the variable with text that you select.

<xx>

Indicates keys on the keyboard that you press; for example, press <Enter> means press
only the key labeled Enter.

Introduction

xiii

physical label
Indicates a label for a piece of hardware (for example, a pin, a wire, a port). Can also
indicate the signal on a wire or pin.

command
Designates command and utility names.

file name
Indicates file names and file name suffixes.

[]
Encloses optional command arguments.

...
Denotes omitted material or indicates that the preceding optional items may appear
more than once in succession.

Product Support

Silicon Graphics, Inc., provides a comprehensive product support and maintenance
program for its products. If you are in North America and would like support for your
Silicon Graphics-supported products, contact the Technical Assistance Center at
1-800-800-4SGI. If you are outside North America, contact the Silicon Graphics
subsidiary or authorized distributor in your country.

xiv

Introduction

Obtaining Updated or Paper-copy Versions of This Document

Silicon Graphics maintains a World Wide Web page from which you can retrieve the
latest versions of many of the company’s documents, and from which you can obtain
instructions for ordering printed (paper-copy) versions of online documents. Using your
Web browser, open the following URL:

http://techpubs.sgi.com/library/

To locate the latest versions of IRIS HIPPI documents (including this one), make the
following selections:

1. Click on the “Library Search” option.

2. Enter hippi to search for all titles that contain that string.

3. Click on the document that you want to view, download and print, or purchase in
bound hardcopy format.

1

Chapter 1

1. What is HIPPI?

This chapter is an introduction to the High-Performance Parallel Interface (HIPPI)
protocol, including HIPPI-PH, HIPPI-Serial, and HIPPI-FP. The chapter provides a brief
introduction to HIPPI, a description of the HIPPI protocol, some common configurations
of HIPPI equipment, and how to obtain official HIPPI documentation.

Introduction to the HIPPI Protocol

This section provides a brief introduction to HIPPI.

HIPPI Terminology

HIPPI uses source to refer to the transmitting endpoint/device. An upper-layer entity
(host, network-layer interface, or program) that uses the HIPPI subsystem is sometimes
loosely referred to as the source, however, it is more correct to call these software entities
source upper-layer protocols (or source ULPs).

It uses destination to refer to the receiving endpoint/device. The comment about
upper-layer entities, included in the source entry, applies here also.

It uses fabric to refer to all the HIPPI nodes (switches, endpoint devices, extenders) that
are physically interconnected and speak the same physical-layer protocol. One HIPPI
fabric can be logically divided into multiple upper-layer address spaces (that is,
networks). For example, a single HIPPI fabric can support multiple IP networks. One
network can include members from multiple HIPPI fabrics. For example, an IP network
can include members on a HIPPI-PH fabric as well as members on a HIPPI-Serial fabric.

A word in the HIPPI environment can be either 4 bytes (32 bits) or 8 bytes (64 bits),
depending on the HIPPI implementation. In 800 megabit per second implementations,
each word is 4 bytes. When not clarified, both definitions apply. For example, “A burst
consists of 256 words” means that a burst can be either 1024 bytes (256 words times 4
bytes) or 2048 bytes (256 words times 8 bytes).

2

Chapter 1: What is HIPPI?

How HIPPI Works

HIPPI is an extremely fast, point-to-point protocol. HIPPI provides for transmission at
800 or 1600 megabits per second in each direction.1 Before data can be sent from one
HIPPI endpoint to another, there must be both a physical link and a negotiated open
connection between them. For its physical layer, a HIPPI implementation can use either
the HIPPI-PH or the HIPPI-Serial standard. For HIPPI-PH, each physical link is a copper
cable up to 25-meters long. For HIPPI-Serial, each link consists of a fiber-optic cable that
can be from 2 to 10,000 meters long (depending on the type of cable and optics).2 For both
HIPPI-PH and HIPPI-Serial, each physical link connects two HIPPI nodes. Each node can
be an endpoint or an intermediate HIPPI switch, as illustrated in Figure 1-1, where an
endpoint-to-endpoint configuration is illustrated as well as 2 examples of configurations
that include switches.

In copper-based implementations, the HIPPI hardware has two 100-pin connectors for
connecting copper cables, as illustrated in Figure 1-2; each cable is a single link that
carries upper-layer data in one direction and control data in both directions. In
HIPPI-Serial implementations, the hardware has 1 connector for a dual-fiber fiber-optic
cable, as illustrated in Figure 1-2; the fiber-optic cable contains 2 physical links; each link
carries upper-layer and control data in one direction. Some of the control data on each
fiber relates to the connection (that is, the data stream) on the other fiber in the same
cable. In fiber-based implementations, switches must demultiplex the control data that
flows in the opposite direction from the data, as illustrated in Figure 1-2.

1 IRIS HIPPI supports only 800 megabits per second.

2 IRIS HIPPI-Serial uses shortwave optics that can support cable lengths of up to 500 meters.

Introduction to the HIPPI Protocol

3

Figure 1-1 Examples of Links Between HIPPI Nodes

Endpoint Endpoint

Switch Switch

Endpoint

Endpoint

Switch

EndpointEndpoint

other HIPPI nodes

other HIPPI
nodes

4

Chapter 1: What is HIPPI?

Figure 1-2 User and Control Data Carried by HIPPI-PH and HIPPI-Serial Links

HIPPI−PH
Switch

Host A
(HIPPI−PH)

H
IP

P
I−

P
H

Host C
(HIPPI−Serial)

H
IP

P
I−

S
er

ia
l

2 cables

HIPPI−Serial
Switch

user and control data for CONN A

one cable

control data for CONN A
link_1

link_2

link_1
link_2

Host D

Host B

H
IP

P
I−

S
er

ia
l

H
IP

P
I−

P
H

to Host E

link_3

link_4

one cable

link_3
link_4

2 cables

user data for CONN C

and control data for

CONNs C and D

CONNECTION A = Host−B transmits to Host−A
CONNECTION B = Host−A transmits to Host−E
CONNECTION C = Host−D transmits to Host−C
CONNECTION D = Host−C transmits to Host−F

user and control
data for CONN D

link_5
link_6 to Host F

control data for
CONN D

user data for CONN D

and control data
for CONNs D and C

user and controldata for CONN C

control data

for CONN C

user and control data for CONN B

control data for CONN B
link_5

Introduction to the HIPPI Protocol

5

The open connection is an agreement for the transfer of upper-layer data from one
endpoint to another. To open a connection, the two endpoints exchange HIPPI signals
(control data) according to the protocol specified in the HIPPI-PH standard.
(HIPPI-Serial uses the same control signals as HIPPI-PH.) In many HIPPI
implementations, each link is designed as an independent entity, so that links can each
support a connection to a different host,. as illustrated by each link_2 example in
Figure 1-2.

Note: With HIPPI-PH, Host A can connect directly to both Host-B and Host-E, without
the use of a switch in between. With HIPPI-Serial, Host-C can connect directly to Host-D
without a switch; however, for Host-C to connect to Host-D and Host-F, as illustrated, an
intermediate switch (or similar device for multiplexing the control data) must be used.

Figure 1-3 illustrates a configuration of HIPPI equipment with six different physical links
and nine possible endpoint-to-endpoint connections (listed below), of which three can be
simultaneously active (engaged in open connections):

• A-source transmitting (over link_1) to any one of the following:

- A-destination (itself, over link_2)

- B-destination (link_4)

- C-destination (link_6)

• B-source transmitting (over link_3) to A-destination (link_2), B-destination (itself,
over link_4), or C-destination (link_6)

• C-source transmitting (over link_5) to A-destination (link_2), B-destination (link_4),
or C-destination (itself, over link_6)

6

Chapter 1: What is HIPPI?

Figure 1-3 HIPPI Links and Connections

An open connection consists of an exchange of signals (control data) between a source
and a destination. (Figure 1-17 illustrates the signals.) During this exchange, the
destination agrees to accept data exclusively from the source; throughout the transfer of
the upper-layer data, the destination uses backflowing signals to inform the source of its
ability to accept more data. Each link supports only one connection (that is, HIPPI is
point-to-point). To move data in both directions between two hosts, two
endpoint-to-endpoint links (or series of links) and two connections are needed between
the two hosts.

Unlike Ethernet, 802.5 Token Ring, or FDDI, HIPPI does not use a shared medium. Once
a connection is established, the physical link (or links) between the two HIPPI interfaces
contains data packets transmitted only by the source (that is, HIPPI connections are
simplex). HIPPI packets may be seen by intermediate switches but not by other host
interfaces. A connection may be kept open for extended periods of time, even when there
is no data moving across it, or it may be closed by either endpoint at any time; however,
each endpoint may not participate in another connection until the current one has been
closed.

Switch

Dst

SrcSource
Channel

Destination
Channel

link_1

link_2

Dst Src

Host A Host B

Host C

H
IP

P
I N

et
w

or
k

In
te

rfa
ce

 A

H
IP

P
I N

et
w

or
k

In
te

rfa
ce

 B

HIPPI Network
Interface C

link_3

link_4

lin
k_

5

lin
k_

6

Introduction to the HIPPI Protocol

7

HIPPI communication is controlled by three basic functions: connection control, packet
and flow control, and routing control (pertinent only when one or more switches are
involved). Each of these is discussed separately in the subsections that follow.

Connection Control

One of the first things any HIPPI endpoint does upon startup is to assert its two outgoing
INTERCONNECT signals and to look for assertion of its two incoming INTERCONNECT
signals. Each channel (the source and the destination) has both an incoming and an
outgoing INTERCONNECT signal. When both signals on a channel are asserted, the
physical link between the local system and the system at the other end is ready for use.
When the other system is a switch, the exchange of INTERCONNECT signals occurs
between the endpoint and the switch, not between endpoints.

Before a source (transmitting) HIPPI interface can send a packet, it must open a
connection to one destination HIPPI endpoint. The source interface is always the initiator
for opening the connection. To open a connection, the sender issues a connection request
by asserting the REQUEST signal on the link. Each connection request includes an I-field
(described in the section “The I-field”). The I-field contains (among other things) routing
information, used by switches along the path to the destination.

The destination endpoint accepts a connection by asserting its CONNECT signal in
response to the request. If the destination endpoint is unwilling to accept the connection
or if there is a problem with the connection request (for example, bad parity on the I-field
or incompatible word size), the connection request is denied (that is, acknowledged, then
rejected). The transmitter must wait and try again later or forgo the communication. If
the destination is unreachable (for example, a broken physical link, a powered-down or
dysfunctional interface), there is no response and the source program times out.

When a switch exists between the source and destination, the source receives its
connection rejections from the switch, not directly from the destination. The rejection can
be caused by any of the following conditions, and it is not possible to distinguish among
them (except as explained below):

1. The destination is malfunctioning.

2. The destination refuses to accept the requested connection.

3. The connection request has an error.

4. At least one of the physical links enroute to the destination is busy (currently
engaged in another connection).

8

Chapter 1: What is HIPPI?

A feature is available that allows the source to be informed of rejections that are due to
error conditions (items 1-3 above) but not to be bothered when the rejection is due to a
busy link (item 4). This feature is called camp-on. By setting the camp-on bit in the I-field,
the source can program the switches to hold onto the connection request until the busy
link to the destination becomes available.

When the camp-on bit is set, the first switch enqueues the connection request if it finds
any link along the path to the destination busy. The switch periodically checks to see if
the link has become available. When the link becomes available, it sends the connection
request. A switch continues to wait until it sends the REQUEST to the ultimate
destination endpoint or until the source aborts the connection request. If a number of
sources are all trying to send data through the same link, the camp-on feature ensures fair
(first come, first served) access to the link.

Once opened, a HIPPI connection may be kept open for as long as the two endpoints
maintain it. Either endpoint may terminate the connection at any time; however, the
source interface is usually the one to do this.

Packet and Flow Control

Once a connection is open, one or multiple packets may be sent. The destination indicates
it is ready to receive data by sending a READY signal to the source endpoint. Each READY
allows the source to transmit one HIPPI burst (as explained below). All HIPPI source
endpoints are required to be capable of enqueuing a minimum of 63 READYs. There is no
minimum requirement for a destination’s ability to generate READYs.1 By sending ahead
and enqueuing READYs, the two endpoints can optimize the throughput on their
connection.

The source delineates its packets with the PACKET signal: at the beginning it asserts the
PACKET signal, and at the end it deasserts the signal. A HIPPI packet consists of one or
more bursts, as illustrated in Figure 1-4. Each burst contains 256 words, except in the case
where the burst is short (as described below). The size of each word depends on the
source’s data bus (32 or 64 bits, as indicated by a bit in the I-field).2 At the end of each

1 The source channel on the IRIS HIPPI for Challenge/Onyx board can enqueue up to 65,535 READYs;
the destination channel can generate up to 255 outstanding READYs. Each channel of the IRIS
HIPPI-Serial XIO board can handle 128 READYs.

2 The IRIS HIPPI board supports 32-bit words only.

Introduction to the HIPPI Protocol

9

burst, the source generates a checksum (LLRC) so that the destination can detect any
errors in the received data; in addition, each word has four bits of parity for error
checking.

Figure 1-4 HIPPI Packets and Bursts

The HIPPI protocol requires very small waiting periods between packets and between
bursts. These required periods are counted in nanoseconds and are imperceptible to the
user; however, in normal operation there may be noticeable pauses between bursts (for
example, when the source is waiting to receive a READY).

As long as the source has READYs, it can transmit data as fast as it is capable of
transmitting (but no faster than the protocol allows: 25 million words per second). When
the sender has sent all the data for one packet, it indicates the end of the packet, using the
PACKET signal. Indicating the end of the packet is necessary because HIPPI allows packet
size to be undefined (indeterminate) at the start of the packet. A sender could essentially
send an infinite-sized packet by keeping the PACKET signal asserted at all times.

A packet’s first burst often contains some kind of header (for example, a HIPPI-FP header
as described in “The FP Header”). The first burst can contain header only, or header and
user data. In other words, the first words of user data can be in the first burst or the
second. If the source program is generating HIPPI-FP packets, it can indicate the location
of the packet’s first word of user data by setting the B bit in the HIPPI-FP header.

Either the first or the last burst of a packet (but not both) can be less than 256 words. This
burst is referred to as a short burst. Usually, the last burst is the short one. When the first
burst is the short one, it contains only the header and, optionally, control information.
The first word of the packet’s user data is, in this case, located in the second burst, and
the final burst may be padded to meet the 256-word length requirement. When the last

Open
Packet Packet PacketwaitConnection wait

Burst waitBurst Burst . . .
LL

R
C

LL
R

C

LL
R

C

Up to Word 256

wait

Word 1

pa
rit

y

Word 2

pa
rit

y

. . .

pa
rit

y

10

Chapter 1: What is HIPPI?

burst is the short one, the packet’s final burst never needs to be padded and the first word
of user data may be included in the first burst.

Once the end of the packet has been indicated, the source has the option of keeping the
connection open to transmit additional packets or of closing the connection.

Routing

The I-field contains HIPPI routing information in its 24-bit Routing Control field. This
information is interpreted only by intermediate systems (switches); the Routing Control
information does not need to be interpreted when the connection is directly between two
endpoints.

The addresses in a Routing Control field can be in “logical addressing” or “source
addressing” format. The format is indicated by the Path Selection bits of the I-field. The
two formats cannot be used simultaneously in one I-field; however, both formats can be
used simultaneously in one HIPPI fabric, thus implementing 2 different HIPPI address
spaces (networks).

Note: The word source in “source addressing format” does not mean that the address is
the source’s address; it refers to the fact that the address, supplied by the source
endpoint, defines the complete path (route).

Logical Addressing

With logical addressing, the Routing Control field contains two 12-bit addresses: a
destination (receiver’s) address and the source (sender’s) address, as illustrated in
Figure 1-5. The order in which the addresses are placed within the field is defined by the
I-field’s Direction bit, as illustrated in Figure 1-5.

Introduction to the HIPPI Protocol

11

Figure 1-5 Routing Control Field With Logical Addressing

When a network uses HIPPI logical addressing, each HIPPI endpoint within the network
is assigned an address that is unique within that network; each address must also be
unique within all the HIPPI fabrics across which the network extends. In most
configurations (and in all HIPPI-Serial configurations), one address is used for both the
source and destination channels of each endpoint. Assignment of these addresses is a
local matter; the addresses do not need to be unique outside the HIPPI fabrics and
networks that are involved.

Although each HIPPI address identifies one member of the network, the address is
configured at the switch (not at the endpoint). Each address is mapped to the port (on the
switch) to which that endpoint is attached. (The exact method for configuring addresses
to ports is different for each switch vendor.) Each upper-layer protocol (ULP) module
must learn the address that has been assigned to its own HIPPI subsystem’s link, as well
as the address assigned to each destination’s link. The method for discovering these
addresses is defined at the upper-layer protocol level (for example, by the HIPPI-LE
standard). For IP implementations that are conformant with RFC 1374, a static (table
lookup) address resolution scheme can be used to inform the IP stack of the local and
destination HIPPI addresses. The system administrator may need to create the IP “ARP”
table manually.

023 1112

Sending Endpoint′s Address Receiving Endpoint′s Address
(destination address)(source address)

D bit = 0

Sending Endpoint′s AddressReceiving Endpoint′s Address
(destination address) (source address)

D bit = 1

rest of I-field Routing Control Field

12

Chapter 1: What is HIPPI?

Logical addresses have the formats described in Table 1-1. Some of the addresses are
reserved for special purposes.

Each switch maintains a “map” of its logical HIPPI network and uses a routing table to
select the path along which to open a connection for each request. For example,
Figure 1-6 illustrates a scenario where two paths are available between endpoints A and
B. When endpoint A requests a connection to endpoint B, switch 1 can select either of
these paths.

Figure 1-6 Routing With Logical Addressing

Table 1-1 Logical Addressing Formats

Logical Address
(binary)

Number of
Addresses

Usage

xxxx x0xx xxxx 4032 Endpoint addresses

1111 110x xxxx 32 Local assignment to network services

1111 111x xxxx 32 Reserved for global assignment

1111 1111 1111 1 Address is unknown

Endpoint A Endpoint B

Switch 2

Switch 1

Switch 3

Routing Control field (when Direction bit is 0) =

address = 010 address = 022

010

Routing Control field (when Direction bit is 1) = 022

Possible I-field: 0x07010022

Possible I-field: 0x0F022010

022

010

Introduction to the HIPPI Protocol

13

The 12 bits make it possible to create 4096 unique addresses. The HIPPI-SC standard
reserves 64 of these addresses, leaving 4032 addresses available for local assignment to
HIPPI endpoints. 4032 is the maximum number of destination endpoints that can exist
within one HIPPI network using logical addressing.

Source Addressing

The addresses used for source addressing are of variable lengths, from 1 to 24 bits. When
the Path Selection bits in the I-field indicate that source addressing is being used, the
Routing Control field contains a list of port identifiers, as illustrated in Figure 1-7. The
I-field’s Direction bit determines the order in which the port identifiers are placed within
the field and the alignment of (placement for) the addresses, as illustrated in Figure 1-7.

Figure 1-7 Routing Control Field (As Created by Sender) With Source Addressing

Each port identifier uniquely identifies one port within a switch. A port is a pair of
physical links: both a source and a destination. For example, a 4x4 switch has 8 physical
links to 4 systems, and for this it uses 4 port identifiers, as illustrated in Figure 1-8. Port
identifiers are unique among all the ports on the same switch, but not among all the ports
within the network or fabric. For example, a network/fabric with 5 switches might easily
have 5 port identifiers of “1.” Figure 1-8 is an example of the port identifiers used in a
network with 2 switches.

023

Last Port # First Port #
etc.D bit = 0

D bit = 1

rest of I-field Routing Control Field

to Dest to Dest

First Port # Last Port #
etc.to Dest to Dest

unused bits

unused bits

14

Chapter 1: What is HIPPI?

Figure 1-8 Switches and Port Identifiers

A Routing Control field in source address format is interpreted as a series of “stepping
stones” leading to the destination in the following manner:

1. The first switch (the one attached to the source endpoint) reads the first port
identifier, opens a connection at that outgoing port, and sends the I-field (that is, the
connection request).

2. If the system at the end of that physical link is another switch, it reads the second
port identifier, opens a connection at that outgoing port, and sends the I-field.

3. And so on, until the receiving system is the destination endpoint.

When the port identifiers are followed sequentially, they create the path between the two
endpoints. Each path (source address) consists of a list of all the outgoing ports through
which the connection request must pass in order to reach the destination. For example,
in the simplest configuration, where one switch exists between two endpoints, the
address consists of one port identifier: the one to which the receiving interface is
connected, as illustrated by Example 1 in Figure 1-9. When two switches exist between
the interfaces, the address consists of two port identifiers, as illustrated by Example 2 of
Figure 1-9.

Switch 1

port id = 1

po
rt

 id
 =

2

port id = 3

Source

Destination

po
rt

 id
 =

4
Switch 2

port id = 1

po
rt

 id
 =

2

port id = 3

po
rt

 id
 =

4

S
rc

D
es

t

S
rc

D
es

t

S
rc

D
es

t

S
rc

D
es

t

Source

Destination

Introduction to the HIPPI Protocol

15

Figure 1-9 Port Identifiers for Source Addressing

Each endpoint application must learn the address (series of port identifiers) required to
reach each destination’s link. (Note that with source addressing, an endpoint does not
need to know its own address.) The method for discovering these addresses is defined at
the upper-layer level (for example, HIPPI-LE), so it varies depending on the ULP. For
example, for IP implementations that are conformant with RFC 1374, a static (table
lookup) address resolution scheme can be used to inform the IP stack of the HIPPI
addresses. The table is manually created by a system administrator who gathers the
necessary information from each switch and creates the addresses between the different
endpoints.

The Direction bit in the I-field defines whether each port identifier should be read from
the most significant or least significant end of the Routing Control field. For example,
Figure 1-10 illustrates two addresses that endpoint A might use to open a connection
with B.

Endpoint A

Endpoint B

Switch 1

port 1

po
rt

 2

port 3
Switch 2

port 1

po
rt

 2

port 3

Address as Created by Sender A =

Sending

Endpoint A

Endpoint B

Switch 1

po
rt

 4

port 1

po
rt

 2

port 3

Address as Created by Sender A =

Sending

po
rt

 4

po
rt

 4

Example 1

Example 2

Port 3unused bits

Port 3unused bits Port 1

Read by Switch 1

Read by Switch 2

Possible I-field: 0x01000003

Possible I-field: 0x01000013
(using 4-bit addresses)

16

Chapter 1: What is HIPPI?

Figure 1-10 Routing With Source Addressing

Each HIPPI upper-layer protocol (ULP) that uses the HIPPI network maintains a table of
paths (addresses in source addressing format) for reaching each of the other endpoints.
With each of its connection requests, a source ULP attaches one of these paths, thus
indicating how to reach the destination. The path is completely defined by the sending
endpoint.

Unlike logical addresses (which are not altered enroute to the destination), addresses in
source addressing format are changed by each switch that handles the I-field. The source
ULP creates a list of outgoing port numbers that define a path from the sender to the
receiver. By the time the packet arrives at its destination, the address has been altered so
that it defines the return path (that is, the path from the receiver back to the sender). This
change is brought about by each switch removing the outgoing port identifier that it
reads, shifting the remaining bits into alignment, and adding an incoming port identifier
(that is, the port through which the I-field just arrived), as illustrated in Figure 1-11.

Endpoint A

Endpoint BSwitch 2

Switch 1

Switch 3

Routing Control Field as created by sender (when D bit is 0) = 2 1

Routing Control Field as created by sender (when D bit is 1) = 1 2

po
rt

 4

po
rt

 2

po
rt

 4

port 1

unused

unused

Possible I-field: 0x01000021 (using 4-bit addresses)

Possible I-field: 0x09120000 (using 4-bit addresses)

Introduction to the HIPPI Protocol

17

Figure 1-11 How Switches Alter Source Addresses

A destination program can copy a received Routing Control field into its own I-field and
simply change the setting of the Direction bit to open a return connection, thus bypassing
the table lookup procedure. Normally, the source that first creates the Routing Control
field sets the D bit to zero and places the address bits in the least significant positions of
the Routing Control field. The receiver changes the setting for the D bit and uses the
received Routing Control field exactly as it is received. In this manner, the port identifier
labeled Last Incoming Port # in Figure 1-11 becomes the First Outgoing Port # for the return
connection.

Port identifiers can be one to six bits in length. The number of bits varies from switch to
switch. The size of the port identifier is the number of bits needed to uniquely identify
all the possible ports on a switch. For example, a 4x4 switch has four ports and requires
at least two-bit port identifiers (binary port identifiers 00, 01, 10, and 11). If a switch is
capable of being enlarged, it may use large-sized port identifiers (for example, five or six
bits) to avoid a reconfiguration of all the network’s routing tables when the switch is
upgraded.

As Created by Sender

As Altered by First Switch

As Altered by Second Switch

As Received by Destination

Routing Control Field

First Outgoing Port #
etc. (to destination)

Second Outgoing Port #
(to destination)

First Incoming Port #
etc.(from source)

Second Outgoing Port #
(to destination)

First Incoming Port #
etc.(from source)

Second Incoming Port #
(from source)

First Incoming Port #
(from source)

Last Incoming Port #
(from source) etc.

18

Chapter 1: What is HIPPI?

The I-field’s 24-bit Routing Control field limits the number of port identifiers that can be
contained in an address, as summarized in Table 1-2.

The Protocol

This section describes the format for the HIPPI I-field and FP header.

The I-field

The I-field is defined by the HIPPI-SC standard. The format for the 32-bit HIPPI I-field
(also called CCI) is shown in Figure 1-12, and its fields are explained in Table 1-3.

Figure 1-12 I-field Format

Table 1-2 Maximum Number of Port Identifiers in Routing Control Field

Number of Bits
Used in Port Identifier

Maximum Number of Port Identifiers Possible in
Routing Control Field

1 24

2 12

3 8

4 6

5 4

6 4

23
bits

031

L VU W D PS C Routing Control

The Protocol

19

Table 1-3 Fields of the HIPPI I-field

Field Bits Description

L 31 Local or Standard Format:

0=Bits 30:0 of I-field conform to the usage described in this table.

1=Bits 30:0 are implemented in conformance to a private (locally-defined)
protocol.

VU 30:29 Vendor Unique Bits:

Vendors of end-system HIPPI equipment may use these bits for any purpose.
Switches do not alter or interpret these bits.

W 28 Width:

0=The data bus of the transmitting (source) HIPPI is 32 bits wide for 800
megabits/second transmission.

1=Source’s data bus is 64 bits wide for 1600 megabits/second transmission.

D 27 Direction:

0=Least significant bits of Routing Control field contain the destination
address for the current switch to use.

1=Most significant bits of Routing Control field contain the destination
address for the current switch to use.

PS 26:25 Path Selection:

00=Source routing.

01=Logical routing. Switch must select first route from a list of routes.

10=Reserved.

11=Logical routing. Switch selects any (or best) route from its list.

20

Chapter 1: What is HIPPI?

The FP Header

The FP header is defined by the HIPPI-FP standard. When a HIPPI endpoint is HIPPI-FP
conformant, all the packets it transmits and/or receives (without error) are HIPPI-FP
packets. The first burst of each of its transmitted packets contains an FP header, and it
looks for an FP header in the first burst of each received packet. A HIPPI-FP packet
consists of three segments, listed below and illustrated in Figure 1-13. Each segment is
eight-byte aligned (that is, contains an integral number of 64-bit words).

• Framing Protocol header:
This area contains the 64-bit HIPPI-FP header, described in more detail in Table 1-4.

• D1_Area:
This optional area, if present, must be completely contained in the first burst. It may
contain control information (the D1 data set), it may be defined for padding
purposes only, or it may serve both of these functions. The D1 area can be 0 to 255
words in size; however, regardless of the word size used by a HIPPI
implementation, the D1 area must contain an integral number of 64-bit words. So,
for a 64-bit implementation, the D1 area can have up to 255 words. For a 32-bit
implementation, the D1 area can have up to 254 words.

C 24 Camp-on:

0=Switch rejects connection request immediately if port to destination is busy.

1=Switch holds connection request if port to destination is busy and
establishes connection when the port becomes free or when source aborts the
request.

Routing
Control

23:0 Address:

This 24-bit field contains addressing/routing information. The contents are in
source routing or logical routing format, as indicated by the PS field.

For source routing, the field contains a list of switch port identifiers that,
when followed, lead to the destination.

For logical addressing, the field contains two 12-bit addresses (receiver’s and
sender’s) that are used by the intermediate switches to select a route from a
table.

Table 1-3 (continued) Fields of the HIPPI I-field

Field Bits Description

The Protocol

21

The D1 data set (located within the D1 area) is optional. The maximum size of any
D1 data set is 1016 bytes (that is, 254 32-bit words), thus allowing the FP header (8
bytes) and D1 data to fit in the first burst of any HIPPI implementation (for
example, a burst made of 32-bit words). The content and format of the D1 data is
locally defined and the data must be self-defining. For example, each upper layer
application (with its own ULP-id) could use a different format and length for its D1
data.

• D2_Area:
The optional D2 area contains the user/application data. This area can be 0 to
4-gigabytes minus 1-byte in size, or it can be defined as indeterminate. The size of
this area must be an integral number of 64-bit words. The area may contain padding
(an offset and possibly filler).

Figure 1-13 HIPPI-FP Packet Format

bits
064

Header Area

D1 Area

D2 Area

filler/padding (optional)

(optional)

(optional)
D2_Data

D1_Data (optional)

FP Header

offset (optional)

NOTE: The size of each included area must be an integral number of 64-bit words.
For IRIS HIPPI, the first word of each area must be 8-byte aligned.

22

Chapter 1: What is HIPPI?

The 64-bit FP header describes the HIPPI packet using six fields, illustrated in Figure 1-14
and described in Table 1-4.

Figure 1-14 FP Header Format

Table 1-4 Fields of the HIPPI-FP Header

Field Bits Description

ULP-id 63:56 The 8-bit upper layer protocol identification field identifies a system’s
upper layer protocols. A transmitting application uses this number to
specify the upper layer protocol of the intended recipient of the packet. A
receiving HIPPI subsystem can use this number to demultiplex incoming
packets among a number of upper layer protocols (or applications) and to
determine whether an intended recipient is known or not.

P bit 55 The 1-bit present bit indicates whether or not the packet contains D1 data.
Note that the D1_Area may be present (defined by the D1_Area Size
field), but empty (the P bit is set to 0). 0=no D1 data for this packet; 1=D1
data exists for this packet.

B bit 54 The 1-bit burst boundary bit indicates which burst contains the first byte
of D2 data. D2 data can be included in the first burst or it can start with
the first word of the second burst. 0=there is D2 data in the packet’s first
burst; 1=D2 data starts on first byte of second burst.

23 bits
02

21

BPDestination ULP-id Reserved D1_Area_Size
D2

D2_Data_Size

3
10

11
2224

P = D1 data are included/not included in this packet
B = First word of D2 data is in first/second burst

Offset

31

The Protocol

23

Figure 1-15 illustrates a HIPPI-FP packet. The first burst of this packet (words 0 to 255)
contains only the FP header and the D1 data. The D1 area in this packet is completely full
of D1 data. Notice that the P bit in the FP header is set to 1 to indicate the presence of
valid D1 data. The D2 data starts on word 256, the first byte of the second burst, as
indicated by the B bit setting.

Figure 1-15 Sample HIPPI-FP Packet

Figure 1-16 illustrates some of the HIPPI-FP packets that are commonly created by
applications. Notice how example 2 uses an empty D1_Area to pad out the first burst,
thus locating the data in the second burst. Examples 2, 3, and 4 all illustrate this
technique. Also notice, examples 1 and 5, how user (D2) data can be placed in the first
burst. with or without D1 data.

D1 Area
Size

42:35 The 8-bit D1 area size field indicates the number of 64-bit words in the
D1_Area of this packet. The area does not necessarily contain valid data;
that is, the area may be defined for padding purposes only. Note that the
size is always stated in 64-bit words, regardless of the implementation’s
word size.

D2 Offset 34:32 The 3-bit D2 offset field indicates the number of bytes between the last
byte of D1 data and the first byte of D2 data. This field is used only when
D2 data is present in the first burst.

D2 Data
Size

31:0 The 32-bit D2 data size field indicates the number of bytes of D2 data
included in this packet. Bytes of offset or fill are not included in this count.

Table 1-4 (continued) Fields of the HIPPI-FP Header

Field Bits Description

FP Header

D2_Area

0&1 word

2

255
256

etc.

first

second

burst

burst

(B=1; P=1)

D1_Area

(shaded=D1 data)

0 bit31

. . .

24

Chapter 1: What is HIPPI?

Figure 1-16 Some Common HIPPI-FP Packets

FP Header

D2_Area

0&1 word

2

255
256

etc.

first

second

burst

burst

(B=1; P=1)

D1_Area

(shaded=D1 data)

FP Header

Empty D1_Area

(no D1 data)

D2_Area

0&1 word

2

255
256

etc.

first

second

burst

burst

(B=1; P=0)
FP Header

D2_Area

0&1 word

2

255
256

etc.

first

second

burst

burst

(B=1; P=1)

D1_Area

(shaded=D1 data)

FP Header

D2_Area

0&1 word

2

255
256

etc.

first

second

burst

burst

(B=0; P=1)

D1_Area
(shaded=D1 data)

FP Header

D2_Area

0&1 word

2

255
256

etc.

first

second

burst

burst

(B=0; P=0)

0 bit31

0 bit31

0 bit31

0 bit31

0 bit31

EXAMPLE 1

EXAMPLE 2

EXAMPLE 3

EXAMPLE 4

EXAMPLE 5

The Protocol

25

The Signals

The signals at the HIPPI-PH layer of each physical link are used for controlling the
connection, packet boundaries, and data flow. These signals are described in Table 1-5
and illustrated in Figure 1-17. Within the figure, the signals are numbered to represent
the order in which they are asserted when power is first applied at the two endpoints.
The two INTERCONNECT signals are not dependent on any other signal; they are asserted
as the HIPPI hardware receives power and becomes active. Each of the other signals is
asserted only when all the signals before it have been observed.

Figure 1-17 HIPPI Signals Used on Each Point-to-Point Connection

4

SRC to DST

REQUEST

CONNECT

READY

PACKET

BURST

INTERCONNECT

DST to SRC
INTERCONNECT

Data Stream

SOURCE DESTINATION
ENDPOINTENDPOINT

1

2

3

4

1

5

6

26

Chapter 1: What is HIPPI?

Table 1-5 HIPPI Signals

SIGNAL DESCRIPTION

Generated by the source on
this physical link

 Source-to-Destination

 INTERCONNECT

When asserted, indicates source is attached and ready for action. This
signal is sometimes referred to as SDIC.

 REQUEST When asserted, indicates source is requesting a connection to be
opened. This signal is accompanied by an I-field.

When deasserted, indicates the source is closing the connection (if one
is open) or aborting the connection request (if no connection is currently
open).

 PACKET When asserted, indicates a packet is in progress.

When deasserted, indicates the end of a packet.

This signal does not indicate that any data is being sent; it only
delineates the boundaries of a packet.

 BURST When asserted, indicates data is being sent. This signal is accompanied
by one burst of data.

When deasserted, no data is being sent.

Generated by the destination
on this physical link

 Destination-to-Source

 INTERCONNECT

When asserted, indicates destination is attached and ready for action.
This signal is sometimes referred to as DSIC.

 CONNECT When asserted, indicates destination is accepting the connection
(opening a connection in response to a REQUEST signal).

When deasserted, indicates destination is closing the connection (if one
is open) and is now available for a new connection.

 READY When pulsed, indicates destination can accept (has buffer space
available) one burst of data. Destination can send any number of these
to source; however, the source is required by the HIPPI-PH standard to
queue only 63.

HIPPI Configurations

27

HIPPI Configurations

This section describes some of the common configurations of HIPPI equipment. Because
HIPPI is a simplex point-to-point protocol (or in the case of HIPPI-Serial, dual-simplex),
only one source can transmit user (upper-layer) data onto the transport medium (cable)
between the two endpoints. Two physical links are required for bidirectional
communication. This aspect of HIPPI makes it quite different from protocols such as
Ethernet, FDDI, or 802.5 Token Ring.

Basic HIPPI Configurations

A basic HIPPI configuration consists of two endpoints, one sending and the other
receiving user data, as shown in Figure 1-18.

Figure 1-18 Basic HIPPI Configuration

To exchange data in both directions, two physical links and two connections are required
between the two endpoints.1 Each endpoint’s source channel must open a connection
with the destination of the other endpoint. Some HIPPI products (for example, all Silicon
Graphics’ HIPPI products) allow each simplex connection to connect to a different
endpoint, as illustrated by the two examples on the right in Figure 1-19.

1 In HIPPI-Serial implementations, each fiber-optic cable attached to a dual-SC port contains 2 links.

Network

Network

RcvTx

Rcv Tx

co
nn

ec
tio

n

Interface B

Interface A

Host 1

Host 2

28

Chapter 1: What is HIPPI?

Figure 1-19 Three Variations of the Basic Configuration

The copper-based IRIS HIPPI mezzanine board for the CHALLENGE and Onyx
platforms has two ports: one provides the source physical link and the other provides the
destination physical link. The fiber-optics based IRIS HIPPI-Serial XIO board for the
Origin series and Onyx2 platforms has one port that supports the two simultaneous
connections in opposite directions. The IRIS HIPPI software treats each link as a separate
entity, so that each IRIS HIPPI board can support two autonomous, simultaneous
connections (one sending and one receiving). The two connections can be to two different
endpoints (as shown by the two examples on the right in Figure 1-19) or to the same
endpoint (as illustrated by the example on the left in Figure 1-19). IP communication over
HIPPI requires the latter configuration.

Network

Network

TxRcv

Rcv Tx

co
nn

ec
tio

n

co
nn

ec
tio

n

Network

TxRcv

Interface B

Interface A Interface C

Host 1

Host 2

Network

Network

TxRcv

Rcv Tx

co
nn

ec
tio

n

co
nn

ec
tio

n

Network

TxRcv

Interface B

Interface A Interface C

Host 1

Host 2

Host 3

Network

Network

RcvTx

Rcv Tx

co
nn

ec
tio

n

Interface B

Interface A

Host 1

Host 2

co
nn

ec
tio

n

Required for IP

with HIPPI-Serial,
switch is required

with HIPPI-Serial,
switch is required

HIPPI Configurations

29

HIPPI Fabric Configurations

One or more HIPPI switches may be placed along the endpoint-to-endpoint link, making
it possible to configure a number of endpoints into a HIPPI fabric. Configuring the
endpoints in this way does not alter the fact that each communication is a point-to-point
connection. The switches are cross switches that may include demultiplexing
functionality; but they are not “routers.”

When a switch is included in a HIPPI configuration, each endpoint has a number of hosts
with which it can communicate (one at a time). Figure 1-20 illustrates a HIPPI fabric with
one switch. The switch in this illustration is a 4 x 4, meaning that the switch can have four
systems (8 HIPPI links) attached to it. The switch supports four simultaneous
connections. For example, in Figure 1-20, any one of the following connection scenarios
could be occurring at any single point in time:

• A and D could be exchanging TCP/IP traffic. There would be two connections open
between them. C and D could be doing the same. This scenario opens all four
possible connections.

• A could be transmitting to B, while B transmitted to C, C to D, and D to A. This
scenario also opens four connections.

• A and C could be exchanging bidirectional traffic. D could be transmitting to B.
Only three connections are open in this scenario.

30

Chapter 1: What is HIPPI?

Figure 1-20 HIPPI Fabric Configuration With One Switch

Figure 1-21 illustrates a fabric with multiple switches, and Figure 1-22 illustrates a
complex HIPPI fabric including a long-distance fiber optic link and multiple ports
between switches to improve connection setup time by reducing the probability of
encountering a busy link.

Host D Host B

N
et

w
or

k
In

te
rf

ac
e

D

N
et

w
or

k
In

te
rf

ac
e

B

Host A

Network
Interface A

4

1

2

Host C

Network
Interface C

3

Switch
4 x 4

HIPPI Configurations

31

Figure 1-21 HIPPI Fabric Configurations With Multiple Switches

Switch2

Network

N
et

w
or

k

N
et

w
or

k

4 x 4

Interface A

In
te

rf
ac

e
B

In
te

rf
ac

e
C

Switch5

Network

Network

N
et

w
or

k

4 x 4

3

Interface L

Interface J

In
te

rf
ac

e
K

Switch3

Network

N
et

w
or

k

Network

4 x 4

Interface D

Interface F

In
te

rf
ac

e
E

Switch4

N
et

w
or

k

Network

N
et

w
or

k

4 x 4

Interface H

In
te

rf
ac

e
G

In
te

rf
ac

e
I

Switch 1
4 x 4

1

2

3

4

Hub

2

1

4

3

2

1

4

3

2

1

4

3

2

1

4

32

Chapter 1: What is HIPPI?

Figure 1-22 Complex HIPPI Fabric Configuration

Switch 2
32x 32

Switch 1
4 x 4

Switch 3
16 x 16

HIPPI Extender Box
fiber-optic cable,

HIPPI Extender Box

Switch 4
8 x 8

3 destination endpoints

3 bidirectional channels (6 links)

to reduce delays due to busy links

28 destinations
 + 28 sources

7 destinations
 + 7 sources

+ 3 source endpoints

12 destinations
 + 12 sources

up to 10 kilometers

(switches and/or
endpoints)

(switches and/or
endpoints)

between these 2 switches,

HIPPI Configurations

33

The maximum number of switches and endpoints within a network is limited by three
factors:

• When logical routing is used, the 12-bit HIPPI address (half of the Routing Control
field) limits the number of unique endpoint addresses to 4096. It is possible for a site
to implement this number of networked HIPPI endpoints; however, to be compliant
with the HIPPI-SC standard, 64 reserved addresses should not be assigned to local
endpoints (that is, hosts). This limits the number of endpoints to 4032 per network.
There is no limit to the number of switches when logical routing is used.

• When source routing is used, the I-field’s 24-bit Routing Control field limits the
number of port identifiers that can be included in the list. The exact number
depends on the sizes of the port identifiers used by the switches along the specific
endpoint-to-endpoint path, as explained in “Source Addressing.” Each port
identifier in the Routing Control field represents one switch along the path.
Table 1-6 summarizes the maximum number of switches along any point-to-point
path within a HIPPI network, assuming that all switches along that path use port
identifiers of the same size. (This assumption does not reflect actual site
configuration practices, but is useful here for illustration of a point.) When source
routing is used, the number of switches and endpoints that are possible is not
limited; however, the number of switches between any two endpoints within the
network is limited. This limit affects the configuration of the network.

• If a network is built according to the guidelines in Appendix B of RFC 1374, the
recommended maximum number of hops (switches) between any two endpoints is
three. This limit has major implications for the structure and size of a HIPPI
network. The structure is limited to a single hub switch with satellite switches
attached to the hub’s ports, but no switches attached to any satellite ports.
Figure 1-21 shows an example of an RFC 1374-compliant network. Table 1-7
summarizes the maximum number of switches and endpoints possible for a
network in which switches of only one size are used throughout the network.

34

Chapter 1: What is HIPPI?

Table 1-6 Maximum Number of Switches Along Any Single Point-to-Point
Path When Using Source Addressing

Number of Bits Used for All Port IDs in
Routing Control Field

Max. Number of Switches Along Any
Single Point-to-Point Path

1 24

2 12

3 8

4 6

5 4

6 4

Table 1-7 Maximum Number of Switches and Endpoints on a Network Built in Accordance
With RFC 1374, Appendix B Guidelines

Size of All Switches Within Network

4 x 4 8x 8 16 x 16 32 x 32 64 x 64

5 switches /
12 endpoints

9 switches /
56 endpoints

17 switches /
240 endpoints

33 switches /
992 endpoints

65 switches /
4032 endpoints

The HIPPI Standards and Documentation

35

The HIPPI Standards and Documentation

The documents listed below provide the official definitions of what HIPPI is and how it
works.

• ANSI HIPPI-PH
The HIPPI Mechanical, Electrical, and Signalling document defines the standard for a
copper physical layer: electrical and mechanical aspects of copper HIPPI cables,
connectors, transmitters, and receivers. This document defines the HIPPI signals
(like SDIC, DSIC, REQUEST, CONNECT, READY, PACKET, and BURST) that are used in
all HIPPI implementations, including HIPPI-Serial.

• ANSI HIPPI-Serial
The High-Performance Parallel Interface-Serial Specification: X3.300-1997 document
defines the ANSI standard for a fiber-optic physical layer: electrical and mechanical
aspects of fiber-optic cables, connectors, transmitters, and receivers. The method for
communicating (encoding) the HIPPI-PH signals in serial is also defined.

• ANSI HIPPI-SC
The HIPPI Physical Switch Control document defines the standard for switch
behavior, routing methods, and connection management. The HIPPI I-field is
defined by this standard.

• ANSI HIPPI-FP
The HIPPI Framing Protocol document defines the standard for data framing issues:
how a packet is formed, how its data contents are described and interpreted. The
HIPPI-FP packet (FP header, D1_Data, and D2_Data) is defined by this standard.

• ANSI HIPPI-LE
The HIPPI Encapsulation of ISO 8802-2 (IEEE 802.2) Logical Link Control Protocol Data
Units (HIPPI-LE) standard defines the method for encapsulating (and thus
interoperating with) 802.2 compliant data link layers such as FDDI, 802.5 Token
Ring, and CSMA/CD (Ethernet). This standard also defines a dynamic address
discovery handshake for endpoints to use with their attached switches.

36

Chapter 1: What is HIPPI?

• ANSI HIPPI-IPI-3 for Disk
The HIPPI Intelligent Peripheral Interface—Device Generic Command Set for Magnetic
and Optical Disk Drives standard defines an upper-layer protocol for interfacing
disks to the HIPPI subsystem.

• ANSI HIPPI-IPI-3 for Tape
The HIPPI Intelligent Peripheral Interface—Device Generic Command Set for Magnetic
Tape Drives standard defines an upper-layer protocol for interfacing tapes to the
HIPPI subsystem.

• RFC 1374
IP and ARP on HIPPI, by J. Renwick and A. Nicholson (October 1992) defines the
protocols for using the IP suite of network and transport layer protocols over HIPPI.

• RFC 1323
TCP Extensions for High Performance, by V. Jacobson, R. Braden, and D. Borman (May
1992) defines the protocol for scaled windows and timestamps designed to improve
performance for large bandwidth and very high-speed products.

The ANSI documentation for HIPPI standards is maintained by the American National
Standard of Accredited Standards Committee (ANSI X3T9.3). Information about
obtaining copies of the ANSI standards listed above is provided at the HIPPI Network
Forum’s webpage (URL): http://www.esscom.com/hnf//html/hippispecs.html. Or, call ANSI at
telephone 212-642-4900 in New York, USA.

Implementation Details for IRIS HIPPI

37

Implementation Details for IRIS HIPPI

This section describes some of the details of the Silicon Graphics implementation of the
HIPPI protocol.

How HIPPI Ports Are Assigned to IP Interfaces

This section describes the manner in which IRIX assigns an IP network interface (for
example, hip0 and IP address 223.9.1.2) to a particular HIPPI port.

On CHALLENGE and Onyx Platforms

On Silicon Graphics systems that have HIO slots (for example, CHALLENGE, Power
Challenge, Onyx, or Power Onyx systems), with each restart, the startup routine probes
for hardware installed in the mezzanine I/O adapter slots and makes a list (inventory)
of all the boards located. The slots are probed in the following order:

• main IO4 board: I/O adapter slot 5, then 6

• second IO4 board (if present): I/O adapter slot 2 (only when the FMezz board is
long), slot 5, slot 3 (only when the FMezz board is long), slot 6

• third IO4 board (if present): I/O adapter slot 2 (only when the FMezz board is long),
slot 5, slot 3 (only when the FMezz board is long), slot 6

• fourth IO4 board (if present): I/O adapter slot 2 (only when the FMezz board is
long), slot 5, slot 3 (only when the FMezz board is long), slot 6

The list and order of IRIS HIPPI ports that were located by this process can be displayed
with the /sbin/hinv command, as shown below. The text hippi# indicates the order:
hippi0 is the first port located and hippi1 is the second. In this example, the startup
routine located two IRIS HIPPI ports attached to FMezz boards on two different IO4
boards.

% /sbin/hinv -d hippi
...
HIPPI adapter: hippi0, slot 5 adap 6, firmware version ####
HIPPI adapter: hippi1, slot 3 adap 5, firmware version ####

38

Chapter 1: What is HIPPI?

As the startup process begins to initialize HIPPI network interfaces, it does the following:

• If the IRIS HIPPI driver is configured to support the IP protocol stack, the driver
creates a network interface for each HIPPI port in the inventory. The first HIPPI
interface (always named hip0) is associated with the first port listed in the
inventory; the second interface (hip1) is associated with the second port on the list;
and so on, until there are no more ports. For example, using the configuration
shown in the hinv example above, interface hip0 is assigned to port hippi0 and hip1 is
assigned to port hippi1.

• The ifconfig command (which is invoked automatically during startup) searches the
netif.options file for IP-over-HIPPI interface names (for example, hip0, hip1, hip2) and
configures and enables each interface that exists (that is, each interface that was
created by the driver).

Note: If an installed board is not located due to a loose connection or malfunction, or if
hardware is installed or removed, the assignment of HIPPI network interfaces to ports
may change. For example, hip0 (from the example above) could be assigned, at a later
reboot of the machine, to the hippi1 port instead of hippi0, if hippi0 were not found.

On Origin and Onyx2 Platforms

On an Origin series or Onyx2 system, with each restart (for example, after a reboot,
shutdown, halt, init command, or a power off), the startup routine probes for hardware on
all the systems connected into the CrayLink interconnection fabric. All the slots and links
in all the modules within the fabric are probed. The routine then creates a hierarchical file
system, called the hardware graph, that lists all the hardware that is located. The top of
the hardware graph is visible at /hw. (For complete details, see the reference page for
hwgraph.) After the hardware graph is completed, the ioconfig program assigns a unit
number to each located device that needs one. Other programs (for example, hinv and the
device’s driver) read the assigned number from ioconfig and use it. On an initial startup,
ioconfig assigns numbers sequentially; for example, if three IRIS HIPPI boards are found,
they are numbered unit0, unit1, and unit2. On subsequent startups, ioconfig distinguishes
between hardware that it has seen before and new items. To previously seen items, it
assigns the same unit number that was assigned on the initial startup. To new hardware,
it assigns new sequential numbers. It never reassigns a number, even if the device that
had the number is removed and leaves a gap in the numbering.

Implementation Details for IRIS HIPPI

39

Note: New items are differentiated from previously-seen items based solely on the
hardware graph listing (that is, the path within /hw). The database of previously-seen
devices is kept in the file /etc/ioconfig.conf. For example, a new replacement board that is
installed into the location of an old board will be assigned the old board’s number, while
a board that is moved from one location to another will be assigned a new number. For
more information about the hardware graph and ioconfig, see the reference (man) pages
for hwgraph and ioconfig.

The IRIS HIPPI boards that are located can be displayed with the /sbin/hinv or find
commands, as shown below. In these examples, the startup routine located two IRIS
HIPPI boards on two different modules (that is, inside two different chassis).

% find /hw/module -name hippi
/hw/module/1/slot/io3/hippi_s/pci/0/hippi
/hw/module/2/slot/io12/hippi_s/pci/0/hippi

% /sbin/hinv -d hippi
HIPPI-Serial adapter: unit 0, in module 1 I/O slot 3
HIPPI-Serial adapter: unit 1, in module 2 I/O slot 12

As the startup process continues, it calls the network hardware drivers so that they can
create their network and programmatic interfaces. For HIPPI, this step works in the
following manner:

• For each IRIS HIPPI board, the installation script creates a symbolic link in /dev that
points to the board’s entry in the hardware graph. Subsequently, the driver creates
short (/hw/hippi/#) and long (/hw/module/#/slot/.../hippi.) entries in the hardware
graph. The /dev/hippi# links are for use by the IRIS HIPPI application programming
interface (API).

• If the driver is configured to support the IP protocol stack, the driver creates an IP
network interface for each board. The network interface number always matches
the board’s assigned unit number. For example, if the only IRIS HIPPI board found
during startup is known by ioconfig as unit2, then the driver creates only network
interface hip2.

• The ifconfig command (which is invoked automatically during startup) searches the
netif.options file for IP-over-HIPPI interface names (for example, hip0, hip1, hip2) and
configures and enables each one that has been created.

40

Chapter 1: What is HIPPI?

Note: The assignment of network interfaces to boards does not change across restarts. If
a board that was once known to the system is not located during a reboot, the network
interface that matches that board is not created. For example, if IRIS HIPPI unit 1 is not
found, the hip1 network interface is not created; the unit2 and hip2 pairing proceeds as
normal.

Site Cabling

IRIS HIPPI for Challenge and Onyx platforms is copper based (HIPPI-PH). Each I/O
panel plate has two 100-pin connectors. For each IRIS HIPPI board, the site must provide
two cables of up to 25 meters each.

IRIS HIPPI for Origin and Onyx2 platforms is fiber-optic based (HIPPI-Serial). Each I/O
panel plate has one dual-SC receptacle. For each IRIS HIPPI board, the site must provide
one fiber-optic cable of either 50-micron core (2 to 500 meters in length) or 62.5-micron
core (2 to 200 meters). The IRIS HIPPI-Serial board uses short wavelength (770-860
nanometer) optics. The cable should be terminated with a dual-SC connector; however,
2 simplex SC connectors will also work. (Figure 1-23 illustrates the data direction used in
the board’s dual-SC receptacle.) Each cable must conform with the HIPPI-Serial physical
layer specification and guidelines, as described in the ANSI High-Performance Parallel
Interface-Serial Specification, version 2.6, especially annex B and the section entitled “Serial
Optical Interface.” 62.5-micron core cables in various lengths (including a loopback cable
for testing) can be purchased from Silicon Graphics, as summarized in Table 1-8. In
addition, the site cabling throughout the HIPPI switch fabric must conform to this
specification. Table 1-9 summarizes some of this specification’s information.

Figure 1-23 Data Direction Used in IRIS HIPPI-Serial Dual-SC Receptacle

transmit

receive

Implementation Details for IRIS HIPPI

41

Table 1-8 Fiber Optic Cables Available from Silicon Graphics

Description Part Number

3-Meter Fiber Optic Cable Assembly 018-0656-001, X-F-OPT-3M

10-Meter Fiber Optic Cable Assembly 018-0656-101, X-F-OPT-10M

25-Meter Fiber Optic Cable Assembly 018-0656-201, X-F-OPT-25M

100-Meter Fiber Optic Cable Assembly 018-0656-301, X-F-OPT-100M

Fiber Optic Loopback Test Cable Assembly 018-0664-001, X-F-OPT-LOOP

Table 1-9 Specifications and Limits for HIPPI-Serial Optics

Item Value for 50
micron cable

Value for 62.5
micron cable

Cable

minimum bandwidth at 780 nm 500 MHz•km 160 MHz•km

maximum loss 4 dB/km 4 dB/km

Connectors

maximum number between 2 nodes 8 8

mean loss per unit ≤0.11 dB ≤0.11 dB

standard deviation loss per unit 0.15 dB 0.15 dB

minimum optical return loss 20 dB 20 dB

Splices

maximum number between 2 nodes 6 6

mean loss per unit ≤0.08 dB ≤0.08 dB

standard deviation loss per unit 0.05 dB 0.05 dB

42

Chapter 1: What is HIPPI?

Application Programming Interface

The IRIS HIPPI driver provides access and control of the IRIS HIPPI subsystem to
upper-layer protocol modules (ULPs). The ULPs that are shipped with the IRIS HIPPI
product are the IRIS HIPPI-LE module serving the IP network stack. ULPs can also be
developed by customers, using the IRIS HIPPI application programming interfaces.

Customer-developed applications can define their own ULP modules and use the IRIS
HIPPI API to either use HIPPI-FP encapsulation or access the HIPPI physical layer
directly (bypass the HIPPI-FP layer). Refer to the IRIS HIPPI API Programmer’s Guide for
complete details.

The rest of this section describes the IRIS HIPPI-LE upper-layer protocol module.

Handling of HIPPI Protocol for HIPPI-LE

This section describes how the IRIS HIPPI driver and the HIPPI-LE module handle
HIPPI I-fields, HIPPI-FP headers, and 802.2 encapsulation items. There are separate
sections for transmission and reception.

On Transmission

The HIPPI-LE module obtains the I-field and the universal LAN MAC address (ULA) for
each destination from a lookup table that is initialized at startup time from the
/usr/etc/hippi.imap file. It obtains the local system’s ULA (that is, the source ULA) from the
hardware subsystem (when supported by that subsystem) or from the same lookup table
(when the ULA is not provided by the hardware subsystem). It obtains the I-field value
before programming the IRIS HIPPI driver to make a connection request. The hippi.imap
file maps IP addresses (or host names) to 32-bit values that are used as I-fields and to
48-bit values that are used as ULAs. The software uses each value exactly as read from
the file, as summarized in Table 1-10. It is the responsibility of the system administrator
to ensure that the values in the lookup table are appropriate for the site’s configuration.

Note: The IRIS HIPPI-LE module does not support the optional dynamic address
resolution functionality defined in the HIPPI-LE standard.

Implementation Details for IRIS HIPPI

43

Once the connection has been opened, the HIPPI-LE module creates a HIPPI packet in
the format illustrated in Figure 1-24. This packet conforms with the HIPPI-FP standard
and the RFC 1374 guidelines.

Figure 1-24 HIPPI Packet Created by IRIS HIPPI-LE

Table 1-10 I-field Recommended for Use With IRIS HIPPI-LE

Field

Value
Recommended
for HIPPI-LE Comments

L 0 0=HIPPI-SC compliant; 1=local format for I-field.

A site may use any value.

VU 0 A site may use any value.

W 0 0=32 data bus.
No other setting is supported by the IRIS HIPPI
board.

D 0 0=Least significant bits contain address for next
hop; 1=address is placed in most significant bits.
A site may use any setting.

PS any setting A site may use any of the addressing formats.

C 1 1= camp-on; 0=do not camp-on.
This setting makes the HIPPI network more
efficient; however, a site may use any setting.

Routing
Control

any setting A site may use any settings.

FP header

HIPPI-LE 802.2 Encapsulation
User data

D1 data D2 data

header (LLC and SNAP)

HIPPI Packet

44

Chapter 1: What is HIPPI?

The IRIS HIPPI-LE module creates the HIPPI-FP header with the values summarized in
Table 1-11.

The IRIS HIPPI-LE module creates the HIPPI-LE header with the values summarized in
Table 1-12. The HIPPI-LE header becomes the D1 data set for the HIPPI packet.

Table 1-11 FP Header Created by IRIS HIPPI-LE ULP

Field Value Used Comments

ULP-id 4 = HIPPI-LE As defined by HIPPI-FP.

P bit 1 = D1 area is included in
this FP header

D1 area contains the HIPPI-LE header as defined by
HIPPI-LE.

B bit 0 = D2 data is included in
first burst

As specified by RFC 1374.

D1 Size 3 = three 64-bit words (that
is, 24 bytes)

As defined by HIPPI-LE.

D2 Offset 0

D2 Size Up to 64 kilobytes. Maximum IP packet as defined by the Internet
Protocol.

Table 1-12 D1 Data (HIPPI-LE Header) Created by IRIS HIPPI-LE

Field Size Value Used Comments

FC 3 bits 0 As defined by HIPPI-LE and restated in
RFC 1374.

Double Wide 1 bit 0 = 32 bit data bus

Message Type 4 bits 0 = data

Destination Switch
Address

24 bits Least significant 12
bits of I-field or
0x000FFF

For bits 11:0, uses the least significant 12
bits (11:0) from the destination’s I-field
entry in the lookup table (as loaded from
hippi.imap file); for bits 23:12, uses zero. If
the lookup table does not have an I-field
entry for the destination, the software
uses 0x000FFF.

Implementation Details for IRIS HIPPI

45

Note: The IRIS HIPPI-module assumes logical addressing; the address type fields are
always set to logical addressing, regardless of the values obtained from the lookup table.

Destination Address
Type

4 bits 0010 = logical routing

Source Address Type 4 bits 0010 = logical routing

Source Switch
Address

24 bits Least significant 12
bits of I-field or
0x000FFF

For bits 11:0, uses the least significant 12
bits (11:0) from the system’s own I-field
entry in the hippi.imap file; for bits 23:12,
uses zero. If the file does not have an
I-field entry for the source, the software
uses 0x000FFF.

Reserved 16 bits 0

Destination IEEE
Address

48 bits 48-bit ULA Uses 48-bit address from destination’s
ULA entry in the lookup table (as loaded
from hip.imap file), or, if missing, uses
0x0.

LE Locally
Administered

16 bits 0

Source IEEE Address 48 bits 48-bit ULA Uses the first of the following that is
available:

* address as provided by the hardware
subsystem, or

* value from the local system’s own
ULA entry in the lookup table (as loaded
from hip.imap file), or

* uses 0x0

Table 1-12 (continued) D1 Data (HIPPI-LE Header) Created by IRIS HIPPI-LE

Field Size Value Used Comments

46

Chapter 1: What is HIPPI?

The IRIS HIPPI-LE module creates the 802.2 headers (LLC and SNAP) with the values
summarized in Table 1-13. This information occupies the initial bytes of the D2 data
within the HIPPI packet.

On Reception

The IRIS HIPPI driver accepts all connection requests, and accepts all packets containing
FP headers with known ULP-ids, thus supporting customer-developed, upper-layer
applications. The I-field for the connection request is not interpreted. This process is
summarized in Table 1-14.

Table 1-13 IEEE 802.2 Header (First Bytes of D2) Created by IRIS HIPPI-LE

Field Size
(bits)

Value Used Comments

SSAP 8 170 decimal As defined by IEEE 802.2 standard for Logical
Link Control and restated in RFC 1374.

DSAP 8 170 decimal Same as above.

CTL 8 3 Same as above.

Organization
Code

24 0 Same as above.

EtherType 16 2048 decimal Same as above.

Table 1-14 I-field Accepted by IRIS HIPPI Driver for HIPPI-LE ULP

Field Recommended Values Comments

L 0 = HIPPI-SC compliant Content is ignored.

VU any value Content is ignored.

W 0 = 32 data bus Content is ignored.

D any value Content is ignored.

PS any value Content is ignored.

C any value Content is ignored.

Routing
Control

any value Content is ignored.

Implementation Details for IRIS HIPPI

47

Once a connection has been opened, the IRIS HIPPI driver places each incoming HIPPI
packet on the input queue for the ULP-id indicated in the FP header. Incoming HIPPI
packets must have the format illustrated in Figure 1-25. If the ULP-id is not known to the
driver, the packet is dropped (that is, accepted then discarded). Packets with a ULP-id of
4 are enqueued for the HIPPI-LE module.

Figure 1-25 HIPPI Packets that IRIS HIPPI Driver Passes to HIPPI-LE

The HIPPI driver interprets only the FP header. All further processing of the HIPPI
packet (including the various protocol headers) is done by the reader of the input queue
(for example, HIPPI-LE).

On reception, the IRIS HIPPI driver handles HIPPI-FP headers as summarized in
Table 1-15.

Table 1-15 FP Header Accepted by IRIS Driver for HIPPI-LE ULP

Field Values Accepted Without
Generating an Error

Comments

ULP-id 4 = HIPPI-LE As defined by HIPPI-FP. For other ULP-ids, see the
IRIS HIPPI API Programmer’s Guide for details.

P bit 1 If set to 1, the driver interprets the D1 area as a
HIPPI-LE header.
If set to 0, the packet is discarded.

B bit any value For applications using the HIPPI-FP access method,
the IRIS HIPPI driver passes the D1 data to the input
queue reader as a separate item from the D2 data.

D1 Size 3 = three 64-bit words /
 24 bytes

As defined by HIPPI-LE.
If the value is different, the packet is discarded.

FP header

ULP-id = known by HIPPI driver

HIPPI Packet

48

Chapter 1: What is HIPPI?

The IRIS HIPPI-LE upper layer program handles received D1 data (the HIPPI-LE header)
as summarized in Table 1-16.

D2 Offset any value

D2 Size up to 64 kilobytes As defined by Internet Protocol.
If size is greater than 64 kBytes, the packet is
discarded.

Table 1-16 D1 Data Accepted by IRIS HIPPI-LE ULP

Field Values Accepted
Without Generating
an Error

Comments

FC 0 As defined by HIPPI-LE.
If the value is different, an error is generated.

DW 0 = 32 bit data bus If set to 1, an error is generated.

MT 0 = data If not 0 (data), an error is generated.

Dest_Sw_Addr any value

Dest_Addr_Type any value

Src_Addr_Type any value

Src_Sw_Addr any value

Dst_IEEE_Addr any value

LE_Locally_Adm any value

Src_IEEE_Addr any value

Table 1-15 FP Header Accepted by IRIS Driver for HIPPI-LE ULP

Field Values Accepted Without
Generating an Error

Comments

Implementation Details for IRIS HIPPI

49

The IRIS HIPPI-LE module also handles the 802.2 headers as summarized in
Table 1-17.

Table 1-17 IEEE 802.2 Headers Accepted by HIPPI-LE ULP

Field Size
(bits)

HIPPI-LE Default Comments

SSAP 8 170 decimal As defined by the IEEE 802.2 standard and restated
by RFC 1374. If the received value is different, an
error is generated.

DSAP 8 170 decimal Same as above.

CTL 8 3 Same as above.

Organization
Code

24 0 Same as above.

EtherType 16 2048 decimal Same as above.

51

Chapter 2

2. Configuring IRIS HIPPI

This chapter provides instructions and information about configuring the IRIS HIPPI
software and firmware. The section “Overview of Configuration Steps” lists the
configuration tasks in the order they should be performed; subsequent sections describe
each task in detail. Table 2-1 alphabetically lists all the configurable items and indicates
where the instructions for each item are located.

Overview of Configuration Steps

Before configuring the IRIS HIPPI software, decide whether or not you want the IRIS
HIPPI driver to include support for the IP network stacks. The configuration steps are
slightly different depending on this decision. Then, follow the appropriate set of
instructions: “IRIS HIPPI Without IP Support” or “IRIS HIPPI With IP Support.”

Alphabetical Listing of All Configurable Items

Table 2-1 alphabetically lists all IRIS HIPPI’s configurable items, and summarizes the
following for each item: whether configuration for the item is optional or required, what
the default setting is, and where the configuration instructions for each item reside.

Table 2-1 IRIS HIPPI Configurable Items

Item Configuration
Required/Optional

Default
Setting

Location for
Instructions

Addresss resolution mechanism:
static table lookup

R none page 57

Bypass module (build it into or exclude it
from IRIS HIPPI driver; module is not built
into driver by default)

O not included page 55

52

Chapter 2: Configuring IRIS HIPPI

Driver O see MTU
and
TCP/UDP
checksum

page 55
and
page 56

Hardware O see file page 56

I-field for a HIPPI port:
local port(s)
remote ports (destinations)

R with use of switch
R

none exists page 57
page 59

IP address to IP network connection name
mappings

R for IP traffic none exists page 63

IP address to HIPPI I-field mappings:
local interface
destinations (static address resolution)

R for IP traffic none exists
page 57
page 59

IP module (build it into or exclude it from
IRIS HIPPI driver; by default it is included)

O included page 55

IP network interface R for IP traffic none exists page 62

IP networking: enable/disable R for IP traffic disabled page 55 and
page 62

IP-over-HIPPI: list of configuration steps R for IP traffic none exists page 53

Maximum transmission unit (MTU) size O 65280 page 56

TCP + UDP checksums in hardware O enabled page 56

TCP window size O 524288 bytes page 64

ULA for a HIPPI port:
local port (source)

remote ports (destination)

R
only for Challenge and
Onyx with use of switch
O

no ULA

none exists

page 57

page 59

Table 2-1 IRIS HIPPI Configurable Items

Item Configuration
Required/Optional

Default
Setting

Location for
Instructions

Overview of Configuration Steps

53

IRIS HIPPI Without IP Support

The following steps configure the IRIS HIPPI driver for use as a non-IP network
connection. Complete details for each step are provided in separate sections of this
chapter.

1. Use inst or the Toolchest’s System:SoftwareManager to install the IRIS HIPPI
software from the CD-ROM, as explained in the IRIS HIPPI Release Notes. The inst
command is documented in the online document IRIX Admin: Software Installation
and Licensing that came with the system.

2. Optional:
Edit the /var/sysgen/master.d/hippi file to change the default configurations for the
hardware, as explained in “Editing the hippi File.”

3. Optional:
Edit the /var/sysgen/system/hippi.sm or hippi_s.sm file to EXCLUDE the IP interface, as
explained in “Editing the *.sm File.”

Note: If you exclude IP support from the driver, and later you want to use IP, you
will need t redo this configuration step and reboot the system. If you leave the IP
module included, you only need to do the additional IP configuration steps to add
IP functionality later. Be aware that when the driver is built to support IP, but IP is
not configured, some error messages are displayed each time the system is started.

4. The system is ready to have its IRIS HIPPI hardware installed. When restarted (after
the hardware installation), the system asks you to authorize rebuilding of the
operating system. Answer yes , to build an operating system that includes the IRIS
HIPPI driver. Then, reboot the system to start using the new operating system.

Note: If the hardware is already installed, rebuild the operating system as described
in “Building a New or Reconfigured Driver Into the Operating System” on page 65.

IRIS HIPPI With IP Support

The following steps configure the IRIS HIPPI driver with support for IP networking.
Complete details for each step are provided in separate sections of this chapter.

Note: The section “How HIPPI Ports Are Assigned to IP Interfaces” in Chapter 1
describes how the physical HIPPI boards (hippi0, hippi1, hippi2, and hippi3) are matched
to IP-over-HIPPI network interfaces (hip0, hip1, hip2, and hip3).

54

Chapter 2: Configuring IRIS HIPPI

Follow these steps to configure IRIS HIPPI to support IP traffic:

1. Use inst or the Toolchest’s System:SoftwareManager to install the IRIS HIPPI
software from the CD-ROM, as explained in the IRIS HIPPI Release Notes. The inst
command is documented in the IRIX Admin: Software Installation and Licensing that
came with the system.

2. Enable IP (that is, write ON into the /etc/config/network file), as explained in “Enable
IP Networking.”

3. Edit the /usr/etc/hippi.imap file to configure IP-to-HIPPI address resolution, as
explained in “Editing the hippi.imap File.”

4. For a Challenge or Onyx system that is attached to a switch, edit the
/usr/etc/hippi.imap file to configure the local ULA, as explained in “Editing the
hippi.imap File.”

5. Edit the IP configuration files (/etc/hosts and /etc/config/netif.options) to include IP
network connection names and addresses, as explained in “The
/etc/config/netif.options File” and “The /etc/hosts File.”

6. Optional:
Edit the /var/sysgen/master.d/if_hip file to configure IRIS HIPPI driver parameters, as
explained in “Editing the if_hip File.”

7. Optional:
Edit the /var/sysgen/master.d/hippi file to change the default configurations for the
hardware, as explained in “Editing the hippi File.”

8. The system is ready to have its IRIS HIPPI hardware installed. When restarted (after
the hardware installation), the system asks you to authorize rebuilding of the
operating system. Answer yes , to build an operating system that includes the IRIS
HIPPI driver. Then, reboot the system to start using the new operating system.

Note: If the hardware is already installed, rebuild the operating system as described
in “Building a New or Reconfigured Driver Into the Operating System” on page 65.

Checking If IRIS HIPPI Software Has Been Installed

55

Checking If IRIS HIPPI Software Has Been Installed

Use the command below to verify the version or to check if the IRIS HIPPI software has
been installed.

% versions hippi
I HIPPI date IRIS HIPPI, version

Editing the *.sm File

The /var/sysgen/system/hippi.sm file or /var/sysgen/system/hippi_s.sm file tells the system’s
software which IRIS HIPPI modules to include when building the IRIS HIPPI driver into
the operating system. The default file builds IP networking and, when available, BYPASS
functionality into the driver.

If you exclude IP or BYPASS functionality, then decide later that you want to include the
function, you must undo the edit (or edits), then, rebuild (autoconfig) the operating
system.

Edit one of the following files:

• the hippi.sm file when the copper-based IRIS HIPPI board for Challenge or Onyx is
installed

• the hippi_s.sm file when the fiber-based HIPPI-Serial board for Origin2000 or Onyx2
is installed

Caution: Do not delete any entries in this file. The operating system (kernel) cannot link
properly unless each entry exists, either as an INCLUDE or EXCLUDE.

Including/Excluding IP Support

The following line in either the hippi.sm or hippi_s.sm file can be edited to build an IRIS
HIPPI driver that does not support IP networking:

• Original line that builds IP support into the driver:

INCLUDE: if_hip

• Changed line that builds an IRIS HIPPI driver without IP support:

EXCLUDE: if_hip

56

Chapter 2: Configuring IRIS HIPPI

Note: When the driver is built with IP support, but the IP protocol stack is not enabled,
each time the system is started some error messages are displayed; the HIPPI
functionality is all right.

Including/Excluding Bypass Functionality

The following line in the hippi_s.sm can be edited to build an IRIS HIPPI driver that does
not support BYPASS functionality:

• Original line that builds BYPASS support into the driver:

INCLUDE: hippibp

• Changed line that builds an IRIS HIPPI driver without BYPASS support:

EXCLUDE: hippibp

Editing the hippi File

The /var/sysgen/master.d/hippi file configures the IRIS HIPPI hardware. Hardware
configuration is optional, because all parameters have default settings. The settings in
this file affect all IRIS HIPPI boards installed in the system.

The IRIS HIPPI board has very few configurable parameters. The specific items vary
from product to product, so they are explained fully within the file.

Editing the if_hip File

The /var/sysgen/master.d/if_hip file configures the IRIS HIPPI driver and board. Driver and
board configuration is optional, because all parameters have default settings. The
settings in this file affect all IRIS HIPPI boards installed in the system.

The IRIS HIPPI driver and board have very few configurable parameters (for example,
the size for the maximum transmission unit and onboard IP checksumming). The specific
items vary from release to release, so they are explained fully within the file.

Editing the hippi.imap File

57

Editing the hippi.imap File

The configuration steps described in this section implement static (tabel lookup) address
resolution, as described in RFC 1374, “IP and ARP on HIPPI.” This functionality maps IP
(inet) addresses to HIPPI (I-field and ULA) addresses.

The /usr/etc/hippi.imap file maps network connection names (or “inet” addresses) to
HIPPI I-fields and universal LAN MAC (ULA) addresses.1 It should contain an entry for
each remote (destination) endpoint and for each local (source) endpoint. For endpoints
on which the HIPPI hardware that does not store a hardware address2, a 6-byte IEEE
address (called ULA or MAC address) can also be mapped. The file can contain up to
2048 lines (mappings).

Note: If the IRIS HIPPI port is connected directly to another HIPPI endpoint (that is, no
switch is involved), the lookup table at each endpoint must contain only one entry; the
single line describes the other system. The I-field can be set to any value that is supported
by each system’s implementation; both endpoints can even use the same value. IRIS
HIPPI supports all values, including 0x00000000.

To load this file into memory or change the loaded table’s contents, follow the
instructions in “Change the Static ARP Table That Maps IP Addresses to I-fields” on
page 74.

Local HIPPI Address Mapping

In order to function, the IRIS HIPPI subsystem must know its own source HIPPI
addresses (that is, the I-field and ULA to use for each local IP address). The local ULA is
only required when both of the following conditions are true:

• The IRIS HIPPI hardware does not store its ULA/MAC address. This is true for IRIS
HIPPI boards in CHALLENGE, Onyx, POWER CHALLENGE, and POWER Onyx
platforms.

• One or more members of the HIPPI network reside in a HIPPI-6400 fabric, or some
other technology that requires the ULA/MAC address.

1 Network connection names are sometimes, inaccurately, called hostnames. For example, a system
with a hostname of goofy might have network connection names of hippi1-goofy, hippi2-goofy, and
gateway-goofy.

2 The IRIS HIPPI boards for the CHALLENGE and Onyx platforms do not store ULA (MAC) addresses.

58

Chapter 2: Configuring IRIS HIPPI

There must be one line (entry) for each IRIS HIPPI port that supports IP. The HIPPI-LE
module obtains this information during startup from the hippi.imap file; it obtains this
information only during startup and stores it. Subsequent changes to and reloading of
the hippi.imap file (for example, hipmap -f or hipmap new_entry) do not affect the HIPPI-LE
module’s stored values. To change these values, you must edit the file and reboot the
system.

Note: If you assign a hardware address (ULA or MAC) to an IRIS HIPPI port, it is highly
recommended that you use the value 8 for the most significant byte of the address: for
example, 08:xx:xx:xx:xx:xx.

For each local network interface, you can use either of these formats in the hippi.imap file:

• my_name 0x XXXXXXXX 08: XX: XX: XX: XX: XX

where my_name is the network connection name of the local IP network interface as
listed in the /etc/hosts file, 0x XXXXXXXX is the 32-bit I-field in hexadecimal notation,
and 08:XX:XX:XX:XX:XX is the 48-bit ULA (MAC address) in hexadecimal notation.
The following line is an example of this format:

hippi-iris 0x01000001 08:77:3D:46:C0:F9

Note: The ULA entry can be specified only on a CHALLENGE, POWER
CHALLENGE, Onyx, or POWER Onyx platform. Other platforms read the ULA
(MAC) address directly from the IRIS HIPPI board.

• x.x.x.x 0x XXXXXXXX 08: XX: XX: XX: XX: XX

where x.x.x.x is the local IP address in dotted decimal notation, 0x XXXXXXXX is the
I-field (32-bits in hexadecimal format), and 08:XX:XX:XX:XX:XX is the ULA or MAC
address (48-bits in hexadecimal notation). The following line is an example of this
format:

223.9.1.18 0x01000001 08:77:3D:46:C0:F9

Note: The ULA entry can be specified only on a CHALLENGE, POWER
CHALLENGE, Onyx, or POWER Onyx platform. Other platforms read the ULA
(MAC) address from the IRIS HIPPI board.

Editing the hippi.imap File

59

Destination HIPPI Address Mappings

Each time the HIPPI-LE module is about to program the HIPPI subsystem to issue a
connection request, it obtains values for the I-field and ULA of its destination from a
lookup table that has been loaded into memory at startup time. (The ULA is only
required when the destination resides in a HIPPI-6400 (or some other technology) fabric
that requires the ULA/MAC address.) The lookup table maps IP addresses or network
connection names to HIPPI addresses. This table is generated (at startup time) from the
hippi.imap file and can be modified in real time with the hipmap command.

Note: If the IRIS HIPPI source is connected directly to another HIPPI endpoint (that is,
no switch is involved), the lookup table on each system must contain only one line; that
line describes the destination. The I-field value for each system can be 0x00000000 (if the
destination implementation accepts this value, as IRIS HIPPI does), or any other value.

Each I-field is a 32-bit value. Each line (entry) in the file can have either of the formats
illustrated below:

• name 0x XXXXXXXX

where name is the network connection name as listed in the /etc/hosts file and
0x XXXXXXXX is the 32-bit I-field, in hexadecimal notation. The following line is an
example of this format:

hippi-goofy 0x01000001 #source address format for port1

• x.x.x.x 0x XXXXXXXX

where x.x.x.x is the IP address in dotted decimal notation, and 0x XXXXXXXX is the
32-bit I-field in hexadecimal notation. The following line is an example of this
format:

223.9.1.18 0x07001002 #logical address format

Each ULA is a 48-bit value. To assign a ULA, the line (entry) in the file must have the
format illustrated below:

• name 0x XXXXXXXX XX: XX: XX: XX: XX: XX

where name is the network connection name or the IP address as described in the 2
examples above, 0x XXXXXXXX is the 32-bit I-field in hexadecimal notation, and
XX:XX:XX:XX:XX:XX is the 48-bit ULA (MAC address) in hexadecimal notation. The
following lines are examples:

hippi-goofy 0x01000001 05:A6:70:9B:FF:8E
223.9.1.241 0x01000001 05:A6:70:9B:FF:8E

60

Chapter 2: Configuring IRIS HIPPI

I-field Templates

The IRIS HIPPI software does not check or verify these values. It is the system
administrator’s responsibility to ensure that each entry is both valid and correct. The
I-field value must be the exact I-field for use in the connection request; for example, it
must contain the desired settings for the camp-on bit and, if logical addressing is used,
the source’s address.

Figure 2-1 is a template that can be used for developing each 32-bit I-field for a logical
addressed environment; Figure 2-2 is for developing source addressed I-fields. The
templates show the values that SGI recommends for use by the IRIS HIPPI-LE upper
layer protocol.

Figure 2-1 Template for Creating Logical Address I-fields With Recommended Values

most significant

(binary)
4 bits: 31-28 __ __ __ __

D
ire

ct
io

n

W
id

th

Lo
ca

l

P
S

= 1st nibble hex ___

V
en

do
r

__ __ __ __
2nd nibble: = 2nd nibble hex ___

C
am

p-
on

__ __ __ __ __ __ __ __ __ __ __ __
3rd to 5th nibbles = 3rd to 5th nibbles hex ___ ___ ___

__ __ __ __ __ __ __ __ __ __ __ __
6th to 8th nibbles = 6th to 8th nibbles hex ___ ___ ___

0 0 0 0

0 1

0

1
7

(binary)

(binary)

(binary)

1

0I-field = 0x ___ ___ ___ ___ ___ ___ ___ ___

1st 2nd 3rd 4th 5th 6th 7th 8th

source address

destination address

}

nibbles

7

bits 27:24
}

Editing the hippi.imap File

61

Figure 2-2 Template for Creating Source Address I-fields With Recommended Values

1st nibble

 (binary)
bits 31:28 __ __ __ __

D
ire

ct
io

n

P
S

= 1st nibble hex ___

__ __ __ __
2nd nibble = 2nd nibble hex ___

C
am

p-
on

__ __ __ __ __ __ __ __ __ __ __ __
3rd to 8th nibbles

= 3rd to 5th nibbles hex ___ ___ ___

__ __ __ __ __ __ __ __ __ __ __ __
= 6th to 8th nibbles hex ___ ___ ___

0 0 0 0

0 1

0

0
1

(binary)

(binary)

0

0I-field = 0x ___ ___ ___ ___ ___ ___ ___ ___

1st 2nd 3rd 4th 5th 6th 7th 8th

port numbers at all switches

}

nibbles

1

(bits 27:24)

first port #
to destination
(length depends
on switch)

W
id

th

Lo
ca

l

V
en

do
r

}

use zero for all
unused bits

62

Chapter 2: Configuring IRIS HIPPI

Editing IP Configuration Files

To configure the IP networking interfaces, edit the /etc/config/network,
/etc/config/netif.options, /etc/hosts, and /etc/config/ifconfig-#.options files, as explained below.

The network file starts the IP software. Each time it tarts, it uses information from the hosts
and netif.options files to configure the IP interfaces.

Note: For additional details about enabling the IP networking software and configuring
network interfaces, refer to the IRIX Admin:Networking and Mail, which is available online
through IRIS Insight or in hardcopy.

Enable IP Networking

To have the IP network software automatically start operating each time the system is
started, edit the /etc/config/network file so that it contains the single word ON or on . If the
file is missing, add the file or invoke chkconfig network on .

Note: Enabling IP networking does not result in IP over HIPPI; it only enables the IP
software within the operating system to operate over whatever drivers are available to
service it. The other IP configuration files associate the IP stack with specific drivers.

The /etc/config/netif.options File

The /etc/config/netif.options file maps local network connection names (or IP addresses) to
IRIS HIPPI network interfaces (for example, hip0, hip1, etc.). There must be a two-line
entry for each IRIS HIPPI port that services the IP network stack. The first entry (if1addr

and if1name) defines the primary interface; in most situations, the primary interface
should be Ethernet or FDDI. Each name or IP address in this file must also be in the
/etc/hosts file; the name or IP address in the netif.options must match exactly the name or
IP address in the hosts file.

Systems that function as a client or server for bootp should configure Ethernet as their
primary network interface. Any system that functions as a client or server for NFS, NIS,
or other client/server program should configure the network interface over which the
client/server functions occur as the primary network interface.

Editing IP Configuration Files

63

The example below illustrates a system with three IRIS HIPPI network interfaces, an
FDDI interface (that is, xpi0), and a primary Ethernet interface. If this system’s hostname
is goofy, these IRIS HIPPI entries interwork with the examples of /etc/hosts file entries
shown above.

if1name=et0
if1addr=$HOSTNAME

if2name=xpi0
if2addr=fddi-$HOSTNAME

if3name=hip0
if3addr=hippi1-$HOSTNAME

if4name=hip1
if4addr=hippi2-$HOSTNAME

if5name=hip2
if5addr=hippi3-$HOSTNAME

Note: The use of the $HOSTNAME variable assumes that the system’s hostname has
been defined in the /etc/sys_id file.

The /etc/hosts File

The /etc/hosts file maps names to network-layer IP addresses. There must be one entry for
each IRIS HIPPI port that is to support IP traffic. The entries must be similar to the
examples below, which illustrate four IRIS HIPPI interfaces for a system whose
hostname is goofy:

223.9.1.2 hippi1-goofy.toons.com hippi1-goofy
223.9.2.4 hippi2-goofy.toons.com hippi2-goofy
223.9.3.16 hippi3-goofy.toons.com hippi3-goofy
223.9.4.32 hippi4-goofy.toons.com hippi4-goofy

Note: A local /etc/hosts file must exist and must contain the local IRIS HIPPI network
interfaces, even when the site uses NIS or DNS.

64

Chapter 2: Configuring IRIS HIPPI

The /etc/config/ifconfig-#.options File

Each /etc/config/ifconfig-#.options file configures one IP interface. The # in the filename
matches the numeral in the if #name entry in the netif.options file. Each instance of this
file is optional; however, to obtain optimal performance on an IRIS HIPPI interface, the
size of the windows (that is, the amount of outstanding/in_transit data) for sending and
receiving TCP/IP datagrams) must match the window size used on remote systems. If
possible, the IRIS HIPPI default value (524288 bytes) should be configured on all the
HIPPI interfaces within the HIPPI fabric. If this default cannot be used throughout the
fabric, you must create an ifconfig-#.options file for the IRIS HIPPI interface and set the
TCP windows value to the value selected for the HIPPI fabric.

To configure the TCP window size (in bytes), create an ifconfig-#.options file for the IRIS
HIPPI interface and place these lines in the file:

sspace nnnnnn
rspace nnnnnn

where nnnnnn is any value, divisible by 1024, between 1024 and 524288.

Note: For large-sized TCP windows to work, the tcp_winscale and tcp_tsecho

variables in the /var/sysgen/master.d/bsd file must each be set to 1 (their defaults).

If the memory used by TCP/IP applications is an issue, you can obtain nearly full
performance by using 262144 (256*1024), instead of the default 524288 (512*1024).

For a complete description of the IP parameters that can be configured in this file, see the
ifconfig man page.

Building a New or Reconfigured Driver Into the Operating System

65

Building a New or Reconfigured Driver Into the Operating System

This section describes how to rebuild the operating system. All the configuration steps
listed in the “Overview of Configuration Steps” must be performed before the operating
system is rebuilt.

For the IRIS HIPPI subsystem to be functional, the IRIX operating system (kernel) that is
currently on the system must be rebuilt to include the IRIS HIPPI driver. When changes
are made to any of the following files, or when new IRIS HIPPI software is installed, it is
necessary to rebuild the operating system:

• /var/sysgen/ioconfig/hippi

• /var/sysgen/master.d/hps

• /var/sysgen/master.d/hippi

• /var/sysgen/master.d/hippibp

• /var/sysgen/master.d/if_hip

• /var/sysgen/system/hippi.sm

• /var/sysgen/system/hippi_s.sm

• /usr/etc/ifhip.conf

The three sets of instructions below each build a new operating system and start it
running. It is not important which set of instructions is used.

Instruction Set 1

% su
Password: thepassword
/etc/init.d/autoconfig
Automatically reconfigure the operating system (y or n)? y
<log on>
% su
Password: thepassword
/etc/reboot
.....<various messages are displayed on console>...
configuring hip0 as name
configuring hip1 as name

66

Chapter 2: Configuring IRIS HIPPI

Instruction Set 2

% su
Password: thepassword
/etc/shutdown

When the system shuts down, restart it. When this question is displayed, answer with
yes or y.

Automatically reconfigure the operating system (y or n)? y
<log on>
% su
Password: thepassword
/etc/shutdown

Instruction Set 3

Use the same sequence as Set 2; however, instead of the /etc/shutdown command, use any
of the following:

• /sbin/init 0

• /etc/halt

• /etc/reboot

67

Chapter 3

3. Maintaining, Monitoring, Verifying, and
Troubleshooting IRIS HIPPI

This chapter describes how to maintain, monitor, verify, and troubleshoot the IRIS HIPPI
subsystem.

Commands Available for IRIS HIPPI

IRIS HIPPI can be monitored and maintained with the commands summarized in
Table 3-1.

Table 3-1 Utilities for Monitoring and Maintaining IRIS HIPPI

Command Purpose Page

/usr/etc/hipmap Adds and deletes entries from the lookup table (in memory) that
maps HIPPI I-fields to IP addresses.

page 74

/usr/etc/hipcntl Provides a variety of control and status functions for the IRIS
HIPPI subsystem.

page 68,
page 69,
page 76

/usr/etc/hiptest Verifies IRIS HIPPI subsystem through the character device
interface, without going through the IP network interface.

page 81

/usr/etc/ping Verifies IP network interfaces. Can be used to verify that a hip#
network interface is functioning.

page 85

/usr/etc/ifconfig All the normal IP configuration options work with IRIS HIPPI IP
network interfaces (that is, hip#), except broadcast, arp, and the
specification of a destination IP address for setting up a
point-to-point connection.

page 74

/usr/etc/netstat All the normal network status information is available for IP
interfaces to IRIS HIPPI. Non-IP interfaces are not displayed;
however, if the IRIS HIPPI driver has been built with IP support,
a disabled hip0 interface with no IP address is shown.

page 85,
page 88

68

Chapter 3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIS HIPPI

Step-by-Step Instructions for Common Procedures

This section describes some of procedures commonly used to monitor and maintain the
IRIS HIPPI subsystem. All of the IRIS HIPPI utilities (hipmap, hipcntl, and hiptest) require
the user to have superuser (root) privileges.

Disable or Enable IRIS HIPPI Board

To shut down or disable the IRIS HIPPI board, use the command below. This command
resets the board; all data (incoming or outgoing) that is on the board is lost. This event
leaves the board in a non-operational state: incoming connection requests are rejected
and applications attempting to transmit or receive over the device receive ENODEV
errors.

hipcntl [hippi #] shutdown

To start or enable the IRIS HIPPI board (after a shutdown), use the command below. This
command verifies that the versions of the firmware on the board and the driver in the
operating system match. If they do not match, the driver loads a compatible version of
firmware onto the board before starting the firmware.

hipcntl [hippi #] startup

Configure Board to Reject or Accept Connection Requests

To configure the IRIS HIPPI subsystem so that the transmit channel does not generate
any connection REQUEST signals and so that the receive channel does not generate any
CONNECT (accept) signals, use the command below:

hipcntl [hippi #] reject

To configure the IRIS HIPPI subsystem so that both the transmit and receive channels
open connections, use the command below. This command results in the transmit
channel generating connection REQUESTs when host applications send data, and in the
receive channel generating CONNECT signals in response to connection REQUESTs.

hipcntl [hippi #] accept

Step-by-Step Instructions for Common Procedures

69

Check Status

To display status information for an IRIS HIPPI board and its source (SRC) and
destination (DST) subsystems, use the command below. Most of the counted items are
initialized to zero upon reset of the board and roll over to zero upon reaching 232 (that is,
at 4,294,967,295); exceptions are explained in the tables. The displayed information is
described in Table 3-2 or Table 3-3, depending on the system’s hardware.
Troubleshooting advice regarding this information is provided in “Interpreting Status
Information” on page 89.

hipcntl [hippi #] status

Table 3-2 IRIS HIPPI Status Information for Copper-Based HIO Hardware

Status Item Description

FLAGS:

 DSIC SRC sees the incoming INTERCONNECT signal from its destination.

 SDIC DST sees the incoming INTERCONNECT signal from its source.

 ACCEPTING DST is accepting connections. When this flag is not listed, the DST is
rejecting connections.

 DST.PKT DST sees that the PACKET input signal is asserted

 DST.REQ DST sees that the REQUEST input signal is asserted

 SRC.REQ SRC channel’s REQUEST output signal is asserted

 SRC.CON SRC sees that the CONNECT input signal is asserted

SRC connections: Count of total connection REQUEST signals issued by source.

SRC packets: Count of total packets sent by source.

SRC rejects: Count of SRC’s connection attempts that were rejected by the remote
destination.

SRC seq errors (dm): Count of sequence errors detected within the SRC’s data state
machine.

SRC seq errors (cd): Count of illegal sequencing of inbound control signals at SRC’s
connection state machine. The remote destination is believed to be at
fault.

70

Chapter 3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIS HIPPI

SRC seq errors (cs): Count of sequence errors detected within the SRC’s connection state
machine.

SRC dsic lost: Count of connections dropped due to lost DSIC signal.

SRC time outs: Count of connection attempts that timed out so that the SRC withdrew
the request.

SRC connects lost: Count of connections that were dropped by the remote destination.

SRC parity errs: Count of SRC’s parity errors.This error indicates that a local parity
error (for example, on the IRIS HIPPI board) resulted in the
transmission of invalid data.

DST connections: Count of connections accepted by DST.

DST packets: Count of total packets received

DST rcv on bad ulp: Count of packets discarded by DST due to unknown ULP-id.

DST hippi-le drop: Count of HIPPI-LE packets discarded by DST.

DST llrc: Count of connections dropped by DST due to LLRC errors.

DST parity: Count of connections dropped by DST due to parity errors in
incoming data. Bit-error rates below 10-20 are not counted; for
example, if the DST encounters 1 error after receiving 10-21 bits of
correct data, it does not drop the connection.

DST sequence err: Count of connections dropped by DST due to sequence errors.
Sequence errors are invalid combinations of HIPPI-PH signals (for
example, an asserted BURST signal when the PACKET signal is not
asserted).

DST sync err: Count of synchronization errors detected by DST.

DST illegal burst: Count of inbound packets of an illegal burst size.

DST sdic lost: Count of connections dropped by DST due to lost SDIC signal.

DST null connections Count of connections with zero-length packets.

Table 3-2 (continued) IRIS HIPPI Status Information for Copper-Based HIO Hardware

Status Item Description

Step-by-Step Instructions for Common Procedures

71

Table 3-3 IRIS HIPPI Status Information for Fiber Optics-Based XIO Hardware

Status Item Description

FLAGS:

 LOOPBACK The board is operating in internal loopback mode. Packets are not
being passed to the fiber; instead they are going directly from the
board’s SRC to its DST. When this flag is absent (not set), the board
is operating in normal mode; packets are transmitted onto the fiber.

 DST.SIG_DET HIPPI-Serial DST is detecting a signal on inbound fiber. Normal
operation requires the presence of this flag.

 DST.LNK_RDY HIPPI-Serial DST is in operational state (that is, it has successfully
completed reset and is currently in HIPPI-Serial link state 2). This
flag is absent (not set) only if the DST state machine transitions to
state 0 or 1, caused by losing contact with the HIPPI-Serial (G-link)
chip on the board or the fiber connection. Normal operation
requires the presence of this flag.

 DST.FSYNC HIPPI-Serial DST is seeing/interpreting the Flag (alternating 0/1)
bit from the coding nibbles of the incoming data frames. Normal
operation requires the presence of this flag.

 DST.OH8SYNC HIPPI-Serial DST is synchronizing with the OH8 framing
(alternating 0/1) overhead bit. Normal operation requires the
presence of this flag.

 ACCEPTING DST is accepting connections. When this flag is not listed, the DST
is rejecting connections. Normal operation requires the presence of
this flag.

 DST.PKT DST sees that the inbound PACKET signal is asserted.

 DST.REQ DST sees that the inbound REQUEST signal is asserted.

 SRC.REQ SRC channel’s outbound REQUEST signal is asserted.

 SRC.CON SRC sees that the inbound CONNECT signal is asserted.

SRC connections: Count of connection REQUEST signals issued by source.

SRC packets: Count of total packets sent by local SRC.

72

Chapter 3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIS HIPPI

SRC rejects: Count of SRC’s connection attempts that were rejected by the
remote destination.

SRC glink reset: Count of times that the firmware reset both the HIPPI-Serial
(G-link) chips. A reset occurs when the firmware believes one of the
HIPPI-Serial (G-link) chips is not responding. However, a reset can
be caused by faulty cabling, ODLs, or connectors since the firmware
cannot identify the true cause for an unresponsive HIPPI-Serial
portion of the board.

SRC glink lost; Count of times that the firmware fails to see any one of the following
flags for more than half a second: DST.OH8SYNC, DST.FSYNC,
DST.LNK.RDY, or DST.SIG.DET. This event can be counted, at
maximum, 50 times per second (at 25MHz).

SRC time outs: Count of connection attempts by SRC that timed out.

SRC connects lost: Count of connections made by SRC that were dropped by the other
side.

SRC parity errs: Count of SRC parity errors. This error indicates that a local parity
error (for example, on the IRIS HIPPI board) resulted in the
transmission of invalid data.

SRC number bytes sent: Count of bytes transmitted. Maximum count, before starting over at
zero, is 264 (that is, more than 18 quintillion).

DST connections: Count of connections that were accepted by DST.

DST packets: Count of total packets received by DST.

DST rcv on bad ulp: Count of HIPPI-FP packets that DST discarded due to unknown
ULP-id. Some programs produce a few of these events when they
are terminated unexpectedly (for example, doing a Ctrl-C to hiptest),
because the receiver goes away before the transmitter.

DST hippi-le drop: Count of HIPPI-LE packets discarded by DST due to no accessible
space on the receive packet queue.

DST llrc: Count of connections dropped by DST due to LLRC errors.

Table 3-3 (continued) IRIS HIPPI Status Information for Fiber Optics-Based XIO Hardware

Status Item Description

Step-by-Step Instructions for Common Procedures

73

DST parity: Count of connections dropped by DST due to parity errors in
incoming data. Bit-error rates below 10-20 are not counted; for
example, if the DST encounters 1 error after receiving 10-21 bits of
correct data, it does not drop the connection.

DST frame/state err: Count of (1) framing (alternating OH8 overhead bit) errors that
occurred while PACKET signal was asserted, and (2) illegal HIPPI
signal states or transitions (for example, a PACKET signal was
received without a preceding REQUEST signal).

DST flag err: Count of data frame alternating flag bit synchronizations that were
lost while PACKET signal was asserted.

DST illegal burst: Count of packets with illegal burst sizes.

DST link rdy lost in pkt: Count of packets that were aborted due to the DST.FSYNC,
DST.OH8SYNC, or DST.LNK.RDY flag becoming unset (not true)
when the PACKET signal was asserted.

DST null connections: Count of connections with zero-length packets.

DST ready errors: Number of bursts received for which no READYs had been sent.

DST bad packet starts: Count of inbound HIPPI packets that encountered errors almost
immediately (for example, a PACKET-BURST-no_PACKET
sequence occurred for a HIPPI-FP connection but less than 12 bytes
was transmitted, or a PACKET signal was asserted then deasserted
without a BURST ever occurring).

DST number bytes received Count of bytes received. Maximum count, before starting over at
zero, is 264 (that is, more than 18 quintillion).

Table 3-3 (continued) IRIS HIPPI Status Information for Fiber Optics-Based XIO Hardware

Status Item Description

74

Chapter 3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIS HIPPI

Disable or Enable an IP Interface

To enable/disable the IP network interface to the IRIS HIPPI board, use the standard
/usr/etc/ifconfig command, as shown below.

ifconfig [hip #] down
ifconfig [hip #] up

Change IP Network Interface Parameters

Dynamic configuration of the IP network interfaces is done with the /usr/etc/ifconfig
command, which is explained in detail in the command’s reference (man) page. The
command lines listed below are available for use with IRIS HIPPI:

ifconfig [hip #] IPaddr
ifconfig [hip #] netmask
ifconfig [hip #] metric

Note: Some of the standard ifconfig arguments are not supported for IRIS HIPPI (for
example, broadcast and arp).

Change the Static ARP Table That Maps IP Addresses to I-fields

The /usr/etc/hipmap command makes changes to the static address resolution information
(that is, the static lookup table) that is currently in memory. Any name or IPaddress used
on the hipmap command line must already exist in the /etc/hosts database.

Note: Any changes made to the lookup table using the command line will be lost when
the /etc/init.d/network script is invoked. To make changes that endure, follow the
instructions in “Editing the hippi.imap File” in Chapter 2.

To add an entry to the lookup table, use this command line:

hipmap name I-field_value [ULA_value]

where name is an entry from the /etc/hosts database (either an IP address or its mnemonic).

To delete one entry from the lookup table, use one of these command lines:

hipmap -d name
hipmap -d IP_address

Step-by-Step Instructions for Common Procedures

75

To delete all the entries from the lookup table, use this command line:

hipmap -D

To concatenate new entries and/or replace already existing entries with new values from
a file, use this command line:

hipmap -f filename

To clear the lookup table, then add a new set of entries from a file, use this command line:

hipmap -D -f filename

Display the ARP Table That Is Currently in Memory

Use the command line below to display the currently-in-memory static address
resolution information (that is, the static lookup table of IP addresses with their
mappings to I-fields and ULAs):

hipmap -a

Display Local HIPPI Addresses

Use the command line below to display the I-fields (and, in some cases the ULAs) that
are currently being used by the HIPPI-LE module for the IRIS HIPPI subsystem(s):

hipmap -a

Note: This command does not display the ULA for a fiber optics-based XIO board. Use
the hipcntl getmac command instead.

76

Chapter 3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIS HIPPI

Set Timeout for Source Channel Connections

To dynamically change the timeout value used by the IRIS HIPPI source channel, use the
command line below. The source timeout is the amount of time that the source channel
waits for a CONNECT or READY signal from the destination before it aborts the request.

For the HIO board, the granularity for this timeout is a quarter of a second (that is, 250
milliseconds); a command-line timeout value that are not divisible by 250 is rounded up
to the next quarter-second. For the XIO board, the granularity is 1 millisecond. In this
command line, the timeout is expressed in milliseconds.

hipcntl [hippi #] stimeo timeout_in_milliseconds

Note: It is possible to set the timeout to a value that is so small that the source closes its
connections to one or more destinations before they have enough time to respond. The
symptom of this is many SRC time outs and fewer than expected SRC bytes sent ,
as reported by hipcntl status.

Display ULA (MAC) Address

Use the command line below to display the hardware address:

hipcntl getmac

Note: This functionality does not work for the copper-based HIO mezzanine board
because that hardware does not store a hardware address. The ULA for an HIO board is
configured in the hippi.imap file and can be displayed with the hipmap -a command.

Installing a Loopback Link

77

Installing a Loopback Link

To install a loopback link, follow the instructions in “Loopback Link for Challenge or
Onyx Systems” or “Loopback for Origin and Onyx2 Systems,” as appropriate.

Loopback Link for Challenge or Onyx Systems

To install a copper loopback link on an IRIS HIPPI board installed into a CHALLENGE
or Onyx system, use any of the procedures illustrated below:

• Use any standard HIPPI cable to connect the IRIS HIPPI DST and SRC ports on the
IRIS HIPPI board’s I/O panel plate to each other, as illustrated in Figure 3-1.

Figure 3-1 Installing a Copper Loopback Link Using a HIPPI Cable

• Use a special loopback (female-to-female) cable to connect the other end of the
HIPPI destination and source cables to each other, as illustrated in Figure 3-2.

System to be testedOne HIPPI cable

78

Chapter 3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIS HIPPI

Figure 3-2 Installing a Copper Loopback Link Using a Loopback Cable

Note: An alternate method for looping back the SRC and DST is to attach both IRIS
HIPPI channels (SRC and DST) to the same port on a switch, and to add a HIPPI address
mapping (for this connection) to the switch’s address table. The hiptest utility can then
transmit packets to itself by using an I-field that contains the host’s own HIPPI address
as the destination. This works because, unlike many IRIX drivers, the IRIS HIPPI driver
does not automatically route self-addressed packets through the loopback interface (lo0).

Loopback cable

Installing a Loopback Link

79

Loopback for Origin and Onyx2 Systems

To install a loopback link for an IRIS HIPPI-Serial XIO board installed in an Origin or
Onyx2 system, use any of these procedures:

• Use the hipcntl loopback command (as demonstrated below) to configure the board
for internal (board) loopback.

hipcntl hippi # shutdown
hipcntl hippi # loopback
hipcntl hippi # startup

where # is the unit number for the board as displayed by hinv -d hippi.

Note: With this type of loopback, the optical transmitter and receptor (ODLs) on the
board are not verified during the verification procedures. The card runs in loopback
mode until it is reset (that is, until the hipcntl shutdown/startup sequence is
invoked).

• Attach a dual-SC, multimode loopback connector to the system’s I/O panel plate.
This special device, illustrated in Figure 3-3, connects the IRIS HIPPI-Serial DST
(receive) and SRC (transmit) fibers to each other.

• Attach the IRIS HIPPI-Serial port to a switch and add a HIPPI address mapping for
the port to the switch’s address table. The hiptest utility can then transmit packets to
itself by using an I-field that contains the host’s own HIPPI address as the destination.

Figure 3-3 Fiber-optic Loopback Connector

At le
ast 2 meters

of cable

80

Chapter 3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIS HIPPI

Verifying the HIPPI Subsystem

The most reliable method for verifying an IRIS HIPPI subsystem is to install a loopback
link between the destination and source on the same system, then run the hiptest
verification test described under the heading “Verify the Board and Its HIPPI-FP
Interface” in this section. After the HIPPI subsystem has been verified, further
upper-layer verification and interconnectivity tests can be run (for example, the test
described under the heading “Verify an IP-over-HIPPI Interface” in this section) with the
system attached to other HIPPI systems (for example, a switch or endpoint).

Note: Unlike many IRIX drivers, the IRIS HIPPI driver does not automatically route
self-addressed packets through the local loopback interface (lo0), so that even the IP stack
can be verified with the loopback link in place.

Verify That the Board Has Been Located by the Software

To verify that an IRIS HIPPI board has been located by the operating system during the
last reboot, use any of the following commands:

% hinv -d hippi
HIPPI-Serial adapter: unit #, in module # I/O slot #

% hinv -mvv -d hippi
. . .
Location: /hw/module/1/slot/io6/hippi_serial

HIPPI-SERIAL Board: barcode ###### part 030-0968-00 # rev #
Group ff Capability ffffffff Variety ff Laser 0000000a0f8f

HIPPI-Serial adapter: unit #, in module # I/O slot #

% find /hw/module -name hippi
/hw/module/ #/slot/io #/hippi_serial/pci/0/hippi

Note: Each IRIS HIPPI board may have multiple full-path entries in the hardware graph;
the pci/0/hippi entry is the main one.

Verifying the HIPPI Subsystem

81

Verify the Board and Its HIPPI-FP Interface

To verify the IRIS HIPPI board and its HIPPI-FP interface (without going through the IP
stack), use the /usr/etc/hiptest utility. This test works for an IRIS HIPPI port that has a
loopback link installed between its source and destination channels (see “Installing a
Loopback Link” for instructions), or it can be invoked as sender or receiver alone, in
which case 2 instances of the utility must be running to successfully exchange packets
between the 2 processes. The utility requires the user to be superuser (root).

Fast and Quick Verification Test

For a simple, quick verification test through a physical port that has a loopback link
installed, use the commands below:

% cd /usr/etc
% su
Password: thepassword
hinv -d hippi
<use the displayed unit number in the next command line>
<for my_ifield, use the port’s own I-field from the hippi.imap file>
hiptest -I 0x my_ifield -D /dev/hippi
hiptest: /dev/hippi #:
sending 64 packets, size range [16..16777224] to I-field 0x00000001
...................... <up to 64 dots>

For a simple, quick verification test when a physical port is attached to a switch, use the
commands below:

<in one UNIX shell>
% cd /usr/etc
% su
Password: thepassword
hinv -d hippi
<use the displayed unit number for the # in the next command line>
hiptest -r -D /dev/hippi
hiptest: /dev/hippi #:
reading 64 packets
...................... <up to 64 dots>
hiptest(DST): received 64

82

Chapter 3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIS HIPPI

<in a different UNIX shell>
% cd /usr/etc
% su
Password: thepassword
<use the same or a different installed device/unit number as above>
<use the port’s I-field from the hippi.imap file>
hiptest -s -I 0x my_ifield -D /dev/hippi
hiptest: /dev/hippi #:
sending 64 packets, size range [16..16777224] to I-field 0x my_ifield
...................... <up to 64 dots>
hiptest(SRC): sent 64

Extensive Verification Test

The hiptest utility sends randomly-sized HIPPI-FP packets that contain randomly
generated data for the D2 data set. The test then reads the received packets and verifies
that the received data matches the data that was sent. The following items from the
received packet are compared to those items from the transmitted packet: length of the
header (FP header and D1 data area), length of the D2 area, and data integrity
(word-by-word comparison) for the D2 data set.

The utility creates HIPPI-FP packets with the following non-configurable characteristics:

FP header 8 bytes of FP header where all fields contain valid values for the packet.
Uses ULP-id value 0x89 (hexadecimal).

D1 area size 8 bytes.

D1 data set Zero.

D2 area size Randomly generated size, ranging from 16 up to the constraining
bytecount specified by maxsize. The absolute maximum size possible is
2MB for copper-based HIO cards or 16MB for fiber-optics XIO cards. The
first words of the D2 area are included in the first burst of the packet.

D2 data set Randomly generated data ranging.

Verifying the HIPPI Subsystem

83

The utility allows you to specify the following packet characteristics:

-I The I-field value (in hexadecimal format) to use for the source’s
connection request. The value must exist in the hippi.imap file. There is
no default; user must specify an I-field.

/usr/etc/hiptest -I 0x07001002

hiptest: /dev/hippi0:

sending 64 packets, size range [16..2097160],

to I-field 0x07001002

-D The IRIS HIPPI board (unit) to test: /dev/hippi0, /dev/hippi1, etcetera. The
unit number can be displayed with the hinv -d hippi command. If the
board is not specified on the command line, the command uses
/dev/hippi0.

/usr/etc/hiptest -I 0x01000005 -D /dev/hippi3

hiptest: /dev/hippi3:

sending 64 packets, size range [16..16777224],

to I-field 0x01000005

maxsize The maximum bytesize (in decimal format) for the packets. The value
specified must be a number that is divisible by 8. The minimum is 16 (8
bytes of FP header and 8 bytes of D1 data). The maximum is 2 megabytes
for a copper-based HIO board or 16 megabytes for a fiber-optics XIO
board, plus 8 bytes (that is, 2097160 or 16777224 bytes). If maxsize is not
specified on the command line, the command uses the maximum
possible for the installed hardware.

/usr/etc/hiptest -I 0x00000001 8192

hiptest: /dev/hippi0:

sending 64 packets, size range [16..8192],

to I-field 0x00000001

#packets The number of packets (in decimal format) to send before dropping the
connection and ending the test. The minimum is 1; there is no
maximum; if #packets is not specified on the command line, hiptest uses
64. When #packets is specified, maxsize must also be specified, since the
first argument is always interpreted as the maxsize and the second as the
#packets.

/usr/etc/hiptest -I 0x01000002 8192 10

hiptest: /dev/hippi0:

sending 10 packets, size range [16..8192],

to I-field 0x01000002

84

Chapter 3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIS HIPPI

The command line usage for hiptest is summarized below. After the command is invoked,
each successfully sent packet is indicated with a dot. To terminate the test at any point,
press the <Ctrl > and <C> keys simultaneously.

hiptest [-I 0x< Ifieldvalue>] [-D /dev/hippi[0-N]] -r -s [maxsize [#pckts]]

Examples:

• To run the test through the loopback mechansim using the default settings, use the
commands below:

% cd /usr/etc
% su
Password: thepassword
hiptest -I 0x my_ifield
hiptest: /dev/hippi0:
sending 64 packets, size range [16..2097160],
to I-field 0x my_ifield
...................... <up to 64 dots>

• To send one minimum-sized packet through the loopback mechansim, use the
command line below:

hiptest -I 0x my_ifield 16 1

• To send 25 packets of up to 2 megabytes through the loopback mechansim, use the
command line below:

hiptest -I 0x my_ifield 2097152 25

• To run the test when the system is attached to a switch, open up 2 UNIX shell
windows. The windows can be on the same system or on different system running
IRIS HIPPI. In one window, invoke hiptest as a receiver/destination (-r option). In
the other window, invoke hiptest as a source (-s option). For the source, specify the
destination’s I-field. You must replace dst_ifield shown in the example with the value
in the system’s hippi.imap file that identifies the destination. When using a switch, it
is recommended that the I-field have the camp-on bit set to one and the PS bits set to
zero for source addressing.

hiptest -r
hiptest -s -I 0x dst_ifield

• To test four different IRIS HIPPI boards through their loopback mechansims, invoke
the command in four separate UNIX shell windows or execute it four times in the
background, as in the example below:

hiptest -I 0x my_ifield_0 -D /dev/hippi0 &
hiptest -I 0x my_ifield_1 -D /dev/hippi1 &
hiptest -I 0x my_ifield_2 -D /dev/hippi2 &
hiptest -I 0x my_ifield_3 -D /dev/hippi3 &

Verifying the HIPPI Subsystem

85

• To test four different IRIS HIPPI ports when they are attached to a switch, invoke
four instances of the command in which 2 act as sources and 2 as receivers, as in the
example below:

hiptest -s -I 0x dst_ifield_1 -D /dev/hippi0 &
hiptest -r -D /dev/hippi1 &
hiptest -s 0x dst_ifield_3 -D /dev/hippi2 &
hiptest -r -D /dev/hippi3 &

If the hiptest utility fails with an error message, locate the error message in the section
“Alphabetical Error Message Listing” in Chapter 4 and follow the instructions.

Verify an IP-over-HIPPI Interface

To verify that each IP-over-HIPPI network interface is functional, follow the instructions
in this section. This test assumes that the HIPPI subsystem has passed the hiptest
verification, as described under the heading “Verify the Board and Its HIPPI-FP
Interface” in this section.

Note: Unlike many network software products, the IRIS HIPPI software does not
loopback IP packets through the station’s local loopback interface (lo0). All
IP-over-HIPPI packets are passed to the IRIS HIPPI hardware, regardless of destination
address.

To accomplish this verification, use /usr/etc/ping -r (lower case -r, not -R) to make this
station communicate with another HIPPI IP station (or itself) over the HIPPI subsystem.
If desired, you can use hipcntl status to monitor the packet and byte count of this test.

1. Obtain the IP network addresses for all the IRIS HIPPI boards on this system. This
information can be displayed with the netstat command shown below, or with
hipmap -a. The network address is listed in the column labelled Network , as
illustrated in Figure 3-4.

% /usr/etc/netstat -ina

86

Chapter 3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIS HIPPI

Figure 3-4 The /usr/etc/netstat -ina Display

2. Obtain the name (or IP address) of at least one station on each of these network
addresses. Two methods for obtaining station names are described below.

• For a system connected to a local area network that provides name lookup
service (NIS), use the commands below to create a file of known hosts for each
HIPPI network connection. Each file will contain the names and addresses of
stations that share a particular network address:

% ypcat hosts | grep hip0_networkaddress > hip0.s
% ypcat hosts | grep hip1_networkaddress > hip1.s
<do this for each HIPPI IP network address>

where hip#_networkaddress values are the addresses from the Network column of
the netstat display (illustrated in Figure 3-4).

Example:

% ypcat hosts | grep 253.5.28 > hip0.s

• For a system that does not have access to NIS, use these commands to create a
file of hosts that are known for each network connection. Each file will contain
the locally-known names and addresses of stations that share a particular
network address:

% grep hip0_networkaddress /etc/hosts > hip0.s
% grep hip1_networkaddress /etc/hosts > hip1.s
<do this for each HIPPI IP network address>

Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
ef0 1500 192.74.28 192.74.28.64 873404 1248 316177 0 1576

09:AC:15:B1:02:6F
hip0 65280 253.5.88 253.5.88.1 2578 2 28679 0 2148

2D:10:26:00:8A:EC
hip1 65280 none none 0 0 0 0 0
lo0 8304 127 127.0.0.1 3609810 0 3609810 0 0

Configuration for first IRIS HIPPI board

Ethernet

Configuration for second IRIS HIPPI board

Verifying the HIPPI Subsystem

87

Example:

% grep 253.5.88 /etc/hosts > hip1.s

3. Communicate with one station located on the hip0 network. For the variable
hip0_station, you can use any of the names or IP addresses from the hip0.s file.

% ping -r hip0_station
PING stationname (IPaddress): 56 data bytes
64 bytes from . . . time= x ms . . .
<Ctrl><c>
---- stationname PING Statistics----
packets trans, # pckts rcvd, x% packet loss

Note: If a loopback link is in place, use the system’s own IP address for the
hip0_station variable.

4. If netstat lists more than one IRIS HIPPI (hip#) network interface, communicate with
one station on each of those networks. For the variable hip#_station, you can use any
of the names from the hip#.s file.

% ping -r hip#_station
PING stationname (IPaddress): 56 data bytes
64 bytes from . . . time= x ms
. . .
<Ctrl><c>
---- stationname PING Statistics----
packets trans, # pckts rcvd, x% packet loss

Note: If a loopback link is in place on any of the ports, use the system’s own IP
address for the hip#_station variable.

5. If one ping on each network succeeds, you have completed the verification
procedure. All the IRIS HIPPI network connections are functioning. Use the
commands below to remove the files with the lists of stations:

% rm hip0.s
% rm hip1.s
<do this command line for each .s file created>

If the ping on a network fails, follow the instructions in the section “Troubleshoot an
IP Interface.”

88

Chapter 3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIS HIPPI

Troubleshooting

Troubleshoot the Board and Its HIPPI-FP Interface

If the hiptest utility fails with an error message, locate the error message in the section
“Alphabetical Error Message Listing” in Chapter 4 and follow the instructions.

Troubleshoot an IP Interface

If the ping verification tests fail for all the HIPPI network connections, your system
probably has been configured incorrectly. Verify the configuration by performing the
steps below.

1. Verify that IP networking is enabled with the following command line:

% /sbin/chkconfig | grep network
network on

2. Use /usr/etc/netstat -ina to verify that the HIPPI network interfaces have been
configured and enabled.

Refer to the online IRIX Admin:Networking guide for information about configuring
and troubleshooting IP.

3. Verify that the /usr/etc/hippi.imap file has entries for the local system’s network
connection names (or IP addresses) and for the remote system names (or IP
addresses). Verify that each entry is correct.

4. Verify that the /usr/etc/hippi.imap file has correct entries for the local and remote
I-fields.

5. If using HIPPI source addressing, verify that each HIPPI cable is connected to the
remote port that matches the HIPPI address (that is, the I-field).

6. If the system is connected to a switch, verify that the switch is operational.

If the ping verification tests succeed for one HIPPI network connection, but others fail,
the IP stack is functioning, but one (or more) specific interfaces has a problem. To resolve
the problem, follow the instructions below for each problematic network connection.

Troubleshooting

89

1. Make sure that you know which IRIS HIPPI board is associated with the HIPPI
network interface (hip#) that you are troubleshooting.

2. Check that the HIPPI cables between the I/O panel and the other system (switch or
endpoint) are tightly connected at both ends. Use the board’s LEDs to verify that the
physical link is functional.

3. If the system is connected to a switch, verify that the addresses and the physical
ports on that switch are properly configured and operational.

4. Verify that the local /usr/etc/hippi.imap file has an entry for the problematic local
interface (that is, the IP address or name of the hip# interface) and for the remote
hostname (or IP address) that failed.

5. Verify that the other endpoint (IP host) is operational.

Or, as an alternate, select a different station on this LAN (network address). Try to
ping -r that station using the numerical address (instead of the name). If the ping
works, the network connection is functional. If the ping fails, proceed to the next
step.

6. Verify that the network portion (leftmost digits) of the addresses you are attempting
to ping match the local system’s network address associated with the physical
HIPPI connection you are troubleshooting. The local network address for each
HIPPI network interface can be displayed by the /usr/etc/netstat -in command.

Interpreting Status Information

The hipcntl status command displays a number of status and performance counts.
Table 3-4 and Table 3-5 suggest how to interpret and use this information for
troubleshooting different IRIS HIPPI hardware products. All of the counted items are
initialized to zero upon reset of the board. Most of the counted items roll over to (start
again at) zero upon reaching 232 (that is, at 4,294,967,295); the exceptions are the
bytecounts, which roll over at a little over 18 quintillion.

90

Chapter 3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIS HIPPI

Table 3-4 Troubleshooting With Status Information: Copper-based HIO Board

Item Reasonable/Problematic Values

SRC connections: Value should constantly increase, as long as local applications are
sending data.

SRC packets: Value should constantly increase, as long as local applications are
sending data.

SRC rejects: Count should be 0. The most probable cause for this event is incorrect
configuration (for example, the I-field is incorrectly formatted or has
an invalid setting, such as a W-bit set to indicate 64-bit-wide HIPPI).

SRC time outs: Count should be 0. Each event indicates the remote system did not
continue responding correctly after the initial connection was set up.
This event can be caused by a timeout value that is too short.

SRC connects lost: Count should be 0. Each event indicates a problem with a remote
HIPPI system.

SRC parity errs: Count should be 0. Each event indicates a problem with the local IRIS
HIPPI hardware.

SRC seq errors (dm): Count should be 0. Each event indicates a problem with the local
hardware.

SRC seq errors (cd): Count should be 0. Each event indicates a hardware problem with a
remote HIPPI device.

SRC seq errors (cs): Count should be 0. Each event indicates a problem with the local IRIS
HIPPI hardware.

SRC dsic lost: Count should be 0. Each event indicates a hardware or cabling
problem located somewhere between the outbound port on the local
panel plate connector and the inbound port on the adjacent HIPPI
device (for example, the switch).

SRC number bytes sent: Value should constantly increase, as long as local applications are
sending data.

DST connections: Value should constantly increase, as long as remote applications are
sending data to this host.

DST packets: Value should constantly increase, as long as remote applications are
sending data to this host.

Troubleshooting

91

DST rcv on bad ulp: Count should be 0. The most probable cause for this event is incorrect
configuration (for example, the remote endpoint’s HIPPI-FP layer is
incorrectly configured or a local customer-developed application has
not bound to its ULP-id correctly). Some programs can produce a few
of these events when terminated unexpectedly (for example, doing a
Ctrl-C to hiptest), because the receiver goes away before the
transmitter.

DST hippi-le drop: Count should be 0 or low. Usually caused by co-existence problems
between IP and HIPPI-FP. For example, a local HIPPI-FP application
may not be reading its input queue fast enough or it may be hogging
the DMA engine with large-sized packets. Both conditions can result
in the board’s receive FIFO being blocked, so arriving IP packets are
dropped. In rare instances, this condition can be caused by ULPs
using very small-sized packets that results in more time spent on
overhead processing than on data processing. In this case, increase
the packet size (MTU) used by the sources.

DST llrc: Count should be 0 or very low. The most probable cause is a high bit
error rate along the physical link (for example, a dirty fiber end, a
loose connector, a length of cable that is too long).

DST parity: Count should be very low. The most probable cause for a high count
is dirty fiber-optic ferrule tips, loose connectors, or too-long cabling.

DST null connections May indicate a problem with a remote HIPPI system. Usually
indicates that a remote application is opening and closing
connections without sending data or has an intermittent hardware
problem.

DST illegal burst: Count should be 0. Each event indicates a hardware problem with a
remote HIPPI device.

DST sequence err: Count should be 0. Each event indicates a hardware problem with a
remote HIPPI device.

DST sync err: Count should be 0. Each event indicates that DST lost
synchronization with its source.

DST sdic lost: Count should be 0. Each event indicates a hardware or cabling
problem located somewhere between the inbound port on the local
panel plate connector and the outbound port on the adjacent HIPPI
device (for example, the switch)

Table 3-4 (continued) Troubleshooting With Status Information: Copper-based HIO Board

Item Reasonable/Problematic Values

92

Chapter 3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIS HIPPI

DST frame/state err: Count should be 0. Each event indicates a hardware problem with a
remote HIPPI device.

DST flag err: Count should be 0 or very low. Each event indicates a hardware
problem with a remote HIPPI device, except immediately following
a local reset of the IRIS HIPPI hardware.

DST ready errors: Count should be 0. Each event indicates a hardware problem with a
remote HIPPI device.

DST bad packet starts: Count should be 0. Each event indicates a hardware problem with a
remote HIPPI device.

DST number bytes
received

Value should constantly increase, as long as a remote system is
sending data to this host.

Table 3-5 Troubleshooting With Status Information: Fiber Optics-based XIO Board

Item Reasonable/Problematic Values

SRC connections: Value should constantly increase, as long as local applications are
sending data.

SRC packets: Value should constantly increase, as long as local applications are
sending data.

SRC rejects: Count should be 0. The most probable cause for this event is incorrect
configuration (for example, the I-field is incorrectly formatted or has
an invalid setting, such as a W-bit set to indicate 64-bit-wide HIPPI).

SRC xmit retry

SRC glink reset Count should be 0. Each event indicates a problem with the local IRIS
HIPPI hardware and/or cabling.

SRC glink lost Count should be 0. Each event indicates a problem with the local IRIS
HIPPI hardware and/or cabling.

SRC time outs: Count should be 0. Each event indicates the remote system did not
continue responding correctly after the initial connection was set up.
This event can be caused by a timeout value that is too short.

Table 3-4 (continued) Troubleshooting With Status Information: Copper-based HIO Board

Item Reasonable/Problematic Values

Troubleshooting

93

SRC connects lost: Count should be 0. Each event indicates a problem with a remote
HIPPI system.

SRC parity errs: Count should be 0. Each event indicates a problem with the local IRIS
HIPPI hardware.

SRC number bytes sent: Value should constantly increase, as long as local applications are
sending data.

DST connections: Value should constantly increase, as long as remote applications are
sending data to this host.

DST packets: Value should constantly increase, as long as remote applications are
sending data to this host.

DST rcv on bad ulp: Count should be 0. The most probable cause for this event is incorrect
configuration (for example, the remote endpoint’s HIPPI-FP layer is
incorrectly configured or a local customer-developed application has
not bound to its ULP-id correctly). Some programs can produce a few
of these events when terminated unexpectedly (for example, doing a
Ctrl-C to hiptest), because the receiver goes away before the
transmitter.

DST hippi-le drop: Count should be 0 or low. Usually caused by co-existence problems
between IP and HIPPI-FP. For example, a local HIPPI-FP application
may not be reading its input queue fast enough or it may be hogging
the DMA engine with large-sized packets. Both conditions can result
in the board’s receive FIFO being blocked, so arriving IP packets are
dropped. In rare instances, this condition can be caused by ULPs
using very small-sized packets that results in more time spent on
overhead processing than on data processing. In this case, increase
the packet size (MTU) used by the sources.

DST llrc: Count should be 0 or very low. The most probable cause is a high bit
error rate along the physical link (for example, a dirty fiber end, a
loose connector, a length of cable that is too long).

DST parity: Count should be very low. The most probable cause for a high count
is dirty fiber-optic ferrule tips, loose connectors, or too-long cabling.

DST frame/state err: Count should be 0. Each event indicates a hardware problem with a
remote HIPPI device.

Table 3-5 (continued) Troubleshooting With Status Information: Fiber Optics-based XIO

Item Reasonable/Problematic Values

94

Chapter 3: Maintaining, Monitoring, Verifying, and Troubleshooting IRIS HIPPI

DST flag err: Count should be 0 or very low. Each event indicates a hardware
problem with a remote HIPPI device, except immediately following
a local reset of the IRIS HIPPI hardware.

DST illegal burst: Count should be 0. Each event indicates a hardware problem with a
remote HIPPI device.

DST link rdy lost in pkt: Count should be 0. Each event indicates a problem with the local IRIS
HIPPI hardware (for example, dirty fiber-optic end, loose connector,
too-long or too-short cable, kinked/cracked cable) or possibly with a
remote source. Use the various loopback tests to isolate the problem.

DST null connections May indicate a problem with a remote HIPPI system. Usually
indicates that a remote application is opening and closing
connections without sending data or has an intermittent hardware
problem.

DST ready errors: Count should be 0. Each event indicates a hardware problem with a
remote HIPPI device.

DST bad packet starts: Count should be 0. Each event indicates a hardware problem with a
remote HIPPI device.

DST number bytes
received

Value should constantly increase, as long as a remote system is
sending data to this host.

Table 3-5 (continued) Troubleshooting With Status Information: Fiber Optics-based XIO

Item Reasonable/Problematic Values

95

Chapter 4

4. IRIS HIPPI Error Messages

This chapter lists the error messages that the IRIS HIPPI utilities can display.

Overview of the Error Message Listing

This section is a reference section containing an alphabetical list of all the error messages
that can be displayed by IRIS HIPPI software.

With each error message is a discussion of the problems the message may indicate. The
list contains only messages that indicate an error or problem; it does not contain
informational messages that occur during normal operation.

Messages are alphabetized according to the following rules:

• Each message is alphabetized by the numerals (0–9) and letters (a–z) of the
message’s text. Numerals precede letters. (Figure 4-1 illustrates the text of an error
message.)

• Nonletters (for example, - or %) and blank spaces are shown in the text of the
message, but are ignored in alphabetization. For example, the message hip_open

appears between hipnet and hippi .

• When an error message includes an item that the software specifies differently (fills
in) for each instance of the message, this item is displayed in italic font and labeled
with a generic name (for example, filename). The generic names are skipped for
alphabetization purposes. For example, the error message goofy not responding

is located under hostname not responding among the “n” listings. Common
generic names used in this listing include hostname, interfacename, packet#, version#,
userentry, reason, digit, filename, and hexnumeral.

Note: If you cannot find an error message in the listing, identify potential fill-in
words, then look up the message without those words.

• Capitalization is not considered in alphabetization.

• The creator of each message is listed, in angled brackets, below the text of the
message: (<creator>).

96

Chapter 4: IRIS HIPPI Error Messages

IRIS HIPPI error messages are written into the file /usr/var/adm/SYSLOG or displayed at
the terminal; some messages appear in both places. Within the SYSLOG file, each
message is preceded by the date, time, host name, name of the process that created the
message, and process ID number, as illustrated in Figure 4-1. Only the text of the error
message (as illustrated in Figure 4-1) is included in the alphabetic list that follows.

Figure 4-1 Error Message Format in /usr/var/adm/SYSLOG File

Note: The list of error messages in this chapter covers only those unique to IRIS HIPPI.
Standard system error messages, even when caused by the IRIS HIPPI code, are not
covered.

Common Implications of Error Reasons

When the following generic errors (errnos) are returned by IRIS HIPPI, the reason is
usually due to the description below:

EBUSY The firmware on the board is not responding. It is probably hung; the
message usually does not mean that the board is occupied with other
work. This error can sometimes be remedied by doing a hipcntl shutdown
followed by hipcntl startup.

EINVAL An invalid parameter or argument was given to the system call.

ENODEV The hardware is not operational or there is no device known by the
supplied unit number. This error can sometimes be remedied by doing
a hipcntl shutdown followed by hipcntl startup.

EPERM The process (or user) invoking the call did not have sufficient access
rights. For example, the call may require superuser (root) privileges.

May 10 05:12:03 goofy hip0[58]: Unknown ULP-id

date and time host creator
name

text of error message

Alphabetical Error Message Listing

97

Alphabetical Error Message Listing

This section lists the error messages displayed on the console by the IRIS HIPPI utilities
and driver. Many of these messages are also written to the SYSLOG file.

#: bad HIPPI unit number

The entry used on the command line with hipcntl to identify the IRIS
HIPPI board (hippi#) contains an invalid unit number. Valid command
line entries are: hippi0 , hippi1 , hippi2 , and so on, for as many of the
installed boards as were located during the last restart.

FLAGS: ACCEPTING DST.LNK_RDY DST.FSYNC DST.OH8SYNC DST.SIG_DET

When all of the flags are displayed (as shown above) by the hipcntl status
command, the IRIS HIPPI-Serial port and its external cables are
functional. If ACCEPTING is missing, use hipcntl accept to make the
hardware start accepting connection requests. If DST.SIG_DET is
present, but one of DST.LNK_RDY, DST.FSYNC, or DST.OH8SYNC is
missing, the cable is probably dirty, not firmly connected, or damaged.
For complete information about these flags, see the documentation for
the panel plate LEDs.

harpioctl: unknown cmd: command

While attempting to resolve an address, the driver encountered the
indicated unknown ioctl command. This indicates that an upper layer
application (for example, the ifconfig utility) is passing the unknown
ARP command to the driver. Valid ARP commands include
SIOCSHARP, SIOCGHARP, SIOCDHARP, and SIOCGHARPTBL.

hip#: ifhip_output: Unsupported addr. family:0x hexnumeral

While processing a packet for transmission, the driver found that the
specified destination address does not belong to a supported address
family. The packet’s address family is indicated by hexnumeral. The
packet was not sent.

hipcntl: couldn’t get HIPPI statistics: reason

The ioctl call for the command HIPIOC_GET_STATS failed. The reason is
any of those described by the intro(2) man page and “Common
Implications of Error Reasons” on page 96.

98

Chapter 4: IRIS HIPPI Error Messages

hipcntl: couldn’t open HIPPI device /dev/hippi #

The open system call for the indicated IRIS HIPPI file device failed. This
may indicate that the IRIS HIPPI software has not been installed
properly or that it has been partially removed. Use inst to reinstall the
IRIS HIPPI software from the CD-ROM or distribution directory.

hipcntl: couldn’t set HIPPI accept flag: reason

The ioctl call for the command HIPIOC_ACCEPT_FLAG failed to
changed the destination channel’s accept/reject setting. The reason is
any of those described by the intro(2) man page and “Common
Implications of Error Reasons” on page 96.

hipcntl: couldn’t set src timeout: reason

The ioctl call for the command HIPIOC_STIMEO failed to set a new
timeout for the source channel. The reason is any of those described by
the intro(2) man page and “Common Implications of Error Reasons” on
page 96.

hipcntl: Double Warning: may be firmware driver mismatch if you force
download.

As hipcntl prepared to download firmware (startup), it discovered that
the driver and the firmware that is about to be loaded do not match. This
probably indicates a mismatch between the hipcntl utility and the driver.
Erase this hipcntl utility and install a copy that matches the driver.

hipcntl: Error: board is already up.

When hipcntl attempted to start the board, it found the board already
started.

hipcntl: Error: couldn’t get version numbers.
Possible hipcntl/kernel-driver mismatch.
Please autoconfig your system and reboot.

As hipcntl prepared to download firmware (startup), it discovered that it
either could not retrieve a version number for the current driver or for
the firmware currently loaded into the PROM on the IRIS HIPPI board.
This indicates that the IRIS HIPPI board is dysfunctional. Contact the
Silicon Graphics Technical Assistance Center.

Alphabetical Error Message Listing

99

hipcntl: Error: mismatch between kernel driver and hipcntl.
Cannot startup adapter.
You probably need to autoconfig and reboot your system
and/or remove any old copies of hipcntl(1m) on your system.

As hipcntl prepared to download firmware (startup), it discovered that
the driver and the firmware that is about to be loaded do not match. This
probably indicates a mismatch between the hipcntl utility and the driver.
Erase this hipcntl utility, reinstall the IRIS HIPPI software, and build a
new operating system.

hipcntl: HIPPI Board is down

The ioctl call for the command HIPIOC_GET_STATS failed because the
IRIS HIPPI board is not available (that is, it is shutdown or not
responding). To remedy this problem, use command hipcntl startup .
If it does not solve the problem, you may need to have the IRIS HIPPI
board checked.

hipcntl: problem programming flash: reason

The ioctl call for the command HIPPI_PGM_FLASH failed to download
new firmware into the IRIS HIPPI board’s PROM. The reason is any of
those described by the intro(2) man page. The new firmware has not
been loaded into the IRIS HIPPI board’s PROM. This message should be
preceded by other error messages indicating problems with the board’s
FLASH EEPROM. Contact the Silicon Graphics Technical Assistance
Center.

hipcntl: trouble bringing up HIPPI: reason

The ioctl call for the command HIPPI_SETONOFF failed to start the IRIS
HIPPI board. The reason is any of those described by the intro(2) man
page. When the reason is IO error , this message probably means that an
application has a file descriptor open for the device in question. Close all
file descriptors for this device (for example, quit from Performance
Co-Pilot). If all file descriptors are closed for this device, this message
may indicate that the board is dysfunctional. Invoke hipcntl shutdown to
shut down the board; then, try to start the board. If this does not succeed,
contact the Silicon Graphics Technical Assistance Center.

100

Chapter 4: IRIS HIPPI Error Messages

hipcntl: trouble shutting down HIPPI: reason

The ioctl call for the command HIPPI_SETONOFF failed to shutdown
the IRIS HIPPI board. The reason is any of those described by the intro(2)
man page and “Common Implications of Error Reasons” on page 96.

hipmap: couldn’t bind socket: reason

The utility was unable to bind to the raw socket. This indicates (1) a
problem with the operating system (not with the IRIS HIPPI software or
hardware) or (2) the IRIS HIPPI driver currently built into the operating
system was configured to exclude support for the IP protocol stack. The
reason is any of those described by the intro(2) man page and “Common
Implications of Error Reasons” on page 96.

hipmap: couldn’t get raw socket: reason

The utility was unable to obtain a raw socket. This indicates a problem
with the operating system, not with the IRIS HIPPI software or
hardware. The reason is any of those described by the intro(2) man page
and “Common Implications of Error Reasons” on page 96.

hipmap: couldn’t open input file: reason

The file supplied on the command line (for example, /usr/etc/hippi.imap)
could not be opened. This can indicate that the file does not exist, or that
the permissions are not set correctly. The reason is any of those described
by the intro(2) man page and “Common Implications of Error Reasons”
on page 96.

hipmap: couldn’t SIOCDHARP: reason

 The SIOCDHARP command within an ioctl system call failed. The
reason is any of those described by the intro(2) man page and “Common
Implications of Error Reasons” on page 96.

hipmap: couldn’t SIOCSHARP: reason

 The SIOCSHARP command within an ioctl system call failed. The reason
is any of those described by the intro(2) man page and “Common
Implications of Error Reasons” on page 96.

Alphabetical Error Message Listing

101

hipmap: malformed address name: IPaddress or hostname

The hostname or IPaddress indicated is not valid. The hostname or
IPaddress is a user entry from a file (for example, the /usr/etc/hippi.imap
file) or a command line entry.

hipmap: malformed I-field in line: line#

The second entry on the indicated line does not conform to a valid
I-field. To be valid, the I-field entry must be a 32-bit value in hexadecimal
format (for example, 0x00100003).

hipmap: malformed line: line#

The indicated line in the file being read (for example, /usr/etc/hippi.imap)
is not correctly formatted.

hipmap: malformed switch address.

The I-field entered on the command line is not valid. To be valid, the
I-field entry must be a 32-bit value in hexadecimal format (for example,
0x0100000C or 0100000C).

hipmap: malformed ULA in line: line#

On the indicated line, there is an optional third entry that does not
conform to a valid IEEE universal LAN MAC address (ULA) address. To
be valid, the ULA entry must be a 48-bit value in hexadecimal format
(for example, 0x7A385CF9028D).

hipmap: trouble flushing harp entry: reason

The SIOCDHARP command failed within an ioctl system call.The reason
is any of those described by the intro(2) man page and “Common
Implications of Error Reasons” on page 96.

hipmap: trouble reading harptable: reason

The SIOCGHARPTBL command failed within an ioctl system call. The
reason is any of those described by the intro(2) man page and “Common
Implications of Error Reasons” on page 96.

102

Chapter 4: IRIS HIPPI Error Messages

hipmap: warning: couldn’t resolve name: hostname

The system call, gethostbyname, failed for the indicated IPaddress or
hostname. This probably means that the indicated entry does not exist in
the host name database (the /etc/hosts file on the local filesystem or on the
NIS server).

hippi #: board asleep at iofile: line# with cmd_addr not cmd_addr after cmd_addr
at line#

The indicated IRIS HIPPI board (hippi#) controlled by the indicated iofile
is not responding to commands from the driver. The line# and cmd_addr
variables indicate the expected and actual locations in the command
queues. Use hipcntl to shut down, then startup the IRIS HIPPI board. If
this does not resolve the problem, the board is probably dysfunctional.
Contact the Silicon Graphics Technical Assistance Center.

hippi #: EEPROM erase FAILED!

While attempting to erase the FLASH EEPROM on the IRIS HIPPI
board, the driver encountered an error. Contact the Silicon Graphics
Technical Assistance Center.

hippi #: erase FAILED while zeroing flash

While attempting to zero out the FLASH EEPROM on the IRIS HIPPI
board, the driver encountered an error. Contact the Silicon Graphics
Technical Assistance Center.

hippi #: flash write failed!

While attempting to download new firmware into the FLASH EEPROM
on the IRIS HIPPI board, the driver encountered an error. Contact the
Silicon Graphics Technical Assistance Center.

hippi #: no board signature!

While the startup software was attempting to initialize the host-to-board
interface, the board’s initialization firmware did not respond. Contact
the Silicon Graphics Technical Assistance Center.

Alphabetical Error Message Listing

103

hippi_b2h: unknown op: command

The driver received an unknown command from the IRIS HIPPI board.
This may indicate a mismatch between the driver and firmware
versions. Contact the Silicon Graphics Technical Assistance Center.

hiptest: invalid maxsize user_input

The value entered for packet size falls outside the minimum or
maximum bytecount supported.

hiptest: invalid npkts user_input

The value entered for number of packets falls outside the minimum or
maximum supported.

hiptest: read time-out

The hiptest reading process failed to successfully read anything, so it
timed out. There should be other error messages, in addition to this one,
that explain the reason.

hiptest(DST): couldn’t bind fd_i to ULP: reason
hiptest(SRC): couldn’t bind fd_o to ULP: reason

The test’s HIPIOC_BIND_ULP ioctl() call failed. For the source (SRC), the
output (writing) call failed; for the destination (DST), the input (reading)
call failed. The reason is any of those described by the intro(2) man page
and “Common Implications of Error Reasons” on page 96.

This indicates a problem with the software, too many applications trying
to use the ULP-id, or a board that is shutdown. Perhaps the driver has
not been built into the operating system or the IRIS HIPPI software has
not been installed properly or the board has been shutdown with
hipcntl shutdown . This error message also appears if more than four
applications (for example, instances of hiptest) try to use ULP-id 0x89.

104

Chapter 4: IRIS HIPPI Error Messages

hiptest(DST): couldn’t open hippi device: reason
hiptest(SRC): couldn’t open hippi device: reason

The IRIS HIPPI board (for example, /dev/hippi#) was not found. The
reason is any of those described by the intro(2) man page and “Common
Implications of Error Reasons” on page 96.

For example, this message can indicate that the device file was not found
(perhaps the software was not installed properly) or that the board was
not located at startup time. To verify the latter, use the /sbin/hinv
command.

hiptest(DST): couldn’t open hippi device: Permission denied
hiptest(SRC): couldn’t open hippi device: Permission denied

You must be superuser to use hiptest.

This indicates a problem with the software. Perhaps the driver has not
been built into the operating system or the IRIS HIPPI software has not
been installed properly.

hiptest(DST): data integrity error at offset byte_offset
hiptest(DST): packet#: expecting tx_data got rcv_data
hiptest(DST): virtual address = ptr_rcv_data

The D2 data in the received packet does not match the D2 data that
hiptest sent. The byte_offset variable indicates the word within the packet
where the error was detected. The tx_data variable indicates what was
sent as compared to rcv_data, which was received. The problematic word
of received data is located at ptr_rcv_data.

hiptest(DST): packet#: header is bytecount long!?

The header (that is, FP header and D1 data) for the packet specified by
packet# was longer than the header that hiptest sent. The length of the
received header is indicated by bytecount. The test always sends 32 bytes.

hiptest(DST): HIPPI DST errs: 0x error_vector error_text error_text

When a hiptest read() call failed due to an EIO problem, hiptest retrieved
the reasons for the failure from the board. The value of the returned 6-bit
error vector is displayed in error_vector (in hexadecimal format). The
reasons are provided in the error_text displays.

Alphabetical Error Message Listing

105

hiptest(DST): packet#: length error: retv= rcv_bytecount len2= tx_bytecount

The D2 data set from the received packet is not the same size as that sent.
The two bytecounts are displayed: rcv_bytecount is for the received
packet and tx_bytecount is for the packet that was sent.

hiptest(DST): packet#: trouble reading header: reason

The read() call for the header of the packet specified by packet# failed,
where 0 indicates the first packet. The reason is any of those described by
the intro(2) man page and “Common Implications of Error Reasons” on
page 96.

hiptest(DST): packet#: trouble reading body: reason

The read() call for the body of a packet failed, where a packet# of 0
indicates the first packet. The reason is any of those described by the
intro(2) man page and “Common Implications of Error Reasons” on
page 96.

hiptest(SRC): couldn’t set D1_SIZE hdr: reason

The test’s HIPIOC_D1_SIZE ioctl() call failed. The reason is any of those
described by the intro(2) man page and “Common Implications of Error
Reasons” on page 96.

hiptest(SRC): couldn’t set I-field: reason

The test’s HIPIOC_I ioctl() call failed. The reason is any of those
described by the intro(2) man page and “Common Implications of Error
Reasons” on page 96.

This indicates a problem with the software. Perhaps the driver has not
been built into the operating system or the IRIS HIPPI software has not
been installed properly.

hiptest(SRC): HIPIOCW_ERR: error_num error_text

When hiptest’s write() call failed, hiptest retrieved the reason for the
failure from the board. The reason for the failure is provided in
error_num (its ID) and error_text.

106

Chapter 4: IRIS HIPPI Error Messages

hiptest(SRC): trouble doing HIPIOCW_ERR

When hiptest’s write() call failed, hiptest tried to retrieve the reason for
the failure from the board, but this attempt failed.

hiptest(SRC): packet#: write return value: returnvalue
hiptest(SRC): trouble writing: reason

The write() call for the packet failed, or the connection request that was
triggered by this write() failed to open a connection. For example, if there
is a switch between the source and destination endpoints, the I-field may
be invalid.

The packet# indicates which packet in the series failed, where 0 is the first
packet. The returnvalue indicates the number of bytes that were
successfully sent; when returnvalue is -1, the write() call failed to send any
data. The reason is any of those described by the intro(2) man page and
“Common Implications of Error Reasons” on page 96.

if_hip#: can’t output checksum proto headertype

While processing a packet for transmission, the driver found that the
header was not TCP nor UDP, and because of this could not calculate a
checksum for the packet. The packet was not sent.

Usage: hipcntl stimeo <value>

The hipcntl command line for setting the source’s connection timeout
did not contain a valid setting. Valid settings for the timeout value are
milliseconds entered in decimal format (for example, hipcntl stimeo

1000 sets the timeout to 1000 milliseconds or 1 second).

107

Index

A

address, see routing, source addressing, logical
addressing, and ULA

address resolution
dynamic, 42
static, 42

ANSI standards, 35
API, see application programming interface
application programming interface, xii, 42

B

B bit, see FP header:Burst bit
bi-directional communication, 27
burst

definition, 8
first, 9
location of first byte of user data, 9
short, 9

BURST signal, 26
bypass functionality, 56

C

cable, see physical link
camp-on, 8
Camp-on bit, see I-field
CCI, see I-field, 18
commands

summary of, 67
/usr/etc/hipcntl, 67
/usr/etc/hipmap, 67
/usr/etc/hiptest, 67

configuration
list of configurable items, 51
overview, 51
see also how to:configure

configuring the IRIS HIPPI board, 68
connection

control, 7-8
open, 2, 6
rejections, 7

connector, 40
CONNECT signal, 7, 26
control information, 20
copper cable, see physical layer
customer developed applications, 42
customer-developed applications, xii
customer support, xiii

108

Index

D

D1 data set
created by IRIS HIPPI-LE module, 44
definition, 20

D2 data, 21
data rate, 2, 9
D bit, see I-field:Direction bit
destination

address, 10, 14
definition, 1

direction bit, see I-field
driver configuration file, see

/var/sysgen/master.d/if_hip, 56

E

errnos, see error messages:generic IRIX
error checking, 9
error message alphabetization rules, 95
error message format, 96
error message log file, 96
error messages

alphabetical list, 97-106
generic IRIX, 96

/etc/config/ifconfig-#.options file, 64
/etc/config/netif.options file, 54, 62
/etc/hosts file, 54, 63
Ethernet address, see ULA

F

fabric, see HIPPI fabric
fiber-optic cable, see physical layer
files

build BYPASS into driver, see
/var/sysgen/system/hippi_s.sm file

build IP into driver, see /var/sysgen/system/hippi.sm
or /var/sysgen/system/hippi_s.sm file

build modules into driver, see
/var/sysgen/system/hippi.sm or
/var/sysgen/system/hippi_s.sm file

driver configuration file, see
/var/sysgen/master.d/if_hip

error message file, 96
I-field to destination IP address mapping file, see

/usr/etc/hippi.imap
I-field to local IP address mapping file, see

/usr/etc/hippi.imap
IP configuration files, see /etc/config/netif.options

and /etc/hosts
log messages, 96
/usr/adm/SYSLOG, 96

flow control, 8-10
FP header

as created for IRIS HIPPI-LE module, 44
Burst bit, 9, 22
description of, 22
format, 22
how it is processed on reception, 47
Present bit, 22

109

Index

H

hardware address, see ULA
hardware configuration file, see

/var/sysgen/master.d/hippi, 56
hipcntl command, see /usr/etc/hipcntl
hipmap command, see /usr/etc/hipmap
HIPPI

basic configuration, 27
BYPASS support, 56
compared to other network protocols, 6, 27
definition, 1, 2
documentation, 35
IP support, 55
switch, 2

hippi_s.sm file, see /var/sysgen/system/hippi_s.sm file
HIPPI fabric

configuration examples, 30, 31, 32
definition, 1
description of, 29-34

hippi file, see /var/sysgen/master.d/hippi
HIPPI-FP

header, see FP header
packet, see also packet and FP header
packet examples, 24
packet format, 20, 21
standard, 35

hippi.imap file, see /usr/etc/hippi.imap
HIPPI-IPI-3 standards, 36
HIPPI-LE

module, 42
standard, 35

HIPPI network
maximum number of endpoints, 13, 33
maximum number of switches, 13, 33

HIPPI-PH
definition, 2
standard, 35

HIPPI-SC standard, 35
HIPPI-Serial

definition, 2
standard, 35

HIPPI signals
BURST, 26
CONNECT, 7, 26
description of, 25
INTERCONNECT, 7, 26
PACKET , 8, 26
protocol for use of, 35
READY, 8
REQUEST, 7, 26

hippi.sm file, see /var/sysgen/system/hippi.sm file
hiptest command, see /usr/etc/hiptest
hostname to I-field mapping, see /usr/etc/hippi.imap

file
hosts, see /etc/hosts file
how to

assign I-fields, 11
build a driver without IP support, 53
build driver with IP support, 53-54
change the I-field lookup table dynamically, 74
configure board, 68
configure destination I-fields, 59
configure destination ULAs, 59
configure driver, 56
configure firmware, 56
configure hardware, 56
configure I-fields, 11
configure IP checksumming in hardware, 56
configure IP network interface dynamically, 74

110

Index

configure IRIS HIPPI, 51
configure local I-field, 57
configure local ULA, 57
configure MTU, 56
configure TCP window sizes, 64
disable/enable board, 68
display current I-field lookup table, 75
display MAC address, 75, 76
display status information, 69
display ULA, 75, 76
enable/disable the IP network interface, 74
increase performance, 64
install a loopback link, 77
load new firmware, 68
maintain IRIS HIPPI subsystem, 68-76
map hostname to I-field, 74
map IP address to I-field, 57, 59, 74
map IP address to ULA, 57, 59
monitor IRIS HIPPI subsystem, 68-76
obtain HIPPI standards documentation, 36
set source timeout, 76
shutdown the board, 68
troubleshoot an IP network interface, 88
troubleshoot a non-IP interface, 88
troubleshoot the character device interface, 88
troubleshoot the IRIS HIPPI board, 88
verify presence of board in hardware inventory, 80
verify that IP is enabled, 88
verify the character device interface, 81-85
verify the IP network interface, 85-87
verify the IRIS HIPPI board, 80-85
verify the IRIS HIPPI subsystem, 80-87

I

IEEE 802.2 header, 46, 49
IEEE universal address, see ULA
if_hip file, see /var/sysgen/master.d/if_hip
ifconfig-#.options file, see /etc/config/ifconfig-#.options
ifconfig command, see /usr/etc/ifconfig
I-field, 42

Camp-on bit, 8
description of, 19
Direction bit, 10, 13, 15, 17
format, 18
Path Selection bits, 10, 13
recommended values, 43, 60
Routing Control field, 10, 13
template for creating, 60

I-field to IP address mapping, see /usr/etc/hippi.imap
file

INTERCONNECT signal, 7, 26
IP address to I-field mapping, see /usr/etc/hippi.imap

file
IP checksumming, 56
IP over HIPPI, 28, 36

L

LLC header, 46
log file, see files
logical addressing

assigned usages, 12
description of, 10-13
formats, 12
maximum number of addresses, 13
reserved addresses, 12
size of address, 10
use of, 10

lookup table, 59
loopback, 80

111

Index

M

MAC address, 57, 58
maintaining, 67
monitoring, 67
MTU configuration, 56

N

netif.options, see /etc/config/netif.options file
netstat command, see /usr/etc/netstat

P

packet
control, 8-10
control information in, 20
D1 area, 20
D2 area, 21
definition, 8
format, 20, 21
indeterminate size, 9
infinite, 9
maximum size, 9
user data in, 21

PACKET signal, 8, 9, 26
panel plate, 40
performance tuning, 64
physical layer

copper, 2, 28, 35, 40
fiber-optic, 2, 28, 35, 40
standards, 35

physical link, 2, 40
ping command, see /usr/etc/ping
port identifier, 13
product support, xiii
PS bits, see I-field:Path Selection bits

R

READY signal, 8
REQUEST signal, 7, 26
reserved addresses, 12
RFC 1323, 36, 64
RFC 1374, 33, 36, 43
routing

description of, 10-18
see also logical addressing
see also source addressing

routing control field, see I-field

S

SC connector, 40
Silicon Graphics customer support, xiii
SNAP header, 46
software installation, xi
source

definition, 1
source addressing

description of, 13-18
how address is changed by switches, 16
size of address, 13
use of, 10

source channel timeout, 76
status information, 69, 71
status reports, 69, 71, 89
support for upper layer applications, xii
switch

description of, 2, 7, 29
maximum number in a network, 13

SYSLOG file, 96

112

Index

T

TCP/IP over HIPPI, 28, 36
TCP large windows, 64
technical assistance center, xiii
testing procedures, 80
timeout for source connections, 76
troubleshooting, 88

U

ULA, 42, 57, 58, 59, 76
ULA to IP address mapping, see /usr/etc/hippi.imap

file
ULP, xii
universal IEEE address, see ULA
universal LAN MAC address, see ULA
user data, 21
/usr/adm/SYSLOG file, 96
/usr/etc/hipcntl command, 67
/usr/etc/hipmap command, 67, 74
/usr/etc/hippi.imap file, 42, 57
/usr/etc/hiptest command, 67, 81
/usr/etc/ifconfig command, 67, 74
/usr/etc/netstat command, 67
/usr/etc/ping command, 67, 85
/usr/var/adm/SYSLOG file, 96
utilities, 68

V

/var/sysgen/master.d/hippi file, 53, 54, 56
/var/sysgen/master.d/if_hip file, 56
/var/sysgen/system/hippi_s.sm file, 53, 55
/var/sysgen/system/hippi.sm file, 53, 55
verifying the IRIS HIPPI subsystem, 80-94

W

word
definition, 1

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-2229-005.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

