
MIPSproTM N32/64 Compiling and
Performance Tuning Guide

007–2360–009

COPYRIGHT
© 1994, 1999, 2002 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated
elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic
documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA
government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable
license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of
the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy
2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, the SGI logo, and IRIX are registered trademarks and OpenMP, Power Challenge, ProDev, SpeedShop, and XFS
are trademarks of Silicon Graphics, Inc.

Cray is a registered trademark of Cray, Inc. MIPS, R4000, R5000, R8000, and R10000 are registered trademarks and MIPSI, MIPSII,
MIPSIII, MIPSIV, MIPSpro, R12000, and are trademarks of MIPS Technologies, Inc. MIPSpro is used under license by Silicon Graphics,
Inc. UNIX and the X device are registered trademarks of The Open Group in the United States and other countries. X/Open is a
registered trademark of the X/Open Comapny Limited.

Cover design by Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications.

Record of Revision

Version Description

August 1994
Original Printing.

7.3 April 1999
Adds a description of an optimization that reorders parts of an
executable program. Updates information on searching for DSOs.

009 September 2002
Updated to support the MIPSpro 7.4 release which runs on IRIX
operating systems, version 6.5 and later.

007–2360–009 iii

Contents

About This Guide . xvii

Related Publications . xvii

Related Fortran Publications . xviii

Conventions . xix

Obtaining Publications . xix

Reader Comments . xx

1. About the MIPSpro Compiler System 1

2. Using the MIPSpro Compiler System 5

Selecting Compilation Modes . 5

Using a Defaults Specification File 6

Setting an Environment Variable 7

When to Use -n32 or -64 . 7

Object File Format and Dynamic Linking 8

Executable and Linking Format 8

Dynamic Shared Objects . 8

Position-Independent Code 9

Source File Considerations . 9

Source File Naming Conventions 9

Header and Include Files . 10

Specifying a Header File 11

Creating a Header File for Multiple Languages 12

Using Precompiled Headers in C and C++ 12

007–2360–009 v

Contents

About Precompiled Headers 13

Automatic Precompiled Header Processing 13

Other Ways to Control Precompiled Headers 17

PCH Performance Issues . 17

Compiler Drivers . 19

Linking . 19

Invoking the Linker . 20

Linker Example . 20

Linking Assembly Language Programs 20

Linking Libraries . 21

Specifying Libraries and DSOs 21

Examples of Linking DSOs 23

Linking to Previously Built Dynamic Shared Objects 23

Linking Multilanguage Programs 23

Finding an Unresolved Symbol with ld 26

Getting Information About Object Files 26

Disassembling Object Files with dis 27

Listing Parts of DWARF Object Files with dwarfdump 27

Listing Parts of ELF Object Files and Libraries with elfdump 27

Determining File Type with file 27

Listing Symbol Table Information: nm 27

Determining Section Sizes with size 29

Removing Symbol Table and Relocation Bits with strip 30

Using the Archiver to Create Libraries 30

ar Examples . 30

Debugging . 31

vi 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

3. Using Dynamic Shared Objects 33

Benefits of Using DSOs . 33

Using DSOs . 35

DSOs vs. Archive Libraries 35

Using QuickStart . 36

Guidelines for Using Shared Libraries 36

Choosing DSO Library Members 37

Tuning Shared Library Code 38

Taking Advantage of QuickStart 39

Building DSOs . 43

Creating DSOs . 43

Making DSOs Self-Contained 44

Controlling Symbols to Be Exported or Loaded 45

Building DSOs with C++ . 46

Run-Time Linking . 47

Searching for DSOs at Run Time 47

Searching for DSOs at Run Time under the o32-Bit ABI 48

Searching for DSOs at Run Time under the n32-Bit ABI 49

Searching for DSOs at Run Time under the 64-Bit ABI 49

Run-Time Symbol Resolution 50

Building a DSO with -Bsymbolic 50

Converting Archive Libraries to DSOs 52

Dynamic Loading Under Program Control 53

Versioning of DSOs . 55

The Versioning Mechanism 56

What Is a Version? . 56

Building a Shared Library Using Versioning 56

007–2360–009 vii

Contents

Example of Versioning . 57

4. Optimizing Program Performance 59

Optimization Overview . 60

Performance Tuning with Interprocedural Analysis (IPA) 60

Inlining . 63

Inlining Options for Routines 63

Common Block Padding . 65

Alias and Address Taken Analysis 67

The -IPA:alias=ON Option 67

The -IPA:addressing=ON Option 67

Controlling Loop Nest Optimizations (LNO) 67

Running LNO . 68

LNO Optimizations . 70

Loop Interchange . 70

Blocking and Outer Loop Unrolling 71

Loop Fusion . 72

Loop Fission/Distribution 73

Prefetching . 75

Gather-Scatter Optimization 75

Compiler Options for LNO 76

Pragmas and Directives for LNO 77

Fission/Fusion . 78

Blocking and Permutation Transformations 79

Prefetch . 82

Fill/Align Symbol . 84

Dependence Analysis . 85

viii 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

Controlling Floating-Point Optimization 87

-OPT:roundoff=n . 88

-OPT:IEEE_arithmetic=n 89

Other Options to Control Floating Point Behavior 91

Debugging Floating-Point Problems 93

Controlling Other Optimizations with the -OPT Option 93

Using the -OPT:Olimit Option 94

Using the -OPT:alias Option 94

Simplifying Code with the -OPT Option 96

Controlling Execution Frequency 96

The Code Generator . 97

Code Generator and Optimization Levels 98

An Example of Local Optimization for Fortran 98

Code Generator and Optimization Levels -O2 and -O3 99

if Conversion . 99

Cross-Iteration Optimizations 100

Loop Unrolling . 102

Recurrence Breaking . 102

Software Pipelining . 104

Global Code Motion . 104

Benefits of Global Code Motion 106

Steps Performed by the Code Generator at Levels -O2 and -O3 106

Modifying Code Generator Defaults 107

Other Code Generator Performance Topics 108

Prefetch and Load Latency 108

Frequency and Feedback 109

Reordering Code Regions . 109

007–2360–009 ix

Contents

Reordering with cord . 110

Reordering with ld . 111

Using prof or cvperf . 111

Programming Hints for Improving Optimization 112

Hints for Writing Programs 113

Coding Hints for Improving Other Optimization 115

Use Tables Rather Than if-then-else or switch Statements 115

Declare Variables Most Frequently Manipulated 115

Use 32-Bit or 64-Bit Scalar Variables 116

Suggestions for C and C++ Programs 116

Suggestions for C++ Programs Only 117

const reference Parameter Optimization with Lang:alias_const 117

Using SpeedShop . 119

5. Coding for 64-Bit Programs 121

Coding Assumptions to Avoid 121

sizeof(int) == sizeof(void *) 122

sizeof(int) == sizeof(long) 122

sizeof(long) == 4 . 122

sizeof(void *) == 4 . 123

Implicitly Declared Functions 123

Constants with the High-Order Bit Set 123

Arithmetic with long Types 123

Solving Porting Problems . 124

Guidelines for Writing Code for 64-Bit SGI Platforms 124

6. Porting Code to N32 and 64-Bit SGI Systems 127

Compatibility . 127

x 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

N32 Porting Guidelines . 129

Porting Environment . 130

Source Code Changes . 130

Build Procedure . 130

Run-time Issues . 131

Porting Code to 64-Bit SGI Systems 131

Using Data Types . 131

Using Predefined Types . 132

Using Typedefs . 134

Maximum Memory Allocation 135

Arrays Larger Than 2 Gigabytes 135

Example of Arrays Larger Than 2 Gigabytes 135

Using Large Files with XFS 137

Index . 139

007–2360–009 xi

Figures

Figure 1-1 Compiler System Flowchart 4

Figure 2-1 Compilation Control Flow for Multilanguage Programs 25

Figure 3-1 An Application Linked with DSOs 41

Figure 4-1 Compilation Process Showing Interprocedural Analysis 62

Figure 4-2 Compilation Process Showing LNO Transformations 69

Figure 6-1 Application Support under Different ABIs 128

Figure 6-2 Library Locations for Different ABIs 129

007–2360–009 xiii

Tables

Table 1-1 Compiler System Functional Components 2

Table 1-2 Compiler Mode and Default Library Search Path 3

Table 1-3 Compilers and Default Libraries 3

Table 2-1 Compilation Mode Environment Variable Specifications 7

Table 2-2 Driver Input File Suffixes 10

Table 3-1 Functions to Load and Unload DSOs 53

Table 6-1 Data Types and Sizes 131

Table 6-2 Predefined Macros 132

Table 6-3 Modifications for Applications on XFS 137

007–2360–009 xv

About This Guide

This guide describes the components of MIPSpro compiler system, other
programming tools and interfaces, and dynamic shared objects (DSO). It also explains
ways to improve program performance.

The SGI compiler systems produce either new 32-bit (n32) object code, 64-bit object
code, or old 32-bit (o32) object code. This guide describes the MIPSpro compilers that
produce new 32-bit and 64-bit object code. For additional information about n32 and
64-bit compilation, see the MIPSpro 64-Bit Porting and Transition Guide and the
MIPSpro N32 ABI Handbook. For information about compilers that produce old 32-bit
objects, refer to the MIPS O32 Compiling and Performance Tuning Guide.

This guide is written for anyone who wants to program effectively using the MIPSpro
compilers. It is written for a reader who is familiar with the IRIX (or UNIX) operating
system and a programming language such as C or Fortran. This guide does not
explain how to write and compile programs.

This guide does not cover all of the differences between n32, 64, and o32 compilation
modes. Refer to the MIPSpro 64-Bit Porting and Transition Guide and the MIPS O32
Compiling and Performance Tuning Guide for information about the differences between
these modes, language implementation differences, source code porting, compilation
issues, and run-time execution.

Be sure to read the Release Notes for your compiler. They contain important
information about this release of the MIPSpro compiler system.

Related Publications
The following documents contain information that may be useful as you use the
MIPSpro compilers:

• MIPSpro Fortran Language Reference Manual, Volume 1

• MIPSpro Fortran Language Reference Manual, Volume 2

• MIPSpro Assembly Language Programmer’s Guide

• Application Programmer’s I/O Guide

• SpeedShop User’s Guide

007–2360–009 xvii

About This Guide

• ProDev WorkShop: Debugger User’s Guide

• ProDev WorkShop: Performance Analyzer User’s Guide

• ProDev WorkShop: Tester User’s Guide

• dbx User’s Guide

• Origin 2000 and Onyx2 Performance Tuning and Optimization Guide

• MIPSpro N32 ABI Handbook

• MIPSpro 64-Bit Porting and Transition Guide

• Getting Started with XFS Filesystems

• System V Applications Binary Interface—Revised First Edition. Prentice Hall, ISBN
0-13-880410-9

• System V Application Binary Interface MIPS Processor Supplement. Prentice Hall,
ISBN 0-13-880170-3.

Related Fortran Publications
The following commercially available reference books are among those that you
should consult for more information on the history of Fortran and the Fortran
language itself:

• Adams, J., W. Brainerd, and J. Martin. Fortran 95 Handbook : Complete ISO/ANSI
Reference. MIT Press, 1997. ISBN 0262510960.

• Chapman, S. Fortran 90/95 for Scientists and Engineers. McGraw Hill Text, 1998.
ISBN 0070119384.

• Chapman, S. Introduction to Fortran 90/95. McGraw Hill Text, 1998. ISBN
0070119694.

• Counihan, M. Fortran 95 : Including Fortran 90, Details of High Performance Fortran
(HPF), and the Fortran Module for Variable-Length Character Strings. UCL Press, 1997.
ISBN 1857283678.

• Gehrke, W. Fortran 95 Language Guide. Springer Verlag, 1996. ISBN 3540760628.

• International Standards Organization. ISO/IEC 1539–1:1997, Information technology
— Programming languages — Fortran. 1997.

xviii 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

• Metcalf, M. and J. Reid. Fortran 90/95 Explained. Oxford University Press, 1996.
ISBN 0198518889.

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

Obtaining Publications
You can obtain SGI documentation in the following ways:

• See the SGI Technical Publications Library at: http://docs.sgi.com. Various
formats are available. This library contains the most recent and most
comprehensive set of online books, release notes, man pages, and other
information.

• If it is installed on your SGI system, you can use InfoSearch, an online tool that
provides a more limited set of online books, release notes, and man pages. With
an IRIX system, select Help from the Toolchest, and then select InfoSearch. Or
you can type infosearch on a command line.

• You can also view release notes by typing either grelnotes or relnotes on a
command line.

007–2360–009 xix

About This Guide

• You can also view man pages by typing man title on a command line.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
document, contact SGI. Be sure to include the title and document number of the
manual with your comments. (Online, the document number is located in the front
matter of the manual. In printed manuals, the document number is located at the
bottom of each page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library Web page:

http://docs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Parkway, M/S 535
Mountain View, California 94043–1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

SGI values your comments and will respond to them promptly.

xx 007–2360–009

Chapter 1

About the MIPSpro Compiler System

The MIPSpro compiler system consists of a set of components that enable you to
create new 32-bit and 64-bit executable programs (as well as old 32-bit executables)
using languages such as C, C++, and Fortran.

A new 32-bit mode, n32, was introduced with the IRIX 6.1 operating system. This
new 32-bit mode has the following features:

• Full access to all features of the hardware

• MIPS III and MIPS IV instruction set architecture (ISA)

• Improved calling convention

• 32 64-bit floating-point registers

• 32 64-bit general purpose registers

• Dwarf debugging format

The new 32-bit mode (n32) provides better performance than the old 32-bit mode
available in IRIX releases prior to 6.1. When you compile with the -n32 option, the
chip executes in 64-bit mode and the software restricts addresses to 32 bits. For more
information about n32, refer to the MIPSpro N32 ABI Handbook.

In addition, the MIPSpro compiler system:

• Uses executable and linking format (ELF) for object files. ELF is the format
specified by System V Release 4 Applications Binary Interface (SVR4 ABI). Refer to
"Executable and Linking Format", page 8, for additional information.

• Uses shared libraries, called dynamic shared objects (DSOs). DSOs are loaded at
run time, instead of at link time, by the run-time linker, rld. The code for DSOs is
not included in executable files; thus, executables built with DSOs are smaller than
those built with non-shared libraries, and multiple programs can use the same
DSO at the same time. For more information, see Chapter 3, "Using Dynamic
Shared Objects", page 33.

• Creates position-independent code (PIC) by default to support dynamic linking.
See "Position-Independent Code", page 9, for additional information.

Table 1-1, page 2, summarizes the compiler system components and the task each
performs.

007–2360–009 1

1: About the MIPSpro Compiler System

Table 1-1 Compiler System Functional Components

Tool Task Examples

Text editor Write and edit programs vi, jot, emacs

Compiler driver Compile, link, and load programs cc, CC, f77, f90, as

Object file analyzer Analyze object files dis, dwarfdump,
elfdump, file, nm,
size

SpeedShop/WorkShop Analyze program performance cvperf, prof,
sscompare, ssrun

Archiver Produce object-file libraries ar

Linker Link object files ld

Runtime linker Link Dynamic Shared Objects at
runtime

rld

Debugger Debug programs cvd, dbx

A single program called a compiler driver (such as cc, CC, f77, or f90) invokes the
following major components of the compiler system (refer to Figure 1-1, page 4)

• Compiler front end (C, C++, FORTRAN 77, Fortran 90, Assembler)

• Compiler back end (optimization and code generation)

• Inliner and Interprocedural Analysis(IPA)

• Linker (ld)

You can invoke a compiler driver with various options (described in the relevant man
page, such as cc(1)) and with one or more source files as arguments. All specified
source files are automatically sent to the macro preprocessor. To prevent running the
preprocessor, use the -nocpp option on the driver command line.

Your program can take advantage of multiple CPUs (when present) to achieve higher
computation rates. The optional parallel analyzers produce parallelized source code
from standard source code. For more information about these packages and how to
obtain them, contact your dealer or sales representative.

The compiler front end translates the source code into an intermediate tree
representation. The compiler back end translates the intermediate code into object

2 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

code. The language compilers share the same back end, which combines optimization
and code generation in one phase. (For more information about optimization, see
Chapter 4, "Optimizing Program Performance", page 59).

The linker ld combines several object files into one, performs relocation, and resolves
external symbols. The driver automatically runs ld unless you specify the -c option
to skip the linking step.

When you compile or link programs, by default the compiler searches specific
libraries depending on the compilation mode (shown in Table 1-2). Certain default
libraries are automatically linked.

Table 1-2 Compiler Mode and Default Library Search Path

Mode Path

o32 /usr/lib, /lib, and /usr/local/lib

n32 /usr/lib32, /lib32, and /usr/local/lib

64 /usr/lib64, /lib64, and /usr/local/lib

Compiler drivers and their respective libraries are listed in Table 1-3.

Table 1-3 Compilers and Default Libraries

Compiler Default Libraries

cc libc.so

CC libC.so, libc.so, libCsup.so

f77, f90 libftn.so, libftn90.so, libc.so, libm.so

To see the various utilities a program passes through during compilation, invoke the
appropriate driver with the -show option.

Figure 1-1 shows compilation flow from source file to executable file (a.out).

007–2360–009 3

1: About the MIPSpro Compiler System

Parallel Analyzers

(pca,pc,fef77p,fef90p)

Object

file
(.o)

Driver

(cc, CC, f77, f90, as)

Compiler Front End

includes macro preprocessor

(fec,fecc,fef77,fef90)

Compiler Back End

and Code Generator

Linker

(ld)

Library

(.a,.so)

a.out

Source Files

-pca, -pfa

Assembler

(as)

Macro Preprocessor

(cpp)

a12012

Figure 1-1 Compiler System Flowchart

4 007–2360–009

Chapter 2

Using the MIPSpro Compiler System

This chapter provides information about the MIPSpro compiler system and describes
the object file format and dynamic linking. Specifically, this chapter covers the topics
listed below:

• "Selecting Compilation Modes", page 5, explains how to specify n32, 64, or o32
compilation mode and how to set up a compiler.defaults file.

• "Object File Format and Dynamic Linking", page 8, discusses object files, including
executable and linking format, dynamic shared objects, and position-independent
code.

• "Source File Considerations", page 9, explains source file naming conventions and
the procedure for including header files.

• "Compiler Drivers", page 19, lists and explains general compiler-driver options.

• "Linking", page 19, explains how to link programs manually (using ld or a
compiler) and how to compile multilanguage programs. It also covers Dynamic
Shared Objects (DSOs) and how to link them into a program.

• "Getting Information About Object Files", page 26, provides information on how to
use the object file tools to analyze object files.

• "Using the Archiver to Create Libraries", page 30, explains how to use the
archiver, ar.

• "Debugging", page 31, describes the compiler-driver options for debugging.

For further information on DSOs, see Chapter 3, "Using Dynamic Shared Objects",
page 33. For information on optimizing your program, see Chapter 4, "Optimizing
Program Performance", page 59.

Selecting Compilation Modes
You can select compilation modes by explicitly specifying them on a compiler
command line, defining an environment variable, or specifying a file that defines
some of the defaults. This section covers the following topics:

• Using a Defaults Specification File

007–2360–009 5

2: Using the MIPSpro Compiler System

• Setting an Environment Variable

• When to use -n32 or -64

Using a Defaults Specification File

You can set the following options without explicitly specifying them every time you
invoke a compiler.

• The Application Binary Interface (ABI)

• The instruction set architecture (ISA)

• The processor type

• The optimization level

• The IEEE arithmetic level

Just set the environment variable COMPILER_DEFAULTS_PATH to a colon-separated
list of paths designating where the compiler is to look for the compiler.defaults
file. If no compiler.defaults file is found, or if the environment variable is not
set, the compiler looks in /etc/compiler.defaults. If this file is not found, the
compiler resorts to the built-in defaults.

The compiler.defaults file contains a -DEFAULT: option group specifier that
specifies the default ABI, ISA, and processor. The compiler issues a warning if you
specify anything other than -DEFAULT: option in the compiler.defaults file.

The format of the -DEFAULT: option group is specified in each of the language
manuals.

Use the -show_defaults option to print the compiler.defaults being used (if
any) and their values. This option is for diagnostic purposes and does not compile
any code.

Explicit command-line options override all compiler default settings, and the
SGI_ABI environment variable overrides the ABI setting in the compiler.defaults
file. The following command overrides a compiler.defaults file that sets
-DEFAULT:abi=n32:isa=mips4:proc=r10k and compiles -64 -mips4 -r10000:

% cc -64 foo.c

6 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

The following command overrides the compiler.defaults file and sets the ABI to
-o32 and the ISA to -mips2. The -o32 ABI supports only -mips2 (the default) and
-mips1 compilations.

% cc -o32 foo.c

The processor type is ignored by -o32 compilations. Refer to the release notes and
man pages for your compiler for information about default settings. Refer to the man
pages for your command-line options.

Setting an Environment Variable

You can set an environment variable (shown in Table 2-1) to specify the compilation
mode to use.

Table 2-1 Compilation Mode Environment Variable Specifications

Environment Variable Description

setenv SGI_ABI -n32 Sets the environment for new 32-bit compilation.

setenv SGI_ABI -64 Sets the environment for 64-bit compilation.

setenv SGI_ABI -o32 Sets the environment for old 32-bit compilation.

When to Use -n32 or -64

How do you know when to use -n32 or -64 to compile your code? Compile -n32
when you want:

• To generate smaller executables than -64.

• Executables to have fewer data cache misses and less memory paging than -64.

• To access 64 bits: long long and INTEGER*8 are 64-bits long.

Compile -64 if your program:

• Requires more than 2 gigabytes of address space.

• Will overflow a 32-bit long integer.

007–2360–009 7

2: Using the MIPSpro Compiler System

Object File Format and Dynamic Linking
This section describes how the compiler system:

• Uses executable and linking format (ELF) for object files.

• Uses shared libraries called dynamic shared objects (DSOs).

• Creates position-independent code (PIC) by default to support dynamic linking.

Executable and Linking Format

The compiler system produces ELF object files. ELF is the format specified by the
System V Release 4 Applications Binary Interface (the SVR4 ABI). ELF provides
support for DSOs, described in the following section.

Types of ELF object files are as follows:

• Relocatable files, which contain code and data in a format suitable for linking with
other object files to make a shared object or executable.

• DSOs, which contain code and data suitable for dynamic linking. Relocatable files
may be linked with DSOs to create a dynamic executable. At run time, the
run-time linker combines the executable and DSOs to produce a process image.

• Executable files ready for execution. They may or may not be dynamically linked.

You can use this version of the compiler system to construct ABI-compliant
executables that run on any operating system supporting the MIPS ABI. Be careful to
avoid referencing symbols that are not defined as part of the MIPS ABI specification.
For more information, see the following publications:

• System V Applications Binary Interface—Revised First Edition. Prentice Hall, ISBN
0-13-880410-9

• System V Application Binary Interface MIPS Processor Supplement. Prentice Hall,
ISBN 0-13-880170-3.

Dynamic Shared Objects

IRIX uses shared objects called Dynamic Shared Objects, or DSOs. The object code of
a DSO is position-independent code (PIC), which can be mapped into the virtual
address space of several different processes at once. DSOs are loaded at run time

8 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

instead of at linking time by the run-time loader, rld. As is true of static shared
libraries, the code for DSOs is not included in executable files; thus, executables built
with DSOs are smaller than those built with non-shared libraries, and multiple
programs may use the same DSO at the same time. For more information on DSOs,
see Chapter 3, "Using Dynamic Shared Objects", page 33.

Position-Independent Code

Dynamic linking requires that all object code used in the executable be
position-independent code (PIC). For source files in high-level languages, you just
need to recompile to produce PIC. Assembly language files must be modified to
produce PIC; see the MIPSpro Assembly Language Programmer’s Guide for details.

Position-independent code satisfies references indirectly by using a global offset table
(GOT), which allows code to be relocated simply by updating the GOT. Each
executable and each DSO has its own GOT. For more information on DSOs, see
Chapter 3, "Using Dynamic Shared Objects", page 33.

The compiler system produces PIC by default when compiling higher-level language
files. All of the standard libraries are provided as DSOs and therefore contain PIC
code; if you compile a program into non-PIC, you will be unable to use those DSOs.
One of the few reasons to compile non-PIC is to build a device driver, which does not
rely on standard libraries.

Source File Considerations
This section describes conventions for naming source files and including header files.

Source File Naming Conventions

Each compiler driver recognizes the type of an input file by the suffix assigned to the
file name. Table 2-2 describes the possible file name suffixes.

007–2360–009 9

2: Using the MIPSpro Compiler System

Table 2-2 Driver Input File Suffixes

Suffix Description

.s Assembly source

.i Preprocessed source code in the language of the
processing driver

.c C source

.C, .c++, .CC,

.cc, .CPP, .cpp,

.CXX, .cxx

C++ source

.f.F.for.FOR

.f.f90.F90
FORTRAN 77 source
Fortran 90 source

.p Pascal source

.o Object file

.a Object library archive

.so DSO library

The following example compiles preprocessed source code:

f77 -c tickle.i

The f77 compiler also assumes the file has already been preprocessed (because the
suffix is .i) and therefore does not invoke the preprocessor.

Header and Include Files

Header files, also called include files, contain code that is inserted into the program.

C header files contain information about the libraries with which they are associated.
They define such things as data types, data structures, symbolic constants, and
prototypes for functions exported by the library. To use those definitions without
having to type them into each of your source files, you can use the #include
directive to tell the macro preprocessor to include the complete text of the given
header file in the current source file. When you include header files in your source
files, you can specify definitions conveniently and consistently in each source file that
uses any of the library routines.

10 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

Fortran include files are specified by the INCLUDE line, which names a file containing
source text. That source text is substituted for the INCLUDE line during compilation.
The source text can be any Fortran code that is valid in the context of its location in
the program.

By convention, C header file names have a .h suffix. Each programming language
handles these files the same way, via the macro preprocessor. For example, the
stdio.h header file describes, among other things, the data types of the parameters
required by the C language printf() function.

For detailed information about standard header files and libraries, see the
International Standard ISO/IEC, Programming languages—C, 9899, 1990. Also see
"Using Typedefs ", page 134, for information about the inttypes.h header file.

Specifying a Header File

The #include directive in C and C++ or the INCLUDE line in Fortran tells the
preprocessor to replace the directive or line with the text of the indicated header file.
The usual way to specify a header file in C is with the following line:

#include <filename>

The filename is the name of the header file to be included. The angle brackets (< >)
surrounding the filename tell the macro preprocessor to search for the specified file
only in directories specified by command-line options and in the default header file
directory (/usr/include and /usr/include/CC for C++).

In another specification format, filename is given between double quotation marks (‘‘
’’). In this case, the macro preprocessor searches for the specified header file in the
current directory first (that is, the directory containing the main program file). If the
preprocessor does not find the requested file, it searches the other directories as in the
angle-bracket specification.

In Fortran, included text is specified as follows:

INCLUDE ’filename’

In an f90(1) program, the directory containing filename can be specified on the
command line with the -I option. In an f77(1) program, filename must be in the
current directory.

007–2360–009 11

2: Using the MIPSpro Compiler System

Creating a Header File for Multiple Languages

A single header file can contain definitions for multiple languages; this setup allows
you to use the same header file for all programs that use a given library, no matter
what language those programs are in.

To set up a shareable header file, create a .h file and enter the definitions for the
various languages as follows:

#ifdef _LANGUAGE_C

C Definitions
#endif

#ifdef _LANGUAGE_C_PLUS_PLUS

C++ definitions
#endif

#ifdef _LANGUAGE_FORTRAN

Fortran definitions
#endif

Note: You must specify _LANGUAGE_ before the language name. To indicate C++
definitions, you must use _LANGUAGE_C_PLUS_PLUS, not _LANGUAGE_C++.

You can specify language definitions in any order.

Using Precompiled Headers in C and C++

This section describes the precompiled header mechanism that is available with the
n32 and 64-bit C and C++ compilers. This mechanism is also available for C++ (but
not C) in o32-bit mode.

This section contains the following topics:

• About precompiled headers, see the following section.

• Automatic precompiled header processing, see "Automatic Precompiled Header
Processing", page 13.

• Other ways to control precompiled headers, see "Other Ways to Control
Precompiled Headers", page 17.

12 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

• PCH performance issues, see "PCH Performance Issues", page 17.

About Precompiled Headers

The precompiled header (PCH) file mechanism is available through the C and C++
compilers front ends: fec and fecc. Use PCH to avoid recompiling a set of header
files. This is particularly useful when your header files introduce many lines of code,
and the primary source files that included them are relatively small.

In effect, fec and fecc take a snapshot of the state of the compilation at a particular
point and write it to a file before completing the compilation. When you recompile
the same source file or another file with the same set of header files, the PCH
mechanism recognizes the snapshot point, verifies that the corresponding PCH file is
usable, and reads it back in.

The PCH mechanism can give you a dramatic improvement in compile-time
performance. The trade-off is that PCH files may take a lot of disk space.

Automatic Precompiled Header Processing

This section covers the following topics:

• PCH file requirements

• Reusing PCH files

• Obsolete file deletion mechanism

You can enable precompiled header processing by using the -pch option (-Wf,
-pch in 32-bit mode) on the command line. With the PCH mechanism enabled, fec
or fecc searches for a qualifying PCH file to read in or creates one for use on a
subsequent compilation.

The PCH file contains a snapshot of all the code preceding the header stop point. The
header stop point is typically the first token in the primary source file that does not
belong to a preprocessing directive. The header stop point can also be specified
directly by inserting a #pragma hdrstop. For example, consider the following C++
code:

#include ‘‘xxx.h’’

#include ‘‘yyy.h’’

int i;

007–2360–009 13

2: Using the MIPSpro Compiler System

In this case, the header stop point is int i (the first non-preprocessor token), and the
PCH file will contain a snapshot reflecting the inclusion of xxx.h and yyy.h. If the
first non-preprocessor token or the #pragma hdrstop appears within a #if block,
the header stop point is the outermost enclosing #if. For example, consider the
following C++ code:

#include ‘‘xxx.h’’

#ifndef YYY_H

#define YYY_H 1
#include ‘‘yyy.h’’

#endif

#if TEST

int i;

#endif

In this case, the first token that does not belong to a preprocessing directive is again
int i, but the header stop point is the start of the #if block containing the int. The
PCH file reflects the inclusion of xxx.h and conditionally the definition of YYY_H
and inclusion of yyy.h. The file does not contain the state produced by #if TEST.

PCH File Requirements

A PCH file is produced only if the header stop point and the code preceding it
(generally the header files themselves) meet the following requirements:

• The header stop point must appear at file scope; it may not be within an unclosed
scope established by a header file. For example, a PCH file is not created in the
following case:

// xxx.h
class A {

// xxx.C

#include "xxx.h"

int i; };

• The header stop point cannot be inside a declaration started within a header file,
and it cannot be part of a declaration list of a linkage specification. For example, a
PCH file is not created in the following case:

// yyy.h

static

// yyy.C

14 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

#include "yyy.h"
int i;

In this case, the header stop point is int i, but since it is not the start of a new
declaration, a PCH file is not created

• The header stop point cannot be inside a #if block or a #define started within a
header file.

• The processing preceding the header stop must not have produced any errors.
(Note that warnings and other diagnostics are not reproduced when the PCH file
is reused.)

• References to predefined macros __DATE__ or __TIME__ cannot be included.

• Use of the #line preprocessing directive cannot be included.

• #pragma no_pch cannot be included.

Reusing PCH Files

When a precompiled header file is produced, in addition to the snapshot of the
compiler state, it contains some information that can be checked to determine under
what circumstances it can be reused. This information includes the following:

• The compiler version, including the date and time the compiler was built.

• The current directory (in other words, the directory in which the compilation is
occurring).

• The command–line options.

• The initial sequence of preprocessing directives from the primary source file,
including #include directives.

• The date and time of the header files specified in #include directives.

This information comprises the PCH prefix. The prefix information of a given source
file can be compared to the prefix information of a PCH file to determine whether or
not the latter is applicable to the current compilation.

For example, consider the following C++ code:

// a.C

#include "xxx.h"

007–2360–009 15

2: Using the MIPSpro Compiler System

... // Start of code

// b.C

#include "xxx.h"

... // Start of code

When you compiled a.C with the -pch option, the PCH file a.pch is created. When
you compile b.C (or recompile a.C), the prefix section of a.pch is read in for
comparison with the current source file. If the command line options are identical
and xxx.h has not been modified, fec or fecc reads in the rest of a.pch rather
than opening xxx.h and processing it line by line. This establishes the state for the
rest of the compilation.

It may be that more than one PCH file is applicable to a given compilation. If so, the
largest (in other words, the one representing the most preprocessing directives from
the primary source file) is used. For instance, consider a primary source file that
begins with the following code:

#include "xxx.h"

#include "yyy.h"

#include "zzz.h"

If one PCH file exists for xxx.h and a second for xxx.h and yyy.h, the latter will be
selected (assuming both are applicable to the current compilation). After the PCH file
for the first two headers is read in and the third is compiled, a new PCH file for all
three headers may be created.

When a precompiled header file is created, it takes the name of the primary source
file, with the suffix replaced by pch. Unless -pch_dir is specified, the PCH file is
created in the directory of the primary source file.

When a precompiled header file is created or used, a message similar to the following
is issued:

"test.C": creating precompiled header file "test.pch"

Obsolete File Deletion Mechanism

In automatic mode (when -pch is used), the front end considers a PCH file obsolete
and deletes it under the following circumstances:

• The file is based on at least one out-of-date header file but is otherwise applicable
for the current compilation.

16 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

• The file has the same base name as the source file being compiled (for example,
xxx.pch and xxx.C) but is not applicable for the current compilation (for
example, because of different command-line options).

You must manually clean up any other PCH file.

Support for PCH processing is not available when multiple source files are specified
in a single compilation. If the command line includes a request for precompiled
header processing and specifies more than one primary source file, an error is issued
and the compilation is aborted.

Other Ways to Control Precompiled Headers

You can use the following ways to control and tune how precompiled headers are
created and used:

• You can insert a #pragma hdrstop in the primary source file at a point prior to
the first token that does not belong to a preprocessing directive. Thus you can
specify where the set of header files subject to precompilation ends, as in the
following:

#include "xxx.h"

#include "yyy.h"

#pragma hdrstop

#include "zzz.h"

In this case, the precompiled header file includes the processing state for xxx.h
and yyy.h but not zzz.h. This is useful if you decide that the information added
by what follows the #pragma hdrstop does not justify the creation of another
PCH file.

• You can use a #pragma no_pch to suppress the precompiled header processing
for a given source file.

• You can use the command-line option -pch_dir directoryname to specify the
directory in which to search for and create a PCH file.

PCH Performance Issues

The relative overhead incurred in writing out and reading in a precompiled header
file is quite small for reasonably large header files.

007–2360–009 17

2: Using the MIPSpro Compiler System

In general, writing out a precompiled header file does not cost much, even if it does
not end up being used, and, if it is used, it almost always produces a significant
speedup in compilation. The problem is that the precompiled header files can be
quite large (from a minimum of about 250 Kbytes to several Mbytes or more), and so
you probably do not want many of them sitting around.

You can see that, despite the faster recompilations, precompiled header processing is
not likely to be justified for an arbitrary set of files with nonuniform initial sequences
of preprocessing directives. The greatest benefit occurs when a number of source files
can share the same PCH file. The more sharing, the less disk space is consumed.
With sharing, the disadvantage of large precompiled header files can be minimized
without giving up the advantage of a significant speedup in compilation times.

To take full advantage of header file precompilation, you should reorder the
#include sections of your source files and group the #include directives within a
commonly used header file.

The fecc source provides an example of how this can be done. A common idiom is
the following:

#include "fe_common.h"

#pragma hdrstop

#include ...

In this example, fe_common.h pulls in, directly and indirectly, a few dozen header
files. The #pragma hdrstop is inserted to get better sharing with fewer PCH files.
The PCH file produced for fe_common.h is slightly over a megabyte in size. Another
example, used by the source files involved in declaration processing, is the following:

#include "fe_common.h"
#include "decl_hdrs.h"

#pragma hdrstop

#include ...

decl_hdrs.h pulls in another dozen header files, and a second, somewhat larger,
PCH file is created. In all, the fifty-odd source files of fecc share just six precompiled
header files. If disk space is at a premium, you can decide to make fe_common.h
pull in all the header files used. In that case, a single PCH file can be used in building
fecc.

Different environments and different projects have different needs. You should,
however, be aware that making the best use of the precompiled header support will
require some experimentation and probably some minor changes to your source code.

18 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

Compiler Drivers
The driver commands cc(1), CC(1), f90(1), and f77(1) call subsystems that compile,
optimize, assemble, and link your programs. This section describes the default
behavior for compiler drivers.

At compilation time, you can select one or more options that affect a variety of
program development functions, including debugging, profiling, and optimizing. You
can also specify the names assigned to output files. Note that some options have
default values that apply if you do not specify them.

When you invoke a compiler driver with source files as arguments, the driver calls
other commands that compile your source code into object code. It then optimizes the
object code (if requested to do so) and links together the object files, the default
libraries, and any other libraries you specify.

Given a source file foo.c, the default name for the object file is foo.o. The default
name for an executable file is a.out. The following example compiles source files
foo.c and bar.c with the default options:

% cc foo.c bar.c

This example produces two object files, foo.o and bar.o, and links them with the
default C library, libc, to produce an executable called a.out.

Note: If you compile a single source directly to an executable, the compiler does not
create an object file.

The command-line options for MIPSpro compiler drivers are listed and explained in
the man page for your compiler.

Linking
The linker, ld, combines one or more object files and libraries (in the order specified)
into one executable file, performing relocation, external symbol resolutions, and all
other required processing. Unless directed otherwise, the linker names the executable
file a.out. See the ld(1) man page for complete information on the linker.

This section summarizes the functions of the linker. It also covers how to link a
program manually (without using a compiler driver) and how to compile
multilanguage programs. Specifically, this section describes:

007–2360–009 19

2: Using the MIPSpro Compiler System

• Invoking the linker, see the following section.

• "Linking Assembly Language Programs", page 20.

• "Linking Libraries", page 21.

• "Linking to Previously Built Dynamic Shared Objects", page 23.

• "Linking Multilanguage Programs", page 23.

• "Finding an Unresolved Symbol with ld", page 26.

Invoking the Linker

Usually the compiler invokes the linker as the final step in compilation. If object files
produced by previous compilations exist and you want to link them, invoke the linker
by using a compiler driver instead of calling ld directly. Just pass the object file
names to the compiler driver in place of source file names. If the original source files
are in one language, invoke the associated driver and specify the list of object files.

In some cases you may need to invoke ld directly, such as when you are building a
shared object or doing special linking not supported by compiler drivers (such as
building an embedded system).

For information on the options available to the linker, see the ld man page.

Linker Example

The following command tells the linker to search for the DSO libcurses.so in the
directory /usr/lib. If it does not find that DSO, the linker then looks for
libcurses.a in /lib. The linker does not look for DSOs in /usr/local/lib, so
do not put shared objects there.

% ld foiled.o again.o -lcurses

If found in any of these places, the DSO or library is linked with the objects
foiled.o and again.o; if they are not found, an error is generated.

Linking Assembly Language Programs

The assembler driver, as, does not run the linker. To link a program written in
assembly language, use one of these procedures:

20 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

• Assemble and link using one of the other driver commands (cc, for example). The
.s suffix of the assembly language source file causes the driver to invoke the
assembler.

• Assemble the file using as. Then link the resulting object file with the ld
command.

Linking Libraries

The linker processes its arguments from left to right as they appear on the command
line. Arguments to ld can be object files, DSOs, or libraries. Be sure to list object files
before DSOs.

When ld reads a DSO, it adds all the symbols from that DSO to a cumulative symbol
table. If it encounters a symbol that is already in the symbol table, it does not change
the symbol table entry. If you define the same symbol in more than one DSO, only
the first definition is used.

When ld reads an archive, usually denoted by a file name ending in .a, it uses only
the object files from that archive that can resolve currently unresolved symbol
references. When a symbol is referred to but not defined in any of the object files that
have been loaded so far, it is called unresolved.

Once a library has been searched in this way, it is never searched again. Therefore,
place libraries after object files on the command line in order to resolve as many
references as possible. If a symbol is already in the cumulative symbol table from
having been encountered in a DSO, its definition in any subsequent archive or DSO is
ignored.

Specifying Libraries and DSOs

You can specify libraries and DSOs either by explicitly stating a path name or by
using the library search rules. To specify a library or DSO by path (either relative to
the current directory or absolute), simply include that path on the command line:

% ld myprog.o /usr/lib/libc.so.1 mylib.so

Note: libc.so.1 is the name of the standard C DSO, replacing the older libc.a.
Similarly, libX11.so.1 is the X11 DSO. Most other DSOs are simply named
name.so, without a .1 extension.

007–2360–009 21

2: Using the MIPSpro Compiler System

To use the linker’s library search rules, specify the library with the -lname option:

% ld myprog.o -lmylib

When the -lmylib argument is processed, ld searches for a file called libmylib.so.
If it cannot find libmylib.so in a given directory, it tries to find libmylib.a there;
if it cannot find that either, it moves on to the next directory in its search order.

The default search order uses the path appropriate to the compilation mode:

• For -n32, the default search order is /usr/lib32:/lib32.

• For -64, the default search order is /usr/lib64:/lib64.

• For -o32, the default search order is /usr/lib:/lib.

If ld is invoked from one of the compiler drivers, all -L and -nostdlib options are
moved up on the command line so that they appear before any -lname options. For
example, consider the command:

% cc file1.o -lm -L mydir

This command invokes, at the linking stage of compilation, the following:

% ld -L mydir file1.o -lm

Note: There are three different kinds of files that contain object code files: non-shared
libraries, PIC archives, and DSOs. Non-shared libraries are the old-style library. PIC
archives are the default, built using ar from .o files compiled with -KPIC (the
default option). They can be linked with other PIC files. DSOs are built from PIC .o
files by using ld -shared; see Chapter 3, "Using Dynamic Shared Objects", page 33,
for details.

If the linker tells you that a reference to a certain function is unresolved, check that
function’s man page to find out which library the function is in. If it is not in one of
the standard libraries that ld links in by default, you may need to specify the
appropriate library on the command line. For an alternative method of finding out
where a function is defined, see "Finding an Unresolved Symbol with ld", page 26.

Note: Simply including the header file associated with a library routine is not
enough; you must also specify the library when linking (unless it is a standard
library). No automatic connection exists between header files and libraries. Header
files only give prototypes for library routines, not the library code itself.

22 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

Examples of Linking DSOs

To link a sample program foo.c with the math DSO, libm.so, enter:

% cc foo.c -lm

To specify the appropriate DSOs for a graphics program foogl.c, enter:

% cc foogl.c -lgl -lX11

Note: When linking, you must specify the source file name before the linker options.

Linking to Previously Built Dynamic Shared Objects

This section describes how to link your source files with previously built DSOs; for
more information about how to build your own DSOs, see Chapter 3, "Using
Dynamic Shared Objects", page 33.

To build an executable that uses a DSO, simply call a compiler driver. For instance,
the following command links the resulting object file, needle.o, with the previously
built DSO, libthread.so, and the standard C DSO, libc.so.1, if available.

% cc needle.c -lthread

If no libthread.so exists, but a PIC archive named libthread.a exists, that
archive is used with libc.so.1. So you still get dynamic (run-time) linking. Note
that even .a libraries contain position-independent code by default, though it is also
possible to build non-shared .a libraries that do not contain PIC.

Linking Multilanguage Programs

The source language of the main program may differ from that of a subprogram.
Follow the steps below to link multilanguage programs. For an illustration of the
process, see Figure 2-1, page 25.

1. Compile object files from the source files of each language separately by using the
-c option.

For example, if the source consists of a Fortran main program, main.f, and two
files of C functions, more.c and rest.c, use the commands:

007–2360–009 23

2: Using the MIPSpro Compiler System

% cc -c more.c rest.c
% f77 -c main.f

These commands produce the object files main.o, more.o, and rest.o.

2. Use the compiler associated with the language of the main program to link the
objects:

% f77 main.o more.o rest.o

The compiler drivers supply the default set of libraries necessary to produce an
executable from the source of the associated language. However, when producing
executables from source code in several languages, you may need to specify the
default libraries explicitly for one or more of the languages. For instructions on
specifying libraries, see "Linking Libraries", page 21.

24 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

more.o

rest.o

a.out

main.o

Linker

(ld)

Code Generator

C Preprocessor

C Front End

Code Generator

C Front End

C Preprocessor

more.c

rest.c

main.f

a12013

Figure 2-1 Compilation Control Flow for Multilanguage Programs

007–2360–009 25

2: Using the MIPSpro Compiler System

Note: Use caution when passing pointers and longs between languages, since some
languages use different type sizes and structures for data types.

For specific details about compiling multilanguage programs, see the programming
guides for the appropriate languages.

Finding an Unresolved Symbol with ld

You can use ld to locate unresolved symbols. For example, suppose you are
compiling a program, and ld tells you that you are using an unresolved symbol. You
may not know where the unresolved symbol is referenced.

To find the unresolved symbol, enter:

% ld -ysymbol file1 ... filen

You can also enter:

% cc prog.o -Wl,-ysymbol

The output lists the source file that references symbol.

Getting Information About Object Files
Several tools provide information on object files and are described in the following
sections:

• dis disassembles an object file into machine instructions.

• dwarfdump lists headers, tables, and other selected parts of a DWARF-format
object file or archive file.

• elfdump lists the contents, including the symbol table and header information, of
an ELF-format object file.

• file provides descriptive information on the properties of a file.

• nm lists symbol table information.

• size prints the size of each section of an object file.

26 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

• strip removes symbol table and relocation bits.

You can trace system call and scheduling activity by using the par command. For
more information, see the par(1) man page.

Disassembling Object Files with dis

The dis tool disassembles object files into machine instructions. You can disassemble
an object, archive library, or executable file.

See the dis(1) man page for descriptions of its options.

Listing Parts of DWARF Object Files with dwarfdump

The dwarfdump tool provides debugging information from selected parts of DWARF
symbolic information in an ELF object file. For more information on DWARF,
including option descriptions, see the dwarfdump(1) and dwarf(4) man pages.

Listing Parts of ELF Object Files and Libraries with elfdump

The elfdump tool lists headers, tables, and other selected parts of an ELF-format
object file or archive file. See the elfdump(1) man page for option descriptions and
other information.

Determining File Type with file

The file tool lists the properties of program source, text, object, and other files. This
tool attempts to identify the contents of files using various heuristics. It is not exact
and often erroneously recognizes command files as C programs. For more
information, including option descriptions, see the file(1) man page.

Listing Symbol Table Information: nm

The nm tool lists symbol table information for object files and archive files. To get
XPG4 (X/Open Portability Group) format, set the environment variable, _XPG in your
environment.

For more information and option descriptions, see the nm(1) man page.

007–2360–009 27

2: Using the MIPSpro Compiler System

This example demonstrates how to obtain a symbol table listing. Consider the
following program, tnm.c:

#include <stdio.h>

#include <math.h>

#define LIMIT 12

int unused_item = 14;

double mydata[LIMIT];

main()

{

int i;

for(i = 0; i < LIMIT; i++) {

mydata[i] = sqrt((double)i);
}

return 0;

}

Compile the program into an object file by entering:

% cc -c tnm.c

To obtain symbol table information for the object file tnm.o in BSD format, use the
nm -B command:

0000000000 T main

0000000000 B mydata

0000000000 U sqrt
0000000000 D unused_item

0000000000 N _bufendtab

To obtain symbol table information for the object file tnm.o in SVR4 format, use the
nm command without any options:

Symbols from tnm.o:

[Index] Value Size Class Type Section Name

[0] | 0| |File |ref=4 |Text | tnm.c

[1] | 0| |Proc |end=3 int |Text | main

[2] | 116| |End |ref=1 |Text | main

[3] | 0| |End |ref=0 |Text | tnm.c

[4] | 0| |File |ref=6 |Text | /usr/include/math.h

28 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

[5] | 0| |End |ref=4 |Text | /usr/include/math.h
[6] | 0| |Global | |Data | unused_item

[7] | 0| |Global | |Bss | mydata

[8] | 0| |Proc |ref=1 |Text | main

[9] | 0| |Proc | |Undefined| sqrt

[10] | 0| |Global | |Undefined| _gp_disp

Determining Section Sizes with size

The size tool prints information about the sections (such as text, rdata, and sbss)
of the specified object or archive files. The elf(4) man page describes the format of
these sections, and the size(1) man page describes the options accepted by the size
command.

An example of the size command and the listings produced follows:

% size a.out

Section Size Physical Virtual

Address Address

.interp 21 268435856 268435856

.MIPS.options 104 268435880 268435880

.dynamic 464 268435984 268435984

.liblist 20 268436448 268436448

.MIPS.symlib 30 268436468 268436468

.msym 240 268436500 268436500

.dynstr 312 268436744 268436744

.dynsym 720 268437056 268437056
.hash 256 268437776 268437776

.MIPS.stubs 56 268438032 268438032

.text 460 268438088 268438088

.init 24 268438548 268438548

.data 17 268505088 268505088

.sdata 8 268505108 268505108
.got 112 268505120 268505120

.bss 36 268505232 268505232

007–2360–009 29

2: Using the MIPSpro Compiler System

Removing Symbol Table and Relocation Bits with strip

The strip tool removes symbol table and relocation bits that are attached to the
assembler and loader. Use strip to save space after you debug a program. The
effect of strip is the same as that of using the -s option to ld.

See the strip(1) man page for descriptions of the options.

Using the Archiver to Create Libraries
An archive library is a file that includes the contents of one or more object (.o) files.
When the linker (ld) searches for a symbol in an archive library, it loads only that
object file where that symbol was defined (not the entire library) and links it with the
calling program.

The archiver (ar) creates and maintains archive libraries and has these main functions:

• Copying new objects into the library

• Replacing existing objects in the library

• Moving objects around within the library

• Extracting individual objects from the library

• Creating a symbol table for the linker to search symbols

The following section explains the syntax of the ar command and lists some options
and examples of how to use it. See the ar(1) man page for details.

Note: ar simply strings together whatever object files you tell it to archive. For
information about building DSOs and converting libraries to DSOs, see Chapter 3,
"Using Dynamic Shared Objects", page 33.

ar Examples

To create a new library, libtest.a, and add object files to it, enter:

% ar -cq libtest.a mcount.o mon1.o string.o

The -c option suppresses an archiver message during the creation process. The -q
option creates the library and puts mcount.o, mon1.o, and string.o into it.

30 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

To replace an object file in an existing library, enter:

% ar -r libtest.a mon1.o

The -r option replaces mon1.o in the library libtest.a. If mon1.o does not
already exist in the library libtest.a, it is added.

Note: If you specify the same file twice in an argument list of files to be added to an
archive, that file appears twice in the archive.

Debugging
The compiler system provides the dbx(1) debugging tool, which is described in detail
in the dbx User’s Guide, and cvd(1), which is part of the ProDev WorkShop suite of
performance tools. For information about the WorkShop tools, see the ProDev
WorkShop: Overview.

Before using one of the debuggers, specify the -g driver option to produce executables
containing information that the debugger can use (see the dbx(1) or cvd man page).

007–2360–009 31

Chapter 3

Using Dynamic Shared Objects

A dynamic shared object (DSO) is an object file that is meant to be used
simultaneously (or shared) by multiple applications (a.out files) while they are
executing.

As you read this chapter, you will learn how to build and use DSOs. This chapter
covers the following topics:

• "Benefits of Using DSOs", page 33, explains the benefits of DSOs.

• "Using DSOs", page 35, tells you how to obtain the most benefit from using DSOs
when creating your executable.

• "Taking Advantage of QuickStart", page 39, discusses an optimization you can use
to make sure that the DSOs you build load as quickly as possible.

• "Building DSOs", page 43, describes how to build a DSO.

• "Run-Time Linking", page 47, discusses the run-time linker, and how it locates
DSOs at run time.

• "Dynamic Loading Under Program Control", page 53, explains the use of
dlopen() and dlsym() to control run-time linking.

• "Versioning of DSOs", page 55, discusses a versioning mechanism for DSOs that
allows binaries linked against different, incompatible versions of the same DSO to
run correctly.

You can use DSOs in place of archive libraries (they replace static shared libraries
provided with earlier releases of IRIX).

Benefits of Using DSOs
Because DSOs contain shared components, using them provides several substantial
benefits:

• DSOs minimize overall memory use: DSOs minimize overall memory usage
because code is shared. Two executables that use the same DSO and that run
simultaneously have only one copy of the instruction from the shared component
loaded into memory. For example, if executable A and executable B both link with

007–2360–009 33

3: Using Dynamic Shared Objects

the same DSO C, and if A and B are both running at the same time, the total
memory used is what is required for A, B, and C, plus some small overhead. If C
is an unshared library, the memory used is what is required for A, B, and two
copies of C.

• Executables linked with DSOs are smaller: Executables linked with DSOs are
smaller than those linked with unshared libraries because the shared objects are
not part of the executable file image, so disk usage is minimized.

• DSOs are easier to use, build, and debug: DSOs are much easier to use, build,
and debug than the static shared libraries (supplied in IRIX 4 and earlier). Most of
the libraries supplied by SGI today are available as DSOs. In IRIX 4 and earlier,
only a few static shared libraries were available; most libraries were unshared.

• Executables using DSOs do not have to be relinked: Executables that use a DSO
do not have to be relinked if the DSO changes; when the new DSO is installed, the
executable automatically starts using it. This feature makes it easier to update end
users with new software versions. It also allows you to create
hardware-independent software packages more easily.

Suppose, for example, you want to build both MIPS IV and a MIPS III version of a
shared object. You want your program to use the MIPS IV version when it is
running on a Power Challenge (R8000) system, and also run correctly on another
64-bit platform. Suppose you want to do the above with the routines in a library
named libchange.so. To do this, build one version of the routines in
libchange using the -mips4 option, and place it in /usr/lib64/mips4 on a
Power Challenge system. Next, build another version using the -mips3 option,
and place it in /usr/lib64. Then, when you build an executable that uses
libchange, use the -rpath option to tell the run-time linker to look first for
MIPS IV versions of the libraries. For example:

% cc -mips3 -o prog prog.o -rpath /usr/lib64/mips4 -lchange

As a result, prog runs on any IRIX 6 (and later) system, and it automatically takes
advantage of any MIPS IV libraries whenever it runs on a Power Challenge system.

• DSOs and executables are mapped into memory: DSOs and the executables that
use them are mapped into memory by a run-time loader, rld, which resolves
external references between objects and relocates objects at run time. (DSOs
contain only position-independent code (PIC), so they can be loaded at any virtual
address at run time.) With rld, the binding of symbols can be changed at run
time at the request of the executing program. You could use this feature to
dynamically change the feature set presented to a user of your application, for

34 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

example, while minimizing start-up time. The application could be started quickly,
with a subset of the features available and then, if the user needs other features,
those can be loaded in under programmatic control.

Costs that are involved with using DSOs are explained in "Using DSOs", page 35.
The sections after that explain how to build and optimize DSOs and how rld
works. See the rld(1) man page for more information. The dso(5) man page also
contains more information about DSOs.

Using DSOs
The linker command-line syntax is the same as for an archive (.a) library. This
section explains how to use DSOs. Specific topics include:

• "DSOs vs. Archive Libraries" which describes differences between DSOs and
archive libraries.

• "Using QuickStart", page 36, which briefly explains how QuickStart minimizes
start-up times for executables.

• "Guidelines for Using Shared Libraries", page 36, which lists points to consider
when you choose library members and tune shared library code.

DSOs vs. Archive Libraries

The following compile line creates the executable yourApp by linking with the DSOs
libyours.so and with libc.so.1:

% cc yourApp.c -o yourApp -lyours

If libyours.so is not available, but the archive version libyours.a is available,
that archive version is used along with libc.so.1.

A significant difference exists between DSOs and archive libraries in terms of what is
mapped into the address space when an application is executing. With an archive
library, only the text portion of the library that the application actually requires (and
the data associated with that text) is mapped, not the entire library. In contrast, the
entire DSO that is linked is mapped; in many cases, however, the DSO is shared and
already mapped into the address space. Thus, to conserve address space and save
time at startup, do not link with DSOs unless your application actually needs them.

007–2360–009 35

3: Using Dynamic Shared Objects

Avoid listing any archive libraries on the compile line after you list shared libraries;
instead, list the archive libraries first and then the DSOs.

Using QuickStart

You may want to take advantage of the QuickStart optimization that minimizes
start-up times for executables. You can use QuickStart when using or building DSOs.
At link time, when an executable or a DSO is being created, the linker ld assigns
initial addresses to the object and attempts to resolve all references. Since DSOs are
relocatable, these initial address assignments are really only guesses about where the
object will be really loaded. At run time, rld verifies that the DSO being used is the
same one that was linked with and what the real addresses are. If the DSOs are the
same and if the addresses match the initial assignments, rld does not have to
perform any relocation work, and the application starts up very quickly (or
QuickStarts). When an application QuickStarts, memory use is less since rld does
not have to read in the information necessary to perform relocations.

To determine whether your application (or DSO) is able to do a QuickStart, use the
-quickstart_info flag when building the executable (or DSO). If the application
or DSO cannot do a QuickStart, you will be given information about what to do. The
next section goes into more detail about why an executable may not be able to use
QuickStart.

In summary, when you use DSOs to build an executable, remember the following:

• Link with only the DSOs that you need.

• Make sure that archive libraries precede DSOs on the compile line.

• Use the -quickstart_info flag.

Guidelines for Using Shared Libraries

When you are working with DSOs, you can avoid some common pitfalls if you
adhere to the guidelines described in this section:

• "Choosing DSO Library Members", page 37, explains what routines to include and
exclude when you choose library members.

• "Tuning Shared Library Code", page 38, covers how to tune shared library code by
minimizing global data, improving locality, and aligning for paging.

36 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

Choosing DSO Library Members

This section covers some important considerations for choosing library members.

• Include large, frequently used routines. These routines are prime candidates for
sharing. Placing them in a shared library saves code space for individual a.out
files and saves memory, too, when several concurrent processes need the same
code. printf(3S) and related C library routines are good examples of large,
frequently used routines.

• Exclude infrequently used routines. Putting these routines in a shared library can
degrade performance, particularly on paging systems. Traditional a.out files
contain all code they need at run time. By definition, the code in an a.out file is
(at least distantly) related to the process. Therefore, if a process calls a function, it
may already be in memory because of its proximity to other text in the process.

If the function is in the shared library, a page fault may be more likely to occur,
because the surrounding library code may be unrelated to the calling process.
Only rarely will any single a.out file use everything in the shared C library. If a
shared library has unrelated functions, and unrelated processes make random calls
to those functions, the locality of reference may be decreased. The decreased
locality may cause more paging activity and, thereby, decrease performance.

• Exclude routines that use much static data. These modules increase the size of
processes. Every process that uses a shared library gets its own private copy of
the library’s data, regardless of how much of the data is needed.

Library data is static: it is not shared and cannot be loaded selectively with the
provision that unreferenced pages may be removed from the working set.

For example, getgrent(3C) is not used by many standard UNIX commands.
Some versions of the module define over 1400 bytes of unshared, static data. So,
do not include it in a shared library. You can import global data, if necessary, but
not local, static data.

• Make libraries self-contained. It is best to make the library self-contained. You
can do this by including routines in the shared object. For example, printf(3S)
requires much of the standard I/O library. A shared library containing
printf(3S), should also contain the rest of the standard I/O routines. This is
done with libc.so.1.

If your shared object calls routines from a different shared object, it is best to build
in this dependency by naming the needed shared objects on the link line in the
usual way. For example:

007–2360–009 37

3: Using Dynamic Shared Objects

% ld -shared -all mylib.a -o mylib.so -soname mylib.so -lfoo

This command line specifies that libfoo.so is needed by mylib.so. Thus, when
an application is linked against mylib.so, it is not necessary to specify -lfoo.

This guideline should not take priority over the others in this section. If you
exclude some routine that the library itself needs based on a previous guideline,
consider leaving the symbol out of the library and importing it.

Tuning Shared Library Code

This section explains things to consider in tuning shared library code:

• Minimize the number of symbols exported (see "Controlling Symbols to Be
Exported or Loaded", page 45) for details.

• Minimize global data. All external data symbols are, of course, visible to
applications. This can make maintenance difficult. Therefore, you should try to
reduce global data.

– Try to use automatic (stack) variables. Do not use permanent storage if
automatic variables work. Using automatic variables saves static data space
and reduces the number of symbols visible to application processes.

– Determine whether variables really must be external and exported. Static
symbols and hidden symbols are not visible outside the library, so they may
change meanings between library versions. Only exported external variables
must retain the same meaning.

– Allocate buffers at run time instead of defining them at compile time.
Allocating buffers at run time reduces the size of the library’s data region for
all processes and, thus, saves memory. Only processes that actually need the
buffers get them. It also allows the size of the buffer to change from one
release to the next without affecting compatibility. Statically allocated buffers
cannot change size without affecting the addresses of other symbols and,
perhaps, breaking compatibility.

• Organize to improve locality. When a function is in a.out files, it typically
resides in a page with other code that is used more often (see “Exclude
Infrequently Used Routines”). Try to improve locality of reference by grouping
dynamically related functions. If every call of funcA generates calls to funcB and
funcC, try to put them in the same page.

38 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

The cord(1) command rearranges procedures to reduce paging and achieve better
instruction cache mapping. You can use cord to see the number of cycles spent in
a procedure and the number of times the procedure was executed. Use profiling to
see what is actually called, as opposed to what may be called.

• Align for paging. The key is to arrange the shared library target’s object files so
that frequently used functions do not unnecessarily cross page boundaries. When
arranging object files within the target library, be sure to keep the text and data
files separate. You can reorder text object files without breaking compatibility; the
same is not true for object files that define global data.

For example, the IRIX operating system uses 4Kbyte pages. Using name lists and
disassemblies of the shared library target file, the library developers determined
where the page boundaries fell.

After grouping related functions, they broke them into page-sized chunks.
Although some object files and functions are larger than a single page, most of
them are smaller. Then the developers used the infrequently called functions as
glue between the chunks. Because the glue between pages is referenced less
frequently than the page contents, the probability of a page fault decreased.

After determining the branch table, they rearranged the library’s object files
without breaking compatibility. The developers put frequently used, unrelated
functions together, because they would be called randomly enough to keep the
pages in memory. System calls went into another page as a group, and so on. For
example, the order of the library’s object files became:

Before After

#objects #objects

...

printf.o strcmp.o

fopen.o malloc.o
malloc.o printf.o

strcmp.o fopen.o

.... ...

Taking Advantage of QuickStart
QuickStart is an optimization designed to reduce start-up times for applications that
link with DSOs. Each time ld builds a DSO, it updates a registry of shared objects.

007–2360–009 39

3: Using Dynamic Shared Objects

The registry contains the preassigned QuickStart addresses of a group of DSOs that
typically cooperate by having locations that do not overlap. If you compile your
application by linking with registered DSOs, your application takes advantage of
QuickStart: all the DSOs are mapped at their QuickStart addresses, and rld wiill not
need to move any of them to an unused address and perform a relocation pass to
resolve all references.

Suppose you compile your application using the -quickstart_info flag, and
QuickStart fails. It may fail because:

• Your application has directly or indirectly linked with two different versions of the
same DSO, as shown in Figure 3-1, page 41. In this example, yourApp links with
libyours.so, libmotif.so, and libc.so.1 on the compile line. When the
DSO libyours.so was built, however, it linked with libmalloc.so, which in
turn linked with libc.so.1 when it was created. If the two versions of
libc.so.1 were not identical, yourApp will not be able to use QuickStart.

40 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

libmotif.s
o

Your App

libyours.so

libc.so.1

libmalloc.so

libc.so.1

a12014

Figure 3-1 An Application Linked with DSOs

• You link with a DSO that cannot use QuickStart. This may occur because the DSO
was not registered and therefore was assigned a location that overlaps with the
location assigned to another DSO.

007–2360–009 41

3: Using Dynamic Shared Objects

• Your application pulls in incompatible shared objects (in a manner similar to the
example shown in Figure 3-1).

• Your application contains an unresolved reference to a function (where it takes the
address of the function).

• The DSO links with another DSO that cannot use QuickStart.

Even if QuickStart officially succeeds, your application may have name space
collisions and therefore may not start up as fast as it should. This is because rld has
to bring in more information to resolve the conflicts. In general, you should avoid
having conflicts both because of the detrimental effect on start-up time and because
conflicts make it difficult to ensure the correctness of an application over time.

In the example shown in Figure 3-1, page 41, you may have written your own
functions to allocate memory in libmalloc.so for libyours.so to use. If you did
not use unique names for those functions (instead of malloc(), for example) the
way this particular compile and link hierarchy is set up, the standard malloc()
function defined in libc.so.1 is used instead of the one defined in libmalloc.so.

Note: Conflicts are resolved by proceeding through the hierarchy from left to right
and then moving to the next level (this is called breadth-first searching). "Searching
for DSOs at Run Time", page 47, explains how the run-time linker searches for DSOs.

For example, suppose the diagram in Figure 3-1 corresponds to the following
command:

% cc -lyours -lmotif -lc

Because shared objects mentioned on the command line always take precedence over
those that are not mentioned, the preceding command uses the standard malloc()
defined in libc.so.1.

To get your own version of malloc() defined in libmalloc.so for libyours.so
to use, enter:

% cc -lyours -lmotif -lmalloc -lc

However, in both of the above examples, if -lyours contains malloc(), you will get
that malloc(). (In the examples above, you do not need to specify -lc; it was
added for clarity).

Thus, it is not a good idea to allow more than one DSO to define the same function.
Even if the DSOs are synchronized for their first release, one of them may change the

42 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

definition of the function in a subsequent release. Of course, you can use conflicts to
intentionally override function definitions; however, make sure you control what is
overriding what.

If you use the -quickstart_info option, ld tells you if conflicts arise. It also tells
you to run elfdump with the -Dc option to find the conflicts. See the elfdump(1)
man page for more information about how to read the output produced by elfdump.

Building DSOs
In most cases, you can build DSOs as easily as archive libraries. If your library is
written in a high-level language, such as C or Fortran, you will not have to make any
changes to the source code. If your code is written in assembly language, you must
modify it to produce PIC. This is described in the MIPSpro Assembly Language
Programmer’s Guide.

This section covers procedures to use when you build DSOs, and includes these topics:

• "Creating DSOs"

• "Making DSOs Self-Contained", page 44

• "Controlling Symbols to Be Exported or Loaded", page 45

• "Building DSOs with C++", page 46

Creating DSOs

To create a DSO from a set of object files, use ld with the -shared option:

% ld -shared stuff.o nonsense.o -soname libdada.so -o libdada.so

The preceding example creates a DSO, libdada.so, from two object files, stuff.o
and nonsense.o. Note that DSO names should begin with lib and end with .so,
for ease of use with the compiler driver’s -llib argument. If you are already building
an archive library (.a file), you can create a DSO from the library by using the
-shared and -all arguments to ld:

ld -shared -all libdada.a -soname libdada.so -o libdada.so

The -all argument specifies that all of the object files from the library, libdada.a,
should be included in the DSO.

007–2360–009 43

3: Using Dynamic Shared Objects

Note: It is best to use the -soname option. For example, if the -o name has an
explicit path such as -o ../a/libdada.so, typically you want the -soname to be
libdada.so.

Warning: It is essential that the soname of a DSO and its file name be congruent
according to the versioning rules. (Congruent means that if the file name is, for
example, xxxx.so.1, the soname must be optional-path/xxxx.so or xxxx.so.1).
Usually, optional-path should be empty. A full path soname is used when a DSO must
be accessed (at run time) from that specific location in the file system. A partial-path
is used when the DSO must be accessed at that location from the current working
directory. As such, a partial path is almost always a mistake.

The consequences of having a DSO file name and soname that are not congruent range
from not being able to use the DSO at all to having all of multiple dlopen commands
load a fresh copy, even though only one will actually be used.

Making DSOs Self-Contained

When building a DSO, be sure to include any archives required by the DSO on the
link line so that the DSO is self-contained (that is, it has no unresolved symbols). If
the DSO depends on libraries not explicitly named on the link line, subsequent
changes to any of those libraries may result in name space collisions or other
incompatibilities that can prevent any applications that use the DSO from doing a
QuickStart. Such incompatibilities can also lead to unpredictable results over time as
the libraries change asynchronously. Suppose you want to make the archive
libmine.a into a DSO, and libmine.a depends on routines in another archive,
libutil.a. In this case, include libutil.a on the link line:

% ld -shared -all -no_unresolved libmine.a -soname libmine.so \

-o libmine.so -none libutil.a

This causes the modules in libutil.a that are referenced in libmine.a to be
included in the DSO, but these modules will not be exported. (For more information
about exported symbols, see "Controlling Symbols to Be Exported or Loaded", page
45.) The -no_unresolved option causes a list of unresolved symbols to be created;
generally, this list should be empty to enable using QuickStart.

44 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

Similarly, if a DSO relies on another DSO, be sure to include that DSO on the link
line. For example:

% ld -shared -all -no_unresolved libbtree.a -soname libtree.so \

-o libtree.so -lyours

This example places libyours.so in the liblist of the new DSO, libtree.so.
This ensures that libyours.so is loaded whenever an executable that uses
libtree.so is launched. Again, symbols from libyours.so will not be exported
for use by other libraries. (You can use the -exports flag to reverse this exporting
behavior; the -hides flag specifies the default exporting behavior.)

Controlling Symbols to Be Exported or Loaded

Limiting the number of symbols exported has two effects that are important to DSO
performance. These effects apply mainly to DSO startup costs rather than to the time
spent executing the code in the application or DSO:

• Hidden symbols always resolve very quickly, but references to exported symbols
can take longer to resolve. If there are n DSOs during execution, name lookup will
take more than n/2 times as long. Hidden symbols have an update cost but do
not have a real lookup cost so even if n is only 3 or 4, the hidden symbols are
handled much faster than exported symbols.

• Hidden symbols do not conflict with other symbols. Conflicts slow down the
startup of DSOs that are quickstarted. Conflicts are irrelevant in any DSO that
does not quickstart and after any dlopen() is done, nothing will quickstart in
that execution.

By default, to help avoid conflicts, symbols defined in an archive or a DSO that is
used to build another DSO are not externally visible. You can explicitly export or hide
symbols with the -exported_symbol (or -exports) and -hidden_symbol (or
-hides) options :

-exported_symbol name1, name2, name3
-hidden_symbol name4, name5

By default, if you explicitly export any symbols, all other symbols are hidden. If you
both explicitly export and explicitly hide the same symbol on the link line, the first
occurrence determines the behavior. You can also create a file of symbol names
(delimited by white space) that you want explicitly exported or hidden, and then
refer to the file on the link line with either the -exports_file or -hiddens_file
option:

007–2360–009 45

3: Using Dynamic Shared Objects

-exports_file file
-hiddens_file file2

These files can be used in addition to explicitly naming symbols on the link line.

The -exports option is used in conjunction with the -shared or -call_shared
options. It specifies that symbols from the next object, archive, or DSO be exported by
the object being created. Similarly, the hides option specifies that symbols from the
next object, archive, or DSO be hidden by the object being created. This is the default
behavior for linking in archives or DSOs, but it is not for relocatable objects.

Another useful option, -delay_load, prevents a library from being loaded until it is
actually referenced. Suppose, for example, that your DSO contains several functions
that are likely to be used in only a few instances. Furthermore, those functions rely
on another library (archive or DSO). If you specify -delay_load for this other
library when you build your DSO, the run-time linker loads that library only when
those few functions that require it are used. Note that if you explicitly export any
symbols defined in a library that the run-time linker is supposed to delay loading, the
export behavior takes precedence and the library is automatically loaded at run time.

Delay-loaded shared objects are not delay-loaded if direct references to data symbols
exist in the delay-loaded object, or if the address of a function in the delay-loaded
object is taken. That is, -delay_load is only effective with objects that have a purely
functional interface (ld(1) will only set the -delay-load flag in the library list if
delay-load will work properly).

Delay-loaded shared objects do not function properly if direct references to data
symbols exist in the delay-loaded object, or if the address of the function in the
delay-loaded object is used. Therefore, only use -delay_load to load shared objects
that have a purely functional interface.

Note: You can build DSOs using cc. However, if you want to export symbols/files or
use -delay_load, use ld to build DSOs.

Building DSOs with C++

It is recommended that you use the CC command rather than the ld command to
build DSOs from C++ programs. The driver generates a lot of C++ specific arguments
to ld, without which the DSO does not work. If you use templates, using CC to build
your DSO also guarantees that templates get instantiated properly. For example:

46 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

% CC -shared -o libmylib.so object file list

For example:

% CC -shared -o libmylib.so a.o b.o c.o

CC recognizes many of the ld options such as -l and -L; hence these options to ld
work. However, most ld options do not work. If you want to specify other options,
refer to the CC(1) and the ld(1) man pages. If the option is not described in the CC
page, you may need to use the -Wl,ld _option syntax to tell the CC driver to pass
ld_option to ld. See the CC(1) man page for details.

Run-Time Linking
This section explains the search path followed by the run-time linker and how you
can cause symbols to be resolved at run time rather than link time. Specifically, this
section describes:

• "Searching for DSOs at Run Time"

• "Run-Time Symbol Resolution", page 50

Searching for DSOs at Run Time

When you run a dynamically linked executable, the run-time linker, rld(1), identifies
the DSOs required by the executable and loads the required DSOs. If necessary the
IRIX kernel relocates DSOs within the process’ virtual address space, so that no two
DSOs occupy the same location. The program header of a dynamically linked
executable contains a field, the liblist, which lists the DSOs required by the executable.

When looking for a DSO, rld searches directories in a specific sequence. This section
covers run-time searching for the o32-bit, n32-bit, and 64-bit ABIs.

This section also describes environment variables that let you customize the search on
your system. Each ABI has its own environment variable set. The o32 set usually
applies to the other ABIs unless the other ABI environment variable is set. Only the
_RLD_ARGS environment variable, which is not often used, is shared by all three ABIs.

007–2360–009 47

3: Using Dynamic Shared Objects

Searching for DSOs at Run Time under the o32-Bit ABI

The (old) o32-bit ABI rules use the following sequence when searching for DSOs at
run time:

1. /usr/lib

2. /usr/lib/internal

3. /lib

4. /lib/cmplrs/cc

5. /usr/lib/cmplrs/cc

6. /opt/lib

RPATH is a colon-separated list of directories stored in the main executable. You can
set RPATH by using the -rpath argument to ld:

% ld -o myprog myprog.c -rpath /d/src/mylib -soname libmylib.so \

libmylib.so -lc

This example links the program against libmylib.so in the current directory and
configures the executable such that rld searches the directory /d/src/mylib when
searching for DSOs.

The LD_LIBRARY_PATH environment variable is a colon-separated list of directories
to search for DSOs. This can be very useful for testing new versions of DSOs before
installing them in their final location.

You can set the environment variable, _RLD_ROOT for the old 32-bit ABI, to a
colon-separated list of directories. The run-time linker prepends these to the paths in
RPATH and the paths in the default search path.

In all of the colon-separated directory lists, an empty field is interpreted as the current
directory. A leading or trailing colon counts as an empty field. For example, if an
application using the old 32-bit ABI sets LD_LIBRARY_PATH to the following:

/d/src/lib1:/d/src/lib2:

In this example, the run-time linker searches the directory /d/src/lib1, then the
directory /d/src/lib2, and then the current directory.

48 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

Note: The security policy is implemented in the IRIX kernel in IRIX 6.5 and later
versions; for earlier versions of IRIX, it is implemented in rld. The current policy for
honoring rld environment variables is as follows:

Most rld environment variables are ignored for executables with no capabilities set
(see the capabilities(4) man page) if both of the following are true:

• The real user ID is not 0 (root).
• One of the following is true:

– The real and effective (those active for the process) user IDs do not match.

– The real and effective group IDs do not match.

If the environment or an executable has capabilities set, that executable will be treated
as if it were a setuid(2) application. To check if your shell has capabilities set, use
id -P. Use su -C all= to get a shell with no capabilities.

Searching for DSOs at Run Time under the n32-Bit ABI

The (new) n32-bit ABI rules use the following sequence when searching for DSOs at
run time:

1. /usr/lib32

2. /usr/lib32/internal

3. /lib32

4. /opt/lib32

Setting the _RLD32_ROOT or the LD_LIBRARYN32_PATH environment variable
overrides the default settings.

If LD_LIBRARYN32_PATH is not specified, rld honors LD_LIBRARY_PATH, if
specified. As a result, if LD_LIBRARY_PATH is set for an old 32-bit program, it is
recommended that you also set LD_LIBRARYN32_PATH to something ("", for
example) to avoid having LD_LIBRARY_PATH apply accidentally to new 32-bit
applications in that environment.

Searching for DSOs at Run Time under the 64-Bit ABI

The 64-bit ABI rules use the following sequence when searching for DSOs at run time:

007–2360–009 49

3: Using Dynamic Shared Objects

1. /usr/lib64

2. /usr/lib64/internal

3. /lib64

4. /opt/lib64

Setting the _RLD64_ROOT or the LD_LIBRARY64_PATH environment variable
overrides the default settings.

If LD_LIBRARY64_PATH is not specified, rld honors LD_LIBRARY_PATH, if
specified. As a result, if LD_LIBRARY_PATH is set for an old 32-bit program, it is
recommended that you also set LD_LIBRARY64_PATH to something ("", for example)
to avoid having LD_LIBRARY_PATH apply accidentally to 64-bit applications in that
environment.

Run-Time Symbol Resolution

Dynamically linked executables can contain symbol references that are not resolved
before run time. Any symbol references in your main program or in an archive must
be resolved at link time, unless you specify the -ignore_unresolved argument to
cc.

DSOs may contain references that are not resolved at link time. All data symbols
must be resolved at run time. If rld finds an unresolvable data symbol at run time,
the executable exits with an error. Text symbols are resolved only when they are
used, so a program can run with unresolved text symbols, as long as the unresolved
symbols are not used.

You can force rld to resolve text symbols at run time by setting the environment
variable LD_BIND_NOW. If unresolvable text symbols exist in your executable and you
set LD_BIND_NOW, the executable exits with an error, as if there were unresolvable
data symbols.

Building a DSO with -Bsymbolic

When you build a DSO with -Bsymbolic, the dynamic linker resolves referenced
symbols from itself first. If the shared object fails to supply the referenced symbol,
then the dynamic linker searches the executable file and other shared objects. For
example:

main—defines x

50 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

x.so—defines and uses x

If you build x.so with -Bsymbolic on, the linker tries to resolve the use of x by
looking first for the definition in x.so and then by looking in main.

In FORTRAN programs, the linker allocates space for COMMON symbols and the
compiler allocates space for BLOCK DATA. The first kind of symbol (with COMMON
blocks present) appears in the symbol table as SHN_MIPS_ACOMMON (uninitialized
DATA) whereas the second kind of symbol (with BLOCK DATA present) appears as
SHN_DATA (initialized DATA). In general, initialized data takes precedence when the
dynamic linker tries to resolve a symbol. However, with -Bsymbolic, whatever is
defined in the current object takes precedence, whether it is initialized or uninitialized.

Variables that are declared at file scope in C with -cckr are also treated this way. For
example:

int foo[100];

is COMMON if -cckr is used and DATA if -xansi or -ansi is used.

For example:

In main:

COMMON i, j /* definition of i, j with initial values */

DATA i/1/, j/1/

CALL junk

END

In x.so:

SUBROUTINE junk
COMMON i, j

/* definition of i, j with NO initial values */

/* initialized by kernel to all zeros */

PRINT *, i, j

END

When you build x.so using -Bsymbolic, this program prints 0 0. When you build
x.so without -Bsymbolic, the program prints 1 1.

007–2360–009 51

3: Using Dynamic Shared Objects

Converting Archive Libraries to DSOs

When you link a program with a DSO, all of the symbols in the DSO become
associated with the executable. This can cause unexpected results if archives that
contain unresolved externals are converted to DSOs. When linking with a PIC
archive, the linker links in only those object files that satisfy unresolved references.

If an object file in an archive contains an unresolved external reference, the linker tries
to resolve the reference only when that object file is linked in to your program. In
contrast, a DSO containing an external data reference that cannot be resolved at run
time causes the program to fail. Therefore, use caution when converting archives with
external data references to DSOs.

For example, suppose you have an archive, mylib.a, and one of the object files in
the archive, has_extern.o, references an external variable, foo. As long as your
program does not reference any symbols in has_extern.o, the program will link
and run properly. If your program references a symbol in has_extern.o and does
not define foo, then the link will fail. However, if you convert mylib.a to a DSO,
then any program that uses the DSO and does not define foo will fail at run time,
regardless of whether the program references any symbols from has_extern.o.

Two possible solutions exist for this problem.

• Add a “dummy” definition of the data to the DSO. A data definition appearing in
the main executable preempts one appearing in the DSO itself. This may, however,
be misleading for executables that use the portion of the DSO that needs the data,
but that failed to define it in the main program.

• Separate the routines that use the data definition into a second DSO, and place
dummy functions for them in the first DSO. The second DSO can then be loaded
dynamically the first time any of the dummy functions is accessed. Each of the
dummy functions must verify that the second DSO was loaded before calling the
real function (which must have a unique name). This way, programs run whether
or not they supply the missing external data, as long as they do not call any of the
functions that require the data. The first time one of the dummy functions is
called, it tries to dynamically load the second DSO. Programs that do not supply
the missing data fail at this point.

For more information on dynamic loading, see "Dynamic Loading Under Program
Control", page 53.

52 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

Dynamic Loading Under Program Control
IRIX provides a library interface to the run-time linker that allows programs to load
and unload DSOs dynamically. The functions in this interface are part of libc (see
Table 3-1).

Table 3-1 Functions to Load and Unload DSOs

Function Action

dlopen() Loads a DSO

dlsym() Finds a symbol in a loaded DSO

dlclose() Unloads a DSO

dlerror() Reports errors

sgidlopen_version() Loads a DSO

sgidladd_version() Loads a DSO

You can dynamically load shared objects by using sgidladd(), which is similar to
dlopen(...,RTLD_LOCAL|...). However, unlike dlopen(), all the names in the
shared object become available to satisfy references in shared objects during lazy text
resolution. Furthermore, it is not necessary to use dlsym() to gain access to the
symbols in the shared object. sgidladd() is available as part of libc. For more
information, see the sgidladd(3) man page.

To load a DSO, call dlopen():

include <dlfcn.h>

void *dlhandle;
..

dlhandle = dlopen("/usr/lib/mylib.so", RTLD_LAZY | RTLD_LOCAL);

if (dlhandle == NULL) {

/* couldn’t open DSO */

printf("Error: %s\n", dlerror());
}

The first argument to dlopen() is the pathname of the DSO to be loaded. This may
be either an absolute or a relative pathname. When you call this routine, the run-time
linker tries to load the specified DSO. If any unresolved references exist in the
executable that are defined in the DSO, the run-time linker resolves these references

007–2360–009 53

3: Using Dynamic Shared Objects

on demand. You can also use dlsym() to access symbols in the DSO, whether or not
the symbols are referenced in your executable.

When a DSO is brought into the address space of a process, it may contain references
to symbols whose addresses are not known until the object is loaded. These
references must be relocated before the symbols can be accessed. The second
argument to dlopen() governs when these relocations take place.

This argument can have the following values:

• RTLD_LAZY: Under this mode, only references to data symbols are relocated when
the object is loaded. References to functions are not relocated until a given
function is invoked for the first time. This mode may result in better performance,
since a process may not reference all of the functions in any given shared object.

• RTLD_NOW: Under this mode, all necessary relocations are performed when the
object is first loaded. This may result in some wasted effort if relocations are
performed for functions that are never referenced. However, this option is useful
for applications that need to know as soon as an object is loaded that all symbols
referenced during execution will be available.

• RTLD_GLOBAL: This mode modifies the treatment of the symbols in the DSO being
opened to be identical to those of sgidladd(). RTLD_GLOBAL may be ORed
with either RTLD_NOW or RTLD_LAZY (RTLD_GLOBAL cannot be the mode value
on its own). See dlopen(3c) for details.

• RTLD_LOCAL: With this mode, the symbols in the dlopen DSO can only be
referenced by dlsym; they cannot be accessed by symbol name. This is the default.

To access symbols that are not referenced in your program, use dlsym():

#include <dlfcn.h>

void *dlhandle;

int (*funcptr)(int);
int i,j;

.. load DSO ...

funcptr = (int (*)(int)) dlsym(dlhandle, "factorial");

if (funcptr == NULL) {

/* couldn’t locate the symbol */
exit();

}

i = (*funcptr)(j);

54 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

Note: The cast to (int (*) (int)) may produce a compiler warning about
converting data pointers to function pointers. The warning is honoring the ANSI/ISO
C standard; the cast and subsequent call work fine.

This example looks up the address of the function factorial() and assigns it to the
function pointer funcptr.

If you encounter an error (dlopen() or dlsym() returns NULL), you can get
diagnostic information by calling dlerror(). The dlerror() function returns a
string describing the cause of the latest error. You should call dlerror() only after
an error has occurred; at other times, its return value is undefined.

An application with multiple threads that calls these functions must provide its own
locking because dlerror() is not thread specific.

To unload a DSO, call dlclose():

#include <dlfcn.h>

void *dlhandle;
... load DSO, use DSO symbols ...

dlclose(dlhandle);

The dlclose function frees up the virtual address space that has been mmaped by the
dlopen call of that file (similar to a munmap call). The difference, however, is that a
dlclose on a file that has been opened multiple times (either through dlopen or
program startup) does not cause the file to be munmaped until the file is no longer
needed by the process.

Versioning of DSOs
This section describes the DSO versioning mechanism of SGI and includes the
following topics:

• "The Versioning Mechanism"

• "What Is a Version?"

• "Building a Shared Library Using Versioning", page 56

• "Example of Versioning", page 57

007–2360–009 55

3: Using Dynamic Shared Objects

The Versioning Mechanism

SGI uses a mechanism for the versioning of shared objects and executables. Note that
this mechanism is outside the scope of the MIPS ABI, and, thus, must not be relied on
for code that must be MIPS ABI-compliant and run on other vendors’ platforms.
Currently, all executables produced on SGI systems have a bit set that marks them as
SGI_ONLY to allow use of the versioning mechanism.

Versioning is of interest mainly to developers of shared objects. It may not be of
interest to you if you simply use shared objects. Versioning allows a developer to
update a shared object in a way that may be incompatible with executables
previously linked against the shared object. You can accomplish this by renaming the
original shared object and providing it along with the (incompatible) new version.

What Is a Version?

A version is part or all of an identifying version_string that can be associated with a
shared object by using the -set_version version_string option to ld when the
shared object is created.

A version_string consists of one or more versions separated by colons (:). A single
version has the form:

[comment#]sgimajor.minor

where:

• comment: Specifies a comment string, which is ignored by the versioning
mechanism. It consists of any sequence of characters followed by a pound sign (#).
The comment is optional.

• sgi: Specifies the literal string sgi.

• major: Specifies the major version number, which is a string of digits [0-9].

• .: Specifies a literal period.

• minor: Specifies the minor version number, which is a string of digits [0-9].

Building a Shared Library Using Versioning

Follow these instructions when building your shared library:

56 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

When you first build your shared library, give it an initial version, for example,
sgi1.0. Add the option –set_version sgi1.0 to the command to build your
shared library (cc -shared, ld -shared).

Whenever you make a compatible change to the shared object, create another version
by changing the minor version number (for example, sgi1.1) and add it to the end
of the version_string. The command to set the version of the shared library now looks
like -set_version ‘‘sgi1.0:sgi1.1’’.

When you make an incompatible change to the shared object:

1. Change the filename of the old shared object by adding a dot followed by the
major number of one of the versions to the filename of the shared object. Do not
change the soname of the shared object or its contents. Simply rename the file.

2. Update the major version number and set the version_string of the shared object
(when you create it) to this new version; for example, -set_version sgi2.0.

This versioning mechanism affects executables in the following ways:

• When an executable is linked against a shared object, the last version in the shared
object’s version_string is recorded in the executable as part of the liblist. You
can examine this using elfdump -Dl.

• When you run an executable, rld looks for the proper filename in its usual search
routine.

• If a file is found with the correct name, the version specified in the executable for
this shared object is compared to each of the versions in the version_string in the
shared object. If one of the versions in the version_string matches the executable’s
version exactly (ignoring comments), then that library is used.

• If no proper match is found, a new filename for the shared object is built by
combining the soname specified in the executable for this shared object and the
major number found in the version specified in the executable for this shared object
(soname.major). Remember that you did not change the soname of the object, only
the filename. The new file is searched for using rld’s usual search procedure.

Example of Versioning

For example, suppose you have a shared object foo.so with initial version sgi10.0.
Over time, you make two compatible changes for foo.so that result in the following
final version_string for foo.so:

007–2360–009 57

3: Using Dynamic Shared Objects

initial_version#sgi10.0:upgrade#sgi10.1:new_devices#sgi10.2

You then link an executable that uses this shared object, useoldfoo. This executable
specifies version sgi10.2 for soname foo.so. (Remember that the executable
inherits the last version in the version_string of the shared object.)

The time comes to upgrade foo.so in an incompatible way. Note that the major
version of foo.so is 10, so you move the existing foo.so to the filename
foo.so.10 and create a new foo.so with the version_string:

efficient_interfaces#sgi11.0

New executables linked with foo.so use it directly. Older executables, like
useoldfoo, attempt to use foo.so, but find that its version (sgi11.0) is not the
version they need (sgi10.2). They then attempt to find a foo.so in the file name
foo.so.10 with version sgi10.2.

Note: When a needed DSO has its interface changed, then a new version is created. If
the interface change is not compatible with older versions, then a consuming shared
object needs incompatible versions in order to use the new version, even if it does not
use that part of the interface that is changed.

58 007–2360–009

Chapter 4

Optimizing Program Performance

This chapter describes the compiler optimization facilities and their benefits, and
explains the major optimizing techniques. This chapter includes the following topics:

• "Optimization Overview", page 60, provides an overview of optimization benefits
and debugging.

• "Performance Tuning with Interprocedural Analysis (IPA)", page 60, describes
performance tuning with interprocedural analysis.

• "Controlling Loop Nest Optimizations (LNO)", page 67, discusses ways of
controlling loop nest optimizations.

• "Controlling Floating-Point Optimization", page 87, explains methods of
controlling floating-point optimization.

• "Controlling Other Optimizations with the -OPT Option", page 93 describes how
to control miscellaneous optimizations.

• "Controlling Execution Frequency", page 96 describes how to control execution
frequency.

• "The Code Generator ", page 97, describes the code generator.

• "Reordering Code Regions", page 109, describes methods of optimizing the
location of code regions within your program

• "Programming Hints for Improving Optimization", page 112, lists programming
hints for improving optimization

Note: Please see the Release Notes and man pages for your compiler for a complete list
of options that you can use to optimize and tune your program.

See your compiler manual for information about the optional parallelizer, apo, and
the OpenMP directives and routines for a method of using a portable method to code
parallelization into your program. You can find additional information about
optimization in the MIPSpro 64-Bit Porting and Transition Guide. For information about
writing code for 64-bit programs, see Chapter 5, "Coding for 64-Bit Programs", page
121. For information about porting code to -n32 and -64, see Chapter 6, "Porting
Code to N32 and 64-Bit SGI Systems", page 127.

007–2360–009 59

4: Optimizing Program Performance

Optimization Overview
The primary benefits of optimization are faster running programs and often smaller
object code size. However, the optimizer can also speed up development time. For
example, you can reduce coding time by leaving it up to the optimizer to relate
programming details to execution time efficiency. You can focus on the more crucial
global structure of your program.

Optimize your program only when it is fully developed and debugged. To debug a
program, you can use the -g option. Note that you can also use -DEBUG:options to
debug run-time code and generate compile, link, and run-time warning messages.

Debug a program before optimizing it, because the optimizer may move operations
around so that the object code does not correspond in an obvious way to the source
code. These changed sequences of code can create confusion when using a debugger.
For information on the debugger, see dbx User’s Guide and ProDev WorkShop: Debugger
User’s Guide.

The compiler optimization options -O0 through -O3 determine the optimization level
to be applied to your program. The -O0 option applies no optimizations, and the -O3
option performs the most aggressive optimizations. See your compiler manual and
man page for more information.

Performance Tuning with Interprocedural Analysis (IPA)
Interprocedural Analysis (IPA) performs program optimizations that can only be done
in the presence of the whole program. Some of the optimizations it performs also
allow downstream phases to perform better code transformations.

Note: If you are using the automatic parallelizer (-apo), run it after IPA. If you apply
parallelization to subroutines in separate modules, and then apply inlining to those
modules using -IPA, you inline parallelized code into a main routine that is not
compiled to initialize parallel execution. Therefore, you must use the parallelizer
when compiling the main module as well as any submodules.

Currently IPA optimizes code by performing the following functions:

• Procedure inlining

• Interprocedural constant propagation

60 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

• Dead function elimination

• Identification of global constants

• Dead variable elimination

• PIC optimization

• Automatic selection of candidates for the gp-relative area (autognum)

• Dead call elimination

• Automatic internal padding of COMMON arrays in Fortran

• Interprocedural alias analysis

Figure 4-1, page 62, shows the interprocedural analysis and interprocedural
optimization phase of the compilation process.

007–2360–009 61

4: Optimizing Program Performance

Rest of th
e

back end phases

Intermediate

representation

Interprocedural Analysis and

Interprocedural Optim
ization phase

Intermediate

representation

Intermediate

representation

Interprocedural

local phase

Front

end

Front

end

Front

end

Source Files

a12015

Figure 4-1 Compilation Process Showing Interprocedural Analysis

Typically, you invoke IPA with the -IPA: option group to f77, f90, cc, CC, and ld.
Its inlining decisions are also controlled by the -INLINE: option group. Up-to-date
information on IPA and its options is in the ipa(5) man page.

62 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

This section covers some IPA options including:

• "Inlining"

• "Common Block Padding", page 65

• "Alias and Address Taken Analysis", page 67

Inlining

IPA performs across and within file inlining. A default inlining heuristic determines
which calls to inline.

Your code may benefit from inlining for the following reasons:

• Inlining exposes a larger context to the scalar and loop-nest optimizers, thereby
allowing more optimizations to occur.

• Inlining eliminates overhead resulting from the call (for example, register save and
restore, the call and return instructions, and so forth). Instances occur, however,
when inlining may hurt run-time performance due to increased demand for
registers, or compile-time performance due to code expansion. Hence extensive
inlining is not always useful. You must select callsites for inlining based on certain
criteria such as frequency of execution and size of the called procedure. Often it is
not possible to get an accurate determination of frequency information based on
compile-time analysis. As a result, inlining decisions may benefit from generating
feedback and providing the feedback file to IPA. The inlining heuristic will
perform better since it is able to take advantage of the available frequency
information in its inlining decision.

Inlining Options for Routines

You may wish to select certain procedures to be inlined or not to be inlined by using
the inlining options.

Note: You can use the inline keyword and pragmas in C++ or C to specifically
identify routines to call sites to inline. The inliner’s heuristics decides whether to
inline any cases not covered by the -INLINE options.

007–2360–009 63

4: Optimizing Program Performance

In all cases, once a call is selected for inlining, a number of tests are applied to verify
its suitability. These tests may prevent its inlining regardless of user specification: for
instance, if the callee is a C varargs routine, or parameter types do not match.

• The -INLINE:none and -INLINE:all Options

Changes the default inlining heuristic.

The -INLINE:all option. Attempts to inline all routines that are not excluded by
a never option or a routine pragma suppressing inlining, either for the routine or
for a specific callsite.

The -INLINE:none option. Does not attempt to inline any routines that are not
specified by a must option or a pragma requesting inlining, either for the routine
or for a specific callsite.

If you specify both all and none, none is ignored with a warning.

• The -INLINE:must and -INLINE:never Options

The -INLINE:must=routine_name<,routine_name>* option. Attempts to inline the
specified routines at call sites not marked by inlining pragmas, but does not inline
if varargs or similar complications prevent it. It observes site inlining pragmas.

Equivalently, you can mark a routine definition with a pragma requesting inlining.

The -INLINE:never=routine_name<,routine_name>* option. Does not inline the
specified routines at call sites not marked by inlining pragmas; it observes site
inlining pragmas.

Note: For C++, you must provide mangled routine names.

• The -INLINE:file=<filename> Option

This option invokes the standalone inliner, which provides cross-file inlining. The
option -INLINE:file=<filename> searches for routines provided via the
-INLINE:must list option in the file specified by the -INLINE:file option. The
file provided in this option must be generated using the -IPA -c options. The file
generated contains information used to perform the cross-file inlining.

For example, suppose two files exist: foo.f and bar.f.

The file, foo.f, looks like this:

64 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

program main
...

call bar()

end

The file, bar.f, looks like this:

subroutine bar()

...

end

To inline bar into main, using the standalone inliner, compile with -IPA and -c
options:

% f77 -n32 -IPA -c bar.f

This produces the file, bar.o. To inline bar into foo.f, enter:

% f77 -n32 foo.f -INLINE:must=bar:file=bar.o

Common Block Padding

Power of two arrays can lead to degenerate behavior on cache-based machines. The
IPA phases try, when possible, to pad the leading dimension of arrays to avoid cache
conflicts. Several restrictions exist that limit IPA padding of common arrays. If the
restrictions are not met, the arrays are not padded. The current restrictions are as
follows:

1. The shape of the common block to which the global array belongs must be
consistent across procedures. That is, the declaration of the common block must
be the same in every subroutine that declares it.

In the following example, IPA can not pad any of the arrays in the common block
because the shape is not consistent.

program main
common /a/ x(1024,1024), y(1024, 1024), z(1024,1024)

....

....

end

subroutine foo

common /a/ xx(100,100), yy(1000,1000), zz(1000,1000)

007–2360–009 65

4: Optimizing Program Performance

....

....

end

2. The common block variables must not initialize data associated with them. In this
example, IPA can not pad any of the arrays in common block /a/:

block data inidata

common /a/ x(1024,1024), y(1024,1024), z(1024,1024), b(2)

DATA b /0.0, 0.0/

end

program main

common /a/ x(1024,1024), y(1024,1024), z(1024,1024), b(2)

....

....
end

3. The array to be padded may be passed as a parameter to a routine only if it
declared as a one dimensional array, since passing multi-dimensional arrays that
may be padded can cause the array to be reshaped in the callee.

4. Restricted types of equivalences to arrays that may be padded are allowed.
Equivalences that do not intersect with any column of the array are allowed. This
implies an equivalencing that will not cause the equivalenced array to access
invalid locations. In the following example, the arrays in common /a/ will not be
padded since z is equivalenced to x(2,1), and hence z(1024) is equivalenced
to x(1,2).

program main

real z(1024)

common /a/ x(1024,1024), y(1024,1024) equivalence (z, x(2,1))

....

....

end

5. The common block symbol must have an INTERNAL or HIDDEN attribute, which
implies that the symbol may not be referenced within a DSO that has been linked
with this program.

6. The common block symbol can not be referenced by regular object files that have
been linked with the program.

66 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

Alias and Address Taken Analysis

The optimizations that are performed later in the compiler are often constrained by
the possibility that two variable references may be aliased, meaning they may be
aliased to the same address. This possibility is increased by calls to procedures that
are not visible to the optimizer, and by taking the addresses of variables and saving
them for possible use later (for example, in pointers).

Furthermore, the compiler must normally assume that a global (external) datum may
have its address taken in another file, or may be referenced or modified by any
procedure call. The IPA alias and address-taken analyses are designed to identify the
actual global variable addressing and reference behavior so that such worst-case
assumptions are not necessary.

The -IPA:alias=ON Option

This option performs IPA alias analysis. That is, it determines which global variables
and formal parameters are referenced or modified by each call, and which global
variables are passed to reference formal parameters. This analysis is used for other
IPA analyses, including constant propagation and address-taken analysis. This option
is ON by default.

The -IPA:addressing=ON Option

This option performs IPA address-taken analysis. That is, it determines which global
variables and formal parameters have their addresses taken in ways that may produce
aliases. This analysis is used for other IPA analyses, especially constant propagation.
Its effectiveness is very limited without -IPA:alias=ON. This option is ON by default.

Controlling Loop Nest Optimizations (LNO)
Numerical programs often spend most of their time executing loops. The loop nest
optimizer (LNO) performs high-level loop optimizations that can greatly improve
program performance by better exploiting caches and instruction-level parallelism.

This section covers the following topics:

• "Running LNO", page 68

• "LNO Optimizations ", page 70

• "Compiler Options for LNO ", page 76

007–2360–009 67

4: Optimizing Program Performance

• "Pragmas and Directives for LNO ", page 77

For complete information on options, see the lno(5) man page.

Running LNO

LNO is run by default when you use the -O3 option for all Fortran, C, and C++
programs. LNO is an integrated part of the compiler back end and is not a
preprocessor. Therefore, the same optimizations (with the same control options) apply
to Fortran, C, and C++ programs. Note that this does not imply that LNO will
optimize numeric C++ programs as well as Fortran programs. C and C++ programs
often include features that make them inherently harder to optimize than Fortran
programs.

After LNO performs high-level transformations, it may be desirable to view the
transformed code in the original source language. Two translators that are integrated
into the back end translate the compiler internal code representation back into the
original source language after the LNO transformation (and IPA inlining). You can
invoke either one of these translators by using the Fortran option -FLIST:=on or the
cc option -CLIST:=on. For example, f77 -O3 -FLIST:=on x.f creates an a.out
as well as a Fortran file x.w2f.f. The .w2f.f file is a readable file, and it is usually
a compilable SGI Fortran representation of the original program after the LNO phase
(see Figure 4-2, page 69). LNO is not a preprocessor, which means that recompiling
the .w2f.f file directly may result in an executable that is different from the original
compilation of the .f file.

Use the -CLIST:=on option to cc to translate compiler internal code to C. No
translator exists to translate compiler internal code to C++. When the original source
language is C++, the generated C code may not be compilable.

68 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

-flis
t

.w2c.c

(code

after

 LNO

 phase)

.w2f.f

(code

after

 LNO

phase)

Main optim
ization

Code generator

LNO

Pre-optim
ization

-clist

Front

end
Intermediate

representation

Intermediate

representation

Intermediate

representation

Intermediate

representation

Source Files

Object

file
(.o)

a12016

Figure 4-2 Compilation Process Showing LNO Transformations

007–2360–009 69

4: Optimizing Program Performance

LNO Optimizations

This section describes some important optimizations performed by LNO. For a
complete listing, see your compiler’s man page. Optimizations include:

• "Loop Interchange"

• "Blocking and Outer Loop Unrolling ", page 71

• "Loop Fusion", page 72

• "Loop Fission/Distribution", page 73

• "Prefetching", page 75

• "Gather-Scatter Optimization", page 75

Loop Interchange

The order of loops in a nest can affect the number of cache misses, the number of
instructions in the inner loop, and the ability to schedule an inner loop. Consider the
following loop nest example.

do i

do j

do k

a(j,k) = a(j,k) + b(i,k)

As written, the loop suffers from several possible performance problems. First, each
iteration of the k loop requires two loads and one store. Second, if the loop bounds
are sufficiently large, every memory reference will result in a cache miss.

Interchanging the loops improves performance.

do k

do j

do i

a(j,k) = a(j,k) + b(i,k)

Since a(j,k) is loop invariant, only one load is needed in every iteration. Also,
b(i,k) is “stride-1,” successive loads of b(i,k) come from successive memory
locations. Since each cache miss brings in a contiguous cache line of data, typically
4-16 elements, stride-1 references incur a cache miss every 4-16 iterations. In contrast,
the references in the original loop are not in stride-1 order. Each iteration of the inner
loop causes two cache misses; one for a(j,k) and one for b(i,k).

70 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

In a real loop, different factors may affect different loop ordering. For example,
choosing i for the inner loop may improve cache behavior while choosing j may
eliminate a recurrence. LNO uses a performance model that considers these factors. It
then orders the loops to minimize the overall execution time estimate.

Blocking and Outer Loop Unrolling

Cache blocking and outer loop unrolling are two closely related optimizations used to
improve cache reuse, register reuse, and minimize recurrences. Consider matrix
multiplication in the following example.

do i=1,10000

do j=1,10000
do k=1,10000

c(i,j) = c(i,j) + a(i,k)*b(k,j)

Given the original loop ordering, each iteration of the inner loop requires two loads.
The compiler uses loop unrolling, that is, register blocking, to minimize the number
of loads.

do i=1,10000

do j=1,10000,2

do k=1,10000
c(i,j) = c(i,j) + a(i,k)*b(k,j)

c(i,j+1) = c(i,j+1) + a(i,k)*b(k,j+1)

Storing the value of a(i,k) in a register avoids the second load of a(i,k). Now the
inner loop only requires three loads for two iterations. Unrolling the j loop even
further, or unrolling the i loop as well, further decrease the amount of loads required.
How much is the ideal amount to unroll? Unrolling more decreases the amount of
loads but not the amount of floating point operations. At some point, the execution
time of each iteration is limited by the floating point operations. There is no point in
unrolling further. LNO uses its performance model to choose a set of unrolling
factors that minimizes the overall execution time estimate.

Given the original matrix multiply loop, each iteration of the i loop reuses the entire
b matrix. However, with sufficiently large loop limits, the matrix b will not remain in
the cache across iterations of the i loop. Thus in each iteration, you have to bring the
entire matrix into the cache. You can “cache block” the loop to improve cache
behavior.

do tilej=1,10000,Bj

do tilek=1,10000,Bk

007–2360–009 71

4: Optimizing Program Performance

do i=1,10000
do j=tilej,MIN(tilej+Bj-1,10000)

do k=tilek,MIN(tilek+Bk-1,10000)

c(i,j) = c(i,j) + a(i,k)*b(k,j)

By appropriately choosing Bi and Bk, b remains in the cache across iterations of i,
and the total number of cache misses is greatly reduced.

LNO automatically caches tile loops with block sizes appropriate for the target
machine. When compiling for an SGI R8000, LNO uses a single level of blocking.
When compiling for an SGI systems (such as R4000, R5000, R10000, or R12000) that
contain multi-level caches, LNO uses multiple levels of blocking where appropriate.

Loop Fusion

LNO attempts to fuse multiple loop nests to improve cache behavior, to lower the
number of memory references, and to enable other optimizations. Consider the
following example.

do i=1,n

do j=1,n

a(i,j) = b(i,j) + b(i,j-1) + b(i,j+1)

do i=1,n

do j=1,n

b(i,j) = a(i,j) + a(i,j-1) + a(i,j+1)

In each loop, you need to do one store and one load in every iteration (the remaining
loads are eliminated by the software pipeliner). If n is sufficiently large, in each loop
you need to bring the entire a and b matrices into the cache.

LNO fuses the two nests and creates the following single nest:

do i=1,n

a(i,1) = b(i,0) + b(i,1) + b(i,2)
do j=2,n

a(i,j) = b(i,j) + b(i,j-1) + b(i,j+1)

b(i,j-1) = a(i,j-2) + a(i,j-1) + a(i,j)

end do

b(i,n) = a(i,n-1) + a(i,n) + a(i,n+1)
end do

72 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

Fusing the loops eliminates half of the cache misses and half of the memory references.
Fusion can also enable other optimizations. Consider the following example:

do i

do j1

S1

end do

do j2

S2
end do

end do

By fusing the two inner loops, other transformations are enabled such as loop
interchange and cache blocking.

do j

do i

S1
S2

end do

end do

As an enabling transformation, LNO always tries to use loop fusion (or fission,
discussed in the following subsection) to create larger perfectly nested loops. In other
cases, LNO decides whether or not to fuse two loops by using a heuristic based on
loop sizes and the number of variables common to both loops.

To fuse aggressively, use -LNO:fusion=2.

Loop Fission/Distribution

The opposite of fusing loops is distributing loops into multiple pieces, or loop fission.
As with fusion, fission is useful as an enabling transformation. Consider this example
again:

do i

do j1

S1

end do

do j2
S2

end do

end do

007–2360–009 73

4: Optimizing Program Performance

Using loop fission, as shown in the following example, also enables loop interchange
and blocking.

do i1

do j1

S1

end do

end do

do i2
do j2

S2

end do

end do

Loop fission is also useful to reduce register pressure in large inner loops. LNO uses
a model to estimate whether or not an inner loop is suffering from register pressure.
If it decides that register pressure is a problem, fission is attempted. LNO uses a
heuristic to decide on how to divide the statements among the resultant loops.

Loop fission can potentially lead to the introduction of temporary arrays. Consider
the following loop.

do i=1,n

s = ..

.. = s

end do

If you want to split the loop so that the two statements are in different loops, you
need to scalar expand s.

do i=1,n

tmp_s(i) = ..

end do

do i=1,n

.. = tmp_s(i)
end do

Space for tmp_s is allocated on the stack to minimize allocation time. If n is very
large, scalar expansion can lead to increased memory usage, so the compiler blocks
scalar expanded loops. Consider the following example:

do se_tile=1,n,b

do i=se_tile,MIN(se_tile+b-1,n)

tmp_s(i) = ..

74 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

end do
do i=se_tile,MIN(se_tile+b-1,n)

.. = tmp_s(i)

end do

end do

Related to loop fission is vectorization of intrinsics. The SGI math libraries support
vector versions of many intrinsic functions that are faster than the regular versions.
That is, it is faster, per element, to compute n cosines than to compute a single cosine.
LNO attempts to split vectorizable intrinsics into their own loops. If successful, each
such loop is collapsed into a single call to the corresponding vector intrinsic.

Prefetching

The MIPS IV instruction set supports a data prefetch instruction that initiates a fetch
of the specified data item into the cache. By prefetching a likely cache miss
sufficiently ahead of the actual reference, you can increase the tolerance for cache
misses. In programs limited by memory latency, prefetching can change the
bottleneck from hardware latency time to the hardware bandwidth. By default,
prefetching is enabled at -O3 for the R10000.

LNO runs a pass that estimates which references will be cache misses and inserts
prefetches for those misses. Based on the miss latency, the code generator later
schedules the prefetches ahead of their corresponding references.

By default, for misses in the primary cache, the code generator moves loads early in
the schedule ahead of their use, exploiting the out-of-order execution feature of the
R10000 to hide the latency of the primary miss. For misses in the secondary cache,
explicit prefetch instructions are generated.

Prefetching is limited to array references in well behaved loops. As loop bounds are
frequently unknown at compile time, it is usually not possible to know for certain
whether a reference will miss. The algorithm therefore uses heuristics to guess.

Prefetching can improve performance in compute-intensive operations where data is
too large to fit in the cache. Conversely, prefetching will not help performance in a
memory-bound loop where data fits in the cache.

Gather-Scatter Optimization

Software pipelining attempts to improve performance by executing statements from
multiple iterations of a loop in parallel. This is difficult when loops contain
conditional statements. Consider the following example:

007–2360–009 75

4: Optimizing Program Performance

do i = 1,n
if (t(i) .gt. 0.0) then

a(i) = 2.0*b(i-1)

end do

end do

Ignoring the if statement, software pipelining may move up the load of b(i-1),
effectively executing it in parallel with earlier iterations of the multiply. Given the
conditional, this is not strictly possible. The code generator will often if convert such
loops, essentially executing the body of the if on every iteration. The if conversion
does not work well when the if is frequently not taken. An alternative is to
gather-scatter the loop, so the loop is divided as follows:

inc = 0 do i = 1,n

tmp(inc) = i

if (t(i) .gt. 0.0) then
inc = inc + 1

end do

end do

do i = 1,inc

a(tmp(i)) = 2.0*b((tmp(i)-1)
end do

The code generator will if convert the first loop; however, no need exists to if
convert the second one. The second loop can be effectively software pipelined
without having to execute unnecessary multiplies.

Compiler Options for LNO

The lno(5) man page describes the compiler options for LNO. Specifically, topics
include:

• Controlling LNO Optimization Levels (described below)

• Controlling Fission and Fusion (described below)

• Controlling Gather-Scatter

• Controlling Cache Parameters

• Controlling Permutation Transformations and Cache Optimization

• Controlling Prefetch

76 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

All of the LNO optimizations are on by default when you use the -O3 compiler
option. To turn off LNO at -O3, use -LNO:opt=0. If you want direct control, you
can specify options and pragmas to turn on and off optimizations that you require.

The options -r5000, -r8000, -r10000, and -r12000 set a series of default cache
characteristics. To override a default setting, use one or more of the options below.

To define a cache entirely, you must specify all options immediately following the
-LNO:cache_size option. For example, if the processor is an R4000 (r4k), which
has no secondary cache, then specifying -LNO:cache_size2=4m is not valid unless
you supply the options necessary to specify the other characteristics of the cache.
(Setting -LNO:cache_size2=0 is adequate to turn off the second level cache; you do
not have to specify other second-level parameters.) Options are available for third and
fourth level caches. Currently none of the SGI machines have such caches. However,
you can also use those options to block other levels of the memory hierarchy.

For example, on a machine with 128 Mbytes of main memory, you can block for it by
using parameters, for example, -LNO:cs3=128M:ls3=.... In this case, assoc3 is
ignored and does not have to be specified. Instead, you must specify is_mem3..,
since virtual memory is fully associative.

Pragmas and Directives for LNO

Fortran directives and C and C++ pragmas enable, disable, or modify a feature of the
compiler. This section uses the term pragma when describing either a pragma or a
directive.

Pragmas within a procedure apply only to that particular procedure, and revert to the
default values upon the end of the procedure. Pragmas that occur outside of a
procedure alter the default value, and therefore apply to the rest of the file from that
point on, until overridden by a subsequent pragma.

By default, pragmas within a file override the command-line options. Use the
-LNO:ignore_pragmas option to allow command-line options to override the
pragmas in the file.

This section covers:

• Fission/Fusion

• Blocking and Permutation Transformations

• Prefetch

007–2360–009 77

4: Optimizing Program Performance

• Fill/Align Symbol

• Dependence Analysis

See the lno(5) man page, or your compiler manual, for more information on these
pragmas and directives.

Fission/Fusion

The following pragmas/directives control fission and fusion.

C*$* AGGRESSIVE INNER LOOP FISSION
#pragma aggressive inner loop fission

Fission inner loops into as many loops as possible. It can only be
followed by a inner loop and has no effect if that loop is not inner
any more after loop interchange.

C*$* FISSION
#pragma fission
C*$* FISSIONABLE
#pragma fissionable

Fission the enclosing n level of loops after this pragma. The default is
1. Performs validity test unless a FISSIONABLE pragma is also
specified. Does not reorder statements.

C*$* FUSE
#pragma fuse
C*$* FUSABLE
#pragma fusable

Fuse the following loops, which must be immediately adjacent. The
default is 2,level. Fusion is attempted on each pair of adjacent
loops and the level, by default, is the determined by the maximal
perfectly nested loop levels of the fused loops although partial fusion
is allowed. Iterations may be peeled as needed during fusion and the
limit of this peeling is 5 or the number specified by the
-LNO:fusion_peeling_limit option. No fusion is done for
non-adjacent outer loops. When the FUSABLE pragma is present, no
validity test is done and the fusion is done up to the maximal
common levels.

78 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

C*$* NO FISSION
#pragma no fission

The loop following this pragma should not be fissioned. Its innermost
loops, however, are allowed to be fissioned.

C*$* NO FUSION
#pragma no fusion

The loop following this pragma should not be fused with other loops.

Blocking and Permutation Transformations

The following pragmas/directives control blocking and permutation transformations.

C*$* INTERCHANGE
#pragma interchange

Loops to be interchanged (in any order) must directly follow this
pragma and be perfectly nested one inside the other. If they are not
perfectly nested, the compiler may choose to perform loop
distribution to make them so, or may choose to ignore the annotation,
or even apply imperfect interchange. Attempts to reorder loops so
that I is outermost, then J, then K. The compiler may choose to ignore
this pragma.

C*$* NO INTERCHANGE
#pragma no interchange

Prevent the compiler from involving the loop directly following this
pragma in an interchange, or any loop nested within this loop.

C*$* BLOCKING SIZE [(n1,n2)]
#pragma blocking size (n1,n2)

The loop specified, if it is involved in a blocking for the primary
(secondary) cache, will have a block size of n1 {n2}. The compiler
tries to include this loop within such a block. If a 0 blocking size is
specified, then the loop is not stripped, but the entire loop is inside
the block.

For example:

subroutine amat(x,y,z,n,m,mm)
real*8 x(100,100), y(100,100), z(100,100)

007–2360–009 79

4: Optimizing Program Performance

do k = 1, n
C*$* BLOCKING SIZE 20

do j = 1, m

C*$* BLOCKING SIZE 20

do i = 1, mm

z(i,k) = z(i,k) + x(i,j)*y(j,k)
enddo

enddo

enddo

end

In this example, the compiler makes 20x20 blocks when blocking. However, the
compiler can block the loop nest such that loop k is not included in the tile. If it did
not, add the following pragma just before the k loop.

C*$* BLOCKING SIZE (0)

This pragma suggests that the compiler generates a nest like:

subroutine amat(x,y,z,n,m,mm)
real*8 x(100,100), y(100,100), z(100,100)

do jj = 1, m, 20

do ii = 1, mm, 20

do k = 1, n

do j = jj, MIN(m, jj+19)

do i = ii, MIN(mm, ii+19)
z(i,k) = z(i,k) + x(i,j)*y(j,k)

enddo

enddo

enddo

enddo
enddo

end

Finally, you can apply a INTERCHANGE pragma to the same nest as a BLOCKING
SIZE pragma. The BLOCKING SIZE applies to the loop it directly precedes only, and
moves with that loop when an interchange is applied.

C*$* NO BLOCKING
#pragma no blocking

Prevent the compiler from involving this loop in cache blocking.

80 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

C*$* UNROLL
#pragma unroll

This pragma suggests to the compiler that n-1 copies of the loop body
be added to the loop. If the loop that this pragma directly precedes is
an inner loop, then it indicates standard unrolling. If the loop that
this pragma directly precedes is not innermost, then outer loop
unrolling (unroll and jam) is performed. The value of n must be at
least 1. If it is exactly 1, then no unrolling is performed.

For example, the following code:

C*$* UNROLL (2)
DO i = 1, 10

DO j = 1, 10

a(i,j) = a(i,j) + b(i,j)

END DO

END DO

becomes:

DO i = 1, 10, 2
DO j = 1, 10

a(i,j) = a(i,j) + b(i,j)

a(i+1,j) = a(i+1,j) + b(i+1,j)

END DO

END DO

and not:

DO i = 1, 10, 2

DO j = 1, 10
a(i,j) = a(i,j) + b(i,j)

END DO

DO j = 1, 10

a(i+1,j) = a(i+1,j) + b(i+1,j)

END DO
END DO

The UNROLL pragma again is attached to the given loop, so that if an INTERCHANGE
is performed, the corresponding loop is still unrolled. That is, the example above is
equivalent to:

007–2360–009 81

4: Optimizing Program Performance

C*$* INTERCHANGE i,j
DO j = 1, 10

C*$* UNROLL 2

DO i = 1, 10

a(i,j) = a(i,j) + b(i,j)

END DO
END DO

C*$* BLOCKABLE(I,J,K)
#pragma blockable (i,j,k)

The loops I, J and K must be adjacent and nested within each other,
although not necessarily perfectly nested. This pragma informs the
compiler that these loops may validly be involved in a blocking with
each other, even if the compiler considers such a transformation
invalid. The loops are also interchangeable and unrollable. This
pragma does not tell the compiler which of these transformations to
apply.

Prefetch

The following pragmas/directives control prefetch operations.

C*$* PREFETCH
#pragma prefetch

Specify prefetching for each level of the cache. Scope: entire function
containing the pragma.

0 prefetching off (default for all processors except R10000 and R12000)

1 prefetching on, but conservative (default at -03 when prefetch is on)

2 prefetching on, and aggressive

C*$* PREFETCH_MANUAL
#pragma prefetch_manual

Specify whether manual prefetches (through pragmas) should be
respected or ignored. Scope: entire function containing the pragma.

0 ignore manual prefetches (default for all processors except R10000
and R12000)

1 respect manual prefetches (default at -03 for R10000 and beyond)

82 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

C*$* PREFETCH_REF
#pragma prefetch_ref

The object specified is the reference itself; for example, an array
element A(i, j). The object can also be a scalar, for example, x, an
integer. Must be specified.

A specified stride prefetches every stride iterations of this loop.
Optional; the default is 1.

The specified level specifies the level in memory hierarchy to
prefetch. Optional; the default is 2.

lev=1: prefetch from L2 to L1 cache.

lev=2: prefetch from memory to L1 cache.

kind specifies read/write. Optional; the default is write.

size specifies the size (in Kbytes) of this object referenced in this
loop. Must be a constant. Optional.

The effect of this pragma is:

• Generate a prefetch and connect to the specified reference (if possible).

• Search for array references that match the supplied reference in the current
loop-nest. If such a reference is found, then that reference is connected to this
prefetch node with the specified latency. If no such reference is found, then this
prefetch node stays free-floating and is scheduled “loosely.”

• Ignore all references to this array in this loop-nest by the automatic prefetcher (if
enabled).

• If the size is specified, then the auto-prefetcher (if enabled) uses that number in its
volume analysis for this array.

• No scope, just generate a prefetch.

007–2360–009 83

4: Optimizing Program Performance

C*$* PREFETCH_REF_DISABLE
#pragma prefetch_ref_disable

This explicitly disables prefetching all references to the specified array
in the current loop nest. The auto-prefetcher runs (if enabled),
ignoring the array.

Fill/Align Symbol

The following pragmas and/or directives control fill and/or alignment of symbols.
This section uses the term pragma when describing either a pragma or a directive.

The align_symbol pragma aligns the start of the named symbol at the specified
alignment. The fill_symbol pragma pads the named symbol.

C*$* FILL_SYMBOL
#pragma fill_symbol
C*$* ALIGN_SYMBOL
#pragma align_symbol

The fill_symbol/align_symbol pragmas take a symbol, that is, a
variable that is a Fortran COMMON, a C/C++ global, or an automatic
variable (but not a formal and not an element of a structured type
like a struct or an array).

The second argument in the pragma may be one of the keywords:

• L1cacheline (machine specific first-level cache line size, typically 32
bytes)

• L2cacheline (machine specific second-level cache line size, typically
128 bytes)

• page (machine specific page size, typically 16 Kbytes)

• a user-specified power-of-two value

The align_symbol pragma aligns the start of the named symbol at
the specified alignment, that is, the symbol “s” will start at the
specified alignment boundary.

The fill_symbol pragma pads the named symbol with additional
storage so that the symbol is assured not to overlap with any other
data item within the storage of the specified size. The additional
padding required is heuristically divided between each end of the

84 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

specified variable. For instance, a fill_symbol pragma for the
L1cacheline guarantees that the specified symbol does not suffer from
false-sharing for the L1 cache line.

For global variables, these pragmas must be specified at the variable
definition, and are optional at the declarations of the variable.

For COMMON block variables, these pragmas are required at each
declaration of the COMMON block. Since the pragmas modify the
allocated storage and its alignment for the named symbol,
inconsistent pragmas can lead to undefined results.

The align_symbol pragma is ineffective for local variables of
fixed-size symbols, such as simple scalars or arrays of known size.
The pragma continues to be effective for stack-allocated arrays of
dynamically determined size.

A variable cannot have both fill_symbol and align_symbol
pragmas applied to it.

Examples:

int x; /* x is a global or a common block variable */

#pragma align_symbol (x, 32)

/* x will start at a 32-byte boundary */

#pragma align_symbol (x, 2)

/* Error: cannot request alignment lower than the natural

* alignment of the symbol.
*/

double y; /* y is a global, common, or local */

#pragma fill_symbol (y, L2cacheline)

/* allocate extra storage both before and after ‘‘y’’ so
* that ‘‘y’’ is within an L2cacheline (128 bytes) all by

* itself. Can be useful to avoid false-sharing between

* multipleprocessors for cacheline containing ‘‘y’’.

*/

Dependence Analysis

The following pragmas/directives control dependence analysis.

007–2360–009 85

4: Optimizing Program Performance

CDIR$ IVDEP
#pragma ivdep

Liberalize dependence analysis. This applies only to inner loops.
Given two memory references, where at least one is loop variant,
ignore any loop-carried dependences between the two references.

For example:

CDIR$ IVDEP

do i = 1,n

b(k) = b(k) + a(i)

enddo

ivdep does not break the dependence since b(k) is not loop variant.

CDIR$ IVDEP
do i=1,n

a(i) = a(i-1) + 3.0

enddo

ivdep does break the dependence, but the compiler warns the user
that it is breaking an obvious dependence.

CDIR$ IVDEP

do i=1,n

a(b(i)) = a(b(i)) + 3.0
enddo

ivdep does break the dependence.

CDIR$ IVDEP

do i = 1,n

a(i) = b(i)

c(i) = a(i) + 3.0

enddo

ivdep does not break the dependence on a(i) since it is within an
iteration.

If -OPT:cray_ivdep=TRUE, use Cray semantics. Break all lexically
backward dependences. For example:

CDIR$ IVDEP

do i=1,n

86 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

a(i) = a(i-1) + 3.0
enddo

ivdep does break the dependence but the compiler warns the user
that it is breaking an obvious dependence.

CDIR$ IVDEP

do i=1,n

a(i) = a(i+1) + 3.0

enddo

ivdep does not break the dependence since the dependence is from
the load to the store, and the load comes lexically before the store.

To break all dependencies, specify -OPT:liberal_ivdep=TRUE.

-OPT:cray_ivdep and -OPT:liberal_ivdep are OFF (FALSE) by
default.

Controlling Floating-Point Optimization
Floating-point numbers (the Fortran REAL*n, DOUBLE PRECISION, and COMPLEX*n,
and the C float, double, and long double) are inexact representations of ideal
real numbers. The operations performed on them are also necessarily inexact.
However, the MIPS processors conform to the IEEE 754 floating-point standard,
producing results as precise as possible given the constraints of the IEEE 754
representations, and the MIPSpro compilers generally preserve this conformance.
Note, however, that 128-bit floating point (that is, the Fortran REAL*16 and the C
long double) is not precisely IEEE-compliant. In addition, the source language
standards imply rules about how expressions are evaluated.

Most code that has not been written with careful attention to floating-point behavior
does not require precise conformance to either the source language expression
evaluation standards or to IEEE 754 arithmetic standards. Therefore, the MIPSpro
compilers provide a number of options that trade off source language expression
evaluation rules and IEEE 754 conformance against better performance of generated
code. These options allow transformations of calculations specified by the source code
that may not produce precisely the same floating point result, although they involve a
mathematically equivalent calculation.

Two of these options are the preferred controls:

007–2360–009 87

4: Optimizing Program Performance

• -OPT:roundoff=n deals with the extent to which language expression evaluation
rules are observed, generally affecting the transformation of expressions involving
multiple operations.

• -OPT:IEEE_arithmetic=n deals with the extent to which the generated code
conforms to IEEE 754 standards for discrete IEEE-specified operations (for
example, a divide or a square root).

-OPT:roundoff=n

The -OPT:roundoff option provides control over floating point accuracy and
overflow/underflow exception behavior relative to the source language rules.

The roundoff option specifies the extent to that optimizations are allowed to affect
floating point results, in terms of both accuracy and overflow/underflow behavior.
The roundoff value, n, has a value in the range 0–3. Roundoff values are described in
the following list:

roundoff=0

Do no transformations that could affect floating-point results. This is
the default for optimization levels -O0 to -O2.

roundoff=1

Allow transformations with limited effects on floating point results.
For roundoff, limited means that only the last bit or two of the
mantissa is affected. For overflow (or underfow), it means that
intermediate results of the transformed calculation may overflow
within a factor of two of where the original expression may have
overflowed (or underflowed). Note that effects may be less limited
when compounded by multiple transformations.

roundoff=2

Allow transformations with more extensive effects on floating point
results. Allow associative rearrangement, even across loop iterations,
and distribution of multiplication over addition or subtraction.
Disallow only transformations known to cause cumulative roundoff
errors, or overflow or underflow, for operands in a large range of
valid floating-point values.

88 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

Reassociation can have a substantial effect on the performance of
software pipelined loops by breaking recurrences. This is therefore
the default for optimization level -O3.

roundoff=3

Allow any mathematically valid transformation of floating point
expressions. This allows floating point induction variables in loops,
even when they are known to cause cumulative roundoff errors, and
fast algorithms for complex absolute value and divide, which
overflow (underflow) for operands beyond the square root of the
representable extremes.

-OPT:IEEE_arithmetic=n

The -OPT:IEEE_arithmetic option controls conformance to IEEE 754 arithmetic
standards for discrete operators.

The -OPT:IEEE_arithmetic option specifies the extent to which optimizations
must preserve IEEE floating-point arithmetic. The value n must be in the range of 1
through 3. Values are described in the following list:

-OPT:IEEE_arithmetic=1

No degradation: do no transformations that degrade floating-point
accuracy from IEEE requirements. The generated code may use
instructions such as madd, which provides greater accuracy than
required by IEEE 754. This is the default.

-OPT:IEEE_arithmetic=2

Minor degradation: allow transformations with limited effects on
floating point results, as long as exact results remain exact. This
option allows use of the MIPS4 recip and rsqrt operations.

-OPT:IEEE_arithmetic=3

Conformance not required: allow any mathematically valid
transformations. For instance, this allows implementation of x/y as
x*recip(y), or sqrt(x) as x*rsqrt(x).

As an example, consider optimizing the following Fortran code fragment:

007–2360–009 89

4: Optimizing Program Performance

INTEGER i, n
REAL sum, divisor, a(n)

sum = 0.0

DO i = 1,n

sum = sum + a(i)/divisor

END DO

At roundoff=0 and IEEE_arithmetic=1, the generated code must do the n loop
iterations in order, with a divide and an add in each.

Using IEEE_arithmetic=3, the divide can be treated like a(i)*(1.0/divisor).
For example, on the MIPS R8000 and R10000, the reciprocal can be done with a
recip instruction. But more importantly, the reciprocal can be calculated once before
the loop is entered, reducing the loop body to a much faster multiply and add per
iteration, which can be a single madd instruction on the R8000 and R10000.

Using roundoff=2, the loop may be reordered. For example, the original loop takes
at least 4 cycles per iteration on the R8000 (the latency of the add or madd
instruction). Reordering allows the calculation of several partial sums in parallel,
adding them together after loop exit. With software pipelining, a throughput of
nearly 2 iterations per cycle is possible on the R8000, a factor of 8 improvement.

Consider another example:

INTEGER i,n

COMPLEX c(n)

REAL r

DO i = 1,n
r = 0.1 * i

c(i) = CABS (CMPLX(r,r))

END DO

Mathematically, r can be calculated by initializing it to 0.0 before entering the loop
and adding 0.1 on each iteration. But doing so causes significant cumulative errors
because the representation of 0.1 is not exact. The complex absolute value is
mathematically equal to SQRT(r*r + r*r). However, calculating it this way causes
an overflow if 2*r*r is greater than the maximum REAL value, even though a
representable result can be calculated for a much wider range of values of r (at
greater cost). Both of these transformations are forbidden for roundoff=2, but
enabled for roundoff=3.

90 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

Other Options to Control Floating Point Behavior

Other options exist that allow finer control of floating point behavior than is provided
by -OPT:roundoff. The options may be used to obtain finer control, but they may
disappear or change in future compiler releases.

-OPT:div_split

Enable/disable the calculation of x/y as x*(1.0/y), normally
enabled by IEEE_arithmetic=3. Simplifies expressions by
determining if (A/B) should be turned into (1/B)*A. This can be
useful if B is a loop-invariant, as it replaces the divide with a multiply.
For example, X = A/B becomes X = A*(1/B). See -OPT:recip.

-OPT:fast_complex

Enable/disable the fast algorithms for complex absolute value and
division, normally enabled by roundoff=3.

-OPT:fast_exp

Enable/disable the translation of exponentiation by integers or halves
to sequences of multiplies and square roots. This can change
roundoff, and can make these functions produce minor
discontinuities at the exponents where it applies. Normally enabled
by roundoff>0 for Fortran, or for C if the function exp() is labeled
intrinsic in <math.h> (the default in -xansi and -cckr modes).

-OPT:fast_io

Enable/disable inlining of printf(), fprintf(), sprintf(),
scanf(), fscanf(), sscanf(), and printw() for more specialized
lower-level subroutines. This option applies only if the candidates for
inlining are marked as intrinsic (-D__INLINE_INTRINSICS) in the
respective header files (<stdio.h> and <curses.h>); otherwise
they are not inlined. Programs that use functions such as printf()
or scanf() heavily generally have improved I/O performance when
this switch is used. Since this option may cause substantial code
expansion, it is OFF by default.

-OPT:fast_sqrt

Enable/disable the calculation of square root as x*rsqrt(x) for
-mips4, normally enabled by IEEE_arithmetic=3. This option is
ignored for the R10000.

007–2360–009 91

4: Optimizing Program Performance

-OPT:fold_reassociate

Enable/disable transformations that reassociate or distribute floating
point expressions. This option is on at -O3, or if roundoff >= 2.
For example, X + 1. X can be turned into X - X + 1.0, which will
then simplify to 1. This can cause problems is X is large compared to
1, so that X+1 is X due to roundoff.

-OPT:IEEE_comparisons

Force comparisons to yield results conforming to the IEEE 754
standard for NaN and Inf operands, normally disabled. Setting this
option disables certain optimizations like assuming that a comparison
x==x is always TRUE (since it is FALSE if x is a NaN). It also disables
optimizations that reverse the sense of a comparison, for example,
turning ‘‘x < y’’ into ‘‘! (x >= y)’’, since both ‘‘x<y’’
and ‘‘x>=y’’ may be FALSE if one of the operands is a NaN.

-OPT:recip

Allow use of the MIPS IV reciprocal instruction for 1.0/y, normally
enabled by -O3 or IEEE_arithmetic>=2. See -OPT:div_split.
For example, X = 1./Y generates the recip instruction instead of a
divide instruction. This may change the results slightly.

-OPT:rsqrt

Allow use of the MIPS IV reciprocal square root instruction for
1.0/sqrt(y), normally enabled by -O3 or IEEE_arithmetic>=2.
For example, X = 1./SQRT(Y) generates the rsqrt instruction
instead of a divide and a square root. This may change the results
slightly. This option is ignored for the R10000.

-TARG:madd

The MIPS IV architecture supports fused multiply-add instructions,
which add the product of two operands to a third, with a single
roundoff step at the end. Because the product is not separately
rounded, this can produce slightly different (but more accurate)

92 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

results than a separate multiply and add pair of instructions. This is
normally enabled for -mips4.

Debugging Floating-Point Problems

The preceding options can change the results of floating point calculations, causing
less accuracy (especially -OPT:IEEE_arithmetic), different results due to
expression rearrangement (-OPT:roundoff), or NaN/Inf results in new cases. Note
that in some such cases, the new results may not be worse (that is, less accurate) than
the old, they just may be different. For instance, doing a sum reduction by adding the
terms in a different order is likely to produce a different result. Typically, that result is
not less accurate, unless the original order was carefully chosen to minimize roundoff.

If you encounter such effects when using these options (including -O3, which enables
-OPT:roundoff=2 by default), first attempt to identify the cause by forcing the safe
levels of the options: -OPT:IEEE_arithmetic=1:roundoff=0. When you do this,
do not have the following options explicitly enabled:

-OPT:div_split
-OPT:fast_complex
-OPT:fast_exp
-OPT:fast_sqrt
-OPT:fold_reassociate
-OPT:recip
-OPT:rsqrt

If using the safe levels works, you can either use the safe levels or, if you are dealing
with performance-critical code, you can use the more specific options (for example,
div_split, fast_complex, and so forth) to selectively disable optimizations. Then
you can identify the source code that is sensitive and eliminate the problem. Or, you
can avoid the problematic optimizations.

Controlling Other Optimizations with the -OPT Option
The following -OPT options allow control over a variety of optimizations. These
include:

• "Using the -OPT:Olimit Option", page 94

• "Using the -OPT:alias Option", page 94

• "Simplifying Code with the -OPT Option", page 96

007–2360–009 93

4: Optimizing Program Performance

Using the -OPT:Olimit Option

-OPT:Olimit

This option controls the size of procedures to be optimized.
Procedures above the cutoff limit are not optimized. A value of 0
means “infinite Olimit,” and causes all procedures to be optimized.
If you compile at -O2 or above, and a routine is so large that the
compile speed may be slow, then the compiler prints a message
telling you the Olimit value needed to optimize your program.

Using the -OPT:alias Option

-OPT:alias=name

The compilers must typically be very conservative in optimization of
memory references involving pointers (especially in C), since aliases
(that is, different ways of accessing the same memory) may be very
hard to detect. This option may be used to specify that the program
being compiled avoids aliasing in various ways. The -OPT:alias
options are listed below.

-OPT:alias=any

The compiler assumes that any pair of memory references may be
aliased unless it can prove otherwise. This is the default.

-OPT:alias=typed

The compiler assumes that any pair of memory references that
reference distinct types in fact reference distinct data. For example,
consider the code:

void dbl (int *i, float *f) {

*i = *i + *i;

*f = *f + *f;
}

The compiler assumes that i and f point to different memory, and
produces an overlapped schedule for the two calculations.

94 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

-OPT:alias=unnamed

The compiler assumes that pointers never point to named objects. For
example, consider the code:

float g;

void dbl (float *f) {

g = g + g;

*f = *f + *f;

}

The compiler assumes that f cannot point to g, and produces an
overlapped schedule for the two calculations.

This option also implies the alias=typed assumption. Note that
this is the default assumption for the pointers implicit in Fortran
dummy arguments according to the ANSI standard.

-OPT:alias=restrict and -OPT:alias=disjoint

The compiler assumes a very restrictive (restrict) model of
aliasing: memory operations dereferencing different named pointers
in the program are assumed not to alias with each other, nor with any
named scalar in the program. For example, if p and q are pointers,
*p does not alias with *q; *p does not alias with p; and *p does not
alias with any named scalar variable.

Use -OPT:alias=no_restrict when distinct pointer variables
may point to overlapping storage.

Use -OPT:alias=disjoint for memory operations dereferencing
different named pointers in the program that are assumed not to alias
with each other, or with any named scalar in the program. For
example, if p and q are pointers, *p does not alias with *q; *p does
not alias with **p; and *p does not alias with **q.

Use -OPT:alias=no_disjoint when distinct pointer expressions
may point to overlapping storage.

007–2360–009 95

4: Optimizing Program Performance

Although these options are very dangerous to use, they may produce
significantly better code when used for specific, well-controlled cases
where they are known to be valid.

Simplifying Code with the -OPT Option

The following -OPT options perform algebraic simplifications of expressions, such as
turning x + 0 into x.

-OPT:fold_unsafe_relops

Controls folding of relational operators in the presence of possible
integer overflow. On by default. For example, X + Y < 0 may turn
into X < Y. If X + Y overflows, it is possible to get different
answers.

-OPT:fold_unsigned_relops

Determines if simplifications are performed of unsigned relational
operations that may result in wrong answers in the event of integer
overflow. Off by default. The example is the same as above, only for
unsigned integers.

Controlling Execution Frequency
The #pragma mips_frequency_hint provides information about execution
frequency for certain regions in the code. The format of the pragma is:

#pragma mips_frequency_hint {NEVER|INIT} [function_name]

You can provide the following indications: NEVER or INIT.

NEVER: This region of code is never or rarely executed. The compiler may move this
region of the code away from the normal path. This movement may either be to the
end of the procedure or at some point to an entirely separate section.

INIT: This region of code is executed only during initialization or startup of the
program. The compiler may try to put all regions under INIT together to provide
better locality during the startup of a program.

You can specify this pragma in two ways:

96 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

• You can specify it with a function declaration. It then applies everywhere the
function is called. For example:

extern void Error_Routine ();

#pragma mips_frequency_hint NEVER Error_Routine

Note: The pragma must appear after the function declaration.

• You can place the pragma anywhere in the body of a procedure. It then applies to
the next statement that follows the pragma. For example:

if (some_condition) {

#pragma mips_frequency_hint NEVER

Error_Routine ();
}

The Code Generator
This section describes the part of the compiler that generates code.

The code generator processes an input program unit (PU) in intermediate
representation form to produce an output object file (.o) or assembly file (.s).

Program units are partitioned into basic blocks. A new basic block is started at each
branch target. Basic blocks are also ended by CALL statements or branches. Large
basic blocks are arbitrarily ended after a certain number of operations, because some
algorithms in the code generator work on one basic block at a time (“local”
algorithms) and have a complexity that is nonlinear in the number of operations in
the basic block.

This section covers the following topics:

• "Code Generator and Optimization Levels ", page 98

• "Code Generator and Optimization Levels -O2 and -O3", page 99

• "Modifying Code Generator Defaults", page 107

• "Other Code Generator Performance Topics", page 108

007–2360–009 97

4: Optimizing Program Performance

Code Generator and Optimization Levels

At optimization levels -O0 and -O1, the code generator only uses local algorithms
that operate individually on each basic block. At -O0, no code generator optimization
is done. References to global objects are spilled and restored from memory at basic
block boundaries. At -O1, the code generator performs standard local optimizations
on each basic block (for example, copy propagation, dead code elimination) as well as
some elimination of useless memory operations.

At optimization levels -O2 and -O3, the code generator includes global register
allocation and a large number of special optimizations for innermost loops, including
software pipelining at -O3.

An Example of Local Optimization for Fortran

Consider the Fortran statement, a(i) = b(i). At -O0, the value of i is kept in
memory and is loaded before each use. This statement uses two loads of i. The code
generator local optimizer replaces the second load of i with a copy of the first load,
and then it uses copy-propagation and dead code removal to eliminate the copy.
Comparing .s files for the -O0 and -O1 versions shows:

The .s file for -O0:

lw $3,20($sp) # load address of i

lw $3,0($3) # load i
addiu $3,$3,-1 # i - 1

sll $3,$3,3 # 8 * (i-1)

lw $4,12($sp) # load base address for b

addu $3,$3,$4 # address for b(i)

ldc1 $f0,0($3) # load b
lw $1,20($sp) # load address of i

lw $1,0($1) # load i

addiu $1,$1,-1 # i - 1

sll $1,$1,3 # 8 * (i-1)

lw $2,4($sp) # load base address for a

addu $1,$1,$2 # address for a(i)
sdc1 $f0,0($1) # store a

The .s file for -O1:

lw $1,0($6) # load i

lw $4,12($sp) # load base address for b

addiu $3,$1,-1 # i - 1

98 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

sll $3,$3,3 # 8 * (i-1)
lw $2,4($sp) # load base address for a

addu $3,$3,$4 # address for b(i)

addiu $1,$1,-1 # i - 1

ldc1 $f0,0($3) # load b

sll $1,$1,3 # 8 * (i-1)
addu $1,$1,$2 # address for a(i)

sdc1 $f0,0($1) # store a

The .s file for -O2 (using OPT to perform scalar optimization) produces optimized
code:

lw $1,0($6) # load i

sll $1,$1,3 # 8 * i

addu $2,$1,$5 # address of b(i+1)

ldc1 $f0,-8($2) # load b(i)
addu $1,$1,$4 # address of a(i+1)

sdc1 $f0,-8($1) # store a(i)

Code Generator and Optimization Levels -O2 and -O3

This section provides additional information about the -O2 and -O3 optimization
levels.

if Conversion

The if conversion transformation converts control-flow into conditional assignments.
For example, consider the following code before if conversion. Note that expr1 and
expr2 are arbitrary expressions without calls or possible side effects. For example, if
expr1 is i++, the following example would be wrong because ‘i’ would not be
updated.

if (cond)

a = expr1;

else

a = expr2;

After if conversion, the code looks like this:

tmp1 = expr1;
tmp2 = expr2;

a = (cond) ? tmp1 : tmp2;

007–2360–009 99

4: Optimizing Program Performance

Performing if conversion results in the following benefits:

• It exposes more instruction-level parallelism. This is almost always valuable on
hardware platforms such as R10000.

• It eliminates branches. Some platforms (for example, the R10000) have a penalty
for taken branches. There can be substantial costs associated with branches that
are not correctly predicted by branch prediction hardware. For example, a
mispredicted branch on R10000 has an average cost of about 8 cycles.

• It enables other compiler optimizations. Currently, cross-iteration optimizations
and software pipelining both require single basic block loops. The if conversion
changes multiple basic block innermost loops into single basic block innermost
loops.

In the preceding code that was if converted, the expressions, expr1 and expr2, are
unconditionally evaluated. This can conceivably result in the generation of exceptions
that do not occur without if conversion. An operation that is conditionalized in the
source, but is unconditionally executed in the object, is called a speculated operation.
Even if the -TENV:X level prohibits speculating an operation, it may be possible to
if convert. For information about the -TENV option, see the appropriate compiler
man page.

For example, suppose expr1 = x + y; is a floating point add, and X=1.
Speculating FLOPs is not allowed (to avoid false overflow exceptions). Define
x_safe and y_safe by x_safe = (cond)? x : 1.0; y_safe = (cond) ?
y : 1.0;. Then unconditionally evaluating tmp1 = x_safe + y_safe; cannot
generate any spurious exception. Similarly, if X < 4, and expr1 contains a load (for
example, expr1 = *p), it is illegal to speculate the dereference of p. But, defining
p_safe = (cond) ? p : known_safe_address; and then tmp1 =
*p_safe; cannot generate a spurious memory exception.

Notice that with -TENV:X=2, it is legal to speculate FLOPs, but not legal to speculate
memory references. So expr1 = *p + y; can be speculated to tmp1 = *p_safe
+ y;. If *known_safe_address is uninitialized, there can be spurious floating
point exceptions associated with this code. In particular, on some MIPS platforms (for
example, R10000) if the input to a FLOP is a denormalized number, then a trap will
occur. Therefore, by default, the code generator initializes *known_safe_address to
1.0.

Cross-Iteration Optimizations

Four main types of cross-iteration optimizations include:

100 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

• Read-Read Elimination: Consider the following example:

DO i = 1,n
B(i) = A(i+1) - A(i)

END DO

The load of A(i+1) in iteration i can be reused (in the role of A(i)) in iteration
i+1. This reduces the memory requirements of the loop from 3 references per
iteration to 2 references per iteration.

• Read-Write Elimination: Sometimes a value written in one iteration is read in a
later iteration. For example:

DO i = 1,n

B(i+1) = A(i+1) - A(i)
C(i) = B(i)

END DO

In this example, the load of B(i) can be eliminated by reusing the value that was
stored to B in the previous iteration.

• Write-Write Elimination: Consider the following example:

DO i = 1,n

B(i+1) = A(i+1) - A(i)

B(i) = C(i) - B(i)

END DO

Each element of B is written twice. Only the second write is required, assuming
read-write elimination is done.

• Common Sub-Expression Elimination: Consider the following example:

DO i = 1,n

B(i) = A(i+1) - A(i)

C(i) = A(i+2) - A(i+1)

END DO

The value computed for C in iteration i may be used for B in iteration i+1. Thus
only one subtract per iteration is required.

007–2360–009 101

4: Optimizing Program Performance

Loop Unrolling

In this example, unrolling 4 times converts this code:

for(i = 0; i < n; i++) {
a[i] = b[i];

}

to this code:

for (i = 0; i < (n % 4); i++) {

a[i] = b[i];

}

for (j = 0; j < (n / 4); j++) {

a[i+0] = b[i+0];
a[i+1] = b[i+1];

a[i+2] = b[i+2];

a[i+3] = b[i+3];

i += 4;

}

Loop unrolling:

• Exposes more instruction-level parallelism. This may be valuable even on
execution platforms such as R10000 or R12000 systems.

• Eliminates branches.

• Amortizes loop overhead. For example, unrolling replaces four increments i+=1
with one increment i+=4.

• Enables some cross-iteration optimizations such as read/write elimination over the
unrolled iterations.

Recurrence Breaking

Recurrence breaking offers multiple benefits. Before the recurrences are broken (see
both of the following examples), the compiler waits for the prior iteration’s add to
complete (four cycles on the R8000) before starting the next one, so four cycles per
iteration occur.

When the compiler interleaves the reduction, each add must still wait for the prior
iteration’s add to complete, but four of these are done at one time, then partial sums

102 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

are combined on exiting the loop. The four iterations are done in four cycles, or one
cycle per iteration, quadruple the speed.

With back substitution, each iteration depends on the result from two iterations back
(not the prior iteration), so four cycles per two iterations occur, or two cycles per
iteration (double the speed).

Note: The compiler actually interleaves and back-substitutes these examples even
more than shown below, for even greater benefit (3 cycles/4 iterations for the R8000
in both cases). These examples are simple for purposes of exposition.

Two types of recurrence breaking are reduction interleaving and back substitution:

• Reduction interleaving. For example, interleaving by 4 transforms this code:

sum = 0

DO i = 1,n

sum = sum + A(i)
END DO

After reduction interleaving, the code looks like this (omitting the cleanup code):

sum1 = 0

sum2 = 0

sum3 = 0

sum4 = 0

DO i = 1,n,4
sum1 = sum1 + A(i+0)

sum2 = sum2 + A(i+1)

sum3 = sum3 + A(i+2)

sum4 = sum4 + A(i+3)

END DO

sum = sum1 + sum2 + sum3 + sum4

• Back substitution. For example:

DO i = 1,n
B(i+1) = B(i) + k

END DO

The code is converted to:

007–2360–009 103

4: Optimizing Program Performance

k2 = k + k
B(2) = B(1) + k

DO i = 2,n

B(i+1) = B(i-1) + k2

END DO

Software Pipelining

Software pipelining schedules innermost loops to keep the hardware pipeline full. For
information about software pipelining, see the MIPSpro 64-Bit Porting and Transition
Guide. Also, for a general discussion of instruction level parallelism, refer to B.R.Rau
and J.A.Fisher, “Instruction Level Parallelism,” Kluwer Academic Publishers, 1993
(reprinted from the Journal of Supercomputing, Volume 7, Number 1/2).

Global Code Motion

The global code motion phase performs various code motion transformations in order
to reduce the overall execution time of a program. The global code motion phase is
useful because it does the following:

• It moves instructions in nonloop code. In the following code example, assume
expr1 and expr2 are arbitrary expressions that cannot be if-converted. The
cond is a Boolean expression that evaluates to either true or false and has no side
effects with either expr1 or expr2.

if (cond)

a = expr1;

else

a = expr2;

After global code motion, the code looks like this:

a = expr1;

if (!cond)

a = expr2;

Note, that expr1 is arbitrarily chosen to speculate above the branch. The decision
to select candidates for code movement are based on several factors, including
resource availability, critical length, basic block characteristics, and so forth.

• It moves instructions in loops with control-flow. In the following code example,
assume that p is a pointer and expr1 and expr2 are arbitrary expressions

104 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

involving p. Also, assume that cond is a Boolean expression that uses p and has
no side effects with expr2 and expr1.

while (p != NULL) {

if (cond)

sum += expr1(p);

else

sum += expr2(p);

p = p->next;
}

After global code motion, the code looks like this:

while (p != NULL) {

t1 = expr1(p);

t2 = expr2(p);

if (cond)

sum += t1;
else

sum += t2;

p = p->next;

}

Note, that t1 and t2 temporaries are created to evaluate the respective
expressions and conditionally executed. The increment of the pointer, p=p->next,
cannot move above the branch because of side effects with the condition.

• It moves instructions across procedure calls. In the following code example,
assume that expr1 has no side effects with the procedure call to foo (that is,
procedure foo does not use and/or modify the expression expr1).

...

foo();

expr1;

...

After global code motion, the code looks like this:

...
expr1;

foo();

...

007–2360–009 105

4: Optimizing Program Performance

Benefits of Global Code Motion

The benefits of global code motion include the following:

• It exposes more instruction-level parallelism. Global code motion identifies
regions and/or blocks that have excessive and/or insufficient parallelism than that
provided by the target architecture. Global code motion effectively redistributes
(or load balances) the regions/blocks by selectively performing code movements
between them. This can effectively reduce their respective schedule lengths and
the overall execution time of the program.

• It provides branch delay slot filling. Global code motion fills branch delay slots
and converts most frequently executed branches to branch-likely form (for
example, beql, rs, rt, L1).

• It enables other compiler optimizations. As a result of performing global code
motion, some branches are either removed or transformed to a more effective form.

Steps Performed by the Code Generator at Levels -O2 and -O3

The steps performed by the code generator at -O2 and -O3 include:

1. Nonloop if conversion. This also works in loops by performing any
if-conversion that produces faster code.

2. Find innermost loop candidates for further optimization. Loops are rejected for
any of the following reasons:

• Marked UNIMPORTANT (for example, LNO cleanup loop)

• Strange control flow (for example, branch into the middle)

3. if convert (-O3 only). This transforms a multi-basic block loop into a single
basic block containing operations with “guards.” The if conversion of loop
bodies containing branches can fail for any of the following reasons:

• Cross-iteration read/write (read/read, and write/write) elimination

• Cross-iteration CSE (common subexpression elimination)

• Recurrence fixing

• Software pipelining

4. Perform cross-iteration optimizations (except write/write elimination on loops
without trip counts; for example, most “while” loops).

106 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

5. Unroll loops.

6. Fix recurrences.

7. If still a loop, and there is a trip count, and -O3, invoke software pipelining.

8. If not software pipelined, reverse if convert.

9. Reorder basic blocks to minimize (dynamically) the number of taken branches.
Also eliminate branches to branches when possible, and remove unreachable
basic blocks. This step also happens at -O1.

10. Invoke global code motion phase.

At several points in this process local optimizations are performed, since many of the
transformations performed can expose additional opportunities. It is also important
to note that many transformations require legality checks that depend on alias
information. There are three sources of alias information:

• At -O3, the loop nest optimizer, LNO, provides a dependence graph for each
innermost loop.

• The scalar optimizer provides information on aliasing at the level of symbols. That
is, it can tell whether arrays A and B are independent, but it does not have
information about the relationship of different references to a single array.

• The code generator can sometimes tell that two memory references are identical or
distinct. For example, if two references use the same register, and there are no
definitions of that register between the two references, then the two references are
identical.

Modifying Code Generator Defaults

The code generator makes many choices, for example, what conditional constructs to
if convert, or how much to unroll a loop. In most cases, the compiler makes
reasonable decisions. Occasionally, however, you can improve performance by
modifying the default behavior.

You can control the code generator by:

• Increasing or decreasing the unroll amount.

A heuristic is controlled by -OPT:unroll_analysis (on by default), which
generally tries to minimize unrolling. Less unrolling leads to smaller code size and

007–2360–009 107

4: Optimizing Program Performance

faster compilation. You can change the upper bound for the amount of unrolling
with -OPT:unroll_times (default is 8) or -OPT:unroll_size (the number of
instructions in the unrolled body, current default is 80).

You can look at the .s file for notes (starting with #<loop>) that indicate how the
decision to limit unrolling was made. For example, loops are not unrolled with
recurrences that cannot be broken (since unrolling cannot possibly help in these
cases), so the .s file now tells why unrolling was limited and how to change it.
For example:

#<loop> Loop body line 7, nesting depth:1, estimated iterations: 100
#<loop> Not unrolled: limited by recurrence of 4 cycles

#<loop> Not unrolled: disable analysis w/-CG:unroll_analysis=off

• Disabling software pipelining with -OPT:swp=off.

As far as the code generator is concerned, -O3 --OPT:swp=off is the same as
-O2. Since LNO does not run at -O2, however, the input to the code generator
can be very different, and the available aliasing information can be very different.
In particular, cross-iteration loop optimizations are much more effective at -O3
even with -OPT:swp=off, due to the improved alias information.

Other Code Generator Performance Topics

This section explains a few miscellaneous topics including:

• Prefetch and Load Latency

• Frequency and Feedback

Prefetch and Load Latency

At the -O3 level of optimization, with -r10000, LNO generates prefetches for
memory references that are likely to miss either the L1 (primary) or the L2
(secondary) cache. The code generator generates prefetch operations for L2
prefetches, and implements L1 prefetches as follows: makes sure that loads that had
associated L1 prefetches are issued at least 8 cycles before their results are used.

It is often possible to reduce prefetch overhead by eliminating some of the
corresponding prefetches from different replications. For example, suppose a prefetch
is only required on every fourth iteration of a loop, because four consecutive
iterations will load from the same cache line. If the loop is replicated four times by

108 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

software pipelining, then there is no need for a prefetch in each replication, so three
of the four corresponding prefetches are pruned away.

The original software pipelining schedule has room for a prefetch in each replication,
and the number of cycles for this schedule is what is described in the software
pipelining notes as “cycles per iteration.” The number of memory references listed in
the software pipelining notes (“mem refs”) is the number of memory references
including prefetches in Replication 0. If some of the prefetches have been pruned
away from replication 0, the notes will overstate the number of cycles per iteration
while understating the number of memory references per iteration.

Frequency and Feedback

Some choices that the code generator makes are decided based on information about
the frequency with which different basic blocks are executed. By default, the code
generator makes guesses about these frequencies based on the program structure.
This information is available in the .s file. The frequency printed for each block is the
predicted number of times that block will be executed each time the PU is entered.

The frequency guesses are replaced with the measured frequencies. Currently the
information guides if-conversion, some loop unrolling decisions (unrelated to the
trip count estimate), global code motion, control flow optimizations, global spill and
restore placement, global register allocation, instruction alignment, and delay slot
filling. Average loop trip-counts can be derived from feedback information. Trip
count estimates are used to guide decisions about how much to unroll and whether
or not to software pipeline.

Reordering Code Regions
Cording is an optimization technique for reordering parts of your program to achieve
better locality of reference and reduce instruction fetch overhead based on dynamically
collected data. The following areas are influenced by code region reordering:

• Page faults and translation lookaside buffer (TLB) misses

• Instruction cache misses

Both of these events contribute to instruction fetch overhead, which can be alleviated
with better locality of reference. Retrieving an instruction from cache is always faster
than retrieving it from memory; so the idea is to keep instructions in cache as much
as possible. The frequencies and costs associated with each of those events differ

007–2360–009 109

4: Optimizing Program Performance

significantly. The size of the program in memory and text-resident set sizes can also
be reduced as a result of cording.

Programs can be reordered using either the cord(1) command (see the following
section) or the ld(1) linker command (see "Reordering with ld", page 111). The
SpeedShop prof(1) command and the WorkShop cvperf(1) user interface are
alternative methods of provided feedback files to cord and ld (see "Using prof or
cvperf", page 111).

Reordering with cord

Use the following procedure to optimize your application by reordering its text areas
with the cord(1) command:

1. Run one or more SpeedShop bbcounts experiments to collect performance data,
setting caliper points to better identify phases of execution.

% ssrun -bbcounts a.out

2. Use sswsextr to extract working set files related to the interval between each
pair of calipers in the experiment file.

% sswsextr a.out a.out.bbcounts.m20683

A working set list file (in this case, a.out.a.out.bbcounts.m20683.wslist)
is also generated. It assigns a number to the working set files and the weight for
each one (the default weight is 1).

3. Use ssorder(1) or sscord(1) to generate a cord feedback file combining the
working set files for the binary.

% ssorder -wsl a.out.a.out.bbcounts.m20683.wslist -gray -o a.out.fb a.out

% sscord -wsl a.out.a.out.bbcounts.m20683.wslist a.out

4. Use the cord command to reorder the procedures in the binary.

% cord a.out a.out.fb

110 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

Reordering with ld

The following procedure uses the ld linker to reorder routines in a source file. The
procedure shows how to reorder routines in an executable file (a.out), but you can
also reorder a DSO.

1. Compile the application as follows:

% f90 -OPT:procedure_reorder verge.f

You can turn reordering on or off for a given compilation by setting the
procedure_reorder argument to an optional Boolean value. Doing so is
convenient if you are compiling the application in a makefile. Setting a Boolean
value of 1 enables reordering, while a value of 0 disables reordering.

% f90 -OPT:procedure_reorder=1 verge.f

2. Run a SpeedShop bbcounts experiment to collect performance data, setting
caliper points to better identify phases of execution.

% ssrun -bbcounts a.out

3. Use sswsextr to extract working set files for the binary.

% sswsextr a.out a.out.bbcounts.m20683

4. Use ssorder or sscord to generate a cord feedback file, combining multiple
working set files for the binary.

% ssorder -wsl a.out.a.out.bbcounts.m20683.wslist -gray -o a.out.fb a.out

% sscord -wsl a.out.a.out.bbcounts.m20683.wslist a.out

5. Use ld to reorder the procedures in the binary as follows:

% ld -LD_LAYOUT:reorder_file=a.out.fb

Using prof or cvperf

Once the experiment file is generated, you can generate a cord feedback file using
either the SpeedShop prof command or the WorkShop cvperf user interface.

Enter the prof command as follows:

% prof -cordfb a.out.bbcounts.m20683

007–2360–009 111

4: Optimizing Program Performance

The -cordfb option generates cord feedback for the executable and all DSOs. Along
with its usual output, this command writes a cord feedback file named a.out.fb.

While using prof will give you what you want, using either the ssorder or sscord
method described in the previous subsections or the cvperf method described in the
following paragraphs produces more efficient results.

If you are using the WorkShop performance analyzer, first enter the cvperf
command with the experiment file as an argument:

% cvperf a.out.bbcounts.m20683

Select the Working Set View from the Views menu. Once the new window appears,
choose Save Cord Map File from the Admin menu. By default, the name of the cord
feedback file will be a.out.fb.

Specify the cord feedback file on the cord or ld commands to reorder the procedures
in the binary:

% cord a.out a.out.fb

% ld -LD_LAYOUT:reorder_file=a.out.fb

Programming Hints for Improving Optimization
The global (scalar) optimizer is part of the compiler back end. It improves the
performance of object programs by transforming existing code into more efficient
coding sequences. The optimizer distinguishes between C, C++, and Fortran
programs to take advantage of the various language semantics.

This section describes the global optimizer and contains coding hints. Specifically this
section includes:

• Hints for Writing Programs

• Coding Hints for Improving Other Optimization

• Using SpeedShop to optimize your code.

112 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

Hints for Writing Programs

Use the following hints when writing your programs:

• Do not use indirect calls (that is, calls via function pointers, including those passed
as subprogram arguments). Indirect calls may cause unknown side effects (for
instance, changing global variables) that reduce the amount of optimization
possible.

• Use functions that return values instead of pointer parameters.

• Avoid unions that cause overlap between integer and floating point data types.
The optimizer cannot assign such fields to registers.

• Use local variables and avoid global variables. In C and C++ programs, declare
any variable outside of a function as static, unless that variable is referenced by
another source file. Minimizing the use of global variables increases optimization
opportunities for the compiler.

• Declare pointer parameters as const in prototypes whenever possible, that is,
when there is no path through the routine that modifies the pointee. This allows
the compiler to avoid some of the negative assumptions normally required for
pointer and reference parameters (see the following).

• Pass parameters by value instead of passing by reference (pointers) or using global
variables. Reference parameters have the same performance-degrading effects as
the use of pointers.

• Aliases occur when there are multiple ways to reference the same data object. For
instance, when the address of a global variable is passed as a subprogram
argument, it may be referenced either using its global name, or via the pointer.
The compiler must be conservative when dealing with objects that may be aliased,
for instance keeping them in memory instead of in registers, and carefully
retaining the original source program order for possibly aliased references.

Pointers in particular tend to cause aliasing problems, since it is often impossible
for the compiler to identify their target objects. Therefore, you can help the
compiler avoid possible aliases by introducing local variables to store the values
obtained from dereferenced pointers. Indirect operations and calls affect
dereferenced values, but do not affect local variables. Therefore, local variables can
be kept in registers. The following example shows how the proper placement of
pointers and the elimination of aliasing produces better code.

007–2360–009 113

4: Optimizing Program Performance

In the following example, the optimizer does not know if *p++ = 0 will
eventually modify len. Therefore, the compiler cannot place len in a register for
optimal performance. Instead, the compiler must load it from memory on each
pass through the loop.

int len = 10;

void

zero(char *p)

{
int i;

for (i= 0; i!= len; i++) *p++ = 0;

}

Increase the efficiency of this example by not using global or common variables to
store unchanging values.

• Use local variables. Using local (automatic) variables or formal arguments instead
of static or global prevents aliasing and allows the compiler to allocated them in
registers.

For example, in the following code fragment, the variables loc and form are
likely to be more efficient than ext* and stat*.

extern int ext1;

static int stat1;

void p (int form)

{
extern int ext2;

static int stat2;

int loc;

...

}

• Write straightforward code. For example, do not use ++ and - - operators within
an expression. Using these operators produces side-effects (requires the use of
extra temporaries, which increases register pressure).

• Avoid taking and passing addresses (and values). Using addresses creates aliases,
makes the optimizer store variables from registers to their home storage locations,
and significantly reduces optimization opportunities that would otherwise be
performed by the compiler.

114 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

• Avoid functions that take a variable number of arguments. The optimizer saves all
parameter registers on entry to VARARG or STDARG functions. If you must use
these functions, use the ANSI standard facilities of stdarg.h. These produce
simpler code than the older version of varargs.h

Coding Hints for Improving Other Optimization

The global optimizer processes programs only when you specify the -O2 or -O3
option at compilation. The code generator phase of the compiler performs certain
optimizations. This section has coding hints that increase optimization for other
passes of the compiler.

Use Tables Rather Than if-then-else or switch Statements

In your programs, use tables rather than if-then-else or switch statements. For
example, consider this code:

typedef enum { BLUE, GREEN, RED, NCOLORS } COLOR;

Instead of:

switch (c) {
case CASE0: x = 5; break;

case CASE1: x = 10; break;

case CASE2: x = 1; break;

}

Use:

static int Mapping[NCOLORS] = { 5, 10, 1 };

...

x = Mapping[c];

Declare Variables Most Frequently Manipulated

As an optimizing technique, the compiler puts the first eight parameters of a
parameter list into registers where they may remain during execution of the called
routine. Therefore, always declare, as the first eight parameters, those variables that
are most frequently manipulated in the called routine.

007–2360–009 115

4: Optimizing Program Performance

Use 32-Bit or 64-Bit Scalar Variables

Use 32-bit or 64-bit scalar variables instead of smaller ones. This practice can take
more data space. However, it produces more efficient code because the MIPS
instruction set is optimized for 32-bit and 64-bit data.

Suggestions for C and C++ Programs

The following suggestions apply to C and C++ programs:

• Rely on libc.so functions (for example, strcpy, strlen, strcmp, bcopy,
bzero, memset, and memcpy). These functions are carefully coded for efficiency.

• Use a signed data type, or cast to a signed data type, for any variable that does
not require the full unsigned range and must be converted to floating-point. For
example:

double d;

unsigned int u;

int i;
/* fast */ d = i;

/* fast */ d = (int)u;

/* slow */ d = u;

Converting an unsigned type to floating-point takes significantly longer than
converting signed types to floating-point; additional software support must be
generated in the instruction stream for the former case.

• Use signed int types in 64-bit code if they may appear in mixed type expressions
with long ints (or with long long int types in either 32-bit or 64-bit code).
Since the hardware automatically sign-extends the results of most 32-bit
operations, this may avoid explicit zero-extension code. For example:

unsigned int ui;

signed int i;

long int li;

/* fast */ li += i;
/* fast */ li += (int)ui;

/* slow */ li += ui;

• Use const and restrict qualifiers. The __restrict keyword tells the
compiler to assume that dereferencing the qualified pointer is the only way the
program can access the memory pointed to by that pointer. Hence loads and
stores through such a pointer are assumed not to alias with any other loads and

116 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

stores in the program, except other loads and stores through the same pointer
variable. For example:

float x[ARRAY_SIZE];

float *c = x;

void f4_opt(int n, float * __restrict a, float * __restrict b)

{

int i;
/* No data dependence across iterations because of __restrict */

for (i = 0; i < n; i++)

a[i] = b[i] + c[i];

}

Suggestions for C++ Programs Only

The following suggestions apply to C++ programs:

• Use the inline keyword whenever possible. Functions calls in loops that are not
inlined prevent loop-nest optimizations and software pipelining.

• Use a direct calls rather than indiscriminate use of virtual function calls. The
penalty is in method lookup and the inability to inline them.

• If your code uses const ref, use -LANG:alias_const when compiling (see
"const reference Parameter Optimization with Lang:alias_const", page 117,
for more information).

• For scalars only, avoid the creation of unnecessary temporaries, that is, Aa = 1 is
better than Aa = A(1).

• For structs and class, pass by const ref to avoid the overhead of copying.

• If your code does not use exception handing, use -LANG:exceptions=off when
compiling.

const reference Parameter Optimization with Lang:alias_const

Consider the following example:

extern void pass_by_const_ref(const int& i);

int test(){

007–2360–009 117

4: Optimizing Program Performance

//This requires -LANG:alias_const for performance enhancements
int i = 10

int j = 15

pass_by_const_ref(i);

pass_by_const_ref(j);

return i + j;
}

In the preceding example, the compiler determined that the function
pass_by_const_ref does not modify its formal parameter i. That is, the parameter
i passed by const reference does not get modified in the function. Consequently the
compiler can forward propagate the values of i and j to the return statement,
whereas it would otherwise have to reload the values of i and j after the two calls to
pass_by_const_ref.

Note: For this optimization to work correctly, both the caller and the callee have to be
compiled with -LANG:alias_const).

You can legally cast away and modify the const parameter, in the callee which is
why the preceding option is not on by default. With this option, the compiler makes
an effort to flag warnings about such cases where the callee casts away the const
and modifies the parameter. For example:

void f(const int &x) {int *y = (int *) &x; *y = 99;}

int main() {

int z;

f(z); // call to f does modify z; Hence z needs to be reloaded after

the call

return z;
}

With the preceding example, and -LANG:alias_const, the compiler gives a
warning:

Compiling f__GRCi

‘‘ex9.C’’, line 2 (col. 28): warning(3334): cast to type ‘‘int *’’ may not

be safe in presence of -LANG:alias_const. Make sure you are not

casting away const to MODIFY the parameter

If you specify the mutable keyword, then this const optimization is disabled. For
example:

118 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

class C {
public:

mutable int p;

void f() const { p = 99;} //mutable data member can be modified

// by a const function

int getf() const { return p;}
};

int main() {

C c;

c.f(); // even with -LANG:alias_const, f() can modify c.p

return c.getf();
};

Using SpeedShop

SpeedShop is an integrated package of performance tools that you can use to gather
performance data and generate reports. To record the experiments, use the ssrun(1)
command, which runs the experiment and captures data from an executable (or
instrumented version). You can compare experiment results with the sscompare(1)
command. To examine data you can use either prof(1) or display the data in the
WorkShop graphical user interface with the cvperf(1) command. Speedshop also lets
you start a process and attach a debugger to it.

For detailed information about SpeedShop, ssrun, sscompare and prof, see the
SpeedShop User’s Guide.

007–2360–009 119

Chapter 5

Coding for 64-Bit Programs

This chapter provides information about ways to write your code so that you can take
advantage of the SGI implementation of the IRIX 64-bit operating system. Specifically,
this chapter describes the following:

• "Coding Assumptions to Avoid", page 121

• "Solving Porting Problems", page 124

• "Guidelines for Writing Code for 64-Bit SGI Platforms", page 124

Also, refer to Chapter 6, "Porting Code to N32 and 64-Bit SGI Systems", page 127, for
information about compatibility, porting guidelines, and details on data types,
predefined types, typedefs, memory allocation, and so forth. The MIPSpro N32 ABI
Handbook and the MIPSpro 64-Bit Porting and Transition Guide provide further
information.

Coding Assumptions to Avoid
Most porting problems come from assumptions, implicit or explicit, about either
absolute or relative sizes of the int, long int, or pointer types in code.

To avoid porting problems, examine code that assumes any of the following:

• sizeof(int) == sizeof(void *)

• sizeof(int) == sizeof(long)

• sizeof(long) == 4

• sizeof(void *) == 4

• Implicitly declared functions

• Constants with the high-order bit set

• Arithmetic with long types (including shifts involving mixed types and code that
may overflow 32 bits)

007–2360–009 121

5: Coding for 64-Bit Programs

Note: When compiling using -64-bit mode, avoid using unsigned 32-bit integers. In
the MIPS architecture, when a 32-bit integer (signed or unsigned) is stored in 64-bit
registers, the high order 32 bits are sign-extended.

sizeof(int) == sizeof(void *)

An assumption may arise from casting pointers to int types to do arithmetic, from
unions that implicitly identify int and pointer, or from passing pointer types as
actual arguments to functions where the corresponding formal arguments are
declared as int. Any of these practices may result in inadvertently truncating the
high-order part of an address.

The compilers generally detect the first case and provide warnings. Also given ANSI
C function prototypes, the compilers generally detect the last case. No diagnostic
messages are provided for unions that implicitly identify ints and pointers.

You can declare an integer variable that is required to be the size of a pointer with the
type ptrdiff_t in the standard header file stddef.h, or with the types _psint_t
and _psunsigned_t in the header file inttypes.h.

Also note that a cast of an int to a pointer may result in sign-extension, if the sign
bit of the int is set when a --64 compilation occurs.

sizeof(int) == sizeof(long)

Data that fits in an int or long on 32-bit systems will fit in an int on 64-bit
systems. Expansion, in this case, has no visible effect. Problems may occur, however,
where an unsigned int actual parameter is passed to a long (signed or unsigned)
formal parameter without benefit of an ANSI prototype. In this case, the unsigned
value is implicitly sign-extended in the register, and therefore is misinterpreted in the
callee if the sign bit was set.

sizeof(long) == 4

A problem may occur in cases where long int is used to map fields in data
structures defined externally to be 32 bits, or where union attempts to identify a
long with four char.

122 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

sizeof(void *) == 4

Problems with this code are similar to those encountered with sizeof(long)==4.
However, mappings to external data structures are seldom a problem, since the
external definition also assumes 64-bit pointers.

Implicitly Declared Functions

It is always risky to call a function without an explicit declaration in scope.
Furthermore, be sure to declare with a compatible prototype any function defined with
a prototype. Problems arise when mixing prototype and nonprototype declarations
for the same function. For example, suppose you call a function (defined with a
prototype to take a variable number of arguments) in a scope without a prototyped
declaration. You may get unexpected results if a floating point argument is passed to
it. This is a typical problem with calls to printf and after stdio.h routines.
Therefore, always include stdio.h in any context where you use stdio.h facilities.

Constants with the High-Order Bit Set

A change in type sizes may yield some problems related to constants. Be careful
about using constants with the high-order (sign) bit set. For instance, the hex
constant 0xffffffff yields different results in the expression:

long x;

... ((long) (x + 0xffffffff)) ...

In both modes, the constant is interpreted as a 32-bit unsigned int, with value
4,294,967,295. In 32-bit mode, the addition results in a 32-bit unsigned long, which is
cast to type long and has value x-1 because of the truncation to 32 bits. In 64-bit
mode, the addition results in a 64-bit long with value x+4,294,967,295, and the
cast is redundant.

Arithmetic with long Types

Code that does arithmetic (including shifting), and code that may overflow 32 bits
and assumes particular treatment of the overflow (for example, truncation), can
exhibit different behavior, depending on the mix of types involved (including how it
is signed).

007–2360–009 123

5: Coding for 64-Bit Programs

Similarly, implicit casting in expressions that mix int and long values may produce
unexpected results due to sign/zero extension. An int constant is sign- or
zero-extended when it occurs in an expression with long values.

Solving Porting Problems
Once you identify porting problems, solve them by:

• Changing the relevant declaration to one that has the desired characteristics in
both target environments

• Adding explicit type casts to force the correct conversions

• Using function prototypes or using type suffixes (such as l or u) on constants to
force the correct type

Guidelines for Writing Code for 64-Bit SGI Platforms
The key to revising existing code and writing new code that is compatible with all of
the major C data models is to avoid the assumptions described previously in "Coding
Assumptions to Avoid", page 121. Since all of the assumptions described sometimes
represent legitimate attributes of data objects, you need to tailor declarations to the
target machines’ data models.

The following guidelines help you to produce portable code. Use these guidelines
when you are developing new code or as you identify portability problems in existing
code.

1. In a header file that you include in each of the program’s source files, define
(typedef) a type for each scalar integer type:

• For each specific integer data size required, that is, where exactly the same
number of bits is required on each target, define a signed and unsigned type.
For example:

typedef signed char int8_t

typedef unsigned char uint8_t
...

typedef unsigned long long uint64_t

124 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

• If you require a large scaling integer type, that is, one that is as large as
possible while remaining efficiently supported by the target, define another
pair of types. For example:

typedef signed long intscaled_t

typedef unsigned long uintscaled_t

• If you require integer types of at least a particular size, but chosen for
maximally efficient implementation on the target, define another set of types,
similar to the first but defined as larger standard types where appropriate for
efficiency. The typedefs referred to above exist in the file inttypes.h (see
"Using Typedefs ", page 134).

After you construct the above header file, use the new typedef types instead of
the standard C type names. You may need a distinct copy of this header file (or
conditional code) for each target platform supported.

If you provide libraries or interfaces to be used by others, be careful to use these
types (or similar application-specific types) chosen to match the specific
requirements of the interface. Also, carefully choose the actual names used to
avoid name space conflicts with other libraries. Thus, your clients should be able
to use a single set of header files on all targets. However, you will always need to
provide distinct libraries (binaries) for the 32-bit compatibility mode and the
64-bit native mode on 64-bit SGI platforms, although the sources can be identical.

2. Be sure to specify constants with an appropriate type specifier so that they will
have the size required by the context with the values expected. Bit masks can be
particularly troublesome in this regard: avoid using constants for negative values.
For example, 0xffffffff may be equivalent to a −1 on 32-bit systems, but may
be interpreted as 4,294,967,295 (signed or unsigned, depending on the mode and
context) on most 64-bit systems. The inttypes.h header file provides cpp
macros to facilitate this conversion. Defining constants that are sensitive to type
sizes in a central header file may help in modifying them when a new port is
done.

3. Where printf/scanf are used for objects whose types are typedefed
differently among the targets you must support, you may need to define constant
format strings for each of the types defined in step 1. For example:

#define _fmt32 ‘‘%d’’

#define _fmt32u ‘‘%u’’

#define _fmt64 ‘‘%lld’’

#define _fmt64u ‘‘%llu’’

007–2360–009 125

5: Coding for 64-Bit Programs

The inttypes.h header file also defines printf/scanf format extensions to
standardize these practices.

4. Code that has a variable number of floating point arguments or doubles should
be prototyped. printf is used to print a variable floating point in this example:

#include <stdio.h>

main()

{

float d,e;

d = 3.14;

printf(‘‘%e\n’’,d);

}

126 007–2360–009

Chapter 6

Porting Code to N32 and 64-Bit SGI Systems

This chapter explains the levels of compatibility between the new 32-bit compilation
mode (n32), the old 32-bit mode, and 64-bit programs. It also describes the porting
procedure to follow and the changes you must make to port your application from
old 32-bit mode to n32-bit mode. For more details, see the MIPSpro 64-Bit Porting and
Transition Guide

Specifically, this chapter discusses the following topics:

• "Compatibility", page 127, describes compatibility between 32, n32, and 64-bit
programs.

• "N32 Porting Guidelines", page 129, explains guidelines for porting high-level
languages.

• "Porting Code to 64-Bit SGI Systems", page 131, describes data types, typedefs,
maximum memory allocation, and use of large files on XFS.

This chapter uses the following terminology:

o32 The old 32-bit ABI generated by the ucode compiler; that is, 32-bit
compilers prior to IRIX 6.1 operating system. For information about this
compiler, see the MIPS O32 Compiling and Performance Tuning Guide

n32 The new 32-bit ABI generated by the MIPSPro 64-bit compiler (for a list
of n32 features, see Chapter 1, "About the MIPSpro Compiler System",
page 1). For information about the n32 ABI, see the MIPSpro N32 ABI
Handbook.

Compatibility
In order to execute different ABIs, support must exist at three levels:

• The operating system must support the ABI.

• The libraries must support the ABI.

• The application must be recompiled with a compiler that supports the ABI.

Figure 6-1, page 128, shows how applications rely on library support to use the
operating system resources that they need.

007–2360–009 127

6: Porting Code to N32 and 64-Bit SGI Systems

Note: Each o32, n32, and n64 application must be linked against unique libraries that
conform to its respective ABI. As a result, you cannot mix and match object files or
libraries from any of the different ABIs.

Applications

Libraries

Operating
System

n32 o32

n64

n32

n64

o32

a12017

Figure 6-1 Application Support under Different ABIs

Figure 6-2, page 129, illustrates the library locations for different ABIs.

128 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

/usr

l ib32 (n32) l ib64 (64)l ib (o32)

a12018

Figure 6-2 Library Locations for Different ABIs

An operating system that supports all three ABIs is also needed for running the
application. Consequently, all applications that want to use the features of n32 must
be ported. The next section covers the steps in porting an application to the N32 ABI.

N32 Porting Guidelines
This section describes the guidelines/steps necessary to port IRIX 5.x 32-bit
applications to n32. Typically, any porting project can be divided into the following
tasks:

• Identifying and creating the necessary porting environment (see "Porting
Environment", page 130)

• Identifying and making the necessary source code changes (see "Source Code
Changes", page 130)

• Rebuilding the application for the target machine (see "Build Procedure", page 130)

• Analyzing and debugging run-time issues (see "Run-time Issues", page 131)

007–2360–009 129

6: Porting Code to N32 and 64-Bit SGI Systems

Each of these tasks is described in the following sections. You can also find additional
information about n32 in the MIPSpro N32 ABI Handbook.

Porting Environment

The porting environment consists of a compiler and associated tools, include files,
libraries, and makefiles, all of which are necessary to compile and build your
application. To generate n32 code, you must:

• Check all libraries needed by your application to make sure they are recompiled
using n32. The default root location for n32 libraries is /usr/lib32. If the n32
library needed by your application does not exist, recompile the library for n32.

• Modify existing Makefiles (or set environment variables) to reflect the locations of
these n32 libraries.

Source Code Changes

Since no differences exist in the sizes of fundamental types between the old 32-bit
mode and n32, porting to n32 requires no source code changes for applications
written in high-level languages such as C, C++, and Fortran. The only exception to
this is that C functions that accept variable numbers of floating point arguments must
be prototyped.

Assembly language code, however, must be modified to reflect the new subprogram
interface. Guidelines for following this interface are described in Chapter 3 of the
MIPSpro N32 ABI Handbook in the section titled “Assembly Language Programming
Guidelines.”

Build Procedure

Recompiling for n32 involves either setting the -n32 argument in the compiler
invocation or running the compiler with the environment variable SGI_ABI set to
-n32. That’s all you must do after you set up a native n32 compilation environment
(that is, all necessary libraries and include files reside on the host system).

130 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

Run-time Issues

Applications that are ported to n32 may get different results than their o32
counterparts. Reasons for this include:

• Differences in algorithms used by n32 libraries and o32 libraries.

• Operand reassociation or reduction performed by the optimizer for n32.

• Hardware differences of the R8000 and R1000 (madd instructions round slightly
differently than a multiply instruction followed by an add instruction).

Porting Code to 64-Bit SGI Systems
This section covers porting code to 64-bit SGI systems, including:

• Using Data Types

• Using Predefined Types

• Using Typedefs

• Maximum Memory Allocation

• Using Large Files with XFS

You can find additional information about porting to 64-bit SGI systems in the
MIPSpro 64-Bit Porting and Transition Guide.

Using Data Types

Data types and sizes are listed in Table 6-1.

Table 6-1 Data Types and Sizes

Data Type (old) 32 Bit n32 Bit 64 Bit

char 8 8 8

short 16 16 16

int 32 32 32

007–2360–009 131

6: Porting Code to N32 and 64-Bit SGI Systems

Data Type (old) 32 Bit n32 Bit 64 Bit

long 32 32 64

long long 64 (emulated with 32-bit
integer operations)

64 (native 64-bit
integer operations)

64

pointer 32 32 64

float 32 32 32

double 64 64 64

long
double

64 128 128

void 32 32 64

Note that in 64-bit mode, types long and int have different sizes and ranges; a
long always has the same size as a pointer. A pointer (or address) has 64-bit
representation in 64-bit mode and 32-bit representation in 32-bit mode. An int has a
smaller range than a pointer in 64-bit mode. On 32-bit compiles, the long double
generates a warning message indicating that the long qualifier is not supported.

Characteristics of integral types and floating point types are defined in the standard
files limits.h and float.h.

Using Predefined Types

The cc, CC, and as compiler drivers produce predefined macros listed in Table 6-2.
These macros are used in sys/asm.h, sys/regdef.h, and sys/fpregdef.h.

Table 6-2 Predefined Macros

32-Bit Executables 64-Bit Executables

-D_MIPS_FPSET=16 -D_MIPS_FPSET=32

-D_MIPS_ISA=_MIPS_ISA_MIPS1 -D_MIPS_ISA=_MIPS_ISA_MIPS3

-D_MIPS_SIM=_MIPS_SIM_ABI32 -D_MIPS_SIM=_MIPS_SIM_ABI64

-D_MIPS_SZINT=32 -D_MIPS_SZINT=32

132 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

32-Bit Executables 64-Bit Executables

-D_MIPS_SZLONG=32 -D_MIPS_SZLONG=64

-D_MIPS_SZPTR=32 -D_MIPS_SZPTR=64

_MIPS_FPSET describes the number of floating point registers. The 64-bit
compilation mode makes use of the extended floating point registers.

MIPS_ISA determines the MIPS Instruction Set Architecture. MIPS_ISA_MIPS1 and
MIPS_ISA_MIPS3 are the defaults for 32 bits and 64 bits, respectively. For example:

/* Define a parameter for the integer register size: */

#if (_MIPS_ISA == _MIPS_ISA_MIPS1 || _MIPS_ISA == _MIPS_ISA_MIPS2)

#define SZREG 4

#else

#define SZREG 8
#endif

MIPS_SIM determines the MIPS Subprogram Interface Model, which describes the
subroutine linkage convention and register naming/usage convention.

_MIPS_SZINT, _MIPS_SZLONG, and _MIPS_SZPTR define the size of types int,
long, and pointer, respectively.

The 64-bit MIPSpro compiler drivers generate 64-bit pointer and long and 32-bit
int. Therefore, assembler code that uses either pointer or long types must be
converted to use double-word instructions for MIPS III code (-64), and must
continue to use word instructions for MIPS I and MIPS II code (-32).

Also, new subroutine linkage conventions and register naming conventions exist. The
compiler predefined macro _MIPS_SIM enables macros in sys/asm.h and
sys/regdef.h.

Eight argument registers exist: $4 through $11. Four additional argument registers
replace the temp registers in sys/regdef.h. These temp registers are not lost,
however, as the argument registers can serve also as scratch registers, with certain
constraints.

In the _MIPS_SIM_ABI64 model, registers t4 through t7 are not available, so any
code using these registers does not compile. Similarly, registers a4 through a7 are not
available under the _MIPS_SIM_ABI32 model.

007–2360–009 133

6: Porting Code to N32 and 64-Bit SGI Systems

If you are converting assembler code, the new registers ta0, ta1, ta2, and ta3 are
available under both _MIPS_SIM models. These alias with registers t4 through t7 in
32-bit mode, and with registers a4 through a7 in 64-bit mode.

Note that the caller no longer has to reserve space for a called function in which to
store its arguments. The called routine allocates space for storing its arguments on its
own stack, if desired. The NARGSAVE macro in sys/asm.h facilitates this.

Using Typedefs

This section describes typedefs that you can use to write portable code for a range
of target environments, including 32- and 64-bit workstations as well as 16- and 32-bit
PCs. These typedefs are enabled by compiler-predefined macros (listed in Table 6-2,
page 132), and are in the file inttypes.h. (This discussion applies to C, although
the same macros are predefined by the C++ compiler.)

Portability problems exist because an int (32 bits) is no longer the same size as a
pointer (64 bits) and a long (64 bits) in 64-bit programs. Typedefs free you from
having to know the underlying compilation model or worry about type sizes. In the
future, if that model changes, the code should still work.

Typically, you want source code that you can compile either in 32- or 64-bit mode. (In
this discussion, 32-bit mode implies -mips1/2; 64-bit mode implies -mips3/4.)

The following typedefs are defined in inttypes.h:

typedef signed char int8_t;
typedef unsigned char uint8_t;

typedef signed short int16_t;

typedef unsigned short uint16_t;

typedef signed int int32_t;

typedef unsigned int uint32_t;

typedef signed long long int int64_t;
typedef unsigned long long int uint64_t;

typedef signed long long int intmax_t;

typedef unsigned long long int uintmax_t;

typedef signed long int intptr_t;

typedef unsigned long int uintptr_t;

The intmax_t and uintmax_t types are guaranteed to be the largest integer type
supported by this implementation. Use them in code that must be able to deal with

134 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

any integer value. intptr_t and uintptr_t are guaranteed to be exactly the size
of a pointer.

Maximum Memory Allocation

The total memory allocation for a program, and individual arrays, can exceed 2
gigabytes (2 Gbytes, or 2,048 Mbytes).

Previous implementations of Fortran, C, and C++ limited the total program size, as
well as the size of any single array, to 2 GBytes. The current release allows the total
memory in use by the program to exceed 2 gigabytes.

Arrays Larger Than 2 Gigabytes

The IRIX 6.2 (MIPSPro 7.1) compilers (and above) support arrays that are larger than 2
gigabytes for programs compiled under the -64 ABI. The arrays can be local, global,
and dynamically created as the following example demonstrates. (Initializers are not
provided for these arrays.) Large array support is limited to Fortran, C, and C++.

Example of Arrays Larger Than 2 Gigabytes

The following code shows an example of arrays larger than 2 gigabytes.

#include <stdlib.h>

int i[0x100000008];

void foo()

{

int k[0x100000008];
k[0x100000007] = 9;

printf(‘‘%d \n’’, k[0x100000007]);

}

main()

{
char *j;

j = malloc(0x100000008);

i[0x100000007] = 7;

j[0x100000007] = 8;

printf(‘‘%d \n’’, i[0x100000007]);

007–2360–009 135

6: Porting Code to N32 and 64-Bit SGI Systems

printf(‘‘%d \n’’, j[0x100000007]);
foo();

}

You must run this program on a 64-bit operating system with IRIX version 6.2 (or
higher). You can verify the system you have by typing uname -a. You must have
enough swap space to support the working set size and you must have your shell
limit datasize, stacksize, and vmemoryuse variables set to values large enough to
support the sizes of the arrays (see sh(1) man page).

The following example compiles and runs the preceding code after setting the stack
size to a correct value:

% uname -a

IRIX64 cydrome 6.2 03131016 IP19

$cc -64 -mips3 a2.c

$limit
cputime unlimited

filesize unlimited

datasize unlimited

stacksize 65536 kbytes

coredumpsize unlimited

memoryuse 754544 kbytes
descriptors 200

vmemoryuse unlimited

$limit stacksize unlimited

$limit

cputime unlimited
filesize unlimited

datasize unlimited

stacksize unlimited

coredumpsize unlimited

memoryuse 754544 kbytes
descriptors 200

vmemoryuse unlimited

$a.out

7

8

9

136 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

Using Large Files with XFS

An application may create or encounter files greater than 2 gigabytes with the XFS file
system. If a program is doing sequential I/O and does not maintain internal byte
counters, files greater than 2 gigabytes will not encounter problems.

However, if an application uses internal byte counters, then modifications are
required. Table 6-3, page 137, lists potential problems and modifications required to
enable files greater than 2 gigbytes to run on XFS.

Table 6-3 Modifications for Applications on XFS

Application Modification

Uses an internal byte counter while
reading

Change to type long long

Uses certain system calls such as
lseek() and stat() that use 32-bit
off_t

Use lseek64(), stat64(), and so
forth

Relies on internal features of EFS (such
as reads the raw disk)

Rewrite the application (so it does not
read the raw disk)

For more information about XFS, see Getting Started with XFS Filesystems.

007–2360–009 137

Index

32-bit mode
Also see n32, 127

64-bit mode
data types, 131

A

a.out files, 19
ABI specification, 6
address aliases, 67
address space, 55
addresses, optimization, 114
alias analysis, 67
aliasing

and pointer placement, 113
memory, 94
optimization, 113

align/fill pragmas, 84
analysis, dependence, 86
analyzer, parallel, 2
ar command , 30
archive libraries, 33
archiver. See ar command, 30
argument registers, 133
arguments

store, 134
arrays

2 gigabyte, 135
as assembler, 21
assembly language programs

porting to n32, 130
assembly language programs, linking, 21

B

back substitution, 103
bit masks, 125
BLOCK data, 51
block padding, 65

restrictions, 65
blocking and permutation transformations, 79
branch elimination, 100
build procedure

n32, 130
byte counters

and file size, 137

C

C language
floating point, 87
precompiled headers, 12

C programs
optimization, 113

C++
language definitions, 12
precompiled headers, 12

C++ programs
optimization, 113

cache
conflicts and padding, 65
improving instruction performance, 109
misses, 75

cache parameters
controlling with lno, 77

char, 131
code

arithmetic, 123
assumptions, 121

007–2360–009 139

Index

conversion, 99
executed at startup, 96
hints, 121
overflow 32 bits, 123
portable, 124
porting to 64-bit system, 131
porting to n32-bit systems, 127
rarely executed, 96
shifts, 123
signed ints, 116
sizeof(int)==sizeof(long), 122
sizeof(int)==sizeof(void*), 122
sizeof(long)==4, 122
sizeof(void*)==4, 123
transformation, 99
typedefs, 134
view transformations, 68
writing for 64-bit applications, 121
zero-extension, 116

code generator, 97
Also see optimizing programs, 97
and optimization levels, 98, 99
back substitution, 103
branch elimination, 100
cross-iteration optimization, 100

read-write elimination, 101
sub-expression elimination, 101
write-write elimination, 101

–O0 option, 98
–O1 option, 98
–O2 option, 99
–O3 option, 99
feedback, 109
frequency of execution, 109
if conversion, 99
if conversion and floating points, 100
instruction-level parallelism, 100
latency, 108
loop unrolling, 102, 107
memory exceptions, 100
modify default, 107
prefetch, 108

R10000 optimization, 100
recurrence breaking, 103
software pipelining, 104, 107
steps at –O2 and –O3, 106

common block padding, 65
restrictions, 65

Common object file format, 8
COMMON symbols, 51
compiler back end, 2
compiler drivers, 2
compiler front end, 2
compiler options. See drivers, 19
compiler system

components, 1
macros, 132
overview, 1
predefined types, 132

compiler system components, 2
compiler.defaults file, 6
COMPILER_DEFAULTS_PATH environment

variable, 6
compiling with –Bsymbolic, 50
constant format strings, 125
constants, 123

negative values, 125
conversion of code, 99
cord command, 110
cording, 109
counters, internal byte, 137
cpp preprocessor, 2
cross-file inlining, 64
cross-iteration optimization, 101

read-read elimination, 101
read-write elimination, 101
sub-expression elimination, 101
write-write elimination, 101

D

data

140 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

prefetching, 75
data type

signed, 116
data types

sizes, 131
debugging

driver options, 31
floating points, 93

defaults
compilation modes, 5
specification file, 6

definition, 109
dependence analysis, 85
directives

LNO, 77
dis command, 26, 27
disassemble object file, 26
dlclose(), 55
dlerror(), 55
dlopen(), 53
dlsym(), 54
double, 132
drivers

as assembler, 21
bypassing, 2
defaults, 6, 19
–c option, 3
fec preprocessor, 2
file name suffixes, 9
input file suffixes, 10
linking, 3
omit linking, 3
optimizing programs, 88
options, 19, 31
-show option, 3
stages of compilation, 3

DSO
benefits, 33

DSOs, 1, 8, 33
building new dsos, 43
converting libraries, 52
creating dsos, 43

dlclose(), 55
dlerror(), 55
dlopen(), 53
dlsym(), 54
dynamic loading diagnostics, 55
exporting symbols, 45
guidelines, 36
hiding symbols, 45
libraries, shared, 36
linking, 23
loading dynamically, 53
mmap() system call, 55
munmap() system call, 55
naming conventions, 43
QuickStart, 39
search path, 47
sgidladd(), 53
shared libraries, 36
starting quickly, 40
unloading dynamically, 55
versioning, 56

dump command. See elfdump, 27
DWARF symbolic information, 27
dwarfdump command, 26, 27
dynamic linking, 1, 8, 53
Dynamic shared objects. See DSOs, 23

E

Elf object file, 27
ELF. See executable and linking format, 8
elfdump command, 26, 27

command syntax, 27
elimination

branches, 100
read-read, 101
read-write, 101
sub-expression, 101
write-write, 101

–Bsymbolic, compiling, 50

007–2360–009 141

Index

–c option, 3
–clist option, 68
–D_MIPS_FPSET, 132
–D_MIPS_ISA, 132
–D_MIPS_SIM, 132
–D_MIPS_SZINT, 132
–D_MIPS_SZLONG, 133
–D_MIPS_SZPTR, 133
–flist option, 68
–INLINE, 63

all option, 64
file option, 64
must option, 64
never option, 64
none option, 64

–IPA
addressing=ON option, 67
alias=ON option, 67

–OPT option
div_split option, 91
fold_reassociate option, 92
fold_unsafe_relops, 96
fold_unsigned_relops option, 96

environment variable
COMPILER_DEFAULTS_PATH, 6

environment variables
32-bit compilation, 7
64-bit compilation, 7
n32-bit compilation, 7

executable and linking format, 1, 8
executable files, 8
execution

controlling, 96
exporting symbols, 45
expressions

optimizing, 91
extension

sign, 124
zero, 124

F

f77/90 compiler, 2
fec preprocessor

bypassing, 2
feedback

and code generator, 109
fef77/90p analyzer, 2
file command, 26, 27

command syntax, 27
options, 27

file inlining, 60
file type, determining, 27
files

2 gigabyte size, 137
compilation specification, 6
executable, 8
header, 10
include, 10
internal byte counters, 137
listing properties, 26
naming conventions, 9
precompiled header, 12
relocatable, 8
size, 137

fill/align pragmas, 84
fission

LNO, 78
loops, 73

float, 132
float.h include file, 132
floating points

debugging, 93
if conversion, 100
optimization, 87
optimizing, 92
reassociation, 92

format
object file, 1, 8

Fortran
floating point, 87

142 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

padding global arrays, 65
program optimization, 98

Fortran programs
optimization, 113

functions
implicitly declared, 123

fusion
LNO, 78
loop, 72

G

-g option, 33
gather-scatter, 75
global arrays

padding, 65
global offset table, 9
global optimizer, 112
GOT, 9
guidelines

porting, 129

H

header files, 10
multiple languages, 12
portable, 124
precompiled, 12
specification, 11

high-order bit, 123

I

IEEE
floating points, 89
optimization, 89

if conversion, 99
if-then-else statements

optimization, 115

implicitly declared function, 123
include files, 10

float.h, 132
inttypes.h, 134
limits.h, 132
multiple languages, 12
n32, 130
specification, 11

indirect
calls, using, 113

inliner
standalone, 64

inlining, 60
benefits, 63

input file names, 9
instruction

mips4 rsqrt, 92
prefetching, 75

instruction cache access
improving, 109

instruction-level parallelism, 100
int, 122, 134, 131
integer

overflow, 96
scaling, 124

integers
64-bit registers, 122

interleaving
reduction, 103

internal byte counters
and file size, 137

inttypes.h include file, 134
IPA, 2
ISA specification, 6

L

latency
and code generator, 108

ld

007–2360–009 143

Index

and assembly language programs, 21
dynamic linking, 1, 8
–shared option, 43
example, 20
libraries, default search path, 22
libraries, specifying, 21
link editor, 2
multilanguage programs, 23

ld command
to reorder code, 111

LD_BIND_NOW, 50
lib.so functions

optimization, 116
libc, 53
libraries

archive, 33
converting to dsos, 52
global data, 38
header files, 10
libc, 53
locality, 38
paging, 38
routines to exclude, 37
routines to include, 37
self-contained, 37
shared, 1, 8
shared, static, 33
specifying, 21
static data, 37
tuning, 38

limits.h include file, 132
linking

dynamic. See ld, 1, 8
omit, 3

linking. See ld, 23
LNO. See optimizing programs, –LNO option, 67
loading

symbols, 45
local variables

optimization, 113
long, 134, 132
long double, 132

long long, 132
loop interchange, 70
loop unrolling

code generator, 102
loop-nest optimization. See optimizing

programs, –LNO option, 67
loops

fission, 73
fusion, 72
interchanging, 70
parallel, 75

M

machine instructions, 26
macros

NARGSAVE, 134
predefined, 132
typedefs, 134

makefiles, 130
maximum integer type, 135
memory

2 gigabyte arrays, 135
referencing, 94

memory allocation
arrays, 135

memory exceptions
if conversion, 100

MIPS instruction set architecture, 133
mips4 rsqrt instruction, 92
mmap() system call, 55
mode

32-bit, 5
64-bit, 5
n32-bit, 5

multilanguage programs
and ld, 23
header files, 12

munmap() system call, 55

144 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

N

n32, 130
assembly language programs, 130
build procedure, 130
include files, 130
libraries, 127, 130
porting environment, 130
porting guidelines, 129
runtime issues, 131
source code changes, 130

n32-bit mode, 5
naming source files, 9
NARGSAVE macro, 134
negative values

problems, 125
nm command, 26, 27

command syntax, 27
example, 28
example of undefined symbol, 26
undefined symbol, 26

O

object file information
disassemble, 26
format, 1, 8
listing file properties, 26
listing section sizes, , 29
symbol table information, 26, 27
tools, 26
using, 26
using dwarfdump, 26
using elfdump, 26, 27

operating system
64 bit, 121

operations
relational, 96
unsigned relational, 96

optimization, 59
addresses, 114

Also see optimizing programs, 67
C programs, 113
C++ programs, 113
Fortran, 113
function return values, 113
global, 112
if-then-else statements, 115
libc.so functions, 116
pointer placement, 113
signed data types, 116
STDARG, 115
stdarg.h, 115
switch statements, 115
tables, 115
tips for improving, 112
unions, 113
value parameters, 113
VARARG, 115
varargs.h, 115
variables, global vs. local, 113

optimizer, 2
optimizing programs

alias analysis, 67
Also see code generator, 97
benefits, 60
cache, 75
code generator, 97
common block padding, 65

restrictions, 65
debugging, 60
dependence analysis, 85
–INLINE, 63
–LNO option, 67

blocking, 71
code transformation, 68
controlling cache parameters, 77
directives, 77
fission, 78
fusion, 78
gather-scatter, 75
loop fission, 73

007–2360–009 145

Index

loop fusion, 72
loop interchange, 70
outer loop unrolling, 71
pragmas, 77
prefetching, 75
running LNO, 68

–OPT option, 88
alias=any option, 94
alias=disjoint option, 95
alias=name option, 94
alias=restrict option, 95
alias=typed option, 94
alias=unnamed option, 95
div_split option, 91
fast_complex option, 91
fast_exp option, 91
fast_io option, 91
fast_sqrt option, 91
fold_reassociate option, 92
fold_unsafe_relops, 96
fold_unsigned_relops, 96
IEEE option, 87
IEEE_arithmetic option, 89
recip option, 92
roundoff option, 87, 88
rsqrt option, 92

–TARG option
madd option, 93

execution frequency, 96
fill/align pragmas, 84
floating points, 87
Fortran optimization, 98
IEEE floating points, 89
inlining benefits, 63
interprocedural analysis, 60
pragmas, mips_frequency_hint, 96
prefetch pragmas, 82
reordering code, 109
transformation pragmas, 79
transformations, 88

overflow
integer, 96

integers, 96
overflow of code, 123

P

padding, blocks, 65
restrictions, 65

page faults
improving performance, 109

page size, 38
paging

alignment, 38
parallel analyzer, 2
parallel loops, 76
parameters

optimization, 113
pca analyzer, 2
PIC. See position-independent code, 1, 8
pointer, 122, 134, 132
pointer placement

and aliasing, 113
example, 113

pointers
referencing memory, 94

porting code, 131
porting guidelines, 129
position-independent code, 1, 8, 9
pragmas

LNO, 77
mips_frequency_hint, 96

precompiled header files, 12
automatic, 13
controlling, 17
deletion, 16
performance, 18
requirements, 14
reuse, 15

prefetch
and code generator, 108

prefetch pragmas, 82

146 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

prefetching instructions, 75
preprocessing, 2
printf command, 125
problems, 123

constants, 123
floating points, 93
implicitly declared functions, 123
negative values, 125
porting code, 121
printf, 125
scanf, 125
sizeof(int)==sizeof(long), 122
sizeof(int)==sizeof(void*), 122
sizeof(long)==4, 123
solving, 124
types, 121

processor specification, 6
prof

and SpeedShop, 119

Q

QuickStart DSOs. See DSOs, QuickStart, 40, 43

R

read-read elimination, 101
read-write elimination, 101
recurrence breaking

back substitution, 103
code generator, 103
reduction interleaving, 103

reduction interleaving, 103
registers

64-bit, 122
argument, 133
blocking, 71
temp, 133

relational operations
unsigned, 96

relational operators
integer overflow, 96

relocatable files, 8
relocation bits, removing, 27
remove

relocation bits, 27
symbol table, 27

reordering code, 109
with sswsextr, 110

resolve text symbols, 50
return values, optimization, 113
rld

dynamic linking, 53
libc, 53
search path, 47

roundoff
floating points, 88
optimization, 88

rsqrt instruction, 92
RTLD_GLOBAL, 54
RTLD_LAZY, 54
RTLD_LOCAL, 54
RTLD_NOW, 54
runtime issues

n32, 131

S

scalar variables
word size, 116

scanf function, 125
search path

rld, 47
selecting

compilation mode, 5
instruction set, 5
ISA, 5
processor, 5

sgidladd(), 53
shared libraries, static, 33

007–2360–009 147

Index

shared library, 1, 8
shared objects, dynamic, 33
short, 131
-show_defaults option, 6
-showoption, 3
sign bit set, 123
sign extension, 122, 124
signed data type

optimization, 116
signed ints

64-bit code, 116
64-bit registers, 122

size command, , 27, 29
command syntax, 29
example, 29

sizeof(int)==sizeof(long), 122
sizeof(int)==sizeof(void*), 122
sizeof(long)==4, 122
sizeof(void*)==4, 123
software pipelining

and code generator, 104
source code

n32, 130
source file names, 9
specifying compilation mode, 6
SpeedShop, 119

prof command, 119
ssrun command, 119

sscord command
to reorder code, 110, 111

ssorder command
to reorder code, 110, 111

ssrun command
to reorder code, 110, 111

sswsextr command
to reorder code, 110, 111

standalone inliner, 64
STDARG. See optimization , 115
stdarg.h, 115
stdio.h header file, 11
storing arguments, 134
strings

printf, 125
scanf, 125

strip command, 27, 30
sub-expression elimination, 101
suffixes

input files, 9
switch statements

optimization, 115
symbol resolution, 50
symbol table

data, 26
get listing, 28
removing, 27

symbols
exporting, 45
fill, align, 84
loading, 45

T

temp registers, 133
TLB misses

improving performance, 109
transformation

of code, 99
transformation pragmas, 79
transformations

view code, 68
troubleshooting

constants, 123
implicitly declared functions, 123
negative values, 125
printf, 125
scanf, 125
sizeof(int)==sizeof(long), 122
sizeof(int)==sizeof(void*), 122
sizeof(long)==4, 122
sizeof(void*)==4, 123
solving problems, 124

truncation of code, 123

148 007–2360–009

MIPSproTM N32/64 Compiling and Performance Tuning Guide

type, determining for files, 27
typedefs, 125, 134
types

assumptions, 121
change in size, 123
char, 131
constants, 123
double, 132
float, 132
int, 122, 134, 131
largest integer type, 135
long, 134, 132
long double, 132
long long, 132
pointer, 122, 134, 132
problems, 121
scaling integer, 124
short, 131
sizes, 131

U

unions
optimization, 113

unrolling loops, 71, 81, 102, 107
unsigned ints

32-bit, 122
unsigned relational operations, 96

V

VARARG. See optimization, 115
varargs.h, 115
variables

scalar, 116
virtual address space, 55

W

word-size scalar variables, 116
working set

list file, 110
write-write elimination, 101

X

XFS
file size, 137

Z

zero extension, 124
zero-extension code, 116

007–2360–009 149

	Table of Contents
	List of Figures
	List of Tables

	About This Guide
	Related Publications
	Related Fortran Publications
	Conventions
	Obtaining Publications
	Reader Comments

	1. About the MIPSpro Compiler System
	2. Using the MIPSpro Compiler System
	Selecting Compilation Modes
	Using a Defaults Specification File
	Setting an Environment Variable
	When to Use -n32 or -64

	Object File Format and Dynamic Linking
	Executable and Linking Format
	Dynamic Shared Objects
	Position-Independent Code

	Source File Considerations
	Source File Naming Conventions
	Header and Include Files
	Using Precompiled Headers in C and C++
	PCH Performance Issues

	Compiler Drivers
	Linking
	Invoking the Linker
	Linking Assembly Language Programs
	Linking Libraries
	Linking to Previously Built Dynamic Shared Objects
	Linking Multilanguage Programs
	Finding an Unresolved Symbol with ld

	Getting Information About Object Files
	Disassembling Object Files with dis
	Listing Parts of DWARF Object Files with dwarfdump
	Listing Parts of ELF Object Files and Libraries with elfdump
	Determining File Type with file
	Listing Symbol Table Information: nm
	Determining Section Sizes with size
	Removing Symbol Table and Relocation Bits with strip

	Using the Archiver to Create Libraries
	ar Examples

	Debugging

	3. Using Dynamic Shared Objects
	Benefits of Using DSOs
	Using DSOs
	DSOs vs. Archive Libraries
	Using QuickStart
	Guidelines for Using Shared Libraries

	Taking Advantage of QuickStart
	Building DSOs
	Creating DSOs
	Making DSOs Self-Contained
	Controlling Symbols to Be Exported or Loaded
	Building DSOs with C++

	Run-Time Linking
	Searching for DSOs at Run Time
	Run-Time Symbol Resolution

	Dynamic Loading Under Program Control
	Versioning of DSOs
	The Versioning Mechanism
	What Is a Version?
	Building a Shared Library Using Versioning
	Example of Versioning

	4. Optimizing Program Performance
	Optimization Overview
	Performance Tuning with Interprocedural Analysis (IP A)
	Inlining
	Common Block Padding
	Alias and Address Taken Analysis

	Controlling Loop Nest Optimizations (LNO)
	Running LNO
	LNO Optimizations
	Compiler Options for LNO
	Pragmas and Directives for LNO

	Controlling Floating-Point Optimization
	-OPT:roundoff= n
	-OPT:IEEE_arithmetic= n

	Controlling Other Optimizations with the -OPT Option
	Using the -OPT:Olimit Option
	Using the -OPT:alias Option
	Simplifying Code with the -OPT Option

	Controlling Execution Frequency
	The Code Generator
	Code Generator and Optimization Levels
	Code Generator and Optimization Levels -O2 and -O3
	Modifying Code Generator Defaults
	Other Code Generator Performance Topics

	Reordering Code Regions
	Reordering with cord
	Reordering with ld
	Using prof or cvperf

	Programming Hints for Improving Optimization
	Hints for Writing Programs
	Coding Hints for Improving Other Optimization
	Using SpeedShop

	5. Coding for 64-Bit Programs
	Coding Assumptions to Avoid
	sizeof(int) == sizeof(void *)
	sizeof(int) == sizeof(long)
	sizeof(long) == 4
	sizeof(void *) == 4
	Implicitly Declared Functions
	Constants with the High-Order Bit Set
	Arithmetic with long Types

	Solving Porting Problems
	Guidelines for Writing Code for 64-Bit SGI Platforms

	6. Porting Code to N32 and 64-Bit SGI Systems
	Compatibility
	N32 Porting Guidelines
	Porting Environment
	Source Code Changes
	Build Procedure
	Run-time Issues

	Porting Code to 64-Bit SGI Systems
	Using Data Types
	Using Predefined Types
	Using Typedefs
	Maximum Memory Allocation
	Using Large Files with XFS

	Index

