
MIPSproTM Fortran 77 Programmer’s
Guide

007–2361–009

COPYRIGHT
Copyright © 1994, 1999, 2002 - 2003 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as
indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic
documentation in any manner, in whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA
government or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable
license agreement, as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of
the DoD FAR Supplement; or sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy
2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, the Silicon Graphics logo, IRIS, IRIX, and Origin are registered trademarks and OpenMP, IRIS 4D, IRIS Power
Series, and POWER CHALLENGE are trademarks of Silicon Graphics, Inc. in the United States and other countries worldwide. MIPS,
R4000, R4400, R8000, R10000 are registered trademarks and MIPSpro and R12000 are trademarks of MIPS Technologies, Inc. MIPSpro
is used under license by Silicon Graphics, Inc. UNIX is a registered trademark of the Open Group in the United States and other
countries. VMS and VAX are trademarks of Compaq.

Portions of this product and document are derived from material copyrighted by Kuck and Associates, Inc.

Portions of this product/publication may have been derived from the OpenMP Language Application Program Interface Specification.

Cover Design By Sarah Bolles, Sarah Bolles Design, and Danny Galgani, SGI Technical Publications.

Record of Revision

Version Description

7.3 March 1999.
Printing to support the MIPSpro 7.3 release.

008 September 2002
Revision to support the MIPSpro 7.4 release which runs on IRIX
version 6.5 and later.

009 June 2003
Revision to support the MIPSpro 7.4.1m release which runs on IRIX
version 6.5 and later.

007–2361–009 iii

Contents

About This Guide . xix

Related Compiler Publications xix

Compiler Messages . xx

Compiler Man Pages . xx

Obtaining Publications . xx

Conventions . xxi

Reader Comments . xxi

1. Compiling, Linking, and Running Programs 1

Compiling and Linking . 1

Compilation . 2

Compiling in C/C++ . 3

Linking Objects . 4

Specifying Link Libraries . 6

Compiler Options: an Overview 6

Compiling Simple Programs 7

Using a Defaults Specification File 7

Specifying Features to the Compiler 8

Specifying the Buffer Size for Direct Unformatted I/O 14

Object File Tools . 14

Archiver . 15

Run-Time Considerations . 15

Invoking a Program . 16

Maximum Memory Allocations 16

007–2361–009 v

Contents

Arrays Larger Than 2 Gigabytes 16

Local Variable (Stack Frame) Sizes 18

Static and Common Sizes 18

Pointer-based Memory . 19

File Formats . 19

Preconnected Files . 20

File Positions . 20

Unknown File Status . 20

Quad-Precision Operations 21

Run-Time Error Handling . 21

Floating Point Exceptions . 21

2. Data Types and Mapping 23

Alignment, Size, and Value Ranges 23

Access of Misaligned Data . 27

Accessing Small Amounts of Misaligned Data 27

Accessing Misaligned Data Without Modifying Source Code 28

3. Fortran Program Interfaces 29

Subprogram Names . 29

Mixed-Case Names . 30

Preventing a Suffix Underscore with $ 30

Naming Fortran Subprograms from C 31

Naming C Functions from Fortran 31

Verifying Spelling Using nm 31

Correspondence of Fortran and C Data Types 32

Corresponding Scalar Types 32

Corresponding Character Types 33

vi 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

Corresponding Array Elements 33

Passing Subprogram Parameters 35

Normal Treatment of Parameters 35

Calling Fortran from C . 36

Calling Fortran Subroutines from C 36

Alternate Subroutine Returns 38

Calling Fortran Functions from C 39

Calling C from Fortran . 41

Normal Calls to C Functions 41

Using Fortran COMMON in C Code 43

Using Fortran Arrays in C Code 44

Calls to C Using LOC%, REF% and VAL% 44

Using %VAL . 45

Using %REF . 46

Using %LOC . 46

Making C Wrappers with mkf2c 46

Parameter Assumptions by mkf2c 47

Character String Treatment by mkf2c 48

Restrictions of mkf2c . 49

Using mkf2c and extcentry 50

Makefile Considerations . 51

4. System Functions and Subroutines 53

Library Functions . 53

Extended Intrinsic Subroutines 60

DATE . 60

IDATE . 61

ERRSNS . 61

007–2361–009 vii

Contents

EXIT . 62

TIME . 62

MVBITS . 62

Extended Intrinsic Functions . 63

SECNDS . 63

RAN . 63

5. OpenMP Fortran API Multiprocessing Directives 65

Using Directives . 65

Conditional Compilation . 66

Parallel Region Constructs . 66

Work-sharing Constructs . 67

Combined Parallel Work-sharing Constructs 68

Synchronization Constructs . 69

Data Environment Constructs 70

Directive Binding . 71

Directive Nesting . 72

6. Compiling and Debugging Parallel Fortran 75

Compiling and Running Parallel Fortran 75

Using the -static Option 75

Examples of Compiling . 76

Profiling a Parallel Fortran Program 77

Debugging Parallel Fortran . 77

General Debugging Hints . 77

EQUIVALENCE Statements and Storage of Local Variables 80

Appendix A. Run-Time Error Messages 81

viii 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

Appendix B. Multiprocessing Directives (Outmoded) 89

Overview . 90

Parallel Loops . 90

Writing Parallel Fortran . 91

C$DOACROSS . 91

IF . 92

LOCAL, SHARE, LASTLOCAL 92

REDUCTION . 93

CHUNK, MP_SCHEDTYPE . 94

C$& . 97

C$. 97

C$MP_SCHEDTYPE and C$CHUNK 98

C$COPYIN . 98

Nesting C$DOACROSS . 98

Analyzing Data Dependencies for Multiprocessing 99

Breaking Data Dependencies . 104

Work Quantum . 109

Cache Effects . 111

Performing a Matrix Multiply 111

Understanding Trade-Offs . 112

Load Balancing . 113

Reorganizing Common Blocks To Improve Cache Behavior 115

Advanced Features . 115

mp_block and mp_unblock 116

mp_setup, mp_create, and mp_destroy 116

mp_blocktime . 116

mp_numthreads, mp_set_numthreads 117

mp_suggested_numthreads 117

007–2361–009 ix

Contents

mp_my_threadnum . 118

mp_setlock, mp_unsetlock, mp_barrier 118

Environment Variables for Origin Systems 118

Using the MP_SET_NUMTHREADS, MP_BLOCKTIME, MP_SETUP environment variables . 119

Setting the _DSM_WAIT Environment Variable 119

Using Dynamic Threads 120

Controlling the Stacksize of Slave Processes 120

Specifying Page Sizes for Stack, Data, and Text 121

Specifying Run-Time Scheduling 121

Specifying Gang Scheduling 121

Local COMMON Blocks . 121

Compatibility With sproc . 122

DOACROSS Implementation . 123

Loop Transformation . 123

Executing Spooled Routines 124

PCF Directives . 125

Parallel Region . 126

PCF Constructs . 127

Parallel DO . 128

PDO . 128

Parallel Sections . 129

Single Process . 131

Critical Section . 134

Barrier Constructs . 136

Restrictions . 136

Effects on timing . 137

Communicating Between Threads Through Thread Local Data 138

Synchronization Intrinsics . 140

x 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

Synopsis . 142

Atomic fetch-and-op Operations 142

Atomic op-and-fetch Operations 142

Atomic BOOL Operation . 143

Atomic synchronize Operation 143

Atomic lock and unlock Operations 144

Example of Implementing a Pure Spin-Wait Lock 144

Appendix C. The Auto-Parallelizing Option (APO) 147

Using the MIPSpro APO . 150

Common Command-Line Options 151

Optimization Options . 152

Interprocedural Analysis . 152

Loop Nest Optimizer Options 153

Other Optimization Options 154

Output files . 154

The .list File . 155

The .w2f.f File . 156

About the .m and .anl Files 158

Running Your Program . 158

Failing to Parallelize Safe Loops 159

Function Calls in Loops . 159

GO TO Statements in Loops 160

Problematic Array Subscripts 160

Local Variables . 161

Parallelizing the Wrong Loop . 162

Inner Loops . 163

007–2361–009 xi

Contents

Small Trip Counts . 163

Poor Data Locality . 164

Unnecessary Parallelization Overhead 165

Strategies for Assisting Parallelization 166

Compiler Directives for Automatic Parallelization 167

C*$* NO CONCURRENTIZE 169

C*$* CONCURRENTIZE . 169

C*$* ASSERT DO (CONCURRENT) 169

C*$* ASSERT DO (SERIAL) 170

C*$* ASSERT CONCURRENT CALL 170

C*$* ASSERT PERMUTATION 172

C*$* ASSERT DO PREFER (CONCURRENT) 172

C*$* ASSERT DO PREFER (SERIAL) 173

Index . 175

xii 007–2361–009

Figures

Figure 1-1 Compilation Process 2

Figure 1-2 Compiling Multilanguage Programs 4

Figure 1-3 Linking . 5

Figure 3-1 Correspondence Between Fortran and C Array Subscripts 34

Figure C-1 Files Generated by the MIPSpro Auto-Parallelizing Option 149

007–2361–009 xiii

Tables

Table 1-1 Machine Characteristic Options 9

Table 1-2 Source File Format Options 9

Table 1-3 Input/Output File Options 10

Table 1-4 Memory Allocation Options 10

Table 1-5 Debugging Option 11

Table 1-6 Optimization Options 11

Table 1-7 Multiprocessing Options 12

Table 1-8 Recursion Options 13

Table 1-9 Compiler Execution Options 14

Table 1-10 Preconnected Files 20

Table 2-1 Size, Alignment, and Value Ranges of Data Types 23

Table 2-2 Valid Ranges for REAL*4 and REAL*8 Data Types 26

Table 2-3 Valid ranges for REAL*16 Data Types 26

Table 3-1 Corresponding Fortran and C Data Types 32

Table 3-2 How mkf2c treats function arguments 47

Table 4-1 Summary of System Interface Library Routines 54

Table A-1 Run-Time Error Messages 81

Table B-1 Summary of PCF Directives 126

Table C-1 Auto-Parallelizing Option Directives and Assertions 168

007–2361–009 xv

Examples

Example 3-1 Example Subroutine Call 35

Example 3-2 Example Function Call 35

Example 3-3 Example Fortran Subroutine with COMPLEX Parameters 36

Example 3-4 C Declaration and Call with COMPLEX Parameters 37

Example 3-5 Example Fortran Subroutine with String Parameters 37

Example 3-6 C Program that Passes String Parameters 37

Example 3-7 C Program that Passes Different String Lengths 38

Example 3-8 Fortran Function Returning COMPLEX*16 39

Example 3-9 C Program that Receives COMPLEX Return Value 39

Example 3-10 Fortran Function Returning CHARACTER*16 40

Example 3-11 C Program that Receives CHARACTER*16 Return 40

Example 3-12 C Function Written to be Called from Fortran 41

Example 3-13 Common Block Usage in Fortran and C 43

Example 3-14 Fortran Program Sharing an Array in Common with C 44

Example 3-15 C Subroutine to Modify a Common Array 44

Example 3-16 Fortran Function Calls Using %VAL 45

Example 3-17 Fortran Call to gmatch() Using %REF 46

Example 3-18 C Function Using varargs 49

Example 3-19 C Code to Retrieve Hidden Parameters 49

Example 3-20 Source File for Use with extcentry 50

Example 6-1 Erroneous C$DOACROSS 78

Example B-1 Simple DOACROSS 95

Example B-2 DOACROSS LOCAL 95

007–2361–009 xvii

Contents

Example B-3 DOACROSS LAST LOCAL 96

Example B-4 Simple Independence 100

Example B-5 Data Dependence 100

Example B-6 Stride Not 1 . 101

Example B-7 Local Variable 101

Example B-8 Function Call 101

Example B-9 Rewritable Data Dependence 102

Example B-10 Exit Branch . 102

Example B-11 Complicated Independence 103

Example B-12 Inconsequential Data Dependence 103

Example B-13 Local Array . 104

Example B-14 Loop Carried Value 105

Example B-15 Indirect Indexing 105

Example B-16 Recurrence . 106

Example B-17 Sum Reduction 107

Example B-18 Loop Interchange 109

Example B-19 Conditional Parallelism 110

Example B-20 Load Balancing 114

Example C-1 Subroutine in File testl.f 155

Example C-2 Listing in File testl.list 156

Example C-3 Subroutine in File testw2.f 157

Example C-4 Listing of File testw2.w2f.f 157

Example C-5 Distribution of Iterations 164

Example C-6 Two Nests in Sequence 164

xviii 007–2361–009

About This Guide

This guide provides information on implementing FORTRAN 77 programs using the
MIPSpro Fortran 77 compiler, version 7.4, which runs on the IRIX operating system,
version 6.5 and later. This implementation of FORTRAN 77 contains full American
National Standards Institute (ANSI) Programming Language Fortran (X3.9–1978) (in
June, 1997, ANSI no longer supported this standard). Extensions provide full VMS
Fortran compatibility to the extent possible without the VMS operating system or
VAX data representation. This implementation of FORTRAN 77 also contains
extensions that provide partial compatibility with programs written in SVS Fortran.
This book also describes the Auto-Parallelizing Option (APO) which is an optional
software product available for purchase.

The MIPSpro Fortran 77 compiler supports the -n32 and -n64 ABI (Application
Binary Interface). The Fortran 77 compiler supports only the -o32 ABI.

Related Compiler Publications
This manual is one of a set of manuals that describes the compiler. The complete set
of manuals is as follows:

• The MIPSpro Fortran 77 Language Reference Manual provides a description of the
FORTRAN 77 language as implemented on SGI systems.

• The MIPSpro N32/64 Compiling and Performance Tuning Guide provides information
about improving program performance by using the optimization facilities of the
compiler system, the dump utilities, archiver, debugger, and the tools used to
maintain Fortran programs.

• The MIPSpro 64-Bit Porting and Transition Guide provides an overview of the 64-bit
compiler system and language implementation differences, porting source code to
the 64-bit system, compilation and run-time issues.

• The MIPSpro Fortran 90 Commands and Directives Reference Manual provides
information about the Fortran 90 and 95 compiler.

• The f77(1), abi(5), lno(5), o32(5), opt(5), and pe_environ(5) man pages

007–2361–009 xix

About This Guide

Compiler Messages
You can obtain compiler message explanations by using the online explain(1)
command.

Compiler Man Pages
In addition to printed and online prose documentation, several online man pages
describe aspects of the compiler. Man pages exist for the library routines, the intrinsic
procedures, and several programming environment tools.

You can print copies of online man pages by using the pipe symbol with the man(1),
col(1), and lpr(1) commands. In the following example, these commands are used
to print a copy of the explain(1) man page:

% man explain | col -b | lpr

Each man page includes a general description of one or more commands, routines,
system calls, or other topics, and provides details of their usage (command syntax,
routine parameters, system call arguments, and so on). If more than one topic
appears on a page, the entry in the printed manual is alphabetized under its primary
name; online, secondary entry names are linked to these primary names. For
example, egrep is a secondary entry on the page with a primary entry name of
grep. To access egrep online, you can type man grep or man egrep. Both
commands display the grep man page to your terminal.

Obtaining Publications
Silicon Graphics maintains publications information at the following web site:

http://techpubs.sgi.com/library

This library contains information that allows you to browse documents online, order
documents, and send feedback to Silicon Graphics.

To order a printed Silicon Graphics document, call 1–800–627–9307.

Customers outside of the United States and Canada should contact their local service
organization for ordering and documentation information.

xx 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

Conventions
The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words or
concepts being defined.

user input This bold, fixed-space font denotes literal items that the
user enters in interactive sessions. (Output is shown in
nonbold, fixed-space font.)

[] Brackets enclose optional portions of a command or
directive line.

... Ellipses indicate that a preceding element can be
repeated.

Reader Comments
If you have comments about the technical accuracy, content, or organization of this
publication, contact SGI. Be sure to include the title and document number of the
publication with your comments. (Online, the document number is located in the
front matter of the publication. In printed publications, the document number is
located at the bottom of each page.)

You can contact SGI in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library Web page:

http://docs.sgi.com

• Contact your customer service representative and ask that an incident be filed in
the SGI incident tracking system.

• Send mail to the following address:

007–2361–009 xxi

About This Guide

Technical Publications
SGI
1600 Amphitheatre Parkway, M/S 535
Mountain View, California 94043–1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

SGI values your comments and will respond to them promptly.

xxii 007–2361–009

Chapter 1

Compiling, Linking, and Running Programs

This chapter provides an overview of the MIPSpro F77 compiler and its use. It
contains the following major sections:

• "Compiling and Linking", page 1, describes the compilation environment and how
to compile and link Fortran programs. This section also contains examples that
show how to create separate linkable objects written in Fortran, C, or other
languages supported by the compiler system and how to link them into an
executable object program.

• "Compiler Options: an Overview", page 6, provides an overview of debugging,
profiling, optimizing, and other options provided with the Fortran f77 command.

• "Specifying the Buffer Size for Direct Unformatted I/O", page 14, describes the
environment variable you can use to specify buffer size.

• "Object File Tools", page 14, briefly summarizes the capabilities of the elfdump,
dis, nm, file, size and strip programs that provide listing and other
information on object files.

• "Archiver", page 15, summarizes the functions of the ar program that maintains
archive libraries.

• "Run-Time Considerations", page 15, describes how to invoke a Fortran program,
how the operating system treats files, and how to handle run-time errors.

Compiling and Linking
This section discusses compilation and linking issues when using the compiler.

The format of the f77 command is as follows:

f77 [option] … filename.[suffix]

The options argument represents the options you can use with this command. See the
f77(1) man page for a complete description of the options and their use.

The filename.suffix argument is the name of the file that contains the Fortran source
statements. The filename must always have the suffix .f, .F, .for, .FOR, or .i. For
example, myprog.f.

007–2361–009 1

1: Compiling, Linking, and Running Programs

Compilation

The f77 command can both compile and link a source module. Figure 1-1 shows the
primary compilation phases. It also shows the principal inputs and outputs for the
source modules more.f.

a.out

more.o

Linker

Optim
izing

Code Generator

C Preprocessor

Fortra
n Front End

more.f

a11995

Figure 1-1 Compilation Process

• The source file ends with the required suffixes .f, .F, .for, .FOR, or .i.

• The Fortran compiler has an integrated C preprocessor that provides full cpp
capabilities.

• The compiler produces a linkable object file when you specify the -c command
option. This object file has the same name as the source file, but the suffix is
changed to .o. For example, the following command line produces the more.o
file:

% f77 more.f -c

2 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

• The default name of the executable object file is a.out. For example, the
following command line produces the executable object a.out:

% f77 myprog.f

• You can specify a name other than a.out for the executable object by using the
-o name option, where name is the name of the executable object. For example,
the following command line links the myprog.o object module and produces an
executable object named myprog:

% f77 myprog.o -o myprog

• The following command line compiles and links the source module myprog.f
and produces an executable object named myprog:

% f77 myprog.f -o myprog

Compiling in C/C++

The compiler system uses drivers that allow you to compile programs for other
programming languages, including C and C++. If one of these drivers is installed in
your system, you can compile and link your Fortran programs to the language
supported by the driver. See the MIPSpro N32/64 Compiling and Performance Tuning
Guide for a list of available drivers and the commands used with them. See Chapter
3, "Fortran Program Interfaces", page 29, for information about the conventions you
must follow when writing Fortran program interfaces to C programs.

When your application has two or more source programs written in different
languages, you should compile each program module separately with the appropriate
driver and then link them in a separate step. Create objects suitable for linking by
specifying the -c option, which stops the driver immediately after the assembler
phase.

The following two command lines produce linkable objects named main.o and
rest.o, as illustrated in Figure 1-2, page 4.

% cc -c main.c

% f77 -c rest.f

007–2361–009 3

1: Compiling, Linking, and Running Programs

rest.o

Code Generator

C Preprocessor

Fortra
n Front End

main.o

Code Generator

C Preprocessor

C Front End

rest.f
main.c

a11996

Figure 1-2 Compiling Multilanguage Programs

Linking Objects

You can use the f77 command to link separate objects into one executable program
when any one of the objects is compiled from a Fortran source. The compiler
recognizes the .o suffix as the name of a file containing object code suitable for
linking and it immediately invokes the linker. The following command links the
object created in the last example:

% f77 -o myprog main.o rest.o

You can also use the cc command, as shown in this example:

% cc -o myprog main.o rest.o -lftn -lm

4 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

Figure 1-3, page 5 shows the flow of control for this link.

rest.o

a.out

(all m
odules)

Linker

main.o

a11997

Figure 1-3 Linking

Both f77 and cc use the C link library by default. However, you must specify
Fortran libraries explicitly to the linker using the cc -l option as shown in the
previous example. The characters following -l in the previous example are
shorthand for link library files described in the following table.

Path Contents

library ftn in /usr/lib*/nonshared/libftn.a

Intrinsic function, I/O, multiprocessing, IRIX interface, and indexed
sequential access method library for nonshared linking and compiling

library ftn in /usr/lib*/libftn.so

Same as above, except for shared linking and compiling (this is the
default library)

007–2361–009 5

1: Compiling, Linking, and Running Programs

library m in /usr/lib*/libm.so

Mathematics library

See the FILES section of the f77(1) reference page for a complete list of the files used
by the Fortran driver. Also see the ld(1) man page for information on specifying the
-l option.

Specifying Link Libraries

You may need to specify libraries when you use IRIX system packages that are not
part of a particular language. Most of the man pages for these packages list the
required libraries. For example, the getwd(3B) subroutine requires the BSD
compatibility library libbsd.a. Specify this library as follows:

% f77 main.o more.o rest.o -lbsd

To specify a library created with the archiver, type in the pathname of the library as
shown below.

% f77 main.o more.o rest.o libfft.a

Note: The linker searches libraries in the order you specify. Therefore, if you have a
library (for example, libfft.a) that uses data or procedures from -lm, you must
specify libfft.a first.

Compiler Options: an Overview
This section contains an overview of the Fortran–specific compiler options, such as
those that specify input/output files, or specify source file format. For complete
information about the compiler options, see the f77 man page. You can also see the
following documents for further information:

• The MIPSpro N32/64 Compiling and Performance Tuning Guide for a discussion of the
compiler options that are common to all MIPSpro compilers.

• The apo(1) man page for options related to the parallel optimizer.

• The ld(1) man page for a description of the linker options.

6 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

Tip: The f77 -help command lists all compiler options for quick reference. Use
the -show option to direct that the compiler document each phase of execution,
showing the exact default and nondefault options passed to each.

• The lno(5) man page, for details about the Loop Nest Optimizer.

• The opt(5) man page, for details about optimization options to the compiler.

Compiling Simple Programs

You need only a few compiler options when you are compiling a simple program.
Examples of simple programs include the following:

• Test cases used to explore algorithms or Fortran language features

• Programs that are mainly interactive

• Programs with performance that is limited by disk I/O

• Programs that will execute under a debugger

In these cases you need only specify the -g option for debugging, specify the target
machine architecture, and specify the word-length. For example, to compile a single
source file to execute under dbx, you could use the following commands.

f77 -g -mips4 -n32 -o testcase testcase.f

dbx testcase

However, a program compiled in this way takes little advantage of the performance
features of the machine. In particular, its speed when doing heavy floating-point
calculations will be far slower than the machine capacity. For simple programs,
however, that is not important.

Using a Defaults Specification File

You can set the Application Binary Interface (ABI), instruction set architecture (ISA),
and processor type without explicitly specifying them. Set the
COMPILER_DEFAULTS_PATH environment variable to a colon-separated list of paths
indicating where the compiler should check for a compiler.defaults file. If no
compiler.defaults file is found or if the environment variable is not set, the

007–2361–009 7

1: Compiling, Linking, and Running Programs

compiler looks for /etc/compiler.defaults. If this file is not found, the compiler
uses the built-in defaults.

The compiler.defaults file contains a -DEFAULT:option group command that
specifies the default ABI, ISA, and processor. The compiler issues a warning if you
specify anything other than -DEFAULT: option in the compiler.defaults file.

The format of the -DEFAULT: option group specifier is as follows:

-DEFAULT:[abi=abitype] [:isa= isatype] [:proc=rtype] [:opt=level]
[:arith=number]

See the f77(1) man page for an explanation of the arguments and their allowed
values.

See the MIPSpro Assembly Language Programmer’s Guide for a discussion of the
assembly language file that can be created by using the -S option to the compiler.
The assembly language file that is produced contains exactly the same set of
instructions that would have been produced in the .o object file, and inputting the .s
file to the assembler produces an object file with the same instructions that the
compiler would have produced. In addition to the program’s instructions, the .s file
contains comments indicating the effects of various optimization transformations that
were made by the compiler.

Specifying Features to the Compiler
There are several specific features which you may wish to use as you compile your
programs. The following tables discuss these features:

• target machine features

• source file formats

• input and output files

• memory allocation and alignment

• debugging and profiling

• optimization levels

• multiprocessing options

8 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

• recursion options

• compiler execution options

The following options are used to specify the characteristics of the machine where the
compiled program will be used.

Table 1-1 Machine Characteristic Options

Options Purpose

-64, -n32, -o32 Specifies that the target machine runs 64-bit mode,
“new” 32-bit mode available with IRIX 6.1 and above,
or old 32-bit mode. The -64 option is allowed only
with the -mips3 and -mips4 architecture options.

-mips3, -mips4 The instruction architecture available in the target
machine. Use -mips3 for MIPS R4000 and R4400®

machines; use -mips4 for MIPS R8000, R10000TM and
R12000 machines.

-TARG:option,... Specify certain details of the target CPU. Many of these
options have correct default values based on the
preceding options.

-TENV:option,... Specify certain details of the software environment
where the source module will execute. Most of these
options have correct default values based on other,
more general values.

The following options specify the source file format for files used by the compiler.

Table 1-2 Source File Format Options

Options Purpose

-ansi Report any nonstandard usages.

-backslash Treat \ in character literals as a character, not as the
start of an escape sequence.

-col72, -col120,
-extend_source,
-noextend_source

Specify margin columns of source lines.

-d_lines Compile lines with D in column 1.

007–2361–009 9

1: Compiling, Linking, and Running Programs

-Dname -Dname=def,
-Uname

Define/undefine names to the integrated C
preprocessor.

The following options direct the compiler to use specific input files and to generate
specific output file.

Table 1-3 Input/Output File Options

Options Purpose

-c Generate a single object file for each input file; do not
link.

-E Run only the macro preprocessor and write its output
to standard output.

-I, -Idir, -nostdinc Specify location of include files.

-listing Request a listing file.

-MDupdate Request Makefile dependency output data.

-o Specify name of output file.

-S Specify only assembly-language source output.

The following options direct the compiler how to allocate memory and how to align
variables in memory. These options can affect both program size and program speed.

Table 1-4 Memory Allocation Options

Options Purpose

-alignn Align all variables of size n on n-byte address
boundaries. Valid values for n are 6, 8, 32, or 64.

When using 32, objects larger than 32 bits can be
aligned on 32–bit boundaries. 16–bit objects must be
aligned on 16–bit boundaries, and 32–bit objects must
be aligned on 32–bit boundaries.

-dn Specify the size of DOUBLE and DOUBLE COMPLEX
variables.

-in Specify the size of INTEGER and LOGICAL variables.

-rn Specify the size of REAL and COMPLEX variables.

10 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

-static Allocate all local variables statically, not dynamically on
the stack.

The following option directs the compiler to include more or less extra information in
the object file for debugging.

Table 1-5 Debugging Option

Option Purpose

-glevel Leave more or less symbol-table information in the
object file for use with dbx or Workshop Pro cvd.

The following optimization options are used to communicate to the different
optimization phases. The optimizations that are common to all MIPSpro compilers
are discussed in the MIPSpro N32/64 Compiling and Performance Tuning Guide.

Table 1-6 Optimization Options

Options Purpose

-Olevel Select basic level of optimization, setting defaults for all
optimization phases. level can be a value from 0 to 3.

-INLINE:option,... Standalone inliner option group to control application
of intra-file subprogram inlining when interprocedural
analysis is not enabled. See the ipa(5) man page for
more information

-IPA:option,... Specify Inter-Procedural Analyzer option group to
control application of inter-procedural analysis and
optimization, including inlining, common block array
padding, constant propagation, dead function
elimination, alias analysis and others.

-LNO:option,... Loop nest optimizer (LNO) option control group to
control optimizations and transformations performed
by LNO. See the LNO(5) referece page for more
information.

-OPT:option,... Specify miscellaneous details of optimization. See the
OPT(5) man page for more information.

-apo Request execution of the parallelizing optimizer.

In addition to optimizing options, the compiler system provides other options that
can improve the performance of your programs:

007–2361–009 11

1: Compiling, Linking, and Running Programs

• A linker option, -G, controls the size of the global data area, which can produce
significant performance improvements. See the MIPSpro N32/64 Compiling and
Performance Tuning Guide, and the ld(1) man page for more information.

• The linker’s -jmpopt option permits the linker to fill certain instruction delay
slots not filled by the compiler front end. This option can improve the
performance of smaller programs not requiring extremely large blocks of virtual
memory. See the ld(1) man page for more information.

The f77 compiler has several options related to multiprocessing. However, the
associated programs and files are not present unless you install Power Fortran 77.
The following list summarizes some of the multiprocessing options:

Table 1-7 Multiprocessing Options

Option Description

-MP:options

The multiprocessing options group enables or disables
multiprocessing features. All of the features are enabled by default
with the -mp option. The following are the individual controls in this
group:

dsm=flag. Enables or disables data distribution. flag can be either ON
or OFF. Default: ON.

clone=flag. Enables or disables auto-cloning. flag can be either ON or
OFF. The compiler automatically clones procedures that are called
with reshaped arrays as parameters for the incoming distribution.
However, if you explicitly specify the distribution on all relevant
formal parameters, then you can disable auto-cloning with
-MP:clone=off. The consistency checking of the distribution
between actual and formal parameters is not affected by this flag, and
is always enabled. Default: ON.

check_reshape=flag. Enables or disables generation of the runtime
consistency checks across procedure boundaries when passing
reshaped arrays (or portions thereof) as parameters. flag can be either
ON or OFF. Default: OFF.

open_mp=flag. Enables or disables compiler to use OpenMP
directives. flag can be either ON or OFF. Default: ON.

12 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

old_mp=flag. Enables or disables recognition of the PCF directives.
flag can be either ON or OFF.

-mp

Enable the multiprocessing and DSM directives. Use this option with
either the -mp or the -apo option. The saved file name has the
following form:

$TMPDIR/P<user_subroutine_name><machine_name><pid>

If the TMPDIR environment variable is not set, then the file is in /tmp.

-mp_keep

Keep the compiler generated temporary file and generate correct line
numbers for debugging multiprocessed DO loops.

-apo

Run the apo(1) preprocessor to automatically discover parallelism in
the source code. This also enables the multiprocessing directives. This
is an optional software product.

Note: Under -mp compilation, the compiler silently generates some bookkeeping
information under the rii_files directory. This information is used to implement
data distribution directives, as well as perform consistency checks of these directives
across multiple source files. To disable the processing of the data distribution
directives and not generate the rii_files, compile your program with the
-MP:dsm=off option.

You can enable recursion support by using the -LANG:recursive=ON option.

In either mode, the compiler supports a recursive stack-based calling sequence. The
difference is in the optimization of statically allocated local variables. The following
list describes the -LANG:recursive= option:

Table 1-8 Recursion Options

Recursive
Option

Purpose

=on A statically allocated local variable can be referenced or modified by a
recursive procedure call. The statically allocated local variable must be
stored in memory before making a call and reloaded afterward.

007–2361–009 13

1: Compiling, Linking, and Running Programs

=off The default. The compiler can safely assume a statically allocated local
variable will not be referenced or modified by a procedure call and can
optimize more aggressively.

The following options control the execution of the compiler phases.

Table 1-9 Compiler Execution Options

Option Purpose

-E, -P Execute only the integrated C preprocessor.

-fe Stop compilation immediately after the front-end
(syntax analysis) runs.

-M Run only the macro preprocessor.

-Yc,path Load the compiler phase specified by c from the
specified path.

-Wc,option,... Pass the specified list of options to the compiler phase
specified by c.

Specifying the Buffer Size for Direct Unformatted I/O
You can use the FORTRAN_BUFFER_SIZE environment variable to change the buffer
size for direct unformatted I/O. After it is set to 128K (4-byte) words or greater, the
I/O on direct unformatted file does not go though the system buffer. No upper limit
exists on the number to which you can set FORTRAN_BUFFER_SIZE. However, when
it exceeds the system maximum I/O limit, then the Fortran I/O library automatically
resets it to the system limit.

See the pe_environ(5) man page for more information.

Object File Tools
The following tools provide information on object files:

elfdump Lists headers, tables, and other selected parts of an ELF-format object or
archive file.

dis Disassembles object files into machine instructions.

nm Prints symbol table information for object and archive files.

14 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

file Lists the properties of program source, text, object, and other files. This
tool often erroneously recognizes command files as C programs. It does
not recognize Pascal or LISP programs.

size Prints information about the text, rdata, data, sdata, bss, and sbss
sections of the specified object or archive files. See the a.out(4) man
page for a description of the contents and format of section data.

strip Removes symbol table and relocation bits.

For more information about these tools, see the MIPSpro N32/64 Compiling and
Performance Tuning Guide and the dis(1), elfdump(1), file(1), nm(1), size(1), and
strip(1) man pages.

Archiver
An archive library is a file that contains one or more routines in object (.o) file
format. The term object refers to a .o file that is part of an archive library file. When
a program calls an object not explicitly included in the program, the link editor, ld,
looks for that object in an archive library. The link editor then loads only that object
(not the whole library) and links it with the calling program.

The archiver (ar) creates and maintains archive libraries and has the following main
functions:

• copying new objects into the library

• replacing existing objects in the library

• moving objects about the library

• copying individual objects from the library into individual object files

See the MIPSpro N32/64 Compiling and Performance Tuning Guide, and the ar(1) man
page for additional information about the archiver.

Run-Time Considerations
There are several aspects of compiling that you should consider at run-time. This
section discusses some of those aspects:

• invoking a program, "Invoking a Program", page 16

007–2361–009 15

1: Compiling, Linking, and Running Programs

• memory allocation, "Maximum Memory Allocations", page 16

• file formats, "File Formats", page 19

• preconnected files, "Preconnected Files", page 20

• file positions, "File Positions", page 20

• unknown file status, "Unknown File Status", page 20

• quad-precision operations, "Quad-Precision Operations", page 21

• error handling, "Run-Time Error Handling", page 21

• floating point exceptions, "Floating Point Exceptions", page 21

Invoking a Program

To run a Fortran program, invoke the executable object module produced by the f77
command by entering the name of the module as a command. By default, the name of
the executable module is a.out. If you included the -o filename option on the ld (or
the f77) command line, the executable object module has the name that you specified.

Maximum Memory Allocations

The total memory allocation for a program, and individual arrays, can exceed
2 gigabytes (2 GB, or 2,048 MB).

Previous implementations of FORTRAN 77 limited the total program size, as well as
the size of any single array, to 2 GB. The current release allows the total memory in
use by the program to exceed this. For details about the memory use of individual
scalar values, see "Alignment, Size, and Value Ranges", page 23.

Arrays Larger Than 2 Gigabytes

The compiler supports arrays that are larger than 2 gigabytes for programs compiled
under the -64 ABI option. The arrays can be local, global, and dynamically created
as the following example demonstrates. Initializers are not provided for the arrays in
these examples. Large array support is limited to FORTRAN 77, C, and C++.

$cat a2.c

#include <stdlib.h>

16 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

int i[0x100000008];

void foo()

{

int k[0x100000008];
k[0x100000007] = 9;

printf(‘‘%d \n’’, k[0x100000007]);

}

main()

{
char *j;

j = malloc(0x100000008);

i[0x100000007] = 7;

j[0x100000007] = 8;

printf(‘‘%d \n’’, i[0x100000007]);
printf(‘‘%d \n’’, j[0x100000007]);

foo();

}

You must run this program on a 64-bit operating system with IRIX version 6.2 or a
higher version. You can verify the system type by using the uname -a command.
You must have enough swap space to support the working set size and you must
have your shell limit datasize, stacksize, and vmemoryuse variables set to values
large enough to support the sizes of the arrays. See the sh(1) man page for details.

The following example compiles and runs the above code after setting the stacksize to
a correct value:

$uname -a

IRIX64 cydrome 6.2 03131016 IP19

$cc -64 -mips3 a2.c

$limit
cputime unlimited

filesize unlimited

datasize unlimited

stacksize 65536 kbytesn

coredumpsize unlimited

memoryuse
descriptors 200

vmemoryuse unlimited

007–2361–009 17

1: Compiling, Linking, and Running Programs

$limit stacksize unlimited
$limit

cputime unlimited

filesize unlimited

datasize unlimited

stacksize unlimited
coredumpsize unlimited

memoryuse 754544 kbytes

descriptors 200

vmemoryuse unlimited

$a.out

7
8

9

Local Variable (Stack Frame) Sizes

Arrays that are allocated on the process stack must not exceed 2 GB, but the total of
all stack variables can exceed that limit, as in this example:

parameter (ndim = 16380)

integer*8 xmat(ndim,ndim), ymat(ndim,ndim), &

zmat(ndim,ndim)

integer k(1073741824)
integer l(33554432, 256)

However, when an array is passed as an argument, it is not limited in size.

subroutine abc(k)

integer k(8589934592_8)

Static and Common Sizes

When compiling with the -static option, global data is allocated as part of the
compiled object (.o) file. The total size of any .o file may not exceed 2 GB. However,
the total size of a program linked from multiple .o files may exceed 2 GB.

An individual common block may not exceed 2 GB. However, you can declare
multiple common blocks, each having that size.

18 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

Pointer-based Memory

There is no limit on the size of a pointer-based array, as in this example:

integer *8 ndim
parameter (ndim = 20001)

pointer (xptr, xmat), (yptr, ymat), (zptr, zmat), &

(aptr, amat)

xptr = malloc(ndim*ndim*8)

yptr = malloc(ndim*ndim*8)

zptr = malloc(ndim*ndim*8)
aptr = malloc(ndim*ndim*8)

Be sure that malloc is called with an INTEGER*8 value. A count greater than 2 GB
would be truncated if assigned to an INTEGER*4.

File Formats

The Fortran compiler supports five kinds of external files:

• sequential formatted

• sequential unformatted

• direct formatted

• direct unformatted

• key indexed file

The operating system implements other files as ordinary files and makes no
assumptions about their internal structure.

Fortran I/O is based on records. When a program opens a direct file or a key-indexed
file, the length of the records must be given. The Fortran I/O system uses the length
to make the file appear to be composed of records of the given length. When the
record length of a direct unformatted file is 1 byte, the system treats the file as
ordinary system files (that is, as byte strings, in which each byte is addressable). A
READ or WRITE request on such files consumes bytes until they are used, rather than
restricting the request to a single record.

Because of special requirements, sequential unformatted files are usually read or
written only by Fortran I/O statements. Each record is preceded and followed by an
integer containing the length of the record in bytes.

007–2361–009 19

1: Compiling, Linking, and Running Programs

During a READ, Fortran I/O breaks sequential formatted files into records by using
each new line indicator as a record separator. The FORTRAN 77 standard does not
define the required result after reading past the end of a record; the I/O system treats
the record as being extended by blanks. On output, the I/O system writes a new line
indicator at the end of each record. If a user’s program also writes a new line
indicator, the I/O system treats it as a separate record.

Preconnected Files

The following table shows the standard preconnected files at program start.

Table 1-10 Preconnected Files

Unit#/Unit Alternate Unit

5 (standard input) (in READ)

6 (standard output) (in WRITE)

0 (standard error) (in WRITE)

All other units are also preconnected when execution begins. Unit n is connected to a
file named fort.n. These files need not exist, nor will they be created unless their
units are used without first executing an open statement. The default connection is
for sequentially formatted I/O.

File Positions

The FORTRAN 77 standard does not specify where OPEN should initially position a
file that is explicitly opened for sequential I/O. The I/O system positions the file to
start of file for both input and output. The execution of an OPEN statement followed
by a WRITE on an existing file causes the file to be overwritten, erasing any data in
the file. In a program called from a parent process, units 0, 5, and 6 remain where
they were positioned by the parent process.

Unknown File Status

When the STATUS="UNKNOWN" parameter is specified in an OPEN statement, the
following occurs:

• If the file does not exist, it is created and positioned at start of file.

20 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

• If the file exists, it is opened and positioned at the beginning of the file.

Quad-Precision Operations

When running programs that contain quad-precision operations, you must run the
compiler in round-to-nearest mode. Because this mode is the default, you usually do
not have to set it. You will need to set this mode when writing programs that call
your own assembly routines. Refer to the swapRM(3c) man page for details.

Run-Time Error Handling

When the Fortran run-time system detects an error, the following actions occur:

• A message describing the error is written to the standard error unit (unit 0).

• A core file is produced if the f77_dump_flag environment variable is set. You
can use dbx to inspect this file and determine the state of the program at
termination. For more information, see the dbx User’s Guide.

To invoke dbx using the core file, enter the following command:

% dbx executable core

where executable is the name of the executable file (the default is a.out).

Floating Point Exceptions

The libfpe library provides two methods for handling floating point exceptions.

The library provides the handle_sigfpes subroutine and the TRAP_FPE
environment variable. Both methods provide mechanisms for handling and
classifying floating point exceptions, and for substituting new values. They also
provide mechanisms to count, trace, exit, or abort on enabled exceptions. The
-TENV:check_div compile option inserts checks for divide by zero or overflow. See
the handle_sigfpes(3f) man page for more information.

007–2361–009 21

Chapter 2

Data Types and Mapping

This chapter describes how the Fortran compiler implements size and value ranges
for various data types. In addition, data alignment and accessing misaligned data is
also discussed.

For more information about data representation and storage, see the MIPSpro Fortran
Language Reference Manual, Volume 3.

Alignment, Size, and Value Ranges
Table 2-1 contains information about various Fortran scalar data types. For details on
the maximum sizes of arrays, see "Maximum Memory Allocations", page 16.

Table 2-1 Size, Alignment, and Value Ranges of Data Types

Type Synonym Size Alignment Value Range

BYTE INTEGER*1 8 bits Byte -128…127

INTEGER*2 16 bits Half word -32,768…32,767

INTEGER INTEGER*4:
When the -i2 option is used,
type INTEGER is equivalent to
INTEGER*2; when the -i8
option is used, INTEGER is
equivalent to INTEGER*8.

32 bits Word -231 ... 231-1

INTEGER*8 64 bits Double word -263…263 -1

LOGICAL*1 8 bits Byte 0 1

LOGICAL*2 16 bits Half word 0 1

007–2361–009 23

2: Data Types and Mapping

Type Synonym Size Alignment Value Range

LOGICAL LOGICAL*4:
When the -i2 option is used,
type LOGICAL is equivalent to
LOGICAL*2; when the -i8
option is used, type LOGICAL is
equivalent to LOGICAL*8.

32 bits Word 0 1

LOGICAL*8 64 bits Double word 0 1

REAL REAL*4:
When the -r8 option is used,
type REAL is equivalent to
REAL*8.

32 bits Word See Table 2-2, page 26

DOUBLE
PRECISION

REAL*8:
When the −d16 option is used,
type DOUBLE PRECISION is
equivalent to REAL*16.

64 bits Double word:
Byte
boundary
divisible by
eight.

See Table 2-2, page 26

REAL*16 128 bits Double word See Table 13

COMPLEX COMPLEX*8:
When the -r8 option is used,
type COMPLEX is equivalent to
COMPLEX*16.

64 bits Double word:
Byte
boundary
divisible by
four.

See the first bullet item
below

DOUBLE
COMPLEX

COMPLEX*16:
When the -d16 option is used,
type DOUBLE COMPLEX is
equivalent to COMPLEX*32.

128 bits Double word:
Byte
boundary
divisible by
eight.

See the first bullet item
below

COMPLEX*32 256 bits Double word See the first bullet item
below

CHARACTER 8 bits Byte -128…127

When the alignment is half word, the byte boundary is divisible by two. When the
alignment is word, the byte boundary is divisible by four.

The following notes provide details on some of the items in Table 2-1.

24 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

• Forcing INTEGER, LOGICAL, REAL, and COMPLEX variables to align on a halfword
boundary is not allowed, except as permitted by the -align8, -align16, and
-align32 command line options.

• Table 2-1 indicates that REAL*8 (that is, DOUBLE PRECISION) variables always
align on a double-word boundary. However, Fortran permits these variables to
align on a word boundary if a COMMON statement or equivalencing requires it.

• A COMPLEX data item is an ordered pair of REAL*4 numbers; a DOUBLE COMPLEX
data item is an ordered pair of REAL*8 numbers; a COMPLEX*32 data item is an
ordered pair of REAL*16 numbers. In each case, the first number represents the
real part and the second represents the imaginary part. The following tables list
the valid ranges.

• LOGICAL data items denote only the logical values TRUE and FALSE (written as
.TRUE. or .FALSE.). However, to provide VMS compatibility, LOGICAL
variables can be assigned all integral values of the same size.

• You must explicitly declare an array in a DIMENSION declaration or in a data type
declaration. To support DIMENSION, the compiler does the following:

– allows up to seven dimensions

– assigns a default of 1 to the lower bound if a lower bound is not explicitly
declared in the DIMENSION statement

– creates an array the size of its element type times the number of elements

– stores arrays in column-major mode

• The following rules apply to shared blocks of data set up by COMMON statements:

– The compiler assigns data items in the same sequence as they appear in the
common statements defining the block. Data items are padded according to the
alignment compiler options or the compiler defaults. See "Access of Misaligned
Data", page 27, for more information.

– You can allocate both character and noncharacter data in the same common
block.

– When a common block appears in multiple program units, the compiler
allocates the same size for that block in each unit, even though the size
required may differ (due to varying element names, types, and ordering
sequences) from unit to unit. The allocated size corresponds to the maximum
size required by the block among all the program units except when a common

007–2361–009 25

2: Data Types and Mapping

block is defined by using DATA statements, which initialize one or more of the
common block variables. In this case the common block is allocated the same
size as when it is defined.

• Table 2-2 lists the approximate valid ranges for REAL*4 and REAL*8 .

Table 2-2 Valid Ranges for REAL*4 and REAL*8 Data Types

Range REAL*4 REAL*8

Maximum 3.40282356 * 1038 1.7976931348623158 * 10308

Minimum normalized 1.17549424 * 10 -38 2.2250738585072012 * 10-308

Minimum denormalized 1.40129846 * 10-45 4.94065645841246544 * 10 -324

• REAL*16 constants have the same form as DOUBLE PRECISION constants, except
the exponent indicator is Q instead of D. The following table lists the approximate
valid range for REAL*16. REAL*16 values have an 11-bit exponent and a 107-bit
mantissa; they are represented internally as the sum or difference of two doubles.
Therefore, for REAL*16, “normal” means that both high and low parts are normals.

Table 2-3 Valid ranges for REAL*16 Data Types

Range Precise Exception Mode w/FS Bit Clear

Maximum 1.797693134862315807937289714053023 *
10308

Minimum normalized 2.0041683600089730005034939020703004 *
10-292

Minimum
denormalized

4.940656458412465441765687928682214 *
10-324

Fast Mode Precise Exception Mode w/FS Bit Set

Maximum 1.797693134862315807937289714053023 *
10308

Minimum normalized 2.0041683600089730005034939020703004 *
10-292

26 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

Minimum
denormalized

2.225073858507201383090232717332404 *
10-308

Access of Misaligned Data
The Fortran compiler allows misalignment of data if specified by special options.

The architecture of the IRIS 4D series assumes a particular alignment of data. ANSI
standard FORTRAN 77 cannot violate the rules governing this alignment.
Misalignment can occur when using common extensions. This is particularly true for
small integer types, which have the following characteristics:

• allow intermixing of character and non-character data in COMMON and
EQUIVALENCE statements

• allow mismatching the types of formal and actual parameters across a subroutine
interface

• provide many opportunities for misalignment to occur

Code that use extensions that compile and execute correctly on other systems with
less stringent alignment requirements may fail during compilation or execution on the
IRIS 4D. This section describes a set of options to the Fortran compiler that allow the
compilation and execution of programs whose data may be misaligned. The
execution of programs that use these options is significantly slower than the execution
of a program with aligned data.

This section describes the two methods that can be used to create an executable object
file that accesses misaligned data.

Accessing Small Amounts of Misaligned Data

Use this method if the number of instances of misaligned data access is small or use it
to provide information on the occurrence of such accesses so that misalignment
problems can be corrected at the source level.

This method catches and corrects bus errors due to misaligned accesses. This ties the
extent of program degradation to the frequency of these accesses. This method also
includes capabilities for producing a report of these accesses to enable their correction.

To use this method, use one of the following two options to the f77 command to
prevent the compiler from padding data to force alignment:

007–2361–009 27

2: Data Types and Mapping

• Use the -align8 option if you do not anticipate that your program will have
restrictions on alignment.

• Use the -align16 option if your program must be run on a machine that requires
half-word alignment.

You must also use the misalignment trap handler. This requires minor source code
changes to initialize the handler and the addition of the handler binary to the link
step. See the fixade(3f) reference page for details.

Accessing Misaligned Data Without Modifying Source Code

Use this second method for programs with widespread misalignment or whose source
code may not be modified.

In this method, a set of special instructions is substituted by the IRIS 4D assembler for
data accesses whose alignment cannot be guaranteed. You can choose to have each
source file independently substituted.

You can invoke this method by specifying one of the -align alignment options
(-align8, -align16) to f77 when compiling any source file that references
misaligned data. If your program passes misaligned data to system libraries, you may
also have to link it with the trap handler. See the f77(1) reference page and the
fixade(3f) reference page for more information.

28 007–2361–009

Chapter 3

Fortran Program Interfaces

Sometimes it is necessary to create a program that combines modules written in
Fortran and another programming language. For example,

• In a Fortran program, you may need access to a facility that is only available as a
C function, such as a member of a graphics library.

• In a program in another programming language, you may need access to a
computation that has been implemented as a Fortran subprogram (perhaps one of
the many BLAS library routines).

This chapter focuses on the interface between Fortran and the C programming
language. However other language can be called (for example, C++).

Note: You should be aware that all compilers for a given version of IRIX use identical
standard conventions for passing parameters in generated code. These conventions
are documented at the machine instruction level in the MIPSpro Assembly Language
Programmer’s Guide, which also details the differences in the conventions used in
different releases.

Subprogram Names
The Fortran compiler normally changes the names of subprograms and named
common blocks while it translates the source file. When these names appear in the
object file for reference by other modules, they are usually changed in two ways:

• Converted to all lowercase letters

• Extended with a final underscore (_) character

The following declarations usually produce the matrix_, mixedcase_, and cblk_
identifiers (all in lowercase with appended underscores) in the generated object file:

SUBROUTINE MATRIX

function MixedCase()

COMMON /CBLK/a,b,c

007–2361–009 29

3: Fortran Program Interfaces

Note: Fortran intrinsic functions are not named according to these rules. The external
names of intrinsic functions as defined in the Fortran library are not directly related
to the intrinsic function names as they are written in a program. The use of intrinsic
function names is discussed in the MIPSpro Fortran 77 Language Reference Manual.

Mixed-Case Names

The Fortran compiler will not generate an external name containing uppercase letters.
If you are porting a program that depends on the ability to call such a name, you
must write a C function that takes the same arguments but which has a name
composed of lowercase letters only. This C function can then call the function whose
name contains mixed-case letters.

Note: Previous versions of the FORTRAN 77 compiler for 32-bit systems supported
the -U compiler option, which directed the compiler to not force all uppercase input
to lowercase. As a result, uppercase letters could be preserved in external names in
the object file. As now implemented, this option does not affect the case of external
names in the object file.

Preventing a Suffix Underscore with $

You can prevent the compiler from appending an underscore to a name by writing
the name with a terminal currency symbol ($). The $ is not reproduced in the object
file; it is dropped, but it prevents the compiler from appending an underscore. The
following declaration produces the name nounder (lowercase, but with no trailing
underscore) in the object file:

EXTERNAL NOUNDER$

Note: This meaning of $ in names applies only to subprogram names. If you end the
name of a COMMON block with $, the name in the object file includes the $ and ends
with an underscore.

30 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

Naming Fortran Subprograms from C

In order to call a Fortran subprogram from a C module you must spell the name the
way the Fortran compiler spells it, using all lowercase letters and a trailing
underscore. A Fortran subprogram declared as follows:

SUBROUTINE HYPOT()

would typically be declared in the following C function (lowercase with trailing
underscore):

extern int hypot_()

You must know if a subprogram is declared with a trailing $ to suppress the
underscore.

Naming C Functions from Fortran

The C compiler does not modify the names of C functions. C functions can have
uppercase or mixed-case names, and they have terminal underscores only when
specified.

In order to call a C function from a Fortran program you must ensure that the Fortran
compiler spells the name correctly. When you control the name of the C function, the
simplest solution is to give it a name that consists of lowercase letters with a terminal
underscore. For example, the following C function:

int fromfort_() {...}

could be declared in a Fortran program as follows:

EXTERNAL FROMFORT

When you do not control the name of a C function, you must direct the Fortran
compiler to generate the correct name in the object file. Write the C function name
using a terminal $ character to suppress the terminal underscore. The compiler will
not generate an external name with uppercase letters in it.

Verifying Spelling Using nm

You can verify the spelling of names in an object file using the nm(1) command (or
with the elfdump command with the -t or -Dt options). To see the subroutine and

007–2361–009 31

3: Fortran Program Interfaces

common names generated by the compiler, use the nm command with the generated
.o (object) or executable file.

Correspondence of Fortran and C Data Types
When you exchange data values between Fortran and C, either as parameters, as
function results, or as elements of common blocks, you must make sure that the two
languages agree on the size, alignment, and subscript of each data value.

Corresponding Scalar Types

The correspondence between Fortran and C scalar data types is shown in Table 3-1.
This table assumes the default precisions. Using compiler options such as -i2 or -r8
affects the meaning of the words LOGICAL, INTEGER, and REAL.

Table 3-1 Corresponding Fortran and C Data Types

Fortran Data Type Corresponding C type

BYTE, INTEGER*1, LOGICAL*1 signed char

CHARACTER*1 unsigned char

INTEGER*2, LOGICAL*2 short

INTEGER1, INTEGER*4, LOGICAL1,
LOGICAL*4

int or long

INTEGER*8, LOGICAL*8 long long

REAL1, REAL*4 float

DOUBLE PRECISION, REAL*8 double

REAL*16 long double

COMPLEX1, COMPLEX*8 typedef struct{float real, imag;
} cpx8;

DOUBLE COMPLEX, COMPLEX*16 typedef struct{ double real,
imag; } cpx16;

COMPLEX*32 typedef struct{long double real,
imag;} cpx32;

32 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

Fortran Data Type Corresponding C type

CHARACTER*n (n>1) typedef char fstr_n[n];
1 assuming default precision

The rules governing alignment of variables within common blocks are discussed in
"Alignment, Size, and Value Ranges", page 23.

Corresponding Character Types

The Fortran CHARACTER*1 data type corresponds to the C type unsigned char.
However, the two languages differ in the treatment of strings of characters.

A Fortran CHARACTER*n (n>1) variable contains exactly n characters at all times.
When a shorter character expression is assigned to it, it is padded on the right with
spaces to reach n characters.

A C vector of characters is normally sized 1 greater than the longest string assigned
to it. It may contain fewer meaningful characters than its size allows, and the end of
meaningful data is marked by a null byte. There is no null byte at the end of a
Fortran string. You can create a null byte using the Hollerith constant \0 but it is not
usually done.

Because there is no terminal null byte, most of the string library functions familiar to
C programmers (strcpy(), strcat(), strcmp(), and so on) cannot be used with
Fortran string values. The strncpy(), strncmp(), bcopy(), and bcmp() functions
can be used because they depend on a count rather than a delimiter.

Corresponding Array Elements

Fortran and C use different arrangements for the elements of an array in memory.
Fortran uses column-major order (when iterating sequentially through memory, the
leftmost subscript varies fastest), whereas C uses row-major order (the rightmost
subscript varies fastest to generate sequential storage locations). In addition, Fortran
array indices are normally origin-1, while C indices are origin-0.

To use a Fortran array in C, you must:

• Reverse the order of dimension limits when declaring the array.

• Reverse the sequence of subscript variables in a subscript expression.

007–2361–009 33

3: Fortran Program Interfaces

• Adjust the subscripts to origin-0 (usually, decrement by 1).

The correspondence between Fortran and C subscript values is depicted in Figure 3-1,
page 34. You can derive the C subscripts for a given element by decrementing the
Fortran subscripts and using them in reverse order; for example, Fortran (99,9)
corresponds to C [8][98].

C

x , y

x , y

y + 1 , x + 1

y - 1 , x - 1

Fortran

OR

a11998

Figure 3-1 Correspondence Between Fortran and C Array Subscripts

For a coding example, see "Using Fortran Arrays in C Code", page 44.

Note: A Fortran array can be declared with some other lower bound than the default
of 1. If the Fortran subscript is origin 0, no adjustment is needed. If the Fortran lower
bound is greater than 1, the C subscript is adjusted by that amount.

34 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

Passing Subprogram Parameters
The Fortran compiler generates code to pass parameters according to simple, uniform
rules and it generates subprogram code that expects parameters to be passed
according to these rules. When calling non-Fortran functions, you must know how
parameters will be passed; and when calling Fortran subprograms from other
programming languages you must cause the other language to pass parameters
correctly.

Normal Treatment of Parameters

Every parameter passed to a subprogram, regardless of its data type, is passed as the
address of the actual parameter value in memory. This rule is extended for two cases:

• The length of each CHARACTER*n parameter (when n>1) is passed as an
additional, INTEGER value, following the explicit parameters.

• When a function returns type CHARACTER*n parameter (n>1), the address of the
space to receive the result is passed as the first parameter to the function and the
length of the result space is passed as the second parameter, preceding all explicit
parameters.

Example 3-1 Example Subroutine Call

COMPLEX*8 cp8

CHARACTER*16 creal, cimag

CALL CPXASC(creal,cimag,cp8)

Code generated from the CALL in this example prepares these 5 argument values:

1. The address of creal

2. The address of cimag

3. The address of cp8

4. The length of creal, an integer value of 16

5. The length of cimag, an integer value of 16

Example 3-2 Example Function Call

CHARACTER*8 symbl,picksym

CHARACTER*100 sentence

007–2361–009 35

3: Fortran Program Interfaces

INTEGER nsym
symbl = picksym(sentence,nsym)

Code generated from the function call in this example prepares these 5 argument
values:

1. The address of variable symbl, the function result space

2. The length of symbl, an integer value of 8

3. The address of sentence, the first explicit parameter

4. The address of nsym, the second explicit parameter

5. The length of sentence, an integer value of 100

You can force changes in these conventions using %VAL and %LOC; see "Calls to C
Using LOC%, REF% and VAL%", page 44, for details.

Calling Fortran from C
There are two types of callable Fortran subprograms: subroutines and functions
(these units are documented in the MIPSpro Fortran 77 Language Reference Manual). In
C terminology, both types of subprograms are external functions. The difference is the
use of the function return value from each.

Calling Fortran Subroutines from C

From the standpoint of a C module, a Fortran subroutine is an external function
returning int. The integer return value is normally ignored by a C caller; its meaning
is discussed in "Alternate Subroutine Returns", page 38.

The following two examples show a simple Fortran subroutine and a sample of a call
to the subroutine.

Example 3-3 Example Fortran Subroutine with COMPLEX Parameters

SUBROUTINE ADDC32(Z,A,B,N)
COMPLEX*32 Z(1),A(1),B(1)

INTEGER N,I

36 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

DO 10 I = 1,N
Z(I) = A(I) + B(I)

10 CONTINUE

RETURN

END

Example 3-4 C Declaration and Call with COMPLEX Parameters

typedef struct{long double real, imag;} cpx32;

extern int

addc32_(cpx32*pz,cpx32*pa,cpx32*pb,int*pn);
cpx32 z[MAXARRAY], a[MAXARRAY], b[MAXARRAY];

...

int n = MAXARRAY;

(void)addc32_(&z, &a, &b, &n);

The Fortran subroutine in Example 3-3, page 36, is named in Example 3-4 using
lowercase letters and a terminal underscore. It is declared as returning an integer. For
clarity, the actual call is cast to (void) to show that the return value is intentionally
ignored.

The subroutine in the following example takes adjustable-length character parameters.

Example 3-5 Example Fortran Subroutine with String Parameters

SUBROUTINE PRT(BEF,VAL,AFT)
CHARACTER*(*)BEF,AFT

REAL VAL

PRINT *,BEF,VAL,AFT

RETURN

END

Example 3-6 C Program that Passes String Parameters

typedef char fstr_16[16];

extern int

prt_(fstr_16*pbef, float*pval, fstr_16*paft,
int lbef, int laft);

main()

{

float val = 2.1828e0;

fstr_16 bef,aft;
strncpy(bef,’’Before..........’’,sizeof(bef));

007–2361–009 37

3: Fortran Program Interfaces

strncpy(aft,’’...........After’’,sizeof(aft));
(void)prt_(bef,&val,aft,sizeof(bef),sizeof(aft));

}

The C program in Example 3-6 prepares CHARACTER*16 values and passes them to
the subroutine in Example 3-5. Note that the subroutine call requires 5 parameters,
including the lengths of the two string parameters. In Example 3-6 the string length
parameters are generated using sizeof(), derived from the typedef fstr_16.

Example 3-7 C Program that Passes Different String Lengths

extern int

prt_(char*pbef, float*pval, char*paft, int lbef, int laft);

main()
{

float val = 2.1828e0;

char *bef = "Start:";

char *aft = ":End";

(void)prt_(bef,&val,aft,strlen(bef),strlen(aft));
}

When the Fortran code does not require a specific length of string, the C code that
calls it can pass an ordinary C character vector, as shown in Example 3-7. In Example
3-7, page 38, the string length parameter length values are calculated dynamically
using strlen().

Alternate Subroutine Returns

In Fortran, a subroutine can be defined with one or more asterisks (*) in the
position of dummy parameters. When such a subroutine is called, the places of these
parameters in the CALL statement are supposed to be filled with statement numbers
or statement labels. The subroutine returns an integer which selects among the
statement numbers, so that the subroutine call acts as both a call and a computed
GOTO. For more details, see the discussions of the CALL and RETURN statements in the
MIPSpro Fortran 77 Language Reference Manual.

Fortran does not generate code to pass statement numbers or labels to a subroutine.
No actual parameters are passed to correspond to dummy parameters given as
asterisks. When you code a C prototype for such a subroutine, ignore these parameter
positions. A CALL statement such as the following:

CALL NRET (*1,*2,*3)

38 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

is treated exactly as if it were the computed GOTO written as

GOTO (1,2,3), NRET()

The value returned by a Fortran subroutine is the value specified on the RETURN
statement, and will vary between 0 and the number of asterisk dummy parameters in
the subroutine definition.

Calling Fortran Functions from C

A Fortran function returns a scalar value as its explicit result. This corresponds to the
C concept of a function with an explicit return value. When the Fortran function
returns any type shown in Table 3-1, page 32, other than CHARACTER*n (n>1), you
can call the function from C and use its return value exactly as if it were a C function
returning that data type.

Example 3-8 Fortran Function Returning COMPLEX*16

COMPLEX*16 FUNCTION FSUB16(INP)

COMPLEX*16 INP

FSUB16 = INP
END

This function accepts and returns COMPLEX*16 values. Although a COMPLEX value is
declared as a structure in C, it can be used as the return type of a function.

Example 3-9 C Program that Receives COMPLEX Return Value

typedef struct{ double real, imag; } cpx16;

extern cpx16 fsub16_(cpx16 * inp);

main()

{

cpx16 inp = { -3.333, -5.555 };
cpx16 oup = { 0.0, 0.0 };

printf("testing fsub16...");

oup = fsub16_(&inp);

if (inp.real == oup.real && inp.imag == oup.imag)

printf("Ok\n");
else

printf("Nope\n");

}

007–2361–009 39

3: Fortran Program Interfaces

The C program in this example shows how the function in Example 3-8 is declared
and called. Note that the parameters to a function, like the parameters to a subroutine,
are passed as pointers, but the value returned is a value, not a pointer to a value.

Note: In IRIX 5.3 and earlier, you cannot call a Fortran function that returns COMPLEX
(although you can call one that returns any other arithmetic type). The register
conventions used by compilers prior to IRIX 6.0 do not permit returning a structure
value from a Fortran function to a C caller.

Example 3-10 Fortran Function Returning CHARACTER*16

CHARACTER*16 FUNCTION FS16(J,K,S)
CHARACTER*16 S

INTEGER J,K

FS16 = S(J:K)

RETURN

END

The function in this example has a CHARACTER*16 return value. When the Fortran
function returns a CHARACTER*n (n>1) value, the returned value is not the explicit
result of the function. Instead, you must pass the address and length of the result
area as the first two parameters of the function.

Example 3-11 C Program that Receives CHARACTER*16 Return

typedef char fstr_16[16];

extern void

fs16_ (fstr_16 *pz,int lz,int *pj,int *pk,fstr_16*ps,int ls);

main()
{

char work[64];

fstr_16 inp,oup;

int j=7;

int k=11;

strncpy(inp,"0123456789abcdef",sizeof(inp));
fs16_ (oup, sizeof(oup), &j, &k, inp, sizeof(inp));

strncpy(work,oup,sizeof(oup));

work[sizeof(oup)] = ’\0’;

printf("FS16 returns <%s>\n",work);

}

40 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

This C program calls the function in Example 3-10, page 40. The address and length
of the function result are the first two parameters of the function. Because type fstr_16
is an array, its name, oup, evaluates to the address of its first element. The next three
parameters are the addresses of the three named parameters; and the final parameter
is the length of the string parameter.

Calling C from Fortran
In general, you can call units of C code from Fortran as if they were written in
Fortran, provided the C modules follow the Fortran conventions for passing
parameters (see "Passing Subprogram Parameters", page 35). When the C program
expects parameters passed using other conventions, you can either write special forms
of CALL, or you can build a “wrapper” for the C functions using the mkf2c command.

Normal Calls to C Functions

The C function in this section is written to use the Fortran conventions for its name
(lowercase with final underscore) and for parameter passing.

Example 3-12 C Function Written to be Called from Fortran

/*

|| C functions to export the facilities of strtoll()

|| to Fortran 77 programs. Effective Fortran declaration:

||

|| INTEGER*8 FUNCTION ISCAN(S,J)

|| CHARACTER*(*) S
|| INTEGER J

||

|| String S(J:) is scanned for the next signed long value

|| as specified by strtoll(3c) for a "base" argument of 0

|| (meaning that octal and hex literals are accepted).
||

|| The converted long long is the function value, and J is

|| updated to the nonspace character following the last

|| converted character, or to 1+LEN(S).

||
|| Note: if this routine is called when S(J:J) is neither

|| whitespace nor the initial of a valid numeric literal,

|| it returns 0 and does not advance J.

007–2361–009 41

3: Fortran Program Interfaces

*/
#include <ctype.h> /* for isspace() */

long long iscan_(char *ps, int *pj, int ls)

{

int scanPos, scanLen;

long long ret = 0;
char wrk[1024];

char *endpt;

/* when J>LEN(S), do nothing, return 0 */

if (ls >= *pj)

{

/* convert J to origin-0, permit J=0 */
scanPos = (0 < *pj)? *pj-1 : 0 ;

/* calculate effective length of S(J:) */

scanLen = ls - scanPos;

/* copy S(J:) and append a null for strtoll() */

strncpy(wrk,(ps+scanPos),scanLen);

wrk[scanLen] = ‘\0’;

/* scan for the integer */

ret = strtoll(wrk, &endpt, 0);

/*

|| Advance over any whitespace following the number.

|| Trailing spaces are common at the end of Fortran

|| fixed-length char vars.
*/

while(isspace(*endpt)) { ++endpt; }

*pj = (endpt - wrk)+scanPos+1;

}

return ret;
}

The following program demonstrates a call to the function in Example 3-12, page 41.

EXTERNAL ISCAN

INTEGER*8 ISCAN

INTEGER*8 RET

INTEGER J,K

CHARACTER*50 INP

42 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

INP = ’1 -99 3141592 0xfff 033 ’
J = 0

DO 10 WHILE (J .LT. LEN(INP))

K = J

RET = ISCAN(INP,J)

PRINT *, K,’: ’,RET,’ -->’,J
10 CONTINUE

END

Using Fortran COMMON in C Code

A C function can refer to the contents of a COMMON block defined in a Fortran
program. The name of the block as given in the COMMON statement is altered as
described in "Subprogram Names", page 29, (that is, forced to lowercase and extended
with an underscore). The name of the “blank common” is _BLNK_ _ (one leading
underscore and two final underscores).

Follow these steps to refer to the contents of a COMMON block:

• Declare a structure whose fields have the appropriate data types to match the
successive elements of the Fortran common block. (See Table 3-1, page 32, for
corresponding data types.)

• Declare the common block name as an external structure of that type.

An example is shown below.

Example 3-13 Common Block Usage in Fortran and C

INTEGER STKTOP,STKLEN,STACK(100)
COMMON /WITHC/STKTOP,STKLEN,STACK

struct fstack {

int stktop, stklen;

int stack[100];<_newline>}

extern fstack withc_;
int peektop_()

{

if (withc_.stktop) /* stack not empty */

return withc_.stack[withc_.stktop-1];

else...
}

007–2361–009 43

3: Fortran Program Interfaces

Using Fortran Arrays in C Code

As described in "Corresponding Array Elements", page 33, a C program must take
special steps to access arrays created in Fortran.

Example 3-14 Fortran Program Sharing an Array in Common with C

INTEGER IMAT(10,100),R,C
COMMON /WITHC/IMAT

R = 74

C = 6

CALL CSUB(C,R,746)

PRINT *,IMAT(6,74)

END

This Fortran fragment prepares a matrix in a common block, then calls a C subroutine
to modify the array.

Example 3-15 C Subroutine to Modify a Common Array

extern struct { int imat[100][10]; } withc_;
int csub_(int *pc, int *pr, int *pval)

{

withc_.imat[*pr-1][*pc-1] = *pval;

return 0; /* all Fortran subrtns return int */

}

This C function stores its third argument in the common array using the subscripts
passed in the first two arguments. In the C function, the order of the dimensions of
the array are reversed. The subscript values are reversed to match, and decremented
by 1 to match the C assumption of 0-origin indexing.

Calls to C Using LOC%, REF% and VAL%

Using the special intrinsic functions %VAL, %REF, and %LOC you can pass parameters
in ways other than the standard Fortran conventions described under "Passing
Subprogram Parameters", page 35. These intrinsic functions are documented in the
MIPSpro Fortran 77 Language Reference Manual.

44 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

Using %VAL

%VAL is used in parameter lists to cause parameters to be passed by value rather than
by reference. Examine the following function prototype (from the random reference
page).

char *initstate(unsigned int seed, char *state, int n);

This function takes an integer value as its first parameter. Fortran would normally
pass the address of an integer value, but %VAL can be used to make it pass the integer
itself. The following example demonstrates a call to function initstate() and the
other functions of the random() group.

Example 3-16 Fortran Function Calls Using %VAL

C declare the external functions in random(3b)

C random() returns i*4, the others return char*

EXTERNAL RANDOM$, INITSTATE$, SETSTATE$
INTEGER*4 RANDOM$

INTEGER*8 INITSTATE$,SETSTATE$

C We use "states" of 128 bytes, see random(3b)

C Note: An undocumented assumption of random() is that

C a "state" is dword-aligned! Hence, use a common.
CHARACTER*128 STATE1, STATE2

COMMON /RANSTATES/STATE1,STATE2

C working storage for state pointers

INTEGER*8 PSTATE0, PSTATE1, PSTATE2

C initialize two states to the same value

PSTATE0 = INITSTATE$(%VAL(8191),STATE1)
PSTATE1 = INITSTATE$(%VAL(8191),STATE2)

PSTATE2 = SETSTATE$(%VAL(PSTATE1))

C pull 8 numbers from state 1, print

DO 10 I=1,8

PRINT *,RANDOM$()
10 CONTINUE

C set the other state, pull 8 numbers & print

PSTATE1 = SETSTATE$(%VAL(PSTATE2))

DO 20 I=1,8

PRINT *,RANDOM$()
20 CONTINUE

END

007–2361–009 45

3: Fortran Program Interfaces

The use of %VAL(8191) or %VAL(PSTATE1) causes that value to be passed, rather
than an address of that value.

Using %REF

%REF is used in parameter lists to cause parameters to be passed by reference, that is,
to pass the address of a value rather than the value itself.

Parameters passed by reference is the normal behavior of SGI FORTRAN 77
compilers; therefore, no effective difference exists between writing %REF(parm) and
writing parm alone in a parameter list for non-character parameters. Using
%REF(parm) for character parameters causes the character string length not to be
added to the end of the parameter list as in the normal case. Thus, using the
%REF(parm) guarantees that only the address of the parameter is parsed.

When calling a C function that expects the address of a value rather than the value
itself, you can write %REF(parm), as in the following example:

int gmatch (const char *str, const char *pattern);

This function gmatch() could be declared and called from Fortran.

Example 3-17 Fortran Call to gmatch() Using %REF

LOGICAL GMATCH$

CHARACTER*8 FNAME,FPATTERN

FNAME = ’foo.f\0’

FPATTERN = ’*.f\0’
IF (GMATCH$(%REF(FNAME),%REF(FPATTERN)))...

The use of %REF() in this example illustrates the fact that gmatch() expects
addresses of character strings.

Using %LOC

%LOC returns the address of its argument. It can be used in any expression (not only
within parameter lists), and is often used to set POINTER variables.

Making C Wrappers with mkf2c

The mkf2c command provides an alternate interface for C routines called by Fortran.
See the mkf2c(1) reference page for more details.

46 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

The mkf2c command reads a file of C function prototype declarations and generates
an assembly language module. This module contains one callable entry point for each
C function. The entry point, or “wrapper,” accepts parameters in the Fortran calling
convention, and passes the same values to the C function using the C conventions.

The following is a simple case of using a function as input to mkf2c:

simplefunc (int a, double df)

{ /* function body ignored */ }

For this function, the mkf2c command (with no options) generates a wrapper
function named simplefunc_ (with an underscore appended). The wrapper
function expects two parameters, an integer and a REAL*8, passed according to
Fortran conventions; that is, by reference. The code of the wrapper loads the values
of the parameters into registers using C conventions for passing parameters by value,
and calls simplefunc().

Parameter Assumptions by mkf2c

Because mkf2c processes only the C source, not the Fortran source, it treats the
Fortran parameters based on the data types specified in the C function header. These
treatments are summarized in Table 3-2.

Note: Through compiler release 6.0.2, mkf2c does not recognize the C data types
long long and long double (INTEGER*8 and REAL*16). It treats arguments of
this type as long and double respectively.

Table 3-2 How mkf2c treats function arguments

Data Type in C
Prototype

Treatment by Generated Wrapper Code

unsigned char Load CHARACTER*1 from memory to register, no sign
extension

char Load CHARACTER*1 from memory to register; sign
extension only when the -signed option is specified

unsigned short,
unsigned int

Load INTEGER*2 or INTEGER*4 from memory to
register, no sign extension

short Load INTEGER*2 from memory to register with sign
extension

007–2361–009 47

3: Fortran Program Interfaces

int, long Load INTEGER*4 from memory to register with sign
extension

long long (Not supported through 6.0.2)

float Load REAL*4 from memory to register, extending to
double unless -f is specified

double Load REAL*8 from memory to register

long double (Not supported through 6.0.2)

char name[],
name[n]

Pass address of CHARACTER*n and pass length as
integer parameter as Fortran does

char * Copy CHARACTER*n value into allocated space, append
null byte, pass address of copy

Character String Treatment by mkf2c

In Table 3-2 notice the different treatments for an argument declared as a character
array and one declared as a character address (even though these two declarations are
semantically the same in C).

When the C function expects a character address, mkf2c generates the code to
dynamically allocate memory and to copy the Fortran character value, for its specified
length, to the allocated memory. This creates a null-terminated string. In this case, the
following occurs:

• The address passed to C points to the allocated memory

• The length of the value is not passed as an implicit argument

• There is a terminating null byte in the value

• Changes in the string are not reflected back to Fortran

A character array specified in the C function is processed by mkf2c just like a Fortran
CHARACTER*n value. In this case,

• The address prepared by Fortran is passed to the C function

• The length of the value is passed as an implicit argument (see "Normal Treatment
of Parameters", page 35)

• The character array contains no terminating null byte (unless the Fortran
programmer supplies one)

48 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

• Changes in the array by the C function are visible to Fortran

Because the C function cannot declare the extra string-length parameter (if it declared
the parameter, mkf2c would process it as an explicit argument) the C programmer
has a choice of ways to access the string length. When the Fortran program always
passes character values of the same size, the length parameter can be ignored. If its
value is needed, the varargs macro can be used to retrieve it.

For example, if the C function prototype is specified as follows, mkf2c passes a total
of six parameters to C:

void func1 (char carr1[],int i, char *str, char carr2[]);

The fifth parameter is the length of the Fortran value corresponding to carr1. The
sixth is the length of carr2. The C function can use the varargs macros to retrieve
these hidden parameters. mkf2c ignores the varargs macro va_alist appearing at the
end of the parameter name list.

When func1 is changed to use varargs, the C source file is as follows:

Example 3-18 C Function Using varargs

#include "varargs.h"

void

func1 (char carr1[],int i,char *str,char carr2[],va_alist);

{}

The C routine would retrieve the lengths of carr1 and carr2, placing them in the local
variables carr1_len and carr2_len using code like this fragment:

Example 3-19 C Code to Retrieve Hidden Parameters

va_list ap;

int carr1_len, carr2_len;

va_start(ap);
carr1_len = va_arg (ap, int)

carr2_len = va_arg (ap, int)

Restrictions of mkf2c

When it does not recognize the data type specified in the C function, mkf2c issues a
warning message and generates code to pass the pointer passed by Fortran. It does
this in the following cases:

007–2361–009 49

3: Fortran Program Interfaces

• Any nonstandard data type name, for example a data type that might be declared
using typedef or a data type defined as a macro

• Any structure argument

• Any argument with multiple indirection (two or more asterisks, for example char**)

Because mkf2c does not support structure-valued arguments, it does not support
passing COMPLEX*n values.

Using mkf2c and extcentry

mkf2c processes only a limited subset of the C grammar. This subset includes
common C syntax for function entry point, C-style comments, and function
constructs. However, it does not include constructs such as typedefs, external
function declarations, or C preprocessor directives.

To ensure that only the constructs understood by mkf2c are included in wrapper
input, place special comments around each function for which Fortran-to-C wrappers
are to be generated (see the example below).

The special comments /* CENTRY */ and /* ENDCENTRY */ surround the section
that is to be made Fortran-callable. After these special comments are placed around
the code, use the excentry command before mkf2c to generate the input file for
mkf2c.

Example 3-20 Source File for Use with extcentry

typedef unsigned short grunt [4];

struct {
long 1,11;

char *str;

} bar;

main ()

{
int kappa =7;

foo (kappa,bar.str);

}

/* CENTRY */

foo (integer, cstring)
int integer;

char *cstring;

50 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

{
if (integer==1) printf("%s",cstring);

} /* ENDCENTRY */

Example 3-20 illustrates the use of extcentry. It shows the C file foo.c containing
the function foo, which is to be made Fortran-callable.

To generate the assembly language wrapper foowrp.s from the above file foo.c,
use the following set of commands:

% extcentry foo.c foowrp.fc

% mkf2c foowrp.fc foowrp.s

The programs mkf2c and extcentry are stored in the directory /usr/bin.

Makefile Considerations

The make command uses default rules to help automate the control of wrapper
generation. The following example of a makefile illustrates the use of these rules. In
the example, an executable object file is created from the files main.f (a Fortran main
program) and callc.c:

test: main.o callc.o

f77 -o test main.o callc.o

callc.o: callc.fc

clean:

rm -f *.o test *.fc

In this program, main calls a C routine in callc.c. The extension .fc has been
adopted for Fortran-to-call-C wrapper source files. The wrappers created from
callc.fc will be assembled and combined with the binary created from callc.c.
Also, the dependency of callc.o on callc.fc will cause callc.fc to be recreated
from callc.c whenever the C source file changes. The programmer is responsible
for placing the special comments for extcentry in the C source as required.

Note: Options to mkf2c can be specified when make is invoked by setting the make
variable FC2FLAGS. Also, do not create a .fc file for the modules that need
wrappers created. These files are both created and removed by make in response to
the file.o:file.fc dependency.

The makefile above controls the generation of wrappers and Fortran objects. You
can add modules to the executable object file in one of the following ways:

007–2361–009 51

3: Fortran Program Interfaces

• If the file is a native C file whose routines are not to be called from Fortran using
a wrapper interface, or if it is a native Fortran file, add the .o specification of the
final make target and dependencies.

• If the file is a C file containing routines to be called from Fortran using a wrapper
interface, the comments for extcentry must be placed in the C source, and the
.o file placed in the target list. In addition, the dependency of the .o file on the
.fc file must be placed in the makefile. This dependency is illustrated in the
example makefile above where callf.o depends on callf.fc.

52 007–2361–009

Chapter 4

System Functions and Subroutines

This chapter describes extensions to FORTRAN 77 that are related to the IRIX
compiler and operating system.

• "Library Functions", page 53, summarizes the Fortran run-time library functions.

• "Extended Intrinsic Subroutines", page 60, describes the extensions to the Fortran
intrinsic subroutines.

• "Extended Intrinsic Functions", page 63, describes the extensions to the Fortran
functions.

Library Functions
The Fortran library functions provide an interface from Fortran programs to the IRIX
system functions. System functions are facilities that are provided by the IRIX system
kernel directly, as opposed to functions that are supplied by library code linked with
your program.

Table 4-1 summarizes the functions in the Fortran run-time library. In general, the
name of the interface routine is the same as the name of the system function that
would be called from a C program. For details on a system interface routine use the
following command:

man 2 name_of_function

Note: You must declare the time function as EXTERNAL; if you do not, the compiler
will assume you mean the VMS-compatible intrinsic time function rather than the
IRIX system function. It is a usually a good idea to declare any library function in an
EXTERNAL statement as documentation.

007–2361–009 53

4: System Functions and Subroutines

Table 4-1 Summary of System Interface Library Routines

Function Purpose

abort(3f) abnormal termination

access(2) determine accessibility of a file

acct(2) enable/disable process accounting

alarm(3f) execute a subroutine after a specified time

barrier perform barrier operations

blockproc(2) block processes

brk(2) change data segment space allocation

close close a file descriptor

creat create or rewrite a file

ctime(3f) return system time

dtime(3f) return elapsed execution time

dup duplicate an open file descriptor

etime(3f) return elapsed execution time

exit(2) terminate process with status

fcntl(2) file control

fdate(3f) return date and time in an ASCII string

fgetc(3f) get a character from a logical unit

flush(3f) flush output to a logical unit

fork(2) create a copy of this process

fputc(3f) write a character to a Fortran logical unit

free_barrier free barrier

fseek(3f) reposition a file on a logical unit

fseek64(3f) reposition a file on a logical unit for 64-bit architecture

fstat(2) get file status

ftell(3f) reposition a file on a logical unit

54 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

Function Purpose

ftell64(3f) reposition a file on a logical unit for 64-bit architecture

gerror(3f) get system error messages

getarg(3f) return command line arguments

getc(3f) get a character from a logical unit

getcwd get pathname of current working directory

getdents(2) read directory entries

getegid(2) get effective group ID

gethostid(2) get unique identifier of current host

getenv(3f) get value of environment variables

geteuid(2) get effective user ID

getgid(2) get user or group ID of the caller

gethostname(2) get current host ID

getlog(3f) get user’s login name

getpgrp get process group ID

getpid get process ID

getppid get parent process ID

getsockopt(2) get options on sockets

getuid(2) get user or group ID of caller

gmtime(3f) return system time

iargc(3f) return command line arguments

idate(3f) return date or time in numerical form

ierrno(3f) get system error messages

ioctl(2) control device

isatty(3f) determine if unit is associated with tty

itime(3f) return date or time in numerical form

kill(2) send a signal to a process

link(2) make a link to an existing file

007–2361–009 55

4: System Functions and Subroutines

Function Purpose

loc(3f) return the address of an object

lseek(2) move read/write file pointer

lseek64(2) move read/write file pointer for 64-bit architecture

lstat(2) get file status

ltime(3f) return system time

m_fork create parallel processes

m_get_myid get task ID

m_get_numprocs get number of subtasks

m_kill_procs kill process

m_lock set global lock

m_next return value of counter

m_park_procs suspend child processes

m_rele_procs resume child processes

m_set_procs set number of subtasks

m_sync synchronize all threads

m_unlock unset a global lock

mkdir(2) make a directory

mknod(2) make a directory/file

mount(2) mount a filesystem

new_barrier initialize a barrier structure

nice lower priority of a process

open(2) open a file

oserror(3f) get/set system error

pause(2) suspend process until signal

perror(3f) get system error messages

pipe(2) create an interprocess channel

plock(2) lock process, test, or data in memory

56 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

Function Purpose

prctl(2) control processes

profil(2) execution-time profile

ptrace process trace

putc(3f) write a character to a Fortran logical unit

putenv(3f) set environment variable

qsort(3f) quick sort

read read from a file descriptor

readlink read value of symbolic link

rename(3f) change the name of a file

rmdir(2) remove a directory

sbrk(2) change data segment space allocation

schedctl(2) call to scheduler control

send(2) send a message to a socket

setblockproccnt(2) set semaphore count

setgid set group ID

sethostid(2) set current host ID

setoserror(3f) set system error

setpgrp(2) set process group ID

setsockopt(2) set options on sockets

setuid set user ID

sginap(2) put process to sleep

sginap64(2) put process to sleep in 64-bit environment

shmat(2) attach shared memory

shmdt(2) detach shared memory

sighold(2) raise priority and hold signal

sigignore(2) ignore signal

signal(2) change the action for a signal

007–2361–009 57

4: System Functions and Subroutines

Function Purpose

sigpause(2) suspend until receive signal

sigrelse(2) release signal and lower priority

sigset(2) specify system signal handling

sleep(3f) suspend execution for an interval

socket(2) create an endpoint for communication TCP

sproc(2) create a new share group process

stat(2) get file status

stime(2) set time

symlink(2) make symbolic link

sync update superblock

sysmp(2) control multiprocessing

sysmp64(2) control multiprocessing in 64-bit environment

system(3f) issue a shell command

taskblock block tasks

taskcreate create a new task

taskctl control task

taskdestroy kill task

tasksetblockcnt set task semaphore count

taskunblock unblock task

time(3f) return system time (must be declared EXTERNAL)

ttynam(3f) find name of terminal port

uadmin administrative control

ulimit(2) get and set user limits

ulimit64(2) get and set user limits in 64-bit architecture

umask get and set file creation mask

umount(2) dismount a file system

unblockproc(2) unblock processes

58 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

Function Purpose

unlink(2) remove a directory entry

uscalloc shared memory allocator

uscalloc64 shared memory allocator in 64-bit environment

uscas compare and swap operator

usclosepollsema detach file descriptor from a pollable semaphore

usconfig semaphore and lock configuration operations

uscpsema acquire a semaphore

uscsetlock unconditionally set lock

usctlsema semaphore control operations

usdumplock dump lock information

usdumpsema dump semaphore information

usfree user shared memory allocation

usfreelock free a lock

usfreepollsema free a pollable semaphore

usfreesema free a semaphore

usgetinfo exchange information through an arena

usinit semaphore and lock initialize routine

usinitlock initialize a lock

usinitsema initialize a semaphore

usmalloc allocate shared memory

usmalloc64 allocate shared memory in 64-bit environment

usmallopt control allocation algorithm

usnewlock allocate and initialize a lock

usnewpollsema allocate and initialize a pollable semaphore

usnewsema allocate and initialize a semaphore

usopenpollsema attach a file descriptor to a pollable semaphore

uspsema acquire a semaphore

007–2361–009 59

4: System Functions and Subroutines

Function Purpose

usputinfo exchange information through an arena

usrealloc user share memory allocation

usrealloc64 user share memory allocation in 64-bit environment

ussetlock set lock

ustestlock test lock

ustestsema return value of semaphore

usunsetlock unset lock

usvsema free a resource to a semaphore

uswsetlock set lock

wait(2) wait for a process to terminate

write write to a file

You can use the datapool statement to cause Fortran interprocess data sharing.
However, this is a nonstandard statement. The datapool statement is a way that
different processes can use to access the same pool of common symbols. Any
processes can access the shared datapool by linking with the datapool DSO. For more
information see the datapool(5) reference page.

Extended Intrinsic Subroutines
This section describes the intrinsic subroutines that are extensions to FORTRAN 77.
The intrinsic functions that are standard to FORTRAN 77 are documented in
Appendix A of the MIPSpro Fortran 77 Language Reference Manual. The rules for using
the names of intrinsic subroutines are also discussed in that appendix.

DATE

The DATE routine returns the current date as set by the system; the format is as
follows:

CALL DATE (buf)

60 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

The buf argument is a variable, array, array element, or character substring nine bytes
long. After the call, buf contains an ASCII variable in the format dd-mmm-yy, where dd
is the date in digits, mmm is the month in alphabetic characters, and yy is the year in
digits.

IDATE

The IDATE routine returns the current date as three integer values representing the
month, date, and year; the format is as follows:

CALL IDATE (m, d,y)

The m, d, and y arguments are either INTEGER*4 or INTEGER*2 values representing
the current month, day and year. For example, the values of m, d, and y on August
10, 1989, are the following:

m = 8

d = 10

y = 89

ERRSNS

The ERRSNS routine returns information about the most recent program error; the
format is as follows:

CALL ERRSNS (arg1, arg2, arg3, arg4, arg5)

The arguments (arg1, arg2, and so on) can be either INTEGER*4 or INTEGER*2
variables. On return from ERRSNS, the arguments contain the information shown in
the following table.

Argument Contents

arg1 IRIX global variable errno, which is then reset to zero after the call

arg2 Zero

arg3 Zero

007–2361–009 61

4: System Functions and Subroutines

arg4 Logical unit number of the file that was being processed when the error
occurred

arg5 Zero

Although only arg1 and arg4 return relevant information, arg2, arg3, and arg5 are
always required.

EXIT

The EXIT routine causes normal program termination and optionally returns an
exit-status code; the format is as follows:

CALL EXIT (status)

The status argument is an INTEGER*4 or INTEGER*2 argument containing a status
code.

TIME

The TIME routine returns the current time in hours, minutes, and seconds; the format
is as follows:

CALL TIME (clock)

The clock argument is a variable, array, array element, or character substring; it must
be eight bytes long. After execution, clock contains the time in the format hh:mm:ss,
where hh, mm, and ss are numerical values representing the hour, the minute, and the
second.

MVBITS

The MVBITS routine transfers a bit field from one storage location to another; the
format is as follows:

CALL MVBITS (source,sbit,length,destination,dbit)

62 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

Arguments can be declared as INTEGER*2, INTEGER*4, or INTEGER*8. The
following list describes each argument:

Argument Description

source Integer variable or array element. Source location of bit field to be
transferred.

sbit Integer expression. First bit position in the field to be transferred from
source.

length Integer expression. Length of the field to be transferred from source.

destination Integer variable or array element. Destination location of the bit field.

dbit Integer expression. First bit in destination to which the field is
transferred.

Extended Intrinsic Functions
The following sections provide an overview of the intrinsic functions added as
extensions to FORTRAN 77.

SECNDS

SECNDS is an intrinsic routine that returns the number of seconds since midnight,
minus the value of the passed argument; the format is as follows:

s = SECNDS(n)

After execution, s contains the number of seconds past midnight less the value
specified by n. Both s and n are single-precision, floating point values.

RAN

RAN generates a pseudo-random number. The format is as follows:

v = RAN(s)

007–2361–009 63

4: System Functions and Subroutines

The argument s is an INTEGER*4 variable or array element. This variable serves as a
seed in determining the next random number. It should initially be set to a large, odd
integer value. You can compute multiple random number series by supplying
different variables or array elements as the seed argument to different calls of RAN.

!
Caution: Because RAN modifies the s argument, calling the function with a constant
value can cause a core dump.

The algorithm used in RAN is the linear congruential method. The code is similar to
the following fragment:

S = S * 1103515245L + 12345

RAN = FLOAT(IAND(RSHIFT(S,16),32767))/32768.0

RAN is supplied for compatibility with VMS. For demanding applications, use the
functions described on the random reference page. These can all be called using
techniques described under "Using %VAL", page 45.

64 007–2361–009

Chapter 5

OpenMP Fortran API Multiprocessing Directives

This chapter provides an overview of the supported multiprocessing directives. These
directives are based on the OpenMP Fortran application program interface (API)
standard. Programs that use these directives are portable and can be compiled by
other compilers that support the OpenMP standard.

The complete OpenMP standard is available at http://www.openmp.org/specs.
See that documentation for complete examples, rules of usage, and restrictions. This
chapter provides only an overview of the supported directives and does not give
complete details about usage or restrictions.

To enable recognition of the OpenMP directives, specify -mp on the f77(1) command
line. The -mp option must be specified in order for the compiler to honor any
-MP:... options that may also be specified on the command line. The
-MP:open_mp=ON option is on by default and must be in effect during compilation.

The following example command line can compile program ompprg.f, which
contains OpenMP Fortran API directives:

f77 -mp ompprg.f

In addition to directives, the OpenMP Fortran API describes several library routines
and environment variables. See the standard for complete details.

Using Directives
All multiprocessing directives are case-insensitive and are of the following form:

prefix directive [clause[[,] clause]...]

Directives cannot be embedded within continued statements, and statements cannot
be embedded within directives. Comments cannot appear on the same line as a
directive.

Comments are allowed inside directives. Comments can appear on the same line as a
directive. The comment extends to the end of the source line and is ignored. If the

007–2361–009 65

5: OpenMP Fortran API Multiprocessing Directives

first nonblank character after the initial prefix (or after a continuation directive line in
fixed source form) is an exclamation point, the line is ignored.

Conditional Compilation
Fortran statements can be compiled conditionally as long as they are preceded by one
of the following conditional compilation prefixes: C$, or *$. The prefix must be
followed by a Fortran statement on the same line. During compilation, the prefix is
replaced by two spaces, and the rest of the line is treated as a normal Fortran
statement.

The prefixes must start in column one and appear as a single word with no
intervening white space. Fortran fixed form line length, case sensitivity, white space,
continuation, and column rules apply to the line. Initial lines must have a space or
zero in column six, and continuation lines must have a character other than a space or
zero in column six.

Your program must be compiled with the -mp option in order for the compiler to
honor statements preceded by conditional compilation prefixes; without the mp
command line option, statements preceded by conditional compilation prefixes are
treated as comments.

You must define the _OPENMP symbol to be used for conditional compilation. This
symbol is defined during OpenMP compilation to have the decimal value YYYYMM
where YYYY and MM are the year and month designators of the version of the
OpenMP Fortran API is supported.

Parallel Region Constructs
The PARALLEL and END PARALLEL directives define a parallel region. A parallel
region is a block of code that is to be executed by multiple threads in parallel. This is
the fundamental OpenMP parallel construct that starts parallel execution.

The END PARALLEL directive denotes the end of the parallel region. There is an
implied barrier at this point. Only the master thread of the team continues execution
past the end of a parallel region.

66 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

Work-sharing Constructs
A work-sharing construct divides the execution of the enclosed code region among
the members of the team that encounter it. A work-sharing construct must be
enclosed within a parallel region in order for the directive to execute in parallel.
When a work-sharing construct is not enclosed dynamically within a parallel region,
it is treated as though the thread that encounters it were a team of size one. The
work-sharing directives do not launch new threads, and there is no implied barrier on
entry to a work-sharing construct.

The following restrictions apply to the work-sharing directives:

• Work-sharing constructs and BARRIER directives must be encountered by all
threads in a team or by none at all.

• Work-sharing constructs and BARRIER directives must be encountered in the same
order by all threads in a team.

If NOWAIT is specified on the END DO, END SECTIONS, END SINGLE, or END
WORKSHARE directive, an implementation may omit any code to synchronize the
threads at the end of the worksharing construct. In this case, threads that finish early
may proceed straight to the instructions following the work-sharing construct without
waiting for the other members of the team to finish the work-sharing construct.

The following list summarizes the work-sharing constructs:

• The DO directive specifies that the iterations of the immediately following DO loop
must be divided among the threads in the parallel region. If there is no enclosing
parallel region, the DO loop is executed serially.

The loop that follows a DO directive cannot be a DO WHILE or a DO loop without
loop control. If an END DO directive is not specified, it is assumed at the end of
the DO loop.

• The SECTIONS directive specifies that the enclosed sections of code are to be
divided among threads in the team. It is a noniterative work-sharing construct.
Each section is executed once by a thread in the team.

Each section must be preceded by a SECTION directive, though the SECTION
directive is optional for the first section. The SECTION directives must appear
within the lexical extent of the SECTIONS/END SECTIONS directive pair. The last
section ends at the END SECTIONS directive. Threads that complete execution of
their sections wait at a barrier at the END SECTIONS directive unless a NOWAIT is
specified.

007–2361–009 67

5: OpenMP Fortran API Multiprocessing Directives

• The SINGLE directive specifies that the enclosed code is to be executed by only
one thread in the team. Threads in the team that are not executing the SINGLE
directive wait at the END SINGLE directive unless NOWAIT is specified.

• The WORKSHARE directive divides the work of executing the enclosed code into
separate units of work, and causes the threads of the team to share the work of
executing the enclosed code such that each unit is executed only once. The units
of work may be assigned to threads in any manner as long as each unit is
executed exactly once.

Combined Parallel Work-sharing Constructs
The combined parallel work-sharing constructs are shortcuts for specifying a parallel
region that contains only one work-sharing construct. The semantics of these
directives are identical to that of explicitly specifying a PARALLEL directive followed
by a single work-sharing construct.

The following list describes the combined parallel work-sharing directives:

• The PARALLEL DO directive provides a shortcut form for specifying a parallel
region that contains a single DO directive.

If the END PARALLEL DO directive is not specified, the PARALLEL DO is assumed
to end with the DO loop that immediately follows the PARALLEL DO directive. If
used, the END PARALLEL DO directive must appear immediately after the end of
the DO loop.

The semantics are identical to explicitly specifying a PARALLEL directive
immediately followed by a DO directive.

• The PARALLEL SECTIONS/END PARALLEL directives provide a shortcut form for
specifying a parallel region that contains a single SECTIONS directive. The
semantics are identical to explicitly specifying a PARALLEL directive immediately
followed by a SECTIONS directive.

• The PARALLEL WORKSHARE directive provides a shortcut form for specifying a
parallel region that contains a single WORKSHARE directive. The semantics are
identical to explicitly specifying a PARALLEL directive immediately followed by a
WORKSHARE directive.

68 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

Synchronization Constructs
The following list describe the synchronization constructs:

• The code enclosed within MASTER and END MASTER directives is executed by the
master thread.

• The CRITICAL and END CRITICAL directives restrict access to the enclosed code
to one thread at a time.

A thread waits at the beginning of a critical section until no other thread is
executing a critical section with the same name. All unnamed CRITICAL directives
map to the same name. Critical section names are global entities of the program. If
a name conflicts with any other entity, the behavior of the program is unspecified.

• The BARRIER directive synchronizes all the threads in a team. When it encounters
a barrier, a thread waits until all other threads in that team have reached the same
point.

• The ATOMIC directive ensures that a specific memory location is updated
atomically, rather than exposing it to the possibility of multiple, simultaneous
writing threads.

• The FLUSH directive identifies synchronization points at which thread-visible
variables are written back to memory. This directive must appear at the precise
point in the code at which the synchronization is required.

Thread-visible variables include the following data items:

– Globally visible variables (common blocks and modules)

– Local variables that do not have the SAVE attribute but have had their address
taken and saved or have had their address passed to another subprogram

– Local variables that do not have the SAVE attribute that are declared shared in
a parallel region within the subprogram

– Dummy arguments

– All pointer dereferences

• The code enclosed within ORDERED and END ORDERED directives is executed in
the order in which it would be executed in a sequential execution of an enclosing
parallel loop.

007–2361–009 69

5: OpenMP Fortran API Multiprocessing Directives

An ORDERED directive can appear only in the dynamic extent of a DO or
PARALLEL DO directive. This DO directive must have the ORDERED clause
specified. For information on directive binding, see "Directive Binding", page 71.

Only one thread is allowed in an ordered section at a time. Threads are allowed to
enter in the order of the loop iterations. No thread can enter an ordered section
until it is guaranteed that all previous iterations have completed or will never
execute an ordered section. This sequentializes and orders code within ordered
sections while allowing code outside the section to run in parallel. ORDERED
sections that bind to different DO directives are independent of each other.

Data Environment Constructs
The THREADPRIVATE directive makes named common blocks and named variables
private to a thread but global within the thread.

In addition to the THREADPRIVATE directive, several directives accept clauses that
allow a user to control the scope attributes of variables for the duration of the
construct. Not all of the clauses are allowed on all directives; usually, if no data scope
clauses are specified for a directive, the default scope for variables affected by the
directive is SHARED.

The following list describes the data scope attribute clauses:

• The PRIVATE clause declares variables to be private to each thread in a team.

• The SHARED clause makes variables shared among all the threads in a team. All
threads within a team access the same storage area for SHARED data.

• The DEFAULT clause allows the user to specify a PRIVATE, SHARED, or NONE
default scope attribute for all variables in the lexical extent of any parallel region.
Variables in THREADPRIVATE common blocks are not affected by this clause.

• The FIRSTPRIVATE clause provides a superset of the functionality provided by
the PRIVATE clause.

• The LASTPRIVATE clause provides a superset of the functionality provided by the
PRIVATE clause.

When the LASTPRIVATE clause appears on a DO directive, the thread that executes
the sequentially last iteration updates the version of the object it had before the
construct. When the LASTPRIVATE clause appears in a SECTIONS directive, the
thread that executes the lexically last SECTION updates the version of the object it

70 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

had before the construct. Subobjects that are not assigned a value by the last
iteration of the DO or the lexically last SECTION of the SECTIONS directive are
undefined after the construct.

• The REDUCTION clause performs a reduction on the variables specified, with the
operator or the intrinsic specified.

At the end of the REDUCTION, the shared variable is updated to reflect the result
of combining the original value of the (shared) reduction variable with the final
value of each of the private copies using the operator specified. The reduction
operators are all associative (except for subtraction), and the compiler can freely
reassociate the computation of the final value (the partial results of a subtraction
reduction are added to form the final value).

The value of the shared variable becomes undefined when the first thread reaches
the containing clause, and it remains so until the reduction computation is
complete. Normally, the computation is complete at the end of the REDUCTION
construct; however, if the REDUCTION clause is used on a construct to which
NOWAIT is also applied, the shared variable remains undefined until a barrier
synchronization has been performed to ensure that all the threads have completed
the REDUCTION clause.

• The COPYIN clause applies only to common blocks that are declared
THREADPRIVATE. A COPYIN clause on a parallel region specifies that the data in
the master thread of the team be copied to the thread private copies of the
common block at the beginning of the parallel region.

• The COPYPRIVATE clause uses a private variable to broadcast a value, or a pointer
to a shared object, from one member of a team to the other members.

There are several rules and restrictions that apply with respect to data scope. See the
OpenMP specification at http://www.openmp.org/specs for complete details.

Directive Binding
Some directives are bound to other directives. A binding specifies the way in which
one directive is related to another. For instance, a directive is bound to a second
directive if it can appear in the dynamic extent of that second directive. The following
rules apply with respect to the dynamic binding of directives:

• A parallel region is available for binding purposes, whether it is serialized or
executed in parallel.

007–2361–009 71

5: OpenMP Fortran API Multiprocessing Directives

• The DO, SECTIONS, SINGLE, MASTER, BARRIER, and WORKSHARE directives bind
to the dynamically enclosing PARALLEL directive, if one exists. The dynamically
enclosing PARALLEL directive is the closest enclosing PARALLEL directive
regardless of the value of the expression in the IF clause, should the clause be
present.

• The ORDERED directive binds to the dynamically enclosing DO directive.

• The ATOMIC directive enforces exclusive access with respect to ATOMIC directives
in all threads, not just the current team.

• The CRITICAL directive enforces exclusive access with respect to CRITICAL
directives in all threads, not just the current team.

• A directive can never bind to any directive outside the closest enclosing PARALLEL.

Directive Nesting
The following rules apply to the dynamic nesting of directives:

• A PARALLEL directive dynamically inside another PARALLEL directive logically
establishes a new team, which is composed of only the current thread unless
nested parallelism is enabled.

• DO, SECTIONS, SINGLE, and WORKSHARE directives that bind to the same
PARALLEL directive cannot be nested one inside the other.

• DO, SECTIONS, SINGLE, and WORKSHARE directives are not permitted in the
dynamic extent of CRITICAL and MASTER directives.

• BARRIER directives are not permitted in the dynamic extent of DO, SECTIONS,
SINGLE, WORKSHARE, MASTER, CRITICAL, and ORDERED directives.

• MASTER directives are not permitted in the dynamic extent of DO, SECTIONS,
SINGLE, WORKSHARE, MASTER, CRITICAL, and ORDERED directives.

• ORDERED directives must appear in the dynamic extent of a DO or PARALLEL DO
directive which has an ORDERED clause.

• ORDERED directives are not allowed in the dynamic extent of SECTIONS, SINGLE,
WORKSHARE, CRITICAL, and MASTER directives.

• CRITICAL directives with the same name are not allowed to be nested one inside
the other.

72 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

• Any directive set that is legal when executed dynamically inside a PARALLEL
region is also legal when executed outside a parallel region. When executed
dynamically outside a user-specified parallel region, the directive is executed with
respect to a team composed of only the master thread.

007–2361–009 73

Chapter 6

Compiling and Debugging Parallel Fortran

This chapter gives instructions on how to compile and debug a parallel Fortran
program. It contains the following sections:

• "Compiling and Running Parallel Fortran ", page 75, explains how to compile and
run a parallel Fortran program.

• "Profiling a Parallel Fortran Program", page 77, describes how to use the system
profiler, prof, to examine execution profiles.

• "Debugging Parallel Fortran", page 77, presents some standard techniques for
debugging a parallel Fortran program.

Compiling and Running Parallel Fortran
After you have written a program for parallel processing, you should debug your
program in a single-processor environment by using the Fortran compiler with the
f77 command. After your program has executed successfully on a single processor,
you can compile it for multiprocessing.

To enable multiprocessing, add -mp to the f77 command line. This option causes the
Fortran compiler to generate multiprocessing code for the files being compiled. When
linking, you can specify both object files produced with the -mp option and object
files produced without it. If any or all of the files are compiled with -mp, the
executable must be linked with -mp so that the correct libraries are used.

Using the -static Option

Multiprocessing implementation demands some use of the stack to allow multiple
threads of execution to execute the same code simultaneously. Therefore, the parallel
DO loops themselves are compiled with the -automatic option, even if the routine
enclosing them is compiled with -static.

This means that SHARE variables in a parallel loop behave correctly according to the
-static semantics but that LOCAL variables in a parallel loop do not (see "Debugging
Parallel Fortran", page 77, for a description of SHARE and LOCAL variables).

007–2361–009 75

6: Compiling and Debugging Parallel Fortran

Finally, if the parallel loop calls an external routine, that external routine cannot be
compiled with -static. You can mix static and multiprocessed object files in the
same executable; the restriction is that a static routine cannot be called from within a
parallel loop.

Examples of Compiling

This section steps you through a few examples of compiling code using -mp.

The following command line compiles and links the Fortran program foo.f into a
multiprocessor executable:

% f77 -mp foo.f

In the following example, the Fortran routines in the file snark.f are compiled with
multiprocess code generation enabled:

% f77 -c -mp -O2 snark.f

The optimizer is also used. A standard snark.o binary file is produced, which must
be linked:

% f77 -mp -o boojum snark.o bellman.o

Here, the -mp option signals the linker to use the Fortran multiprocessing library. The
bellman.o file did not have to be compiled with the -mp option, although it could
be.

After linking, the resulting executable can be run like any standard executable.
Creating multiple execution threads, running and synchronizing them, and task
termination are all handled automatically.

When an executable has been linked with -mp, the Fortran initialization routines
determine how many parallel threads of execution to create. This determination
occurs each time the task starts; the number of threads is not compiled into the code.
The default is to use whichever is less: 4 or the number of processors that are on the
machine (the value returned by the system call sysmp(MP_NAPROCS); see the
sysmp(2) reference page). You can override the default by setting the
MP_SET_NUMTHREADS shell environment variable. If it is set, Fortran tasks use the
specified number of execution threads regardless of the number of processors
physically present on the machine. MP_SET_NUMTHREADS can be a value from 1 to 64.

76 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

Profiling a Parallel Fortran Program
After converting a program, you need to examine execution profiles to judge the
effectiveness of the transformation. Good execution profiles of the program are crucial
to help you focus on the loops that consume the most time.

IRIX provides profiling tools that can be used on Fortran parallel programs. Both
pixie(1) and pc-sample profiling can be used (pc-sampling can help show the
system overhead). On jobs that use multiple threads, both these methods will create
multiple profile data files, one for each thread. You can use the standard profile
analyzer prof(1) to examine this output. Also, timex(1) indicates if the parallelized
versions performed better overall than the serial version.

The profile of a Fortran parallel job is different from a standard profile. To produce a
parallel program, the compiler pulls the parallel DO loops out into separate
subroutines, one routine for each loop. Each of these loops is shown as a separate
procedure in the profile. Comparing the amount of time spent in each loop by the
various threads shows how well the workload is balanced.

In addition to the loops, the profile shows the special routines that actually do the
multiprocessing. The __mp_parallel_do routine is the synchronizer and controller.
Slave threads wait for work in the routine __mp_slave_wait_for_work. The less
time they wait, the more time they work. This gives a rough estimate of a program’s
parallelization.

Debugging Parallel Fortran
This section presents some standard techniques to assist in debugging a parallel
program.

General Debugging Hints

The following list describes some standard debugging tips:

• Debugging a multiprocessed program is much more difficult than debugging a
single-processor program. Therefore you should do as much debugging as
possible on the single-processor version.

• Try to isolate the problem as much as possible. Ideally, try to reduce the problem
to a single C$DOACROSS loop.

007–2361–009 77

6: Compiling and Debugging Parallel Fortran

• Before debugging a multiprocessed program, change the order of the iterations on
the parallel DO loop on a single-processor version. If the loop can be
multiprocessed, then the iterations can execute in any order and produce the same
answer. If the loop cannot be multiprocessed, changing the order frequently
causes the single-processor version to fail, and standard single-process debugging
techniques can be used to find the problem.

• When debugging a program using dbx, use the ignore TERM command. When
debugging a program using cvd, select Views/Signal Panel, then select
disable SIGTERM. Debugging is possible without these commands, but the
program may not terminate gracefully after execution is complete.

Example 6-1 Erroneous C$DOACROSS

In this example, the two references to a have the indexes in reverse order, causing a
bug. If the indexes were in the same order (if both were a(i,j) or both were
a(j,i)), the loop could be multiprocessed. As written, there is a data dependency,
so the C$DOACROSS is a mistake.

c$doacross local(i,j)

do i = 1, n
do j = 1, n

a(i,j) = a(j,i) + x*b(i)

end do

end do

Because a (correct) multiprocessed loop can execute its iterations in any order, you
could rewrite this as:

c$doacross local(i,j)

do i = n, 1, −1
do j = 1, n

a(i,j) = a(j,i) + x*b(i)

end do

end do

This loop no longer gives the same answer as the original even when compiled
without the -mp option. This reduces the problem to a normal debugging problem.
When a multiprocessed loop is giving the wrong answer, perform the following
checks:

• Check the LOCAL variables when the code runs correctly as a single process but
fails when multiprocessed. Carefully check any scalar variables that appear in the
left-hand side of an assignment statement in the loop to be sure they are all

78 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

declared LOCAL. Be sure to include the index of any loop nested inside the parallel
loop.

A related problem occurs when you need the final value of a variable but the
variable is declared LOCAL rather than LASTLOCAL. If the use of the final value
happens several hundred lines farther down in the code, or if the variable is in a
COMMON block and the final value is used in a completely separate routine, a
variable can look as if it is LOCAL when in fact it should be LASTLOCAL. To fix
this problem, declare all the LOCAL variables LASTLOCAL when debugging a loop.

• Check for arrays with complicated subscripts. If the array subscripts are simply
the index variables of a DO loop, the analysis is probably correct. If the subscripts
are more involved, they are a good choice to examine first.

• Check for EQUIVALENCE problems. Two variables of different names may in fact
refer to the same storage location if they are associated through an EQUIVALENCE.

• Check for the use of uninitialized variables. Some programs assume uninitialized
variables have a value of 0. This works with the -static option, but without it,
uninitialized values assume the value that is left on the stack. When compiling
with -mp, the program executes differently and the stack contents are different.
You should suspect this type of problem when a program compiled with -mp and
run on a single processor gives a different result than when it is compiled without
-mp. One way to check a problem of this type is to compile suspected routines
with -static. If an uninitialized variable is the problem, it should be fixed by
initializing the variable rather than by continuing to compile with -static.

• Try compiling with the -C option for range checking on array references. If arrays
are indexed out of bounds, a memory location may be referenced in unexpected
ways. This is particularly true of adjacent arrays in a COMMON block.

• If the analysis of the loop was incorrect, one or more arrays that are SHARE may
have data dependencies. This sort of error is seen only when running
multiprocessed code. When stepping through the code in the debugger, the
program executes correctly. This sort of error is usually seen only intermittently;
the program works correctly most of the time.

• As a final solution, print out all the values of all the subscripts on each iteration
through the loop. Then use the uniq(1) command to look for duplicates. If
duplicates are found, there is a data dependency.

007–2361–009 79

6: Compiling and Debugging Parallel Fortran

EQUIVALENCE Statements and Storage of Local Variables

EQUIVALENCE statements affect storage of local variables and can cause data
dependencies when parallelizing code. EQUIVALENCE statements with local variables
cause the storage location to be statically allocated (initialized to zero and saved
between calls to the subroutine).

In particular, if a loop without equivalenced variables calls a subroutine that appears
in the scope of a directive ASSERT CONNCURENT CALL which does have
equivalenced local variables, a data dependency occurs. This is because the
equivalenced storage locations are statically allocated.

80 007–2361–009

Appendix A

Run-Time Error Messages

The following table lists possible Fortran run-time I/O errors. Other errors given by
the operating system may also occur. See the intro(2) and perror(3f) reference
pages for details.

Each error is listed on the screen alone or with one of these phrases appended to it:

• apparent state: unit num named user filename

• last format: string

• lately (reading, writing) (sequential, direct, indexed)

• formatted, unformatted (external, internal) IO

When the Fortran run-time system detects an error, the following actions take place:

• A message describing the error is written to the standard error unit (Unit 0).

• A core file, which can be used with dbx (the debugger) to inspect the state of the
program at termination, is produced if the f77_dump_flag environment variable
is defined and set to y.

When a run-time error occurs, the program terminates with one of the error messages
shown in the following table. The errors are output in the format user filename :
message.

Table A-1 Run-Time Error Messages

Number Message/Cause

100 error in format
Illegal characters are encountered in FORMAT statement.

101 out of space for I/O unit table
Out of virtual space that can be allocated for the I/O unit table.

102 formatted io not allowed
Cannot do formatted I/O on logical units opened for unformatted I/O.

103 unformatted io not allowed
Cannot do unformatted I/O on logical units opened for formatted I/O.

007–2361–009 81

A: Run-Time Error Messages

Number Message/Cause

104 direct io not allowed
Cannot do direct I/O on sequential file.

106 can’t backspace file
Cannot perform BACKSPACE/REWIND on file.

107 null file name
Filename specification in OPEN statement is null.

108 can’t stat file
The directory information for the file is not accessible.

109 file already connected
The specified filename has already been opened as a different logical
unit.

110 off end of record
Attempt to do I/O beyond the end of the record.

112 incomprehensible list input
Input data for list-directed read contains invalid character for its data
type.

113 out of free space
Cannot allocate virtual memory space on the system.

114 unit not connected
Attempt to do I/O on unit that has not been opened or cannot be
opened.

115 read unexpected character
Unexpected character encountered in formatted or directed read.

116 blank logical input field
Invalid character encountered for logical value.

117 bad variable type
Specified type for the namelist element is invalid. This error is most
likely caused by incompatible versions of the front end and the
run-time I/O library.

118 bad namelist name
The specified namelist name cannot be found in the input data file.

119 variable not in namelist
The namelist variable name in the input data file does not belong to
the specified namelist.

82 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

Number Message/Cause

120 no end record
$END is not found at the end of the namelist input data file.

121 namelist subscript out of range
The array subscript of the character substring value in the input data
file exceeds the range for that array or character string.

122 negative repeat count
The repeat count in the input data file is less than or equal to zero.

123 illegal operation for unit
You cannot set your own buffer on direct unformatted files.

124 off beginning of record
Format edit descriptor causes positioning to go off the beginning of the
record.

125 no * after repeat count
An asterisk (*) is expected after an integer repeat count.

126 ’new’ file exists
The file is opened as new but already exists.

127 can’t find ’old’ file
The file is opened as old but does not exist.

128 unknown system error
An unexpected error was returned by IRIX.

129 requires seek ability
The file is on a device that cannot do direct access.

130 illegal argument
Invalid value in the I/O control list.

131 duplicate key value on write
Cannot write a key that already exists.

132 indexed file not open
Cannot perform indexed I/O on an unopened file.

133 bad isam argument
The indexed I/O library function receives a bad argument because of a
corrupted index file or bad run-time I/O libraries.

134 bad key description
The key description is invalid.

007–2361–009 83

A: Run-Time Error Messages

Number Message/Cause

135 too many open indexed files
Cannot have more than 32 open indexed files.

136 corrupted isam file
The indexed file format is not recognizable. This error is usually
caused by a corrupted file.

137 isam file not opened for exclusive access
Cannot obtain lock on the indexed file.

138 record locked
The record has already been locked by another process.

138 key already exists
The key specification in the OPEN statement has already been specified.

140 cannot delete primary key
DELETE cannot be executed on a primary key.

141 beginning or end of file reached
The index for the specified key points beyond the length of the
indexed data file. This error is probably because of corrupted ISAM
files or a bad indexed I/O run-time library.

142 cannot find request record
The requested key for indexed READ does not exist.

143 current record not defined
Cannot execute REWRITE, UNLOCK, or DELETE before doing a READ to
define the current record.

144 isam file is exclusively locked
The indexed file has been exclusively locked by another process.

145 filename too long
The indexed filename exceeds 128 characters.

148 key structure does not match file structure
Mismatch between the key specifications in the OPEN statement and
the indexed file.

149 direct access on an indexed file not allowed
Cannot have direct-access I/O on an indexed file.

150 keyed access on a sequential file not allowed
Cannot specify keyed access together with sequential organization.

84 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

Number Message/Cause

151 keyed access on a relative file not allowed
Cannot specify keyed access together with relative organization.

152 append access on an indexed file not allowed
Cannot specify append access together with indexed organization.

153 must specify record length
A record length specification is required when opening a direct or
keyed access file.

154 key field value type does not match key type
The type of the given key value does not match the type specified in
the OPEN statement for that key.

155 character key field value length too long
The length of the character key value exceeds the length specification
for that key.

156 fixed record on sequential file not allowed
RECORDTYPE=fixed cannot be used with a sequential file.

157 variable records allowed only on unformatted sequential
file
RECORDTYPE=variable can only be used with an unformatted
sequential file.

158 stream records allowed only on formatted sequential file
RECORDTYPE=stream_lf can only be used with a formatted
sequential file.

159 maximum number of records in direct access file exceeded
The specified record is bigger than the MAXREC= value used in the
OPEN statement.

160 attempt to create or write to a read-only file
User does not have write permission on the file.

161 must specify key descriptions
Must specify all the keys when opening an indexed file.

162 carriage control not allowed for unformatted units
CARRIAGECONTROL specifier can be used only on a formatted file.

163 indexed files only
Indexed I/O can be done only on logical units that have been opened
for indexed (keyed) access.

007–2361–009 85

A: Run-Time Error Messages

Number Message/Cause

164 cannot use on indexed file
Illegal I/O operation on an indexed (keyed) file.

165 cannot use on indexed or append file
Illegal I/O operation on an indexed (keyed) or append file.

167 invalid code in format specification
Unknown code is encountered in format specification.

168 invalid record number in direct access file
The specified record number is less than 1.

169 cannot have endfile record on non-sequential file
Cannot have an endfile on a direct- or keyed-access file.

170 cannot position within current file
Cannot perform fseek() on a file opened for sequential unformatted
I/O.

171 cannot have sequential records on direct access file
Cannot do sequential formatted I/O on a file opened for direct access.

173 cannot read from stdout
Attempt to read from stdout.

174 cannot write to stdin
Attempt to write to stdin.

175 stat call failed in f77inode
The directory information for the file is unreadable.

176 illegal specifier
The I/O control list contains an invalid value for one of the I/O
specifiers. For example, ACCESS=INDEXED.

180 attempt to read from a writeonly file
User does not have read permission on the file.

181 direct unformatted io not allowed
Direct unformatted file cannot be used with this I/O operation.

182 cannot open a directory
The name specified in FILE= must be the name of a file, not a directory.

183 subscript out of bounds
The exit status returned when a program compiled with the -C option
has an array subscript that is out of range.

86 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

Number Message/Cause

184 function not declared as varargs
Variable argument routines called in subroutines that have not been
declared in a $VARARGS directive.

185 internal error
Internal run-time library error.

186 Illegal input character in formatted read.
The numeric input field in a formatted file contains non-blank
characters beyond the maximum usable field width of 83 characters.

187 Position specifier is allowed on sequential files only
Cannot have a position specifier in a format statement for a
non-sequential file.

188 Position specifier has an illegal value
The position specifier has a value that does not make sense.

189 Out of memory
The system is out of memory for allocation. Try to allocate more swap
space.

195 Cannot keep a file opened as a scratch file.
If a file is opened as a scratch file, it cannot be kept when closed, and
is automatically deleted.

007–2361–009 87

Appendix B

Multiprocessing Directives (Outmoded)

The directives which are described in this appendix are outmoded. They are
supported for older codes that require this functionality. SGI encourages you to write
new codes using the OpenMP directives described in Chapter 5, "OpenMP Fortran
API Multiprocessing Directives", page 65.

This chapter contains these sections:

• "Overview", page 90, provides an overview of this chapter.

• "Parallel Loops", page 90, discusses the concept of parallel DO loops.

• "Writing Parallel Fortran", page 91, explains how to use compiler directives to
generate code that can be run in parallel.

• "Analyzing Data Dependencies for Multiprocessing", page 99, describes how to
analyze DO loops to determine whether they can be parallelized.

• "Breaking Data Dependencies", page 104, explains how to rewrite DO loops that
contain data dependencies so that some or all of the loop can be run in parallel.

• "Work Quantum", page 109, describes how to determine whether the work
performed in a loop is greater than the overhead associated with multiprocessing
the loop.

• "Cache Effects", page 111, explains how to write loops that account for the effect of
the cache.

• "Advanced Features", page 115, describes features that override multiprocessing
defaults and customize parallelism.

• "DOACROSS Implementation", page 123, discusses how multiprocessing is
implemented in a DOACROSS routine.

• "PCF Directives", page 125, describes how PCF implements a general model of
parallelism.

• "Communicating Between Threads Through Thread Local Data", page 138,
explains how to use mp_shmem to explicitly communicate between threads of a
MP Fortran program.

• "Synchronization Intrinsics", page 140, describes synchronization operations.

007–2361–009 89

B: Multiprocessing Directives (Outmoded)

Overview
The MIPSpro Fortran 77 compiler allows you to apply the capabilities of a SGI
multiprocessor workstation to the execution of a single job. By coding a few simple
directives, the compiler splits the job into concurrently executing pieces, thereby
decreasing the wall-clock run time of the job. This chapter discusses techniques for
analyzing your program and converting it to multiprocessing operations. Chapter 6,
"Compiling and Debugging Parallel Fortran", page 75, gives compilation and
debugging instructions for parallel processing.

Note: You can automatically parallelize Fortran programs by using the optional
program -apo. For information about this software, contact SGI customer support.

Parallel Loops
The model of parallelism used focuses on the Fortran DO loop. The compiler executes
different iterations of the DO loop in parallel on multiple processors. For example,
suppose a DO loop consisting of 200 iterations will run on a machine with four
processors using the SIMPLE scheduling method (described in "CHUNK,
MP_SCHEDTYPE", page 94). The first 50 iterations run on one processor, the next 50 on
another, and so on.

The multiprocessing code adjusts itself at run time to the number of processors
actually present on the machine. By default, the multiprocessing code does not use
more than 8 processors. If you want to use more processors, set the environment
variable MP_SET_NUMTHREADS (see "Environment Variables for Origin Systems ",
page 118, for more information). If the above 200-iteration loop was moved to a
machine with only two processors, it would be divided into two blocks of 100
iterations each, without any need to recompile or relink. In fact, multiprocessing code
can be run on single-processor machines. So the above loop is divided into one block
of 200 iterations. This allows code to be developed on a single-processor SGI
workstation, and later run on an IRIS POWER Series multiprocessor.

The processes that participate in the parallel execution of a task are arranged in a
master/slave organization. The original process is the master. It creates zero or more
slaves to assist. When a parallel DO loop is encountered, the master asks the slaves for
help. When the loop is complete, the slaves wait on the master, and the master
resumes normal execution. The master process and each of the slave processes are
called a thread of execution or simply a thread. By default, the number of threads is set
to the number of processors on the machine or 4, whichever is smaller. If you want,

90 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

you can override the default and explicitly control the number of threads of execution
used by a parallel job.

For multiprocessing to work correctly, the iterations of the loop must not depend on
each other; each iteration must stand alone and produce the same answer regardless of
when any other iteration of the loop is executed. Not all DO loops have this property,
and loops without it cannot be correctly executed in parallel. However, many of the
loops encountered in practice fit this model. Further, many loops that cannot be run
in parallel in their original form can be rewritten to run wholly or partially in parallel.

To provide compatibility for existing parallel programs, SGI has adopted the syntax
for parallelism used by Sequent Computer Corporation. This syntax takes the form of
compiler directives embedded in comments. These fairly high-level directives provide
a convenient method for you to describe a parallel loop, while leaving the details to
the Fortran compiler. For advanced users the proposed Parallel Computing Forum
(PCF) standard (ANSI-X3H5 91-0023-B Fortran language binding) is available (refer to
"PCF Directives", page 125). Additionally, a number of special routines exist that
permit more direct control over the parallel execution (refer to "Advanced Features",
page 115, for more information.)

Writing Parallel Fortran
The compiler accepts directives that cause it to generate code that can be run in
parallel. The compiler directives look like Fortran comments: they begin with a C in
column one. If multiprocessing is not turned on, these statements are treated as
comments. This allows the identical source to be compiled with a single-processing
compiler or by Fortran without the multiprocessing option. The directives are
distinguished by having a $ as the second character. There are six directives that are
supported: C$DOACROSS, C$&, C$, C$MP_SCHEDTYPE, C$CHUNK, and C$COPYIN. The
C$COPYIN directive is described in "Local COMMON Blocks", page 121. This section
describes the others.

C$DOACROSS

The essential compiler directive for multiprocessing is C$DOACROSS. This directive
directs the compiler to generate special code to run iterations of a DO loop in parallel.
The C$DOACROSS directive applies only to the next statement (which must be a DO
loop). The C$DOACROSS directive has the form

007–2361–009 91

B: Multiprocessing Directives (Outmoded)

C$DOACROSS [clause [[,] clause ...]

where valid values for the optional clause are the following:

[IF (logical_expression)]
[{LOCAL | PRIVATE} (item[,item ...])]
[{SHARE | SHARED} (item[,item ...])]
[{LASTLOCAL | LAST LOCAL} (item[,item ...])]
[REDUCTION (item[,item ...])]
[MP_SCHEDTYPE=mode]
[CHUNK=integer_expression]

The preferred form of the directive (as generated by WorkShop Pro MPF) uses the
optional commas between clauses. This section discusses the meaning of each clause.

IF

The IF clause determines whether the loop is actually executed in parallel. If the
logical expression is TRUE, the loop is executed in parallel. If the expression is FALSE,
the loop is executed serially. Typically, the expression tests the number of times the
loop will execute to be sure that there is enough work in the loop to amortize the
overhead of parallel execution. Currently, the break-even point is about 4000 CPU
clocks of work, which normally translates to about 1000 floating point operations.

LOCAL, SHARE, LASTLOCAL

The LOCAL, SHARE, and LASTLOCAL clauses specify lists of variables used within
parallel loops. A variable can appear in only one of these lists. To make the task of
writing these lists easier, there are several defaults. The loop-iteration variable is
LASTLOCAL by default. All other variables are SHARE by default.

LOCAL Specifies variables that are local to each process. If a
variable is declared as LOCAL, each iteration of the loop
is given its own uninitialized copy of the variable. You
can declare a variable as LOCAL if its value does not
depend on any other iteration of the loop and if its
value is used only within a single iteration. In effect the
LOCAL variable is just temporary; a new copy can be
created in each loop iteration without changing the final
answer. The name LOCAL is preferred over PRIVATE.

92 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

SHARE Specifies variables that are shared across all processes.
If a variable is declared as SHARE, all iterations of the
loop use the same copy of the variable. You can declare
a variable as SHARE if it is only read (not written)
within the loop or if it is an array where each iteration
of the loop uses a different element of the array. The
name SHARE is preferred over SHARED.

LASTLOCAL Specifies variables that are local to each process.Unlike
with the LOCAL clause, the compiler saves only the
value of the logically last iteration of the loop when it
exits. The name LASTLOCAL is preferred over LAST
LOCAL.

LOCAL is a little faster than LASTLOCAL, so if you do not need the final value, it is
good practice to put the DO loop index variable into the LOCAL list, although this is
not required.

Only variables can appear in these lists. In particular, COMMON blocks cannot appear
in a LOCAL list (but see the discussion of local COMMON blocks in "Advanced
Features", page 115). The SHARE, LOCAL, and LASTLOCAL lists give only the names of
the variables. If any member of the list is an array, it is listed without any subscripts.

REDUCTION

The REDUCTION clause specifies variables involved in a reduction operation. In a
reduction operation, the compiler keeps local copies of the variables and combines
them when it exits the loop. For an example and details see Example B-17, page 107.
An element of the REDUCTION list must be an individual variable (also called a scalar
variable) and cannot be an array. However, it can be an individual element of an
array. In a REDUCTION clause, it would appear in the list with the proper subscripts.

One element of an array can be used in a reduction operation, while other elements of
the array are used in other ways. To allow for this, if an element of an array appears
in the REDUCTION list, the entire array can also appear in the SHARE list.

The four types of reductions supported are sum(+), product(*), min(), and
max(). Note that min(max) reductions must use the min(max) intrinsic functions to
be recognized correctly.

The compiler confirms that the reduction expression is legal by making some simple
checks. The compiler does not, however, check all statements in the DO loop for

007–2361–009 93

B: Multiprocessing Directives (Outmoded)

illegal reductions. You must ensure that the reduction variable is used correctly in a
reduction operation.

CHUNK, MP_SCHEDTYPE

The CHUNK and MP_SCHEDTYPE clauses affect the way the compiler schedules work
among the participating tasks in a loop. These clauses do not affect the correctness of
the loop. They are useful for tuning the performance of critical loops. See "Load
Balancing", page 113, for more details.

For the MP_SCHEDTYPE=mode clause, mode can be one of the following:

[SIMPLE | STATIC]
[DYNAMIC]
[INTERLEAVE|INTERLEAVED]
[GUIDED|GSS]
[RUNTIME]

You can use any or all of these modes in a single program. The CHUNK clause is valid
only with the DYNAMIC and INTERLEAVE modes. SIMPLE, DYNAMIC, INTERLEAVE,
GSS, and RUNTIME are the preferred names for each mode.

The simple method (MP_SCHEDTYPE=SIMPLE) divides the iterations among processes
by dividing them into contiguous pieces and assigning one piece to each process.

In dynamic scheduling (MP_SCHEDTYPE=DYNAMIC) the iterations are broken into
pieces the size of which is specified with the CHUNK clause. As each process finishes a
piece, it enters a critical section to grab the next available piece. This gives good load
balancing at the price of higher overhead.

The interleave method (MP_SCHEDTYPE=INTERLEAVE) breaks the iterations into
pieces of the size specified by the CHUNK option, and execution of those pieces is
interleaved among the processes. For example, if there are four processes and
CHUNK=2, then the first process will execute iterations 1–2, 9–10, 17–18, …; the second
process will execute iterations 3–4, 11–12, 19–20,…; and so on. Although this is more
complex than the simple method, it is still a fixed schedule with only a single
scheduling decision.

The fourth method is a variation of the guided self-scheduling algorithm
(MP_SCHEDTYPE=GSS). Here, the piece size is varied depending on the number of
iterations remaining. By parceling out relatively large pieces to start with and
relatively small pieces toward the end, the system can achieve good load balancing
while reducing the number of entries into the critical section.

94 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

In addition to these four methods, you can specify the scheduling method at run time
(MP_SCHEDTYPE=RUNTIME). Here, the scheduling routine examines values in your
run-time environment and uses that information to select one of the other four
methods. See "Advanced Features", page 115, for more details.

If both the MP_SCHEDTYPE and CHUNK clauses are omitted, SIMPLE scheduling is
assumed. If MP_SCHEDTYPE is set to INTERLEAVE or DYNAMIC and the CHUNK clause
are omitted, CHUNK=1 is assumed. If MP_SCHEDTYPE is set to one of the other values,
CHUNK is ignored. If the MP_SCHEDTYPE clause is omitted, but CHUNK is set, then
MP_SCHEDTYPE=DYNAMIC is assumed.

Example B-1 Simple DOACROSS

The code fragment

DO 10 I = 1, 100
A(I) = B(I)

10 CONTINUE

could be multiprocessed with the directive:

C$DOACROSS LOCAL(I), SHARE(A, B)

DO 10 I = 1, 100

A(I) = B(I)

10 CONTINUE

Here, the defaults are sufficient, provided A and B are mentioned in a nonparallel
region or in another SHARE list. The following then works:

C$DOACROSS
DO 10 I = 1, 100

A(I) = B(I)

10 CONTINUE

Example B-2 DOACROSS LOCAL

Consider the following code fragment:

DO 10 I = 1, N

X = SQRT(A(I))

B(I) = X*C(I) + X*D(I)

10 CONTINUE

You can be fully explicit, as shown below:

007–2361–009 95

B: Multiprocessing Directives (Outmoded)

C$DOACROSS LOCAL(I, X), share(A, B, C, D, N)
DO 10 I = 1, N

X = SQRT(A(I))

B(I) = X*C(I) + X*D(I)

10 CONTINUE

You can also use the defaults:

C$DOACROSS LOCAL(X)

DO 10 I = 1, N

X = SQRT(A(I))
B(I) = X*C(I) + X*D(I)

10 CONTINUE

See Example B-8, page 101, for more information on this example.

Example B-3 DOACROSS LAST LOCAL

Consider the following code fragment:

DO 10 I = M, K, N

X = D(I)**2

Y = X + X

DO 20 J = I, MAX

A(I,J) = A(I,J) + B(I,J) * C(I,J) * X + Y
20 CONTINUE

10 CONTINUE

PRINT*, I, X

Here, the final values of I and X are needed after the loop completes. A correct
directive is shown below:

C$DOACROSS LOCAL(Y,J), LASTLOCAL(I,X),

C$& SHARE(M,K,N,ITOP,A,B,C,D)

DO 10 I = M, K, N
X = D(I)**2

Y = X + X

DO 20 J = I, ITOP

A(I,J) = A(I,J) + B(I,J) * C(I,J) *X + Y

20 CONTINUE
10 CONTINUE

PRINT*, I, X

You can also use the defaults:

96 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

C$DOACROSS LOCAL(Y,J), LASTLOCAL(X)
DO 10 I = M, K, N

X = D(I)**2

Y = X + X

DO 20 J = I, MAX

A(I,J) = A(I,J) + B(I,J) * C(I,J) *X + Y
20 CONTINUE

10 CONTINUE

PRINT*, I, X

I is a loop index variable for the C$DOACROSS loop, so it is LASTLOCAL by default.
However, even though J is a loop index variable, it is not the loop index of the loop
being multiprocessed and has no special status. If it is not declared, it is assigned the
default value of SHARE, which produces an incorrect answer.

C$&

Occasionally, the clauses in the C$DOACROSS directive are longer than one line. Use
the C$& directive to continue the directive onto multiple lines. For example:

C$DOACROSS share(ALPHA, BETA, GAMMA, DELTA,

C$& EPSILON, OMEGA), LASTLOCAL(I, J, K, L, M, N),

C$& LOCAL(XXX1, XXX2, XXX3, XXX4, XXX5, XXX6, XXX7,

C$& XXX8, XXX9)

C$

The C$ directive is considered a comment line except when multiprocessing. A line
beginning with C$ is treated as a conditionally compiled Fortran statement. The rest
of the line contains a standard Fortran statement. The statement is compiled only if
multiprocessing is turned on. In this case, the C and $ are treated as if they are
blanks. They can be used to insert debugging statements, or an experienced user can
use them to insert arbitrary code into the multiprocessed version.

The following code demonstrates the use of the C$ directive:

C$ PRINT 10

C$ 10 FORMAT(’BEGIN MULTIPROCESSED LOOP’)

C$DOACROSS LOCAL(I), SHARE(A,B)

007–2361–009 97

B: Multiprocessing Directives (Outmoded)

DO I = 1, 100
CALL COMPUTE(A, B, I)

END DO

C$MP_SCHEDTYPE and C$CHUNK

The C$MP_SCHEDTYPE=mode directive acts as an implicit MP_SCHEDTYPE clause for
all C$DOACROSS directives in scope. mode is any of the modes listed in the section
called "CHUNK, MP_SCHEDTYPE", page 94. A C$DOACROSS directive that does not
have an explicit MP_SCHEDTYPE clause is given the value specified in the last
directive prior to the loop, rather than the normal default. If the C$DOACROSS does
have an explicit clause, then the explicit value is used.

The C$CHUNK=integer_expression directive affects the CHUNK clause of a C$DOACROSS
in the same way that the C$MP_SCHEDTYPE directive affects the MP_SCHEDTYPE
clause for all C$DOACROSS directives in scope. Both directives are in effect from the
place they occur in the source until another corresponding directive is encountered or
the end of the procedure is reached.

C$COPYIN

It is occasionally useful to be able to copy values from the master thread’s version of
the COMMON block into the slave thread’s version. The special directive C$COPYIN
allows this. It has the following form:

C$COPYIN ,item[,item]...

Each item must be a member of a local COMMON block. It can be a variable, an array,
an individual element of an array, or the entire COMMON block.

Note: The C$COPYIN directive cannot be executed from inside a parallel region.

Nesting C$DOACROSS

The Fortran compiler does not support direct nesting of C$DOACROSS loops.

For example, the following is illegal and generates a compilation error:

98 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

C$DOACROSS LOCAL(I)
DO I = 1, N

C$DOACROSS LOCAL(J)

DO J = 1, N

A(I,J) = B(I,J)

END DO
END DO

However, to simplify separate compilation, a different form of nesting is allowed. A
routine that uses C$DOACROSS can be called from within a multiprocessed region.
This can be useful if a single routine is called from several different places: sometimes
from within a multiprocessed region, sometimes not. Nesting does not increase the
parallelism. When the first C$DOACROSS loop is encountered, that loop is run in
parallel. If while in the parallel loop a call is made to a routine that itself has a
C$DOACROSS, this subsequent loop is executed serially.

Analyzing Data Dependencies for Multiprocessing
The essential condition required to parallelize a loop correctly is that each iteration of
the loop must be independent of all other iterations. If a loop meets this condition,
then the order in which the iterations of the loop execute is not important. They can
be executed backward or at the same time, and the answer is still the same. This
property is captured by the concept of data independence. For a loop to be
data-independent, no iterations of the loop can write a value into a memory location
that is read or written by any other iteration of that loop. It is all right if the same
iteration reads and/or writes a memory location repeatedly as long as no others do; it
is all right if many iterations read the same location, as long as none of them write to
it. In a Fortran program, memory locations are represented by variable names. So, to
determine if a particular loop can be run in parallel, examine the way variables are
used in the loop. Because data dependence occurs only when memory locations are
modified, pay particular attention to variables that appear on the left-hand side of
assignment statements. If a variable is not modified or if it is passed to a function or
subroutine, there is no data dependence associated with it.

The Fortran compiler supports four kinds of variable usage within a parallel loop:
SHARE, LOCAL, LASTLOCAL, and REDUCTION. If a variable is declared as SHARE, all
iterations of the loop use the same copy. If a variable is declared as LOCAL, each
iteration is given its own uninitialized copy. A variable is declared SHARE if it is only
read (not written) within the loop or if it is an array where each iteration of the loop
uses a different element of the array. A variable can be LOCAL if its value does not

007–2361–009 99

B: Multiprocessing Directives (Outmoded)

depend on any other iteration and if its value is used only within a single iteration.
In effect the LOCAL variable is just temporary; a new copy can be created in each loop
iteration without changing the final answer. As a special case, if only the very last
value of a variable computed on the very last iteration is used outside the loop (but
would otherwise qualify as a LOCAL variable), the loop can be multiprocessed by
declaring the variable to be LASTLOCAL. "REDUCTION", page 93, describes the use of
REDUCTION variables.

It is often difficult to analyze loops for data dependence information. Each use of
each variable must be examined to determine if it fulfills the criteria for LOCAL,
LASTLOCAL, SHARE, or REDUCTION. If all of the variables’ uses conform, the loop can
be parallelized. If not, the loop cannot be parallelized as it stands, but possibly can be
rewritten into an equivalent parallel form. (See "Breaking Data Dependencies", page
104, for information on rewriting code in parallel form.)

An alternative to analyzing variable usage by hand is to use the MIPSpro
Auto-Parallelizer Option (APO). This optional software package is a Fortran
preprocessor that analyzes loops for data dependence. If APO determines that a loop
is data-independent, it automatically inserts the required compiler directives (see
"Writing Parallel Fortran", page 91). If APO cannot determine whether the loop is
independent, it produces a listing file detailing where the problems lie.

The rest of this section is devoted to analyzing sample loops, some parallel and some
not parallel.

Example B-4 Simple Independence

DO 10 I = 1,N

10 A(I) = X + B(I)*C(I)

In this example, each iteration writes to a different location in A, and none of the
variables appearing on the right-hand side is ever written to, only read from. This
loop can be correctly run in parallel. All the variables are SHARE except for I, which
is either LOCAL or LASTLOCAL, depending on whether the last value of I is used later
in the code.

Example B-5 Data Dependence

DO 20 I = 2,N

20 A(I) = B(I) - A(I-1)

This fragment contains A(I) on the left-hand side and A(I-1) on the right. This
means that one iteration of the loop writes to a location in A and the next iteration

100 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

reads from that same location. Because different iterations of the loop read and write
the same memory location, this loop cannot be run in parallel.

Example B-6 Stride Not 1

DO 20 I = 2,N,2
20 A(I) = B(I) - A(I-1)

This example looks like the previous example. The difference is that the stride of the
DO loop is now two rather than one. Now A(I) references every other element of A,
and A(I-1) references exactly those elements of A that are not referenced by A(I).
None of the data locations on the right-hand side is ever the same as any of the data
locations written to on the left-hand side. The data are disjoint, so there is no
dependence. The loop can be run in parallel. Arrays A and B can be declared SHARE,
while variable I should be declared LOCAL or LASTLOCAL.

Example B-7 Local Variable

DO I = 1, N
X = A(I)*A(I) + B(I)

B(I) = X + B(I)*X

END DO

In this loop, each iteration of the loop reads and writes the variable X. However, no
loop iteration ever needs the value of X from any other iteration. X is used as a
temporary variable; its value does not survive from one iteration to the next. This
loop can be parallelized by declaring X to be a LOCAL variable within the loop. Note
that B(I) is both read and written by the loop. This is not a problem because each
iteration has a different value for I, so each iteration uses a different B(I). The same
B(I) is allowed to be read and written as long as it is done by the same iteration of
the loop. The loop can be run in parallel. Arrays A and B can be declared SHARE,
while variable I should be declared LOCAL or LASTLOCAL.

Example B-8 Function Call

DO 10 I = 1, N

X = SQRT(A(I))
B(I) = X*C(I) + X*D(I)

10 CONTINUE

The value of X in any iteration of the loop is independent of the value of X in any
other iteration, so X can be made a LOCAL variable. The loop can be run in parallel.
Arrays A, B, C, and D can be declared SHARE, while variable I should be declared
LOCAL or LASTLOCAL.

007–2361–009 101

B: Multiprocessing Directives (Outmoded)

The interesting feature of this loop is that it invokes an external routine, SQRT. It is
possible to use functions and/or subroutines (intrinsic or user defined) within a
parallel loop. However, make sure that the various parallel invocations of the routine
do not interfere with one another. In particular, SQRT returns a value that depends
only on its input argument, does not modify global data, and does not use static
storage. We say that SQRT has no side effects.

All the Fortran intrinsic functions listed in the MIPSpro Fortran 77 Language Reference
Manual have no side effects and can safely be part of a parallel loop. For the most
part, the Fortran library functions and VMS intrinsic subroutine extensions (listed in
Chapter 4, "System Functions and Subroutines", page 53) cannot safely be included in
a parallel loop. In particular, rand is not safe for multiprocessing. For user-written
routines, it is the user’s responsibility to ensure that the routines can be correctly
multiprocessed.

!
Caution: Do not use the -static option when compiling routines called within a
parallel loop.

Example B-9 Rewritable Data Dependence

INDX = 0

DO I = 1, N
INDX = INDX + I

A(I) = B(I) + C(INDX)

END DO

Here, the value of INDX survives the loop iteration and is carried into the next
iteration. This loop cannot be parallelized as it is written. Making INDX a LOCAL
variable does not work; you need the value of INDX computed in the previous
iteration. It is possible to rewrite this loop to make it parallel (see Example B-14, page
105).

Example B-10 Exit Branch

DO I = 1, N
IF (A(I) .LT. EPSILON) GOTO 320

A(I) = A(I) * B(I)

END DO

320 CONTINUE

102 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

This loop contains an exit branch; that is, under certain conditions the flow of control
suddenly exits the loop. The Fortran compiler cannot parallelize loops containing exit
branches.

Example B-11 Complicated Independence

DO I = K+1, 2*K

W(I) = W(I) + B(I,K) * W(I-K)

END DO

At first glance, this loop looks like it cannot be run in parallel because it uses both
W(I) and W(I-K). Closer inspection reveals that because the value of I varies
between K+1 and 2*K, then I-K goes from 1 to K. This means that the W(I-K) term
varies from W(1) up to W(K), while the W(I) term varies from W(K+1) up to W(2*K).
So W(I-K) in any iteration of the loop is never the same memory location as W(I) in
any other iterations. Because there is no data overlap, there are no data dependencies.
This loop can be run in parallel. Elements W, B, and K can be declared SHARE, while
variable I should be declared LOCAL or LASTLOCAL.

This example points out a general rule: the more complex the expression used to
index an array, the harder it is to analyze. If the arrays in a loop are indexed only by
the loop index variable, the analysis is usually straightforward though tedious.
Fortunately, in practice most array indexing expressions are simple.

Example B-12 Inconsequential Data Dependence

INDEX = SELECT(N)

DO I = 1, N

A(I) = A(INDEX)

END DO

There is a data dependence in this loop because it is possible that at some point I will
be the same as INDEX, so there will be a data location that is being read and written
by different iterations of the loop. In this special case, you can simply ignore it. You
know that when I and INDEX are equal, the value written into A(I) is exactly the
same as the value that is already there. The fact that some iterations of the loop read
the value before it is written and some after it is written is not important because
they all get the same value. Therefore, this loop can be parallelized. Array A can be
declared SHARE, while variable I should be declared LOCAL or LASTLOCAL.

007–2361–009 103

B: Multiprocessing Directives (Outmoded)

Example B-13 Local Array

DO I = 1, N
D(1) = A(I,1) - A(J,1)

D(2) = A(I,2) - A(J,2)

D(3) = A(I,3) - A(J,3)

TOTAL_DISTANCE(I,J) = SQRT(D(1)**2 + D(2)**2 + D(3)**2)

END DO

In this fragment, each iteration of the loop uses the same locations in the D array.
However, closer inspection reveals that the entire D array is being used as a
temporary. This can be multiprocessed by declaring D to be LOCAL. The Fortran
compiler allows arrays (even multidimensional arrays) to be LOCAL variables with
one restriction: the size of the array must be known at compile time. The dimension
bounds must be constants; the LOCAL array cannot have been declared using a
variable or the asterisk syntax.

Therefore, this loop can be parallelized. Arrays TOTAL_DISTANCE and A can be
declared SHARE, while array D and variable I should be declared LOCAL or
LASTLOCAL.

Breaking Data Dependencies
Many loops that have data dependencies can be rewritten so that some or all of the
loop can be run in parallel. The essential idea is to locate the statement(s) in the loop
that cannot be made parallel and try to find another way to express it that does not
depend on any other iteration of the loop. If this fails, try to pull the statements out
of the loop and into a separate loop, allowing the remainder of the original loop to be
run in parallel.

The first step is to analyze the loop to discover the data dependencies (see "Writing
Parallel Fortran", page 91). Once you have identified these areas, you can use various
techniques to rewrite the code to break the dependence. Sometimes the dependencies
in a loop cannot be broken, and you must either accept the serial execution rate or try
to discover a new parallel method of solving the problem. The rest of this section is
devoted to a series of “cookbook” examples on how to deal with commonly occurring
situations. These are by no means exhaustive but cover many situations that happen
in practice.

104 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

Example B-14 Loop Carried Value

INDX = 0
DO I = 1, N

INDX = INDX + I

A(I) = B(I) + C(INDX)

END DO

This code segment is the same as in Example B-9, page 102. INDX has its value
carried from iteration to iteration. However, you can compute the appropriate value
for INDX without making reference to any previous value.

For example, consider the following code:

C$DOACROSS LOCAL (I, INDX)
DO I = 1, N

INDX = (I*(I+1))/2

A(I) = B(I) + C(INDX)

END DO

In this loop, the value of INDX is computed without using any values computed on
any other iteration. INDX can correctly be made a LOCAL variable, and the loop can
now be multiprocessed.

Example B-15 Indirect Indexing

DO 100 I = 1, N
IX = INDEXX(I)

IY = INDEXY(I)

XFORCE(I) = XFORCE(I) + NEWXFORCE(IX)

YFORCE(I) = YFORCE(I) + NEWYFORCE(IY)

IXX = IXOFFSET(IX)

IYY = IYOFFSET(IY)
TOTAL(IXX, IYY) = TOTAL(IXX, IYY) + EPSILON

100 CONTINUE

It is the final statement that causes problems. The indexes IXX and IYY are computed
in a complex way and depend on the values from the IXOFFSET and IYOFFSET
arrays. We do not know if TOTAL (IXX,IYY) in one iteration of the loop will
always be different from TOTAL (IXX,IYY) in every other iteration of the loop.

We can pull the statement out into its own separate loop by expanding IXX and IYY
into arrays to hold intermediate values:

007–2361–009 105

B: Multiprocessing Directives (Outmoded)

C$DOACROSS LOCAL(IX, IY, I)
DO I = 1, N

IX = INDEXX(I)

IY = INDEXY(I)

XFORCE(I) = XFORCE(I) + NEWXFORCE(IX)

YFORCE(I) = YFORCE(I) + NEWYFORCE(IY)
IXX(I) = IXOFFSET(IX)

IYY(I) = IYOFFSET(IY)

END DO

DO 100 I = 1, N

TOTAL(IXX(I),IYY(I)) = TOTAL(IXX(I), IYY(I)) + EPSILON

100 CONTINUE

Here, IXX and IYY have been turned into arrays to hold all the values computed by
the first loop. The first loop (containing most of the work) can now be run in parallel.
Only the second loop must still be run serially. This will be true if IXOFFSET or
IYOFFSET are permutation vectors.

Before we leave this example, note that if we were certain that the value for IXX was
always different in every iteration of the loop, then the original loop could be run in
parallel. It could also be run in parallel if IYY was always different. If IXX (or IYY)
is always different in every iteration, then TOTAL(IXX,IYY) is never the same
location in any iteration of the loop, and so there is no data conflict.

This sort of knowledge is, of course, program-specific and should always be used
with great care. It may be true for a particular data set, but to run the original code in
parallel as it stands, you need to be sure it will always be true for all possible input
data sets.

Example B-16 Recurrence

DO I = 1,N

X(I) = X(I-1) + Y(I)

END DO

This is an example of recurrence, which exists when a value computed in one
iteration is immediately used by another iteration. There is no good way of running
this loop in parallel. If this type of construct appears in a critical loop, try pulling the
statement(s) out of the loop as in the previous example. Sometimes another loop
encloses the recurrence; in that case, try to parallelize the outer loop.

106 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

Example B-17 Sum Reduction

SUM = 0.0
DO I = 1,N

SUM = SUM + A(I)

END DO

This operation is known as a reduction. Reductions occur when an array of values is
combined and reduced into a single value. This example is a sum reduction because
the combining operation is addition. Here, the value of SUM is carried from one loop
iteration to the next, so this loop cannot be multiprocessed. However, because this
loop simply sums the elements of A(I), we can rewrite the loop to accumulate
multiple, independent subtotals.

Then we can do much of the work in parallel:

NUM_THREADS = MP_NUMTHREADS()

C

C IPIECE_SIZE = N/NUM_THREADS ROUNDED UP

C
IPIECE_SIZE = (N + (NUM_THREADS -1)) / NUM_THREADS

DO K = 1, NUM_THREADS

PARTIAL_SUM(K) = 0.0

C

C THE FIRST THREAD DOES 1 THROUGH IPIECE_SIZE, THE

C SECOND DOES IPIECE_SIZE + 1 THROUGH 2*IPIECE_SIZE,
C ETC. IF N IS NOT EVENLY DIVISIBLE BY NUM_THREADS,

C THE LAST PIECE NEEDS TO TAKE THIS INTO ACCOUNT,

C HENCE THE "MIN" EXPRESSION.

C

DO I =K*IPIECE_SIZE -IPIECE_SIZE +1, MIN(K*IPIECE_SIZE,N)
PARTIAL_SUM(K) = PARTIAL_SUM(K) + A(I)

END DO

END DO

C

C NOW ADD UP THE PARTIAL SUMS
SUM = 0.0

DO I = 1, NUM_THREADS

SUM = SUM + PARTIAL_SUM(I)

END DO

The outer K loop can be run in parallel. In this method, the array pieces for the
partial sums are contiguous, resulting in good cache utilization and performance.

007–2361–009 107

B: Multiprocessing Directives (Outmoded)

This is an important and common transformation, and so automatic support is
provided by the REDUCTION clause:

SUM = 0.0

C$DOACROSS LOCAL (I), REDUCTION (SUM)

DO 10 I = 1, N

SUM = SUM + A(I)

10 CONTINUE

The previous code has essentially the same meaning as the much longer and more
confusing code above. It is an important example to study because the idea of adding
an extra dimension to an array to permit parallel computation, and then combining
the partial results, is an important technique for trying to break data dependencies.
This idea occurs over and over in various contexts and disguises.

Note that reduction transformations such as this do not produce the same results as
the original code. Because computer arithmetic has limited precision, when you sum
the values together in a different order, as was done here, the round-off errors
accumulate slightly differently. It is likely that the final answer will be slightly
different from the original loop. Both answers are equally “correct.” Most of the time
the difference is irrelevant, but sometimes it can be significant, so some caution is in
order. If the difference is significant, neither answer is really trustworthy.

This example is a sum reduction because the operator is plus (+). The Fortran
compiler supports three other types of reduction operations:

1. sum: p = p+a(i)

2. product: p = p*a(i)

3. min: m = min(m,a(i))

4. max: m = max(m,a(i))

For example,

C$DOACROSS LOCAL(I),REDUCTION(BG_SUM,BG_PROD,BG_MIN,BG_MAX)

DO I = 1,N
BG_SUM = BG_SUM + A(I)

BG_PROD = BG_PROD * A(I)

BG_MIN = MIN(BG_MIN, A(I))

BG_MAX = MAX(BG_MAX, A(I)

END DO

One further example of a reduction transformation is noteworthy. Consider this code:

108 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

DO I = 1, N
TOTAL = 0.0

DO J = 1, M

TOTAL = TOTAL + A(J)

END DO

B(I) = C(I) * TOTAL
END DO

Initially, it might look as if the inner loop should be parallelized with a REDUCTION
clause. However, look at the outer I loop. Although TOTAL cannot be made a LOCAL
variable in the inner loop, it fulfills the criteria for a LOCAL variable in the outer loop:
the value of TOTAL in each iteration of the outer loop does not depend on the value
of TOTAL in any other iteration of the outer loop. Thus, you do not have to rewrite
the loop; you can parallelize this reduction on the outer I loop, making TOTAL and J
local variables.

Work Quantum
A certain amount of overhead is associated with multiprocessing a loop. If the work
occurring in the loop is small, the loop can actually run slower by multiprocessing
than by single processing. To avoid this, make the amount of work inside the
multiprocessed region as large as possible.

Example B-18 Loop Interchange

DO K = 1, N

DO I = 1, N

DO J = 1, N

A(I,J) = A(I,J) + B(I,K) * C(K,J)
END DO

END DO

END DO

Here you have several choices: parallelize the J loop or the I loop. You cannot
parallelize the K loop because different iterations of the K loop will all try to read and
write the same values of A(I,J). Try to parallelize the outermost DO loop possible,
because it encloses the most work. In this example, that is the I loop. For this
example, use the technique called loop interchange. Although the parallelizable loops
are not the outermost ones, you can reorder the loops to make one of them outermost.

Thus, loop interchange would produce

007–2361–009 109

B: Multiprocessing Directives (Outmoded)

C$DOACROSS LOCAL(I, J, K)
DO I = 1, N

DO K = 1, N

DO J = 1, N

A(I,J) = A(I,J) + B(I,K) * C(K,J)

END DO
END DO

END DO

Now the parallelizable loop encloses more work and shows better performance. In
practice, relatively few loops can be reordered in this way. However, it does
occasionally happen that several loops in a nest of loops are candidates for
parallelization. In such a case, it is usually best to parallelize the outermost one.

Occasionally, the only loop available to be parallelized has a fairly small amount of
work. It may be worthwhile to force certain loops to run without parallelism or to
select between a parallel version and a serial version, on the basis of the length of the
loop.

Example B-19 Conditional Parallelism

J = (N/4) * 4

DO I = J+1, N

A(I) = A(I) + X*B(I)

END DO

DO I = 1, J, 4
A(I) = A(I) + X*B(I)

A(I+1) = A(I+1) + X*B(I+1)

A(I+2) = A(I+2) + X*B(I+2)

A(I+3) = A(I+3) + X*B(I+3)

END DO

Here you are using loop unrolling of order four to improve speed. For the first loop,
the number of iterations is always fewer than four, so this loop does not do enough
work to justify running it in parallel. The second loop is worthwhile to parallelize if N
is big enough. To overcome the parallel loop overhead, N needs to be around 500.

An optimized version would use the IF clause on the DOACROSS directive:

J = (N/4) * 4

DO I = J+1, N

A(I) = A(I) + X*B(I)

END DO

110 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

C$DOACROSS IF (J.GE.500), LOCAL(I)
DO I = 1, J, 4

A(I) = A(I) + X*B(I)

A(I+1) = A(I+1) + X*B(I+1)

A(I+2) = A(I+2) + X*B(I+2)

A(I+3) = A(I+3) + X*B(I+3)
END DO

ENDIF

Cache Effects
It is good policy to write loops that take the effect of the cache into account, with or
without parallelism. The technique for the best cache performance is also quite
simple: make the loop step through the array in the same way that the array is laid
out in memory. For Fortran, this means stepping through the array without any gaps
and with the leftmost subscript varying the fastest. Note that this does not depend on
multiprocessing, nor is it required in order for multiprocessing to work correctly.
However, multiprocessing can affect how the cache is used, so it is worthwhile to
understand.

Performing a Matrix Multiply

Consider the following code segment:

DO I = 1, N

DO K = 1, N

DO J = 1, N

A(I,J) = A(I,J) + B(I,K) * C(K,J)

END DO
END DO

END DO

This is the same as Example B-18, page 109. To get the best cache performance, the I
loop should be innermost. At the same time, to get the best multiprocessing
performance, the outermost loop should be parallelized.

For this example, you can interchange the I and J loops, and get the best of both
optimizations:

007–2361–009 111

B: Multiprocessing Directives (Outmoded)

C$DOACROSS LOCAL(I, J, K)
DO J = 1, N

DO K = 1, N

DO I = 1, N

A(I,J) = A(I,J) + B(I,K) * C(K,J)

END DO
END DO

END DO

Understanding Trade-Offs

Sometimes you must choose between the possible optimizations and their costs. Look
at the following code segment:

DO J = 1, N

DO I = 1, M

A(I) = A(I) + B(J)*C(I,J)

END DO

END DO

This loop can be parallelized on I but not on J. You could interchange the loops to
put I on the outside, thus getting a bigger work quantum.

C$DOACROSS LOCAL(I,J)

DO I = 1, M

DO J = 1, N

A(I) = A(I) + B(J)*C(I,J)

END DO
END DO

However, putting J on the inside means that you will step through the C array in the
wrong direction; the leftmost subscript should be the one that varies the fastest. It is
possible to parallelize the I loop where it stands:

DO J = 1, N

C$DOACROSS LOCAL(I)

DO I = 1, M

A(I) = A(I) + B(J)*C(I,J)
END DO

END DO

112 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

However, M needs to be large for the work quantum to show any improvement. In
this example, A(I) is used to do a sum reduction, and it is possible to use the
reduction techniques shown in Example B-17, page 107, of "Breaking Data
Dependencies", page 104, to rewrite this in a parallel form. (Recall that there is no
support for an entire array as a member of the REDUCTION clause on a DOACROSS.)
However, that involves converting array A from a one-dimensional array to a
two-dimensional array to hold the partial sums; this is analogous to the way we
converted the scalar summation variable into an array of partial sums.

If A is large, however, the conversion can take more memory than you can spare. It
can also take extra time to initialize the expanded array and increase the memory
bandwidth requirements.

NUM = MP_NUMTHREADS()

IPIECE = (N + (NUM-1)) / NUM

C$DOACROSS LOCAL(K,J,I)
DO K = 1, NUM

DO J = K*IPIECE - IPIECE + 1, MIN(N, K*IPIECE)

DO I = 1, M

PARTIAL_A(I,K) = PARTIAL_A(I,K) + B(J)*C(I,J)

END DO
END DO

END DO

C$DOACROSS LOCAL (I,K)

DO I = 1, M

DO K = 1, NUM

A(I) = A(I) + PARTIAL_A(I,K)
END DO

END DO

You must trade off the various possible optimizations to find the combination that is
right for the particular job.

Load Balancing

When the Fortran compiler divides a loop into pieces, by default it uses the simple
method of separating the iterations into contiguous blocks of equal size for each
process. It can happen that some iterations take significantly longer to complete than
other iterations. At the end of a parallel region, the program waits for all processes to
complete their tasks. If the work is not divided evenly, time is wasted waiting for the
slowest process to finish.

007–2361–009 113

B: Multiprocessing Directives (Outmoded)

Example B-20 Load Balancing

DO I = 1, N
DO J = 1, I

A(J, I) = A(J, I) + B(J)*C(I)

END DO

END DO

The previous code segment can be parallelized on the I loop. Because the inner loop
goes from 1 to I, the first block of iterations of the outer loop will end long before the
last block of iterations of the outer loop.

In this example, this is easy to see and predictable, so you can change the program:

NUM_THREADS = MP_NUMTHREADS()
C$DOACROSS LOCAL(I, J, K)

DO K = 1, NUM_THREADS

DO I = K, N, NUM_THREADS

DO J = 1, I

A(J, I) = A(J, I) + B(J)*C(I)
END DO

END DO

END DO

In this rewritten version, instead of breaking up the I loop into contiguous blocks,
break it into interleaved blocks. Thus, each execution thread receives some small
values of I and some large values of I, giving a better balance of work between the
threads. Interleaving usually, but not always, cures a load balancing problem.

You can use the MP_SCHEDTYPE clause to automatically perform this desirable
transformation.

C$DOACROSS LOCAL (I,J), MP_SCHEDTYPE=INTERLEAVE

DO 20 I = 1, N

DO 10 J = 1, I

A (J,I) = A(J,I) + B(J)*C(J)

10 CONTINUE
20 CONTINUE

The previous code has the same meaning as the rewritten form above.

Note that interleaving can cause poor cache performance because the array is no
longer stepped through at stride 1. You can improve performance somewhat by
adding a CHUNK=integer_expression clause. Usually 4 or 8 is a good value for

114 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

integer_expression. Each small chunk will have stride 1 to improve cache performance,
while the chunks are interleaved to improve load balancing.

The way that iterations are assigned to processes is known as scheduling.
Interleaving is one possible schedule. Both interleaving and the “simple” scheduling
methods are examples of fixed schedules; the iterations are assigned to processes by
a single decision made when the loop is entered. For more complex loops, it may be
desirable to use DYNAMIC or GSS schedules.

Comparing the output from pixie(1) or from pc sampling allows you to see how
well the load is being balanced so you can compare the different methods of dividing
the load. Refer to the discussion of the MP_SCHEDTYPE clause in "C$DOACROSS",
page 91, for more information.

Even when the load is perfectly balanced, iterations may still take varying amounts of
time to finish because of random factors. One process may take a page fault, another
may be interrupted to let a different program run, and so on. Because of these
unpredictable events, the time spent waiting for all processes to complete can be
several hundred cycles, even with near perfect balance.

Reorganizing Common Blocks To Improve Cache Behavior

You can use the -OPT:reorg_common option, which reorganizes common blocks to
improve the cache behavior of accesses to members of the common block. This option
produces consistent results as long as the code follows the standard and array
references are made within the bounds of the array. It produces unexpected results if
you violate the standard, for example, if you access an array out of its declared
bounds.

The option is enabled by default at -O3 only if all files referencing the common block
are compiled at that optimization level. It is disabled if any file with the common
block is compiled at either -O2 and below, -OPT:reorg_common=OFF, or
-Wl,-noivpad.

Advanced Features
A number of features are provided so that sophisticated users can override the
multiprocessing defaults and customize the parallelism to their particular
applications. This section provides a brief explanation of these features.

007–2361–009 115

B: Multiprocessing Directives (Outmoded)

mp_block and mp_unblock

mp_block puts the slave threads into a blocked state using the system call
blockproc. The slave threads stay blocked until a call is made to mp_unblock.
These routines are useful if the job has bursts of parallelism separated by long
stretches of single processing, as with an interactive program. You can block the slave
processes so they consume CPU cycles only as needed, thus freeing the machine for
other users. The Fortran system automatically unblocks the slaves on entering a
parallel region if you neglect to do so.

mp_setup, mp_create, and mp_destroy

The mp_setup, mp_create, and mp_destroy subroutine calls create and destroy
threads of execution. This can be useful if the job has only one parallel portion or if
the parallel parts are widely scattered. When you destroy the extra execution threads,
they cannot consume system resources; they must be re-created when needed. Use of
these routines is discouraged because they degrade performance; use the mp_block
and mp_unblock routines in almost all cases.

mp_setup takes no arguments. It creates the default number of processes as defined
by previous calls to mp_set_numthreads, by the MP_SET_NUMTHREADS
environment variable (described in "Environment Variables for Origin Systems ", page
118), or by the number of CPUs on the current hardware platform. mp_setup is called
automatically when the first parallel loop is entered to initialize the slave threads.

mp_create takes a single integer argument, the total number of execution threads
desired. Note that the total number of threads includes the master thread. Thus,
mp_create(n) creates one thread less than the value of its argument. mp_destroy
takes no arguments; it destroys all the slave execution threads, leaving the master
untouched.

When the slave threads die, they generate a SIGCLD signal. If your program has
changed the signal handler to catch SIGCLD, it must be prepared to deal with this
signal when mp_destroy is executed. This signal also occurs when the program
exits; mp_destroy is called as part of normal cleanup when a parallel Fortran job
terminates.

mp_blocktime

The Fortran slave threads spin wait until there is work to do. This makes them
immediately available when a parallel region is reached. However, this consumes CPU

116 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

resources. After enough wait time has passed, the slaves block themselves through
blockproc. Once the slaves are blocked, it requires a system call to unblockproc
to activate the slaves again (refer to the unblockproc(2) reference page for details).
This makes the response time much longer when starting up a parallel region.

This trade-off between response time and CPU usage can be adjusted with the
mp_blocktime call. mp_blocktime takes a single integer argument that specifies
the number of times to spin before blocking. By default, it is set to 10,000,000; this
takes roughly one second. If called with an argument of 0, the slave threads will not
block themselves no matter how much time has passed. Explicit calls to mp_block,
however, will still block the threads.

This automatic blocking is transparent to the user’s program; blocked threads are
automatically unblocked when a parallel region is reached.

mp_numthreads, mp_set_numthreads

Occasionally, you may want to know how many execution threads are available.
mp_numthreads is a zero-argument integer function that returns the total number of
execution threads for this job. The count includes the master thread.

In addition, this routine has the side-effect of freezing (for eternity) the number of
threads to the returned value, so use this routine sparingly. To determine the number
of threads without this freeze property, see the description of
mp_suggested_numthreads below.

mp_set_numthreads takes a single-integer argument. It changes the default number
of threads to the specified value. A subsequent call to mp_setup will use the specified
value rather than the original defaults. If the slave threads have already been created,
this call will not change their number. It only has an effect when mp_setup is called.

mp_suggested_numthreads

The mp_suggested_numthreads (integer*4) uses the supplied value as a hint about
how many threads to use in subsequent parallel regions, and returns the previous
value of the number of threads to be employed in parallel regions. It does not affect
currently executing parallel regions, if any. The implementation may ignore this hint
depending on factors such as overall system load. This routine returns the previous
value of the number of threads being employed at parallel regions. Therefore, to
simply query the number of threads, call it with the value 0.

007–2361–009 117

B: Multiprocessing Directives (Outmoded)

The mp_suggested_numthreads interface is available whether or not dynamic
threads is turned on (see "Using Dynamic Threads ", page 120).

mp_my_threadnum

mp_my_threadnum is a zero-argument function that allows a thread to differentiate
itself while in a parallel region. If there are n execution threads, the function call
returns a value between zero and n – 1. The master thread is always thread zero.
This function can be useful when parallelizing certain kinds of loops. Most of the
time the loop index variable can be used for the same purpose. Occasionally, the loop
index may not be accessible, as, for example, when an external routine is called from
within the parallel loop. This routine provides a mechanism for those cases.

mp_setlock, mp_unsetlock, mp_barrier

mp_setlock, mp_unsetlock, and mp_barrier are zero-argument subroutines that
provide convenient (although limited) access to the locking and barrier functions
provided by ussetlock, usunsetlock, and barrier. These subroutines are
convenient because you do not need to initialize them; calls such as usconfig and
usinit are done automatically. The limitation is that there is only one lock and one
barrier. For most programs, this amount is sufficient. If your program requires more
complex or flexible locking facilities, use the ussetlock family of subroutines
directly.

Environment Variables for Origin Systems

The environment variables are described in these subsections:

• "Using the MP_SET_NUMTHREADS, MP_BLOCKTIME, MP_SETUP environment
variables", page 119

• "Using Dynamic Threads ", page 120

• "Controlling the Stacksize of Slave Processes", page 120

• "Specifying Page Sizes for Stack, Data, and Text ", page 121

• "Specifying Run-Time Scheduling ", page 121

118 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

Using the MP_SET_NUMTHREADS, MP_BLOCKTIME, MP_SETUP environment variables

The MP_SET_NUMTHREADS, MP_BLOCKTIME, and MP_SETUP environment variables
act as an implicit call to the corresponding routine(s) of the same name at program
start-up time.

For example, the csh command

% setenv MP_SET_NUMTHREADS 2

causes the program to create two threads regardless of the number of CPUs actually
on the machine, just like the source statement

CALL MP_SET_NUMTHREADS (2)

Similarly, the following sh commands

% set MP_BLOCKTIME=0

% export MP_BLOCKTIME

prevent the slave threads from autoblocking, just like the source statement

call mp_blocktime (0)

For compatibility with older releases, the environment variable NUM_THREADS is
supported as a synonym for MP_SET_NUMTHREADS.

To help support networks with multiple multiprocessors and multiple CPUs, the
environment variable MP_SET_NUMTHREADS also accepts an expression involving
integers +, −, min, max, and the special symbol all, which stands for “the number of
CPUs on the current machine.” For example, the following command selects the
number of threads to be two fewer than the total number of CPUs (but always at
least one):

% setenv MP_SET_NUMTHREADS ’max(1,all-2)’

Setting the _DSM_WAIT Environment Variable

This variable controls how a thread waits for a synchronization event, such as a lock
or a barrier. If this variable is set to YIELD, a waiting thread spins for a while and
then invokes sginap(0), surrendering the CPU to another waiting process (if any).
If set to SPIN, a waiting thread simply busy-waits in a loop until the synchronization
event succeeds. The default value is YIELD.

007–2361–009 119

B: Multiprocessing Directives (Outmoded)

Using Dynamic Threads

In an environment with long running jobs and varying workloads, you may want to
vary the number of threads during execution of some jobs.

Setting MP_SUGNUMTHD causes the run-time library to create an additional,
asynchronous process that periodically wakes up and monitors the system load.
When idle processors exist, this process increases the number of threads, up to a
maximum of MP_SET_NUMTHREADS. When the system load increases, it decreases the
number of threads, possibly to as few as 1. When MP_SUGNUMTHD has no value, this
feature is disabled and multithreading works as before.

Note: The number of threads being used is adjusted only at the start of a parallel
region (for example, a doacross), and not within a parallel region.

In the past, the number of threads utilized during execution of a multiprocessor job
was generally constant, set for example, using MP_SET_NUMTHREADS.

The environment variables MP_SUGNUMTHD_MIN and MP_SUGNUMTHD_MAX are used
to limit this feature as desired. When MP_SUGNUMTHD_MIN is set to an integer value
between 1 and MP_SET_NUMTHREADS, the process will not decrease the number of
threads below that value.

When MP_SUGNUMTHD_MAX is set to an integer value between the minimum number
of threads and MP_SET_NUMTHREADS, the process will not increase the number of
threads above that value.

If you set any value in the environment variable MP_SUGNUMTHD_VERBOSE,
informational messages are written to stderr whenever the process changes the
number of threads in use.

Calls to mp_numthreads and mp_set_numthreads are taken as a sign that the
application depends on the number of threads in use. The number in use is frozen
upon either of these calls; and if MP_SUGNUMTHD_VERBOSE is set, a message to that
effect is written to stderr.

Controlling the Stacksize of Slave Processes

Use the environment variable, MP_SLAVE_STACKSIZE, to control the stacksize of
slave processes. Set this variable to the desired stacksize in bytes. The default value is
16 MB (4 MB for greater than 64 threads). Note that slave processes only allocate their

120 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

local data onto their stack; shared data (even if allocated on the master’s stack) is not
counted.

Specifying Page Sizes for Stack, Data, and Text

Use the environment variables, PAGESIZE_STACK, PAGESIZE_DATA, and
PAGESIZE_TEXT, to specify the desired page size (in KB) for each of stack, data, and
text segments.

Specifying Run-Time Scheduling

These environment variables specify the type of scheduling to use on DOACROSS
loops that have their scheduling type set to RUNTIME. For example, the following csh
commands cause loops with the RUNTIME scheduling type to be executed as
interleaved loops with a chunk size of 4:

% setenv MP_SCHEDTYPE INTERLEAVE

% setenv CHUNK 4

The defaults are the same as on the DOACROSS directive; if neither variable is set,
SIMPLE scheduling is assumed. If MP_SCHEDTYPE is set, but CHUNK is not set, a
CHUNK of 1 is assumed. If CHUNK is set, but MP_SCHEDTYPE is not, DYNAMIC
scheduling is assumed.

Specifying Gang Scheduling

Set MPC_GANG to ON specify gang scheduling. Set to OFF to disable gang scheduling.

Local COMMON Blocks

A special ld option allows named COMMON blocks to be local to a process. Each
process in the parallel job gets its own private copy of the common block. This can be
helpful in converting certain types of Fortran programs into a parallel form.

The common block must be a named COMMON (blank COMMON may not be made local),
and it must not be initialized by DATA statements.

To create a local COMMON block, give the special loader directive -Wl,-Xlocal
followed by a list of COMMON block names. Note that the external name of a COMMON
block known to the loader has a trailing underscore and is not surrounded by slashes.
For example, the command

007–2361–009 121

B: Multiprocessing Directives (Outmoded)

% f77 -mp a.o -Wl,-Xlocal,foo_

makes the COMMON block /foo/ a local COMMON block in the resulting a.out file. You
can specify multiple -Wl,-Xlocal options if necessary.

It is occasionally desirable to be able to copy values from the master thread’s version
of the COMMON block into the slave thread’s version. The special directive C$COPYIN
allows this. It has the form

C$COPYIN item [,item]...

Each item must be a member of a local COMMON block. It can be a variable, an array,
an individual element of an array, or the entire COMMON block.

Note: The C$COPYIN directive cannot be executed from inside a parallel region.

For example,

C$COPYIN x,y, /foo/, a(i)

propagates the values for x and y, all the values in the COMMON block foo, and the
ith element of array a. All these items must be members of local COMMON blocks.
Note that this directive is translated into executable code, so in this example i is
evaluated at the time this statement is executed.

Compatibility With sproc

The parallelism used in Fortran is implemented using the standard system call
sproc. It is recommended that programs not attempt to use both C$DOACROSS loops
and sproc calls. It is possible, but there are several restrictions:

• Any threads you create may not execute $DOACROSS loops; only the original
thread is allowed to do this.

• The calls to routines like mp_block and mp_destroy apply only to the threads
created by mp_create or to those automatically created when the Fortran job
starts; they have no effect on any user-defined threads.

• Calls to routines such as m_get_numprocs do not apply to the threads created by
the Fortran routines. However, the Fortran threads are ordinary subprocesses;
using the routine kill with the arguments 0 and sig (for example, kill(0,sig))

122 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

to signal all members of the process group might kill threads used to execute
C$DOACROSS. If you choose to intercept the SIGCLD signal, you must be prepared
to receive this signal when the threads used for the C$DOACROSS loops exit; this
occurs when mp_destroy is called or at program termination.

• Note in particular that m_fork is implemented using sproc, so it is not legal to
m_fork a family of processes that each subsequently executes C$DOACROSS loops.
Only the original thread can execute C$DOACROSS loops.

DOACROSS Implementation
This section discusses how multiprocessing is implemented in a DOACROSS routine.
This information is useful when you use a debugger or interpret the results of an
execution profile.

Loop Transformation

When the Fortran compiler encounters a C$DOACROSS directive, it spools the body of
the corresponding DO loop into a separate subroutine and replaces the loop with a
call to a special library routine __mp_parallel_do.

The newly created routine is named by appending .pregion to the name of the
original routine, followed by the number of the parallel loop in the routine (where 0
is the first loop). For example, the first parallel loop in a routine named foo is named
foo.pregion0, the second parallel loop is foo.pregion1, and so on.

If a loop occurs in the main routine and if that routine has not been given a name by
the PROGRAM statement, its name is assumed to be main. Any variables declared to
be LOCAL in the original C$DOACROSS statement are declared as local variables in the
spooled routine. References to SHARE variables are resolved by referring back to the
original routine.

Because the spooled routine is now just a DO loop, the routine uses subroutine
arguments to specify which part of the loop a particular process is to execute. The
spooled routine has three arguments: the starting value for the index, the number of
times to execute the loop, and a special flag word. As an example, the following
routine that appears on line 1000:

SUBROUTINE EXAMPLE(A, B, C, N)

REAL A(*), B(*), C(*)

C$DOACROSS LOCAL(I,X)

007–2361–009 123

B: Multiprocessing Directives (Outmoded)

DO I = 1, N
X = A(I)*B(I)

C(I) = X + X**2

END DO

C(N) = A(1) + B(2)

RETURN
END

produces this spooled routine to represent the loop:

SUBROUTINE EXAMPLE.pregion
X (_LOCAL_START, _LOCAL_NTRIP, _THREADINFO)

INTEGER*4 _LOCAL_START

INTEGER*4 _LOCAL_NTRIP

INTEGER*4 _THREADINFO

INTEGER*4 I
REAL X

INTEGER*4 _DUMMY

I = _LOCAL_START

DO _DUMMY = 1,_LOCAL_NTRIP

X = A(I)*B(I)
C(I) = X + X**2

I = I + 1

END DO

END

Executing Spooled Routines

The set of processes that cooperate to execute the parallel Fortran job are members of
a process share group created by the system call sproc. The process share group is
created by special Fortran start-up routines that are used only when the executable is
linked with the -mp option, which enables multiprocessing.

The first process is the master process. It executes all the nonparallel portions of the
code. The other processes are slave processes; they are controlled by the routine
mp_slave_control. When they are inactive, they wait in the special routine
__mp_slave_wait_for_work.

The __mp_parallel_do routine divides the work and signals the slaves. The master
process then calls the spooled routine to do its share of the work. When a slave is
signaled, it wakes up from the wait loop, calculates which iterations of the spooled
xDO loop it is to execute, and then calls the spooled routine with the appropriate

124 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

arguments. When a slave completes its execution of the spooled routine, it reports
that it has finished and returns to __mp_slave_wait_for_work.

When the master completes its execution of its portion of the spooled routine, it waits
in the special routine mp_wait_for_loop_completion until all the slaves have
completed processing. The master then returns to the main routine and continues
execution.

PCF Directives
In addition to the simple loop-level parallelism offered by the C$DOACROSS directive
(described in "Parallel Loops", page 90), the compiler supports a more general model
of parallelism. This model is based on the work done by the Parallel Computing
Forum (PCF), which itself formed the basis for the proposed ANSI-X3H5 standard.
The compiler supports this model through compiler directives, rather than extensions
to the source language.

The main concept in this model is the parallel region, which can be any
arbitrary section of code (not just a DO loop). Within the parallel region, there are
special work-sharing constructs that can be used to divide the work among
separate processes or threads. The parallel region can also contain a critical
section construct, where exactly one process executes at a time.

The master thread executes the user program until it reaches a parallel region. It then
spawns one or more slave threads that begin executing code at the beginning of a
parallel region. Each thread executes all the code in the region until a work sharing
construct is encountered. Each thread then executes some portion of the work sharing
construct, and then resumes executing the parallel region code. At the end of the
parallel region, all the threads synchronize, and the master thread continues execution
of the user program.

The PCF directives, summarized in Table B-1, page 126, implement the general model
of parallelism. They look like Fortran comments, with a C in column one. The
compiler recognizes these directives when multiprocessing is enabled with either the
-mp option. (Multiprocessing is also enabled with the -apo option if you have
purchased the MIPSpro Auto-Parallelizing Option.) If multiprocessing is not enabled,
the compiler treats these statements as comments. Therefore, you can compile
identical source with a single-processing compiler or by Fortran without the
multiprocessing option. The PCF directives start with the characters C$PAR.

007–2361–009 125

B: Multiprocessing Directives (Outmoded)

Table B-1 Summary of PCF Directives

Directive Description

C$PAR BARRIER Ensures that each process waits until all processes reach the
barrier before proceeding.

C$PAR [END] CRITICAL SECTION Ensures that the enclosed block of code is executed by only one
process at a time by using a global lock.

C$PAR [END] PARALLEL Encloses a parallel region, which includes work-sharing constructs
and critical sections.

C$PAR PARALLEL DO Precedes a single DO loop for which separate iterations are
executed by different processes. This directive is equivalent to the
C$DOACROSS directive.

C$PAR [END] PDO Separate iterations of the enclosed loop are executed by different
processes. This directive must be inside a parallel region.

C$PAR [END] PSECTION[S] Parcels out each block of code in turn to a process.

C$PAR SECTION Signifies a starting line for an individual section within a parallel
section.

C$PAR [END] SINGLE PROCESS Ensures that the enclosed block of code is executed by exactly one
process.

C$PAR & Continues a PCF directive onto multiple lines.

Parallel Region

A parallel region encloses any number of PCF constructs (described in "PCF
Constructs", page 127). It signifies the boundary within which slave threads execute.
A user program can contain any number of parallel regions. The syntax of the
parallel region is

C$PAR PARALLEL [clause [[,] clause]...]
code

C$PAR END PARALLEL

where valid clauses are

126 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

[IF (logical_expression)]
[{LOCAL | PRIVATE}(item [,item])...]
[{SHARE | SHARED}(item [,item])...]

The IF, LOCAL, and SHARED clauses have the same meaning as in the C$DOACROSS
directive (refer to "Writing Parallel Fortran", page 91).

The preferred form of the directive has no commas between the clauses. The SHARED
clause is preferred over SHARE and LOCAL is preferred over PRIVATE.

In the following code, all threads enter the parallel region and call the routine foo:

subroutine ex1(index)

integer i

C$PAR PARALLEL LOCAL(i)
i = mp_my_threadnum()

call foo(i)

C$PAR END PARALLEL

end

PCF Constructs

The three types of PCF constructs are work-sharing constructs, critical sections, and
barriers. All master and slave threads synchronize at the bottom of a work-sharing
construct. None of the threads continue past the end of the construct until they all
have completed execution within that construct.

The four work-sharing constructs are

• parallel DO

• PDO

• parallel sections

• single process

If specified, the PDO, parallel section, and single process constructs must appear
inside of a parallel region; the parallel DO construct cannot. Specifying a parallel DO
construct inside of a parallel region produces a syntax error.

The critical section construct protects a block of code with a lock so that it is executed
by only one thread at a time. Threads do not synchronize at the bottom of a critical
section.

007–2361–009 127

B: Multiprocessing Directives (Outmoded)

The barrier construct ensures that each process that is executing waits until all others
reach the barrier before proceeding.

Parallel DO

The parallel DO construct is the same as the C$DOACROSS directive (described in
"C$DOACROSS", page 91) and conceptually the same as a parallel region containing
exactly one PDO construct and no other code. Each thread inside the enclosing
parallel region executes separate iterations of the loop within the parallel DO
construct. The syntax of the parallel DO construct is

C$PAR PARALLEL DO [clause [[,] clause]...]

"C$DOACROSS", page 91, describes valid values for clause with the exception of the
MP_SCHEDTYPE=mode clause. For the C$PAR PARALLEL DO directive,
MP_SCHEDTYPE= is optional; you can just specify mode.

PDO

Each thread inside the enclosing parallel region executes a separate iteration of the
loop within the PDO construct. The syntax of the PDO construct, which can only be
specified within a parallel region, is

C$PAR PDO [clause [[,] clause]]...]
code

[C$PAR END PDO [NOWAIT]]

The valid values for clause are:

[{LOCAL | PRIVATE} (item[,item])...]
[{LASTLOCAL | LAST LOCAL} (item[,item])...]
[(ORDERED)]
[sched]
[chunk]

LOCAL, LASTLOCAL, sched, and chunk have the same meaning as in the C$DOACROSS
directive (refer to "Writing Parallel Fortran", page 91). Note in particular that it is
legal to declare a data item as LOCAL in a PDO even if it was declared as SHARED in
the enclosing parallel region. The (ORDERED) clause is equivalent to a sched clause of
DYNAMIC and a chunk clause of 1. The parenthesis are required.

LASTLOCAL is preferred over LAST LOCAL and LOCAL is preferred over PRIVATE.

128 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

The END PDO directive is optional. If specified, this directive must appear
immediately after the end of the DO loop. The optional NOWAIT clause specifies that
each process should proceed directly to the code immediately following the directive.
If you do not specify NOWAIT, the processes will wait until all have reached the
directive before proceeding.

As an example of the PDO construct, consider the following code:

subroutine ex2(a,n)

real a(n)

C$PAR PARALLEL local(i) shared(a)
C$PAR PDO

do i = 1, n

a(i) = a(i) + 1.0

enddo

C$PAR END PARALLEL
end

This sample code is the same as a C$DOACROSS loop. In fact, the compiler recognizes
this as a special case and generates the same (more efficient) code as for a
C$DOACROSS directive.

Parallel Sections

The parallel sections construct is a parallel version of the Fortran 90 SELECT
statement. Each block of code is parcelled out in turn to a separate thread. The syntax
of the parallel sections construct is

C$PAR PSECTION[S] [clause [[,]clause]]...
code

[C$PAR SECTION

code] ...

C$PAR END PSECTION[S] [NOWAIT]

where the only valid value for clause is

[{LOCAL | PRIVATE} (item [,item])...]

LOCAL is preferred over PRIVATE and has the same meaning as for the C$DOACROSS
directive (refer to "C$DOACROSS", page 91). Note in particular that it is legal to
declare a data item as LOCAL in a parallel sections construct even if it was declared as
SHARED in the enclosing parallel region.

007–2361–009 129

B: Multiprocessing Directives (Outmoded)

The optional NOWAIT clause specifies that each process should proceed directly to the
code immediately following the directive. If you do not specify NOWAIT, the processes
will wait until all have reached the END PSECTION directive before proceeding.

Parallel sections must appear within a parallel region. They can contain critical
section constructs (described in "Critical Section", page 134) but cannot contain any of
the following types of constructs:

• PDO

• parallel DO or C$DOACROSS

• single process

Each code block is executed in parallel (depending on the number of processes
available). The code blocks are assigned to threads one at a time, in the order
specified. Each code block is executed by only one thread. For example, consider the
following code:

subroutine ex3(a,n1,b,n2,c,n3)

real a(n1), b(n2), c(n3)

C$PAR PARALLEL local(i) shared(a,b,c)

C$PAR PSECTIONS

C$PAR SECTION

do i = 1, n1
a(i) = 0.0

enddo

C$PAR SECTION

do i = 1, n2

b(i) = 0.5
enddo

C$PAR SECTION

call normalize(c,n3)

do i = 1, n3

c(i) = c(i) + 1.0
enddo

C$PAR END PSECTION

C$PAR END PARALLEL

end

The first thread to enter the parallel sections construct executes the first block, the
second thread executes the second block, and so on. This example has only three
sections, so if more than three threads are in the parallel region, the fourth and higher

130 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

threads wait at the C$PAR END PSECTION directive until all threads are finished. If
the parallel region is being executed by only two threads, whichever thread finishes
its block first continues and executes the remaining block.

This example uses DO loops, but a parallel section can be any arbitrary block of code.
Be aware of the significant overhead of a parallel construct. Make sure the amount of
work performed is enough to outweigh the extra overhead.

The sections within a parallel sections construct are assigned to threads one at a time,
from the top down. There is no other implied ordering to the operations within the
sections. In particular, a later section cannot depend on the results of an earlier
section, unless some form of explicit synchronization is used. If there is such explicit
synchronization, you must be sure that the lexical ordering of the blocks is a legal
order of execution.

Single Process

The single process construct, which can only be specified within a parallel region,
ensures that a block of code is executed by exactly one process. The syntax of the
single process construct is

C$PAR SINGLE PROCESS [clause [[,] clause]...]
code

C$PAR END SINGLE PROCESS [NOWAIT]

where the only valid value for clause is

[{LOCAL | PRIVATE} (item [,item]...)]

LOCAL is preferred over PRIVATE and has the same meaning as for the C$DOACROSS
directive (refer to "C$DOACROSS", page 91). Note in particular that it is legal to
declare a data item as LOCAL in a single process construct even if it was declared as
SHARED in the enclosing parallel region.

The optional NOWAIT clause specifies that each process should proceed directly to the
code immediately following the directive. If you do not specify NOWAIT, the
processes will wait until all have reached the directive before proceeding.

This construct is semantically equivalent to a parallel sections construct with only one
section. The single process construct provides a more descriptive syntax. For
example, consider the following code:

real function ex4(a,n, big_max, bmax_x, bmax_y)

real a(n,n), big_max

007–2361–009 131

B: Multiprocessing Directives (Outmoded)

integer bmax_x, bmax_y
C$ volatile big_max, bmax_x, bmax_y

C$ volatile cur_max, index_x, index_y

index_x = 0

index_y = 0

cur_max = 0.0
C$PAR PARALLEL local(i,j)

C$PAR& shared(a,n,index_x,index_y,cur_max,

C$PAR& big_max,bmax_x,bmax_y)

C$PAR PDO

do j = 1, n

do i = 1, n
if (a(i,j) .gt. cur_max) then

C$PAR CRITICAL SECTION

if (a(i,j) .gt. cur_max) then

index_x = i

index_y = j
cur_max = a(i,j)

endif

C$PAR END CRITICAL SECTION

endif

enddo

enddo
C$PAR SINGLE PROCESS

if (cur_max .gt. big_max) then

big_max = (big_max + cur_max) / 2.0

bmax_x = index_x

bmax_y = index_y
endif

C$PAR END SINGLE PROCESS

C$PAR PDO

do j = 1, n

do i = 1, n
a(i,j) = a(i,j)/big_max

enddo

enddo

C$PAR END PARALLEL

ex4 = cur_max

end

132 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

The first thread to reach the single process section executes the code in that block. All
other threads wait at the end of the block until the code has been executed.

This example contains a number of interesting points to be examined. First, note the
use of the VOLATILE declaration. Any data item that might be written by one thread
and then read by a different thread must be marked as VOLATILE. Making a variable
VOLATILE can reduce opportunities for optimization, so the declarations are prefixed
by C$ to prevent the single-processor version of the code from being penalized. Refer
to the MIPSpro Fortran 77 Language Reference Manual, for more information about the
VOLATILE statement. Also see "Synchronization Intrinsics", page 140.

Second, note the use of the odd looking repetition of the IF test in the first parallel
loop:

if (a(i,j) .gt. cur_max) then

C$PAR CRITICAL SECTION

if (a(i,j) .gt. cur_max) then

This practice is usually called test&test&set. It is a multi-processing optimization.
Note that the following straight forward code segment is incorrect:

do i = 1, n
if (a(i,j) .gt. cur_max) then

C$PAR CRITICAL SECTION

index_x = i

index_y = j

cur_max = a(i,j)

C$PAR END CRITICAL SECTION
endif

enddo

Because many threads execute the loop in parallel, there is no guarantee that once
inside the critical section, cur_max still has the same value it did in the IF test
outside the critical section (some other thread may have updated it). In particular,
cur_max may now have a value that is larger than a(i,j). Therefore, the critical
section must be locked before testing the value of cur_max. Changing the previous
code into the equally straightforward

do i = 1, n

C$PAR CRITICAL SECTION

if (a(i,j) .gt. cur_max) then

index_x = i

index_y = j

007–2361–009 133

B: Multiprocessing Directives (Outmoded)

cur_max = a(i,j)
endif

C$PAR END CRITICAL SECTION

enddo

works correctly, but suffers from a serious performance penalty: the critical section
lock must be acquired and released (an expensive operation) for each element of the
array. Because the values are rarely updated, this process involves a lot of wasted
effort. It is almost certainly slower than just executing the loop serially.

Combining the two methods, as in the original example, produces code that is both
fast and correct. If the IF test outside of the critical section fails, you can be certain
that the values will not be updated, and can proceed. You can expect that the outside
IF test will account for the majority of cases. If the outer IF test passes, then the
values might be updated, but you cannot always be certain. To ensure correctness,
you must perform the test again after acquiring the critical section lock.

You can prefix one of the two identical IF tests with C$ to reduce overhead in the
non-multiprocessed case.

Lastly, note the difference between the single process and critical section constructs. If
several processes arrive at a critical section construct, they execute the code one at a
time. However, they will all execute the code. If several processes arrive at a single
process construct, only one process executes the code. The other processes bypass the
code and wait at the end of the construct for the chosen process to finish.

Critical Section

The critical section construct restricts execution of a block of code so that only one
process can execute it at a time. Another process attempting to gain entry to the
critical section must wait until the previous process has exited.

The critical section construct can appear anywhere in a program, including inside and
outside a parallel region and within a C$DOACROSS loop. The syntax of the critical
section construct is

C$PAR CRITICAL SECTION [(lock_variable)]

code
C$PAR END CRITICAL SECTION

The lock_variable is an optional integer variable that must be initialized to zero. The
parenthesis are required. If you do not specify lock_variable, the compiler
automatically supplies a global lock. Multiple critical section constructs inside the

134 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

same parallel region are considered to be independent of each other unless they use
the same explicit lock_variable.

Consider the following code:

integer function num_exceptions(a,n,biggest_allowed)

double precision a(n,n,n), biggest_allowed

integer count

integer lock_var

volatile count

unt = 0
lock_var = 0

C$PAR PARALLEL local(i,j,k) shared(count,lock_var)

C$PAR PDO

do 10 k = 1,n

do 10 j = 1,n
do 10 i = 1,n

if (a(i,j,k) .gt. biggest_allowed) then

C$PAR CRITICAL SECTION (lock_var)

count = count + 1
C$PAR END CRITICAL SECTION (lock_var)

else

call transform(a(i,j,k))

if (a(i,j,k) .gt. biggest_allowed) then

C$PAR CRITICAL SECTION (lock_var)

count = count + 1
C$PAR END CRITICAL SECTION (lock_var)

endif

endif

10 continue

C$PAR END PARALLEL
num_exceptions = count

return

end

This example demonstrates the use of the lock variable (lock_var). A C$PAR
CRITICAL SECTION directive ensures that no more than one process executes the
enclosed block of code at a time. However, if there are multiple critical sections,
different processes can be in different critical sections at the same time. This example
does not allow different processes to be in different critical sections at the same time
because both critical sections control access to the same variable (count). Specifying

007–2361–009 135

B: Multiprocessing Directives (Outmoded)

the same lock variable for both critical sections ensures that no more than one process
is executing either of the critical sections that use that lock variable. Note that the
lock_var must be SHARED (so that all processes use the same lock), and that count
must be volatile (because other processes might change its value). Refer to
"Synchronization Intrinsics", page 140.

Barrier Constructs

A barrier construct ensures that each process waits until all processes reach the
barrier before proceeding. The syntax of the barrier construct is

C$PAR BARRIER

Occasionally, the clauses in PCF directives are longer than one line. You can use the
C$PAR & directive to continue a directive onto multiple lines.

For example,

C$PAR PARALLEL local(i,j)

C$PAR& shared(a,n,index_x,index_y,cur_max,
C$PAR& big_max,bmax_x,bmax_y)

Restrictions

The three work-sharing constructs, PDO, PSECTION, and SINGLE PROCESS, must be
executed by all the threads executing in the parallel region (or none of the threads).
The following is illegal:

.

.

.

C$PAR PARALLEL
if (mp_my_threadnum() .gt. 5) then

C$PAR SINGLE PROCESS

many_processes = .true.

C$PAR END SINGLE PROCESS

endif
.

.

.

136 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

This code will hang forever when run with enough processes. One or more process
will be stuck at the C$PAR END SINGLE PROCESS directive waiting for all the
threads to arrive. Because some of the threads never took the appropriate branch,
they will never encounter the construct. However, the following kind of simple
looping is supported:

code
C$PAR PARALLEL local(i,j) shared(a)

do i= 1,n
C$PAR PDO

do j = 2,n

code

The distinction here is that all of the threads encounter the work-sharing construct,
they all complete it, and they all loop around and encounter it again.

Note that this restriction does not apply to the critical section construct, which
operates on one thread at a time without regard to any other threads.

Parallel regions cannot be lexically nested inside of other parallel regions, nor can
work-sharing constructs be nested. However, as an aid to writing library code, you
can call an external routine that contains a parallel region even from within a parallel
region. In this case, only the first region is actually run in parallel. Therefore, you can
create a parallelized routine without accounting for whether it will be called from
within an already parallelized routine.

Effects on timing

The more general PCF constructs are typically slower than the special case parallelism
offered by the C$DOACROSS directive. They are slower because of the extra
synchronization required. When a C$DOACROSS loop executes, there is a
synchronization point at entry and another at exit. When a parallel region executes,
there is a synchronization point at entry to the region, another at each entry to a
work-sharing construct, another at each exit from a work-sharing construct, and one
at exit from the region. Thus, several separate C$DOACROSS loops typically execute
faster than a single parallel region with several PDO constructs. Limit your use of the
parallel region construct to those few cases that actually need it.

007–2361–009 137

B: Multiprocessing Directives (Outmoded)

Communicating Between Threads Through Thread Local Data
The routines described below allow you to perform explicit communication between
threads within their MP Fortran program. These communication mechanisms are
similar to message-passing, one-sided-communication, or shmem, and may be
desirable for reasons of performance and/or style.

The operations allow a thread to fetch from (get) or send to (put) data belonging to
other threads. Therefore these operations can be performed only on data that has
been declared to be -Xlocal (that is, each thread has its own private copy of that
data; see the ld(1) reference page for details on Xlocal), the equivalent of the Cray
TASKCOMMON directive. A get operation requires that source point to Xlocal data,
while a put operation requires that target point to Xlocal data.

The routines are similar to the original shmem routines (see the shmem reference
page), but are prefixed by mp_.

Routines are listed below.

mp_shmem_get32 (integer*4 target,

integer*4 source,
integer*4 length,

integer*4 source_thread)

mp_shmem_put32 (integer*4 target,

integer*4 source,

integer*4 length,
integer*4 target_thread)

mp_shmem_iget32 (integer*4 target,

integer*4 source,

integer*4 target_inc,
integer*4 source_inc,

integer*4 length,

integer*4 source_thread)

mp_shmem_iput32 (integer*4 target,
integer*4 source,

integer*4 target_inc,

integer*4 source_inc,

integer*4 length,

integer*4 target_thread)

138 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

mp_shmem_get64 (integer*8 target,
integer*8 source,

integer*4 length,

integer*4 source_thread)

mp_shmem_put64 (integer*8 target,
integer*8 source,

integer*4 length,

integer*4 target_thread)

mp_shmem_iget64 (integer*8 target,

integer*8 source,
integer*4 target_inc,

integer*4 source_inc,

integer*4 length,

integer*4 source_thread)

mp_shmem_iput64 (integer*8 target,

integer*8 source,

integer*4 target_inc,

integer*4 source_inc,

integer*4 length,

integer*4 target_thread)

For the routines listed above:

• Both source and target are pointers to 32-bit quantities for the 32-bit versions, and
to 64-bit quantities for the 64-bit versions of the calls. The actual type of the data
is not important, since the routines perform a bit-wise copy.

• For a put operation, the target must be Xlocal. For a get operation, the source
must be Xlocal.

• Length specifies the number of elements to be copied, in units of 32/64-bit
elements, as appropriate.

• Source_thread/target_thread specify the thread-number of the remote PE.

• A “get” copies FROM the remote PE, and “put” copies TO the remote PE.

• Target_inc/source_inc are specified for the strided iget/iput operations. They specify
the “increment” (in units of 32/64 bit elements) along each of source and target

007–2361–009 139

B: Multiprocessing Directives (Outmoded)

when performing the data transfer. The number of elements copied during a
strided put/get operation is still determined by “length.”

Call these routines only after the threads have been created (typically, the first
doacross/parallel region). Performing these operations while the program is still
serial leads to a run-time error since each thread’s copy has not yet been created.

In the example below, compiling with -Wl,-Xlocal,mycommon_ ensures that each
thread has a private copy of x and y.

integer x

real*8 y(100)

common /mycommon/ x, y

The following example copies the value of x on thread 3 into the private copy of x for
the current thread.

call mp_shmem_get32 (x, x, 1, 3)

The next example copies the value of localvar into the thread-5 copy of x.

call mp_shmem_put32 (x, localvar, 1, 5)

The example below fetches values from the thread-7 copy of array y into
localarray.

call mp_shmem_get64 (localarray, y, 100, 7)

The next example copies the value of every other element of localarray into the
thread-9 copy of y.

call mp_shmem_iput64 (y, localarray, 2, 2, 50, 9)

Synchronization Intrinsics
The intrinsics described in this section provide a variety of primitive synchronization
operations. Besides performing the particular synchronization operation, each of these
intrinsics has two key properties:

• The function performed is guaranteed to be atomic (typically achieved by
implementing the operation using a sequence of load-linked and/or
store-conditional instructions in a loop).

140 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

• Associated with each instrinsic are certain memory barrier properties that restrict
the movement of memory references to visible data across the intrinsic operation
(by either the compiler or the processor).

A visible memory reference is a reference to a data object potentially accessible by
another thread executing in the same shared address space. A visible data object
can be one of the following types:

– Fortran COMMON data

– data declared extern

– volatile data

– static data (either file-scope or function-scope)

– data accessible via function parameters

– automatic data (local-scope) that has had its address taken and assigned to
some object that is visible (recursively)

The memory barrier semantics of an intrinsic can be one of the following types:

– acquire barrier, which disallows the movement of memory references to
visible data from after the intrinsic (in program order) to before the intrinsic
(this behavior is desirable at lock-acquire operations)

– release barrier, which disallows the movement of memory references to
visible data from before the intrinsic (in program order) to after the intrinsic
(this behavior is desirable at lock-release operations)

– full barrier, which disallows the movement of memory references to
visible data past the intrinsic (in either direction), and is thus both an acquire
and a release barrier. A barrier only restricts the movement of memory
references to visible data across the intrinsic operation: between
synchronization operations (or in their absence), memory references to visible
data may be freely reordered subject to the usual data-dependence constraints.

!
Caution: Conditional execution of a synchronization intrinsic (such as within an if
or a while statement) does not prevent the movement of memory references to
visible data past the overall if or while construct.

007–2361–009 141

B: Multiprocessing Directives (Outmoded)

Synopsis

integer*4 i4, j4, k4, jj4
integer*8 i8, j8, k8, jj8

logical*4 l4

logical*8 l8

Atomic fetch-and-op Operations

i4 = fetch_and_add (j4, k4)

i8 = fetch_and_add (j8, k8)

i4 = fetch_and_sub (j4, k4)

i8 = fetch_and_sub (j8, k8)
i4 = fetch_and_or (j4, k4)

i8 = fetch_and_or (j8, k8)

i4 = fetch_and_and (j4, k4)

i8 = fetch_and_and (j8, k8)

i4 = fetch_and_xor (j4, k4)

i8 = fetch_and_xor (j8, k8)
i4 = fetch_and_nand (j4, k4)

i8 = fetch_and_nand (j8, k8)

Behavior:

1. Atomically performs the specified operation with the given value on j4, and
returns the old value of j4.

{ tmp = j4;

j4 = j4 <op> k4;

return tmp;
}

2. Full barrier.

Atomic op-and-fetch Operations

i4 = add_and_fetch (j4, k4)
i8 = add_and_fetch (j8, k8)

i4 = sub_and_fetch (j4, k4)

i8 = sub_and_fetch (j8, k8)

i4 = or_and_fetch (j4, k4)

142 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

i8 = or_and_fetch (j8, k8)
i4 = and_and_fetch (j4, k4)

i8 = and_and_fetch (j8, k8)

i4 = xor_and_fetch (j4, k4)

i8 = xor_and_fetch (j8, k8)

i4 = nand_and_fetch (j4, k4)
i8 = nand_and_fetch (j8, k8)

Behavior:

1. Atomically performs the specified operation with the given value on j4, and
returns the new value of j4.

{ j4 op = k4;

return j4;

}

2. Full barrier.

Atomic BOOL Operation

l4 = compare_and_swap(j4, k4, jj4)

l8 = compare_and_swap(j8, k8, jj8)

Behavior:

1. Atomically do the following: compare j4 to old value. If equal, store the new
value and return 1, otherwise return 0.

if (j4 .ne. oldvalue) return 0;

else {
j4 = newvalue

return 1;

}

2. Full barrier.

Atomic synchronize Operation

call synchronize

007–2361–009 143

B: Multiprocessing Directives (Outmoded)

Behavior:

1. Full barrier.

Atomic lock and unlock Operations

i4 = lock_test_and_set (j4 , k4)

i8 = lock_test_and_set (j8 , k8)

Behavior:

1. Atomically store the supplied value in j4 and return the old value of j4.

{ tmp = j4;
j4 = k4;

return tmp;

}

2. Acquire barrier.

call lock_release(i4)

call lock_release(i8)

Behavior:

1. Set j4 to 0.

{ j4 = 0 }

2. Release barrier.

Example of Implementing a Pure Spin-Wait Lock

The following example shows implementation of a spin-wait lock.

integer*4 lockvar

lockvar = 0

DO WHILE (lock_test_and_set (lockvar, 1) .ne. 0) /* acquire lock */

end do
... read and update shared variables ...

call lock_release (lockvar) /* release lock */

144 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

The memory barrier semantics of the intrinsics guarantee that no memory reference to
visible data is moved out of the above critical section, either before of the lock-acquire
or after the lock-release.

Note: Pure spin-wait locks can perform poorly under heavy contention.

007–2361–009 145

Appendix C

The Auto-Parallelizing Option (APO)

The Auto-Parallelizing Option is a compiler extension controlled with options in the
command line that invokes the MIPSpro auto-parallelizing compilers. It is an optional
software product for programs written for the N32 and N64 application binary
interfaces (see the ABI(5) man page for information on the N32 and N64 ABIs).
Although their runtime performance suffers slightly on single-processor systems,
parallelized programs can be created and debugged with the MIPSpro
auto-parallelizing compilers on any SGI system that uses a MIPS processor.

Note: APO is licensed and sold separately from the compiler. APO features in your
code are ignored unless you are licensed for this product. For sales and licensing
information, contact your SGI sales representative.

The MIPSpro APO is an extension integrated into the compiler; it is not a
source-to-source preprocessor as was used prior to the MIPSpro 7.2 release. If the
Auto-Parallelizing Option is installed, the compiler is considered a auto-parallelizing
compiler and is referred to as the MIPSpro Auto-Parallelizing Fortran 77 compiler.

Parallelization is the process of analyzing sequential programs for parallelism and
restructuring them to run efficiently on multiprocessor systems. The goal is to
minimize the overall computation time by distributing the computational workload
among the available processors. Parallelization can be automatic or manual.

During automatic parallelization, the Auto-Parallelizing Option extension of the
compiler analyzes and restructures the program with little or no intervention by you.
The MIPSpro APO automatically generates code that splits the processing of loops
among multiple processors. An alternative is manual parallelization, in which you
perform the parallelization using compiler directives and other programming
techniques.

Starting with the 7.2 release, the auto-parallelizing compilers integrate automatic
parallelization, provided by the MIPSpro APO, with other compiler optimizations,
such as interprocedural analysis (IPA) and loop nest optimization (LNO). Releases
prior to 7.2 relied on source-to-source preprocessors; the 7.2 and later versions
internalize automatic parallelization into the optimizer of the MIPSpro compilers. As
seen in Figure C-1, the MIPSpro APO works on an intermediate representation
generated during the compiling process. This provides several benefits:

007–2361–009 147

C: The Auto-Parallelizing Option (APO)

• Automatic parallelization is integrated with the optimizations for single processors.

• The options and compiler directives of the MIPSpro APO and the MIPSpro
compilers are consistent.

• Support for C++ is now possible.

148 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

.o file

Code generatorIntermediate representation
Main optimizationIntermediate representation

LNO

Intermediate representation

C
C++

Fortran 90 Fortran 77

.l

.l

.w2c.c

.w2f.f

.l

.l
.m
.anl

.l
.w2c.c

-apo list

-apo keep

-apo keep

-apo list

-apo keep

-apo keep

-mplist

-mplist
Auto-Parallelizing Option

Intermediate representation
Pre-optimizationIntermediate representation

Front end

sourceFortran 77

sourceC++

C
source

sourceFortran 90

.l

a12006

Figure C-1 Files Generated by the MIPSpro Auto-Parallelizing Option

007–2361–009 149

C: The Auto-Parallelizing Option (APO)

These benefits were not possible with the earlier MIPSpro compilers, which achieved
parallelization by relying on the Power Fortran and Power C preprocessors to provide
source-to-source conversions before compilation.

Using the MIPSpro APO
You invoke the Auto-Parallelizing Option by including the -apo flag with -n32 or
-64 compiles, on the compiler command line. When using the -o32 option, the -apo
option invokes Power Fortran. Additional flags allow you to generate reports to aid in
debugging. The syntax for compiling programs with the MIPSpro APO is as follows:

f77 options -apo apo_options -mplist filename

The auto-parallelizing compilers may also be invoked using the -pca flags (for C) or
-pfa (for Fortran). These options are provided for backward compatibility and
their use is not recommended.

The following arguments are used with the compiler command line:

options The MIPSpro Fortran 77 compiler command-line
options. The -O3 optimization option is recommended
for using the APO. See the f77(1) man page for details
about these options.

-apo Invoke the Auto-Parallelizing Option.

apo_options apo_options can be one of the following values:

list: Invoke the MIPSpro APO and produce a listing
of those parts of the program that can run in parallel
and those that cannot. The listing is stored in a .list
file.

keep: Invoke the MIPSpro APO and generate .list,
.w2f.f , .m, and .anl files. Because of data conflicts,
do not use with -mplist or the LNO options, -FLIST,
and -CLIST. See "Output files", page 154, for details
about all output files.

-mplist Generate the equivalent parallelized program for
Fortran 77 in a .w2f.f file. These files are discussed in
the section "The .w2f.f File", page 156. Do not use
with -apo keep, -FLIST, or -CLIST.

150 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

filename The name of the file containing the source code.

Starting with the 7.2.1 release of the MIPSpro compilers, the -apo keep and
-mplist options cause Auto-Parallelizing Fortran 77 to generate .m and w2f.f files
based on OpenMP directives.

The following is a typical compiler command line:

f77 -apo -O3 -n32 -mips4 -c -mplist myProg.f

This command uses Auto-Parallelizing Fortran 77 (f77 -apo) to compile (-c) the file
myProg.f with the MIPSpro compiler options -O3, -n32, and -mips4. The -n32
option requests an object with an N32 ABI; -mips4 requests that the code be
generated with the MIPS IV instruction set. Using -mplist requests that a
parallelized Fortran 77 program be created in the file myProg.w2f.f. If you are
using WorkShop Pro MPF, you may want to use -apo keep instead of -mplist to
produce a .anl file.

To use the Auto-Parallelizing Option correctly, remember these points:

• The MIPSpro APO can be used only with -n32 or -64 compiles. With -o32
compiles, the -pfa and the -pca flags invoke the older, Power parallelizers, and
the -apo flag is not supported.

• If you link separately, you must have one of the following in the link line:

– the -apo option

– the -mp option

• Because of data set conflicts, you can use only one of the following in a
compilation:

– -apo keep

– -mplist

– -FLIST or -CLIST

Common Command-Line Options
Prior to MIPSpro 7.2, parallelization was done by the Power Fortran and Power C
preprocessors, which had their own set of options. Starting with MIPSpro 7.2, the
Auto-Parallelizing Option does the parallelization and recognizes the same options as

007–2361–009 151

C: The Auto-Parallelizing Option (APO)

the compilers. This has reduced the number of options you need to know and has
simplified their use.

The following sections discuss the compiler command-line options most commonly
needed with the Auto-Parallelizing Option.

Optimization Options

The -O3 optimization option performs aggressive optimization and its use is
recommended to run the MIPSpro APO. The optimization at this level maximizes
code quality even if it requires extensive compile time or requires relaxing of the
language rules. The -O3 option uses transformations that are usually beneficial but
can sometimes hurt performance. This optimization may cause noticeable changes in
floating-point results due to the relaxation of operation-ordering rules. Floating-point
optimization is discussed further in "Other Optimization Options", page 154.

Interprocedural Analysis

Interprocedural analysis (IPA) is invoked by the -IPA command-line option. It
performs program optimizations that can only be done by examining the whole
program, rather than processing each procedure separately. The following are typical
IPA optimizations:

• procedure inlining

• identification of global constants

• dead function elimination

• dead variable elimination

• dead call elimination

• interprocedural alias analysis

• interprocedural constant propagation

As of the MIPSpro 7.2.1 release, the Auto-Parallelizing Option with IPA is able to
optimize only those loops whose function calls are determined to be “safe” to be
parallelized.

If IPA expands subroutines inlined in a calling routine, the subroutines are compiled
with the options of the calling routine. If the calling routine is not compiled with

152 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

-apo, none of its inlined subroutines are parallelized. This is true even if the
subroutines are compiled separately with -apo, because with IPA automatic
parallelization is deferred until link time.

Loop Nest Optimizer Options

The loop nest optimizer (LNO) performs loop optimizations that better exploit caches
and instruction-level parallelism. The following are some of the optimizations of the
LNO:

• loop interchange

• loop fusion

• loop fission

• cache blocking and outer loop unrolling

The LNO runs when you use the -O3 option. It is an integrated part of the compiler,
not a preprocessor. There are three LNO options of particular interest to users of the
MIPSpro APO:

• -LNO:parallel_overhead=n. This option controls the auto-parallelizing
compiler’s estimate of the overhead incurred by invoking parallel loops. The
default value for n varies on different systems, but is typically in the low
thousands of processor cycles.

• -LNO:auto_dist=on. This option requests that the MIPSpro APO insert data
distribution directives to provide the best memory utilization on the S2MP
(Scalable Shared-Memory Parallel) architecture of the Origin2000 platform.

• -LNO:ignore_pragmas. This option causes the MIPSpro APO to ignore all of
the directives and assertions discussed in "Compiler Directives for Automatic
Parallelization", page 167. This includes the C*$* NO CONCURRENTIZE directive.

You can view the transformed code in the original source language after the LNO
performs its transformations. Two translators, integrated into the compiler, convert
the compiler’s internal representation into the original source language. You can
invoke the desired translator by using the f77 -FLIST:=on or -flist option (these
are equivalent commands). For example, the following command creates an a.out
object file and the Fortran file test.w2f.f:

f77 -O3 -FLIST:=on test.f

007–2361–009 153

C: The Auto-Parallelizing Option (APO)

Because it is generated at a later stage of the compilation, this .w2f.f file differs
somewhat from the .w2f.f file generated by the -mplist option (see "The .w2f.f
File", page 156). You can read the .w2f.f file, which is a compilable Fortran
representation of the original program after the LNO phase. Because the LNO is not a
preprocessor, recompiling the .w2f.f file may result in an executable that differs
from the original compilation of the .f file.

Other Optimization Options

The -OPT:roundoff=n option controls floating-point accuracy and the behavior of
overflow and underflow exceptions relative to the source language rules. The default
for -O3 optimization is -OPT:roundoff=2. This setting allows transformations with
extensive effects on floating-point results. It allows associative rearrangement across
loop iterations, and the distribution of multiplication over addition and subtraction. It
disallows only transformations known to cause overflow, underflow, or cumulative
round-off errors for a wide range of floating-point operands.

With the -OPT:roundoff=2 or 3 level of optimization, the MIPSpro APO may
change the sequence of a loop’s floating-point operations in order to parallelize it.
Because floating-point operations have finite precision, this change may cause slightly
different results. If you want to avoid these differences by not having such loops
parallelized, you must compile with the -OPT:roundoff=0 or -OPT;roundoff=1
command-line option. In this example, at the default setting of -OPT:roundoff=2
for the -O3 level of optimization, the MIPSpro APO parallelizes this loop.

REAL A, B(100)
DO I = 1, 100

A = A + B(I)

END DO

At the start of the loop, each processor gets a private copy of A in which to hold a
partial sum. At the end of the loop, the partial sum in each processor’s copy is added
to the total in the original, global copy. This value of A may be different from the
value generated by a version of the loop that is not parallelized.

Output files
The MIPSpro APO provides a number of options to generate listings that describe
where parallelization failed and where it succeeded. With these listings, you may be
able to identify small problems that prevent a loop from being made paralle; then you

154 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

can often remove these data dependences, dramatically improving the program’s
performance.

When looking for loops to run in parallel, focus on the areas of the code that use
most of the execution time. To determine where the program spends its execution
time, you can use tools such as SpeedShop and the WorkShop Pro MPF Parallel
Analyzer View described in "About the .m and .anl Files", page 158.

The 7.2.1 release of the MIPSpro compilers is the first to incorporate OpenMP, a
cross-vendor API for shared-memory parallel programming in Fortran. OpenMP is a
collection of directives, library routines, and environment variables and is used to
specify shared-memory parallelism in source code. Additionally, OpenMP is intended
to enhance your ability to implement the coarse-grained parallelism of large code
sections. On SGI platforms, OpenMP replaces the older Parallel Computing Forum
(PCF) and SGI DOACROSS directives for Fortran. .

The MIPSpro APO interoperates with OpenMP as well as with the older directives.
This means that an Auto-Parallelizing Fortran 77 or Auto-Parallelizing Fortran 90 file
may use a mixture of directives from each source. As of the 7.2.1 release, the only
OpenMP-related changes that most MIPSpro APO users see are in the
Auto-Parallelizing Fortran 77 w2f.f and .m files, generated using the -mplist and
-apo keep flags, respectively. The parallelized source programs contained in these
files now contain OpenMP directives. None of the other MIPSpro auto-parallelizing
compilers generate source programs based on OpenMP.

The .list File

The -apo list and -apo keep options generate files that list the original loops in
the program along with messages indicating if the loops were parallelized. For loops
that were not parallelized, an explanation is given.

Example C-1 shows a simple Fortran 77 program. The subroutine is contained in a
file named testl.f.

Example C-1 Subroutine in File testl.f

SUBROUTINE sub(arr, n)

REAL*8 arr(n)

DO i = 1, n

arr(i) = arr(i) + arr(i-1)

END DO
DO i = 1, n

007–2361–009 155

C: The Auto-Parallelizing Option (APO)

arr(i) = arr(i) + 7.0
CALL foo(a)

END DO

DO i = 1, n

arr(i) = arr(i) + 7.0

END DO
END

When testl.f is compiled with the following command, the APO produces the file
testl.list, shown in Example C-2.

f77 -O3 -n32 -mips4 -apo list testl.f -c

Example C-2 Listing in File testl.list

Parallelization Log for Subprogram sub_
3: Not Parallel

Array dependence from arr on line 4 to arr on line 4.

6: Not Parallel

Call foo on line 8.

10: PARALLEL (Auto) __mpdo_sub_1

The last line (10) is important to understand. Whenever a loop is run in parallel, the
parallel version of the loop is put in its own subroutine. The MIPSpro profiling tools
attribute all the time spent in the loop to this subroutine. The last line indicates that
the name of the subroutine is __mpdo_sub_1.

The .w2f.f File

The .w2f.f file contains code that mimics the behavior of programs after they
undergo automatic parallelization. The representation is designed to be readable so
that you can see what portions of the original code were not parallelized. You can use
this information to change the original program.

The compiler creates the .w2f.f file by invoking the appropriate translator to turn
the compilers’ internal representations into Fortran 77. In most cases, the files contain
valid code that can be recompiled, although compiling a .w2f.f file with a standard
MIPSpro compiler does not produce object code that is exactly the same as that
generated by an auto-parallelizing compiler processing the original source. This is
because the MIPSpro APO is an internal phase of the MIPSpro auto-parallelizing
compilers, not a source-to-source preprocessor, and does not use a .w2f.f source file
to generate the object file.

156 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

The -flist option tells Auto-Parallelizing Fortran 77 to compile a program and
generate a .w2f.f file. Because it is generated at an earlier stage of the compilation,
this .w2f.f file is more easily understood than the .w2f.f file generated using the
-FLIST:=on option (see "Loop Nest Optimizer Options", page 153). By default, the
parallelized program in the .w2f.f file uses OpenMP directives.

Consider the subroutine in Example C-3, contained in a file named testw2.f.

Example C-3 Subroutine in File testw2.f

SUBROUTINE trivial(a)

REAL a(10000)

DO i = 1,10000

a(i) = 0.0
END DO

END

After compiling testw2.f using the following command, you get an object file,
testw2.o, and a file, testw2.w2f.f, that contains the code shown in Example C-4.

f77 -O3 -n32 -mips4 -c -flist testw2.f

Example C-4 Listing of File testw2.w2f.f

C ***

C Fortran file translated from WHIRL Sun Dec 7 16:53:44 1997

C ***

SUBROUTINE trivial(a)

IMPLICIT NONE

REAL*4 a(10000_8)

C

C **** Variables and functions ****
C

INTEGER*4 i

C

C **** statements ****

C
C PARALLEL DO will be converted to SUBROUTINE __mpdo_trivial_1

C$OMP PARALLEL DO private(i), shared(a)

DO i = 1, 10000, 1

a(i) = 0.0

007–2361–009 157

C: The Auto-Parallelizing Option (APO)

END DO
RETURN

END ! trivial

Note: WHIRL is the name for the compiler’s intermediate representation.

As explained in "The .list File", page 155, parallel versions of loops are put in their
own subroutines. In this example, that subroutine is __mpdo_trivial_1.
C$OMP PARALLEL DO is an OpenMP directive that specifies a parallel region
containing a single DO directive.

About the .m and .anl Files

The f77 -apo keep option generates two files in addition to the .list file:

• A .m file, which is similar to the .w2f.f file. It is based on OpenMP and mimics
the behavior of the program after automatic parallelization. It is also annotated
with information that is used by Workshop ProMPF.

• A .anl file, which is used by Workshop ProMPF.

SGI provides a separate product, WorkShop Pro MPF, that provides a graphical
interface to aid in both automatic and manual parallelization for Fortran 77. In
particular, the WorkShop Pro MPF Parallel Analyzer View helps you understand the
structure and parallelization of multiprocessing applications by providing an
interactive, visual comparison of their original source with transformed, parallelized
code. Refer to the ProDev WorkShop: ProMP User’s Guide and the ProDev WorkShop:
Performance Analyzer User’s Guide for details.

SpeedShop, another SGI product, allows you to run experiments and generate reports
to track down the sources of performance problems. SpeedShop consists of an API, a
set of commands that can be run in a shell, and a number of libraries to support the
commands. For more information, see the SpeedShop User’s Guide.

Running Your Program
You invoke a parallelized version of your program using the same command line as
that used to run a sequential one. The same binary can be executed on various
numbers of processors. The default is to have the run-time environment select the
number of processors to use based on how many are available.

158 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

You can change the default behavior by setting the OMP_NUM_THREADS environment
variable, which tells the system to use a particular number of processors. The
following statement causes the program to create two threads regardless of the
number of processors available:

setenv OMP_NUM_THREADS 2

Using OMP_NUM_THREADS is preferable to using MP_SET_NUMTHREADS and its older
synonym NUM_THREADS, which preceded the release of the MIPSpro APO with
OpenMP.

The OMP_DYNAMIC environment variable allows you to control whether the run-time
environment should dynamically adjust the number of threads available for executing
parallel regions to optimize the use of system resources. The default value is TRUE. If
OMP_DYNAMIC is set to FALSE, dynamic adjustment is disabled.

Failing to Parallelize Safe Loops
A program’s performance may be severely constrained if the APO cannot recognize
that a loop is safe to parallelize. A loop is safe if there is no data dependence, such as
a variable being assigned in one iteration of a loop and used in another. The MIPSpro
APO analyzes every loop in a sequential program; if a loop does not appear safe, it
does not parallelize that loop. It also often does not parallelize loops containing any
of the following constructs:

• function calls in loops, discussed in "Function Calls in Loops", page 159

• GO TO statements in loops, discussed in "GO TO Statements in Loops", page 160

• problematic array subscripts, discussed in "Problematic Array Subscripts", page 160

• conditionally assigned local variables, discussed in "Local Variables", page 161

However, in many instances such loops can be automatically parallelized after minor
changes. Reviewing your program’s .list file, described in "The .list File", page
155, can show you if any of these constructs are in your code.

Function Calls in Loops

By default, the Auto-Parallelizing Option does not parallelize a loop that contains a
function call because the function in one iteration of the loop may modify or depend
on data in other iterations. You can, however, use interprocedural analysis (IPA),

007–2361–009 159

C: The Auto-Parallelizing Option (APO)

specified by the -IPA command-line option, to provide the MIPSpro APO with
enough information to parallelize some loops containing subroutine calls by inlining
those calls. For more information on IPA, see "Interprocedural Analysis", page 152,
and the MIPSpro N32/64 Compiling and Performance Tuning Guide.

You can also direct the MIPSpro APO to ignore the dependences of function calls
when analyzing the specified loops by using the CONCURRENT CALL directive.

GO TO Statements in Loops

GO TO statements are unstructured control flows. The Auto-Parallelizing Option
converts most unstructured control flows in loops into structured flows that can be
parallelized. However, GO TO statements in loops can still cause two problems:

• Unstructured control flows the MIPSpro APO cannot restructure. You must either
restructure these control flows or manually parallelize the loops containing them.

• Early exits from loops. Loops with early exits cannot be parallelized, either
automatically or manually.

Problematic Array Subscripts

There are cases where array subscripts are too complicated to permit parallelization:

• The subscripts are indirect array references. The MIPSpro APO is not able to
analyze indirect array references. The following loop cannot be run safely in
parallel if the indirect reference IB(I) is equal to the same value for different
iterations of I:

DO I = 1, N

A(IB(I)) = ...

END DO

If every element of array IB is unique, the loop can safely be made parallel. To
achieve parallelism in such cases, you can use either manual or automatic
methods to achieve parallelism. For automatic parallelization, the C*$* ASSERT
PERMUTATION assertion, discussed in "C*$* ASSERT PERMUTATION", page 172,
is appropriate.

• The subscripts are unanalyzable. The MIPSpro APO cannot parallelize loops
containing arrays with unanalyzable subscripts. Allowable subscripts can contain
four elements: literal constants (1, 2, 3, …); variables (I, J, K, …); the product of a

160 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

literal constant and a variable, such as N*5 or K*32; or a sum or difference of any
combination of the first three items, such as N*21+K-251

In the following case, the MIPSpro APO cannot analyze the division operator (/)
in the array subscript and cannot reorder the loop:

DO I = 2, N, 2

A(I/2) = ...

END DO

• Unknown information. In the following example there may be hidden knowledge
about the relationship between the variables M and N:

DO I = 1, N

A(I) = A(I+M)
END DO

The loop can be run in parallel if M > N, because the array reference does not
overlap. However, the MIPSpro APO does not know the value of the variables
and therefore cannot make the loop parallel. Using the
C*$* ASSERT DO (CONCURRENT) assertion, explained in "C*$* ASSERT DO
(CONCURRENT)", page 169, lets the MIPSpro APO parallelize this loop. You can
also use manual parallelization.

Local Variables

When parallelizing a loop, the Auto-Parallelizing Option often localizes (privatizes)
temporary scalar and array variables by giving each processor its own non-shared
copy of them. In the following example, the array TMP is used for local scratch space:

DO I = 1, N

DO J = 1, N

TMP(J) = ...

END DO

DO J = 1, N
A(J,I) = A(J,I) + TMP(J)

END DO

END DO

To successfully parallelize the outer (I) loop, the MIPSpro APO must give each
processor a distinct, private TMP array. In this example, it is able to localize TMP
and, thereby, to parallelize the loop.

007–2361–009 161

C: The Auto-Parallelizing Option (APO)

The MIPSpro APO runs into trouble when a conditionally assigned temporary
variable might be used outside of the loop, as in the following example:

SUBROUTINE S1(A, B)

COMMON T

...

DO I = 1, N

IF (B(I)) THEN

T = ...
A(I) = A(I) + T

END IF

END DO

CALL S2()

END

If the loop were to be run in parallel, a problem would arise if the value of T were
used inside subroutine S2() because it is not known which processor’s private copy
of T should be used by S2(). If T were not conditionally assigned, the processor that
executed iteration N would be used. Because T is conditionally assigned, the MIPSpro
APO cannot determine which copy to use.

The solution comes with the realization that the loop is inherently parallel if the
conditionally assigned variable T is localized. If the value of T is not used outside the
loop, replace T with a local variable. Unless T is a local variable, the MIPSpro APO
must assume that S2() might use it.

Parallelizing the Wrong Loop
The Auto-Parallelizing Option parallelizes a loop by distributing its iterations among
the available processors. When parallelizing nested loops, such as I, J, and K in the
example below, the MIPSpro APO distributes only one of the loops:

DO I = 1, L

...

DO J = 1, M

...
DO K = 1, N

...

162 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

Because of this restriction, the effectiveness of the parallelization of the nest depends
on the loop that the MIPSpro APO chooses. In fact, the loop the MIPSpro APO
parallelizes may be an inferior choice for any of three reasons:

• It is an inner loop, as discussed in "Inner Loops", page 163.

• It has a small trip count, as discussed in "Small Trip Counts", page 163.

• It exhibits poor data locality, as discussed in "Poor Data Locality", page 164.

The MIPSpro APO’s heuristic methods are designed to avoid these problems. The
next three sections show you how to increase the effectiveness of these methods.

Inner Loops

With nested loops, the most effective optimization usually occurs when the outermost
loop is parallelized. The effectiveness derives from more processors processing larger
sections of the program, saving synchronization and other overhead costs. Therefore,
the Auto-Parallelizing Option tries to parallelize the outermost loop, after possibly
interchanging loops to make a more promising one outermost. If the outermost loop
attempt fails, the MIPSpro APO parallelizes an inner loop if possible.

The .list file, described in "The .list File", page 155, tells you which loop in a
nest was parallelized. Because of the potential for improved performance, it is useful
for you to modify your code so that the outermost loop is the one parallelized.

Small Trip Counts

The trip count is the number of times a loop is executed. Loops with small trip
counts generally run faster when they are not parallelized. Consider how this affects
this Fortran example:

DO I = 1, M

DO J = 1, N

The Auto-Parallelizing Option may try to parallelize the I loop because it is outermost.
If M is very small, it would be better to interchange the loops and make the J loop
outermost before parallelization. Because the MIPSpro APO often cannot know that
M is small, you can use a C*$* ASSERT DO PREFER CONCURRENT assertion to
indicate that it is better to parallelize the J loop, or use manual parallelization.

007–2361–009 163

C: The Auto-Parallelizing Option (APO)

Poor Data Locality

Computer memory has a hierarchical organization. Higher up the hierarchy, memory
becomes closer to the CPU, faster, more expensive, and more limited in size. Cache
memory is at the top of the hierarchy, and main memory is further down in the
hierarchy. In multiprocessor systems, each processor has its own cache memory.
Because it is time consuming for one processor to access another processor’s cache, a
program’s performance is best when each processor has the data it needs in its own
cache.

Programs, especially those that include extensive looping, often exhibit locality of
reference; if a memory location is referenced, it is probable that it or a nearby location
will be referenced in the near future. Loops designed to take advantage of locality do
a better job of concentrating data in memory, increasing the probability that a
processor will find the data it needs in its own cache.

To see the effect of locality on parallelization, consider Example C-5 and Example C-6.
Assume that the loops are to be parallelized and that there are p processors.

Example C-5 Distribution of Iterations

DO I = 1, N

...A(I)
END DO

DO I = N, 1, -1

...A(I)...

END DO

In the first loop of Example C-5, the first processor accesses the first N/p elements of
A, the second processor accesses the next N/p elements, and so on. In the second
loop, the distribution of iterations is reversed: The first processor accesses the last N/p
elements of A, and so on. Most elements are not in the cache of the processor needing
them during the second loop. This example should run more efficiently, and be a
better candidate for parallelization, if you reverse the direction of one of the loops.

Example C-6 Two Nests in Sequence

DO I = 1, N

DO J = 1, N

A(I,J) = B(J,I) + ...

END DO
END DO

DO I = 1, N

164 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

DO J = 1, N
B(I,J) = A(J,I) + ...

END DO

END DO

In Example C-6, the Auto-Parallelizing Option may parallelize the outer loop of each
member of a sequence of nests. If so, while processing the first nest, the first
processor accesses the first N/p rows of A and the first N/p columns of B. In the
second nest, the first processor accesses the first N/p columns of A and the first N/p
rows of B. This example runs much more efficiently if you parallelize the I loop in
one nest and the J loop in the other. You can instruct the MIPSpro APO to do this
with the C*$* ASSERT DO PREFER assertions.

Unnecessary Parallelization Overhead
There is overhead associated with distributing the iterations among the processors
and synchronizing the results of the parallel computations. There can also be
memory-related costs, such as the cache interference that occurs when different
processors try to access the same data. One consequence of this overhead is that not
all loops should be parallelized. As discussed in "Small Trip Counts", page 163, loops
that have a small number of iterations run faster sequentially than in parallel. The
following are two other cases of unnecessary overhead:

• unknown trip counts: If the trip count is not known (and sometimes even if it is),
the Auto-Parallelizing Option parallelizes the loop conditionally, generating code
for both a parallel and a sequential version. By generating two versions, the
MIPSpro APO can avoid running a loop in parallel that may have small trip
count. The MIPSpro APO chooses the version to use based on the trip count, the
code inside the loop’s body, the number of processors available, and an estimate of
the cost to invoke a parallel loop in that run-time environment.

You can control this cost estimate by using the -LNO:parallel_overhead=n
option. The default value of n varies on different systems, but a typical value is
several thousand machine cycles.

You can avoid the overhead incurred by having a sequential and parallel version
of the loop by using the C*$* ASSERT DO PREFER assertions. These compiler
directives ensure that the MIPSpro APO knows in advance whether or not to
parallelize the loop.

007–2361–009 165

C: The Auto-Parallelizing Option (APO)

• nested parallelism: nested parallelism is not supported by the Auto-Parallelizing
Option. Thus, for every loop that could be parallelized, the MIPSpro APO must
generate a test that determines if the loop is being called from within either
another parallel loop or a parallel region. While this check is not very expensive,
it can add overhead. The following example demonstrates nested parallelism:

SUBROUTINE CALLER

DO I = 1, N

CALL SUB
END DO

...

END

SUBROUTINE SUB

...
DO I = 1, N

...

END DO

END

If the loop inside CALLER() is parallelized, the loop inside SUB() cannot be run
in parallel when CALLER() calls SUB(). In this case, the test can be avoided. If
SUB() is always called from CALLER(), you can use the C*$* ASSERT DO
(SERIAL) or the C*$* ASSERT DO PREFER (SERIAL) assertion to force the
sequential execution of the loop in SUB(). For more information on these
compiler directives, see "C*$* ASSERT DO (SERIAL)", page 170 and "C*$*
ASSERT DO PREFER (SERIAL)", page 173.

Strategies for Assisting Parallelization
There are circumstances that interfere with the Auto-Parallelizing Option’s ability to
optimize programs. Problems are sometimes caused by coding practices or the
MIPSpro APO may not have enough information to make good parallelization
decisions. You can pursue three strategies to address these problems and to achieve
better results with the MIPSpro APO.

• The first approach is to modify your code to avoid coding practices that the
MIPSpro APO cannot analyze well. Specific problems and solutions are discussed
in "Failing to Parallelize Safe Loops", page 159 and "Parallelizing the Wrong Loop",
page 162.

166 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

• The second strategy is to assist the MIPSpro APO with the manual parallelization
directives. They are described in the MIPSpro N32/64 Compiling and Performance
Tuning Guide, and require the -mp compiler option. The MIPSpro APO is designed
to recognize and coexist with manual parallelism. You can use manual directives
with some loop nests, while leaving others to the MIPSpro APO. This approach
has both positive and negative aspects.

Positive: The manual parallelization directives are well defined and
deterministic. If you use a manual directive, the specified loop is
run in parallel. This assumes that the trip count is greater than one
and that the specified loop is not nested in another parallel loop.

Negative: You must carefully analyze the code to determine that parallelism is
safe. Also, you must mark all variables that need to be localized.

• The third alternative is to use the automatic parallelization compiler directives to
give the MIPSpro APO more information about your code. The automatic
directives are described in "Compiler Directives for Automatic Parallelization",
page 167. Like the manual directives, they have positive and negative features.

Positive: The automatic directives are easier to use. They allow you to
express the information you know without needing to be certain
that all the conditions for parallelization are met.

Negative: The automatic directives are tips and thus do not impose parallelism.
In addition, as with the manual directives, you must ensure that you
are using them safely. Because they require less information than the
manual directives, automatic directives can have subtle meanings.

Compiler Directives for Automatic Parallelization
The Auto-Parallelizing Option recognizes three types of compiler directives:

• Fortran directives, which enable, disable, or modify features of the MIPSpro APO

• Fortran assertions, which assist the MIPSpro APO by providing it with additional
information about the source program

• Pragmas, the C and C++ counterparts to Fortran directives and assertions
(discussed in the documentation with your C compiler).

In practice, the MIPSpro APO makes little distinction between Fortran assertions and
Fortran directives. The automatic parallelization compiler directives do not impose
parallelism; they give hints and assertions to the MIPSpro APO to assist it in choosing

007–2361–009 167

C: The Auto-Parallelizing Option (APO)

the right loops. lists the directives, assertions, and pragmas that the MIPSpro APO
recognizes.

Table C-1 Auto-Parallelizing Option Directives and Assertions

Compiler Directive Meaning and Notes

C*$* NO CONCURRENTIZE Varies with placement. Either do not
parallelize any loops in a subroutine, or
do not parallelize any loops in a file.

C*$* CONCURRENTIZE Override C*$* NO CONCURRENTIZE.

C*$* ASSERT DO (CONCURRENT) Do not let perceived dependences between
two references to the same array inhibit
parallelizing. Does not require -apo.

C*$* ASSERT DO (SERIAL) Do not parallelize the following loop.

C*$* ASSERT CONCURRENT CALL Ignore dependences in subroutine calls
that would inhibit parallelizing. Does not
require -apo.

C*$* ASSERT PERMUTATION
(array_name)

Array array_name is a permutation array.
Does not require -apo.

C*$* ASSERT DO PREFER
(CONCURRENT)

Parallelize the following loop if it is safe.

C*$* ASSERT DO PREFER (SERIAL) Do not parallelize the following loop.

Three compiler directives affect the compiling process even if -apo is not specified:
C*$* ASSERT DO (CONCURRENT) may affect optimizations such as loop
interchange; C*$* ASSERT CONCURRENT CALL also may affect optimizations such
as loop interchange; and C*$* ASSERT PERMUTATION may affect any optimization
that requires permutation arrays..

The general compiler option -LNO:ignore_pragmas causes the MIPSpro APO to
ignore all of the directives, assertions, and pragmas discussed in this section.

168 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

C*$* NO CONCURRENTIZE

The C*$* NO CONCURRENTIZE directive prevents parallelization. Its effect depends
on its placement.

• When placed inside subroutines and functions, the directive prevents their
parallelization. In the following example, no loops inside SUB1() are parallelized.

SUBROUTINE SUB1

C*$* NO CONCURRENTIZE

...

END

• When placed outside of a subroutine, C*$* NO CONCURRENTIZE prevents the
parallelization of all subroutines in the file, even those that appear ahead of it in
the file. Loops inside subroutines SUB2() and SUB3() are not parallelized in this
example:

SUBROUTINE SUB2

...

END

C*$* NO CONCURRENTIZE
SUBROUTINE SUB3

...

END

C*$* CONCURRENTIZE

Placing the C*$* CONCURRENTIZE directive inside a subroutine overrides a C*$*
NO CONCURRENTIZE directive placed outside it. Thus, this directive allows you to
selectively parallelize subroutines in a file that has been made sequential with C*$*
NO CONCURRENTIZE.

C*$* ASSERT DO (CONCURRENT)

C*$* ASSERT DO (CONCURRENT) instructs the MIPSpro APO, when analyzing the
loop immediately following this assertion, to ignore all dependences between two
references to the same array. If there are real dependences between array references,
C*$* ASSERT DO (CONCURRENT) may cause the MIPSpro APO to generate
incorrect code. The following example is a correct use of the assertion when M>N:

007–2361–009 169

C: The Auto-Parallelizing Option (APO)

C*$* ASSERT DO (CONCURRENT)
DO I = 1, N

A(I) = A(I+M)

Be aware of the following points when using this assertion:

• If multiple loops in a nest can be parallelized, C*$* ASSERT DO (CONCURRENT)
causes the MIPSpro APO to prefer the loop immediately following the assertion.

• Applying this directive to an inner loop may cause the loop to be made outermost
by the MIPSpro APO’s loop interchange operations.

• The assertion does not affect how the MIPSpro APO analyzes CALL statements.
See "C*$* ASSERT CONCURRENT CALL", page 170.

• The assertion does not affect how the MIPSpro APO analyzes dependences
between two potentially aliased pointers.

• This assertion affects the compilation even when -apo is not specified.

• The compiler may find some obvious real dependences. If it does so, it ignores
this assertion.

C*$* ASSERT DO (SERIAL)

C*$* ASSERT DO (SERIAL) instructs the Auto-Parallelizing Option not to
parallelize the loop following the assertion. However, the MIPSpro APO may
parallelize another loop in the same nest. The parallelized loop may be either inside
or outside the designated sequential loop.

C*$* ASSERT CONCURRENT CALL

The C*$* ASSERT CONCURRENT CALL assertion instructs the MIPSpro APO to
ignore the dependences of subroutine and function calls contained in the loop that
follows the assertion. Other points to be aware of are the following:

• The assertion applies to the loop that immediately follows it and to all loops
nested inside that loop.

• The assertion affects the compilation even when -apo is not specified.

The MIPSpro APO ignores the dependences in subroutine FRED() when it analyzes
the following loop:

170 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

C*$* ASSERT CONCURRENT CALL
DO I = 1, N

CALL FRED

...

END DO

SUBROUTINE FRED
...

END

To prevent incorrect parallelization, make sure the following conditions are met when
using C*$* ASSERT CONCURRENT CALL:

• A subroutine inside the loop cannot read from a location that is written to during
another iteration. This rule does not apply to a location that is a local variable
declared inside the subroutine.

• A subroutine inside the loop cannot write to a location that is read from or written
to during another iteration. This rule does not apply to a location that is a local
variable declared inside the subroutine.

The following code shows an illegal use of the assertion. Subroutine FRED() writes
to variable T, which is also read from by WILMA() during other iterations.

C*$* ASSERT CONCURRENT CALL

DO I = 1,M

CALL FRED(B, I, T)

CALL WILMA(A, I, T)

END DO
SUBROUTINE FRED(B, I, T)

REAL B(*)

T = B(I)

END

SUBROUTINE WILMA(A, I, T)
REAL A(*)

A(I) = T

END

By localizing the variable T, you can manually parallelize the above example safely.
But the MIPSpro APO does not know to localize T, and it illegally parallelizes the
loop because of the assertion.

007–2361–009 171

C: The Auto-Parallelizing Option (APO)

C*$* ASSERT PERMUTATION

When placed inside a subroutine, C*$* ASSERT PERMUTATION (array_name) tells the
MIPSpro APO that array_name is a permutation array. Every element of the array has a
distinct value. The assertion does not require the permutation array to be dense.
While every IB(I) must have a distinct value, there can be gaps between those values,
such as IB(1) = 1, IB(2) = 4, IB(3) = 9, and so on.

Array IB is asserted to be a permutation array for both loops in SUB1() in this
example.

SUBROUTINE SUB1

DO I = 1, N
A(IB(I)) = ...

END DO

C*$* ASSERT PERMUTATION (IB)

DO I = 1, N

A(IB(I)) = ...
END DO

END

Note the following points about this assertion:

• As shown in the example, you can use this assertion to parallelize loops that use
arrays for indirect addressing. Without this assertion, the MIPSpro APO cannot
determine that the array elements used as indexes are distinct.

• C*$* ASSERT PERMUTATION (array_name) affects every loop in a subroutine,
even those that appear ahead it.

• The assertion affects compilation even when -apo is not specified.

C*$* ASSERT DO PREFER (CONCURRENT)

C*$* ASSERT DO PREFER (CONCURRENT) instructs the Auto-Parallelizing Option
to parallelize the loop immediately following the assertion, if it is safe to do so. This
assertion is always safe to use. Unless it can determine the loop is safe, the MIPSpro
APO does not parallelize a loop because of this assertion.

The following code encourages the MIPSpro APO to run the I loop in parallel:

C*$* ASSERT DO PREFER (CONCURRENT)

DO I = 1, M

172 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

DO J = 1, N
A(I,J) = B(I,J)

END DO

...

END DO

When dealing with nested loops, the Auto-Parallelizing Option follows these
guidelines:

• If the loop specified by this assertion is safe to parallelize, the MIPSpro APO
chooses it to parallelize, even if other loops in the nest are safe.

• If the specified loop is not safe to parallelize, the MIPSpro APO uses its heuristics
to choose among loops that are safe.

• If this directive is applied to an inner loop, the MIPSpro APO may make it the
outermost loop.

• If this assertion is applied to more than one loop in a nest, the MIPSpro APO uses
its heuristics to choose one of the specified loops.

C*$* ASSERT DO PREFER (SERIAL)

The C*$* ASSERT DO PREFER (SERIAL) assertion instructs the Auto-Parallelizing
Option not to parallelize the loop that immediately follows. It is essentially the same
as C*$* ASSERT DO (SERIAL). In the following case, the assertion requests that
the J loop be run serially:

DO I = 1, M

C*$* ASSERT DO PREFER (SERIAL)

DO J = 1, N

A(I,J) = B(I,J)
END DO

...

END DO

The assertion applies only to the loop directly after the assertion. For example, the
MIPSpro APO still tries to parallelize the I loop in the code shown above. The
assertion is used in cases like this when the value of N is very small.

007–2361–009 173

Index

A

ABI
N32, 147
N64, 147

alignment, 25, 27
data types, 27

.anl file, 158
ANSI FORTRAN

data alignment, 27
ANSI-X3H5 standard, 91, 125
APO, 147, 160

array subscripts, 160
command line example, 151
command line options, 150
command line use, 150
compiler directives, 167
data locality problems, 164
function calls in loops, 159
IPA, 152
LNO, 153
local variables, 161
OpenMP, 155
output files

.1 file, 155

.anl file, 158

.m file, 158

.w2f.f file, 156
usage notes, 151

-apo list, 155
archiver, ar, 15
arrays

2 gigabyte, 16
declaring, 25

assembly language routines, 21
atomic bool operation, 143
ATOMIC directive, 69

atomic fetch-and-op operations, 142
atomic lock and unlock operations, 144
atomic op-and-fetch operations, 143
atomic synchronize operation, 144
automatic parallelization, 147

B

barrier construct, 128, 136
BARRIER directive, 69
barrier function, 118
blocking slave threads, 116
BOOL operation, 143
buffer size

setting, 14

C

C code
calling from Fortran, 41

Fortran arrays, 44
Fortran COMMON, 43
%LOC, 46
mkf2c, 46
normal calls, 41
%REF, 46
%VAL, 45
with intrinsics, 44

C$, 97
C$&, 97
C$CHUNK, 98
C$COPYIN, 122
C$COPYIN directive, 98
C$DOACROSS, 91

continuing with c$&, 97

007–2361–009 175

Index

IF clause, 92
LASTLOCAL clause, 93
loop naming convention, 123
nesting, 99

C$MP_SCHEDTYPE, 98
C$PAR & directive, 136
C$PAR barrier, 136
C$PAR critical section, 134
C$PAR parallel, 126
C$PAR parallel do, 128
C$PAR pdo, 128
C$PAR psections, 129
C$PAR single process, 131
C/C++ interface, 3
cache, 111

improve, 115
callable Fortran subprograms, 36

functions, 39
subroutines, 36

returns, 38
calling Fortran from C, 36
CHUNK, 95, 115, 121
Clauses

COPYIN, 71
COPYPRIVATE, 71
DEFAULT, 70
FIRSTPRIVATE, 70
LASTPRIVATE, 70
PRIVATE, 70
REDUCTION, 71
SHARED, 70

common block reorganization, 115
COMMON blocks, 79, 93

making local to a process, 121
shared, 25

communication
between processors, 138

compilation, 2
compiler defaults file, 8
compiler options

–align16, 25, 28
–align8, 25, 28

–apo option, 13
–automatic, 75
–bestG, 12
–C, 79
–G, 12
–jmopt, 12
–l, 5
–mp, 75, 79, 124, 125
–pfa, 126
–static, 75, 79, 102
-MP option, 12
-mpkeep option, 13

compiler options overview, 6
COMPILER_DEFAULTS_PATH environment

variable, 8
compiling

—mp examples, 76
parallel fortran program, 75

compiling simple programs, 7
COMPLEX, 25
COMPLEX*16, 25
COMPLEX*32, 25
constructs

work-sharing, 127
COPYIN clause, 71
COPYPRIVATE clause, 71
core files, 21

producing, 81
critical section, 127

and shared, 136
PCF construct, 134

critical section construct, 125
differences between single process, 134

CRITICAL/END CRITICAL directive, 69

D

data
sharing, 60
specifying page size, 121

176 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

data dependencies, 101
analyzing for multiprocessing, 99
and equivalence statements, 80
breaking, 104
complicated, 103
inconsequential, 103
rewritable, 102

data distribution
enable, 12
rii_files, 13

data independence, 99
data types, 23

alignment, 25
array elements, 33
character, 33
Fortran and C, 32
scalar, 32

datapool, 60
DATE, 61
dbx, 81
debugging

multiprocessed do loops, 13
parallel fortran programs, 77

DEFAULT clause, 70
defaults

specification file, 8
direct files, 19
direct unformatted i/O, 14
Directives

ATOMIC, 69
BARRIER, 69
CRITICAL/END CRITICAL, 69
DO/END DO, 67
END PARALLEL, 66
FLUSH, 69
MASTER/END MASTER, 69
OpenMP Fortran API, 65
ORDERED/END ORDERED, 70
PARALLEL, 66
PARALLEL DO/END PARALLEL DO, 68
PARALLEL SECTIONS/END PARALLEL

SECTIONS, 68

PARALLEL WORKSHARE, 69
SECTIONS/END SECTIONS, 68
SINGLE/END SINGLE, 68
THREADPRIVATE, 70
WORKSHARE, 68

directives
C$, 97
C$&, 97
C$CHUNK, 98
C$DOACROSS, 91
C$MP_SCHEDTYPE, 98
list of, 91
see also PCF directives, 125

dis object file tool, 14
DO loops, 79, 90, 100, 109
DO/END DO directive, 67
DOACROSS, 98

and multiprocessing, 123
dump object file tool, 14
dynamic scheduling, 94

E

END PARALLEL directive, 66
—apo option, 150
—OPT option

reorg_common option, 115
–align16 compiler option, 28
–align8 compiler option, 28
–apo compiler option, 13
–automatic compiler option, 75
–bestG compiler option, 12
–C compiler option, 79
–G compiler option, 12
–jmpopt compiler option, 12
–l compiler option, 5
–mp compiler option, 75, 79, 124, 125
–pfa compiler option, 125
–static compiler option, 75, 79, 102
–Wl,Xlocal,data loader directive, 121

007–2361–009 177

Index

environment variables, 77
CHUNK, 121
COMPILER_DEFAULTS_PATH, 8
DSM_WAIT, 119
f77_dump_flag, 21, 81
FORTRAN_BUFFER_SIZE, 14
MP_BLOCKTIME, 119
MP_SCHEDTYPE, 121
MP_SET_NUMTHREADS, 119
MP_SETUP, 119
MP_SLAVE_STACKSIZE, 121
MPC_GANG, 121
PAGESIZE_DATA, 121
PAGESIZE_STACK, 121
PAGESIZE_TEXT, 121
specify gang scheduling, 121
specify run-time scheduling, 121

EQUIVALENCE statements, 80
equivalence statements, 79
error handling, 21
error messages

run-time, 81
ERRSNS, 61
examples

—mp programs, 76
executable object, 3
EXIT, 62
external files, 19

F

f77
command syntax, 1
supported file formats, 19

f77_dump_flag, 21, 81
fetch-and-op operations, 142
file, object file tool, 15
files

compilation specification, 8
direct, 19
external, 19

position when opened, 20
preconnected, 20
rii_files, 13
sequential unformatted, 20
supported formats, 19
UNKNOWN status, 20

FIRSTPRIVATE clause, 70
FLUSH directive, 69
formats

files, 19
Fortran

ANSI, 27
libraries, 5

Fortran arrays
in C code, 44

Fortran functions
and C, 39

Fortran subprograms
and C, 36

FORTRAN_BUFFER_SIZE variable, 14
functions

in parallel loops, 102
intrinsic, 63, 102

SECNDS, 63
library, 53, 102
RAN, 63
side effects, 102

G

gang scheduling, 121
global data area

reducing, 12
guided self-scheduling, 95

H

handle_sigfpes, 23

178 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

I

I/O
direct unformatted, 14

IDATE, 61
IF clause

and c$DOACROSS, 92
IGCLD signal

intercepting, 123
interleave scheduling, 94
interleaving, 114
interprocedural analysis

-IPA, 152
interprocess data sharing, 60
intrinsic subroutines

DATE, 61
ERRSNS, 61
EXIT, 62
IDATE, 61
MVBITS, 62
TIME, 62

intrinsics, 140
example, 144

L

-LANG
recursive option, 13

LASTLOCAL, 92, 100
LASTLOCAL clause, 93
LASTPRIVATE clause, 70
libfpe.a, 23
libraries

link, 5
linking, 6

library functions, 53
link libraries, 5
linking, 4

dynamic shared objects, 5
libraries, 5

load balancing, 113

%LOC, 46
LOCAL, 92, 93
local variables

storage, 80
lock and unlock operations, 144
lock example, 144
LOGICAL, 25
loop interchange, 110
loop nest optimizer

-LNO, 153
loops, 90

data dependencies, 100
inner, 163
transformation, 123

M

.m file, 158
m_fork

and multiprocessing, 123
makefiles, 51
manual parallelization, 147
master processes, 91, 124
MASTER/END MASTER directive, 69
memory

2 gigabyte arrays, 16
array sizes, 16

message passing, 138
misaligned data, 27

and source code, 28
mkf2c, 46

and extcentry, 50
and makefiles, 51
character string treatment, 48
parameter assumptions, 47
restrictions, 49

-MP option, 12
mp_barrier, 118
mp_block, 116
mp_blocktime, 117

007–2361–009 179

Index

MP_BLOCKTIME environment variable, 119
mp_create, 116
mp_destroy, 116
mp_my_threadnum, 118
mp_numthreads, 117
__mp_parallel_do, 77
MP_SCHEDTYPE, 94, 98, 121
MP_SET_NUMTHREADS, 119, 159
mp_set_numthreads, 117

and mp_SET_NUMTHREADS, 119
mp_setlock, 118
MP_SETUP, 119
mp_setup, 116
mp_shmem, 138
mp_simple_sched

and loop transformations, 123
MP_SLAVE_STACKSIZE, 121
__mp_slave_wait_for_work, 77
mp_suggested_numthreads, 117
mp_unblock, 116
mp_unsetlock, 118
MPC_GANG environment variable, 121
-mpkeep option, 13
multi-language programs, 3
multiprocessing

and doacross, 123
and load balancing, 114
associated overhead, 109
automatic, 13
consistency checks, 12
data distribution, 12
enabling, 75
enabling directives, 124
rii_files directory, 13

MVBITS, 62

N

N64 abi, 147
nm, object file tool, 14
NOWAIT clause, 129–131

NUM_THREADS, 119, 159

O

-O3 optimization, 152
object files, 3

tools for interpreting, 14
object module, 3
objects

linking, 4
shared, linking, 5

OMP_DYNAMIC, 159
OMP_NUM_THREADS, 159
op-and-fetch operations, 143
OpenMP

APO, 155
OpenMP clauses

COPYIN, 71
COPYPRIVATE, 71
DEFAULT, 70
FIRSTPRIVATE, 70
LASTPRIVATE, 70
PRIVATE, 70
REDUCTION, 71
SHARED, 70

OpenMP directives
ATOMIC, 69
BARRIER, 69
CRITICAL/END CRITICAL, 69
DO/END DO, 67
END PARALLEL, 66
FLUSH, 69
MASTER/END MASTER, 69
ORDERED/END ORDERED, 70
PARALLEL, 66
PARALLEL DO/END PARALLEL DO, 68
PARALLEL SECTIONS/END PARALLEL

SECTIONS, 68
PARALLEL WORKSHARE, 69
SECTIONS/END SECTIONS, 68

180 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

SINGLE/END SINGLE, 68
THREADPRIVATE, 70
WORKSHARE, 68

OpenMP Fortran API directives, 65
optimizing programs

–OPT option
reorg_common, 115

statically allocated local variables, 13
ORDERED/END ORDERED directive, 70

P

PAGESIZE_DATA environment variable, 121
PAGESIZE_STACK environment variable, 121
PAGESIZE_TEXT environment variable, 121
PARALLEL directive, 66
parallel do construct, 128
PARALLEL DO/END PARALLEL DO directive, 68
parallel fortran, 13

communication between threads, 138
directives, 91

parallel program
compiling, 75
debugging, 75
profiling, 77

parallel region, 113, 125, 126
and shared, 127
efficiency of, 138
restrictions, 137

parallel sections construct, 129
assignment of processes, 131

PARALLEL SECTIONS/END PARALLEL
SECTIONS directive, 68

PARALLEL WORKSHARE directive, 69
parallelization

automatic, 147
manual, 147

parallelization problems
inner loops, 163

parallelizing
automatic, 13

PCF constructs
and efficiency, 137
barrier, 128, 136
critical section, 128, 134
differences between single process and critical

section, 134
LASTLOCAL, 128
LOCAL, 127
NOWAIT, 129–131
parallel do, 128
parallel regions, 126, 137
parallel sections, 129
PDO, 128
restrictions, 136
SHARED, 127
single process, 131
types of, 127

PCF directives
C$PAR &, 136
C$PAR barrier, 136
C$PAR critical section, 134
C$PAR parallel, 126
C$PAR parallel do, 128
C$PAR pdo, 128
C$PAR psections, 129
C$PAR single process, 131
enabling, 126
overview, 125

PCF standard, 91
PDO construct, 128
performance

improving, 12
Power fortran, 100
preconnected files, 20
PRIVATE clause, 70
processes

master, 91, 124
slave, 91, 124

prof
and parallel fortran, 77

profiling

007–2361–009 181

Index

parallel fortran program, 77
program interfaces, 29

Q

quad-precision operations, 21

R

RAN, 63
rand

and multiprocessing, 102
REAL*16

range, 26
REAL*16 ranges, 26
REAL*4

range, 26
REAL*4 ranges, 26
REAL*8

alignment, 25
range, 26

REAL*8 ranges, 26
records, 19
recurrence

and data dependency, 107
recursion, specifying, 13
reduction

and data dependency, 107
listing associated variables, 93
sum, 108

REDUCTION clause, 71
%REF, 46
reorganize common blocks, 115
rii_files directory, 13
round-to-nearest mode, 21
run-time error handling, 21
run-time scheduling, 95
running

parallel fortran, 75

S

scalar data types, 23
scheduling method

run-time, 121
scheduling methods, 94, 115, 123

between processors, 138
dynamic, 94
gang, 121
guided self-scheduling, 95
interleave, 94
run-time, 95
simple, 94

SECNDS, 63
SECTIONS/END SECTIONS directive, 68
self-scheduling, 95
sequential unformatted files, 20
SHARE, 92, 93
SHARED

and critical section, 136
and parallel region, 127

shared objects
linking, 5

sharing data, 60
shmem. See mp_shmem, 138
SIGCLD, 116
simple scheduling, 94
single process

PCF construct, 131
single process construct, 131

differences between critical section, 134
SINGLE/END SINGLE directive, 68
size, object file tool, 15
slave threads, 91, 124

blocking, 116, 117
source files, 2
specifying compilation mode, 8
spin-wait lock example, 144
spooled routines, 123
sproc

and multiprocessing, 122

182 007–2361–009

MIPSproTM Fortran 77 Programmer’s Guide

associated processes, 124, 125
stack

specifying page size, 121
stacksize

control, 121
storage of local variables, 80
strip, object file tool, 15
subprogram names, 29

mixed-case, 30
naming from C, 31
naming from Fortran, 31
spelling verification, 31
suffix, 30

subprogram parameters, 35
normal treatment, 35

subroutines
intrinsic, 102
system

DATE, 61
ERRSNS, 61
EXIT, 62
IDATE, 61
MVBITS, 62

sum reduction, example, 108
symbol table information

producing, 15
synchronization

barrier, 119
event, 119
lock, 119

synchronization intrinsics, 140
synchronize operation, 144
synchronizer, 77
system interface, 53

T

test&test&set, 133
text

specifying page size, 121

thread
master, 91
slave, 91

THREADPRIVATE directive, 70
threads

and processors, 91, 138
number of, 91
override the default, 91
synchronization, 120

TIME, 62
trap handling, 23

U

using APO, 150
ussetlock, 118
usunsetlock, 118

V

%VAL, 45
variables

in parallel loops, 100
local, 101

VOLATILE
and critical section, 136
and multiple threads, 133

W

WHIRL, 158
work quantum, 109
work-sharing constructs, 125

restrictions, 136
types of, 127

WORKSHARE directive, 68

007–2361–009 183

	Table of Contents
	List of Figures
	List of Tables
	List of Examples

	About This Guide
	Related Compiler Publications
	Compiler Messages
	Compiler Man Pages
	Obtaining Publications
	Conventions
	Reader Comments

	1. Compiling, Linking, and Running Programs
	Compiling and Linking
	Compilation
	Compiling in C/C++
	Linking Objects
	Specifying Link Libraries

	Compiler Options: an Overview
	Compiling Simple Programs
	Using a Defaults Specification File

	Specifying Features to the Compiler
	Specifying the Buffer Size for Direct Unformatted I/O
	Object File Tools
	Archiver
	Run-Time Considerations
	Invoking a Program
	Maximum Memory Allocations
	File Formats
	Preconnected Files
	File Positions
	Unknown File Status
	Quad-Precision Operations
	Run-Time Error Handling
	Floating Point Exceptions

	2. Data Types and Mapping
	Alignment, Size, and Value Ranges
	Access of Misaligned Data
	Accessing Small Amounts of Misaligned Data
	Accessing Misaligned Data Without Modifying Source Code

	3. Fortran Program Interfaces
	Subprogram Names
	Mixed-Case Names
	Preventing a Suffix Underscore with …
	Naming Fortran Subprograms from C
	Naming C Functions from Fortran
	Verifying Spelling Using nm

	Correspondence of Fortran and C Data Types
	Corresponding Scalar Types
	Corresponding Character Types
	Corresponding Array Elements

	Passing Subprogram Parameters
	Normal Treatment of Parameters

	Calling Fortran from C
	Calling Fortran Subroutines from C
	Calling Fortran Functions from C

	Calling C from Fortran
	Normal Calls to C Functions
	Using Fortran COMMON in C Code
	Using Fortran Arrays in C Code
	Calls to C Using LOC%, REF% and VAL%
	Making C Wrappers with mkf2c
	Using mkf2c and extcentry
	Makefile Considerations

	4. System Functions and Subroutines
	Library Functions
	Extended Intrinsic Subroutines
	DATE
	IDATE
	ERRSNS
	EXIT
	TIME
	MVBITS

	Extended Intrinsic Functions
	SECNDS
	RAN

	5. OpenMP Fortran API Multiprocessing Directives
	Using Directives
	Conditional Compilation
	Parallel Region Constructs
	Work-sharing Constructs
	Combined Parallel Work-sharing Constructs
	Synchronization Constructs
	Data Environment Constructs
	Directive Binding
	Directive Nesting

	6. Compiling and Debugging Parallel Fortran
	Compiling and Running Parallel Fortran
	Using the -static Option
	Examples of Compiling

	Profiling a Parallel Fortran Program
	Debugging Parallel Fortran
	General Debugging Hints
	EQUIVALENCE Statements and Storage of Local Variables

	A. Run-Time Error Messages
	B. Multiprocessing Directives (Outmoded)
	Overview
	Parallel Loops
	Writing Parallel Fortran
	C…DOACROSS
	C…&
	C…
	C…MP_SCHEDTYPE and C…CHUNK
	C…COPYIN
	Nesting C…DOACROSS

	Analyzing Data Dependencies for Multiprocessing
	Breaking Data Dependencies
	Work Quantum
	Cache Effects
	Performing a Matrix Multiply
	Understanding Trade-Offs
	Load Balancing
	Reorganizing Common Blocks To Improve Cache Behavior

	Advanced Features
	mp_block and mp_unblock
	mp_setup, mp_create, and mp_destroy
	mp_blocktime
	mp_numthreads ,mp_set_numthreads
	mp_suggested_numthreads
	mp_my_threadnum
	mp_setlock ,mp_unsetlock, mp_barrier
	Environment Variables for Origin Systems
	Local COMMON Blocks
	Compatibility With sproc

	DOACROSS Implementation
	Loop Transformation
	Executing Spooled Routines

	PCF Directives
	Parallel Region
	PCF Constructs
	Restrictions
	Effects on timing

	Communicating Between Threads Through Thread Local Data
	Synchronization Intrinsics
	Synopsis
	Atomic fetch-and-op Operations
	Atomic op-and-fetch Operations
	Atomic BOOL Operation
	Atomic synchronize Operation
	Atomic lock and unlock Operations
	Example of Implementing a Pure Spin-Wait Lock

	C. The Auto-Parallelizing Option (APO)
	Using the MIPSpro APO
	Common Command-Line Options
	Optimization Options
	Interprocedural Analysis
	Loop Nest Optimizer Options
	Other Optimization Options

	Output files
	The .list File
	The .w2f.f File
	About the .m and .anl Files

	Running Your Program
	Failing to Parallelize Safe Loops
	Function Calls in Loops
	GO TO Statements in Loops
	Problematic Array Subscripts
	Local Variables

	Parallelizing the Wrong Loop
	Inner Loops
	Small Trip Counts
	Poor Data Locality

	Unnecessary Parallelization Overhead
	Strategies for Assisting Parallelization
	Compiler Directives for Automatic Parallelization
	C*…* NO CONCURRENTIZE
	C*…* CONCURRENTIZE
	C*…* ASSERT DO (CONCURRENT)
	C*…* ASSERT DO (SERIAL)
	C*…* ASSERT CONCURRENT CALL
	C*…* ASSERT PERMUTATION
	C*…* ASSERT DO PREFER (CONCURRENT)
	C*…* ASSERT DO PREFER (SERIAL)

	Index

