
MIPSpro Fortran 77 Language
Reference Manual

Document Number 007–2362–004

Copyright © 1994, 1999 Silicon Graphics, Inc. and Cray Research, Inc. All Rights Reserved. This manual or parts thereof may not
be reproduced in any form unless permitted by contract or by written permission of Silicon Graphics, Inc. or Cray Research, Inc.

LIMITED AND RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in the Rights in Data clause at FAR
52.227-14 and/or in similar or successor clauses in the FAR, or in the DOD, DOE or NASA FAR Supplements. Unpublished rights
reserved under the Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre
Pkwy., Mountain View, CA 94043-1351.

Autotasking, CF77, CRAY, Cray Ada, CraySoft, CRAY Y-MP, CRAY-1, CRInform, CRI/TurboKiva, HSX, LibSci, MPP Apprentice,
SSD, SUPERCLUSTER, UNICOS, X-MP EA, and UNICOS/mk are federally registered trademarks and Because no workstation is
an island, CCI, CCMT, CF90, CFT, CFT2, CFT77, ConCurrent Maintenance Tools, COS, Cray Animation Theater, CRAY APP,
CRAY C90, CRAY C90D, Cray C++ Compiling System, CrayDoc, CRAY EL, CRAY J90, CRAY J90se, CrayLink, Cray NQS,
Cray/REELlibrarian, CRAY S-MP, CRAY SSD-T90, CRAY SV1, CRAY T90, CRAY T3D, CRAY T3E, CrayTutor, CRAY X-MP,
CRAY XMS, CRAY-2, CSIM, CVT, Delivering the power . . ., DGauss, Docview, EMDS, GigaRing, HEXAR, IOS,
ND Series Network Disk Array, Network Queuing Environment, Network Queuing Tools, OLNET, RQS, SEGLDR, SMARTE,
SUPERLINK, System Maintenance and Remote Testing Environment, Trusted UNICOS, and UNICOS MAX are trademarks of
Cray Research, Inc., a wholly owned subsidiary of Silicon Graphics, Inc.

DynaText and DynaWeb are registered trademarks of Inso Corporation. Silicon Graphics and IRIS are registered trademarks, and
IRIS 4D, IRIX, and MIPSpro are trademarks of Silicon Graphics, Inc. UNIX is a registered trademark in the United States and
other countries, licensed exclusively through X/Open Company Limited. VMS and VAX are trademarks of Digital Equipment
Corporation. X/Open is a trademark of X/Open Company Ltd. The X device is a trademark of the Open Group.

The UNICOS operating system is derived from UNIX® System V. The UNICOS operating system is also based in part on the
Fourth Berkeley Software Distribution (BSD) under license from The Regents of the University of California.

New Features

MIPSpro Fortran 77 Language Reference Manual 007–2362–004

This rewrite supports the MIPSpro 7.3 release.

Record of Revision

Version Description

7.3 March, 1999.
Printing to support the MIPSpro 7.3 release.

007–2362–004 i

Contents

Page

About This Manual xxv

Related Publications . xxv

Obtaining Publications . xxv

Conventions . xxvi

Reader Comments . xxvii

Fortran Elements and Concepts [1] 1

Fortran Character Set . 1

Blank Characters . 2

Escape Sequences . 3

Data Types . 3

Collating Sequence . 4

Symbolic Names . 5

Conventions . 5

Data Types of Symbolic Names 6

Scope of Symbolic Names . 7

Variables . 7

Source Program Lines . 7

Fixed Format . 7

TAB Character Formatting . 8

Types of Lines . 9

Comments . 9

Debugging Lines . 9

Initial Lines . 9

Continuation Lines . 10

007–2362–004 iii

MIPSpro Fortran 77 Language Reference Manual

Page

Statements . 10

Statement Labels . 11

Executable Statements . 11

Non-Executable Statements . 12

Program Units . 13

Main Program . 13

Subprograms . 14

Program Organization . 14

Executable Programs . 14

Order of Statements . 15

Execution Sequence . 16

Constants and Data Structures [2] 19

Constants . 19

Arithmetic Constants . 19

Integer Constants . 20

Hexadecimal Integer Constants 21

Octal Integer Constants . 21

Real Constants . 21

Double-Precision Constants 23

Quad-Precision Constants . 24

Complex Constants . 25

Double-Complex Constants 26

Quad-Complex Constants . 27

Logical Constants . 27

Character Constants . 28

Hollerith Constants . 29

Bit Constants . 31

Records and Structures . 32

Overview of Records and Structures 32

iv 007–2362–004

Contents

Page

Typed Data Declarations (Variables or Arrays) 33

Substructure Declarations . 33

Mapped Field Declarations . 33

Unnamed Fields . 33

Record and Field References . 33

Aggregate Assignment Statement 33

Arrays . 34

Array Names and Types . 34

Array Declarators . 35

Value of Dimension Bounds . 36

Array Size . 36

Storage and Element Ordering 37

Subscripts . 37

Expressions [3] 39

Arithmetic Expressions . 39

Arithmetic Operators . 40

Interpretation of Arithmetic Expressions 40

Arithmetic Operands . 42

Arithmetic Constant Expressions 43

Integer Constant Expressions . 44

Evaluating Arithmetic Expressions 44

Single-Mode Expressions . 44

Mixed-Mode Expressions . 44

Exponentiation . 45

Integer Division . 46

Character Expressions . 46

Character Constant Expressions 46

007–2362–004 v

MIPSpro Fortran 77 Language Reference Manual

Page

Character Substrings . 47

Substring Names . 47

Substring Values e1, e2 . 48

Concatenate Operator . 48

Parenthesized Character Expressions 49

Relational Expressions . 49

Relational Operators . 49

Relational Operands . 50

Evaluating Relational Expressions 50

Arithmetic Relational Expressions 50

Character Relational Expressions 51

Logical Expressions . 52

Logical Operators . 52

Logical Operands . 53

Logical Primary . 53

Logical Factor . 54

Logical Term . 54

Logical Disjunct . 55

Logical Expression . 55

Interpretation of Logical Expressions 55

Evaluating Expressions . 56

Precedence of Operators . 56

Integrity of Parentheses and Interpretation Rules 57

Specification Statements [4] 59

AUTOMATIC, STATIC . 60

Syntax . 60

Method of Operation . 60

vi 007–2362–004

Contents

Page

Rules for Use . 61

Example 1: AUTOMATIC/STATIC example 61

BLOCK DATA . 62

Syntax . 62

Method of Operation . 62

Rules for Use . 62

COMMON . 63

Syntax . 63

Method of Operation . 63

Rules for Use . 64

Restrictions . 64

Example 2: COMMON examples 65

DATA . 66

Syntax . 66

Method of Operation . 66

Rules for Use . 67

Restrictions . 68

Example 3: DATA example 68

Data Type Statements . 69

Numeric Data Types . 69

Syntax . 69

Method of Operation . 71

Rules for Use . 71

Example 4: Data type statement example 72

Character Data Types . 72

Syntax . 72

Rules for Use . 73

Example 5: CHARACTER example 74

DIMENSION . 74

007–2362–004 vii

MIPSpro Fortran 77 Language Reference Manual

Page

Syntax . 74

Method of Operation . 75

Rules for Use . 75

Example 6: DIMENSION example 75

EQUIVALENCE . 75

Syntax . 75

Method of Operation . 75

Rules for Use . 76

Restrictions . 77

Example 7: EQUIVALENCE example 1 77

Example 8: EQUIVALENCE example 2 77

Example 9: EQUIVALENCE example 3 78

EXTERNAL . 78

Syntax . 78

Rules for Use . 79

Restriction . 79

Example 10: EXTERNAL example 79

IMPLICIT . 79

Syntax 1 . 79

Syntax 2 . 80

Syntax 3 . 80

Rules for Use . 81

Example 11: IMPLICIT examples 81

INTRINSIC . 82

Syntax . 82

Rules for Use . 82

Restrictions . 83

Example 12: INTRINSIC example 83

NAMELIST . 83

viii 007–2362–004

Contents

Page

Syntax . 83

Rules for Use . 84

Example 13: NAMELIST example 84

PARAMETER . 84

Syntax . 84

Method of Operation . 85

Rules for Use . 85

Restrictions . 86

Example 14: PARAMETER example 86

POINTER . 87

Syntax . 87

Rules for Use . 87

Restrictions . 88

Example 15: POINTER example 88

PROGRAM . 89

Syntax . 89

Rules for Use . 89

RECORD . 90

Syntax . 90

Method of Operation . 90

Example 16: RECORD example 90

SAVE . 91

Syntax . 91

Method of Operation . 91

Rules for Use . 92

Restrictions . 92

Example 17: SAVE example 92

STRUCTURE / UNION . 92

Syntax (General) . 92

007–2362–004 ix

MIPSpro Fortran 77 Language Reference Manual

Page

UNION Declaration Syntax . 93

Method of Operation . 94

Example 18: STRUCTURE/UNION example: general 94

Example 19: UNION example 96

VOLATILE . 96

Syntax . 96

Assignment and Data Statements [5] 99

Arithmetic Assignment Statements 99

Logical Assignment Statements . 102

Character Assignment . 103

Aggregate Assignment . 103

ASSIGN . 104

Example 20: ASSIGN with GOTO 104

Example 21: ASSIGN with I/O 104

Data Initialization . 105

Implied DO Lists . 105

Syntax . 105

Method of Operation . 106

Rules . 106

Control Statements [6] 107

CALL . 108

Syntax . 108

Method of Operation . 108

Rules for Use . 109

Example 22: CALL example 109

CONTINUE . 110

Syntax . 110

x 007–2362–004

Contents

Page

Method of Operation . 110

Example 23: CONTINUE example 110

DO . 111

Syntax . 111

Method of Operation . 111

Rules for Use . 113

Restrictions . 113

Example 24: DO example . 114

DO WHILE . 114

Syntax . 115

Method of Operation . 115

ELSE . 115

Syntax . 115

Method of Operation . 115

Rules for Use . 116

Restrictions . 116

Example 25: ELSE example 116

ELSE IF . 116

Syntax . 117

Method of Operation . 117

Rule for Use . 117

Restrictions . 117

Example . 118

END . 118

Syntax . 118

Method of Operation . 118

Rules for Use . 118

END DO . 119

Syntax . 119

007–2362–004 xi

MIPSpro Fortran 77 Language Reference Manual

Page

END IF . 119

Syntax . 119

Rules for Use . 119

GO TO (Unconditional) . 119

Syntax . 119

Example 26: GO TO example 120

GO TO (Computed) . 120

Syntax . 120

Method of Operation . 120

Rule for Use . 121

Example 27: GO TO (computed) example 121

GO TO (Assigned) . 121

Syntax . 121

Method of Operation . 121

Rules for Use . 121

Example 28: GO TO (assigned) example 122

IF (Arithmetic) . 122

Syntax . 122

Method of Operation . 122

Rules for Use . 122

Example 29: IF (arithmetic) example 122

IF (Branch Logical) . 123

Syntax . 123

Method of Operation . 123

Example 30: IF (branch logical) example 123

IF (Test Conditional) . 123

Syntax . 124

Method of Operation . 124

xii 007–2362–004

Contents

Page

Restriction . 125

Example 31: IF (test conditional) example 125

PAUSE . 125

Syntax . 125

Method of Operation . 125

RETURN . 126

Syntax . 126

Method of Operation . 127

STOP . 127

Syntax . 127

Method of Operation . 128

Input/Output Processing [7] 129

Records . 129

Formatted Records . 130

Unformatted Records . 130

Endfile Records . 130

I/O Statements . 130

Unformatted Statements . 131

Formatted Statements . 131

List-Directed Statements . 132

Files . 132

External Files . 133

Internal Files . 133

Methods of File Access . 134

Sequential Access . 134

Direct Access . 135

Keyed Access . 135

Units . 136

Connection of a Unit . 136

007–2362–004 xiii

MIPSpro Fortran 77 Language Reference Manual

Page

Disconnection of a Unit . 136

Input/Output Statements [8] 137

Statement Summary . 137

ACCEPT . 138

Syntax . 138

Rules for Use . 138

Example 32: ACCEPT example 139

BACKSPACE . 139

Syntax . 139

Method of Operation . 140

Example 33: BACKSPACE example 140

CLOSE . 140

Syntax . 140

Method of Operation . 141

Example 34: CLOSE example 141

DECODE . 142

Syntax . 142

Method of Operation . 142

DEFINE FILE . 143

Syntax . 143

Method of Operation . 143

DELETE . 143

Syntax . 144

Method of Operation . 144

Example 35: DELETE example 144

ENCODE . 144

Syntax . 145

Method of Operation . 145

xiv 007–2362–004

Contents

Page

ENDFILE . 145

Syntax . 146

Method of Operation . 146

Example 36: ENDFILE example 147

FIND . 147

Syntax . 147

INQUIRE . 147

Syntax . 148

Method of Operation . 151

Example 37: INQUIRE example 152

OPEN . 152

Syntax . 152

Rules for Use . 158

Example 38: OPEN example 158

PRINT or TYPE . 158

Syntax . 159

Rules for Use . 159

Example 39: PRINT example 159

READ (Direct Access) . 159

Syntax: Formatted . 159

Syntax: Unformatted . 159

READ (Indexed) . 160

Syntax: Formatted . 160

Syntax: Unformatted . 160

READ (Internal) . 161

Syntax: Formatted . 161

Syntax: List-Directed . 161

READ (Sequential) . 162

007–2362–004 xv

MIPSpro Fortran 77 Language Reference Manual

Page

Formatted READ (Sequential) . 162

Syntax . 162

Method of Operation . 163

List-Directed READ (Sequential) 163

Syntax . 163

Method of Operation . 163

Rules for Use . 163

Unformatted READ (Sequential) 164

Syntax . 164

Method of Operation . 164

Rules for Use . 164

Namelist-Directed READ (Sequential) 165

Syntax . 165

Method of Operation . 165

Rules for Use . 165

Example 40: Namelist-directed READ example 166

REWIND . 167

Syntax . 167

Method of Operation . 167

Example 41: REWIND example 167

REWRITE . 168

Syntax: Formatted . 168

Syntax: Unformatted . 168

Rules for Use . 168

Example 42: REWRITE example 169

UNLOCK . 169

Syntax . 169

Method of Operation . 169

xvi 007–2362–004

Contents

Page

Example 43: UNLOCK example 169

WRITE (Direct Access) . 170

Syntax: Formatted . 170

Syntax: Unformatted . 170

Rules for Use . 170

WRITE (Indexed) . 171

Syntax: Formatted . 171

Syntax: Unformatted . 171

Rules for Use . 171

WRITE (Internal) . 171

Syntax: Formatted . 172

Syntax: List-directed . 172

Rules for Use . 172

WRITE (Sequential) . 172

Parameter Explanations . 173

Formatted WRITE (Sequential) 173

Method of Operation . 173

Unformatted WRITE (Sequential) 174

Method of Operation . 174

List-Directed WRITE . 174

Method of Operation . 174

Rules . 174

Namelist-Directed WRITE . 176

Syntax . 176

Method of Operation . 176

Rules for Use . 176

Examples for All Forms of Sequential WRITE 176

Control Information List - cilist . 176

Unit Specifier - UNIT . 178

007–2362–004 xvii

MIPSpro Fortran 77 Language Reference Manual

Page

Format Specifier - FMT . 178

Namelist Specifier - NML . 179

Record Specifier - REC . 179

Key-Field-Value Specifier - KEY 179

Key-of-Reference Specifier - KEYID 180

Input/Output Status Specifier - ios 181

Error Specifier - ERR . 181

End-of-File Specifier - END . 181

Input/Output List - iolist . 182

Input List . 182

Example 44: Input list example 183

Output List . 183

Example 45: Output list example 183

Implied DO Lists . 183

Example 46: Implied DO list example 184

Data Transfer Rules . 184

Unformatted Input/Output . 185

Formatted Input/Output . 185

Format Specification [9] 187

Format Stored as a Character Entity 188

FORMAT Statement . 188

Format Specification . 188

Descriptors . 189

Format Specifier Usage . 190

Variable Format Expressions . 192

General Rules for Using FORMAT 193

Input Rules Summary . 194

xviii 007–2362–004

Contents

Page

Output Rules Summary . 195

Field and Edit Descriptors . 195

Field Descriptor Reference . 196

Numeric Field Descriptors . 196

Default Field Descriptor Parameters 196

I Field Descriptor . 197

O Field Descriptor . 199

Z Field Descriptor . 201

F Field Descriptor . 202

E Field Descriptor . 204

D Field Descriptor . 206

G Field Descriptor . 207

P Edit Descriptor . 210

Scale Factor . 210

L Edit Descriptor . 212

A Edit Descriptor . 213

Input Example . 214

Repeat Counts . 215

H Field Descriptor . 216

Character Edit Descriptor . 216

Example . 217

Q Edit Descriptor . 217

Input Example . 218

Edit Descriptor Reference . 218

X Edit Descriptor . 218

T Edit Descriptor . 219

TL Edit Descriptor . 219

007–2362–004 xix

MIPSpro Fortran 77 Language Reference Manual

Page

TR Edit Descriptor . 219

BN Edit Descriptor . 220

BZ Edit Descriptor . 220

SP Edit Descriptor . 220

SS Edit Descriptor . 220

S Edit Descriptor . 221

Colon Descriptor . 221

$ Edit Descriptor . 221

Output Example . 222

Complex Data Editing . 222

Carriage Control . 223

Slash Editing . 223

Interaction Between I/O List and Format 224

List-Directed Formatting . 225

List-Directed Input . 226

List-Directed Output . 228

Statement Functions and Subprograms [10] 229

Overview . 229

Statement Functions . 230

Defining a Statement Function 230

Referencing a Statement Function 231

Operational Conventions and Restrictions 231

Parameter Passing . 232

Arguments . 232

Special Intrinsic Functions . 233

%VAL . 233

%REF . 234

xx 007–2362–004

Contents

Page

%DESCR . 234

%LOC . 234

Function and Subroutine Subprograms 235

Referencing Functions and Subroutines 235

Executing Functions and Subroutines 237

FUNCTION . 237

Syntax . 238

Rules for Use . 239

Restrictions . 239

SUBROUTINE . 240

Syntax . 240

Rules for Use . 240

Restrictions . 241

ENTRY . 241

Syntax . 241

Method of Operation . 241

Rules for Use . 242

Restrictions . 242

INCLUDE . 243

Syntax . 243

Rules for Use . 243

Search Path . 244

Restrictions . 244

Compiler Options [11] 245

OPTIONS Statement . 245

Inline Options . 246

$COL72 Option . 246

$COL120 Option . 247

$INT2 Option . 247

007–2362–004 xxi

MIPSpro Fortran 77 Language Reference Manual

Page

$INT8 Option . 247

$LOG2 Option . 247

$LOG8 Option . 247

$INCLUDE Statement . 248

Search Path . 248

Appendix A Intrinsic Functions 249

Generic and Specific Names . 249

Operational Conventions and Restrictions 250

Table of Functions . 250

Index 265

Figures
Figure 1. Order of Array Elements 37

Figure 2. Storage Representation of an EQUIVALENCE Statement 77

Figure 3. Logical Representation of an EQUIVALENCE Statement 78

Figure 4. Logical Representation of a STRUCTURE Statement 95

Figure 5. Namelist Input Data Rules 165

Tables
Table 1. C Escape Sequences . 3

Table 2. Fortran Line Structure . 8

Table 3. Notation Forms for Real Constants 22

Table 4. Invalid Real Constants 23

Table 5. Invalid Double-Precision Constants 24

Table 6. Invalid Quad-Precision Constants 25

Table 7. Valid Forms of Complex Data 26

Table 8. Invalid Forms of Complex Data 26

Table 9. Valid Forms of Double-Complex Data 27

xxii 007–2362–004

Contents

Page

Table 10. Invalid Forms of Double-Complex Data 27

Table 11. Valid Character Constants 28

Table 12. Invalid Character Constants 29

Table 13. Invalid Hollerith Constants 30

Table 14. Valid Substring Examples 31

Table 15. Determining Subscript Values 38

Table 16. Arithmetic Operators . 40

Table 17. Interpretation of Arithmetic Expressions 40

Table 18. Data type rankings . 44

Table 19. Valid Substring Examples 48

Table 20. Fortran Relational Operators 50

Table 21. Logical Operators . 52

Table 22. Logical Expressions . 56

Table 23. Static and Automatic Variables 61

Table 24. Keywords for Type Statements 70

Table 25. Double Complex Functions 71

Table 26. Type Conversion Rules 100

Table 27. Conversion rules for assignment statements 100

Table 28. Default Formats of List-Directed Output 175

Table 29. Control Information List Specifiers 177

Table 30. Forms of the Key-Field-Value Specifier 180

Table 31. Summary of Field and Edit Descriptors 190

Table 32. Default Field Descriptors 197

Table 33. I Field Input Examples 198

Table 34. I Field Output Examples 199

Table 35. O Field Input Examples 200

Table 36. O Field Output Examples 201

Table 37. Z Field Input Examples 202

007–2362–004 xxiii

MIPSpro Fortran 77 Language Reference Manual

Page

Table 38. Z Field Output Examples 202

Table 39. F Field Input Examples 203

Table 40. F Field Output Examples 204

Table 41. E Field Output Examples 205

Table 42. E Field Output Examples 206

Table 43. D Field Input Examples 207

Table 44. D Field Output Examples 207

Table 45. Effect of Data Magnitude on G Format Conventions 208

Table 46. G Field Output Examples 209

Table 47. Field Comparison Examples 209

Table 48. Scale Factor Examples 211

Table 49. Scale Format Output Examples 211

Table 50. L Field Examples . 213

Table 51. I/O List Element Sizes 213

Table 52. A Field Input Examples 214

Table 53. A Field Output Examples 215

Table 54. H Edit Description Output Examples 216

Table 55. Character Edit Description Examples 217

Table 56. Complex Data Editing Input Examples 222

Table 57. Complex Data Editing Output Examples 223

Table 58. Carriage-Control Characters 223

Table 59. Intrinsic Functions . 250

xxiv 007–2362–004

About This Manual

This manual describes the Fortran 77 language specifications as implemented
using the MIPSpro Fortran 77 compiler. This implementation of FORTRAN 77
contains full American National Standard Institute (ANSI) Programming
Language Fortran (X3.9-1978). It has extensions that provide full VMS Fortran
compatibility to the extent possible without the VMS operating system or VAX
data representation. It also contains extensions that provide partial
compatibility with programs written in SVS Fortran.

Related Publications

The following documents contain additional information that may be helpful:

• The MIPSpro Fortran 77 Programmer’s Guide provides a description of the
Silicon Graphics MIPSpro Fortran 77 compiler.

• The MIPSpro Compiling and Performance Tuning Guide provides information
about improving program performance by using the optimization facilities
of the compiler system, the dump utilities, archiver, debugger, and the tools
used to maintain Fortran programs.

• The MIPSpro 64-Bit Porting and Transition Guide provides an overview of the
64-bit compiler system and language implementation differences, porting
source code to the 64-bit system, compilation and run-time issues.

Obtaining Publications

Silicon Graphics maintains information about available publications at the
following URL:

http://techpubs.sgi.com/library

This Web site contains information that allows you to browse documents online,
order documents, and send feedback to Silicon Graphics. You can also order a
printed Silicon Graphics document by calling 1-800-627-9307.

The User Publications Catalog describes the availability and content of all Cray
Research hardware and software documents that are available to customers.
Customers who subscribe to the Cray Inform (CRInform) program can access
this information on the CRInform system.

007–2362–004 xxv

MIPSpro Fortran 77 Language Reference Manual

Customers who subscribe to the CRInform program can order software release
packages electronically by using the Order Cray Software option.

Customers outside of the United States and Canada should contact their local
service organization for ordering and documentation information.

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words
or concepts being defined.

user input This bold, fixed-space font denotes literal items
that the user enters in interactive sessions.
Output is shown in nonbold, fixed-space font.

[] Brackets enclose optional portions of a command
or directive line.

... Ellipses indicate that a preceding element can be
repeated.

The default shell in the UNICOS and UNICOS/mk operating systems, referred
to as the standard shell, is a version of the Korn shell that conforms to the
following standards:

• Institute of Electrical and Electronics Engineers (IEEE) Portable Operating
System Interface (POSIX) Standard 1003.2–1992

• X/Open Portability Guide, Issue 4 (XPG4)

The UNICOS and UNICOS/mk operating systems also support the optional use
of the C shell.

Cray UNICOS Version 10.0 is an X/Open Base 95 branded product.

xxvi 007–2362–004

About This Manual

Reader Comments

If you have comments about the technical accuracy, content, or organization of
this document, please tell us. Be sure to include the title and part number of
the document with your comments.

You can contact us in any of the following ways:

• Send electronic mail to the following address:

techpubs@sgi.com

• Send a facsimile to the attention of “Technical Publications” at fax number
+1 650 932 0801.

• Use the Suggestion Box form on the Technical Publications Library World
Wide Web page:

http://techpubs.sgi.com/library/

• Call the Technical Publications Group, through the Technical Assistance
Center, using one of the following numbers:

For Silicon Graphics IRIX based operating systems: 1 800 800 4SGI

For UNICOS or UNICOS/mk based operating systems or CRAY Origin2000
systems: 1 800 950 2729 (toll free from the United States and Canada) or
+1 651 683 5600

• Send mail to the following address:

Technical Publications
Silicon Graphics, Inc.
1600 Amphitheatre Pkwy.
Mountain View, California 94043–1351

We value your comments and will respond to them promptly.

007–2362–004 xxvii

Fortran Elements and Concepts [1]

This chapter provides definitions for the various elements of a Fortran program.
The Fortran language is written using a specific set of characters that form the
words, numbers, names, and expressions that make up Fortran statements.
These statements form a Fortran program. The Fortran character set, the rules
for writing Fortran statements, the main structural elements of a program, and
the proper order of statements in a program are also discussed in this chapter.

This chapter contains the following sections:

• Fortran character set, Section 1.1, page 1

• Data types, Section 1.2, page 3

• Collating sequence, Section 1.3, page 4

• Symbolic names, Section 1.4, page 5

• Variables, Section 1.5, page 7

• Source program lines, Section 1.6, page 7

• Statements, Section 1.7, page 10

• Program units, Section 1.8, page 13

• Program organization, Section 1.9, page 14

1.1 Fortran Character Set

The Fortran character set consists of 26 uppercase and 26 lowercase letters
(alphabetic characters), the numbers 0 through 9 (digits), and special characters.
This manual refers to letters (uppercase and lowercase) together with the
underscore (_) as extended alphabetic characters. The extended alphabetic characters
together with the digits are also referred to as alphanumeric characters. The
complete character set consists of the following letters, digits and special
characters:

Letters: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z

Digits: 0 1 2 3 4 5 6 7 8 9

007–2362–004 1

MIPSpro Fortran 77 Language Reference Manual

Special
Character

Name

Blank

= Equal

+ Plus

- Minus

* Asterisk

/ Slash

(Left parenthesis

) Right parenthesis

, Comma

. Decimal point

$ Currency symbol

’ Apostrophe

: Colon

! Exclamation point

_ Underscore

“ Double quote

Lowercase alphabetic characters, the exclamation point (!), the underscore (_),
and the double quote (") are extensions to FORTRAN 77. Digits are interpreted
in base 10. A special character can serve as an operator, a part of a character
constant, a part of a numeric constant, or some other function

1.1.1 Blank Characters

Use blank characters freely to improve the appearance and readability of
Fortran statements. They have no significance in Fortran statements, except the
following:

• in character constants

• for H and character editing in format specifications

• in Hollerith constants

• to signify an initial line when used in column 6 of source line

2 007–2362–004

Fortran Elements and Concepts [1]

• when counting the total number of characters allowed in any one statement

These special considerations are discussed in detail in later sections.

1.1.2 Escape Sequences

Table 1 lists escape sequences for representing non-graphic characters and for
compatibility with the C programming language.

Table 1. C Escape Sequences

Sequence Meaning

\n New line

\t Tab

\b Backspace

\f Form feed

\0 Null

\’ Apostrophe (does not terminate a string)

\" Quotation mark (does not terminate a string)

\\ \

\x x represents any character

The compiler treats the backslash character as the beginning of an escape
sequence by default. To use backslash as a normal character, compile the
program with the -backslash option.

1.2 Data Types

In general, there are three kinds of entities that have a data type: constants,
data names, and function names. The types of data allowed in Fortran are the
following:

• INTEGER: positive and negative integral numbers and zero

• REAL: positive and negative numbers with a fractional part and zero

• DOUBLE PRECISION: same as REAL but using twice the storage space and
possibly greater precision

• COMPLEX: ordered pair of REAL data: real and imaginary components

007–2362–004 3

MIPSpro Fortran 77 Language Reference Manual

• LOGICAL: Boolean data representing TRUE or FALSE

• CHARACTER: character strings

• HOLLERITH: an historical data type for character definition

Together, INTEGER, REAL, DOUBLE PRECISION, COMPLEX, and DOUBLE
COMPLEX constitute the class of arithmetic data types.

The type of data is established in one of two ways: implicitly, depending on the
first letter of its symbolic name (described in this chapter), or explicitly through
a type statement (described in Chapter 4, page 59). A data value can be a
variable or a constant, that is, its value either can or cannot change during the
execution of a program. An array is a sequence of data items occupying a set of
consecutive bytes.

If not explicitly specified by a type statement or a FUNCTION statement, the data
type of a data item, data name, or function name is determined implicitly by
the first character of its symbolic name. By default, symbolic names beginning
with I, J, K, L, M, or N (uppercase or lowercase) imply an INTEGER data type;
names beginning with all other letters imply a REAL data type. You can change
or confirm the default implicit data type corresponding to each letter of the
alphabet through an IMPLICIT statement (see Section 4.8, page 78, for details).

The data type of external functions and statement functions is implicitly
determined in the same manner as above. The type of an external function can
also be explicitly declared in a FUNCTION statement.

1.3 Collating Sequence

The Fortran collating sequence defines the relationship between letters and
digits and is used when comparing character strings. The collating sequence is
determined by these rules:

• A is less than Z, and a is less than z. The listing order of the alphabetic
characters specifies the collating sequence for alphabetic characters. The
relationship between lowercase and uppercase of the same letter is
unspecified.

• 0 is less than 9. The order in which digits are listed above defines the
collating sequence for digits.

• Alphabetic characters and digits are not intermixed in the collating sequence.

4 007–2362–004

Fortran Elements and Concepts [1]

• The blank character is less than the letter A (uppercase and lowercase) and
less than the digit 0.

• The special characters given as part of the character set are not listed in any
specific order. There is no specification as to where special characters occur
in the collating sequence.

1.4 Symbolic Names

A symbolic name is a sequence of characters that refer to a memory location by
describing its contents. Symbolic names identify the following user-defined
local and global entities:

Local variable

constant

array

statement function

intrinsic function

dummy procedure

Global common block

external function

subroutine

main program

block data subprogram

1.4.1 Conventions

A symbolic name can contain any alphanumeric character; digits and
_(underscores) are allowed in addition to uppercase and lowercase alphabetic
characters. However, the first character must be a letter.

• Fortran symbolic names can contain any number of characters, but only the
first 32 of these are significant in distinguishing one symbolic name from
another (standard FORTRAN 77 allows only 6 characters.) Symbolic names
that are used externally (program names, subroutine names, function names,
common block names) are limited to 32 significant characters.

007–2362–004 5

MIPSpro Fortran 77 Language Reference Manual

• The inclusion of the special period (.), underscore (_), and dollar sign ($)
characters in symbolic names is an extension to FORTRAN 77.

• Except in Hollerith constants and character strings, lowercase alphabetic
characters are treated as if they were uppercase. Thus, the variable names
my_var and My_Var are identical.

Examples of valid symbolic names are

CASH C3P0 R2D2 LONG_NAME

Examples of invalid symbolic names are

X*4 (contains a special character, *)

3CASH (first character is a digit)

1.4.2 Data Types of Symbolic Names

A symbolic name has a definite data type in a program unit that can be any of
the following:

• BYTE

• INTEGER [*1 | *2 | *4 | *8]

• REAL [*4 | *8 | *16] or DOUBLE PRECISION

• COMPLEX [*8 | *16 | *32] or DOUBLE COMPLEX

• LOGICAL [*1 | *2 | *4 | *8]

• CHARACTER [*n]

The optional length specifier that follows the type name determines the number
of bytes of storage for the data type. If the length specifier is omitted, the
compiler uses the defaults listed in the MIPSpro Fortran 77 Programmer’s Guide.

In general, wherever the usage of a given data type is allowed, it can have any
internal length. One exception is the use of integer variables for assigned GOTO
statements. In this case the integer variable must be 4 bytes in length.

Data of a given type and different internal lengths can be intermixed in
expressions, and the resultant value will be the larger of the internal
representations in the expression.

Note: The lengths of arguments in actual and formal parameter lists and
COMMON blocks must agree in order to produce predictable results.

6 007–2362–004

Fortran Elements and Concepts [1]

1.4.3 Scope of Symbolic Names

The following rules determine the scope of symbolic names:

• A symbolic name that identifies a global entity, such as a common block,
external function, subroutine, main program, or block data subprogram, has
the scope of an executable program. Do not use it to identify another global
entity in the same executable program.

• A symbolic name that identifies a local entity, such as an array, variable,
constant, statement function, intrinsic function, or dummy procedure, has
the scope of a single program unit. Do not use it to identify any other local
entity in the same program unit.

• Do not use a symbolic name assigned to a global entity in a program unit
for a local entity in the same unit. However, you can use the name for a
common block name or an external function name that appears in a
FUNCTION or ENTRY statement.

1.5 Variables

A variable is an entity with a name, data type, and value. Its value is either
defined or undefined at any given time during program execution.

The variable name is a symbolic name of the data item and must conform to
the rules given for symbolic names. The type of a variable is explicitly defined
in a type-statement or implicitly by the first character of the name.

A variable cannot be used or referred to unless it has been defined through an
assignment statement, input statement, DATA statement, or through association
with a variable or array element that has been defined.

1.6 Source Program Lines

A source program line is a sequence of character positions, called columns,
numbered consecutively starting from column 1 on the left. There are two
formats for Fortran programs: fixed format (based on columns), and TAB
format (based on the tab character).

1.6.1 Fixed Format

A Fortran line is divided into columns, with one character per column as
indicated in Table 2.

007–2362–004 7

MIPSpro Fortran 77 Language Reference Manual

Table 2. Fortran Line Structure

Field Column

Statement label 1 through 5

Continuation indicator 6

Statement 7 to the end of the line or to the start of the
comment field

Comment (optional) 73 through end of line

The -col72, -col120, -extend_source, and -noextend_source
command line options are provided to change this format. See the MIPSpro
Fortran 77 Programmer’s Guide, for details. Several of these options can be
specified in-line as described in Chapter 11, page 245.

1.6.2 TAB Character Formatting

Rather than aligning characters in specific columns, the TAB character can be
used as an alternative field delimiter, as follows:

1. Type the statement label and follow it with a TAB. If there is no statement
label, start the line with a TAB.

2. After the TAB, type either a statement initial line or a continuation line. A
continuation line must contain a digit (1 through 9) immediately following
the TAB. If any character other than a nonzero digit follows the TAB, the
line will be interpreted as an initial line.

3. In a continuation line beginning with a TAB followed by a nonzero digit,
characters following the digit to the end of the line are a continuation of the
current statement.

4. TAB-formatted lines do not have preassigned comment fields. All characters
to the end of the line are considered part of the statement. However, you
can use an exclamation point (!) to explicitly define a comment field. The
comment field extends from the exclamation point to the end of the line.

The rules for TAB formatting can be summarized as

• statement label TAB statement (initial line)

• TAB continuation field statement (continuation line)

• TAB statement (initial line)

8 007–2362–004

Fortran Elements and Concepts [1]

Although many terminals and text editors advance the cursor to a certain
position after a TAB is entered, this action is not related to how the TAB will be
ultimately interpreted by the compiler. The compiler interprets TAB characters
in the statement field as blanks.

1.6.3 Types of Lines

The following are the four types of Fortran program lines:

• comment

• debugging (an extension to FORTRAN 77)

• initial

• continuation

1.6.3.1 Comments

A comment line is used solely for documentation purposes and does not affect
program execution. A comment line can appear anywhere in a program and
has one of the following characteristics:

• an uppercase or lowercase C or an asterisk (*) in column 1 and any
sequence of characters from column 2 through to the end of the line

• an exclamation point (!) at any position of the line and any text after it until
the end of the line

• a blank line

1.6.3.2 Debugging Lines

Specify a D (or d) in column 1 for debugging purposes; it conditionally
compiles source lines in conjunction with the -d_lines option. When you
specify the option at compilation, the compiler treats all lines with a D in
column 1 as lines of source code and compiles them; when you omit the option,
the compiler treats all lines with a D in column 1 as comments.

1.6.3.3 Initial Lines

Initial lines contain the Fortran language statements that make up the source
program; these statements are described in detail in Section 1.9, page 14. These
fields divide each Fortran line into the following:

007–2362–004 9

MIPSpro Fortran 77 Language Reference Manual

• statement label field

• continuation indicator field

• statement field

• comment field

The fields in a Fortran line can be entered either on a character-per-column basis
or by using the TAB character to delineate the fields, as described previously.

1.6.3.4 Continuation Lines

A continuation line continues a Fortran statement and is identified as follows:

• Columns 1 through 5 must be blank.

• Column 6 contains any Fortran character other than a blank or the digit 0.
Column 6 is frequently used to number the continuation lines.

As with initial lines, columns 7 through the end of the line contain the Fortran
statement or a continuation of the statement.

Alternatively, you can use an ampersand (&) in column 1 to identify a
continuation line. Using an & in column 1 implies that columns 2 through the
end of the line are part of the statement. In FORTRAN 77, any remaining
columns (column 73 and on) of a continuation line are not interpreted. The
maximum number of consecutive continuation lines is 99 by default, but this
can be changed with a command line option.

1.7 Statements

Fortran statements are used to form program units. All Fortran statements,
except assignment and statement functions, begin with a keyword. A keyword is
a sequence of characters that identifies the type of Fortran statement.

A statement cannot begin on a line that contains any portion of a previous
statement, except as part of a logical IF statement.

The END statement signals the physical end of a Fortran program unit and
begins in column 7 or any later column of an initial line.

10 007–2362–004

Fortran Elements and Concepts [1]

1.7.1 Statement Labels

A statement label allows you to refer to individual Fortran statements. A
statement label consists of one to five digits—one of which must be
nonzero—placed anywhere in columns 1 through 5 of an initial line. Blanks and
leading zeros are not significant in distinguishing between statement labels.

The following statement labels are equivalent:

" 123 " "123 " "1 2 3" "00123"

Each statement label must be unique within a program unit.

Fortran statements do not require labels. However, only labeled statements can
be referenced by other Fortran statements. Do not label PROGRAM,
SUBROUTINE, FUNCTION, BLOCK DATA, or INCLUDE statements.

1.7.2 Executable Statements

An executable statement specifies an identifiable action and is part of the
execution sequence as described in Section 1.9, page 14.

The following are the three classes of executable statements:

• assignment statements

– arithmetic

– logical

– statement label (ASSIGN)

– character assignment

• control statements

– unconditional, assigned, and computed GO TO

– arithmetic IF and logical IF

– block IF, ELSE IF, ELSE, and END IF

– CONTINUE

– STOP and PAUSE

– DO

– CALL and RETURN

007–2362–004 11

MIPSpro Fortran 77 Language Reference Manual

– END

• I/O statements

– READ, WRITE, and PRINT

– REWIND, BACKSPACE, ENDFILE, OPEN, CLOSE, and INQUIRE

– ACCEPT, TYPE, ENCODE, DECODE, DEFINE FILE, FIND, REWRITE,
DELETE, and UNLOCK

1.7.3 Non-Executable Statements

A non-executable statement is not part of the execution sequence. You can
specify a statement label on most types of non-executable statements, but you
cannot also specify that label for an executable statement in the same program
unit. A non-executable statement can perform one of these functions:

• Specify the characteristics, storage arrangement, and initial values of data

• Define statement functions

• Specify entry points within subprograms

• Contain editing or formatting information

• Classify program units

• Specify inclusion of additional statements from another source

The following data type statements are classified as non-executable:

• CHARACTER

• COMPLEX

• DIMENSION

• DOUBLE COMPLEX

• DOUBLE PRECISION

• INTEGER

• LOGICAL

• REAL

• BYTE

12 007–2362–004

Fortran Elements and Concepts [1]

Additional non-executable program statements are

BLOCK DATA INCLUDE

COMMON INTRINSIC

DATA PARAMETER

ENTRY POINTER

EQUIVALENCE PROGRAM

EXTERNAL SAVE

FORMAT SUBROUTINE

FUNCTION Statement function

IMPLICIT VIRTUAL

1.8 Program Units

Fortran programs consist of one or more program units. A program unit
consists of a sequence of statements and optional comment lines. It can be a
main program or a subprogram. The program unit defines the scope for
symbolic names and statement labels.

The END statement must always be the last statement of a program unit.

1.8.1 Main Program

The main program is the program unit that initially receives control on
execution. It can have a PROGRAM statement as its first statement and contain
any Fortran statement except a FUNCTION, SUBROUTINE, BLOCK DATA, ENTRY,
or RETURN statement. A SAVE statement in a main program does not affect the
status of variables or arrays. A STOP or END statement in a main program
terminates execution of the program.

The main program does not need to be a Fortran program. See the MIPSpro
Fortran 77 Programmer’s Guide for information on writing Fortran programs that
interact with programs written in other languages.

The main program cannot be referenced from a subprogram or from itself.

007–2362–004 13

MIPSpro Fortran 77 Language Reference Manual

1.8.2 Subprograms

A subprogram is an independent section of code designed for a specialized
purpose. It receives control when referenced or called by a statement in the
main program or another subprogram.

A subprogram can be a

• function subprogram identified by a FUNCTION statement

• subroutine subprogram identified by a SUBROUTINE statement

• block data subprogram identified by a BLOCK DATA statement

• non-Fortran subprogram

Subroutines, external functions, statement functions, and intrinsic functions are
collectively called procedures. A procedure is a program unit that performs an
operational function.

An external procedure is a function or subroutine subprogram that is processed
independently of the calling or referencing program unit. It can be written as a
non-Fortran subprogram.

Intrinsic functions are supplied by the processor and are generated as in-line
functions or library functions. Refer to Appendix A, page 249, for a description
of the functions, the results given by each, and their operational conventions
and restrictions.

1.9 Program Organization

This section explains the requirements for an executable Fortran program. It
also describes the rules for ordering statements and the statement execution
sequence.

1.9.1 Executable Programs

An executable program consists of exactly one main program and zero or more
of each of the following entities:

• function subprogram

• subroutine subprogram

• block data subprogram

14 007–2362–004

Fortran Elements and Concepts [1]

• non-Fortran external procedure

The main program must not contain an ENTRY or RETURN statement. On
encountering a RETURN statement, the compiler issues a warning message; at
execution time, a RETURN statement stops the program. Execution normally
ends when any program unit executes a STOP statement or when the main
program executes an END statement.

1.9.2 Order of Statements

The following rules determine the order of statements in a main program or
subprogram:

• In the main program, a PROGRAM statement is optional; if used, it must be
the first statement. In other program units, a FUNCTION, SUBROUTINE, or
BLOCK DATA statement must be the first statement.

• Comment lines can be interspersed with any statement and can precede a
PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA statement.

• FORMAT and ENTRY statements can be placed anywhere within a program
unit after a PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA statement.

• ENTRY statements can appear anywhere in a program unit except in the
following:

– between a block IF statement and its corresponding END IF statement

– within the range of a DO loop that is, between a DO statement and the
terminal statement of the DO loop

• The FORTRAN 77 standard requires that specification statements, including
the IMPLICIT statement, be placed before all DATA statements, statement
function statements, and executable statements.

However, this implementation of Fortran permits the interspersing of DATA
statements among specification statements.

Specification statements specifying the type of symbolic name of a constant
must appear before the PARAMETER statement that identifies the symbolic
name with that constant.

• The FORTRAN 77 standard allows PARAMETER statements to intersperse
with IMPLICIT statements or any other specification statements, but a
PARAMETER statement must precede a DATA statement.

007–2362–004 15

MIPSpro Fortran 77 Language Reference Manual

This implementation extends the FORTRAN 77 standard to allow
interspersing DATA statements among PARAMETER statements.

PARAMETER statements that associate a symbolic name with a constant must
precede all other statements containing that symbolic name.

• All statement function statements must precede the first executable
statement.

• IMPLICIT statements must precede all other specification statements except
PROGRAM and PARAMETER statements (see Chapter 4, page 59, for details).

• The last statement of a program unit must be an END statement.

Note: The above rules apply to the program statements after lines added by
all INCLUDE statements are merged. INCLUDE statements can appear
anywhere in a program unit.

1.9.3 Execution Sequence

The execution sequence in a Fortran program is the order in which statements
are executed. Fortran statements are normally executed in the order they
appear in a program unit. In general, the execution sequence is as follows:

1. Execution begins with the first executable statement in a main program and
continues from there.

2. When an external procedure is referenced in a main program or in an
external procedure, execution of the calling or referencing statement is
suspended. Execution continues with the first executable statement in the
called procedure immediately following the corresponding FUNCTION,
SUBROUTINE, or ENTRY statement.

3. An explicit or implicit return statement returns execution to the calling
statement.

4. Normal execution proceeds from where it was suspended or from an
alternate point in the calling program.

5. The executable program is normally terminated when the processor
executes a STOP statement in any program unit or an END statement in the
main program. Execution is also automatically terminated when an
operational condition prevents further processing of the program.

The normal execution sequence can be altered by a Fortran statement that
causes the normal sequence to be discontinued or causes execution to resume at

16 007–2362–004

Fortran Elements and Concepts [1]

a different position in the program unit. Statements that cause a transfer of
control are

• GO TO

• arithmetic IF

• RETURN

• STOP

• an I/O statement containing an error specifier or end-of-file specifier

• CALL with an alternate return specifier

• a logical IF containing any of the above forms

• block IF and ELSE IF

• the last statement, if any, of an IF block or ELSE IF block

• DO

• terminal statement of a DO loop

• END

007–2362–004 17

Constants and Data Structures [2]

This chapter discusses the various types of Fortran constants and provides
examples of each. It also explains a few of the ways data can be structured,
including character substrings, records, and arrays.

This chapter contains the following sections:

• Constants, Section 2.1, page 19

• Records and structures, Section 2.2, page 32

• Arrays, Section 2.3, page 34

2.1 Constants

A constant is a data value that cannot change during the execution of a
program. It can be of the following types:

• arithmetic

• logical

• character

• Hollerith

• bit

The form in which a constant is written specifies both its value and its data
type. A symbolic name can be assigned for a constant using the PARAMETER
statement. Blank characters occurring within a constant are ignored by the
processor unless the blanks are part of a character constant.

The sections that follow describe the various types of constants in detail.

2.1.1 Arithmetic Constants

The Fortran compiler supports the following types of arithmetic constants:

• integer

• real

• double precision

007–2362–004 19

MIPSpro Fortran 77 Language Reference Manual

• quad precision

• complex

• double complex

• quad complex

An arithmetic constant can be signed or unsigned. A signed constant has a
leading plus or minus sign to denote a positive or negative number. A constant
that can be either signed or unsigned is called an optionally signed constant.
Only arithmetic constants can be optionally signed.

Note: The value zero is neither positive nor negative; a signed zero has the
same value as an unsigned zero.

2.1.1.1 Integer Constants

An integer constant is a whole number without decimal points; it can have a
positive, negative, or zero value. Hexadecimal and octal integer constants are
extensions to the standard integer constant.

The format for an integer constant is the following:

sww

where s is the sign of the number: – for negative, + (optional) for positive and
ww is a whole number.

In Fortran, integer constants must comply with the following rules:

• It must be a whole number, that is, without a fractional part.

• If negative, the special character minus (–) must be the leading character.
The plus sign (+) in front of positive integers is optional.

• It must not contain embedded commas.

The following are examples of valid integer constants:

0 +0 +176 -1352 06310 35

The following are examples of invalid integer constants:

2.03 Decimal point not allowed. This is a real constant (described later
in this chapter).

20 007–2362–004

Constants and Data Structures [2]

7,909 Embedded commas not allowed.

The Fortran compiler also supports Fortran 90-style integer constants, where _n
is appended to indicate the size. For example, 456_8 is an INTEGER*8
constant with the value 456.

2.1.1.2 Hexadecimal Integer Constants

Use hexadecimal integer constants for a base 16 radix. Specify a dollar sign ($)
as the first character, followed by any digit (0 through 9) or the letters A
through F (either uppercase or lowercase). The following are valid examples of
hexadecimal integer constants:

$0123456789
$ABCDEF

$A2B2C3D4

You can use hexadecimal integer constants wherever integer constants are
allowed. In mixed-mode expressions, the compiler converts these constants
from type integer to the dominant type of expression in which they appear.

2.1.1.3 Octal Integer Constants

Use octal integer constants for a base 8 radix. The type of an octal integer
constant is INTEGER, in contrast to the octal constant described in Section 2.1.5,
page 31. This constant is supported to provide compatibility with PDP–11
Fortran.

The format of an octal constant is as follows:

o"string"

where string is one or more digits in the range of 0 through 7.

2.1.1.4 Real Constants

A real constant is a number containing a decimal point, exponent, or both; it
can have a positive, negative, or zero value.

A real constant can have the following forms:

sww.ff Basic real constant

sww.ffEsee Basic real constant followed by a real exponent

007–2362–004 21

MIPSpro Fortran 77 Language Reference Manual

swwEsee Integer constant followed by a real exponent

The argument values are the following:

s the sign of the number: – for negative, + (optional) for positive.

ww a string of digits denoting the whole number part, if any.

ff a string of digits denoting the fractional part, if any.

Esee a real exponent, where see is an optionally signed integer.

A basic real constant is written as an optional sign followed by a string of
decimal digits containing an optional decimal point. There must be at least one
digit.

A real exponent is a power of ten.

The value of a real constant is either the basic real constant or, for the forms
sww.ffEsee and swwEsee, the product of the basic real constant or integer
constant and the power of ten indicated by the exponent following the letter E.

All three forms can contain more digits than the precision used by the processor
to approximate the value of the real constant. See the MIPSpro Fortran 77
Programmer’s Guide, for information on the magnitude and precision of a real
number.

Table 3 illustrates real constants written in common and scientific notation with
their corresponding E format.

Table 3. Notation Forms for Real Constants

Common Notation Scientific Notation Real Exponent Form

5.0 0.5*10 .5E1 or 0.5E1

364.5 3.465*102 .3645E3

49,300 4.93*104 .493E5

–27,100 –2.71*104 –.271E5

–.0018 –1.8*10–3 –.18E–2

The following real constants are equivalent:

5E4 5.E4 .5E5 5.0E+4 +5E04 50000.

Table 4 lists examples of invalid real constants and the reasons they are invalid.

22 007–2362–004

Constants and Data Structures [2]

Table 4. Invalid Real Constants

Invalid Constant Reason Invalid

–18.3E No exponent following the E

E–5 Exponent part alone

6.01E2.5 Exponent part must be an integer

3.5E4E2 Only one exponent part allowed per constant

19,850 Embedded commas not allowed

2.1.1.5 Double-Precision Constants

A double-precision constant is similar to a real constant except that it can retain
more digits of the precision and has a greater range than a real constant. The
size and value ranges of double-precision constants are given in the MIPSpro
Fortran 77 Programmer’s Guide.

A double-precision constant assumes a positive, negative, or zero value in one
of the following forms:

swwDsee An integer constant followed by a double-precision exponent

sww.ffDsee A basic real constant followed by a double-precision exponent

where

s is an optional sign.

ww is a string of digits denoting the whole number part, if any.

ff is a string of digits denoting the fractional part, if any.

Dsee denotes a double-precision exponent where see is an optionally
signed exponent.

The value of a double-precision constant is the product of the basic real
constant part or integer constant part and the power of ten indicated by the
integer following the letter D in the exponent part. Both forms can contain more
digits than those used by the processor to approximate the value of a real
constant. See the MIPSpro Fortran 77 Programmer’s Guide for information on the
magnitude and precision of a double-precision constant.

Valid forms of double-precision constants are

1.23456D3

8.9743D0

007–2362–004 23

MIPSpro Fortran 77 Language Reference Manual

-4.D-10

16.8D-6

For example, the following forms of the numeric value 500 are equivalent:

5D2 +5D02 5.D2 5.D+02 5D0002

Table 5 lists examples of invalid double-precision constants and the reasons
they are invalid.

Table 5. Invalid Double-Precision Constants

Invalid Constant Reason Invalid

2.395D No exponent following the D

–9.8736 Missing D exponent designator

1,010,203D0 Embedded commas not allowed

2.1.1.6 Quad-Precision Constants

A quad-precision constant is similar to a double-precision constant except that
it can retain more digits of the precision than a real constant. The MIPSpro
Fortran 77 Programmer’s Guide lists the size and value ranges of quad-precision
constants.

A quad-precision constant assumes a positive, negative, or zero value in one of
the following forms:

swwQsee An integer constant followed by a quad-precision exponent

sww.ffQsee A basic real constant followed by a quad-precision exponent

The argument values can be the following:

s an optional sign.

ww a string of digits denoting the whole number part, if any.

ff a string of digits denoting the fractional part, if any.

Qsee a quad-precision exponent where see is an optionally signed
exponent.

The value of a quad-precision constant is the product of the basic real constant
part or integer constant part and the power of ten indicated by the integer
following the letter Q in the exponent part. Both forms can contain more digits

24 007–2362–004

Constants and Data Structures [2]

than those used by the processor to approximate the value of the real constant.
Refer to the MIPSpro Fortran 77 Programmer’s Guide, for information on the
magnitude and precision of a quad-precision constant.

Valid forms of quad-precision constants are

1.23456Q3

7.7743Q0

-2.Q-10

1.8Q-2

For example, the following forms of the numeric value 500 are equivalent:

5Q2 +5Q02 5.Q2 5.Q+02 5Q0002

Table 6 lists examples of invalid quad-precision constants and the reasons they
are invalid.

Table 6. Invalid Quad-Precision Constants

Invalid Constant Reason Invalid

2.395Q No exponent following the Q

–9.8736 Missing Q exponent designator

1,010,203Q0 Embedded commas not allowed

2.1.1.7 Complex Constants

A complex constant is a processor approximation of the value of a complex
number. It is represented as an ordered pair of REAL*4 data values. The first
value represents the real part of the complex number, and the second represents
the imaginary part. Each part has the same precision and range of allowed
values as REAL*4 data.

A complex constant has the form (m,n) where m and n each have the form of a
REAL*4, representing the complex value m + ni, where i is the square root of
-1. The form m denotes the real part; n denotes the imaginary part. Both m and
n can be positive, negative, or zero. Table 7 shows examples of valid forms of
complex data.

007–2362–004 25

MIPSpro Fortran 77 Language Reference Manual

Table 7. Valid Forms of Complex Data

Valid Complex Constant Equivalent Mathematical Expression

(3.5, –5) 3.5 –5i

(0, –1) – i

(0.0, 12) 0 + 12i or 12i

(2E3, 0) 2000 + 0i or 2000

Table 8 provides examples of invalid constants and lists the reasons they are
invalid.

Table 8. Invalid Forms of Complex Data

Invalid Constant Reason Invalid

(1,) No imaginary part

(1, 2.2, 3) More than two parts

(1.15, 4E) Imaginary part has invalid form

2.1.1.8 Double-Complex Constants

A double-complex constant is a processor approximation of the value of a
complex number. It is represented as an ordered pair of REAL*8 data values.
The first value represents the real part of the complex number, and the second
represents the imaginary part. Each part has the same precision and range of
allowed values as REAL*8 data.

A double-complex constant has the form (m, n) where m and n each have the
form of a REAL*8, representing the complex value m + ni, where i is the
square root of -1. The form m denotes the real part; n denotes the imaginary
part. Both m and n can be positive, negative, or zero. Refer to Table 9 for
examples of valid forms of double-complex data.

26 007–2362–004

Constants and Data Structures [2]

Table 9. Valid Forms of Double-Complex Data

Valid Complex Constant Equivalent Mathematical Expression

(3.5, –5) 3.5 –5i

(0, –1) – i

(0.0, 12) 0 + 12i or 12i

(2D3, 0) 2000 + 0i or 2000

Table 10 shows examples of invalid constants and lists the reasons they are
invalid.

Table 10. Invalid Forms of Double-Complex Data

Invalid Constant Reason Invalid

(1,) No imaginary part

(1, 2.2, 3) More than two parts

(1.15, 4E) Imaginary part has invalid form

2.1.1.9 Quad-Complex Constants

A quad-complex constant is a processor approximation of the value of a
complex number. It is represented as an ordered pair of REAL*16 data values.
The form is the same as the double-complex constant, with a Q replacing the D.
The following is an example of a valid quad-complex representation of 2000 + 0i:

(2Q3,0)

2.1.2 Logical Constants

Logical constants represent only the values true or false, represented by one of
the following forms:

Form Value

.TRUE. True

007–2362–004 27

MIPSpro Fortran 77 Language Reference Manual

.FALSE. False

2.1.3 Character Constants

A character constant is a string of one or more characters that can be
represented by the processor. Each character in the string is numbered
consecutively from left to right beginning with 1.

Note: The quotation mark (") is an extension to FORTRAN 77.

If the delimiter is ", then a quotation mark within the character string is
represented by two consecutive quotation marks with no intervening blanks.

If the delimiter is ’, then an apostrophe within the character string is
represented by two consecutive apostrophes with no intervening blanks.

Blanks within the string of characters are significant.

The case of alphabetic characters is significant.

The length of a character constant is the number of characters, including blanks,
between the delimiters. The delimiters are not counted, and each pair of
apostrophes or quotation marks between the delimiters counts as a single
character.

A character constant is normally associated with the CHARACTER data type. The
FORTRAN 77 standard is extended (except as noted below) to allow character
constants to appear in the same context as a numeric constant. A character
constant in the context of a numeric constant is treated the same as a Hollerith
constant.

Note: Character constants cannot be used as actual arguments to numeric
typed dummy arguments.

Table 11 provides examples of valid character constants and shows how they
are stored.

Table 11. Valid Character Constants

Constant Stored as

’DON’’T’ DON’T

"I’M HERE!" I’M HERE!

28 007–2362–004

Constants and Data Structures [2]

Constant Stored as

’STRING’ STRING

’LMN""OP’ LMN""OP

Table 12 lists examples of invalid character constants and the reasons they are
invalid.

Table 12. Invalid Character Constants

Invalid Constant Reason Invalid

’ISN.T Terminating delimiter missing

.YES’ Mismatched delimiters

CENTS Not enclosed in delimiters

’’ Zero length not allowed

"" Zero length not allowed

2.1.4 Hollerith Constants

Use Hollerith constants to manipulate packed character strings in the context of
integer data types. A Hollerith constant consists of a character count followed
by the letter H (either uppercase or lowercase) and a string of characters as
specified in the character count and has the following format:

nHxxx...x

where n is a nonzero, unsigned integer constant and where xrepresents a string
of exactly n contiguous characters. The blank character is significant in a
Hollerith constant.

The following are examples of valid Hollerith constants:

3H A

10H’VALUE = ’

8H MANUAL

Table 13 provides some examples of invalid Hollerith constants and the reasons
they are invalid.

007–2362–004 29

MIPSpro Fortran 77 Language Reference Manual

Table 13. Invalid Hollerith Constants

Invalid Constant Reason Invalid

2H YZ Blanks are significant; should be 3H YZ

–4HBEST Negative length not allowed

0H Zero length not allowed

The following rules apply to Hollerith constants:

• Hollerith constants are stored as byte strings; each byte is the ASCII
representation of one character.

• Hollerith constants have no type; they assume a numeric data type and size
depending on the context in which they are used.

• When used with a a binary operator, octal and hexadecimal constants
assume the data type of the other operand. For example,

INTEGER*2 HILO

HILO = ZHFFX

The constant is assumed to be of type INTEGER*2.

• In other cases, when used in statements that require a specific data type, the
constant is assumed to be the required type and length.

• A length of four bytes is assumed for hexadecimal and octal constants used
as arguments; no data type is assumed.

• In other cases, the constant is assumed to be of type INTEGER*4.

• When a Hollerith constant is used in an actual parameter list of a
subprogram reference, the formal parameter declaration within that
subprogram must specify a numeric type, not a character type.

• A variable can be defined with a Hollerith value through a DATA statement,
an assignment statement, or a READ statement.

• The number of characters (n) in the Hollerith constant must be less than or
equal to g, the maximum number of characters that can be stored in a
variable of the given type, where g is the size of the variable expressed in
bytes. If n <g, the Hollerith constant is stored and extended on the right
with (g-n) blank characters.

• The case of alphabetic characters is significant.

30 007–2362–004

Constants and Data Structures [2]

2.1.5 Bit Constants

You can use bit constants anywhere numeric constants are allowed. Table 14
shows the allowable bit constants and their format. In this table, b, o, x, and z
can be lower- or uppercase (B, O, X, Z)

Table 14. Valid Substring Examples

Format Meaning
Valid substring
Characters Maximum

b’ string’ or ’string’b Binary 0, 1 64

O’ string’ or ’string’o Octal 0 – 7 22

x’ string’ or ’string’x Hexadecimal 0 – 9; a – f 16

z’ string’ or ’string’z Hexadecimal 0 – 9; a – f 16

The following are examples of bit constants used in a DATA statement.

integer a(4)

data a/b’1010’,o’12’,z’a’,x’b’/

The above statement initializes the first elements of a four-element array to
binary, the second element to an octal value, and the last two elements to
hexadecimal values.

The following rules apply to bit constants:

• Bit constants have no type; they assume a numeric data type and size
depending on the context in which they are used.

• When used with a binary operator, octal, and hexadecimal constants assume
the data type of the other operand. For example,

INTEGER*2 HILO
HILO = ’FF’X

The constant is assumed to be of type INTEGER*2.

• In other cases, when used in statements that require a specific data type, the
constant is assumed to be the required type and length.

• A length of four bytes is assumed for hexadecimal and octal constants used
as arguments; no data type is assumed.

007–2362–004 31

MIPSpro Fortran 77 Language Reference Manual

• In other cases, the constant is assumed to be of type INTEGER*4.

• A hexadecimal or octal constant can specify up to 16 bytes of data.

• Constants are padded with zeros to the left when the assumed length of the
constant is more than the digits specified by the constant. Constants are
truncated to the left when the assumed length is less than that of the digits
specified.

2.2 Records and Structures

The record-handling extension enables you to declare and operate on multifield
records in Fortran programs. Avoid confusing the term record as it is used here
with the term record that describes input and output data records.

2.2.1 Overview of Records and Structures

A record is a composite or aggregate entity containing one or more record
elements or fields. Each element of a record is usually named. References to a
record element consist of the name of the record and the name of the desired
element. Records allow you to organize heterogeneous data elements within
one structure and to operate on them either individually or collectively. Because
they can be composed of heterogeneous data elements, records are not typed
like arrays are.

You define the form of a record with a group of statements called a structure
definition block. Establish a structure declaration in memory by specifying the
name of the structure in a RECORD statement. A structure declaration block can
include one or more of the following items

• typed data declarations (variables or arrays)

• substructure declarations

• mapped field declarations

• unnamed fields

The following sections describe these items. See the RECORD and STRUCTURE
declarations block sections in Chapter 4, page 59 for details on specifying a
structure in a source program.

32 007–2362–004

Constants and Data Structures [2]

2.2.1.1 Typed Data Declarations (Variables or Arrays)

Typed data declarations in structure declarations have the form of normal
Fortran typed data declarations. You can freely intermix different types of data
items within a structure declaration.

2.2.1.2 Substructure Declarations

Establish substructures within a structure by using either a nested structure
declaration or a RECORD statement.

2.2.1.3 Mapped Field Declarations

Mapped field declarations are made up of one or more typed data declarations,
substructure declarations (structure declarations and RECORD statements), or
other mapped field declarations. A block of statements, called a union
declaration, defines mapped field declarations. Unlike typed data declarations,
all mapped field declarations that are made within a single union declaration
share a common location within the containing structure.

2.2.1.4 Unnamed Fields

Declare unnamed fields in a structure by specifying the pseudo-name %FILL in
place of an actual field name.%FILL generates empty space in a record for
purposes such as alignment.

2.2.2 Record and Field References

The generic term scalar reference refers to all references that resolve to single
typed data items. A scalar field reference of an aggregate falls into this category.
The generic term aggregate reference is used to refer to all references that resolve
to references of structured data items defined by a RECORD statement.

Scalar field references can appear wherever normal variables or array elements
can appear, with the exception of COMMON, SAVE, NAMELIST, and EQUIVALENCE
statements. Aggregate references can only appear in aggregate assignment
statements, in unformatted I/O statements, and as parameters to subprograms.

2.2.3 Aggregate Assignment Statement

Aggregates can be assigned as whole entities. This special form of the
assignment statement is indicated by an aggregate reference on the left-hand

007–2362–004 33

MIPSpro Fortran 77 Language Reference Manual

side of an assignment statement and requires an identical aggregate to appear
on the right-hand side of the assignment.

2.3 Arrays

An array is a non-empty sequence of data of the same type occupying
consecutive bytes in storage. A member of this sequence of data is referred to
as an array element.

Each array has the following characteristics:

• array name

• data type

• array elements

• array declarator specifying:

– number of dimensions

– size and bounds of each dimension

Define an array using a DIMENSION, COMMON, or type statement (described in
Chapter 4, page 59); it can have a maximum of seven dimensions.

Note: For information on array handling when interacting with programs
written in another language, see the MIPSpro Fortran 77 Programmer’s Guide.

2.3.1 Array Names and Types

An array name is the symbolic name given to the array and must conform to
the rules given in Chapter 1 for symbolic names. When referencing the array as
a whole, specify only the array name. An array name is local to a program unit.

An array element is specified by the array name and a subscript. The form of
an array element name is

a (s [,s]...)

where a is an array name, (s [,s]...)is a subscript, and s is a subscript
expression.

34 007–2362–004

Constants and Data Structures [2]

For example, DATE(1,5) accesses the element in the first row, fifth column, of
the DATE array.

The number of subscript expressions must be equal to the number of
dimensions in the array declarator for the array name.

An array element can be any of the valid Fortran data types. All array elements
must be the same data type. Specify the data type explicitly using a type
statement or implicitly using the first character of the array name. See Chapter
1 for details about data types.

Reference a different array element by changing the subscript value of the array
element name.

2.3.2 Array Declarators

An array declarator specifies a symbolic name for the array, the number of
dimensions in the array, and the size and bounds of each dimension. Only one
array declarator for an array name is allowed in a program unit. The array
declarator can appear in a DIMENSION statement, a type statement, or a
COMMON statement but not in more than one of these.

An array declarator has the form

a (d [,d]...)

where a is a symbolic name of the array and d is a dimension declarator of the
form [d1:]d2. d1 is a lower-dimension bound that must be a numeric
expression. d2 is an upper-dimension bound that must be a numeric expression
or an asterisk (*). Specify an asterisk only if d2 is part of the last dimension
declarator (see below).

If d1 or d2 is not of type integer, it is converted to integer values; any fractional
part is truncated.

An array declarator can have a dummy argument as an array name and,
therefore, be a dummy array declarator. An array declarator can be one of three
types: a constant array declarator, an adjustable array declarator, or an
assumed-size array declarator.

Each of the dimension bounds in a constant array declarator is a numeric
constant expression. An adjustable array declarator is a dummy array declarator
that contains one or more dimension bounds that are integer expressions but
not constant integer expressions. An assumed-size array declarator is a dummy

007–2362–004 35

MIPSpro Fortran 77 Language Reference Manual

array declarator that has integer expressions for all dimension bounds, except
that the upper dimension bound, d2, of the last dimension is an asterisk (*).

A dimension-bound expression cannot contain a function or array element
name reference.

2.3.3 Value of Dimension Bounds

The lower-dimension bound, d1, and the upper-dimension bound, d2, can have
positive, negative, or zero values. The value of the upper-dimension bound, d2,
must be greater than or equal to that of the lower-dimension bound, d1.

If a lower-dimension bound is not specified, its value is assumed to be one (1).
The upper-dimension bound of an asterisk (*) is always greater than or equal to
the lower dimension bound.

The size of a dimension that does not have an asterisk (*) as its upper bound
has the value (d1 - d2) +1.

The size of a dimension that has an asterisk (*) as its upper bound is not
specified.

2.3.4 Array Size

The size of an array is exactly equal to the number of elements contained by the
array. Therefore, the size of an array equals the product of the dimensions of
the array. For constant and adjustable arrays, the size is straightforward. For
assumed-size dummy arrays, however, the size depends on the actual argument
corresponding to the dummy array. There are three cases:

• If the actual argument is a non-character array name, the size of the
assumed-size array equals the size of the actual argument array.

• If the actual argument is a non-character array element name with a
subscript value of j in an array of size x, the size of the assumed-size array
equals x – j + 1.

• If the actual argument is either a character array name, a character array
element name, or a character array element substring name, the array begins
at character storage unit t of an array containing a total of c character
storage units; the size of the assumed-size array equals:

INT((c- t + 1)/ ln)

where ln is the length of an element of the dummy array.

36 007–2362–004

Constants and Data Structures [2]

Note: Given an assumed-size dummy array with n dimensions, the product
of the sizes of the first n – 1 dimensions must not be greater than the size of
the array (the size of the array is determined as described previously).

2.3.5 Storage and Element Ordering

Storage for an array is allocated in the program unit in which it is declared,
except in subprograms where the array name is specified as a dummy
argument. The former declaration is called an actual array declaration. The
declaration of an array in a subprogram where the array name is a dummy
argument is called a dummy array declaration.

The elements of an array are ordered in sequence and stored in column order.
This means that the left most subscript varies first, as compared to row order, in
which the right most subscript varies first. The first element of the array has a
subscript value of one; the second element has a subscript value of two; and so
on. The last element has a subscript value equal to the size of the array.

Consider the following statement that declares an array with an INTEGER type
statement:

INTEGER t(2,3)

Figure 1 shows the ordering of elements of this array.

t (1,1) t (2,2) t (1,3)t (1,2) t (2,3)t (2,1)

a12007

Figure 1. Order of Array Elements

2.3.6 Subscripts

The subscript describes the position of the element in an array and allows that
array element to be defined or referenced. The form of a subscript is

(s [,s]...)

where s is a subscript expression. The term subscript includes the parentheses
that delimit the list of subscript expressions.

007–2362–004 37

MIPSpro Fortran 77 Language Reference Manual

A subscript expression must be a numeric expression and can contain array
element references and function references. However, it cannot contain any
function references that affect other subscript expressions in the same subscript.

A non-integer character can be specified for subscript expression. If specified,
the non-integer character is converted to an integer before use; fractional
portions remaining after conversion are truncated.

If a subscript expression is not of type integer, it is converted to integer values;
any fractional part is truncated.

Because an array is stored as a sequence in memory, the values of the subscript
expressions must be combined into a single value that is used as the offset into
the sequence in memory. That single value is called the subscript value.

The subscript value determines which element of the array is accessed. The
subscript value is calculated from the values of all the subscript expressions and
the declared dimensions of the array:

Table 15. Determining Subscript Values

n Dimension Declarator Subscript Subscript Value

1 (j1:k1) (s1) 1 + (s1 – j1)

2 (j1:k1, j2:k2) (s1, s2) 1 + (s1 – j1) + (s2 – j2)*d1

3 (j1:k1, j2:k2, j3:k3) (s1, s2, s3) 1 + (s1–j1) + (s2–j2) * d1 + (s3–j3) * d2 * d1

n (j1:k1,jn:kn) (s1, ...sn) 1 + (s1 – j1) + (s2 – j2)*d1 + (s3–j3)*d1*d2 +

... + (sn – jn) * dn-1*dn-2*d1

The subscript value and the subscript expression value are not necessarily the
same, even for a one-dimensional array. For example,

DIMENSION X(10,10),Y(--1:8)
Y(2) = X(1,2)

Y(2) identifies the fourth element of array Y, the subscript is (2) with a
subscript value of four, and the subscript expression is 2 with a value of two.
X(1,2) identifies the eleventh element of X, the subscript is (1,2) with a
subscript value of eleven, and the subscript expressions are 1 and 2 with the
values of one and two, respectively.

38 007–2362–004

Expressions [3]

An expression performs a specified type of computation. It is composed of a
sequence of operands, operators, and parentheses. The following are the types
of Fortran expressions:

• arithmetic, described in Section 3.1, page 39

• character, described in Section 3.2, page 46

• relational, described in Section 3.3, page 49

• logical, described in Section 3.4, page 52

This chapter describes formation, interpretation, and evaluation rules for each
type of expression. This chapter also discusses mixed-mode expressions.

3.1 Arithmetic Expressions

An arithmetic expression specifies a numeric computation that yields a numeric
value on evaluation. The simplest form of an arithmetic expression can be

• an unsigned arithmetic constant

• a symbolic name of an arithmetic constant

• an arithmetic variable reference

• an arithmetic array element reference

• an arithmetic function reference

You can form more complicated arithmetic expressions from one or more
operands together with arithmetic operators and parentheses.

An arithmetic element can include logical entities because logical data is treated
as integer data when used in an arithmetic context. When both arithmetic and
logical operands exist for a given operator, the logical operand is promoted to
type INTEGER of the same byte length as the original logical length. For
example, a LOGICAL*2 will be promoted to INTEGER*2 and a LOGICAL*4 will
be promoted to INTEGER*4.

007–2362–004 39

MIPSpro Fortran 77 Language Reference Manual

3.1.1 Arithmetic Operators

Table 16 shows the arithmetic operators.

Table 16. Arithmetic Operators

Operator Function

** Exponentiation

* Multiplication

/ Division

+ Addition or identity

– Subtraction or negation

Use the exponentiation, division, and multiplication operators between exactly
two operands. You can use the addition and subtraction operators with one or
two operands; in the latter case, specify the operator before the operand; for
example, -TOTAL.

Do not specify two operators in succession. Note that the exponentiation
operator consists of the two characters (**), but is a single operator. Implied
operators, as in implied multiplication, are not allowed.

3.1.2 Interpretation of Arithmetic Expressions

Table 17 interprets sample arithmetic expressions.

Table 17. Interpretation of Arithmetic Expressions

Operator Use Interpretation

** x1 ** x2 Exponentiate x1 to the power of x2

* x1 * x2 Multiply x1 and x2

/ x1 / x2 Divide x1 by x2

+ x1 + x2 Add x1 and x2

+ x x (identity)

40 007–2362–004

Expressions [3]

Operator Use Interpretation

– x1 – x2 Subtract x1 from x2

–x Negate x

An arithmetic expression containing two or more operators is interpreted based
on a precedence relation among the arithmetic operators. This precedence, from
highest to lowest, is

• ()

• **

• * and /

• + and –

Use parentheses to override the order of precedence.

The following is an example of an arithmetic expression:

A/B-C**D

The operators are executed in the following sequence:

1. C**D is evaluated first.

2. A/B is evaluated next.

3. The result of C**D is subtracted from the result of A/B to give the final
result.

A unary operator (–) can follow another operator. Specifying the unary
operator after the exponentiation operator produces a variation on the standard
order of operations. The unary operator is evaluated first in that case, resulting
in exponentiation taking a lower precedence in the expression.

For example, the following expression

A ** - B * C

is interpreted as

A ** (- B * C)

007–2362–004 41

MIPSpro Fortran 77 Language Reference Manual

3.1.3 Arithmetic Operands

Arithmetic operands must specify values with integer, real, double-precision,
complex, or double-complex data types. You can combine specific operands in
an arithmetic expression. The arithmetic operands, in order of increasing
complexity, are

• primary

• factor

• term

• arithmetic expression

A primary is the basic component in an arithmetic expression. The forms of a
primary are the following:

• an unsigned arithmetic constant

• a symbolic name of an arithmetic constant

• an arithmetic variable reference

• an arithmetic array element reference

• an arithmetic function reference

• an arithmetic expression enclosed in parentheses

A factor consists of one or more primaries separated by the exponentiation
operator. The following are the forms of a factor:

• primary

• primary ** factor

Factors with more than one exponentiation operator are interpreted from right
to left. For example, I**J**K is interpreted as I**(J**K), and I**J**K**L
is interpreted as I**(J**(K**L)).

The term incorporates multiplicative operators into arithmetic expressions. Its
forms are the following:

• factor

• term/factor

• term * factor

42 007–2362–004

Expressions [3]

The above definition indicates that factors are combined from left to right in a
term containing two or more multiplication or division operators.

Finally, at the highest level of the hierarchy, are the arithmetic expressions. The
forms of an arithmetic expression are

• term

• + term

• – term

• arithmetic expression + term

• arithmetic expression – term

An arithmetic expression consists of one or more terms separated by an
addition operator or a subtraction operator. The terms are combined from left
to right. For example, A+B-C has the same interpretation as the expression
(A+B)-C. Expressions such as A*-B and A+-B are not allowed. The correct
forms are A*(-B) and A+(-B).

An arithmetic expression can begin with a plus or minus sign.

3.1.4 Arithmetic Constant Expressions

An arithmetic constant expression is an arithmetic expression containing no
variables. Thus, each primary in an arithmetic constant expression must be one
of the following:

• arithmetic constant

• symbolic name of an arithmetic constant

• arithmetic constant expression enclosed in parentheses

In an arithmetic constant expression, do not specify the exponentiation operator
unless the exponent is of type integer. Variable, array element, and function
references are not allowed. Examples of integer constant expressions are

7

-7

-7+5
3**2

x+3

where x is the symbolic name of a constant

007–2362–004 43

MIPSpro Fortran 77 Language Reference Manual

3.1.5 Integer Constant Expressions

An integer constant expression is an arithmetic constant expression containing
only integers. It can contain constants or symbolic names of constants, provided
they are of type integer. As with all constant expressions, no variables, array
elements, or function references are allowed.

3.1.6 Evaluating Arithmetic Expressions

The data type of an expression is determined by the data types of the operands
and functions that are referenced. Thus, integer expressions, real expressions,
double-precision expressions, complex expressions, and double expressions
have values of type integer, real, double-precision, complex, and
double-complex, respectively.

3.1.6.1 Single-Mode Expressions

Single-mode expressions are arithmetic expressions in which all operands have
the same data type. The data type of the value of a single-mode expression is
thus the same as the data type of the operands. When the addition operator or
the subtraction operator is used with a single operand, the data type of the
resulting expression is the same as the data type of the operand.

3.1.6.2 Mixed-Mode Expressions

Mixed-mode expressions contain operands with two or more data types. If
every element in an arithmetic expression is of the same type, the value
produced by the expression is also of that same type. If elements of different
data types are combined in an expression, the evaluation of that expression and
the data type of the resulting value depend on the ranking associated with each
data type.

Table 18 shows the ranking assigned to each data type, where the lowest
ranking is 1.

Table 18. Data type rankings

Data Type Rank

BYTE 1

LOGICAL*1 1

LOGICAL*2 2

LOGICAL*4 3

44 007–2362–004

Expressions [3]

LOGICAL*8 4

INTEGER*1 5

INTEGER*2 6

INTEGER*4 7

INTEGER*8 8

REAL*4 9

REAL*8 10

REAL*16 11

COMPLEX*8 12

COMPLEX*16 13

COMPLEX*32 14

The data type of the value produced by an operation on two arithmetic
elements of different data types is the data type of the highest-ranking element
of the operation. For example, the data type of the value resulting from an
operation on an INTEGER and a REAL element is REAL. However, an operation
involving a COMPLEX*8 data type and a REAL*8 data type produces a
COMPLEX*16 data result. Similarly, an operation involving either a COMPLEX*8
data type or a COMPLEX*16 data type and a REAL*16 data type produces a
COMPLEX*32 data result.

LOGICAL items in an INTEGER context are treated as type INTEGER. Thus, a
LOGICAL*8 combined with an INTEGER*1 produce the same result type as an
INTEGER*8 combined with an INTEGER*1 or an INTEGER*8.

3.1.7 Exponentiation

Exponentiation is an exception to the above rules for mixed-mode expressions.
When raising a value to an integer power, the integer is not converted. The
result is assigned the type of the left operand.

When a complex value is raised to a complex power, the value of the expression
is defined as follows:

xy = EXP (y * LOG(x))

007–2362–004 45

MIPSpro Fortran 77 Language Reference Manual

3.1.8 Integer Division

One operand of type INTEGER can be divided by another operand of type
INTEGER. The result of an integer division operation is a value of type integer,
referred to as an integer quotient. The integer quotient is obtained as follows:

• If the magnitude of the mathematical quotient is less than one, then the
integer quotient is zero. For example, the value of the expression (18/30)
is zero.

• If the magnitude of the mathematical quotient is greater than or equal to
one, then the integer quotient is the largest integer that does not exceed the
magnitude of the mathematical quotient and whose sign is the same as that
of the mathematical quotient. For example, the value of the expression
(-9/2) is –4.

3.2 Character Expressions

A character expression yields a character string value on evaluation. Character
expressions are built up from the following simple elements:

• character constant or symbolic name of a character constant

• character function reference

• character variable reference

• character array element reference

• character substring reference

Construct complicated character expressions from one or more of these
elements using the concatenate operator and parentheses.

3.2.1 Character Constant Expressions

A character constant expression is made up of operands that cannot vary. Each
primary in a character constant expression must be one of the following:

• a character constant

• a symbolic name of a character constant

• a character constant expression enclosed in parentheses

46 007–2362–004

Expressions [3]

For the details of character constant syntax see Section 2.1.3, page 28 and
Section 2.1.4, page 29. A character constant expression cannot contain variable,
array element, substring, or function references.

3.2.2 Character Substrings

A character substring is a contiguous sequence of characters that is part of a
character data item. A character substring cannot be empty; that is, it must
contain at least one byte of data.

3.2.2.1 Substring Names

A substring name defines the corresponding substring and allows it to be
referenced in a character expression. A substring name has one of the following
forms:

var([e1]:[e2])

arra(sub[,sub]...) ([e1]:[e2])

The following arguments are used:

var a character variable name.

arra a character array name.

sub a subscript expression.

e1 and e2 integer expressions.

You can specify a non-integer expression for e1 and e2, but a
non-integer value is truncated to an integer before use.

The value e1 specifies the leftmost character of the substring relative to the
beginning of the variable or array element, while e2 specifies the rightmost
character. Characters are numbered left to right beginning with 1. For example,
the following denotes the third through the fifth characters in the character
variable EX:

EX(3:5)

The following specifies the first through the fifth characters the character array
element NAME(2,4):

NAME(2,4)(1:5)

007–2362–004 47

MIPSpro Fortran 77 Language Reference Manual

A character substring has the length e2–e1+1.

3.2.2.2 Substring Values e1, e2

The value of the expressions e1 and e2 in a substring name must fall (after
truncation to integer) within the range 1 ≤ e1 ≤ e2 ≤ len where len is the
length of the character variable or array element.

When e1 is omitted, a value of 1 is assumed. When e2 is omitted, a value oflen
is assumed. When both e1 and e2 are omitted, the result is to take all of the
characters. Thus var(:) is equivalent to var and arra(s [,s]...)(:) is
equivalent to arra(s [,s]...).

The expressions e1 and e2 can be any integer expression, including array element
references and function references. Consider the following character variable:

XCHAR = ’QRSTUVWXYZ’

Table 19 lists examples of valid substrings taken from this variable.

Table 19. Valid Substring Examples

Expression Substring Value
Substring
Length

EX1 = XCHAR (3:8) STUVWX 6

EX2 = XCHAR (:8) QRSTUVWX 8

EX3 = XCHAR (5:) UVWXYZ 6

EX4 = XCHAR(:) QRSTUVWXYZ 10

EX5 = XCHAR(IA:IA+7) depends on IA 8

EX6 = XCHAR(INDEX(XCHAR,’VW’):) VWXYZ 5

3.2.3 Concatenate Operator

The concatenate operator (//) is the only character operator defined in Fortran.
A character expression formed from the concatenation of two character
operands x1 and x2 is specified as the following:

x1 // x2

48 007–2362–004

Expressions [3]

The result of this operation is a character string with a value of x1 extended on
the right with the value of x2. The length of the result is the sum of the lengths
of the character operands. For example,

’HEL’ // ’LO2’

The result of the above expression is the string HELLO2 of length six.

Except in a character assignment statement, concatenation of an operand with
an asterisk (*) as its length specification is not allowed unless the operand is
the symbolic name of a constant.

3.2.3.1 Parenthesized Character Expressions

In a character expression build from two or more concatenation operators, the
elements are combined from left to right. Thus, the character expression

’A’ // ’BCD’ // ’EF’

is interpreted the same as

(’A’ // ’BCD’) // ’EF’

The value of the above character expression is ABCDEF.

3.3 Relational Expressions

A relational expression yields a logical value of either .TRUE. or .FALSE. on
evaluation and comparison of two arithmetic expressions or two character
expressions. A relational expression can appear only within a logical
expression. Refer to Section 3.4, page 52 for details about logical expressions.

3.3.1 Relational Operators

Table 20 lists the Fortran relational operators. Arithmetic and character
operators are evaluated before relational operators.

007–2362–004 49

MIPSpro Fortran 77 Language Reference Manual

Table 20. Fortran Relational Operators

Relational Operator Meaning

.EQ. Equal to

.NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to

.LT. Less than

.LE. Less than or equal to

3.3.2 Relational Operands

The operands of a relational operator can be arithmetic or character expressions.
The relational expression requires exactly two operands and is written in the
following form:

e1 relop e2

where e1 and e2 are arithmetic or character expressions and relop is the
relational operator.

Note: Both e1 and e2 must be the same type of expression, either arithmetic
or character.

3.3.3 Evaluating Relational Expressions

The result of a relational expression is of type logical, with a value of .TRUE.
or .FALSE.. The manner in which the expression is evaluated depends on the
data type of the operands.

3.3.4 Arithmetic Relational Expressions

In an arithmetic relational expression, e1 and e2 must each be an integer, real,
double precision, complex, or double complex expression. relop must be a
relational operator.

The following are examples of arithmetic relational expressions:

(a + b) .EQ. (c + 1)

HOURS .LE. 40

50 007–2362–004

Expressions [3]

You can use complex type operands only when specifying either the .EQ. or
.NE. relational operator.

An arithmetic relational expression has the logical value .TRUE. only if the
values of the operands satisfy the relation specified by the operator. Otherwise,
the value is .FALSE..

If the two arithmetic expressionse1 and e2 differ in type, the expression is
evaluated as follows:

((e1) - (e2)) relop 0

where the value 0 (zero) is of the same type as the expression ((e1)- (e2))
and the type conversion rules apply to the expression. Do not compare a
double precision value with a complex value.

3.3.5 Character Relational Expressions

In a character relational expression, e1 and e2 are character expressions and relop
is a relational operator.

The following is an example of a character relational expression:

NAME .EQ. ’HOMER’

A character relational expression has the logical value .TRUE. only if the
values of the operands satisfy the relation specified by the operator. Otherwise,
the value is .FALSE.. The result of a character relational expression depends
on the collating sequence as follows:

• If e1 and e2 are single characters, their relationship in the collating sequence
determines the value of the operator. e1 is less than or greater than e2 if e1 is
before or after e2, respectively, in the collating sequence.

• If either e1 or e2 are character strings with lengths greater than 1,
corresponding individual characters are compared from left to right until a
relationship other than .EQ. can be determined.

• If the operands are of unequal length, the shorter operand is extended on
the right with blanks to the length of the longer operand for the comparison.

• If no other relationship can be determined after the strings are exhausted,
the strings are equal.

007–2362–004 51

MIPSpro Fortran 77 Language Reference Manual

The collating sequence depends partially on the processor; however, equality
tests .EQ. and .NE. do not depend on the processor collating sequence and
can be used on any processor.

3.4 Logical Expressions

A logical expression specifies a logical computation that yields a logical value.
The simplest form of a logical expression is one of the following:

• logical constant

• logical variable reference

• logical array element reference

• logical function reference

• relational expression

Construct complicated logical expressions from one or more logical operands
together with logical operators and parentheses.

3.4.1 Logical Operators

Table 21 defines the Fortran logical operators.

Table 21. Logical Operators

Logical Operator Meaning

.NOT. Logical negation

.AND. Logical conjunt

.OR. Logical disjunct

.EQV. Logical equivalence

.NEQV. Logical exclusive or

.XOR. Same as .NEQV.

All logical operators require at least two operands, except the logical negation
operator .NOT. , which requires only one.

52 007–2362–004

Expressions [3]

A logical expression containing two or more logical operators is evaluated
based on precedence of the logical operators. This precedence, from highest to
lowest, is

• .NOT.

• .AND.

• .OR.

• .EQV. and .NEQV.

• .XOR.

For example, in the following expression:

W .NEQV. X .OR. Y .AND. Z

the operators are executed in the following sequence:

1. Y .AND. Z is evaluated first (A represents the result).

2. X .OR. A is evaluated second (B represents the result).

3. W .NEQV. B is evaluated to produce the final result.

You can use parentheses to override the precedence of the operators.

3.4.2 Logical Operands

Logical operands specify values with a logical data type. The forms of a logical
operands are the following:

• logical primary

• logical factor

• logical term

• logical disjunct

• logical expression

3.4.2.1 Logical Primary

The logical primary is the basic component of a logical expression. The forms of
a logical primary are the following:

007–2362–004 53

MIPSpro Fortran 77 Language Reference Manual

• logical constant

• symbolic name of a logical constant

• integer or logical variable reference

• logical array element reference

• integer or logical function reference

• relational expression

• integer or logical expression in parentheses

When an integer appears as an operand to a logical operator, the other operand
is promoted to type integer if necessary and the operation is performed on a
bit-by-bit basis producing an integer result. Whenever an arithmetic datum
appears in a logical expression, the result of that expression will be of type
integer because of type promotion rules. If necessary, the result can be
converted back to LOGICAL.

Do not specify two logical operators consecutively and do not use implied
logical operators.

3.4.2.2 Logical Factor

The logical factor uses the logical negation operator .NOT. to reverse the logical
value to which it is applied. For example, applying .NOT. to a false relational
expression makes the expression true. Therefore, if UP is true, .NOT. UP is
false. The logical factor has the following forms:

• logical primary

• .NOT. logical primary

3.4.2.3 Logical Term

The logical term uses the logical conjunct operator .AND. to combine logical
factors. It takes the following forms:

• logical factor

• logical term .AND. logical factor

In evaluating a logical term with two or more .AND. operators, the logical
factors are combined from left to right. For example, X .AND. Y .AND. Z has
the same interpretation as (X .AND. Y) .AND. Z.

54 007–2362–004

Expressions [3]

3.4.2.4 Logical Disjunct

The logical disjunct is a sequence of logical terms separated by the .OR.
operator and has the following two forms:

• logical term

• logical disjunct .OR. logical term

In an expression containing two or more .OR. operators, the logical terms are
combined from left to right in succession. For example, the compiler interprets
the expression X .OR. Y .OR. Z the same as(X .OR. Y) .OR. Z.

3.4.2.5 Logical Expression

At the highest level of complexity is the logical expression. A logical expression
is a sequence of logical disjuncts separated by the .EQV., .NEQV., or .XOR.
operators. Its forms are

• logical disjunct

• logical expression .EQV. logical disjunct

• logical expression .NEQV. logical disjunct

• logical expression .XOR. logical disjunct

The logical disjuncts are combined from left to right when a logical expression
contains two or more .EQV., .NEVQ., or .XOR. operators.

A logical constant expression is a logical expression in which each primary is a
logical constant, the symbolic name of a logical constant, a relational expression
in which each primary is a constant, or a logical constant expression enclosed in
parentheses. A logical constant expression can contain arithmetic and character
constant expressions but not variables, array elements, or function references.

3.4.3 Interpretation of Logical Expressions

In general, logical expressions containing two or more logical operators are
executed according to the hierarchy of operators described previously, unless
the order has been overridden by the use of parentheses. Table 22 defines the
form and interpretation of the logical expressions.

007–2362–004 55

MIPSpro Fortran 77 Language Reference Manual

Table 22. Logical Expressions

A B .NOT. B A .AND. B A .OR. B A .EQV. B
A .XOR. B
A .NEQV. B

F F T F F T F

F T F F T F T

T F T F T F T

T T F T T T F

3.5 Evaluating Expressions

Several rules are applied to the general evaluation of Fortran expressions. This
section covers the priority of the different Fortran operators, the use of
parentheses in specifying the order of evaluation, and the rules for combining
operators with operands.

Note: Any variable, array element, function, or character substring in an
expression must be defined with a value of the correct type at the time it is
referenced.

3.5.1 Precedence of Operators

Certain Fortran operators have precedence over others when combined in an
expression. The previous sections have listed the precedence among the
arithmetic, logical, and expression operators. No precedence exists between the
relational operators and the single character operator (//). On the highest level,
the precedence among the types of expression operators, from highest to lowest,
is

• arithmetic

• character

• relational

• logical

56 007–2362–004

Expressions [3]

3.5.2 Integrity of Parentheses and Interpretation Rules

Use parentheses to specify the order in which operators are evaluated within an
expression. Expressions within parentheses are treated as an entity.

In an expression containing more than one operation, the processor first
evaluates any expressions within parentheses. Subexpressions within
parentheses are evaluated beginning with the innermost subexpression and
proceeding sequentially to the outermost. The processor then scans the
expression from left to right and performs the operations according to the
operator precedence described previously.

007–2362–004 57

Specification Statements [4]

This chapter contains information about using specification statements in
Fortran. Specification statements are non-executable Fortran statements that
provide the compiler with information about the nature of specific data and the
allocation of storage space for this data.

The following specification statements are described in this chapter:

• AUTOMATIC, STATIC, discussed in Section 4.1, page 60. These statements
controls the allocation of storage to variables and the initial value of
variables within called subprograms.

• BLOCK DATA, discussed in Section 4.2, page 62 This is the first statement in
a block data subprogram used to assign initial values to variables and array
elements in named common blocks.

• COMMON, discussed in Section 4.3, page 63. This declares variables and
arrays to be put in a storage area that is accessible to multiple program
units, thus allowing program units to share data without using arguments.

• DATA, discussed in Section 4.4, page 66. This supplies initial values of
variables, array elements, arrays, or substrings.

• Data type statements, discussed in Section 4.5, page 69. This explicitly
defines the type of a constant, variable, array, external function, statement
function, or dummy procedure name. Also, can specify dimensions of arrays
and the length of the character data.

• DIMENSION, discussed in Section 4.6, page 74. This specifies the symbolic
names and dimension specifications of arrays.

• EQUIVALENCE, discussed in Section 4.7, page 75. This specifies the sharing
of storage units by two or more entities in a program unit, thus associating
those entities.

• EXTERNAL, discussed in Section 4.8, page 78. This identifies external or
dummy procedure.

• IMPLICIT, discussed in Section 4.9, page 79. This changes or defines default
implicit type of names.

• INTRINSIC, discussed in Section 4.10, page 82. This identifies intrinsic
function or system subroutine.

007–2362–004 59

MIPSpro Fortran 77 Language Reference Manual

• NAMELIST, discussed in Section 4.11, page 83. This associates a group of
variables or array names with a unique group name.

• PARAMETER, discussed in Section 4.12, page 84. This gives a constant a
symbolic name.

• POINTER, discussed in Section 4.13, page 87. This establishes pairs of
variables and pointers.

• PROGRAM, discussed in Section 4.14, page 89. This defines a symbolic name
for the main program.

• RECORD, discussed in Section 4.15, page 90. This creates a record in the
format specified by a previously declared STRUCTURE statement.

• SAVE, discussed in Section 4.16, page 91. This retains the values of variables
and arrays after execution of a RETURN or END statement in a subprogram.

• STRUCTURE, discussed in Section 4.17, page 92. This defines a record
structure that can be referenced by one or more RECORD statement.

• VOLATILE, discussed in Section 4.18, page 96. This prevents the compiler
from optimizing specified variables, arrays, and common blocks of data.

4.1 AUTOMATIC, STATIC

STATIC and AUTOMATIC statements control, within a called subprogram, the
allocation of storage to variables and the initial value of variables.

4.1.1 Syntax

{STATIC | AUTOMATIC} v [,v] …

where v is the name of a previously declared variable, array, array declarator,
symbolic constant, function, or dummy procedure.

4.1.2 Method of Operation

Table 23 summarizes the differences between static and automatic
variables on entry and exit from a subprogram.

60 007–2362–004

Specification Statements [4]

Table 23. Static and Automatic Variables

AUTOMATIC STATIC

Entry Variables are unassigned. They do not
reflect any changes caused by the
previous execution of the subprogram.

Values of the variables in the
subprogram are unchanged since the
last execution of the subprogram.

Exit The storage area associated with the
variable is deleted.

The current value of the variable is
retained in the static storage area.

AUTOMATIC variables have two advantages:

• The program executes more efficiently by taking less space and reducing
execution time.

• They permit recursion; a subprogram can call itself either directly or
indirectly, and the expected values are available on either a subsequent call
or a return to the subprogram.

4.1.3 Rules for Use

• By default, unless you specify the -static command line option (described
on the f77(1) man page and the MIPSpro Fortran 77 Programmer’s Guide), all
variables are AUTOMATIC except

– initialized variables

– common blocks

– variables used in EQUIVALENCE statements

• Override the command line option in effect for specific variables by
specifying as applicable the AUTOMATIC or STATIC keywords in the
variable type statements, as well as in the IMPLICIT statement.

• Any variable in EQUIVALENCE, DATA, or SAVE statements is STATIC
regardless of any previous AUTOMATIC specification.

Example 1: AUTOMATIC/STATIC example

REAL length, anet, total(50)

STATIC length, anet, total

COMPLEX i, B(20), J(2,3,5)
STATIC i

007–2362–004 61

MIPSpro Fortran 77 Language Reference Manual

IMPLICIT INTEGER(f,m-p)

IMPLICIT STATIC (f,m-p)

4.2 BLOCK DATA

BLOCK DATA is the first statement in a block data subprogram. It assigns initial
values to variables and array elements in named common blocks.

4.2.1 Syntax

BLOCK DATA [sub]

where sub is the symbolic name of the block data subprogram in which the
BLOCK DATA statement appears.

4.2.2 Method of Operation

A block data subprogram is a non-executable program unit with a DATA
statement as its first statement, followed by a body of specification statements
and terminated by an END statement. The types of specification statements
include COMMON, DATA, DIMENSION, EQUIVALENCE, IMPLICIT, PARAMETER,
SAVE, STRUCTURE declarations, and type statements. A block data subprogram
can also contain comment lines.

Only entities in named common blocks or entities associated with an entity in a
common block can be initially defined in a block data subprogram.

4.2.3 Rules for Use

• The optional name sub is a global name and must be unique. Thus, BLOCK
DATA subprograms cannot have the same external name.

• An executable program can contain more than one block data subprogram
but cannot contain more than one unnamed block data subprogram.

• A single block data subprogram can initialize the entities of more than one
named common block.

62 007–2362–004

Specification Statements [4]

4.3 COMMON

The COMMON statement declares variables and arrays so that they are put in a
storage area that is accessible to multiple program units, thus allowing program
units to share data without using arguments.

4.3.1 Syntax

COMMON [/[cb]/] nlist [[,]/[cb]/nlist]...

where cb is a common block name and nlist is a list of variable names, array
names, array declarators, or records.

4.3.2 Method of Operation

A storage sequence, composed of a series of storage units that are shared
between program units, is referred to as common storage. For each common
block, a common block storage sequence is formed consisting of the storage
sequences of all entities in the list of variables and arrays for that common
block. The order of the storage sequence is the same as its order of appearance
in the list. In each COMMON statement, the entities specified in the common
block list nlist following a block name cb are declared to be in common block cb.

In an executable program, all common blocks with the same name have the
same first storage unit. This establishes the association of data values between
program units.

The storage sequence formed above is extended to include all storage units of
any storage sequence associated with it by equivalence association.

Fortran has the following types of common storage:

• Blank common storage does not have an identifying name and can be
accessed by all program units in which it is declared. One blank common
area exists for the complete executable program.

• Named common storage has an identifying name and is accessible by all
program units in which common storage with the same name is declared.

You can initially define entities in a named common block by using the DATA
initialization statement in a BLOCK DATA subprogram. However, you cannot
use the DATA statement to initialize entities in blank common block.

007–2362–004 63

MIPSpro Fortran 77 Language Reference Manual

The number of storage units needed to store a common block is referred to as
its size. This number includes any extensions of the sequence resulting from
equivalence association. The size of a named common block must be the same
in all program units in which it is declared. The size of blank common block
need not be the same size in all program units.

4.3.3 Rules for Use

• A variable name, array name, array declarator, or record can appear only
once in all common block lists within a program unit.

• Specify a blank common block by omitting the common block name cb for
each list. Thus, omitting the first common block name places entities
appearing in the first nlist in a blank common block.

• Omitting the first cb makes the first two slashes optional. Two slashes
without a block name between them declare the entities in the following list
to be in a blank common block.

• Any common block name cb or an omitted cb for a blank common block can
occur more than once in one or more COMMON statements in a program unit.
The list following each appearance of the same common block name is
treated as a continuation of the list for that common block name.

• As an extension to the standard, a named common block can be declared as
having different sizes in different program units. If the common block is not
initially defined with a DATA statement, its size will be that of the longest
common block declared. However, if it is defined in one of the program
units with DATA statements, then its size is the size of the defined common
block. In other words, to work correctly, the named common block must be
declared with the longest size when it is defined, even though it can be
declared with shorter sizes somewhere else. Defining a common block
multiple times produces incorrect results.

• The compiler aligns entities in a common block on 32-bit boundaries. You
can change this alignment using the compiler options -align8 and
-align16. However, these changes can degrade performance. The
-align64 option might improve performance. See the MIPSpro Fortran 77
Programmer’s Guide for more information.

4.3.4 Restrictions

• Names of dummy arguments of an external procedure in a subprogram
must not appear in a common block list.

64 007–2362–004

Specification Statements [4]

• A variable name that is also a function name must not appear in the list.

Example 2: COMMON examples

The following equivalent statements define a blank common block. Note that
these two COMMON statements cannot appear in the same program unit.

COMMON //F,X,B(5)

COMMON F,X,B(5)

The following declaration:

COMMON /LABEL/NAME,AGE,DRUG,DOSE//Y(33),

Z,/RECORD/,DOC, 4 TIME(5), TYPE(8)

makes the following COMMON storage assignments:

• NAME, AGE, DRUG, and DOSE are placed in common block LABEL.

• Y and Z are placed in a blank common block.

• DOC, TIME, and TYPE are placed in a common block RECORD.

The following program contains two COMMON statements: one in the calling
program and one in the subroutine. Both define the same four entities in the
COMMON even though each common statement uses a unique set of names. The
calling program can access COMMON storage through the entities TOT, A, K, and
XMEAN. Subroutine ADD has access to the same common storage through the use
of the entities PLUS, SUM, M, and AVG.

c THIS PROGRAM READS VALUES AND PRINTS THE

c SUM AND AVERAGE
c

COMMON TOT, A(20), K, XMEAN

READ (5,10) K, (A(I), I = 1, K)

CALL ADD

WRITE (6,20) TOT, XMEAN

10 FORMAT (I5/F(10.0))
20 FORMAT (5X,5HSUM =,2X,F10.4/5X,

+ 12HMEAN VALUE =,2X,F10.4)

STOP

c

c THIS SUBROUTINE CALCULATES THE SUM AND AVERAGE
c

COMMON PLUS, SUM(20), M, AVG

PLUS = SUM (1)

007–2362–004 65

MIPSpro Fortran 77 Language Reference Manual

DO 5 I = 2, M

5 PLUS = SUM (I) + PLUS
AVG = PLUS / FLOAT (M)

END

4.4 DATA

The DATA statement supplies initial values of variables, array elements, arrays,
or substrings.

4.4.1 Syntax

DATA nlist/clist/[[,] nlist/clist/] …

The following arguments are available with this statement:

nlist a list of variable names, array names, array element names,
substring names or implied DO lists (described later in this
chapter) separated by commas.

clist composed of one or more elements, separated by commas, of
either of the following forms:

c

r*c

wherec is a constant or the symbolic name of a constant. r is a
nonzero, unsigned integer constant or the symbolic name of a
positive integer constant. The second form implies r successive
appearances of the constant c.

4.4.2 Method of Operation

In data initialization, the first value in clist is assigned to the first entity in nlist,
the second value in clist to the second entity in nlist, and so on. There is a
one-to-one correspondence between the items specified by nlist and the
constants supplied in clist. Hence, each nlist and its corresponding clist must
contain the same number of items and must agree in data type. If necessary, the
clist constant is converted to the type or length of the nlist entity exactly as for
assignment statements.

66 007–2362–004

Specification Statements [4]

If the length of the character entity in nlist is greater than the length of its
corresponding character constant in clist, then blank characters are added to the
right of the character constant. But if the length of the character entity in nlist is
less than that of its corresponding constant in clist, the extra right most
characters in the constant are ignored; only the left most characters are stored.
Each character constant initializes only one variable, array element, or substring.

As an enhancement to FORTRAN 77, you can define an arithmetic or logical
entity initially using a Hollerith constant for c in a clist, using the folloiwng
form:

nHx1 x2 x3 … xn

The following arguments are available with this statement:

n The number of characters xn.

xi The actual characters of the entity.

The value of n must be greater than g, where g is the number of character
storage units for the corresponding entity. If n is less than g, the entity is
initially defined with the n Hollerith characters extended on the right with g - n
blank characters. The compiler generates a warning message for data
initializations of this type.

4.4.3 Rules for Use

• Each nlist and its corresponding clist must have the same number of items
and must correspond in type when either is LOGICAL or CHARACTER. If
either is of arithmetic type, then the other must be of arithmetic type.

• If an unsubscripted array name is specified in nlist, the corresponding clist
must contain one constant for each element of the array.

• If two entities are associated in common storage, only one can be initialized
in a DATA statement.

• Each subscript expression in nlist must be an integer constant expression,
except for implied DO variables.

• Each substring expression in nlist must be an integer constant expression.

• A numeric value can be used to initialize a character variable or element.
The length of that character variable or array element must be one, and the
value of the numeric initializer must be in the range 0 through 255.

007–2362–004 67

MIPSpro Fortran 77 Language Reference Manual

• An untyped hexadecimal, octal, or binary constant can be used to initialize a
variable or array element. If the number of bits defined by the constant is
less than the storage allocation for that variable or array element, then
leading zeros are assumed. If the number of bits exceed the number of bits
of storage available for the variable or array element, then the leading bits of
the constant are truncated accordingly.

• A Hollerith constant can be used to initialize a numeric variable or array
element. The rules for Hollerith assignment apply.

4.4.4 Restrictions

• The list nlist cannot contain names of dummy arguments, functions, and
entities in blank common, or those associated with entities in blank common.

• Do not initialize a variable, array element, or substring more than once in an
executable program. If you do, the subsequent initializations will override
the previous ones.

• If a common block is initialized by a DATA statement in a program unit, it
cannot be initialized in other program units.

Example 3: DATA example

Given the following declarations:

REAL A (4), b

LOGICAL T

COMPLEX C

INTEGER P, K(3), R
CHARACTER*5 TEST(4)

PARAMETER (P=3)

DATA A,B/0.,12,5.12E5,0.,6/, T/.TRUE./,

+ C/(7.2, 1.234)/,K/P*0/,

+ TEST/3*’MAYBE’,’DONE?’/

the DATA statement defines the variables declared immediately preceding it as
follows:

A(1) = .0E+00 A(2) = .12E+02

A(3) = .512E+06 A(4) = .0E+00

B = 6

T = .TRUE.

C = (.72E+01, .1234+01)
K(1) = 0 K(2) = 0 K(3) = 0

68 007–2362–004

Specification Statements [4]

TEST(1) = ’MAYBE’ TEST(2) = ’MAYBE’

TEST(3) = ’MAYBE’ TEST(4) = ’DONE?’

The following statements are examples of implied DO statements using DATA
statements:

DATA LIMIT /1000/, (A(I), I= 1,25)/25*0/

DATA ((A(I,J), J = 1,5), I = 1,10)/50*1.1/

DATA (X(I,I), I = 1,100) /100 * 1.1/

DATA ((A(I,J), J = 1,I), I =1,3)/11,21,22,31,32,33/

4.5 Data Type Statements

The data type statement explicitly defines the type of a constant, variable, array,
external function, statement function, or dummy procedure name. It can also
specify dimensions of arrays and the length of character data. The two kinds of
data type statements are numeric and character.

4.5.1 Numeric Data Types

Use numeric data types to

• override implicit typing

• explicitly define the type of a constant, variable, array, external function,
statement function, or dummy procedure name

• specify dimensions of arrays

4.5.1.1 Syntax

type v [*len] [/clist/] [, v[*len]/clist/]

The following arguments are available with this statement:

type is one of the keywords listed in Table 24, page 70.

v is a variable name, array name, array declarator, symbolic name
of a constant, function name, or dummy procedure name.

len is one of the acceptable lengths for the data type being declared;
len is one of the following: an unsigned, nonzero integer constant;
a positive-value integer constant expression enclosed in

007–2362–004 69

MIPSpro Fortran 77 Language Reference Manual

parentheses; or an asterisk enclosed in parentheses (*). If the type
being declared is an array, len follows immediately after the array
name.

clist is a list of values bounded by slashes; the value becomes the
initial value of the type being declared.

Table 24. Keywords for Type Statements

INTEGER DOUBLE PRECISION

INTEGER*1 COMPLEX

BYTE DOUBLE COMPLEX

INTEGER*2 COMPLEX*8

INTEGER*4 COMPLEX*16

INTEGER*8 COMPLEX*32

LOGICAL REAL

LOGICAL*1 REAL*4

LOGICAL*2 REAL*8

LOGICAL*4 REAL*16

LOGICAL*8

The following pairs of keywords are synonymous by default:

• BYTE and INTEGER*1

• INTEGER and INTEGER*4

• REAL and REAL*4

• DOUBLE PRECISION and REAL*8

• COMPLEX and COMPLEX*8

• DOUBLE COMPLEX and COMPLEX*16

• LOGICAL and LOGICAL*4

The -i2, -i8, -r8, and -d16 options can affect the previous list. Refer to the
f77(1) man page for details. See the MIPSpro Fortran 77 Programmer’s Guide for
information on the alignment, size, and value ranges of these data types.

70 007–2362–004

Specification Statements [4]

4.5.1.2 Method of Operation

The symbolic name of an entity in a type statement establishes the data type for
that name for all its subsequent appearances in the program unit in which it is
declared.

The type specifies the data type of the corresponding entities. That is, the
INTEGER statement explicitly declares entities of type integer and overrides
implicit typing of the listed names. The REAL statement specifies real entities,
the COMPLEX statement specifies complex entities, and so on.

4.5.1.3 Rules for Use

• Type statements are optional and must appear in the beginning of a program
unit. However, type statements can be preceded by an IMPLICIT statement.

• Symbolic names, including those declared in type statements, have the scope
of the program unit in which they are included.

• A program unit can contain type statements that begin with identical
keywords.

• Do not explicitly specify the type of a symbolic name more than once within
a program unit.

• Do not use the name of a main program, subroutine, or block data
subprogram in a type statement.

• The compiler provides a DOUBLE COMPLEX version of many functions,
including those in Table 25.

Table 25. Double Complex Functions

Name Purpose

DCMPLX Explicit type conversion

DCONJG Complex conjugate

DIMAG Imaginary part of complex argument

ZABS Complex absolute value

• The -i2 compiler option (see the f77(1) manual page or the MIPSpro
Fortran 77 Programmer’s Guide for details) causes the following:

007–2362–004 71

MIPSpro Fortran 77 Language Reference Manual

– converts integer constants whose values are within the range allowed for
the INTEGER*2 data types to INTEGER*2

– converts the data type of variable returned by a function to INTEGER*2,
where possible

– ensures that variables of type LOGICAL occupy the same amount of
storage as INTEGER*2 variables

• The -i8 option is the same as -i2, except it converts variables to
INTEGER*8 and LOGICAL*8 as appropriate.

Example 4: Data type statement example

REAL length, anet, TOTAL(50)

INTEGER hour, sum(5:15), first, uvr(4,8,3)

LOGICAL bx(1:15,10), flag, stat

COMPLEX I, B(20), J(2,3,5)

The code above declares that

• length and anet are names of type real. The specification of anet
confirms implicit typing using the first letter of the name and could have
been omitted in the REAL statement.

• TOTAL is a real array.

• hour and first are integer names. uvr and sum are integer arrays and
illustrate the use of the type statement to specify the dimensions of an array.
Note that when an array is dimensioned in a type statement, a separate
DIMENSION statement to declare the array is not permitted.

• flag and stat are logical variables; bx is a logical array.

• I is a complex variable; B and J are complex arrays.

4.5.2 Character Data Types

Character data type statements declare the symbolic name of a constant,
variable, array, external function, statement function, or dummy procedure
name and specify the length of the character data.

4.5.2.1 Syntax

CHARACTER [*len [,]] nam [,nam] . . .

72 007–2362–004

Specification Statements [4]

The following arguments are available with this statement:

len is a length specification that gives the length, in number of
characters, of a character variable, character array element,
character constant, or character function. len is one of the
following:

• an unsigned, nonzero integer constant

• a positive-value integer constant expression enclosed in
parentheses

• an asterisk enclosed in parentheses (*)

nam is either v [*len] where v is a variable name, symbolic name of a
constant, function name, or dummy procedure name, or
a[(d)][*len] where a(d) is an array declarator.

4.5.2.2 Rules for Use

• The length specification len that follows the keyword CHARACTER denotes
the length of each entity in the statement without its own length
specification.

• A length specification immediately following an entity applies only to that
entity. The length specified when an array is declared applies to each array
element.

• If no length specification is given, a length of one is assumed.

• The length specifier of (*) can be used only for names of external functions,
dummy arguments of an external procedure, and character constants.

– For a character constant, the (*) denotes that the length of the constant is
determined by the length of the character expression given in the
PARAMETER statement.

– For a dummy argument of an external procedure, the (*) denotes that the
length of the dummy argument is the length of the actual argument
when the procedure is invoked. If the associated actual argument is an
array name, the length of the dummy argument is the length of an
element of the actual array.

– For an external function name, the (*) denotes that the length of the
function result value and the local variable with the same name as the
function entry name is the length that is specified in the program unit in

007–2362–004 73

MIPSpro Fortran 77 Language Reference Manual

which it is referenced. Note that the function name must be the name of
an entry to the function subprogram containing this TYPE statement.

• If an actual len is declared for an external function in the referencing
program unit and in the function definition, len must agree with the length
specified in the subprogram that specifies the function. If not, then the
function definition must use the asterisk (*) as covered previously, but the
actual len in the referencing unit must not be (*).

• The length specified for a character statement function or statement function
dummy argument of type character must be an integer constant expression.

Example 5: CHARACTER example

CHARACTER name*40, gender*1, pay(12)*10

The above declaration defines

• name as a character variable with a length of 40

• gender as a character variable with a length of one

• pay as a character array with 12 elements, each of which is 10 characters in
length

4.6 DIMENSION

The DIMENSION statement specifies the symbolic names and dimension
specifications of arrays.

4.6.1 Syntax

DIMENSION a(d) [,a(d)] ...

where a(d) is an array declarator.

To be compatible with PDP-11 Fortran, the VIRTUAL statement is synonymous
with the DIMENSION statement and carries the identical meaning.

74 007–2362–004

Specification Statements [4]

4.6.2 Method of Operation

A symbolic name x appears in a DIMENSION statement causing an array x to be
declared in that program unit.

4.6.3 Rules for Use

• The dimension specification of an array can appear only once in a program
unit.

• The name of an array declared in a DIMENSION statement can appear in a
type statement or a COMMON statement without dimensioning information.

Example 6: DIMENSION example

The following DIMENSION statement declares z as an array of 25 elements, a as
an array of 36 elements (6 x 6), and ams as an array of 50 elements (2 x 5 x 5).

DIMENSION z(25), a(6,6), ams(2,5,5)

4.7 EQUIVALENCE

The EQUIVALENCE statement allows two or more entities in a program unit to
share storage units, thus associating those entities. This statement allows the
same information to be referenced by different names in the same program unit.

4.7.1 Syntax

EQUIVALENCE (nlist) [,(nlist)] ...

where nlist is a list of variable names, array element names, array names, and
character substring names.

4.7.2 Method of Operation

The storage sequences of the entities in the list must have the same first storage
unit. This requirement associates the entities in the list or other elements as
well. The EQUIVALENCE statement only associates storage units and does not
cause type conversion or imply mathematical equivalence. Thus, if a variable
and an array are equivalenced, the variable does not assume array properties
and vice versa.

007–2362–004 75

MIPSpro Fortran 77 Language Reference Manual

Character entities can be associated by equivalence only with other character
entities. Specify the character entities, character variables, character array
names, character array element names, or character substring names.
Association is made between the first storage units occupied by the entities
appearing in the equivalence list of an EQUIVALENCE statement. This statement
can associate entities of other character elements as well. The lengths of the
equivalenced character entities are not required to be equal.

Variables and arrays can be associated with entities in common storage to
lengthen the common block. However, association through the use of the
EQUIVALENCE statement must not cause common storage to be lengthened by
adding storage units before the first storage unit in the common block.

4.7.3 Rules for Use

• Each subscript expression or substring expression in an equivalence list
must be an integer constant expression.

• If an array element name is specified in an EQUIVALENCE statement, the
number of subscript expressions must be the same as the number of
dimensions declared for that array.

• An array name without a subscript is treated as an array element name that
identifies the first element of the array.

• Multidimensional array elements can be referred to in an EQUIVALENCE
statement with only one subscript. The compiler considers the array to be
one-dimensional according to the array element ordering of Fortran.
Consider the following example:

DIMENSION a(2,3), b(4:5,2:4)

The following shows a valid EQUIVALENCE statement using the arrays a
and b:

EQUIVALENCE (a(1,1), b(4,2))

The following example achieves the same effect:

EQUIVALENCE (a(1), b(4))

The lower-bound values in the array declaration are always assumed for
missing subscripts (in the above example, 1 through 3 for array a and 2
through 4 for array b).

76 007–2362–004

Specification Statements [4]

4.7.4 Restrictions

• Names of dummy arguments of an external procedure in a subprogram
cannot appear in an equivalence list.

• A variable name that is also a function name cannot appear in the list.

• A storage unit can appear in no more than one EQUIVALENCE storage
sequence.

• An EQUIVALENCE statement cannot specify non-consecutive storage
positions for consecutive storage units.

• An EQUIVALENCE statement cannot associate a storage unit in one common
block with any storage unit in a different common block.

Example 7: EQUIVALENCE example 1

The two statements below are represented in storage as shown in Figure 2.

DIMENSION M(3,2),P(6)
EQUIVALENCE (M(2,1),P(1))

M (1,1) M (1,2) M (2,2)M (3,1) M (3,2)M (2,1)

P (1) P (4) P (5)P (3) P (6)P (2)

a12008

Figure 2. Storage Representation of an EQUIVALENCE Statement

Example 8: EQUIVALENCE example 2

The two statements below cause the logical representation in storage shown in
Figure 3.

CHARACTER ABT*6, BYT(2)*4, CDT*3

EQUIVALENCE (ABT, BYT(1)),(CDT, BYT(2))

007–2362–004 77

MIPSpro Fortran 77 Language Reference Manual

04 0503 0602 080701

CDT

BYT(1)

ABT

BYT(2)

a12009

Figure 3. Logical Representation of an EQUIVALENCE Statement

Example 9: EQUIVALENCE example 3

The following statements are invalid because they specify non-consecutive
storage positions for consecutive storage units.

REAL A(2)

DOUBLE PRECISION S(2)
EQUIVALENCE (A(1), S(1)), (A(2), S(2))

Note that a double-precision variable occupies two consecutive numeric storage
units in a storage sequence.

4.8 EXTERNAL

The EXTERNAL statement specifies a symbolic name to represent an external
procedure or a dummy procedure. The symbolic name can then be used as an
actual argument in a program unit.

4.8.1 Syntax

EXTERNAL proc [,proc] ...

where proc is the name of an external procedure or dummy procedure.

78 007–2362–004

Specification Statements [4]

4.8.2 Rules for Use

• An external procedure name or a dummy procedure name must appear in
an EXTERNAL statement in the program unit if the name is to be used as an
actual argument in that program unit.

• If an intrinsic function name appears in an EXTERNAL statement, indicating
the existence of an external procedure having that name, the intrinsic
function is not available for use in the same program unit in which the
EXTERNAL statement appears.

• A symbolic name can appear only once in all the EXTERNAL statements of a
program unit.

4.8.3 Restriction

Do not specify a statement function name in an EXTERNAL statement.

Example 10: EXTERNAL example

Consider the following statements:

EXTERNAL G

CALL SUB1 (X,Y,G)

and the corresponding subprogram:

SUBROUTINE SUB1 (RES, ARG, F)
RES = F(ARG)

END

The dummy argument F in subroutine SUB1 is the name of another
subprogram; in this case, the external function G.

4.9 IMPLICIT

The IMPLICIT statement changes or defines default-implicit types of names.
This section explains the three syntactic forms of the IMPLICIT statement.

4.9.1 Syntax 1

IMPLICIT typ (a[,a]...) [,typ(a[,a]...)]...

007–2362–004 79

MIPSpro Fortran 77 Language Reference Manual

The following arguments are available with this statement:

typ a valid data type.

a either a single alphabetic character or a range of letters in
alphabetical order. A range of letters is specified as l1 - l2,
where l1 and l2 are the first and last letters of the range,
respectively.

An IMPLICIT statement specifies a type for all variables, arrays, external
functions, and statement functions for which no type is explicitly specified by a
type statement. If a name has not appeared in a type statement, then its type is
implicitly determined by the first character of its name. The IMPLICIT
statement establishes which data type (and length) will be used for the
indicated characters.

By default, names beginning with the alphabetic characters A through H or O
through Z are implicitly typed REAL; names beginning with I, J, K, L, M, or N
are implicitly typed INTEGER. Use the IMPLICIT statement to change the type
associated with any individual letter or range of letters.

An IMPLICIT statement applies only to the program unit that contains it and is
overridden by a type statement or a FUNCTION statement in the same
subprogram.

4.9.2 Syntax 2

IMPLICIT {AUTOMATIC | STATIC} (a[,a]...)
[,typ (a[,a]...)]

An AUTOMATIC or STATIC keyword in an IMPLICIT statement causes all
associated variables to be assigned automatic or static storage characteristics.
See the description of the AUTOMATIC and STATIC statements earlier in this
chapter for information on their function. An example using these keywords is
also given.

4.9.3 Syntax 3

IMPLICIT {UNDEFINED | NONE}

80 007–2362–004

Specification Statements [4]

Note: UNDEFINED and NONE are synonymous and, therefore, perform the
same function.

When a type is not declared explicitly for a variable, the implicit data typing
rules cause a default type of INTEGER to apply if the first letter of the variable
is i, j, k, l, m, or n or REAL if the first letter is any other alphabetic character.

Use the IMPLICIT UNDEFINED statement, IMPLICIT NONE statement, or the
-u command line option to turn off the implicit data typing.

Using Syntax 3 of the IMPLICIT statement within a program allows you to
override the default assignments given to individual characters; the -u
command line option overrides the default assignments for all alphabetic
characters.

The following declaration turns off the implicit data typing rules for all
variables. The example has the same effect as specifying the -u command line
option.

IMPLICIT UNDEFINED

4.9.4 Rules for Use

The following rules are for all three syntactic forms of the IMPLICIT statement.

• IMPLICIT statements must precede all other specification statements except
PARAMETER statements.

• Multiple IMPLICIT statements are allowed in a program unit.

• IMPLICIT statements cannot be used to change the type of a letter more
than once inside a program unit. Because letters can be part of a range of
letters as well as stand alone, ranges of letters cannot overlap.

• Lowercase and uppercase alphabetic characters are not distinguished.
Implicit type is established for both the lower- and uppercase alphabetic
characters or range of alphabetic characters regardless of the case of l1 and l2.

• The -u command line option turns off all default data typing and any data
typing explicitly specified by an IMPLICIT statement.

Example 11: IMPLICIT examples

Consider the following example:

007–2362–004 81

MIPSpro Fortran 77 Language Reference Manual

IMPLICIT NONE

IMPLICIT INTEGER (F,M-P)
IMPLICIT STATIC (F,M-P)

IMPLICIT REAL (B,D)

INTEGER bin, dale

The previous statements declare that

• All variables with names beginning with the letters F(f), M(m), N(n), O(o),
or P(p) are of type INTEGER and are assigned the STATIC attribute.

• All variables with names beginning with the letter B(b) or D(d) are of type
REAL, except for variables bin and dale, which are explicitly defined as
type INTEGER.

The following four IMPLICIT statements are equivalent:

IMPLICIT CHARACTER (g - k)
IMPLICIT CHARACTER (g - K)

IMPLICIT CHARACTER (G - k)

IMPLICIT CHARACTER (G - K)

4.10 INTRINSIC

INTRINSIC statements associate symbolic names with intrinsic functions and
system subroutines. The name of an intrinsic function can be used as an actual
argument.

4.10.1 Syntax

INTRINSIC func [,func] ...

where func is a name of intrinsic functions.

4.10.2 Rules for Use

• The name of every intrinsic function or system subroutine used as an actual
argument must appear in an INTRINSIC statement in that program unit
(see Section A.1, page 249).

• A symbolic name can appear only once in all of the INTRINSIC statements
of a program unit.

82 007–2362–004

Specification Statements [4]

4.10.3 Restrictions

• The same name cannot appear in both an INTRINSIC and an EXTERNAL
statement in the same program unit.

• The same name can appear only once in all the INTRINSIC statements of a
program unit.

• The names of intrinsic functions that perform type conversion, test lexical
relationship, or choose smallest/largest value cannot be passed as actual
arguments. These functions include the conversion, maximum-value, and
minimum-value functions listed in Appendix A, page 249.

Example 12: INTRINSIC example

Consider the following statements:

INTRINSIC ABS

CALL ORD (ABS, ASQ, BSQ)

and the corresponding subprogram:

SUBROUTINE ORD(FN,A,B)

A = FN (B)

RETURN

END

In the above example, the INTRINSIC statement allows the name of the intrinsic
function ABS (for obtaining the absolute value) to be passed to subprogram ORD.

4.11 NAMELIST

The NAMELIST statement associates a group of variables or array names with a
unique group-name in a namelist-directed I/O statement.

4.11.1 Syntax

NAMELIST /group-name/namelist[,] /group-name/ namelist...

where group-name is the name to be associated with the variables or array
names defined in namelist. Each item in namelist must be separated by a comma.

007–2362–004 83

MIPSpro Fortran 77 Language Reference Manual

4.11.2 Rules for Use

• The items in namelist are read or written in the order they are specified in
the list.

• The items can be of any data type, which can be specified either explicitly or
implicitly.

• The following items are not permitted in namelist:

– dummy arguments

– array elements

– character substrings

– records

– record fields

See also the description of the READ and WRITE statements in Chapter 8, page
137 for more information on namelist-directed I/O.

Example 13: NAMELIST example

In the following statement, input, when specified to a namelist-directed I/O
statement, refers to item and quantity; likewise, output refers to item and total:

NAMELIST /input/ item, quantity /output/ item, total

4.12 PARAMETER

The PARAMETER statement assigns a symbolic name to a constant.

4.12.1 Syntax

Format 1

PARAMETER (p=e [,p=e] ...)

Format 2

PARAMETER p=e [,p=e]...

84 007–2362–004

Specification Statements [4]

where p is a symbolic name and e is a constant, constant expression, or the
symbolic name of a constant.

4.12.2 Method of Operation

The value of the constant expression e is given the symbolic name p. The
statement defines p as the symbolic name of the constant. The value of the
constant is the value of the expression e after conversion to the type name p.
The conversion, if any, follows the rules for assignment statements.

Format 1, which has bounding parentheses, causes the symbolic name to be
typed either of the following ways:

• According to a previous explicit type statement.

• If no explicit type statement exists, the name is typed according to its initial
letter and the implicit rules in effect. See the description of the IMPLICIT
statement in Section 4.9, page 79 for details.

Format 2, which has no bounding parentheses, causes the symbolic name to be
typed by the form of the actual constant that it represents. The initial letter of
the name and the implicit rules do not affect the data type.

A symbolic name in a PARAMETER statement has the scope of the program unit
in which it was declared.

4.12.3 Rules for Use

• If the type of p is arithmetic, including INTEGER, REAL, DOUBLE
PRECISION, or COMPLEX, e must be an arithmetic constant expression.

• If p is of type CHARACTER or LOGICAL, e must be a character constant
expression or a logical constant expression, respectively.

• If a named constant is used in the constant expression e, it must be
previously defined in the same PARAMETER or a preceding PARAMETER
statement in the same program unit.

• A symbolic name of a constant must be defined only once in a PARAMETER
statement within a program unit.

• The data type of a named constant must be specified by a type statement or
IMPLICIT statement before its first appearance in a PARAMETER statement if
a default implied type is not to be assumed for that symbolic name.

007–2362–004 85

MIPSpro Fortran 77 Language Reference Manual

• Character symbolic named constants must be specified as type character in a
CHARACTER statement, or the first letter of the name must appear in an
IMPLICIT statement with the type CHARACTER. Specification must be made
before the definition of the name in the PARAMETER statement.

• Once a symbolic name is defined, it can be used as a primary in any
subsequent expressions or DATA statements in that program unit.

• The functions IAND, IOR,NOT, IEOR, ISHFT, LGE, LGT, LLE, and LLT with
constant operands can be specified in a logical expression.

• The function CHAR with a constant operand can be specified in a character
expression.

• All predefined numeric functions with constant operands can be specified in
arithmetic expressions.

• Symbolic names cannot specify the character count for Hollerith constants.

• Symbolic constants can appear in a FORMAT statement only within the
context of a general expression bounded by angle brackets (< >).

• Symbolic constants cannot appear as part of another constant except when
forming the real or imaginary part of a complex constant.

4.12.4 Restrictions

A constant and a symbolic name for a constant are generally not
interchangeable. For example, a symbolic name of an integer constant cannot be
used as a length specification in a CHARACTER type statement without enclosing
parentheses. For instance, CHARACTER*(I) is valid, but CHARACTER*I is not.

However, a symbolic name of a constant can be used to form part of another
constant, such as a complex constant, by using an intrinsic function as shown
below:

COMPLEX c

REAL r

PARAMETER (r = 2.0)

PARAMETER (c = cmplx(1.0,r))

Example 14: PARAMETER example

The following statements declare that 1 is converted to 1E0, making X the name
of a REAL constant:

86 007–2362–004

Specification Statements [4]

REAL X

PARAMETER (X = 1)

The following example converts 3.14 to 3, making I the name of an INTEGER
constant:

INTEGER I

PARAMETER (I = 3.14)

The following example assigns the constant value of .087769 to
interest_rate:

REAL*4 interest_rate

PARAMETER (interest_rate = .087769)

The same result could be achieved using Format 2 as follows:

PARAMETER interest_rate = .087769

The following example assigns the constant value of the square root of 2 to VAL:

PARAMETER VAL = SQRT(2.0)

4.13 POINTER

The POINTER statement establishes pairs of variables and pointers where each
pointer contains the address of its paired variable.

4.13.1 Syntax

POINTER (p1,v1) [,(p2,v2) ...]

where v1 and v2 are pointer-based variables and p1 and p2 are the
corresponding pointers. The pointer integers are automatically typed that way
by the compiler. The pointer-based variables can be of any type, including
structures. Even if there is a size specification in the type statement, no storage
is allocated when such a pointer-based variable is defined.

4.13.2 Rules for Use

• After you have defined a variable as based on a pointer, you must assign an
address to that pointer. Reference the pointer-based variable with standard

007–2362–004 87

MIPSpro Fortran 77 Language Reference Manual

Fortran, and the compiler does the referencing by the pointer. (Whenever
your program references a pointer-based variable, that variable’s address is
taken from the associated pointer.) Provide an address of a variable of the
appropriate type and size.

• You must provide a memory area of the right size, and assign the address to
a pointer, usually with the normal assignment statement or data statement,
because no storage is allocated when a pointer-based variable is defined.

4.13.3 Restrictions

• A pointer-based variable cannot be used as a dummy argument or in
COMMON, EQUIVALENCE, DATA, or NAMELIST statements. (However, a
pointer can be named as a dummy argument or in a COMMON or
EQUIVALENCE statement.)

• A pointer-based variable cannot itself be a pointer.

• The dimension expressions for pointer-based variables must be constant
expressions in main programs. In subroutines and functions, the same rules
apply for pointer-based variables as for dummy arguments. The expression
can contain dummy arguments and variables in COMMON statements. Any
variable in the expressions must be defined with an integer value at the time
the subroutine or function is called.

Example 15: POINTER example

pointer (ptr,v), (ptr2, v2)

character a*12, v*12, z*1, v2*12

data a/’abcdefghijkl’/

common /ptrs2/ptr,ptr2

c establish a(1:12) as the contents of v

ptr = %loc (a)
c establish a(4:15) as the contents of v

ptr = ptr +3

c allocate and initialize space for v2

ptr2 = malloc (12)

v2 = a
c use v via common

call sub1()

c use v2 via dummy argument

call sub2(ptr2)

c release alocated v2 space
call free (ptr2)

88 007–2362–004

Specification Statements [4]

end

c access a pointer variable via common
subroutine sub1()

character v*12,v2*12

pointer (ptr,v), (ptr2, v2)

common /ptrs2/ptr,ptr2

print *,’v:’,v

return
end

c access a pointer variable via an argument

subroutine sub2(p)

pointer(p,str)

char str*12
print *,’based:’,str

return

end

4.14 PROGRAM

The PROGRAM statement defines a symbolic name for the main program.

4.14.1 Syntax

PROGRAM pgm

where pgm is a symbolic name of the main program, which cannot be the name
of an external procedure, block data subprogram, or common block or a local
name in the same program unit.

4.14.2 Rules for Use

• The PROGRAM statement is optional. However, it must be the first statement
in the main program when used.

• The symbolic name must be unique for that executable program. It must not
be the name of any entity within the main program or any subprogram,
entry, or common block.

007–2362–004 89

MIPSpro Fortran 77 Language Reference Manual

4.15 RECORD

The RECORD statement creates a record in the format specified by a previously
declared STRUCTURE statement. The effect of a RECORD statement is
comparable to that of an ordinary type declaration.

4.15.1 Syntax

RECORD /structure-name/record-name[,record-name]
[,record-name]…[/structure-name/
record-name[,record-name][,record-name]…] …

where structure-name is the name of a previously declared structure (see the
description of the STRUCTURE statement in Section 4.17, page 92) and
record-name is a variable, an array, or an array declarator.

4.15.2 Method of Operation

The record-name can be used in COMMON and DIMENSION statements but not in
DATA, EQUIVALENCE, NAMELIST, or SAVE statements. Records created by the
RECORD statement are initially undefined unless the values are defined in the
related structure declaration.

Example 16: RECORD example

In the following statements, the record latest has the format specified by the
structure weather; past is an array of 1,000 records, each record having the
format of the structure weather.

STRUCTURE /weather/
INTEGER month, day, year

CHARACTER*40 clouds

REAL rainfall

END STRUCTURE

RECORD /weather/ latest, past (1000)

Individual items in the structure can be referenced using record-name and the
name of the structure item. For example

past(n).rainfall = latest.rainfall

90 007–2362–004

Specification Statements [4]

where n represents a number from 1 to 1,000 specifying the target array
element. See the description of the STRUCTURE statement in this chapter for an
example of how to declare a structure format.

4.16 SAVE

The SAVE statement retains the values of variables and arrays after execution of
a RETURN or END statement in a subprogram. Therefore, those entities remain
defined for subsequent invocations of the subprogram.

4.16.1 Syntax

SAVE [a[,a]…]

where a is one of the following:

• a variable or array name or

• a common block name, preceded and followed by slashes

4.16.2 Method of Operation

The SAVE statement prevents named variables, arrays, and common blocks
from becoming undefined after the execution of a RETURN or END statement in
a subprogram. Normally, all variables and arrays become undefined on exit
from a subprogram, except when they are

• specified by a SAVE statement

• defined in a DATA statement

• used in an EQUIVALENCE statement

• contained in a blank common

• contained in a named common that is declared in the subprogram and in a
calling program unit in SAVE statements

All variables and arrays declared in the main program maintain their definition
status throughout the execution of the program. If a local variable or array is
not in a common block and is specified in a SAVE statement, it has the same
value when the next reference is made to the subprogram.

007–2362–004 91

MIPSpro Fortran 77 Language Reference Manual

All common blocks are treated as if they had been named in a SAVE statement.
All data in any common block is retained on exit from a subprogram.

Note: Default SAVE status for common blocks is an enhancement to
FORTRAN 77. In FORTRAN 77, a common block named without a
corresponding SAVE statement causes the variables and arrays in the named
common block to lose their definition status on exit from the subprogram.

4.16.3 Rules for Use

• A SAVE statement without a list is treated as though all allowable entities
from that program unit were specified on the list.

• The main program can contain a SAVE statement, but it has no effect.

• A given symbolic name can appear in only one SAVE statement in a
program unit.

4.16.4 Restrictions

Procedure names and dummy arguments cannot appear in a SAVE statement.
The names of individual entries in a common block are not permitted in a SAVE
statement.

Example 17: SAVE example

The following statements are examples of SAVE statements:

SAVE L, V

SAVE /DBASE/

4.17 STRUCTURE / UNION

The STRUCTURE statement defines a record structure that can be referenced by
one or more RECORD statement.

4.17.1 Syntax (General)

STRUCTURE [/structure-name/] [field-names] [field-definition] [field-definition]
... END STRUCTURE

92 007–2362–004

Specification Statements [4]

The following arguments are available with this statement:

structure-name identifies the structure in a subsequent RECORD
statement. Substructures can be established
within a structure by means of either a nested
STRUCTURE declaration or a RECORD statement.

field-names (for substructure declarations only) one or more
names having the structure of the substructure
being defined.

field-definition can be one or more of the following:

• Typed data declarations, which can optionally include one or more data
initialization values.

• Substructure declarations (defined by either RECORD statements or
subsequent STRUCTURE statements).

• UNION declarations, which are mapped fields defined by a block of
statements. The UNION declaration syntax is described below.

• PARAMETER statements, which do not affect the form of the structure.

4.17.2 UNION Declaration Syntax

A UNION declaration is enclosed between UNION and END UNION statements,
which contain two more map declarations. Each map declaration is enclosed
between MAP and END MAP statements.

UNION
MAP

[field-definition] [field-definition] ...
END MAP
MAP

[field-definition] [field-definition] ...
END MAP
[MAP

[field-definition] [field-definition] ...
END MAP] …

END UNION

007–2362–004 93

MIPSpro Fortran 77 Language Reference Manual

4.17.3 Method of Operation

• Typed data declarations (variables or arrays) in structure declarations have
the form of normal Fortran typed data declarations. Data items with
different types can be freely intermixed within a structure declaration.

• Unnamed fields can be declared in a structure by specifying the pseudo
name %FILL in place of an actual field name. You can use this mechanism
to generate empty space in a record for purposes such as alignment.

• All mapped field declarations that are made within a UNION declaration
share a common location within the containing structure. When initializing
the fields within a UNION, the final initialization value assigned overlays any
value previously assigned to a field definition that shares that field.

Example 18: STRUCTURE/UNION example: general

STRUCTURE /weather/

INTEGER month, day, year

CHARACTER*20 clouds
REAL rainfall

END STRUCTURE

RECORD /weather/ latest

In the preceding example, the STRUCTURE statement produces the storage
mapping shown in Figure 4 for the latest specification in the RECORD statement.

94 007–2362–004

Specification Statements [4]

rainfall

clouds

month

year

day

32

12

0

8

4

a12010

Figure 4. Logical Representation of a STRUCTURE Statement

The following gives an example of initializing the fields within a structure
definition block:

program weather

structure /weather/

integer*1 month /08/, day /10/, year /89/

character*20 clouds /’ overcast’/
real rainfall /3.12/

end structure

record /weather/ latest

print *, latest.month, latest.day, latest.year,

+ latest.clouds, latest.rainfall

The above example prints the following:

8 10 89 overcast 3.120000

007–2362–004 95

MIPSpro Fortran 77 Language Reference Manual

Example 19: UNION example

program writedate

structure /start/
union

map

character*2 month

character*2 day

character*2 year

end map
map

character*6 date

end map

end union

end structure
record /start/ sdate

sdate.month = ’08’

sdate.day = ’10’

sdate.year = ’89’

write (*, 10) sdate.date
10 format (a)

stop

end

In the above example, text is written to the standard I/O device as follows:

081089

4.18 VOLATILE

The VOLATILE statement prevents the compiler from optimizing specified
variables, arrays, and common blocks of data.

4.18.1 Syntax

VOLATILE volatile-items

where volatile-items is one or more names of variables, common blocks, or
arrays, each separated by a comma.

96 007–2362–004

Specification Statements [4]

For more information on optimization, see the MIPSpro Compiling and
Performance Tuning Guide and the f77(1) manual page.

007–2362–004 97

Assignment and Data Statements [5]

Assignment statements assign values to variables and array elements. Data
statements and implied DO lists in data statements are used to initialize
variables and array elements.

The following are the different types of Fortran assignment statements:

• arithmetic, discussed in Section 5.1, page 99

• logical, discussed in Section 5.2, page 102

• character, discussed in Section 5.3, page 103

• aggregate, discussed in Section 5.4, page 103

This chapter explains how to use each of these statements.

5.1 Arithmetic Assignment Statements

An arithmetic assignment statement assigns the value of an arithmetic
expression to a variable or array element of type INTEGER, REAL, DOUBLE
PRECISION, COMPLEX, or DOUBLE COMPLEX. The form of an arithmetic
statement is the following:

v = e

where v is the name of an INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or
DOUBLE COMPLEX type variable or array element and e is an arithmetic
expression.

When an arithmetic assignment statement is executed, the expression e is
evaluated and the value obtained replaces the value of the entity to the left of
the equal sign.

The values v and e need not be of the same type; the value of the expression is
converted to the type of the variable or array element specified. Table 26 lists
the type conversion rules.

007–2362–004 99

MIPSpro Fortran 77 Language Reference Manual

Table 26. Type Conversion Rules

Declaration Function Equivalent

INTEGER INT(e)

REAL REAL(e)

DOUBLE PRECISION DBLE(e)

COMPLEX CMPLX(e)

DOUBLE COMPLEX DCMPLX(e)

The following are examples of arithmetic assignment statements:

I = 4 Assign the value 4 toI.

J = 7 Assign the value 7 to J.

A = I*J+1 Assign the value 29 to A.

Table 27 gives the detailed conversion rules for arithmetic assignment
statements. The functions in the table’s second column are intrinsic functions
described in Chapter 10, page 229 and Appendix A, page 249.

Table 27. Conversion rules for assignment statements

Variable or Array
Element (v)

INTEGER or
LOGICAL
Expression (e)

REAL Expression (e) COMPLEX Expression (e)

INTEGER or LOGICAL Assign e to v REAL: Truncate e to integer
and assign to v
REAL*8: Truncate e to integer
and assign to v
REAL*16: Truncate e to
integer and assign to v

COMPLEX: Truncate real part of
e to integer and assign to v
COMPLEX*16: Truncate real
part of e to integer and assign
to v

REAL Append
fraction (.0) to
e and assign to
v

REAL: Assign e to v
REAL*8: Assign high-order
portion of e to v; low-order
portion of e is rounded
REAL*16: Assign high-order
part of e to v; low-order part
is rounded

COMPLEX: Assign real part of e
to v; imaginary part of e not
used
COMPLEX*16: Assign
high-order part of real part of
e to v; low-order portion of
real part e is rounded

100 007–2362–004

Assignment and Data Statements [5]

Variable or Array
Element (v)

INTEGER or
LOGICAL
Expression (e)

REAL Expression (e) COMPLEX Expression (e)

REAL *8 Append
fraction (.0) to
e and assign to
v

REAL: Assign e to high-order
portion of v; low-order
portion of v is 0
REAL*8: Assign e to v
REAL*16: Assign high-order
part of e to v; low-order part
is rounded

COMPLEX: Assign e to
high-order portion of v;
low-order portion of v is 0
COMPLEX*16: Assign real part
of e to v

REAL *16 Append
fraction (.0) to
e and assign to
v

REAL: Assign e to high-order
portion of v; low-order
portion of v is 0
REAL*8: Assign e to v
REAL*16: Assign high-order
part of e to v; low-order part
is rounded

COMPLEX: Assign e to
high-order portion of v;
low-order portion of v is 0
COMPLEX*16: Assign real part
of e to v

COMPLEX Append
fraction to e
and assign to
real part of v;
imaginary part
of v is 0.0

REAL: Assign e to real part of
v; imaginary part of v is 0.0
REAL*8: Assign high-order
portion of e to real part of v;
low-order portion of e is
rounded; imaginary part of v
is 0.0
REAL*16: Assign high-order
portion of e to real part of v;
low-order part is rounded;
imaginary part of v is 0.0

COMPLEX: Assign e to v
COMPLEX*16: High-order
parts of real and imaginary
components of e are assigned
to v; low-order parts are
rounded

007–2362–004 101

MIPSpro Fortran 77 Language Reference Manual

Variable or Array
Element (v)

INTEGER or
LOGICAL
Expression (e)

REAL Expression (e) COMPLEX Expression (e)

COMPLEX *16 Append
fraction to e
and assign to
v; imaginary
part of v is 0.0

REAL: Assign e to high-order
portion of real part of v;
imaginary part of v is 0.0
REAL*8: Assign e to real part
of v; imaginary part is 0.0
REAL*16: Assign high-order
portion of e to real part of v;
low-order part is rounded;
imaginary part of v is 0.0

COMPLEX: Assign e to
high-order parts of v;
low-order parts of v are 0
COMPLEX*16: Assign e to v

COMPLEX*32 Append
fraction to e
and assign to
v; imaginary
part of v is 0.0

REAL: Assign e to high-order
portion of real part of v;
imaginary part of v is 0.0
REAL*8: Assign e to real part
of v; imaginary part is 0.0
REAL*16: Assign high-order
portion of e to real part of v;
low-order part is rounded;
imaginary part of v is 0.0

COMPLEX: Assign e to
high-order parts of v;
low-order parts of v are 0
COMPLEX*16: Assign e to v

5.2 Logical Assignment Statements

The logical assignment statement assigns the value of a logical expression to a
logical variable or array element. It takes the form

v = e

where v is the name of a logical variable or logical array element and e is a
logical expression.

When a logical assignment statement is executed, the value of the logical
expression e is evaluated and replaces the value of the logical entity to the left
of the equal sign. The value of the logical expression is either true or false.

102 007–2362–004

Assignment and Data Statements [5]

5.3 Character Assignment

The character assignment statement assigns the value of a character expression
to a character variable, array element, or substring. The form of a character
assignment statement is

v = e

where v is the name of a character variable, array element, or substring and e is
a character expression.

During the execution of a character string assignment statement, the character
expression is evaluated and the resultant value replaces the value of the
character entity to the left of the equal sign. None of the character positions
being defined in v can be referenced in the evaluation of the expression e.

The entity v and character expression e can have different lengths. If the length
of v is greater than the length of e, then the value of e is extended on the right
with blank characters to the length of v. If the length of e is greater than the
length of v, then the value of e is truncated on the right to the length of v.

The following is an example of character assignment:

CHARACTER U*5, V*5, W*7

U = ’HELLO’

V = ’THERE’

W(6:7) = V(4:5)

If an assignment is made to a character substring, only the specified character
positions are defined. The definition status of character positions not specified
by the substring remain unchanged.

5.4 Aggregate Assignment

An aggregate assignment statement assigns the value of each field of one
aggregate to the corresponding field of another aggregate. The aggregates must
be declared with the same structure. The form of an aggregate assignment
statement is

v = e

where v and e are aggregate references declared with the same structure.

007–2362–004 103

MIPSpro Fortran 77 Language Reference Manual

See Chapter 2, page 19, for more information.

5.5 ASSIGN

The ASSIGN statement assigns a statement label to an integer variable and is
used in conjunction with an assigned GOTO statement or an I/O statement. The
form of a statement label assignment statement is

ASSIGN s TO e

where s is a statement label of an executable statement or a FORMAT statement
that appears in the same program unit as the ASSIGN statement and e is an
integer variable name.

A statement label assignment by the ASSIGN statement is the only way of
defining a variable with a statement label value. A variable defined with a
statement label value may be used only in an assigned GOTO statement or as a
format identifier in an I/O statement. The variable thus defined must not be
referenced in any other way until it has been reassigned with an arithmetic
value.

An integer variable that has been assigned a statement label value can be
redefined with the same statement label, a different statement label, or an
arithmetic integer variable.

Examples using the ASSIGN statement are shown below:

Example 20: ASSIGN with GOTO

ASSIGN 100 TO kbranch

.

.

.

GO TO kbranch

Example 21: ASSIGN with I/O

ASSIGN 999 TO ifmt
999 FORMAT(f10.5)

.

.

.

READ (*, ifmt) x

104 007–2362–004

Assignment and Data Statements [5]

.

.

.

WRITE (*, fmt = ifmt) z

5.6 Data Initialization

Variables, arrays, array elements, and substrings can be initially defined using
the DATA statement or an implied DO list in a DATA statement. The BLOCK
DATA subprogram is a means of initializing variables and arrays in named
common blocks and is discussed in Chapter 4, page 59.

Entities not initially defined or associated with an initialized entity are
undefined at the beginning of the execution of a program. Uninitialized entities
must be defined before they can be referenced in the program.

5.7 Implied DO Lists

The implied DO list initializes or assigns initial values to elements of an array.

5.7.1 Syntax

(dlist, i = e1, e2 [,e3])

The following arguments are available with this statement:

dlist a list of array element names and implied DO lists.

i an integer variable name, referred to as the implied DO variable. It
is used as a control variable for the iteration count.

e1 an integer constant expression specifying an initial value.

e2 an integer constant expression specifying a limit value.

e3 aan integer constant expression specifying an increment value.

e1, e2, and e3 are as defined in DO statements.

007–2362–004 105

MIPSpro Fortran 77 Language Reference Manual

5.7.2 Method of Operation

An iteration count and the values of the implied DO variable are established
from e1, e2, and e3 exactly as for a DO loop, except that the iteration count must
be positive.

When an implied DO list appears in a DATA statement, the dlist items are
specified once for each iteration of the implied DO list with the appropriate
substitution of values for any occurrence of the implied DO variable. The
appearance of an implied DO variable in an implied DO has no effect on the
definition status of that variable name elsewhere in the program unit. For an
example of an implied DO list, see Section 4.4, page 66.

The range of an implied DO list is dlist.

5.7.3 Rules

• The integer constant expressions used for e1, e2, and e3 can contain implied
DO variables of other implied DO lists.

• Any subscript expression in the list dlist must be an integer constant
expression. The integer constant expression can contain implied DO variables
of implied DO lists that have the subscript expression within their range.

106 007–2362–004

Control Statements [6]

Control statements affect the normal sequence of execution in a program unit.
The following control statements are described in this chapter:

• CALL, Section 6.1, page 108. This references a subroutine program in a
calling program unit.

• CONTINUE, Section 6.2, page 110. This has no operational function; usually
serves as the terminal statement of a DO loop.

• DO, Section 6.3, page 111. This specifies a controlled loop, called a DO loop,
and establishes the control variable, indexing parameters, and range of the
loop.

• DO WHILE, Section 6.4, page 114. This specifies a DO loop based on a test for
true of a logical expression.

• ELSE, Section 6.5, page 115. This is used in conjunction with the block IF or
ELSE IF statements.

• ELSE IF, Section 6.6, page 116. This is used optionally with the block IF
statement.

• END, Section 6.7, page 118. This indicates the end of a program unit.

• END DO, Section 6.8, page 119. This defines the end of an indexed DO loop
or a DO WHILE loop.

• END IF, Section 6.9, page 119. This has no operational function; serves as a
point of reference like a CONTINUE statement in a DO loop.

• GO TO (Unconditional), Section 6.10, page 119. This transfers program
control to the statement identified by the statement label.

• GO TO (Computed), Section 6.11, page 120. This transfers control to one of
several statements specified, depending on the value of an integer
expression.

• GO TO (Assigned), Section 6.12, page 121. This is used in conjunction with
an ASSIGN statement to transfer control to the statement whose label was
last assigned to a variable by an assign statement.

• IF (Arithmetic), Section 6.13, page 122. This allows conditional branching.

007–2362–004 107

MIPSpro Fortran 77 Language Reference Manual

• IF (Branch logical), Section 6.14, page 123. This allows conditional statement
execution.

• IF (Test Conditional), Section 6.15, page 123. This allows conditional
execution of blocks of code. The block IF can contain ELSE IF statements
for further conditional execution control. The block IF ends with the END
IF.

• PAUSE, Section 6.16, page 125. This suspends an executing program.

• RETURN, Section 6.17, page 126. This returns control to the referencing
program unit. It can appear only in a function or subroutine program.

• STOP, Section 6.18, page 127. This terminates an executing program.

6.1 CALL

The CALL statement references a subroutine subprogram in a calling program
unit.

6.1.1 Syntax

CALL sub[([a[,a]...])]

where sub is the symbolic name of the subroutine and a is an actual argument,
an expression, array name, array elements, record elements, record arrays,
record array elements, Hollerith constants, or an alternate return specifier of the
form *s, where s is a statement label, or &s, where s is a statement label.

6.1.2 Method of Operation

A CALL statement evaluates the actual arguments, association of the actual
arguments with the corresponding dummy arguments, and execution of the
statements in the subroutine. Return of control from the referenced subroutine
completes the execution of the CALL statement.

108 007–2362–004

Control Statements [6]

6.1.3 Rules for Use

• The actual arguments a form an argument list and must agree in order,
number, and type with the corresponding dummy arguments in the
referenced subroutine.

• A subroutine that has been defined without an argument can be referenced
by a CALL statement of the following forms:

CALL sub
CALL sub()

• If a dummy procedure name is specified as a dummy argument in the
referenced subroutine, then the actual argument must be an external
procedure name, a dummy procedure name, or one of the allowed specific
intrinsic names. An intrinsic name or an external procedure name used as
an actual argument must appear in an INTRINSIC or EXTERNAL statement,
respectively.

• If an asterisk is specified as a dummy argument, an alternate return specifier
must be supplied in the corresponding position in the argument list of the
CALL statement.

• If a Hollerith constant is used as an actual argument in a CALL statement,
the corresponding dummy argument must not be a dummy array and must
be of arithmetic or logical data type. This rule is an exception to the first
rule above.

• A subroutine can call itself directly or indirectly (recursion).

Note: Recursion is an extension to FORTRAN 77. Standard FORTRAN 77
does not allow a subroutine to reference itself.

Example 22: CALL example

In the following example, the main routine calls PAGEREAD, passing the
parameters LWORDCOUNT, PAGE, and NSWITCH. After execution of PAGEREAD,
control returns to the main program, which stops.

program MakeIndex

character*50 page

dimension page (100)

nswitch = 0
111 lwordcount = inwords1*2

*

call pageread (lwordcount,page,nswitch)

007–2362–004 109

MIPSpro Fortran 77 Language Reference Manual

stop

*
subroutine pageread (lwordcount,page,nswitch)

character*50 page

dimension page (100)

icount = 100

.

.

.

end

*

6.2 CONTINUE

The CONTINUE statement has no operational function. It usually serves as the
terminal statement of a DO loop.

6.2.1 Syntax

CONTINUE

6.2.2 Method of Operation

When a CONTINUE statement that closes a DO loop is reached, control transfer
depends on the control variable in the DO loop. In this case, control will either
go back to the start of the DO loop, or flow through to the statement following
the CONTINUE statement. See Section 6.3, page 111 for full information about
control of DO loops.

Example 23: CONTINUE example

In the following example, the DO loop is executed 100 times, and then the
program branches to statement 50 (not shown).

iwordcount = 100

do 25, i= 1,lwordcount
read (2, 20, end=45) word

20 format (A50)

25 continue

*

goto 50

110 007–2362–004

Control Statements [6]

6.3 DO

The DO statement specifies a controlled loop, called a DO loop, and establishes
the control variable, indexing parameters, and range of the loop.

6.3.1 Syntax

DO [s] [,]i = e1, e2[, e3]

The following arguments are used with this statement:

s a statement label of the last executable statement in the range of
the DO loop. This statement is called the terminal statement of the
DO loop.

s can be omitted. If s is omitted, the loop must be terminated
with an END DO statement. On completion of the loop, execution
resumes with the first statement following the END DO statement.

i a name of an integer, real, or double-precision variable, called the
DO variable.

e1 an integer, real, or double-precision expression that represents the
initial value given to the DO variable.

e2 an integer, real, or double-precision expression that represents the
limit value for the DO variable.

e3 an integer, real, or double-precision expression that represents the
increment value for the DO variable.

6.3.2 Method of Operation

The range of a DO loop consists of all executable statements following the
statement, up to and including the terminal statement of the DO loop. In a DO
loop, the executable statements that appear in the DO loop range are executed a
number of times as determined by the control parameters specified in the DO
statement.

The execution of a DO loop involves the following steps:

1. Activating the DO loop. The DO loop is activated when the DO statement is
executed. The initial parameter m1, the terminal parameter m2, and the
incremental parameter m3 are established by evaluating the expressions e1,
e2, and e3, respectively. The expressions are converted to the type of the DO

007–2362–004 111

MIPSpro Fortran 77 Language Reference Manual

variable when the data types are not the same. The DO variable becomes
defined with the value of the initial parameter m1. The increment m3
cannot have a value of zero and defaults to the value 1 if e3 is omitted.

2. Computing the iteration count. The iteration count is established from the
following expression:

MAX(INT((m2 - m1 + m3)/m3), 0)

The iteration count is zero in the following cases:

m1 > m2 and m3 > 0

m1 << m2 and m3 = 0

If the initial value (m1) of the DO exceeds the limit value (m2), as in

DO 10 I = 2,1

the DO loop will not be executed unless the -onetrip compiler option is in
effect. This option causes the body of a loop thus initialized to be executed
once.

Ordinarily, the compiler-generated code skips any DO loops whose upper or
lower limit has already been reached. This action conforms with Fortran
standards.

To make FORTRAN 77 compatible with Fortran 66, the compiler allows you
to generate code that performs a loop at least once, regardless of whether
the upper or lower limit has already been reached. This is accomplished by
specifying the -onetrip option. This option is included for older
programs written under the assumption that all loops would be performed
at least once.

3. Loop control processing. This step determines if further execution of the
range of the DO loop is required. Loop processing begins by testing the
iteration count. If the iteration count is positive, the first statement in the
range of the DO loop is executed. Normal execution proceeds until the
terminal statement is processed. This constitutes one iteration of the loop.
Incrementing is then required, unless execution of the terminal statement
results in a transfer of control.

If the iteration count is zero, the DO loop becomes inactive. Execution
continues with the first executable statement following the terminal
statement of the DO loop. If several DO loops share the same terminal
statement, incremental processing is continued for the immediately
containing DO loop.

112 007–2362–004

Control Statements [6]

4. Incremental processing. The value of the DO variable is incremented by the
value of the incremental parameter m3. The iteration count is then
decreased by one, and execution continues with loop control processing as
described above.

A DO loop is either active or inactive. A DO loop is initially activated when
its DO statement is executed. Once active, a DO loop becomes inactive when
one of the following occurs:

• The iteration count is zero.

• A RETURN statement within the DO loop range is executed.

• Control is transferred to a statement outside the range of the DO loop
but in the same program unit as the DO loop.

• A STOP statement is executed or the program is abnormally terminated.

Reference to a subprogram from within the range of the DO loop does not
make the DO loop inactive except when control is returned to a statement
outside the range of the DO loop.

When a DO loop becomes inactive, the DO variable of the DO loop retains its
last defined value.

6.3.3 Rules for Use

• You can nest DO loops but do not overlap them.

• If a DO statement appears within an IF block, ELSE IF block, or ELSE
block, the range of the DO loop must be contained within that block.

• If a block IF statement appears within the range of a DO loop, the
corresponding END IF statement must appear within the range of the DO
loop.

• The same statement can serve as the terminal statement in two or more
nested DO loops.

6.3.4 Restrictions

• Do not use the following statements for the statement labeled s in the DO
loop:

Unconditional GO TO END IF

007–2362–004 113

MIPSpro Fortran 77 Language Reference Manual

Assigned GO TO RETURN

Arithmetic IF STOP

Block IF END

ELSE IF Another DO statement

ELSE

• If the statement labeled s is a logical IF statement, it can contain any
executable statement in its statement body, except the following:

DO statement END IF

BlockIF END

ELSE IF Another logical IF statement

• Except by the incremental process covered above, the DO variable must not
be redefined during the execution of the range of the DO loop.

• A program must not transfer control into the range of a DO loop from
outside the DO loop. When this happens, the result is indeterminate.

• When the DO variable is a floating-point variable, especially if the loop
increment value e3 cannot be represented exactly in floating-point form, the
number of times the loop executes could be off by one due to floating-point
arithmetic error.

Example 24: DO example

DO 10, i = 1, 10

D

D
D

10 CONTINUE

E

In the above example, the statements noted with a D following the DO statement
are executed sequentially ten times, then execution resumes at the statement E
following CONTINUE.

6.4 DO WHILE

The DO WHILE statement specifies a controlled loop, called a DO loop, based on
a test for true of a logical expression.

114 007–2362–004

Control Statements [6]

6.4.1 Syntax

DO [s[,]] WHILE (e)

where s is a statement label of the last executable statement in the range of the
DO loop (his statement is called the terminal statement of the DO loop) and e is a
logical expression.

If s is omitted, the loop must be terminated with an END DO statement.

6.4.2 Method of Operation

The DO WHILE statement tests the specified expression prior to each iteration
(including the first iteration) of the statements within the loop. When the
logical expression e is found to be true, the body of the loop is executed. If the
expression is false, control is transferred to the statement following the loop.

If the label s does not exist, the DO WHILE loop must be terminated with an
END DO statement.

6.5 ELSE

Use the ELSE statement in conjunction with the block IF or ELSE IF
statements.

6.5.1 Syntax

ELSE

6.5.2 Method of Operation

An ELSE block is the code that is executed when an ELSE statement is reached.
An ELSE block begins after the ELSE statement and ends before the END IF
statement at the same IF level as the ELSE statement. (For details about the
term IF level, refer to Section 6.15, page 123.) As well as containing simple,
executable statements, an ELSE block can be empty (contain no statements) or
can contain embedded block IF statements. Do not confuse the ELSE block with
the ELSE statement.

007–2362–004 115

MIPSpro Fortran 77 Language Reference Manual

An ELSE statement is executed when the logical expressions in the
corresponding block IF and ELSE IF statements evaluate to false. An ELSE
statement does not evaluate a logical expression; the ELSE block is always
executed if the ELSE statement is reached. After the last statement in the ELSE
block is executed (and provided it does not transfer control), control flows to
the END IF statement that closes that whole IF level.

6.5.3 Rules for Use

• Do not specify ELSE IF or ELSE statements inside an ELSE block at the
same IF level.

• The IF level of the ELSE statement must be greater than zero; that is, there
must be a preceding corresponding block IF statement.

6.5.4 Restrictions

• Enter an ELSE block only by executing the ELSE statement. Do not transfer
control into the ELSE block from the outside.

• If an ELSE statement has a statement label, the label cannot be referenced by
any statement.

Example 25: ELSE example

The following example shows an ELSE block.

IF (R) THEN

A = 0

ELSE IF (Q) THEN
A = 1

ELSE

A = -1

END IF

6.6 ELSE IF

The ELSE IF statement is used optionally with the IF block statement.

116 007–2362–004

Control Statements [6]

6.6.1 Syntax

ELSE IF (e) THEN

where e is a logical expression.

6.6.2 Method of Operation

The following terms are used when defining the ELSE IF statement: ELSE IF
block, defined below, and IF level, defined in Section 6.15.2, page 124.

An ELSE IF block is the code that is executed when the logical expression of
an ELSE IF statement is true. An ELSE IF block begins after the ELSE IF
statement and ends before the next ELSE IF, ELSE, or END IF statement at the
same IF level as the ELSE IF statement. As well as containing simple,
executable statements, an ELSE IF block can be empty (contain no statements)
or can contain embedded block IF statements. Do not confuse the ELSE IF
block with the ELSE IF statement.

When an ELSE IF statement is reached, the logical expressione is evaluated. If
e is true, execution continues with the first statement in the ELSE IF block. If
the ELSE IF block is empty, control is passed to the next END IF statement
that has the same IF level as the ELSE IF statement. If e is false, program
control is transferred to the next ELSE IF, ELSE, or END IF statement that has
the same IF level as the ELSE IF statement.

After the last statement of the ELSE IF block is executed (and provided it does
not transfer control), control is automatically transferred to the next END IF
statement at the same IF level as the ELSE IF statement.

6.6.3 Rule for Use

The IF level of the ELSE IF statement must be greater than zero (there must
be a preceding corresponding block IF statement).

6.6.4 Restrictions

• Do not transfer control into an ELSE IF block from outside the ELSE IF
block.

007–2362–004 117

MIPSpro Fortran 77 Language Reference Manual

• No statement can reference the statement label (if any) of an ELSE IF
statement. The only way to reach an ELSE IF statement is through its IF
block statement.

6.6.5 Example

The following example shows an ELSE IF block.

IF(R) THEN

A = 0

ELSE IF (Q) THEN

A = 1
END IF

6.7 END

The END statement designates the end of a program unit.

6.7.1 Syntax

END

6.7.2 Method of Operation

An END statement in a main program has the same effect as a STOP statement:
it terminates an executing program.

An END statement in a function or subroutine subprogram has the effect of a
RETURN statement: it returns control to the referencing program unit.

6.7.3 Rules for Use

• An END statement cannot be the last statement in every program unit.

• Do not continue an END statement.

118 007–2362–004

Control Statements [6]

6.8 END DO

The END DO statement defines the end of a indexed DO loop or a DO WHILE
loop.

6.8.1 Syntax

END DO

6.9 END IF

The END IF statement has no operational function. It serves as a point of
reference like a CONTINUE statement in a DO loop.

6.9.1 Syntax

END IF

6.9.2 Rules for Use

• Every block IF statement requires an END IF statement to close that IF
level. (IF level is described in Section 6.15.2, page 124).

• The IF level of an END IF statement must be greater than zero (there must
be a preceding corresponding IF block statement).

6.10 GO TO (Unconditional)

The unconditional GO TO statement transfers program control to the statement
identified by the statement label.

6.10.1 Syntax

GO TO s

where s is a statement label of an executable statement appearing in the same
program unit as the unconditional GO TO.

007–2362–004 119

MIPSpro Fortran 77 Language Reference Manual

Example 26: GO TO example

The following statement transfers program control to statement 358 and normal
sequential execution continues from there.

GO TO 358

6.11 GO TO (Computed)

The computed GO TO statement transfers control to one of several statements
specified, depending on the value of an integer expression.

6.11.1 Syntax

GO TO (s[,s]...)[,]i

where s is a statement number of an executable statement appearing in the
same program unit as the computed GO TO and i is an integer.

A noninteger expression can also be used for i. Non-integer expressions are
converted to integers (fractional portions are discarded) before being used to
index the list of statement labels.

6.11.2 Method of Operation

A computed GO TO statement evaluates the integer expression and then
transfers program control to the specified statement. In a computed GO TO
statement with the following form

GO TO (s1, s2, ... ,sn),i

if i<1 or i>n, the program control continues with the next statement following
the computed GO TO statement; otherwise, program control is passed to the
statement labeled si. Thus, if the value of the integer expression is 1, control of
the program is transferred to the statement numbered s1 in the list; if the value
of the expression is 2, control is passed to the statement numbered s2 in the list,
and so on.

120 007–2362–004

Control Statements [6]

6.11.3 Rule for Use

The same statement label can appear more than once in the same computed GO
TO statement.

Example 27: GO TO (computed) example

In the following example, the fifth list item is chosen because KVAL + 1 = 5.
Program control is transferred to the statement labeled 350.

KVAL = 4

GO TO(100,200,300,300,350,9000)KVAL + 1

6.12 GO TO (Assigned)

Use the symbolic GO TO statement in conjunction with an ASSIGN statement to
transfer control to the statement whose label was last assigned to a variable by
an ASSIGN statement.

6.12.1 Syntax

GO TO i [[,] (s [,s]...)]

where i is an integer variable name and s is a statement label of an executable
statement appearing in the same program unit as the assigned GO TO statement.

6.12.2 Method of Operation

The variable i is defined with a statement label using the ASSIGN statement in
the same program unit as the assigned GO TO statement. When an assigned
GO TO is executed, control is passed to the statement identified by that
statement label. Normal execution then proceeds from that point.

6.12.3 Rules for Use

• The same statement label can appear more than once in the same assigned
GO TO statement.

• If a list in parentheses is present, the statement label assigned to i must be
one of those in the list.

007–2362–004 121

MIPSpro Fortran 77 Language Reference Manual

Example 28: GO TO (assigned) example

GO TO KJUMP,(100,500,72530)

The value of KJUMP must be one of the statement label values: 100, 500, or
72530.

6.13 IF (Arithmetic)

The arithmetic IF statement allows conditional branching.

6.13.1 Syntax

IF (e) s1, s2, s3

where e is an arithmetic expression of type integer, real, or double-precision
(but not complex) and s1, s2, s3 are numbers of executable statements in the
same program unit as the arithmetic IF statement.

6.13.2 Method of Operation

In the execution of an arithmetic IF statement, the value of the arithmetic
expression e is evaluated. Control is then transferred to the statement numbered
s1, s2, or s3 if the value of the expression is less than zero, equal to zero, or
greater than zero, respectively. Normal program execution proceeds from that
point.

6.13.3 Rules for Use

You can use the same statement number more than once in an arithmetic IF
statement.

Example 29: IF (arithmetic) example

Consider the following statement:

IF (A + B*(.5))500,1000,1500

If the expression A + B*(.5) is

• less than zero, control jumps to statement 500

122 007–2362–004

Control Statements [6]

• equal to zero, control jumps to statement 1000

• greater than zero, control jumps to statement 1500

6.14 IF (Branch Logical)

The branch logical IF statement allows conditional statement execution.

6.14.1 Syntax

IF (e) st

where e is a logical expression and st is any executable statement except DO,
block IF, ELSE IF, ELSE, END IF, END, or another logical IF statement.

6.14.2 Method of Operation

A logical IF statement causes a Boolean evaluation of the logical expression. If
the value of the logical expression is true, statement st is executed. If the value
of the expression is false, execution continues with the next sequential
statement following the logical IF statement.

Note that a function reference in the expression is allowed but might affect
entities in the statement st.

Example 30: IF (branch logical) example

The following examples show branch logical IF statements.

IF(A .LE. B) A = 0.0
IF (M .LT. TOC) GOTO 1000

IF (J) CALL OUTSIDE(B,Z,F)

6.15 IF (Test Conditional)

The test conditional IF statement allows the conditional execution of blocks of
code. The block IF can contain ELSE and ELSE IF statements for further
conditional execution control. The block IF ends with the END IF statement.

007–2362–004 123

MIPSpro Fortran 77 Language Reference Manual

6.15.1 Syntax

IF (e) THEN

where e is a logical expression.

6.15.2 Method of Operation

An IF block is the code that is executed when the logical expression of a block
IF statement evaluates to true. An IF block begins after the block IF statement
and ends before the ELSE IF, ELSE, or END IF statement that corresponds to
the block IF statement. As well as containing simple, executable statements, an
IF block can be empty (contain no statements) or can contain embedded block
IF statements. Do not confuse the term IF block with block IF.

Block IF statements and ELSE IF statements can be embedded, which can
make figuring out which statements are in which conditional blocks confusing.
The IF level of a statement determines which statements belong to which
IF-THEN-ELSE block. Fortunately, the IF level of a statement can be found
systematically. The IF level of a statement is the following:

(n1 - n2)

where (starting the count at the beginning of the program unit): n1 is the
number of block IF statements up to and including s, and n2 is the number of
END IF statements up to but not including s.

The IF level of every block IF, ELSE IF, ELSE, and END IF statement must
be positive because those statements must be part of a block IF statement. The
IF level of the END statement of the program unit must be zero because all
block IF statements must be properly closed. The IF level of all other
statements must either be zero (if they are outside all IF blocks) or positive (if
they are inside an I -block).

When a block IF statement is reached, the logical expression e is evaluated. If e
is true, execution continues with the first statement in the IF block. If the IF
block is empty, control is passed to the next END IF statement that has the
same IF level as the block IF statement. If e is false, program control is
transferred to the next ELSE IF, ELSE, or END IF statement that has the same
IF level as the block IF statement.

124 007–2362–004

Control Statements [6]

After the last statement of the IF block is executed (and provided it does not
transfer control), control is automatically transferred to the next END IF
statement at the same IF level as the block IF statement.

6.15.3 Restriction

Control cannot be transferred into an IF block from outside the IF block.

Example 31: IF (test conditional) example

The following example shows a test conditional block:

IF(Q.LE.R) THEN

PRINT (’Q IS LESS THAN OR EQUAL TO R’)

ELSE

PRINT(’Q IS GREATER THAN R’)

END IF

6.16 PAUSE

The PAUSE statement suspends an executing program.

6.16.1 Syntax

PAUSE [n]

where n is a string of not more than five digits or a character constant.

6.16.2 Method of Operation

A PAUSE statement without an n specification suspends execution of a program
and issues the following message:

PAUSE statement executed

To resume execution, type go. Any other input
will terminate job.

A PAUSE statement with an n specification displays the specified character
constant or digits and issues the pause message. For example, the following
statement:

007–2362–004 125

MIPSpro Fortran 77 Language Reference Manual

PAUSE "Console Check"

results in the following message being displayed:

PAUSE Console Check statement executed
To resume execution, type go. Any other input
will terminate job.

If execution is resumed, the execution proceeds as though a CONTINUE
statement were in effect.

At the time of program suspension, the optional digit string or character
constant becomes accessible to the system as program suspension status
information.

6.17 RETURN

RETURN statement returns control to the referencing program unit. It can
appear only in a function or subroutine subprogram.The

6.17.1 Syntax

The syntax in a function subprogram:

RETURN

The syntax in a subroutine subprogram:

RETURN [e]

where e is an integer expression specifying an alternate return.

A noninteger expression can be used for e. Noninteger expressions are
converted to integer, and the fractional portions discarded, before control is
returned to the alternate return argument.

126 007–2362–004

Control Statements [6]

6.17.2 Method of Operation

A RETURN statement terminates the reference of a function or subroutine and
transfers control back to the currently referenced program unit. In a function
subprogram, the value of the function then becomes available to the referencing
unit. In a subroutine, return of control to the referencing program unit
completes execution of the CALL statement.

A RETURN statement terminates the association between the dummy arguments
of the external procedure and the current actual arguments.

In a subroutine subprogram, if e is not specified in a RETURN statement or if the
value of e is less than or greater than the number of asterisks in the
SUBROUTINE or ENTRY statement specifying the currently referenced name,
then control returns to the CALL statement that initiated the subprogram.
Otherwise, the value of e identifies the eth asterisk in the dummy argument list
of the currently referenced name. Control returns to the statement identified by
the alternate return specifier in the CALL statement that is associated with the
eth asterisk in the dummy argument list.

The execution of a RETURN statement causes all entities in an external
procedure to become undefined except for entities that are

• specified in a SAVE statement

• blank

• specified in a named common

• initialized in a DATA statement that has neither been redefined nor become
undefined

6.18 STOP

The STOP statement terminates an executing program.

6.18.1 Syntax

STOP [n]

where n is a string of not more than five digits or a character constant.

007–2362–004 127

MIPSpro Fortran 77 Language Reference Manual

6.18.2 Method of Operation

The STOP statement terminates an executing program. If n is specified, the digit
string or character constant becomes accessible to the system as program
termination status information.

128 007–2362–004

Input/Output Processing [7]

Input statements copy data from external media or from an internal file to
internal storage. This process is called reading. Output statements copy data
from internal storage to external media or to an internal file. This process is
called writing.

The Fortran input/output (I/O) facilities give you control over the I/O system.
This section deals primarily with the programmer-related aspects of I/O
processing, rather than with the implementation of the processor-dependent
I/O specifications.

This chapter discusses the following topics on input and output processing:

• records and record formats, Section 7.1, page 129

• I/O statements, Section 7.2, page 130

• files, Section 7.3, page 132

• file access, Section 7.4, page 134

• units, Section 7.5, page 136

See the MIPSpro Fortran 77 Programmer’s Guide for information on extensions to
FORTRAN 77 that affect I/O processing.

7.1 Records

A record is simply a sequence of values or characters. Fortran has three kinds of
records:

• formatted

• unformatted

• endfile

A record is a logical concept; it does not have to correspond to a particular
physical storage form. However, external media limitations can also limit the
allowable length of records.

007–2362–004 129

MIPSpro Fortran 77 Language Reference Manual

7.1.1 Formatted Records

A formatted record contains only ASCII characters and is terminated by a
carriage-return or line-feed character. Formatted records are required only when
the data must be read from the screen or a printer copy.

A formatted record can be read from or written to only by formatted I/O
statements. Formatted records are measured in characters. The length is
primarily a function of the number of characters that were written into the
record when it was created, but it may be limited by the storage media or the
CPU. A formatted record may be zero length.

7.1.2 Unformatted Records

Unformatted records contain sequences of values; both character and noncharacter
are not terminated by any special character and cannot be accurately
comprehended in their printed or displayed format. Generally, unformatted
records use less space than formatted records and thus conserve storage space.

An unformatted record can be read from or written to only by unformatted I/O
statements. Unformatted records are measured in bytes. That length is primarily
a function of the output list used to write the record but may be limited by the
external storage media or the CPU. An unformatted record can be empty.

7.1.3 Endfile Records

An endfile record marks the logical end of a data file. Thus, it can only be the
last record of a file. An endfile record does not contain data and has no length.
An endfile record is written by an ENDFILE statement.

When a program is compiled with -vms_endfile, an endfile record consists of
a single character, Control D. In this case, several endfile records can exist in the
same file and can be anywhere in the file. Reading an endfile record will result
in an end-of-file condition being returned, but rereading the same file will read
the next record, if any.

7.2 I/O Statements

The I/O statements that Fortran uses to transfer data can be categorized by
how the data translated during the transfer, namely, as formatted, list-directed,
and unformatted I/O.

130 007–2362–004

Input/Output Processing [7]

7.2.1 Unformatted Statements

An unformatted I/O statement transfers data in the noncharacter format during
an I/O operation. Unformatted I/O operations are usually faster than
formatted operations, which translate data into character format.

In processing formatted statements, the system interprets some characters, for
example, the line-feed character, as special controls and eliminates them from
input records. Therefore, unformatted statements must be used when all
characters in a record are required.

The absence of a format specifier denotes an unformatted data transfer
statement, as shown by the WRITE statement in the following example:

program MakeIndex

character*12 word
open (2, file=’v’,form=’formatted’)

open (unit=10, status=’new’, file=’newv.out",

+ form=’unformatted’)

116 read (2,666, end=45) word

write (10) word
go to 116

45 close (10)

end

In the above example, formatted records are read into the variable word from
the input file attached to unit 2 and then written unformatted to the output file
attached to unit 10.

7.2.2 Formatted Statements

A formatted I/O statement translates all data to character format during a record
transfer. The statement contains a format specifier that references a FORMAT
statement; the FORMAT statement contains descriptors that determine data
translation and perform other editing functions. Here is an example of two
formatted WRITE statements:

program makeindex

character*18 message
message = ’Hello world’

write (6,100) message

write (6,100) ’hello world’

100 format (a)

end

007–2362–004 131

MIPSpro Fortran 77 Language Reference Manual

Note that both statements contain the format specifier 100, which references a
format statement with an A character descriptor. (Chapter 9, page 187, describes
the descriptors in detail.) Both statements perform the same function, namely,
writing the following message to the unit 6 device:

HELLO WORLD

7.2.3 List-Directed Statements

An I/O statement is list directed when an asterisk is used in place of a format
specifier. A list-directed I/O statement performs the same function as a
formatted statement. However, in translating data, a list-directed statement uses
the declared data type rather than format descriptors in determining the format.

The following two list-directed WRITE statements perform the same function as
the formatted WRITE statements in the example for formatted output above.

program makeindex

character*18 message

message = ’hello world’

write (6,*) message

write (6,*) ’hello world’
end

In this example, the variable message in the first WRITE statement determines
that output is in character format; the character constant Hello World in the
second statement makes this determination.

7.3 Files

A file is a sequence of records. The processor determines the set of files that
exists for each executable program. The set of existing files can vary while the
program executes. Files that are known to the operating system do not
necessarily exist for an executable program at a given time. A file can exist and
contain no records (all files are empty when they are created). I/O statements
can be applied only to files that exist.

Files that have names are called named files. Names are simply character strings.

Every data file has a position. The position is used by I/O statements to tell
which record to access and is changed when I/O statements are executed.

The following terms are used to describe the position of a file:

132 007–2362–004

Input/Output Processing [7]

Initial point The point immediately before the first record.

Terminal point The point immediately after the last record.

Current record The record containing the point where the file is
positioned. There is no current record if the file is
positioned at the initial point (before all records)
or at the terminal point (after all records) or
between two records.

Preceding record The record immediately before the current record.
If the file is positioned between two records (so
there is no current record), the preceding record is
the record before the file position. The preceding
record is undefined if the file is positioned in the
first record or at the initial point.

Next record The record immediately after the current record.
If the file is positioned between two records (so
there is no current record), the next record is the
record after the file position. The next record is
undefined if the file position is positioned in the
last record or at the terminal point.

This section discusses the two kinds of files: internal files and external files.

7.3.1 External Files

An external file is a set of records on an external storage medium (for example, a
disk or a tape drive). A file can be empty, which means it can contain zero
records.

7.3.2 Internal Files

An internal file is a means of transferring data within internal storage between
character variables, character arrays, character array elements, or substrings.

An internal file is always positioned at the beginning of the first record before
data transfer. Records are read from and written to by sequential access of
formatted I/O statements only.

The following simple example shows how to use an internal file transfer to
convert character and integer data.

007–2362–004 133

MIPSpro Fortran 77 Language Reference Manual

program conversion

character*4 CharRep
integer NumericalRep

NumericalRep = 10

C example 1

C

write (CharRep, 900) NumericalRep

900 format (i2)
CharRep = ’222’

C example 2

C

read (CharRep, 999) NumericalRep

999 format (i3)
end

In the first example, the contents of NumericalRep are converted to character
format and placed in CharRep. In the second example, the contents of
CharRep are converted to integer format and placed in NumericalRep.

7.4 Methods of File Access

The compiler supports the following methods of file access:

• sequential

• direct

• keyed

External files can be accessed using any of the above methods. The access
method is determined when the file is opened or defined. FORTRAN 77
requires that internal files must be accessed sequentially.

As an extension, the use of list-directed internal I/O operations is permitted.

7.4.1 Sequential Access

A file connected for sequential access has the following properties:

• For files that allow only sequential access, the order of the records is simply
the order in which they were written.

134 007–2362–004

Input/Output Processing [7]

• For files that also allow direct access, the order of files depends on the record
number. If a file is written sequentially, the first record written is record
number 1 for direct access, the second written is record number 2, and so on.

• Formatted and unformatted records cannot be mixed within a file.

• The last record of the file can be an endfile record.

• The records of a pure sequential file must not be read or written by
direct-access I/O statements.

7.4.2 Direct Access

A file connected for direct access has the following properties:

• A unique record number is associated with each record in a direct-access file.
Record numbers are positive integers that are attached when the record is
written. Records are ordered by their record numbers.

• Formatted and unformatted records cannot be mixed in a file.

• The file must not contain an endfile record if it is direct access only. If the
file also allows sequential access, an endfile record is permitted but will be
ignored while the file is connected for direct access.

• All records of the file have the same length. When the record length of a
direct-formatted file is one byte, the system treats the files as ordinary system
files, that is, as byte strings in which each byte is addressable. A READ or
WRITE request on such files consumes/produces bytes until satisfied, rather
than restricting itself to a single record. Note that to produce a record length
of one byte, the program must be compiled with the -old_rl option.

• Only direct-access I/O statements can be used for reading and writing
records. An exception is made when sequential I/O statements are used on
a direct-unformatted file, in which case the next record is assumed.
List-directed formatting is not permitted on direct-access files.

• Records can be read or written in any order.

• The record number cannot be changed once it is specified. A record can be
rewritten, but it cannot be deleted.

7.4.3 Keyed Access

A file connected for keyed access has the following properties:

007–2362–004 135

MIPSpro Fortran 77 Language Reference Manual

• Only files having an indexed organization can be processed using the
keyed-access method.

• A unique character or integer value called a key is associated with one or
more fields in each record of the indexed access file. The fields are defined
when the file is created with an OPEN statement. Each READ statement
contains a key to locate the desired record in the indexed file.

• You can intermix keyed access and sequential access on the same opened file.

7.5 Units

Files are accessed through units. A unit is simply the logical means for accessing
a file. The file-unit relationship is strictly one to one: files cannot be connected
to more than one unit and vice versa. Each program has a processor-dependent
set of existing units. A unit has two states: connected and disconnected.

7.5.1 Connection of a Unit

A connected unit refers to a data file. A unit can be connected implicitly by the
processor or explicitly by an OPEN statement. If a unit is connected to a file, the
file is connected to the unit. However, a file can be connected and not exist.
Consider, for example, a unit preconnected to a new file. A preconnected unit is
already connected at the time the program execution begins. See the MIPSpro
Fortran 77 Programmer’s Guide for these default connections.

7.5.2 Disconnection of a Unit

A unit can be disconnected from a file by a CLOSE statement specifying that
particular unit.

136 007–2362–004

Input/Output Statements [8]

This chapter describes the statements that control the transfer of data within
internal storage and between internal and external storage devices. It provides
an overview of the Fortran I/O statements and gives syntax, rules, and
examples for each. This chapter also describes general rules that apply to data
transfer statements.

8.1 Statement Summary

The I/O statements described in this chapter are grouped into the following
classes:

• Data transfer statements, which transfer information between two areas of
internal storage or between internal storage and an external file. The seven
types are

– READ, Section 8.17, page 162

– DELETE, Section 8.7, page 143

– UNLOCK, Section 8.20, page 169

– ACCEPT, Section 8.2, page 138

– WRITE, Section 8.21, page 170

– REWRITE, Section 8.19, page 168

– PRINT or TYPE, Section 8.13, page 158

• Auxiliary statements, which explicitly open or close a file, provide current
status information about a file or unit or write an endfile record. The four
types are

– OPEN, Section 8.12, page 152

– CLOSE, Section 8.4, page 140

– INQUIRE, Section 8.11, page 147

– ENDFILE, Section 8.9, page 145

007–2362–004 137

MIPSpro Fortran 77 Language Reference Manual

• File positioning statements, which position data files to the previous record or
to the initial point of a file. These statements apply only to external files.
They are

– BACKSPACE, Section 8.3, page 139

– REWIND, Section 8.18, page 167

• Compatibility statements that provide compatibility with earlier versions of
Fortran. They are included to permit the older Fortran programs to be
compiled and exist on the same system as standard FORTRAN 77 programs.
The statements include the following:

– ENCODE, Section 8.8, page 144

– DECODE, Section 8.5, page 142

– DEFINE FILE, Section 8.6, page 143

– FIND, Section 8.10, page 147

The following sections describe these statements in detail.

8.2 ACCEPT

The ACCEPT statement transfers data from the standard input unit to the items
specified by the input list.

8.2.1 Syntax

ACCEPT f [,iolist]

where f is the format specifier and iolist is an optional output list specifying
where the data is to be stored.

See Section 8.25, page 176 and Section 8.26, page 182 for a description of the f
and iolist parameters.

8.2.2 Rules for Use

The ACCEPT statement specifies formatted input from the file associated with
the system input unit; it cannot be connected to a user-specified input unit.

138 007–2362–004

Input/Output Statements [8]

See Section 8.27, page 184 for additional rules.

Example 32: ACCEPT example

The following code transfers character data from the standard input unit into x.

ACCEPT 3,x

3 FORMAT (A)

8.3 BACKSPACE

The BACKSPACE statement positions a data file before the preceding record. It
can be used with both formatted and unformatted data files.

8.3.1 Syntax

BACKSPACE u
BACKSPACE (alist)

where u is an external unit identifier and alist is a list of the following specifiers:

[UNIT =]u a required unit specifier. u must be an integer
expression that identifies the number of an
external unit. If the keyword UNIT = is omitted,
then u must be the first specifier in alist.

IOSTAT = ios an I/O status specifier that specifies the variable
to be defined with a status value by the
BACKSPACE statement. A zero value for ios
denotes a no error condition, while a positive
integer value denotes an error condition.

ERR = s an error specifier that identifies a statement
number to which control is transferred when an
error condition occurs during the execution of the
BACKSPACE statement.

Note: An error message is issued if this statement references a file opened
with an ACCESS="KEYED", ACCESS="APPEND", or a FORM="SYSTEM"
specification.

007–2362–004 139

MIPSpro Fortran 77 Language Reference Manual

8.3.2 Method of Operation

The unit specifier is required and must appear exactly once. The other specifiers
are optional and can appear at most once each in the alist. Specifiers can appear
in any order. For information about exceptions refer to Section 8.25.1, page 178.

The BACKSPACE statement positions the file on the preceding record. If there is
no preceding record, the position of the file is unchanged. If the preceding
record is an endfile record, the file is positioned before the endfile record.

Example 33: BACKSPACE example

BACKSPACE M

BACKSPACE (6, IOSTAT=LP, ERR=998)

8.4 CLOSE

The CLOSE statement disconnects a particular file from a unit.

8.4.1 Syntax

CLOSE (cilist)

where cilist is a list of the following specifiers:

[UNIT =] u a required unit specifier. u must be an integer
expression that identifies the number of an
external unit. If the keyword UNIT= is omitted,
then u must be the first specifier in cilist.

IOSTAT=ios an I/O status specifier that specifies the variable
to be defined with a status value by the CLOSE
statement. A zero value for ios denotes a no error
condition while a positive integer value denotes
an error condition.

DISP[OSE]=disposition Provides the same function as the like parameters
in the OPEN statement. The disposition parameters
in the file’s CLOSE statement override the
disposition parameters in its OPEN statement.

ERR=s an error specifier that identifies a statement
number to which control is to be transferred

140 007–2362–004

Input/Output Statements [8]

when an error condition occurs during execution
of the CLOSE statement.

STATUS=’sta’ a file status specifier. sta is a character expression
that, when any trailing blanks are removed, has a
value of KEEP or DELETE. The status specifier
determies the disposition of the file that is
connected to the specified unit.

KEEP specifies that the file is to be retained after
the unit is closed. DELETE specifies that the file is
to be deleted after the unit is closed. If a file has
been opened for SCRATCH in an OPEN statement,
then KEEP must not be specified in the CLOSE
statement. If iolist contains no file status specifier,
the default value is KEEP, except when the file
has been opened for SCRATCH, in which case the
default is DELETE.

8.4.2 Method of Operation

At the normal termination of an executable program, all units that are
connected are closed. Each unit is closed with status KEEP unless the file has
been opened for SCRATCH in an OPEN statement. In the latter case, the unit is
closed as if with file status DELETE.

A CLOSE statement need not occur in the same program unit in which the file
was opened. A CLOSE statement that specifies a unit that does not exist or has
no file connected to it does not affect any file, and is permitted.

A unit that is disconnected by a CLOSE statement can be reconnected within the
same executable program, either to the same file or to a different file. A file that
is disconnected can be reconnected to the same unit or a different unit,
provided that the file still exists.

Example 34: CLOSE example

CLOSE(UNIT=1,STATUS=’KEEP’)

CLOSE(UNIT=K,ERR=19,STATUS=’DELETE’)

007–2362–004 141

MIPSpro Fortran 77 Language Reference Manual

8.5 DECODE

The DECODE statement transfers data between internal files, decoding the
transferred data from character format to internal format.

Note: This statement provides primarily the same function as the READ
statement using internal files, except that the input is read from a numeric
scalar or array rather than a character string. This release does not support
the concept of multiple records, and you must specify the record length.
Where possible, use a READ statement instead of DECODE in new programs to
make them compatible with different FORTRAN 77 operating environments.

8.5.1 Syntax

DECODE (n,f,target[,ERR=s][,IOSTAT=rn]) [iolist]

The following arguments are used with this statement:

n an integer expression specifying the number of characters to be
translated to internal format.

f a format specifier (as described in Section 8.25.2, page 178 in this
chapter).

target a scalar reference or array indicating the destination of the
characters after translation to external form.

ERR=s See Table 29, page 177 for an explanation of this parameter.

IOSTAT=rn See Table 29, page 177 for an explanation of this parameter.

iolist an optional list specifying the source data, as described in Section
8.26, page 182.

8.5.2 Method of Operation

• The relationship between the I/O list and the format specifier is the same as
for formatted I/O.

• The maximum number of characters transmitted is the maximum number
possible for the target data type. If target is an array, the elements are
processed in subscript order.

142 007–2362–004

Input/Output Statements [8]

8.6 DEFINE FILE

The DEFINE FILE statement defines the size and structure of a relative file and
connects it to a unit. It primarily provides the same function as the Fortran
OPEN statement specifying ACCESS=’DIRECT’.

8.6.1 Syntax

DEFINE FILE u (reccount,reclen,U,asvar)[,u (reccount,reclen,U,asvar)]
…

The following arguments are available with this statement:

u an integer expression that identifies the number of an external
unit that contains the file.

reccount an integer expression defining the number of records in the file.

reclen an integer expression specifying in word (two byte) units the
length of each record.

U an unformatted (binary) file. U is always required and always in
the same position, as shown in the above syntax.

asvar an associated integer variable indicating the next higher
numbered record to be read or written. It is updated after each
direct-access I/O operation.

8.6.2 Method of Operation

Only unformatted files can be opened with a DEFINE FILE statement. The file
defined by u is assumed to contain fixed-length records of recln (two byte)
words each. The records in the file are numbered 1 through reccount. The
DEFINE FILE statement or equivalent OPEN statement must be executed before
executing a READ, WRITE, or other direct-access statement. The first
direct-access READ for the specified file opens an existing file; if the file does not
exist, an error condition occurs. The first direct-access WRITE for the specified
file opens the file and creates a new relative file.

8.7 DELETE

The DELETE statement removes a record from an indexed file. An error
condition occurs if the file is not indexed.

007–2362–004 143

MIPSpro Fortran 77 Language Reference Manual

8.7.1 Syntax

DELETE [UNIT=]unum

or

DELETE ([UNIT=]unum[,IOSTAT=rn][,ERR=s]

The following arguments are available with this statement:

[UNIT =]
unum

a required unit specifier or internal file to be acted on. unum must
be an integer expression that identifies the number of an external
unit. If the keyword UNIT= is omitted, then unum must be the
first specifier.

IOSTAT=rn the name of variable in which I/O completion status is posted.

ERR=s a statement label to which control is transferred after an error.

See Section 8.25, page 176 and Section 8.26, page 182 for details on these
parameters.

8.7.2 Method of Operation

The DELETE statement deletes the current record, which is the last record
accessed on unit unum.

Example 35: DELETE example

The following statement deletes the last record read in from the file connected
to logical unit 10.

DELETE (10)

8.8 ENCODE

The ENCODE statement transfers data between internal files, encoding the
transferred data from internal format to character format.

144 007–2362–004

Input/Output Statements [8]

Note: This statement primarily provides the same function as the WRITE
statement, using internal files. Except that the input is read from a numeric
scalar or array rather than a character string, the concept of multiple records
is not supported. The record length is user specified. Where possible, use a
WRITE statement instead of ENCODE in new programs to make them
compatible with different FORTRAN 77 operating environments.

8.8.1 Syntax

ENCODE (n,f,target[,ERR=s][,IOSTAT=rn]) [iolist]

The following arguments are available with this statement:

n an integer expression specifying the number of characters to be
translated to character format.

f a format specifier (as described in the Section 8.25.2, page 178).

ERR=s See Table 29, page 177 for an explanation of this argument.

IOSTAT=rn See Table 29, page 177 for an explanation of this argument.

target a scalar reference or array indicating the destination of the
characters after translation to external form.

iolist an optional list specifying the source data, as described in Section
8.26, page 182.

8.8.2 Method of Operation

The relationship between the I/O list and the format specifier is the same as for
formatted I/O. target is padded with blanks if fewer than n characters are
transferred. The maximum number of characters transmitted is the maximum
number possible for the target data type. If target is an array, the elements are
processed in subscript order.

8.9 ENDFILE

The ENDFILE statement writes an endfile record as the next record of the file. It
can be used with both unformatted and formatted data files.

007–2362–004 145

MIPSpro Fortran 77 Language Reference Manual

8.9.1 Syntax

ENDFILE u
ENDFILE (alist)

The following arguments are available with this statement:

u an external unit identifie

alist a list of the following specifiers:

[UNIT =]u a required unit specifier. u must be an integer
expression that identifies the number of an
external unit. If the keyword UNIT= is omitted,
then u must be the first specifier in alist.

IOSTAT=ios an I/O status specifier that specifies the variable
to be defined with a status value by the ENDFILE
statement. A zero value for ios denotes a no error
condition, while a positive integer value denotes
an error condition.

ERR=s an error specifier that identifies a statement
number to which control is transferred when an
error condition occurs during the execution of the
ENDFILE statement.

Note: An error message is issued if this statement references a keyed-access
file.

8.9.2 Method of Operation

The unit specifier is required and must appear exactly once. The other
specifiers are optional and can appear at most once each in the alist. Specifiers
can appear in any order (for exceptions refer to Section 8.25.1, page 178).

An ENDFILE statement writes an endfile record. The specified file is then
positioned after the endfile record. If a file is connected for direct access, only
those records before the endfile record are considered to have been written and
thus can be read in subsequent direct-access connections to the file.

An ENDFILE statement for a file that is connected but does not exist creates the
file.

After an ENDFILE statement, a BACKSPACE or REWIND statement must be used
to reposition the file before the execution of any data transfer I/O statement.

146 007–2362–004

Input/Output Statements [8]

Note: If the program is compiled with the -vms_endfile option, the file
can still be written to after the endfile record.

Example 36: ENDFILE example

The following statements are examples of ENDFILE statements.

ENDFILE 2

ENDFILE (2,IOSTAT=IE, ERR=1000)

8.10 FIND

The FIND statement positions a file to a specified record number and sets the
associate variable number (defined in an OPEN or DEFINE FILE statement) to
reflect the new position. It is functionally equivalent to a direct-access READ
statement except that no iolist is specified and no data transfer takes place. The
statement opens the file if it is not already open.

8.10.1 Syntax

FIND ([UNIT=]u,REC=rn[,ERR=s][,IOSTAT=rn])

The following arguments are available with this statement:

u an integer expression that identifies the number of an external
unit that contains the file. The number must refer to a relative file.

ERR=s,
IOSTAT=rn,
REC=rn

See Table 29, page 177 for an explanation of these parameters.

8.11 INQUIRE

The INQUIRE statement inquires about the properties of a particular named file
or the file connected to a particular unit. There are two forms: inquire by file
and inquire by unit.

007–2362–004 147

MIPSpro Fortran 77 Language Reference Manual

8.11.1 Syntax

INQUIRE (FILE=fname, [DEFAULTFILE=fname …,]inqlist)
INQUIRE ([UNIT=]u,inqlist)

The following arguments are available with this statement:

FILE=fname is a file specifier. fname is a character expression
that specifies the name of the file being queried.
The named file need not exist or be connected to
a unit.

DEFAULTFILE=fname This parameter corresponds to the DEFAULTFILE
parameter in an OPEN statement and is used to
inquire about a file assigned a default name when
it was opened. See Section 8.12, page 152 for
details.

[UNIT=]u is a unit specifier. u must be an integer expression
that identifies the number of an external unit.
The specified unit need not exist or be connected
to a file. If the keyword UNIT= is omitted, then u
must be the first specifier in inqlist.

inqlist is composed of one or more of the following
specifiers, separated by commas.

ACCESS=acc acc is a character variable or character array
element to be assigned a value by the INQUIRE
statement. Values can be: SEQUENTIAL, DIRECT,
KEYED, UNKNOWN (no connection).

BLANK=blnk blnk is a character variable or character array
element to be assigned a value by the INQUIRE
statement. Values for blnk are: NULL: Null blank
control, connected for formatted I/O; ZERO: Zero
blank control; or UNKNOWN: Not connected or not
connected for formatted I/O

CARRIAGECONTROL=ccspec ccspec is assigned one of the following carriage
control specifications made in the OPEN statement
for the file: FORTRAN, LIST, NONE, or UNKNOWN.

DIRECT=dir dir is a character variable or character array
element to be assigned a value by the INQUIRE
statement.

148 007–2362–004

Input/Output Statements [8]

dir is assigned the value YES if DIRECT is a legal
access method for the file; it is assigned the value
NO if DIRECT is not a legal access method. If the
processor is unable to determine the access type,
dir is assigned the value UNKNOWN.

ERR=s an error specifier that identifies a statement
number to which control is transferred when an
error condition occurs during the execution of the
INQUIRE statement.

EXIST=ex ex is a logical variable or logical array element to
be assigned a value by the INQUIRE statement.
ex is assigned the value .TRUE. if the specified
unit or file exists; otherwise, ex is assigned the
value .FALSE. . A unit exists if it is a number in
the range allowed by the processor.

FORM=fm fm is a character variable or character array
element to be assigned a value by the INQUIRE
statement. Values for fm can be: FORMATTED,
UNFORMATTED, or UNKNOWN (Unit is not
connected)

FORMATTED=fmt fmt is a character variable or character array
element to be assigned a value by the INQUIRE
statement. fmt is assigned the value YES if
FORMATTED is a legal form for the file; fmt is
assigned the value NO if FORMATTED is not a legal
form. If the processor is unable to determine the
legal forms of data transfer, fmt is assigned the
value UNKNOWN.

IOSTAT=ios an I/O status specifier that specifies the variable
to be defined with a status value by the INQUIRE
statement. A zero value for ios denotes a no error
condition, while a positive integer value denotes
an error condition.

KEYED=keystat keystat is a character scalar memory reference.
keystat can be one of the following values: YES
indicating an index file, keyed access allowed; NO,
indicating that keyed access is not allowed;
UNKNOWN, indicating that the access type is
undetermined.

007–2362–004 149

MIPSpro Fortran 77 Language Reference Manual

NAMED=nmd nmd is a logical variable or logical array element
to be assigned a value by the INQUIRE statement.
nmd is assigned the value .TRUE. if the file has a
name. Otherwise, nmd is assigned the value
.FALSE..

NAME=fn fn is a character variable or character array
element to be assigned a value by the INQUIRE
statement. fn is assigned the name of the file if
the file has a name. Otherwise, fn is undefined. If
the NAME specifier appears in an INQUIRE by file
statement, its value is not necessarily the same as
the name given in the file specifier.

NEXTREC=nr nr is an integer variable or integer array element
to be assigned a value by the INQUIRE statement.
nr is assigned the value n + 1, where n is the
record number of the last record read or written
for direct access on the specified unit or file. If
the file is connected but no records have been
read or written, nr is assigned the value 1. If the
file is not connected for direct access, nr is
assigned the value 0.

NUMBER=num num is an integer variable or integer array
element that is assigned a value by the INQUIRE
statement. num is assigned the external unit
identifier of the unit currently connected to the
file. num is undefined if there is no unit connected
to the file. This specifier cannot be used with an
INQUIRE by unit statement (INQUIRE (iulist)).

OPENED=od od is a logical variable or logical array element to
be assigned a value by the INQUIRE statement.
od is assigned the value .TRUE. if the file
specified is connected to a unit or if the specified
unit is connected to a file. Otherwise, od is
assigned the value .FALSE..

ORGANIZATION=org org is a character scalar memory reference
assigned the value of the file organization
established when the file was opened; it has one
of the following values: SEQUENTIAL,
RELATIVE, INDEXED, or UNKNOWN (always
assigned to unopened files).

150 007–2362–004

Input/Output Statements [8]

RECL=rcl rcl is an integer variable or integer array element
to be assigned a value by the INQUIRE statement.
rcl is assigned the value of the record length in
number of characters for formatted files and in
words for unformatted files. If there is no
connection or if the connection is not for direct
access, rcl becomes undefined.

RECORDTYPE=rectype rectype is a character scalar memory reference
assigned the value of the record type file
established when the file was opened; it has one
of the following values: FIXED, VARIABLE,
STREAM_LF, or UNKNOWN.

SEQUENTIAL=seq seq is a character variable or character array
element to be assigned a value by the INQUIRE
statement. seq is assigned the value YES if
SEQUENTIAL is a legal access method for the file.
seq is assigned the value NO if SEQUENTIAL is
not a legal access method. If the processor is
unable to determine the legal access methods, seq
is assigned the value UNKNOWN.

UNFORMATTED=unf unf is a character variable or character array
element to be assigned a value by the INQUIRE
statement. unf is assigned the value of YES if
UNFORMATTED is a legal format for the file; unf is
assigned the value NO if UNFORMATTED is not a
legal format for the file. If the processor is unable
to determine the legal form, unf is assigned the
value UNKNOWN.

8.11.2 Method of Operation

Specifiers can be given in iflist or iulist in any order (Section 8.25.1, page 178
lists exceptions).

An INQUIRE statement assigns values to the specifier variables or array
elements nmd, fn, seq, dir, fmt, and unf only if the value of the file specifier
fname is accepted by the processor and if a file exists by that name. Otherwise,
these specifier variables become undefined. Each specifier can appear at most
once in the iflist or iulist, and the list must contain at least one specifier.

007–2362–004 151

MIPSpro Fortran 77 Language Reference Manual

An INQUIRE statement assigns values to the specifier variables or array
elements num, nmd, fn, acc, seq, dir, fm, fmt, unf, rcl, nr, and blnk only if the
specified unit exists and if a file is connected to it. Otherwise, these specifier
variables become undefined. However, the specifier variables ex and od are
always defined unless an error condition occurs. All inquiry specifier variables
except ios become undefined if an error condition occurs during execution of an
INQUIRE statement.

Example 37: INQUIRE example

INQUIRE (FILE=’MYFILE.DATA’,NUMBER=IU,RECL=IR)

INQUIRE (UNIT=6, NAME=FNAME)

8.12 OPEN

The OPEN statement creates files and connects them to units. It can create a
preconnected file, create and connect a file, connect an existing file, or reconnect
an already connected file. See the MIPSpro Fortran 77 Programmer’s Guide for
information on the relative record position in a file after an OPEN is executed.

8.12.1 Syntax

OPEN (olist)

where olist is a list of the following specifiers, separated by commas:

[UNIT=] u

a required unit specifier. u must be an integer expression that
identifies the number of an external unit. If the keyword UNIT=
is omitted, then the u must be the first specifier in olist.

IOSTAT=ios

an I/O status specifier that identifies the variable to be defined
with a status value by the OPEN statement. A zero value for ios
denotes a no error condition, while a positive integer value
denotes an error condition.

152 007–2362–004

Input/Output Statements [8]

ERR=s

an error specifier that identifies a statement number to which
program control is to be transferred when an error condition
occurs during execution of the OPEN statement.

FILE=fname

a file specifier. fname is a character expression specifying the
name of the external file to be connected. The file name must
be a name allowed by the processor. NAME= can be used in
place of FILE=, but the latter is the standard syntax.

fname can also be a numeric variable to which Hollerith data is
assigned. A null character terminates the filename. Three VMS
predefined system logical names–SYS$INPUT, SYS$OUTPUT,
and SYS$ERROR–are supported. These names allow an OPEN
statement to associate an arbitrary unit number to standard
input, standard output, and standard error, respectively, instead
of the standard predefined logical unit numbers 5, 6, and 0.

ACCESS=acc

an access specifier. acc is a character expression that, when
trailing blanks are removed, has one of the following values:
SEQUENTIAL, DIRECT, KEYED, or APPEND.

SEQUENTIAL specifies that the file is to be accessed sequentially.

DIRECT specifies that the file is to be accessed by record
number. If DIRECT is specified, iolist must also contain a record
length specifier. If iolist does not contain an access specifier, the
value SEQUENTIAL is assumed.

KEYED specifies that the file is accessed by a key-field value.

APPEND specifies sequential access so that, after execution of an
OPEN statement, the file is positioned after the last record.

ASSOCIATEVARIABLE=asva

specifies direct access only. After each I/O operation, asvar
contains an integer variable giving the record number of the
next sequential record number in the file. This parameter is
ignored for all access modes other than direct access.

007–2362–004 153

MIPSpro Fortran 77 Language Reference Manual

BLANK=blnk

a blank specifier. blnk is a character expression that, when all
trailing blanks are removed, has the value NULL (the default) or
ZERO.

NULL ignores blank characters in numeric formatted input
fields.

ZERO specifies that all blanks other than leading blanks are to
be treated as zeros. If iolist does not contain a blank specifier,
the value NULL is assumed.

CARRIAGECONTROL=type

type is a character expression that can have the following value:
FORTRAN, indicating standard Fortran interpretation of the first
character; LIST, indicating single spacing between lines, or
NONE, indicating no implied carriage control.

LIST is the default for formatted files, and NONE is the default
for unformatted files. When the -vms_cc option is specified,
FORTRAN becomes the default for the standard output unit (unit
6).

DEFAULTFILE=fname

fname is either a character expression specifying a path name or
an alternate prefix filename for the opened unit. When
specified, the full filename of the opened unit is obtained by
concatenating the string specified by fname with either the
string in the FILE parameter (if specified) or with the unit
number (when FILE is absent).

fname can also be a numeric variable to which Hollerith data is
assigned. A null character terminates the filename.

DISP[OSE]=disposition

disposition is a character expression that designates how the
opened file is to be handled after it is closed. The following list
shows the possible values for disposition and the effect on the
closed file.

• KEEP: file status after CLOSE

• SAVE: Same as KEEP

154 007–2362–004

Input/Output Statements [8]

• PRINT: Printed and retained.

• PRINT/DELETE: Printed and deleted.

• SUBMIT: Executed and retained

• SUBMIT/DELETE: Executed and deleted

FORM=fm

a form specifier. fm is a character expression that, when all
trailing blanks are removed has either the value FORMATTED or
UNFORMATTED. The file opened with FORMATTED is connected
for formatted I/O, and a file opened with UNFORMATTED is
connected for unformatted I/O.

The extensions SYSTEM and BINARY can also be used to specify
the form of the file. A file opened with the SYSTEM specifier is
unformatted and has no record marks. Data is written/read as
specified by the I/O list with no record boundary, which is
equivalent to opening a file with the BINARY specifier on the
IRIS 3000 series. A file opened with BINARY allows unformatted
binary records to be read and written using formatted READ
and WRITE statements. This form is only needed if the A edit
descriptor is used to dump out numeric binary data to the file.

If iolist contains no form specifier, the default value is
FORMATTED for sequential access files and UNFORMATTED for
direct access files.

KEY=(key1start:key1end[:type][,key2start:key2end[:type]]...)

defines the location and data type of one or more keys in an
indexed record. The following rules apply to KEY parameters:

• At least one key (the primary key) must be specified when
creating an indexed file.

Note that using a Fortran unformatted index file and a
negative integer in the primary key can cause errors. Use
only positive integers in the primary key when using
unformatted index files.

• type is either INTEGER or CHARACTER (the default), defining
the data type of the key.

• INTEGER keys must be specified with a length of 4.

007–2362–004 155

MIPSpro Fortran 77 Language Reference Manual

• The maximum length of a key is 512 bytes.

• key1start and key1end are integers defining the starting and
ending byte positions of the primary field, which is always
required. key2start and key2end and subsequent
specifications define the starting and ending positions of
alternate fields, which are optional. There is no limit to the
number of keys that can be specified.

• The sequence of the key fields determines the value in a
key-of-reference specifier, KEYID, described in Section 8.25,
page 176. KEYID=0 specifies the field starting the key1start
(primary) key; KEYID=1 specifies the field starting at
key2start, and so forth.

• The KEY field must be specified only when an indexed file is
created. The key specifications in the first OPEN remain in
effect permanently for subsequent file openings. If KEY is
specified when opening an existing file, the specifications
must match those specified when the file was created.

MAXREC=n

n is a numeric expression defining the maximum number of
records allowed in a direct-access file. If this parameter is
omitted, no maximum limit exists.

RECL=rl

a record length specifier. rl is a positive integer expression
specifying the length in characters or processor-dependent units
for formatted and unformatted files, respectively. This specifier
is required for direct-access files and keyed-access files;
otherwise, it must be omitted.

READONLY

specifies that the unit is to be opened for reading only. Other
programs may open the file and have read-only access to it
concurrently. If you do not specify this keyword, you can both
read and write to the specified file.

RECORDSIZE=rl

has same effect as RECL.

156 007–2362–004

Input/Output Statements [8]

RECORDTYPE=rt

when creating a file, rt defines the type of records that the file is
to contain; rt can be one of the following character expressions:
FIXED, VARIABLE, or STREAM_LF. If RECORDTYPE is omitted,
the default record type depends on the file type, as determined
by the ACCESS and/or FORM parameters. The default types are
the following: FIXED: relative or indexed; FIXED: direct-access
sequential; STREAM_LF: formatted sequential access;
VARIABLE: unformatted sequential access.

The following rules apply:

• If RECORDTYPE is specified, rt must be the appropriate
default value.

• When writing records to a fixed-length file, the record is
padded with spaces (for formatted files) or with zeros (for
unformatted files) when the output statement does not
specify a full record.

SHARED

ensures that the file is as up to date as possible by flushing each
record as it is written.

STATUS=sta

is a file status specifier. sta is a character expression that,
ignoring trailing blanks, has one of the following values:

OLD requires the FILE=fname specifier, and it must exist.

NEW requires the FILE=fname specifier. The file is created by
OPEN, and the file status is automatically turned to OLD. A file
with the same name must not already exist.

SCRATCH creates an unnamed file that is connected to the unit
from UNIT= and will be deleted when that unit is closed by
CLOSE. DEFAULTFILE can be used to specify a temporary
directory to be used for opening the temporary file. Named
files should not be used with SCRATCH.

UNKNOWN meaning is processor dependent. See the MIPSpro
Fortran 77 Programmer’s Guide for more information.

If the STATUS specifier is omitted, UNKNOWN is the default.

007–2362–004 157

MIPSpro Fortran 77 Language Reference Manual

TYPE=sta

is the same as STATUS.

8.12.2 Rules for Use

• Specifiers can be given in iolist in any order (for an exception, see the UNIT
specifier on Section 8.12, page 152).

• The unit specifier is required; all other specifiers are optional. The
record-length specifier is required for connecting to a direct-access file.

• The unit specified must exist.

• An OPEN statement for a unit that is connected to an existing file is allowed.
If the file specifier is not included, the file to be connected to the unit is the
same as the file to which the unit is connected.

• A file to be connected to a unit that is not the same as the file currently
connected to the unit has the same effect as a CLOSE statement without a
file status specifier. The old file is closed, and the new one is opened.

• If the file to be connected is the same as the file to which the unit is
currently connected, then all specifiers must have the same value as the
current connection except the value of the BLANK specifier.

• See Section 8.27, page 184 for additional rules.

Example 38: OPEN example

The following examples show the use of OPEN statements:

OPEN (1, STATUS=’NEW’)

OPEN (UNIT=1,STATUS=’SCRATCH’,ACCESS=’DIRECT’,RECL=64)

OPEN (1, FILE=’MYSTUFF’, STATUS=’NEW’,ERR=14,
+ ACCESS=’DIRECT’,RECL=1024)

OPEN (K,FILE=’MAILLIST’,ACCESS=’INDEXED’,FORM=’FORMATTED’,

+RECL=256,KEY=(1:20,21:30,31:35,200:256))

8.13 PRINT or TYPE

The PRINT (or TYPE) statement transfers data from the output list items to the
file associated with the system output unit.

158 007–2362–004

Input/Output Statements [8]

8.13.1 Syntax

PRINT f [,iolist]

where f is the format specifier and iolist is an optional output list specifying the
data to be transferred as described in Section 8.25, page 176 and Section 8.26,
page 182.

TYPE is a synonym for PRINT.

8.13.2 Rules for Use

Use the PRINT statement to transfer formatted output to the system output
unit. See Section 8.27, page 184 for additional rules.

Example 39: PRINT example

The following examples show the use of PRINT and TYPE statements.

PRINT 10, (FORM (L), L=1,K+1)

PRINT *, X,Y,Z

TYPE *, ’ VOLUME IS ’,V,’ RADIUS IS ’,R

8.14 READ (Direct Access)

The direct-access READ statement transfers data from an external file to the
items specified by the input list. Transfer occurs using the direct-access method.
(See Chapter 7, page 129, for details about the direct access method.)

8.14.1 Syntax: Formatted

READ ([UNIT=]unum, REC=rn, f [,IOSTAT=ios] [,ERR=s]) [iolist]

8.14.2 Syntax: Unformatted

READ ([UNIT=]unum, REC=rn, [,IOSTAT=rn] [,ERR=s]) [iolist]

The following arguments are available with this statement:

007–2362–004 159

MIPSpro Fortran 77 Language Reference Manual

[UNIT=]unum a unit or internal file to be acted on.

f a format specifier.

REC=rn a direct-access mode. rn is the number of the
record to be accessed.

IOSTAT=rn the name of variable in which I/O completion
status is posted.

ERR=s the statement label to which control is transferred
after an error.

iolist the memory location where data is to be read.

See the Section 8.25, page 176 and Section 8.26, page 182 for details on these
parameters.

8.15 READ (Indexed)

The indexed READ statement transfers data from an external indexed file to the
items specified by the input list. Transfer occurs using the keyed access method.

8.15.1 Syntax: Formatted

READ[UNIT=]unum,f,KEY=val[,KEYID=kn][,IOSTAT=rn]
[,ERR=s])[iolist]

8.15.2 Syntax: Unformatted

READ ([UNIT=]unum,key[,keyid][,IOSTAT=rn]
[,ERR=s]) [iolist]

The following arguments are available with this statement:

[UNIT=]unum a unit or internal file to be acted upon.

f a format specifier.

KEY=val the value of the key field in the record to be accessed.

KEYID=kn the key reference specifier.

IOSTAT=rn the name of variable to which I/O completion status is posted.

160 007–2362–004

Input/Output Statements [8]

ERR=s the statement label to which control is transferred after an error.

iolist the memory location where data is read.

See Section 8.25, page 176 and Section 8.26, page 182 for details on these
parameters.

8.16 READ (Internal)

The internal READ statement transfers data from an internal file to internal
storage.

8.16.1 Syntax: Formatted

READ ([UNIT=]unum,f[,IOSTAT=rn][,ERR=s][,END=eof]) [iolist]

8.16.2 Syntax: List-Directed

READ ([UNIT=]unum,* [,IOSTAT=rn][,ERR=s][,END=eof]) [iolist]

The following arguments are available with this statement:

[UNIT=]unum a unit or internal file to be acted upon.

f a format specifier

* a list-directed input specifier.

IOSTAT=rn the name of variable in which I/O completion
status is to be posted.

ERR=s the statement label to which control is transferred
after an error.

END=eof the statement label to which control is transferred
upon end-of-file.

iolist the memory location where data is to be read.

See Section 8.25, page 176 and Section 8.26, page 182 for details on these
parameters.

Note: The DECODE statement can also be used to control internal input. See
Section 8.5, page 142 for more information.

007–2362–004 161

MIPSpro Fortran 77 Language Reference Manual

8.17 READ (Sequential)

The sequential READ statement transfers data from an external record to the
items specified by the input list. Transfers occur using the sequential-access
method or keyed-access method.

The four forms of the sequential READ statement are

• formatted

• list-directed

• unformatted

• namelist-directed

The following parameters apply to all four forms of the sequential READ
statement:

[UNIT=]unum a unit or internal file to be acted upon.

f a format specifier.

* a list-directed input specifier.

NML=[group-name] a namelist specifier. If the keyword NML is
omitted, group-name must immediately follow
unum.

IOSTAT=rn the name of the variable in which I/O completion
status is posted.

ERR=s the statement label to which control is transferred
after an error.

END=eof the statement label to which control is transferred
on end of file.

iolist the memory location where data is read.

See Section 8.25, page 176 for details on these parameters.

8.17.1 Formatted READ (Sequential)

8.17.1.1 Syntax

READ ([UNIT=]unum,f[,IOSTAT=rn][,ERR=s] [,END=eof]) [iolist]
READ f[,iolist]

162 007–2362–004

Input/Output Statements [8]

8.17.1.2 Method of Operation

A formatted READ statement transfers data from an external record to internal
storage. It translates the data from character to binary format using the f
specifier to edit the data.

8.17.2 List-Directed READ (Sequential)

8.17.2.1 Syntax

READ ([UNIT=]unum,*[,IOSTAT=rn][,ERR=s][,END=eof])[iolist]
READ f*[iolist]

8.17.2.2 Method of Operation

A list-directed READ statement transfers data from an external record to internal
storage. It translates the data from character to binary format using the data
types of the items in iolist to edit the data.

8.17.2.3 Rules for Use

• The external record can have one of the following values:

– A constant with a data type of integer, real, logical, complex, or character.
The rules given in Chapter 2 define the acceptable formats for constants
in the external record.

– A null value, represented by a leading comma, two consecutive constants
without intervening blanks, or a trailing comma.

– A repetitive format n*constant, where n is a nonzero, unsigned integer
constant indicating the number of occurrences of constant. n*
represents repetition of a null value.

• Hollerith, octal, and hexadecimal constants are not allowed.

• A value separator must delimit each item in the external record; a value
separator can be one of the following:

– one or more spaces or tabs

– a comma, optionally surrounded by spaces or tabs

007–2362–004 163

MIPSpro Fortran 77 Language Reference Manual

• A space, tab, comma, or slash appearing within a character constant are
processed as part of the constant, not as delimiters.

• A slash delimits the end of the record and causes processing of an input
statement to halt; the slash can be optionally surrounded by spaces and/or
tabs. Any remaining items in iolist are unchanged after the READ.

• When the external record specified contains character constants, a slash must
be specified to terminate record processing. If the external record ends with
a blank, the first character of the next record processed follows immediately
after the last character of the previous record.

• Each READ statement reads as many records as is required by the
specifications in iolist. Any items in a record appearing after a slash are
ignored.

8.17.3 Unformatted READ (Sequential)

8.17.3.1 Syntax

READ ([UNIT=]unum[,IOSTAT=rn][,ERR=s][,END=eof]) [iolist]

8.17.3.2 Method of Operation

An unformatted READ statement transfers data from an external record to
internal storage. The READ operation performs no translation on read-in data.
The data is read in directly to the items in iolist. The type of each data item in
the input record must match that declared for the corresponding item in iolist.

When a sequential-unformatted READ is performed on a direct-access file, the
next record in the direct-access file is assumed.

8.17.3.3 Rules for Use

• There must be at least as many items in the unformatted record as there are
in iolist. Additional items in the record are ignored, and a subsequent READ
accesses the next record in the file.

• The type of each data item in the input record must match the
corresponding data item in iolist.

164 007–2362–004

Input/Output Statements [8]

8.17.4 Namelist-Directed READ (Sequential)

8.17.4.1 Syntax

READ (unum,NML= group-name[,IOSTAT=rn][,ERR= s][,END=eof]) [iolist]
READ name

8.17.4.2 Method of Operation

A namelist-directed READ statement locates data in a file using the group name
in a NAMELIST statement.

It uses the data types of the items in the corresponding NAMELIST statement
and the forms of the data to edit the data.

Figure 5 illustrates rules for namelist input data and shows its format.

Required start delimiter in column 2;
ampersand (&) also acceptable

The name of the namelist as specified in
a previous NAMELIST statement

A namelist item as defined in a
previous NAMELIST

A constant as specified by the
rules for list-directed I/O

Optional end delimiter

Required end delimiter; ampersand
(&) also acceptable

$ group-name item = value [, item = value, ...] $ [END]

a12011

Figure 5. Namelist Input Data Rules

8.17.4.3 Rules for Use

• Both group-name and item must be contained within a single record.

• Spaces and/or tabs are not allowed within group-name or item. However,
item can contain spaces or tabs within the parentheses of a subscript or
substring specifier.

• The value item can be any of the values given under the first rule in the
previous section, Section 8.17.2, page 163.

007–2362–004 165

MIPSpro Fortran 77 Language Reference Manual

• A value separator must delimit each item in a list of constants. See the third
and fourth rules in Section 8.17.2, page 163.

• A separator must delimit each list of value assignments. See the third rule in
Section 8.17.2, page 163. Any number of spaces or tabs can precede the
equal sign.

• When value contains character constants, a dollar sign ($) or ampersand (&)
must be specified to terminate processing of the namelist input. If the
namelist input ends with a blank, the first character of the next record
processed follows immediately after the last character of the previous record.

• Entering a question mark (?) after a namelist-directed READ statement is
executed causes the group-name and current values of the namelist items for
that group to be displayed.

• You can assign input values in any order in the format item=value.
Multiple-line assignment statements are allowed. Each new line must begin
on or after column 2; column 1 is assumed to contain a carriage-control
character. Any other character in column 1 is ignored.

• You can assign input values for the following data types: INTEGER, REAL,
LOGICAL, COMPLEX, and CHARACTER. See Table 27 for the conversion rules
when the data type of the namelist item and the assigned constant value do
not match.

• Numeric-to-character and character-to-numeric conversions are not allowed.

• Constant values must be given for assigned values, array subscripts, and
substring specifiers. Symbolic constants defined by a PARAMETER statement
are not allowed.

Example 40: Namelist-directed READ example

In the following example, the name of a file is read from the standard input
into filename, the file is opened, and the first record is read. A branch is
taken to statement 45 (not shown) when end of file is encountered.

read (*,10) filename

10 format (a)

open (2,file=filename)
read (2, 20, end=45) word

20 format (A50)

See Section 8.27, page 184 and Chapter 7, page 129, for more information on
formatted, list-directed unformatted, and namelist-directed I/O.

166 007–2362–004

Input/Output Statements [8]

8.18 REWIND

The REWIND statement positions a file at its initial point. It can be used with
both unformatted and formatted data files.

8.18.1 Syntax

REWIND u REWIND (alist)

The following arguments are used with this statement:

u an external unit identifier.

alist a list of the following specifiers:

[UNIT =] u a required unit specifier. u must be an integer
expression that identifies the number of an
external unit. If the keyword UNIT= is omitted,
then u must be the first specifier in alist.

IOSTAT = ios an I/O status specifier that specifies the variable
to be defined with a status value by the REWIND
statement. A zero value for ios denotes a no error
condition, while a positive integer value denotes
an error condition.

ERR = s an error specifier that identifies a statement
number to which control is transferred when an
error condition occurs during the execution of the
REWIND statement.

8.18.2 Method of Operation

The unit specifier is required and must appear exactly once. The other
specifiers are optional and can appear at most once each in the alist. Specifiers
can appear in any order (refer to Section 8.25.1, page 178 for exceptions). The
REWIND statement positions the specified file at its initial point. If the file is
already at its initial point, the REWIND statement has no effect. It is legal to
specify a REWIND statement for a file that is connected but does not exist, but
the statement has no effect.

Example 41: REWIND example

The following statements show examples of the REWIND statement.

007–2362–004 167

MIPSpro Fortran 77 Language Reference Manual

REWIND 8

REWIND (UNIT=NFILE,ERR=555)

8.19 REWRITE

The REWRITE statement transfers data to an external indexed file from the
items specified by the output list. The record transferred is the last record
accessed from the same file using an indexed READ statement.

8.19.1 Syntax: Formatted

REWRITE ([UNIT=]unum,f[,IOSTAT=rn][,ERR=s]) [iolist]

8.19.2 Syntax: Unformatted

REWRITE ([UNIT=]unum[,IOSTAT=rn][,ERR=s]) [iolist]

The following arguments are used with this statement:

[UNIT=]unum the unit or internal file to be acted on.

f a format specifier.

IOSTAT=rn the name of a variable in which I/O completion
status is posted.

ERR=s a statement label to which control is transferred
after an error.

See Section 8.25, page 176 and Section 8.26, page 182 for details on these
parameters.

8.19.3 Rules for Use

The REWRITE statement is supported for both formatted and unformatted
indexed files. The statement provides a means for changing existing records in
the file.

See Section 8.27, page 184 for additional rules.

168 007–2362–004

Input/Output Statements [8]

Example 42: REWRITE example

REWRITE (10), A,B,C

The previous statement rewrites the last record accessed to the indexed file
connected to logical unit 10.

8.20 UNLOCK

The UNLOCK statement makes the last record read from an indexed file available
for access by other users.

8.20.1 Syntax

UNLOCK [UNIT=]unum
UNLOCK ([UNIT=]unum[,IOSTAT=rn][,ERR=s])

The following arguments are available with this statement:

UNIT=unum a unit or internal file to be acted on.

IOSTAT=rn the name of variable in which I/O completion
status is posted.

ERR=s the statement label to which control is transferred
after an error.

See Section 8.25, page 176 for details on each of these parameters.

8.20.2 Method of Operation

After a record is read from an indexed file, it cannot be accessed by other users
until an UNLOCK statement is executed, the record is rewritten, or a new record
is read.

Example 43: UNLOCK example

The following statement unlocks the last record read in from the file connected
to logical unit 10.

UNLOCK (10)

007–2362–004 169

MIPSpro Fortran 77 Language Reference Manual

8.21 WRITE (Direct Access)

The direct-access WRITE statement transfers data from internal storage to an
external indexed file using the direct-access method.

8.21.1 Syntax: Formatted

WRITE ([UNIT=]unum,REC=rn,f[,IOSTAT=rn][,ERR=s]) [iolist]

8.21.2 Syntax: Unformatted

WRITE ([UNIT=]unum,REC=rn[,IOSTAT=ios][,ERR=s]) [iolist]

The following arguments are used with this statement:

[UNIT=]unum a unit or internal file to be acted upon.

REC=rn a direct-access mode. rn is the number of the
record to be accessed.

f a format specifier.

IOSTAT=rn the name of variable in which I/O completion
status is posted.

ERR=s the statement label to which control is transferred
after an error.

iolist the memory location from which data is written.

See Section 8.25, page 176 and Section 8.26, page 182 for details on these
parameters.

See Section 8.27, page 184 and Chapter 7, page 129, for more information on
formatted and unformatted I/O.

8.21.3 Rules for Use

Execution of a WRITE statement for a file that does not exist creates the file.

170 007–2362–004

Input/Output Statements [8]

8.22 WRITE (Indexed)

The indexed WRITE statement transfers data from internal storage to external
records using the keyed-access method.

8.22.1 Syntax: Formatted

WRITE ([UNIT=]unum,f[,IOSTAT=rn][,ERR=s]) [iolist]

8.22.2 Syntax: Unformatted

WRITE ([UNIT=]unum[,IOSTAT=rn][,ERR=s]) [iolist]

The following arguments are used with this statement:

[UNIT=]unum a unit or internal file to be acted on.

f a format specifier.

* the list-directed output specifier.

IOSTAT=rn the name of a variable in which I/O completion status is posted.

ERR=s a statement label to which control is transferred after an error.

iolist a memory location from which data is written.

See Section 8.25, page 176 and Section 8.26, page 182 for details on these
parameters.

8.22.3 Rules for Use

Execution of a WRITE statement for a file that does not exist creates the file.

8.23 WRITE (Internal)

The internal WRITE statement transfers data to an external file or an internal file
from the items specified by the output list.

007–2362–004 171

MIPSpro Fortran 77 Language Reference Manual

8.23.1 Syntax: Formatted

WRITE ([UNIT=]unum,f[,IOSTAT=ios][,ERR=s])[iolist]

8.23.2 Syntax: List-directed

WRITE ([UNIT=]unum, *[,IOSTAT=rn][,ERR=s])[iolist]

The following arguments are available with this statement:

[UNIT=]unum is a unit or internal file to be acted on.

f is a format specifier.

* is the list-directed output specifier.

IOSTAT=rn is the name of a variable in which I/O completion status is posted.

ERR=s is the statement label to which control is transferred after an error.

iolist specifies a memory location from which data is written.

See Section 8.25, page 176 andSection 8.26, page 182 for details on these
parameters.

See Section 8.27, page 184 and Chapter 7, page 129, for more information on
formatted and list-directed I/O. Chapter 7 also contains an example of I/O
using internal files.

8.23.3 Rules for Use

Execution of an internal WRITE statement for a file that does not exist creates
the file.

Note: The ENCODE statement can also be used to control internal output. See
the ENCODE statement description on Section 8.8, page 144 for more
information.

8.24 WRITE (Sequential)

The sequential WRITE statement transfers data to an external file or an internal
file from the items specified by the output list.

The four types of sequential WRITE statements are

172 007–2362–004

Input/Output Statements [8]

• formatted

• unformatted

• list-directed

• namelist-directed

Each of these statements is discussed in the following sections.

Execution of a WRITE statement for a file that does not exist creates the file.

8.24.1 Parameter Explanations

UNIT=unum is a unit or internal file to be acted on.

NML= group-name is a namelist specifier.

f is a format specifier.

* is the list-directed output specifier.

REC=rn is a direct-access mode. rn is the number of the
record to be accessed.

IOSTAT=rn is the name of a variable in which I/O
completion status is posted.

ERR=s is a statement label to which control is transferred
after an error.

iolist specifies a memory location from which data is
written.

See Section 8.25, page 176 and Section 8.26, page 182 for details on these
parameters.

8.24.2 Formatted WRITE (Sequential)

WRITE ([UNIT=]unum,f[,IOSTAT=rn][,ERR=s]) [iolist]

8.24.2.1 Method of Operation

A formatted WRITE statement transfers data from internal storage to an external
record using sequential-access mode. The WRITE operation translates the data
from binary to character format using the f specifier to edit the data.

007–2362–004 173

MIPSpro Fortran 77 Language Reference Manual

8.24.3 Unformatted WRITE (Sequential)

WRITE ([UNIT=]unum[,IOSTAT=rn][,ERR=s]) [iolist]

8.24.3.1 Method of Operation

An unformatted WRITE statement performs no translation on read-in data. The
data is read in directly to the items in iolist. The type of each data item in the
input record must match that declared for the corresponding item in iolist.

When sequential-formatted WRITE is performed on a direct-access file, the next
record in the file is assumed and the record is zero-padded to the end as if it
were a direct, unformatted WRITE.

8.24.4 List-Directed WRITE

WRITE ([UNIT=]unum,*[,IOSTAT=rn][,ERR=s]) [iolist]

8.24.4.1 Method of Operation

A list-directed WRITE statement transfers data from internal storage to an
external record using sequential-access mode. The WRITE operation translates
the data from binary to character format using the data types of the items in
iolist to edit the data.

8.24.4.2 Rules

• The item to be transferred to an external record can be a constant with a
data type of integer, real, logical, complex, or character.

• The rules given in Chapter 2, page 19, define the acceptable formats for
constants in the external record, except character constant. A character
constant does not require delimiting apostrophes; an apostrophe within a
character string is represented by one apostrophes instead of two.

Table 28 shows the data types and the defaults of their output format.

174 007–2362–004

Input/Output Statements [8]

Table 28. Default Formats of List-Directed Output

Data Type Format Specification of Default Output

BYTE L2

LOGICAL*1 I5

LOGICAL*2 L2

LOGICAL*4 L2

LOGICAL*8 L2

INTEGER*1 I5

INTEGER*2 I7

INTEGER*4 I12

REAL*4 1pg15.7e2

REAL*8 1pg24.16e2

REAL*16 1pg40.31e2

COMPLEX ’(’,1pg15.7e2,’,’,1pg15.7e2,’)’

COMPLEX*16 ’(’,1pg24.16e2,’,’,1pg24.16e2,’)’

COMPLEX*32 ’(’,1pg40.31e2,’,’,1pg40.31e2,’)’

CHARACTER*n An, where n is the length of the character expression

• List-directed character output data cannot be read as list-directed input
because of the use of apostrophes described above.

• A list-directed output statement can write one or more records. Position one
of each record must contain a space (blank), which Fortran uses for a
carriage-control character. Each value must be contained within a single
record with the following exceptions:

– A character constant longer than a record can be extended to a second
record.

– A complex constant can be split onto a second record after the comma.

• The output of a complex value contains no embedded spaces.

• Octal values, null values, slash separators, or the output of a constant or null
value in the repetitive format n*constant or n*z cannot be generated by a
list-directed output statement.

007–2362–004 175

MIPSpro Fortran 77 Language Reference Manual

8.24.5 Namelist-Directed WRITE

8.24.5.1 Syntax

WRITE([UNIT=]unum,NML=group-name[,IOSTAT=rn][,ERR=s][,END=eof])

8.24.5.2 Method of Operation

A namelist-directed WRITE statement transfers data from internal storage to
external records. It translates the data from internal to external format using the
data type of the items in the corresponding NAMELIST statement (see Chapter
4, page 59.) A namelist-directed READ or ACCEPT statement can read the output
of a namelist-directed WRITE statement.

8.24.5.3 Rules for Use

Namelist items are written in the order that referenced NAMELIST defines them.

8.24.6 Examples for All Forms of Sequential WRITE

The following statement writes the prompt enter a filename to standard
output:

write (*,105)

105 format (1x,’enter a filename’)

The following statement opens the file %%temp and writes the record pair to
the file.

open (unit=10, status=’unknown’,file="%%temp")

write (10,1910) pair

1910 format (A)

8.25 Control Information List - cilist

This section describes the components of the control information list (cilist) and
the I/O list (iolist), which can be specified as elements of the I/O statements
described in this chapter.

Table 29, page 177 summarizes the items that can be specified in a cilist. Each
cilist specifier shown in the table can appear no more than once in a cilist. Note
that the keywords UNIT= and FMT= are optional. Normally, the cilist items may

176 007–2362–004

Input/Output Statements [8]

be written in any order, but if UNIT= or FMT= is omitted, the following
restrictions apply:

• The keyword UNIT= can be omitted if and only if the unit specifier is the
first item on the list.

• The keyword FMT= can be omitted if and only if the format specifier is the
second item in the cilist and the first item is a unit specifier in which the
keyword UNIT= has been omitted.

A format specifier denotes a formatted I/O operation; default is an
unformatted I/O operation. If a record specifier is present, then direct access
I/O is denoted; default is sequential access.

Table 29. Control Information List Specifiers

Specifier Purpose

[UNIT=]u Unit or internal file to be acted on.

[NML= group-name] Identifies the group-name of a list of items for
namelist-directed I/O.

[FMT=]f Formatted or unformatted I/O operations. If
formatted, contains format specifiers for data to be
read or written.

REC= rn Number of a record accessed in direct-access mode.

KEY [c]=val Value of the key field in a record accessed in indexed
access mode, where c can be the optional match
condition EQ, GT, or GE.

KEYID= kn Key-reference specifier, specifying either the primary
key or one of the alternate keys in a record referenced
in indexed-access mode.

IOSTAT= ios Name of a variable in which I/O completion status is
returned.

ERR= s Label of a statement to which control is transferred if
an error occurs.

END= s Label of a statement to which control is transferred if
an end-of-file condition (READ only) occurs.

007–2362–004 177

MIPSpro Fortran 77 Language Reference Manual

8.25.1 Unit Specifier - UNIT

The form of a unit specifier is the following:

[UNIT=]u

where u is a unit identifier specified as follows:

• A nonnegative integer or noninteger expression specifying the unit. A
noninteger expression is converted to integer, and the fractional portion, if
present, is discarded before use.

• An asterisk specifying a unit that is connected for formatted sequential
access (external file identifier only). This denotes the system input unit in a
READ statement or the system output unit in a WRITE statement.

• A double asterisk (**) in a WRITE statement denotes the system error unit.

• An identifier that is the name of a character variable, character array,
character array element, or substring (internal file identifier only).

An external unit identifier can have the form described in the first or second
rule above, except that it cannot be an asterisk in an auxiliary output statement.

An internal file identifier must be specified in the third rule above.

The syntax shows that you can omit the UNIT= keyword. If UNIT= is omitted,
the unit identifier must be first in a control information list. For example, two
equivalent READ statements are

READ(UNIT=5)
READ(5)

8.25.2 Format Specifier - FMT

The syntax of a format specifier is

[FMT=] f

where f is a format identifier. As shown in the syntax, the keyword FMT= can be
omitted from the format identifier. If so, the format identifier must be second in
a control information list, and the UNIT= keyword must also have been omitted.

The legal kinds of format identifiers are

178 007–2362–004

Input/Output Statements [8]

• the statement label of a FORMAT statement (the FORMAT statement and the
format identifier must be in the same program unit)

• an integer variable name assigned to the statement label of a FORMAT
statement (the FORMAT statement and the format identifier must be in the
same program unit)

• a character expression (provided it does not contain the concatenation of a
dummy argument that has its length specified by an asterisk)

• the name of a character arra

• an asterisk that is used to indicate list-directed formatting

8.25.3 Namelist Specifier - NML

The namelist specifier indicates namelist-directed I/O within the READ or
WRITE statement where NML is specified. It has the format

[NML=]group-name

where group-name identifies the list in a previously defined NAMELIST
statement (see Chapter 4, page 59.)

NML can be omitted when preceded by a unit specifier (unum) without the
optional UNIT keyword.

8.25.4 Record Specifier - REC

The form of a record specifier is the following:

REC=rn

where rn is an expression that evaluates the record number of the record to be
accessed in a direct-access I/O operation. Record numbers must be integers
greater than zero.

8.25.5 Key-Field-Value Specifier - KEY

The indexed-access method uses the key-field-value specified in a READ,
REWRITE, or other I/O statement. A key field in the record is used as criteria in
selecting a record from an indexed file. The key fields for the records in an

007–2362–004 179

MIPSpro Fortran 77 Language Reference Manual

indexed file are established by the KEY specifier used in the OPEN statement
that created the file.

The key-field-value specifier has the forms shown in Table 30.

Table 30. Forms of the Key-Field-Value Specifier

Specifier Basis for Record Selection

KEY= kval Key-field value kval

KEYEQ= kval Key-field value kval and the key field are equal

KEYGT= kval Key-field value is greater than the key field

KEYGE= kval Key-field value is greater than or equal to the key field

The following rules apply to kval:

• kval can be a character or integer expression; if an integer expression, it
cannot contain any real or complex values. If the indexed file is formatted,
kval should always be a character expression.

• The character expression can be an ordinary character string or an array
name of type LOGICAL*1 or BYTE containing Hollerith data.

• The character or integer type specified for kval must match the type
specified for the key field in the record.

8.25.6 Key-of-Reference Specifier - KEYID

The key-of-reference specifier designates, in a READ, REWRITE, or other I/O
statement, the key field in a record to which the key-field-value specifier applies.

The specifier has the following format:

KEYID=n

where n is a number from 0 to the maximum number of keys defined for the
records in the indexed file; 0 specifies the primary key, 1 specifies the first
alternate key, 2 specifies the second alternate key, and so on. The KEY
parameter of the OPEN statement that created the files creates and establishes
the ordering of the primary and alternate keys.

180 007–2362–004

Input/Output Statements [8]

If KEYID is not specified, the previous KEYID specification in an I/O statement
to the same I/O unit is used. The default for KEYID is zero (0) if it is not
specified for the first I/O statement.

8.25.7 Input/Output Status Specifier - ios

An I/O status specifier has the form

IOSTAT=ios

where ios is a status variable indicating an integer variable or an integer array
element. Execution of an I/O statement containing this specifier causes ios to
become defined with one of the following values:

• Zero if neither an error condition nor an end-of-file condition is encountered
by the processor, indicating a successful operation

• Positive integer if an error condition occurred

• Negative integer if an end-of-file condition is encountered without an error
condition

For details about IOSTAT, see the perror(3F) and intro(2) manual pages.

8.25.8 Error Specifier - ERR

An error specifier has the following form:

ERR=s

where s is an error return label of an executable statement that appears in the
same program unit as the error specifier.

If an error condition occurs during execution of an I/O statement with an error
specifier, execution of the statement is terminated and the file position becomes
indeterminate. If the statement contains an I/O status specifier, the status
variable ios becomes defined with a processor-dependent positive integer.
Execution then continues at the statement labeled s.

8.25.9 End-of-File Specifier - END

The form of an end-of-file specifier is the following:

END=s

007–2362–004 181

MIPSpro Fortran 77 Language Reference Manual

where s is an end-of-file return label of an executable statement that appears in
the same program unit as the end-of-file specifier. An end-of-file specifier may
only be used on the cilist of a READ statement.

If an end-of-file condition is encountered during the execution of a READ
statement containing an end-of-file specifier and no error occurs, execution of
the READ statement terminates. If the READ statement contains an I/O status
specifier, the I/O status variable ios becomes defined with a
processor-dependent negative integer. Execution then continues at the
statement labeled s.

8.26 Input/Output List - iolist

This section describes the components of I/O list (iolist), which can be specified
as elements of the I/O statements described in this chapter.

An input/output list specifies the memory locations of the data to be
transferred by the I/O statements READ, WRITE, and PRINT.

If an array name is given as an I/O list item, the elements in the array are
treated as though each element were explicitly specified in the I/O list in storage
order. Note that the name of an assumed-size dummy array (that is, an array
declared with an * for an upper bound) must not appear as an I/O list item.

8.26.1 Input List

An input list item can be one of the following:

• Variable name.

• Array element name.

• Substring name.

• Array name.

• Implied DO list containing any of the above and other implied DO lists.

• An aggregate reference (a structured data item as defined by a RECORD and
STRUCTURE statement). An aggregate reference can be used only in
unformatted input statements. When an aggregate name appears in an iolist,
only one record is read regardless of how many aggregates or other list
items are present.

182 007–2362–004

Input/Output Statements [8]

Example 44: Input list example

Examples of input lists are

READ(5,3000,END=2000)X,Y(J,K+3),C(2:4)

READ(JFILE,REC=KNUM,ERR=1200)M,SLIST(M,3),cilist

8.26.2 Output List

An output list item can be one of the following:

• Variable name.

• Array element name.

• Substring name.

• Array name.

• Any expression, except a character expression involving concatenation of an
operand with a length specification of asterisk (*), unless the operand is the
symbolic name of a constant.

• An implied-DO list containing any of the above and other implied-DO lists.

• An aggregate reference (a structured data item as defined by a RECORD and
STRUCTURE statement). An aggregate reference can be used only in
unformatted output statements. When an aggregate name appears in an
iolist, only one record is written regardless of how many aggregates or
other list items are present.

Note that a constant, an expression involving operators or function references,
or an expression enclosed in parentheses may appear in an output list but not
in an input list.

Example 45: Output list example

An example of an output list is

WRITE(5,200,ERR=10)’ANSWER IS’,N,SQRT(X)+1.23

8.26.3 Implied DO Lists

An implied DO list is a specification that follows the I/O list (iolist) in an I/O
statement. The list permits the iteration of the statement as though it were
contained within a DO loop. An implied DO list has the form:

007–2362–004 183

MIPSpro Fortran 77 Language Reference Manual

(iolist,i=e1,e2[,e3])

where iolist is one or more valid names of the data to be acted on, i is an
iteration count, and e1, e2, and e3 are control parameters. See the description of
the DO statement in Chapter 6, page 107, for a description of i, e1, e2, and e3.

The control variable i must not appear as an input list item in iolist. The list
items in iolist are specified once for each iteration of the implied-DO list
with the appropriate substitution of values for each occurrence of the control
variable i. When an I/O error occurs within the implied-DO loop, the value of
the control variable i is undefined.

Example 46: Implied DO list example

The following statements write Hello World to standard output 100 times:

write (*,111) (’Hello World’,i=1,100)
111 format (1x,A)

end

8.27 Data Transfer Rules

Data are transferred between records and items specified by the I/O list. The
list items are processed in the order in which they appear in the list.

The following restrictions apply to data transfer operations:

• An input list item must not contain any portion of the established format
specification.

• If an internal file has been specified, an I/O list item must not be in the file
or associated with the file.

• Each output list item must be defined before the transfer of that item.

• All values needed to determine which entities are specified by an I/O list
item are determined at the beginning of the processing of that item.

The following sections discuss the rules specific to unformatted and formatted
I/O.

184 007–2362–004

Input/Output Statements [8]

8.27.1 Unformatted Input/Output

The execution of an unformatted I/O statement transfers data without editing
between the current record and the items specified in the I/O list. Exactly one
record is either read or written.

For an unformatted input statement, the record must contain at least as many
values as the number of values required by the input list. The data types of the
values in the record must agree with the types of the corresponding items in
the input list. Character data from an input record must have the same length
attribute as the corresponding item in the input list.

The following conventions apply to the execution of an unformatted output
statement:

• For direct access, the output list must not specify more values than can fit
into a record. If the values specified by the output list do not fill the record,
the remainder of the record is filled with zeros.

• For sequential access, the output list defines the size of the output record.

FORTRAN 77 allows unformatted data transfer only for external files and
prohibits it for files connected for formatted I/O.

8.27.2 Formatted Input/Output

The execution of a formatted I/O statement transfers data with editing between
the items specified by the I/O list and the file. The current record and possibly
additional records are read or written.

Each execution of a READ statement causes at least one record to be read, and
the input list determines the amount of data to be transferred from the record.
The position and form of that data are established by the corresponding format
specification.

In a formatted output operation, each execution of the WRITE or PRINT
statement causes at least one record to be written. The amount of data written
to the specified unit is determined both by the output list and the format
specification.

When a repeatable edit descriptor in a format specification is encountered, a
check is made for the existence of a corresponding item in the I/O list. If there
is such an item, it transmits appropriately edited information between the item
and the record, and then format control proceeds. If there is no corresponding

007–2362–004 185

MIPSpro Fortran 77 Language Reference Manual

item, format control terminates. Chapter 9, page 187, explains formatted I/O in
detail.

186 007–2362–004

Format Specification [9]

A format specification provides explicit editing information to the processor on
the structure of a formatted data record. It is used with formatted I/O
statements to allow conversion and data editing under program control. An
asterisk (*) used as a format identifier in an I/O statement specifies list-directed
formatting.

This chapter discusses the following format topics:

• FORMAT statements, Section 9.2, page 188

• field and edit descriptors, Section 9.3, page 195

• field descriptor reference, Section 9.4, page 196

• edit descriptor reference, Section 9.5, page 218

• complex data editing, Section 9.6, page 222

• I/O lists and FORMAT, Section 9.7, page 224

• list-directed formatting, Section 9.8, page 225

You can define a format specification in a FORMAT statement or through the use
of arrays, variables, or expressions of type character. During input, field
descriptors specify the external data fields and establish correspondence
between a data field and an input list item. During output, field descriptors are
used to describe how internal data is to be recorded on an external medium
and to define a correspondence between an output list item and an external
data field.

This section describes the FORMAT statement, field descriptors, edit descriptors,
and list-directed formatting. It also contains a discussion of carriage-control
characters for vertical control in printing formatted records.

As extensions to FORTRAN 77, the compiler supports additional
processor-dependent capabilities, which are described in the MIPSpro Fortran 77
Programmer’s Guide.

Format specifications can be given in two ways: in FORMAT statements or as
values of character arrays, character variables, and other character expressions.

007–2362–004 187

MIPSpro Fortran 77 Language Reference Manual

9.1 Format Stored as a Character Entity

In a formatted input or output statement, the format identifier can be a
character entity, provided its value has the syntax of a format specification, as
detailed below, on execution. This capability allows a character format
specification to be read in during program execution.

When the format identifier is a character array name, the format specification is
a concatenation of all the elements in the array. When the format identifier is a
character array element name, the format specification is only that element of
the array. Therefore, format specifications read through a character array name
can fill the whole array, while those read through a character array element
name must fit in a single element of that array.

9.2 FORMAT Statement

The FORMAT statement is a non-executable statement that defines a format
specification. It has the following syntax:

xx FORMAT fs

where xx is a statement number that is used as an identifier in a READ, WRITE,
PRINT, or ASSIGN(label) statement. and fs is a format specification (described
in Section 9.2.1, page 188).

9.2.1 Format Specification

The syntax of a format specification is the following:

([flist])

where flist is a comma-separated list of format specifiers in one of the following
forms:

[r]fd
ed
[r]fs

The following arguments are used:

188 007–2362–004

Format Specification [9]

r a positive integer specifying the repeat count for the field
descriptor or group of field descriptors. If r is omitted, the repeat
count is assumed to be 1.

fd a repeatable edit descriptor or a field descriptor.

ed a nonrepeatable edit descriptor.

fs a format group and has the same form as a complete format
specification except the flist must be non-empty (it must contain
at least one format specifier).

The comma used to separate the format specifiers in flist can be omitted as
follows:

• Between a P edit descriptor and immediately following an F, E, D, or G edit
descriptor (see Section 9.4.10, page 210).

• Before or after a slash edit descriptor (see Section 9.6.2, page 223).

• Before or after a colon edit descriptor (see Section 9.5.10, page 221).

9.2.2 Descriptors

Some descriptors can be repeated, others cannot. The repeatable descriptors are
the following:

Iw[.m]

Zw[.m]

Ew.d[Ee]

Gw.d[Ee]

A[w]

Ow[.m]

Fw.d

Dw.d

Lw

where w and e are nonzero, unsigned integer constants and d and m are
unsigned integer constants.

The nonrepeatable descriptors are the following:

/

kP

TRc

SS

nHh…

$

:

Tc

S

BN

’h … ’

Q

nX

TLc

SP

BZ

"h… "

007–2362–004 189

MIPSpro Fortran 77 Language Reference Manual

where n and c are nonzero, unsigned integer constants, k is an optionally signed
integer constant, and h is one of the characters capable of representation by the
processor.

9.2.3 Format Specifier Usage

Each field descriptor corresponds to a particular data type I/O list item:

• Integer field descriptors—Iw, Iw.m, Ow, Zw

• Real, double-precision, and complex field descriptors—Fw.d, Ew.d, Ew.dEe,
Dw.d, Gw. d, Gw.dEe

• Logical field descriptor— Lw

• Character and Hollerith field descriptors—A, Aw

Ow, and Zw are extensions to FORTRAN 77.

The terms r, c, n, d, m, e, and w must all be unsigned integer constants, and,
additionally, r, c, n, e, and w must be nonzero. k is an optionally signed
integer constant. Descriptions of these list items are given in the sections that
describe the individual field descriptors.

The repeat specifier r can be used only with the I, O, Z, F, E, D, G, L, and A field
descriptors and with format groups.

The d is required in the F, E, D, and G field descriptors. Ee is optional in the E
and G field descriptors and invalid in the others.

Use of named constants anywhere in a format specification is not allowed.

Table 31 contains an alphabetical summary of the field and edit descriptors.

Table 31. Summary of Field and Edit Descriptors

Form Effect

A[w] Transfers character or Hollerith values

BN Specifies that embedded and trailing blanks in a numeric input
field are to be ignored

BZ Specifies that embedded and trailing blanks in a numeric input
field are to be treated as zeros

190 007–2362–004

Format Specification [9]

Form Effect

Dw.d Transfers real values (D exponent field indicator)

Ew.d[Ee] Transfers real values (E exponent field indicator)

Fw.d Transfers real values

Gw.d Transfers real values: on input, acts like F descriptor; on
output, acts like E or F descriptor, depending on the magnitude
of the value

nHc…c Transfers values between H edit descriptor and an external
’h…’ (output only)

Iw[.m] Transfers decimal integer values

Lw Transfers logical values

Ow[.m] Transfers octal integer values

kP Scale factor for F, E, D, and G descriptors

Q Returns number of characters remaining in input record.

S Restores the default specification for SP and SS

SP Writes plus characters (+) for positive values in numeric output
fields

SS Suppresses plus characters (+) for positive values in numeric
output fields

Tc Specifies positional tabulation

TLc Specifies relative tabulation (left)

TRc Specifies relative tabulation (right)

nX Specifies that n column positions are to be skipped

Zw[.m] Transfers hexadecimal integer values

: Terminates format control if the I/O list is exhausted

/ Record terminator

$ Specifies suppression of line terminator on output (ignored on
input)

The following sections describe each of these field descriptors in detail.

007–2362–004 191

MIPSpro Fortran 77 Language Reference Manual

9.2.4 Variable Format Expressions

Variable format expressions provide a means for substituting run-time
expressions for the field width and other parameters of the field and edit
descriptors of the statement. Any expression can be enclosed in angle brackets
(<>) and used as an integer constant would be used in the same situation. This
facility is not available for anything other than a compile-time FORMAT
statement.

Here is an example that uses a variable format expression:

program VariableExample

character*12 greeting

greeting = ’Good Morning!’
do 110 I = 1, 12

write (*,115) (greeting)

115 format (A<I>)

110 continue

end

In the above example, the field descriptor for greeting has the format Aw where
w is a variable width specifier I (initially set to 1) for the iolist item greeting.
In twelve successive WRITE operations, I is incremented by 1 to produce the
following output:

G

Go

Goo

Good
Good

Good M

Good Mo

Good Mor

Good Morn
Good Morni

Good Mornin

Good Morning

The following rules apply to variable format expressions:

• Function calls, references to dummy, and any valid Fortran expression can
be specified.

• Non-integer data types are converted to integers before processing.

192 007–2362–004

Format Specification [9]

• The same restrictions on size that apply to any other format specifier also
apply to the value of a variable format expression.

• Run-time formats cannot use variable format descriptions.

• If the value of a variable changes during a READ or WRITE operation, the
new value is used the next time it is referenced in an I/O operation.

9.2.5 General Rules for Using FORMAT

Because FORMAT allows exact specification of input and output format, it is
necessarily complex. Some guidelines to its correct usage are outlined below.

• A FORMAT statement must always be labeled.

• In a field descriptor such as rIw[.m] or nX, the terms r, w, and n must be
unsigned integer constants greater than zero. The term m must be an
unsigned integer constant whose value is greater than or equal to zero; it
cannot be a symbolic name of a constant. The repeat count r can be omitted.

• In a field descriptor such as Fw.d, the term d must be an unsigned integer
constant. d must be specified with F, E, D, and G field descriptors, even if d
is zero. The decimal point is also required. Both w and d must be specified.
In a field descriptor such as Ew.dEe, the term e must also be an unsigned,
nonzero integer constant.

• In an H edit descriptor such as nHc1 c2.\ .\ .c subn, exactly n characters must
follow the H. Any character in the processor character set can be used in this
edit descriptor.

• In a scale factor of the form kP, k must be an optionally-signed integer
constant. The scale factor affects the F, E, D, and G field descriptors only.
Once a scale factor is specified, it applies to all subsequent real field
descriptors in that format specification until another scale factor appears; k
must be zero (0P) to reinstate a scale factor of zero. A scale factor of 0P is
initially in effect at the start of execution of each I/O statement.

• No repeat count r is permitted in BN, BZ, S, SS, SP, H, X, T, TR, TL, :, /, $,
’descriptors unless these descriptors are enclosed in parentheses and treated
as a format group.

• If the associated I/O statement contains an I/O list, the format specification
must contain at least one I, O, Z, F, E, D, G, L, or A field descriptor.

007–2362–004 193

MIPSpro Fortran 77 Language Reference Manual

• A format specification in a character variable, character substring reference,
character array element, character array, or character expression must be
constructed in the same way as a format specification in a FORMAT statement,
including the opening and closing parentheses. Leading blanks are
permitted, and any characters following the closing parenthesis are ignored.

• The first character in an output record generally contains carriage control
information. See Section 9.2.7, page 195 and Section 9.6.1, page 223.

• A slash (/) is both a format specifier list separator and a record terminator.
See Section 9.6.2, page 223 for details.

• During data transfers, the format specification is scanned from left to right.
A repeat count, r, in front of a field descriptor or group of field descriptors
enclosed in parentheses causes that descriptor or group of descriptors to be
repeated r* before left to right scanning is continued.

9.2.6 Input Rules Summary

Guidelines that apply specifically to input are

• A minus sign (-) must precede a negative value in an external field; a plus
sign (+) is optional before a positive value.

• An external field under I field descriptor control must be in the form of an
optionally signed integer constant, except that leading blanks are ignored
and the interpretation of embedded or trailing blanks is determined by a
combination of any BLANK = specifier and any BN or BZ blank control that
is currently in effect (see Section 9.5.5, page 220 and Section 9.5.6, page 220).

• An external field under F, E, D, or G field descriptor control must be in the
form of an optionally signed integer constant or a real constant, except that
leading blanks are ignored and the interpretation of embedded or trailing
blanks is determined by a combination of any BLANK = specifier and any
BN or BZ blank control that is currently in effect (see Section 9.5.5, page 220
and Section 9.5.6, page 220).

• If an external field contains a decimal point, the actual size of the fractional
part of the field, as indicated by that decimal point, overrides the d
specification of the corresponding real field descriptor.

• If an external field contains an exponent, the current scale factorkP
descriptor has no effect for the conversion of that field.

194 007–2362–004

Format Specification [9]

• The format specification together with the input list must not attempt to
read beyond the end of a record.

9.2.7 Output Rules Summary

Guidelines that apply specifically to output are

• A format specification cannot specify more output characters than the value
in the record length specifier. For example, a line printer record might be
limited to no more than 133 characters, including the carriage-control
character.

• The field-width specification, w, and exponent digits, e, must be large
enough to accommodate all characters that the data transfer can generate,
including an algebraic sign, decimal point, and exponent. For example, the
field width specification in an E field descriptor should be large enough to
contain d + 6 characters or d + e + 4 characters. The first character of a
record of a file intended to be printed is typically used for carriage control;
it is not printed. The first character of such a record should be a space, 0, 1,
or +. (See Section 9.6.1, page 223.)

9.3 Field and Edit Descriptors

The format specifiers in a format specification consist of field, or repeatable,
descriptors and other nonrepeatable edit descriptors.

On input, the field descriptors specify what type of data items are to be
expected in the external field so that data item values can be properly
transferred to their internal (processor) representations.

On output, the field descriptors specify what type of data items should be
written to the external field.

On input and output, the other nonrepeatable edit descriptors position the
processor pointer in the external field so that data items will be transferred
properly. For instance, edit descriptors can specify that lines or positions in the
external field be skipped or that data items can be repeatedly read (on input) or
written (on output).

007–2362–004 195

MIPSpro Fortran 77 Language Reference Manual

9.4 Field Descriptor Reference

This section contains an overview of the numeric field descriptors I, O, Z, F, E,
D, and G. It also describes the P edit descriptor and the L, A, H, Q, and character
edit descriptors.

9.4.1 Numeric Field Descriptors

The I, O, Z, F, E, D, and G field descriptors are used for numeric editing. This
section also describes the P edit descriptor, which is a scale factor, that alters the
effect of F, E, D, and G field descriptors.

Unless otherwise indicated, the following rules apply:

• On input, these numeric field descriptors ignore leading blanks in the
external field. If a BZ edit descriptor is in effect, embedded and trailing
blanks are treated as zeros; otherwise, a BN edit descriptor is in effect, and
all embedded and trailing blanks are ignored. Either BZ or BN is initially in
effect at the beginning of the input statement depending on the BLANK =
specified (see Section 8.12, page 152). The default is BN.

• A plus sign (+) is produced on output only if SP is in effect; however, a
minus sign (-) is produced where applicable. When computing the field
width for numeric descriptors, one character should be allowed for the sign,
whether it is produced or not.

• For input with F, E, D, and G descriptors, a decimal point in the input field
overrides the D specification, and an explicit exponent in the input field
overrides the current scale factor.

• For output, fields are right justified. If the field width is too small to
represent all required characters, asterisks are produced. This includes
significant digits, sign, decimal point, and exponent.

9.4.2 Default Field Descriptor Parameters

You can optionally specify a field-width value (w, d, and e) for the I, O, Z, L, F,
E, D, G, and A field descriptors. If you do not specify a value, the default values
shown in Table 32 apply. The length of the I/O variable determines the length
n for the A field descriptor.

196 007–2362–004

Format Specification [9]

Table 32. Default Field Descriptors

Descriptor Field Type w d e

I,O,Z BYTE 7

I,O,Z INTEGER*2, LOGICAL*2 7

I,O,Z INTEGER*4, LOGICAL*4 12

I,O,Z INTEGER*8, LOGICAL*8 21

O,Z REAL*4 12

O,Z REAL*8 23

O,Z REAL*16 44

L LOGICAL 2

F,E,G,D REAL, COMPLEX*8 15

F,E,G,D REAL*8, COMPLEX*16 25 16 2

F,E,G,D REAL*16, COMPLEX*32 42 33 3

A LOGICAL*1 1

A LOGICAL*2, INTEGER*2 2

A LOGICAL*4, INTEGER*4 4

A LOGICAL*8, INTEGER*8 8

A REAL*4, COMPLEX*8 4

A REAL*8, COMPLEX*16 8

A REAL*16, COMPLEX*32 16

A CHARACTER*n n

9.4.3 I Field Descriptor

The I field descriptor is used for conversion between an internal integer data
item and an external decimal integer. It has the following form:

Iw[.m]

The following arguments are used:

007–2362–004 197

MIPSpro Fortran 77 Language Reference Manual

w a nonzero, unsigned integer constant denoting the size of the
external field, including blanks and a sign, if necessary. A minus
sign (-) is always printed on output if the number is negative. If
the number is positive, a plus sign (+) is printed only if SP is in
effect.

m an unsigned integer constant denoting the minimum number of
digits required on output. m is ignored on input. The value of m
must not exceed w; if m is omitted, a value of 1 is assumed.

In an input statement, the I field descriptor reads a field of w characters from
the record, interprets it as an integer constant, and assigns the integer value to
the corresponding I/O list item. The corresponding I/O list element must be of
the INTEGER or LOGICAL data type. The external data must have the form of
an integer constant; it must not contain a decimal point or exponent.

A LOGICAL data type is displayed as either the value 0 (false) or 1 (true).

If the first nonblank character of the external field is a minus sign, the field is
treated as a negative value. If the first nonblank character is a plus sign, or if no
sign appears in the field, the field is treated as a positive value. An all-blank
field is treated as a value of zero.

Table 33 contains input examples.

Table 33. I Field Input Examples

Format External Field Internal Value

i4 3244 3244

i3 -15 -15

i9 213 213

In an output statement, the I field descriptor constructs an integer constant
representing the value of the corresponding I/O list item and writes it to the
right-justified record in an external field w characters long. If the value does
not fill the field, leading blanks are inserted; if the value exceeds the field
width, the entire field is filled with asterisks. If the value of the list item is
negative, the field will have a minus sign as its left most, nonblank character.
The term w must therefore be large enough to provide for a minus sign, when
necessary. If m is present, the external field consists of at least m digits, with
leading zeros, if necessary.

198 007–2362–004

Format Specification [9]

If m is zero, and the internal representation is zero, the external field is filled
with blanks.

Table 34 contains output examples.

Table 34. I Field Output Examples

Format Internal Value External Field

I3 311 311

i4 -311 -311

i5 417 417

i2 7782 **

i3 -213 ***

i4.2 1 01

i4.4 1 0001

i4.0 1

9.4.4 O Field Descriptor

The O field descriptor transfers data values and converts them to octal form. It
has the following form:

Ow[m]

The following arguments are used:

w a nonzero, unsigned integer constant denoting the size of the
external field, including blanks and a sign, if necessary. A minus
sign (-) is always printed on output if the number is negative. If
the number is positive, a plus sign (+) is printed only if SP is in
effect.

m an unsigned integer constant denoting the minimum number of
digits required on output. m is ignored on input. The value of m
must not exceed w; if m is omitted, a value of 1 is assumed.

This repeatable descriptor interprets and assigns data in the same way as the I
field descriptor, except that the external field represents an octal number

007–2362–004 199

MIPSpro Fortran 77 Language Reference Manual

constructed with the digits 0 through 7. On input, if BZ is in effect, embedded
and trailing blanks in the field are treated as zeros; otherwise, blanks are
ignored. On output, S, SP, and SS do not apply.

In an input statement, the field is terminated when a non-octal digit is
encountered. FORTRAN 77 treats embedded and trailing blanks as zeros.

In an input statement, the O field descriptor reads w characters from the record;
the input field must have:

• optional leading blanks

• an optional plus or minus sign

• a sequence of octal digits (0 through 7)

A field that is entirely blank is treated as the value zero.

Table 35 contains examples of O field input values. BN is assumed in effect, and
internal values are expressed in decimal (base 10).

Table 35. O Field Input Examples

Format
External
Field(INTEGER*4) Internal Value

o20 -77 -63

o20 1234 668

o20 177777 65535

o20 100000 32768

In an output statement, the O field descriptor constructs an octal number
representing the unsigned value of the corresponding I/O list element as
follows:

• The number is right justified with leading zeros inserted (if necessary).
FORTRAN 77 inserts leading blanks.

• If w is insufficient to contain all the digits necessary to represent the unsigned
value of the output list item, then the entire field is filled with asterisks.

Table 36 lists examples of O field output.

200 007–2362–004

Format Specification [9]

Table 36. O Field Output Examples

Format
Internal Value
(INTEGER*4) External Field

o20.2 3 03

o20.2 -1 37777777777

o3 -1 ***

o20.2 63 77

O20.2 -2 37777777776

9.4.5 Z Field Descriptor

The Z field descriptor transfers data values and converts them to hexadecimal
form. It has the following form:

Zw[.m]

where w is a nonzero, unsigned integer constant denoting the size of the
external field and m is an unsigned integer constant denoting the minimum
number of digits required on output. m is ignored on input. The value of m
must not exceed w; if m is omitted, a value of 1 is assumed.

This repeatable descriptor interprets and assigns data in the same way as the I
field descriptor, except that the external field represents a hexadecimal number
constructed with the digits 0 through 9 and the letters A through F. On output,
the output list item is interpreted as an unsigned integer value.

In an input statement, the O field descriptor reads w characters from the record.
After embedded and trailing blanks are converted to zeros or ignored, as
applicable, the input field must have

• optional leading blanks

• an optional plus or minus sign

• a sequence of hexadecimal digits (0 through 9, A through F)

A field that is entirely blank is given a value of zero.

Table 37 lists examples of Z field input. BN is assumed in effect, and internal
values are expressed in decimal (base 10).

007–2362–004 201

MIPSpro Fortran 77 Language Reference Manual

Table 37. Z Field Input Examples

Format
External Field
(INTEGER*4) Internal Value

Z10 -ff -255

z10 1234 4660

z10 ffff 65535

z10 8000 32768

Table 38 lists examples of Z field output.

Table 38. Z Field Output Examples

Format
Internal Value
(INTEGER*4) External Field

z10.2 3 03

z10.2 -1 ffffffff

z10.2 63 3f

z10.2 -2 fffffffe

9.4.6 F Field Descriptor

The F field descriptor transfers real values. It has the following form:

Fw.d

where w is a nonzero, unsigned integer constant denoting field width and d is an
unsigned integer constant denoting the number of digits in the fractional part.

The corresponding I/O list element must be of type REAL,
DOUBLE PRECISION, or COMPLEX.

In an input statement, the F field descriptor reads a field of w characters from
the record and, after appropriate editing of leading, trailing, and embedded
blanks, interprets it as an integer or a real constant. It then assigns the real
value to the corresponding I/O list element. If the external field contains an

202 007–2362–004

Format Specification [9]

exponent, the letter E can be omitted as long as the value of the exponent is a
signed integer. If the first nonblank character of the external field is a minus
sign, the field is treated as a negative value. If the first nonblank character is a
plus sign, or if no sign appears in the field, the field is treated as a positive
value. An all-blank field is given a value of zero.

If the field contains neither a decimal point nor an exponent, it is treated as a
real number in which the right most d digits are to the right of the decimal
point, with leading zeros assumed if necessary. If the field contains an explicit
decimal point, the location of that decimal point overrides the location specified
by the value of d in the field descriptor. If the field contains a real exponent, the
effect of any associated scale factor kP (see Section 9.4.10.1, page 210) is
suppressed, and the real exponent is used to establish the magnitude of the
value in the input field before it is assigned to the list element.

Table 39 provides examples of F field input.

Table 39. F Field Input Examples

Format External Field Internal Value

f8.5 123456789 0.12345678E+03

f8.5 -1234.567 -0.123456E+04

f8.5 12.34e+2 0.1234E+02

F5.2 1234567.89 0.12345E+03

In an output statement, the F field descriptor constructs a basic real constant
representing the value of the corresponding I/O list element, rounded to d
decimal positions, and writes it to the record right-justified in an external field
w characters long.

The term w must be large enough to include:

• a minus sign for a negative value or a plus sign (when SP is in effect) for a
positive value

• the decimal point

• d digits to the right of the decimal

If w is insufficiently large, the entire field width is filled with asterisks.
Therefore, w must be > d + 2.

007–2362–004 203

MIPSpro Fortran 77 Language Reference Manual

Table 40 provides examples of F field output.

Table 40. F Field Output Examples

Format Internal Value External Field

F8.5 .12345678E+01 1.23457

f9.3 .87654321E+04 8765.432

F2.1 .2531E+02 **

f10.4 .1234567E+02 12.3457

f5.2 .123456E+03 *****

F5.2 -.4E+00 -0.40

9.4.7 E Field Descriptor

The E field descriptor transfers real values in exponential form. It has the
following form:

Ew.d[Ee]

The following arguments are used with this statement:

w a nonzero, unsigned integer constant denoting field width.

d an unsigned integer constant denoting the number of digits in the
fractional part.

e a nonzero, unsigned integer constant denoting the number of
digits in the exponent part. The e has no effect on input.

The corresponding I/O list element must be of REAL, DOUBLE PRECISION, or
COMPLEX data type.

In an input statement, the E field descriptor interprets and assigns data in
exactly the same way as the F field descriptor.

Table 41 provides examples of E field input.

204 007–2362–004

Format Specification [9]

Table 41. E Field Output Examples

Format External Field Internal Value

e9.3 654321E3 .654321E+06

e12.4 1234.56E-6 .123456E-02

e15.3 12.3456789 .123456789E+02

e12.5 123.4567d+10 .1234567E+13

The E field descriptor treats the D exponent field indicator the same as an E
exponent indicator.

In an output statement, the E field descriptor constructs a real constant
representing the value of the corresponding I/O list element, rounded to d
decimal digits, and writes it to the right-justified record in an external field w
characters long. If the value does not fill the field, leading spaces are inserted; if
the value exceeds the field width, the entire field is filled with asterisks.

When an E field descriptor is used, data output is transferred in a standard
form. This form consists of

• minus sign for a negative value or a plus sign (when SP is in effect) for a
positive value

• digits to the left of the decimal point, if any, or an optional zero

• decimal point

• d digits to the right of the decimal point

• an e + 2-character exponent or a 4-character exponent

The exponent has one of the following forms:

Ew.d E + nn or E –nn if the value of the exponent is in the range of –99
to +99

Ew.d +nnn or –nnn if the value of the exponent is <= –99 or <= +99

Ew.dEe E + n1 n2… ne or E– n1 n2… ne, where n1 n2...ne is the magnitude
of the exponent with leading zeros, if necessary.

The exponent field-width specification is optional; if it is omitted, the exponent
part is as shown above. If the exponent value is too large to be output with the
given value e as shown in the third form above, the entire field is filled with
asterisks.

007–2362–004 205

MIPSpro Fortran 77 Language Reference Manual

The term w must be large enough to include

• a minus sign when necessary (plus signs when SP is in effect)

• all significant digits to the left of the decimal point

• a decimal point

• d digits to the right of the decimal point

• the exponent

Given these limitations and assuming a P edit descriptor is in effect, w is greater
than or equal to d + 7, or greater than or equal to d + e + 5 if e is present.

Table 42 provides examples of E field output.

Table 42. E Field Output Examples

Format Internal Value External Field

E9.2 .987654321E+06 .99E+06

e12.5 .987654321E+06 .98765E+06

e12.3 .69E–5 .690E–05

e10.3 –.5555E+00 –.556E+00

e5.3 .7214E+02 *****

e14.5E4 –.1001E+01 –.10010E+0001

e14.3E6 .123e–06 .123E–000003

9.4.8 D Field Descriptor

The D field descriptor transfers real values in exponential form. It has the
following form:

Dw.d

where w is a nonzero, unsigned integer constant denoting field width and d is an
unsigned integer constant denoting the number of digits in the fractional part.

206 007–2362–004

Format Specification [9]

The corresponding I/O list element must be of REAL, DOUBLE PRECISION, or
COMPLEX data type.

In an input statement, the D field descriptor interprets and assigns data in
exactly the same way as the F field descriptor.

Table 43 provides examples of D field input.

Table 43. D Field Input Examples

Format External Field Internal Value

d10.2 12345 .12345E+03

d10.2 123.45 .12345E+03

d15.3 123.4567891D+04 .1234567891E+07

In an output statement, the D field descriptor is the same as the E field
descriptor, except the D exponent field indicator replaces the E indicator.

Table 44 provides examples of D field output.

Table 44. D Field Output Examples

Format Internal Value External Field

d14.3 123d - 04 .123D - 04

d23.12 123456789123d + 04 .123456789123D + 04

d9.5 14D + 01 *********

9.4.9 G Field Descriptor

A G field descriptor is used for the conversion and editing of real data when the
magnitude of the data is unknown. On output, the G field descriptor produces
a field as do the F or E field descriptors, depending on the value. On input, the
G field descriptor interprets and assigns data in exactly the same way as the F
field descriptor. It has the following form:

Gw.d[Ee]

007–2362–004 207

MIPSpro Fortran 77 Language Reference Manual

The following arguments are used with this descriptor:

w a nonzero, unsigned integer constant denoting field width.

d an unsigned integer constant denoting the number of digits in the
basic value part.

e a nonzero, unsigned integer constant denoting the number of
digits in the exponent part.

The corresponding I/O list element must be of REAL, DOUBLE PRECISION, or
COMPLEX data type.

In an input statement, the G field descriptor interprets and assigns data in
exactly the same way as the F field descriptor.

In an output statement, the G field descriptor constructs a real constant
representing the value of the corresponding I/O list element rounded to d
decimal digits and writes it to the right-justified record in an external field w
characters long. The form in which the value is written is a function of the
magnitude of the value m, as described in Table 31, page 190. In the table, n is 4
if Ee was omitted from the G field descriptor; otherwise n is e + 2.

Table 45 illustrates the effect of data magnitude on G format conventions.

Table 45. Effect of Data Magnitude on G Format Conventions

Data Magnitude Effective Format

m < 0.1 Ew.d[Ee]

0.1 ≤ m < 1.0 F(w-n).d, n (’")

1.0 ≤ m < 10.0 F(w-n).(d-1) (’’)

10 d-2 ≤ m < 10d-1 F(w-n).1, n (’’)

10 d-1 ≤ m < 10d F(w-n).0n (’’)

m ≥ 10d Ew.d[Ee]

The term w must be large enough to include

• a minus sign for a negative value or a plus sign (when SP is in effect) for a
positive value

• a decimal point

• d digits in the basic value part

208 007–2362–004

Format Specification [9]

• either a 4-character or e + 2-character exponent part

Given these limitations, w must be d + 7 or d + e + 5.

Table 46 provides examples of G field output.

Table 46. G Field Output Examples

Format Internal Value External Field

g13.6 .1234567E-01 .1234567E-01

g13.6 —.12345678E00 —.123457

g13.6 .123456789E+01 1.23457

g13.6 .1234567890E+02 12.3457

g13.6 .12345678901E+03 123.457

g13.6 —.123456789012E+04 –1234.57

g13.6 .1234567890123E+05 12345.7

g13.6 .12345678901234E+06 123457.

g13.6 -.123456789012345E+07 –.123457E+07

For comparison, the examples in Table 47 use the same values with an
equivalent F field descriptor.

Table 47. Field Comparison Examples

Format Internal Value External Field

f13.6 .1234567E-01 .012346

f13.6 -.12345678E00 –.123457

f13.6 .123456789E+01 1.234568

f13.6 .1234567890E+02 12.345679

f13.6 .12345678901E+03 123.456789

f13.6 -.123456789012E+04 –1234.567890

f13.6 .1234567890123E+05 12345.678901

007–2362–004 209

MIPSpro Fortran 77 Language Reference Manual

Format Internal Value External Field

f13.6 .12345678901234E+06 123456.789012

F13.6 -.123456789012345E+07 *************

9.4.10 P Edit Descriptor

The P edit descriptor specifies a scale factorand has the following form:

kP

where k is an optionally signed integer constant called the scale factor.

A P edit descriptor can appear anywhere in a format specification but must
precede the first field descriptor that is to be associated with it. For example:

kPFw.d kPEw.d kPD w.d kPGw.d

The value of k must not be greater than d + 1, where d is the number of digits
in the Ew.d, Dw.d, or Gw.d output fields.

9.4.10.1 Scale Factor

The scale factor, k, determines the appropriate editing as follows:

• For input with F, E, D, and G editing (provided there is no exponent in the
field) and F output editing, the magnitude represented by the external field
equals the magnitude of the internal value multiplied by 10k.

• For input with F, E, D, and G editing containing a real exponent, the scale
factor has no effect.

• For output with E and D editing, the basic value part is multiplied by 10k

and the real exponent is reduced by k.

• For output with G editing, the scale factor has no effect unless the data to be
edited is outside the range that permits F editing. If the use of E editing is
required, the effect of the scale factor is the same as E output editing. (See
Real Type in Chapter 2.

On input, if no exponent is given, the scale factor in any of the above field
descriptors multiplies the data by 10-k and assigns it to the corresponding I/O
list element. For example, a 2P scale factor multiplies an input value by .01. A
–2P scale factor multiplies an input value by 100. However, if the external field

210 007–2362–004

Format Specification [9]

contains an explicit exponent, the scale factor has no effect. Table 48 gives
examples of scale factors.

Table 48. Scale Factor Examples

Format External Field Internal Value

3pe10.5 " 37.614" .37614E-01

3PE10.5 " 37.614E2" .37614E+04

-3pe10.5 " 37.614" .37614e+05

On output, the effect of the scale factor depends on the type of field descriptor
associated with it.

For the F field descriptor, the value of the I/O list element is multiplied by 10k

before transfer to the external record: a positive scale factor moves the decimal
point to the right; a negative scale factor moves the decimal point to the left.
The value represented is 10k multiplied by the internal value.

For output with the E or D field descriptor, the basic real constant part of the
external field is multiplied by 10k and the exponent is reduced by k. The value
represented is unchanged. A positive scale factor moves the decimal point to
the right and decreases the exponent; a negative scale factor moves the decimal
point to the left and increases the exponent. In summation,

k > 0 moves the decimal point k digits to the right.

k < 0 moves the decimal point k digits to the left.

k = 0 leaves the decimal point unchanged.

Table 49 provides scale format output examples.

Table 49. Scale Format Output Examples

Format Internal Value External Field

1PE12.3 –.270139E+03 2.701E+0 2

1PE12.2 –270139E+03 2.70E+02

-1pe12.2 –.270139E+03 0.03E+04

007–2362–004 211

MIPSpro Fortran 77 Language Reference Manual

On output, the effect of the scale factor for the G field descriptor is suspended if
the magnitude of the output data is within the range permitting F editing
because the G field descriptor supplies its own scaling function. The G field
descriptor functions as an E field descriptor if the magnitude of the data value
is outside its range. In this case, the scale factor has the same effect as the E
field descriptor.

On output under F field descriptor control, a scale factor actually alters the
magnitude of the value represented, multiplying or dividing it by ten. On
output, a scale factor under E, D, or G field descriptor control merely alters the
form in which the value is represented.

If you do not specify a scale factor with a field descriptor, a scale factor of zero
is assumed at the beginning of the execution of the statement. Once a scale
factor is specified, it applies to all subsequent F, E, D, and G field descriptors in
the same format specification, unless another scale factor appears. A scale factor
of zero can be reinstated only with an explicit P specification.

9.4.11 L Edit Descriptor

The L edit descriptor is used for logical data. The specified I/O list item must
be of type LOGICAL. It has the following form:

Lw

where w is a nonzero, unsigned integer constant denoting field width.

For input, the field must consist of optional blanks followed by an optional
decimal point followed by a T (for true) or F (for false). The T or F can be
followed by additional characters that have no effect. The logical constants
.TRUE. and .FALSE. are acceptable input forms.

For output, the field consists of w – 1 blanks followed by a T or an F, for true
and false, respectively, according to the value of the internal data. Table 50
shows L field examples.

212 007–2362–004

Format Specification [9]

Table 50. L Field Examples

Format Internal Value External Field

L5 .TRUE. T

l1 .FALSE. F

The L edit descriptor can also be used to process integer data items. All
nonzero values are displayed as .TRUE. and all zero values as .FALSE..

9.4.12 A Edit Descriptor

The A edit descriptor is used for editing character or Hollerith data. It has the
form

A[w]

where w is a nonzero, unsigned integer constant denoting the width, in number
of characters, of the external data field. If w is omitted, the size of the I/O list
item determines the length w.

The corresponding I/O list item can be any data type. If it is character data
type, character data is transmitted. If it is any other data type, Hollerith data is
transmitted.

In an input statement, the A edit descriptor reads a field of w characters from
the record without interpretation and assigns it to the corresponding I/O list
item. The maximum number of characters that can be stored depends on the
size of the I/O list item. For character I/O list elements, the size is the length of
the character variable, character substring reference, or character array element.
For numeric and logical I/O list elements, the size depends on the data type, as
shown in Table 51.

Table 51. I/O List Element Sizes

I/O List Element Maximum Number of Characters

LOGICAL*1 1

LOGICAL*2 2

LOGICAL*4 4

007–2362–004 213

MIPSpro Fortran 77 Language Reference Manual

I/O List Element Maximum Number of Characters

LOGICAL*8 8

INTEGER*1 (BYTE) 1

INTEGER*2 2

INTEGER*4 4

INTEGER*8 8

REAL*4 (REAL) 4

REAL*8 (DOUBLE PRECISION) 8

REAL*16 16

COMPLEX*8 (COMPLEX) 8

COMPLEX*16 (DOUBLE COMPLEX) 16

COMPLEX*32 32

If w is greater than the maximum number of characters that can be stored in the
corresponding I/O list item, only the right most characters of the field are
assigned to that element. The left most excess characters are ignored. If w is less
than the number of characters that can be stored, w characters are assigned to
the list item and left justified, and trailing blanks are added to fill it to its
maximum size.

9.4.12.1 Input Example

The following table lists A field input examples.

Table 52. A Field Input Examples

Format External Field Internal Value Representation

A6 FACE # "#" (CHARACTER*1)

A6 FACE # "E #" (CHARACTER*3)

A6 FACE # "FACE #" (CHARACTER*6)

A6 FACE # "FACE #" (CHARACTER*8)

A6 FACE # "#" (LOGICAL*1)

A6 FACE # "#" (INTEGER*2)

214 007–2362–004

Format Specification [9]

Format External Field Internal Value Representation

A6 FACE # "CE #" (REAL*4)

A6 FACE # "FACE #" (REAL*8)

In an output statement, the A field descriptor writes the contents of the
corresponding I/O list item to the record as an external field w characters long.
If w is greater than the list item size, the data appears in the field, right
justified, with leading blanks. If w is less than the list element, only the left
most w characters from the I/O list item are transferred.

Table 53 lists A field output examples.

Table 53. A Field Output Examples

Format Internal Value External Field

A6 "GREEK" GREEK

A6 "FRENCH" FRENCH

A6 "PORTUGUESE" PORTUG

If you omit w in an A field descriptor, a default value is supplied based on the
data type of the I/O list item. If it is character type, the default value is the
length of the I/O list element. If it is numeric or logical data type, the default
value is the maximum number of characters that can be stored in a variable of
that data type as described for input.

9.4.13 Repeat Counts

The I, O, Z, F, E, D, G, L, and A field descriptors can be applied to a number of
successive I/O list items by preceding the field descriptor with an unsigned
integer constant, called the repeat count. For example, 4F5.2 is equivalent to
F5.2, F5.2, F5.2, F5.2.

Enclosing a group of field descriptors in parentheses, and preceding the
enclosed group with a repeat count, repeats the entire group. Thus, 2(I6,F8.4) is
equivalent to I6,F8.4,I6,F8.4.

007–2362–004 215

MIPSpro Fortran 77 Language Reference Manual

9.4.14 H Field Descriptor

The H field descriptor is used for output of character literal data. It has the
following form:

nHxxx… x

The following arguments are used:

n is an unsigned integer constant denoting the number of
characters that comprise the character literal.

x comprises the character literal and consists of n characters,
including blanks.

In an output statement, the H field descriptor writes the n characters following
the letter H from the field descriptor to the record as an external field n
characters long. The H field descriptor does not correspond to an output list
item.

Table 54 lists examples of H edit description output.

Table 54. H Edit Description Output Examples

Specification External Field

6HAb CdE Ab CdE

1H9 9

4H’a2’ ’a2’

An H field descriptor must not be encountered by a READ statement.

9.4.15 Character Edit Descriptor

A character edit descriptor has one of the following forms:

’X1 X2 … Xn’ X1 X2 … Xn

where X1 X2 … Xn are members of the Fortran character set forming a valid
character literal. The width of the output field is the number of characters
contained in the character literal, excluding the enclosing apostrophes or

216 007–2362–004

Format Specification [9]

quotation marks. The character edit descriptor does not correspond to an
output list item. Within a character edit descriptor delimited by apostrophes, an
apostrophe is represented by two successive apostrophe characters. Within a
character edit descriptor delimited by quotation marks, a quotation mark is
represented by two successive quotation mark characters.

9.4.15.1 Example

The following table lists character edit description examples.

Table 55. Character Edit Description Examples

Output Specification External Field

’sum =’ sum =

.sum = sum =

.don’t don’t

’here’’s the answer’ here’s the answer

’he said, "yes"’ he said, "yes"

.he said, ""yes"" he said, "yes"

A character edit descriptor must not be encountered by a READ statement.

Use of quotation marks as a character edit descriptor is an enhancement to
FORTRAN 77.

9.4.16 Q Edit Descriptor

The Q edit descriptor is used to determine the number of characters remaining
to be read from the current input record. It has the form:

Q

When a Q descriptor is encountered during the execution of an input statement,
the corresponding input list item must be type integer. Interpretation of the Q
edit descriptor causes the input list item to be defined with a value that
represents the number of character positions in the formatted record remaining
to be read. Therefore, if c is the character position within the current record of
the next character to be read and the record consists of len characters, then the
item is defined with the value

007–2362–004 217

MIPSpro Fortran 77 Language Reference Manual

n = max (len - c + 1, 0)

If no characters have yet been read, then n=len, the length of the record. If all
the characters of the record have been read (c >len), then n is zero.

The Q edit descriptor must not be encountered during the execution of an
output statement.

9.4.16.1 Input Example

The following is an example of Q edit description input:

INTEGER N

CHARACTER LINE * 80

READ (5, 100) N, LINE (1:N)

100 FORMAT (Q, A)

9.5 Edit Descriptor Reference

After each I, O, Z, F, E, D, G, L, A, H, or character edit descriptor is processed,
the file is positioned after the last character read or written in the current record.

The X, T, TL, and TR descriptors specify the position at which the next character
will be transmitted to or from the record. They do not change any characters in
the record already written or by themselves affect the length of the record.

If characters are transmitted to positions at or after the position specified by a
T, TL, TR, or X edit descriptor, positions skipped and not previously filled are
filled with blanks.

9.5.1 X Edit Descriptor

The X edit descriptor specifies a position forward (to the right) of the current
position. It is used to skip characters on the external medium for input and
output. It has the following form:

nX

where n is a nonzero, unsigned integer constant denoting the number of
characters to be skipped.

218 007–2362–004

Format Specification [9]

9.5.2 T Edit Descriptor

The T edit descriptor specifies an absolute position in an input or output record.
It has the following form:

Tn

where n indicates that the next character transferred to or from the record is the
nth character of the record.

9.5.3 TL Edit Descriptor

The TL edit descriptor specifies a position to the left of the current position. It
has the following form:

TLn

where n indicates that the next character to be transferred from or to the record
is the nth character to the left of the current character. The value of n must be
greater than or equal to one.

If n is the current character position, then the first character in the record is
specified.

9.5.4 TR Edit Descriptor

The TR edit descriptor specifies a position to the right of the current position. It
has the following form:

TRn

where n indicates that the next character to be transferred from or to a record is
the nth character to the right of the current character. The value of n must be
greater than or equal to one.

007–2362–004 219

MIPSpro Fortran 77 Language Reference Manual

9.5.5 BN Edit Descriptor

The BN edit descriptor causes the processor to ignore blank characters in a
numeric input field and to right justify the remaining characters, as though the
blanks that were ignored were leading blanks. It has the following form:

BN

The BN descriptor affects only I, O, Z, F, E, D, and G editing and then only on
input fields.

9.5.6 BZ Edit Descriptor

The BZ edit descriptor causes the processor to treat all the embedded and
trailing blank characters it encounters within a numeric input field as zeros. It
has the following form:

BZ

The BZ descriptor affects only I, O, Z, F, E, D, and G editing and then only on
input fields.

9.5.7 SP Edit Descriptor

The SP edit descriptor specifies that a plus sign be inserted in any character
position that normally contains an optional plus sign and whose actual value is
0. It has the following form:

SP

The SP descriptor affects only I, F, E, D, and G editing and then only on output
fields.

9.5.8 SS Edit Descriptor

The SS edit descriptor specifies that a plus sign should not be inserted in any
character position that normally contains an optional plus sign. It has the
following form:

220 007–2362–004

Format Specification [9]

SS

The SS descriptor affects only I, F, E, D, and G editing and then only on output
fields.

9.5.9 S Edit Descriptor

The S edit descriptor resets the option of inserting plus characters (+) in
numeric output fields to the processor default. It has the following form:

S

The S descriptor counters the action of either the SP or the SS descriptor by
restoring to the processor the discretion of producing plus characters (+) on an
optional basis. The default is to SS processing; the optional plus sign is not
inserted when S is in effect.

The S descriptor affects only I, F, E, D, and G editing and then only on output
fields.

9.5.10 Colon Descriptor

The colon character (:) in a format specification terminates format control if no
more items are in the I/O list. The colon descriptor has no effect if I/O list
items remain.

9.5.11 $ Edit Descriptor

The $ edit descriptor suppresses the terminal line-mark character at the end of
the current output record. It has the following form:

$

The $ descriptor is nonrepeatable and is ignored when encountered during
input operations.

007–2362–004 221

MIPSpro Fortran 77 Language Reference Manual

9.5.11.1 Output Example

print 100, ’enter a number:’

100 format (1x, a, $)
read *, x

9.6 Complex Data Editing

A complex value consists of an ordered pair of real values. If an F, E, D, or G
field descriptor is encountered, and the next I/O list item is complex, then the
descriptor is used to edit the real part of the complex item. The next field
descriptor is used to edit the imaginary part.

If an A field descriptor is encountered on input or output, and the next I/O list
item is complex, then the A field descriptor is used to translate Hollerith data to
or from the external field and the entire complex list item. The real and
imaginary parts together are treated as a single I/O list item.

In an input statement with F, E, D, or G field descriptors in effect, the two
successive fields are read and assigned to a complex I/O list element as its real
and imaginary parts, respectively.

Table 56 contains examples of complex data editing input.

Table 56. Complex Data Editing Input Examples

Format External Field Internal Value

f8.5,f8.5 1234567812345.67 (.12345678E+03,.1234567E+05)

f9.1,f9.3 734.432E8123456789 (.734432E+11,.123456789E+06)

In an output statement with F, E, D, or G field descriptors in effect, the two
parts of a complex value are transferred under the control of successive field
descriptors. The two parts are transferred consecutively, without punctuation or
spacing, unless the format specification states otherwise.

Table 57 contains examples of complex data editing output.

222 007–2362–004

Format Specification [9]

Table 57. Complex Data Editing Output Examples

Format Internal Value External Field

2f8.5 (.23547188E+01,.3456732E+01) 2.35472 3.45673

e9.2,",",e5.3 (.47587222E+05,.56123E+02) 0.48E+06, *****

9.6.1 Carriage Control

A formatted record can contain a prescribed carriage-control character as the
first character of the record. The carriage-control character determines vertical
spacing in printing when the CARRIAGECONTROL keyword of the OPEN
statement is set to FORTRAN (as described in Section 8.12, page 152 of Chapter
8, page 137.) Table 58, page 223 lists the carriage-control characters.

Table 58. Carriage-Control Characters

Character Effect on Spacing

Blank Single space

0 Double space

1 To first line of next page

+ No vertical spacing

$ Output starts at the beginning of the next line; carriage
return at the end of the line is suppressed

ASCII NUL Overprints with no advance; does not return to the left
margin after printing

The carriage-control character is not printed, and the remaining characters, if
any, are printed on one line beginning at the left margin. If there are no
characters in the record, the vertical spacing is one line and no characters will
be printed in that line.

9.6.2 Slash Editing

A slash (/) placed in a format specification terminates input or output for the
current record and initiates a new record. For example

007–2362–004 223

MIPSpro Fortran 77 Language Reference Manual

WRITE (6,40) K,L,M,N,O,P

40 FORMAT (3I6.6/I6,2F8.4)

is equivalent to

WRITE (6,40) K,L,M
40 FORMAT (3I6.6)

WRITE (6,50) N,O,P

50 FORMAT (I6,2F8.4)

On input from a sequential-access file, the current portion of the remaining
record is skipped, a new record is read, and the current position is set to the first
character of the record. n slashes in succession cause n – 1 records to be skipped.

On output to a file connected for sequential access, a new record is created and
becomes the last and current record of the file. Also, n slashes in succession
cause n – 1 blank lines to be generated.

Through the use of two or more successive slashes in a format specification,
entire records can be skipped for input and records containing no characters
can be generated for output. If the file is an internal file, or a file connected for
direct access, skipped records are filled with blank characters on output.

n slashes at the beginning or end of a format specification result in n skipped or
blank records. On input and output from a direct-access file, the record number
is increased by one and the file is positioned at the beginning of the record that
has that record number. This record becomes the current record.

9.7 Interaction Between I/O List and Format

The beginning of formatted data transfer using a format specification initiates
format control. Each action of format control depends on information jointly
provided by the following:

• the next descriptor contained in the format specification

• the next item in the I/O list, if one exists

If an I/O list specifies at least one list item, at least one repeatable descriptor
must exist in the format specification. Note that an empty format specification
of the form ()can be used only if no list items are specified; in this case, one
input record is skipped or one output record containing no characters is written.

Except for a field descriptor preceded by a repeat specification, red, or a format
specification preceded by a repeat specification, r (flist), a format specification is

224 007–2362–004

Format Specification [9]

interpreted from left to right (see Section 9.4.13, page 215). Note that an omitted
repeat specification is treated the same as a repeat specification whose value is
one.

To each repeatable field descriptor interpreted in a format specification, there
corresponds one item specified by the I/O list, except that a list item of type
complex is treated as two real items when an F, E, D, or G field descriptor is
encountered. To each P, X, T, TL, TR, S, SP, SS, H, BN, BZ, slash (/), colon (:),
dollar sign ($), or character edit descriptor, there is no corresponding item
specified by the I/O list, and format control communicates information directly
to the record.

Whenever format control encounters a repeatable edit descriptor in a format
specification, it determines whether there is another item in the I/O list. If there
is such an item, it transmits appropriately edited information between the item
and the record, and then format control proceeds. If there is no other item,
format control terminates.

If format control encounters the right most parenthesis of a complete format
specification and no items remain in the list, format control terminates.
However, if there are more items in the list, the file is positioned at the
beginning of the next record, and format control then reverts to the beginning
of the format specification terminated by the last preceding right parenthesis ()).
If there is no such preceding right parenthesis ()), format control reverts to the
first left parenthesis (() of the format specification. If such a reversion occurs,
the reused portion of the format specification must contain at least one
repeatable edit descriptor. If format control reverts to a parenthesis that is
preceded by a repeat specification, the repeat specification is reused. Reversion
of format control, of itself, has no effect on the scale factor (see Section 9.4.8,
page 206) the S, SP, or SS edit descriptor sign control, or the BN or BZ edit
descriptor blank control.

9.8 List-Directed Formatting

List-directed formatting allows formatted input and output without specifying a
format specification. An asterisk (*) is used as a format identifier to invoke a
list-directed format.

List-directed formatting can be applied to both internal and external files.

007–2362–004 225

MIPSpro Fortran 77 Language Reference Manual

9.8.1 List-Directed Input

The characters in one or more list-directed records form a sequence of values
and value separators. Each value is either a constant, or a null value or has one
of the following forms:

r*c
r*

The following arguments are used:

r is a nonzero, unsigned integer constant denoting the number of
successive appearances of c or null values.

c is a constant.

The r* form is equivalent to r successive null values. Neither form can contain
embedded blanks, except where permitted within the constant c.

Data values can be separated with one of the following value separators:

• A comma optionally preceded and followed by one or more contiguous
blanks.

• A slash (/) optionally preceded and followed by one or more contiguous
blanks. A slash encountered by a list-directed input statement ends the
execution of the input statement after assignment of the previous value, if
any; any remaining list items are treated as if null values were supplied. A
slash is not used as a separator on output.

• One or more contiguous blanks between two constants or following the last
constant. Blanks used in the following manner are not treated as part of any
value separator in a list-directed input record:

– blanks within a character constant

– embedded blanks surrounding the real or imaginary part of a complex
constant

– leading blanks in the first record read by each execution of a list-directed
input statement, unless immediately followed by a slash or comma

The end of a record has the effect of a blank, except when it appears within a
character constant. Two or more consecutive blanks are treated as a single
blank, unless they occur within a character constant.

There are three differences between the input forms acceptable to format
specifiers for a data type and those used for list-directed formatting. A data

226 007–2362–004

Format Specification [9]

value must have the same type as the list item to which it corresponds. Blanks
are not interpreted as zeros. Embedded blanks are only allowed in constants of
character or complex type.

Rules governing input forms of list items for list-directed formatting are

• For data of type real or double precision, the input form is the same as a
numeric input field for F editing that has no fractional part, unless a decimal
point appears within the field.

• For data of type complex, the input form consists of an ordered pair of
numeric constants separated by a comma and enclosed in a pair of
parentheses. The first numeric constant is the real part of the complex value,
while the second constant is the imaginary part. Each of the constants
representing the real and imaginary parts may be preceded or followed by
blanks. The end of a record may occur between the real part and the comma
or between the comma and the imaginary part.

• For data of type logical, the input form must not include either slashes or
commas among the optional characters allowed for L editing.

• For data of type character, the input form is a character constant: a non
empty string of characters enclosed in apostrophes or quotation marks.
When apostrophes are used as the character constant delimiter, each
apostrophe within the apostrophes is represented by a pair of apostrophes
without an intervening blank or end of record.

When quotation marks are used as the character constant delimiter, each
quotation mark within the quotation marks is represented by a pair of
quotation marks without an intervening blank or end of record. Character
constants can be continued on as many records as needed. Constants are
assigned to list items as in character assignment statements.

• A null value is specified by two successive value separators, by the r* form,
or by not having any characters before the first value separator in the first
record read by the execution of the list-directed statement. A null value has
no effect on the corresponding list item. A single null value may represent
an entire complex constant but cannot be used as either the real or
imaginary part alone.

• You can specify commas as value separators in the input record when
executing a formatted read of noncharacter variables. The commas override
the field lengths in the input statement. For example, the following
specification:

(i10, f20.10,i4)

007–2362–004 227

MIPSpro Fortran 77 Language Reference Manual

reads the following record correctly:

-345,.05e-3,12

9.8.2 List-Directed Output

The form of the values produced is the same as that required for input, except
as noted below:

• Logical output constants are T for the value true and F for the value false.

• Integer output constants are produced as for an Iw edit descriptor, where w
depends on whether the list item is INTEGER*2, INTEGER*4, or
INTEGER*8.

• For complex constants, the end of a record will occur between the comma
and the imaginary part only if the entire constant is as long as, or longer
than, an entire record.

• Produced character constants are not delimited by apostrophes or quotation
marks, are not preceded or followed by a value separator, and have each
internal apostrophe represented externally by one apostrophe and each
internal quotation mark represented by one quotation mark. A blank
character for carriage control is inserted at the beginning of a record
containing the continuation of a character constant.

• Slashes and null values are not produced, but each record begins with a
blank character to provide carriage control if the record is printed.

• Two noncharacter values in succession in the same record will be separated
by a value separator of one or more blanks. No value separator is produced
before or after a character value.

228 007–2362–004

Statement Functions and Subprograms [10]

Statement functions and subprograms are program units that receive control
when referenced or called by a statement in a main program or another
subprogram. A subprogram is either written by the user or supplied with the
Fortran compiler. This chapter discusses user-written subprograms;
compiler-supplied functions and subroutines are discussed in Appendix A,
page 249

This chapter discusses the following topics:

• an overview of syntax and rules, Section 10.1, page 229

• statement functions, Section 10.2, page 230

• parameter passing, Section 10.3, page 232

• function and subroutine subprograms, Section 10.4, page 235

• the FUNCTION statement, Section 10.5, page 237

• the SUBROUTINE statement, Section 10.6, page 240

• the ENTRY statement, Section 10.7, page 241

• the INCLUDE statement, Section 10.8, page 243

10.1 Overview

This chapter explains the syntax and rules for defining three types of program
units:

• Statement functions consist of a single arithmetic statement defined within the
main program unit or a subprogram.

• Function subprograms consist of one or more statements defined external to
the main program unit. They are invoked when referenced as a primary in
an expression contained in another program unit.

• Subroutine subprograms consist of one or more program statements defined as
external to the main program unit. It is invoked when referenced in a CALL
statement (see Chapter 6, page 107) in another program unit.

007–2362–004 229

MIPSpro Fortran 77 Language Reference Manual

This chapter also explains the syntax and rules for the FUNCTION,
SUBROUTINE, ENTRY, and INCLUDE statements, that are used to specify
function and subroutine subprograms.

10.2 Statement Functions

A statement function definition is similar in form to an arithmetic, logical, or
character assignment statement. The name of a statement function is local to
the program unit in which it is defined. A statement function definition must
appear only after the specification statements and before the first executable
statement of the program unit in which it appears.

10.2.1 Defining a Statement Function

A statement function statement has the following form:

fun ([d [,d]...]) = e

The following arguments are used:

fun a symbolic name of the function.

d a dummy argument.

e an expression.

Each dummy argument d is a variable name called a statement function
dummy argument. The statement function dummy argument list indicates the
order, number, and type of arguments for the statement function. All arguments
need not have the same data type. A specific dummy argument may appear
only once in the list. A variable name that serves as a dummy argument can
also be the name of a local variable or common block in the same program unit.

Each primary of the expression e can include

• constants

• symbolic names of constants

• variable references

• array element references

• library function references

230 007–2362–004

Statement Functions and Subprograms [10]

• references to other statement functions

• function subprogram references

• dummy subprogram references

• an expression composed of the above forms and enclosed in parentheses

If a statement function dummy argument name is the same as the name of
another entity, the appearance of that name in the expression of a function is a
reference to the statement function dummy argument. A dummy argument that
appears in a FUNCTION or SUBROUTINE statement may be referenced in the
expression of a function statement with the subprogram.

A dummy argument that appears in an ENTRY statement may be referenced in
the expression of the statement function only if the dummy argument name
appears in a FUNCTION, SUBROUTINE, or ENTRY statement preceding the
statement function definition.

10.2.2 Referencing a Statement Function

A statement function is referenced by using its name with actual arguments, if
any, enclosed in parentheses. The form of a statement function reference is the
following:

fun([exp[,exp]...])

where fun is a statement function name and exp is an expression.

10.2.3 Operational Conventions and Restrictions

Expressions must agree in order, number, and type with the corresponding
dummy arguments. An expression can be any expression except a character
expression involving concatenation in which the length attribute of one of the
operands is specified with an asterisk.

Execution of a statement function reference results in

• Evaluation of actual arguments (exp) that are expressions.

• Association of actual arguments with their corresponding dummy
arguments.

• Evaluation of the expression e in the statement function definition.

007–2362–004 231

MIPSpro Fortran 77 Language Reference Manual

• Type conversion of the resulting value to the data type of the function, if
necessary. This value is returned as the value of the statement function
reference.

• A statement function can be referenced only in the program unit that
contains its definition. A statement function can reference another statement
function that has been defined before the referencing function but not one
that is defined after the referencing function.

• A statement function name is local to the program unit and must not be
used as the name of any other entity in the program unit except the name of
a common block.

• The symbolic name used to identify a statement function cannot appear as a
symbolic name in any specification statement except a type statement (to
specify the type of the function) or as the name of a common block in the
same program unit.

• A dummy argument of a statement function must not be redefined or
become undefined through a function subprogram reference in the
expression of a statement function.

• The symbolic name of a statement function cannot be an actual argument
and must not appear in an EXTERNAL statement.

• A statement function in a function subprogram cannot contain a function
reference to the name of an entry to the function subprogram.

• The length specification of a statement function dummy argument of type
character must be an integer constant.

10.3 Parameter Passing

Parameter passing involves function and subroutine arguments. This section
explains the difference between actual and dummy arguments. It also describes
the special intrinsic functions %VAL, %REF and %LOC.

10.3.1 Arguments

Dummy arguments are used in function subprograms, subroutine programs,
and statement functions to indicate the types of actual arguments and whether
each argument is a single value, an array of values, a subprogram, or a
statement label. Dummy argument names must not appear in EQUIVALENCE,
DATA, PARAMETER, SAVE, INTRINSIC, or COMMON statements, except as

232 007–2362–004

Statement Functions and Subprograms [10]

common block names. Dummy argument names must not be the same as the
subprogram names in FUNCTION, SUBROUTINE, ENTRY, or statement function
statements in the same program unit.

Actual arguments are the items that are specified in the call to the function.
Actual arguments are bound to the corresponding dummy arguments when the
subprogram call is reached. Actual arguments can change with each call to the
subprogram. Of course, the types of the paired actual argument and the
dummy argument must match. The types do not have to match if the actual
argument is a subroutine name or an alternate return specifier.

When a function or a subroutine reference is executed, an association is
established between the corresponding dummy and actual arguments. The first
dummy argument becomes associated with the first actual argument, the
second dummy argument becomes associated with the second actual argument,
and so on.

An array can be passed to a function or subroutine as an actual argument if the
corresponding dummy argument is also an array declared in a DIMENSION or
type statement but not in a COMMON statement. The size of the array in the
calling program unit must be smaller than or equal to the size of the
corresponding dummy array in the subprogram. The array in the function or
subroutine can also have adjustable dimensions.

10.3.2 Special Intrinsic Functions

Four special intrinsic functions provide communication with non-Fortran
programs that use different parameter-passing conventions than Fortran. See
the MIPSpro Fortran 77 Programmer’s Guide for information about
communicating with programs written in other languages.

Use the functions %VAL, %REF, and %DESCR to qualify arguments within an
argument list. The built-in function %LOC can be applied to any espression.

10.3.2.1 %VAL

The %VAL function causes an argument to be passed as a 64-bit value (normally
arguments are passed by address). The function extends arguments smaller
than 64 bits to 64-bit signed values. The function has the following syntax:

%VAL(a)

007–2362–004 233

MIPSpro Fortran 77 Language Reference Manual

where a is an expression that is valid as an argument at this point in the
parameter list. %VAL can only be applied to arithmetic data types. It cannot be
applied to CHARACTER*n values (n>1) nor to RECORD names.

10.3.2.2 %REF

The %REF function passes an argument by reference. It has the syntax

%REF(a)

where a is an expression that is valid as an argument at this point in the
parameter list. Fortran normally passes arguments by reference (that is, passes
the address of the parameter). Hence, there is no difference in the generated
code for a parameter %REF(a) and the parameter a alone. However, %REF is
useful as documentation, and may become effective when code is ported to a
different system with other parameter conventions.

10.3.2.3 %DESCR

The built-in %DESCR function has no functionality, but is included for
compatibility with VAX Fortran. It has the syntax

%DESCR(a)

where a is an expression that is valid as an argument at this point in the
parameter list.

10.3.2.4 %LOC

The built-in %LOC function returns a 64-bit run-time address of its argument. It
has the syntax

%LOC(a)

where a is an expression. %LOC can be applied to any expression. Its result is
the address of the expression value, which is usually assigned to a POINTER
variable, but which can be assigned to any INTEGER*8, or which can be passed
as a parameter.

234 007–2362–004

Statement Functions and Subprograms [10]

10.4 Function and Subroutine Subprograms

A function subprogram consists of a FUNCTION statement followed by a
program body that terminates with an END statement. It has the following
characteristics:

• defined external to the main program unit

• referenced as a primary in an expression contained in another program unit

• considered part of the calling program

A Fortran program can call a subroutine subprogram written in any language
supported by the RISCompiler System.

A subroutine subprogram consists of a SUBROUTINE statement, followed by a
program body that terminates with an END statement (see Chapter 6, page 107)
and is defined external to the main program.

10.4.1 Referencing Functions and Subroutines

A function subprogram is referenced as a primary in an expression, while a
subroutine subprogram is referenced with a CALL statement (see Chapter 6,
page 107) contained in another program. A reference to a function subprogram
has the following form:

fun([a[,a]...])

where fun is a symbolic name of the function subprogram and a is an actual
argument.

If fun is of type character, then its length must not have been specified with an
asterisk (*) in the calling subprogram.

You can write subroutines that call themselves either directly or through a chain
of other subprograms if the automatic storage of variables is in effect. The
-automatic command line option, by default, causes the automatic storage of
variables. See the f77(1) manual page for details.

The actual arguments comprise an argument list and must agree in order,
number, and type with the corresponding dummy arguments in the referenced
function or subroutine. An actual argument in a function reference must be one
of the following:

007–2362–004 235

MIPSpro Fortran 77 Language Reference Manual

• an expression, except a character expression, involving concatenation of an
operand whose length is specified by an asterisk

• an array name

• an intrinsic function name

• an external function or subroutine name

• a dummy function or subroutine name

• a Hollerith constant

An actual argument may be a dummy argument that appears in a dummy
argument list within the subprogram containing the reference.

The use of a dummy name allows actual names to be passed through several
levels of program units.

If a Hollerith constant is used as an actual argument in a CALL statement, the
corresponding dummy argument must not be a dummy array and must be of
arithmetic or logical data type.

The same rules apply to the actual arguments in a subroutine reference, except
that in addition to the forms described above, the actual dummy argument of a
subroutine may be an alternate return specifier. An alternate return specifier
has the form *s, where s is the statement label of an executable statement
appearing in the same program unit as the CALL statement.

For example,

SUBROUTINE MAXX(A,B,*,*,C)

The actual argument list passed in the CALL must include alternate return
arguments in the corresponding positions of the form *s. The value specified
for s must be the label of an executable statement in the program unit that
issued the call.

An actual argument can also be omitted by specifying only the comma
delimiters without an argument in between. In this case, the omitted argument
is treated as if it were %VAL (0).

Note that the use of a subroutine name or an alternate return specifier as an
actual argument is an exception to the rule requiring agreement of type. If an
external function or subroutine or dummy name is used as an actual argument,
the name must appear in an EXTERNAL statement. If an intrinsic name is used
as an actual argument, the name must appear in an INTRINSIC statement and

236 007–2362–004

Statement Functions and Subprograms [10]

must be one of those listed in Appendix A, page 249, as a specific name. It
must not be one of the intrinsics for type conversion, for choosing the largest or
smallest value, or for lexical relationship.

10.4.2 Executing Functions and Subroutines

Execution of an reference to a function subprogram and subroutine subprogram
results in

• evaluation of expressions that constitute actual arguments

• association of actual arguments from the calling program unit with the
corresponding dummy arguments in the subprogram

• execution of the statements comprising the subprogram based on the
execution control sequence of the program unit

• return of program control to the calling program unit when either a RETURN
statement is encountered or the execution control flows into the END
statement

The name of a function subprogram must appear as a variable at least once in
the subprogram and must be defined at least once during each subprogram
execution. Once the variable is defined, it may be referenced elsewhere in the
subprogram and become redefined. When program control is returned to the
calling program, this value is returned as the value of the function reference. If
this variable is a character variable with a length specified by an asterisk, it may
not appear as an operand in a concatenation operation but can be defined in an
assignment statement.

A subroutine does not return an explicit value to the point of invocation in the
calling program unit. However, both the subroutine and the function can return
values to the calling program unit by defining their dummy arguments during
execution.

10.5 FUNCTION

The FUNCTION statement is the first statement of a function subprogram. It
specifies the symbolic name of the function and its type.

007–2362–004 237

MIPSpro Fortran 77 Language Reference Manual

10.5.1 Syntax

[typ] FUNCTION fun [*len] ([d[,d]…])

The following arguments are used:

typ optionally specifies the data type of the function name, which
determines the value returned to the calling program. The
following forms for typ are allowed:

BYTE

REAL*8

DOUBLE COMPLEX
INTEGER

REAL*16

LOGICAL

INTEGER*1

DOUBLE PRECISION
LOGICAL*1

INTEGER*2

COMPLEX

LOGICAL*2

INTEGER*4

COMPLEX*8
LOGICAL*4

INTEGER*8

COMPLEX*16

LOGICAL*8

REAL
COMPLEX*32

CHARACTER [*len]
REAL*4

fun is a symbolic name of the function subprogram in which the
FUNCTION statement appears.

len specifies the length of the data type; fun must be a nonzero,
unsigned constant. Do not specify len when the function is type
CHARACTER with an explicit length following the keyword
CHARACTER.

238 007–2362–004

Statement Functions and Subprograms [10]

d is a dummy argument and can be a variable, array name, or
dummy subprogram name.

10.5.2 Rules for Use

• A FUNCTION statement must appear only as the first statement of a function
subprogram.

• The type specification may be omitted from the FUNCTION statement, and
the function name may be specified in a type statement in the same program
unit. If neither of these options is used, the function is implicitly typed.

• The symbolic name of a function is a global name and must not be the same
as any other global or local name, except a variable name, in the function
subprogram.

• If the function type is specified in the FUNCTION statement, the function
name must not appear in a type statement.

• In the type specification CHARACTER, len can have any of the forms allowed
in a CHARACTER statement, except that an integer constant expression must
not include the symbolic name of a constant. If the name of the function is
type character, then each entry name in the function subprogram must be
type character. If the length is declared as an asterisk, all such entries must
have a length declared with an asterisk.

• A function specified as a subprogram may be referenced within any other
subprogram or in the main program of the executable program.

10.5.3 Restrictions

• A function subprogram cannot contain a BLOCK DATA, SUBROUTINE, or
PROGRAM statement.

• A function name cannot have its type explicitly specified more than once in
a program unit.

• In a function subprogram, a dummy argument name cannot appear in an
EQUIVALENCE, PARAMETER, SAVE, INTRINSIC, DATA, or COMMON
statement, except as a common block name.

• A character dummy argument with a length specified as an asterisk must
not appear as an operand for concatenation, except in a character
assignment statement.

007–2362–004 239

MIPSpro Fortran 77 Language Reference Manual

• The compiler system permits recursion if the automatic storage of variables
is in effect. By default, the -automatic command line option (described in
Chapter 11, page 245) causes the automatic storage of variables.

10.6 SUBROUTINE

A SUBROUTINE statement must be the first statement of a subroutine
subprogram.

10.6.1 Syntax

SUBROUTINE sub[([d [,d]...])]

The following arguments are used:

sub a symbolic name of the subroutine program unit.

d a dummy argument and may be a variable name, array name,
dummy subprogram name, or asterisk. The asterisk denotes an
alternate return.

10.6.2 Rules for Use

• A SUBROUTINE statement must be the first statement of a subroutine
subprogram.

• If there are no dummy arguments, use either of the following forms:

SUBROUTINE sub
SUBROUTINE sub()

• One or more dummy arguments can become defined or redefined to return
results.

• The symbolic name of a subroutine is global and cannot be the same as any
other global or local name in the program unit.

• A CALL statement within the body of a subroutine may reference the
subroutine itself (recursion) if the automatic storage attribute is specified.
See Chapter 4, page 59, for more information.

240 007–2362–004

Statement Functions and Subprograms [10]

10.6.3 Restrictions

• A subroutine subprogram cannot contain a BLOCK DATA, FUNCTION, or
PROGRAM statement.

• In a subroutine, a dummy argument name is local to the program unit and
cannot appear in an EQUIVALENCE, SAVE, INTRINSIC, DATA, or COMMON
statement, except as a common block name.

• A character dummy argument whose length is specified as an asterisk
cannot appear as an operand for concatenation, except in a character
assignment statement.

10.7 ENTRY

The ENTRY statement specifies a secondary entry point in a function or
subroutine subprogram. It allows a subprogram reference to begin with a
particular executable statement within the function or subroutine subprogram
in which the ENTRY statement appears.

10.7.1 Syntax

ENTRY en[([d[,d]...])]

where en is a symbolic name of the entry point and d is a dummy argument.

If there are no dummy arguments, use either of the following forms:

ENTRY en
ENTRY en()

10.7.2 Method of Operation

Each ENTRY statement in a function or subroutine provides an additional name
you can use to invoke that subprogram. When you invoke it with one of these
names, it begins execution at the first executable statement following the entry
statement that provided the name.

Within a function, each of its names (the one provided by the FUNCTION
statement, plus the ones provided by the ENTRY statements) acts like a variable.
By the time the function returns, you must have defined the function return
value by assigning it to one of these variables.

007–2362–004 241

MIPSpro Fortran 77 Language Reference Manual

If any of these variables is of type character, all must be of type character;
otherwise, the variables need not all have the same data type. Such variables
are in effect equivalenced, and therefore

• You need not assign the return value to the name you used to invoke the
function; instead, you can assign it to any of the names of the same data
type.

• If you assign the return value a name that does not have the same data type
as the one you used to invoke the function, then the return value becomes
undefined.

10.7.3 Rules for Use

• The ENTRY statement may appear anywhere within a function subprogram
after the FUNCTION statement or within a subroutine after a SUBROUTINE
statement.

• A subprogram can have one or more ENTRY statements.

• The entry name en in a function subprogram can appear in a type statement.

• In a function, a local variable with the same name as one of the entries can
be referenced.

• A subprogram can call itself directly if the automatic storage of variables is
in effect. By default, the -automatic command line option causes the
automatic storage of variables.

• The order, number, type, and names of the dummy arguments in an ENTRY
statement can be different from the dummy arguments in the FUNCTION,
SUBROUTINE, or other ENTRY statements in the same subprogram. However,
each reference to a function or subroutine must use an actual argument list
that agrees in order, number, and type with the dummy argument list in the
corresponding FUNCTION, SUBROUTINE, or ENTRY statement.

10.7.4 Restrictions

• An ENTRY statement must not appear between a block IF statement and its
corresponding END IF statement or between a DO statement and the
terminal statement of the DO loop.

• Within a subprogram, an entry name may not also serve as a dummy
argument in a FUNCTION, SUBROUTINE, or ENTRY statement or be in an
EXTERNAL statement.

242 007–2362–004

Statement Functions and Subprograms [10]

• In a function subprogram, an entry name may also be a variable name
provided the variable name is not in any statement (except a type statement)
preceding the ENTRY statement of that name. After the ENTRY statement,
the name can be used as a variable name.

• In a function subprogram, if an entry name is of type character, each entry
name and the name of the function subprogram must also be of type
character and must have the same length declared. If any are of length (*),
then all must be of length (*).

• In a subprogram, a name that appears as a dummy argument in an ENTRY
statement is subject to the following restrictions:

– It must not appear in an executable statement preceding that ENTRY
statement unless it also appears in a FUNCTION, SUBROUTINE, or ENTRY
statement preceding the executable statement.

– It must not appear in the expression of a statement function unless the
name is also a dummy argument of the statement function. It can appear
in a FUNCTION or SUBROUTINE statement or in an ENTRY statement
preceding the statement function.

10.8 INCLUDE

The INCLUDE statement incorporates the contents of a designated file into the
Fortran compilation directly following this statement.

10.8.1 Syntax

INCLUDE "filename"

where filename is a character string constant that specifies the file to be included.

10.8.2 Rules for Use

• An INCLUDE statement can appear anywhere within a program unit.

• On encountering an INCLUDE statement, the compiler stops reading
statements from the current file and reads the statements in the included
file. At the end of the included file, the compiler resumes reading the
current file with the statement following the INCLUDE statement.

007–2362–004 243

MIPSpro Fortran 77 Language Reference Manual

10.8.3 Search Path

On encountering an INCLUDE statement, the compiler searches:

1. for a file called filename in the same directory as the source file

2. the directories specified in any -I command line options (in the order
specified)

3. in /usr/include

10.8.4 Restrictions

• An included file or module cannot begin with a continuation line. Each
Fortran statement must be completely contained within a single file.

• An INCLUDE statement cannot contain continuation lines. The first non
comment line following the INCLUDE statement cannot be a continuation
line.

• An INCLUDE statement cannot be labeled. It must not have a statement
number in the statement number field.

244 007–2362–004

Compiler Options [11]

This chapter describes options that affect source programs both during
compilation and at run time. Execute these options using the following:

• OPTIONS statement—specified in the source code as the first statement of a
program unit, discussed in

• inline options—individual statements embedded in the source code,
discussed in Section 11.2, page 246

• $INCLUDE statement—includes Fortran source statements from an external
library into a program, discussed in Section 11.3, page 248

The command line options, which are parameters specified as part of the f77
command when the compiler is invoked, are explained in the MIPSpro Fortran
77 Programmer’s Guide.

This chapter contains the following sections:

11.1 OPTIONS Statement

The OPTIONS statement has the following syntax:

OPTIONS option[option...]

where option can be any of the following

/I4

/NOF77

/CHECK=BOUNDS

/NOI4

/EXTEND_SOURCE

/CHECK=NOBOUNDS

/F77

/NOEXTEND_SOURCE

007–2362–004 245

MIPSpro Fortran 77 Language Reference Manual

These options perform the same function as the like-named command line
options. Specifying option overrides a command line option when they are the
same. option must always be preceded by a slash (/).

Use the following rules when specifying an OPTIONS statement:

• The statement must be the first statement in a program unit and must
precede the PROGRAM, SUBROUTINE, FUNCTION, and BLOCK DATA
statements.

• option remains in effect only for the duration of the program unit in which it
is defined.

11.2 Inline Options

The syntax for inline compiler options consists of a dollar sign ($) in column 1
of a source record, followed by the name of the compiler option in either
uppercase or lowercase, with no intervening blanks or other separators.

When an inline compiler option is encountered in a source file, that option is
put into effect beginning with the source statement following the inline
compiler option. The sections that follow describe the inline compiler options
supported by the compiler.

The compiler does not support the following options, but, for compatibility
with other compilers, it does recognize them:

ARGCHECK NOTBINARY

BINARY SEGMENT

CHAREQU SYSTEM

NOARGCHECK XREF

When it encounters one of these options, the compiler issues a warning
message and treats it as a comment line.

11.2.1 $COL72 Option

The $COL72 option instructs the compiler to process all subsequent Fortran
source statements according to the fixed-format 72-column mode described
under Section 1.6, page 7. The compiler command line option -col72 has an
identical effect on a global basis.

246 007–2362–004

Compiler Options [11]

11.2.2 $COL120 Option

The $COL120 option instructs the compiler to process all subsequent Fortran
source statements according to the fixed-format 120-column mode. The compiler
command line option -col120 has an identical effect on a global basis.

11.2.3 $INT2 Option

The $INT2 option instructs the compiler to make INTEGER*2 the default
integer type and LOGICAL*1 the default logical type. This convention stays in
effect for the remainder of the program and involves any symbolic names that
are assigned a data type either by implicit typing rules or by using INTEGER or
LOGICAL declaration statements without a type length being specified. This
option is similar to the -i2 command line option except for the effect on the
default logical type.

11.2.4 $INT8 Option

The $INT8 option instructs the compiler to make INTEGER*8 the default
integer type and LOGICAL*1 the default logical type. This convention stays in
effect for the remainder of the program and involves any symbolic names that
are assigned a data type either by implicit typing rules or by using INTEGER or
LOGICAL declaration statements without a type length being specified. This
option is similar to the -i8 command line option except for the effect on the
default logical type.

11.2.5 $LOG2 Option

The $LOG2 option instructs the compiler to make LOGICAL*2 instead of
LOGICAL*4 the default type for LOGICAL. This convention stays in effect for
the remainder of the program and involves any symbolic names that are
assigned a data type either by implicit typing rules or by using the LOGICAL
declaration statement without a type length being specified

11.2.6 $LOG8 Option

The $LOG8 option instructs the compiler to make LOGICAL*8 instead of
LOGICAL*4 the default type for LOGICAL. This convention stays in effect for
the remainder of the program and involves any symbolic names that are
assigned a data type either by implicit typing rules or by using the LOGICAL
declaration statement without a type length being specified.

007–2362–004 247

MIPSpro Fortran 77 Language Reference Manual

11.3 $INCLUDE Statement

The $INCLUDE statement includes source lines from secondary files in the
current primary source program. This feature is especially useful when two or
more separately compiled source programs require an identical sequence of
source statements (for example, data declaration statements).

The form of the $INCLUDE statement is

$INCLUDE filename

where filename is either an absolute or relative UNIX file name. If the filename
is relative and no file exists by that name relative to the current working
directory, an error is given and no attempt is made to search an alternative
path. The material introduced into the source program by the $INCLUDE
statement will follow the $INCLUDE statement, beginning on the next line.
Nesting of $INCLUDE statements is permitted within the constraints of the
operating system.

11.3.1 Search Path

On encountering the $INCLUDE statement, the compiler searches:

1. for a file called filename in the same directory as the source file

2. the directories specified in any -I command line options (in the order
specified)

3. in /usr/include

248 007–2362–004

Intrinsic Functions [A]

This appendix summarizes the intrinsic functions that can be called from a
Fortran program. Each function is also listed on a reference page; for example,
AINT is listed on the aint(3f) reference page.

In addition to the standard intrinsic functions discussed here, MIPSpro Fortran
77 also supports extended intrinsic subroutines and a few extended intrinsic
functions. See the MIPSpro Fortran 77 Programmer’s Guide for documentation
about these extended features.

This appendix discusses the following topics:

• generic and specific names, in Section A.1, page 249

• conventions and restrictions, in Section A.2, page 250

• functions, in Section A.3, page 250

A.1 Generic and Specific Names

A generic name is the name given to a class of objects. Intrinsic functions that
perform the same mathematical function, such as square root, are given a single
name. For example, the generic name of the square root function is SQRT; this
function has six specific names for different data types: SQRT, DSQRT, QSQRT,
CSQRT, ZSQRT, and CQSQRT (see Table 59, page 250). However, you can use the
generic name SQRT regardless of the data type of the arguments.

An intrinsic function preceded by the letters CD is equivalent to the generic
function with the same base name, except that the arguments must be of type
DOUBLE COMPLEX.

Intrinsic functions starting with II are equivalent to generic functions with the
same base name, except that the arguments must of type INTEGER*2. Similarly,
arguments to intrinsic functions starting with JI must be type INTEGER*4: for
example, IIAND, IIQINT, IIQNNT, JIQINT, JIQNNT.

A function reference can be used as a primary in an expression. The following
example involves referencing an intrinsic function:

X = SQRT(B**2-4*A*C)

The result of a function becomes undefined when its arguments are not
mathematically defined or exceed the numeric range of the processor.

007–2362–004 249

MIPSpro Fortran 77 Language Reference Manual

A.2 Operational Conventions and Restrictions

For most intrinsic functions, the data type of the result of the intrinsic function is
the same as the arguments. If two or more arguments are required or permitted,
then all arguments must be of the same type. An IMPLICIT statement does not
change the data type of a specific or generic name of an intrinsic function.

If an intrinsic function name is used as an actual argument in an external
procedure reference, the name must be one of the specific names and must
appear in an INTRINSIC statement. However, names of intrinsic functions for
type conversion, for lexical relationship, and for choosing the smallest or largest
value cannot be used as actual arguments.

A.3 Table of Functions

Table 59 lists the available intrinsic functions. Operational conventions and
restrictions (other than those already given) are listed at the end of the table.

Table 59. Intrinsic Functions

Function
Number of
Arguments

Generic
Name

Specific
Name Type of Argument Type of Result

Conversion to
INTEGER

1 INTa —
—
—
—
—
—
—
—
IINT
JINT
KINT
IIDINT
JIDINT
KIDINT

INTEGER*1
INTEGER*1
INTEGER*1
INTEGER*2
INTEGER*2
INTEGER*4
INTEGER*4
INTEGER*8
REAL*4
REAL*4
REAL*4
REAL*8
REAL*8
REAL*8

INTEGER*2
INTEGER*4
INTEGER*8
INTEGER*4
INTEGER*8
INTEGER*4
INTEGER*8
INTEGER*8
INTEGER*2
INTEGER*4
INTEGER*8
INTEGER*2
INTEGER*4
INTEGER*8

IIQINT
JIQINT

REAL*16
REAL*16

INTEGER*2
INTEGER*4

250 007–2362–004

Intrinsic Functions [A]

Function
Number of
Arguments

Generic
Name

Specific
Name Type of Argument Type of Result

—
—
—
—
—
—
—
—
—

COMPLEX*8
COMPLEX*8
COMPLEX*8
COMPLEX*16
COMPLEX*16
COMPLEX*16
COMPLEX*32
COMPLEX*32
COMPLEX*32

INTEGER*2
INTEGER*4
INTEGER*8
INTEGER*2
INTEGER*4
INTEGER*8
INTEGER*2
INTEGER*4
INTEGER*8

1 SHORT —
—
—
—
—
—
—
—
—

INTEGER*1
INTEGER*2
INTEGER*4
REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
COMPLEX*32

INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2

1 LONG —
—
—
—
—
—
—
—
—

INTEGER*1
INTEGER*2
INTEGER*4
REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
COMPLEX*32

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

1 IFIX IIFIX
JIFIX
KIFIX

REAL*4
REAL*4
REAL*4

INTEGER*2
INTEGER*4
INTEGER*8

1 IDINT IIDINT
JIDINT
KIDINT

REAL*8
REAL*8
REAL*8

INTEGER*2
INTEGER*4
INTEGER*8

1 IQINT IIQINT
JIQINT

REAL*16
REAL*16

INTEGER*2
INTEGER*4

007–2362–004 251

MIPSpro Fortran 77 Language Reference Manual

Function
Number of
Arguments

Generic
Name

Specific
Name Type of Argument Type of Result

Truncation 1 AINT AINT
DINT
QINT

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

Conversion to
REAL

1 REAL —
FLOATI
FLOATJ
FLOATK
—
SNGL
SNGLQ
—
—
—

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
COMPLEX*32

REAL*4
REAL*4
REAL*4
REAL*4
REAL*4
REAL*4
REAL*4
REAL*4
REAL*4
REAL*4

1 FLOAT —
FLOATI
FLOATJ
FLOATK

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

REAL*4
REAL*4
REAL*4
REAL*4

1 SNGL —
FLOATI
FLOATJ
FLOATK
REAL
—
SNGLQ

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8
REAL*16

REAL*4
REAL*4
REAL*4
REAL*4
REAL*4
REAL*4
REAL*4

Conversion to
DOUBLE
PRECISION

1 DBLE —
—
—
—
DBLE
—
DBLEQ

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8
REAL*16

REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL*8

—
—
—

COMPLEX*8
COMPLEX*16
COMPLEX*32

REAL*8
REAL*8
REAL*8

252 007–2362–004

Intrinsic Functions [A]

Function
Number of
Arguments

Generic
Name

Specific
Name Type of Argument Type of Result

1 DFLOAT —
DFLOTI
DFLOTJ
DFLOTK
DFLOATK

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
INTEGER*8

REAL*8
REAL*8
REAL*8
REAL*8
REAL*8

Conversion to
REAL*16

1 QEXT —
—
—
QEXT
QEXTD
—
—
—
—

INTEGER*1
INTEGER*2
INTEGER*4
REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
COMPLEX*32

REAL*16
REAL*16
REAL*16
REAL*16
REAL*16
REAL*16
REAL*16
REAL*16
REAL*16

Integer-to-
REAL*16
conversion

1 QFLOAT —
—
—

INTEGER*2
INTEGER*4
INTEGER*8

REAL*16
REAL*16
REAL*16

Conversion to
COMPLEX

1 or 2
1 or 2
1 or 2
1 or 2
1 or 2
1 or 2
1 or 2
1
1
1

CMPLX —
—
—
—
—
—
—
—
—
—

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
COMPLEX*32

COMPLEX*8
COMPLEX*8
COMPLEX*8
COMPLEX*8
COMPLEX*8
COMPLEX*8
COMPLEX*8
COMPLEX*8
COMPLEX*8
COMPLEX*8

Complex
conjugate

1 CONJG CONJG
DCONJG
QCONJG

COMPLEX*8
COMPLEX*16
COMPLEX*32

COMPLEX*8
COMPLEX*16
COMPLEX*32

007–2362–004 253

MIPSpro Fortran 77 Language Reference Manual

Function
Number of
Arguments

Generic
Name

Specific
Name Type of Argument Type of Result

Conversion to
double COMPLEX

1 or 2
1 or 2
1 or 2
1 or 2
1 or 2
1 or 2
1 or 2
1
1
1

DCMPLX —
—
—
—
—
—
—
—
—
—

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
COMPLEX*32

COMPLEX*16
COMPLEX*16
COMPLEX*16
COMPLEX*16
COMPLEX*16
COMPLEX*16
COMPLEX*16
COMPLEX*16
COMPLEX*16
COMPLEX*16

Conversion to
quad COMPLEX

1 or 2
1 or 2
1 or 2
1 or 2
1 or 2
1 or 2
1 or 2
1
1
1

QCMPLX —
—
—
—
—
—
—
—
—
—

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
COMPLEX*32

COMPLEX*32
COMPLEX*32
COMPLEX*32
COMPLEX*32
COMPLEX*32
COMPLEX*32
COMPLEX*32
COMPLEX*32
COMPLEX*32
COMPLEX*32

Conversion to
character

1 CHAR —
—
—
—
—

LOGICAL*1
INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

CHARACTER
CHARACTER
CHARACTER
CHARACTER
CHARACTER

Maximum value 2 or more MAX —
IMAX0
JMAX0
KMAX0
AMAX1
DMAX1
QMAX1

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8
REAL*16

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8
REAL*16

MAX0 —
IMAX0
JMAX0
KMAX0

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

254 007–2362–004

Intrinsic Functions [A]

Function
Number of
Arguments

Generic
Name

Specific
Name Type of Argument Type of Result

MAX1 IMAX1
JMAX1
KMAX1

REAL*4
REAL*4
REAL*4

INTEGER*2
INTEGER*4
INTEGER*8

AMAX0 —
AIMAX0
AJMAX0
AKMAX0

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

REAL*4
REAL*4
REAL*4
REAL*4

Minimum value 2 or more MIN —
IMIN0
JMIN0
KMIN0
AMIN1
DMIN1
QMIN1

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8
REAL*16

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8
REAL*16

MIN0 —
IMIN0
JMIN0
KMIN0

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

MIN1 IMIN1
JMIN1
KMIN1

REAL*4
REAL*4
REAL*4

INTEGER*2
INTEGER*4
INTEGER*8

AMIN0 —
AIMIN0
AJMIN0
AKMIN0

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

REAL*4
REAL*4
REAL*4
REAL*4

Nearest integer 1 NINTb ININT
JNINT
KNINT
IIDNNT
JIDNNT
KIDNNT
IIQNNT
JIQNNT
KIQNNT

REAL*4
REAL*4
REAL*4
REAL*8
REAL*8
REAL*8
REAL*16
REAL*16
REAL*16

INTEGER*2
INTEGER*4
INTEGER*8
INTEGER*2
INTEGER*4
INTEGER*8
INTEGER*2
INTEGER*4
INTEGER*8

007–2362–004 255

MIPSpro Fortran 77 Language Reference Manual

Function
Number of
Arguments

Generic
Name

Specific
Name Type of Argument Type of Result

ANINT ANINT
DNINT
QNINT

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

IDNINT IIDNNT
JIDNNT
KIDNNT

REAL*8
REAL*8
REAL*8

INTEGER*2
INTEGER*4
INTEGER*8

IQNINT IIQNNT
JIQNNT
KIQNNT

REAL*16
REAL*16
REAL*16

INTEGER*2
INTEGER*4
INTEGER*8

Zero-Extend
functions

1 ZEXT IZEXT
—
—
—
JZEXT
—
—
—
—
—
KZEXT
—
—
—
—
—
—
—

LOGICAL*1
LOGICAL*2
INTEGER*1
INTEGER*2
LOGICAL*1
LOGICAL*2
LOGICAL*4
INTEGER*1
INTEGER*2
INTEGER*4
LOGICAL*1
LOGICAL*2
LOGICAL*4
LOGICAL*8
INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*2
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*8
INTEGER*8
INTEGER*8
INTEGER*8
INTEGER*8
INTEGER*8
INTEGER*8
INTEGER*8

Absolute value 1 ABS —
IIABS
JIABS
KIABS
ABS
DABS
QABS
CABS
CDABS
ZABS
CQABS

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
COMPLEX*16
COMPLEX*32

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
COMPLEX*16
COMPLEX*32

256 007–2362–004

Intrinsic Functions [A]

Function
Number of
Arguments

Generic
Name

Specific
Name Type of Argument Type of Result

1 IABSc —
IIABS
JIABS
KIABS

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

Remaindering 2 MODd —
IMOD
JMOD
KMOD
AMOD
DMOD
QMOD

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8
REAL*16

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8
REAL*16

Transfer of sign 2 SIGN —
IISIGN
JISIGN
KISIGN
SIGN
DSIGN
QSIGN

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8
REAL*16

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8
REAL*16

2 ISIGNe —
IISIGN
JISIGN
KISIGN

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

Positive difference 2 DIM —
IIDIM
JIDIM
KIDIM
DIM
DDIM
QDIM

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8
REAL*16

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8
REAL*4
REAL*8
REAL*16

2 IDIM —
IIDIM
JIDIM
KIDIM

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

DOUBLE
PRECISION
product of REALs

2 DPROD REAL*4 REAL*8

007–2362–004 257

MIPSpro Fortran 77 Language Reference Manual

Function
Number of
Arguments

Generic
Name

Specific
Name Type of Argument Type of Result

REAL*16 product
of two REAL*8

2 QPROD REAL*8 REAL*16

Length of
character entry

1 LEN CHARACTER INTEGER*4

Index of a
substring

2 INDEXf CHARACTER INTEGER*4

Character (ASCII
value of 1-byte
character
argument)

1 ICHAR —
—
—

CHARACTER
CHARACTER
CHARACTER

INTEGER*2
INTEGER*4
INTEGER*8

Logically greater
than or equal

2 LGE CHARACTER LOGICAL*4

Logically greater
than

2 LGT CHARACTER LOGICAL*4

Logically less than
or equal

2 LLE CHARACTER LOGICAL*4

Logically less than 2 LLTg CHARACTER LOGICAL*4

Imaginary part of
complex number

1 IMAG AIMAG
DIMAG
QIMAG

COMPLEX*8
COMPLEX*16
COMPLEX*32

REAL*4
REAL*8
REAL*16

Real part of
complex number

1 REAL REAL
DREAL
QREAL

COMPLEX*8
COMPLEX*16
COMPLEX*32

REAL*4
REAL*8
REAL*16

Square root 1 SQRT SQRTh

DSQRT
QSQRT
CSQRT
CDSQRT
ZSQRT
CQSQRT

REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
COMPLEX*16
COMPLEX*32

REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
COMPLEX*16
COMPLEX*32

258 007–2362–004

Intrinsic Functions [A]

Function
Number of
Arguments

Generic
Name

Specific
Name Type of Argument Type of Result

Exponential 1 EXP EXP
DEXP
QEXP
CEXP
CDEXP
ZEXP
CQEXP

REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
COMPLEX*16
COMPLEX*32

REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
COMPLEX*16
COMPLEX*32

Natural logarithm 1 LOG ALOGi

DLOG
QLOG
CLOG
CDLOG
ZLOG
CQLOG

REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
COMPLEX*16
COMPLEX*32

REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
COMPLEX*16
COMPLEX*32

Common
logarithm

1 LOG10 ALOG10
DLOG10
QLOG10

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

Sine 1 SIN SIN
DSIN
QSIN
CSIN
CDSIN
ZSIN
CQSIN

REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
COMPLEX*16
COMPLEX*32

REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
COMPLEX*16
COMPLEX*32

Sine (degree) 1 SINDj SIND
DSIND
QSIND

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

Cosine 1 COS COS
DCOS
QCOS
CCOS
CDCOS
ZCOS
CQCOS

REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
COMPLEX*16
COMPLEX*32

REAL*4
REAL*8
REAL*16
COMPLEX*8
COMPLEX*16
COMPLEX*16
COMPLEX*32

Cosine (degree) 1 COSD COSD
DCOSD
QCOSD

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

007–2362–004 259

MIPSpro Fortran 77 Language Reference Manual

Function
Number of
Arguments

Generic
Name

Specific
Name Type of Argument Type of Result

Tangent 1 TAN TAN
DTAN
QTAN

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

Tangent (degree) 1 TAND TAND
DTAND
QTAND

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

Arcsine 1 ASINk,l,m ASIN
DASIN
QASIN

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

Arcsine (degree) 1 ASINDn ASIND
DASIND
QASIND

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

Arccosine 1 ACOS ACOS
DACOS
QACOS

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

Arccocsine
(degree)

1 ACOSD ACOSD
DACOSD
QACOSD

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

Arctangent 1 ATANo ATAN
DATAN
QATAN

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

Arctangent
(degree)

1 ATANDp ATAND
DATAND
QATAND

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

Arctangent 2 ATAN2q,r ATAN2
DATAN2
QATAN2

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

Arctangent
(degree)

2 ATAN2D ATAN2D
DATAN2D
QATAN2D

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

Hyperbolic
sine

1 SINH SINH
DSINH
QSINH

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

260 007–2362–004

Intrinsic Functions [A]

Function
Number of
Arguments

Generic
Name

Specific
Name Type of Argument Type of Result

Hyperbolic
cosine

1 COSH COSH
DCOSH
QCOSH

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

Hyperbolic
tangent

1 TANH TANH
DTANH
QTANH

REAL*4
REAL*8
REAL*16

REAL*4
REAL*8
REAL*16

Bitwise AND 2 IAND —
IIAND
JIAND
KIAND

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

Bitwise inclusive
OR

2 IOR —
IIOR
JIOR
KIOR

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

Bitwise
complement

1 NOT —
INOT
JNOT
KNOT

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

Bitwise exclusive
OR

2 IEOR —
IIEOR
JIEOR
KIEOR

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

Bitwise logical
shift

2 ISHFT —
IISHFT
JISHFT
KISHFT

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

Bitwise circular
shift

2 ISHFTC —
IISHFTC
JISHFTC
KISHFTC

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

Bit extraction 3 IBITS —
IIBITS
JIBITS
KIBITS

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

007–2362–004 261

MIPSpro Fortran 77 Language Reference Manual

Function
Number of
Arguments

Generic
Name

Specific
Name Type of Argument Type of Result

Bit set 2 IBSET —
IIBSET
JIBSET
KIBSET

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

Bit test 2 BTEST —
BITEST
BJTEST
BKTEST

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

LOGICAL*4
LOGICAL*2
LOGICAL*4
LOGICAL*8

Bit clear 2 IBCLR —
IIBCLR
JIBCLR
KIBCLR

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

INTEGER*1
INTEGER*2
INTEGER*4
INTEGER*8

The following notes apply to this table:

• a INT, IFIX, IDINT and IQINT return the default INTEGER precision, which
can then be assigned to any integer type.

• b When NINT or IDNINT is specified as an argument in a subroutine call
or function reference, the compiler supplies either an INTEGER*2 or an
INTEGER*4 function depending on the -i2 command line option. See the
MIPSpro Fortran 77 Programmer’s Guide for details.

• c The IABS, ISIGN, IDIM, and integer MOD intrinsics accept either
INTEGER*2 arguments or INTEGER*4 arguments, and the result is the same
type.

• d The result for MOD, AMOD, and DMOD is undefined when the value of
the second argument is zero.

• e If the value of the first argument of ISIGN, SIGN, or DSIGN is zero, the
result is zero.

• f The result of INDEX is an integer value indicating the position in the first
argument of the first substring which is identical to the second argument.
The result of INDEX(’ABCDEF’, ’CD’), for example, would be 3. If no
substring of the first argument matches the second argument, the result is
zero. INDEX and ICHAR return the result type INTEGER*2 if the -i2
compile option is in effect; otherwise, the result type is INTEGER*4.

262 007–2362–004

Intrinsic Functions [A]

• g The character relational intrinsics (LLT, LGT, LEE, and LGE) return result
type LOGICAL*2 if the $log2 compile option is in effect; otherwise, the
result type is LOGICAL*4.

• h The value of the argument of SQRT and DSQRT must be greater than or
equal to zero. The result of CSQRT is the principal value with the real part
greater than or equal to zero. When the real part is zero, the imaginary part
is greater than or equal to zero.

• i The argument of ALOG and DLOG must be greater than zero. The
argument of CLOG must not be (0.,0.). The range of the imaginary part of
the result of CLOG is: -p <imaginary part <p.

• j The argument for SIND, COSD, or TAND must be in degrees and is treated
as modulo 360.

• k The absolute value of the arguments of ASIN, DASIN, ASIND, DASIND,
ACOS, DACOS, ACOSD, and DACSOD must be less than or equal to 1.

• l The range of the result for ASIN and DASIN is –�/2 <result < �/2; the
range of the result for DASIN is 0 < result <� ; and the range of the result of
acos and dacos is less than or equal to one.

• m The result of ASIN, DASIN, ACOS, and DACOS is in radians.

• n The result of ASIND, DASIND, ACOS, DACOSD is in degrees.

• o The result of ATAN, DATAN, ATAN2, and DTAN2 is in radians.

• p The result of ATAND, DATAND, ATAN2D, and DATAN2D is in degrees.

• q If the value of the first argument of ATAN2 or DATAN2 is positive, the
result is positive. When the value of the first argument is zero, the result is
zero if the second argumemt is positive and P if the second argument is
negative. If the value of the first argument is negative, the result is negative.
If the value of the second argument is zero, the aboslute value of the result
is P/2. Both arguments must not have the value zero.

• r Note 3 on this page also applies to ATAN2 and DTAN2D, except for the
range of the result, which is: -180 degrees << result << 180 degrees.

007–2362–004 263

Index

$ edit descriptor, 221
" character, 28
* multiplication operator, 40
+ addition operator, 40
/ division operator, 40

A

A edit descriptor, 213
ACCEPT statement, 138
access methods, 134
actual arguments, 233
adjustable array declarator, 36
aggregate

assignment statements, 34, 103
reference

definition, 33
alphabetic characters, 1
alphanumeric characters, 1
ampersand

in continuation line, 10
.AND. logical operator, 52, 54
arguments

actual, 233
arithmetic assignment statements, 99
arithmetic constants, 19
arithmetic data types, 4
arithmetic expressions, 39

evaluation rules, 44
forms of, 43
relational, 50

arithmetic if, 122
arithmetic operands, 42
arithmetic operators

list of, 40
precedence, 41

array declarators, 35
adjustable, 36

assumed-size, 36
constant, 36

array element name reference
in dimension bound expression, 36

arrays, 34
multidimensional, 76
subscript

values, 38
subscripts, 38

expressions, 38
ASSIGN statement, 104
assignment statements

aggregate, 34, 103
character, 103
conversion rules, 100
definition, 99
logical, 102
statement label, 104
types of, 11

ASSOCIATEVARIABLE specifier
and open, 154

assumed-size array declarator, 36
asterisk

used as format identifier, 187
automatic compiler option, 235, 240
AUTOMATIC statement, 60
auxiliary i/O statements

list of, 137

B

BACKSPACE statement, 139
basic real constant, 22
bit constants, 31
blank characters, 2
blank common storage, 63
BLOCK data statement, 62

007–2362–004 265

MIPSpro Fortran 77 Language Reference Manual

BN edit descriptor, 220
branch logical if, 123
BZ edit descriptor, 220

C

CALL statement, 108
carriage control, 223

and inquire statement, 148
and open statement, 154

character
assignment statements, 103
constants, 28
data type statements, 72
file format

decoding, 142
character edit descriptor, 216
character expressions, 46

relational, 51
character set, 1
character substrings, 47
characters

blank, 2
special, 1

cilist
definition, 176

CLOSE statement, 137, 140
$COL120 inline option, 247
$COL72 inline option, 246
collating sequence, 4, 51
colon descriptor, 221
comment lines, 9
COMMON blocks, 63
common storage, 63

blank, 63
named, 63

compiler options, 245
–backslash, 3
–col120, 8
–col72, 8
–extend_source, 8
–noextend_source, 8

–u, 81
complex

constants, 25
data editing, 222

computed go to statement, 120
concatenation operator, 48
connected unit, 136
constant

integer, 20
optionally signed, 20

constant array declarator, 36
constant expressions

arithmetic, 43
character, 46
integer, 44

constants, 19
arithmetic, 19
basic real, 22
character, 28
complex, 25
double complex, 26
Fortran 90 style integer, 21
hexadecimal integer, 21
logical, 27
octal integer, 21
optionally signed, 19
quad complex, 27
quad precision, 24
real, 23
signed, 19

continuation lines, 10
CONTINUE statement, 110
control

transfer of, 17
control characters, 3
control information list

definition, 176
control statements, 11

list of, 107
conversion rules

for assignment statements, 100
current record, 133

266 007–2362–004

Index

D

D field descriptor, 206
data initialization, 105
DATA statement, 66

and implied-DO, 106
data transfer rules, 184
data transfer statements

list of, 137
data type keywords

synonyms, 70
data type statements, 69
data types, 3, 6

arithmetic, 4
implicit, 4

data typing
implicit, 81

declarations
substructure, 33
typed data, 33

declarators
array, 35

DECODE statement, 142, 161
DEFAULTFILE specifier

and open, 154
DEFINE file statement, 143
DELETE statement, 144
%DESCR function, 233
descriptor parameters

default, 197
descriptors

edit, 195
field, 195
list of, 190
non-repeatable, 189
repeatable, 189

dimension bounds, 36
DIMENSION statement, 74
dimension-bound expression, 36
direct access

READ statement, 159
to files, 135
WRITE statement, 170

disconnecting a unit, 137
division

integer, 46
DO loop

activating, 112
terminal statement, 115

DO statement, 111
effect of –onetrip option, 112
implied, 105

DO while statement, 115
DOUBLE complex, 71
DOUBLE precision, 70
double-complex

constants, 26
dummy arguments, 232

E

E field descriptor, 204
edit descriptors, 195

$, 221
A, 213
BN, 220
BZ, 220
for characters, 216
L, 212
list of, 190
non-repeatable, 189
P, 210
Q, 217
S, 221
SP, 220
SS, 220
T, 219
TL, 219
TR, 219
X, 218

ELSE block, 116
ELSE if block, 117
ELSE if statement, 117
ELSE statement, 115

007–2362–004 267

MIPSpro Fortran 77 Language Reference Manual

ENCODE statement, 145
END do statement, 119
END if statement, 119
END statement, 13, 118, 181
end-of-file specifier, 181
endfile record, 130
ENDFILE statement, 130, 146
– subtraction operator, 40
–backslash compiler option, 3
–col120 compiler option, 8, 247
–col72 compiler option, 8, 247
–extend_source compiler option, 8
–i2 compiler option, 72, 247
–i8 compiler option, 72, 247
–noextend_source compiler option, 8
–old_rl compiler option, 135
–onetrip compiler option, 112

in do statement, 112
–u command line option, 81
–vms_endfile compiler option, 130

effect on endfile statement, 147
ENTRY statement, 15, 241
.EQ. relational operator, 49
EQUIVALENCE statement, 75
.EQV. logical operator, 52, 55
ERR specifier, 181

and close, 141
and delete, 144
and endfile, 146
and inquire, 149
and open, 153

error
return label, 181
specifier, 181

escape sequences, 3
evaluating arithmetic expressions, 44
executable program, 14
executable statement, 11
executing functions, 237
executing subroutines, 237
execution sequence, 16
EXIST specifier

and inquire, 149

exponent
real, 22

exponentiation, 45
expressions

arithmetic, 39
interpreting, 40

arithmetic constant, 43
arithmetic relational, 50
character, 46
character constant, 46
character relational, 51
evaluating

rules for, 56
integer constant, 44
logical, 52

interpreting, 55
parenthenses in

interpreting, 57
relational, 49

extended alphabetic characters, 1
external files, 133
external procedure, 14
EXTERNAL statement, 78

F

F field descriptor, 202
factor

definition, 42
.FALSE. relational operator, 49
field descriptors, 195

D, 206
default parameters, 197
E, 204
F, 202
G, 207
H, 216
I, 197
list of, 190
numeric, 196
O, 199

268 007–2362–004

Index

Z, 201
file

access methods, 134
defining size and structure, 143
definition, 132
external, 133
internal, 133
specifying status, 141

file access
direct, 135
keyed, 136
sequential, 134

file positioning statements
list of, 138

FIND statement, 147
fixed format, 8
FMT specifier, 178
form feed character, 3
format

interaction with input/output list, 224
list-directed, 225
TAB character, 8

format control, 224
format expressions

variable, 192
format specification, 187
format specifier usage, 190
FORMAT statement, 187, 188

general usage, 193
formatted

I/O statements, 131, 185
records, 130

FORMATTED specifier
and inquire, 149

formatted write statement, 174
Fortran 90

integer constants, 21
function

executing, 237
intrinsic

list of, 250
names, 249
referencing, 235

in dimension-bound expression, 36
statement, 230
subprogram, 235

FUNCTION statement, 237

G

G field descriptor, 207
.GE. relational operator, 49
generic function names, 249
GO to statement

computed, 120
symbolic name, 121
unconditional, 119

.GT. relational operator, 49

H

H field descriptor, 216
hexadecimal constants, 21
Hollerith constants, 29

using in data statements, 67

I

I field descriptor, 197
I/O statements, 12, 137

formatted, 131
list-directed, 132
unformatted, 131

I/O status specifier
definition, 181

IF block, 124
IF level, 124
IF statement

arithmetic, 122
branch logical, 123
test conditional, 124

implicit data typing, 4

007–2362–004 269

MIPSpro Fortran 77 Language Reference Manual

disabling, 81
IMPLICIT statement, 4, 79
implied-DO lists, 183

in data statements, 106
syntax, 105

implied-DO variable, 105
INCLUDE statement, 243

order of, 16
search path, 244

$INCLUDE statement, 248
search path, 248

indexed access
file properties, 136
key-field value, 180

indexed read statement, 160
with rewrite statement, 168

indexed write statement, 171
initial point, 133
initialization

of data, 105
inline options, 246

$COL120, 247
$COL72, 247
$INT2, 247
$INT8, 247
$LOG2, 247
$LOG8, 247

input
definition, 129
list-directed, 226

input list, 182
input rules

summary of, 194
input/output

formatted, 185
unformatted, 185

input/output list, 182
interaction with format, 224

input/output statements, 12
list of, 137

INQUIRE statement, 148
and carriagecontrol, 148

$INT2 inline option, 247

$INT2 option, 247
$INT8 inline option, 247
integer

constant, 20
constant expressions, 44
division, 46

integer constants, 20
Fortran 90 style, 21
hexadecimal, 21
octal, 21

internal files, 133
internal read statement, 161
internal write statement, 172
intrinsic functions

list of, 250
result type, 250

INTRINSIC statement, 82
iolist, 182
ios specifier, 181
IOSTAT specifier

and close, 140
and delete, 144
and endfile, 146
and inquire, 149
and open, 153

K

KEY specifier
and open, 155
definition, 180

key value
in open and read, 136

key-field-value specifier
definition, 180

key-of-reference specifier, 180
keyed access

file, 136
with backspace statement, 140

KEYED specifier
and inquire, 150

270 007–2362–004

Index

KEYID specifier, 180
keyword

definition, 10
synonyms, 70

L

L edit descriptor, 212
label, 11

assignment, 104
rules, 11

.LE. relational operator, 49
list-directed

formatting, 225
I/O statements, 132
input, 226
output, 228
READ statement, 163
WRITE statement, 174

%LOC function, 233
$LOG2 inline option, 247
$LOG8 inline option, 247
logical

assignment statements, 102
constants, 27
data in arithmetic expressions, 40
expressions, 52

logical operands, 53
logical factor, 54
logical primary, 54

logical operators
logical disjunct, 55
logical expression, 55
logical term, 54

.LT. relational operator, 49

M

main program, 13
mapped field declarations, 33
MAXREC specifier

and open, 156
mixed-mode expressions

definition, 44
multidimensional arrays, 76

N

named common storage, 63
namelist specifier

definition, 179
NAMELIST statement, 84
namelist-directed read statement

sequential, 165
namelist-directed write statement, 176
names

array, 34
symbolic, 5

.NE. relational operator, 49

.NEQV. logical operator, 52, 55
new line character, 3
next record, 133
NML

definition, 179
non-repeatable edit descriptors, 196
nonexecutable statement, 12
.NOT. logical operator, 52, 54
null character, 3
numeric data types, 69
numeric field decriptors, 196

O

O field descriptor, 199
octal

constants, 21
OPEN statement, 136, 152

and carriagecontrol, 154
operands

arithmetic, 42
logical, 53

007–2362–004 271

MIPSpro Fortran 77 Language Reference Manual

relational, 50
operators

arithmetic, 41
concatenation, 48
relational, 49

optionally signed constant, 19
options, 245

inline, 246
OPTIONS statement, 245
.OR. logical operator, 52, 55
order of execution, 16
order of statements, 15
output

list-directed, 228
output list, 183
output rules, 195

P

P edit descriptor, 210
parameter passing, 232
PARAMETER statement, 19, 84
parentheses

interpreting in expressions, 57
PAUSE statement, 125
POINTER statement, 87
preceding record, 133
primary

definition, 42
PRINT statement, 159
procedure

definition, 14
external, 14

program
executable, 14

program organization, 13
PROGRAM statement, 15, 89
program units, 13

Q

Q edit descriptor, 217
quad-complex

constants, 27
quad-precision

constants, 24
quotation mark, 28

R

READ statement, 136
advantages over decode statement, 142
direct access, 159
indexed, 160
internal, 161
namelist-directed

sequential, 165
relation to find statement, 147
sequential, 162

formatted, 163
list-directed, 163
unformatted, 164

with rewrite statement, 168
reading

definition, 129
READONLY specifier

and open, 156
real

constant, 21
exponent, 22

REC specifier, 179
RECL specifier

and open, 156
record number, 135
record specifier, 179
RECORD statement, 90
records, 32, 129

changing length with –old_rl, 135
definition, 32
endfile, 130

272 007–2362–004

Index

formatted, 130
unformatted, 130

RECORDSIZE specifier
and open, 157

recursion, 241
%REF function, 233
relational expressions, 49

arithmetic, 50
relational operands, 50
repeat counts, 216
repeatable descriptors, 189
result type

intrinsic functions, 250
RETURN statement, 126
REWIND statement, 167

S

S edit descriptor, 221
SAVE statement, 91
scalar reference, 33
scale factor, 210
scope, 7
search path for included files, 244, 248
sequential file access, 134
sequential read statement, 162

formatted, 163
list-directed, 163
namelist-directed, 165

sequential write statement, 172
signed constant, 19
single mode expressions

definition, 44
size

array, 36
slash editing, 223
source program

syntax rules, 7
SP edit descriptor, 220
&space, 5, 40, 50
special characters, 1
specific function names, 249

specification statements, 59
SS edit descriptor, 220
statement

assignment, 11
control, 11
executable, 11

statement function
definition, 230

statement label, 11
statements

ACCEPT, 138
arithmetic if, 122
as part of program, 10
ASSIGN, 104
AUTOMATIC, 60
BACKSPACE, 139
CALL, 108
CLOSE, 140
computed go to, 120
CONTINUE, 110
data type, 69
DECODE, 142
DEFINE file, 143
DELETE, 144
DO, 111
DO while, 115
ELSE, 115
ELSE if, 117
ENCODE, 145
END, 118
END do, 119
END if, 119
ENDFILE, 146
ENTRY, 15, 241
EQUIVALENCE, 75
EXTERNAL, 78
FIND, 147
FORMAT, 188, 193
FUNCTION, 238
GO to, 121
I/O, 12, 137
IMPLICIT, 79

007–2362–004 273

MIPSpro Fortran 77 Language Reference Manual

INCLUDE, 16, 243
INQUIRE, 148
INTRINSIC, 82
NAMELIST, 83
nonexecutable, 12
OPEN, 152
OPTIONS, 245
order of, 15
PARAMETER, 84
PAUSE, 125
POINTER, 87
PRINT, 159
PROGRAM, 15, 89
RECORD, 90
RETURN, 126
REWIND, 167
SAVE, 91
STATIC, 60
STOP, 127
STRUCTURE, 92
SUBROUTINE, 240
test conditional if, 124
TYPE, 159
unconditional go to, 119
UNLOCK, 169
VIRTUAL, 75
VOLATILE, 96

STATIC statement, 60
and recursion, 241

STATUS specifier
and close, 141
and open, 157

STOP statement, 127
storage

common, 63
named, 63
of arrays, 37

STRUCTURE statement, 92
subprogram, 14

function, 235
subroutine, 235

subroutine
executing, 237

referencing, 235
subprogram, 235

SUBROUTINE statement, 240
subscripts, 38

expression, 38
value, 38

substrings
character, 47
expressions, 47
names, 47
values, 48

substructure declarations, 33
symbolic names, 5

GO to statement, 121
scope, 7

symbols
valid names, 5

T

T edit descriptor, 219
TAB character formatting, 8
term

definition, 42
terminal point, 133
test conditional if, 124
TL edit descriptor, 219
TR edit descriptor, 219
transfer of control, 17
.TRUE. relational operator, 49
TYPE statement, 159
type statements

character, 72
numeric, 69

typed data declarations, 33
typing

implicit, 4

274 007–2362–004

Index

U

unary operators, 41
unconditional go to, 119
unformatted i/O statements, 131, 185
unformatted read statement

sequential, 164
unformatted records, 130
unformatted write statement, 174
UNION declaration, 33, 93, 95
UNIT specifier, 178

and close, 140
and delete, 144
and endfile, 146
and inquire, 148
and open, 152

units, 136
UNLOCK statement, 169
unnamed fields, 33

V

%VAL function, 233
value separator, 229
variable format expressions, 192
variables

definition, 7
VIRTUAL statement, 75
VOLATILE statement, 96

W

WRITE statement
advantages over encode statement, 145
direct access, 170
formatted, 174
indexed, 171
internal, 172
list-directed, 174
namelist-directed, 176
sequential, 172
unformatted, 174

writing
definition, 129

X

X edit descriptor, 218
.XOR. logical operator, 52, 55

Z

Z field descriptor, 201
zero, sign of, 20

007–2362–004 275

