MIPSpro™ Power Fortran 77
Programmer’s Guide

Document Number 007-2363-002

CONTRIBUTORS

Written by Chris Hogue
Production by Linda Rae Sande
Engineering contributions by Bron Nelson, Bill Johnson, and Marty Itzkowitz

© 1994-1996, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights are reserved under the Copyright Laws of the
United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline
Blvd., Mountain View, CA 94039-7311.

Silicon Graphics and IRIS are registered trademarks, and IRIX, CHALLENGE,
Crimson, Indigoz, and the POWER Series are trademarks of Silicon Graphics, Inc.
MIPS, R4000, and R8000 are registered trademarks, and MIPSpro, R5000, and R10000
are trademarks of MIPS Technologies, Inc. Cray is a trademark of Cray Research.
VAST is a trademark of Pacific Sierra Research, Inc. VMS is a trademark of Digital
Equipment Corporation.

Portions of this product and document are derived from material copyrighted by
Kuck and Associates, Inc.

MIPSpro™ Power Fortran 77 Programmer’s Guide
Document Number 007-2363-002

Contents

List of Examples ix
List of Figures xi
List of Tables xiii

Introduction xv

Organization of Information xv
Additional Reading xvi
Typographical Conventions xvii

Overview of Power Fortran 1
Overview 1

Strategy for Using Power Fortran 2
Command-Line Options 3
Directives 3

Assertions 6

Summary 7

How to Use Power Fortran 9
Overview of Compilation 9
Compiling Programs With Power Fortran 10

Utilizing Power Fortran Output 15

Overview of Output Files 15

Formatting the Listing File 17
Paginating the Listing 17
Specifying Information to Include 17
Disabling Message Classes 18

Contents

Interpreting Default Listing Information 19
Viewing the Listing File 19
Field Descriptions 19
Sample Listing Files 23
Indirect Indexing 24
Function Call 26
Reductions 28

4. Customizing Power Fortran Execution 33
Overview of Customization 33
Controlling Code Execution 34
Running Code in Parallel 34
Specifying a Work Threshold 34
Enabling Parallel I/O 35
Controlling Power Fortran Code Transformations 36
Specifying a Complexity Limit 36
Setting the Optimization Level 36
Controlling Variations in Round Off 37

Performing Inlining and Interprocedural Analysis 38

5. Scalar Optimizations 39

Overview of Scalar Optimization 39

Performing General Optimizations 41
Enabling Loop Fusion 41
Controlling Global Assumptions 41
Setting Invariant IF Floating Limits 42
Setting the Optimization Level 44
Controlling Variations in Round Off 45
Controlling Scalar Optimizations 48

Using Vector Intrinsics 48

Contents

Performing Advanced Optimizations 51
Using Aggressive Optimization 52
Controlling Internal Table Size 53
Performing Memory Management Transformations 53
Enabling Loop Unrolling 55
Recognizing Directives 57
Specifying Recursion 58

Inlining and Interprocedural Analysis 59

Overview of Inlining and IPA 59

Using Command-Line Options 60
Specifying Routines for Inlining or IPA 61
Specifying Occurrences for Inlining and IPA 61
Specifying Where to Search for Routines 64
Creating Libraries 66

Conditions That Prevent Inlining and IPA 67

Fine-Tuning Power Fortran 69
Overview of Directives and Assertions 69
Directives 70
Assertions 71
Circumventing Power Fortran 73
C$ DOACROSS 73
The C$& Directive 73
The C*$* NO SYNC Assertion 74
Fine-Tuning Scalar Optimizations 74
Controlling Internal Table Size 74
Setting Invariant IF Floating Limits 74
Optimization Level 75
Variations in Round Off 76
Controlling Scalar Optimizations 77
Enabling Loop Unrolling 77
Fine-Tuning Inlining and IPA 78

Contents

Running Code Serially 79
C*$* ASSERT DO (SERIAL) 79
CDIR$ NEXT SCALAR 80
C*$* ASSERT DO PREFER (SERIAL) 80
Running Code in Parallel 80
C*$* [NO] CONCURRENTIZE 80
CVD$ CONCUR 81
C*$* ASSERT DO PREFER (CONCURRENT) 81
Using Equivalenced Variables 82
Using Assertions 82
Using Aliasing 82
Fine-Tuning Global Assumptions 83
C*$* ASSERT [NO] BOUNDS VIOLATIONS 83
C*$* ASSERT NO EQUIVALENCE HAZARD 84
C*$* ASSERT [NO] TEMPORARIES FOR CONSTANT ARGUMENTS 85
Ignoring Data Dependencies 86
C*$* ASSERT DO (CONCURRENT) 86
CDIR$ IVDEP 87
C*$* ASSERT CONCURRENT CALL 87
CVD$ CNCALL 87
C*$* ASSERT NO RECURRENCE 87
C*$* ASSERT PERMUTATION 88

A. Power Fortran Command-Line Options 89
Overview of Options 89
Options Summary 90
Overview 90

B. Power Fortran Directives 95
Standard Directives 95
Cray Directives 98
VAST Directives 98

Vi

Contents

Power Fortran Assertions 99

Glossary 103
Index 107

vii

List of Examples

Example 3-1 Indirect Indexing 25
Example 3-2 Concurrent Function Call 27
Example 3-3 Roundoff Reduction 29
Example 5-1 Controlling Roundoff 46
Example 5-2 Vector Intrinsics 49
Example 5-3 Loop Unrolling 57
Example 7-1 Inline Control 78
Example 7-2 Serial Execution 79
Example 7-3 Bounds Violations 84
Example 7-4 Equivalence Hazard 85

List of Figures

Figure 2-1 Compiling With Power Fortran 14

Xi

List of Tables

Table 1-1
Table 2-1
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 5-1
Table 5-2
Table 5-3
Table 6-1
Table 6-2
Table 6-3
Table 7-1
Table 7-2
Table A-1
Table A-2
Table A-3
Table A-4
Table A-5
Table A-6
Table A-7
Table A-8
Table A-9
Table A-10

Power Fortran Assertions and Their Duration 6

Power Fortran Command-Line Options 11
Listing File Include Options 17

Listing File Message Disabling Options 18
Listing File DO Loop Delimiters 20

Power Fortran Action Abbreviations 22
Power Fortran Reductions 31
Optimization Options 40

Vector Intrinsic Function Names 51
Recommended Cache Option Settings 54
Inlining and IPA Options 60

Inlining and IPA Search Command-Line Options

Filename Extensions 65
Directives Summary 71
Assertions and Their Duration 72
concurrentize Option 90
limit Option 90

lines Option 91

listoptions Option 91
minconcurrent Option 92
noconcurrentize Option 92
noparallelio Option 93
parallelio Option 93

sopt Option 93

suppress Option 94

Xiii

Introduction

This guide describes the features of MIPSpro™ Power Fortran 77. For details about
analyzing a program and converting the output for use on a multiprocessor system, refer
to Chapter 7, “Fortran Enhancements for Multiprocessors,” of the MIPSpro Fortran 77
Programmer’s Guide.

Organization of Information

This guide contains the following chapters and appendixes:

Chapter 1, “Overview of Power Fortran,” explains the basic mechanism for invoking
Power Fortran and includes a description of Power Fortran’s output files.

Chapter 2, “How to Use Power Fortran,” explains how to use Power Fortran.

Chapter 3, “Utilizing Power Fortran Output,” explains output produced by Power
Fortran: the transformed source file, listing file, and WorkShop Pro MPF input file.

Chapter 4, “Customizing Power Fortran Execution,”describes how to use command-line
options to optimize Power Fortran execution.

Chapter 5, “Scalar Optimizations,” describes the scalar optimizations that you can
enable from the command line.

Chapter 6, “Inlining and Interprocedural Analysis,” explains how to perform inlining
and interprocedural analysis by specifying options to the compiler.

Chapter 7, “Fine-Tuning Power Fortran,” describes how to optimize code by using
Power Fortran directives and assertions.

Appendix A, “Power Fortran Command-Line Options,” lists and describes the
command-line options unique to Power Fortran.

XV

Introduction

Additional Reading

XVi

Appendix B, “Power Fortran Directives,” lists the Power Fortran directives you can use
to modify the features of Power Fortran, that is, directives to increase the optimization
level, increase the size of the loop that Power Fortran can analyze, or use more
sophisticated (and time-consuming) ways of resolving superficial data dependencies
that prevent Power Fortran from identifying a loop for parallel execution.

Appendix C, “Power Fortran Assertions,” lists the Power Fortran assertions you can
include in a program to provide information that Power Fortran needs to identify loops
that can run in parallel, despite apparent but sometimes non-existent data dependencies.

The Glossary lists and defines terminology related to Power Fortran.

Refer to the MIPSpro Fortran 77 Programmer’s Guide for information on the following
topics:

* how to compile and link a Fortran program
e alignments, sizes, and variable ranges for the various data types
* the coding interface between Fortran programs and programs written in C

e file formats, run-time error handling, and other information related to the IRIX
operating system

® operating system functions and subroutines callable by Fortran programs

* scalar optimizations that can be controlled through command-line options and
compiler directives

e Fortran directives for multiprocessing

* run-time error messages

Refer to the MIPSpro Fortran 77 Language Reference Manual for a description of the Fortran
language as implemented on Silicon Graphics® workstations and servers.

Refer to the MIPSpro Compiling and Performance Tuning Guide for information on:

* an overview of the MIPSpro compiler system and general compiler system
command-line options

e optimizing program performance

Introduction

* using the performance tools, prof and pixie, of the compiler system

* using dynamic shared objects (DSOs)

* using the debugger, dbx

¢ the dump utilities, archiver, and other tools for maintaining Fortran programs

e writing and updating code that is portable to 64-bit systems

Refer to the Developer Magic: WorkShop Pro MPF User’s Guide for information about using
WorkShop Pro MPEF, a graphical tool to help you better understand the structure and
parallelization of multiprocessing applications.

Refer to the MIPSpro 64-Bit Porting and Transition Guide for information on:

¢ an overview of the MIPSpro compiler system

¢ language implementation differences

® porting source code to the 64-bit system

* compilation and run-time issues

e performance tuning

Typographical Conventions

This guide uses the following conventions and symbols:

Bold

Italics

Couri er

Courier bold

[]
0

Indicates literal command-line options, filenames, keywords,
function/subroutine names, pathnames, and directory names.

Represents user-defined values. Replace the item in italics with a legal
value. Italics are also used for command names and manual titles.

Indicates command syntax, program listings, computer output, and
error messages.

Indicates user input.
Enclose optional command arguments.

Surround arguments or are empty if the function has no arguments
following function/subroutine names. Surround reference page section
in which the command is described following IRIX commands.

XVii

Introduction

Xviii

{} Enclose two or more items from which you must specify exactly one.
| Separates two or more optional items.

Indicates that the preceding optional items can appear more than once
in succession.

IRIX shell prompt for the superuser.
% IRIX shell prompt for users other than the superuser.

Here is an example illustrating the syntax conventions.
C$*[NO | PA [(name [, name...])] {HERE| ROUTI NE| GLOBAL}

The previous syntax statement indicates that:
* the keyword C*$* NO IPA or C*$* IPA must be written as shown

* you can specify one or more name, each separated by a comma and all between
parentheses

¢ you must specify one of the following: HERE, ROUTINE, or GLOBAL

The following statements are valid examples of the described syntax:
C*$* | PA(ALPHA, BETA) HERE
C*$* NO PA GLOBAL

Chapter 1

Overview

Overview of Power Fortran

This chapter contains the following sections:

* “Overview” describes how Power Fortran operates and suggests procedures for
using it.

e “Strategy for Using Power Fortran” explains when and how to use Power Fortran.
¢ “Command-Line Options” lists and describes the command-line options.

* “Directives” explains what a directive is and lists the supported directives.

e “Assertions” explains what an assertion is and lists the supported assertions.

* “Summary” is a short summary of the capabilities of Power Fortran.

MIPSpro Power Fortran 77 is a Fortran 77 compiler that enables you to run existing
Fortran 77 programs efficiently on the Silicon Graphics POWER Series ' multiprocessor
systems. Power Fortran analyzes a program, identifies loops that are safe to execute in
parallel (concurrently), and generates a parallel version of the program.

The Silicon Graphics MIPSpro Fortran 77 compiler can generate code to split loop
processing across all the available multiple processors. You do not need a multiprocessor
system to develop under Power Fortran (although there is a slight performance loss
when running multiprocessed code on a single-processor system). You can develop and
test a Fortran 77 program using Power Fortran on any Silcon Graphics system (including
single-processor systems) and then execute the program on a multiprocessor system. The
executable code automatically adjusts itself to use all the processors available on the
workstation at run time. However, simply passing code through Power Fortran rarely
produces all the increased performance available. There are often easily removed data
dependencies that prevent Power Fortran from running a loop in parallel. Using the
listing file, optionally generated by Power Fortran, you can find the real or potential data
dependencies that prevented Power Fortran from running a loop in parallel. Refer to
Chapter 3, “Utilizing Power Fortran Output,” for details about the listing file.

Chapter 1: Overview of Power Fortran

If the data dependency is real, you can often remove the dependency by making a small
change to the code. If the data dependency was apparent but not real, you can explicitly
instruct Power Fortran to run the code in parallel by inserting Power Fortran assertions.
These assertions look like Fortran 77 comments.

With Power Fortran, you select the code to convert to run in parallel. Thus, you can
convert the whole program or key parts of it by adding Power Fortran directives
manually or by having Power Fortran convert only selected files. Also, you can run
Power Fortran on some, all, or none of a program’s source files. The object files produced
using Power Fortran are fully compatible with other object files. You can freely combine
them with object files that you prepared manually for parallel execution and with object
files that run only serially.

You can also use Power Fortran with WorkShop Pro MPF ", an optional product
available from Silicon Graphics. It provides a graphical interface to the analysis
performed by Power Fortran and allows you to understand and control your program to
be run in parallel. WorkShop Pro MPF also works with the WorkShop /Performance
Analyzer to help you concentrate on those parts of the program that are taking the
longest to execute.

Strategy for Using Power Fortran

Use Power Fortran to identify which loops of a Fortran 77 program can be run safely in
parallel. In some instances, Power Fortran alone makes a significant amount of the code
run in parallel. However, for many programs simple code changes let Power Fortran
automatically run more of the code in parallel.

Knowing when and where to modify your code means understanding the information in
the Power Fortran listing. Understanding the Power Fortran listing will make it easy to
recognize where small changes to the code can make big differences in how much code
can run in parallel. Refer to Chapter 3, “Utilizing Power Fortran Output,” for
information. Alternatively, you can use WorkShop Pro MPF to understand the code.

Power Fortran analyzes a program for data dependence. During this analysis, Power
Fortran looks for Fortran 77 DO loops in which each iteration of the loop is independent
of all other iterations. If each iteration of the loop is self-contained, the system can execute
the iterations in any order (or even simultaneously on separate processors) and produce
the same result after running all iterations.

Command-Line Options

Power Fortran can safely run data-independent loops in parallel. When Power Fortran
finds a loop that contains iterations that are dependent on other iterations, it cannot
safely run the loop in parallel but can tell you what is causing the problem. If Power
Fortran cannot run a loop in parallel, the listing file explains where Power Fortran
encountered problems.

Command-Line Options

Directives

To customize the way Power Fortran executes an entire program, you can specify various
command-line options when you run Power Fortran (explained in Chapter 2, “How to
Use Power Fortran.”) The six functional categories of command-line options are

e parallelization

* general optimization

¢ inlining and interprocedural analysis
¢ directive control

e listing

advanced optimization

Many of these options are also recognized by the MIPSpro Fortran 77 compiler. This book
describes only the options that are unique to Power Fortran. Chapter 4, “Customizing
Power Fortran Execution,” explains when and how to use the various Power Fortran
options, and Appendix A, “Power Fortran Command-Line Options,” provides a
complete summary.

Power Fortran directives enable, disable, or modify a feature of Power Fortran.
Essentially, directives are command-line options specified within the input file instead of
on the command line. Unlike command-line options, directives have no default setting.
To invoke a directive, you must either toggle the directive on or set a desired value for its
level.

Power Fortran directives allow you to specify Power Fortran options in addition to, or
instead of, command-line options. Directives placed on the first line of the input file are
called global directives. Power Fortran interprets them as if they appear at the top of each

Chapter 1: Overview of Power Fortran

program unit in the file. Use global directives to ensure that the program is compiled
with the correct command-line options. Directives appearing anywhere else in the file
apply only until the end of the current program unit. Power Fortran resets the value of
the directive to the global value at the start of the next program unit. (Set the global value
using a command-line option or a global directive.)

Some command-line options act like global directives. Other command-line options
override directives. Many Power Fortran directives have corresponding command-line
options. If you specify conflicting settings in the command line and a directive, Power
Fortran chooses the most restrictive setting. For Boolean options, if either the directive or
the command line has the option turned off, it is considered off. For options that require
a numeric value, Power Fortran uses the minimum of the command-line setting and the
directive setting.

Power Fortran supports the following standard directives:

C*$* ARCLIMIT(1)" C*$* NO IPA”

C*$* [NO] ASSERTIONS’ C*$* OPTIMIZE(n)"
C*$* CONCURRENTIZE C*$* ROUNDOFF(1)"
C*$* EACH_INVARIANT_IF_GROWTH(1)" C*$* SCALAR OPTIMIZE(11)*
C*$* INLINE" C*$* UNROLL(#1[,m])"
C*$* IPA” C$’

C*$* LIMIT (1) C$DOACROSS

C*$* MAX_INVARIANT_IF_GROWTH(1)* C$&

C*$* MINCONCURRENT(1)" C$CHUNK"

C*$* NO CONCURRENTIZE C$COPYIN"

C*$* NO INLINE" C$MP_SCHEDTYPE’

Note: The * denotes that the directive is also supported by the MIPSpro Fortran 77
compiler and therefore, described in the MIPSpro Fortran 77 Programmer’s Guide.

In addition to the simple loop-level parallelism offered by the CSDOACROSS directive,
Power Fortran supports a more general model of parallelism. This model is based on the
work done by the Parallel Computing Forum (PCF), which itself formed the basis for the
proposed ANSI-X3H5 standard. The compiler supports this model through compiler
directives, rather than extensions to the source language.

Directives

Power Fortran supports the following PCF directives, which are described in the
MIPSpro Fortran 77 Programmer’s Guide:

e C$PAR BARRIER

e C$PAR [END] CRITICAL SECTION

e C$PAR [END] PARALLEL

e C$PAR PARALLEL DO

e C$PAR [END] PDO

e CS$PAR [END] PSECTIONIS]

e C$PAR SECTION

e C$PAR [END] SINGLE PROCESS

e C$PAR &

Power Fortran supports the Cray™ directives listed below, which it maps to

corresponding Power Fortran assertions. Refer to Chapter 7, “Fine-Tuning Power
Fortran,” for details.

e CDIR$ NEXT SCALAR

e CDIR$ NO RECURRENCE'

e CDIR$ IVDEP

Power Fortran supports the following VAST™ directives, which it maps to
corresponding Power Fortran assertions:

¢ CVD$ CNCALL

e CVD$ CONCUR

e CVD$[NO] DEPCHK'

e CVD$[NO]LSTVAL

As with the command-line options, many directives are also recognized by the MIPSpro

Fortran 77 compiler. This manual describes those directives that are supported only by
Power Fortran. Refer to Appendix B, “Power Fortran Directives,” for a summary.

Chapter 1: Overview of Power Fortran

Assertions

Assertions provide Power Fortran with additional information about the source
program. Sometimes assertions can improve optimization results. Use them only when
speed is essential.

As with a directive, Power Fortran treats an assertion as a global assertion if it comes
before all comments and statements in the file. That is, Power Fortran treats the assertion
as if it were repeated at the top of each program unit in the file. However, Power Fortran
does not check the correctness of assertions.

Many assertions, like directives, are active until the end of the program unit (or file) or
until you reset them. Other assertions are valid only for the DO loop before which they
appear (such as C*$* ASSERT DO PREFER (CONCURRENT)). This type of assertion
applies to the next DO loop but not to any loop nested inside it.

Table 1-1 lists the accepted Power Fortran assertions and their longevity.

Table 1-1 Power Fortran Assertions and Their Duration

Assertion Duration
C*$* ASSERT [NO] ARGUMENT ALIASING? Until reset
C*$* ASSERT [NO] BOUNDS VIOLATIONS? Until reset
C*$* ASSERT CONCURRENT CALL Next loop
C*$* ASSERT DO (CONCURRENT) Next loop
C*$* ASSERT DO (SERIAL) Next loop
C*$* ASSERT DO PREFER (CONCURRENT) Next loop
C*$* ASSERT DO PREFER (SERIAL) Next loop
C*$* ASSERT [NO] EQUIVALENCE HAZARD? Until reset
C*$* ASSERT [NO] LAST VALUE NEEDED Until reset
C*$* ASSERT NO RECURRENCE Next loop
C*$* ASSERT NO SYNC Next loop
C*$* ASSERT RELATION (name.xx. name) Next loop

Summary

Summary

Table 1-1 (continued) Power Fortran Assertions and Their Duration
Assertion Duration
C*$* ASSERT PERMUTATION (name)? Next loop
C*$* ASSERT [NO] TEMPORARIES FOR CONSTANT Next loop
ARGUMENTS?

a. The MIPSpro Fortran 77 Programmer’s Guide describes this assertion.

As with the command-line options and directives, many assertions are also recognized
by the MIPSpro Fortran 77 compiler. This manual describes those assertions that are
supported only by Power Fortran.

Power Fortran provides information about the dependencies of loops in a Fortran 77
program. Often, Power Fortran can use this information to automatically run loops in
parallel. But when Power Fortran is not able to convert the code for parallel execution
automatically, it can tell you where it ran into problems. Often, you need only make a
small change to remove the dependencies that prevent the loop from running in parallel.
The better you understand the information Power Fortran gives you, the better equipped
you will be to transform the program into an efficient parallel version.

For more information about parallel processing in general, see Chapter 7 in the MIPSpro
Fortran 77 Programmer’s Guide. Especially recommended are the sections “Analyzing
Data Dependencies for Multiprocessing” and “Breaking Data Dependencies” for
information about recognizing and repairing data dependency problems.

Chapter 2

How to Use Power Fortran

This chapter contains the following sections:
e “Overview of Compilation” describes how to prepare for using Power Fortran.

e “Compiling Programs With Power Fortran” explains how to run Power Fortran.

Overview of Compilation

Simply running a program through Power Fortran might improve the performance of
your program, but you can improve it far more if you understand the Power Fortran
listing. From the listing, you can often identify small problems that prevent a loop from
running safely in parallel. With a relatively small amount of work, you can remove these
data dependencies and dramatically improve the program’s performance.

When trying to find loops to run in parallel, focus your efforts on the areas of the code
that use the bulk of the run time. Spending time trying to run a routine in parallel that
uses only one percent of the run time of the program cannot significantly improve the
performance of your program.

To determine where your code spends its time, take an execution profile of the program.
Use either pc sampling, through the —p option to f77(1), or basic block profiling, through
pixie(1). Refer to the MIPSpro Compiling and Performance Tuning Guide for details about
profiling. Alternatively, you can use the WorkShop Pro MPF Parallel Analyzer View to
examine the performance of your program. Refer to the Developer Magic: WorkShop Pro
MPF User’s Guide for details.

There are two schools of thought about profiling: conservative and optimistic. The
conservative approach takes a profile of the original (nonparallel) job. You then run in
parallel only the loops that account for most of the run time. The more optimistic
approach runs the entire program through Power Fortran and then profiles the resulting
multiprocessed job. The conservative approach reduces the chances that something
might go wrong because it makes fewer changes to the code. It also focuses on the
smallest number of lines of code that have the greatest effect.

Chapter 2: How to Use Power Fortran

Use the optimistic approach when you think that Power Fortran will do a good job with
the existing program. You will save time by letting Power Fortran do what it can. You can
then focus on those routines where Power Fortran had a problem. One situation in which
Power Fortran frequently does a good job is when you convert programs that already run
well on traditional vector architectures. Many such programs run in parallel without
additional effort.

Whichever approach you choose, use the profile to focus your efforts on the most
time-consuming routines. Once you find a time-consuming routine, submit that routine
alone to Power Fortran. If the routine is in the middle of a large file, consider using
fsplit(1) to isolate the individual routine. Compile the routine with the —pfa keep option
and examine the listing file. The Power Fortran listing identifies the loops that Power
Fortran can and cannot run in parallel. For loops that cannot run in parallel, the listing
also tells you why Power Fortran could not convert the loop for parallel execution.

Compiling Programs With Power Fortran

10

This section describes the command-line syntax for compiling a Fortran 77 program with
Power Fortran. You can pass these options to Power Fortran by adding the —pfa option
to the f77 command line. It invokes the various processing phases that compile, optimize,
assemble, and link the program. For more information about the —pfa option, see the
f77(1) reference page.

Syntax

f77 options -pfa[{list|keep}] [-pfa,option[=value] [, option[=value]]...] filename

where

options Specifies any f77 compiler options. Refer to the f77(1) reference page and
the MIPSpro Fortran 77 Programmer’s Guide for details.

—-pfa Requests automatic parallelization of loops, and enables any
multiprocessing directives.

list Specifies an annotated listing of the parts of the program that can (and
cannot) run in parallel on multiple processors. The listing file has the
suffix .L

keep Generates the listing file (.1), saves the transformed equivalent Fortran
77 program (.m), and creates an output file for use with WorkShop Pro
MPF (.anl).

Compiling Programs With Power Fortran

-pfa

option

value

filename

Passes the specified command-line options to Power Fortran. Do not
enter spaces between —pfa and any of the hyphens, options, equal signs,
and values that follow it.

Specifies a Power Fortran command-line option listed in Table 2-1, for
example, —concurrentize.

Specifies a value for a command-line option, for example, 1.

Specifies the Fortran 77 source program. The filename must always use
the .f, .F, .for, or .FOR suffix.

Table 2-1 lists the Power Fortran command-line options. Although the table lists the
options in lowercase, you can specify them in uppercase as well.

Note: You can replace many of the Power Fortran command-line options listed in
Table 2-1 with in-code directives. For information on these directives, see Chapter 7,
“Fine-Tuning Power Fortran,” and Appendix B, “Power Fortran Directives.”

Table 2-1 Power Fortran Command-Line Options

Reference Long Name Short Name Default Value

Parallelization —[no]concurrentize —[n]conc —concurrentize
—minconcurrent=n —-mc=n —minconcurrent=500
—[no]parallelio —[no]pio (option off)

General —assume=list —as=list —assume=el

Optimization® —fuse —fuse —fuse
—optimize=n -o=n depends on -On
—-roundoff=n -r=n depends on -On
—scalaropt=n —-so=n depends on -On

Directive Control® —[no]directives=list —[n]dr=list —directives=ackpv

11

Chapter 2: How to Use Power Fortran

12

Table 2-1 (continued)

Power Fortran Command-Line Options

Reference Long Name Short Name Default Value
Inlining and —inline[=list] —in[=list] (option off)
Interprocedural _jpa[=list] —ipal=list] (option off)
Analysis® —inline_create=name —incr=name (option off)
—ipa_create=name —ipacr=name (option off)
—inline_from_files=l[ist —inff=list (option off)
—ipa_from_files=list —ipaff=list (option off)
—inline_from_libraries=list —infl=list (option off)
—ipa_from_libraries=list —ipafl=list (option off)
—inline_loop_level=n —inll=n -inll=10
—ipa_loop_level=n —ipall=n —ipall=10
—inline_man —inm (option off)
—ipa_man —ipam (option off)
—inline_depth —ind —ind=10
Listing —lines=n —In=n —lines=55
-listoptions=list —lo=list -listoptions=k
—suppress=list —su=list (option off)
Advanced —aggressive=letter® —ag=letter (option off)
Optimization —arclimit=n? —arclm=n —arclimit=5000
—cacheline=n? —chl=n —cacheline=4
—cachesize=n? —chs=n —cachesize=256
—chunk=n? —chk=n —chunk=1
—dpregisters=n? —dpr=n —dpregisters=16
—each_invariant_if growth=n® —eiifg=n —each_invariant_if _growth=20
—fpregisters=n?® —fpr=n —fpregisters=16
—limit=n —lm=n -1limit=20000
—-max_invariant_if growth=n® -miifg=n —-max_invariant_if_growth=500
—[no]recursion® —[no]rc —recursion
—setassociativity=n? sasc=n —setassociativity=1
—unroll=n? —ur=n —unroll=4
—unroll2=n? —ur2=n —unroll2=100

a. Refer to the MIPSpro Fortran 77 Programmer’s Guide for details about this option.

Compiling Programs With Power Fortran

The —pfa option enables Power Fortran, which performs automatic parallelization plus
—pfa,—r=0,-s0=3,—0=>5. This option also enables the multiprocessing directives that you
can enable separately with the -mp option.

If you specify the —On option along with —pfa, the compiler performs the greater of the
implied options. For example, specifying -O1 (which is the same as —pfa,-r=0,
—-s0=2,—-0=1) and —pfa (which is the same as —pfa,—r=0,-s0=3,-0=>5) has the same effect as
—-pfa,—r=0, —s0=3,-0=5.

Example

To compile the Fortran 77 program prog.f with Power Fortran and the
—-minconcurrent=0 and —parallelio options, enter

% f77 -pfa -pfa,-mnconcurrent=0,-parallelio prog.f

Figure 2-1 shows what happens when you compile a Fortran 77 program with —pfa. The
first pass invokes the macro preprocessor cpp to handle cpp directives. (For more
information, see the cpp(1) manual page.) The Power Fortran 77 analyzer, pfa, then takes
the cpp output and inserts code that runs data-independent loops in parallel. This
modified source code is then taken by the MIPSpro Fortran compiler, which generates
intermediate code.

In addition to the intermediate code, the Power Fortran analyzer can generate the
following files:

e listing file (.1)

® equivalent transformed file (.m)

e file for use with WorkShop Pro MPF (.anl)

For details and an example of the listing file, refer to Chapter 3, “Utilizing Power Fortran
Output.”

Finally, the MIPSpro back end, be, processes the intermediate code to produce an object
file (.0).

13

Chapter 2: How to Use Power Fortran

Fortran 77 Source (.f)

C Preprocessor,

cpp
A 4 Listing File (.I)
Power Fortran Analyzer, . .
pfa ———» Equivalent Transformed Fortran Source File (.m)
l WorkShop Pro MPF Input File (.anl)

MIPSpro Fortran 77
Front End

A 4

MIPSpro Back End,
be

l

Object File (.0)

Figure 2-1 Compiling With Power Fortran

14

Chapter 3

Utilizing Power Fortran Output

This chapter contains the following sections:

* “Overview of Output Files” discusses the Power Fortran output files and provides
examples of them.

¢ “Formatting the Listing File” explains how to change the format of the standard
listing file.

¢ “Interpreting Default Listing Information” explains the contents of the listing file.

e “Sample Listing Files” provides code examples along with an interpretation of each.

Overview of Output Files

Power Fortran can generate three types of output files:
e listing file (.I)

¢ transformed Fortran source file (.m) that contains the original source program with
the multiprocessing directives inserted by Power Fortran

¢ aninput file for use with WorkShop Pro MPF (.anl)

When you specify the list argument to —pfa, Power Fortran produces a line-numbered
listing file. If you specify the keep argument instead, Power Fortran produces the
numbered listing file, transformed Fortran source file, and the WorkShop Pro MPF file.
(For details about invoking Power Fortran, refer to Chapter 2, “How to Use Power
Fortran.”)

15

Chapter 3: Utilizing Power Fortran Output

16

For example, consider the following code segment, sample.f:

subroutine sanple (a,b,c)
di nensi on a(1000), b(1000), c(1000)
do 10 i =1, 1000
10 a(i) =b(i) + c(i)
end
Compiling sample.f as follows

%f77 -pfa list -c sanple.f

generates the following listing file, sample.l:

Footnotes Actions Do Loops Line

OR 1 #1 "sanple.f"
2 subroutine sanpl e(a, b, ¢)
3 di nensi on a(1000), b(1000), c(1000)
SO C Fommmme 4 do 10 i = 1, 1000
SO * 5 10 a (i) =Db(i) + c(i)
6 end
Abbrevi ati ons Used
SO scal ar optim zation
DR directive
C concurrenti zed
Loop Sunmary
From To Loop Loop at
Loop# line line |abel i ndex nest Status
1 4 5 Do 10 | 1 concurrenti zed

Power Fortran placed a C before the first statement of the DO loop in the listing file,
sample.l. The Abbreviations Used table shows that C stands for “concurrentized,” which
means that Power Fortran determined that it can safely run the loop in parallel. The Loop
Summary table at the bottom of sample.l shows that the status of the loop is
concurrentized.

Note: The first line number directive appears in the listing because it was actually added
by cpp before Power Fortran ran.

Formatting the Listing File

Formatting the Listing File

You can customize a Power Fortran listing file by
* paginating the listing
¢ selecting the information to be printed

* disabling specific message classes

Paginating the Listing
The -lines=n option (or -In=n) paginates the listing for printing. Use this option to
change the number of lines per page. Specifying —lines=0 paginates at subroutine

boundaries.

If you do not specify the —lines option, Power Fortran prints 55 lines per page.

Specifying Information to Include
The -listoptions=list option (or —lo=list) specifies the information to include in the listing
file (.I1), where list is any combination of the options in Table 3-1. The default is

-listoptions=ol.

Table 3-1 Listing File Include Options

Value Produces

C Calling tree at the end of the program listing.

i Transformed program file annotated with line numbers in the
source program. Error messages and debugging information can
refer to the original source rather than the transformed source. This
argument is specified by default.

k List of the Power Fortran options used at the end of each program
unit.

1 Loop-by-loop optimization table.

n Program unit names, as processed, to the standard error file. This

option is added automatically as part of an f77 —v compilation.

17

Chapter 3: Utilizing Power Fortran Output

18

Table 3-1 Listing File Include Options

Value Produces

o Annotated listing of the original program.

P Processing performance statistics.

s Summary of optimizations performed.

t Annotated listing of the transformed program.

The following command compiles the program source.f with Power Fortran and includes
an annotated listing of the original program and a summary of the optimizations
performed in the listing file:

% f77 -pfa -pfa,-listoptions=ls source.f

Disabling Message Classes

Use the —suppress=list option (or —su=list) to disable individual classes of Power Fortran
messages that are normally included in the listing (.1) file. These messages range from
syntax warnings and error messages to messages about the optimizations performed. list
is any combination of the options in Table 3-2.

Table 3-2 Listing File Message Disabling Options

Value Message Class Disabled

d Data dependence

e Syntax error

i Information

n Unable to run loop in parallel

q Questions

s Standard messages

w Warning of syntax error (Power Fortran adds the —suppress=w

option automatically if you use the -w option to f77)

If you do not specify this option, Power Fortran prints messages of all classes.

Interpreting Default Listing Information

Interpreting Default Listing Information

Knowing when and where to modify your code means understanding the information in
the Power Fortran listing. This understanding allows you to recognize where small
changes to the source code will make a big difference in how much code is run in parallel.
The listing file generated by Power Fortran lists the optimizations Power Fortran made
to the code. For example, a message could say that, although three loops could have run
in parallel, Power Fortran converted only the one it determined most profitable.

This section explains how to view the listing file online and then lists and describes the
various fields.

Viewing the Listing File

The listing file is in 132-column format. To view the file, open a window with 132
columns and 40 rows by entering

% wsh -s132, 40

Field Descriptions

This section explains the contents of the listing file when you use the default values for
the —listoptions command-line option (that is, o and I).

A default Power Fortran listing file includes

e line numbers

¢ DO loop markings

e footnotes

* syntax errors/warning messages

® action summary

Line Numbers
In the listing transformed by Power Fortran, a statement labeled with a line number, such

as 21, is the same as line 21 from the original program or has been derived from that line.
These line numbers are useful when inspecting the transformed program listing and

19

Chapter 3: Utilizing Power Fortran Output

20

when debugging. Power Fortran sometimes generates several lines of code from a single
line of the original program; in this case, each new line of code is labeled with the same
number as the line of the original program from which it was generated. Consequently,
many lines of the transformed program listing carry the same number because they are
related to one line of the original program listing.

DO Loop Marking

The listing file displays DO loops graphically in a column headed DO Loops. Power
Fortran surrounds each DO loop (up to nest level 10) with a loop delimiter character. The
delimiters form brackets around each loop nest level. Each character listed in Table 3-3
has a specific meaning.

Table 3-3 Listing File DO Loop Delimiters
Character Denotes
| Generic DO loop

* Power Fortran can run loop in parallel

! Syntax error

A statement contained within 7 DO loops has 1 of these loop delimiters on that line. For
example, the following statements are contained within one DO loop and therefore have
only one |:

DO Loops Line

S 173 DO 100 M=2, MAX(MFLD, 2)

| 174 | ADR = | SECT(M

| 175 | ADRL= | SECT(M 1)

| 176 PNM | ADR) =(ANM | ADR) * PNM | ADR1))
I

177 100 PPNM | ADR) = - (ANM | ADR) *PNM | ADR1))

Footnotes

Power Fortran uses the footnotes listing to give important details concerning its actions.
Power Fortran numbers and prints the footnotes at the bottom of each program unit
under the Footnote List heading. References to the footnotes are displayed in the listing
under the Footnotes column. For example, this footnote

13 DD 1790 IF (B(l) .LE. 6) IB(J*I) =1+J

Interpreting Default Listing Information

appears under Footnote List at the end of the program unit
13: data dependence Dat a dependence involving this Iine due
to variable IB.

In this example, 13 is the footnote number, DD (data dependence) is the explanation for
the Power Fortran action, and the IF statement on line 1790 refers to the original source
line number.

Syntax Errors/Warning Messages

When a program has syntax errors, the listing file describes the error next to the lines that
start with the symbol ### in the Footnotes column. These messages are also printed to
stderr, which is usually your terminal.

For example:

Footnotes Actions DO Loops Line

1 SUBROUTI NE Z(A B, N
2 REAL AN, B(N
S 3 DO 20 1=1,N
! 4 X=A(1)
! 5 Y=R(1)
! 6 20 Q1)=X+Y

#Ht | ine (6)
#HHt error Array not declared or statenent function decl ared
after executabl e statenents.

#HHt error A do |l oop ends on a non-executabl e statenent.
7 PRNT *, X
8 END

Action Summary

When Power Fortran translates or modifies a statement, it uses abbreviations in the
Actions column of the listing file to identify the statements. Power Fortran lists an
abbreviated explanation of its actions at the bottom of the listing. For the DIR and V
classes, the class itself serves as the message without detailed messages. All other classes
have associated messages.

21

Chapter 3: Utilizing Power Fortran Output

Table 3-4 lists and explains the values that can appear in the Actions column.

Table 3-4 Power Fortran Action Abbreviations

Value

Meaning

DD

DIR

EX

INF

LR

MIS

NX

(Data Dependence) Indicates that data dependence prevented Power Fortran
from running this statement in parallel.

(Directive) Used in conjunction with the footnotes and concerns compiler
directives. If you code a compiler directive and that line does not have the DIR
abbreviation in the listing, Power Fortran will not recognize the directive. Check
the setting of the —directives command-line option and the syntax of the
directive.

(Error) Indicates syntax errors. These messages can refer to missing or extra
characters, illegal keywords, or text placed in the wrong column. Power Fortran
cannot do anything with such code. The equivalent transformed source file (.1m)
contains a copy of this program unit that Power Fortran has not modified.

(Extension) Shows where a construct in the original program is not allowed in
the language Power Fortran produces. In some cases, an operation or type is
allowed in the input language but not in the output language.

(Information) Provides noncritical information.
(Insertion) Indicates that Power Fortran added a statement.

(Loop Reordering) Indicates that Power Fortran has modified a Fortran 77
statement in the process of interchanging loops. If during optimization Power
Fortran ascertains that an outer loop would be more efficient as an inner loop,
and it can legally reorder the loops, Power Fortran places the outer loop inside.
In the process of this reordering, Power Fortran might have to change loop
bounds (for triangular loops), distribute loops, or float IF assignments. Only the
statements modified for the exchange are marked.

(Miscellaneous) Indicates that some Power Fortran information has been lost.
This message does not always mean that something is wrong with the program.

(Nonconcurrent Statement) Indicates that Power Fortran did not try or was
unable to run the statement in parallel. For example, when a subroutine call is
involved in a loop, Power Fortran generates this message.

22

Sample Listing Files

Table 3-4 (continued) Power Fortran Action Abbreviations

Value Meaning

NO (Program Too Large—Not Optimized) Indicates that the program unit being
processed is too large for Power Fortran to optimize, because of Power Fortran
data structure size limitations. When Power Fortran optimizes programs, it adds
statements that might also overflow the fixed-size tables. In either case, Power
Fortran stops optimization and passes the original program to the equivalent
transformed source file (.m), informing you of this action. For Power Fortran to
process the unit, you must split the program into smaller sections.

OE (Option Error) Indicates a syntax error in a Power Fortran option. This error does
not stop the processing of a program unit.

OTF (Output Translation Failure) Marks statements that have constructs that exist in
the input language but that cannot be represented in the output language.

Q (Question) Indicates that Power Fortran tried to optimize a loop nest but
discovered a data dependence it could not break at compile time without further
information. You can usually answer this question with an appropriate assertion.

SO (Scalar Optimization) Marks places in the transformed listing where Power
Fortran has optimized a scalar loop.

STD (Standardized) Marks where Power Fortran changed a program to improve the
chance of finding code that it can optimize. This is often a conversion from an
IF/GOTO into a block IF, loop rerolling, and conversion of an IF loop into a DO
loop.

TE (Translator Error) Indicates an internal Power Fortran error. Power Fortran
writes the notification to the standard error file and writes a trace back to the
output file. Notify Silicon Graphics if you see this sort of bug (so it can be
corrected) and, if possible, send Silicon Graphics the code that caused the trace
back as well as the trace back itself. If you can reproduce the error in a small
program unit, send that small program unit as well.

W (Warning) Contains syntax warnings.

Sample Listing Files

This section contains a few simple examples of Fortran code and the corresponding
Power Fortran output. An actual source program would be much larger, and a single
loop could contain several of the cases illustrated here. However, even in a large loop,
you can deal with each problem individually.

23

Chapter 3: Utilizing Power Fortran Output

24

Indirect Indexing

Power Fortran cannot determine if it can run a loop in parallel when the code uses
indirect indexing. A loop is indirectly indexed when it uses the value from some
auxiliary array as the index value rather than the DO loop variable. The code

subroutine foo2(a, b, index,n)
real a(n), b(n)
i nteger index(n)

c
doi =1, n
a(index(i)) = a(index(i)) + b(i)
enddo
end

when submitted to Power Fortran, produces this listing file:

Footnotes Actions DO Loops Line
DR 1 #1"foo2.f"
1 subroutine foo2(a, b, index, n)
2 real a(n), b(n)
3 i nt eger index(n)
4
1 Q SO Fo--m - 5 doi =1, n
2 DD SO ! 6 a(index(i)) = a(index(i)) + b(i)
! 7 enddo
8 end
Abbrevi ati ons Used
oD dat a dependence
Q question
SO scal ar optim zation
DR directive
Foot not e Li st
1: question Is “INDEX' a permutation vector?
2: data dependence Dat a dependence involving this |ine due to variable A
Loop Sunmary
From To Loop Loop at
loop# line line |abel i ndex nest S atus
1 6 8 Do I 1 scal ar node preferabl e

DD in the Actions column on line 6 of the listing warns that the variable a might carry a
dependency. A dependency exists when one iteration of the loop writes to a location that
is used by a different iteration of the loop. In this example, if the values of index(i) are

Sample Listing Files

ever the same for different values of i, then different iterations might use the same
location in a. Therefore, this code contains a possible data dependence.

If you can guarantee that the values of index(i) are always different for each value of i,

then there is no dependence (each iteration uses a different location in a). Question one
on the Footnote List asks if index(i) is different for every value of i. A permutation vector
is a list of numbers, each of which is different from the others. If you know that index is
a permutation vector, then the loop is data-independent. An example of a permutation

vector is a list of objects in which each object appears exactly once.

Explicitly state that index is a permutation vector by adding an assertion in the source.

Example 3-1 Indirect Indexing

subroutine foo2(a,b,index,n)
real a(n), b(n)
i nteger index(n)
c*$*assert pernutation (index)

doi =1, n

a(index(i)) = a(index(i)) + b(i)
enddo
end

Now the listing file shows that Power Fortran finds the loop safe to run in parallel
(indicated by the * DO loop delimiter):

Footnotes Actions DO Loops Line
DR 1 #1 "foo2.f"
1 subroutine foo2(a, b, i ndex, n)

2 real a(n), b(n)
3 i nteger index(n)
DR 4 c*$*assert pernutation (index)

5

1 SO C Fo-mm - 6 doi =1, n

2 SO * 7 a(index(i)) = a(index(i)) + b(i)

* 8 enddo

9 end

Abbr evi ati ons Used
SO scal ar optim zation
DIR directive
C concurrenti zed

25

Chapter 3: Utilizing Power Fortran Output

26

Loop Sunmary

From To Loop Loop at
loop# line line |[abel index nest Satus
1 7 9 Do I 1 concurrentized

Note: As with all assertions, Power Fortran does not verify the truth of this assertion.
When you make an assertion, be certain that it is always true for all possible input data.

Function Call

This example shows what happens when a loop contains a call to an external routine. The
Fortran 77 code

subroutine foo3 (a,b,c,n)
real a(n), b(n), c(n)
external force

c
doi =1, n
a(i) = force (b(i), c(i))
enddo
end

generates this listing:

Footnotes Actions DO Loops Line
DR 1 #1 "foo3.f"

1 subroutine foo3(a, b, c, n)
2 real a(n), b(n), c(n)
3 external force
4

12 NOSONCS +------ 5 doi =1,n

3 NO SONCS ! 6 a(i) =force (b(i), c(i))

! 7 enddo

8 end

Abbr evi ati ons Used
NO not opti m zed
SO scal ar optimzation
DR directive
NCS non-concurrent -stm

Sample Listing Files

Foot not e Li st

1: not optim zed No optinizabl e statenments found.
2: not optimzed This 1 oop contains an unoptin zable call to “FCRCE'.
3. not optim zed This statenent contains an unoptimzable call to
Loop Sunmary
From To Loop Loop at
Loop# line line |abel index nest Satus
1 6 8 Do I 1 unopti m zabl e call (FCRCE)

Calling the function force prevents Power Fortran from automatically running the loop
in parallel. Power Fortran identifies the function call as a non-concurrent-stmt. By its
nature, a nonconcurrent statement prevents Power Fortran from assuming the loop is
safe to run in parallel because Power Fortran cannot see into the routine to look for data
dependencies.

If you know that force generates no data dependencies, then explicitly state this fact for
the nonconcurrent statement.

Example 3-2 Concurrent Function Call

subroutine foo3(a,b,c,n)
real a(n), b(n), c(n)
external force
c*$*assert concurrent call

doi =1, n

a(i) = force(b(i), c(i))
enddo
end

Now that Power Fortran knows that the nonconcurrent statement involves no data
dependency, Power Fortran will find the loop safe to run in parallel.

There is one subtlety in using the concurrent call assertion. When you use this assertion,
Power Fortran makes no attempt to examine the called routine; it simply assumes that it
is safe. However, Power Fortran is still left with the problem of correctly declaring the
variables in the loop to be either SHARE or LOCAL. (Power Fortran does the best it can,
but it can sometimes be fooled.) For example:

27

Chapter 3: Utilizing Power Fortran Output

28

subroutine tricky (a,b,c,n,m

real a(*), b(*)

external ny_function

c*$*assert concurrent call

doi =1, n
a(i) = nmy_function (b(i), m
b(i) =a(i) +m

enddo

m=20

end

The question is whether the variable m should be SHARE or LOCAL. If the routine
my_function reads only the old value of m, then it should be SHARE. If my_function
writes a new value of m, then it should be LOCAL. In the absence of any more clues,
Power Fortran must go by what it can see; and what it can see is that within the loop,
there are no visible assignments to m, and so Power Fortran will declare it to be SHARE.
If in fact my_function is writing the value of m, then this is incorrect.

In this case, to give Power Fortran the hint it needs, add a visible assignment to m at the
top of the loop. For example, consider the following code:

doi =1, n
m=20
a(i) = nmy_function(b(i), m
b(i) =a(i) +m

enddo

Here, Power Fortran can see an assignment to m and so declares it to be LOCAL. Note
that if my_function is both reading the old value and writing a new value of m, then it
was not legal to parallelize the loop.

Reductions

This example shows how Power Fortran produces a single value from a set of values.
Because the entire set of values is reduced to a single value, these operations are called
reductions. Consider the following Fortran 77 code.

Sample Listing Files

Example 3-3 Roundoff Reduction

subroutine foo4(a,b,n, sum
real a(n), b(n), sum

c
sum= 0.0
doi =1, n
sum = sum + a(i)*b(i)
enddo
end

Using the previous code as input, Power Fortran produces this listing file:

Footnotes Actions DO Loops Line
DR 1 #1"foo3.f"
1 subroutine foo4(a, b, n, sum
2 real a(n), b(n), sum
3
O 4 sum= 0.0
SO E 5 doi =i, n
1 DD SO ! 6 sum= sum+ a(i)*b(i)
! 7 enddo
8 end
Abbrevi ations Used
D dat a dependence
SO scal ar optim zation
DR directive
Foot not e Li st
1: data dependence Dat a dependence involving this
line due to variable “SUM.
Loop Sunmary
From To Loop Loop at
Loop# line line label index nest Status
1 6 8 Do | 1 scal ar node preferabl e

Because different iterations of the loop read and write the same location (the variable
sum), there is a dependence. However, this is a special case. Because sum just
accumulates a total, you can accumulate subtotals in parallel and then combine the
subtotals at the end.

Because the parallel version of the code adds the elements together in an order different
from the single-process version, the round-off errors accumulate differently for the two
versions of the code. Thus, the answer can differ slightly as you vary the number of

processes used to run the code. In fact, if you use the dynamic scheduling option for the

29

Chapter 3: Utilizing Power Fortran Output

30

code, the answer might vary slightly from one run of the program to the next, even if you
use the same number of processes on the same machine.

Most applications can safely ignore this variation in round-off error. If you do not care
about this round-off error, tell Power Fortran to use parallel subtotals. To tell Power
Fortran not to worry about round-off error, use either the C*$*ROUNDOFF(2) directive
or the f77 command-line option —pfa,—~roundoff=2. The resulting listing file is

Footnotes Actions DO Loops Line
DR 1 #1"foo3.f"
1 subroutine food(a, b, n, sun
2 real a(n), b(n), sum
3
SO 4 sum= 0.0
SO C +oo--- 5 doi =i, n
SO * 6 sum= sum+ a(i)*b(i)
* 7 enddo
8 end
Abbrevi ati ons Used
SO scal ar optim zation
DR directive
C concurrenti zed

Foot not e Li st
1: data dependence Dat a dependence invol ving this
line due to variable “SUM.

Loop Sunmary
From To Loop Loop at
Loop# line line label index nest St atus
1 6 8 Do | 1 concurrenti zed

Be aware that the round-off error produced by the parallel reduction operation is not
necessarily any worse than the round-off error already present in the original serial
version. It is simply different. If your application did not worry about the round-off error
in the original, there is no reason to suppose that it should worry about it in the parallel
version. If, on the other hand, your application takes special steps to reduce round off (for
example, adding the numbers together in order from smallest absolute value to largest),
then you should not use parallel reductions.

Sample Listing Files

The previous example is called a sum reduction because the reduction operator is +.
Table 3-5 shows the types of reductions Power Fortran supports.

Table 3-5 Power Fortran Reductions

Type Operator Example

Sum + sum = sum + expression
Product * p = p* expression

Min min() a = min(a, expression)
Max max() x = max(X, expression)

All these reductions are under the control of the —-roundoff command-line option, even
though technically the min and max reductions do not involve round-off problems.

31

Chapter 4

Customizing Power Fortran Execution

This chapter contains the following sections:
e “Overview of Customization” explains when to optimize Power Fortran execution.

e “Controlling Code Execution” describes how to control whether Power Fortran
runs eligible loops in parallel.

e “Controlling Power Fortran Code Transformations” describes how to control the
various transformations performed by Power Fortran.

¢ “Performing Inlining and Interprocedural Analysis” describes inlining and
interprocedural analysis and explains how and when to perform these procedures.

Overview of Customization

You can insert comment statements into a Power Fortran program to control whether it
runs loops in parallel, how it limits complexity or round-off, and when it performs
inlining or interprocedural analysis. These comment statements apply to only certain
portions of source code.

To customize how Power Fortran executes an entire program, you can specify various
command-line options when you run Power Fortran as described in Chapter 2, “How to
Use Power Fortran.” For a complete summary of the Power Fortran command-line
options, refer to Appendix A, “Power Fortran Command-Line Options.”

This chapter describes options that are recognized only by Power Fortran. For details

about options for controlling scalar optimizations in pfa, refer to Chapter 5, “Scalar
Optimizations.”

33

Chapter 4: Customizing Power Fortran Execution

Controlling Code Execution

34

When modifying most programs to allow loops to run in parallel, modify the code so that
Power Fortran can automatically run the loop in parallel. To avoid forcing the loop to run
in parallel, directly insert a C$ DOACROSS directive. If you force code to run in parallel,
you (and not Power Fortran) need to verify that no subsequent modification inserts data
dependencies. Forcing these data dependencies in code to run in parallel can produce
serious (and difficult-to-find) errors. Rewriting the loop so that Power Fortran recognizes
the loop as safe to run in parallel allows Power Fortran to check future modifications for
potential data dependencies.

This section describes how to control whether eligible loops are run in parallel and how
to specify a work threshold for loops.

Running Code in Parallel

The —concurrentize option (or —conc) converts eligible loops to run in parallel. This is the
default value for this option. The -noconcurrentize option (or —nconc) prevents Power
Fortran from converting loops to run in parallel.

Loops requiring the addition of synchronization might run slower than the scalar
original when concurrentized. In this case, you can specify the -noconcurrentize
command-line option or the C*$* NO CONCURRENTIZE directive for a particular
loop.

Specifying a Work Threshold

The —-minconcurrent=n option (or -mc=n) specifies the minimum amount of work
needed inside the loop to make executing a loop in parallel profitable. The positive
integer # is a count of the number of operations (for example, add, multiply, load, store)
in the loop, multiplied by the number of times the loop is executed. The higher the value
for n, the larger (more iterations, more statements, or both) the loop body must be to be
run in parallel.

If you do not specify this option, Power Fortran runs all loops containing 500 or more
operations in parallel.

Controlling Code Execution

If the DO loop bounds are known at compilation time (that is, if they are constants), the
compiler can compute the exact iteration count and decide whether to run the loop in
parallel. If the DO loop bounds are unknown at compilation time, the compiler adds an
IF clause to the C$ DOACROSS directive to test at run time if sufficient work exists. This
is interpreted by the compiler as a request to generate two loops, one concurrentized and
one left serial, and an IF-THEN-ELSE to make a run time check to decide whether to
execute the loop in parallel. This case is called a two-version loop.

To disable the generation of two-version loops throughout the program, specify
—minconcurrent=0; or to disable this action only in a few DO loops, specify the C*$*

MINCONCURRENT(0) directive.

For example, given the original loop

DO2 I =1,N
X(H) = Y(r) * z(1)
2 CONTI NUE

Power Fortran generates the following transformed loop:
C$DOACROSS | F (N . GT. 100), SHARE (N, X, Y, Z), LOCAL(I)

DO 3 1=1,N
X(1) = Y(1)*Z(1)
3 CONTI NUE

The IF clause ensures that 7 is large enough to make running the loop in parallel
profitable (otherwise, Power Fortran runs the loop serially). If the loop bound is a small
constant (such as 10) instead of 1, Power Fortran would not generate a DOACROSS
statement for the loop and the listing file states that the loop does not contain enough
work. Conversely, if the bound is a large constant (such as 101), Power Fortran generates
the DOACROSS statement without the IF clause.

Enabling Parallel 1/0
The —parallelio option (or —pio) enables the parallelization of loops that contain I/O
statements. The no version, which is the default, disables this optimization. Use this

option only on systems with parallel I/O capabilities or where I/O statements in loops
are not executed.

35

Chapter 4: Customizing Power Fortran Execution

Controlling Power Fortran Code Transformations

36

This section discusses the various ways in which you can control the standard
transformations that Power Fortran performs.

Specifying a Complexity Limit

The -limit=n option (or -Im=n) controls the amount of time Power Fortran can spend
trying to determine whether a loop is safe to run in parallel. Power Fortran estimates how
much time is required to analyze each loop nest construct. If an outer loop looks like it
would take too much time to analyze, Power Fortran ignores the outer loop and
recursively visits the inner loops.

Larger limits often allow Power Fortran to generate parallel code for deeply nested loop
structures that it might not otherwise be able to run safely in parallel. However, with
larger limits Power Fortran can also take more time to analyze a program. (The limit does
not correspond to the DO loop nest level. It is an estimate of the number of loop
orderings that Power Fortran can generate from a loop nest.) This option has the same
effect as the global C*$* LIMIT(n) directive.

Note: You do not usually need to change these limits.

You can also change the thresholds for internal table size. Refer to the MIPSpro Fortran 77
Programmer’s Guide for details.

Setting the Optimization Level

The —optimize=n option (or —o=n) sets the optimization level. The higher you set this
level, the more code is optimized and the longer Power Fortran runs. Programs that are
written for running in parallel often do not need advanced transformation. With these
programs, a lower optimization level is enough. Valid values for # are as follows:

0 Avoids converting loops to run in parallel.

1 Converts loops to run in parallel without using advanced data
dependence tests. Enables loop interchanging.

Controlling Power Fortran Code Transformations

Determines when scalars need last-value assignment using lifetime
analysis. Also uses more powerful data dependence tests to find loops
that can run safely in parallel. This level allows reductions in loops that
execute concurrently but only if the -roundoff option is set to 2. (Refer
to the following section for details about the -roundoff option.)

Breaks data dependence cycles using special techniques and additional
loop interchanging methods, such as interchanging triangular loops.
This level also implements special-case data dependence tests.

Generates two versions of a loop, if necessary, to break a data-dependent
arc. This level also implements more-exact data dependence tests and
allows special index sets (called wraparound variables) to convert more
code to run in parallel.

Fuses two adjacent loops if it is legal to do so (that is, there are no data
dependencies) and if the loops have the same control values. In certain
limited cases, this level recognizes arrays as local variables. This level is
the default.

Refer to the MIPSpro Fortran 77 Programmer’s Guide for examples.

This option has the same effect as the global C*$* OPTIMIZE(n) directive described in
Chapter 7, “Fine-Tuning Power Fortran.”

Controlling Variations in Round Off

The -roundoff=n option (or —r=n) controls the amount of variation in round off that
Power Fortran allows. Valid values for # are these integers:

0-1
2

Suppresses any round-off transformations. This is the default.

Allows reductions to be performed in parallel. The valid reduction
operators are +, *, min, and max. This value is one of the most
commonly-specified user options.

Recognizes REAL induction variables. Permits memory management
transformations (refer to the MIPSpro Fortran 77 Programmer’s Guide for
details).

Refer to the MIPSpro Fortran 77 Programmer’s Guide for examples.

37

Chapter 4: Customizing Power Fortran Execution

When executing reductions in parallel, Power Fortran processes values in a different
order from the original serial code. Round-off errors accumulate differently and produce
a slightly different answer. Some algorithms are sensitive to this variation, and so, by
default, Power Fortran does not run reductions in parallel. Usually, these tiny variations
are irrelevant, and you can allow Power Fortran to process a reduction in parallel
allowing more loops to be run in parallel.

Performing Inlining and Interprocedural Analysis

38

Function and subroutine calls create an obstacle to parallelization. Power Fortran
provides three ways of dealing with this obstacle:

e Assert that the external routine is safe for concurrent execution (see “CVD$
CNCALL” in Chapter 7).

¢ Inline the routine by replacing the call to the external routine with the actual code.

e Perform interprocedural analysis (IPA) by analyzing the external routine ahead of
time and using the results of that analysis when a reference to the routine is
encountered.

Inlining and IPA tend to be slow, memory-intensive operations. Attempting to inline all
routines everywhere they occur can take a lot of time and use a lot of system resources.
Inlining should usually be restricted to a few time-critical places. For details about
inlining and IPA, and the related directives and command-line options, refer to
Chapter 6, “Inlining and Interprocedural Analysis.”

Chapter 5

Scalar Optimizations

This chapter contains the following sections:

* “Overview of Scalar Optimization” provides an overview of the scalar optimization
command-line options.

e “Performing General Optimizations” describes the general scalar optimizations you
can enable from the command line.

* “Performing Advanced Optimizations” describes the advanced scalar
optimizations you can enable from the command line.

Overview of Scalar Optimization

You can use the compiler to perform various scalar optimizations by specifying any of
the options listed in Table 5-1 from the command line. Specify the options in a
comma-separated list following the —pfa option without any intervening blanks, as
follows:

% f 77 f77options - pf a, option[, option] ... file
Note: These options specifically control optimizations performed by the Fortran front

end. The defaults are usually sufficient. Use these options when trying to improve the
last bit of performance of your code.

39

Chapter 5: Scalar Optimizations

You can also initiate many of these optimizations with compiler directives (see
Chapter 7, “Fine-Tuning Power Fortran.”)

Table 5-1 Optimization Options

Long Name Short Name Default Value

—aggressive=letter —ag=letter option off

—arclimit=integer —arclm=integer 5000

—[noJassume=list —[n]as=list CEL

—cacheline=integer —chl=integer 4

—cachesize=integer —chs=integer 256

—[no]directives=list —[n]dr=list ackpv

—dpregisters=integer —dpr=integer 16

—each_invariant_if_growth=integer —eiifg=integer 20

—fpregisters=integer —fpr=integer 16

—fuse —fuse option on with —scalaropt=2
or —optimize=5

-max_invariant_if_growth=integer —miifg=integer 500

—optimize=integer —o=integer depends on —O option

—recursion —Ic option on

-roundoff=integer —r=integer depends on —O option

—scalaropt=integer —so=integer depends on —O option

—setassociativity=integer —sasc=integer 1

—unroll=integer —ur=integer 4

—unroll2=weight —ur2=weight 100

The -On option directly initiates basic optimizations.

40

Performing General Optimizations

Performing General Optimizations

This section discusses the general optimizations that you can enable.

Enabling Loop Fusion

The —fuse option enables loop fusion, an optimization that transforms two adjacent loops
into a single loop. The use of data-dependence tests allows fusion of more loops than is
possible with standard techniques. You must also specify —scalaropt=2 or —optimize=5
to enable loop fusion.

Controlling Global Assumptions

The —assume=Iist option (or —as=list) controls certain global assumptions of a program.
You can also control most of these assumptions with various assertions (see “Assertions”
on page 71). The default is —assume=cel.

list can contain the following characters:

a Allows procedure argument aliasing, which is when different
subroutine or function parameters refer to the same object. This practice
is forbidden by the Fortran 77 standard. This option provides a method
of dealing with programs that use argument aliasing anyway.

b Allows array subscripts to go outside the declared bounds.

c Places constants used in subroutine or function calls in temporary
variables.

e Allows variables in EQUIVALENCE statements to refer to the same

memory location inside one DO loop nest.

1 Uses temporary variables within an optimized loop and assigns the last
value to the original scalar, if the compiler determines that the scalar can
be reused before it is assigned.

By default, the compiler assumes that a program conforms to the Fortran 77 standard,

that is, —assume=el, and includes —asssume=c to simplify some analysis and inlining.
You can disable the default values by specifying the —-noassume option.

41

Chapter 5: Scalar Optimizations

42

Example

The following command compiles the Fortran program source.f, and permits argument
aliasing and subscripts out of bounds:

% f77 -pfa, -assune=ab source. f

Setting Invariant IF Floating Limits

When a loop contains an IF statement whose condition does not change from one
iteration to another (loop-invariant), the compiler performs the same test for every
iteration. The code can often be made more efficient by floating the IF statement out of
the loop and putting the THEN and ELSE sections into their own loops. This process is
called invariant IF floating.

The —each_invariant_if growth and the -max_invariant_if growth options control
limits on invariant IF floating. This process generally involves duplicating the body of
the loop, which can increase the amount of code considerably.

The —each_invariant_if _growth=integer option (or —eiifg=integer) controls the rewriting
of IF statements nested within loops. This option specifies a limit on the number of
executable statements in a nested IF statement. If the number of statements in the loop
exceeds this limit, the compiler does not rewrite the code. If there are fewer statements,
the compiler improves execution speed by interchanging the loop and IF statements.

Valid values for integer are from 0 to 100; the default is 20.

This process becomes complicated when there is other code in the loop, since a copy of
the other code must be included in both the THEN and ELSE loops.

Performing General Optimizations

For example, the following code:

DOl = ...
section-1
IF () THEN
section-2
ELSE
section-3
ENDI F
section-4
ENDDO

becomes

IF () THEN
DOl = ..
section-1
section-2
section-4
ENDDO
ELSE
DOl = ..
section-1
section-3
section-4
ENDDO
ENDI F

When sections 1 and 4 are large, the extra code generated can slow a program down
(through cache contention, extra paging, and so on) more than the reduced number of IF
tests speed it up. The —each_invariant_if_growth option provides a maximum size (in
number of lines of executable code) of sections 1 and 4, below which the compiler tries
to float an invariant IF statement outside a loop.

This can be controlled on a loop-by-loop basis with the C*$*
EACH_INVARIANT_IF_GROWTH (integer) directive within the source (see “Setting
Invariant IF Floating Limits” in Chapter 7).

You can limit the total amount of additional code generated in a program unit through
invariant IF floating by specifying the -max_invariant_if_growth option.

The -max_invariant_if _growth=integer option (or -miifg=integer) specifies an upper

bound on the total number of additional lines of code the compiler can generate in each
program unit through invariant IF floating. This limit is applied on a per subroutine

43

Chapter 5: Scalar Optimizations

44

basis. For example, if a subroutine is 400 lines long and -miifg=500, the compiler can add
at most 100 lines in the process of invariant IF floating. The default for integer is 500.

Note: Other compiler optimizations can add or delete lines, so the final number of lines
might differ from the value specified with —miifg.

This can be controlled on a loop-by-loop basis with the C*$*
MAX_INVARIANT_IF_GROWTH (integer) directive within the source (see “Setting
Invariant IF Floating Limits” in Chapter 7).

Setting the Optimization Level

The -optimize=integer option (or —o=integer) sets the optimization level. Each
optimization level is cumulative (that is, level 5 performs everything up to and including
level 5). You can also modify the optimization level on a loop-by-loop basis by using the
C*$* OPTIMIZE(integer) directive within the source (see “Optimization Level” in
Chapter 7).

Valid values for integer are as follows:

fe0 Disables optimization.

1 Performs only simple optimizations. Enables induction variable
recognition.

2 Performs lifetime analysis to determine when last-value assignment of

scalars is necessary.

3 Recognizes triangular loops and attempts loop interchanging to
improve memory referencing. Uses special case data dependence tests.
Also, recognizes special index sets called wrap-around variables.

4 Generates two versions of a loop, if necessary, to break a data
dependence arc.

5 Enables array expansion and loop fusion.

There is no default value for this option. If you do not specify it, this option can still be
in effect through the —-O option.

Although higher optimization levels increase performance, they also increase
compilation time.

Performing General Optimizations

Output of the following example is described for —optimize=1, —optimize=2, and
—optimize=5 to illustrate the range of this option. (This example also uses
—minconcurrent=0.)

ASUM = 0.0
DO10 | = 1, M
DO 10 J = 1,N
ASUM = ASUM + A(1,J)
o(1,3) = A(l,J) +2.0
10 CONTI NUE

At —optimize=1, the compiler sees the summation in ASUM as an intractable data
dependence between iterations and does not try to optimize the loop. Specifying
—optimize=2 (perform lifetime analysis and do not interchange around reduction)
produces the following:

ASUM = 0.
C$DOACROSS SHARE(M N, A, C), LOCAL(1, J) , REDUCTI ON(ASUM)
DO 3 =1, M
DO 2 J=1,N
ASUM = ASUM + A(1,J)
o(1,3) =2. + Al,J)
2 CONTI NUE
3 CONTI NUE

Specifying —optimize=>5 (loop interchange around reduction to improve memory
referencing) produces the following;:

ASUM = 0.
C$DOACROSS SHARE(N, M A, C), LOCAL(J, I'), REDUCTI ON(ASUM)
DO 3 J=1, N
DO2 =1, M
ASUM = ASUM + A(l,J)
o(1,d) =2. + A(l,J)
2 CONTI NUE
3 CONTI NUE

Controlling Variations in Round Off

The -roundoff=integer option (or —r=integer) controls the amount of variation in
round-off error produced by optimization. If an arithmetic reduction is accumulated in a
different order than in the scalar program, the round-off error is accumulated differently
and the final result might differ from the output of the original program. Although the

45

Chapter 5: Scalar Optimizations

46

difference is usually insignificant, certain restructuring transformations performed by
the compiler must be disabled to obtain exactly the same answers as the scalar program.

The values you can specify for integer are cumulative. For example, —-roundoff=3
performs what is described for level 3, in addition to what is listed for the previous levels.
Valid values for integer are as follows:

0
1

Suppresses any transformations that change round-off error.

Performs expression simplification, which might generate various
overflow or underflow errors, for expressions with operands between
binary and unary operators, expressions that are inside trigonometric
intrinsic functions returning integer values, and after forward
substitution. Enables strength reduction. Performs intrinsic function
simplification for max and min. Enables code floating if —scalaropt is at
least 1. Allows loop interchanging around serial arithmetic reductions,
if —optimize is at least 4. Allows loop rerolling, if —scalaropt is at least 2.

Allows loop interchanging around arithmetic reductions if —optimize is
at least 4. For example, the floating point expression A/B/C is computed
as A/(B*C).

Recognizes REAL (float) induction variables if —scalaropt is greater than
2 or —optimize is at least 1. Enables sum reductions. Enables memory
management optimizations if —scalaropt=3 (see “Performing Memory
Management Transformations” on page 53 for details about memory
management transformations).

There is no default value for this option. If you do not specify it, this option can still be
in effect through the —-O option.

Consider the following code segment.

Example 5-1
ASUM = 0.0
DO10 I =1, M

DO 10 J = 1,

10

Controlling Roundoff

N
ASUM = ASUM + A(l, J)
c(1,3) =A(1,J) + 2.0

CONTI NUE

Performing General Optimizations

When -roundoff=1, the compiler does not transform the summation reduction. The
compiler distributes the loop:

ASUM = 0.
DO 2 J=1, N
DO 2 =1, M
ASUM = ASUM + A(1,J)
2 CONTI NUE
DO 3 J=1, N
DO 3 =1, M
o(1,3) = A(1,J) + 2.
3 CONTI NUE

When -roundoff=2 and —optimize=5 (reduction variable identification and loop
interchange around arithmetic reduction), the original code becomes:

ASUM = 0.
DO 10 J=1,N
DO 2 I=1,M

ASUM = ASUM + A(l, J)
o(1,3) = A(1,J) + 2.
2 CONTI NUE
10 CONTI NUE

When -roundoff=3 and —optimize=5, the compiler recognizes REAL induction
variables. In this example, the compiler performs forward substitution of the
transformed induction variable X:

The following code

ASUM = 0.0
X = 0.0
DO 10 | = 1,N
ASUM = ASUM + A(1)* COS(X)
X = X+ 0.01
10 CONTI NUE

becomes

ASUM = 0.
X = 0.
DO 10 1=1,N
ASUM = ASUM + A(l1) * COS ((I - 1) * 0.01)
10 CONTI NUE

47

Chapter 5: Scalar Optimizations

48

Controlling Scalar Optimizations

The -scalaropt=integer option (or —so=integer) controls the level of scalar optimizations
that the compiler performs. Valid values for integer are as follows:

0
1

Disables all scalar optimizations.

Enables simple scalar optimizations—dead code elimination, global
forward substitution of variables, and conversion of IF-GOTO to
IF-THEN-ELSE.

Enables the full range of scalar optimizations—floating invariant IF
statements out of loops, loop rerolling and unrolling (if —-roundoff is
greater than zero), array expansion, loop fusion, loop peeling, and
induction variable recognition.

Enables memory management transformations if -roundoff=3 (see
“Performing Memory Management Transformations” on page 53 for
details about memory management transformations). Performs
dead-code elimination during output conversion.

There is no default value for this option. If you do not specify it, this option can still be
in effect through the —-O option.

Unlike the —scalaropt command-line option, the C*$* SCALAR OPTIMIZE directive
sets the level of loop-based optimizations (for example, loop fusion) only, and not
straight-code optimizations (for example, dead-code elimination).

Refer to “Controlling Scalar Optimizations” in Chapter 7 for details about the C*$*
SCALAR OPTIMIZE directive.

Using Vector Intrinsics

The nine intrinsic functions ASIN, ACOS, ATAN, COS, EXP, LOG, SIN, TAN and SQRT
have a scalar (element by element) version and a special version optimized for vectors.
When you use -O3 optimization, the compiler uses the vector versions if it can. On the
MIPS R8000 and R10000 processors, the vector function is significantly faster than the
scalar version, but has a few restrictions on use.

Performing General Optimizations

Finding Vector Intrinsics

To apply the vector intrinsics, the compiler searches for loops of the following form:

real a(10000), b(10000)
doj =1, 1000

b(2*j) = sin(a(3*j))
enddo

The compiler can recognize the eight functions ASIN, ACOS, ATAN, COS, EXP, LOG,
SIN, and TAN when they are applied between elements of named variables in a loop
(SQRT is not recognized automatically). The compiler automatically replaces the loop
with a single call to a special, vectorized version of the function.

The compiler cannot use the vector intrinsic when the input is based on a temporary
result or when the output replaces the input. In the following example, only certain
functions can be vectorized.

Example 5-2 Vector Intrinsics

real a(400, 400), b(400,400), c(400,400), d(400,400)
call xx(a,b,c,d)
do j = 100, 300, 2
do i = 100, 300, 3
a(i,j) 1.23* + a(i,j)

b(i,j) = sin(a(i,j) + 1.0)
a(i,j) =1log(a(i,j))
c(i,j) =sin(c(i,j)) ! cos(d(i,j))
d(i +30,j-10) = tan(d(j,i))
enddo
enddo
call xx(a,b,c,d)
end

In the preceding function,
¢ the first SIN call is applied to a temporary value and cannot be vectorized
¢ the LOG call can be vectorized

¢ results from the second SIN call and first COS call are used in temporary
expressions and cannot be vectorized

e the TAN call can be vectorized

49

Chapter 5: Scalar Optimizations

50

Limitations of the Vector Intrinsics

The vector intrinsics are limited in the following ways:

* The SQRT function is not used automatically in the current release (but it can be
called directly; see “Calling Vector Functions Directly” on page 50).

¢ The single-precision COS, SIN, and TAN functions are valid only for arguments
whose absolute value is less than or equal to 2**28.

® The double-precision COS, SIN, and TAN functions are valid only for arguments
whose absolute value is less than or equal to PI*21°.

The vector functions assume that the input and output arrays either coincide completely,
or do not overlap. They do not check for partial overlap, and produces unpredictable
results if it occurs.

Disabling Vector Intrinsics

If you need to disable use of vector intrinsics while still compiling at the -O3 level, you
can do so. Specify the option -OPT:vector_intrinsics=OFF:

f77 -64 -mps4 -A3 -OPT:vector _intrinsics=CFF trig.f

Calling Vector Functions Directly

The vector intrinsic functions are C functions that can be called directly using the
techniques discussed in the MIPSpro Fortran 77 Programmer’s Guide. The prototype of one
function is as follows:

_vsinf(void*from void*dest, int count, int fronstride, int deststride)

Note the two leading underscore characters in the name. The arguments are

from Address of the first element of the source array
dest Address of first element of destination array
count Number of elements to process

fromstride Number of elements to advance in the source array

deststride Number of elements to advance in the destination array

Performing Advanced Optimizatio

ns

For example, the compiler converts a loop of this form:

real a(10000), b(10000)
do j =1, 1000

b(2*j) = sin(a(3*j))
enddo

into nonlooping code of this form:
real a(10000), b(210000)
call VS NFS(%REF(A(L)) , YREF(A(2)), WAL(1000) , WAL(3) , WAL(2))

All the vector intrinsic functions have the same prototype as the one shown above for
__vsinf. The names of the available vector functions are shown in Table 5-2.

Table 5-2 Vector Intrinsic Function Names
Operation REAL*4 Function Name REAL*8 Function Name
acos __vacosf __vacos
asin __vasinf __vasin
atan __vatanf __vatan
cos __vcosf __VCos
exp __vexpf __vexp
log _ vlogf __vlog
sin __vsinf __vsin
sqrt __vsqrtf __vsqrt
tan __ vtanf __vtan

Performing Advanced Optimizations

This section describes advanced optimization techniques you can use to obtain
maximum performance.

51

Chapter 5: Scalar Optimizations

52

Using Aggressive Optimization

The —aggressive=letter option (or —ag=letter) performs optimizations that are normally
forbidden. When using this option, your program must be a single file, so that the
compiler can analyze all of it simultaneously.

The only available value for letter is a, which instructs the compiler to add padding to
Fortran COMMON blocks. This optimization provides favorable alignments of the
virtual addresses. This option does not have a default value:

% f77 -pfa,-ag=a program f

For example, on a machine with a 64-kilobyte direct-mapped cache,a COMMON
definition such as the following:

COWMON / al pha/ a(128, 128), b(128, 128), c(128, 128)

can degrade performance if your program contains the following statement:
a(i,j) =b(i,j) * c(i,j)

All three of the arrays a, b, and c have the same starting virtual address modulo the cache
size, and so every access to the array elements causes a cache miss. It would be much
better to add some padding between each of the arrays to force the virtual addresses to
be different. The —aggressive=a option does exactly this.

Unfortunately, this transformation is not always possible. Fortran allows different
routines to have different definitions of COMMON. If some other routine contained the
definition

COVMON / al pha/ scratch(49152)
the compiler could not arbitrarily add padding. Therefore, when using this option the

entire program must be in a single source file, so the compiler can check for this sort of
occurrence.

Performing Advanced Optimizations

Controlling Internal Table Size

The —arclimit=integer option (or —arclm=integer) sets the size of the internal table that the
compiler uses to store data dependence information. The default value for integer is 5000.

The compiler dynamically allocates the dependence data structure on a
loop-nest-by-loop-nest basis. If a loop contains too many dependence relationships and
cannot be represented in the dependence data structure, the compiler will stop analyzing
the loop. Increasing the value of —arclimit allows the compiler to analyze larger loops.

Note: The number of data dependencies (and the time required to do the analysis) is
potentially non-linear in the length of the loop. Very long loops (several hundred lines)
may be impossible to analyze regardless of the value of —arclimit.

You can use the —arclimit option to increase the size of the data structure to enable the
compiler to perform more optimizations. (Most users do not need to change this value.)

Performing Memory Management Transformations

Memory management transformations are advanced optimizations you can enable by
specifying options along with the —pfa option.

Memory Management Techniques

When both —roundoff and —scalaropt are set to 3, the compiler attempts to perform outer
loop unrolling (to improve register utilization) and automatic loop blocking (to improve
cache utilization).

Normal loop unrolling (enabled with the —unroll and —unroll2 options) applies to the
innermost loop in a nest of loops. In outer loop unrolling, one of the other loops (typically
the next innermost) is unrolled. In certain situations, this technique (also called “unroll
and jam”) can greatly improve the register utilization.

Loop blocking is a transformation that can be applied when the loop nesting depth is
greater than the dimensions of the data arrays being manipulated. For example, the
simple matrix multiply uses a nest of three loops operating on two-dimensional arrays.
The simple approach repeatedly sweeps across the entire arrays. A better approach is to
break the arrays up into blocks, each block being small enough to fit into the cache, and
then make repeated sweeps over each (in-cache) block. (This technique is also sometimes

53

Chapter 5: Scalar Optimizations

54

called “tiles” or “tiling.”) However, the code needed to implement a block style
algorithm is often very complex and messy. This automatic transformation allows you to
write the simpler method, and have the compiler transform it into the more complex and
efficient block method.

Memory Management Options
The compiler recognizes the following memory management command-line options
when specified with the -pfa option:

¢ —cacheline specifies the width of the memory channel between cache and main
memory.

* —cachesize specifies the data cache size.

e —fpregisters specifies an unrolling factor.

* —dpregisters ensures that registers do not overflow during loop unrolling.

* —setassociativity specifies which memory management transformation to use.
The —cacheline=integer option (or —chl=integer) specifies the width of the memory

channel, in bytes, between the cache and main memory. The default value for integer is
4. Refer to Table 5-3 for the recommended setting for your machine.

The —cachesize=integer option (or —chs=integer) specifies the size of the data cache, in
kilobytes, for which to optimize. The default value for integer is 256 kilobytes. Refer to
Table 5-3 for the recommended setting for your machine. You can obtain the cache size
for a given machine with the hinov(1) command. This option is generally useful only in
conjunction with the other memory management transformations.

Table 5-3 Recommended Cache Option Settings

Machine Cacheline Value Cache Size Value
POWER Series 4D /100 16 64

POWER Series 4D /200 64 64

R4000® (including Crimson™ 16 8

and Indigo®™)

CHALLENGE™ and 128 16
POWER CHALLENGE™ Series

Performing Advanced Optimizations

The -setassociativity=integer option (or —sasc=integer) provides information on the
mapping of physical addresses in main memory to cache pages. The default value for
integer, 1, says a datum in main memory can be put in only one place in the cache. If this
cache page is already in use, its contents must be rewritten or flushed so that the
newly-accessed page can be copied into the cache. Silicon Graphics recommends you set
this value to 1 for all machines, except the POWER CHALLENGE " series, where you
should set it to 4.

The —dpregisters=integer option (or —dpr=integer) specifies the number of DOUBLE
PRECISION registers each processor has. The —fpregisters option (or —fpr=integer)
specifies the number of single precision (that is, ordinary floating point) registers each
processor has.

Silicon Graphics recommends you specify the same value for both —dpregisters and
—fpregisters. The default values for integer are 16 for both options. When compiled in
32-bit mode, Silicon Graphics recommends that you do not specify 16, although that is
what the hardware supports. It is better to specify a smaller value for integer, like 12, to
provide extra registers in case the compiler needs them. In 64-bit mode, where the
hardware supports 32 registers, specify 28 for integer.

Enabling Loop Unrolling

The —unroll and the —unroll2 options control how the compiler unrolls scalar loops.
When loops cannot be optimized for concurrent execution, loop execution is often more
efficient when the loops are unrolled. (Fewer iterations with more work per iteration
require less overhead overall.) You must also specify —scalaropt= 2 when using these
options.

The —unroll=integer (or —ur=integer) option directs the compiler to unroll inner loops.
integer specifies the number of times to replicate the loop. The default value is 4.

0 Uses default values to unroll.
1 Disables unrolling.
2-n Unrolls, at most, this many iterations.

The —unroll2=weight (or —ur2=weight) option specifies an upper bound on the number of
operations in a loop when unrolling it with the —unroll option. The default value for
weight is 100. The compiler unrolls an inner loop until the number of operations (the

55

Chapter 5: Scalar Optimizations

56

amount of work) in the unrolled loop is close to this upper bound, or until the number
of iterations specified in the —unroll option is reached, whichever occurs first.

For the —unroll2 option the compiler analyzes a given loop by computing an estimate of
the computational work that is inside the loop for one iteration. This rough estimate is
obtained by adding the number of

* assignments
e JF statements
* subscripts

* arithmetic operations

The following example uses the C*$* UNROLL directive (see “Enabling Loop
Unrolling” in Chapter 7) to specify 8 for the maximum number of iterations to unroll and
100 for the maximum “work per unrolled iteration.” (This is equivalent to specifying
—pfa,—unroll=8,—~unrol12=100.)

C* $* UNROLL(8, 100)
DO10 | = 2,N
A(1) = B(1)/A(I-1)
10 CONTI NUE

This example has:

1 assignment

0 IF statements

3 subscripts

2 arithmetic operators

6 is the weighted sum (the work for 1 iteration)

This weighted sum is then divided into 100 to give a potential unrolling factor of 16.
However, the example has also specified 8 for the maximum number of unrolled
iterations. The compiler takes the minimum of the two values (8) and unrolls that many
iterations. (The maximum number of iterations the compiler unrolls is 100.)

In this case (an unknown number of iterations), the compiler generates two loops—the
primary unrolled loop and a cleanup loop to ensure that the number of iterations in the
main loop is a multiple of the unrolling factor.

Performing Advanced Optimizations

The result is the following example.

Example 5-3

C*$* UNROLL(8, 100)

Recognizing Directives

INTEGER 11

Loop Unrolling

1 =MD (N- 1, 8)
DO 2 1=2,11+1

ACl) =B(1) | A(l-1)

CONTI NUE

DO 10 I=11+2,N, 8

A(l) =
Al +1)
A(l +2)
A(l +3)
A(1 +4)
A(l +5)
A(l +6)
Al +7)

10 CONTI NUE

B(1)/A(l-1)

B(I +1)
B(1 +2)
B(1 +3)
B(1 +4)
B(1 +5)
B(I +6)
B(1 +7)

~ Y~ Y~~~ ~ —

A(l)

A(l +1)
A(l +2)
A(l +3)
A(l +4)
A(1 +5)
A(1 +6)

The -directives=list option (or —dr=list) specifies which type of directives to accept. list

can contain any combination of the following values:

a

T O~ 0

S

v

Accepts Silicon Graphics C*$* ASSERT assertions.

Accepts Cray CDIRS directives.

Accepts Silicon Graphics C*$* and C$PAR directives.

Accepts parallel programming directives.

Accepts Sequent® C$ directives.
Accepts VAST CVDS$ directives.

The default value for list is ackpv. For example, —pfa,~directives=k enables Silicon
Graphics directives only, whereas —pfa,—directives=kas enables Silicon Graphics

directives and assertions and Sequent directives.

To disable all of the above options, enter —nodirectives or —directives (without any
values for list) on the command line. Chapter 7, “Fine-Tuning Power Fortran,” describes
the Silicon Graphics, Cray, Sequent, and VAST directives the compiler accepts.

57

Chapter 5: Scalar Optimizations

58

Assertions are similar in form to directives, but they assert program characteristics that
the compiler can use in its optimizations. In addition to specifying a in list, you can
control whether the compiler accepts assertions using the C*$* ASSERTIONS and C*$*
NO ASSERTIONS directives (refer to “Using Assertions” in Chapter 7).

Specifying Recursion

The -recursion option (or -rc) allows the compiler to call subroutines and functions in
the source program recursively (that is, a subroutine or function calls itself, or it calls
another routine that calls it). Recursion affects storage allocation decisions.

This option is enabled by default. To disable it, specify —norecursion (or —nrc).

Unsafe transformations can occur unless the —recursion option is enabled for each
recursive routine that the compiler processes.

Chapter 6

Inlining and Interprocedural Analysis

This chapter contains the following sections:
¢ “Overview of Inlining and IPA” describes inlining and interprocedural analysis.

* “Using Command-Line Options” explains how to use command-line options to
perform inlining and interprocedural analysis (IPA).

¢ “Conditions That Prevent Inlining and IPA” lists several conditions that prevent
inlining and interprocedural analysis.

Overview of Inlining and IPA

Inlining is the process of replacing a function reference with the text of the function. This
process eliminates the overhead of the function call and can assist other optimizations by
making relationships between function arguments, returned values, and the
surrounding code easier to find.

Interprocedural analysis (IPA) is the process of inspecting called functions for
information on relationships between arguments, returned values, and global data. This
process can provide many of the benefits of inlining without replacing the function
reference.

You can perform inlining and IPA from the command line and using directives in your
source code.

59

Chapter 6: Inlining and Interprocedural Analysis

Using Command-Line Options

60

The compiler performs inlining and IPA when you specify the options listed in Table 6-1
along with the —pfa option using the following syntax:

% f77 [f77option ...] -pfa,option|, option] ... file

f77_option is any option you can specify directly to the compiler and option is any of the
options listed in Table 6-1.

Table 6-1 Inlining and IPA Options

Long Option Name Short Option Name Default Value
—inline[=list] —inl[=list] option off
—ipa[=list] —ipal[=list] option off
—inline_and _copy —inlc option off
—inline_looplevel=integer —inll=integer 2
—ipa_looplevel=integer —ipall=integer 2
—inline_depth=integer —ind=integer 2
—inline_man —-inm option off
—ipa_man —ipam option off
—inline_from_files=list —inff=list option off
—ipa_from_files=list —ipaff=list option off
—inline_from_libraries=list —infl=list option off
—ipa_from_libraries=list —ipa=list option off
—inline_create[=name] —incr=[=name] option off
—ipa_create=[=name] —ipacr=[=name] option off

Using Command-Line Options

Specifying Routines for Inlining or IPA

The —inline[=list] option (or —inl[=/ist]) provides a list of routines to be expanded inline;
the —ipal[=list] option provides a list of routines to be analyzed. The routine names in list
must be separated by colons. If you do not specify a list of routines, the compiler expands
all eligible routines. The compiler looks for the routines in the current source file, unless
you specify an —inline_from or —ipa_from option. Refer to “Specifying Where to Search
for Routines” on page 64 for details.

Example

The following command performs inline expansion on the two routines saxpy and daxpy
from the file foo.f:

% f77 -pfa,-inline=saxpy: daxpy foo.f

Refer to “Conditions That Prevent Inlining and IPA” on page 67 for information about
conditions that prevent inlining and IPA.

The -inline_and_copy (or —inlc) option functions like the —inline option, except that the
compiler copies the unoptimized text of a routine into the transformed code file each
time the routine is called or referenced. Use this option when inlining routines that are
called from the file in which they are located. This option has no special effect when the
routines being inlined are taken from a library or separate source file.

When a routine has been inlined everywhere it is used, leaving it unoptimized saves
compilation time. When a program involves multiple source files, the unoptimized
routine is still available in case another source file contains a reference to it.

Note: The -inline_and_copy algorithm assumes that all CALLs and references to the
routine precede the routine itself in the source file. If the routine is referenced after the
text of the routine and the compiler cannot inline that particular call site, it invokes the
unoptimized version of the routine.

Specifying Occurrences for Inlining and IPA

The loop level, depth, and manual options allow you to specify certain instances of the
routines to process with the —inline or —ipa options.

61

Chapter 6: Inlining and Interprocedural Analysis

62

Loop Level

The —inline_looplevel=integer (or —inll=integer) and —ipa_looplevel=integer (or
—ipall=integer) options enable you to limit inlining and interprocedural analysis to
routines that are referenced in deeply nested loops, where the reduced call overhead or
enhanced optimization is multiplied.

integer is defined from the most deeply nested leaf of the call graph. To determine which
loops are most deeply nested, the compiler constructs a call graph to account for nesting
of loops farther up the call chain. For example, if you specify 1 for integer, the compiler
expands routines in only the most deeply nested loop. If you specify 2 for integer, the
compiler expands routines in the deepest and second deepest nested loops, and so on.
Specifying a large number for integer enables inlining /IPA at any nesting level up to and

including the integer value. If you do not specify —inline/ipa_looplevel, the loop level is
2.

Example

Consider the following code:

PROGRAM MAI' N
CALLA ------ > SUBROQUTI NE A
DO
DO
CALL B ----- > SUBROUTI NE B
ENDDO DO
ENDDO DO
CALL C ------- > SUBROQUTI NE C
ENDDO
ENDDO

The CALL B is inside a doubly-nested loop, and therefore is more profitable for the
compiler to expand than the CALL A. The CALL C is quadruply nested, so inlining C
yields the greatest gain of the three.

For —inline_looplevel=1, only the routines referenced in the most deeply nested call sites
are inlined (subroutine C in the above example). (If more than one routine is called at the
same loop nest level, the compiler selects all of them when that level is

inlined /analyzed.)

Using Command-Line Options

—inline_looplevel=2 inlines only routines called at the most deeply-nested level and one
loop less deeply-nested. (-inline_looplevel=3 would be required to inline subroutine B,
because its call is two loops less nested than the call to subroutine C. A value of 3 or
greater causes the compiler to inline C into B, then the new B to be inlined into the main
program.)

The calling tree written to the listing file includes the nesting depth level of each call in
each program unit and the aggregate nesting depth (the sum of the nesting depths for
each call site, starting from the main program). You can use this information to identify
the best routines for inlining.

A routine that passes the —inline_looplevel test is inlined everywhere it is used, even
places that are not in deeply-nested loops. If some, but not all, invocations of a routine
are to be expanded, use the C*$* INLINE or C*$* IPA directives just before each

CALL /reference to be expanded (refer to “Fine-Tuning Inlining and IPA” in Chapter 7).

Because inlining increases the size of the code, the extra paging and cache contention can
actually slow down a program. Restricting inlining to routines used in DO loops
multiplies the benefits of eliminating subroutine and function call overhead for a given
amount of code space expansion. (If inlining appears to have slowed an application code,
investigate using IPA, which has little effect on code space and the number of temporary
variables.)

Depth

The —inline_depth=integer option (or —ind=integer) restricts the number of times the
compiler continues to attempt inlining already inlined routines. Valid values for integer
are as follows:

1-10 Specifies a depth to which inlining is limited. The default is 2.
0 Uses the default value.
-1 Limits inline expansion to only those routines that do not reference other

routines (that is, only leaf routines are inlined). The compiler does not
support any other negative values.

When a routine is expanded inline, it can contain references to other routines. The
compiler must decide whether to recursively expand these references (which might
themselves contain yet other references, and so on). This option limits the number of
times the compiler performs this recursive expansion. Note that the default setting is
quite low; if you know inlining is useful for a particular program, increase this setting.

63

Chapter 6: Inlining and Interprocedural Analysis

64

Note: There is no -ipa_depth option.

Recursive inlining can be quite expensive in compilation time. Exercise discretion in its
use.

Manual Control

The —inline_man (or -inm) option enables recognition of the C*$* INLINE directive.
This directive, described in “Fine-Tuning Inlining and IPA” in Chapter 7, allows you to
select individual instances of routines to be inlined. The —ipa_man (or —ipam) option is
the analogous option for the C*$* IPA directive.

Specifying Where to Search for Routines
The options listed in Table 6-2 tell the compiler where to search for the routines specified

with the —inline or —ipa options. If you do not specify either option, the compiler
searches the current source file by default.

Table 6-2 Inlining and IPA Search Command-Line Options
Long Option Name Short Option Name
—inline_from_files=list —inff=list

—ipa_from_files=list —ipaff=list
—inline_from_libraries=list —infl=list
—ipa_from_libraries=list —ipafl=list

If one of the names in [ist is a directory, the compiler uses all appropriate files in that
directory. You can specify multiple files and directories simultaneously using a
colon-separated list.

For example

-pfa,-inline_fromfiles=filel:file2:file3

Using Command-Line Options

The compiler recognizes the type of file from its extension, or lack of one, as described in
Table 6-3.

Table 6-3 Filename Extensions

Extension Type of File

.1, .F, .for, FOR Fortran source

i Fortran source run through cpp

Klib Library created with —inline_create or —ipa_create option
Other Directory

The compiler recognizes two special abbreviations when specified in list:

* “-” means current source file (as listed on the command line or specified in an

—-input=file command-line option)

means the current working directory

Example

The following command specifies inline expansion on the source file, calc.f:

% f77 -pfa,-inline,-inline_fromfiles=-:input.f calc.f

When executed, the compiler searches the current source file calc.f and input.f for all
eligible routines to expand. It also searches for all eligible routines because the —inline
option was specified without a list setting.

If you specify a non-existent file or directory, the compiler issues an error.

If you specify multiple —inline_from or —ipa_from options, the compiler concatenates
their lists to produce a bigger universe. The lists are searched in the order that they
appear on the command line.

The compiler resolves routine name references by a searching for them in the order that

they appear in —inline_from/—ipa_from options on the command line. Libraries are
searched in their original lexical order.

65

Chapter 6: Inlining and Interprocedural Analysis

66

Note: These options by themselves do not initiate inlining or IPA. They only specify
where to look for the routines. Use them in conjunction with the appropriate —inline or
—ipa option.

Creating Libraries

When performing inlining and IPA, the compiler analyzes the routines in the source
program. Normally, inlining is done directly from a source file. However, when inlining
the same set of routines in many different programes, it is more efficient to create a
pre-analyzed library of the routines. Use the —inline_create[=name] option (or
—incr[=name)) to create a library of prepared routines (for later use with the
-inline_from_libraries option). The compiler assigns name to the library file it creates;
for maximum compatibility, use the filename extension .klib. For example: samp.klib.

The -ipa_create[=name] option (or —ipacr[=name]) is the analogous option for IPA.

You do not have to generate your inlining /IPA library from the same source that will
actually be linked into the running program. This capability can cause errors, but it can
also be quite useful. For example, you can write a library of hand-optimized assembly
language routines, then construct an IPA library using Fortran routines that mimic the
behavior of the assembly code. Thus, you can do parallelism analysis with IPA correctly,
but still actually call the hand-optimized assembly routines.

The procedure for creating and using a library for inlining or IPA is given below.

1. Create a library using the —inline_create option (or the —-ipa_create option for IPA).
For example, the following command line creates a library called prog.klib for the
source program prog.f:

%f77 -pfa,-inline_create=prog.klib prog.f

When you specify this option, the compiler creates only the library; it does not
compile the source program or create a transformed version of the file.

2. Compile the program with inlining enabled and specify the new library:
%f77 -pfa,-inl,-inlf=prog.klib sanp.f

Note: Libraries created for inlining contain complete information and can be used for
both inlining and IPA. Libraries created for IPA contain only summary information and
can be used only for IPA.

Conditions That Prevent Inlining and IPA

When creating a library, you can specify only one —inline_create (-ipa_create) option.
Therefore, you can create only one library at a time. The compiler overwrites any existing
file with the same name as the library.

If you do not specify the —inline (-ipa) option along with the —inline_create
(-ipa_create) option, the compiler includes all routines from the inlining universe in the
library, if possible. If you specify —inline=list or —ipa=list, the compiler includes only the
named routines in the library.

Conditions That Prevent Inlining and IPA

This section lists conditions that prevent the compiler from inlining and analyzing
subroutines and functions, whether from a library or source file. Many constructs that
prevent inlining also stop or restrict interprocedural analysis.

These conditions inhibit inlining:

* Dummy and actual parameters are mismatched in type or class.

¢ Dummy parameters are missing.

e Actual parameters are missing and the corresponding dummy parameters are
arrays.

® An actual parameter is a non-scalar expression (for example, A+B, where A and B
are arrays).

® The number of actual parameters differs from the number of dummy parameters.

® The size of an array actual parameter differs from the array dummy parameter and
the arrays cannot be made linear.

e The calling routine and called routine have mismatched COMMON declarations.
¢ The called routine has EQUIVALENCE statements (some of these can be handled).
¢ The called routine contains NAMELIST statements.

e The called routine has dynamic arrays.

e The CALL to be expanded has alternate return parameters.

67

Chapter 6: Inlining and Interprocedural Analysis

68

Inlining is also inhibited when the routine to be inlined

is too long (the limit is about 600 lines)
contains a SAVE statement

contains variables that are live-on-entry, even if they are not in explicit SAVE
statements

contains a DATA statement (DATA implies SAVE) and the variable is live-on-entry
contains a CALL with a subroutine or function name as an argument

contains a C*$*INLINE directive

contains unsubscripted array references in 1/O statements

contains POINTER statements

Chapter 7

Fine-Tuning Power Fortran

This chapter contains the following sections:

“Overview of Directives and Assertions” explains the concept of directives and
assertions.

“Circumventing Power Fortran” explains how to use directives to bypass Power
Fortran’s analysis and leave areas of code unchanged.

“Fine-Tuning Scalar Optimizations” describes how you can use directives to
fine-tune scalar optimizations.

“Fine-Tuning Inlining and IPA” explains how to use directives for inlining and IPA.

“Running Code Serially” explains how to use directives and assertions to stop
Power Fortran from running specific code in parallel.

“Running Code in Parallel” explains how to use directives and assertions to tell
Power Fortran that it is safe to run specific parts of code in parallel.

“Using Equivalenced Variables” explains how you can inform the compiler that
your code uses or does not use equivalenced variables.

“Using Assertions” tells how to enable or disable compiler recognition of assertions.
“Using Aliasing” explains the assertions that enable or disable types of aliasing.

“Fine-Tuning Global Assumptions” describes how you can use assertions to
fine-tune global assumptions.

“Ignoring Data Dependencies” explains how to tell Power Fortran that apparently
data-dependent code is safe to run in parallel.

Overview of Directives and Assertions

After you run a Fortran source program through Power Fortran once, you can use
directives and assertions to fine-tune program execution. The listing file shows where

69

Chapter 7: Fine-Tuning Power Fortran

70

and why Power Fortran did not parallelize the code. You can also use WorkShop Pro
MPF to review the Power Fortran analysis of your program.

You can use directives and assertions to force Power Fortran to execute portions of code
in various ways. Command-line directives apply to the program as a whole. You can use
the —pfa,—directives command-line option to selectively enable or disable certain
directives and assertions. Refer to “Recognizing Directives” on page 57 for information
about the —directives option.

If you want finer control for parallelizing a critical loop or inlining a particular
occurrence of a routine, specify directives and assertions directly in the code. You can
also use directives and assertions to keep Power Fortran from converting code to run in
parallel. In other cases you might want to explicitly force Power Fortran to run segments
of code in parallel even though it normally would not.

Because Power Fortran does not check the correctness of assertions, they can be unsafe.
If you specify an incorrect assertion, the code generated by Power Fortran might give
different answers from the scalar program. If you suspect unsafe assertions are causing
problems, use the —-nodirectives command-line option or the C*$* NO ASSERTIONS
directive to tell Power Fortran to ignore all assertions.

Directives

Directives enable, disable, or modify a feature of the compiler. Essentially, directives are
command-line options specified within the input file instead of on the command line.
Unlike command-line options, directives have no default setting. To invoke a directive,
you must either toggle it on or set a desired value for its level.

Directives allow you to enable, disable, or modify a feature of the compiler in addition
to, or instead of, command-line options. Directives placed on the first line of the input file
are called global directives. The compiler interprets them as if they appeared at the top of
each program unit in the file. Use global directives to ensure that the program is
compiled with the correct command-line options. Directives appearing anywhere else in
the file apply only until the end of the current program unit. The compiler resets the
value of the directive to the global value at the start of the next program unit. (Set the
global value using a command-line option or a global directive.)

Some command-line options act like global directives. Others override directives. Many
directives have corresponding command-line options. If you specify conflicting settings
in the command line and a directive, the compiler chooses the most restrictive setting.

Overview of Directives and Assertions

For Boolean options, if either the directive or the command line has the option turned off,
it is considered off. For options that require a numeric value, the compiler uses the
minimum of the command-line setting and the directive setting.

Table 7-1 lists the directives supported by the compiler. In addition to the standard
Silicon Graphics directives, the compiler supports the Cray and VAST directives listed in
the table. The compiler maps these directives to corresponding Silicon Graphics
assertions. Refer to “Assertions” on page 71 for details.

Table 7-1 Directives Summary

Directive Compatability
C*$* ARCLIMIT(n) Silicon Graphics
C*$* [NO] ASSERTIONS Silicon Graphics
C*$* EACH_INVARIANT_IF_GROWTH(n) Silicon Graphics
C*$* [NO] INLINE Silicon Graphics
C*$* [NO] IPA Silicon Graphics
C*$* MAX_INVARIANT_IF_GROWTH(n) Silicon Graphics
C*$* OPTIMIZE(n) Silicon Graphics
C*$* ROUNDOFF(n) Silicon Graphics
C*$* SCALAR OPTIMIZE(n) Silicon Graphics
C*$* UNROLL (integer[,weight]) Silicon Graphics
CDIR$ NO RECURRENCE Cray

CVD$ [NO] DEPCHK VAST

CVD$ [NO] LSTVAL VAST
Assertions

Assertions provide the compiler with additional information about a source program.
Sometimes assertions can improve optimization results. Use them only when speed is
essential. Assertions can be unsafe because the compiler cannot verify the accuracy of the
information provided. If you specify an incorrect assertion, the compiler-generated code
might produce results different from those of the original serial program. If you suspect
unsafe assertions are causing problems, use the —pfa,—nodirectives command-line
option or the C*$* NO ASSERTIONS directive to tell the compiler to ignore all
assertions.

71

Chapter 7: Fine-Tuning Power Fortran

72

Table 7-2 lists the supported assertions and their duration.

Table 7-2 Assertions and Their Duration

Assertion Duration
C*$* ASSERT [NO] ARGUMENT ALIASING Until reset
C*$* ASSERT [NO] BOUNDS VIOLATIONS Until reset
C*$* ASSERT [NO] EQUIVALENCE HAZARD Until reset
C*$* ASSERT NO RECURRENCE Next loop
C*$* ASSERT RELATION (name.xx.name) Next loop

C*$* ASSERT [NO] TEMPORARIES FOR CONSTANT ARGUMENTS Next loop

Aswith a directive, the compiler treats an assertion as a global assertion if it comes before
all comments and statements in the file. That is, the compiler treats the assertion as if it
were repeated at the top of each program unit in the file.

Some assertions (such as C*$* ASSERT RELATION) include variable names. If you
specify them as global assertions, a program uses them only when those variable names
appear in COMMON blocks or are dummy argument names to the subprogram. You
cannot use global assertions to make relational assertions about variables that are local
to a subprogram.

Many assertions, like directives, are active until the end of the program unit (or file) or
until you reset them. Other assertions are active within a program unit, regardless of
where they appear in that program unit.

Certain Cray and VAST directives function like Silicon Graphics assertions. The compiler
maps these directives to the corresponding Silicon Graphics assertions. These directives
are described along with the related assertions later in this chapter.

There is no guarantee that a specified assertion will have an effect. The compiler notes
the information provided by the assertion and uses the information if it will help.

To understand how the compiler interprets assertions, you must understand the concept
of assumed dependences. The following loop contains two types of dependences:

DO 10 i=1,n
10 X(i) = X(i-1) + X(m

Circumventing Power Fortran

Xis an array, n and m are scalars, and nothing is known about the relationship between
n and m. Between X(i) and X(i-1) there is a forward dependence, with a distance of one.
Between X(i) and X(m), the compiler tries to find a relation, but cannot, because it does
not know the value of m in relation to n. The second dependence is called an assumed
dependence, because it is assumed but cannot be proven to exist.

Circumventing Power Fortran

Sometimes you might need to hand-tune a DO loop so that it runs in parallel. Use the
directives in this section to prevent Power Fortran from analyzing your modified code.

C$ DOACROSS

The C$ DOACROSS directive tells the Fortran 77 compiler to generate parallel code for
the following loop. When Power Fortran encounters this directive on input, it does not
modify the accompanying loop and therefore does not interfere with any hand-tuning.

C$ DOACROSS is the standard method for parallelism in Fortran. This directive is the
same directive that Power Fortran generates as a result of its analysis. Refer to the
MIPSpro Fortran 77 Programmer’s Guide for more information about the C$ DOACROSS
directive and its optional clauses.

Power Fortran runs the following code as it appears:

C$ DOACROSS
DO 10 1=1, 100
ACl) = B(1)

10 CONTI NUE

The C$& Directive

The C$& directive continues the C$ DOACROSS directive onto multiple lines; for
example:

C$DOACROSS SHARE(ALPHA, BETA, GAMMA, DELTA,

C$& EPSILON, OMEGA), LASTLOCAL (I, J, K, L, M N,

C$& LOCAL(XXXL, XXX2, XXX3, XXX4, XXX5, XXX6, XXX7,

C$& XXX8, XXX9)

73

Chapter 7: Fine-Tuning Power Fortran

The C*$* NO SYNC Assertion

Sometimes when Power Fortran concurrentizes a loop, it adds unnecessary
sychronization directives or other sychronization code. Use the C*$* ASSERT NO SYNC
assertion to eliminate sychronization overhead.

Fine-Tuning Scalar Optimizations

74

The compiler supports several directives that allow you to fine-tune the scalar
optimizations described in “Controlling Scalar Optimizations” on page 48.

Controlling Internal Table Size

The C*$* ARCLIMIT (integer) directive sets the minimum size of the internal table that
the compiler uses for data dependence analysis. The greater the value for integer, the
more information the compiler can keep on complex loop nests. The maximum value and
default value for integer is 5000. When you specify this directive globally, it has the same
effect as the —arclimit command-line option (refer to “Controlling Internal Table Size” on
page 53 for details).

Setting Invariant IF Floating Limits

The C*$* EACH_INVARIANT_IF_GROWTH and the C*$*
MAX_INVARIANT_IF_GROWTH directives control limits on invariant IF floating.
This process generally involves duplicating the body of the loop, which can increase the
amount of code considerably. Refer to “Setting Invariant IF Floating Limits” on page 42
for details about invariant IF floating.

The C*$* EACH_INVARIANT_IF_GROWTH(integer) directive limits the total number
of additional lines of code generated through invariant IF floating in a loop. You can
control this limit globally with the —each_invariant_if growth command-line option
(see “Setting Invariant IF Floating Limits” on page 42).

You can limit the maximum amount of additional code generated in a program unit
through invariant IF floating with the C*$* MAX_INVARIANT_IF_GROWTH(integer)
directive. Use the -max_invariant_if_growth command-line option to control this limit
globally (see “Setting Invariant IF Floating Limits” on page 42).

Fine-Tuning Scalar Optimizations

These directives are in effect until the end of the routine or until reset by a succeeding
directive of the same type.

Example

Consider the following code:

C* $* EACH_| NVARI ANT_| F_GROWIH(integer)
C* $* MAX_| NVARI ANT_| F_GROWTH(integer)
DOl = ...
C* $* EACH_| NVARI ANT_| F_GROWIH(integer)
C* $* MAX_| NVARI ANT_| F_GROWIH(integer)
DOJ = ...
C* $* EACH_| NVARI ANT_| F_GROWIH(integer)
C* $* MAX_| NVARI ANT_| F_GROWTH(integer)

DOK = ...
section-1
IF () THEN
section-2
ELSE
section-3
ENDI F
section-4
ENDDO
ENDDO
ENDDO

In floating the invariant IF out of the loop nest, the compiler honors the constraints set
by the innermost directives first. If those constraints are satisfied, the invariant IF is
floated from the inner loop. The middle pair of directives is tested and the invariant IF is
floated from the middle loop as long as restrictions established by these directives are not
violated. The process of floating continues as long as directive constraints are satisfied.

Optimization Level

The C*$* OPTIMIZE(integer) directive sets the optimization level in the same way as the
—optimize command-line option. As you increase integer, the compiler performs more
optimizations, and therefore takes longer to compile. Valid integer values are:

0 Disables optimization.
1 Performs only simple optimizations. Enables induction variable
recognition.

75

Chapter 7: Fine-Tuning Power Fortran

5

Performs lifetime analysis to determine when last-value assignment of
scalars is necessary.

Recognizes triangular loops and attempts loop interchanging to
improve memory referencing. Uses special case data dependence tests.
Also, recognizes special index sets called wrap-around variables.

Generates two versions of a loop, if necessary, to break a data
dependence arc.

Enables array expansion and loop fusion.

Refer to “Controlling Scalar Optimizations” on page 48 for examples.

Variations in Round Off

The C*$* ROUNDOFF(integer) directive controls the amount of variation in round off
error produced by optimization in the same way as the —-roundoff command-line option.
Valid values for integer are as follows:

0
1

76

Suppresses any transformations that change round-off error.

Performs expression simplification, which might generate various
overflow or underflow errors, for expressions with operands between
binary and unary operators, for expressions that are inside
trigonometric intrinsic functions returning integer values, and after
forward substitution. Enables strength reduction. Performs intrinsic
function simplification for max and min. Enables code floating if
-scalaropt is at least 1. Allows loop interchanging around serial
arithmetic reductions, if —optimize is at least 4. Allows loop rerolling, if
—scalaropt is at least 2.

Allows loop interchanging around arithmetic reductions if —optimize is
at least 4. For example, the floating point expression A/B/C is computed
as A/(B*QC).

Recognizes REAL (float) induction variables if —scalaropt is greater than
2 or —optimize is at least 1. Enables sum reductions. Enables memory
management optimizations if —scalaropt=3 (see “Performing Memory
Management Transformations” on page 53 for details).

Fine-Tuning Scalar Optimizations

Controlling Scalar Optimizations

The C*$* SCALAR OPTIMIZE(integer) directive controls the amount of standard scalar
optimizations that the compiler performs. Unlike the —pfa,—scalaropt command-line
option, the C*$* SCALAR OPTIMIZE directive sets the level of loop-based
optimizations (such as loop fusion) only, and not straight-code optimizations (such as
dead-code elimination). Valid values for integer are as follows:

0 Disables all scalar optimizations.

1 Enables simple, loop-based, scalar optimization—changing IF loops to
DO loops, simple code floating out of loops, and forward substitution of
variables.

2 Enables the full range of loop-based scalar optimizations—induction

variable recognition, loop rerolling, loop unrolling, loop fusion, and
array expansion.

3 Enables memory management transformations if -roundoff=3. Refer to
“Performing Memory Management Transformations” on page 53 for
details.

Enabling Loop Unrolling

The C*$* UNROLL(integer[,weight]) directive controls how the compiler unrolls scalar
loops. Loops that cannot be optimized for concurrent execution usually execute more

efficiently when they are unrolled. This directive is recognized only when you specify
—pfa,—scalaropt=2.

The compiler unrolls the loop proceeding the C*$* UNROLL directive until either the
number of operations in the loop equals the weight parameter or the number of iterations
reaches the integer parameter, whichever occurs first. The —unroll and —unroll2
command-line options act like a global C*$* UNROLL directive. See “Enabling Loop
Unrolling” on page 55 for detailed examples.

The C*$* UNROLL directive is in effect only for the loop immediately following it,
unlike other directives.

77

Chapter 7: Fine-Tuning Power Fortran

Fine-Tuning Inlining and IPA

78

Chapter 6, “Inlining and Interprocedural Analysis,” explains how to use inlining and
IPA on an entire program. You can fine-tune inlining and IPA using the C*$* [NO]
INLINE and C*$* [NO] IPA directives.

The compiler ignores these directives by default. They are enabled when you specify any
inlining or IPA command-line option, respectively, on the command line. The
—inline_manual and —-ipa_manual command-line options enable these directives
without activating the automatic inlining algorithms.

The C*$* [NO] INLINE directive behaves like the —-inline command-line option, but
allows you to specify which occurrences of a routine are actually inlined. The format for
this directive is

C*$*[NO| | NLI NE [(name[, name ... 1)] [HERE| ROUTI NE| GLOBAL]

where

name Specifies the routines to be inlined. If you do not specify a name, this
directive will affect all routines in the program.

HERE Applies the INLINE directive only to the next line; occurrences of the
named routines on that next line are inlined.

ROUTINE Inlines the named routines everywhere they appear in the current
routine.

GLOBAL Inlines the named routines throughout the source file.

If you do not specify HERE, ROUTINE, or GLOBAL, the directive applies only to the
next statement. The C*$* NO INLINE form overrides the —inline command-line option
and so allows you to selectively disable inlining of the named routines at specific points.

Example 7-1 Inline Control

In the following code fragment, the C*$* INLINE directive inlines the first call to beta
but not the second:

doi =1,n
C*$*I NLI NE (beta) HERE
call beta (i,1)
enddo
call beta (n, 2)

Running Code Serially

Using the specifier ROUTINE rather than HERE inlines both calls. This routine must be
compiled with the —inline_man command-line option for the compiler to recognize the
C*$* INLINE directive.

The C*$* [NO] IPA directive is the analogous directive for interprocedural analysis. The
format for this directive is

C$*[NJ | PA [(name [, name...])] [HERE| ROUTI NE| GLOBAL]

Running Code Serially

Use the following assertions and directives to keep Power Fortran from running specific
code in parallel.

C*$* ASSERT DO (SERIAL)

The C*$* ASSERT DO (SERIAL) assertion tells Power Fortran to run the loop
immediately following it serially. Power Fortran also does not try to run any enclosing
loop in parallel. However, it can still convert any loops nested inside the serial loop to
run in parallel. For example, consider the following code.

Example 7-2 Serial Execution

DO 100 i = 1,n
DO 100 j = 1, n
C*$* ASSERT DO (SERI AL)
DO 200 k = 1, n
X(i,j, k) = X(i,j, k) * Y(i,j)

200 CONTI NUE
DO 300 k = 1, n
X(i,j, k) = X(i,j. k) + 2(i, k)
300 CONTI NUE

100 CONTI NUE

The assertion forces the DO 100 I loop, the DO 100 J loop, and the DO 200 K loop to be
serial. The compiler can still optimize the DO 300 K loop. In this case, the compiler does
not distribute the I or J loops to try to obtain an optimizable loop.

See also “C*$* ASSERT DO PREFER (SERIAL)” on page 80.

79

Chapter 7: Fine-Tuning Power Fortran

CDIR$ NEXT SCALAR

MIPSpro Power Fortran 77 supports the corresponding Cray directive, CDIR$ NEXT
SCALAR. Power Fortran interprets this directive as if it were a C*$* ASSERT DO
(SERIAL) assertion and generates scalar code for the next DO loop.

C*$* ASSERT DO PREFER (SERIAL)

The C*$* ASSERT DO PREFER (SERIAL) assertion tells the compiler to prefer any
ordering in which the loop following the assertion remains serial. Unlike C*$* ASSERT
DO (SERIAL), this assertion does not inhibit optimization of outer loops. This assertion
directs Power Fortran to leave the DO loop alone, regardless of the setting of the
optimization level. You can use this assertion to control which loop (in a nest of loops)
Power Fortran chooses to run in parallel.

The following code segment is an example of how to use the assertion:

DO100 | =1, N
C*$* ASSERT DO PREFER (SERI AL)
DO100 J =1, M
A(l,J) = B(1,J)
100 CONTI NUE

In the DO loop above, the assertion requests that the J loop be serial. In this construction,
Power Fortran tries to run the I'loop in parallel but not the J loop. This capability is useful
when you know the value of M to be very small or less than N. This assertion applies
only to the DO loop that appears directly after the assertion.

Running Code in Parallel

80

This section explains the directives and assertions that allow Power Fortran to determine
that specific areas of code are safe to run in parallel.

C*$* [NO] CONCURRENTIZE

The C*$* [NO] CONCURRENTIZE directive converts eligible loops to run in parallel.
The NO version prevents Power Fortran from converting loops to run in parallel. These
directives override the —[no] concurrentize command-line option.

Running Code in Parallel

For example, if your program contains the C*$* NO CONCURRENTIZE directive,
parallelization is disabled even if you compile with —concurrentize. When specified
globally, these directives have the same effect as the —concurrentize and
-noconcurrentize options (see “Running Code in Parallel” on page 34 for details).

CVD$ CONCUR

Power Fortran supports the VAST directive CVD$CONCUR. This directive runs a loop
in parallel to optimize performance. Power Fortran interprets this directive as if it were
the C*$*CONCURRENTIZE directive.

C*$* ASSERT DO PREFER (CONCURRENT)

The C*$* ASSERT DO PREFER (CONCURRENT) assertion directs Power Fortran to
run a particular nested loop in parallel if possible. Power Fortran runs another of the
nested loops in parallel only if a condition prevents running the selected loop in parallel.

This assertion applies only to the DO loop immediately after it.

Consider the following code:
C*$* ASSERT DO PREFER (CONCURRENT)

DO 100 | = 1, N
DO 100 J = 1, M
A(l, J) =B (I, J)
100 CONTI NUE

This code directs Power Fortran to prefer to run the I loop in parallel. However, if a data
dependence conflict prevents running the Iloop in parallel, Power Fortran might run the
J loop in parallel.

The —noconcurrentize command-line option and the C*$* NO CONCURRENTIZE

directive prevent Power Fortran from generating concurrent code, even if you specify the
C*$* ASSERT DO PREFER (CONCURRENT) assertion.

81

Chapter 7: Fine-Tuning Power Fortran

Using Equivalenced Variables

Using Assertions

Using Aliasing

82

The C*$* ASSERT [NO] EQUIVALENCE HAZARD assertion tells the compiler that
your code does not use equivalenced variables to refer to the same memory location
inside one loop nest. Normally, EQUIVALENCE statements allow your code to use
different variable names to refer to the same storage location.

The —pfa,-assume=e command-line option acts like the global C*$* ASSERT
EQUIVALENCE HAZARD assertion (see “Controlling Global Assumptions” on
page 41). The C*$* ASSERT EQUIVALENCE HAZARD assertion is active until you
reset it or until the end of the program.

The C*$* [NO] ASSERTIONS directive instructs the compiler to accept or ignore
assertions. The C*$* NO ASSERTIONS version is in effect until the next C*$*
ASSERTIONS directive or the end of the program unit.

If you specify the —directives command-line option without the assertions parameter
(that is, a), the compiler will ignore assertions regardless of whether the file contains the
C*$* ASSERTIONS directive. Refer to “Recognizing Directives” on page 57 for details
on the —directives command-line option.

The C*$* ASSERT RELATION(name.xx.name) assertion indicates the relationship
between two variables or between a variable and a constant. name is the variable or
constant, and xx is any of the following: GT, GE, EQ, NE, LT, or LE. This assertion applies
only to the next DO statement.

The C*$* ASSERT RELATION assertion includes variable names (name and xx). When
specified globally, this assertion is used only when the variable names appear in
COMMON blocks or are dummy arguments to a subprogram. You cannot use global
assertions to make relational assertions about variables that are local to a subprogram.

Fine-Tuning Global Assumptions

As an example of the use of the C*$* ASSERT RELATION assertion, consider the
following code:

DO 100 1 =1, N
A(l) =A((I+M + B (I)
100 CONTI NUE

If you know that M is greater than N, use the following assertion to give this information
to the compiler:

C*$* ASSERT RELATION (M.GT. N)
DO 100 | =1, N
A(l) = A (I

100 CONTI NUE

*M + B (1)

Knowing that M is greater than N, the compiler can generate parallel code for this loop.
If M is less than N at run time, the answers produced by the code run in parallel could
differ from the answers produced by the original code run serially.

Note: Many relationships of this type can be cheaply tested for at run time. The compiler
attempts to answer questions of this sort by generating an IF statement that explicitly
tests the relationship at run time. Occasionally, the compiler needs assistance, or you
might want to squeeze that last bit of performance out of some critical loop by asserting
some relationship rather than repeatedly checking it at run time.

Fine-Tuning Global Assumptions

Use the assertions described in this section to fine-tune the global assumptions discussed
in “Controlling Global Assumptions” on page 41.

C*$* ASSERT [NO] BOUNDS VIOLATIONS

The C*$* ASSERT [NO] BOUNDS VIOLATIONS assertion indicates that array
subscript bounds may be violated during execution. If your program does not violate
array subscript bounds, do not specify this assertion. When specified, this assertion is
active until reset or until the end of the program. For formal parameters, the compiler
treats a declared last dimension of (1) the same as (*).

The —pfa,—assert=b command-line option acts like a global C*$* ASSERT BOUNDS
VIOLATIONS assertion.

83

Chapter 7: Fine-Tuning Power Fortran

84

In the example below, the compiler assumes the first loop nest is standard conformant,
and therefore optimizes both loops. The loops can be interchanged to improve memory
referencing because no A(L]J) overwrites an A(I',J+1). In the second nest, the assertion
warns the compiler that the loop limit of the first array index (I) might violate declared
array bounds. The compiler plays it safe and optimizes only the right array index.

Note: The compiler always assumes that array references are within the array itself, so
the rightness index is concurrentizable.

Example 7-3 Bounds Violations

DO 100 | = 1, M
DO 100 J = 1,N
A(L,Jd) = A(1,J) + B (1,3)
100 CONTI NUE
C* $* ASSERT BOUNDS VI OLATI ONS
DO 200 | = 1, M
DO 200 J = 1,N
ACl,d) = A(1,3) + B (1,J)
200 CONTI NUE

The example above becomes:
C$DOACROSS SHARE(N, M A, B) , LOCAL(J, 1)

DO 2 J=1, N
DO 2 =1, M
A(L,Jd) = A(1,J) + B (1,J)
2 CONTI NUE
C
C* $* ASSERT BOUNDS VI OLATI ONS
DO 4 =1, M
C$DOACROSS SHARE(N, |, A, B), LOCAL(J)
DO 3 J=1, N
A(L,Jd) = A(1,J) + B (1,3)
3 CONTI NUE
4 CONTI NUE

C*$* ASSERT NO EQUIVALENCE HAZARD

The C*$* ASSERT NO EQUIVALENCE HAZARD assertion tells the compiler that

equivalenced variables will not be used to refer to the same memory location inside one
DO loop nest. Normally, EQUIVALENCE statements allow different variable names to
refer to the same storage location. The —pfa,—assume=e command-line option acts like a

Fine-Tuning Global Assumptions

global C*$* ASSERT NO EQUIVALENCE HAZARD assertion. This assertion is active
until reset or until the end of the program.

In the following example, if arrays E and F are equivalenced, but you know that the
overlapping sections will not be referenced in this loop, then using C*$* ASSERT NO
EQUIVALENCE HAZARD allows the compiler to concurrentize the loop.

Example 7-4 Equivalence Hazard

EQUI VALENCE (E(1), F(101))
C*$* ASSERT NO EQUI VALENCE HAZARD

DO10 | = 1,N
E(1+1) = B(I)
c(1) = K1)

10 CONTI NUE

The example above becomes:

EQUI VALENCE (E(1), F(101))
C*$* ASSERT NO EQUI VALENCE HAZARD
C$DOACROSS SHARE(N, E, B, C, F), LOCAL(1)
DO 10 I=1, N
E(1+1) = B(I)
c1r) = K1)
10 CONTI NUE

C*$* ASSERT [NO] TEMPORARIES FOR CONSTANT ARGUMENTS

Sometimes the compiler does not perform certain transformations when their effects on
the rest of the program are unclear. For example, usually the IF-to-intrinsic
transformation changes the following code

SUBROUTI NE X(1, N)
IF (I .LT. N I =N
END

into the following;:

SUBROUTI NE X(1, N)
I = MAX(1, N)
END

85

Chapter 7: Fine-Tuning Power Fortran

But if the actual parameter for I were a constant such as the following,
CALL X(1,N)

it would appear that the value of the constant 1 was being reassigned. Without additional
information, the compiler does not perform transformations within the subroutine.

Most compilers automatically put constant actual arguments into temporary variables to
protect against this case. The C*$*ASSERT TEMPORARIES FOR CONSTANT
ARGUMENTS assertion or the —pfa,—assume=c command-line option (the default)
informs the compiler that constant parameters are protected.

The NO version directs the compiler to avoid transformations that might change the
values of constant parameters.

Ignoring Data Dependencies

86

Power Fortran avoids running code in parallel that it believes to be data-dependent. Use
the assertions described in the following sections to override this behavior.

C*$* ASSERT DO (CONCURRENT)

Use the C*$* ASSERT DO (CONCURRENT) assertion to tell Power Fortran to ignore
assumed data dependencies. Normally Power Fortran is conservative about converting
loops to run in parallel.

When Power Fortran determines that it can run a loop in parallel, it categorizes the loop
into one of three groups:

1. yes, itis safe to run the loop parallel

2. no, it is not safe to run the loop in parallel

3. not sure (cannot be determined)

Normally, Power Fortran does not run the loops it is unsure about in parallel. It assumes
there are data dependencies. C*$* ASSERT DO (CONCURRENT) tells Power Fortran
to go ahead and run these “not sure” loops in parallel.

Ignoring Data Dependencies

Note: If Power Fortran identifies a loop as containing definite data dependencies (as
opposed to dependencies it assumes, but is not sure of), it does not run the loop in
parallel even if you specify a C*$* ASSERT DO (CONCURRENT) assertion.

CDIR$ IVDEP

Power Fortran interprets the Cray directive CDIR$ IVDEP as if it were a C*$* ASSERT
DO (CONCURRENT) assertion. Some dependencies that are safe to run on Cray
hardware are not safe to run on Silicon Graphics hardware. Therefore, to avoid incorrect
parallelization of loops, recognition of this assertion is turned off by default.

C*$* ASSERT CONCURRENT CALL

The C*$* ASSERT CONCURRENT CALL tells Power Fortran to ignore assumed
dependencies that are caused by a subroutine call or a function reference. However, you
must ensure that the subroutines and referenced functions are safe for parallel execution.
This assertion applies to all subroutine and function references in the accompanying
loop, which must appear on the next line.

CVD$ CNCALL

Power Fortran interprets the VAST directive CDIR$ CNCALL as if it were a C*$*
ASSERT CONCURRENT CALL assertion. Some dependencies that are safe to run on
Cray hardware are not safe to run on Silicon Graphics hardware. Therefore, recognition
of this assertion is turned off by default.

C*$* ASSERT NO RECURRENCE

The C*$* ASSERT NO RECURRENCE(variable) assertion tells the compiler to ignore all
data dependence conflicts caused by variable in the DO loop that follows it. For example,
the following code tells the compiler to ignore all dependence arcs caused by the variable
X in the loop:

C*$* ASSERT NO RECURRENCE (X)
DO 10 i= 1, m5
10 X(k) = X(K) + X(i)

87

Chapter 7: Fine-Tuning Power Fortran

88

Not only does the compiler ignore the assumed dependence, it also ignores the real
dependence caused by X(k) appearing on both sides of the assignment.

The C*$* ASSERT NO RECURRENCE assertion applies only to the next DO loop. It
cannot be specified as a global assertion.

C*$* ASSERT PERMUTATION

The C*$* ASSERT PERMUTATION (array) assertion tells Power Fortran that array
contains no repeated values. This assertion permits Power Fortran to run in parallel
certain kinds of loops that use indirect addressing; for example:

DOl =1, N
A(INDEX(1)) = A(INDEX(1)) + B(I)
ENDDO

You can run this loop in parallel only if the array INDEX has no repeated values (so that
each INDEX (I) is unique). Power Fortran cannot determine this, so it does not run such
a loop in parallel. However, if you know that every element of INDEX() is unique, you
can insert the following line before the loop to permit the loop to be run in parallel:

C*$* ASSERT PERMUTATI ON (| NDEX)

Appendix A

Power Fortran Command-Line Options

This appendix contains the following sections:
* “Overview of Options”

* “Options Summary”

Overview of Options

This appendix lists and describes the options supported by Power Fortran. The default
settings are satisfactory for most programs. However, you can alter the defaults to
customize output.

Table 2-1 on page 11 summarizes the Power Fortran command-line options.In that table,
the Reference column lists functional categories of the following options:

e parallelization

* general optimization

¢ inlining and interprocedural analysis

¢ advanced optimization

e directive control

¢ listing

The next three columns list the long names, short names, and default values of the
options. Following the table is an explanation of each option, including the option’s long
and short names, its default, and, if applicable, the long and short names for the NO

version of the option. Although the options are listed in uppercase letters, you can
specify them in lowercase as well.

Note: You can replace many of the Power Fortran command-line options described in
this chapter with in-code directives.

89

Appendix A: Power Fortran Command-Line Options

Options Summary

90

Overview

This section alphabetically lists and defines the command-line options that uniquely
affect Power Fortran.

concurrentize

The —concurrentize option, described in Table A-1, converts eligible loops to run in
parallel.

Table A-1 concurrentize Option
Long Option Name Short Option Name Default Value
—concurrentize —C —concurrentize

See also “noconcurrentize” on page 92.

limit

The -limit option, described in Table A-2, reduces Power Fortran processing time by
limiting the amount of time Power Fortran can spend trying to determine whether a loop

is safe to run in parallel.

Table A-2 limit Option

Long Option Name Short Option Name Default Value

—limit=n —Im=n -limit=5000

Power Fortran estimates how much time is required to analyze each loop nest construct.
If an outer loop looks like it would take too much time to analyze, Power Fortran ignores
the outer loop and recursively visits the inner loops.

Larger limits often allow Power Fortran to generate parallel code for deeply nested loop
structures that it might not otherwise be able to run safely in parallel. However, with
larger limits Power Fortran can also take more time to analyze a program. (The limit does

Options Summary

not correspond to the DO loop nest level. It is an estimate of the number of loop
orderings that Power Fortran can generate from a loop nest.)

lines
The -lines option, described in Table A-3, paginates the listing for printing.

Table A-3 lines Option

Long Option Name Short Option Name Default Value

—lines=n —-In=n -lines=55

Use this option to change the number of lines per page. Specifying —lines=0 paginates at
subroutine boundaries.

listoptions

The -listoptions option, described in Table A-4, specifies the information to include in
the listing file (.1).

Table A-4 listoptions Option

Long Option Name Short Option Name Default Value

-listoptions=list —lo=list -listoptions=ol

list consists of any combination of the following letters:
c Calling tree at the end of the program listing.

i Transformed program file annotated with line numbers in the source
program. Error messages and debugging information can refer to the
original source rather than the transformed source. This option is
automatically specified.

k Power Fortran option used at the end of each program unit.
1 Loop-by-loop optimization table.
n Program unit names, as processed, to the standard error file. This option

is added automatically as part of an f77 —v compilation.

0 Annotated listing of the original program.

91

Appendix A: Power Fortran Command-Line Options

92

P Processing performance statistics.
s Summary of optimization performed.
t Annotated listing of the transformed program.

minconcurrent

The -minconcurrent option, described in Table A-5, establishes the minimum amount of
work needed inside the loop to make executing a loop in parallel profitable.

Table A-5 minconcurrent Option
Long Option Name Short Option Name Default Value
—minconcurrent=n —mc=n 500

If the loop does not contain at least this much work, the loop will not be run in parallel.
If the loop bounds are not constants, an IF clause will be automatically added to the
DOACROSS directive generated by Power Fortran to test at run time whether sufficient
work exists.

The value 7 is a count of the number of operations (for example, add, multiply, load,
store) in the loop, multiplied by the number of times the loop is executed.

noconcurrentize

The —noconcurrentize option, described in Table A-6, prevents Power Fortran from
converting loops to run in parallel.

Table A-6 noconcurrentize Option
Long Option Name Short Option Name Default Value
—noconcurrentize —nconc none

See also “concurrentize” on page 90.

Options Summary

noparallelio

The —noparallelio option, described in Table A-7, disables the parallelization of loops
that contain I/O statements.

Table A-7 noparallelio Option

Long Option Name Short Option Name Default Value

-noparallelio -nopio option off

Use this option only on systems with parallel I/O capabilities or where I/O statements
in loops are not executed.

See also “parallelio” on page 93.

parallelio

The —parallelio option, described in Table A-8, enables the parallelization of loops that
contain I/O statements.

Table A-8 parallelio Option

Long Option Name Short Option Name Default Value

—parallelio -pio option off

Use this option only on systems with parallel I/O capabilities or where I/O statements
in loops are not executed.

See also “noparallelio” on page 93.
sopt
The -sopt option, described in Table A-9, requests execution of the scalar optimizer.

Table A-9 sopt Option

Long Option Name Short Option Name Default Value

—sopt[,option,...] —sopt option off

93

Appendix A: Power Fortran Command-Line Options

The -sopt option passes these options to Power Fortran:

- pf a, -roundof f =0, - scal aropt =3, -opti m ze=5

suppress

The —suppress option, described in Table A-10, lets you disable individual classes of
Power Fortran messages that are normally included in the listing (.1) file.

Table A-10 suppress Option

Long Option Name Short Option Name Default Value

—suppress=list —su=list option off

These messages range from syntax warnings and error messages to messages about the
optimizations performed. list is of any combination of the following;:

d data dependence

e syntax error

1 information

n not able to run loop in parallel
q questions

standard messages

w warning of syntax error (Power Fortran adds the —suppress=w option
automatically if you specify the —w option to f77)

94

Standard Directives

Appendix B

Power Fortran Directives

This appendix contains the following sections:

“Standard Directives”
“Cray Directives”

“VAST Directives”

Chapter 1, “Overview of Power Fortran,” describes the purpose of directives. For details
about how to use directives, refer to Chapter 7, “Fine-Tuning Power Fortran.”

This section lists and describes the following standard Power Fortran directives:

C*$* CONCURRENTIZE
C*$* LIMIT

C*$* MINCONCURRENT
C*$* NO CONCURRENTIZE
C*$* OPTIMIZE

C*$* ROUNDOFF

C$* DOACROSS

Cs&

C*$* CONCURRENTIZE

The C*$* CONCURRENTIZE directive converts eligible loops to run in parallel. This
directive, if specified globally, has the same effect as the —concurrentize command-line
option. See also the section called “C*$* NO CONCURRENTIZE” on page 96.

95

Appendix B: Power Fortran Directives

96

C*$* LIMIT

The C*$* LIMIT(n) directive reduces Power Fortran processing time by limiting the
amount of time Power Fortran can spend on trying to determine whether a loop is safe
to run in parallel. Power Fortran estimates how much time is required to analyze each
loop nest construct. If an outer loop looks like it would take too much time to analyze,
Power Fortran ignores the outer loop and recursively visits the inner loops.

Larger limits often allow Power Fortran to generate parallel code for deeply nested loop
structures that it might not otherwise be able to run safely in parallel. However, with
larger limits Power Fortran can also take more time to analyze a program. (The limit does
not correspond to the DO loop nest level. It is an estimate of the number of loop
orderings that Power Fortran can generate from a loop nest.)

This directive, when specified globally, has the same effect as the —limit command-line
option.

C*$* MINCONCURRENT

The C*$* MINCONCURRENT(n) option establishes the minimum amount of work
needed inside the loop to make executing a loop in parallel profitable. 7 is a count of the
number of operations (for example, add, multiply, load, store) in the loop, multiplied by
the number of times the loop is executed. If the loop does not contain at least this much
work, the loop is not run in parallel. If the loop bounds are not constants, an IF clause is
automatically added to the Power Fortran-generated C$ DOACROSS directive to test at
run time if sufficient work exists.

C*$* NO CONCURRENTIZE

The C*$* NO CONCURRENTIZE option prevents Power Fortran from converting loops
to run in parallel. See also C*$* CONCURRENTIZE.

C*$* OPTIMIZE

The C*$* OPTIMIZE(n) directive sets the optimization level. The higher this level, the
more code is optimized and the longer Power Fortran runs. Valid values for n are:

0 Avoids converting loops to run in parallel.

1 Converts loops to run in parallel without using advanced data
dependence tests. Enables loop interchanging.

Standard Directives

2 Determines when scalars need last-value assignment using lifetime
analysis. Also uses more powerful data dependences tests to find loops
that can run safely in parallel. This level allows reductions in loops that
execute concurrently but only if the round-off setting is at least 2.

3 Breaks data dependence cycles using special techniques and additional
loop interchanging methods, such as interchanging triangular loops.
This level also implements special-case data dependence tests.

4 Generates two versions of a loop, if necessary, to break a data dependent
arc. This level also implements more exact data dependence tests and
allows special index sets (called wraparound variables) to convert more
code to run in parallel.

5 Fuses two adjacent loops if itis legal to do so (no data dependencies) and
if the loops have the same control values. In certain limited cases, this
also recognizes arrays as local variables. Also tells Power Fortran to try
harder to run the outermost loop possible (of a set of loops) in parallel.

Note: If you want to use unrolling, set the optimize level to at least 4 (the default
optimization level is above this threshold).

C*$* ROUNDOFF

The C*$* ROUNDOFF(n) directive controls whether Power Fortran runs a reduction
operation in parallel. Valid values for n are as follows:

0-1 Suppresses any round-off changing transformations.

2 Allows reductions to be performed in parallel; a common option. The
valid reduction operators are addition, multiplication, min, and max.

3 Recognizes REAL induction variables. Permits memory management
transformations.

C$ DOACROSS and C$&

The C$ DOACROSS directive tells the compiler to generate parallel code for the loop
that immediately follows the directive. Putting this directive in the original source marks
the loop to run in parallel and signals Power Fortran not to modify the loop. Power

Fortran generates and inserts this directive as part of its parallelism analysis.

The C$& directive continues the C$ DOACROSS directive onto multiple lines.

97

Appendix B: Power Fortran Directives

Cray Directives

VAST Directives

98

Power Fortran supports the following Cray directives:
¢ CDIR$ IVDEP
¢ CDIR$ NEXT SCALAR

CDIRS IVDEP

Power Fortran interprets the CDIR$ IVDEP directive as if it were a C*$* ASSERT DO
(CONCURRENT) assertion. (Refer to Appendix C, “Power Fortran Assertions.”)

CDIR$ NEXT SCALAR

CDIR$ NEXT SCALAR is a Cray directive that generates scalar code for the next DO
loop. Power Fortran interprets this directive as if it were a C*$* ASSERT DO(SERIAL)
assertion. (Refer to Appendix C, “Power Fortran Assertions,” for details.)

Power Fortran supports the following VAST directives:
¢ CVD$ CNCALL
¢ CVD$ CONCUR

CVD$ CNCALL

Power Fortran interprets the CVD$ CNCALL directive as if it were the C*$* ASSERT
CONCURRENT CALL assertion (described in “CVD$ CNCALL” in Chapter 7). The
CVD$ CNCALL directive tells Power Fortran to ignore assumed dependencies caused
by a subroutine call or function reference.

CVD$ CONCUR

Power Fortran interprets this directive as if it were the C*$* CONCURRENTIZE
directive (described in “Standard Directives” on page 95). The CVD$CONCUR directive
runs a loop in parallel to optimize performance.

Appendix C

Power Fortran Assertions

This appendix lists and describes the following Power Fortran assertions alphabetically:

C*$* ASSERT CONCURRENT CALL

C*$* ASSERT DO (CONCURRENT)

C*$* ASSERT DO (SERIAL)

C*$* ASSERT DO PREFER (CONCURRENT)
C*$* ASSERT DO PREFER (SERIAL)

C*$* ASSERT [NO] LAST VALUE NEEDED
C*$* ASSERT NO RECURRENCE

C*$* ASSERT NO SYNC

C*$* ASSERT PERMUTATION

C*$* ASSERT RELATION

This chapter describes the assertions that are supported by Power Fortran. Chapter 1,
“Overview of Power Fortran,” describes the purpose of assertions.

For details about using assertions, refer to Chapter 7, “Fine-Tuning Power Fortran.”

C*$* ASSERT CONCURRENT CALL

C*$* ASSERT CONCURRENT CALL tells Power Fortran to ignore assumed
dependencies that are due to a subroutine call or a function reference. However, you
must ensure that the subroutines and referenced functions are safe for parallel execution.
This assertion applies to all subroutine and function references in the immediately
following loop.

99

Appendix C: Power Fortran Assertions

100

C*$* ASSERT DO (CONCURRENT)

The C*$* ASSERT DO (CONCURRENT) assertion tells Power Fortran to ignore
assumed data dependencies. Normally, Power Fortran is conservative about what loops
it converts to run in parallel. When Power Fortran analyzes a loop to see if it is safe to run
in parallel, it categorizes the loop into one of three groups:

* vyes (loop is safe to run in parallel)
* no
* not sure

Normally, Power Fortran does not run “not sure” loops in parallel. C*$* ASSERT DO
(CONCURRENT) tells Power Fortran to go ahead and run “not sure” loops in parallel.

Note: If Power Fortran identifies a loop as containing definite (as opposed to assumed)
data dependencies, it does not run the loop in parallel even if a C*$* ASSERT DO
(CONCURRENT) assertion precedes the loop.

C*$* ASSERT DO (SERIAL)

The C*$* ASSERT DO (SERIAL) assertion tells Power Fortran to run the specified loop
serially. Power Fortran does not try to convert the specified loop to run in parallel. Nor
does it try to run any enclosing loop in parallel. However, Power Fortran can still convert
any loops nested inside the serial loop to run in parallel.

C*$* ASSERT DO PREFER (CONCURRENT)

The C*$* ASSERT DO PREFER (CONCURRENT) assertion runs a particular nested
loop in parallel whenever possible. Power Fortran runs other nested loops in parallel
only if a condition prevents running the selected loop in parallel.

The C*$* ASSERT DO PREFER (CONCURRENT) assertion applies only to the DO loop
that it precedes. Power Fortran does not generate parallel code if you use the
—noconcurrentize command-line option or the C*$* NO CONCURRENTIZE directive.

C*$* ASSERT DO PREFER (SERIAL)

The C*$* ASSERT DO PREFER (SERIAL) assertion indicates that you want to execute
a DO loop in serial mode. This assertion directs Power Fortran to leave the DO loop
alone, regardless of the setting of the optimization level. You can use this assertion to
control which loop (in a nest of loops) Power Fortran chooses to run in parallel.

C*$* ASSERT [NO] LAST VALUE NEEDED

The compiler usually uses a temporary variable within an optimized loop when it
assigns a scalar in a loop that is concurrentized. It then assigns the last value of the
variable to the original scalar if it is possible that the scalar might be reused before it is
assigned again. The C*$* ASSERT NO LAST VALUE NEEDED assertion lets the
compiler assume that such last-value assignments are unnecessary. This assertion is
active until reset or until the end of the program.

C*$* ASSERT NO RECURRENCE

The C*$* ASSERT NO RECURRENCE (variable) assertion tells Power Fortran to ignore
all data dependencies associated with variable. Power Fortran ignores not just assumed
dependencies (as with the C*$* ASSERT DO (CONCURRENT) assertion) but also real
dependencies. Use this assertion to force Power Fortran to parallelize a loop when other,
gentler means have failed. Use this assertion with caution, as indiscriminate use can
result in illegal parallel code.

C*$* ASSERT NO SYNC
Sometimes when Power Fortran concurrentizes a loop, it adds unnecessary

synchronization directives or other synchronization code. You can use the C*$* ASSERT
NO SYNC assertion to eliminate synchronization overhead.

C*$* ASSERT PERMUTATION
The C*$* ASSERT PERMUTATION (array) assertion tells Power Fortran that array

contains no repeated values. This assertion permits Power Fortran to run in parallel
certain kinds of loops that use indirect addressing.

101

Appendix C: Power Fortran Assertions

C*$* ASSERT RELATION

The C*$* ASSERT RELATION(name.xx.name) assertion indicates the relationship
between two variables or between a variable and a constant. name is the variable or
constant, and xx is any of the following: GT, GE, EQ, NE, LT, or LE. This assertion applies
only to the next DO statement.

102

Glossary

action summary
The portion of the listing file that summarizes Power Fortran actions.

assertion

A Power Fortran directive that asserts something about the program. For example, an
assertion can assert that a particular array is a permutation vector. Power Fortran does
not verify the validity of assertions.

data independence

When no iteration of a loop writes to a memory location that is read or written by any
other iteration of that loop.

directive

A command, specified within the source file, that requests a particular action from Power
Fortran. For example, directives enable, disable, or modify a feature of Power Fortran.

global assertion

An assertion that is placed on the first line of the input file. Power Fortran interprets
global assertions as if they appeared at the top of each program unit in the file. See also
assertion.

global directive

Directives that are placed on the first line of the input file. Power Fortran interprets global
directives as if they appeared at the top of each program unit in the file. See also directive.

inlining
The process of replacing a call to an external routine with the actual code.

equivalent transformed source file

A transformed version of a Fortran source program generated by Power Fortran. The
name of this file has the suffix .m, such as analysis.m.

103

Glossary

104

interprocedural analysis (IPA)

The process of analyzing an external routine ahead of time and using the results when
the routine is referenced.

listing file
An annotated listing of the parts of a source program that can and cannot run in parallel
on multiple processor generated by Power Fortran. This file has the suffix .1.

max reduction
A reduction that uses the max() intrinsic function. See also reduction.

min reduction
A reduction that uses the min() intrinsic function. See also reduction.

parallelize
Manipulating code so that it can be run in parallel.

permutation index

A permutation vector used to index into an array. Because all the numbers in the
permutation vector are different, when used as indexes they all refer to different array
elements.

permutation vector
Any list of numbers that are all different.

Power Fortran 77

A Fortran 77 compiler that analyzes a program, identifies loops that are safe to run in
parallel (that is, they do not contain data dependencies), and generates a parallel version
of the program.

product reduction
A reduction that uses the multiply operator *. See also reduction.

profiling

A process that produces detailed information about program execution, such as details
about areas of code where most of the execution time is spent. The prof(1) command
produces profiling information.

Glossary

reduction
An operation that reduces a set of values to one value.

round-off error
The inaccuracy resulting from rounding off values in a calculation.

sum reduction
A reduction that uses the add operator +. See also reduction.

WorkShop Pro MPF

An optional product that provides a graphical interface to the analysis performed by
Power Fortran.

105

Index

A

action summary, 21, 103
—aggressive option, 52
aliasing, 82
alignment
of COMMON blocks, 52
.anl file, 10
ANSI-X3H5 standard, 4
—arclimit option, 53
argument aliasing, 41
assertions
C*$* ASSERT CONCURRENT CALL, 87,99
C*$* ASSERT DO (CONCURRENT), 86, 100
C*$* ASSERT DO (SERIAL), 79, 100
C*$* ASSERT DO PREFER (CONCURRENT), 81,
100
C*$* ASSERT DO PREFER (SERIAL), 80, 101
C*$* ASSERT LAST VALUE NEEDED, 101
C*$* ASSERT NO RECURRENCE, 87,101
C*$* ASSERT NO SYNC, 101
C*$* ASSERT PERMUTATION, 88, 101
C*$* ASSERT RELATION, 82,102
C*$* ASSERT TEMPORARIES FOR CONSTANT
ARGUMENTS, 85
definition, 103
duration of, 6
enabling recognition of, 57
overview, 71
purpose of, 6
assumed dependences, 72

—assume option, 41, 82

assumptions
controlling globally, 41

B

be back end process, 13

C

C$&, 73,97

C*$* ARCLIMIT, 74

C*$* ASSERT CONCURRENT CALL, 87, 99
C*$* ASSERT DO (CONCURRENT), 86, 100
C*$* ASSERT DO (SERIAL), 79, 100

C*$* ASSERT DO PREFER (CONCURRENT), 81,

C*$* ASSERT DO PREFER (SERIAL), 80, 101
C*$* ASSERT LAST VALUE NEEDED, 101
C*$* ASSERT NO RECURRENCE, 87,101
C*$* ASSERT NO SYNC, 101

C*$* ASSERT PERMUTATION, 88, 101

C*$* ASSERT RELATION, 82,102

C*$* ASSERT TEMPORARIES FOR CONSTANT
ARGUMENTS, 85

C*$* CONCURRENTIZE, 80, 95

C*$* EACH_INVARIANT_IF_GROWTH, 74
C*$* INLINE, 78

C*$* LIMIT, 96

100

107

Index

C*$* MAX_INVARIANT_IF_GROWTH, 74
C*$* MINCONCURRENT, 96
C*$* NO CONCURRENTIZE, 80
C*$* NO INLINE, 78
C*$* NO IPA, 79
C*$* NO SYNC, 74
C*$* OPTIMIZE, 75, 96
C*$* ROUNDOFF, 76, 97
C*$* SCALAROPTIMIZE, 77
cache
setting up page mapping, 55
specifying size, 54
specifying width of memory channel, 54
—cacheline option, 54
—cachesize option, 54
CDIR$ IVDEP, 87,98
CDIR$ NEXT SCALAR, 80, 98
C$ DOACROSS, 73,97
COMMON blocks
aligning, 52
compiler options
-pfa, 13,39
compiling programs with Power Fortran, 10
—concurrentize option, 34, 90

controlling code execution, 34
running code in parallel, 34
specifying a work threshold, 34

Cray directives
CDIR$ IVDEP, 87,98
CDIR$ NEXT SCALAR, 98

customizing execution, 33
controlling code execution, 34
overview, 33

CVD$ CNCALL, 87,98
CVD$ CONCUR, 81, 98

108

D

data dependencies
ignoring, 86
data independence, 103

default listing information interpretation
action summary, 21
DO loop marking, 20
field descriptions, 19
footnotes, 20
line numbers, 19
syntax error/warning messages, 21
viewing the listing file, 19
dependences
assumed, 72

directives
C$&, 73,97
C*$* ARCLIMIT, 74
C*$* CONCURRENTIZE, 80, 95
C*$* EACH_INVARIANT_IF._ GROWTH, 74
C*$* INLINE, 78
C*$* LIMIT, 96
C*$* MAX_INVARIANT_IF_GROWTH, 74
C*$* MINCONCURRENT, 96
C*$* NO CONCURRENTIZE, 80, 96
C*$* NO INLINE, 78
C*$* NOIPA, 79
C*$* NO SYNC, 74
C*$* OPTIMIZE, 75, 96
C*$* ROUNDOFF, 76, 97
C*$* SCALAROPTIMIZE, 77
CDIRS$ IVDEP, 87,98
CDIR$ NEXT SCALAR, 80, 98
C$ DOACROSS, 73,97
CVD$ CNCALL, 87,98
CVD$ CONCUR, 81,98
definition, 103
enabling recognition of, 57
overview, 70
purpose of, 3

Index

—directives option, 57
DO loop

marking in listing file, 20
double precision registers, 55
—dpregisters option, 55

E

—each_invariant_if growth option, 42
equivalent transformed source file, 103
error messages

in listing file, 21
example

Power Fortran command line, 13

F

fef77, 13
tef77p, 13
fine-tuning inlining and IPA, 78
floating point registers, 55
footnotes

in listing file, 20
formatting the listing file, 17
—fpregisters option, 55
fsplit, 10
function call

generated by Power Fortran, 26

—fuse option, 41

G

global assertion, 103

global assumptions
controlling, 41

global directive, 103

indirect indexing, 24
—inline_and_copy option, 61
—inline_create option, 66
—inline_from_files option, 64
—inline_from_libraries option, 64
inlining, 59, 103

enabling with options, 60

fine-tuning, 78

performing, 38

specifying routines, 61
internal table size

controlling, 53
interprocedural analysis

performing with options, 60
interprocedural analysis (IPA), 59, 104

fine-tuning, 78

performing, 38

specifying routines, 61
invariant IF floating, 42,74
—ipa_create option, 66
—ipa_from_files option, 64
—ipa_from_libraries option, 64

109

Index

L N

-limit option, 36, 90 —noassume option, 41

-lines option, 17,91 —noconcurrentize option, 34, 92
listing file, 10, 104 —noparallelio option, 93

action summary, 21
error/warning messages, 21

field descriptions, 19 (@]
footnotes, 20
include options, 17 optimization
interpreting default information, 19 setting levels, 36
samples, 23-30 optimizations
viewing, 19 aggressive, 52
listing file formatting, 17 changing levels, 75
disabling message classes, 18 controlling internal table size, 53
paginating the listing, 17 controlling levels, 44
specifying information to include, 17 invariant IF floating, 42
-listoptions option, 17,19, 91 loop blocking, 53

loop fusion, 41

loop unrolling, 53, 55

memory management transformations, 53
recursion, 58

scalar, 77

loop blocking, 53
loop fusion, 41

loop unrolling, 53
enabling, 55

—optimize option, 36, 44
M and —O compiler option, 44
optimizing

inlining and IPA, 59

—max_invariant_if growth option, 42
overview of Power Fortran, 1

max reduction, 104

memory channel
specifying width, 54 P

memory management transformations, 53
options, 54

aginating the listing file, 17
techniques, 53 pag & 5

—parallelio option, 35, 93
messages

in listing file, 21
. file, 10, 103
—minconcurrent option, 92

parallelize, 104
permutation index, 104
permutation vector, 104
—pfa compiler option, 13

min reduction, 104 .
—pfa option, 10, 11

110

Index

—aggressive, 52 overview of usage, 9
and scalar optimizations, 39 running from 77, 13
—arclimit, 53 strategy for using, 2
—assume, 41, 82 summary, 7

—cacheline, 54 table of action abbreviations, 22
—cachesize, 54 utilizing output, 15
—directives, 57 Power Fortran option
—dpregisters, 55 —concurrentize, 34, 90
—each_invariant_if growth, 42 —limit, 36, 90
—fpregisters, 55 -lines, 17,91

—fuse, 41 —listoptions, 17, 91
—inline_create, 66 —minconcurrent, 92
—inline_from_files, 64 —noconcurrentize, 34, 92
—inline_from_libraries, 64 -noparallelio, 93
—ipa_create, 66 —-optimize, 36
—ipa_from_files, 64 —parallelio, 35,93
—ipa_from_libraries, 64 -pfa, 10,11
-max_invariant_if growth, 42 —roundoff, 37
—optimize, 44 -sopt, 93

—recursion, 58 —suppress, 18, 94

—roundoff, 45
—scalaropt, 48
—setassociativity, 55
—unroll, 55
—unroll2, 55

Power Fortran, 1, 104
action summary, 21
assertions, 99

purpose of, 6

circumventing, 73
command-line example, 13
command-line options, 3, 89
command-line syntax, 10

product reduction, 104
profiling, 104

R

recursion
enabling, 58

—recursion option, 58

reductions
definition, 105
example of, 28

compiling with, 10 sum, 31

controlling code transformations, 36 types of, 31

customizing execution, 34 registers

directives, 95-98 double precision, 55
purpose of, 3 floating point, 55

interpreting listing, 19
output files, 10
overview of operation, 1

111

Index

round off

controlling from command line, 45

controlling variations, 37
error, 105

—-roundoff option, 31, 37, 45

and —O compiler option, 46
running code in parallel, 34, 80

running code serially, 79

S

sample listing files, 23
function call, 26
indirect indexing, 24
reductions, 28

scalar optimizations
controlling levels, 48

controlling with directives, 77

fine tuning, 74
—scalaropt option, 48

and —O compiler option, 48

—setassociativity option, 55

setting optimization level, 36

—sopt option, 93

specifying a complexity limit, 36
specifying a work threshold, 34

standard directives, 95-97
See also directives.

strategy for using Power Fortran, 2

sum reduction, 31, 105
—suppress option, 18, 94
syntax conventions, xvii

112

T

tiling, 54

U

—unroll2 option, 55
—unroll option, 55

\Y

VAST directives, 98
CVD$ CNCALL, 87,98
CVD$ CONCUR, 98
See also directives.

viewing the listing file, 19

W

warning messages

in listing file, 21
WorkShop Pro MPF, 2,105

producing input file, 10
work threshold

specifying, 34

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

* General impression of the document

® Omission of material that you expected to find

® Technical errors

® Relevance of the material to the job you had to do

¢ Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-2363-002.

Thank you!

Three Ways to Reach Us
* To send your comments by electronic mail, use either of these addresses:
— On the Internet: techpubs@sgi.com
— For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

¢ To fax your comments (or annotated copies of manual pages), use this
fax number: 415-965-0964

* To send your comments by traditional mail, use this address:

Technical Publications

Silicon Graphics, Inc.

2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

