X11 Input Extension Library Specification

X Consortium Standard
X Version 11, Release 6

Document Number 007-2493-002

Written by Mark Patrick, Ardent Computer, and George Sachs, Hewlett-Packard

Copyright © 1989, 1990, 1991 by Hewlett-Packard Company, Ardent Computer.
Permission to use, copy, modify, and distribute this documentation for any purpose
and without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies. Ardent, and Hewlett-Packard make no
representations about the suitability for any purpose of the information in this
document. It is provided “as is” without express or implied warranty.

Copyright © 1989, 1990, 1991, 1992 X Consortium

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the “Software”), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Except as contained in this notice, the name of the X Consortium shall not be used in
advertising or otherwise to promote the sale, use or other dealings in this Software
without prior written authorization from the X Consortium.

X Window System is a trademark of X Consortium, Inc.

X11 Input Extension Library Specification
Document Number 007-2493-002

Contents

Input Extension Overview 1
Design Approach 1
Core Input Devices 1
Extension Input Devices 2

Input Device Classes 3
Using Extension Input Devices 3

Library Extension Requests 5

Window Manager Functions 5
Changing the Core Devices 5
Event Synchronization and Core Grabs
Extension Active Grabs 8
Passively Grabbing a Key 11
Passively Grabbing a Button 14
Thawing a Device 18
Controlling Device Focus 20
Controlling Device Feedback 22
Ringing a Bell on an Input Device 30
Controlling Device Encoding 31
Controlling Button Mapping 35
Obtaining the State of a Device 37

7

Contents

Events and Event-Handling Functions 40

Event Types 40
Event Classes 41
Event Structures 42

Device Key Events 42

Device Button Events 43

Device Motion Events 45

Device Focus Events 46

Device StateNotify Event 46

Device Mapping Event 48

ChangeDeviceNotify Event 48

Proximity Events 49

Determining the Extension Version 50
Listing Available Devices 50
Enabling and Disabling Extension Devices 53
Changing the Mode of a Device 55
Initializing Valuators on an Input Device 56
Getting Input Device Controls 57
Changing Input Device Controls 58
Selecting Extension Device Events 60
Determining Selected Device Events 61
Controlling Event Propagation 62
Sending an Event 64
Getting Motion History 66

Chapter 1

Design Approach

Core Input Devices

Input Extension Overview

This document describes an extension to the X11 server. The purpose of this extension is
to support the use of additional input devices beyond the pointer and keyboard devices
defined by the core X protocol. This first section gives an overview of the input extension.
The following sections correspond to chapters 7 and 8, “Window Manager functions”
and “Events and Event-Handling Functions” of the “Xlib - C Language Interface”
manual and describe how to use the input extension.

The design approach of the extension is to define functions and events analogous to the
core functions and events. This allows extension input devices and events to be
individually distinguishable from each other and from the core input devices and
events. These functions and events make use of a device identifier and support the
reporting of n-dimensional motion data as well as other data that is not currently
reportable via the core input events.

The X server core protocol supports two input devices: a pointer and a keyboard. The
pointer device has two major functions. First, it may be used to generate motion
information that client programs can detect. Second, it may also be used to indicate the
current location and focus of the X keyboard. To accomplish this, the server echoes a
cursor at the current position of the X pointer. Unless the X keyboard has been explicitly
focused, this cursor also shows the current location and focus of the X keyboard.

The X keyboard is used to generate input that client programs can detect.
The X keyboard and X pointer are referred to in this document as the core devices, and the

input events they generate (KeyPress, KeyRelease, ButtonPress, ButtonRelease, and
MotionNotify) are known as the core input events. All other input devices are referred to

Chapter 1: Input Extension Overview

as extension input devices and the input events they generate are referred to as extension
input events.

This input extension does not change the behavior or functionality of the core input
devices, core events, or core protocol requests, with the exception of the core grab
requests. These requests may affect the synchronization of events from extension
devices. See the explanation in the section titled “Event Synchronization and Core
Grabs.”

Selection of the physical devices to be initially used by the server as the core devices is
left implementation-dependent. Functions are defined that allow client programs to
change which physical devices are used as the core devices.

Extension Input Devices

The input extension controls access to input devices other than the X keyboard and X
pointer. It allows client programs to select input from these devices independently from
each other and independently from the core devices. Input events from these devices are
of extension types (DeviceKeyPress, DeviceKeyRelease, DeviceButtonPress,
DeviceButtonRelease, DeviceMotionNotify, etc.) and contain a device identifier so that
events of the same type coming from different input devices can be distinguished.

Extension input events are not limited in size by the size of the server 32-byte wire events.
Extension input events may be constructed by the server sending as many wire sized
events as necessary to return the information required for that event. The library event
reformatting routines are responsible for combining these into one or more client
XEvents.

Any input device that generates key, button or motion data may be used as an extension
input device. Extension input devices may have 0 or more keys, 0 or more buttons, and
may report 0 or more axes of motion. Motion may be reported as relative movements
from a previous position or as an absolute position. All valuators reporting motion
information for a given extension input device must report the same kind of motion
information (absolute or relative).

This extension is designed to accommodate new types of input devices that may be
added in the future. The protocol requests that refer to specific characteristics of input
devices organize that information by input device classes. Server implementors may
add new classes of input devices without changing the protocol requests.

Using Extension Input Devices

All extension input devices are treated like the core X keyboard in determining their
location and focus. The server does not track the location of these devices on an
individual basis, and therefore does not echo a cursor to indicate their current location.
Instead, their location is determined by the location of the core X pointer. Like the core X
keyboard, some may be explicitly focused. If they are not explicitly focused, their focus
is determined by the location of the core X pointer.

Input Device Classes

Some of the input extension requests divide input devices into classes based on their
functionality. This is intended to allow new classes of input devices to be defined at a
later time without changing the semantics of these functions. The following input device
classes are currently defined:

KEY The device reports key events.

BUTTON The device reports button events.

VALUATOR The device reports valuator data in motion events.

PROXIMITY The device reports proximity events.

FOCUS The device can be focused.

FEEDBACK The device supports feedbacks.

Additional classes may be added in the future. Functions that support multiple input
classes, such as the XListInputDevices function that lists all available input devices,

organize the data they return by input class. Client programs that use these functions
should not access data unless it matches a class defined at the time those clients were

compiled. In this way, new classes can be added without forcing existing clients that use
these functions to be recompiled.

Using Extension Input Devices

A client that wishes to access an input device does so through the library functions
defined in the following sections. A typical sequence of requests that a client would make
is as follows:

¢ XListInputDevices - list all of the available input devices. From the information
returned by this request, determine whether the desired input device is attached to

Chapter 1: Input Extension Overview

the server. For a description of the XListInputDevices request, see the section
entitled “Listing Available Devices.”

* XOpenDevice - request that the server open the device for access by this client. This
request returns an XDevice structure that is used by most other input extension
requests to identify the specified device. For a description of the XOpenDevice
request, see the section entitled “Enabling and Disabling Extension Devices.”

® Determine the event types and event clases needed to select the desired input
extension events, and identify them when they are received. This is done via macros
whose name corresponds to the desired event, i.e. DeviceKeyPress. For a
description of these macros, see the section entitled “Selecting Extension Device
Events.”

¢ XSelectExtensionEvent - select the desired events from the server. For a description
of the XSelextExtensionEvent request, see the section entitled “Selecting Extension
Device Events.”

e XNextEvent - receive the next available event. This is the core XNextEvent function
provided by the standard X libarary.

Other requests are defined to grab and focus extension devices, to change their key,
button, or modifier mappings, to control the propagation of input extension events, to
get motion history from an extension device, and to send input extension events to
another client. These functions are described in the following sections.

Chapter 2

Library Extension Requests

Extension input devices are accessed by client programs through the use of new protocol
requests. The following requests are provided as extensions to Xlib. Constants and
structures referenced by these functions may be found in the files XL.h and XInput.h,
which are attached to this document as appendix A.

The library will return NoSuchExtension if an extension request is made to a server that
does not support the input extension.

Input extension requests cannot be used to access the X keyboard and X pointer devices.

Window Manager Functions

Changing the Core Devices

These functions are provided to change which physical device is used as the X pointer or
Xkeyboard. Using these functions may change the characteristics of the core devices. The
new pointer device may have a different number of buttons than the old one did, or the
new keyboard device may have a different number of keys or report a different range of
keycodes. Client programs may be running that depend on those characteristics. For
example, a client program could allocate an array based on the number of buttons on the
pointer device, and then use the button numbers received in button events as indicies
into that array. Changing the core devices could cause such client programs to behave
improperly or abnormally terminate, if they ignore the ChangeDeviceNotify event
generated by these requests.

These functions change the X keyboard or X pointer device and generate an
XChangeDeviceNotify event and a MappingNotify event. The specified device
becomes the new X keyboard or X pointer device. The location of the core device does
not change as a result of this request.

Chapter 2: Library Extension Requests

These requests fail and return AlreadyGrabbed if either the specified device or the core
device it would replace are grabbed by some other client. They fail and return
GrabFrozen if either device is frozen by the active grab of another client.

These requests fail with a BadDevice error if the specified device is invalid, has not
previously been opened via XOpenDevice, or is not supported as a core device by the
server implementation.

Once the device has successfully replaced one of the core devices, it is treated as a core
device until it is in turn replaced by another ChangeDevice request, or until the server
terminates. The termination of the client that changed the device will not cause it to
change back. Attempts to use the XCloseDevice request to close the new core device will
fail with a BadDevice error.

To change which physical device is used as the X keyboard, use the
XChangeKeyboardDevice function.

The specified device must support input class Keys (as reported in the ListInputDevices
request) or the request will fail with a BadMatch error.
int
XChangeKeyboar dDevi ce (display, device)
Di spl ay *di spl ay;
XDevi ce *devi ce;

display Specifies the connection to the X server.

device Specifies the desired device.

If no error occurs, this function returns Success. A ChangeDeviceNotify event with the
request field set to NewKeyboard is sent to all clients selecting that event. A
MappingNotify event with the request field set to MappingKeyboard is sent to all
clients. The requested device becomes the X keyboard, and the old keyboard becomes
available as an extension input device. The focus state of the new keyboard is the same
as the focus state of the old X keyboard.

Errors returned by this function: BadDevice, BadMatch, AlreadyGrabbed, and
GrabFrozen.

To change which physical device is used as the X pointer, use the
XChangePointerDevice function. The specified device must support input class
Valuators (as reported in the XListInputDevices request) and report at least two axes of
motion, or the request will fail with a BadMatch error. If the specified device reports

Window Manager Functions

more than two axes, the two specified in the xaxis and yaxis arguments will be used. Data
from other valuators on the device will be ignored.

If the specified device reports absolute positional information, and the server
implementation does not allow such a device to be used as the X pointer, the request will
fail with a BadDevice error.
int
XChangePoi nt er Devi ce (display, device, xaxis, yaxis)

Di spl ay *di spl ay;

XDevi ce *devi ce;

int xaxi s;
int yaxi s;
display Specifies the connection to the X server.
device Specifies the desired device.
xXaxis Specifies the zero-based index of the axis to be used as the x-axis of the

pointer device.

yaxis Specifies the zero-based index of the axis to be used as the y-axis of the
pointer device.

If no error occurs, this function returns Success. A ChangeDeviceNotify event with the
request field set to NewPointer is sent to all clients selecting that event. A
MappingNotify event with the request field set to MappingPointer is sent to all clients.
The requested device becomes the X pointer, and the old pointer becomes available as
an extension input device.

Errors returned by this function: BadDevice,BadMatch, AlreadyGrabbed, and
GrabFrozen.

Event Synchronization and Core Grabs

Implementation of the input extension requires an extension of the meaning of event
synchronization for the core grab requests. This is necessary in order to allow window
managers to freeze all input devices with a single request.

The core grab requests require a pointer_mode and keyboard_mode argument. The
meaning of these modes is changed by the input extension. For the XGrabPointer and
XGrabButton requests, pointer_mode controls synchronization of the pointer device,
and keyboard_mode controls the synchronization of all other input devices. For the

Chapter 2: Library Extension Requests

XGrabKeyboard and XGrabKey requests, pointer_mode controls the synchronization
of all input devices except the X keyboard, while keyboard_mode controls the
synchronization of the keyboard. When using one of the core grab requests, the
synchronization of extension devices is controlled by the mode specified for the device
not being grabbed.

Extension Active Grabs

Active grabs of extension devices are supported via the XGrabDevice function in the
same way that core devices are grabbed using the core XGrabKeyboard function, except
that a Device is passed as a function parameter. The XUngrabDevice function allows a
previous active grab for an extension device to be released.

Passive grabs of buttons and keys on extension devices are supported via the
XGrabDeviceButton and XGrabDeviceKey functions. These passive grabs are released
via the XUngrabDeviceKey and XUngrabDeviceButton functions.

To grab an extension device, use the XGrabDevice function. The device must have
previously been opened using the XOpenDevice function.

i nt

XG abDevi ce (display, device, grab_w ndow, owner_events,

event _count, event_list, this_device_node,
ot her _devi ce_node, tine)

Di spl ay *di spl ay;
XDevi ce *devi ce;
W ndow gr ab_wi ndow;
Bool owner _events;
int event _count;
XEvent Cl ass *event _|ist;
int t hi s_devi ce_node;
int ot her _devi ce_node;
Ti ne tine;
display Specifies the connection to the X server.
device Specifies the desired device.

grab_window Specifies the ID of a window associated with the device specified above.
owner_events Specifies a boolean value of either True or False.

event_count Specifies the number of elements in the event_list array.

Window Manager Functions

event_list Specifies a pointer to a list of event classes that indicate which events the
client wishes to receive. These event classes must have been obtained
using the device being grabbed.

this_device_mode
Controls further processing of events from this device. You can pass one
of these constants: GrabModeSync or GrabModeAsync.

other_device_mode
Controls further processing of events from all other devices. You can
pass one of these constants: GrabModeSync or GrabModeAsync.

time Specifies the time. This may be either a timestamp expressed in
milliseconds, or CurrentTime.

The XGrabDevice function actively grabs an extension input device, and generates
DeviceFocusIn and DeviceFocusOut events. Further input events from this device are
reported only to the grabbing client. This function overrides any previous active grab by
this client for this device.

The event-list parameter is a pointer to a list of event classes. This list indicates which
events the client wishes to receive while the grab is active. If owner_events is False, input
events from this device are reported with respect to grab_window and are only reported
if specified in event_list. If owner_events is True, then if a generated event would
normally be reported to this client, it is reported normally. Otherwise the event is
reported with respect to the grab_window, and is only reported if specified in event_list.

The this_device_mode argument controls the further processing of events from this
device, and the other_device_mode argument controls the further processing of input
events from all other devices.

¢ If the this_device_mode argument is GrabModeAsync, device event processing
continues normally; if the device is currently frozen by this client, then processing
of device events is resumed. If the this_device_mode argument is GrabModeSync,
the state of the grabbed device (as seen by client applications) appears to freeze, and
no further device events are generated by the server until the grabbing client issues
a releasing XAllowDeviceEvents call or until the device grab is released. Actual
device input events are not lost while the device is frozen; they are simply queued
for later processing.

¢ If the other_device_mode is GrabModeAsync, event processing from other input
devices is unaffected by activation of the grab. If other_device_mode is
GrabModeSync, the state of all devices except the grabbed device (as seen by client

Chapter 2: Library Extension Requests

10

applications) appears to freeze, and no further events are generated by the server
until the grabbing client issues a releasing XAllowEvents or XAllowDeviceEvents
call or until the device grab is released. Actual events are not lost while the other
devices are frozen; they are simply queued for later processing.

XGrabDevice fails and returns:
e AlreadyGrabbed If the device is actively grabbed by some other client.
* GrabNotViewable If grab_window is not viewable.

¢ GrablnvalidTime If the specified time is earlier than the last-grab-time for the
specified device or later than the current X server time. Otherwise, the
last-grab-time for the specified device is set to the specified time and CurrentTime
is replaced by the current X server time.

¢ GrabFrozen If the device is frozen by an active grab of another client.

If a grabbed device is closed by a client while an active grab by that clientis in effect, that
active grab will be released. Any passive grabs established by that client will be released.
If the device is frozen only by an active grab of the requesting client, it is thawed.

Errors returned by this function: BadDevice, BadWindow, BadValue, BadClass.

To release a grab of an extension device, use XUngrabDevice.
i nt
XUngr abDevi ce (display, device, tine)

Di spl ay *di spl ay;

XDevi ce *devi ce;

Ti me tinme;
display Specifies the connection to the X server.
device Specifies the desired device.
time Specifies the time. This may be either a timestamp expressed in

milliseconds, or CurrentTime.

This function allows a client to release an extension input device and any queued events
if this client has it grabbed from either XGrabDevice or XGrabDeviceKey. If any other
devices are frozen by the grab, XUngrabDevice thaws them. The function does not
release the device and any queued events if the specified time is earlier than the
last-device-grab time or is later than the current X server time. It also generates
DeviceFocusIn and DeviceFocusOut events. The X server automatically performs an

Window Manager Functions

XUngrabDevice if the event window for an active device grab becomes not viewable, or
if the client terminates without releasing the grab.

Errors returned by this function: BadDevice.

Passively Grabbing a Key

To passively grab a single key on an extension device, use XGrabDeviceKey. That device
must have previously been opened using the XOpenDevice function, or the request will
fail with a BadDevice error. If the specified device does not support input class Keys, the
request will fail with a BadMatch error.

i nt

XG abDevi ceKey (display, device, keycode, nodifiers, nodifier_device

grab_wi ndow, owner_events, event_count, event_list,
t hi s_devi ce_npde, ot her_devi ce_nopde)

Di spl ay *di spl ay;
XDevi ce *devi ce;
int keycode;
unsi gned int nodifiers;
XDevi ce *nodi fi er _devi ce;
W ndow gr ab_wi ndow;
Bool owner _events;
int event _count;
XEvent Cl ass *event _|ist;
int t hi s_devi ce_node;
int ot her _devi ce_node,;
display Specifies the connection to the X server.
device Specifies the desired device.
keycode Specifies the keycode of the key that is to be grabbed. You can pass either
the keycode or AnyKey.
modifiers Specifies the set of keymasks. This mask is the bitwise inclusive OR of

these keymask bits: ShiftMask, LockMask, ControlMask, Mod1Mask,
Mod2Mask, Mod3Mask, Mod4Mask, Mod5Mask.

You can also pass AnyModifier, which is equivalent to issuing the grab
key request for all possible modifier combinations (including the
combination of no modifiers).

modifier_device Specifies the device whose modifiers are to be used. If NULL is
specified, the core X keyboard is used as the modifier_device.

11

Chapter 2: Library Extension Requests

12

grab_window Specifies the ID of a window associated with the device specified above.

owner_events Specifies a boolean value of either True or False.

event_count Specifies the number of elements in the event_list array.

event_list Specifies a pointer to a list of event classes that indicate which events the

client wishes to receive.

this_device_mode Controls further processing of events from this device. You can pass one

of these constants: GrabModeSync or GrabModeAsync.

other_device_mode

Controls further processing of events from all other devices. You can
pass one of these constants: GrabModeSync or GrabModeAsync.

This function is analogous to the core XGrabKey function. It creates an explicit passive
grab for a key on an extension device.

The XGrabDeviceKey function establishes a passive grab on a device. Consequently, in
the future,

IF the device is not grabbed and the specified key, which itself can be a modifier
key, is logically pressed when the specified modifier keys logically are down on the
specified modifier device (and no other keys are down),

AND no other modifier keys logically are down,

AND EITHER the grab window is an ancestor of (or is) the focus window OR the
grab window is a descendent of the focus window and contains the pointer,

AND a passive grab on the same device and key combination does not exist on any
ancestor of the grab window,

THEN the device is actively grabbed, as for XGrabDevice, the last-device-grab time
is set to the time at which the key was pressed (as transmitted in the
DeviceKeyPress event), and the DeviceKeyPress event is reported.

The interpretation of the remaining arguments is as for XGrabDevice. The active grab is
terminated automatically when the logical state of the device has the specified key
released (independent of the logical state of the modifier keys).

Note that the logical state of a device (as seen by means of the X protocol) may lag the
physical state if device event processing is frozen.

Window Manager Functions

A modifier of AnyMaodifier is equivalent to issuing the request for all possible modifier
combinations (including the combination of no modifiers). It is not required that all
modifiers specified have currently assigned keycodes. A key of AnyKey is equivalent to
issuing the request for all possible keycodes. Otherwise, the key must be in the range
specified by min_keycode and max_keycode in the information returned by the
XListInputDevices function. If it is not within that range, XGrabDeviceKey generates a
BadValue error.

A BadAccess error is generated if some other client has issued a XGrabDeviceKey with
the same device and key combination on the same window. When using AnyModifier
or AnyKey, the request fails completely and the X server generates a BadAccess error
and no grabs are established if there is a conflicting grab for any combination.

XGrabDeviceKey can generate BadDevice, BadAccess, BadMatch, BadWindow,
BadClass, and BadValue errors.

XGrabDeviceKey returns Success upon successful completion of the request.

To release a passive grab of a single key on an extension device, use XUngrabDeviceKey.
int
XUngr abDevi ceKey (display, device, keycode, nodifiers,
nodi fi er_devi ce, ungrab_wi ndow)

Di splay *display;

XDevi ce *devi ce;

int keycode;

unsi gned int nodifiers;

XDevi ce *nodifier_device;

W ndow ungrab_w ndow,

display Specifies the connection to the X server.
device Specifies the desired device.
keycode Specifies the keycode of the key that is to be ungrabbed. You can pass

either the keycode or AnyKey.

modifiers Specifies the set of keymasks. This mask is the bitwise inclusive OR of
these keymask bits: ShiftMask, LockMask, ControlMask, Mod1Mask,
Mod2Mask, Mod3Mask, Mod4Mask, Mod5Mask.

You can also pass AnyModifier, which is equivalent to issuing the
ungrab key request for all possible modifier combinations (including
the combination of no modifiers).

13

Chapter 2: Library Extension Requests

14

modifier_device Specifies the device whose modifiers are to be used. If NULL is
specified, the core X keyboard is used as the modifier_device.

ungrab_window Specifies the ID of a window associated with the device specified above.

This function is analogous to the core XUngrabKey function. It releases an explicit
passive grab for a key on an extension input device.

Errors returned by this function: BadDevice, BadWindow, BadValue, BadAlloc, and
BadMatch.

Passively Grabbing a Button

To establish a passive grab for a single button on an extension device, use
XGrabDeviceButton. The specified device must have previously been opened using the
XOpenDevice function, or the request will fail with a BadDevice error. If the specified
device does not support input class Buttons, the request will fail with a BadMatch error.
i nt
XG abDevi ceButton (display, device, button, nodifiers,
nodi fi er _devi ce, grab_wi ndow, owner_events, event_count,
event _|ist, this_device_npde, other_device_nopde)
Di spl ay *di spl ay;
XDevi ce *devi ce;
unsi gned int button;
unsi gned int nodifiers;

XDevi ce *nodi fi er_devi ce;
W ndow grab_wi ndow;,

Bool owner _events;

int event _count;
XEvent Cl ass *event _|ist;

int t hi s_devi ce_node;
int ot her _devi ce_node;

Window Manager Functions

display
device

button

modifiers

modifier_device

grab_window
owner_events
event_count

event_list

Specifies the connection to the X server.
Specifies the desired device.

Specifies the code of the button that is to be grabbed. You can pass either
the button or AnyButton.

Specifies the set of keymasks. This mask is the bitwise inclusive OR of
these keymask bits: ShiftMask, LockMask, ControlMask, Mod1Mask,
Mod2Mask, Mod3Mask, Mod4Mask, Mod5Mask.

You can also pass AnyModifier, which is equivalent to issuing the grab
request for all possible modifier combinations (including the
combination of no modifiers).

Specifies the device whose modifiers are to be used. If NULL is
specified, the core X keyboard is used as the modifier_device.

Specifies the ID of a window associated with the device specified above.
Specifies a boolean value of either True or False.
Specifies the number of elements in the event_list array.

Specifies a list of event classes that indicates which device events are to
be reported to the client.

this_device_mode Controls further processing of events from this device. You can pass one

of these constants: GrabModeSync or GrabModeAsync.

other_device_modeControls further processing of events from all other devices. You can

pass one of these constants: GrabModeSync or GrabModeAsync.

This function is analogous to the core XGrabButton function. It creates an explicit
passive grab for a button on an extension input device. Since the server does not track
extension devices, no cursor is specified with this request. For the same reason, there is
no confine_to parameter. The device must have previously been opened using the
XOpenDevice function.

15

Chapter 2: Library Extension Requests

16

The XGrabDeviceButton function establishes a passive grab on a device. Consequently,
in the future,

e [F the device is not grabbed and the specified button is logically pressed when the
specified modifier keys logically are down (and no other buttons or modifier keys
are down),

e AND EITHER the grab window is an ancestor of (or is) the focus window OR the
grab window is a descendent of the focus window and contains the pointer,

* AND a passive grab on the same device and button/ key combination does not
exist on any ancestor of the grab window,

e THEN the device is actively grabbed, as for XGrabDevice, the last-grab time is set
to the time at which the button was pressed (as transmitted in the
DeviceButtonPress event), and the DeviceButtonPress event is reported.

The interpretation of the remaining arguments is as for XGrabDevice. The active grab is
terminated automatically when logical state of the device has all buttons released
(independent of the logical state of the modifier keys).

Note that the logical state of a device (as seen by means of the X protocol) may lag the
physical state if device event processing is frozen.

A modifier of AnyMaodifier is equivalent to issuing the request for all possible modifier
combinations (including the combination of no modifiers). It is not required that all
modifiers specified have currently assigned keycodes. A button of AnyButton is
equivalent to issuing the request for all possible buttons. Otherwise, it is not required that
the specified button be assigned to a physical button.

A BadAccess error is generated if some other client has issued a XGrabDeviceButton
with the same device and button combination on the same window. When using
AnyModifier or AnyButton, the request fails completely and the X server generates a
BadAccess error and no grabs are established if there is a conflicting grab for any
combination.

Window Manager Functions

XGrabDeviceButton can generate BadDevice, BadMatch, BadAccess, BadWindow,
BadClass, and BadValue errors.

To release a passive grab of a button on an extension device, use XUngrabDeviceButton.
int
XUngr abDevi ceButton (di splay, device, button, nodifiers,
nodi fi er_devi ce, ungrab_wi ndow)

Di splay *display;

XDevi ce *devi ce;

unsi gned int button;

unsi gned int nodifiers;

XDevi ce *nodifier_device;

W ndow ungrab_w ndow,

display Specifies the connection to the X server.
device Specifies the desired device.
button Specifies the code of the button that is to be ungrabbed. You can pass

either a button or AnyButton.

modifiers Specifies the set of keymasks. This mask is the bitwise inclusive OR of
these keymask bits: ShiftMask, LockMask, ControlMask, Mod1Mask,
Mod2Mask, Mod3Mask, Mod4Mask, Mod5Mask.

You can also pass AnyModifier, which is equivalent to issuing the
ungrab key request for all possible modifier combinations (including
the combination of no modifiers).

modifier_device Specifies the device whose modifiers are to be used. If NULL is
specified, the core X keyboard is used as the modifier_device.

ungrab_window Specifies the ID of a window associated with the device specified above.
This function is analogous to the core XUngrabButton function. It releases an explicit

passive grab for a button on an extension device. That device must have previously been
opened using the XOpenDevice function, or a BadDevice error will result.

17

Chapter 2: Library Extension Requests

18

A modifier of AnyMaodifier is equivalent to issuing the request for all possible modifier
combinations (including the combination of no modifiers).

XUngrabDeviceButton can generate BadDevice, BadMatch, BadWindow, Bad Value,
and BadAlloc errors.

Thawing a Device

To allow further events to be processed when a device has been frozen, use
XAllowDeviceEvents.
i nt
XAl | owDevi ceEvent s (di splay, device, event_node, tine)
Di spl ay *di spl ay;
XDevi ce *devi ce;

int event _node;
Ti me time;
display Specifies the connection to the X server.
device Specifies the desired device.
event_mode Specifies the event mode. You can pass one of these constants:

AsyncThisDevice, SyncThisDevice, AsyncOtherDevices,
ReplayThisDevice, AsyncAll, or SyncAll.

time Specifies the time. This may be either a timestamp expressed in
milliseconds, or CurrentTime.

The XAllowDeviceEvents function releases some queued events if the client has caused
a device to freeze. The function has no effect if the specified time is earlier than the
last-grab time of the most recent active grab for the client and device, or if the specified
time is later than the current X server time. The following describes the processing that
occurs depending on what constant you pass to the event_mode argument:

e If the specified device is frozen by the client, event processing for that continues as
usual. If the device is frozen multiple times by the client on behalf of multiple
separate grabs, AsyncThisDevice thaws for all. AsyncThisDevice has no effect if the
specified device is not frozen by the client, but the device need not be grabbed by
the client.

e If the specified device is frozen and actively grabbed by the client, event processing
for that device continues normally until the next key or button event is reported to
the client. At this time, the specified device again appears to freeze. However, if the

Window Manager Functions

reported event causes the grab to be released, the specified device does not freeze.
SyncThisDevice has no effect if the specified device is not frozen by the client or is
not grabbed by the client.

If the specified device is actively grabbed by the client and is frozen as the result of
an event having been sent to the client (either from the activation of a
GrabDeviceButton or from a previous AllowDeviceEvents with mode
SyncThisDevice, but not from a Grab), the grab is released and that event is
completely reprocessed. This time, however, the request ignores any passive grabs
at or above (towards the root) the grab-window of the grab just released. The
request has no effect if the specified device is not grabbed by the client or if it is not
frozen as the result of an event.

If the remaining devices are frozen by the client, event processing for them
continues as usual. If the other devices are frozen multiple times by the client on
behalf of multiple separate grabs, AsyncOtherDevices “thaws” for all.
AsyncOtherDevices has no effect if the devices are not frozen by the client, but those
devices need not be grabbed by the client.

If all devices are frozen by the client, event processing (for all devices) continues
normally until the next button or key event is reported to the client for a grabbed
device at which time the devices again appear to freeze. However, if the reported
event causes the grab to be released, then the devices do not freeze (but if any
device is still grabbed, then a subsequent event for it will still cause all devices to
freeze). SyncAll has no effect unless all devices are frozen by the client. If any device
is frozen twice by the client on behalf of two separate grabs, SyncAll “thaws” for
both (but a subsequent freeze for SyncAll will only freeze each device once).

If all devices are frozen by the client, event processing (for all devices) continues
normally. If any device is frozen multiple times by the client on behalf of multiple
separate grabs, AsyncAll “thaws” for all. If any device is frozen twice by the client
on behalf of two separate grabs, AsyncAll “thaws” for both. AsyncAll has no effect
unless all devices are frozen by the client.

AsyncThisDevice, SyncThisDevice, and ReplayThisDevice have no effect on the
processing of events from the remaining devices. AsyncOtherDevices has no effect on the
processing of events from the specified device. When the event_mode is SyncAll or
AsyncAll, the device parameter is ignored.

It is possible for several grabs of different devices (by the same or different clients) to be
active simultaneously. If a device is frozen on behalf of any grab, no event processing is
performed for the device. It is possible for a single device to be frozen because of several

19

Chapter 2: Library Extension Requests

20

grabs. In this case, the freeze must be released on behalf of each grab before events can
again be processed.

Errors returned by this function: BadDevice, BadValue.

Controlling Device Focus

The current focus window for an extension input device can be determined using the
XGetDeviceFocus function. Extension devices are focused using the XSetDeviceFocus
function in the same way that the keyboard is focused using the core XSetInputFocus
function, except that a device id is passed as a function parameter. One additional focus
state, FollowKeyboard, is provided for extension devices.

To get the current focus state, revert state, and focus time of an extension device, use
XGetDeviceFocus.
int
XGet Devi ceFocus (di splay, device, focus_return, revert_to_return,
focus_tine_return)
Di spl ay *di spl ay;
XDevi ce *devi ce;
W ndow *focus_return;

int *revert_to_return;

Ti me *focus_time_return;
display Specifies the connection to the X server.
device Specifies the desired device.

focus_return Specifies the address of a variable into which the server can return the
ID of the window that contains the device focus, or one of the constants
None, PointerRoot, or FollowKeyboard.

revert_to_return Specifies the address of a variable into which the server can return the
current revert_to status for the device.

focus_time_return
Specifies the address of a variable into which the server can return the
focus time last set for the device.

This function returns the focus state, the revert-to state, and the last-focus-time for an
extension input device.

Errors returned by this function: BadDevice, BadMatch.

Window Manager Functions

To set the focus of an extension device, use XSetDeviceFocus.

int

XSet Devi ceFocus (di splay, device, focus, revert_to, tine)
Di spl ay *di spl ay;
XDevi ce *devi ce;
W ndow focus;

int revert_to;
Ti me time;
display Specifies the connection to the X server.
device Specifies the desired device.
focus Specifies the id of the window to which the device’s focus should be set.

This may be a window id, or PointerRoot, FollowKeyboard, or None.

revert_to Specifies to which window the focus of the device should revert if the
focus window becomes not viewable. One of the following constants
may be passed: RevertToParent, RevertToPointerRoot, RevertToNone,
or RevertToFollowKeyboard.

time Specifies the time. You can pass either a timestamp, expressed in
milliseconds, or CurrentTime.

This function changes the focus for an extension input device and the
last-focus-change-time. The function has no effect if the specified time is earlier than the
last-focus-change-time or is later than the current X server time. Otherwise, the
last-focus-change-time is set to the specified time. This function causes the X server to
generate DeviceFocusIn and DeviceFocusOut events.

The action taken by the server when this function is requested depends on the value of
the focus argument:

¢ If the focus argument is None, all input events from this device will be discarded
until a new focus window is set. In this case, the revert_to argument is ignored.

¢ Ifa window ID is assigned to the focus argument, it becomes the focus window of
the device. If an input event from the device would normally be reported to this
window or to one of its inferiors, the event is reported normally. Otherwise, the
event is reported relative to the focus window.

¢ If you assign PointerRoot to the focus argument, the focus window is dynamically
taken to be the root window of whatever screen the pointer is on at each input
event. In this case, the revert_to argument is ignored.

21

Chapter 2: Library Extension Requests

22

e If you assign FollowKeyboard to the focus argument, the focus window is
dynamically taken to be the same as the focus of the X keyboard at each input event.

The specified focus window must be viewable at the time XSetDeviceFocus is called.
Otherwise, it generates a BadMatch error. If the focus window later becomes not
viewable, the X server evaluates the revert_to argument to determine the new focus
window.

e If you assign RevertToParent to the revert_to argument, the focus reverts to the
parent (or the closest viewable ancestor), and the new revert_to value is taken to be
RevertToNone.

¢ If you assign RevertToPointerRoot, RevertToFollowKeyboard, or RevertToNone

to the revert_to argument, the focus reverts to that value.

When the focus reverts, the X server generates DeviceFocusIn and DeviceFocusOut
events, but the last-focus-change time is not affected.

Errors returned by this function: BadDevice, BadMatch, BadValue, and BadWindow.

Controlling Device Feedback

To determine the current feedback settings of an extension input device, use
XGetFeedbackControl.

XFeedbackSt at e
* XCGet FeedbackControl (display, device, numfeedbacks_return)

Di spl ay *di spl ay;

XDevi ce *devi ce;

int *num f eedbacks_return;
display Specifies the connection to the X server.
device Specifies the desired device.

num_feedbacks_return
Returns the number of feedbacks supported by the device.

e This function returns a list of FeedbackState structures that describe the feedbacks
supported by the specified device. There is an XFeedbackState structure for each
clase of feedback. These are of variable length, but the first three fields are common
to all. The common fields are as follows:

Window Manager Functions

typedef struct {

Xl D cl ass;
int | engt h;
Xl D id;

} XrFeedbackSt at e;

where class identifies the class of feedback. The class may be compared to constants
defined in the file XI.h. Currently defined feedback constants include
KbdFeedbackClass, PtrFeedbackClass, StringFeedbackClass, IntegerFeedbackClass,
LedFeedbackClass, and BellFeedbackClass.

The length specifies the length of the FeedbackState structure and can be used by clients
to traverse the list.

The id uniquely identifies a feedback for a given device and class. This allows a device
to support more than one feedback of the same class. Other feedbacks of other classes or
devices may have the same id.

¢ Those feedbacks equivalent to those supported by the core keyboard are reported in
class KbdFeedback using the XKbdFeedbackState structure. The members of that
structure are as follows:

typedef struct {

Xl D cl ass;

int | engt h;

Xl D id;

int click;

int percent;

int pitch;

int duration;

int | ed_mask;

i nt gl obal _aut o_repeat ;
char aut o_r epeat s[32] ;

} XKbdFeedbacksSt at e;

The fields of the XKbdFeedbackState structure report the current state of the feedback:

¢ click specifies the key-click volume, and has a value in the range 0 (off) to 100
(loud).

® percent specifies the bell volume, and has a value in the range 0 (off) to 100 (loud).

¢ pitch specifies the bell pitch in Hz. The range of the value is
implementation-dependent.

® duration specifies the duration in milliseconds of the bell.

23

Chapter 2: Library Extension Requests

24

* led_mask is a bit mask that describes the current state of up to 32 LEDs. A value of
1 in a bit indicates that the corresponding LED is on.

e global_auto_repeat has a value of AutoRepeatModeOn or AutoRepeatModeOff.

¢ The auto_repeats member is a bit vector. Each bit set to 1 indicates that auto-repeat
is enabled for the corresponding key. The vector is represented as 32 bytes. Byte N
(from 0) contains the bits for keys 8N to 8N + 7, with the least significant bit int the
byte representing key 8N.

Those feedbacks equivalent to those supported by the core pointer are reported in class
PtrFeedback using he XPtrFeedbackState structure. The members of that structure are
as follows:

typedef struct {

Xl D cl ass;

int | engt h;

XI D id;

int accel Num
int accel Denom
int t hreshol d;

} XPtrFeedbacksSt at e;

The fields of the XPtrFeedbackState structure report the current state of the feedback:
* accelNum returns the numerator for the acceleration multiplier.

* accelDenom returns the denominator for the acceleration multiplier.

e accelDenom returns the threshold for the acceleration.

Integer feedbacks are those capable of displaying integer numbers. The minimum and
maximum values that they can display are reported.

typedef struct {

Xl D cl ass;

int | engt h;

Xl D id;

int resol ution;
int m nVal ;

int maxVal ;

} Xl nt eger FeedbacksSt at e;

The fields of the XIntegerFeedbackState structure report the capabilities of the feedback:

¢ resolution specifies the number of digits that the feedback can display.

Window Manager Functions

* minVal specifies the minimum value that the feedback can display.
* maxVal specifies the maximum value that the feedback can display.

String feedbacks are those that can display character information. Clients set these
feedbacks by passing a list of KeySyms to be displayed. The XGetFeedbackControl
function returns the set of key symbols that the feedback can display, as well as the
maximum number of symbols that can be displayed.

typedef struct {

XID cl ass;

int | engt h;

XI D id;

i nt max_synbol s;

int num synms_support ed;

KeySym *syns_supported;
} XStringFeedbackSt at e;
The fields of the XStringFeedbackState structure report the capabilities of the feedback:
* max_symbols specifies the maximum number of symbols that can be displayed.
* syms_supported is a pointer to the list of supported symbols.
* num_syms_supported specifies the length of the list of supported symbols.

Bell feedbacks are those that can generate a sound. Some implementations may
support a bell as part of a KbdFeedback feedback. Class BellFeedback is provided
for implementations that do not choose to do so, and for devices that support
multiple feedbacks that can produce sound. The meaning of the fields is the same as
that of the corresponding fields in the XKbdFeedbackState structure.

typedef struct {

Xl D cl ass;
int | engt h;
Xl D id;

int percent;
int pi tch;
int dur ati on;

} XBel | FeedbacksSt at e;

Led feedbacks are those that can generate a light. Up to 32 lights per feedback are
supported. Each bit in led_mask corresponds to one supported light, and the
corresponding bit in led_values indicates whether that light is currently on (1) or off (0).
Some implementations may support leds as part of a KbdFeedback feedback. Class

25

Chapter 2: Library Extension Requests

26

LedFeedback is provided for implementations that do not choose to do so, and for
devices that support multiple led feedbacks.

typedef struct {

Xl D cl ass;

i nt | engt h;

Xl D id;

Mask | ed_val ues;
Mask | ed_mask;

} XLedFeedbacksSt at e;
Errors returned by this function: BadDevice, BadMatch.

To free the information returned by the XGetFeedbackControl function, use
XFreeFeedbackList.
void
XFr eeFeedbackLi st (list)
XFeedbackState *Ii st;

list Specifies the pointer to the XFeedbackState structure returned by a
previous call to XGetFeedbackControl.

This function frees the list of feedback control information.

To change the settings of a feedback on an extension device, use
XChangeFeedbackControl. This function modifies the current control values of the
specified feedback using information passed in the appropriate XFeedbackControl

structure for the feedback. Which values are modified depends on the valuemask passed.

i nt
XChangeFeedbackControl (display, device, val uemask, val ue)
Di spl ay *di spl ay;
XDevi ce *devi ce;
unsi gned | ong val uemask;
XFeedbackControl *val ue;
display Specifies the connection to the X server.
device Specifies the desired device.
valuemask Specifies one value for each bit in the mask (least to most significant bit).
The values are associated with the feedbacks for the specified device.
value Specifies a pointer to the XFeedbackControl structure.

Window Manager Functions

This function controls the device characteristics described by the XFeedbackControl
structure. There is an XFeedbackControl structure for each clase of feedback. These are
of variable length, but the first two fields are common to all. The common fields are as
follows:

typedef struct {

Xl D cl ass;
int | engt h;
Xl D id;

} XFeedbackControl ;

Feedback class KbdFeedback controls feedbacks equivalent to those provided by the
core keyboard using the KbdFeedbackControl structure. The members of that structure
are:

typedef struct {

Xl D cl ass;

int | engt h;

Xl D id;

int click;

int percent;
int pitch;

int durati on;
int | ed_mask;
int | ed_val ue;
int key;

int aut o_r epeat _node;

} XKbdFeedbackControl ;

This class controls the device characteristics described by the XKbdFeedbackControl
structure. These include the key_click_percent, global_auto_repeat and individual key
auto-repeat. Valid modes are AutoRepeatModeOn, AutoRepeatModeOff,
AutoRepeatModeDefault.

Valid masks are as follows:

#defi ne DvKeyd i ckPer cent (1L << 0)
#define DvPercent (1L << 1)
#define DvPitch (1L << 2)
#define DvDuration (1L << 3)
#define DvLed (1L << 4)
#defi ne DvLedMode (1L << b5)
#def i ne DvKey (1L << 6)
#defi ne DvAut oRepeat Mode (1L << 7)

27

Chapter 2: Library Extension Requests

28

Errors returned by this function: BadDevice, BadMatch, BadValue.

Feedback class PtrFeedback controls feedbacks equivalent to those provided by the core
pointer using the PtrFeedbackControl structure. The members of that structure are:

typedef struct {

Xl D cl ass;

i nt | engt h;

Xl D id;

int accel Num
int accel Denom
int t hreshol d;

} XPtrFeedbackControl ;
Which values are modified depends on the valuemask passed.

Valid masks are as follows:

#defi ne DvAccel num (1L << 0)
#defi ne DvAccel Denom (1L << 1)
#define DvThreshol d (1L << 2)

The acceleration, expressed as a fraction, is a multiplier for movement. For example,
specifying 3/1 means the device moves three times as fast as normal. The fraction may
be rounded arbitrarily by the X server. Acceleration only takes effect if the device moves
more than threshold pixels at once and only applies to the amount beyond the value in
the threshold argument. Setting a value to -1 restores the default. The values of the
accelNumerator and threshold fields must be nonzero for the pointer values to be set.
Otherwise, the parameters will be unchanged. Negative values generate a Bad Value
error, as does a zero value for the accelDenominator field.

This request fails with a BadMatch error if the specified device is not currently reporting
relative motion. If a device that is capable of reporting both relative and absolute motion
has its mode changed from Relative to Absolute by an XSetDeviceMode request,
valuator control values will be ignored by the server while the device is in that mode.

Feedback class IntegerFeedback controls integer feedbacks displayed on input devices,
using the IntegerFeedbackControl structure. The members of that structure are:

typedef struct {
Xl D cl ass;
i nt | engt h;

Window Manager Functions

XI D id;
int int_to_display;
} Xl nt eger FeedbackControl ;
Valid masks are as follows:
#define Dvlnteger (1L << 0)

Feedback class StringFeedback controls string feedbacks displayed on input devices,
using the StringFeedbackControl structure. The members of that structure are:

typedef struct {

Xl D cl ass;

int | engt h;

XI D id;

i nt num keysyns;

KeySym *syns_to_di spl ay;
} XStringFeedbackControl;
Valid masks are as follows:
#define DvString (1L << 0)

Feedback class BellFeedback controls a bell on an input device, using the
BellFeedbackControl structure. The members of that structure are:

typedef struct {

Xl D cl ass;
int | engt h;
Xl D id;

int percent;
int pi tch;
int dur ati on;

} XBel | FeedbackControl ;

Valid masks are as follows:

#defi ne DvPercent (1L << 1)
#define DvPitch (1L << 2)
#define DvDuration (1L << 3)

To ring a bell on an extension input device, use the XDeviceBell protocol request.

Feedback class LedFeedback controls lights on an input device, using the
LedFeedbackControl structure. The members of that structure are:

29

Chapter 2: Library Extension Requests

30

typedef struct {

Xl D cl ass;

int | engt h;

Xl D id;

int | ed_nask;
int | ed_val ues;

} XLedFeedbackControl ;

Valid masks are as follows:

#define DvLed (1L << 4)
#defi ne DvLedMode (1L << 5)

Errors returned by this function: BadDevice, BadMatch, BadFeedBack.

Ringing a Bell on an Input Device

To ring a bell on a extension input device, use XDeviceBell.

int

XDevi ceBel | (display, device, feedbackclass, feedbackid, percent)
Di spl ay *di spl ay;
XDevi ce *devi ce;

XD feedbackcl ass, feedbacki d;
int percent;
display Specifies the connection to the X server.
device Specifies the desired device.
feedbackclass Specifies the feedback class. Valid values are KbdFeedbackClass and
BellFeedbackClass.
feedbackid Specifies the id of the feedback that has the bell.
percent Specifies the volume in the range -100 (quiet) to 100 percent (loud).

This function is analogous to the core XBell function. It rings the specified bell on the
specified input device feedback, using the specified volume. The specified volume is
relative to the base volume for the feedback. If the value for the percent argument is not
in the range -100 to 100 inclusive, a Bad Value error results. The volume at which the bell
rings when the percent argument is nonnegative is:

base - [(base * percent) / 100] + percent

Window Manager Functions

The volume at which the bell rings when the percent argument is negative is:

base + [(base * percent) / 100]
To change the base volume of the bell, use XChangeFeedbackControl.

Errors returned by this function: BadDevice, Bad Value.

Controlling Device Encoding

To get the key mapping of an extension device that supports input class Keys, use
XGetDeviceKeyMapping.

KeySym
* XGet Devi ceKeyMappi ng (di spl ay, device, first_keycode_wanted,
keycode_count, keysyns_per_keycode_r et urn)
Di spl ay *di spl ay;
XDevi ce *devi ce;
KeyCode first_keycode_want ed;

int keycode_count;

int *keysyns_per _keycode_return;
display Specifies the connection to the X server.
device Specifies the desired device.

first_keycode_wanted
Specifies the first keycode that is to be returned.

keycode_count Specifies the number of keycodes that are to be returned.
keysyms_per_keycode_return

Returns the number of keysyms per keycode.

This function is analogous to the core XGetKeyboardMapping function. It returns the
symbols for the specified number of keycodes for the specified extension device.

XGetDeviceKeyMapping returns the symbols for the specified number of keycodes for
the specified extension device, starting with the specified keycode. The
first_keycode_wanted must be greater than or equal to min-keycode as returned by the
XListInputDevices request (else a Bad Value error), and

first_keycode wanted + keycode_count - 1

31

Chapter 2: Library Extension Requests

must be less than or equal to max-keycode as returned by the XListInputDevices
request (else a BadValue error).

The number of elements in the keysyms list is

keycode_count * keysyns_per_keycode_return

and KEYSYM number N (counting from zero) for keycode K has an index (counting from
zero) of

(K — first_keycode_wanted) * keysyns_per_keycode_return + N

in keysyms. The keysyms_per_keycode_return value is chosen arbitrarily by the server
to be large enough to report all requested symbols. A special KEYSYM value of
NoSymbol is used to fill in unused elements for individual keycodes.

You should use XFree to free the data returned by this function.

If the specified device has not first been opened by this client via XOpenDevice, this
request will fail with a BadDevice error. If that device does not support input class Keys,
this request will fail with a BadMatch error.

Errors returned by this function: BadDevice, BadMatch, Bad Value.

To change the keyboard mapping of an extension device that supports input class Keys,
use XChangeDeviceKeyMapping.
i nt
XChangeDevi ceKeyMappi ng (di splay, device, first_keycode,
keysyns_per _keycode, keysyns, num codes)
Di spl ay *di spl ay;
XDevi ce *devi ce;

int first_keycode;

int keysyns_per _keycode;

KeySym *keysyns;

int num codes;
display Specifies the connection to the X server.
device Specifies the desired device.

first_keycode Specifies the first keycode that is to be changed.

keysyms_per_keycode
Specifies the keysyms that are to be used.

32

Window Manager Functions

keysyms Specifies a pointer to an array of keysymes.

num_codes Specifies the number of keycodes that are to be changed.

This function is analogous to the core XChangeKeyboardMapping function. It defines
the symbols for the specified number of keycodes for the specified extension keyboard
device.

If the specified device has not first been opened by this client via XOpenDevice, this
request will fail with a BadDevice error. If the specified device does not support input
class Keys, this request will fail with a BadMatch error.

The number of elements in the keysyms list must be a multiple of keysyms_per_keycode.
Otherwise, XChangeDeviceKeyMapping generates a BadLength error. The specified
first_keycode must be greater than or equal to the min_keycode value returned by the
ListInputDevices request, or this request will fail with a BadValue error. In addition, if
the following expression is not less than the max_keycode value returned by the
ListInputDevices request, the request will fail with a BadValue error:

first_keycode + (num.codes / keysyns_per_keycode) - 1
Errors returned by this function: BadDevice, BadMatch, Bad Value, BadAlloc.

To obtain the keycodes that are used as modifiers on an extension device that supports
input class Keys, use XGetDeviceModifierMapping.
XModi fi er Keymap
* XGet Devi ceMbdi fi er Mappi ng (di spl ay, device)
Di spl ay *di spl ay;
XDevi ce *devi ce;

display Specifies the connection to the X server.

device Specifies the desired device.

This function is analogous to the core XGetModifierMapping function. The
XGetDeviceModifierMapping function returns a newly created XModifierKeymap
structure that contains the keys being used as modifiers for the specified device. The

structure should be freed after use with XFreeModifierMapping. If only zero values
appear in the set for any modifier, that modifier is disabled.

Errors returned by this function: BadDevice, BadMatch.

33

Chapter 2: Library Extension Requests

34

To set which keycodes that are to be used as modifiers for an extension device, use
XSetDeviceModifierMapping.

int
XSet Devi ceModi fi er Mappi ng (di spl ay, device, nodmap)
Di spl ay *di spl ay;
XDevi ce *devi ce;
XModi fi er Keymap *nodmap;
display Specifies the connection to the X server.
device Specifies the desired device.
modmap Specifies a pointer to the XModifierKeymap structure.

This function is analogous to the core XSetModifierMapping function. The
XSetDeviceModifierMapping function specifies the keycodes of the keys, if any, that
are to be used as modifiers. A zero value means that no key should be used. No two
arguments can have the same nonzero keycode value. Otherwise,
XSetDeviceModifierMapping generates a BadValue error. There are eight modifiers,
and the modifiermap member of the XModifierKeymap structure contains eight sets of
max_keypermod keycodes, one for each modifier in the order Shift, Lock, Control,
Mod1, Mod2, Mod3, Mod4, and Mod5. Only nonzero keycodes have meaning in each set,
and zero keycodes are ignored. In addition, all of the nonzero keycodes must be in the
range specified by min_keycode and max_keycode reported by the XListInputDevices
function. Otherwise, XSetModifierMapping generates a Bad Value error. No keycode
may appear twice in the entire map. Otherwise, it generates a BadValue error.

A X server can impose restrictions on how modifiers can be changed, for example, if
certain keys do not generate up transitions in hardware or if multiple modifier keys are
not supported. If some such restriction is violated, the status reply is MappingFailed,
and none of the modifiers are changed. If the new keycodes specified for a modifier differ
from those currently defined and any (current or new) keys for that modifier are in the
logically down state, the status reply is MappingBusy, and none of the modifiers are
changed. XSetModifierMapping generates a DeviceMappingNotify event on a
MappingSuccess status.

XSetDeviceModifierMapping can generate BadDevice, BadMatch, BadAlloc, and
BadValue errors.

Window Manager Functions

Controlling Button Mapping

To set the mapping of the buttons on an extension device, use
XSetDeviceButtonMapping.

i nt
XSet Devi ceBut t onMappi ng (di spl ay, device, map, nnmap)
Di spl ay *di spl ay;
XDevi ce *devi ce;
unsi gned char map[];
int nmap;
display Specifies the connection to the X server.
device Specifies the desired device.
map Specifies the mapping list.
nmap Specifies the number of items in the mapping list.

The XSetDeviceButtonMapping function sets the mapping of the buttons on an
extension device. If it succeeds, the X server generates a DeviceMappingNotify event,
and XSetDeviceButtonMapping returns MappingSuccess. Elements of the list are
indexed starting from one. The length of the list must be the same as
XGetDeviceButtonMapping would return, or a Bad Value error results. The index is a
button number, and the element of the list defines the effective number. A zero element
disables a button, and elements are not restricted in value by the number of physical
buttons. However, no two elements can have the same nonzero value, or a BadValue
error results. If any of the buttons to be altered are logically in the down state,
XSetDeviceButtonMapping returns MappingBusy, and the mapping is not changed.

XSetDeviceButtonMapping can generate BadDevice, BadMatch, and Bad Value errors.

To get the button mapping, use XGetDeviceButtonMapping.

int
XGet Devi ceBut t onMappi ng (di spl ay, device, map_return, nnap)
Di spl ay *di spl ay;
XDevi ce *devi ce;
unsi gned char map_return[];
int nmap;
display Specifies the connection to the X server.
device Specifies the desired device.

35

Chapter 2: Library Extension Requests

36

map_return Specifies the mapping list.

nmap Specifies the number of items in the mapping list.

The XGetDeviceButtonMapping function returns the current mapping of the specified
extension device. Elements of the list are indexed starting from one.
XGetDeviceButtonMapping returns the number of physical buttons actually on the
pointer. The nominal mapping for the buttons is the identity mapping: mapli]=i. The
nmap argument specifies the length of the array where the button mapping is returned,
and only the first nmap elements are returned in map_return.

Errors returned by this function: BadDevice, BadMatch.

Window Manager Functions

Obtaining the State of a Device

To obtain information that describes the state of the keys, buttons and valuators of an
extension device, use XQueryDeviceState.

XDevi ceSt at e

*XQueryDevi ceState (display, device)
Di spl ay *di spl ay;
XDevi ce *devi ce;

display Specifies the connection to the X server.

device Specifies the desired device.

The XQueryDeviceState function returns a pointer to an XDeviceState structure. This
structure points to a list of structures that describe the state of the keys, buttons, and
valuators on the device.

typedef struct {
XI D devi ce_id;
int num cl asses;
Xl nput Cl ass *dat a;

} XDevi ceSt at e;

¢ The structures are of variable length, but the first two fields are common to all. The
common fields are as follows:

t ypedef struct

{
unsi gned char cl ass;
unsi gned char | engt h;

} Xl nputd ass;

The class field contains a class identifier. This identifier can be compared with constants
defined in the file XL.h. Currently defined constants are: KeyClass, ButtonClass, and
ValuatorClass.

The length field contains the length of the structure and can be used by clients to traverse
the list.

¢ The XValuatorState structure describes the current state of the valuators on the
device. The num_valuators field contains the number of valuators on the device.
The mode field is a mask whose bits report the data mode and other state
information for the device. The following bits are currently defined:

37

Chapter 2: Library Extension Requests

Devi ceMbde

1<<0
ProximtyState 1 << 1

Rel ative = 0, Absolute =1
InProximty =0, QutOfProximty =1

The valuators field contains a pointer to an array of integers that describe the current
value of the valuators. If the mode is Relative, these values are undefined.

t ypedef struct {
unsi gned char
unsi gned char
unsi gned char
unsi gned char
int

} XVal uat or St at e;

cl ass;

| engt h;

num val uat ors;
node;

*val uat ors;

e The XKeyState structure describes the current state of the keys on the device. Byte
N (from 0) contains the bits for key 8N to 8N+7 with the least significant bit in the
byte representing key 8N.

typedef struct {
unsi gned char
unsi gned char
short
char

} XKeySt at e;

cl ass;

| engt h;
num keys;
keys[32];

¢ The XButtonState structure describes the current state of the buttons on the device.
Byte N (from 0) contains the bits for button 8N to 8N+7 with the least significant bit
in the byte representing button 8N.

typedef struct {
unsi gned char
unsi gned char
short
char

} XButtonState;

cl ass;

| engt h;

num but t ons;
buttons[32];

You should use XFreeDeviceState to free the data returned by this function.

Errors returned by this function: BadDevice.

voi d

XFreeDevi ceState (state)
XDevi ceSt ate *st at e;

state Specifies the pointer to the XDeviceState data returned by a previous
call to XQueryDeviceState.

38

Window Manager Functions

This function frees the device state data.

39

Chapter 2: Library Extension Requests

Events and Event-Handling Functions

40

The input extension creates input events analogous to the core input events. These
extension input events are generated by manipulating one of the extension input devices.
The following sections describe these events and explain how a client program can
receive them.

Event Types

Event types are integer numbers that a client can use to determine what kind of event it
has received. The client compares the type field of the event structure with known event
types to make this determination.

The core input event types are constants and are defined in the header file <X11/X.h>.
Extension event types are not constants. Instead, they are dynamically allocated by the
extension’s request to the X server when the extension is initialized. Because of this,
extension event types must be obtained by the client from the server.

The client program determines the event type for an extension event by using the
information returned by the XOpenDevice request. This type can then be used for
comparison with the type field of events received by the client.

Extension events propagate up the window hierarchy in the same manner as core events.
If a window is not interested in an extension event, it usually propagates to the closest
ancestor that is interested, unless the dont_propagate list prohibits it. Grabs of extension
devices may alter the set of windows that receive a particular extension event.

The following table lists the event category and its associated event type or types.

Event Category Event Type
Device key events Devi ceKeyPress
Devi ceKeyRel ease
Device motion events Devi ceBut t onPr ess
Devi ceBut t onRel ease
Devi ceMoti onNoti fy
Device input focus events Devi ceFocusl n
Devi ceFocusQut

Events and Event-Handling Functions

Event Category Event Type
Device state notification Devi ceStateNotify
events
Device proximity events Proximtyln

Proxi m t yQut
Device mapping events Devi ceMappi ngNot i fy
Device change events ChangeDevi ceNot i fy

Event Classes

Event classes are integer numbers that are used in the same way as the core event masks.
They are used by a client program to indicate to the server which events that client
program wishes to receive.

The core input event masks are constants and are defined in the header file <X11/X.h>.
Extension event classes are not constants. Instead, they are dynamically allocated by the
extension’s request to the X server when the extension is initialized. Because of this,
extension event classes must be obtained by the client from the server.

The event class for an extension event and device is obtained from information returned
by the XOpenDevice function. This class can then be used in an XSelectExtensionEvent
request to ask that events of that type from that device be sent to the client program.

For DeviceButtonPress events, the client may specify whether or not an implicit passive
grab should be done when the button is pressed. If the client wants to guarantee that it
will receive a DeviceButtonRelease event for each DeviceButtonPress event it receives,
it should specify the DeviceButtonPressGrab class in addition to the
DeviceButtonPress class. This restricts the client in that only one client at a time may
request DeviceButtonPress events from the same device and window if any client
specifies this class.

If any client has specified the DeviceButtonPressGrab class, any requests by any other

client that specify the same device and window and specify either DeviceButtonPress or
DeviceButtonPressGrab will cause an Access error to be generated.

41

Chapter 2: Library Extension Requests

42

If only the DeviceButtonPress class is specified, no implicit passive grab will be done
when a button is pressed on the device. Multiple clients may use this class to specify the
same device and window combination.

The client may also select DeviceMotion events only when a button is down. It does this
by specifying the event classes DeviceButton1Motion through DeviceButton5Motion.
An input device will only support as many button motion classes as it has buttons.

Event Structures

Each extension event type has a corresponding structure declared in
<X11/extensions/XInput.h>. All event structures have the following members:

type Set to the event type number that uniquely identifies it. For example,
when the X server reports a DeviceKeyPress event to a client
application, it sends an XDeviceKeyPressEvent structure.

display Set to a pointer to a structure that defines the display the event was read
on.

send_event Set to True if the event came from an XSendEvent request.

serial Set from the serial number reported in the protocol but expanded from

the 16-bit least-significant bits to a full 32-bit value.

Extension event structures report the current position of the X pointer. In addition, if the
device reports motion data and is reporting absolute data, the current value of any
valuators the device contains is also reported.

Device Key Events

Key events from extension devices contain all the information that is contained in a key
event from the X keyboard. In addition, they contain a device id and report the current
value of any valuators on the device, if that device is reporting absolute data. If data for
more than six valuators is being reported, more than one key event will be sent. The
axes_count field contains the number of axes that are being reported. The server sends as
many of these events as are needed to report the device data. Each event contains the
total number of axes reported in the axes_count field, and the first axis reported in the
current event in the first_axis field. If the device supports input class Valuators, but is
not reporting absolute mode data, the axes_count field contains 0.

Events and Event-Handling Functions

t ypedef struct

{
int
unsi gned | ong

Bool
Di spl ay
W ndow

XI D
W ndow

W ndow

Ti me

int

int

int

unsi gned int
unsi gned i nt
Bool

unsi gned char

unsi gned char
unsi gned i nt

int

type;
seri al ;

send_event;
*di spl ay;
w ndow;

devi cei d;
root ;

subwi ndow,
tinme;
X, Y,

X_root;
y root;

state;
keycode;
sane_screen;
axes_count;
first_axis;
devi ce_state;

axi s_data[6] ;

} XDevi ceKeyEvent;

Device Button Events

/*
/*

/*

/*

/*

/*
/*
/*
/*
/*
/*
/*

/*
/*

/*

The location reported in the X,y and x_root,y_root fields is the location of the core X
pointer.

The XDeviceKeyEvent structure is defined as follows:

of event */

of last request
processed */

true if from SendEvent
request */

Di spl ay the event was
read from*/

"event" wi ndow reported
relative to */

root w ndow event
occurred on */

child w ndow */
mlliseconds */

X, y coordinates in
event w ndow */
coordinates relative to

root */

coordinates relative to
root */

key or button mask */
detail */

sanme screen flag */

devi ce key or button
mask */

t ypedef XDevi ceKeyEvent XDevi ceKeyPressedEvent;
t ypedef XDevi ceKeyEvent XDevi ceKeyRel easedEvent;

Button events from extension devices contain all the information that is contained in a
button event from the X pointer. In addition, they contain a device id and report the
current value of any valuators on the device, if that device is reporting absolute data. If

43

Chapter 2: Library Extension Requests

data for more than six valuators is being reported, more than one button event may be
sent. The axes_count field contains the number of axes that are being reported. The server
sends as many of these events as are needed to report the device data. Each event
contains the total number of axes reported in the axes_count field, and the first axis
reported in the current event in the first_axis field. If the device supports input class
Valuators, but is not reporting absolute mode data, the axes_count field contains 0.

The location reported in the X,y and x_root,y_root fields is the location of the core X

pointer.
typedef struct {

int type; /* of event */

unsi gned | ong seri al; /* # of last request
processed by server */

Bool send_event; /* true if froma SendEvent
request */

Di spl ay *di spl ay; /* Display the event was
read from */

W ndow w ndow; /* "event" wi ndow reported
relative to */

Xl D devi cei d;

W ndow root; /* root wi ndow that the
event occurred on */

W ndow subw ndow; /* child w ndow */

Ti me time; /* mlliseconds */

int X, VY; /* x, y coordinates in event
wi ndow */

i nt X_root; /* coordinates relative
to root */

int y_root; /* coordinates relative
to root */

unsigned int state; /* key or button mask */

unsi gned int button; /* detail */

Bool same_screen; /* sane screen flag */

unsi gned char axes_count;

unsi gned char first_axis;

unsi gned int device_state; /* device key or
button nmask*/

int axis_data[6];

} XDevi ceButtonEvent;

t ypedef XDevi ceButtonEvent XDevi ceButtonPressedEvent;
t ypedef XDevi ceButtonEvent XDevi ceButtonRel easedEvent;

44

Events and Event-Handling Functions

Device Motion Events

Motion events from extension devices contain all the information that is contained in a
motion event from the X pointer. In addition, they contain a device id and report the
current value of any valuators on the device.

The location reported in the X,y and x_root,y_root fields is the location of the core X
pointer, and so is 2-dimensional.

Extension motion devices may report motion data for a variable number of axes. The
axes_count field contains the number of axes that are being reported. The server sends as
many of these events as are needed to report the device data. Each event contains the
total number of axes reported in the axes_count field, and the first axis reported in the
current event in the first_axis field.

t ypedef struct

{

i nt type; /* of event */

unsi gned | ong serial; [* # of last request
processed by server */

Bool send_event; [/* true if froma SendEvent
request */

Di spl ay *di spl ay; /* Display the event was read
from*/

W ndow w ndow; /* "event" wi ndow reported relative to

*/

XI D devi cei d;

W ndow root; /* root wi ndow that the event
occurred on */

W ndow subwi ndow; /* child wi ndow */

Ti me time; /* mlliseconds */

int X, VY; /* X, y coordinates in
event w ndow */

int X_root; /* coordinates relative
to root */

int y_root; /* coordinates rel ative
to root */

unsigned int state; /* key or button mask */

char is_hint; [* detail */

Bool same_screen; /* sanme screen flag */

unsigned int device_state;/* device key or
button mask */

unsi gned char axes_count;

unsi gned char first_axis;

int axi s_data[6];

} XDevi ceMbti onEvent;

45

Chapter 2: Library Extension Requests

46

Device Focus Events

These events are equivalent to the core focus events. They contain the same information,
with the addition of a device id to identify which device has had a focus change, and a
timestamp.

DeviceFocusIn and DeviceFocusOut events are generated for focus changes of
extension devices in the same manner as core focus events are generated.
t ypedef struct

{

int type; /* of event */

unsi gned | ong seri al; /* # of last request processed
by server */

Bool send_event; /* true if this cane froma
SendEvent request */

Di spl ay *di spl ay; /* Display the event was read
from*/

W ndow w ndow; /* "event" windowit is
reported relative to */

XI D devi cei d;

int node; /* NotifyNormal, NotifyGab,
Noti fyUngrab */

int detail;

/*

* NotifyAncestor, NotifyVirtual, Notifylnferior,
* Noti fyNonLi near, Noti fyNonLi nearVirtual, NotifyPointer,
* NotifyPointerRoot, NotifyDetail None
*/
Ti me time;
} XDevi ceFocusChangeEvent ;

t ypedef XDevi ceFocusChangeEvent XDevi ceFocusl nEvent;
t ypedef XDevi ceFocusChangeEvent XDevi ceFocusQut Event;

Device StateNotify Event

This event is analogous to the core keymap event, but reports the current state of the
device for each input class that it supports. It is generated after every DeviceFocusIn
event and EnterNotify event and is delivered to clients who have selected
XDeviceStateNotify events.

Events and Event-Handling Functions

If the device supports input class Valuators, the mode field in the XValuatorStatus
structure is a bitmask that reports the device mode, proximity state and other state
information. The following bits are currently defined:

0x01 Rel ative = 0, Absolute =1
0x02 InProximty = 0, QuOFProximity =1

If the device supports more valuators than can be reported in a single XEvent, multiple
XDeviceStateNotify events will be generated.

t ypedef struct

{

unsi gned char cl ass;

unsi gned char | engt h;

} Xl nputd ass;

typedef struct {

int type;

unsi gned | ong serial; /[* # of last request
processed by server */

Bool send_event; /* true if this cane
froma SendEvent
request */

Di spl ay *di spl ay; /* Display the event was
read from*/

W ndow wi ndow;

Xl D devi cei d;

Ti me tinme;

int num cl asses;

char dat a[64] ;

} XDeviceStateNotifyEvent;

t ypedef struct {

unsi gned char cl ass;

unsi gned char | engt h;

unsi gned char num val uat ors;
unsi gned char node;

int
} XVal uat or St at us;
typedef struct {

val uat ors[6] ;

unsi gned char cl ass;
unsi gned char | engt h;
short num keys;
char keys[32];

} XKeySt at us;

47

Chapter 2: Library Extension Requests

48

typedef struct {

unsi gned char cl ass;

unsi gned char | engt h;
short num butt ons;
char buttons[32];

} XButtonStatus;

Device Mapping Event

This event is equivalent to the core MappingNotify event. It notifies client programs
when the mapping of keys, modifiers, or buttons on an extension device has changed.

t ypedef struct {

i nt type;

unsi gned long serial;

Bool send_event;

Di spl ay *di spl ay;

W ndow w ndow;

Xl D devi cei d;

Ti me tinme;

int request;

int first_keycode;
int count;

} XDevi ceMappi ngEvent ;

ChangeDeviceNotify Event

This event has no equivalent in the core protocol. It notifies client programs when one of
the core devices has been changed.

typedef struct {

int type;

unsi gned |l ong serial;
Bool send_event;
Di spl ay *di spl ay;
W ndow wi ndow;

Xl D devi cei d;
Ti e tine;

int request;

} XChangeDevi ceNoti f yEvent ;

Events and Event-Handling Functions

Proximity Events

These events have no equivalent in the core protocol. Some input devices such as
graphics tablets or touchscreens may send these events to indicate that a stylus has
moved into or out of contact with a positional sensing surface.

The event contains the current value of any valuators on the device, if that device is
reporting absolute data. If data for more than six valuators is being reported, more than
one proximity event may be sent. The axes_count field contains the number of axes that
are being reported. The server sends as many of these events as are needed to report the
device data. Each event contains the total number of axes reported in the axes_count
field, and the first axis reported in the current event in the first_axis field. If the device
supports input class Valuators, but is not reporting absolute mode data, the axes_count
field contains 0.

t ypedef struct

{

i nt type; /* Proximtyln or
ProximtyQut */

unsi gned | ong seri al ; /* # of last request
processed by server */

Bool send_event; /* true if this cane froma
SendEvent request */

Di spl ay *di spl ay; /* Display the event was
read from */

W ndow wi ndow;

XI D devi cei d;

W ndow root;

W ndow subwi ndow;

Ti me time;

int X, VY;

int X_root, y_root;

unsi gned int st at e;

Bool sane_screen;

unsi gned char axes_count;
unsi gned char first _axis;
unsi gned i nt devi ce_state; /* device key or button
mask */
int axi s_data[6];
} XProximtyNotifyEvent;
t ypedef XProximtyNotifyEvent XProximtylnEvent;
t ypedef XProximtyNotifyEvent XProximtyQutEvent;

49

Chapter 2: Library Extension Requests

50

Determining the Extension Version

XExt ensi onVer si on
* XGet Ext ensi onVer si on (di splay, nane)
Di spl ay *di spl ay;

char *nane;
display Specifies the connection to the X server.
name Specifies the name of the desired extension.

This function allows a client to determine if a server supports the desired version of the
input extension.

The XExtension Version structure returns information about the version of the extension
supported by the server. The structure is defined as follows:

t ypedef struct
{

Bool present;

short mmj or_version;
short m nor_version;
} XExt ensi onVer si on;

The major and minor versions can be compared with constants defined in the header file
XLh. Each version is a superset of the previous versions.

You should use XFree to free the data returned by this function.

Listing Available Devices

A client program that wishes to access a specific device must first determine whether that
device is connected to the X server. This is done through the XListInputDevices function,
which will return a list of all devices that can be opened by the X server. The client
program can use one of the names defined in the XL.h header file in an XInternAtom
request, to determine the device type of the desired device. This type can then be
compared with the device types returned by the XListInputDevices request.

Events and Event-Handling Functions

XDevi cel nfo
*XLi st | nput Devi ces (di splay, ndevices)
Di spl ay *di spl ay;

int *ndevi ces; /* RETURN */
display Specifies the connection to the X server.
ndevices Specifies the address of a variable into which the server can return the

number of input devices available to the X server.

This function allows a client to determine which devices are available for X input and
information about those devices. An array of XDevicelnfo structures is returned, with
one element in the array for each device. The number of devices is returned in the
ndevices argument.

The X pointer device and X keyboard device are reported, as well as all available
extension input devices. The use field of the XDeviceInfo structure specifies the current
use of the device. If the value of this field is IsXPointer, the device is the X pointer device.
If the value is IsXKeyboard, the device is the X keyboard device. If the value is
IsXExtensionDevice, the device is available for use as an extension input device.

Each XDeviceInfo entry contains a pointer to a list of structures that describe the
characteristics of each class of input supported by that device. The num_classes field
contains the number of entries in that list.

If the device supports input class Valuators, one of the structures pointed to by the
XDevicelnfo structure will be an XValuatorInfo structure. The axes field of that structure
contains the address of an array of XAxisInfo structures. There is one element in this
array for each axis of motion reported by the device. The number of elements in this
array is contained in the num_axes element of the XValuatorInfo structure. The size of
the motion buffer for the device is reported in the motion_buffer field of the
XValuatorInfo structure.

The XDevicelnfo structure contains the following information:

t ypedef struct _XDevicelnfo

{

Xl D id;

At om type;

char *nane;

int num cl asses;
int use;

XAnyd assPtr i nput cl assi nf o;

} XDevi cel nfo;

51

Chapter 2: Library Extension Requests

52

The structures pointed to by the XDeviceInfo structure contain the following
information:

typedef struct _XKeylnfo

{
Xl D cl ass;
int | engt h;
unsi gned short m n_keycode;
unsi gned short nax_keycode;
unsi gned short num keys;
} XKeyl nf o;

typedef struct _XButtonlnfo {
Xl D cl ass;
int | engt h;
short num but t ons;
} XButtonlnfo;

t ypedef struct _XVal uatorlnfo
{
XI D cl ass;
int | engt h;
unsi gned char num axes;
unsi gned char node;
unsi gned | ong nmoti on_buf fer;
XAxi sl nf oPt r axes;

} XVal uat or I nf o;

The XAxisInfo structure pointed to by the XValuatorInfo structure contains the
following information.

typedef struct _XAxislnfo {

int resol ution;
int m n_val ue;
int max_val ue;
} XAXxi sl nfo;

The following atom names are defined in the file XLh:

MOUSE
TABLET
KEYBOARD
TOUCHSCREEN
TOUCHPAD
BUTTONBOX
BARCODE
KNOB_BOX

Events and Event-Handling Functions

TRACKBALL
QUADRATURE
SPACEBALL
DATAGLOVE
EYETRACKER
CURSORKEYS
FOOTMOUSE

| D_MODULE
ONE_KNOB

NI NE_KNOB

These names can be used in an XInternAtom request to return an atom that can be used
for comparison with the type field of the XDevicelInfo structure.

This function returns NULL if there are no input devices to list. You should use
XFreeDeviceList to free the data returned by XListInputDevices.
voi d
XFreeDevi ceLi st (list)
XDevi celnfo *list;

list Specifies the pointer to the XDevicelnfo array returned by a previous
call to XListInputDevices.

This function frees the list of input device information.

Enabling and Disabling Extension Devices

Each client program that wishes to access an extension device must request that the
server open that device. This is done via the XOpenDevice request. That request is
defined as follows:

XDevi ce
*XOpenDevi ce(di spl ay, device_id)
Di spl ay *di spl ay;

Xl D devi ce_i d;
display Specifies the connection to the X server.
device_id Specifies the ID that uniquely identifies the device to be opened. This ID

is obtained from the XListInputDevices request.

This function opens the device for the requesting client and returns an XDevice structure
on success. That structure is defined as follows:

53

Chapter 2: Library Extension Requests

54

typedef struct {

XI D devi ce_i d;
int num cl asses;
Xl nput C assl nfo *cl asses;

} XDevi ce;

The XDevice structure contains a pointer to an array of XInputClassInfo structures.
Each element in that array contains information about events of a particular input class
supported by the input device.

The XInputClassInfo structure is defined as follows:

typedef struct {
unsi gned char i nput_cl ass;
unsi gned char event _type_base;
} Xl nput d assl nf o;

A client program can determine the event type and event class for a given event by using
macros defined by the input extension. The name of the macro corresponds to the
desired event, and the macro is passed the structure that describes the device from which
input is desired, i.e.

Devi ceKeyPress (XDevi ce *device, event_type, event_cl ass)

The macro will fill in the values of the event class to be used in an XSelectExtensionEvent
request to select the event, and the event type to be used in comparing with the event
types of events received via XNextEvent.

Errors returned by this function: BadDevice.

Before terminating, the client program should request that the server close the device.
This is done via the XCloseDevice request.

A client may open the same extension device more than once. Requests after the first
successful one return an additional XDevice structure with the same information as the
first, but otherwise have no effect. A single XCloseDevice request will terminate that
client’s access to the device.

Closing a device releases any active or passive grabs the requesting client has
established. If the device is frozen only by an active grab of the requesting client, any
queued events are released.

Events and Event-Handling Functions

If a client program terminates without closing a device, the server will automatically
close that device on behalf of the client. This does not affect any other clients that may be
accessing that device.
int
Xd oseDevi ce(di spl ay, device)

Di spl ay *di spl ay;

XDevi ce *devi ce;

display Specifies the connection to the X server.

device Specifies the device to be closed.
This function closes the device for the requesting client, and frees the XDevice structure.

Errors returned by this function: BadDevice.

Changing the Mode of a Device

Some devices are capable of reporting either relative or absolute motion data. To change
the mode of a device from relative to absolute, use the XSetDeviceMode function. The
valid values are Absolute or Relative.
int
XSet Devi ceMode (di splay, device, npde)

Di spl ay *di spl ay;

XDevi ce *devi ce;

int nmode;
display Specifies the connection to the X server.
device Specifies the device whose mode should be changed.
mode Specifies the mode. You can specify one of these constants: Absolute or
Relative.

This function allows a client to request the server to change the mode of a device that is
capable of reporting either absolute positional data or relative motion data. If the device
is invalid, or the client has not previously requested that the server open the device via
an XOpenDevice request, this request will fail with a BadDevice error. If the device does
not support input class Valuators, or if it is not capable of reporting the specified mode,
the request will fail with a BadMatch error.

55

Chapter 2: Library Extension Requests

56

This request will fail and return DeviceBusy if another client has already opened the
device and requested a different mode.

Errors returned by this function: BadDevice, BadMatch, BadMode, DeviceBusy.

Initializing Valuators on an Input Device

Some devices that report absolute positional data can be initialized to a starting value.
Devices that are capable of reporting relative motion or absolute positional data may
require that their valuators be initialized to a starting value after the mode of the device
is changed to Absolute. To initialize the valuators on such a device, use the
XSetDeviceValuators function.

St at us

XSet Devi ceVal uat ors (display, device, valuators, first_val uator,
num val uat or s)
Di spl ay *di spl ay;
XDevi ce *devi ce;

int *valuators, first_valuator, numval uators;
display Specifies the connection to the X server.
device Specifies the device whose valuators should be initialized.
valuators Specifies the values to which each valuator should be set.

first_valuator ~ Specifies the first valuator to be set.

num_valuators Specifies the number of valuators to be set.

This function initializes the specified valuators on the specified extension input device.
Valuators are numbered beginning with zero. Only the valuators in the range specified

by first_valuator and num_valuators are set. If the number of valuators supported by the
device is less than the expression

first_valuator + numval uators,
a BadValue error will result.

If the request succeeds, Success is returned. If the specifed device is grabbed by some
other client, the request will fail and a status of AlreadyGrabbed will be returned.

This request can fail with BadLength, BadDevice, BadMatch, and BadValue errors.

Events and Event-Handling Functions

Getting Input Device Controls

Some input devices support various configuration controls that can be queried or
changed by clients. The set of supported controls will vary from one input device to
another. Requests to manipulate these controls will fail if either the target X server or the
target input device does not support the requested device control.

Each device control has a unique identifier. Information passed with each device control
varies in length and is mapped by data structures unique to that device control.

To query a device control use XGetDeviceControl.

XDevi ceCont r ol

* XCet Devi ceControl (display, device, control)
Di spl ay *di spl ay;
XDevi ce *devi ce;

int control;
display Specifies the connection to the X server.
device Specifies the device whose configuration control status is to be returned.
control Identifies the specific device control to be queried.

This request returns the current state of the specified device control. If the target X server
does not support that device control, a BadValue error will be returned. If the specified
device does not support that device control, a BadMatch error will be returned.

If the request is successful, a pointer to a generic XDeviceState structure is returned. The
information returned varies according to the specified control and is mapped by a
structure appropriate for that control. The first two fields are common to all device
controls:

typedef struct {
Xl D control ;
int | engt h;
} XDevi ceSt at e;

The control may be compared to constants defined in the file XLh. Currently defined
device controls include DEVICE_RESOLUTION.

The information returned for the DEVICE_RESOLUTION control is defined in the
following structure: include:

57

Chapter 2: Library Extension Requests

58

typedef struct {

Xl D control ;

int | engt h;

int num val uat ors;
int *resol uti ons;

int *m n_resol utions;
int *max_resol utions;

} XDevi ceResol uti onSt at e;

This device control returns a list of valuators and the range of valid resolutions allowed
for each. Valuators are numbered beginning with 0. Resolutions for all valuators on the
device are returned. For each valuator i on the device, resolutions[i] returns the current
setting of the resolution, min_resolutions[i] returns the minimum valid setting, and
max_resolutions[i] returns the maximum valid setting.

When this control is specified, XGetDeviceControl will fail with a BadMatch error if the
specified device has no valuators.

Other errors returned by this request: BadValue.

Changing Input Device Controls

Some input devices support various configuration controls that can be changed by
clients. Typically, this would be done to initialize the device to a known state or
configuration. The set of supported controls will vary from one input device to another.
Requests to manipulate these controls will fail if either the target X server or the target
input device does not support the requested device control. Setting the device control
will also fail if the target input device is grabbed by another client, or is open by another
client and has been set to a conflicting state.

Each device control has a unique identifier. Information passed with each device control
varies in length and is mapped by data structures unique to that device control.

To change a device control use XChangeDeviceControl.

St at us
XChangeDevi ceControl (display, device, control, value)
Di spl ay *di spl ay;
XDevi ce *devi ce;
int control;
XDevi ceControl *val ue;

Events and Event-Handling Functions

display Specifies the connection to the X server.

device Specifies the device whose configuration control status is to be modified.
control Identifies the specific device control to be changed.

value Specifies a pointer to an XDeviceControl structure that describes which

control is to be changed, and how it is to be changed.

This request changes the current state of the specified device control. If the target X
server does not support that device control, a BadValue error will be returned. If the
specified device does not support that device control, a BadMatch error will be returned.
If another client has the target device grabbed, a status of AlreadyGrabbed will be
returned. If another client has the device open and has setit to a conflicting state, a status
of DeviceBusy will be returned.

If the request fails for any reason, the device control will not be changed.

If the request is successful, the device control will be changed and a status of Success will
be returned. The information passed varies according to the specified control and is
mapped by a structure appropriate for that control. The first two fields are common to
all device controls:

typedef struct {
Xl D control ;
int | engt h;
} XDevi ceControl;

The control may be set using constants defined in the file XLh. Currently defined device
controls include DEVICE_RESOLUTION.

The information that can be changed by the DEVICE_RESOLUTION control is defined
in the following structure:

typedef struct {

Xl D control ;

int | engt h;

int first_valuator;
int num val uat or s;
int *resol utions;

} XDevi ceResol utionControl;
This device control changes the resolution of the specified valuators on the specified

extension input device. Valuators are numbered beginning with zero. Only the valuators
in the range specified by first_valuator and num_valuators are set. A value of -1 in the

59

Chapter 2: Library Extension Requests

60

resolutions list indicates that the resolution for this valuator is not to be changed.
num_valuators specifies the number of valuators in the resolutions list.

When this control is specified, XChangeDeviceControl will fail with a BadMatch error if
the specified device has no valuators. If a resolution is specified that is not within the
range of valid values (as returned by XGetDeviceControl) the request will fail with a
BadValue error. If the number of valuators supported by the device is less than the
expression

first_valuator + numval uators,

a BadValue error will result.

Selecting Extension Device Events

Device input events are selected using the XSelectExtensionEvent function. The
parameters passed are a pointer to a list of classes that define the desired event types and
devices, a count of the number of elements in the list, and the id of the window from
which events are desired.

int
XSel ect Ext ensi onEvent (display, w ndow, event_list, event_count)
Di spl ay *di spl ay;
W ndow w ndow;
XEvent Cl ass *event _|ist;
int event _count;
display Specifies the connection to the X server.
window Specifies the ID of the window from which the client wishes to receive
events.
event_list Specifies a pointer to a list of XEventClasses that specify which events
are desired.
event_count Specifies the number of elements in the event_list.

This function requests the server to send events that match the events and devices
described by the event list and that come from the requested window. The elements of
the XEventClass array are the event_class values returned obtained by invoking a macro
with the pointer to a Device structure returned by the XOpenDevice request. For
example, the DeviceKeyPress macro, invoked in the form:

Devi ceKeyPress (XDevi ce *device, event_type, event_cl ass)

Events and Event-Handling Functions

returns the XEventClass for DeviceKeyPress events from the specified device.

Macros are defined for the following event classes: DeviceKeyPress,
DeviceKeyRelease, DeviceButtonPress, DeviceButtonRelease, DeviceMotionNotify,
DeviceFocusIn, DeviceFocusOut, ProximityIn, ProximityOut, DeviceStateNotify,
DeviceMappingNotify, ChangeDeviceNotify, DevicePointerMotionHint,
DeviceButton1Motion, DeviceButton2Motion, DeviceButton3Motion,
DeviceButton4dMotion, DeviceButton5Motion, DeviceButtonMotion,
DeviceOwnerGrabButton, and DeviceButtonPressGrab. To get the next available event
from within a client program, use the core XNextEvent function. This returns the next
event whether it came from a core device or an extension device.

Succeeding XSelectExtensionEvent requests using XEventClasses for the same device as
was specified on a previous request will replace the previous set of selected events from
that device with the new set.

Errors returned by this function: BadWindow, BadAccess, BadClass, BadLength.

Determining Selected Device Events

To determine which extension events are currently selected from a given window, use

XGetSelectedExtensionEvents.

int

XGet Sel ect edExt ensi onEvents (display, w ndow, this_client_count,
this_client, all _clients_count, all_clients)

Di spl ay *di spl ay;
W ndow w ndow;
int *this_client_count; /[/* RETURN */
XEventCl ass **this_client; /* RETURN */
int *all _clients_count; /* RETURN */
XEventCl ass **all _clients; /* RETURN */
display Specifies the connection to the X server.
window Specifies the ID of the window from which the client wishes to receive
events.

this_client_count Specifies the number of elements in the this_client list.

this_client Specifies a pointer to a list of XEventClasses that specify which events
are selected by this client.

all_clients_count Specifies the number of elements in the all_clients list.

61

Chapter 2: Library Extension Requests

62

all_clients Specifies a pointer to a list of XEventClasses that specify which events
are selected by all clients.

This function returns pointers to two event class arrays. One lists the extension events
selected by this client from the specified window. The other lists the extension events
selected by all clients from the specified window. This information is analogous to that
returned in the fields your_event_mask and all_event_masks of the XWindowAttributes
structure when an XGetWindowAttributes request is made.

You should use XFree to free the two arrays returned by this function.

Errors returned by this function: BadWindow.

Controlling Event Propagation

Extension events propagate up the window hierarchy in the same manner as core events.
If a window is not interested in an extension event, it usually propagates to the closest
ancestor that is interested, unless the dont_propagate list prohibits it. Grabs of extension
devices may alter the set of windows that receive a particular extension event.

Client programs may control event propagation through the use of the following two
functions.

XChangeDeviceDontPropagateList adds an event to or deletes an event from the
do_not_propagate list of extension events for the specified window. There is one list per
window, and the list remains for the life of the window. The list is not altered if a client
that changed the list terminates.

Suppression of event propagation is not allowed for all events. If a specified XEventClass
is invalid because suppression of that event is not allowed, a BadClass error will result.
i nt
XChangeDevi ceDont Propagat eLi st (di spl ay, w ndow, event_count,

events, node)

Di spl ay *di spl ay;

W ndow w ndow;

int event _count;
XEvent Cl ass *events;

int node;

Events and Event-Handling Functions

display Specifies the connection to the X server.

window Specifies the desired window.

event_count Specifies the number of elements in the events list.

events Specifies a pointer to the list of XEventClasses.

mode Specifies the mode. You may use the constants AddToList or
DeleteFromList.

This function can return BadWindow, BadClass, and BadMode errors.

63

Chapter 2: Library Extension Requests

64

XGetDeviceDontPropagateList allows a client to determine the do_not_propagate list
of extension events for the specified window.

XEvent Cl ass

* XGet Devi ceDont Propagat eLi st (di spl ay, w ndow, event_count)
Di spl ay *di spl ay;
W ndow w ndow;

int *event _count;/*RETURN */
display Specifies the connection to the X server.
window Specifies the desired window.
event_count Specifies the number of elements in the array returned by this function.

An array of XEventClasses is returned by this function. Each XEventClass represents a
device/ event type pair.

This function can return a BadWindow error.

You should use XFree to free the data returned by this function.

Sending an Event

XSendExtensionEvent allows a client to send an extension event to another client.
int
XSendExt ensi onEvent (display, device, w ndow, propagate,

event _count, event_list, event)

Di spl ay *di spl ay;
XDevi ce *devi ce;
W ndow w ndow;
Bool pr opagat e;
int event _count;
XEvent Cl ass *event _|ist;
XEvent *event ;
display Specifies the connection to the X server.
device Specifies the device whose ID is recorded in the event.
window Specifies the destination window ID. You can pass a window ID,

PointerWindow or InputFocus.

propagate Specifies a boolean value that is either True or False.

Events and Event-Handling Functions

event_count Specifies the number of elements in the event_list array.
event_list Specifies a pointer to an array of XEventClasses.
event Specifies a pointer to the event that is to be sent.

The XSendExtensionEvent function identifies the destination window, determines which
clients should receive the specified event, and ignores any active grabs. This function
requires a list of XEventClasses to be specified. These are obtained by opening an input
device with the XOpenDevice request.

This function uses the window argument to identify the destination window as follows:

¢ If you pass PointerWindow, the destination window is the window that contains
the pointer.

* If you pass InputFocus, and if the focus window contains the pointer, the
destination window is the window that contains the pointer. If the focus window
does not contain the pointer, the destination window is the focus window.

To determine which clients should receive the specified events, XSendExtensionEvent
uses the propagate argument as follows:

e If propagate is False, the event is sent to every client selecting from the destination
window any of the events specified in the event_list array.

e If propagate is True, and no clients have selected from the destination window any
of the events specified in the event_list array, the destination is replaced with the
closest ancestor of destination for which some client has selected one of the
specified events, and for which no intervening window has that event in its
do_not_propagate mask. If no such window exists, or if the window is an ancestor
of the focus window, and InputFocus was originally specified as the destination,
the event is not sent to any clients. Otherwise, the event is reported to every client
selecting on the final destination any of the events specified in event_list.

The event in the XEvent structure must be one of the events defined by the input
extension, so that the X server can correctly byte swap the contents as necessary. The
contents of the event are otherwise unaltered and unchecked by the X server except to
force send_event to True in the forwarded event and to set the sequence number in the
event correctly.

XSendExtensionEvent returns zero if the conversion-to-wire protocol failed, otherwise it
returns nonzero.

65

Chapter 2: Library Extension Requests

66

This function can generate BadDevice, BadValue, BadWindow, or BadClass errors.

Getting Motion History

XDevi ceTi meCoor d

* XGet Devi ceMbti onEvents (display, device, start, stop,
nevents_return, node_return, axis_count_return);
Di spl ay *di spl ay;
XDevi ce *devi ce;

Ti me start, stop;
int *nevents_return;
int *nmode_return;
int *axi s_count _return;
display Specifies the connection to the X server.
device Specifies the desired device.
start Specifies the start time.
stop Specifies the stop time.

nevents_return Specifies the address of a variable into which the server will return the
number of positions in the motion buffer returned for this request.

mode_return Specifies the address of a variable into which the server will return the
mode of the nevents information. The mode will be one of the following:
Absolute or Relative.

axis_count_returnSpecifies the address of a variable into which the server will return the
number of axes reported in each of the positions returned.

This function returns all positions in the device’s motion history buffer that fall between
the specified start and stop times inclusive. If the start time is in the future, or is later than
the stop time, no positions are returned.

The return type for this function is a structure defined as follows:

t ypedef struct {

Time tinme,;

unsi gned int *data;
} XDevi ceTi neCoor d;

The data field of the XDeviceTimeCoord structure is a pointer to an array of data items.
Each item is of type int, and there is one data item per axis of motion reported by the
device. The number of axes reported by the device is returned in the axis_count variable.

Events and Event-Handling Functions

The value of the data items depends on the mode of the device. The mode is returned in
the mode variable. If the mode is Absolute, the data items are the raw values generated
by the device. These may be scaled by the client program using the maximum values that
the device can generate for each axis of motion that it reports. The maximum value for
each axis is reported in the max_val field of the XAxisInfo structure. This structure is
part of the information returned by the XListInputDevices request.

If the mode is Relative, the data items are the relative values generated by the device. The
client program must choose an initial position for the device and maintain a current
position by accumulating these relative values.

Consecutive calls to this function may return data of different modes, if some client
program has changed the mode of the device via an XSetDeviceMode request.

You should use XFreeDeviceMotionEvents to free the data returned by this function.

Errors returned by this function: BadDevice, BadMatch.
voi d
XFr eeDevi ceMbti onEvents (events)
XDevi ceTi neCoord *events;
events Specifies the pointer to the XDeviceTimeCoord array returned by a
previous call to XGetDeviceMotionEvents.

This function frees the array of motion information.

The following information is contained in the <X11/extensions/XInput.h> and
<X11/extensions/XL.h> header files:

/* Definitions used by the library and client */

#i fndef _XI NPUT_H_
#define _XINPUT_H_

#ifndef XUIBH
#i nclude <X11/ X i b. h>

#endi f
#ifndef _X_H
#include "X . h"
#endi f

67

Chapter 2: Library Extension Requests

68

#defi ne _devi ceKeyPress 0
#def i ne _devi ceKeyRel ease 1
#def i ne _devi ceButt onPress 0
#defi ne _devi ceButt onRel ease 1
#defi ne _devi ceMoti onNoti fy 0
#def i ne _devi ceFocusl n 0
#def i ne _devi ceFocusQut 1
#define _proximtyln 0
#define _proximtyQut 1
#define _deviceStateNotify 0
#def i ne _devi ceMappi ngNoti fy 1
#def i ne _changeDevi ceNoti fy 2

#def i ne F ndTypeAndd ass(d, type, class, classid, offset)
{ int i; Xnputdasslinfo *ip;
type = 0; class = 0;
for (i=0, ip= ((XDevice *) d)->classes; i< ((XDevice *) d)->num cl asses;
i++ iptt)
if (ip->nput_class == classid)
{type = ip->event_type base + offset;
class = ((XDevice *) d)->device_id << 8 | type;}}

#def i ne Devi ceKeyPress(d, type, class
Fi ndTypeAndd ass(d, type, class, Keyd ass, _devi ceKeyPress)

#def i ne Devi ceKeyRel ease(d, type, class)
F ndTypeAndd ass(d, type, class, Keyd ass, _devi ceKeyRel ease)

#def i ne Devi ceButtonPress(d, type, class)
Fi ndTypeAndd ass(d, type, class, Buttond ass, _devi ceButtonPress)

#def i ne Devi ceButtonRel ease(d, type, class)
F ndTypeAndd ass(d, type, class, Buttond ass, _devi ceButtonRel ease)

#def i ne Devi ceMotionNotify(d, type, class)
Fi ndTypeAndd ass(d, type, class, Valuatord ass, _devi ceMtionNotify)

#def i ne Devi ceFocusl n(d, type, class)
Fi ndTypeAndd ass(d, type, class, Focusd ass, _devi ceFocusl n)

Events and Event-Handling Functions

#def i ne Devi ceFocusQut (d, type, class)

Fi ndTypeAndd ass(d, type, class, Focusd ass, _devi ceFocusQut)

#define Proximtyln(d, type, class)

Fi ndTypeAndd ass(d, type, class, Proximtyd ass, _proxi mtyln)

#define Proxi mtyQut(d, type, class)

Fi ndTypeAndd ass(d, type, class, Proxinmtydass, _proximtyQut)

#define DeviceSateNotify(d, type, class)

Fi ndTypeAndd ass(d, type, class, Qherd ass, _deviceStateNotify)

#def i ne Devi ceMappi ngN\oti fy(d, type, class)

Fi ndTypeAndd ass(d, type, class, Qherd ass, _devi ceMappi ngNoti fy)

#def i ne ChangeDevi ceNotify(d, type, class)

Fi ndTypeAndd ass(d, type, class, Qherd ass, _changeDevi ceNotify)

#def i ne Devi cePoi nter MtionH nt(d, type, class)

{ class = ((XDevice *) d)->device_id << 8 | _devicePointerhtionH nt;}

#def i ne Devi ceButtonlMtion(d, type, class)
{ class = ((XDevice *) d)->device_ id <<

#def i ne Devi ceButton2Mtion(d, type, class)
{ class = ((XDevice *) d)->device_id <<

#def i ne Devi ceButton3Mtion(d, type, class)
{ class = ((XDevice *) d)->device_ id <<

#def i ne Devi ceButtondMtion(d, type, class)
{ class = ((XDevice *) d)->device_id <<

#def i ne Devi ceButton5Mtion(d, type, class)
{ class = ((XDevice *) d)->device_ id <<

#def i ne Devi ceButtonhtion(d, type, class)
{ class = ((XDevice *) d)->device_id <<

#def i ne Devi ceOnner G abButton(d, type, class)
{ class = ((XDevice *) d)->device_ id <<

#def i ne Devi ceButtonPress@ab(d, type, class)
{ class = ((XDevice *) d)->device_id <<

8 | _deviceButtonlMtion;}

8 | _deviceButton2Mti on;}

8 | _deviceButton3Mti on;}

8 | _deviceButtondMti on;}

8 | _deviceButton5Mti on;}

8 | _deviceButtonhti on;}

8 | _devi ceOnner G abButt on; }

8 | _deviceButton@ ab;}

69

Chapter 2: Library Extension Requests

#def i ne NoExt ensi onEvent (d, type, class)
{ class = ((XDevice *) d)->device_id << 8 | _noExtensi onEvent;}

#def i ne BadDevi ce(dpy, error) _xi baddevi ce(dpy, &error)
#defi ne Badd ass(dpy, error) _xibadcl ass(dpy, &error)
#def i ne BadEvent (dpy, error) _xibadevent (dpy, &error)
#def i ne BadMbde(dpy, error) _xi badmode(dpy, &error)

#define Devi ceBusy(dpy, error) _xidevicebusy(dpy, &error)

70

Events and Event-Handling Functions

/***

*/

typedef struct

{

i nt

unsi gned | ong
Bool

D spl ay

W ndow

XD

W ndow

W ndow

Ti me

i nt

i nt

i nt

unsi gned i nt
unsi gned i nt
Bool

unsi gned i nt
unsi gned char
unsi gned char
i nt

type;

serial;
send_event ;
*di spl ay;

W ndow

devi cei d;
root;

subwi ndow;
tineg;

X, Y,

X_root;
y_root;
state;
keycode;
sane_scr een;
devi ce_state;
axes_count ;
first axis;
axi s_data[6];

} XDevi ceKeyEvent ;

Devi ceKey events. These events are sent by input devices that
support input class Keys.
The location of the X pointer is reported in the coordinate
fields of the x,y and x_root,y root fields.

of event */

of last request processed */

true if from SendEvent request */

D splay the event was read from*/
"event" w ndow reported relative to */

root w ndow event occured on */
child w ndow */

mlliseconds */

X, y coordinates in event w ndow */
coordinates relative to root */
coordinates relative to root */

key or button nmask */

detail */

same screen flag */

devi ce key or button nask */

t ypedef XDevi ceKeyEvent XDevi ceKeyPressedEvent ;
t ypedef XDevi ceKeyEvent XDevi ceKeyRel easedEvent ;

/*********************'k***************'k*****************************

*
*
*

*

*/

typedef struct {

int

type;

unsi gned | ong serial ;

Devi ceButton events. These events are sent by extension devices
that support input class Buttons.

/* of event */
/* # of last request processed by server */

71

Chapter 2: Library Extension Requests

Boo

D spl ay
W ndow
XD

W ndow
W ndow
Ti me

i nt

i nt

i nt

unsi gned
unsi gned
Boo

unsi gned
unsi gned
unsi gned
i nt

i nt
int
i nt
char
char

send_event ;
*di spl ay;

w ndow;

devi cei d;
root;

subwi ndow;
time;

X, Y,

X_root;
y_root;
state;
but t on;
sane_scr een;
devi ce_state;
axes_count ;
first_axis;
axi s_dat a[6] ;

} XDevi ceButt onEvent ;

/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

true if froma SendEvent request */
b splay the event was read from*/
"event" w ndow reported relative to */

root wi ndow that the event occured on */
child w ndow */

mlliseconds */

X, y coordinates in event w ndow */
coordinates relative to root */
coordinates relative to root */

key or button nask */

detail */

same screen flag */

devi ce key or button nask */

t ypedef XDevi ceButtonEvent XDevi ceButtonPressedEvent ;
t ypedef XDevi ceButtonEvent XDevi ceButtonRel easedEvent;

/***

*

* DeviceMbtionNotify event. These events are sent by extension devi ces
* that support input class Val uators.

*

*/

typedef struct
{
i nt
unsi gned | ong
Bool
D spl ay
W ndow
XD
W ndow
W ndow
Ti e
int
i nt
i nt
unsi gned i nt
char

72

type;
serial;
send_event;
*di spl ay;
w ndow,
devi cei d;
root;
subwi ndow;
tine;

X, Y,
X_root;
y_root;
state;
is_hint;

/*
/*
/*
/*
/*

/*
/*

/*
/*
/*
/*
/*

of event */

of last request processed by server */
true if froma SendEvent request */

D splay the event was read from*/
"event" w ndow reported relative to */

root window that the event occured on */
child w ndow */

mlliseconds */

X, y coordinates in event w ndow */
coordinates relative to root */
coordinates relative to root */

key or button nask */

detail */

Events and Event-Handling Functions

Bool sanme_screen; /* sane screen flag */

unsigned int device_ state;/* device key or button nask */
unsi gned char axes_count;

unsi gned char first_axis;

i nt axi s_dat a[6] ;

} XDevi ceMoti onEvent ;

/***

*

*

*

*

*/

Devi ceFocusChange events. These events are sent when the focus
of an extension device that can be focused i s changed.

typedef struct
{
i nt type; /* of event */
unsi gned | ong serial; /* # of last request processed by server */
Bool send_event; /* true if froma SendEvent request */
D spl ay *display; /* Display the event was read from*/
W ndow w ndow; /* "event" w ndow reported relative to */
X D devi cei d;
i nt node; /* NotifyNormal, NotifyQab, NotifyUngrab */
i nt detail;
/*

* NotifyAncestor, NotifyVirtual, Notifylnferior,
* Noti fyNonLi near, NotifyNonLi nearVirtual, NotifyPointer,
* NotifyPoi nterRoot, NotifyDetail None
*/
Ti e tine;
} XDevi ceFocusChangeEvent ;

t ypedef XDevi ceFocusChangeEvent XDevi ceFocusl nEvent ;
t ypedef XDevi ceFocusChangeEvent XDevi ceFocusQut Event ;

/*********************'k***************'k*****************************

*

*

*

*

*/

ProximtyNotify events. These events are sent by those absol ute
posi tioning devices that are capabl e of generating proximty infornation.

typedef struct

{
i nt type; /* Proxinmtyln or ProximtyQut */
unsigned long serial; /* # of last request processed by server */

73

Chapter 2: Library Extension Requests

Bool send event; /* true if this cane froma SendEvent request */
D spl ay *display, /* Dsplay the event was read from?*/
W ndow W hdow;

X D devi cei d;

W ndow root ;

W ndow subwi ndow;

Ti me tine;

i nt X, V;

i nt X_root, y_root;

unsi gned i nt state;

Bool sane_screen;

unsi gned i nt device_state; /* device key or button mask */

unsi gned char axes_count;

unsigned char first_axis;

i nt axi s_dat a[6] ;

} XProximtyNotifyEvent;
typedef XProxi mtyNotifyBEvent XProxi mtyl nEvent;
typedef XProxi mtyNotifyEvent XProxi mtyQutEvent;

/***

*

* DeviceStateNotify events are generated on EnterWndow and Focusl n

* for those clients who have sel ected Devi ceS ate.
*

*/
typedef struct
{
unsi gned char cl ass;
unsi gned char | engt h;

} X nputd ass;

typedef struct {

i nt type;

unsi gned | ong serial ; /* # of last request processed by server */

Bool send_event ; /* true if this came froma SendEvent request */
D spl ay *di spl ay; /* Display the event was read from*/

W ndow w ndow,

XD devi cei d;

Ti ne tineg;

int num cl asses;

char dat a[64] ;

} XDeviceStateNotifyEvent;

74

Events and Event-Handling Functions

typedef struct {
unsi gned char
unsi gned char
unsi gned char
unsi gned char
i nt

} XVal uat or St at us;

typedef struct {
unsi gned char
unsi gned char
short
char

} XKeySt at us;

typedef struct {
unsi gned char
unsi gned char
short
char

} XButtonS at us;

cl ass;

| engt h;

num val uat or s;
node;

val uat or s[6] ;

cl ass;
| engt h;
num keys
keys[32] ;

cl ass;
| engt h;
num but t ons;
but t ons[32] ;

/***

*

* Devi ceMappi ngNoti fy event. This event is sent when the key nappi ng
* modi fier mapping, or button nappi ng of an extension device is changed

*

*/

typedef struct {
i nt
unsi gned | ong
Bool
D spl ay
W ndow
XD
Ti me
i nt

i nt
i nt

type;

serial; /*
send_event ; /*
di spl ay; /
W ndow /*
devi cei d;

time

request ; /*

first_keycode;/*
count ; /*

} XDevi ceMappi ngEvent ;

of last request processed by server */

true if this cane froma SendEvent request */

D splay the event was read from?*/
unused */

one of Mappi nghdi fier, Mappi ngKeyboard,
Mappi ngPoi nter */

first keycode */

defines range of change w first_keycode*/

75

Chapter 2: Library Extension Requests

/**

*

* ChangeDevi ceNotify event. This event is sent when an
* XChangeKeyboard or XChangePoi nter request is nade.

*

*/

typedef struct {

i nt type;

unsi gned | ong serial ; /* # of last request processed by server */

Bool send_event; /* true if this came froma SendEvent request */
D spl ay *di spl ay; /* Dsplay the event was read from*/

W ndow w ndow, /* unused */

XD devi cei d;

Ti ne tine;

i nt request ; /* NewPoi nter or NewKeyboard */

} XChangeDevi ceNot i f yEvent ;

/**

* Gontrol structures for input devices that support input class
* Feedback. These are used by the XGet FeedbackControl and
* XChangeFeedbackControl functi ons.

*/
typedef struct {
X D cl ass;
int | engt h;
XD id;

} XrFeedbackSt at e;

typedef struct {

X D cl ass;

int | engt h;

XD id;

int click;

i nt percent ;

int pi tch;

int duration;

int | ed_nask;

int gl obal _auto repeat;
char aut o_repeat s[32] ;

} XkbdFeedback$t at e;

76

Events and Event-Handling Functions

typedef struct {

XD
i nt
XD
i nt
int
int

cl ass;

| engt h;

id;

accel Num
accel Denom
t hreshol d;

} XPtrFeedbackSt at e;

typedef struct {

XD
int
XD
i nt
i nt
i nt

cl ass;

| engt h;

id;

resol ution;
m nVal ;
maxVal ;

} X nt eger FeedbackSt at e;

typedef struct {

XD
i nt
XD
i nt
int

cl ass;

| engt h;

id;

nmax_synbol s;

num syns_support ed;

KeySym *syns_support ed;
} XStringFeedbackSt at e;

typedef struct {

XD
int
XD
i nt
i nt
i nt

cl ass;

| engt h;
id;
percent ;
pi tch;
duration;

} XBel | FeedbackSt at e;

typedef struct {

XD
i nt
XD
i nt
int

cl ass;

| engt h;

id;

| ed_val ues;
| ed_nask;

} XLedFeedback$t at e;

77

Chapter 2: Library Extension Requests

78

typedef struct {

XD cl ass;
i nt | engt h;
X D id;

} XrFeedbackGontrol ;

typedef struct {

XD cl ass;

i nt | engt h;

X D id;

int accel Num

i nt accel Denom
int t hreshol d;

} XPtrFeedbackGontrol ;

typedef struct {

X D cl ass;

int | engt h;

X D id;

i nt click;

i nt percent ;

i nt pi tch;

int duration;
int | ed_nask;
int | ed_val ue;
i nt key;

i nt aut o_r epeat _node;

} XkbdFeedbackControl ;

typedef struct {

XD cl ass;

i nt | engt h;

X D id;

i nt num keysyns;

KeySym *syns_to_di spl ay;
} XStringFeedbackControl ;

typedef struct {

XD cl ass;

int | engt h;

X D id;

int int_to_display;

} X nt eger FeedbackGControl ;

Events and Event-Handling Functions

typedef struct {

XD cl ass;

i nt | engt h;
X D id;

int per cent ;
i nt pi t ch;
int duration;

} XBel | FeedbackControl ;

typedef struct {

X D cl ass;

i nt | engt h;
XD id;

i nt | ed_nask;

i nt | ed_val ues;

} XLedFeedbackControl ;

/*********************'k***************'k*****************************

* An array of XDevicelist structures is returned by the

* XLi st nput Devi ces function. Each entry contains infornation

* about one input device. Anong that information is an array of
* pointers to structures that describe the characteristics of

* the input device.

*/
typedef struct _XAnyd assinfo *XAnyd assPtr;
typedef struct _XAnyd assinfo {
XD cl ass;
i nt | engt h;
} XAnyd assl nf o;
typedef struct _XDevicelnfo *XDevicel nfoPtr;

typedef struct _XDevicelnfo

{

XD id;

Atom type;

char *nane;

int num cl asses;
int use;

XAnyd assPtr i nput cl assi nf o;

79

Chapter 2: Library Extension Requests

80

} XDevi cel nf o;

typedef struct _XKeylnfo *XKeylnfoPtr;

typedef struct _XKeylnfo

{
X D

i nt

unsi gned short
unsi gned short
unsi gned short
} XKeyl nf o;

cl ass;

| engt h;

m n_keycode;
nmax_keycode;
num keys;

typedef struct _XButtonlnfo *XButtonlnfoPtr;

typedef struct _XButtonlnfo {

X D cl ass;

i nt | engt h;
short num but t ons;
} XButtonl nfo;

typedef struct _XAxislnfo *XAxislnfoPtr;

typedef struct _XAxislnfo {

int resol ution;
i nt m n_val ue;
i nt nmax_val ue;
} XAxi sl nf o;

typedef struct _XVal uatorlnfo *XVal uatorlnfoPtr;

typedef struct _Xval uatorlnfo

{

X D cl ass;

int | engt h;

unsi gned char num axes;

unsi gned char node;

unsi gned | ong noti on_buffer;
XAXi sl nfoPtr axes;

} XVal uat or I nf o;

Events and Event-Handling Functions

/**

*

* An XDevice structure is returned by the XQpenDevi ce functi on.

* |t contains an array of pointers to X nputQd asslnfo structures.

* Each contains infornation about a class of input supported by the

* device, including a pointer to an array of data for each type of event
* the device reports.

*

*/

typedef struct {
unsi gned char input_cl ass;
unsi gned char event _type_base;
} X nputd assl nf o;

typedef struct {

XD devi ce_ i d;
int num cl asses;
X nput A assl nfo *cl asses;

} XDevi ce;

/**

*

* The following structure is used to return information for the
* XGet Sel ect edExt ensi onEvent s functi on.

*/

typedef struct {
XEvent d ass event _type;
XD devi ce;

} XEventlList;

/**

*

* The following structure is used to return notion history data from
* an input device that supports the input class Val uators.
* This information is returned by the XGet Devi ceMiti onEvents functi on.

*

*/

typedef struct {
Time ting;
int *dat a;
} XDevi ceTi meCoor d;

81

Chapter 2: Library Extension Requests

82

/**

*
*

*

*/

Device state structure.

typedef struct {

XD
int

X nput 4 ass

} XDeviceS ate;

typedef struct {

unsi gned char
unsi gned char
unsi gned char
unsi gned char

devi ce_i d;
num cl asses;
*dat a;

cl ass;

| engt h;

num val uat or s;
node;

i nt *val uat or s;
} XVal uat or St at €;

typedef struct {

unsi gned char cl ass;
unsi gned char | engt h;
short num keys;
char keys[32] ;

} XkeySate;

typedef struct {
unsi gned char cl ass;
unsi gned char | engt h;
short num bons;
char but t ons[32] ;

} XButtonSate;

/***
*

* Function definitions.

*

*/
XDevi ce * XpenDevi ce();
XDevi cel nfo *XLi st | nput Devi ces();
XDevi ceTi neCoor d * XGet Devi ceMbt i onEvent s() ;
KeySym * XGet Devi ceKeyMappi ng() ;

XModi fi er Keynap * XGet Devi ceModi f i er Mappi ng() ;

Events and Event-Handling Functions

XFeedbackSt at e * XGet FeedbackControl ();

XExt ensi onVer si on *XGet Ext ensi onVer si on() ;

XDevi ceS at e *XQuer yDevi ceState();

XEvent 4 ass * XGet Devi ceDont Propagat eLi st () ;
#endif /* _XINPUT_H_ */

/* Definitions used by the server, library and client */
#ifndef _X_H

#define X _H

#def i ne sz_xGet Ext ensi onVer si onReq 8
#def i ne sz_xGet Ext ensi onVer si onRepl y 32
#def i ne sz_xLi st | nput Devi cesReq 4
#def i ne sz_xLi st | nput Devi cesRepl y 32
#def i ne sz_xQpenDevi ceReq 8
#def i ne sz_xQpenDevi ceRepl y 32
#def i ne sz_xd oselevi ceReq 8
#def i ne sz_xSet Devi ceMbdeReq 8
#def i ne sz_xSet Devi ceMddeRepl y 32
#def i ne sz_xSel ect Ext ensi onEvent Req 12
#def i ne sz_xGet Sel ect edExt ensi onEvent sReq 8
#def i ne sz_xGet Sel ect edExt ensi onEvent sRepl y 32
#def i ne sz_xChangeDevi ceDont Pr opagat eLi st Req 12
#def i ne sz_xGet Devi ceDont Pr opagat eLi st Req 8
#def i ne sz_xGet Devi ceDont Pr opagat eLi st Repl y 32
#def i ne sz_xGet Devi ceMbt i onEvent sReq 16
#def i ne sz_xGet Devi ceMot i onEvent sRepl y 32
#def i ne sz_xChangeKeyboar dDevi ceReq 8
#def i ne sz_xChangeKeyboar dDevi ceRepl y 32
#def i ne sz_xChangePoi nt er Devi ceReq 8
#def i ne sz_xChangePoi nt er Devi ceRepl y 32
#def i ne sz_x@G abDevi ceReq 20
#def i ne sz_xQ abDevi ceRepl y 32
#def i ne sz_xUnhgr abDevi ceReq 12
#def i ne sz_x@G abDevi ceKeyReq 20
#def i ne sz_xQ abDevi ceKeyRepl y 32
#def i ne sz_xUhgr abDevi ceKeyReq 16
#def i ne sz_xQ abDevi ceBut t onReq 20
#def i ne sz_x@G abDevi ceBut t onRepl y 32
#def i ne sz_xUhgr abDevi ceBut t onReq 16
#defi ne sz_xAl | owDevi ceEvent sReq 12
#def i ne sz_xGet Devi ceFocusReq 8
#def i ne sz_xGet Devi ceFocusRepl y 32
#def i ne sz_xSet Devi ceFocusReq 16

83

Chapter 2: Library Extension Requests

#defi ne
#def i ne
#defi ne
#defi ne
#defi ne
#def i ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#def i ne
#defi ne
#def i ne
#def i ne
#defi ne
#defi ne
#def i ne
#defi ne

#defi ne

#defi ne
#def i ne
#defi ne
#def i ne
#defi ne
#defi ne
#defi ne
#def i ne
#defi ne
#def i ne
#defi ne
#defi ne
#defi ne
#def i ne
#def i ne
#defi ne
#defi ne
#defi ne

#def i ne

#defi ne
#defi ne

84

sz_xGet FeedbackCont r ol Req
sz_xGet FeedbackCont r ol Repl y
sz_xChangeFeedbackCont r ol Req
sz_xGet Devi ceKeyMappi ngReq
sz_xGet Devi ceKeyMappi ngRepl y
sz_xChangeDevi ceKeyMappi ngReq
sz_xGet Devi ceModi fi er Mappi ngReq
sz_xSet Devi ceModi fi er Mappi ngReq
sz_xSet Devi ceModi fi er Mappi ngRepl y
sz_xGet Devi ceBut t onivappi ngReq
sz_xGet Devi ceBut t onVappi ngRepl y
sz_xSet Devi ceBut t onMappi ngReq
sz_xSet Devi ceBut t onVappi ngRepl y
sz_xQuer yDevi ceSt at eReq
sz_xQueryDevi ceSt at eRepl y
sz_xSendExt ensi onEvent Req
sz_xDevi ceBel | Req

sz_xSet Devi ceVal uat or sReq
sz_xSet Devi ceVal uat or sRepl y

1| NAMVE "X nput Ext ensi on"
X _KEYBOARD " KEYBOARD'

X _MOUSE " MOUSE"

X _TABLET " TABLET"

X _TOUCHSCREEN " TOUCHSCREEN'
X _TAQUOHPAD " TOJCHPAD!

X _BAROCDE " BAROCDE!

X _BUTTONBOX " BUTTONBOX!
X _KNB BOX "KNCB_BOX!

X _ON\E_KNCB "ONE_KNCB'

X _N NE_KNCB "N NE_KNCB'
X _TRACGKBALL " TRACKBALL"
X _QUADRATURE " QUADRATURE
X _|I D MDULE "I D MDULE'
X _SPACERALL " SPACEBALL"
X _DATAQLOE " DATAQLOE'
X _EYETRACKER " EYETRACKER'
X _OURSCRKEYS " QURSCRKEYS!
X _FOOTMOUSE " FOOTMOUSE!
Dont _Check

Xnput_Initial_Rel ease

Xl nput _Add_XDevi ceBel |

32
12

32

32
32
32
32
16

32

[EEN

Events and Event-Handling Functions

#def i

#def i
#def i

#def i
#def i

#def i
#def i

#def i
#def i

#def i

#def i
#def i

#def i
#def i

#def i
#def i

#def i

#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i

#def i
#def i
#def i

ne

ne
ne

ne
ne

ne
ne

ne
ne

ne

ne
ne

ne
ne

ne
ne

ne

ne
ne
ne

ne
ne
ne
ne
ne
ne

ne
ne

ne
ne
ne

Xl nput _Add_XSet Devi ceVal uat or s

X _Absent
X _Present

X _Initial_Rel ease Mj or
X _Initial_Rel ease_M nor

X _Add_XDevi ceBel | _Mgj or
Xl _Add_XDevi ceBel | _M nor

Xl _Add_XSet Devi ceVal uat ors_Mj or
Xl _Add_XSet Devi ceVal uat ors_M nor

NoSuchExt ensi on

QAUNT
CREATE

NewPoi nt er
NewKeyboar d

XPQA NTER
XKEYBOARD

UseXKeyboard

| sXPoi nt er
| sXKeyboar d
| sXExt ensi onDevi ce

AsyncThi sDevi ce
SyncThi sDevi ce
Repl ayThi sDevi ce
AsyncQ her Devi ces
AsyncAl |

SyncAl |

Fol | owkeyboar d
Rever t ToFol | owkeyboar d

DvAccel Num
DvAccel Denom
DvThr eshol d

N -

abshwnNE O

w w

(1L << 0)
(1L << 1)
(1L << 2)

85

Chapter 2: Library Extension Requests

86

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i

#def i

#def i
#def i

#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne

ne

ne

ne
ne

ne
ne

ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne

DvKeyd i ckPer cent

DvPer cent
DvPRi tch
DvDurati on
DvLed
DvLedMbde
DvKey

DvAut oRepeat Mbde

DvString
Dvl nt eger

Rel ati ve
Absol ut e

AddToLi st
el et eFr onbi st

Keyd ass

Butt ond ass
Val uat or 4 ass
Feedbackd ass
Proxi mtyd ass
Focusd ass

Q herd ass

KbdFeedbackd ass

Pt r Feedbackd ass

St ri ngFeedbackd ass
| nt eger Feedbackd ass
LedFeedbackd ass

Bel | Feedbackd ass

_devi cePoi nt er Mot i onH nt
_devi ceBut t on1Mot i on
_devi ceBut t on2Mot i on
_devi ceBut t on3Mot i on
_devi ceBut t on4Mot i on
_devi ceBut t on5Mot i on
_devi ceBut t onMot i on
_devi ceButtonG ab

_devi ceOnner G abBut t on
_noExt ensi onEvent

X _BadDevi ce
X _BadEvent

(1L<<0)
(1L<<1)
(1L<<2)
(1L<<3)
(1L<<4)
(1L<<5)
(1L<<6)
(1L<<7)

(1L << 0)
(1L << 0)

0
1

[

©Co~NoOOah~wWNEFE O abhwNPEFO o~ wWNREO

= O

Events and Event-Handling Functions

#defi ne X _BadMbde 2
#defi ne X _Devi ceBusy 3
#define Xl _Badd ass 4

t ypedef unsi gned | ong XEvent A ass;
/***

*

* Ext ension version structure.
*

*/

typedef struct {

int present;
short naj or _ver si on;
short m nor _ver si on;

} XBxt ensi onVersi on;

#endif /* X _H */

87

