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Who This Guide Is For

About This Guide

A real-time program is one that must maintain a fixed timing relationship to
external hardware. In order to respond to the hardware quickly and reliably,
a real-time program must have special support from the system software
and hardware.

This guide describes the support that IRIX™ and the Silicon Graphics
CHALLENGE™, Onyx™, and POWERCHALLENGE computers provide to
real-time programs. The support bundled with all versions of IRIX is called
REACT™. A set of extra-cost features is called REACT/Pro™. This guide
covers both REACT and REACT/Pro.

This guide is designed to be read online, using IRIS InSight™. You are
encouraged to read it in non-linear order using all the navigation tools that
Insight provides.

This guide is written for real-time programmers. You, a real-time
programmer, are assumed to be

= an expert in the use of your programming language, which must be
either C, Ada, or FORTRAN to use the features described here

= knowledgeable about the hardware interfaces used by your real-time
program

= familiar with system-programming concepts such as interrupts, device
drivers, multiprogramming, and semaphores

You are not assumed to be an expert in UNIX® system programming,
although you do need to be familiar with UNIX as an environment for
developing software.

XXi



About This Guide

What the Book Contains

XXii

Here is a summary of what you will find in the following chapters.

Chapter 1, “Real-Time Programs,” describes the important classes of
real-time programs, emphasizing the different kinds of performance
requirements they have.

Chapter 2, “Basic Features of the CHALLENGE and IRIX™ Architectures,”
contains an overview of how IRIX manages the resources of a fully
symmetric multiprocessor like the Challenge/Onyx for the benefit of
normal, interactive UNIX applications; and points out how these methods
often conflict with the needs of real-time programs.

Chapter 3, “How IRIX™ and REACT/Pro™ Support Real-Time Programs,”
gives an overview of the real-time features of IRIX. From these overview
topics you can jump to the detailed topics that interest you most.

Chapter 4, “Managing Virtual Memory in a Real-Time Program,” covers the
management of your virtual address space: locking it to real memory;
mapping devices and files into it; and sharing segments of it between
processes.

Chapter 5, “Managing Time and Time Intervals,” covers the use of timers
and clocks in the Challenge/Onyx architecture.

Chapter 6, “Controlling CPU Workload,” describes how you can isolate a
CPU and dedicate almost all of its cycles to your program’s use.

Chapter 7, “Using the Frame Scheduler,” describes the REACT/Pro Frame

Scheduler, which gives you a simple, direct way to structure your real-time
program as a group of cooperating processes, efficiently scheduled on one or
more isolated CPUs.

Chapter 8, “Optimizing Disk 1/0 for a Real-Time Program,” describes how
to set up disk 1/0 to meet real-time constraints, including the use of
asynchronous 1/0 and guaranteed-rate 1/70.

Chapter 9, “Managing Device Interactions,” summarizes the software
interfaces to external hardware, including and user-level programming of
external interrupts and VME and SCSI devices.



Other Useful Books

Other Useful Books

The following books contain more information that can be useful to a
real-time programmer.

For a survey of all IRIX facilities and manuals, Programming on Silicon
Graphics Systems: An Overview. This useful manual, part of the IRIX
Developer Option, is new in version 5.3; part number 007-2476-001.

For administration of a multiprocessing server, including system
generation and the use of the XFS file system, IRIX Advanced Site and
Server Administration Guide. The version that covers the XFS file system
is version 5.3, part number 007-0603-100.

For details of the architecture of the CPU, processor cache, processor
bus, and virtual memory, MIPS R4000 Microprocessor User’s Manual by
Joseph Heinrich, Prentice-Hall, 1993 (ISBN 0-13-105925-4) and the MIPS
R10000 Microprocessor User’s Manual, available in 1995.

For details of many IRIX system facilities not covered in this book,
Topics in IRIX Programming, part number 007-2478-001 and MIPS
Compiling and Performance Tuning Guide, 007-2479-001 (both are
available with the IRIX Developer’s Option).

For the design and construction of device interrupt handlers and on
programming the SCSI interface, IR1X Device Driver Programming Guide,
part number 007-0911-050; and IRIX Device Driver Reference Pages, part
number 007-2183-003.

For programming inter-computer connections using sockets, IRIX
Network Programming Guide, part number 007-0810-050.

For coding functions in assembly language, MIPSpro Assembly Language
Programmer’s Guide, part number 007-2418-001.

In addition, Silicon Graphics offers training courses in Real-Time
Programming and in Parallel Programming.
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Chapter 1

Defining Real-Time Programs

Real-Time Programs

This chapter surveys the categories of real-time programs, and indicates
which types can best be supported by REACT and REACT/Pro. As an
experienced programmer of real-time applications, you might want to read
the chapter to verify that this book uses terminology that you know; or you
might want to proceed directly to Chapter 2, “Basic Features of the
CHALLENGE and IRIX™ Architectures”.

A real-time program is any program that must maintain a fixed, absolute
timing relationship with an external hardware device.

Normal-time programs do not require a fixed timing relationship to external
devices. A normal-time program is a correct program when it produces the
correct output, no matter how long that takes. You can specify performance
goals for a normal-time program, such as “respond in at most 2 seconds to
90% of all transactions,” but if the program does not meet the goals, it is not
incorrect, merely slow.

A real-time program is one that is incorrect and unusable if it fails to meet its
performance requirements, and so falls out of step with the external device.

Major Types of Real-Time Programs

There are three major types of real-time programs: simulators, data
collection systems, and process control systems. This section describes each
type briefly; simulators and data collection systems are described in more
detail in following sections.
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Simulators

A simulator maintains an internal model of the world. It receives
control inputs, updates the model to reflect them, and displays the
changed model. It must process inputs in real time in order to maintain
an accurate simulation, and it must generate output in real time to keep
up with the display hardware.

Silicon Graphics systems are well suited to programming many kinds
of simulators.

A data collection system receives input from reporting devices, for
example telemetry receivers, and stores the data. It may be required to
process, reduce, analyze or compress the data before storing it. It must
react in real time in order to avoid losing data.

Silicon Graphics systems are suited to many data collection tasks.

A process control system monitors the state of an industrial process and
constantly adjusts it for efficient, safe operation. It must react in real
time to avoid waste, damage, or hazardous operating conditions.

Although Silicon Graphics systems can be used for process control,
they are not usually the most economical choice. Dedicated
process-control computers are generally better for these uses.

All simulators have the same four components,

An internal model of the world or part of it; for example a model of a
vehicle travelling through a model geography, or a model of the
physical state of a nuclear power plant.

An external device through which the state of the model is displayed,;
for example one or more video displays, audio speakers, or a simulated
instrument panel.

An external devices to supply control inputs; for example a steering
wheel, a joystick, or simulated knobs and dials.

An operator (or hardware under test) that “closes the loop” by viewing
the display and moving the controls in response.
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Requirements on Simulators

The real-time requirements on a simulator vary depending on the nature of
these four components. Two key performance requirements on a simulator
are frame rate and transport delay.

Frame Rate

A crucial measure of simulator performance is the rate at which its display
is updated. This rate is called the frame rate, whether or not the simulator
displays its model on a video screen.

Frame rate is given in cycles per second (abbreviated Hz). Typical frame
rates run from 15 Hz to 60 Hz, although both higher and lower rates are used
in special situations.

The inverse of frame rate is frame interval. For example, a frame rate of 60 Hz
allows a frame interval of 1/60 second, or 16.67 milliseconds. To maintain a
frame rate of 60 Hz, a simulator must update its model and prepare a new

display in at most 16.67 ms.

The REACT/Pro Frame Scheduler helps you organize a multi-process
application so that it can achieve a specified frame rate. (See Chapter 7,
“Using the Frame Scheduler.”)

Transport Delay

Transport delay is the term for the number of frames that elapses before a
control motion is reflected in the display. When the transport delay is too
long, the operator will perceive the simulation as sluggish or unrealistic. If a
visual display is slow to react, a human operator can become physically ill.

Aircraft Simulators

Simulators for real or hypothetical aircraft or spacecraft typically require
frame rates of 30 Hz to 120 Hz and transport delays of 1 or 2 frames. There
will be several analogue control inputs or and possibly many digital control
inputs (simulated switches and circuit breakers, for example). There are
often multiple video display outputs (one each for the left, forward and right
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“windows”), and possibly special hardware to shake or tilt the “cockpit.”
The display in the “windows” must have a convincing level of detail.

Silicon Graphics systems with REACT/Pro are well suited to building
aircraft simulators.

Ground Vehicle Simulators

Simulators for automobiles, tanks, and heavy equipment have been built
with Silicon Graphics systems. Frame rates and transport delays are similar
to those for aircraft simulators. However, there is a smaller world of
simulated “geography” to maintain in the model. Also, the viewpoint of the
display changes more slowly, and through smaller angles, than the
viewpoint from an aircraft simulator. These factors can make it somewhat
simpler for a ground vehicle simulator to update its display.

Plant Control Simulators

A simulator can be used to train the operators of an industrial plant such as
an electric power generation plant (nuclear or conventional). Power-plant
simulators have been built using Silicon Graphics systems.

The frame rate of a plant control simulator can be as low as 1 or 2 Hz.
However, the number of control inputs (knobs, dials, valves, and so on) can
be very large. Special hardware may be required to connect the control
inputs and multiplex them onto the VME bus. Also, the number of display
outputs (simulated gauges, charts, warning lights, and so on) can be very
large and may also require special, custom hardware to interface them to the
computer.

Virtual Reality Simulators

A virtual reality simulator aims to give its operator a sense of presence in a
computer-generated world. (So also does a vehicle simulator. One difference
is that a vehicle simulator strives for an exact model of the laws of physics,
which a virtual reality simulator typically does not need to do.)
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Data Collection Systems

Usually the operator can see only the simulated display, and has no other
visual referents. Because of this, the frame rate must be high enough to give
smooth, nonflickering animation, and any perceptible transport delay can
cause hausea and disorientation. However, the virtual world is not required
(or expected) to look like the real world, so the simulator may be able to do
less work to prepare the display.

Silicon Graphics systems, with their excellent graphic and audio capabilities,
are well suited to building virtual reality applications.

Hardware-in-the-loop (HITL) Simulators

The operator of a simulator need not be a person. In a hardware-in-the-loop
simulator, the role of operator is played by another computer, such as an
aircraft autopilot or the control and guidance computer of a missile. The
simulator’s display output is a set of input signals to the computer under
test. The simulator’s control inputs are the output signals of the computer
under test.

Depending on the hardware being exercised, the simulator may have to
maintain a very high frame rate, up to 1000 Hz. Silicon Graphics systems can
be used for some hardware simulators. Special-purpose systems may be
more practical or more economical for very demanding frame rates.

A data collection system has either three or four major parts:

1. Sources of data, for example telemetry. Typically the source or sources
are interfaced to the VME bus.

2. Arepository for the data. This can be a raw device such as a tape, or it
can be a disk file or even a database system.

3. Rules for processing. The data collection system might be asked only to
buffer the data and copy it to disk. Or it might be expected to compress
the data, smooth it, sample it, or filter it for noise.



Chapter 1: Real-Time Programs

4. Optionally, a display. The data collection system may be required to
display the status of the system or to display a summary or sample of
the data.

Requirements on Data Collection Systems

The first requirement on a data collection system is imposed by the peak data
rate of the combined data sources. The system must be able to receive data
at this peak rate without an overrun; that is, without losing data because it
could not read the data as fast as it arrived.

The second requirement is that the system must be able to process and write
the data to the repository at the average data rate of the combined sources.
(Writing can proceed at the average rate as long as there is enough memory
to buffer short bursts at the peak rate.)

You might specify a desired frame rate for updating the display of the data.
However, there is usually no real-time requirement on display rate for a data
collection system. That is, the system is correct as long as it receives and
stores all data, even if the display is updated slowly.

Achieving High Transfer Rates to Devices

The Challenge/Onyx systems support a variety of 1/0 types with different
bandwidth and latency characteristics:

= VME device registers can be mapped directly into the program’s
address space, where they can be read and written as memory
variables. This is implemented as programmed 1/O (PI1O).

Memory-mapping makes 1/0 programming simple, especially when
large numbers of devices or complex device protocols are involved.
Memory-mapped, programmed 1/0 can transfer data from

250 KB/second to 1 MB/second. (See “P1O Access” on page 190.)

< When transferring 32 or more consecutive bytes, transfer rate can be
increased using direct memory access (DMA) to devices on the VME bus.
The Challenge/Onyx systems allow DMA access to VME devices that
do not normally support DMA, through unique DMA engine (see
“Program Access to the VME Bus” on page 189.)
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< Maximum transfer rates on the VME bus are achieved with a VME
device that supports block mode transfer as a bus master. When the
device supports it, Challenge/Onyx systems can achieve VME transfer
rates greater than 50 MB/second.

= Multiple SCSI controllers can be attached to all Silicon Graphics
systems. SCSI transfer rates can reach 14 MB/second on each channel
for 16-bit SCSI-11 controllers (see “SCSI Hardware on CHALLENGE
and Onyx Systems” on page 182).

Achieving High Transfer Rates to Disk

A data collection system can exploit two features to achieve a high rate of
data transfer to disk,

= asynchronous disk I/0
e Guaranteed-rate I/0 (GRIO), part of XFS

Asynchronous 1/0 that conforms to POSIX 1003.1b-1993 is a standard
feature of IR1X 5.3. You use asynchronous 170 library calls to initiate disk
170 in a separate process, while your real-time process continues to work
with the input data. (In fact you can start asynchronous 1/0 to any device,
not just to disk files.) You can ensure that the asynchronous process
performing the 1/0 executes on a different CPU than the one used by the
real-time process.

Using GRIO, your real-time program can claim a specified portion of the
bandwidth of a device. I/0 requested by other processes is deferred, if
necessary, to ensure that your process achieves the promised data rate.

For details of both these features, see Chapter 8, “Optimizing Disk 1/0 for
a Real-Time Program.”
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Real-Time Programming Languages

The majority of real-time programs are written in C, which is the most
common language for system programming on UNIX. All of the examples
in this book are in C syntax.

The second most common real-time language is Ada, which is used for many
defense-related projects. SGI sells the MP/Ada product. Ada programs can
call any function that is available to a C program, so all the facilities
described in this book are available, although the syntax may vary slightly.
Ada offers additional features that are useful in real-time programming; for
example, MP/Ada includes a partial implementation of POSIX threads
which are used to implement Ada tasking.

SGI will be supplying a new Ada implementation, and a separate book
addressed to real-time programming in Ada, in 1995.

Some real-time programs are written in FORTRAN. A program in
FORTRAN can access any IRIX system function, that is, any facility that is
specified in volume 2 of the reference pages. For example, all the facilities of
the REACT/Pro Frame Scheduler are accessible through the IRIX system
function schedctl(), and hence can be accessed from a FORTRAN program
(see “The Frame Scheduler API” on page 118).

A FORTRAN program cannot directly call C library functions, so any facility
that is documented in volume 3 of the reference pages is not directly
available in FORTRAN. Thus the mmap() function, a system function, is
available (see “The Segment Mapping Function mmap()”” on page 54), but
the usinit() library function, which is basic to SGI semaphores and locks, is
not available. However, it is possible to link subroutines in C to FORTRAN
programs, so you can write interface subroutines to encapsulate C library
functions and make them available to a FORTRAN program.



Chapter 2

Basic Features of the CHALLENGE and IRIX™
Architectures

The architecture of the CHALLENGE, Onyx, and POWERCHALLENGE
computers provides multiple CPUs, a large real memory, a high-speed
system bus, and fast /0 channels. (For brevity, the phrase Challenge/Onyx
is used to refer to these machines as a single type.)

The IRIX operating system normally manages the hardware resources so as
to optimize the throughput of a large number of UNIX* applications, both
batch and interactive.

This chapter gives a high-level summary of IRIX methods, pointing out how
they can sometimes conflict with the needs of a real-time program.

If you already know IRIX and the Challenge/Onyx architecture, you can
skip to Chapter 3, “How IRIX™ and REACT/Pro™ Support Real-Time
Programs,”, which introduces the features you can use to create fully
deterministic system behavior for real-time programs.
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CPUO

First level cache

Figure 2-1 shows a simplified, high-level view of the Challenge/Onyx
architecture.
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Figure 2-1 Symmetric Multiprocessor Architecture

CPUs, Memory, and the System Bus

A Challenge/Onyx system contains from 2 to as many as 36 CPUs. All are
functionally identical. The CPUs are connected to each other and to a single
memory by the processor bus. The processor bus carries 128-bit parallel
packets at a data rate of 1.2 Gigabytes/second. An important feature of the
bus design is that it is “fair,” that is, there is a very low probability of any
CPU on it starving for access. This helps to make real-time program timings
determinate and repeatable.

There is a single physical memory (shown as “main memory” in Figure 2-1)
that is accessed equally by all CPUs. For example, there is a single image of
the UNIX kernel in memory, and any of the CPUs could be executing
instructions from it, in any combination, at any time.
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Concurrent Execution

The Challenge/Onyx computers permit true concurrency—two or more
CPUs executing the same program at the same instant. However, most
ordinary UNIX programs execute in only one CPU at a time.

Two or more CPUs, executing on behalf of different processes, can enter the
IRIX kernel simultaneously. The kernel is written to optimize concurrent
use. It uses semaphores and locks to serialize the use of the data structures that
can be used by two or more processes at the same time.

A real-time program may need to use two or more CPUs concurrently in
order to finish the work it needs to do in each frame interval. You can
structure your real-time program as multiple processes. You can force the
processes to run on multiple CPUs concurrently, and you can use
semaphores and locks to protect the common resources. Process creation is
discussed later in this chapter, under “Process Management” on page 14.

Memory Hierarchy

Each CPU in a Challenge/Onyx system accesses memory through a
four-level hierarchy:

= First-level instruction and data caches within the CPU chip provide the
fastest access to recently-used data (the cache size depends on the
microprocessor model).

« A larger second-level cache on each CPU board stores recently-used
instructions and data (this cache size depends on the CPU board
model).

= Main memory contains the current state of swapped-in processes.

= Swapped-out virtual pages are kept in the swap partition on disk.

There is a ratio of roughly 100:1 in access speeds between each level of this
hierarchy. There is a large reward of execution speed for a program that
maintains locality of reference, and so executes mostly out of cache. This is
examined in more detail under “Reducing Cache Misses” on page 68. At the
other extreme, there is a large penalty of lost time for any program that
causes pages to be swapped in and out of memory.

11
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Cache Coherency Updates

Each CPU has two levels of cache that hold copies of memory data. Multiple
copies of the same data can exist in different caches. When a CPU writes to
its cache memory, it broadcasts the fact on the processor bus. Other CPUs
that have cached the same location invalidate their cached copies, so that if
they need to refer to it again, they will reload the modified data.

This is a greatly oversimplified summary of a complicated protocol that
ensures consistent, correct behavior of the multiple CPUs, even when they
use the same memory areas. (For details on the subject, refer to one of the
architecture books listed in “Other Useful Books” on page xxiii.) Cache
management is built into the hardware at a low level.

Virtual Memory

In general, each UNIX process has its own address space. The process sees the
address space as a contiguous 2 gigabytes of memory locations containing
the process’s code, data, and other resources.

The composition of the address space, and the methods by which a process
can share it with other processes, are covered in Chapter 4, “Managing
Virtual Memory in a Real-Time Program.”

The IRIX kernel manages each process’s address space as a set of pages. All
pages are the same size in one implementation of IRIX. (The page size is 4 KB
in 32-bit systems, larger in 64-bit systems. Programs should always
determine the page size dynamically by calling the getpagesize() function.)

Some or all of the pages that represent a process’s address space may be
stored on disk. When the process is executing and attempts to access a page
not in memory, it causes a page fault interrupt. The kernel suspends the
process until it can provide the page contents. If the page has defined
contents, the kernel schedules a disk 1/0 operation to load it. If this is the
first use of a stack or heap page, the kernel simply creates a page of zeros. In
order to make room for the needed page, the kernel may have to invalidate
some other page, and may have to save the contents of the other page to the
swap disk.
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A page fault causes an unpredictable and possibly lengthy pause in the
execution of a process. A real-time program cannot tolerate such delays.
However, you can have part or all of your program’s address space locked
into memory, so that a page fault cannot occur.

Translation Lookaside Buffer Updates

Virtual addresses are mapped to real memory locations using translation
tables kept in memory. For speed, each CPU has a cache of recently-used
page addresses, called the translation lookaside buffer (TLB).

Under certain conditions, kernel code executing in one CPU can change the
address space mapping in a way that could invalidate TLB entries held by
other CPUs. In order to synchronize the TLBs, the kernel broadcasts an
interrupt to all CPUs. The interrupt service routine in each CPU purges the
TLB for that CPU so it will be reloaded with accurate values. Memory
accesses immediately after a TLB purge are slow, while the TLB contents are
reconstructed. The TLB update interrupt comes at unpredictable times. A
real-time program with tight timing constraints cannot tolerate being
delayed this way.

However, when you dedicate one or more CPUs to executing your real-time
program, you can isolate your dedicated CPUs from TLB interrupts. (For
details, see “Isolating a CPU From TLB Interrupts” on page 104).

Device Interrupts

When a device needs attention, it requests an interrupt, which forces a CPU
to enter the code of a device driver to service the interrupt. The device driver
will mask off (block) other interrupts while it works. The kernel also masks
interrupts during some critical sections.

Interrupts from the VME bus are grouped into 7 priority levels. Each device
on the bus interrupts on a particular level. Higher numbered levels have
superior priority (IRQ7 is superior to IRQ1).

By default, interrupts are “sprayed” (dynamically distributed, in rotation) to

all CPUs in order to equalize the load of handling interrupts. You can control
this in two ways:

13
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= Designate CPUs that are not to receive sprayed interrupts. You would
do this to protect real-time processes in those CPUs from being
interrupted by devices not related to real-time work.

= Specify that interrupts of a specified VME interrupt level are to be
directed to a specified CPU. You would do this either to group all
non-real-time interrupts on a designated CPU, or to direct real-time
interrupts to a CPU that is dedicated to handling them.

For details on these actions, see “Minimizing Overhead Work” in Chapter 6.

Interrupt Latency

When interrupts come from the real-time input and output devices, you are
concerned about interrupt latency, the amount of time that elapses between
the hardware signal and the start of the IRIX kernel’s response to it. Interrupt
latency has several sources, some of which you can control. (See
“Components of Interrupt Response Time” in Chapter 6.)

Interrupt Response Time

The time that elapses from the arrival of an interrupt until the system returns
to executing user code is interrupt response time. It includes interrupt latency;,
plus the time spent in the device driver (called device service time), plus the
time IRIX needs to switch program contexts, and other factors. When you
take full advantage of the features of IRIX and REACT/Pro and configure
the system properly, you can guarantee a maximum 200 microsecond
interrupt response time. See “Minimizing Interrupt Response Time” in
Chapter 6.

A process is one executable instance of a program. The IRIX kernel creates
new processes, and by default it attempts to schedule their shared use of the
hardware in a fair and effective way. You can alter the default scheduling to
favor a real-time program in several different ways.
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Process Composition

A process consists of an address space containing the program text and data,
and a number of process attributes managed by the IRIX kernel. A few
examples of process attributes are

e aunique process ID number

= machine register contents, representing the current instruction and
stack level as well as working data

< UNIX user and group identities
= current working directory for file searches
= signal-handling status

For a more complete list, refer to the fork(2) reference page and read the list
of attributes that a new process does and does not inherit from its parent.

Process Creation

There are two system calls that create a process. They differ in that one
creates a new address space and the other does not.

Normal Process Creation With fork()

The conventional method of creating a new process in UNIX is to issue the

fork() system call. It creates a “child” process, which is a copy of the “parent”
process that issued the call. The address space of the child is a duplicate of

the parent’s address space, as are most of its attributes, including its machine
register contents. Only the return value of fork() differs. The use of fork() is
shown in Example 2-1.

15
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Example 2-1 Schematic of Using fork()

int childProcld;
switch(childProcld = fork())

{

case O:
{ I* this is executed by the child process */ }
break;

case -1:
{ I* parent process, no child process created */ }
break;

default:
{ I* parent process, child process exists */ }

}

IRIX does not physically duplicate all the pages of the parent’s address
space. That would waste a great deal of time. Instead, the page translation
table that defines the child’s address space initially refers to the physical
pages of the parent’s address space. However, the table designates these
pages as “copy on write.”

Whenever the child process writes into a page, it causes a hardware trap. The
kernel then makes a duplicate of that one page so that the child has a unique
copy into which it can write. Thus only the pages that are written are copied,
and then only when the child uses them.

Address Space Replacement With exec()

The exec() system call is the means by which UNIX “loads a program” (see
the exec(2) reference page for details.) This call replaces the entire address
space with a new one based on a program image loaded from an executable
file. The exec() call also initializes many of the process attributes (refer to the
exec(2) reference page for details).

The combination of fork() and exec() suits the needs of acommand shell. The
way a UNIX command shell launches a program is to fork(), creating a new
process. In the new process it calls exec(), replacing the new address space.
In the great majority of fork() calls, the child’s address space is completely

replaced before more than one or two of its pages have been copied.
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However, fork() is not well-suited to building a program designed as a
number of small, cooperating processes—the kind of design that your
real-time application needs if it is to exploit multiple CPUs.

Lightweight Process Creation With sproc()

The sproc() system call is unique to IRIX. It creates a new process that shares
its parent’s address space. The new process has its own machine registers
and its own memory region for its stack. Otherwise, both processes execute
concurrently using the same program text, data, and many process
attributes. A parent process and its children by sproc() constitute a process

group.
For several reasons, you should use sproc() if you structure your real-time
application as multiple, cooperating processes:

= The kernel does much less work to create a process with sproc(). For
example, it does not have to build a page table to describe a new
address space.

= The parent process can initialize disk files, device files, global data
structures, memory-mapped 1/0, and other objects, and all these are
automatically available to the child processes.

= The parent and all child processes have write access to global data, and
can use high-performance semaphores and locks to regulate access.

= There is only one address space to lock into memory, no matter how
many processes use it.

Process Scheduling
By default, the IRIX kernel manages time-sharing processes under these
assumptions:

= There are far more processes (dozens to hundreds) than there are CPUs
to execute them.

= The system’s resources should be shared among all processes as
equitably as possible.

= Most processes spend most of their time waiting for input or output.

17
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= Aslong as a process makes some progress (is not blocked indefinitely),
its exact rate of progress is not crucial (“the system is busy” is always a
valid excuse for slow response).

When managing a mix of time-sharing programs, the IRIX kernel attempts
to keep all CPUs busy and all processes advancing, and is generally
successful at this. (For details, see “Using Priorities and Scheduling Queues”
on page 85.)

However, IRIX also supports real-time programs. When a real-time program
is running, the assumptions for scheduling must change: There is typically
only one real-time program in a system. You are prepared to give it all of the
system’s resources if necessary. It spends little time waiting for input. Most
important, its precise rate of progress is an integral part of its design.

Your real-time program can give itself a high scheduling priority or, if it
cannot tolerate time-sharing at all, it can seize one or more CPUs and
dedicate them to its exclusive use. The specific calls used are surveyed in
Chapter 3, “How IRIX™ and REACT/Pro™ Support Real-Time Programs”
and covered in detail in Chapter 6, “Controlling CPU Workload”.

I/O Scheduling

When a process initiates 1/0, IRIX usually suspends the process until data
transfer is complete. By understanding the 1/0 system, and by using the
Asynchronous I/0 feature, you can make sure that a real-time process is not
blocked in this way.

Disk 1/0

When a process requests disk input, it is blocked until the data has been read
and copied into the designated buffer. When a process requests disk output,
it is blocked until the data has been copied into a kernel buffer or until the
disk write is complete, depending on the options used when the file was
opened.
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VME Bus I/O

Your program can perform I/0 to the VME bus in three ways: programmed
170 (PIO), direct memory access (DMA) from VME Bus Master devices, and
a unique form of DMA from VME Bus Slave devices.

When it uses programmed 1/0, your program polls the device registers or
memory as if they were variables in memory, and does not block. Your
real-time program can do PIO in a time-critical process.

VME-bus I/0 using either form of DMA generally does delay the requesting
process until the DMA transfer is complete. All of these methods are
discussed under “Program Access to the VME Bus” on page 189.

Other 1/O

In general, UNIX allows your process to open any device for 1/0 with the
open() call. You specify a pathname designating one of the special device
files found in the /dev directory. The open() call returns a file descriptor
which you can pass to the read() or write() functions. For device files, these
functions are routed directly to the device driver for the device. Through this
means your program can read or write serial devices, SCSI devices, and (in
SGI systems other than Challenge/Onyx, devices on the GIO or EISA bus.

A call to a device driver for input or output normally blocks the calling
process until the data has been transferred.

Asynchronous I/O

Typically, a real-time process cannot allow itself to be blocked for 1/0.
Asynchronous /O is a feature of IRIX 5.x which gives you the ability to
schedule 1/0 to be done in a separate process. This process—created
automatically for you—requests the 1/0 while your real-time process
continues to execute. For details on asynchronous 1/0, see Chapter 8,
“Optimizing Disk 1/0 for a Real-Time Program.”
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Chapter 3

How IRIX™ and REACT/Pro™ Support
Real-Time Programs

This chapter provides an overview of the real-time support in IRIX and
REACT/Pro. The discussion uses terms that are defined in Chapter 1,
“Real-Time Programs” and Chapter 2, “Basic Features of the CHALLENGE
and IRIX™ Architectures”.

Some of the features mentioned here are discussed in more detail in the
following chapters of this guide. For details on other features you are
referred to reference pages or to other manuals. The main topics surveyed
are

= “Kernel Facilities for Real-Time Programs,” including special
scheduling disciplines, isolated CPUs, and locked memory pages

= “REACT/Pro Frame Scheduler,” which takes care of the details of
scheduling multiple processes on multiple CPUs at guaranteed rates

= “Interprocess Communication,” reviewing the ways that a concurrent,
multiprocess program can coordinate its work

= “Timers and Clocks,” reviewing your options for time-stamping and
interval timing

= “Interchassis Communication,” reviewing two ways of connecting
multiple chassis

21
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The IRIX kernel has a number of features that are valuable when you are
designing your real-time program.

Kernel Optimizations

The IRIX kernel has been carefully optimized for performance in a
multiprocessor environment. Some of the optimizations are as follows:

= Instruction paths to system calls and traps are optimized, including
some hand coding, to maximize cache utilization.

= In the real-time dispatch class (described further in “Using Priorities
and Scheduling Queues” on page 85), the run queue is kept in
priority-sorted order for fast dispatching.

= Floating point registers are saved only if the next process needs them,
and restored only if saved.

= Paging I/0 is prioritized with the process priority.

= The kernel tries to redispatch a process on the same CPU where it most
recently ran, in hopes of finding some of its data remaining in cache
(see “Understanding Affinity Scheduling” on page 90).

Special Scheduling Disciplines

The default IRIX scheduling algorithm employs “degrading” priorities.
Processes are ranked by a priority value, the one with the lowest priority
number running first. But the priority number of a process grows steadily
while it runs. The longer a process runs without suspending itself, the lower
its priority, and the more likely it is that another process will preempt it.
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Nondegrading Priorities

A real-time process needs an unchanging priority. The kernel allows you to
apply a nondegrading priority to a specified process. When this priority is in
the range of real-time priorities (smaller than normal priorities), the process
is scheduled from a real-time scheduling queue, which is tested before the
normal dispatch queue. For more information, see “Setting a Nondegrading
Batch Priority” on page 88 and “Setting a Nondegrading Real-Time Priority”
on page 89.)

Deadline Scheduling

The kernel also supports a deadline scheduling discipline. Under deadline
scheduling, a process can request a certain amount of processing time in
every interval of a specified length—for example, 30 milliseconds in every
100 milliseconds. For more information, see “Using Deadline Scheduling”
on page 92.

Gang Scheduling

When your program is structured as a process group (see “Lightweight
Process Creation With sproc()” on page 17), you can request that all the
processes of the group be scheduled as a “gang.” The kernel runs all the
members of the gang concurrently, provided there are enough CPUs
available to do so. This helps to ensure that, when members of the process
group coordinate through the use of locks, a lock will usually be released in
a timely manner. Without gang scheduling, the process that holds a lock
might not be scheduled in the same interval as another process that is
waiting on that lock.

For more information, see “Using Gang Scheduling” on page 91.
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Processor Sets

IRIX 5.2 and above support the concept of processor sets. You can partition the
CPUs of a system into multiple, possibly overlapping sets. Then you can

= assign a set of processors to work on a specific scheduling queue, for
example the real-time queue, or the gang-scheduling queue

= assign certain processes to run on a specified processor set

< runa UNIX command on a specified processor set (if the command is a
shell, commands started from that shell run on the same processor set)

The use of kernel scheduling queues, priorities, and processor sets is covered
in more detail in Chapter 6, “Controlling CPU Workload,”. When a real-time
application requires only a fraction of the system’s power, these tools may be
sufficient to ensure the needed performance. For more critical applications,
you need to replace the kernel scheduler with the Frame Scheduler (see
“REACT/Pro Frame Scheduler” on page 26).

Locking Virtual Memory

IRIX allows a process to lock all or part of its virtual memory into physical
memory, so that it cannot be paged out and a page fault cannot occur while
it is running.

This allows you to protect a process from the unpredictable delays caused by
paging. Of course the locked memory is not available for the address spaces
of other processes. The system must have enough physical memory to hold
the real-time address space plus space for a minimum of other activities.

The system calls used to lock memory are discussed in detail in Chapter 4,
“Managing Virtual Memory in a Real-Time Program.”
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Mapping Processes and CPUs

Normally IRIX tries to keep all CPUs busy, dispatching the next ready
process to the next available CPU. (This simple picture is complicated by the
needs of affinity scheduling, deadline scheduling, and gang scheduling).
Since the number of ready processes changes all the time, dispatching is a
random process. A process cannot predict how often or when it will next be
able to run. For normal programs this does not matter, as long as each
process continues to run at a satisfactory average rate.

Real-time processes cannot tolerate this unpredictability. To reduce it, you
can dedicate one or more CPUs to real-time work. There are two steps:

= Restrict one or more CPUs from normal scheduling, so that they can
run only the processes that are specifically assigned to them.

= Assign one or more processes to run on the restricted CPUs.

A process on a dedicated CPU runs when it needs to run, delayed only by
interrupt service and by kernel scheduling cycles (if scheduling is enabled
on that CPU). For details, see “Assigning Work to a Restricted CPU” on

page 102. The REACT/Pro Frame Scheduler takes care of both steps
automatically; see “REACT/Pro Frame Scheduler” on page 26.

Controlling Interrupt Distribution

In normal operations, CPUs receive frequent interrupts:
= |/0 interrupts are “sprayed” to different CPUs to equalize workload.

= A scheduling clock causes an interrupt to every CPU every time-slice
interval of 10 milliseconds.

= Whenever interval timers are in use (“Timers and Clocks” on page 40),
a CPU handling timers receives frequent timer interrupts.

= When the map of virtual to physical memory changes, a TLB interrupt
is broadcast to all CPUs.
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These interrupts can make the execution time of a process unpredictable.
However, you can designate one or more CPUs for real-time use, and keep
interrupts of these kinds away from those CPUs. The system calls for
interrupt control are discussed at more length under “Minimizing Overhead
Work” on page 97. The REACT/Pro Frame Scheduler also takes care of
interrupt isolation.

The REACT/Pro Frame Scheduler is a process execution manager that
schedules processes on one or more CPUs in a predefined, cyclic order. The
scheduling interval is determined by a repetitive time base, usually a
hardware interrupt.

Many real-time programs must sustain a fixed frame rate. In such programs
your central design problem is that the program must complete certain
activities in every frame interval. When there is more to do in a frame than
can be done on one CPU, some activities must run concurrently on multiple
CPUs.

Besides designing the activities themselves, you must design a way to
schedule and initiate activities in sequence, once per frame, on multiple
CPUs. This is what the REACT/Pro Frame Scheduler does: executes the
multiple processes of your real-time program one or more CPUs.

How Frames Are Defined

The Frame Scheduler divides time into successive frames, each of the same
length. You specify the time base as one of

= aspecific interval in microseconds

= the Vsync (vertical retrace) interrupt from the graphics subsystem

= an external interrupt (see “External Interrupts” on page 44)

= adevice interrupt from a specially-modified device driver

= asoftware call (normally used for debugging)



REACT/Pro Frame Scheduler

The interrupts from the time base define minor frames. You choose the fixed
number of minor frames that make a major frame, as shown in Figure 3-1.

Major frame Major frame

Minor-0 Minor-1 Minor—2 Minor-0 Minor-1 Minor-2
>

I R [ e

Real-time event interrupts

Process queues

Qo0 Q1 Q2

Figure 3-1 Major and Minor Frames

The Frame Scheduler keeps a queue of processes for each minor frame. It
dispatches each process once in its scheduled turn. The process runs until it
finishes its work; then it yields.

In the simplest case, you have a single frame rate, such as 60 Hz, and every
activity your program does must be done once per frame. In this case, the
major and minor frame rates are the same. In other cases, you have activities
that must be done in every minor frame, but you also have activities that are
done less often, in every other, or every third, minor frame. In these cases
you define the major frame so that its rate is the rate of the least-frequent
activity. Sometimes what is called a “major frame” here is called a “process
cycle.”
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Advantages of the Frame Scheduler

The Frame Scheduler makes it easy for you to organize a real-time program
as a set of independent, cooperating processes. The Frame Scheduler
manages the housekeeping details of reserving and isolating CPUs. You
concentrate on designing the activities and implementing them as processes
in a clean, structured way. It is relatively easy to change the number of
activities, or their sequence, or the number of CPUs, even late in the project.

Designing With the Frame Scheduler

To use the Frame Scheduler, you approach the design of your real-time
program in the following steps.

1. Partition the program into activities, where each activity is an
independent piece of work that can be done without interruption.

For example, in a simple vehicle simulator, activities might include
“poll the joystick,” “update the positions of moving objects,” “cull the
set of visible objects,” and so forth.

2. Decide the relationships among the activities:
= Some must be done once per minor frame, others less frequently.
= Some must be done before or after others.

= Some may be conditional. For example, an activity could poll a
semaphore and do nothing unless an event had completed.

3. Estimate the worst-case time required to execute each activity. Some
activities may need more than one minor frame interval (the Frame
Scheduler allows for this).

4. Schedule the activities: If all are executed sequentially, will they
complete in one major frame? If not, choose activities that can execute
concurrently on two or more CPUs, and estimate again. You may have
to change the design in order to get greater concurrency.

When the design is complete, implement each activity as an independent
process that communicates with the others using shared memory,
semaphores, and locks (see “Interprocess Communication” on page 30).
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The main process that initiates the program will contain these steps:

1.
2.

6.
7.

Open, create, andinitialize all the shared files and memory resources.

Initiate a Frame Scheduler on each of the CPUs that you need (a single
library call for each CPU).

Initiate each activity as a process using sproc() or fork().

Each process initializes itself and then issues a library call to “join” its
assigned Frame Scheduler.

Enqueue each process to the Frame Scheduler that will dispatch it.

Specify the minor frame or frames in which the process should run, and
specify a scheduling discipline (described further in Chapter 7, “Using
the Frame Scheduler”).

Start the Frame Schedulers going (a library call for each one).
Wait for a signal indicating it is time to shut down.

Terminate the Frame Schedulers.

Each Frame Scheduler seizes its assigned CPU, isolates it, and takes over
process scheduling on it. It waits for all enqueued processes to initialize
themselves and join it. Then it begins dispatching the processes in the
specified sequence during each frame interval. It monitors errors, such as a
process that fails to complete its work within its frame, and takes a specified
action when an error occurs.

The Frame Scheduler is discussed in more detail in Chapter 7, “Using the
Frame Scheduler”. Sample programs that illustrate the Frame Scheduler are
described under “Frame Scheduler Examples” on page 226.
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In a program organized as multiple, cooperating processes, the processes
need to share data and coordinate their actions in well-defined ways. IRIX
with REACT provides the following mechanisms, which are surveyed in the
topics that follow:

= Shared memory allows a single segment of memory to appear in the
address spaces of multiple processes. The Silicon Graphics
implementation is also the basis for implementing interprocess
semaphores, locks, and barriers.

= Semaphores are used to coordinate access from multiple processes to
resources that they share.

= Locks provide a low-overhead, high-speed method of mutual
exclusion.

= Barriers make it easy for multiple processes to synchronize the start of a
common activity.

= Signals provide asynchronous notification of special events or errors.
IRIX supports signal semantics from all major UNIX heritages, but
POSIX-standard signals are recommended for real-time programs.

Shared Memory Segments

IRIX allows you to map a segment of memory into the address spaces of two
or more processes at once. The block of shared memory can be read
concurrently, and possibly written, by all the processes that share it. There
are two interfaces, one compatible with SVR4 UNIX and one unique to IRIX.

IRIX Shared Memory Arenas

IRIX supports a unique system of shared memory allocation. The purpose is
to create a memory arena designed as the basis for high-speed, low-overhead
communication between concurrent processes.
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You create a shared memory segment with a call to usinit(). The argument
to usinit() is a file pathname string. The file is created (if necessary) and
mapped into a segment of memory in the calling process (for a description
of mapping files into memory, see Chapter 4). The file, and hence the
segment, may or may not continue to exist after the creating process ends.
This, and many other options, can be set by calling usconfig() before calling
usinit().

Once the memory segment exists, any other process can access it by calling
usinit() with the same pathname string. If that process has access privileges
to the specified file, the memory segment is made part of its address space
and it, too, can read the memory space, and optionally write in it.

There is a set of memory-allocation library calls that you can use to
suballocate memory within a shared arena allocated by usinit(). Equally
important, IRIX support for semaphores, locks, and barriers is based on the
use of arenas allocated with usinit().

For more information on usinit() and arenas, refer to Topics in IRIX
Programming manual, and to the usinit(3p), usconfig(3p) and usmalloc(3p)
reference pages. See also the sample code on page 215 and page 222 of
“Interprocess Communication” in Appendix A. In addition, some of the
special cases of usinit() are covered in Chapter 4 of this book.

SVR4-Compatible Shared Memory

IRIX supports shared memory library calls compatible with those in AT&T
SVR4 UNIX. In this scheme, one process calls shmget() to create a segment
of shared memory. In some ways the segment resembles a file more than it
resembles memory, for example

= the segment has an owner and group ID, as a file does

= the segment has read and write access permissions for user, group and
public, similar to those of a file

= the segment, with its contents intact, continues to exist until it is
explicitly deleted using shmctl() or until the system is rebooted
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A shared segment has an associated integer key. Any other process can
present the key to shmat(). If the user and group ID of the calling process
have access permission, the segment becomes part of the address space of
the process. Its virtual address is returned, and the process can use it as
memory. If the process has write access, it can update the segment as well as
read it.

The SVR4 shared memory facility is useful between processes created by
fork(), since they have separate address spaces. Processes created by sproc()
share their entire address space by default.

For sample code and more information on SVR4-compatible shared
memory, refer to Topics in IRIX Programming, and to the ipcst(1), shmget(2),
shmctl(2), and stdipc(3) reference pages.

There is a family of memory-allocation library calls that you can use to
suballocate memory within a shared segment (or within any other segment
of memory). Refer to the amalloc(3p) reference page for details.

Tip: Use an SVR4-compatible shared memory segment if you require
portability. Otherwise, the IRIX implementation is faster and more flexible
for a real-time program.

Semaphores

A semaphore is a memory object that represents the state of a shared resource.
The content of a semaphore is an integer count, representing the number of
resource units now available. Typically the count is 1, and the semaphore
represents the availability of a single object such as a table or file.

A process that needs to use the resource executes a “P” operation on the
semaphore. This operation tests and decrements the count in the semaphore.
If the count is nonzero before the operation, at least one resource unit is
available. The count is reduced by 1 and the process continues executing.
Otherwise the process is blocked until a resource unit is available; then it
continues. In either case, following a P operation, the process knows that it
has exclusive use of a resource unit.
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When it finishes its work, the process releases the resource by executing a
“V/” operation on the semaphore. This operation increments the count. It also
unblocks any process that might be blocked in a P operation, waiting for the
resource. If more than one process is waiting, the one that has waited longest
is released first (FIFO order).

Tip: Useful mnemonics for P and V: P depletes the resource. V revives it.

IRIX supports two forms of semaphore: SVR4-compatible, and Silicon
Graphics.

IRIX Semaphores

IRIX supports a set of semaphore operations designed for low-overhead
coordination between multiple concurrent processes. You create these
semaphores within a shared arena created with usinit() (see “IRIX Shared
Memory Arenas” on page 30). The usnewsema() call creates a semaphore.
You specify the arena handle and the initial value for the semaphore (that is,
the count of resources that it represents, typically 1).

To acquire a resource, blocking if it is not available, a process applies the
uspsema() call to the semaphore. To test the resource, acquiring it if it is
available but not blocking when it is in use, a process can call uscpsema(). To
release the resource, a process calls usvsema().

IRIX also supports a parallel set of “pollable” semaphores. The P operation
on a pollable semaphores does not block when the resource is in use. Instead,
it returns a flag value, and the process must use the poll() system call to find
out when a V operation has made the resource available.

IRIX semaphores support “metering” (use counts) and debug tracing. You
can turn either facility on and off dynamically. By metering a semaphore,
you can find out how often processes actually block in a P operation. This
can reveal whether or not a resource is a bottleneck to performance.

For more information on semaphores, refer to Topics in IRIX Programming,
and to the usnewsema(3), usnewpollsema(3), uspsems(3), usvsema(3), and
poll(2) reference pages. The sample program shown in “Interprocess
Communication” on page 212 uses IRIX semaphores, and demonstrates the
use of metering information.
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SVR4-Compatible Semaphores

SVR4-compatible semaphores are created in sets of one or more—typically a
set contains all the semaphores that one application needs. A set is created
by a semget() call, which specifies an integer key to identify the set and
access permissions for the set.

Like a shared memory segment (see “SVR4-Compatible Shared Memory” on
page 31), a set of semaphores is somewhat like a file in that it

=« hasauser and group ID from the process that created it
= has read and write access permissions for owner, group and world

= continues to exist after its creating process ends.

Once a set of semaphores exists, any other process can issue semget() with
the same key. If the user and group ID of the calling process have access
permission, the process can use the semaphores in the set.

SVR4-compatible semaphores do not support the conventional P and V
operations. Instead, the semop() system call supplies a wider range of
operations, including incrementing and decrementing counts by more

than 1. The semop() call supports concurrent operations on multiple
semaphores at once. This is convenient in some cases because it allows you
to claim more than one resource simultaneously, without danger of deadlock.

For sample code and more information on SVR4-compatible semaphores,
refer to Topics in IRIX Programming, and to the ipcst(1), semget(2), semctl(2),
and semop(2) reference pages. The administration of SVR4-compatible
semaphores is covered in the IRIX Advanced Site and Server Administrator
Guide.

Tip: If you require portability, use SVR4-compatible semaphores.
Otherwise, the IRIX semaphore implementation is faster, has more features,
and works with the IRIX shared-memory implementation.
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Locks

A lock is a memory object that represents the exclusive right to use a shared
resource. A process that wants to use the resource sets the lock. The process
releases the lock when it is finished with the resource.

A lock is functionally the same as a semaphore with a count of 1. The set
operation on a lock and the P operation on a semaphore with a count of 1
both acquire exclusive use of a resource. In a multiprocessor, the important
difference between a lock and semaphore is that, when the resource is not
immediately available, a sesmaphore always suspends the process, while a
lock does not.

A lock, in a multiprocessor system, is set by “spinning.” The program enters
atight loop using the test-and-set machine instruction to test the lock’s value
and to set it as soon as the lock is clear. In practice the lock is often already
available, and the first execution of test-and-set acquires the lock. In this
case, setting the lock takes a trivial amount of time.

When the lock is already set, the process spins on the test a certain number
of times. If the process that holds the lock is executing concurrently in
another CPU, and if it releases the lock during this time, the spinning process
acquires the lock instantly. There is zero latency between release and
acquisition, and no overhead from entering the kernel for a system call.

If the process has not acquired the lock after a certain number of spins, it
defers to other processes by calling sginap(). When the lock is released, the
process resumes execution.

You create a lock in an arena created by usinit(). The lock is allocated by
usnewlock(). You set a lock with ussetlock() and release it with
usunsetlock().

Like IRIX semaphores, locks can collect metering (use-count) information
and/or debugging trace data. You can use the metering information to find
out how many times a lock was used and how often a process had to spin or
block at a lock.

For more information on locks, refer to Topics in IRIX Programming, and to
the usnewlock(3), ussetlock(3) and usunsetlock(3) reference pages. See also
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the sample code on page 217 of “Interprocess Communication” in
Appendix A.

Barriers

A barrier is a memory object that represents a point of rendezvous between
multiple processes. You use a barrier to ensure that processes do not advance
until some necessary preparation has been done.

A barrier is created by newbarrier() in an arena built by usinit(). The barrier
is used by some fixed number (N) of processes. When each process is ready
to rendezvous with the others, it issues barrier(N). As each process arrives
at the barrier, it is suspended. When the Nth process calls barrier(), all the
processes resume execution. This is the computing equivalent of N
coworkers who agree to go to lunch together. As each one realizes it is lunch
time, he or she goes to the lobby. When the Nth coworker reaches the lobby,
all of them depart for lunch.

As an example of the use of a barrier, imagine that you discover that a nested
loop to take the sum of a large matrix is a bottleneck in your program. To
speed up the calculation you divide it between two processes. (Presumably
they will run in different CPUs.) The first process is the one that requires the
matrix sum, and which originally calculated the sum by itself. The second
process is a new one, whose only purpose is to assist in the matrix sum
calculation. You create a barrier named matsum to coordinate the two.

The logic of the second, helper, process would be as follows:

1. Call barrier(matsum,2) to wait until it is time to take the sum.

2. Calculate the sum over all even-numbered rows of the matrix.

3. Store the sum in global evensum.

4. Call barrier(matsum,2) to wait until the first process is finished.

5

Return to step 1.

The logic of the first, main process would be as follows:
1. Perform other work as required until the matrix sum is needed.

2. Call barrier(matsum,2) to release the helper process.



Interprocess Communication

3. Calculate the sum over all odd-numbered rows of the matrix.

4. Call barrier(matsum,2) to wait until the second process has finished its
calculation.

5. Add evensum to the odd total to get the grand total.
6. Returnto step 1.

The example can be generalized to more processes, and to any other
calculation that can be partitioned in this way.

Mutual Exclusion Primitives

IRIX supports library functions that perform atomic (uninterruptable)
sample-and-set operations on words of memory. For example,
test_and_set() copies the value of a word and stores a hew value into the
word in a single operation; while test_then_add() samples a word and then
replaces it with the sum of the sampled value and a new value.

These primitive operations can be used as the basis of mutual-exclusion
protocols using words of shared memory. For details, see the
test_and_set(3p) reference page.

The test_and_set() and related functions are based on the MIPS R4000
instructions Load Linked and Store Conditional. Load Linked retrieves a
word from memory and tags the processor data cache “line” from which it
comes. The following Store Conditional tests the cache line. If any other
processor or device has modified that cache line since the Load Linked was
executed, the store is not done. The implementation of test_then_add() is
comparable to the following assembly-language loop:
1:

Il retreg, offset(targreg)

add  tmpreg, retreg, valreg

sc tmpreg, offset(targreg)

beq  tmpreg, O, bl

The loop continues trying to load, augment, and store the target word until
it succeeds. Then it returns the value retrieved. For more details on the R4000
machine language, see one of the books listed in “Other Useful Books” on
page xxiii.
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The Load Linked and Store Conditional instructions only operate on
memory locations that can be cached. Uncached pages (for example, pages
implemented as reflective shared memory, see “Reflective Shared Memory”
on page 43) cannot be set by the test_and_set() functions.

Signals

A signal is an urgent notification of an event, sent asynchronously to a
process. Some signals originate from the kernel: for example, the SIGFPE
signal that notifies of an arithmetic overflow; or SIGALRM that notifies of
the expiration of a timer interval (for the complete list, see the signal(5)
reference page). The Frame Scheduler issues signals to notify your program
of errors or termination. Other signals can originate within your own
program.

In order to receive a signal, a process must establish a signal handler, a
function that will be entered when the signal arrives.

There are three UNIX traditions for signals, and IRIX supports all three. They
differ in the library calls used, in the range of signals allowed, and in the
details of signal delivery (see Table 3-1). Your real-time program should use
the POSIX interface for signals.

Table 3-1 Signal Handling Interfaces

Function SVR4-compatible BSD 4.2 Calls POSIX Calls
Calls

setand/or query  sigset(2) sigvec(3) sigaction(2)

signal handler signal(2) signal(3) sigsetops(3)

sigaltstack(2)

send a signal sigsend(2) kill(3) sigqueue(2)
kill(2) killpg(3)

temporarily block  sighold(2) sigblock(3) sigprocmask(2)

specified signals sigrelse(2) sigsetmask(3)
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Table 3-1 Signal Handling Interfaces

Function SVR4-compatible BSD 4.2 Calls POSIX Calls
Calls

query pending sigpending(2)

signals

wait for a signal sigpause(2) sigpause(3) sigsuspend(2)

sigwait(2)
sigwaitinfo(2)
sigtimedwait(2)

The POSIX interface supports the following 64 signal types:
1-31 Same as BSD

32 Reserved by IRIX kernel
33-48 Reserved by the POSIX standard for system use
49-64 Reserved by POSIX for real-time programming

Signals with smaller numbers have priority for delivery. The low-numbered
BSD-compatible signals, which include all kernel-produced signals, are
delivered ahead of real-time signals; and signal 49 takes precedence over
signal 64. (The BSD-compatible interface supports only signals 1-31. This set
includes two user-defined signals.)

IRIX 5.3 supports POSIX signal handling as specified in document
1003.1b-1993. This includes FIFO queueing new signals when a signal type
is held, up to a system maximum of queued signals. (The maximum can be
adjusted using systune; see the systune(1) reference page.)

For more information on the POSIX interface to signal handling, refer to
Topics in IRIX Programming and to the signal(5), sigaction(2), and sigqueue(2)
reference pages. Some POSIX signal-handling functions are used in sample
code in “Interprocess Communication” in Appendix A on page 220 and
following.
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Signal Latency

The time that elapses from the moment a signal is generated until your
signal handler begins to execute is the signal latency. Signal latency can be
long, as real-time programs measure time, and signal latency has a high
variability. (Some of the factors are discussed under “Signal Delivery and
Latency” on page 141.) In general, you should use signals to deliver
infrequent messages of high priority. You should not use the exchange of
signals as the basis for scheduling in a real-time program.

Note: Signals are delivered at particular times when using the Frame
Scheduler. See “Using Signals Under the Frame Scheduler” on page 141.

A real-time program sometimes needs a source of timer interrupts, and some
need a way to create a high-precision timestamp. Both of these are provided
by IRIX.

Timer Interrupts (Itimers)

IRIX supports the BSD UNIX feature of interval timers or “itimers.” An
itimer is a request to have a signal sent at the expiration of a specified
interval. In order to use an itimer, you establish a signal handler, then issue
the setitimer() call. The timer can be a one-shot or it can repeat at a regular
interval.

There are three itimers (see Table 3-2), only one of which is of interest to a
real-time programmer.

Table 3-2 Types of itimer

Kind of itimer Interval Measured  Resolution Signal Sent
ITIMER_REAL Elapsed clock time 1 millisecond or less SIGALRM
ITIMER_VIRTUAL  User time (process 1 second SIGVTALRM

execution time)

ITIMER_PROF User+system time 1 second SIGPROF
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The ITIMER_VIRTUAL and ITIMER_PROF timers are not useful to a
real-time program because of their coarse precision and because their
intervals vary depending on when and how often the process is dispatched.
The ITIMER_REAL type measures absolute time, and on the
Challenge/0Onykx, its resolution can be 500 microseconds or less.

Timers and the resolution of the real-time timer are discussed further in
Chapter 5, “Managing Time and Time Intervals.” Sample code that sets up
an itimer can be located near page 220 (see “Interprocess Communication”
in Appendix A).

Note: Interval timers are usually not necessary, and should not be used,
under the Frame Scheduler. See “Using Timers with the Frame Scheduler”
on page 143.

Timestamps

The IRIX operating system and Silicon Graphics hardware provide two
forms of free-running clock that you can use as a timestamp; that is, as a
value establishes the relative time difference between two events. One clock
is returned by a standard system call; the other is a hardware device you
map into process address space.

Time of Day Timestamp

The BSD-compatible function gettimeofday() returns the time of day as two
long integers which together give the time since 1/1/1970 to the
microsecond. The resolution of this value is at least 10 milliseconds—that is,
it is guaranteed to change at least 100 times a second. The actual resolution
depends on the system.

The time of day timestamp is discussed further in Chapter 5, “Managing
Time and Time Intervals.” The sample program under “Getting the Time of
Day Stamp” on page 211 tests the time-of-day clock to find out its true
precision.
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Hardware Cycle Counter

The cycle counter is a high-precision hardware counter that is updated
continuously. In a Challenge/Onyx machine it is a 64-bit value. In other
Silicon Graphics architectures the cycle counter has less precision; for
example, in the Indy it is a 32-bit counter.

In the Challenge/Onyx, the cycle counter is incremented every 21
nanoseconds. In other architectures the frequency is lower, although it is
always comparable to the instruction execution time. (For example, in the
Indy it is incremented every 40 nanoseconds.) Because of the high frequency;,
the cycle counter is certain to contain a different value every time it is
sampled.

Note: Considered as a time standard, the Challenge/Onyx cycle counter is
accurate to 1 partin 10,000. If you use it to measure intervals between events,
be aware that it can drift by as much as 100 microseconds per second.

You sample the cycle counter by mapping it into the process’s address space,
then reading it as if it were a memory variable. The method is covered in
Chapter 5, “Managing Time and Time Intervals.” The sample program
under “Mapping and Reading the Cycle Counter” on page 202 also
demonstrates its use.

Silicon Graphics systems support three methods by which you can connect
multiple computers:

= Standard network interfaces let you send packets or streams of data
over a local network or the Internet.

= Reflective shared memory (provided by third-party manufacturers) lets
you share segments of memory between computers, so that programs
running on different chassis can access the same variables.

= External interrupts let one Challenge/Onyx signal another.
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Socket Programming

The standard, portable way to connect processes in different computers is to
use the BSD-compatible socket 170 interface. You can use sockets to
communicate within the same machine, between machines on a local area
network, or between machines on different continents.

For more information about socket programming, refer to one of the
networking books listed in “Other Useful Books” on page xxiii.

Reflective Shared Memory

Reflective shared memory consists of hardware that makes a segment of
memory appear to be accessible from two or more computer chassis.
Actually the Challenge/Onyx implementation consists of VME bus devices
in each computer, connected by a very high-speed, point-to-point network.

The VME bus address space of the memory card is mapped into process
address space. Firmware on the card handles communication across the
network, so as to keep the memory contents of all connected cards
consistent. Reflective shared memory is slower than real main memory but
faster than socket I/0. Its performance is essentially that of programmed
170 to the VME bus, which is discussed under “PIO Access” on page 190.

Reflective shared memory systems are available for Silicon Graphics
equipment from several third-party vendors. The details of the software
interface differ with each vendor. However, in most cases you use mmap()
to map the shared segment into your process’s address space (see Chapter 4,
“Managing Virtual Memory in a Real-Time Program” as well as the
usrvme(7) reference page).
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External Interrupts

The Challenge/Onyx systems (only) support external interrupt lines for
both incoming and outgoing external interrupts. Software support for these
lines is provided in IRIX version 5.3.

Four outgoing external interrupt lines appear on the back panel of the
computer. You can control them individually, creating pulses or simply
asserting and deasserting the lines.

Two input jacks for external interrupts are provided. Either of these jacks can
cause an interrupt, but you cannot distinguish which jack caused a given
interrupt. The interrupt is level-triggered, not edge-triggered.

For details of the use and programming of external interrupts, see “External
Interrupts” on page 195. You can use the external interrupt as the time base
for the Frame Scheduler. In that case, the Frame Scheduler manages the
external interrupts for you. (See “Selecting a Time Base” on page 125.)
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Defining the Address Space

Managing Virtual Memory in a Real-Time
Program

When planning a real-time program you must understand how IRIX creates
the virtual address space of a process, and how you can modify the normal
behavior of the address space. The major topics covered are:

“Defining the Address Space” on page 45 tells what the address space
is and how it is created.

= “Interrogating the Memory System” on page 52 summarizes the ways
your program can get information about the address space.

= “Mapping Segments of Memory” on page 53 documents the different
ways that you can create new memory segments with predefined
contents.

= “Locking Pages in Memory” on page 65 discusses when and how to
lock pages of virtual memory to avoid page faults.

= “Reducing Cache Misses” on page 68 documents techniques for
avoiding performance problems due to poor cache use.

= “Additional Memory Features” on page 71 summarizes functions for
address space management.

Each process has a virtual address space; in other words, a set of memory
addresses that the process can use. When 32-bit addressing is in use, the
addresses can range from 0 to Ox7fffffff; that is, 231 numbers, for a total
theoretical size of 2 gigabytes. When 64-bit addressing is used, a process’s
address space can encompass 20 numbers. (The numbers greater than 2%Lor
240 are reserved for kernel and supervisor address spaces.) In practice, most
programs use a much smaller range of addresses.
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A segment of the address space is any range of contiguous addresses. Certain
segments are created or reserved for certain uses.

Addresses are called “virtual” because they are not directly related to the
physical RAM addresses where the data actually exists. The mapping from
a virtual address to a real memory location is kept in tables that IRIX creates
and the hardware maintains (see “Virtual Memory” on page 12).

Address Space Boundaries

A process has at least 3 segments of usable addresses:

= A text segment contains the executable image of the program. The text
segment is always read-only.

= A data segment contains the “heap” of allocated data space.

« A stack segment contains the function-call stack.

Another text segment is created for each dynamic shared object (DSO) with
which a process is linked. A process can create additional data segments in
various ways described later in the chapter.

Although the address space begins at location 0, by convention the lowest

segment is allocated at 0x00400000 (4 megabytes). Addresses less than this

are left undefined so that an attempt to reference them (for example, through
an uninitialized pointer variable) causes a hardware exception.

Typically, the text segments are at smaller virtual addresses and stack and
data segments at larger ones, although you should not write code that
depends on this. The sample program shown in “Probing the Address
Space” on page 223 finds and displays some standard segment base
addresses.
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Page Numbers and Offsets

IRIX manages memory in units of a page. The size of a page can differ from
one system to another. The size when 32-bit addressing is used is 4,096 bytes.
In each 32-bit virtual address,

= the least-significant 12 bits specify an offset from 0 to 0xO0fff within a
page
= the most-significant 20 bits specify a virtual page number (VPN)

The page size when 64-bit addressing is used is greater than 4,096 bytes but
the principle is the same. The less-significant bits of an address specify an
offset within a page, while the more-significant bits specify the VPN.

Page tables, built by IRIX during a fork() or exec() call, specify which