
REACT™ Real-Time
Programmer’s Guide

Document Number 007-2499-003

REACT™ Real-Time Programmer’s Guide
Document Number 007-2499-003

CONTRIBUTORS

Written by David Cortesi
Illustrated by Gloria Ackley
Production by Lorrie Williams
Engineering contributions by Rich Altmaier, Joe Caradonna, Jeffrey Heller, Ralph

Humphries, and Luis Stevens
St Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower

image courtesy of Xavier Berenguer, Animatica.

© Copyright 1997, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics, the Silicon Graphics logo, CHALLENGE, Indy, IRIS Insight, Onyx,
Onyx2, Origin200, Origin2000, Performer, POWERpath, POWER Channel, POWER
CHALLENGE and REACT/Pro are registered trademarks, and IRIX is a trademark
of Silicon Graphics, Inc. AT&T and SVR4 are registered trademarks of AT&T. UNIX
is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company, Ltd.

iii

Contents

List of Examples xi

List of Figures xiii

List of Tables xv

About This Guide xvii
Who This Guide Is For xvii
What the Book Contains xviii
Other Useful Books xviii

1. Real-Time Programs 1
Defining Real-Time Programs 1
Major Types of Real-Time Programs 1
Simulators 2

Requirements on Simulators 2
Frame Rate 3
Transport Delay 3

Aircraft Simulators 3
Ground Vehicle Simulators 4
Plant Control Simulators 4
Virtual Reality Simulators 4
Hardware-in-the-loop (HITL) Simulators 5

Data Collection Systems 5
Requirements on Data Collection Systems 5

Real-Time Programming Languages 6

iv

Contents

2. How IRIX™ and REACT/Pro™ Support Real-Time Programs 7
Kernel Facilities for Real-Time Programs 7

Kernel Optimizations 8
Special Scheduling Disciplines 8

Nonpreemptive Priority Range 8
Gang Scheduling 8

Locking Virtual Memory 9
Mapping Processes and CPUs 9
Controlling Interrupt Distribution 10

REACT/Pro Frame Scheduler 10
How Frames Are Defined 11
Advantages of the Frame Scheduler 12
Designing With the Frame Scheduler 12

Interprocess Communication 14
Shared Memory Segments 14
Semaphores 15
Locks 15
Mutual Exclusion Primitives 16
Signals 17

Signal Latency 17
Signal Families 17

Timers and Clocks 19
Hardware Cycle Counter 19

Interchassis Communication 19
Socket Programming 20
Message-Passing Interface (MPI) 20
Reflective Shared Memory 20
External Interrupts 21

v

3. Controlling CPU Workload 23
Using Priorities and Scheduling Queues 23

Scheduling Concepts 24
Tick Interrupts 24
Time Slices 24
Priorities 25

Understanding Affinity Scheduling 25
Using Gang Scheduling 26
Changing the Time Slice Duration 27

Minimizing Overhead Work 28
Assigning the Clock Processor 28
Unavoidable Timer Interrupts 28
Isolating a CPU From Sprayed Interrupts 29
Assigning Interrupts to CPUs 29
Understanding the Vertical Sync Interrupt 30
Restricting a CPU From Scheduled Work 30

Assigning Work to a Restricted CPU 31
Isolating a CPU From TLB Interrupts 32

Isolating a CPU When Performer™ Is Used 34
Making a CPU Nonpreemptive 34

Minimizing Interrupt Response Time 35
Maximum Response Time Guarantee 35
Components of Interrupt Response Time 36
Hardware Latency 37
Software Latency 38

Kernel Critical Sections 38
Service Time for Other Devices 39

Device Service Time 39
Dispatch Cycle 39

Adjust Scheduler Queue 40
Switch Processes 40
Mode Switch 40

Minimal Interrupt Response Time 40

vi

Contents

4. Using the Frame Scheduler 43
Frame Scheduler Concepts 44

Frame Scheduler Basics 44
Frame Scheduling 44

The FRS Control Process 46
The Frame Scheduler API 46

Library Interface for C Programs 47
System Call Interface for Fortran and Ada 48

Process Execution 49
Scheduling Within a Minor Frame 50

Scheduler Flags frs_run and frs_yield 50
Detecting Overrun and Underrun 51
Estimating Available Time 51

Using Multiple Synchronized Schedulers 52
Starting a Single Scheduler 52
Starting Multiple Schedulers 53
Pausing Frame Schedulers 53
Managing Activity Processes 54

Selecting a Time Base 55
On-Chip Timer Interrupt 55
High-Resolution Timer 55
Vertical Sync Interrupt 56
External Interrupts 56
Device Driver Interrupt 57
Software Interrupt 57

Using the Scheduling Disciplines 57
Realtime Discipline 58
Background Discipline 58
Underrunable Discipline 59
Overrunnable Discipline 59
Continuable Discipline 60
Using Multiple Consecutive Minor Frames 60

Preparing the System 61

vii

Implementing a Single Frame Scheduler 62
Implementing Synchronized Schedulers 63

Syncronized Scheduler Concepts 63
Synchronized Schedulers: the Sync-Master Process 64
Synchronized Schedulers: Sync-Slave Processes 65

Handling Frame Scheduler Exceptions 66
Exception Types 66
Exception Handling Policies 66

Injecting a Repeat Frame 67
Extending the Current Frame 67
Dealing With Multiple Exceptions 67

Setting Exception Policies 67
}Querying Counts of Exceptions 69

Using Signals Under the Frame Scheduler 70
Signal Delivery and Latency 70
Handling Signals in the FRS Controller 71
Handling Signals in an Activity Process 71
Setting Frame Scheduler Signals 72

Using Timers with the Frame Scheduler 73
The Frame Scheduler Device Driver Interface 74

Device Driver Overview 74
Registering the Initialization and Termination Functions 75
Frame Scheduler Initialization Function 76
Frame Scheduler Termination Function 78
Generating Interrupts 79

5. Optimizing Disk I/O for a Real-Time Program 81
Memory-Mapped I/O 81
Asynchronous I/O 82

Conventional Synchronous I/O 82
Synchronous Input 82
Synchronous Output 83

Asynchronous I/O Basics 83
Two Implementation Versions 84

viii

Contents

Asynchronous I/O Functions 85
Asynchronous I/O Control Block 85

Initializing Asynchronous I/O 86
Implicit Initialization 86
Initializing with aio_sgi_init() 86
When to Initialize 87

Scheduling Asynchronous I/O 88
Assuring Data Integrity 88

Checking the Progress of Asynchronous Requests 89
Polling for Status 89
Checking for Completion 90
Establishing a Completion Signal 90
Establishing a Callback Function 91
Holding Callbacks Temporarily 94

Multiple Operations to One File 94
Synchronous Writing and Direct Writing 95

Using Synchronous Writing 95
Using Direct I/O 96
Performance Comparison 96
Using a Delayed System Buffer Flush 98

Guaranteed-Rate I/O 98
Guaranteed-Rate I/O Basics 98
Creating a Real-time File 99
Requesting a Guarantee 101
Releasing a Guarantee 102
Sharing Access to Guaranteed Files 102
Hard Guarantees 103
Soft Guarantees 103
Video On Demand (VOD) Guarantees 104

ix

6. Managing Device Interactions 105
Device Drivers 105

How Devices Are Defined 105
How Devices Are Used 106

Device Driver Entry Points 106
Taking Control of Devices 107

SCSI Devices 108
SCSI Adapter Support 108
System Disk Device Driver 108
System Tape Device Driver 109
Generic SCSI Device Driver 109
CD-ROM and DAT Audio Libraries 110

The VME Bus 111
CHALLENGE Hardware Nomenclature 111
VME Bus Attachments 112
VME Address Space Mapping 113

PIO Address Space Mapping 114
DMA Mapping 114

Program Access to the VME Bus 115
PIO Access 115
User-Level Interrupt Handling 116
DMA Access to Master Devices 116
DMA Engine Access to Slave Devices 117

Serial Ports 119
External Interrupts 120

A. Sample Programs 121
Asynchronous I/O Example 121
Guaranteed-Rate Request 140

x

Contents

Frame Scheduler Examples 143
Basic Example 144

Real-Time Application Specification 145
Frame Scheduler Design 145

Example of Scheduling Separate Programs 146
Examples of Multiple Synchronized Schedulers 147
Example of Device Driver 148
Examples of a 60 Hz Frame Rate 149
Example of Managing Lightweight Processes 149

Glossary 151

Index 159

xi

List of Examples

Example 3-1 Initiating Gang Scheduling 27
Example 3-2 Setting the Time-Slice Length 27
Example 3-3 Setting the Clock CPU 28
Example 3-4 Number of Processors Available and Total 31
Example 3-5 Restricting a CPU 31
Example 3-6 Assigning the Calling Process to a CPU 32
Example 3-7 Making a CPU nonpreemptive 35
Example 4-1 Skeleton of an Activity Process 49
Example 4-2 Alternate Skeleton of Activity Process 50
Example 4-3 Function to Set INJECTFRAME Exception Policy 68
Example 4-4 Function to Set STRETCH Exception Policy 68
Example 4-5 Function to Return a Sum of Exception Counts 69
Example 4-6 Function to Set Frame Scheduler Signals 73
Example 4-7 Minimal Activity Process as a Timer 74
Example 4-8 Exporting Device Driver Entry Points 75
Example 4-9 Device Driver Initialization Function 76
Example 4-10 Device Driver Termination Function 78
Example 4-11 Generating an Interrupt From a Device Driver 79
Example 5-1 Initializing Asynchronous I/O 87
Example 5-2 Polling for Asynchronous Completion 89
Example 5-3 Set of Functions to Schedule Asynchronous I/O 92
Example 5-4 Function to create a real-time file 100
Example A-1 Asynchronous I/O Example Program 122

xiii

List of Figures

Figure 2-1 Major and Minor Frames 11
Figure 3-1 Components of Interrupt Response Time 37
Figure 4-1 Major and Minor Frames 45
Figure 5-1 Effect of Blocksize on write() Performance 97
Figure 6-1 Multiprocessor CHALLENGE Data Path Components 112

xv

List of Tables

Table 2-1 Signal Handling Interfaces 18
Table 4-1 Frame Scheduler Operations 47
Table 4-2 Frame Scheduler schedctl() Support 48
Table 4-3 Signal Numbers Passed in frs_signal_info_t 72
Table 5-1 Data on Which Figure 8-1 is Based 97
Table 6-1 Multiprocessor CHALLENGE VME Cages and Slots 112
Table 6-2 POWER Channel-2 and VME bus Configurations 113
Table 6-3 VME Bus PIO Bandwidth 115
Table 6-4 VME Bus Bandwidth, VME Master Controlling DMA 116
Table 6-5 VME Bus Bandwidth, DMA Engine, D32 Transfer 117
Table i Summary of Frame Scheduler Example Programs 144

xvii

About This Guide

A real-time program is one that must maintain a fixed timing relationship to external
hardware. In order to respond to the hardware quickly and reliably, a real-time program
must have special support from the system software and hardware.

This guide describes the support that the IRIX™ operating system provides to real-time
programs. The support bundled with all versions of IRIX is called REACT™. A set of
extra-cost features is called REACT/Pro™. This guide covers REACT for IRIX 6.4, and
REACT/Pro 3.0.

This guide is designed to be read online, using IRIS InSight™. You are encouraged to read
it in non-linear order using all the navigation tools that Insight provides. In the online
book, the name of a reference page (“man page”) is red in color (for example: mpin(2),
sproc(2)). You can click on these names to cause the reference page to open automatically
in a separate terminal window.

Who This Guide Is For

This guide is written for real-time programmers. You, a real-time programmer, are
assumed to be

• an expert in the use of your programming language, which must be either C, Ada,
or FORTRAN to use the features described here

• knowledgeable about the hardware interfaces used by your real-time program

• familiar with system-programming concepts such as interrupts, device drivers,
multiprogramming, and semaphores

You are not assumed to be an expert in UNIX® system programming, although you do
need to be familiar with UNIX as an environment for developing software.

xviii

About This Guide

What the Book Contains

Here is a summary of what you will find in the following chapters.

Chapter 1, “Real-Time Programs,” describes the important classes of real-time programs,
emphasizing the different kinds of performance requirements they have.

Chapter 2, “How IRIX™ and REACT/Pro™ Support Real-Time Programs,” gives an
overview of the real-time features of IRIX. From these survey topics you can jump to the
detailed topics that interest you most.

Chapter 3, “Controlling CPU Workload,” describes how you can isolate a CPU and
dedicate almost all of its cycles to your program’s use.

Chapter 4, “Using the Frame Scheduler,” describes the REACT/Pro Frame Scheduler,
which gives you a simple, direct way to structure your real-time program as a group of
cooperating processes, efficiently scheduled on one or more isolated CPUs.

Chapter 5, “Optimizing Disk I/O for a Real-Time Program,” describes how to set up disk
I/O to meet real-time constraints, including the use of asynchronous I/O and
guaranteed-rate I/O.

Chapter 6, “Managing Device Interactions,” summarizes the software interfaces to
external hardware, including and user-level programming of external interrupts and
VME and SCSI devices.

Other Useful Books

The following books contain more information that can be useful to a real-time
programmer.

• For a survey of all IRIX facilities and manuals, see Programming on Silicon Graphics
Systems: An Overview; part number 007-2476-nnn.

• The WindView™ for IRIX Programmer’s Guide, part number 007-2824-nnn, tells how to
use a graphical performance analysis tool that can be of great help in debugging
and tuning a real-time application on a multiprocessor system.

• The IRIX Device Driver Programmer’s Guide, part number 007-0911-nnn, gives details
on all types of device control, including programmed I/O (PIO) and direct memory

About This Guide

xix

access (DMA) from the user process, as well as discussing the design and
construction of device drivers and other kernel-level modules.

• Administration of a multiprocessor is covered in a family of six books, including

– IRIX Admin: System Configuration and Operation (007-2859-nnn)

– IRIX Admin: Disks and Filesystems (007-2825-nnn)

– IRIX Admin: Peripheral Devices (007-2861-nnn)

• For details of the architecture of the CPU, processor cache, processor bus, and
virtual memory, see the MIPS R4000 Microprocessor User’s Manual, 2nd Ed. by Joseph
Heinrich. This and other chip-specific documents are available for downloading
from the MIPS home page, http://www.mips.com.

• For details of some IRIX system facilities not covered in this book, Topics in IRIX
Programming, part number 007-2478-nnn and MIPS Compiling and Performance
Tuning Guide, 007-2479-nnn (both available with the IRIX Developer’s Option).

• For programming inter-computer connections using sockets, IRIX Network
Programming Guide, part number 007-0810-nnn.

• For coding functions in assembly language, MIPSpro Assembly Language
Programmer’s Guide, part number 007-2418-nnn.

In addition, Silicon Graphics offers training courses in Real-Time Programming and in
Parallel Programming.

1

Chapter 1

1. Real-Time Programs

This chapter surveys the categories of real-time programs, and indicates which types can
best be supported by REACT and REACT/Pro. As an experienced programmer of
real-time applications, you might want to read the chapter to verify that this book uses
terminology that you know; or you might want to proceed directly to Chapter 2, “Basic
Features of the CHALLENGE and IRIX™ Architectures”.

Defining Real-Time Programs

A real-time program is any program that must maintain a fixed, absolute timing
relationship with an external hardware device.

Normal-time programs do not require a fixed timing relationship to external devices.
A normal-time program is a correct program when it produces the correct output, no
matter how long that takes. You can specify performance goals for a normal-time
program, such as “respond in at most 2 seconds to 90% of all transactions,” but if the
program does not meet the goals, it is merely slow, not incorrect.

A real-time program is one that is incorrect and unusable if it fails to meet its
performance requirements, and so falls out of step with the external device.

Major Types of Real-Time Programs

There are three major types of real-time programs: simulators, data collection systems,
and process control systems. This section describes each type briefly. Simulators and data
collection systems are described in more detail in following sections.

• A simulator maintains an internal model of the world. It receives control inputs,
updates the model to reflect them, and displays the changed model. It must process
inputs in real time in order to maintain an accurate simulation, and it must generate
output in real time to keep up with the display hardware.

2

Chapter 1: Real-Time Programs

Silicon Graphics systems are well suited to programming many kinds of simulators.

• A data collection system receives input from reporting devices, for example
telemetry receivers, and stores the data. It may be required to process, reduce,
analyze or compress the data before storing it. It must react in real time in order to
avoid losing data.

Silicon Graphics systems are suited to many data collection tasks.

• A process control system monitors the state of an industrial process and constantly
adjusts it for efficient, safe operation. It must react in real time to avoid waste,
damage, or hazardous operating conditions.

Although Silicon Graphics systems can be used for process control, dedicated
process-control computers are sometimes a more economical choice for these uses.

Simulators

All simulators have the same four components,

• An internal model of the world or part of it; for example a model of a vehicle
travelling through a model geography, or a model of the physical state of a nuclear
power plant.

• External devices to display the state of the model; for example, one or more video
displays, audio speakers, or a simulated instrument panel.

• External devices to supply control inputs; for example a steering wheel, a joystick,
or simulated knobs and dials.

• An operator (or hardware under test) that “closes the loop” by moving the controls
in response to what is shown on the display.

Requirements on Simulators

The real-time requirements on a simulator vary depending on the nature of these four
components. Two key performance requirements on a simulator are frame rate and
transport delay.

Simulators

3

Frame Rate

A crucial measure of simulator performance is the rate at which it updates the display.
This rate is called the frame rate, whether or not the simulator displays its model on a
video screen.

Frame rate is given in cycles per second (abbreviated Hz). Typical frame rates run from
15 Hz to 60 Hz, although rates higher and lower than these are used in special situations.

The inverse of frame rate is frame interval. For example, a frame rate of 60 Hz implies a
frame interval of 1/60 second, or 16.67 milliseconds. To maintain a frame rate of 60 Hz,
a simulator must update its model and prepare a new display in less than 16.67 ms.

The REACT/Pro Frame Scheduler helps you organize a multi-process application to
achieve a specified frame rate. (See Chapter 4, “Using the Frame Scheduler.”)

Transport Delay

Transport delay is the term for the number of frames that elapses before a control motion
is reflected in the display. When the transport delay is too long, the operator will perceive
the simulation as sluggish or unrealistic. If a visual display lags behind control inputs, a
human operator can become physically ill.

Aircraft Simulators

Simulators for real or hypothetical aircraft or spacecraft typically require frame rates of
30 Hz to 120 Hz and transport delays of 1 or 2 frames. There will be several analogue
control inputs or and possibly many digital control inputs (simulated switches and
circuit breakers, for example). There are often multiple video display outputs (one each
for the left, forward and right “windows”), and possibly special hardware to shake or tilt
the “cockpit.” The display in the “windows” must have a convincing level of detail.

Silicon Graphics systems with REACT/Pro are well suited to building aircraft
simulators.

4

Chapter 1: Real-Time Programs

Ground Vehicle Simulators

Simulators for automobiles, tanks, and heavy equipment have been built with Silicon
Graphics systems. Frame rates and transport delays are similar to those for aircraft
simulators. However, there is a smaller world of simulated “geography” to maintain in
the model. Also, the viewpoint of the display changes more slowly, and through smaller
angles, than the viewpoint from an aircraft simulator. These factors can make it
somewhat simpler for a ground vehicle simulator to update its display.

Plant Control Simulators

A simulator can be used to train the operators of an industrial plant such as a nuclear or
conventional power generation plant. Power-plant simulators have been built using
Silicon Graphics systems.

The frame rate of a plant control simulator can be as low as 1 or 2 Hz. However, the
number of control inputs (knobs, dials, valves, and so on) can be very large. Special
hardware may be required to attach the control inputs and multiplex them onto the VME
bus. Also, the number of display outputs (simulated gauges, charts, warning lights, and
so on) can be very large and may also require custom hardware to interface them to the
computer.

Virtual Reality Simulators

A virtual reality simulator aims to give its operator a sense of presence in a
computer-generated world. (So also does a vehicle simulator. One difference is that a
vehicle simulator strives for an exact model of the laws of physics, which a virtual reality
simulator typically does not need to do.)

Usually the operator can see only the simulated display, and has no other visual
referents. Because of this, the frame rate must be high enough to give smooth,
nonflickering animation, and any perceptible transport delay can cause nausea and
disorientation. However, the virtual world is not required (or expected) to look like the
real world, so the simulator may be able to do less work to prepare the display.

Silicon Graphics systems, with their excellent graphic and audio capabilities, are well
suited to building virtual reality applications.

Data Collection Systems

5

Hardware-in-the-loop (HITL) Simulators

The operator of a simulator need not be a person. In a hardware-in-the-loop simulator,
the role of operator is played by another computer, such as an aircraft autopilot or the
control and guidance computer of a missile. The inputs to the computer under test are
the simulator’s display output. The output signals of the computer under test are the
simulator’s control inputs.

Depending on the hardware being exercised, the simulator may have to maintain a very
high frame rate, up to 1000 Hz. Silicon Graphics systems can be used for some hardware
simulators. Special-purpose systems may be more practical or more economical for very
demanding frame rates.

Data Collection Systems

A data collection system has the following major parts:

1. Sources of data, for example telemetry. Often the source or sources are interfaced to
the VME bus, but serial ports, SCSI devices, and other device types are also used..

2. A repository for the data. This can be a raw device such as a tape, or it can be a disk
file or even a database system.

3. Rules for processing. The data collection system might be asked only to buffer the
data and copy it to disk. Or it might be expected to compress the data, smooth it,
sample it, or filter it for noise.

4. Optionally, a display. The data collection system may be required to display the
status of the system or to display a summary or sample of the data. The display is
typically not required to maintain a particular frame rate, however.

Requirements on Data Collection Systems

The first requirement on a data collection system is imposed by the peak data rate of the
combined data sources. The system must be able to receive data at this peak rate without
an overrun; that is, without losing data because it could not read the data as fast as it
arrived.

6

Chapter 1: Real-Time Programs

The second requirement is that the system must be able to process and write the data to
the repository at the average data rate of the combined sources. Writing can proceed at the
average rate as long as there is enough memory to buffer short bursts at the peak rate.

You might specify a desired frame rate for updating the display of the data. However,
there is usually no real-time requirement on display rate for a data collection system.
That is, the system is correct as long as it receives and stores all data, even if the display
is updated slowly.

Real-Time Programming Languages

The majority of real-time programs are written in C, which is the most common language
for system programming on UNIX. All of the examples in this book are in C syntax.

The second most common real-time language is Ada, which is used for many
defense-related projects. SGI sells Ada 95, a new implementation of the language. Ada 95
programs can call any function that is available to a C program, so all the facilities
described in this book are available, although the calling syntax may vary slightly. Ada
offers additional features that are useful in real-time programming; for example, it
includes a partial implementation of POSIX threads which is used to implement Ada
tasking.

Some real-time programs are written in FORTRAN. A program in FORTRAN can access
any IRIX system function, that is, any facility that is specified in volume 2 of the reference
pages. For example, all the facilities of the REACT/Pro Frame Scheduler are accessible
through the IRIX system function schedctl(), and hence can be accessed from a
FORTRAN program (see “The Frame Scheduler API” on page 46).

A FORTRAN program cannot directly call C library functions, so any facility that is
documented in volume 3 of the reference pages is not directly available in FORTRAN.
Thus the mmap() function, a system function, is available, but the usinit() library
function, which is basic to SGI semaphores and locks, is not available. However, it is
possible to link subroutines in C to FORTRAN programs, so you can write interface
subroutines to encapsulate C library functions and make them available to a FORTRAN
program.

7

Chapter 2

2. How IRIX™ and REACT/Pro™ Support Real-Time
Programs

This chapter provides an overview of the real-time support in IRIX and REACT/Pro.

Some of the features mentioned here are discussed in more detail in the following
chapters of this guide. For details on other features, you are referred to reference pages
or to other manuals. The main topics surveyed are

• “Kernel Facilities for Real-Time Programs,” including special scheduling
disciplines, isolated CPUs, and locked memory pages

• “REACT/Pro Frame Scheduler,” which takes care of the details of scheduling
multiple processes on multiple CPUs at guaranteed rates

• “Interprocess Communication,” reviewing the ways that a concurrent, multiprocess
program can coordinate its work

• “Timers and Clocks,” reviewing your options for time-stamping and interval timing

• “Interchassis Communication,” reviewing two ways of connecting multiple chassis

Kernel Facilities for Real-Time Programs

The IRIX kernel has a number of features that are valuable when you are designing your
real-time program.

8

Chapter 2: How IRIX™ and REACT/Pro™ Support Real-Time Programs

Kernel Optimizations

The IRIX kernel has been optimized for performance in a multiprocessor environment.
Some of the optimizations are as follows:

• Instruction paths to system calls and traps are optimized, including some hand
coding, to maximize cache utilization.

• In the real-time dispatch class (described further in “Using Priorities and
Scheduling Queues” on page 23), the run queue is kept in priority-sorted order for
fast dispatching.

• Floating point registers are saved only if the next process needs them, and restored
only if saved.

• The kernel tries to redispatch a process on the same CPU where it most recently ran,
in hopes of finding some of its data remaining in cache (see “Understanding
Affinity Scheduling” on page 25).

Special Scheduling Disciplines

The default IRIX scheduling algorithm is designed to ensure fairness among time-shared
users. Called an “earnings-based” scheduler, the kernel credits each process group with
a certain number of microseconds on each dispatch cycle. The process with the fattest
“bank account” is dispatched first. If a process exhausts its “bank account” it is
preempted.

Nonpreemptive Priority Range

While effective for its purpose, the earnings-based scheduler is not suitable for a
real-time process, which cannot tolerate being preempted for any reason. The kernel
supports a range of priorities that are higher than the time-sharing priorities, and which
are not subject to “earnings” controls.

Gang Scheduling

When your program is structured as a process group, you can request that all the
processes of the group be scheduled as a “gang.” The kernel runs all the members of the
gang concurrently, provided there are enough CPUs available to do so. This helps to
ensure that, when members of the process group coordinate through the use of locks, a
lock will usually be released in a timely manner. Without gang scheduling, the process

Kernel Facilities for Real-Time Programs

9

that holds a lock might not be scheduled in the same interval as another process that is
waiting on that lock.

For more information, see “Using Gang Scheduling” on page 26.

Locking Virtual Memory

IRIX allows a process to lock all or part of its virtual memory into physical memory, so
that it cannot be paged out and a page fault cannot occur while it is running.

This allows you to protect a process from the unpredictable delays caused by paging. Of
course the locked memory is not available for the address spaces of other processes. The
system must have enough physical memory to hold the real-time address space plus
space for a minimum of other activities.

The system calls used to lock memory are discussed in detail in the manual Topics in IRIX
Programming (see “Other Useful Books” on page xviii).

Mapping Processes and CPUs

Normally IRIX tries to keep all CPUs busy, dispatching the next ready process to the next
available CPU. (This simple picture is complicated by the needs of affinity scheduling,
and gang scheduling). Since the number of ready processes changes all the time,
dispatching is a random process. A normal process cannot predict how often or when it
will next be able to run. For normal programs this does not matter, as long as each process
continues to run at a satisfactory average rate.

Real-time processes cannot tolerate this unpredictability. To reduce it, you can dedicate
one or more CPUs to real-time work. There are two steps:

• Restrict one or more CPUs from normal scheduling, so that they can run only the
processes that are specifically assigned to them.

• Assign one or more processes to run on the restricted CPUs.

A process on a dedicated CPU runs when it needs to run, delayed only by interrupt
service and by kernel scheduling cycles (if scheduling is enabled on that CPU). For
details, see “Assigning Work to a Restricted CPU” on page 31. The REACT/Pro Frame
Scheduler takes care of both steps automatically; see “REACT/Pro Frame Scheduler” on
page 10.

10

Chapter 2: How IRIX™ and REACT/Pro™ Support Real-Time Programs

Controlling Interrupt Distribution

In normal operations, CPUs receive frequent interrupts:

• I/O interrupts from devices attached to, or near, that CPU.

• A scheduling clock causes an interrupt to every CPU every time-slice interval of 10
milliseconds.

• Whenever interval timers are in use (“Timers and Clocks” on page 19), a CPU
handling timers receives frequent timer interrupts.

• When the map of virtual to physical memory changes, a TLB interrupt is broadcast
to all CPUs.

These interrupts can make the execution time of a process unpredictable. However, you
can designate one or more CPUs for real-time use, and keep interrupts of these kinds
away from those CPUs. The system calls for interrupt control are discussed at more
length under “Minimizing Overhead Work” on page 28. The REACT/Pro Frame
Scheduler also takes care of interrupt isolation.

REACT/Pro Frame Scheduler

The REACT/Pro Frame Scheduler is a process execution manager that schedules
processes on one or more CPUs in a predefined, cyclic order. The scheduling interval is
determined by a repetitive time base, usually a hardware interrupt.

Many real-time programs must sustain a fixed frame rate. In such programs your central
design problem is that the program must complete certain activities during every frame
interval. When there is more to do in a frame than one CPU can do, some activities must
run concurrently on multiple CPUs.

Besides designing the activities themselves, you must design a way to schedule and
initiate activities in sequence, once per frame, on multiple CPUs. This is what the
REACT/Pro Frame Scheduler does: executes the multiple processes of your real-time
program, in sequence, on one or more CPUs.

REACT/Pro Frame Scheduler

11

How Frames Are Defined

The Frame Scheduler divides time into successive frames, each of the same length. You
specify the time base as one of

• a specific interval in microseconds

• the Vsync (vertical retrace) interrupt from the graphics subsystem

• an external interrupt (see “External Interrupts” on page 21)

• a device interrupt from a specially-modified device driver

• a software call (normally used for debugging)

The interrupts from the time base define minor frames. You choose the fixed number of
minor frames that make a major frame, as shown in Figure 2-1.

Figure 2-1 Major and Minor Frames

The Frame Scheduler keeps a queue of processes for each minor frame. It dispatches each
process once in its scheduled turn. The process runs until it finishes its work; then it
yields.

In the simplest case, you have a single frame rate, such as 60 Hz, and every activity your
program does must be done once per frame. In this case, the major and minor frame rates
are the same.

Q0 Q1 Q2

TIME

Major frame

Minor−0 Minor−1 Minor−2 Minor−0 Minor−1 Minor−2

Major frame

Real−time event interrupts

Process queues

12

Chapter 2: How IRIX™ and REACT/Pro™ Support Real-Time Programs

In other cases, you have some activities that must be done in every minor frame, but you
also have activities that are done less often, in every other minor frame or in every third
one. In these cases you define the major frame so that its rate is the rate of the
least-frequent activity. The major frame contains as many minor frames as necessary to
schedule activities at their relative rates.

Sometimes what is here called a “major frame” is called a “process cycle.”

Advantages of the Frame Scheduler

The Frame Scheduler makes it easy for you to organize a real-time program as a set of
independent, cooperating processes. The Frame Scheduler manages the housekeeping
details of reserving and isolating CPUs. You concentrate on designing the activities and
implementing them as processes in a clean, structured way. It is relatively easy to change
the number of activities, or their sequence, or the number of CPUs, even late in the
project.

Designing With the Frame Scheduler

To use the Frame Scheduler, you approach the design of your real-time program in the
following steps.

1. Partition the program into activities, where each activity is an independent piece of
work that can be done without interruption.

For example, in a simple vehicle simulator, activities might include “poll the
joystick,” “update the positions of moving objects,” “cull the set of visible objects,”
and so forth.

2. Decide the relationships among the activities:

• Some must be done once per minor frame, others less frequently.

• Some must be done before or after others.

• Some may be conditional. For example, an activity could poll a semaphore and
do nothing unless an event had completed.

3. Estimate the worst-case time required to execute each activity. Some activities may
need more than one minor frame interval (the Frame Scheduler allows for this).

REACT/Pro Frame Scheduler

13

4. Schedule the activities: If all are executed sequentially, will they complete in one
major frame? If not, choose activities that can execute concurrently on two or more
CPUs, and estimate again. You may have to change the design in order to get
greater concurrency.

When the design is complete, implement each activity as an independent process that
communicates with the others using shared memory, semaphores, and locks (see
“Interprocess Communication” on page 14).

When the real-time activities can be handled in a single CPU, the master process that
initiates the program contains these steps:

1. Open, create, andinitialize all the shared files and memory resources.

2. Initiate a Frame Scheduler (a single library call).

3. Initiate each activity as a process using sproc() or fork().

Each process initializes itself and then waits at a barrier.

4. Enqueue each activity process to the Frame Scheduler that will dispatch it (another
library call).

The master process specifies the process ID and the minor frame or frames in which
the process should run, and a scheduling discipline.

5. Join the barrier where the activity processes are waiting.

When all processes are ready to proceed, all are released.

6. Start the Frame Scheduler going (a library call).

7. Wait for a signal indicating it is time to shut down.

8. Terminate the Frame Schedulers.

A Frame Scheduler seizes its assigned CPU, isolates it, and takes over process scheduling
on it. It waits for all enqueued processes to initialize themselves and to execute a library
call to ”join” the scheduler. Then it begins dispatching the processes in the specified
sequence during each frame interval. It monitors errors, such as a process that fails to
complete its work within its frame, and takes a specified action when an error occurs.
Typically the error action is to send a signal to the master process. The master process can
interrogate the Frame Scheduler, and stop it or restart it.

14

Chapter 2: How IRIX™ and REACT/Pro™ Support Real-Time Programs

The Frame Scheduler is discussed in more detail in Chapter 4, “Using the Frame
Scheduler”. Sample programs that illustrate the Frame Scheduler are described under
“Frame Scheduler Examples” on page 143.

Interprocess Communication

In a program organized as multiple, cooperating processes, the processes need to share
data and coordinate their actions in well-defined ways. IRIX with REACT provides the
following mechanisms, which are surveyed in the topics that follow:

• Shared memory allows a single segment of memory to appear in the address spaces
of multiple processes. The Silicon Graphics implementation is also the basis for
implementing interprocess semaphores, locks, and barriers.

• Semaphores are used to coordinate access from multiple processes to resources that
they share.

• Locks provide a low-overhead, high-speed method of mutual exclusion.

• Barriers make it easy for multiple processes to synchronize the start of a common
activity.

• Signals provide asynchronous notification of special events or errors. IRIX supports
signal semantics from all major UNIX heritages, but POSIX-standard signals are
recommended for real-time programs.

Shared Memory Segments

IRIX allows you to map a segment of memory into the address spaces of two or more
processes at once. The block of shared memory can be read concurrently, and possibly
written, by all the processes that share it. IRIX supports the POSIX and the SVR4 models
of shared memory, as well as a system of shared arenas unique to IRIX. These facilities
are covered in detail in the manual Topics in IRIX Programming (see “Other Useful Books”
on page xviii).

Interprocess Communication

15

Semaphores

A semaphore is a memory object that represents the state of a shared resource. The content
of a semaphore is an integer count, representing the number of resource units now
available. Typically the count is 1, and the semaphore represents the availability of a
single object such as a table or file.

A process that needs to use the resource executes a “P” operation on the semaphore. This
operation tests and decrements the count in the semaphore. If the count is greater than
zero before the operation, at least one resource unit is available. The count is reduced by
1 and the process continues executing. When the count is not greater than zero, the
process is blocked until a resource unit is available; then it continues. In either case,
following a P operation, the process knows that it has exclusive use of a resource unit.

When it finishes its work, the process releases the resource by executing a “V” operation
on the semaphore. This operation increments the count. It also unblocks any process that
might be blocked in a P operation, waiting for the resource. If more than one process is
waiting, the one that has waited longest is released first (FIFO order).

Tip: Useful mnemonics for P and V: P depletes the resource. V revives it.

IRIX supports three forms of semaphore: POSIX-compliant, SVR4-compatible, and
Silicon Graphics. All three forms are discussed in the manual Topics in IRIX Programming
(see “Other Useful Books” on page xviii)

Locks

A lock is a memory object that represents the exclusive right to use a shared resource. A
process that wants to use the resource sets the lock. The process releases the lock when it
is finished with the resource.

A lock is functionally the same as a semaphore with a count of 1. The set-lock operation
on a lock and the P operation on a semaphore with a count of 1 both acquire exclusive
use of a resource. In a multiprocessor, the important difference between a lock and
semaphore is that, when the resource is not immediately available, a semaphore always
suspends the process, while a lock does not.

A lock, in a multiprocessor system, is set by “spinning.” The program enters a tight loop
using the test-and-set machine instruction to test the lock’s value and to set it as soon as

16

Chapter 2: How IRIX™ and REACT/Pro™ Support Real-Time Programs

the lock is clear. In practice the lock is often already available, and the first execution of
test-and-set acquires the lock. In this case, setting the lock takes a trivial amount of time.

When the lock is already set, the process spins on the test a certain number of times. If
the process that holds the lock is executing concurrently in another CPU, and if it releases
the lock during this time, the spinning process acquires the lock instantly. There is zero
latency between release and acquisition, and no overhead from entering the kernel for a
system call.

If the process has not acquired the lock after a certain number of spins, it defers to other
processes by calling sginap(). When the lock is released, the process resumes execution.

For more information on locks, refer to the manual Topics in IRIX Programming (see
“Other Useful Books” on page xviii), and to the usnewlock(3), ussetlock(3) and
usunsetlock(3) reference pages.

Mutual Exclusion Primitives

IRIX supports library functions that perform atomic (uninterruptable) sample-and-set
operations on words of memory. For example, test_and_set() copies the value of a word
and stores a new value into the word in a single operation; while test_then_add()
samples a word and then replaces it with the sum of the sampled value and a new value.

These primitive operations can be used as the basis of mutual-exclusion protocols using
words of shared memory. For details, see the test_and_set(3p) reference page.

The test_and_set() and related functions are based on the MIPS R4000 instructions Load
Linked and Store Conditional. Load Linked retrieves a word from memory and tags the
processor data cache “line” from which it comes. The following Store Conditional tests
the cache line. If any other processor or device has modified that cache line since the Load
Linked was executed, the store is not done. The implementation of test_then_add() is
comparable to the following assembly-language loop:

1:
ll retreg, offset(targreg)
add tmpreg, retreg, valreg
sc tmpreg, offset(targreg)
beq tmpreg, 0, b1

Interprocess Communication

17

The loop continues trying to load, augment, and store the target word until it succeeds.
Then it returns the value retrieved. For more details on the R4000 machine language, see
one of the books listed in “Other Useful Books” on page xviii.

The Load Linked and Store Conditional instructions only operate on memory locations
that can be cached. Uncached pages (for example, pages implemented as reflective
shared memory, see “Reflective Shared Memory” on page 20) cannot be set by the
test_and_set() functions.

Signals

A signal is an urgent notification of an event, sent asynchronously to a process. Some
signals originate from the kernel: for example, the SIGFPE signal that notifies of an
arithmetic overflow; or SIGALRM that notifies of the expiration of a timer interval (for
the complete list, see the signal(5) reference page). The Frame Scheduler issues signals to
notify your program of errors or termination. Other signals can originate within your
own program.

Signal Latency

The time that elapses from the moment a signal is generated until your signal handler
begins to execute is the signal latency. Signal latency can be long (as real-time programs
measure time) and signal latency has a high variability. (Some of the factors are discussed
under “Signal Delivery and Latency” on page 70.) In general, you should use signals to
deliver infrequent messages of high priority. You should not use the exchange of signals
as the basis for scheduling in a real-time program.

Note: Signals are delivered at particular times when using the Frame Scheduler. See
“Using Signals Under the Frame Scheduler” on page 70.

Signal Families

In order to receive a signal, a process must establish a signal handler, a function that will
be entered when the signal arrives.

18

Chapter 2: How IRIX™ and REACT/Pro™ Support Real-Time Programs

There are three UNIX traditions for signals, and IRIX supports all three. They differ in the
library calls used, in the range of signals allowed, and in the details of signal delivery (see
Table 2-1). Your real-time program should use the POSIX interface for signals.

The POSIX interface supports the following 64 signal types:

1-31 Same as BSD

32 Reserved by IRIX kernel

33-48 Reserved by the POSIX standard for system use

49-64 Reserved by POSIX for real-time programming

Signals with smaller numbers have priority for delivery. The low-numbered
BSD-compatible signals, which include all kernel-produced signals, are delivered ahead
of real-time signals; and signal 49 takes precedence over signal 64. (The BSD-compatible
interface supports only signals 1-31. This set includes two user-defined signals.)

IRIX supports POSIX signal handling as specified in IEEE 1003.1b-1993. This includes
FIFO queueing new signals when a signal type is held, up to a system maximum of
queued signals. (The maximum can be adjusted using systune; see the systune(1)
reference page.)

Table 2-1 Signal Handling Interfaces

Function SVR4-compatible
Calls

BSD 4.2 Calls POSIX Calls

set and query
signal handler

sigset(2)
signal(2)

sigvec(3)
signal(3)

sigaction(2)
sigsetops(3)
sigaltstack(2)

send a signal sigsend(2)
kill(2)

kill(3)
killpg(3)

sigqueue(2)

temporarily block
specified signals

sighold(2)
sigrelse(2)

sigblock(3)
sigsetmask(3)

sigprocmask(2)

query pending
signals

sigpending(2)

wait for a signal sigpause(2) sigpause(3) sigsuspend(2)
sigwait(2)
sigwaitinfo(2)
sigtimedwait(2)

Timers and Clocks

19

For more information on the POSIX interface to signal handling, refer to Topics in IRIX
Programming and to the signal(5), sigaction(2), and sigqueue(2) reference pages.

Timers and Clocks

A real-time program sometimes needs a source of timer interrupts, and some need a way
to create a high-precision timestamp. Both of these are provided by IRIX. IRIX supports
the POSIX clock and timer facilities as specified in IEEE 1003.1b-1993, as well as the BSD
itimer facility. The timer facilities are covered in Topics in IRIX Programming (see “Other
Useful Books” on page xviii).

Hardware Cycle Counter

The hardware cycle counter is a high-precision hardware counter that is updated
continuously. The precision of the cycle counter depends on the machine in use, but in
most systems it is a 64-bit counter.

You sample the cycle counter by calling the POSIX function clock_gettime() specifying
the CLOCK_SGI_CYCLE clock type.

The frequency with which the cycle counter is incremented also depends on the
hardware system. You can learn the resolution of the clock by calling the POSIX function
clock_getres().

Note: The cycle counter is synchronyzed only to the CPU crystal and is not intended as
a perfect time standard. If you use it to measure intervals between events, be aware that
it can drift by as much as 100 microseconds per second, depending on the hardware
system in use.

Interchassis Communication

Silicon Graphics systems support three methods by which you can connect multiple
computers:

• Standard network interfaces let you send packets or streams of data over a local
network or the Internet.

20

Chapter 2: How IRIX™ and REACT/Pro™ Support Real-Time Programs

• Reflective shared memory (provided by third-party manufacturers) lets you share
segments of memory between computers, so that programs running on different
chassis can access the same variables.

• External interrupts let one Challenge/Onyx signal another.

Socket Programming

One standard, portable way to connect processes in different computers is to use the
BSD-compatible socket I/O interface. You can use sockets to communicate within the
same machine, between machines on a local area network, or between machines on
different continents.

For more information about socket programming, refer to one of the networking books
listed in “Other Useful Books” on page xviii.

Message-Passing Interface (MPI)

The Message-Passing Interface (MPI) is a standard architecture and programming
interface for designing distributed applications. Silicon Graphics, Inc. supports MPI in
the POWERChallenge Array product. For details on MPI in Silicon Graphics systems, see
the World-Wide Web page
http://www.sgi.com/Products/PowerChallengeArray/TechInfo/MPI/. For the MPI
standard, see http://www.mcs.anl.gov/mpi/index.html.

The performance of both sockets and MPI depends on the speed of the underlying
network. The network that connects nodes (systems) in an Array product has a very high
bandwidth.

Reflective Shared Memory

Reflective shared memory consists of hardware that makes a segment of memory appear
to be accessible from two or more computer chassis. Actually the Challenge/Onyx
implementation consists of VME bus devices in each computer, connected by a very
high-speed, point-to-point network.

The VME bus address space of the memory card is mapped into process address space.
Firmware on the card handles communication across the network, so as to keep the

Interchassis Communication

21

memory contents of all connected cards consistent. Reflective shared memory is slower
than real main memory but faster than socket I/O. Its performance is essentially that of
programmed I/O to the VME bus, which is discussed under “PIO Access” on page 115.

Reflective shared memory systems are available for Silicon Graphics equipment from
several third-party vendors. The details of the software interface differ with each vendor.
However, in most cases you use mmap() to map the shared segment into your process’s
address space (see Chapter 4, “Managing Virtual Memory in a Real-Time Program” as
well as the usrvme(7) reference page).

External Interrupts

The Origin200, Origin2000, and Challenge/Onyx systems support external interrupt
lines for both incoming and outgoing external interrupts. Software support for these
lines is described in the IRIX Device Driver Programmer’s Guide (see “Other Useful Books”
on page xviii) and the ei(7) reference page. You can use the external interrupt as the time
base for the Frame Scheduler. In that case, the Frame Scheduler manages the external
interrupts for you. (See “Selecting a Time Base” on page 55.)

23

Chapter 3

3. Controlling CPU Workload

This chapter describes how to use IRIX kernel features to make the execution of a
real-time program predictable. Each of these features works in some way to dedicate
hardware to your program’s use, or to reduce the influence of unplanned interrupts on
it. The main topics covered are:

• “Using Priorities and Scheduling Queues” on page 23 covers scheduling concepts,
tells how to set nondegrading priorities, and explains affinity scheduling, gang
scheduling, and deadline scheduling.

• “Minimizing Overhead Work” on page 28 discusses how to remove all unnecessary
interrupts and overhead work from the CPUs that you want to use for real-time
programs.

• “Minimizing Interrupt Response Time” on page 35 discusses the components of
interrupt response time and how to minimize them.

Using Priorities and Scheduling Queues

The default IRIX scheduling algorithm is designed for a conventional time-sharing
system, in which the best results are obtained by favoring I/O-bound processes and
discouraging CPU-bound processes. However IRIX supports a variety of scheduling
disciplines that are optimized for parallel processes. You can take advantage of these in
different ways to suit the needs of different programs.

Note: You can use the methods discussed here to make a real-time program more
predictable. However, to reliably achieve a high frame rate, you should plan to use the
REACT/Pro Frame Scheduler described in Chapter 4.

24

Chapter 3: Controlling CPU Workload

Scheduling Concepts

In order to understand the differences between scheduling methods you need to know
some basic concepts.

Tick Interrupts

In normal operation, the kernel pauses to make scheduling decisions every 10
milliseconds in every CPU. The duration of this interval, which is called the “tick”
because it is the metronomic beat of the scheduler, is defined in sys/param.h. Every CPU
is normally interrupted by a timer every tick interval. (However, the CPUs in a
multiprocessor are not necessarily synchronized. Different CPUs may take tick
interrupts at a different times.)

During the tick interrupt the kernel updates accounting values, does other housekeeping
work, and chooses which process to run next—usually the interrupted process, unless a
process of superior priority has become ready to run. The tick interrupt is the mechanism
that makes IRIX scheduling “preemptive”; that is, it is the mechanism that allows a
high-priority process to take a CPU away from a lower-priority process.

Before the kernel returns to the chosen process, it checks for pending signals, and may
divert the process into a signal handler.

You can stop the tick interrupt in selected CPUs in order to keep these interruptions from
interfering with real-time programs—see “Making a CPU Nonpreemptive” on page 34.

Time Slices

Each process has a guaranteed time slice, which is the amount of time it is normally
allowed to execute without being preempted. By default the time slice is 3 ticks, or 30 ms.
A typical process is usually blocked for I/O before it reaches the end of its time slice.

At the end of a time slice, the kernel chooses which process to run next on the same CPU
based on process priorities. When runnable processes have the same priority, the kernel
runs them in turn.

Using Priorities and Scheduling Queues

25

Priorities

Every process that is ready to run (not blocked on I/O or a semaphore) is listed in a queue
of processes. When a CPU needs a process to run, it normally takes the one with the
highest priority.

When programming a priority you should never use a constant or absolute number.
Instead, obtain the current, minimum, and maximum priority numbers using the POSIX
function sched_getparam(), sched_get_priority_min(), and
sched_get_priority_max().

Understanding Affinity Scheduling

Affinity scheduling is a special scheduling discipline used in multiprocessor systems.
You do not have to take action to benefit from affinity scheduling, but you should know
that it is done.

As a process executes, it causes more and more of its data and instruction text to be
loaded into the processor cache (see “Reducing Cache Misses” on page 52). This creates
an “affinity” between the process and the CPU. No other process can use that CPU as
effectively, and the process cannot execute as fast on any other CPU.

The IRIX kernel notes the CPU on which a process last ran, and notes the amount of the
affinity between them. Affinity is measured on an arbitrary scale.

When the process gives up the CPU—either because its time slice is up or because it is
blocked—one of three things will happen to the CPU:

• The CPU runs the same process again immediately.

• The CPU spins idle, waiting for work.

• The CPU runs a different process.

The first two actions do not reduce the process’s affinity. But when the CPU runs a
different process, that process begins to build up an affinity while simultaneously
reducing the affinity of the earlier process.

26

Chapter 3: Controlling CPU Workload

As long as a process has any affinity for a CPU, it is dispatched only on that CPU if
possible. When its affinity has declined to zero, the process can be dispatched on any
available CPU. The result of the affinity scheduling policy is that:

• I/O-bound processes, which execute for short periods and build up little affinity,
are quickly dispatched whenever they become ready.

• CPU-bound processes, which build up a strong affinity, are not dispatched as
quickly because they have to wait for “their” CPU to be free. However, they do not
suffer the serious delays of repeatedly “warming up” a cache.

Using Gang Scheduling

You have been advised to design a real-time program as a family of cooperating,
lightweight processes sharing an address space (see, for example, “Lightweight Process
Creation With sproc()” on page 17). These processes typically coordinate their actions
using locks or semaphores (“Interprocess Communication” on page 14).

When process A attempts to seize a lock that is held by process B, one of two things will
happen, depending on whether or not process is B is running concurrently in another
CPU.

• If process B is not currently active, process A spends a short time in a “spin loop”
and then is suspended. The kernel selects a new process to run. Time passes.
Eventually process B runs and releases the lock. More time passes. Finally process A
runs and now can seize the lock.

• When process B is concurrently active on another CPU, it typically releases the lock
while process A is still in the spin loop. The delay to process A is negligible, and the
overhead of multiple passes into the kernel and out again is avoided.

In a system with many processes, the first scenario is common even when processes A,
B, and their siblings have real-time priorities. Clearly it would be better if processes A
and B were always dispatched concurrently.

Gang scheduling achieves this. Any process in a share group can initiate gang
scheduling. Then all the processes that share that address space are scheduled as a unit,
using the priority of the highest-priority process in the gang. IRIX tries to ensure that all
the members of the share group are dispatched when any one of them is dispatched.

Using Priorities and Scheduling Queues

27

You initiate gang scheduling with a call to schedctl(), as sketched in Example 3-1

Example 3-1 Initiating Gang Scheduling

if (-1 == schedctl(SCHEDMODE,SGS_GANG))
{

if (EPERM == errno)
fprintf(stderr,"You forget to suid again\n");

else
perror("schedctl");

}

You can turn gang scheduling off again with another call, passing SGS_FREE in place of
SGS_GANG.

Changing the Time Slice Duration

You can change the length of the time slice for all processes from its default 30ms using
the systune command (see the systune(1) reference page). The kernel variable is
slice_length; its value is the number of tick intervals that comprise a slice. There is
probably no good reason to make a global change of the time-slice length.

You can change the length of the time slice for one particular process using the schectl()
function (see the schedctl(2) reference page). The code would resemble Example 3-2.

Example 3-2 Setting the Time-Slice Length

#include <sys/schedctl.h>
int setMyTimeSliceInTicks(const int ticks)
{

int ret = schedctl(SLICE,0,ticks)
if (-1 == ret)

{ perror("schedctl(SLICE)"); }
return ret;

}

You might lengthen the time slice for the parent of a process group that will be
gang-scheduled (see “Using Gang Scheduling” on page 26). This will keep members of
the gang executing concurrently longer.

28

Chapter 3: Controlling CPU Workload

Minimizing Overhead Work

A certain amount of CPU time must be spent on general housekeeping. Since this work
is done by the kernel and triggered by interrupts, it can interfere with the operation of a
real-time process. However, you can remove almost all such work from designated
CPUs, leaving them free for real-time work.

First decide how many CPUs are required to run your real-time application (regardless
of whether it will be scheduled normally, or as a gang, or by the Frame Scheduler). Then
apply the following steps to isolate and restrict those CPUs. The steps are independent
of each other. Each needs to be done to completely free a CPU.

Assigning the Clock Processor

Every CPU that uses normal IRIX scheduling takes a “tick” interrupt that is the basis of
process scheduling. However, one CPU does additional housekeeping work for the
whole system, on each of its tick interrupts. You can specify which CPU has these
additional duties using the privileged mpadmin command (see the mpadmin(1) reference
page). For example, to make CPU 0 the clock CPU (a common choice), use

mpadmin -c 0

The equivalent operation from within a program uses sysmp() as shown in Example 3-3
(see also the sysmp(2) reference page).

Example 3-3 Setting the Clock CPU

#include <sys/sysmp.h>
int setClockTo(int cpu)
{

int ret = sysmp(MP_CLOCK,cpu);
if (-1 == ret) perror("sysmp(MP_CLOCK)");
return ret;

}

Unavoidable Timer Interrupts

In machines based on the R4x00 CPU, even when the clock and fast timer duties are
removed from a CPU, that CPU still gets an unwanted interrupt as a 5 microsecond
“blip” every 80 seconds. Systems based on the R8000 and R10000 CPUs are not affected,

Minimizing Overhead Work

29

and processes running under the Frame Scheduler are not affected even by this small
interrupt.

Isolating a CPU From Sprayed Interrupts

By default, the Challenge/Onyx hardware directs I/O interrupts from the VME bus to
CPUs in rotation (called spraying interrupts). You do not want a real-time process
interrupted at unpredictable times to handle I/O. The system administrator can isolate
one or more CPUs from sprayed interrupts by placing the NOINTR statement in the
configuration file /var/sysgen/system/irix.sm. The syntax is

NOINTR cpu# [cpu#]...

After modifying irix.sm, rebuild the kernel using the command /etc/autoconfig -vf.

Note: Sprayed interrupts are not an issue with the Origin2000 family.

Assigning Interrupts to CPUs

To minimize the latency of real-time interrupts in the Challenge/Onyx, you can arrange
for the VME bus interrupts with real-time significance to be delivered to a specified CPU
where no other interrupts are handled. This is done with the IPL (Interrupt Priority
Level) statement in the /var/sysgen/system/irix.sm file. The syntax is

IPL level# cpu#

Interrupts with the specified level initiated on any VME bus will be delivered to the
specified CPU. After modifying irix.sm, rebuild the kernel using the command
/etc/autoconfig -vf.

For more on how to handle time-critical interrupts see “Minimizing Interrupt Response
Time” on page 35).

The best way to handle non-critical interrupts is to allow the hardware to “spray” them
to all available CPUs. You can protect specific CPUs from interrupts as discussed under
“Isolating a CPU From Sprayed Interrupts” on page 29.

30

Chapter 3: Controlling CPU Workload

Understanding the Vertical Sync Interrupt

In systems with dedicated graphics hardware, the graphics hardware generates a variety
of hardware interrupts. The most frequent of these is the vertical sync interrupt, which
marks the end of a video frame. The vertical sync interrupt can be used by the Frame
Scheduler as a time base (see “Vertical Sync Interrupt” on page 56). Certain GL and Open
GL functions are internally synchronized to the vertical sync interrupt (for an example,
refer to the gsync(3g) reference page).

All the interrupts produced by dedicated graphics hardware are at an inferior priority
compared to other hardware. All graphics interrupts including the vertical sync
interrupt are directed to CPU 0. They are not “sprayed” in rotation, and they cannot be
directed to a different CPU.

Restricting a CPU From Scheduled Work

For best performance of a real-time process or for minimum interrupt response time, you
need to use one or more CPUs without competition from other scheduled processes. You
can exert three levels of increasing control: restricted, isolated, and nonpreemptive.

In general, the IRIX scheduling algorithms will run a process that is ready to run on any
CPU. This is modified by considerations of

• affinity—CPUs are made to execute the processes that have developed affinity to
them

• processor group assignments—the pset command can force a specified group of
CPUs to service only a given scheduling queue

You can restrict one or more CPUs from running any scheduled processes at all. The only
processes that can use a restricted CPU are processes that you assign to those CPUs.

Note: Restricting a CPU overrides any group assignment made with pset. A restricted
CPU remains part of a group, but does not perform any work you assign to the group
using pset.

You can find out the number of CPUs that exist, and the number that are still unrestricted,
using the sysmp() function as in Example 3-4.

Minimizing Overhead Work

31

Example 3-4 Number of Processors Available and Total

#include <sys/sysmp.h>
int CPUsInSystem = sysmp(MP_NPROCS);
int CPUsNotRestricted = sysmp(MP_NAPROCS);

To restrict one or more CPUs, you can use mpadmin. For example, to restrict CPUs 4 and
5, you can use

mpadmin -r 4
mpadmin -r 5

The equivalent operation from within a program uses sysmp() as in Example 3-5 (see
also the sysmp(2) reference page).

Example 3-5 Restricting a CPU

#include <sys/sysmp.h>
int restrictCpuN(int cpu)
{

int ret = sysmp(MP_RESTRICT,cpu);
if (-1 == ret) perror("sysmp(MP_RESTRICT)");
return ret;

}

You remove the restriction, allowing the CPU to execute any scheduled process, with
mpadmin -u or with sysmp(MP_EMPOWER).

Note: The following points are important to remember:

• The CPU assigned to handle the scheduling clock (“Assigning the Clock Processor”
on page 28) must not be restricted.

• The REACT/Pro Frame Scheduler automatically restricts and isolates any CPU it
uses. See Chapter 4.

Assigning Work to a Restricted CPU

After restricting a CPU, you can assign processes to it using the command runon (see the
runon(1) reference page). For example, to run a program on CPU 3, you could use

runon 3 ~rt/bin/rtapp

The equivalent operation from within a program uses sysmp() as in Example 3-6 (see
also the sysmp(2) reference page).

32

Chapter 3: Controlling CPU Workload

Example 3-6 Assigning the Calling Process to a CPU

#include <sys/sysmp.h>
int runMeOn(int cpu)
{

int ret = sysmp(MP_MUSTRUN,cpu);
if (-1 == ret) perror("sysmp(MP_MUSTRUN)");
return ret;

}

You remove the assignment, allowing the process to execute on any available CPU, with
sysmp(MP_RUNANYWHERE). There is no command equivalent.

The assignment to a specified CPU is inherited by processes created by the assigned
process. Thus if you assign a real-time program with runon, all the processes it creates run
on that same CPU. More often you will want to run multiple processes concurrently on
multiple CPUs. There are three approaches you can take:

1. Use the REACT/Pro Frame Scheduler, letting it restrict CPUs for you.

2. Let the parent process be scheduled normally using a nondegrading real-time
priority. After creating child processes with sproc(), use
schedctl(SCHEDMODE,SGS_GANG) to cause the share group to be
gang-scheduled. Assign a processor group to service the gang-scheduled process
queue.

The CPUs that service the gang queue cannot be restricted. However, if yours is the
only gang-scheduled program, those CPUs will effectively be dedicated to your
program.

3. Let the parent process be scheduled normally. Let it restrict as many CPUs as it will
have child processes. Have each child process invoke sysmp(MP_MUSTRUN,cpu)
when it starts, each specifying a different restricted CPU.

Isolating a CPU From TLB Interrupts

As described under “Translation Lookaside Buffer Updates” on page 13, when the kernel
changes the address space in a way that could invalidate TLB entries held by other CPUs,
it broadcasts an interrupt to all CPUs, telling them to update their translation lookaside
buffers (TLBs).

You can isolate the CPU so that it does not receive broadcast TLB interrupts. When you
isolate a CPU, you also restrict it from scheduling processes. Thus isolation is a superset

Minimizing Overhead Work

33

of restriction, and the comments in the preceding topic, “Restricting a CPU From
Scheduled Work” on page 30, also apply to isolation.

The command is mpadmin -I; the function is sysmp(MP_ISOLATE, cpu#). After isolation,
the CPU will synchronize its TLB and instruction cache only when a system call is
executed. This removes one source of unpredictable delays from a real-time program and
helps minimize the latency of interrupt handling.

Note: The REACT/Pro Frame Scheduler automatically restricts and isolates any CPU it
uses.

When an isolated CPU executes only processes whose address space mappings are fixed,
it receives no broadcast interrupts from other CPUs. Actions by processes in other CPUs
that change the address space of a process running in an isolated CPU can still cause
interrupts at the isolated CPU. Among the actions that change the address space are:

• Causing a page fault. When the kernel needs to allocate a page frame in order to
read a page from swap, and no page frames are free, it invalidates some unlocked
page. This can render TLB and cache entries in other CPUs invalid. However, as
long as an isolated CPU executes only processes whose address spaces are locked in
memory, such events cannot affect it.

• Extending a shared address space with brk(). Allocate all heap space needed before
isolating the CPU.

• Using mmap(), munmap(), mprotect(), shmget(), or shmctl() to add, change or
remove memory segments from the address space; or extending the size of a
mapped file segment when MAP_AUTOGROW was specified and MAP_LOCAL
was not. All memory segments should be established before the CPU is isolated.

• Starting a new process with sproc(), thus creating a new stack segment in the shared
address space. Create all processes before isolating the CPU; or use sprocsp()
instead, supplying the stack from space allocated previously.

• Accessing a new DSO using dlopen() or by reference to a delayed-load external
symbol (see the dlopen(3) and DSO(5) reference pages). This adds a new memory
segment to the address space but the addition is not reflected in the TLB of an
isolated CPU.

• Calling cacheflush() (see the cacheflush(2) reference page).

• Using DMA to read or write the contents of a large (many-page) buffer. For speed,
the kernel temporarily maps the buffer pages into the kernel address space, and
unmaps them when the I/O completes. However, these changes affect only kernel

34

Chapter 3: Controlling CPU Workload

code. An isolated CPU processes a pending TLB flush when the user process enters
the kernel for an interrupt or service function.

Isolating a CPU When Performer™ Is Used

The Performer™ graphics library supplies utility functions to isolate CPUs and to assign
Performer processes to the CPUs. You can read the code of these functions in the file
/usr/src/Performer/src/lib/libpfutil/lockcpu.c. They use CPUs starting with CPU number 1
and counting upward. The functions can restrict as many as 1+2×pipes CPUs, where pipes
is the number of graphical pipes in use (see the pfuFreeCPUs(3pf) reference page for
details). The functions assume these CPUs are available for use.

If your real-time application uses Performer for graphics—which is the recommended
approach for high-performance simulators—you should use the libpfutil functions with
care. Possibly you will need to replace them with functions of your own. Your functions
can take into account the CPUs you reserve for other time-critical processes. If you
already restrict one or more CPUs, you can use a Performer utility function to assign
Performer processes to those CPUs.

Making a CPU Nonpreemptive

After a CPU has been isolated, you can turn off the dispatching “tick” for that CPU (see
“Tick Interrupts” on page 24). This eliminates the last source of overhead interrupts for
that CPU. It also ends preemptive process scheduling for that CPU. This means that the
process now running will continue to run until

• it gives up control voluntarily by blocking on a semaphore or lock, requesting I/O,
or calling sginap()

• it calls a system function and, when the kernel is ready to return from the system
function, a process of higher priority is ready to run

Some effects of this change within the specified CPU include the following:

• IRIX will no longer age degrading priorities. Priority ageing is done on clock tick
interrupts.

• IRIX will no longer preempt a low-priority process when a high-priority process
becomes runnable, except when the low-priority process calls a system function.

• Signals (other than SIGALARM) can only be delivered after I/O interrupts or on
return from system calls. This can extend the latency of signal delivery.

Minimizing Interrupt Response Time

35

Normally an isolated CPU runs only a few, related, time-critical processes that have
equal priorities, and that coordinate their use of the CPU through semaphores or locks.
When this is the case, the loss of preemptive scheduling is outweighed by the benefit of
removing the overhead and unpredictability of interrupts.

To make a CPU nonpreemptive you can use mpadmin. For example, to isolate CPU 3 and
make it nonpreemptive, you can use

mpadmin -I 3
mpadmin -D 3

The equivalent operation from within a program uses sysmp() as shown in Example 3-7
(see the sysmp(2) reference page).

Example 3-7 Making a CPU nonpreemptive

#include <sys/sysmp.h>
int stopTimeSlicingOn(int cpu)
{

int ret = sysmp(MP_NONPREEMPTIVE,cpu);
if (-1 == ret) perror("sysmp(MP_NONPREEMPTIVE)");
return ret;

}

You reverse the operation with sysmp(MP_PREEMPTIVE) or with mpadmin -C.

Minimizing Interrupt Response Time

Interrupt response time is the time that passes between the instant when a hardware device
raises an interrupt signal, and the instant when—interrupt service completed—the
system returns control to a user process. IRIX guarantees a maximum interrupt response
time on certain systems, but you have to configure the system properly to realize the
guaranteed time.

Maximum Response Time Guarantee

In Challenge/Onyx and POWER-Challenge systems, interrupt response time is
guaranteed not to exceed 200 microseconds in a properly configured system. The
guarantee for Origin2000 and Onyx2 is the same (these systems generally achieve shorter
response times in practice).

36

Chapter 3: Controlling CPU Workload

This guarantee is important to a real-time program because it puts an upper bound on
the overhead of servicing interrupts from real-time devices. You should have some idea
of the number of interrupts that will arrive per second. Multiplying this by 200
microseconds yields a conservative estimate of the amount of time in any one second
devoted to interrupt handling in the CPU that receives the interrupts. The remaining
time is available to your real-time application in that CPU.

Components of Interrupt Response Time

The total interrupt response time includes these sequential parts:

The parts are diagrammed in Figure 3-1 and discussed in the following topics.

Hardware latency The time required to make a CPU respond to an
interrupt signal.

Software latency The time to set aside other work and enter the
device driver code.

Device service time The time the device driver spends processing the
interrupt, which must be minimal.

Dispatch cycle time The time to choose the next user process to run,
and to return to its code.

Minimizing Interrupt Response Time

37

Figure 3-1 Components of Interrupt Response Time

Hardware Latency

When an I/O device requests an interrupt, it activates a line in the VME or PCI bus
interface. The bus adapter chip places an interrupt request on the system internal bus.
Some CPU accepts the interrupt request.

The time taken for these events is the hardware latency, or interrupt propagation delay.
In the Challenge/Onyx, the typical propagation delay is 2 microseconds. The worst-case
delay can be much greater. The worst-case hardware latency can be significantly reduced
by not placing high-bandwidth DMA devices such as graphics or HIPPI interfaces on the
same hardware unit (POWERChannel-2 in the Challenge, module and hub chip in the
Origin) used by the interrupting devices.

CPU
Reacts

Enter
User
Code

Exit
Device
Driver

Enter
Device
Driver

Device
Raises
Interrupt

Hardware
Latency

Software
Latency

Dispatch
Cycle

Device
Service

Kernel Critical Section

Other Device Service

Mode Switch

Mode
Switch

Switch
Process

(optional)

Adjust
Scheduler

Queue

38

Chapter 3: Controlling CPU Workload

Software Latency

Some instructions have to be executed before control reaches the device driver. When the
interrupt arrives, the software will be in one of three states:

• executing user code or noncritical kernel code

Entry to the device driver requires only a mode switch, a small number of
instructions.

• executing a critical section in the kernel

The kernel masks interrupts while in critical sections. The mode switch occurs when
the critical section ends.

• executing another device driver at the same or higher interrupt level

The mode switch occurs when the other device service ends.

Kernel Critical Sections

Most of the IRIX kernel code is noncritical and executed with interrupts enabled.
However, certain sections of kernel code depend on exclusive access to shared resources.
Spin locks are used to control access to these critical sections. Once in a critical section,
the interrupt level is raised in that CPU. New interrupts are not serviced until the critical
section is complete.

Although most kernel critical sections are short, there is no guarantee on the length of a
critical section. In order to achieve 200 microsecond response time, your real-time
program must avoid executing system calls on the CPU where interrupts are handled.
The way to ensure this is to restrict that CPU from running normal processes (see
“Restricting a CPU From Scheduled Work” on page 30) and isolate it from TLB interrupts
(see “Isolating a CPU From TLB Interrupts” on page 32)—or to use the Frame Scheduler.

You may need to dedicate a CPU to handling interrupts. However, if the
interrupt-handling CPU has power well above that required to service interrupts—and
if your real-time process can tolerate interruptions for interrupt service—you can use the
isolated CPU to execute real-time processes. If you do this, the processes that use the CPU
must avoid system calls that do I/O or allocate resources, for example fork(), brk(), or
mmap(). The processes must also avoid generating external interrupts with long pulse
widths (see “External Interrupts” on page 120).

Minimizing Interrupt Response Time

39

In general, processes in a CPU that services time-critical interrupts should avoid all
system calls except those for interprocess communication and for memory allocation
within an arena of fixed size.

Service Time for Other Devices

While a device driver interrupt handler is executing, interrupts at the same or inferior
priority are masked. During the interrupt handling, devices at a superior priority can
interrupt and be handled. When the interrupt handler exits, interrupts are unmasked.
Any pending interrupt at the same or inferior priority will then be taken before the kernel
returns to the interrupted process. Thus the handling of an interrupt could be delayed by
one or more device service times at either a superior or an inferior priority level.

Since device drivers are often provided by third parties, there is no guarantee on the
service time of a device. In order to achieve 200 microsecond response time, you must
ensure that the time-critical devices supply the only interrupts directed to that CPU. The
system administrator assigns interrupt levels to devices using the VECTOR statement in
the /var/sysgen/system file. Then the assigned level is directed to a CPU using the IPL
statement (see “Assigning Interrupts to CPUs” on page 29).

Device Service Time

The time spent servicing an interrupt should be negligible. The interrupt handler should
do very little processing, only wake up a sleeping user process and possibly start another
device operation. Time-consuming operations such as allocating buffers or locking down
buffer pages should be done in the request entry points for read(), write(), or ioctl().
When this is the case, device service time is minimal.

Device drivers supplied by SGI indeed spend negligible time in interrupt service. Device
drivers from third parties are an unknown quantity. Hence the 200 microsecond
guarantee is not in force when third-party device drivers are used on the same CPU at a
superior priority to the time-critical interrupts.

Dispatch Cycle

When the device driver interrupt handler exits, the kernel returns to a user process. This
may be the same process that was interrupted, or a different one.

40

Chapter 3: Controlling CPU Workload

Adjust Scheduler Queue

Typically, the result of the interrupt is to make a sleeping process runnable. The runnable
process is entered in one of the scheduler queues. (This work may be done while still
within the interrupt handler, as part of a device driver library routine such as wakeup().)

Switch Processes

If the CPU was idling when the interrupt arrived, and if the interrupt has made a process
runnable, the kernel spends some time setting up the context of the process to be run.

If the CPU has not been made nonpreemptive (see “Making a CPU Nonpreemptive” on
page 34), and if the interrupt has made a superior-priority process runnable, the
interrupted process will be preempted. The kernel has to save the context of the
inferior-priority process before setting up the context of the new process.

If the CPU has been made nonpreemptive, there is no process switch. The kernel always
returns to the interrupted process, if there was one.

In short, the kernel may spend time saving the context of one process, and may spend
time setting up the context of another process.

Note: In a CPU controlled by the Frame Scheduler, control always returns to the
interrupted process in minimal time.

Mode Switch

A number of instructions are required to exit kernel mode and resume execution of the
user process. Among other things, this is the time the kernel looks for software signals
addressed to this process, and redirects control to the signal handler. If a signal handler
is to be entered, the kernel might have to extend the size of the stack segment. (This
cannot happen if the stack was extended before it was locked; see “Locking Program Text
and Data” on page 50.)

Minimal Interrupt Response Time

To summarize, you can ensure interrupt response time of less than 200 microseconds for
one specified device interrupt provided you configure the system as follows:

Minimizing Interrupt Response Time

41

• The interrupt is directed to a specific CPU, not “sprayed”; and is the
highest-priority interrupt received by that CPU.

• The interrupt is handled by an SGI-supplied device driver, or by a device driver
from another source that promises negligible processing time.

• That CPU does not receive any other “sprayed” interrupts.

• That CPU is restricted from executing general UNIX processes, isolated from TLB
interrupts, and made nonpreemptive—or is managed by the Frame Scheduler.

• Any process you assign to that CPU avoids system calls other than interprocess
communication and allocation within an arena.

When these things are done, interrupts are serviced in minimal time.

Tip: If interrupt service time is a critical factor in your design, consider the possibility of
using VME programmed I/O to poll for data, instead of using interrupts. It takes at most
4 microseconds to poll a VME bus address (see “PIO Access” on page 115). A polling
process can be dispatched one or more times per frame by the Frame Scheduler with low
overhead.

43

Chapter 4

4. Using the Frame Scheduler

The REACT/Pro Frame Scheduler makes it easy to structure a real-time program as a
family of independent, cooperating processes, running on multiple CPUs, scheduled in
sequence at the frame rate of the application. For an overview of the Frame Scheduler,
see “REACT/Pro Frame Scheduler” on page 10.

This chapter contains details on the operation and use of the Frame Scheduler, under
these main headings:

• “Frame Scheduler Concepts” on page 44 details the operation and methods of the
Frame Scheduler.

• “Selecting a Time Base” on page 55 covers the important choice of which source of
interrupts should define a frame interval.

• “Using the Scheduling Disciplines” on page 57 explains the options for scheduling
activities of different kinds.

• “Preparing the System” on page 61 reviews the system administration steps needed
to prepare the CPUs that the Frame Scheduler will use.

• “Implementing a Single Frame Scheduler” on page 62 outlines the structure of an
application that uses one CPU.

• “Implementing Synchronized Schedulers” on page 63 outlines the structure of an
application that needs the power of multiple CPUs.

• “Handling Frame Scheduler Exceptions” on page 66 describes how overrun and
underrun exceptions are dealt with.

• “Using Signals Under the Frame Scheduler” on page 70 discusses the issue of signal
latency and the signals the Frame Scheduler generates.

• “Using Timers with the Frame Scheduler” on page 73 covers the use of itimers with
the Frame Scheduler.

• “The Frame Scheduler Device Driver Interface” on page 74 documents the way that
a kernel-level device driver can generate time-base interrupts for a Frame
Scheduler.

44

Chapter 4: Using the Frame Scheduler

Frame Scheduler Concepts

One Frame Scheduler dispatches selected processes at a real-time rate on one CPU. You
can also create multiple, synchronized Frame Schedulers so as to dispatch concurrent
processes on multiple CPUs.

Frame Scheduler Basics

A Frame Scheduler takes over the scheduling and dispatching of processes on one CPU.
It isolates the CPU (see “Isolating a CPU From TLB Interrupts” on page 32), and
completely supersedes the operation of the normal IRIX scheduler on that CPU. Only
processes enqueued to the Frame Scheduler can use the CPU. IRIX dispatching priorities
are not relevant on that CPU.

The execution of normal processes, daemons, and pending timeouts are all migrated to
other CPUs—typically to CPU 0, which cannot be owned by a Frame Scheduler. All
interrupt handling is usually directed away from a Frame Scheduler CPU as well (see
“Preparing the System” on page 61). However, a Frame Scheduler CPU can be used to
handle interrupts, although doing so runs a risk of causing overruns.

Frame Scheduling

Instead of scheduling processes according to priorities with an attempt at fairness, the
Frame Scheduler dispatches them according to a strict, cyclic rotation governed by a
repetitive time base. The time base determines the fundamental frame rate. (See
“Selecting a Time Base” on page 55.)

The interrupts from the time base define minor frames. You tell the Frame Scheduler a
fixed number of minor frames that should be considered a major frame. The length of a
major frame defines the application’s true frame rate. The minor frames allow you to
divide a major frame into sub-frames. Major and minor frames are depicted in Figure 4-1.

Frame Scheduler Concepts

45

Figure 4-1 Major and Minor Frames

As pictured in Figure 4-1, the Frame Scheduler maintains a queue of processes for each
minor frame. You enqueue each activity processes of your program to a specific minor
frame. You determine the order of cyclic execution within a minor frame by the order in
which you enqueue processes. You can:

• Enqueue multiple processes in one minor frame. They are run in queue sequence
within the frame. All must complete their work within the minor frame interval.

• Enqueue the same process to run in more than one minor frame. Say that process
double is to run twice as often as process solo. You could enqueue double to Q0 and
Q2 in Figure 4-1, and enqueue solo to Q1.

• Enqueue a process that takes more than a minor frame to complete its work. If
process sloth could need more than one minor interval, you could enqueue it to Q0,
Q1 and Q2 in Figure 4-1, such that it would be able to continue working in all three
minor frames until it completed.

• Enqueue a background process that is allowed to run only when all others have
completed, to use up any remaining time within a minor frame.

All these options are controlled by scheduling disciplines you specify for each process as
you enqueue it (see “Using the Scheduling Disciplines” on page 57).

Q0 Q1 Q2

TIME

Major frame

Minor−0 Minor−1 Minor−2 Minor−0 Minor−1 Minor−2

Major frame

Real−time event interrupts

Process queues

46

Chapter 4: Using the Frame Scheduler

The processes that a Frame Scheduler dispatches are typically child processes of the
process that creates the Frame Scheduler, but that is not a requirement. Any process can
be enqueued, even one that starts execution as a separate command.

The FRS Control Process

The process that creates a Frame Scheduler is called the frs control process. It is privileged
in three respects:

• Its process ID (PID) is used to identify its Frame Scheduler in various functions.

• It can receive signals when errors are detected by the Frame Scheduler (see “Using
Signals Under the Frame Scheduler” on page 70).

• It cannot itself be enqueued to the Frame Scheduler. It continues to be dispatched by
IRIX. It executes on some other CPU than the one the Frame Scheduler uses.

The Frame Scheduler API

The details of the Frame Scheduler API can be found in the frs(3) reference page. The API
elements are declared in /usr/include/sys/frs.h. The following are some important types are
declared in /usr/include/sys/frs.h:

typedef frs_fsched_info_t A structure containing information about one scheduler,
including its CPU number, time base, and number of minor
frames. Used when creating a Frame Scheduler.

typedef frs_t A structure containing an frs_fsched_info_t and the process
ID of the frs control of the master Frame Scheduler. Used to
create or specify any Frame Scheduler.

typedef frs_queue_info_t A structure containing information about one activity
process: the Frame Scheduler and minor frame it uses and its
scheduling discipline. Used when enqueuing a process.

typedef frs_recv_info_t A structure containing error recovery options.

Frame Scheduler Concepts

47

Library Interface for C Programs

The API library functions in /usr/lib/libfrs.so are summarized in Table 4-1 on “Library
Interface for C Programs” on page 47 for convenient reference.

Table 4-1 Frame Scheduler Operations

Operation Application Interface Options

Create a Frame Scheduler frs_t* frs_create(int cpu, int intr_source, int intr_qualifier, int n_minors,
pid_t sync_master_pid, int num_slaves);
frs_t* frs_create_master(int cpu, int intr_source, int intr_qualifier, int n_minors,
int num_slaves);
frs_t* frs_create_slave(int cpu, frs_t* sync_master_frs);

Enqueue an activity process to a Frame
Scheduler

int frs_enqueue(frs_t* frs, pid_t pid, int minor_index, uint discipline);

Join a Frame Scheduler (activity is ready to start) int frs_join(frs_t* frs);

Start scheduling (all activities enqueued) int frs_start(frs_t* frs);

Yield control after completing activity int frs_yield(void);

Pause scheduling at end of minor frame int frs_stop(frs_t* frs);

Resume scheduling at next time-base interrupt int frs_resume(frs_t* frs):

Destroy a Frame Scheduler and send SIGKILL to
its FRS control process

int frs_destroy(frs_t* frs);

Interrogate a process queue int frs_getqueuelen(frs_t* frs, int minor_index);
int frs_readqueue(frs_t* frs, int minor_index, pid_t* pidlist);

Remove a process from a queue int frs_premove(frs_t* frs, int minor_index, pid_t remove_pid);

Reinsert a process in a queue, possibly changing
discipline

int frs_pinsert(frs_t* frs, int minor_index, pid_t insert_pid, int discipline, pid_t
base_pid);

Retrieve error-recovery options int frs_getattr(frs_t* frs, int minor_index, pid_t pid, frs_attr_t att_index, void*
options);

Set error-recovery options int frs_setattr(frs_t* frs, int minor_index, pid_t pid, frs_attr_t att_index, void*
options);

48

Chapter 4: Using the Frame Scheduler

System Call Interface for Fortran and Ada

Each Frame Scheduler function is available in two ways: as a system call to schedctl(), or
as one or more library calls to functions in the frs library, /usr/lib/libfrs.so. The system call
is accessible from FORTRAN and Ada programs because both languages have bindings
for schedctl() (see the schedctl(2) reference page). The correspondence between the
library functions and schedctl() calls is shown in Table 4-2.

Table 4-2 Frame Scheduler schedctl() Support

Library Function Schedctl Syntax

frs_create() int schedctl(MPTS_FRS_CREATE, frs_info_t* frs_info);

frs_enqueue() int schedctl(MPTS_FRS_ENQUEUE, frs_queue_info_t* frs_queue_info);

frs_join() int schedctl(MPTS_FRS_JOIN, pid_t frs_master);

frs_start() int schedctl(MPTS_FRS_START, pid_t frs_master);

frs_yield() int schedctl(MPTS_FRS_YIELD);

frs_stop() int schedctl(MPTS_FRS_STOP, pid_t frs_master);

frs_resume() int schedctl(MPTS_FRS_RESUME, pid_t frs_master);

frs_destroy() int schedctl(MPTS_FRS_DESTROY, pid_t frs_master);

frs_getqueuelen() int schedctl(MPTS_FRS_GETQUEUELEN, frs_queue_info_t* frs_queue_info);

frs_readqueue() int schedctl(MPTS_FRS_READQUEUE, frs_queue_info_t* frs_queue_info,
pid_t* pidlist);

frs_premove() int schedctl(MPTS_FRS_PREMOVE, frs_queue_info_t* frs_queue_info);

frs_pinsert() int schedctl(MPTS_FRS_PINSERT, frs_queue_info_t* frs_queue_info,
pid_t *base_pid);

frs_getattr() int schectl(MPTS_FRS_GETATTR, frs_attr_info_t* frs_attr_info);

frs_setattr() int schectl(MPTS_FRS_SETATTR, frs_attr_info_t* frs_attr_info);

Frame Scheduler Concepts

49

Process Execution

An activity process that is enqueued to a Frame Scheduler has the basic structure shown
in Example 4-1.

Example 4-1 Skeleton of an Activity Process

/* Initialize data structures etc. */
frs_join(scheduler-handle)
do
{

/* Perform the activity. */
frs_yield();

} while(1);
_exit();

When the process is ready to start real-time execution, it calls frs_join(). This call blocks
until all enqueued processes are ready and scheduling begins (see “Starting Multiple
Schedulers” on page 53). When frs_join() returns, the process is running in its first
minor-frame execution.

The process then performs whatever activity it is supposed to complete in each minor
frame. When it completes that work, it calls frs_yield(). This gives up control of the CPU
until the next minor frame in which the process is enqueued.

An activity process is never preempted. As long as it yields before the end of the frame,
it can do its assigned work without interruption from other processes (it can be
interrupted by hardware interrupts, if any hardware interrupts are allowed in that CPU).
The Frame Scheduler preempts the process at the end of the minor frame.

Tip: Because an activity process cannot be preempted, it can often use global data
without locks or semaphores. When the process that modifies a global variable is
enqueued in a different minor frame from the processes that read the variable, there can
be no access conflicts between them.

Conflicts are still possible between two processes that are queued to the same minor
frame in different, synchronized Frame Schedulers. However, such processes are
guaranteed to be running concurrently. This means they can use spin-locks (see “Locks”
on page 15) with high efficiency.

50

Chapter 4: Using the Frame Scheduler

Tip: When a very short minor frame interval is used, it is possible for a process to have
an overrun error in its first frame due to cache misses. A simple variation on the basic
structure shown in Example 4-1 is to spend the first minor frame touching a set of
important data structures in order to “warm up” the cache (see “Reducing Cache Misses”
on page 52). This is sketched in Example 4-2.

Example 4-2 Alternate Skeleton of Activity Process

/* Initialize data structures etc. */
frs_join(scheduler-handle); /* Much time could pass here. */
/* First frame: merely touch important data structures. */
do
{

frs_yield();
/* Second and later frames: perform the activity. */

} while(1);
_exit();

When an activity process is scheduled on more than one minor frame in a major frame,
it can be designed to do nothing except warm the cache in the entire first major frame. To
do this, the activity process function has to know how many minor frames it is scheduled
on, and calls frs_yield() that many times in order to pass the first major frame.

Scheduling Within a Minor Frame

Processes in a minor frame queue are dispatched in queue order. Initially, queue order is
the order in which processes are named in frs_enqueue() calls. (The queues can be
reordered dynamically; see “Managing Activity Processes” on page 54.)

Scheduler Flags frs_run and frs_yield

The Frame Scheduler keeps two status flags per queued process, named frs_run and
frs_yield. If a process is ready to run when its turn comes, it is dispatched and its frs_run
flag is set to indicate that this process has run at least once within this minor frame.

When a process yields, its frs_yield flag is set to indicate that the process has released the
processor. It will not be activated again within this minor frame.

If a process is not ready (usually because it is blocked waiting for I/O, a semaphore, or a
lock), it is skipped. Upon reaching the end of the queue, the scheduler goes back to the
beginning, in a round-robin fashion, searching for processes that have not yielded and

Frame Scheduler Concepts

51

may have become ready to run. If no ready processes are found, the Frame Scheduler
goes into idle mode until a process becomes available or until an interrupt marks the end
of the frame.

Detecting Overrun and Underrun

When a time base interrupt occurs to indicate the end of the minor frame, the Frame
Scheduler checks the flags for each process. If the frs_run flag has not been set, that
process never ran and therefore is a candidate for an underrun exception. If the frs_run
flag is set but the frs_yield flag is not, the process is a candidate for an overrun exception.

Whether these exceptions are declared depends on the scheduling discipline assigned to
the process. Scheduling disciplines are explained under “Using the Scheduling
Disciplines” on page 57).

At the end of a minor frame, the Frame Scheduler resets all frs_run flags, except for those
of processes that use the Continuable discipline in that minor frame. For those processes,
the residual frs_yield flags keeps the processes that have yielded from being dispatched
in the next minor frame.

Underrun and overrun exceptions are typically communicated via IRIX signals. The
rules for sending these signals are covered under “Using Signals Under the Frame
Scheduler” on page 70.

Estimating Available Time

It is up to you to make sure that all the processes equeued to any minor frame can
actually complete their work in one minor-frame interval. If there is too much work for
the available CPU cycles, overrun errors will occur.

Estimation is simplified by the fact that only the enqueued processes can execute in a
CPU controlled by the Frame Scheduler. You need to estimate the maximum time each
process can consume between one call to frs_yield() and the next.

Frame Scheduler processes do compete for CPU cycles with I/O interrupt service in the
same CPU. If you direct I/O interrupts away from the CPU (see “Isolating a CPU From
Sprayed Interrupts” on page 29 and “Assigning Interrupts to CPUs” on page 29), then
the only competition for CPU cycles (other than a very few essential TLB interrupts) is
the overhead of the Frame Scheduler itself, and it has been carefully optimized for least
overhead.

52

Chapter 4: Using the Frame Scheduler

Alternatively, you may assign specific I/O interrupts to a CPU used by the Frame
Scheduler. In that case, you must estimate the time that interrupt service will consume
(see “Maximum Response Time Guarantee” on page 35) and allow for it.

Using Multiple Synchronized Schedulers

When the activities of one frame cannot be completed by one CPU, you need to recruit
additional CPUs and execute some activities concurrently. However, it is important that
each of the CPUs have the same time base, so that each starts and ends frames at the same
time.

You can create one master Frame Scheduler, which owns the time base and one CPU, and
as many synchronized Frame Schedulers as you need, each managing an additional
CPU. The synchronized schedulers take their time base from the master, so that all start
minor frames at the same instant.

Each Frame Scheduler has its own queues of processes. A given process can be enqueued
to only one CPU. (However, you could create multiple processes based on the same code,
and enqueue each to a different CPU.) All synchronized Frame Schedulers use the same
number of minor frames per major frame, which is taken from the definition of the
master FRS.

A process can have the FRS control relationship to only one Frame Scheduler. In order to
create multiple, synchronized Frame Schedulers, you must create a process to be the FRS
controller of each one. Typically these will be lightweight processes created with sproc().

Starting a Single Scheduler

A single Frame Scheduler comes into existence when the FRS control process calls
frs_create(). Then the FRS controller calls frs_enqueue() one or more times to tell the new
Frame Scheduler the PID values of the processes that it will schedule. The FRS controller
calls frs_start() when it has enqueued all the processes. Each scheduled process must call
frs_join() when it has initialized itself and is ready to be scheduled.

The Frame Scheduler requires the frs_enqueue() call for a given PID to precede the
frs_join() call from the same PID. That is, an activity process cannot join the scheduler
until the FRS controller has enqueued it—the frs_join() returns an error unless the calling
process has been enqueued. After the Frame Scheduler receives the frs_start() call it

Frame Scheduler Concepts

53

waits until all enqueued processes have called frs_join(); then it begins the first minor
frame.

Note: In version 1.0, 1.1, and 2.0 of REACT/Pro (the versions used with IRIX prior to
version 6.2), the Frame Scheduler allowed a process to join prior to the enqueue. This
flexibility was removed in version 3.0 (for IRIX 6.2) in order to simplify the
implementation and to improve performance.

Starting Multiple Schedulers

A Frame Scheduler cannot start dispatching activities until

• the FRS controller has enqueued all the activity processes to their minor frames

• all the enqueued processes have done their own initial setup and have joined.

When multiple Frame Schedulers are used, none can start until all are ready.

Each FRS controller tells its Frame Scheduler that it has enqueued all activities by calling
frs_start(). Each activity process tells its Frame Scheduler that it is ready to begin
real-time processing by calling frs_join().

A Frame Scheduler is ready when it has received one or more frs_enqueue() calls, an
appropriate number of frs_join() calls, and an frs_start() call. Each synchronized Frame
Scheduler tells the master Frame Scheduler when it is ready. When all the schedulers are
ready, the master Frame Scheduler gives the downbeat, and the first minor frame begins.

Pausing Frame Schedulers

Any Frame Scheduler can be made to pause and restart. Any process (typically but not
necessarily the FRS controller) can call frs_stop(), specifying a particular Frame
Scheduler. That scheduler continues dispatching processes from the current minor frame
until all have yielded. Then it goes into an idle loop until a call to frs_resume() tells it to
start. It resumes on the next time-base interrupt, with the next minor frame in succession.

Note: If there is a process running Background discipline in the current minor frame, it
will continue to execute until it yields or is blocked on a system service.

Since a Frame Scheduler does not stop until the end of a minor frame, you can stop and
restart a group of synchronized schedulers by calling frs_stop() for each one before the

54

Chapter 4: Using the Frame Scheduler

end of a minor frame. There is no way to restart all of a group of schedulers with the
certainty that they start up on the same time-base interrupt.

Managing Activity Processes

The FRS control process creates the initial set of activity processes by calling
frs_enqueue() prior to starting the Frame Scheduler. All the enqueued processes must
call frs_join() before scheduling can begin. However, the FRS controller can change the
set of activity processes dynamically while the Frame Scheduler is working, using the
following functions:

Using these functions, the FRS controller can change the queueing discipline of a process
(by removing it and inserting it with a new discipline). The FRS controller can suspend
a process by removing it from its queue; or can restart a process by putting it back in its
queue.

Note: When an activity process is removed from the last or only queue it was in, it is
returned to the normal IRIX scheduler and can begin to execute on some other
CPU.When an activity process is removed from a queue, a signal may be sent to the
removed process (see “Handling Signals in an Activity Process” on page 71). If a signal
is sent to it, it will begin executing in its specified or default signal handler; otherwise, it
will simply begin executing following frs_yield(). Once returned to the IRIX scheduler,
a call to an FRS function such as frs_yield() returns an error (this also can be used to
indicate the resumption of normal scheduling).

The FRS controller can also enqueue new processes that have not been scheduled before.
The Frame Scheduler does not reject an frs_pinsert() call for a process that has not yet
joined the scheduler. However, a process must call frs_join() before it can be scheduled.

If an enqueued process should be terminated for any reason, the Frame Scheduler
removes the process from all queues in which it appears.

frs_getqueuelen() Get the number of processes currently in the queue for a
specified minor frame.

frs_readqueue() Return the PID values of all queued processes for a specified
minor frame as a vector of integers.

frs_premove() Remove a process (specified by PID) from a minor frame queue.

frs_pinsert() Insert a process (specified by PID and discipline) into a given
position in a minor frame.

Selecting a Time Base

55

Selecting a Time Base

Your program specifies an interrupt source to be the time base when it creates the master
(or only) Frame Scheduler. The master Frame Scheduler initializes the necessary
hardware resources and redirects the interrupt to the appropriate CPU and handler.

The Frame Scheduler time base is fundamental because it determines the duration of a
minor frame, and hence the frame rate of the program. This section explains the different
time bases available.

When you use multiple, synchronized Frame Schedulers, the master Frame Scheduler
creates an interrupt group, a hardware mechanism that distributes the time-base interrupt
to each synchronized CPU. This ensures that minor-frame boundaries are synchronized
across all the Frame Schedulers. (For details of the interrupt group mechanism, you can
read “Group Interrupts on Challenge and Onyx Systems,” a technical paper distributed
with the REACT/Pro product.)

On-Chip Timer Interrupt

Each processor chip contains a free-running timer that is used by IRIX for normal process
scheduling. This timer is not synchronized between processors, so it cannot be used to
drive multiple synchronized schedulers. The on-chip timer can be used as a time base
when only one CPU is used and there is a reason to not use the high-precision timer
described in the next topic.

To use the on-chip timer, specify FRS_INTRSOURCE_R4KTIMER as the interrupt source,
and the minor frame interval in microseconds, to frs_create().

High-Resolution Timer

The high-resolution timer and clock is a timer that is synchronous across all processors,
and is ideal to drive synchronous schedulers. On Challenge and Onyx systems this timer
is based on the high resolution counter discussed under “Hardware Cycle Counter” on
page 19.

To use this timer, specify FRS_INTRSOURCE_CCTIMER, and the minor frame interval
in microseconds, to frs_create().

56

Chapter 4: Using the Frame Scheduler

The IRIX kernel uses this timer for managing timer events. When your program creates
the master Frame Scheduler, the Frame Scheduler migrates all timeout events to CPU 0,
leaving the timer on the scheduled CPU free.

An interrupt group is not required to coordinate multiple Frame Schedulers when this
time base is used. The high-resolution timers in all CPUs are synchronized automatically.

Vertical Sync Interrupt

An interrupt is generated for every vertical retrace by the graphics subsystem (see
“Understanding the Vertical Sync Interrupt” on page 30). The frame rate will be either 50
Hz or 60 Hz, depending on the installed hardware. This interrupt is especially
appropriate for a visual simulator, since it defines a frame rate that matches the graphics
subsystem frame rate.

To use the vertical sync interrupt, specify FRS_INTRSOURCE_VSYNC to frs_create().
An error is returned if this system lacks a graphics subsystem.

When multiple synchronized schedulers are used, the master Frame Scheduler allocates
an interrupt group to distribute the vertical sync interrupt.

External Interrupts

An external interrupt is generated via a signal applied to the external interrupt sockets
on a Challenge or Onyx system (see “External Interrupts” on page 120). To use external
interrupts as a time base, specify FRS_INTRSOURCE_EXTINTR to frs_create().

When multiple synchronized schedulers are used, the master Frame Scheduler receives
the interrupt, and allocates an interrupt group that is used to make the interrupt
simultaneously available to the synchronized schedulers.

Note: External output signals can be generated by software using ioctl() to the external
interrupt driver. An imaginative designer might think of connecting an external output
jack to an external interrupt input jack on the same system, thus creating
software-controlled external interrupts as an FRS time base. This would work in
principle. However, if user process generating the interrupts are generated by a user
process that makes any other system calls, there is a possibility of system deadlock.

Using the Scheduling Disciplines

57

Device Driver Interrupt

A user-written, kernel-level device driver can supply the time-base interrupt (see “The
Frame Scheduler Device Driver Interface” on page 74). The Frame Scheduler allocates an
interrupt group. The device driver must direct interrupts to it.

To use a device driver as a time base, specify FRS_INTRSOURCE_DRIVER and the
device driver’s identifying number, to frs_create().

Software Interrupt

A programmed, software-generated interrupt can be used as the time base. Any user
process can send this interrupt to the master Frame Scheduler by calling frs_userintr().

Note: Software interrupts are primarily intended for application debugging. It is not
feasible for a user process to generate interrupts with the kind of regularity that a
real-time scheduler requires.

To use software interrupts as a time base, specify FRS_INTRSOURCE_USER to
frs_create().

Caution: The use of software interrupts has a potential for causing a system deadlock if
the interrupt-generating process contends for a resource that is also used by a
frame-scheduled activity process. If any activity process calls IRIX system functions, the
only way to be absolutely sure of avoiding deadlock is for the interrupt-generating
process to avoid using any IRIX system functions. Note that C library functions such as
printf() invoke system functions, and can lead to deadlocks in this case.

Using the Scheduling Disciplines

When an FRS control process enqueues a process to a minor frame (using frs_enqueue()),
it must specify a scheduling discipline that tells the Frame Scheduler how the process is
expected to use its time within that minor frame.

58

Chapter 4: Using the Frame Scheduler

Realtime Discipline

In the simplest case, an activity process should start during the minor frame to which it
is queued, and should complete its work and yield within the same minor frame.

If the process is not ready to run (for example, is blocked on I/O) during the entire minor
frame, an underrun exception is said to occur. If the process fails to complete its work and
yield within the minor frame interval, an overrun exception is said to occur.

The Frame Scheduler calls this strict discipline the Realtime scheduling discipline.

The simplest case of a Frame Scheduler would consist of

• one minor frame per major frame—the time base is also the frame rate

• one or more activities enqueued to the frame with Realtime discipline

This model could describe a simple kind of simulator in which certain activities—poll the
inputs; calculate the new status; update the display—must be repeated in that order
during every frame. In this scenario, each activity must start and must finish in every
frame. If one fails to start, or fails to finish, the real-time program is broken in some way
and must take some action.

However, realistic designs need the flexibility to have processes that

• need not start every frame; for instance, processes that sleep on a semaphore until
there is work for them to do

• may run longer than one minor frame

• should run only when time is available, and whose rate of progress is not critical

The other disciplines are used, in combination with Realtime and with each other, to
allow these variations.

Background Discipline

The Background discipline is mutually exclusive with the other disciplines. The Frame
Scheduler only dispatches a Background process when all other processes queued to that
minor frame have run and have yielded. Since the Background process cannot be sure it
will run and cannot predict how much time it will have, the concepts of underrun and
overrun do not apply to it.

Using the Scheduling Disciplines

59

Note: A process with the Background discipline must be queued to its frame following
all non-Background processes. Do not queue a real-time process after a Background
process.

Underrunable Discipline

You specify Underrunable discipline with Realtime discipline to prevent detection of
underrun exceptions. You specify Underrunable in two cases:

• When a process needs to run only when some event has occurred such as a lock
being released or a semaphore being posted.

• When a process may need more than one minor frame (see “Using Multiple
Consecutive Minor Frames” on page 60).

When you specify Realtime+Underrunable, the process is not required to start in that
minor frame. However, if it starts, it is required to yield before the end of the frame or an
overrun exception is raised.

Overrunnable Discipline

You specify Overrunnable discipline with Realtime discipline to prevent detection of
overrun exceptions. You specify it in two cases:

• When it truly does not matter if the process fails to complete its work within the
minor frame—for example, a calculation of a game strategy which, if it fails to
finish, merely makes the computer a less dangerous opponent.

• When a process may need more than one minor frame (see “Using Multiple
Consecutive Minor Frames” on page 60).

60

Chapter 4: Using the Frame Scheduler

When you specify Overrunnable+Realtime, the process is not required to call frs_yield()
before the end of the frame. Even so, the process is preempted at the end of the frame. It
does not have a chance to run again until the next minor frame in which it is enqueued.
At that time it resumes where it was preempted, with no indication that it was
preempted.

Continuable Discipline

You specify Continuable discipline with Realtime discipline to prevent the Frame
Scheduler from clearing the flags at the end of this minor frame (see “Scheduling Within
a Minor Frame” on page 50).

The result is that, if the process yields in this frame, it need not run or yield in the
following frame. The residual frs_yield flag value, carried forward to the next frame,
applies. You specify Continuable discipline with other disciplines in order to let a process
execute just once in a block of consecutive minor frames.

Using Multiple Consecutive Minor Frames

There are cases when a process sometimes or always requires more than one minor frame
to complete its work. Possibly the work is lengthy, or possibly the process could be
delayed by a system call or a lock or semaphore wait.

You must decide the absolute maximum time the process could consume between
starting up and calling frs_yield(). If this is unpredictable, or if it is predictably longer
than the major frame, the process cannot be scheduled by the Frame Scheduler. It should
probably run in another CPU under the IRIX scheduler.

However, when the worst case time is bounded and is less than the major frame, you can
enqueue the process to enough consecutive minor frames to allow it to finish. A
combination of disciplines is used in these frames to ensure that the process starts when
it should, finishes when it must, and does not cause an error if it finishes early.

The discipline settings for each frame should be:

First frame Realtime + Overrunnable + Continuable—the process must start in this
frame (not Underrunable) but is not required to yield (Overrunnable). If
it yields, it is not restarted in the following minor frame (Continuable).

Preparing the System

61

Intermediate Realtime+Underrunable+Overrunnable+Continuable—the process
need not start (it might already have yielded, or might be blocked) but
is not required to yield. If it does yield (or if it had yielded in a preceding
minor frame), it is not restarted in the following minor frame
(Continuable).

Final frame Realtime+Underrunable—the process need not start (it might already
have yielded) but if it starts, it must yield in this frame (not
Overrunnable). The process can start a new run in the next minor frame
to which it is queued (not Continuable).

A process can be enqueued for one or more of these multi-frame sequences in one major
frame. For example, suppose that the minor frame rate is 60 Hz, and a major frame
contains 60 minor frames (1 Hz). You have a process that should run at a rate of 5 Hz and
can use up to 3/60 second at each dispatch. You would enqueue the process to 5
sequences of 3 consecutive frames each. It would start in frames 0, 12, 24, 36, and 48.
Frames 1, 13, 25, 37 and 49 would be intermediate frames, and 2, 14, 26, 38 and 50 would
be final frames.

Preparing the System

Before a real-time program executes, you must set up the system in the following ways.

1. Choose the CPU or CPUs that the real-time program will use. CPU 0 (at least) must
be reserved for IRIX system functions.

2. Decide which CPUs will handle I/O interrupts. By default, IRIX distributes I/O
interrupts across all available processors as a means of balancing the load (referred
to as spraying interrupts). CPUs that are used for real-time programs should be
removed from the distribution set (see “Assigning Interrupts to CPUs” on page 29).

3. Make sure that none of the real-time CPUs is managing the clock (see “Assigning
the Clock Processor” on page 28). Normally the responsibility of handling 10ms
scheduler interrupts is given to CPU 0.

Each Frame Scheduler takes care of restricting and isolating its CPU, so that the CPU is
used only be processes scheduled by the Frame Scheduler.

62

Chapter 4: Using the Frame Scheduler

Implementing a Single Frame Scheduler

When the activities of your real-time program can be handled within a major frame
interval by a single CPU, your program needs to create only one Frame Scheduler.

Typically your program has a top-level process (called the master process here) to handle
start-up and termination, and one or more activity processes that are dispatched by the
Frame Scheduler. The activity processes are typically lightweight processes created using
sproc(), but that is not a requirement—the activity processes can be created with fork(),
and they need not be children of the master process. (See for instance “Example of
Scheduling Separate Programs” on page 146.)

In general, these are the steps that the master process follows:

1. Initialize global resources such as memory-mapped segments, memory arenas, files,
asynchronous I/O, and other resources.

2. Lock the address space segments shared by activity processes (see “Locking Pages
in Memory” on page 49). (When fork() is used, each child process must lock its own
address space.)

3. Create the Frame Scheduler using frs_create_master() (see Table 4-1 on “Library
Interface for C Programs” on page 47).

4. Change the Frame Scheduler signals or exception policy, if desired (see “Setting
Frame Scheduler Signals” on page 72 and “Setting Exception Policies” on page 67).

5. Create the activity processes using sproc() or fork() or, if they are independent
processes, get them started and obtain their PID values.

6. Use frs_enqueue() to queue each activity process to the queue or queues on which it
is to run.

Each activity process independently uses frs_join() to let the Frame Scheduler
know it is ready to start real-time execution. This call must follow the frs_enqueue()
call for that process. The call blocks until scheduling begins, then returns to start the
first frame dispatch of each activity process.

7. Set up signal handlers for signals from the Frame Scheduler (see “Using Signals
Under the Frame Scheduler” on page 70). The handlers are set at this time, after
creation of the activity processes, so that the activity processes do not inherit them.

8. Use frs_start() (Table 4-1) to enable scheduling.

The Frame Scheduler begins scheduling processes as soon as all the activity
processes have called frs_join().

Implementing Synchronized Schedulers

63

9. Wait for error and termination signals from the Frame Scheduler and for the
termination of child processes.

10. Use frs_destroy() to terminate the Frame Scheduler.

11. Tidy up the global resources as required.

Implementing Synchronized Schedulers

When the real-time application requires the power of multiple CPUs, you must add one
more level to the program design for a single CPU. The program creates multiple Frame
Schedulers, one master and one or more synchronized slaves.

Syncronized Scheduler Concepts

The first Frame Scheduler provides the time base for the others. It is called the
sync-master scheduler. The other schedulers take their time base interrupts from the
sync-master, and so are called sync-slaves. The combination is called a sync group.

No single process may create more than one Frame Scheduler. This is because every
Frame Scheduler must have a unique FRS control process to which it can send signals.
As a result, the program will have three types of processes:

• a master process that sets up global data and creates the master Frame Scheduler

• one FRS control process for each sync-slave Frame Scheduler

• activity processes

The sync-master scheduler must be created before any sync-slave schedulers can be
created. Sync-slaves must be specified to have the same time base and the same number
of minor frames as the sync-master.

Sync-slave schedulers can be stopped and restarted independently. However, when any
scheduler, master or slave, is destroyed, all are immediately destroyed.

64

Chapter 4: Using the Frame Scheduler

Synchronized Schedulers: the Sync-Master Process

A variety of program designs is possible but the simplest is possibly the set of processes
described in the following paragraphs.

The master process executes first and performs these steps:

1. Initialize global resources such as memory-mapped segments, memory arenas, files,
asynchronous I/O, and other resources. One global resource is the process ID of the
master process.

2. Lock the address space shared with lightweight processes.

3. Create the sync-master Frame Scheduler using the call frs_create_master(), and
store its handle in a global location.

4. Create one FRS control process for each synchronized CPU to be used.

5. Create the activity processes that will be scheduled by the master Frame Scheduler
and use frs_enqueue() to enqueue them to their assigned minor frames.

6. Set up signal handlers for signals from the Frame Scheduler (see “Using Signals
Under the Frame Scheduler” on page 70).

7. Use frs_start() (Table 4-1) to tell the master Frame Scheduler that its activity
processes are all enqueued.

The master Frame Scheduler will start scheduling processes as soon as all processes
have called frs_join() for their respective schedulers.

8. Wait for termination or error signals.

9. Use frs_destroy() to terminate the master Frame Scheduler.

10. Tidy up global resources as required.

Implementing Synchronized Schedulers

65

Synchronized Schedulers: Sync-Slave Processes

Each FRS control process for a synchronized scheduler (a sync-slave) will:

1. Create a synchronized Frame Scheduler using frs_create_slave(), specifying
information about the master Frame Scheduler stored by the master process. The
sync-master must exist. A sync-slave must specify the same time base and number
of minor frames as the sync-master.

2. Change the Frame Scheduler signals or exception policy, if desired (see “Setting
Frame Scheduler Signals” on page 72 and “Setting Exception Policies” on page 67).

3. Create the activity processes that will be scheduled by this synchronized Frame
Scheduler, and use frs_enqueue() to enqueue them to their assigned minor frames.

4. Set up signal handlers for signals from the synchronized Frame Scheduler.

5. Use frs_start() to tell the synchronized Frame Scheduler that all activity processes
have been enqueued.

The sync-slave notifies the master Frame Scheduler when all processes have called
frs_join(). When the master Frame Scheduler starts broadcasting interrupts,
scheduling will begin.

6. Wait for termination or error signals.

7. Use frs_destroy() to terminate the synchronized Frame Scheduler.

For an example of this kind of program structure, refer to “Examples of Multiple
Synchronized Schedulers” on page 147.

Tip: In this design sketch, the knowledge of which activity processes to create, and on
which frames to enqueue them, is distributed throughout the code of multiple processes,
where it might be hard to maintain. However, it would be possible to centralize the plan
of schedulers, activities, and frames in one or more arrays that are statically initialized.
This would improve the maintainability of a complex program.

66

Chapter 4: Using the Frame Scheduler

Handling Frame Scheduler Exceptions

The FRS control process for a scheduler controls the handling of the Overrun and
Underrun exceptions. It can specify how these exceptions should be handled, and what
signals the Frame Scheduler should send. These policies have to be set before the
scheduler is started. While the scheduler is running, the FRS controller can query the
number of exceptions that have occurred.

Exception Types

The Overrun exception indicates that a process failed to yield in a minor frame where it
was expected to yield, and was preempted at the end of the frame. An Overrun exception
indicates that an unknown amount of work that should have been done was not done,
and will not be done until the next frame in which the overrunning process is queued.

The Underrun exception indicates that a process that should have started in a minor
frame did not start. Possibly the process has terminated. More likely it was blocked in
some kind of wait because of an unexpected delay in I/O, or a deadlock on a lock or
semaphore.

Exception Handling Policies

The FRS control process can establish one of four policies for handling overrun and
underrun exceptions. When it detects an exception, the Frame Scheduler can:

• Send a signal to the FRS controller

• Inject an additional minor frame

• Extend the frame by a specified number of microseconds

• Steal a specified number of microseconds from the following frame

The default action is to send a signal (the specific signals are listed under “Setting Frame
Scheduler Signals” on page 72). The scheduler continues to run. The FRS control process
can then take action, for example, terminating the Frame Scheduler.

Handling Frame Scheduler Exceptions

67

Injecting a Repeat Frame

The policy of injecting an additional minor frame can be used with any time base. The
Frame Scheduler inserts another complete minor frame, essentially repeating the minor
frame in which the exception occurred. In the case of an overrun, the activity processes
that did not finish have another frame’s worth of time to complete. In the case of an
underrun, there is that much more time for the waiting process to wake up. Because
exactly one frame is inserted, all other processes remain synchronized to the time base.

Extending the Current Frame

The policies of extending the frame, either with more time or by stealing time from the
next frame, are allowed only when the time base is an on-chip or high-resolution timer
(see “Selecting a Time Base” on page 55).

When adding time, the current frame is made longer by a fixed amount of time. Since the
minor frame becomes a variable length, it is possible for the Frame Scheduler to drop out
of synch with an external device.

When stealing time from the following frame, the Frame Scheduler returns to the original
time base at the end of the following minor frame—provided that the processes queued
to that following frame can finish their work in a reduced amount of time. If they do not,
the Frame Scheduler will steal time from the next frame still.

Dealing With Multiple Exceptions

You decide how many consecutive exceptions are allowed within a single minor frame.
After injecting, stretching, or stealing time that many times, the Frame Scheduler stops
trying to recover, and sends a signal instead.

The count of exceptions is reset when a minor frame completes with no remaining
exceptions.

Setting Exception Policies

The frs_setattr() function is used to change exception policies. This function must be
called before the Frame Scheduler is started. After scheduling has begun, an attempt to
change the policies or signals is rejected.

68

Chapter 4: Using the Frame Scheduler

In order to allow for future enhancements, frs_setattr() accepts arguments for minor
frame number and process ID; however it currently only allows setting exception
policies for all policies and all minor frames. The most significant argument to it is the
frs_recv_info structure, declared with these fields.

typedef struct frs_recv_info {
mfbe_rmode_t rmode; /* Basic recovery mode */
mfbe_tmode_t tmode; /* Time expansion mode */
uint maxcerr; /* Max consecutive errors */
uint xtime; /* Recovery extension time */

} frs_recv_info_t;

The recovery modes and other constants are declared in /usr/include/sys/frs.h. The
function in Example 4-3 sets the policy of injecting a repeat frame. The caller specifies
only the Frame Scheduler and the number of consecutive exceptions allowed.

Example 4-3 Function to Set INJECTFRAME Exception Policy

int
setInjectFrameMode(frs_t *frs, int consecErrs)
{

frs_recv_info_t work;
bzero((void*)&work,sizeof(work));
work.rmode = MFBERM_INJECTFRAME;
work.maxcerr = consecErrs;
return frs_setattr(frs,0,0,FRS_ATTR_RECOVERY,(void*)&work);

}

The function in Example 4-4 sets the policy of stretching the current frame (a function to
set the policy of stealing time from the next frame would be nearly identical). The caller
specifies the Frame Scheduler, the number of consecutive exceptions, and the stretch time
in microseconds.

Example 4-4 Function to Set STRETCH Exception Policy

int
setStretchFrameMode(frs_t *frs,int consecErrs,uint microSecs)
{

frs_recv_info_t work;
bzero((void*)&work,sizeof(work));
work.rmode = MFBERM_EXTENDFRAME_STRETCH;
work.tmode = EFT_FIXED; /* only choice available */
work.maxcerr = consecErrs;
work.xtime = microSecs;
return frs_setattr(frs,0,0,FRS_ATTR_RECOVERY,(void*)&work);

Handling Frame Scheduler Exceptions

69

}Querying Counts of Exceptions

When you set a policy that permits exceptions, the FRS control process can query for
counts of exceptions. This is done with a call to frs_getattr(), passing the handle to the
Frame Scheduler, the number of the minor frame, and the process ID of the process
within that frame.

The values returned in a structure of type frs_overrun_info_t are the counts of overrun and
underrun exceptions incurred by that process in that minor frame. In order to find out
the count of all overruns in a given minor frame, you must sum the counts for all
processes queued to that frame. If a process is queued to more than one minor frame,
separate counts are kept for it in each frame.

The function in Example 4-5 takes a Frame Scheduler handle and a minor frame number.
It gets the list of process IDs queued to that that minor frame, and returns the sum of all
exceptions for all of them.

Example 4-5 Function to Return a Sum of Exception Counts

#define THE_MOST_PIDS 250
int
totalExcepts(frs_t * theFRS, int theMinor)
{

int numPids = frs_getqueuelen(theFRS, theMinor);
int j, sum;
pid_t allPids[THE_MOST_PIDS];

if ((numPids <= 0) || (numPids > THE_MOST_PIDS))
return 0; /* invalid minor #, or no procs queued? */

if (!frs_readqueue(theFRS, theMinor, allPids))
return 0; /* unexpected problem with reading IDs */

for (sum = j = 0; j<numPids; ++j)
{

frs_overrun_info_t work;
frs_getattr(theFRS, /* the scheduler */

theMinor, /* the minor frame */
allPids[j], /* the process */
FRS_ATTR_OVERRUNS, /* want counts */
&work); /* put them here */

sum += (work.overruns + work.underruns);
}
return sum;

70

Chapter 4: Using the Frame Scheduler

}

Tip: If a function such as the one in Example 4-5 is to be called frequently, it is a good
idea to prepare the arrays of process IDs once and save them. The repeated calls to
frs_getqueuelen() and frs_readqueue() can be avoided.

Using Signals Under the Frame Scheduler

The Frame Scheduler itself sends signals to the processes using it. And processes can
communicate by sending signals to each other. In brief, an FRS sends signals to indicate
that

• The FRS has been terminated

• Overrun or underrun have been detected

• A process has been dequeued

The rest of this topic details how to specify the signal numbers and how to handle the
signals.

Signal Delivery and Latency

When a process is scheduled by the IRIX kernel, it receives a pending signal the next time
the process exits from the kernel domain. For most signals, this could occur

• when the process is dispatched after a wait or preemption

• upon return from some system call

• upon return from the kernel’s usual 10-millisecond tick interrupt

(SIGALRM is delivered as soon as the kernel is ready to return to user processing after
the timer interrupt, in order to preserve timer accuracy.) Thus, for a process that is ready
to run, in a CPU that has not been made nonpreemptive, normal signal latency is at most
10 milliseconds, and SIGALARM latency is less. However, when the receiving process is
not ready to run, or when there are competing processes with superious priorities, the
delivery of a signal is delayed until the next time the receiving process is scheduled.

When the CPU is nonpreemptive (see “Making a CPU Nonpreemptive” on page 34),
there are no clock tick interrupts, so signals can only be delivered following a system call.

Using Signals Under the Frame Scheduler

71

Signal latency can be greater when running under the Frame Scheduler. Like the normal
IRIX scheduler, the Frame Scheduler delivers pending signals to a process when it next
returns to the process from the kernel domain. This can occur

• when the process is dispatched at the start of a minor frame where it is enqueued

• upon return from some system call

The upper bound on signal latency in this case is the interval between the minor frames
to which that process is queued. If the process is scheduled only once in a major frame,
it might not receive a signal until a full major frame interval after the signal is sent.

Handling Signals in the FRS Controller

When a Frame Scheduler detects an Overrun or Underrun exception that it cannot
recover from, and when it is ready to terminate, it sends a signal to the FRS control
process.

Tip: Child processes inherit signal handlers from the parent, so a parent should not set
up handlers prior to sproc() or fork() unless they are meant to be inherited.

The FRS control process for a synchronized Frame Scheduler should have handlers for
Underrun and Overrun signals. The handler could report the error and issue
frs_destroy() to shut down its scheduler. An FRS controller for a synchronized scheduler
should use the default action for SIGHUP (Exit) so that completion of the frs_destroy()
quietly terminates the FRS controller.

The FRS controller for the master (or only) Frame Scheduler should catch Underrun and
Overrun exceptions, report them, and shut down its scheduler.

When an FRS is terminated with frs_destroy(), it sends SIGKILL to its FRS control
process. This cannot be changed; and SIGKILL cannot be handled. Hence frs_destroy()
is equivalent to termination for the FRS control process. (In the first release, the FRS sent
SIGHUP, but this made deadlocks possible and had to be given up.)

Handling Signals in an Activity Process

A Frame Scheduler can send a signal to an activity process when the process is removed
from any queue using frs_premove() (see “Managing Activity Processes” on page 54).
The scheduler can also send a signal to an activity process when it is removed from the

72

Chapter 4: Using the Frame Scheduler

last or only minor frame to which it was enqueued (at which time a process is returned
to normal IRIX scheduling).

In order to have these signals sent, the FRS controller must set nonzero signal numbers
for them, as discussed in the following topic, “Setting Frame Scheduler Signals.”

Setting Frame Scheduler Signals

The frame scheduler sends signals to the FRS control process.

Note: In earlier versions of REACT/Pro, the Frame Scheduler sent these signals to all
processes queued to that Frame Scheduler as well as the FRS controller. That is no longer
the case. You can remove signal handlers for these signals from activity processes, if they
exist.

The signal numbers used for most events can be modified. The signal numbers can be
queried using frs_getattr(FRS_ATTR_SIGNALS) and changed using
frs_setattr(FRS_ATTR_SIGNALS), in each case passing an frs_signal_info structure. This
structure contains room for four signal numbers, as shown in Table 4-3

Signal numbers must be changed before the Frame Scheduler is started. All the numbers
must be specified to frs_setattr(), so the proper way to set any number is to first file the
frs_signal_info_t using frs_getattr(). The function in Example 4-6 sets the signal numbers
for Overrun and Underrun from its arguments.

Table 4-3 Signal Numbers Passed in frs_signal_info_t

Field Name Signal Purpose Default Signal Number

sig_underrun Notify FRS controller of Underrun. SIGUSR1

sig_overrun Notify FRS controller of Overrun. SIGUSR2

sig_dequeue Notify an activity process that it has been
dequeued with frs_premove().

0 (do not send)

sig_unframesched Notify an activity process that it has been
removed from the last or only queue in
which it was enqueued.

SIGRTMIN

Using Timers with the Frame Scheduler

73

Example 4-6 Function to Set Frame Scheduler Signals

int
setUnderOverSignals(frs_t *frs, int underSig, int overSig)
{

int error;
frs_signal_info_t work;
error = frs_getattr(frs,0,0,FRS_ATTR_SIGNALS,(void*)&work);
if (!error)
{

work.sig_underrun = underSig;
work.sig_overrun = overSig;
error = frs_setattr(frs,0,0,FRS_ATTR_SIGNALS,(void*)&work);

}
return error;

}

Using Timers with the Frame Scheduler

In general, interval timers and the Frame Scheduler do not mix. The expiration of an
interval is marked by a signal. However, signal delivery to an activity process can be
delayed (see “Signal Delivery and Latency” on page 70), so timer latency is
unpredictable.

An FRS control process, because it is scheduled by IRIX, not the Frame Scheduler, can use
interval timers.

74

Chapter 4: Using the Frame Scheduler

Example 4-7 Minimal Activity Process as a Timer

frs_join(scheduler-handle)
do {

usvsema(frs-controller-wait-semaphore);
frs_yield();

} while(1);
_exit();

The Frame Scheduler Device Driver Interface

The Frame Scheduler provides a device driver interface to allow any device with a
kernel-level device driver to generate the time-base interrupt. As many as eight different
device drivers can support the Frame Scheduler in any one system. The Frame Scheduler
distinguishes device drivers by an ID number in the range 0 through 7 that is coded into
each driver.

Note: The structure of an IRIX kernel-level device driver is discussed in the IRIX Device
Driver Programming Guide (see “Other Useful Books” on page xviii). The generation of
time-base signals can be added as a minor enhancement to a existing device driver.

In order to interact with the Frame Scheduler, a driver provides two routines, one for
initialization and one for termination, which it exports during driver initialization. After
a master Frame Scheduler has initialized a device driver, the driver calls a Frame
Scheduler entry point to signal the occurrence of each interrupt.

Device Driver Overview

The following sequence of actions occurs when a device driver is used as a source of
time-base interrupts for the Frame Scheduler.

The Frame Scheduler Device Driver Interface

75

1. During its initialization in the pfxstart() or pfxinit() entry point, the driver calls a
kernel function to specify its unique driver identifier between 0 and 7, and to
register its pfx_frs_func_set() and pfx_frs_func_clear() functions. After this has been
done, the Frame Scheduler is aware of the existence of this driver and will allow
programs to request it as the source of interrupts.

2. Later, a real-time program creates a master Frame Scheduler and specifies this
driver by its number as the source of interrupts (see “Device Driver Interrupt” on
page 57). The Frame Scheduler calls the pfx_frs_func_set() registered by this
particular driver. This tells the driver that time signals are needed.

3. The device driver calls frs_handle_driverintr() each time its interrupt handling
routine is entered. This informs the Frame Scheduler that an interrupt has been
received.

4. When the Frame Scheduler is being terminated, it invokes pfx_frs_func_clear() for
the driver it is using. This tells the driver that time signals are no longer needed,
and to cease calling frs_handle_driverintr() until it is once again initialized by a
Frame Scheduler.

Device driver names, device driver structure, configuration files, and related topics are
covered in the IRIX Device Driver Programming Guide.

Registering the Initialization and Termination Functions

A device driver must register two interface functions to make them known to the Frame
Scheduler. This call, which occurs during the device driver’s own initialization, also
makes the driver known as a source of time-base interrupts:

frs_driver_export(int frs_driver_id,
void (*frs_func_set)(intrgroup_t*),
void (*frs_func_clear)(void));

The parameter frs_driver_id is the driver’s identification number. A real-time program
specifies the same number to frs_create_master() in order to select this driver as the
source of interrupts. The identifier is an integer between 0 and 7. Different drivers in the
same system must use different identifiers. A typical call resembles the code in
Example 4-8.

Example 4-8 Exporting Device Driver Entry Points

/*
** Function called by the example driver to export

76

Chapter 4: Using the Frame Scheduler

** its Frame Scheduler interface functions.
*/
frs_driver_export(3, example_frs_func_set, example_frs_func_clear);

Frame Scheduler Initialization Function

The device driver must provide a function with the following prototype:

void pfx_frs_func_set (intrgroup_t* intrgroup) ;

A skeleton of an initialization function for a Challenge/Onyx system running under
IRIX 6.2 is shown in Example 4-9. The function is called by a new master Frame
Scheduler—one that is created with an interrupt source parameter of
FRS_INTRSOURCE_DRIVER and an interrupt qualifier specifying this device driver’s
number (see “Device Driver Interrupt” on page 57). A device driver is used by only one
Frame Scheduler at a time.

The argument intrgroup is passed by the Frame Scheduler to identify the interrupt group
it has allocated. A VME device driver must set the hardware devices it manages so that
interrupts are directed to this interrupt group. The actual group identifier may be
obtained using the macro:

intrgroup_get_groupid(intrgroup)

The effective destination may be obtained using the following macro:

EVINTR_GROUPDEST(intrgroup_get_groupid(intrgroup))

Example 4-9 Device Driver Initialization Function

/*
** Frame Scheduler initialization function
** for the External Interrupts Driver
*/
int FRS_is_active = 0;
int FRS_vme_install = 0;
void
example_frs_func_set(intrgroup_t* intrgroup)
{

int s;
ASSERT(intrgroup != 0);
/*
** Step 1 (VME only):
** In a VME device driver, set up the hardware to send

The Frame Scheduler Device Driver Interface

77

** the interrupt to the appropriate destination.
** This is done with vme_frs_install() which takes:
** * (int) the VME adapter number
** * (int) the VME IPL level
** * the intrgroup as passed to this function.
*/
FRS_vme_install = vme_frs_install(

my_edt.e_adap, /* edt struct from example_edtinit */
((vme_intrs_t *)my_edt.e_bus_info)->v_brl,
intrgroup);

/*
** Step 2: any hardware initialization required.
*/
/*
** Step 3: note that we are now in use.
*/
FRS_is_active = 1;

}

Only VME device drivers on the Challenge/Onyx need to call vme_frs_install() — do
not call it on the Origin2000. As suggested by the code in Example 4-9, the arguments to
vme_frs_install() can be taken from data supplied at boot time to the device driver’s
pfxedtinit() function:

• the adapter number is in the edt.e_adap field

• the configured interrupt priority level is in the vme_intrs.v_brl addressed by the
edt.e_bus_info field

The pfxedtinit() entry point is documented in the IRIX Device Driver Programming Guide.

Tip: The vme_frs_install() function is a dynamic version of the VECTOR configuration
statement. You are not required to use the IPL value from the configuration file.

78

Chapter 4: Using the Frame Scheduler

Frame Scheduler Termination Function

The device driver must provide a function with the following prototype:

void prfx_frs_func_clear (void) ;

A skeleton for this function is shown in Example 4-10. The Frame Scheduler that
initialized a device driver calls this function when the Frame Scheduler is terminating.
The Frame Scheduler deallocates the interrupt group to which interrupts were directed.

The device driver should clean up data structures and make sure that the device is in a
safe state. A VME device driver must call vme_frs_uninstall().

Example 4-10 Device Driver Termination Function

/*
** Frame Scheduler termination function
*/
void
example_frs_func_clear(void)
{

/*
** Step 1: any hardware steps to quiesce the device.
*/

/*
** Step 2 (VME only):
** Break the link between interrupts and the interrupt
** group by calling vme_frs_uninstall() passing:
** * (int) the VME adapter number
** * (int) the VME IPL level
** * the value returned by vme_frs_install()
*/
vme_frs_uninstall(

my_edt.e_adap, /* edt struct from example_edtinit */
((vme_intrs_t *)my_edt.e_bus_info)->v_brl,
FRS_vme_install);

/*
** Step 3: note we are no longer in use.
*/
FRS_is_active = 0;

}

The Frame Scheduler Device Driver Interface

79

Generating Interrupts

A driver has to call the Frame Scheduler interrupt handler from within the driver’s
interrupt handler using code similar to that shown in Example 4-11. It delivers the
interrupt to the Frame Scheduler on that CPU. The function to be invoked is

void frs_handle_driverintr(void);

Example 4-11 Generating an Interrupt From a Device Driver

void example_intr()
{

/*
** Step 1: anything required by the hardware
*/
/*
** Step 2: if connected to the Frame Scheduler, send
** an interrupt to it. Flag FRS_is_active is set in
** Example 4-9 and cleared in Example 4-10.
*/
if (FRS_is_active) frs_handle_driverintr();
/*
** Step 3: any additional processing needed.
*/
return;

}

It is possible for an interrupt handler to be entered at a time when the Frame Scheduler
for its processor is not active; that is, after frs_destroy() has been called and before the
driver termination function has been entered. The frs_handle_driverintr() function
checks for this and does nothing when nothing is required.

The call to frs_handle_driverintr() must be executed on a CPU controlled by the FRS that
is using the driver. The only way to ensure this is to ensure that the hardware interrupt
used by this driver is directed to that CPU. In IRIX 6.4 and later, you direct a hardware
interrupt to a particular CPU by placing a DEVICE_ADMIN statement in the file
/var/sysgen/system/irix.sm. See comments in that file for the syntax.

81

Chapter 5

5. Optimizing Disk I/O for a Real-Time Program

A real-time program sometimes needs to perform disk I/O under tight time constraints
and without affecting the timing of other activities such as data collection. This chapter
covers techniques that IRIX supports that can help you meet these performance goals,
including these topics:

• “Memory-Mapped I/O” on page 81 points out the uses of mapping a file into
memory.

• “Asynchronous I/O” on page 82 describes the use of the asynchronous I/O feature
of IRIX version 5.3 and later.

• “Synchronous Writing and Direct Writing” on page 95 documents the performance
cost of knowing when disk output is complete.

• “Guaranteed-Rate I/O” on page 98 describes the use of the guaranteed-rate feature
of XFS.

Memory-Mapped I/O

When an input file has a fixed size, the simplest as well as the fastest access method is to
map the file into memory (for details on mapping files and other objects into memory, see
the book Topics in IRIX Programming). A file that represents a data base of some kind—for
example a file of scenery elements, or a file containing a precalculated table of operating
parameters for simulated hardware—is best mapped into memory and accessed as a
memory array. A mapped file of reasonable size can be locked into memory so that access
to it is always fast.

You can also perform output on a memory-mapped file simply by storing into the
memory image. When the mapped segment is also locked in memory, you control when
the actual write takes place. Output happens only when the program calls msync() or
changes the mapping of the file. At that time the modified pages are written. (See the
msync(2) reference page.) The time-consuming call to msync() can be made from an
asynchronous process.

82

Chapter 5: Optimizing Disk I/O for a Real-Time Program

Asynchronous I/O

You can use asynchronous I/O to isolate the real-time processes in your program from
the unpredictable delays caused by I/O.

Conventional Synchronous I/O

Conventional I/O in UNIX is synchronous; that is, the process that requests the I/O is
blocked until the I/O has completed. The effects are different for input and for output.

Synchronous Input

The normal sequence of operations for IRIX input is as follows:

1. Normal code in a process invokes the system call read(), either directly or
indirectly—for example, by accessing a new page of a memory-mapped file, or by
calling a library function that calls read().

2. The kernel, still operating under the identity of the calling process, enters the read
entry point of the device driver.

3. The device driver initiates the input operation and blocks the calling process, for
example by waiting on a semaphore in the kernel address space.

4. The kernel schedules another process to use the CPU.

5. Later, the device completes the input operation and causes a hardware interrupt.

6. The kernel interrupt handler enters the device driver interrupt entry point.

7. The device driver, finding that the data has been received, unblocks the sleeping
process, for example by posting a semaphore.

8. The kernel recalculates the scheduling queues to account for the fact that a blocked
process can now run.

9. Then or perhaps later, depending on scheduling priorities, the kernel schedules the
original process to run on some CPU.

10. The unblocked process exits the device driver read function and returns to user
code, the read being complete.

During steps 4-8, the process that requested input is blocked. The duration of the delay
is unpredictable. For example, the delay can be negligible if the data is already in a buffer

Asynchronous I/O

83

in memory. It can be as long as one rotation time of a disk, if the disk is positioned on the
correct cylinder. It can be longer still, if the disk has to seek. The probability of seeking
depends on the way the file is arranged on the disk surface and also on the I/O
operations of other processes in the system.

Synchronous Output

For disk files, the process that calls write() is normally delayed only as long as it takes to
copy the output data to a buffer in kernel address space. The device driver schedules the
device write and returns. The actual disk output is asynchronous. As a result, most
output requests are blocked for only a short time. However, since a number of disk writes
could be pending, the true state of a file on disk is unknown until the file is closed.

In order to make sure that all data has been written to disk successfully, a process can call
fsync() for a conventional file or msync() for a memory-mapped file (see the fsync(2) and
msync(2) reference pages). The process that calls these functions is blocked until all
buffered data has been written. (An alternative for disk output is to use direct output,
discussed under “Synchronous Writing and Direct Writing” on page 95.)

Devices other than disks may block the calling process until the output is complete. It is
the device driver logic that determines whether a call to write() blocks the caller, and for
how long. Device drivers for VME devices are often supplied by third parties.

Asynchronous I/O Basics

A real-time process needs to read or write a device, but it cannot tolerate an
unpredictable delay. One obvious solution can be summarized as “call read() or write()
from a different process, and run that process in a different CPU.” This is the essence of
asynchronous I/O. You could implement an asynchronous I/O scheme of your own
design, and you may wish to do so in order to integrate the I/O closely with your own
design of processes and data structures. However, a standard solution is available.

84

Chapter 5: Optimizing Disk I/O for a Real-Time Program

Two Implementation Versions

IRIX (since version 5.3) supports asynchronous I/O library calls conforming to POSIX
document 1003.1b-1993. You use relatively simple calls to initiate input or output. The
library package handles the details of

• initiating several lightweight processes to perform I/O

• allocating a shared memory arena and the locks, semaphores, and/or queues used
to coordinate between the I/O processes

• queueing multiple input or output requests to each of multiple file descriptors

• reporting results back to your processes, either on request, through signals, or
through callback functions

Note: In IRIX 5.2 and IRIX 6.0, asynchronous I/O was implemented to conform to POSIX
standard 1003.4 Draft 12, an earlier document. Support for the later POSIX
standard1003.1b was implemented in IRIX 5.3. In releases following 5.3, support for
POSIX 1003.1b-1993 is the only version of asynchronous I/O. It is no longer possible to
compile programs that use the Draft-12 interface.

Asynchronous I/O

85

Asynchronous I/O Functions

Once you have opened the files and initialized asynchronous I/O, you perform
asynchronous I/O by calling some of these functions:

Each of these functions is described in detail in a reference page in volume 3.

Asynchronous I/O Control Block

Each asynchronous I/O request is represented by an instance of struct aiocb, a data
structure that your program must allocate. The important fields are as follows.

• The file descriptor that is the target of the operation.

File descriptors are returned by open() (see the open(2) reference page). A file
descriptor used for asynchronous I/O can represent any file or device—not only a
disk file.

• The address and size of a buffer to supply or receive the data.

• The file position for the operation as it would be passed to lseek() (see the lseek(2)
reference page)

The use of this value is discussed under “Multiple Operations to One File” on
page 94.

• A sigevent structure, whose contents indicate what, if anything, should be done to
notify your program of the completion of the I/O.

The use of the sigevent is discussed under “Checking for Completion” on page 90.

Note: The IRIX 5.2 implementation also accepted a request priority value. Request
priorities are no longer supported. The field exists for compatibility and for possible
future use, but must currently contain zero.

aio_read(3) Initiates asynchronous input from a file or device.

aio_write(3) Initiates asynchronous output to a file or device.

lio_listio(3) Initiates a list of operations to one or more files or devices.

aio_error(3) Returns the status of an asynchronous operation.

aio_fsync(3) Waits for all scheduled output for a file to complete.

aio_cancel(3) Cancels pending, scheduled operations.

86

Chapter 5: Optimizing Disk I/O for a Real-Time Program

Initializing Asynchronous I/O

You can initialize asynchronous I/O in either of two ways. One way is simple; the other
gives you control over the initialization.

Implicit Initialization

You can initialize asynchronous I/O simply by starting an operation with aio_read(),
lio_listio(), or aio_write(). The first such call causes default initialization. This is the only
form of initialization described by the POSIX standard. However, in a real-time program
you often need to control at least the timing of initialization.

Initializing with aio_sgi_init()

You can take greater control of asynchronous I/O by calling aio_sgi_init() (refer to the
aio_sgi_init(3) reference page and to the declarations in /usr/include/aio.h). The argument
to this call can be a null pointer, indicating you want default values, or you can pass an
aioinit_t structure. The principal fields of this structure specify

• the number of asynchronous processes to execute I/O (aio_threads)

The default is 5 processes; the minimum is 2. Specify 1 more than the number of I/O
operations that could reasonably be executed in parallel on the available hardware.
For example if you will be doing asynchronous I/O to one disk file and one tape
drive, there could be at most two concurrent I/O operations, so there is no need to
have more than 3 (1 more than 2) asynchronous processes.

• the number of locks that the asynchronous I/O processes should preallocate
(aio_locks)

The default used by aio_init() is 3 locks; the minimum is 1. Specify the maximum
number of simultaneous lio_listio(LIO_NOWAIT), aio_fsync(), and aio_suspend()
calls that your program could execute concurrently. If in doubt, specify the number
of subprocesses your program contains.

• the number of lightweight processes (sprocs) that will be sharing the use of
asynchronous I/O (aio_numusers)

The default is 5; the minimum is 2. Specify 1 more than the number of different
sproc’d processes that will be requesting asynchronous I/O.

Other fields of the aioinit_t structure such as aio_num and aio_usedba are not used at this
time and must be zero. Zero-valued fields are taken as a request for the default for that

Asynchronous I/O

87

field. Example 5-1 shows a subroutine to initialize asynchronous I/O, given counts of
devices and calling processes.

Example 5-1 Initializing Asynchronous I/O

int initAIO(int numDevs, int numSprocs, int maxOps)
{

aioinit_t A = {0}; /* ensure zero’d fields */
if (numDevs) /* we do know how many devices */

A.aio_threads = 1+numDevs;
if (numSprocs) /* we do know how many sprocs */

A.aio_locks = A.aio_numusers = 1+numSprocs;
if (maxOps) /* we do know max aiocbs at 1 time */

A.aio_num = maxOps;
return aioinit(&A);

}

When to Initialize

The time at which initialization occurs is important. If you initialize in a process that has
been assigned to run on an isolated CPU, the asynchronous I/O processes will also run
on that CPU. You probably want the I/O processes to run under normal dispatching on
unrestricted CPUs. In that case, the proper sequence of initialization is:

• Open all file descriptors and verify that files and devices are ready.

• Initialize asynchronous I/O. The lightweight processes created by aioinit() inherit
the attributes of the calling process, including its current priority and access to open
file descriptors.

• Isolate any CPUs that are dedicated to real-time work (see “Restricting a CPU From
Scheduled Work” on page 30)—or create the Frame Schedulers (see “Starting
Multiple Schedulers” on page 53).

• Assign real-time processes to their CPUs.

The asynchronous I/O processes created by aioinit() continue to be scheduled according
to their priority in whatever CPUs remain available.

88

Chapter 5: Optimizing Disk I/O for a Real-Time Program

Scheduling Asynchronous I/O

You schedule an input or output operation by calling aio_read() or aio_write(), passing
an aiocb structure to describe the operation (see the aio_read(3) and aio_write(3) reference
pages). The operation is queued to the file descriptor, but it will not execute until one of
the asynchronous I/O processes is available. The return code from the library call says
nothing about the I/O operation itself; it merely indicates whether or not the aiocb could
be queued.

Note: It is important to use a given aiocb for only one operation at a time, and to not
modify an aiocb until its operation is complete.

You can find examples of the use of aio_read(), aio_write(), and aio_fsync() in the
program beginning on “Asynchronous I/O Example” on page 121.

You can schedule a list of operations using lio_listio() (see the lio_listio(3) reference
page). The advantage of this function is that you can request a single notification (either
a signal or a callback) when all of the operations in the list are complete. Alternatively,
you can be notified of the completion of each one as it happens.

When an asynchronous I/O process is free, it takes a queued aiocb and performs the
equivalent function to lseek() (if a file position is specified), then the equivalent of read()
or write(). The asynchronous process may be blocked for some time. That depends on the
file or device and on the options that were specified when it was opened. When the
operation is complete, the asynchronous process notifies the initiating process using the
method requested in the aiocb.

You can cancel a started operation, or all pending operations for a given file descriptor,
using aio_cancel() (see the aio_cancel(3) reference page).

Assuring Data Integrity

With sequential I/O, you call fsync() to ensure that all buffered data has been written.
However, you cannot use fsync() with asynchronous I/O, since you are not sure when
the write() calls will execute.

The aio_fsync() function queues the equivalent of an fsync() call for asynchronous
execution (see the aio_fsync(3) reference page). This function takes an aiocb. The file
descriptor in it specifies which file is to be synchronized. The fsync() operation is done
following all other asynchronous operations that are pending when aio_fsync() is called.
The synchronize operation can take considerable time, depending on how much output

Asynchronous I/O

89

data has been buffered. Its completion is reported in the same ways as completion of a
read or write (see the next topic). The example program starting in “Asynchronous I/O
Example” on page 121 contains calls to aio_fsync().

Checking the Progress of Asynchronous Requests

You can test the progress and completion of an asynchronous operation by polling. Your
program can be informed of the completion of an operation in a variety of ways. All of
the methods discussed here are demonstrated in the example program that starts in
“Asynchronous I/O Example” on page 121.

Polling for Status

You can check the progress of any asynchronous operation (including aio_fsync()) using
aio_error(). As long as the operation is incomplete, this function returns
EIINPROGRESS. When the operation is complete, you can check the final return code
from read(), write(), or fsync() using aio_return() (see the aio_error(3) and aio_return(3)
reference pages).

To see in an example of polling for status, see function inWait0() under “Asynchronous
I/O Example” on page 121. This function is used when the aiocb is initialized with
SIGEV_NONE, meaning that no notification is to be returned at the completion of the
operation. The function waits for an asynchronous operation to complete using a loop in
the general form shown in Example 5-2.

Example 5-2 Polling for Asynchronous Completion

int waitForEndOfAsyncOp(aiocb *pab)
{

while (EINPROGRESS == (ret = aio_error(pab)))
sginap(0);

return ret;
}

The function result is the final return code from the read, write, or sync operation that
was started. Under the Frame Scheduler, the call to sginap() would be replaced with a
call to frs_yield().

90

Chapter 5: Optimizing Disk I/O for a Real-Time Program

Checking for Completion

In the aiocb, the program can specify one of three things to be done when the operation
is complete:

• Nothing; take no action.

• Send a signal of a specified number.

• Invoke a callback function directly from the asynchronous process.

In addition, the aio_suspend() function blocks its caller until one of a list of pending
operations is complete (see the aio_suspend(3) reference page).

These choices give you a wide variety of design options. Your program can

• periodically poll the aiocb using aio_error() until it completes (shown in
Example 5-2)

• use aio_suspend() to wait until one of a list of operations completes

• set up an empty signal handler function and use sigsuspend() or sigwait() to wait
until a signal arrives (see the sigsuspend(2) and sigwait(3) reference pages)

• use either a signal handler function or a callback function to report completion—for
example, the function can post a semaphore.

Most of these methods are demonstrated in the program starting in “Asynchronous I/O
Example” on page 121.

Tip: When operating under the Frame Scheduler, a handler or callback function can
simply set a flag. An activity process can test the flag in each minor frame, calling
frs_yield() immediately if the flag is not set.

Establishing a Completion Signal

You request a signal from an asynchronous operation by setting these values in the aiocb
(refer to /usr/include/aio.h and /usr/include/sys/signal.h):

aio_sigevent.sigev_notify Set to SIGEV_SIGNAL.

aio_sigevent.sigev_signo The number of the signal. This should be one of
the POSIX real-time signal numbers (see
“Signals” on page 17).

Asynchronous I/O

91

When you set up a signal handler for asynchronous completion, do so using sigaction()
and specify the SA_SIGINFO flag (see the sigaction(2) reference page). This has two
benefits: any new completion signal that arrives while the first is being handled is
queued; and the aio_sigev.sigev_value word is passed to the handler in a siginfo structure.

Establishing a Callback Function

You request a callback at the end of an asynchronous operation by setting the following
values in the aiocb:

The callback function is invoked from the asynchronous process when the read(), write()
or fsync() operation finishes. This notification method has the lowest overhead and
shortest latency, but it requires careful design to avoid race conditions in the use of
shared variables.

The asynchronous processes are created with sproc(), so they share the address space of
the process that initialized asynchronous I/O. They typically execute in a different CPU
from the real-time processes using that address space. Since the callback function could
be entered at any time, it must coordinate its use of shared data structures. This is a good
place to use a lock (see “Locks” on page 15). Locks have very low overhead in cases such
as this, where there is likely to be little contention for the use of the lock.

Tip: You can call aio_read() or aio_write() from within a callback function or within a
signal handler. This lets you start another operation with the least delay.

aio_sigevent.sigev_value A value to be passed to the signal handler. This
can be used to inform the signal handler of which
I/O operation has completed; for example, it
could be the address of the aiocb.

aio_sigevent.sigev_notify Set to SIGEV_CALLBACK.

aio_sigevent.sigev_func The address of the callback function. Its prototype
must be void functionName(union sigval);

aio_sigevent.sigev_value A word to be passed to the callback function. This
can be used to inform the function of which I/O
operation has completed; for example, it could be
the address of the aiocb.

92

Chapter 5: Optimizing Disk I/O for a Real-Time Program

The code in Example 5-3 demonstrates a hypothetical set of subroutines to schedule
asynchronous reads and writes using a single aiocb. The principle functions and global
variables it uses are:

Note: The code in Example 5-3 is not intended to be realistic and is not recommended as
a model. In order to demonstrate the use of callback functions and the aiocb, it essentially
duplicates work that could be done by the lio_listio() feature of asynchronous I/O.

Example 5-3 Set of Functions to Schedule Asynchronous I/O

#define _ABI_SOURCE
#include <signal.h>
#include <aio.h>
#include <ulocks.h>
#define MAX_PENDING 10
#define STATUS_EMPTY 0
#define STATUS_ACTIVE 1
#define STATUS_PENDING 2
static struct onePendingIO {

int status;
int theFile;
void *theData;
off_t theSize;

pendingIO An array of records, each holding one request for
an I/O operation.

dontTouchThatStuff A lock used to gain exclusive use of pendingIO.

scheduleRead() A function that accepts a request to read some
amount of data, from a specified file descriptor, at
a specified file offset. It places the request in
pendingIO and then, if no asynchronous operation
is under way, initiates it.

yeahWeFinishedOne() The callback function that is entered when an
asynchronous operation completes. If any more
operations are pending, it initiates one.

initiatePending() A function that initiates one selected pending
operation. It prepares the aiocb structure,
including the specification of
yeahWeFinishedOne() as the callback function.
The lock dontTouchThatStuff must be held before
this function is called.

Asynchronous I/O

93

off_t theSeek;
int readNotWrite;
} pendingIO[MAX_PENDING];

static unsigned numPending;
static struct aiocb theAiocb;
static ulock_t dontTouchThatStuff;
static unsigned scanner;
static void initiatePending(int P);
static void
yeahWeFinishedOne(union sigval S)
{

ussetlock(dontTouchThatStuff);
pendingIO[S.sival_int].status = STATUS_EMPTY;
if (numPending)
{

while (pendingIO[scanner].status != STATUS_PENDING)
{

if (++scanner >= MAX_PENDING)
scanner = 0;

}
initiatePending(scanner);

}
usunsetlock(dontTouchThatStuff);

}
static void
initiatePending(int P) /* lock must be held on entry */
{

theAiocb.aio_fildes = pendingIO[P].theFile;
theAiocb.aio_buf = pendingIO[P].theData;
theAiocb.aio_nbytes = pendingIO[P].theSize;
theAiocb.aio_offset = pendingIO[P].theSeek;
theAiocb.aio_sigevent.sigev_notify = SIGEV_CALLBACK;
theAiocb.aio_sigevent.sigev_func = yeahWeFinishedOne;
theAiocb.aio_sigevent.sigev_value.sival_int = P;
if (pendingIO[P].readNotWrite)

aio_read(&theAiocb);
else

aio_write(&theAiocb);
pendingIO[P].status = STATUS_ACTIVE;
--numPending;

}
/*public*/ int
scheduleRead(int FD, void *pdata, off_t len, off_t pos)
{

int j;

94

Chapter 5: Optimizing Disk I/O for a Real-Time Program

if (numPending >= MAX_PENDING)
likeTotallyFreakOut();

ussetlock(dontTouchThatStuff);
for(j=0; pendingIO[j].status != STATUS_EMPTY; ++j)

;
pendingIO[j].theFile = FD;
pendingIO[j].theData = pdata;
pendingIO[j].theSize = len;
pendingIO[j].theSeek = pos;
pendingIO[j].readNotWrite = 1;
pendingIO[j].status = STATUS_PENDING;
if (1 == ++numPending)

initiatePending(j);
usunsetlock(dontTouchThatStuff);

}

Holding Callbacks Temporarily

You can temporarily prevent callback functions from being entered using the aio_hold()
function. This function is not defined in the POSIX standard; it is added by the MIPS ABI
standard. Use it as follows:

• Call aio_hold(AIO_HOLD_CALLBACK) to prevent any callback function from
being invoked.

• Call aio_hold(AIO_RELEASE_CALLBACK) to allow callback functions to be
invoked. Any that were held are now called.

• Call aio_hold(AIO_ISHELD_CALLBACK) returns 1 if callbacks are currently being
held; otherwise it returns 0.

Multiple Operations to One File

When you queue multiple operations to a single file descriptor, the asynchronous I/O
package does not always guarantee the order of their execution. There are three ways
you can ensure the sequence of operations.

You can open any output file descriptor passing the flag O_APPEND (see the open(1)
reference page). Asynchronous write requests to a file opened with O_APPEND are
executed in the sequence of the calls to aio_write() or the sequence they are listed for
lio_listio(). You can use this feature to ensure that a sequence of records is appended to
a file in sequence.

Synchronous Writing and Direct Writing

95

For files that support lseek(), you can specify any order of operations by specifying the
file offset in the aiocb. The asynchronous process executes an absolute seek to that offset
as part of the operation. Even if the operations are not performed in the sequence they
were requested, the data is transferred in sequence. You can use this feature to ensure
that multiple requests for sequential disk input are stored in sequential locations.

For non-disk input operations, the only way you can be certain that operations are done
in sequence is to schedule them one at a time, waiting for each one to
complete.

Synchronous Writing and Direct Writing

Two options of open() give you more control over the timing of output.

Using Synchronous Writing

When you open a disk file and do not specify the O_SYNC flag, a call to write() for that
file returns as soon as the data has been copied to a buffer managed by the device driver
(see the open(2) reference page).

The actual disk write may not take place until considerable time has passed. A common
pool of disk buffers is used for all disk files. Disk buffering is integrated with the virtual
memory paging mechanism. A daemon executes periodically and initiates output of
buffered blocks according to the age of the data and the needs of the system.

Tip: The number of disk blocks that are written in each output operation is set by the
dwcluster tuning variable. The system administrator can adjust this value with systune
(see the systune(1) reference page).

The default management of disk output improves performance in general but has two
drawbacks:

• All output data must be copied from the buffer in process address space to a buffer
in the kernel address space. For small or infrequent writes, the copy time is
negligible, but for large quantities of data it adds up.

• You do not know when the written data is actually safe on disk. A system crash
could prevent the output of a large amount of buffered data.

96

Chapter 5: Optimizing Disk I/O for a Real-Time Program

You can force the writing of all pending output for a file by calling fsync() (see the
fsync(2) reference page). This gives you a way of creating a known checkpoint of a file.
However, fsync() blocks until all buffered writes are complete, possibly a long time.

When you open a disk file specifying O_SYNC, each call to write() blocks until the data
has been written to disk. This gives you a way of ensuring that all output is complete as
it is created. If you combine O_SYNC access with asynchronous I/O, you can let the
asynchronous process suffer the delay.

The O_SYNC option requires completed output even when the amount of data written
is less than the physical blocksize of the disk, or when the output data does not align with
the physical boundaries of disk blocks. This can lead to writing and rewriting the same
disk blocks, wasting time. A file opened with O_SYNC also copies data to kernel memory
before writing.

Using Direct I/O

You can avoid both sources of delay by using the option O_DIRECT. Under this option,
writes to the file take place directly from your program’s buffer—the data is not copied
to a buffer in the kernel first. In order to use O_DIRECT you are required to transfer data
in quantities that are multiples of the disk blocksize. This ensures that a block is written
only once. (The requirements for O_DIRECT use are documented in the open(2) and
fcntl(2) reference pages.)

Control does not return from an O_DIRECT read() or write() until the disk write is
complete. However, you can open a file O_DIRECT and use the use file descriptor for
asynchronous I/O.

Performance Comparison

The data displayed in Figure 5-1 was collected on a 4-processor Challenge system under
IRIX 5.3, using a test program that wrote approximately 250,000 bytes of binary data
using a specified blocksize and one of three options:

• default: asynchronous buffered write

• synchronous writes (option O_SYNC)

• direct writes (option O_DIRECT)

Synchronous Writing and Direct Writing

97

Figure 5-1 Effect of Blocksize on write() Performance

The values in Table 5-1reflect the total execution time for one run of the program, as
reported by the time command (see the time(1) reference page).

Table 5-1 Data on Which Figure 8-1 is Based

Blocksize O_SYNC O_DIRECT Asynchronous

512 40.4 13.9 2.7

1024 25.3 8.5 2.6

2048 12.9 5.8 2.6

4096 8.5 4.4 2.6

8192 6.2 3.7 2.6

16384 5.0 3.4 2.6

32768 4.4 3.1 2.5

65536 4.1 3.0 2.5

200000 3.9 2.9 2.5

Synchronous

U
ser T

im
e for P

rogram

Block Size for Write
512

1024

2048

4096

8192

16384

32768

65536

200000

+ ++++ ++++

Direct

Default

98

Chapter 5: Optimizing Disk I/O for a Real-Time Program

Blocksize was almost irrelevant for asynchronous writes, because the only delay was the
time to switch to kernel mode and block-copy the data from the program buffer to a
kernel buffer. The actual disk operations occurred asynchronously, in another CPU, and
so are not reflected in the time output. As shown in Figure 5-1, O_DIRECT is considerably
faster than O_SYNC.

Using a Delayed System Buffer Flush

When your application has both clearly defined times when all unplanned disk activity
should be prevented, and clearly defined times when disk activity can be tolerated, you
can use the syssgi() function to control the kernel’s automatic disk writes.

Prior to a critical section of length s seconds that must not be interrupted by unplanned
disk writes, use syssgi() as follows:

syssgi(SGI_BDFLUSHCNT, s);

The kernel will not initiate any deferred disk writes for s seconds. At the start of a period
when disk activity can be tolerated, initiate a flush of the kernel’s buffered writes with
syssgi() as follows:

syssgi(SGI_SSYNC);

Note: This technique is most useful in a uniprocessor—code executing in an isolated
CPU of a multiprocessor is not affected by kernel disk writes.

Guaranteed-Rate I/O

Under specific conditions, your program can demand a guaranteed rate of data transfer.
You would use this feature, for example, to ensure input of picture data for real-time
video display, or to ensure disk output of high-speed telemetry data capture.

Guaranteed-Rate I/O Basics

Guaranteed-rate I/O (GRIO) is applied on a file basis. The file must have these
characteristics for any guarantee to be granted:

• The file must be managed by XFS. EFS, the older IRIX file system, does not support
GRIO.

Guaranteed-Rate I/O

99

• The file must be contained in the real-time subvolume of a logical volume created
by XLV.

The real-time subvolume of an XLV volume can span multiple disk partitions, and
can be striped. The real-time subvolume differs from the more common data
subvolume in that it contains only data, no file system management data such as
directories or inodes.

Note: Real-time subvolumes cannot include RAID partitions.

• The predictive failure analysis feature and the thermal recalibration feature of the
drive firmware must be disabled, as these can make device access times
unpredictable.

• A guaranteed-rate stream must be available. Unless extra-cost options are installed,
a maximum of four streams can be in use at one time.

You can request either of two types of guarantee. A hard guarantee asks XFS and IRIX to
subordinate all other considerations, including data integrity, to meet the guaranteed
rate. A soft guarantee asks IRIX to make its best effort at the rate, accepting that error
correction might cause glitches.

You can qualify either type of guarantee as being for Video On Demand (VOD),
indicating a particular, special use of a striped volume. These three types of guarantee
are discussed further in the following topics.

For information about using XFS, XLV, and how to prepare a real-time subvolume for
GRIO, see the IRIX Admin: Disks and Filesystems manual (see “Other Useful Books” on
page xviii). For an example of how the grio_request() function is used, see the function
starting in “Guaranteed-Rate Request” on page 140.

Creating a Real-time File

You can only request a guaranteed rate from a real-time disk file. A real-time disk file is
identified by the fact that it is stored within the real-time subvolume of an XFS logical
volume.

The file management information for all files in a volume (the directories as well as XFS
management records) are stored in the data subvolume. A real-time subvolume contains
only the data of real-time files. A real-time subvolume comprises an entire disk device or
partition and uses a separate SCSI controller from the data subvolume. Because of these

100

Chapter 5: Optimizing Disk I/O for a Real-Time Program

constraints, the GRIO facility can predict the data rate at which it can transfer the data of
a real-time file.

You create a real-time file in the following steps, which are illustrated in Example 5-4.

1. Open the file with the options O_CREAT, O_EXCL, and O_DIRECT. That is, the file
must not exist at this point, and must be opened for direct I/O (see “Using Direct
I/O” on page 96).

2. Modify the file descriptor to set its extent size, which is the minimum amount by
which the file will be extended when new space is allocated to it, and also to
establish that the new file is a real-time file. This is done using fcntl() with the
FS_FSSETXATTR command. Check the value returned by fcntl() as several errors
can be detected at this point.

The extent size must be chosen to match the characteristics of the disk; for example
it might be the “stripe width” of a striped disk.

3. Write any amount of data to the new file. Space will be allocated in the real-time
subvolume instead of the data subvolume because of step (2). Check the result of
the first write() call carefully, since this is another point at which errors could be
detected.

Once created, you can read and write a real-time file the same as any other file, except
that it must always be opened with O_DIRECT. You can use a real-time file with
asynchronous I/O, provided it is not under a guarantee (see “Sharing Access to
Guaranteed Files” on page 102).

Example 5-4 Function to create a real-time file

#include <sys/fcntl.h>
#include <sys/fs/xfs_itable.h>
int createRealTimeFile(char *path, __uint32_t esize)
{

struct fsxattr attr;
bzero((void*)&attr,sizeof(attr));
attr.fsx_xflags = XFS_XFLAG_REALTIME;
attr.fsx_extsize = esize;
int rtfd = open(path, O_CREAT + O_EXCL + O_DIRECT);
if (-1 == rtfd)

{perror("open new file"); return -1; }
if (-1 == fcntl(rtfd, F_FSSETXATTR, &attr))

{perror("fcntl set rt & extent"); return -1; }
return rtfd; /* first write to it creates file*/

}

Guaranteed-Rate I/O

101

Requesting a Guarantee

To obtain a guaranteed rate, a program places a reservation for a specified part of the I/O
capacity of a file. In the request, the program specifies

• the file descriptor to be used

• the start time and duration of the reservation

• the time unit of interest, typically 1 second

• the amount of data required in any one unit of time

For example, a reservation might specify: now, for 90 minutes, 1 megabyte per second. A
process places a reservation by calling grio_request() (refer to the grio_request(3X)
reference page).

XFS (in a GRIO daemon) keeps information on the transfer capacity of all real-time
subvolumes, as well as the capacity of the controllers and busses to which they are
attached. When you request a reservation, XFS tests whether it is possible to transfer data
at that rate, from that file, during that time period.

This test considers the capacity of the hardware as well as any other reservations that
apply during the same time period to the same subvolume, drives, or controllers. Each
reservation consumes some part of the total capacity.

When XFS predicts that the guaranteed rate can be met, it accepts the reservation. Over
the reservation period, the available capacity of the subvolume is reduced by the
promised rate. Other processes can place reservations against any capacity that remains.

If XFS predicts that the guaranteed rate cannot be met at some time in the reservation
period, XFS returns the maximum data rate it could supply. The program can reissue the
request for that available rate. However, this is a new request that is evaluated afresh.

During the reservation period, the process can use read() and write() to transfer up to the
guaranteed number of bytes in each time unit. XFS raises the priority of requests as
needed in order to ensure that the transfers take place. However, a request that would
transfer more than the promised number of bytes within a 1-second unit is blocked until
the start of the next time unit.

102

Chapter 5: Optimizing Disk I/O for a Real-Time Program

Releasing a Guarantee

A guarantee ends under three circumstances,

• when the process calls grio_remove_request() (see the grio_remove_request(3X)
reference page)

• when the requested duration expires

• when all file descriptors held by the requesting process that refer to the guaranteed
file are closed (an exception is discussed in the next topic)

When a guarantee ends, the guaranteed transfer capacity becomes available for other
processes to reserve. When a guarantee expires but the file is not closed, the file remains
usable for ordinary I/O, with no guarantee of rate.

Sharing Access to Guaranteed Files

Other processes can use a file or the hardware it resides on, even though guarantees are
active. XFS never grants guarantees for the whole capacity of the I/O path; it always
reserves some capacity. Non-guaranteed I/O requests are delayed within any 1-second
interval until guarantees have been met, and may be executed bit by bit in smaller units,
but they will finally be completed.

Once a guarantee is granted, the guarantee is uniquely identified with the file, through
the I-node number, and with the process, through the process ID. However, it is possible
to have the same file (I-node) open under different file descriptors. This has important
implications:

• All requests from that process to that file are handled under the guarantee—even if
they are issued to different file descriptors. (It is not possible for a single process to
request both guaranteed and nonguaranteed I/O to the same file.)

• It is not possible for one process to have two guarantees on the same file. The
second guarantee request is rejected, even if it uses a different file descriptor.

• Only the process that received a guarantee can remove the guarantee—that is,
grio_remove_request() must be called from the same process ID that called
grio_request().

• A rate guarantee is not shared by other processes created with fork() or sproc()—
even though they may have shared access to the file descriptor used with

Guaranteed-Rate I/O

103

grio_request(). Each process that wants guaranteed access must obtain its own
guarantee.

The last point has the important implication that you cannot use a rate guarantee with
asynchronous I/O. An input requested using aio_read() is executed by a different
process than the one that requested the guaranteed rate. That read is treated as
non-guaranteed, and executed on a time-available basis.

A complication can arise when a guaranteed rate is obtained by one process of a process
group created with sproc(). When the PR_SDIR flag (synchronize file descriptors; see the
sproc(2) reference page) is used, a rate guarantee obtained by one process of the group
cannot be terminated simply by closing all file descriptors. It can be terminated explicitly,
or by the time expiring, or by the whole process group terminating.

Hard Guarantees

When a program requests a hard guarantee, it asserts that nothing, not even data
integrity, should interfere with data transfer. A hard guarantee can be given only when

• the SCSI controller or controllers that attach the real-time subvolume have only
disks attached to them—no tapes or other nondisk devices

I/O to a non-disk device can delay disk data transfer.

• sector remapping in the drive firmware, as well as any device driver retry and
correction mechanisms, is disabled

Error retry can introduce unpredictable delays in data transfer.

When your program requests I/O under a hard guarantee, any device error is returned
directly to the program. No effort is made to retry the failure. If the drive contains a bad
sector, the bad sector is read and returned with no indication of error.

Soft Guarantees

A soft guarantee can be granted for a subvolume that has error retry and sector
remapping enabled. Your program accepts a possible, occasional failure to meet the
specified rate in exchange for having errors retried and possibly corrected.

104

Chapter 5: Optimizing Disk I/O for a Real-Time Program

In addition, a soft guarantee can be granted when the disk controller also controls
non-disk devices such as scanners and printers. Use of these devices during the
guarantee period can prevent the guaranteed rate from being met.

Video On Demand (VOD) Guarantees

You specify the VOD disk layout as a modifier on either a hard or soft guarantee (see the
grio_request(2) reference page and /usr/include/sys/grio.h). A VOD guarantee can be
requested only for a striped volume. In a striped volume, fixed-size segments of the
volume space that are logically sequential (“stripes”) are physically located on successive
drives. The potential data rate of a striped volume is higher because the multiple drives
can be used in parallel.

However, in order to achieve the higher rate, the striped volume must be used
concurrently by multiple processes, each reading in a different stripe. The maximum rate
is reached when as many processes are reading sequentially in stripe-sized units as the
subvolume has drives.

When a program requests a VOD guarantee, it must specify a data rate that equals one
stripe-width per second. VOD guarantees can be given concurrently to several processes
for the same subvolume. As long as all the processes read different stripes, the
guaranteed rate can be sustained for each.

When the first VOD guarantee is granted against a striped volume, the XFS system
begins VOD-style I/O scheduling for that volume. This establishes a strict cyclic rotation
of time intervals during which any disk in the striped volume can be read. In general, a
process must be ready for access when its turn in the rotation comes up. If it is not ready,
it can be delayed by as many seconds as there are disks in the volume.

• The first access by a process to a striped volume under VOD scheduling can be
delayed.

• If the process fails to request its next access before the beginning of the next second
of time, it can miss its assigned slot and be delayed.

• When a process uses lseek() to move to a stripe other than the next stripe in
sequence, its next I/O request can be delayed.

105

Chapter 6

6. Managing Device Interactions

A real-time program is defined by its close relationship to external hardware. This
chapter reviews the ways that IRIX gives you to access and control external devices.

Device Drivers

Note: This section contains an overview for readers who are not familiar with the details
of the UNIX I/O system. All these points are covered in much greater detail in the IRIX
Device Driver Programmer’s Guide (see “Other Useful Books” on page xviii).

It is a basic concept in UNIX that all I/O is done by reading or writing files. All I/O
devices—disks, tapes, printers, terminals, and VME cards—are represented as files in the
file system. Conventionally, every physical device is represented by an entry in the /dev
file system hierarchy. The purpose of each device special file is to associate a device name
with a a device driver, a module of code that is loaded into the kernel either at boot time
or dynamically, and is responsible for operating that device at the kernel’s request.

How Devices Are Defined

In IRIX 6.4, the /dev filesystem still exists to support programs and shell scripts that
depend on conventional names such as /dev/tty. However, the true representation of all
devices is built in a different file system rooted at /hw (for hardware). You can explore the
/hw filesystem using standard commands such as file, ls, and cd. You will find that the
conventional names in /dev are implemented as links to device special files in /hw. The
creation and use of /hw, and the definition of devices in it, is described in detail in the
IRIX Device Driver Programmer’s Guide.

106

Chapter 6: Managing Device Interactions

How Devices Are Used

To use a device, a process opens the device special file by passing the file pathname to
open() (see the open(2) reference page). For example, a generic SCSI device might be
opened by a statement such as this.

int scsi_fd = open("/dev/scsi/sc0d11l0",O_RDWR);

The returned integer is the file descriptor, a number that indexes an array of control blocks
maintained by IRIX in the address space of each process. With a file descriptor, the
process can call other system functions that give access to the device. Each of these
system calls is implemented in the kernel by transferring control to an entry point in the
device driver.

Device Driver Entry Points

Each device driver supports one or more of the following operations:

open Notifies the driver that a process wants to use the device.

close Notifies the driver that a process is finished with the device.

interrupt Entered by the kernel upon a hardware interrupt, notes an event
reported by a device, such as the completion of a device action, and
possibly initiates another action.

read Entered from the function read(), transfers data from the device to a
buffer in the address space of the calling process.

write Entered from the function write(), transfers data from the calling
process’s address space to the device.

control Entered from the function ioctl(), performs some kind of control
function specific to the type of device in use.

Not every driver supports every entry point. For example, the generic SCSI driver (see
“Generic SCSI Device Driver” on page 109) supports only the open, close, and control
entries.

Device drivers in general are documented with the device special files they support, in
volume 7 of the reference pages. For a sample, review:

• dsk(7m), documenting the standard IRIX SCSI disk device driver

• smfd(7m), documenting the diskette and optical diskette driver

Device Drivers

107

• tps(7m), documenting the SCSI tape drive device driver

• plp(7), documenting the parallel line printer device driver

• klog(7), documenting a “device” driver that is not a device at all, but a special
interface to the kernel

If you review a sample of entries in volume 7, as well as other reference pages that are
called out in the topics in this chapter, you will understand the wide variety of functions
performed by device drivers.

Taking Control of Devices

When your program needs direct control of a device, you have the following choices:

• If it is a device for which IRIX or the device manufacturer distributes a device
driver, find the device driver reference page in volume 7 to learn the device driver’s
support for read(), write(), mmap(), and ioctl(). Use these functions to control the
device.

• If it is a VME device without bus master capability, you can control it directly from
your program using programmed I/O or user-initiated DMA. Both options are
discussed under “The VME Bus” on page 111.

• If it is a VME device with bus master (on-board DMA) capability, you should
receive an IRIX device driver from the OEM. Consult IRIX Admin: System
Configuration and Operation to install the device and its driver. Read the OEM
reference page to learn the device driver’s support for read(), write(), and ioctl().

• If it is a SCSI device that does not have built-in IRIX support, you can control it from
your own program using the generic SCSI device driver. See “Generic SCSI Device
Driver” on page 109.

In the remaining case, you have a device with no driver. In this case you must create a
device driver. This process is documented in the IRIX Device Driver Programmer’s Guide,
which contains extensive information and sample code (see “Other Useful Books” on
page xviii).

108

Chapter 6: Managing Device Interactions

SCSI Devices

The SCSI interface is the principal way of attaching disk, cartridge tape, CD-ROM, and
digital audio tape (DAT) devices to the system. It can be used for other kinds of devices,
such as scanners and printers.

IRIX contains device drivers for supported disk and tape devices. Other SCSI devices are
controlled through a generic device driver that must be extended with programming for
a specific device.

SCSI Adapter Support

The detailed, board-level programming of the host SCSI adapters is done by an
IRIX-supplied host adapter driver. The services of this driver are available to the SCSI
device drivers that manage the logical devices. If you write a SCSI driver, it will control
the device indirectly, by calling a host adapter driver.

The host adapter drivers handle the low-level communication over the SCSI interface,
such as programming the SCSI interface chip or board, negotiating synchronous or wide
mode, and handling disconnect/reconnect. SCSI device drivers call on host adapter
drivers using indirect calls through a table of adapter functions. The use of host adapter
drivers is documented in the IRIX Device Driver Programmer’s Guide.

System Disk Device Driver

The naming conventions for disk and tape device files are documented in the intro(7)
reference page. In general, devices in /dev/[r]dsk are disk drives, and devices in /dev/[r]mt
are tape drives.

Disk devices in /dev/[r]dsk are operated by the SCSI disk controller, which is documented
in the dks(7) reference page. It is possible for a program to open a disk device and read,
write, or memory-map it, but this is almost never done. Instead, programs open, read,
write, or map files; and the EFS or XFS file system interacts with the device driver.

SCSI Devices

109

System Tape Device Driver

Tape devices in /dev/[r]mt are operated by the magnetic tape device driver, which is
documented in the tps(7) reference page. Users normally control tapes using such
commands as tar, dd, and mt (see the tar(1), dd(1M) and mt(1) reference pages), but it is
also common for programs to open a tape devices and then to use read(), write(), and
ioctl() to interact with the device driver.

Since the tape device driver supports the read/write interface, you can schedule tape
I/O through the asynchronous I/O interface (see “Asynchronous I/O Basics” on
page 83). You need to take pains to ensure that asynchronous operations to a tape are
executed in the proper sequence; see “Multiple Operations to One File” on page 156.

Generic SCSI Device Driver

Generally, non-disk, non-tape SCSI devices are installed in the /dev/scsi directory. Devices
so named are controlled by the generic SCSI device driver, which is documented in the
ds(7m) reference page.

Unlike most kernel-level device drivers, the generic SCSI driver does not support
interrupts, and does not support the read() and write() functions. Instead, it supports a
wide variety of ioctl() functions that you can use to issue SCSI commands to a device. In
order to invoke these operations you prepare a dsreq structure describing the operation
and pass it to the device driver. Operations can include input and output as well as
control and diagnostic commands.

The programming interface supported by the generic SCSI driver is quite primitive. A
library of higher-level functions makes it easier to use. This library is documented in the
dslib(3x) reference page. It is also described in detail in the IRIX Device Driver
Programmer’s Guide. The most important functions in it are listed below:

• dsopen(), which takes a device pathname, opens it for exclusive access, and returns
a dsreq structure to be used with other functions.

• fillg0cmd(), fillg1cmd(), and filldsreq(), which simplify the task of preparing the
many fields of a dsreq structure for a particular command.

• doscsireq(), which calls the device driver and checks status afterward.

110

Chapter 6: Managing Device Interactions

The dsreq structure for some operations specifies a buffer in memory for data transfer.
The generic SCSI driver handles the task of locking the buffer into memory (if necessary)
and managing a DMA transfer of data.

When the ioctl() function is called (through doscsireq() or directly), it does not return
until the SCSI command is complete. You should only request a SCSI operation from a
process that can tolerate being blocked.

Upon the basic dslib functions are built several functions that execute specific SCSI
commands, for example, read08() performs a read. However, there are few SCSI
commands that are recognized by all devices. Even the read operation has many
variations, and the read08() function as supplied is unlikely to work without
modification. The dslib library functions are not complete. Instead, you must alter them
and extend them with functions tailored to a specific device.

For more on dlsib, see the IRIX Device Driver Programmer’s Guide.

CD-ROM and DAT Audio Libraries

A library of functions that enable you to read audio data from an audio CD in the
CD-ROM drive is distributed with IRIX. This library was built upon the generic SCSI
functions supplied in dslib. The CD audio library is documented in the CDintro(3dm)
reference page (installed with the dmedia_dev package).

A library of functions that enable you to read and write audio data from a digital audio
tape is distributed with IRIX. This library was built upon the functions of the magnetic
tape device driver. The DAT audio library is documented in the DTintro(3dm) reference
page(installed with the dmedia_dev package) .

The VME Bus

111

The VME Bus

Each CHALLENGE XL, POWER CHALLENGE, or Onyx system includes full support
for the VME interface, including all features of Revision C.2 of the VME specification,
and the A64 and D64 modes as defined in Revision D. VME devices can access system
memory addresses, and devices on the system bus can access addresses in the VME
address space.

The naming of VME devices in /dev/vme, and other administrative issues, are covered in
the usrvme(7) reference page.

CHALLENGE Hardware Nomenclature

A number of special terms are used to describe the multiprocessor CHALLENGE
support for VME. The terms are described in the following list. Their relationship is
shown graphically in Figure 6-1.

POWERpath-2 Bus The primary system bus, connecting all CPUs and I/O channels
to main memory.

POWER Channel-2 The circuit card that interfaces one or more I/O devices to the
POWERpath-2 bus.

F-HIO card Adapter card used for cabling a VME card cage to the
POWER Channel

VMECC VME control chip, the circuit that interfaces the VME bus to the
POWER Channel.

112

Chapter 6: Managing Device Interactions

Figure 6-1 Multiprocessor CHALLENGE Data Path Components

VME Bus Attachments

All multiprocessor CHALLENGE systems contain a 9U VME bus in the main card cage.
Systems configured for rack-mount can optionally include an auxiliary 9U VME card
cage, which can be configured as 1, 2, or 4 VME busses. The possible configurations of
VME cards are shown in Table 6-1.

Table 6-1 Multiprocessor CHALLENGE VME Cages and Slots

Model Main Cage
Slots

Aux Cage Slots
(1 bus)

Aux Cage Slots
(2 busses)

Aux Cage Slots
(4 busses)

Challenge L 5 n.a. n.a. n.a.

Onyx Deskside 3 n.a. n.a. n.a.

Challenge XL 5 20 10 and 9 5, 4, 4, and 4

Onyx Rack 4 20 10 and 9 5, 4, 4, and 4

CPU

Second level cache

Main Memory

POWERpath−2 (system) Bus

First level cache

VMECC

F−HIO Card

VME Bus

The VME Bus

113

Each VME bus after the first requires an F cable connection from an F-HIO card on a
POWER Channel-2 board, as well as a Remote VCAM board in the auxiliary VME cage.
Up to three VME busses (two in the auxiliary cage) can be supported by the first POWER
Channel-2 board in a system. A second POWER Channel-2 board must be added to
support four or more VME busses. The relationship among VME busses, F-HIO cards,
and POWER Channel-2 boards is detailed in Table 6-2.

F-HIO short cards, which are used only on the first POWER Channel-2 board, supply
only one cable output. Regular F-HIO cards, used on the second POWER Channel-2
board, supply two. This explains why, although two POWER Channel-2 boards are
needed with four or more VME busses, the F-HIO slots on the first POWER Channel-2
board remain unused.

VME Address Space Mapping

A device on the VME bus has access to an address space in which it can read or write.
Depending on the device, it uses 16, 32, or 64 bits to define a bus address. The resulting
numbers are called the A16, A32, and A64 address spaces.

There is no direct relationship between an address in the VME address space and the set
of real addresses in the Challenge/Onyx main memory. An address in the VME address
space must be translated twice:

• The VMECC and POWER Channel devices establish a translation from VME
addresses into addresses in real memory.

Table 6-2 POWER Channel-2 and VME bus Configurations

Number of
VME Busses

PC-2 #1
FHIO slot #1

PC-2 #1
FHIO slot #2

PC-2 #2
FHIO slot #1

PPC-2 #2
FHIO slot #2

1 unused unused n.a. n.a.

2 F-HIO short unused n.a. n.a.

3 (1 PC-2) F-HIO short F-HIO short n.a. n.a.

3 (2 PC-2) unused unused F-HIO unused

4 unused unused F-HIO F-HIO

5 unused unused F-HIO F-HIO

114

Chapter 6: Managing Device Interactions

• The IRIX kernel assigns real memory space for this use, and establishes the
translation from real memory to virtual memory in the address space of a process or
the address space of the kernel.

Address space mapping is done differently for programmed I/O, in which slave VME
devices respond to memory accesses by the program, and for DMA, in which master
VME devices read and write directly to main memory.

Note: VME addressing issues are discussed in greater detail from the standpoint of the
device driver, in the IRIX Device Driver Programmer’s Guide.

PIO Address Space Mapping

In order to allow programmed I/O, the mmap() system function establishes a
correspondence between a segment of a process’s address space and a segment of the
VME address space. The kernel and the VME device driver program registers in the
VMECC to recognize fetches and stores to specific main memory real addresses and to
translate them into reads and writes on the VME bus. The devices on the VME bus must
react to these reads and writes as slaves; DMA is not supported by this mechanism.

One VMECC can map as many as 12 different segments of memory. Each segment can be
as long as 8 MB. The segments can be used singly or in any combination. Thus one
VMECC can support 12 unique mappings of at most 8 MB, or a single mapping of 96 MB,
or combinations between.

DMA Mapping

DMA mapping is based on the use of page tables stored in system main memory. This
allows DMA devices to access the virtual addresses in the address spaces of user
processes. The real pages of a DMA buffer can be scattered in main memory, but this is
not visible to the DMA device. DMA transfers that span multiple, scattered pages can be
performed in a single operation.

The kernel functions that establish the DMA address mapping are available only to
device drivers. For information on these, refer to the IRIX Device Driver Programmer’s
Guide.

The hardware of the POWER Channel-2 supports up to 8 DMA streams simultaneously
active on a single VME bus without incurring a loss of performance.

The VME Bus

115

Program Access to the VME Bus

Your program accesses the devices on the VME bus in one of two ways, through
programmed I/O (PIO) or through DMA. Normally, VME cards with Bus Master
capabilities always use DMA, while VME cards with slave capabilities are accessed using
PIO.

The Challenge/Onyx architecture also contains a unique hardware feature, the DMA
Engine, which can be used to move data directly between memory and a slave VME
device.

PIO Access

You perform PIO to VME devices by mapping the devices into memory using the
mmap() function (The use of PIO is covered in greater detail in the IRIX Device Driver
Programmer’s Guide. Memory mapping of I/O devices and other objects is covered in the
book Topics in IRIX Programming.)

Each PIO read requires two transfers over the POWERpath-2 bus: one to send the
address to be read, and one to retrieve the data. The latency of a single PIO input is
approximately 4 microseconds. PIO write is somewhat faster, since the address and data
are sent in one operation. Typical PIO performance is summarized in Table 6-3.

When a system has multiple VME busses, you can program concurrent PIO operations
from different CPUs to different busses, effectively multiplying the bandwidth by the
number of busses. It does not improve performance to program concurrent PIO to a
single VME bus.

Tip: When transferring more than 32 bytes of data, you can obtain higher rates using the
DMA Engine. See “DMA Engine Access to Slave Devices” on page 117.

Table 6-3 VME Bus PIO Bandwidth

Data Unit Size Read Write

D8 0.2 MB/second 0.75 MB/second

D16 0.5 MB/second 1.5 MB/second

D32 1 MB/second 3 MB/second

116

Chapter 6: Managing Device Interactions

User-Level Interrupt Handling

When a VME device that you control with PIO can generate interrupts, you can arrange
to trap the interrupts in your own program. In this way you can program the device for
some lengthy operation using PIO output to its registers, and then wait until the device
returns an interrupt to say the operation is complete.

The programming details on user-level interrupts are covered in the IRIX Device Driver
Programmer’s Guide.

DMA Access to Master Devices

VME bus cards with Bus Master capabilities transfer data using DMA. These transfers
are controlled and executed by the circuitry on the VME card. The DMA transfers are
directed by the address mapping described under “DMA Mapping” on page 114.

DMA transfers from a Bus Master are always initiated by a kernel-level device driver. In
order to exchange data with a VME Bus Master, you open the device and use read() and
write() calls. The device driver sets up the address mapping and initiates the DMA
transfers. The calling process is typically blocked until the transfer is complete and the
device driver returns.

The typical performance of a single DMA transfer is summarized in Table 6-4. Many
factors can affect the performance of DMA, including the characteristics of the device.

Up to 8 DMA streams can run concurrently on each VME bus. However, the aggregate
data rate for any one VME bus will not exceed the values in Table 6-4.

Table 6-4 VME Bus Bandwidth, VME Master Controlling DMA

Data Transfer Size Reading Writing

D8 0.4 MB/sec 0.6 MB/sec

D16 0.8 MB/sec 1.3 MB/sec

D32 1.6 MB/sec 2.6 MB/sec

D32 BLOCK 22 MB/sec (256 byte block) 24 MB/sec (256 byte block)

D64 BLOCK 55 MB/sec (2048 byte block) 58 MB/sec (2048 byte block)

The VME Bus

117

DMA Engine Access to Slave Devices

A DMA engine is included as part of each POWER Channel-2. The DMA engine is
unique to the Challenge/Onyx architecture. It performs efficient, block-mode, DMA
transfers between system memory and VME bus slave cards—cards that would normally
be capable of only PIO transfers.

The DMA engine greatly increases the rate of data transfer compared to PIO, provided
that you transfer at least 32 contiguous bytes at a time. The DMA engine can perform D8,
D16, D32, D32 Block, and D64 Block data transfers in the A16, A24, and A32 bus address
spaces.

All DMA engine transfers are initiated by a special device driver. However, you do not
access this driver through open/read/write system functions. Instead, you program it
through a library of functions. The functions are documented in the udmalib(3x)
reference page. They are used in the following sequence:

1. Call dma_open() to initialize action to a particular VME card.

2. Call dma_allocbuf() to allocate storage to use for DMA buffers.

3. Call dma_mkparms() to create a descriptor for an operation, including the buffer,
the length, and the direction of transfer.

4. Call dma_start() to execute a transfer. This function does not return until the
transfer is complete.

For more details of user DMA, see the IRIX Device Driver Programmer’s Guide.

The typical performance of the DMA engine for D32 transfers is summarized in
Table 6-5. Performance with D64 Block transfers is somewhat less than twice the rate
shown in Table 9-5. Transfers for larger sizes are faster because the setup time is
amortized over a greater number of bytes.

Table 6-5 VME Bus Bandwidth, DMA Engine, D32 Transfer

Transfer Size Read Write Block Read Block Write

32 2.8 MB/sec 2.6 MB/sec 2.7 MB/sec 2.7 MB/sec

64 3.8 MB/sec 3.8 MB/sec 4.0 MB/sec 3.9 MB/sec

128 5.0 MB/sec 5.3 MB/sec 5.6 MB/sec 5.8 MB/sec

256 6.0 MB/sec 6.7 MB/sec 6.4 MB/sec 7.3 MB/sec

118

Chapter 6: Managing Device Interactions

Some of the factors that affect the performance of user DMA include

• The response time of the VME board to bus read and write requests

• The size of the data block transferred (as shown in Table 6-5)

• Overhead and delays in setting up each transfer

The numbers in Table 6-5 were achieved by a program that called dma_start() in a tight
loop, in other words, with minimal overhead.

The dma_start() function operates in user space; it is not a kernel-level device driver. This
has two important effects. First, overhead is reduced, since there are no mode switches
between user and kernel, as there are for read() and write(). This is important since the
DMA engine is often used for frequent, small inputs and outputs.

Second, dma_start() does not block the calling process, in the sense of suspending it and
possibly allowing another process to use the CPU. However, it waits in a test loop,
polling the hardware until the operation is complete. As you can infer from Table 6-5,
typical transfer times range from 50 to 250 microseconds. You can calculate the
approximate duration of a call to dma_start() based on the amount of data and the
operational mode.

You can use the udmalib functions to access a VME Bus Master device, if the device can
respond in slave mode. However, this would normally be less efficient than using the
Master device’s own DMA circuitry.

While you can initiate only one DMA engine transfer per bus, it is possible to program a
DMA engine transfer from each bus in the system, concurrently.

512 6.4 MB/sec 7.7 MB/sec 7.0 MB/sec 8.0 MB/sec

1024 6.8 MB/sec 8.0 MB/sec 7.5 MB/sec 8.8 MB/sec

2048 7.0 MB/sec 8.4 MB/sec 7.8 MB/sec 9.2 MB/sec

4096 7.1 MB/sec 8.7 MB/sec 7.9 MB/sec 9.4 MB/sec

Table 6-5 VME Bus Bandwidth, DMA Engine, D32 Transfer

Transfer Size Read Write Block Read Block Write

Serial Ports

119

Serial Ports

Occasionally a real-time program has to use an input device that interfaces through a
serial port. This is not a recommended practice for several reasons: the serial device
drivers and the STREAMS modules that process serial input are not optimized for
deterministic, real-time performance; and at high data rates, serial devices generate
many interrupts.

When there is no alternative, a real-time program will typically open one of the files
named /dev/tty*. The names, and some hardware details, for these devices are
documented in the serial(7) reference page. Information specific to two serial adapter
boards is in the duart(7) reference page and the cdsio(7) reference page.

When a process opens a serial device, a line discipline STREAMS module is pushed on
the stream by default. If the real-time device is not a terminal and doesn’t support the
usual line controls, this module can be removed. Use the I_POP ioctl (see the streamio(7)
reference page) until no modules are left on the stream. This minimizes the overhead of
serial input, at the cost of receiving completely raw, unprocessed input.

An important feature of current device drivers for serial ports is that they try to minimize
the overhead of handling the many interrupts that result from high character data rates.
The serial I/O boards interrupt at least every 4 bytes received, and in some cases on every
character (at least 480 interrupts a second, and possibly 1920, at 19,200 bps). Rather than
sending each input byte up the stream as it arrives, the drivers buffer a few characters
and send multiple characters up the stream.

When the line discipline module is present on the stream, this behavior is controlled by
the termio settings, as described in the termio(7) reference page for non-canonical input.
However, a real-time program will probably not use the line-discipline module. The
hardware device drivers support the SIOC_ITIMER ioctl that is mentioned in the
serial(7) reference page, for the same purpose.

The SIOC_ITIMER function specifies the number of clock ticks (see “Tick Interrupts” on
page 24) over which it should accumulate input characters before sending a batch of
characters up the input stream. A value of 0 requests that each character be sent as it
arrives (do this only for devices with very low data rates, or when it is absolutely
necessary to know the arrival time of each input byte). A value of 5 tells the driver to
collect input for 5 ticks (50 milliseconds, or as many as 24 bytes at 19,200 bps) before
passing the data along.

120

Chapter 6: Managing Device Interactions

External Interrupts

The Origin200, Origin2000, and Challenge/Onyx hardware includes support for
generating and receiving external interrupt signals. The electrical interface to the
external interrupt lines is documented at the end of the ei(7) reference page.

Your program controls and receives external interrupts by interacting with the external
interrupt device driver. This driver is associated with the special device file /dev/ei, and is
documented in the ei(7) reference page. (External interrupt support and the ei(7) page are
first available in IRIX 5.3.)

For programming details of the external interrupt lines, see the IRIX Device Driver
Programmer’s Guide. You can also trap external interrupts with a user-level interrupt
handler (see “User-Level Interrupt Handling” on page 116); this is also covered in the
IRIX Device Driver Programmer’s Guide.

121

Appendix A

A. Sample Programs

The programs in this appendix illustrate the use of some of the features discussed in the
book. The following programs are included:

• “Asynchronous I/O Example” on page 121 illustrates the use of asynchronous I/O
including four different methods of testing for I/O completion, and also shows
process creation with sproc() and the use of semaphores and barriers.

• “Guaranteed-Rate Request” on page 140 demonstrates how to request a
guaranteed rate of I/O transfer.

• “Frame Scheduler Examples” on page 143 describes the sample programs
distributed with the REACT/Pro Frame Scheduler.

Asynchronous I/O Example

The program in Example A-1 demonstrates the use some asynchronous I/O functions.
The basic purpose of the program is to read a list of input files and write their
concatenated contents as its output—work that does not normally require asynchronous
I/O. However, this test program reads the input files using aio_read(), and writes the
output files using aio_write() and aio_fsync(). In addition, it can be compiled in either of
two ways,

• to copy the input files one at a time, using subroutine calls

• to copy the input files concurrently, using a separate process for each input file

There is no functional advantage to using multiple processes. Doing so merely makes
the example more interesting. It also demonstrates that, even though multiple processes
ask for output at different points in the same file at the same time, the output is written
to the requested offsets.

The reading and writing is done in one of four functions. The functions all perform the
following sequence of actions:

122

Appendix A: Sample Programs

1. Initialize the aiocb for the type of notification desired. The type of notification is the
principal difference between the functions: some use signals, some callback
functions, some no notification.

2. Until the input file is exhausted,

• Call aio_read() for up to one BLOCKSIZE amount from the next offset in the
input file

• Wait for the read to complete

• Call aio_write() to write the data read to the next offset in the output file

• Wait for the write to complete

3. Use aio_fsync() to ensure that output is complete and wait for it to complete.

The four functions, inProc0() through inProc3(), differ only in the method they use to
wait for completion.

• inProc0() alternates calling aio_error() with sginap() until the status is other than
EINPROGRESS.

• inProc1() calls aio_suspend() to wait for the current operation.

• inProc2() sets the aiocb to request a signal on completion. Then it waits on a
semaphore that is posted from the signal handler function.

• inProc3() waits on a semaphore which is posted from a callback function.

You select which of the four function to use with the -a argument to the program. If you
compile the program with the variable DO_SPROCS defined as 0, the chosen function is
called as a subroutine once for each input file. If you compile with DO_SPROCS defined
as 1, the chosen function is launched by sprocsp() once for each input file.

Example A-1 Asynchronous I/O Example Program

/* ==
|| aiocat.c : This highly artificial example demonstrates asynchronous I/O.
||
|| The command syntax is:
|| aiocat [-o outfile] [-a {0|1|2|3}] infilename...
||
|| The output file is given by -o, with $TMPDIR/aiocat.out by default.
|| The aio method of waiting for completion is given by -a as follows:
|| -a 0 poll for completion with aio_error() (default)
|| -a 1 wait for completion with aio_suspend()

Asynchronous I/O Example

123

|| -a 2 wait on a semaphore posted from a signal handler
|| -a 3 wait on a semaphore posted from a callback routine
||
|| Up to MAX_INFILES input files may be specified. Each input file is
|| read in BLOCKSIZE units. The output file contains the data from
|| the input files in the order they were specified. Thus the
|| output should be the same as "cat infilename... >outfile".
||
|| When DO_SPROCS is compiled true, all I/O is done asynchronously
|| and concurrently using one sproc'd process per file. Thus in a
|| multiprocessor concurrent input can be done.
== */

#define _SGI_MP_SOURCE /* see the "Caveats" section of sproc(2) */
#include <sys/time.h> /* for clock() */
#include <errno.h> /* for perror() */
#include <stdio.h> /* for printf() */
#include <stdlib.h> /* for getenv(), malloc(3c) */
#include <ulocks.h> /* usinit() & friends */
#include <bstring.h> /* for bzero() */
#include <sys/resource.h> /* for prctl, get/setrlimit() */
#include <sys/prctl.h> /* for prctl() */
#include <sys/types.h> /* required by lseek(), prctl */
#include <unistd.h> /* ditto */
#include <sys/types.h> /* wanted by sproc() */
#include <sys/prctl.h> /* ditto */
#include <signal.h> /* for signals - gets sys/signal and sys/siginfo */
#include <aio.h> /* async I/O */

#define BLOCKSIZE 2048 /* input units -- play with this number */
#define MAX_INFILES 10 /* max sprocs: anything from 4 to 20 or so */
#define DO_SPROCS 1 /* set 0 to do all I/O in a single process */

#define QUITIFNULL(PTR,MSG) if (NULL==PTR) {perror(MSG);return(errno);}
#define QUITIFMONE(INT,MSG) if (-1==INT) {perror(MSG);return(errno);}
/***
|| The following structure contains the info needed by one child proc.
|| The main program builds an array of MAX_INFILES of these.
|| The reason for storing the actual filename here (not a pointer) is
|| to force the struct to >128 bytes. Then, when the procs run in
|| different CPUs on a CHALLENGE, the info structs will be in different
|| cache lines, and a store by one proc will not invalidate a cache line
|| for its neighbor proc.
*/
typedef struct child

124

Appendix A: Sample Programs

{
/* read-only to child */

char fname[100]; /* input filename from argv[n] */
int fd; /* FD for this file */
void* buffer; /* buffer for this file */
int procid; /* process ID of child process */
off_t fsize; /* size of this input file */

/* read-write to child */
usema_t* sema; /* semaphore used by methods 2 & 3 */
off_t outbase; /* starting offset in output file */
off_t inbase; /* current offset in input file */
clock_t etime; /* sum of utime/stime to read file */
aiocb_t acb; /* aiocb used for reading and writing */

} child_t;

/**
|| Globals, accessible to all processes
*/
char* ofName = NULL; /* output file name string */
int outFD; /* output file descriptor */
usptr_t* arena; /* arena where everything is built */
barrier_t* convene; /* barrier used to sync up */
int nprocs = 1; /* 1 + number of child procs */
child_t* array; /* array of child_t structs in arena */
int errors = 0; /* always incremented on an error */

/**
|| forward declaration of the child process functions
*/
void inProc0(void *arg, size_t stk); /* polls with aio_error() */
void inProc1(void *arg, size_t stk); /* uses aio_suspend() */
void inProc2(void *arg, size_t stk); /* uses a signal and semaphore */
void inProc3(void *arg, size_t stk); /* uses a callback and semaphore */

/**
// The main()
*/
int main(int argc, char **argv)
{

char* tmpdir; /* ->name string of temp dir */
int nfiles; /* how many input files on cmd line */
int argno; /* loop counter */
child_t* pc; /* ->child_t of current file */
void (*method)(void *,size_t) = inProc0; /* ->chosen input method */
char arenaPath[128]; /* build area for arena pathname */

Asynchronous I/O Example

125

char outPath[128]; /* build area for output pathname */
/*
|| Ensure the name of a temporary directory.
*/
tmpdir = getenv("TMPDIR");
if (!tmpdir) tmpdir = "/var/tmp";
/*
|| Build a name for the arena file.
*/
strcpy(arenaPath,tmpdir);
strcat(arenaPath,"/aiocat.wrk");
/*
|| Create the arena. First, call usconfig() to establish the
|| minimum size (twice the buffer size per file, to allow for misc usage)
|| and the (maximum) number of processes that may later use
|| this arena. For this program that is MAX_INFILES+10, allowing
|| for our sprocs plus those done by aio_sgi_init().
|| These values apply to any arenas made subsequently, until changed.
*/
{

ptrdiff_t ret;
ret = usconfig(CONF_INITSIZE,2*BLOCKSIZE*MAX_INFILES);
QUITIFMONE(ret,"usconfig size")
ret = usconfig(CONF_INITUSERS,MAX_INFILES+10);
QUITIFMONE(ret,"usconfig users")
arena = usinit(arenaPath);
QUITIFNULL(arena,"usinit")

}
/*
|| Allocate the barrier.
*/
convene = new_barrier(arena);
QUITIFNULL(convene,"new_barrier")
/*
|| Allocate the array of child info structs and zero it.
*/
array = (child_t*)usmalloc(MAX_INFILES*sizeof(child_t),arena);
QUITIFNULL(array,"usmalloc")
bzero((void *)array,MAX_INFILES*sizeof(child_t));
/*
|| Loop over the arguments, setting up child structs and
|| counting input files. Quit if a file won't open or seek,
|| or if we can't get a buffer or semaphore.
*/
for (nfiles=0, argno=1; argno < argc; ++argno)

126

Appendix A: Sample Programs

{
if (0 == strcmp(argv[argno],"-o"))
{ /* is the -o argument */

++argno;
if (argno < argc)

ofName = argv[argno];
else
{

fprintf(stderr,"-o must have a filename after\n");
return -1;

}
}
else if (0 == strcmp(argv[argno],"-a"))
{ /* is the -a argument */

char c = argv[++argno][0];
switch(c)
{
case '0' : method = inProc0; break;
case '1' : method = inProc1; break;
case '2' : method = inProc2; break;
case '3' : method = inProc3; break;
default:

{
fprintf(stderr,"unknown method -a %c\n",c);
return -1;

}
}

}
else if ('-' == argv[argno][0])
{ /* is unknown -option */

fprintf(stderr,"aiocat [-o outfile] [-a 0|1|2|3] infiles...\n");
return -1;

}
else
{ /* neither -o nor -a, assume input file */

if (nfiles < MAX_INFILES)
{

/*
|| save the filename
*/
pc = &array[nfiles];
strcpy(pc->fname,argv[argno]);
/*
|| allocate a buffer and a semaphore. Not all
|| child procs use the semaphore but so what?

Asynchronous I/O Example

127

*/
pc->buffer = usmalloc(BLOCKSIZE,arena);
QUITIFNULL(pc->buffer,"usmalloc(buffer)")
pc->sema = usnewsema(arena,0);
QUITIFNULL(pc->sema,"usnewsema")
/*
|| open the file
*/
pc->fd = open(pc->fname,O_RDONLY);
QUITIFMONE(pc->fd,"open")
/*
|| get the size of the file. This leaves the file
|| positioned at-end, but there is no need to reposition
|| because all aio_read calls have an implied lseek.
|| NOTE: there is no check for zero-length file; that
|| is a valid (and interesting) test case.
*/
pc->fsize = lseek(pc->fd,0,SEEK_END);
QUITIFMONE(pc->fsize,"lseek")
/*
|| set the starting base address of this input file
|| in the output file. The first file starts at 0.
|| Each one after starts at prior base + prior size.
*/
if (nfiles) /* not first */

pc->outbase =
array[nfiles-1].fsize + array[nfiles-1].outbase;

++nfiles;
}
else
{

printf("Too many files, %s ignored\n",argv[argno]);
}

}
} /* end for(argc) */
/*
|| If there was no -o argument, construct an output file name.
*/
if (!ofName)
{

strcpy(outPath,tmpdir);
strcat(outPath,"/aiocat.out");
ofName = outPath;

}
/*

128

Appendix A: Sample Programs

|| Open, creating or truncating, the output file.
|| Do not use O_APPEND, which would constrain aio to doing
|| operations in sequence.
*/
outFD = open(ofName, O_WRONLY+O_CREAT+O_TRUNC,0666);
QUITIFMONE(outFD,"open(output)")
/*
|| If there were no input files, just quit, leaving empty output
*/
if (!nfiles)
{

return 0;
}
/*
|| Note the number of processes-to-be, for use in initializing
|| aio and for use by each child in a barrier() call.
*/
nprocs = 1+nfiles;
/*
|| Initialize async I/O using aio_sgi_init(), in order to specify
|| a number of locks at least equal to the number of child procs
|| and in order to specify extra sproc users.
*/
{

aioinit_t ainit = {0}; /* all fields initially zero */
/*
|| Go with the default 5 for the number of aio-created procs,
|| as we have no way of knowing the number of unique devices.
*/

#define AIO_PROCS 5
ainit.aio_threads = AIO_PROCS;
/*
|| Set the number of locks aio needs to the number of procs
|| we will start, minimum 3.
*/
ainit.aio_locks = (nprocs > 2)?nprocs:3;
/*
|| Warn aio of the number of user procs that will be
|| using its arena.
*/
ainit.aio_numusers = nprocs;
aio_sgi_init(&ainit);

}
/*
|| Process each input file, either in a child process or in

Asynchronous I/O Example

129

|| a subroutine call, as specified by the DO_SPROCS variable.
*/
for (argno = 0; argno < nfiles; ++argno)
{

pc = &array[argno];
#if DO_SPROCS
#define CHILD_STACK 64*1024

/*
|| For each input file, start a child process as an instance
|| of the selected method (-a argument).
|| If an error occurs, quit. That will send a SIGHUP to any
|| already-started child, which will kill it, too.
*/
pc->procid = sprocsp(method /* function to start */

,PR_SALL /* share all, keep FDs sync'd */
,(void *)pc /* argument to child func */
,NULL /* absolute stack seg */
,CHILD_STACK); /* max stack seg growth */

QUITIFMONE(pc->procid,"sproc")
#else

/*
|| For each input file, call the selected (-a) method as a
|| subroutine to copy its file.
*/
fprintf(stderr,"file %s...",pc->fname);
method((void*)pc,0);
if (errors) break;
fprintf(stderr,"done\n");

#endif
}

#if DO_SPROCS
/*
|| Wait for all the kiddies to get themselves initialized.
|| When all have started and reached barrier(), all continue.
|| If any errors occurred in initialization, quit.
*/
barrier(convene,nprocs);
/*
|| Child processes are executing now. Reunite the family round the
|| old hearth one last time, when their processing is complete.
|| Each child ensures that all its output is complete before it
|| invokes barrier().
*/
barrier(convene,nprocs);

#endif

130

Appendix A: Sample Programs

/*
|| Close the output file and print some statistics.
*/
close(outFD);
{

clock_t timesum;
long bytesum;
double bperus;
printf(" procid time fsize filename\n");
for(argno = 0, timesum = bytesum = 0 ; argno < nfiles ; ++argno)
{

pc = &array[argno];
timesum += pc->etime;
bytesum += pc->fsize;
printf("%2d: %-8d %-8d %-8d %s\n"

,argno,pc->procid,pc->etime,pc->fsize,pc->fname);
}
bperus = ((double)bytesum)/((double)timesum);
printf("total time %d usec, total bytes %d, %g bytes/usec\n"

 ,timesum , bytesum , bperus);
}
/*
|| Unlink the arena file, so it won't exist when this progam runs
|| again. If it did exist, it would be used as the initial state of
|| the arena, which might or might not have any effect.
*/
unlink(arenaPath);
return 0;

}
/**
|| inProc0() alternates polling with aio_error() with sginap(). Under
|| the Frame Scheduler, it would use frs_yield() instead of sginap().
|| The general pattern of this function is repeated in the other three;
|| only the wait method varies from function to function.
*/
int inWait0(child_t *pch)
{

int ret;
aiocb_t* pab = &pch->acb;
while (EINPROGRESS == (ret = aio_error(pab)))
{

sginap(0);
}
return ret;

}

Asynchronous I/O Example

131

void inProc0(void *arg, size_t stk)
{

child_t *pch = arg; /* starting arg is ->child_t for my file */
aiocb_t *pab = &pch->acb; /* base address of the aiocb_t in child_t */
int ret; /* as long as this is 0, all is ok */
int bytes; /* #bytes read on each input */
/*
|| Initialize -- no signals or callbacks needed.
*/
pab->aio_sigevent.sigev_notify = SIGEV_NONE;
pab->aio_buf = pch->buffer; /* always the same */

#if DO_SPROCS
/*
|| Wait for the starting gun...
*/
barrier(convene,nprocs);

#endif
pch->etime = clock();
do /* read and write, read and write... */
{

/*
|| Set up the aiocb for a read, queue it, and wait for it.
*/
pab->aio_fildes = pch->fd;
pab->aio_offset = pch->inbase;
pab->aio_nbytes = BLOCKSIZE;
if (ret = aio_read(pab))

break; /* unable to schedule a read */
ret = inWait0(pch);
if (ret)

break; /* nonzero read completion status */
/*
|| get the result of the read() call, the count of bytes read.
|| Since aio_error returned 0, the count is nonnegative.
|| It could be 0, or less than BLOCKSIZE, indicating EOF.
*/
bytes = aio_return(pab); /* actual read result */
if (!bytes)

break; /* no need to write a last block of 0 */
pch->inbase += bytes; /* where to read next time */
/*
|| Set up the aiocb for a write, queue it, and wait for it.
*/
pab->aio_fildes = outFD;
pab->aio_nbytes = bytes;

132

Appendix A: Sample Programs

pab->aio_offset = pch->outbase;
if (ret = aio_write(pab))

break;
ret = inWait0(pch);
if (ret)

break;
pch->outbase += bytes; /* where to write next time */

} while ((!ret) && (bytes == BLOCKSIZE));
/*
|| The loop is complete. If no errors so far, use aio_fsync()
|| to ensure that output is complete. This requires waiting
|| yet again.
*/
if (!ret)
{

if (!(ret = aio_fsync(O_SYNC,pab)))
ret = inWait0(pch);

}
/*
|| Flag any errors for the parent proc. If none, count elapsed time.
*/
if (ret) ++errors;
else pch->etime = (clock() - pch->etime);

#if DO_SPROCS
/*
|| Rendezvous with the rest of the family, then quit.
*/
barrier(convene,nprocs);

#endif
return;

} /* end inProc1 */
/**
|| inProc1 uses aio_suspend() to await the completion of each operation.
|| Otherwise it is the same as inProc0, above.
*/

int inWait1(child_t *pch)
{

int ret;
aiocb_t* susplist[1]; /* list of 1 aiocb for aio_suspend() */
susplist[0] = &pch->acb;
/*
|| Note: aio.h declares the 1st argument of aio_suspend() as "const."
|| The C compiler requires the actual-parameter to match in type,
|| so the list we pass must either be declared "const aiocb_t*" or

Asynchronous I/O Example

133

|| must be cast to that -- else cc gives a warning. The cast
|| in the following statement is only to avoid this warning.
*/
ret = aio_suspend((const aiocb_t **) susplist,1,NULL);
return ret;

}
void inProc1(void *arg, size_t stk)
{

child_t *pch = arg; /* starting arg is ->child_t for my file */
aiocb_t *pab = &pch->acb; /* base address of the aiocb_t in child_t */
int ret; /* as long as this is 0, all is ok */
int bytes; /* #bytes read on each input */
/*
|| Initialize -- no signals or callbacks needed.
*/
pab->aio_sigevent.sigev_notify = SIGEV_NONE;
pab->aio_buf = pch->buffer; /* always the same */

#if DO_SPROCS
/*
|| Wait for the starting gun...
*/
barrier(convene,nprocs);

#endif
pch->etime = clock();
do /* read and write, read and write... */
{

/*
|| Set up the aiocb for a read, queue it, and wait for it.
*/
pab->aio_fildes = pch->fd;
pab->aio_offset = pch->inbase;
pab->aio_nbytes = BLOCKSIZE;
if (ret = aio_read(pab))

break;
ret = inWait1(pch);
/*
|| If the aio_suspend() return is nonzero, it means that the wait
|| did not end for i/o completion but because of a signal. Since we
|| expect no signals here, we take that as an error.
*/
if (!ret) /* op is complete */

ret = aio_error(pab); /* read() status, should be 0 */
if (ret)

break; /* signal, or nonzero read completion */
/*

134

Appendix A: Sample Programs

|| get the result of the read() call, the count of bytes read.
|| Since aio_error returned 0, the count is nonnegative.
|| It could be 0, or less than BLOCKSIZE, indicating EOF.
*/
bytes = aio_return(pab); /* actual read result */
if (!bytes)

break; /* no need to write a last block of 0 */
pch->inbase += bytes; /* where to read next time */
/*
|| Set up the aiocb for a write, queue it, and wait for it.
*/
pab->aio_fildes = outFD;
pab->aio_nbytes = bytes;
pab->aio_offset = pch->outbase;
if (ret = aio_write(pab))

break;
ret = inWait1(pch);
if (!ret) /* op is complete */

ret = aio_error(pab); /* should be 0 */
if (ret)

break;
pch->outbase += bytes; /* where to write next time */

} while ((!ret) && (bytes == BLOCKSIZE));
/*
|| The loop is complete. If no errors so far, use aio_fsync()
|| to ensure that output is complete. This requires waiting
|| yet again.
*/
if (!ret)
{

if (!(ret = aio_fsync(O_SYNC,pab)))
ret = inWait1(pch);

}
/*
|| Flag any errors for the parent proc. If none, count elapsed time.
*/
if (ret) ++errors;
else pch->etime = (clock() - pch->etime);

#if DO_SPROCS
/*
|| Rendezvous with the rest of the family, then quit.
*/
barrier(convene,nprocs);

#endif
} /* end inProc0 */

Asynchronous I/O Example

135

/**
|| inProc2 requests a signal upon completion of an I/O. After starting
|| an operation, it P's a semaphore which is V'd from the signal handler.
*/
#define AIO_SIGNUM SIGRTMIN+1 /* arbitrary choice of signal number */
void sigHandler2(const int signo, const struct siginfo *sif)
{

/*
|| In this minimal signal handler we pick up the address of the
|| child_t info structure -- which was put in aio_sigevent.sigev_value
|| field during initialization -- and use it to find the semaphore.
*/
child_t *pch = sif->si_value.sival_ptr ;
usvsema(pch->sema);
return; /* stop here with dbx to print the above address */

}
int inWait2(child_t *pch)
{

/*
|| Wait for any signal handler to post the semaphore. The signal
|| handler could have been entered before this function is called,
|| or it could be entered afterward.
*/
uspsema(pch->sema);
/*
|| Since this process executes only one aio operation at a time,
|| we can return the status of that operation. In a more complicated
|| design, if a signal could arrive from more than one pending
|| operation, this function could not return status.
*/
return aio_error(&pch->acb);

}
void inProc2(void *arg, size_t stk)
{

child_t *pch = arg; /* starting arg is ->child_t for my file */
aiocb_t *pab = &pch->acb; /* base address of the aiocb_t in child_t */
int ret; /* as long as this is 0, all is ok */
int bytes; /* #bytes read on each input */
/*
|| Initialize -- request a signal in aio_sigevent. The address of
|| the child_t struct is passed as the siginfo value, for use
|| in the signal handler.
*/
pab->aio_sigevent.sigev_notify = SIGEV_SIGNAL;
pab->aio_sigevent.sigev_signo = AIO_SIGNUM;

136

Appendix A: Sample Programs

pab->aio_sigevent.sigev_value.sival_ptr = (void *)pch;
pab->aio_buf = pch->buffer; /* always the same */
/*
|| Initialize -- set up a signal handler for AIO_SIGNUM.
*/
{

struct sigaction sa = {SA_SIGINFO,sigHandler2};
ret = sigaction(AIO_SIGNUM,&sa,NULL);
if (ret) ++errors; /* parent will shut down ASAP */

}
#if DO_SPROCS

/*
|| Wait for the starting gun...
*/
barrier(convene,nprocs);

#else
if (ret) return;

#endif
pch->etime = clock();
do /* read and write, read and write... */
{

/*
|| Set up the aiocb for a read, queue it, and wait for it.
*/
pab->aio_fildes = pch->fd;
pab->aio_offset = pch->inbase;
pab->aio_nbytes = BLOCKSIZE;
if (!(ret = aio_read(pab)))

ret = inWait2(pch);
if (ret)

break; /* could not start read, or it ended badly */
/*
|| get the result of the read() call, the count of bytes read.
|| Since aio_error returned 0, the count is nonnegative.
|| It could be 0, or less than BLOCKSIZE, indicating EOF.
*/
bytes = aio_return(pab); /* actual read result */
if (!bytes)

break; /* no need to write a last block of 0 */
pch->inbase += bytes; /* where to read next time */
/*
|| Set up the aiocb for a write, queue it, and wait for it.
*/
pab->aio_fildes = outFD;
pab->aio_nbytes = bytes;

Asynchronous I/O Example

137

pab->aio_offset = pch->outbase;
if (!(ret = aio_write(pab)))

 ret = inWait2(pch);
if (ret)

break;
pch->outbase += bytes; /* where to write next time */

} while ((!ret) && (bytes == BLOCKSIZE));
/*
|| The loop is complete. If no errors so far, use aio_fsync()
|| to ensure that output is complete. This requires waiting
|| yet again.
*/
if (!ret)
{

if (!(ret = aio_fsync(O_SYNC,pab)))
ret = inWait2(pch);

}
/*
|| Flag any errors for the parent proc. If none, count elapsed time.
*/
if (ret) ++errors;
else pch->etime = (clock() - pch->etime);

#if DO_SPROCS
/*
|| Rendezvous with the rest of the family, then quit.
*/
barrier(convene,nprocs);

#endif
} /* end inProc2 */

/**
|| inProc3 uses a callback and a semaphore. It waits with a P operation.
|| The callback function executes a V operation. This may come before or
|| after the P operation.
*/
void callBack3(union sigval usv)
{

/*
|| The callback function receives the pointer to the child_t struct,
|| as prepared in aio_sigevent.sigev_value.sival_ptr. Use this to
|| post the semaphore in the child_t struct.
*/
child_t *pch = usv.sival_ptr;
usvsema(pch->sema);
return;

138

Appendix A: Sample Programs

}
int inWait3(child_t *pch)
{

/*
|| Suspend, if necessary, by polling the semaphore. The callback
|| function might be entered before we reach this point, or after.
*/
uspsema(pch->sema);
/*
|| Return the status of the aio operation associated with the sema.
*/
return aio_error(&pch->acb);

}
void inProc3(void *arg, size_t stk)
{

child_t *pch = arg; /* starting arg is ->child_t for my file */
aiocb_t *pab = &pch->acb; /* base address of the aiocb_t in child_t */
int ret; /* as long as this is 0, all is ok */
int bytes; /* #bytes read on each input */
/*
|| Initialize -- request a callback in aio_sigevent. The address of
|| the child_t struct is passed as the siginfo value to be passed
|| into the callback.
*/
pab->aio_sigevent.sigev_notify = SIGEV_CALLBACK;
pab->aio_sigevent.sigev_func = callBack3;
pab->aio_sigevent.sigev_value.sival_ptr = (void *)pch;
pab->aio_buf = pch->buffer; /* always the same */

#if DO_SPROCS
/*
|| Wait for the starting gun...
*/
barrier(convene,nprocs);

#endif
pch->etime = clock();
do /* read and write, read and write... */
{

/*
|| Set up the aiocb for a read, queue it, and wait for it.
*/
pab->aio_fildes = pch->fd;
pab->aio_offset = pch->inbase;
pab->aio_nbytes = BLOCKSIZE;
if (!(ret = aio_read(pab)))

ret = inWait3(pch);

Asynchronous I/O Example

139

if (ret)
break; /* read error */

/*
|| get the result of the read() call, the count of bytes read.
|| Since aio_error returned 0, the count is nonnegative.
|| It could be 0, or less than BLOCKSIZE, indicating EOF.
*/
bytes = aio_return(pab); /* actual read result */
if (!bytes)

break; /* no need to write a last block of 0 */
pch->inbase += bytes; /* where to read next time */
/*
|| Set up the aiocb for a write, queue it, and wait for it.
*/
pab->aio_fildes = outFD;
pab->aio_nbytes = bytes;
pab->aio_offset = pch->outbase;
if (!(ret = aio_write(pab)))

 ret = inWait3(pch);
if (ret)

break;
pch->outbase += bytes; /* where to write next time */

} while ((!ret) && (bytes == BLOCKSIZE));
/*
|| The loop is complete. If no errors so far, use aio_fsync()
|| to ensure that output is complete. This requires waiting
|| yet again.
*/
if (!ret)
{

if (!(ret = aio_fsync(O_SYNC,pab)))
ret = inWait3(pch);

}
/*
|| Flag any errors for the parent proc. If none, count elapsed time.
*/
if (ret) ++errors;
else pch->etime = (clock() - pch->etime);

#if DO_SPROCS
/*
|| Rendezvous with the rest of the family, then quit.
*/
barrier(convene,nprocs);

#endif
} /* end inProc3 */

140

Appendix A: Sample Programs

Guaranteed-Rate Request

The following subroutine simplifies the task of requesting a guaranteed rate of I/O
transfer. The file descriptor passed to function requestRate() must describe a file located
in the real-time subvolume of a volume managed by XLV and XFS.

/*
 * Simple function to request a guaranteed rate reservation.
 * Input:
 * fd file descriptor to be guaranteed
 * dur duration of guarantee in seconds
 * bps bytes per second required
 * flag one of SOFT_ or HARD_GUARANTEE [+VOD_LAYOUT]
 * (extra entry points included for those who do not
 * want to include sys/grio.h)
 *
 * Assumed:
 * reservation start time of "1 second from now"
 * guarantee unit time of 1 second
 *
 * Returns:
 * 0 success, guarantee granted
 * -1 error returned and displayed with perror()
 * +n n is the best bytes/second that XFS can offer
 *
 * Usage:
 * #define BEST_RATE zillions
 * #define MINIMAL_RATE somewhat_less
 * if ((ret = requestRate(fd, dur, BEST_RATE, SOFT_GUARANTEE)))
 * { // not a success
 * if (ret >= MINIMAL_RATE) // acceptable lower rate offered
 * ret = requestRate(fd, dur, ret, SOFT_GUARANTEE);
 * }
 * if (ret) // failed for some reason
 * {
 * if (0<ret) // not an error as such
 * fprintf(stderr, "Cannot get rate\n");
 * exit();
 * }
 * // guaranteed rate obtained, continue
 */
#include <sys/types.h> /* for time_t */
#include <time.h> /* for time() */
#include <errno.h> /* for error codes */
#include <stdio.h> /* [fs]printf() */

Guaranteed-Rate Request

141

#include "grio.h" /* for grio_* */

/*
 * This subroutine displays a diagnostic message to stderr when
 * grio_request() returns an error. perror() cannot be used in
 * this case because the generic messages are not descriptive.
 *
 */
void printGRIOerror(grio_resv_t *g)
{
 char work[80];
 char *msg = work;

 switch (g->gr_error)
 {
 case EINVAL:
 {
 msg = "unable to contact grio daemon";
 break;
 }
 case EBADF:
 {
 msg = "cannot stat file, or file already guaranteed";
 break;
 }
 case ESRCH:
 {
 msg = "invalid procid";
 break;
 }
 case ENOENT:
 {
 msg = "file has no (real-time?) extents";
 break;
 }
 case EIO:
 {
 msg = "incorrect start time";
 break;
 }
 case EACCES:
 {
 msg = (g->gr_flags & VOD_LAYOUT)
 ? "unable to provide VOD guarantee"
 : (

142

Appendix A: Sample Programs

 (g->gr_flags & HARD_GUARANTEE)
 ? "unable to provide HARD guarantee"
 : "unable to provide SOFT guarantee"
);
 break;
 }
 case ENOSPC:
 {
 sprintf(work, "out of bandwidth on device %s",
 g->gr_errordev);
 break;
 }
 default: /* in case they think of something else */
 {
 sprintf(work, "error %d", g->gr_error);
 }
 }
 fprintf(stderr, "grio_request: %s.\n", msg);
}

/*
 * This function actually places the request.
 */
int requestRate(int fd, int dur, int bps, int flag)
{
 int ret;
 grio_resv_t grio;

 grio.gr_duration= dur;
 grio.gr_start = 1+time(NULL);
 grio.gr_optime = 1; /* unit time is 1 second */
 grio.gr_opsize = bps;
 grio.gr_flags = flag;
 ret = grio_request(fd, &grio);
 if (ret) /* not a success */
 {
 if ((ENOSPC == grio.gr_error) /* insufficient bandwidth.. */
 && (grio.gr_opsize)) /* ..but nonzero rate remaining */
 ret = grio.gr_opsize; /* return available rate */
 else /* some other problem or 0 bandwidth available */
 printGRIOerror(&grio);
 }
 return ret;
}
/*

Frame Scheduler Examples

143

 * When you don't want to #include sys/grio.h to define one constant...
 */
int requestHardRate(int fd, int dur, int bps)
{ return requestRate(fd, dur, bps, HARD_GUARANTEE); }

int requestSoftRate(int fd, int dur, int bps)
{ return requestRate(fd, dur, bps, SOFT_GUARANTEE); }

#ifdef UNIT_TEST
#include <sys/stat.h>
#include <fcntl.h>
/* requestRate pathname [rate [duration [flags]]] */
int main(int argc, char **argv)
{
 int fd = open(argv[1], O_RDONLY);
 int bps = 1000000; /* 1MB */
 int dur = 60; /* a new york minute */
 int flg = SOFT_GUARANTEE;
 int rc;
 if (argc > 2) bps = atoi(argv[2]);
 if (argc > 3) dur = atoi(argv[3]);
 if (argc > 4) flg = atoi(argv[4]);
 printf("Requesting guarantee on fd=%d of %d bps for %d sec\n",
 fd, bps, dur);
 rc = requestRate(fd, dur, bps, flg);
 printf("requestRate() returns %d\n", rc);
}
#endif /*UNIT_TEST*/

Frame Scheduler Examples

A number of example programs are distributed with the REACT/Pro Frame Scheduler.
This section describes them. Only one is reproduced here; the others are found on disk.

144

Appendix A: Sample Programs

The example programs distributed with the Frame Scheduler are found in the directory
/usr/react/src/examples. They are summarized in Table i and are discussed in more detail
in the topics that follow.

Basic Example

The example in /usr/react/src/examples/simple shows how to create a simple application
using the Frame Scheduler API. The code in /usr/react/src/examples/r4kintr is similar.

Table i Summary of Frame Scheduler Example Programs

Directory Features of Example

simple
r4k_intr

Two processes scheduled on a single CPU at a frame rate slow enough to
permit use of printf() for debugging. The examples differ in the time base used;
and the r4k_intr code uses a barrier for synchronization.

mprogs Like simple, but the scheduled processes are independent programs.

multi
ext_intr
user_intr
vsync_intr

Three synchronous Frame Schedulers running lightweight processes on three
processors. These examples are much alike, differing mainly in the source of
the time base interrupt.

complete
stop_resume

Like multi in starting three Frame Schedulers. Information about the activity
processes is stored in arrays for convenient maintenance. The stop_resume code
demonstrates frs_stop() and frs_resume() calls.

driver
dintr

driver contains a pseudo-device driver that demonstrates the Frame Scheduler
device driver interface. dintr contains a program based on simple that uses the
example driver as a time base.

sixtyhz
memlock

One process scheduled at a 60 Hz frame rate. The activity process in the
memlock example locks its address space into memory before it joins the
scheduler.

upreuse Complex example that demonstrates the creation of a pool of reusable
processes, and how they can be dispatched as activity processes on a Frame
Scheduler.

Frame Scheduler Examples

145

Real-Time Application Specification

The application consists of two processes that have to periodically execute a specific
sequence of code. The period for the first process, process A, is 600 milliseconds. The
period for the other process, process B, is 2400 ms.

Note: Such long periods are unrealistic for real-time applications. However, they allow
the use of printf() calls within the “real-time” loops in this sample program.

Frame Scheduler Design

The two periods and their ratio determine the selection of the minor frame period—
600 ms—and the number of minor frames per major frame—4, for a total of 2400 ms.

The discipline for process A is strict real-time (FRS_DISC_RT). Underrun and overrrun
errors should cause signals.

Process B should run only once in 2400 ms, so it operates as Continuable over as many
as 4 minor frames. For the first 3 frames, its discipline is Overrunnable and Continuable.
For the last frame it is strict real-time. The Overrunnable discipline allows process B to
run without yielding past the end of each minor frame. The Continuable discipline
ensures that once process B does yield, it is not resumed until the fourth minor frame has
passed. The combination allows process B to extend its execution to the allowable period
of 2400 ms, and the strict real-time discipline at the end makes certain that it yields by the
end of the major frame.

There is a single Frame Scheduler so a single processor is used by both processes. Process
A runs within a minor frame until yielding or until the expiration of the minor frame
period. In the latter case the frame scheduler generates an overrun error signaling that
process A is misbehaving.

When process A yields, the frame scheduler immediately activates process B. It runs until
yielding, or until the end of the minor frame at which point it is preempted. This is not
an error since process B is Overrunable.

Starting the next minor frame, the Frame Scheduler allows process A to execute again.
After it yields, process B is allowed to resume running, if it has not yet yielded. Again in
the third and fourth minor frame, A is started, followed by B if it has not yet yielded. At
the interrupt that signals the end of the fourth frame (and the end of the major frame),
process B must have yielded, or an overrun error is signalled.

146

Appendix A: Sample Programs

Example of Scheduling Separate Programs

The code in directory /usr/react/src/examples/mprogs does the same work as example simple
(see “Basic Example” on page 144). However, the activity processes A and B are
physically loaded as separate commands. The main program establishes the single
Frame Scheduler. The activity processes are started as separate programs. They
communicate with the main program using SVR4-compatible interprocess
communication messages (see the intro(2) and msgget(2) reference pages).

There are three separate executables in the mprogs example. The master program, in
master.c, is a command that has the following syntax:

master [-p cpu-number] [-s slave-count]

The cpu-number specifies which processor to use for the one Frame Scheduler this
program creates. The default is processor 1. The slave-count tells the master how many
subordinate programs will be enqueued to the Frame Scheduler. The default is two
programs.

The problems that need to be solved in this example are as follows:

• The frs-master program must enqueue the activity processes. However, since they
are started as separate programs, the master has no direct way of knowing their
process IDs, which are needed for frs_enqueue().

• The activity processes need to specify upon which minor frames they should be
enqueued, and with what discipline.

• The master needs to enqueue the activities in the proper order on their minor
frames, so they will be dispatched in the proper sequence. Therefore the master has
to distinguish the subordinates in some way; it cannot treat them as
interchangeable.

• The activity processes must join the Frame Scheduler, so they need the handle of the
Frame Scheduler to use as an argument to frs_join(). However, this information is
in the master’s address space.

• If an error occurs when enqueueing, the master needs to tell the activity processes
so they can terminate in an orderly way.

There are many ways in which these objectives could be met (for example, the three
programs could share a shared-memory arena). In this example, the master and
subordinates communicate using a simple protocol of messages exchanged using

Frame Scheduler Examples

147

msgget() and msgput() (see the msgget(2) and msgput(2) reference pages). The sequence
of operations is as follows:

1. The master program creates a Frame Scheduler.

2. The master sends a message inviting the most important subordinate to reply. (All
the message queue handling is in module ipc.c, which is linked by all three
programs.)

3. The subordinate compiled from the file processA.c replies to this message, sending
its process ID and requesting the FRS handle.

4. The subordinate process A sends a series of messages, one for each minor queue on
which it should enqueue. The master enqueues it as requested.

5. The subordinate process A sends a “ready” message.

6. The master sends a message inviting the next most important process to reply.

7. The program compiled from processB.c will reply to this request, and steps 3-6 are
repeated for as many slaves as the slave-count parameter to the master program.
(Only two slaves are provided. However, you can easily create more using
processB.c as a pattern.)

8. The master issues frs_start(), and waits for the termination signal.

9. The subordinates independently issue frs_join() and the real-time dispatching
begins.

Examples of Multiple Synchronized Schedulers

The example in /usr/react/src/examples/multi demonstrates the creation of three
synchronized Frame Schedulers. The three use the cycle counter to establish a minor
frame interval of 50 ms. All three Frame Schedulers use 20 minor frames per major frame,
for a major frame rate of 1 Hz.

The following processes are scheduled in this example:

• Processes A and D require a frequency of 20 Hz

• Process B requires a frequency of 10 Hz and can consume up to 100 ms of execution
time each time

• Process C requires a frequence of 5 Hz and can consume up to 200 ms of execution
time each time

148

Appendix A: Sample Programs

• Process E requires a frequency of 4 Hz and can consume up to 250 ms of execution
time each time

• Process F requires a frequency of 2 Hz and can consume up to 500 ms of execution
time each time

• Processes K1, K2 and K3 are background processes that should run as often as
possible, when time is available.

The processes are assigned to processors as follows:

• Scheduler 1 runs processes A (20 Hz) and K1 (background).

• Scheduler 2 runs processes B (10 Hz), C (5 Hz), and K2 (background).

• Scheduler 3 runs processes D (20Hz), E (4 Hz), F (2 Hz), and K3.

In order to simplify the coding of the example, all real-time processes use the same
function body, process_skeleton(), which is parameterized with the process name, the
address of the Frame Scheduler it is to join, and the address of the “real-time” action it is
to execute. In the sample code, all real-time actions are empty function bodies (feel free
to load them down with code).

The examples in /usr/react/src/examples/ext_intr, user_intr, and vsync_intr are all similar to
multi, differing mainly in the time base used. The examples in complete and stop_resume
are similar in operation, but more evolved and complex in the way they manage
subprocesses.

Tip: It is helpful to use the xdiff program when comparing these similar programs—see
the xdiff(1) reference page.

Example of Device Driver

The code in /usr/react/src/examples/driver contains a skeletal test-bed for a kernel-level
device driver that interacts with the Frame Scheduler. Most of the driver functions
consist of minimal or empty stubs. However, the ioctl() entry point to the driver (see the
ioctl(2) reference page) simulates a hardware interrupt and calls the Frame Scheduler
entry point, frs_handle_driverintr() (see “Generating Interrupts” on page 79). This
allows you to test the driver. Calling its ioctl() entry is equivalent to using frs_usrintr()
(see “The Frame Scheduler API” on page 46).

Frame Scheduler Examples

149

The code in /usr/react/src/examples/dintr contains a variant of the simple example that uses
a device driver as the time base. The program dintr/sendintr.c opens the driver, calls ioctl()
to send one time-base interrupt, and closes the driver. (It could easily be extended to send
a specified number of interrupts, or to send an interrupt each time the return key is
pressed.)

Examples of a 60 Hz Frame Rate

The example in directory /usr/react/src/examples/sixtyhz demonstrates the ability to
schedule a process at a frame rate of 60 Hz, a common rate in visual simulators. A single
Frame Scheduler is created. It uses the cycle counter with an interval of 16,666
microseconds (16.66 ms, approximately 60 Hz). There is one minor frame per major
frame.

One real-time process is enqueued to the Frame Scheduler. By changing the compiler
constant LOGLOOPS you can change the amount of work it attempts to do in each frame.

This example also contains the code to query and to change the signal numbers used by
the Frame Scheduler.

The example in /usr/react/src/examples/memlock is similar to the sixtyhz example, but the
activity process uses plock() to lock its address space. Also, it executes one major frame’s
worth of frs_yield() calls immediately after return from frs_join(). The purpose of this is
to “warm up” the processor cache with copies of the process code and data. (An actual
application process could access its major data structures prior to this yield in order to
speed up the caching process.)

Example of Managing Lightweight Processes

The code in /usr/react/src/examples/upreuse implements a simulated real-time application
based on a pool of reusable processes. A reusable process is created with sproc() and
described by a pdesc_t structure. Code in pqueue.c builds and maintains a pool of
processes. Code in pdesc.c provides functions to get and release a process, and to dispatch
one to execute a specific function.

The code in test_hello.c creates a pool of processes and dispatches each one in turn to
display a message. The code in test_singlefrs.c creates a pool of processes and causes them
to join a Frame Scheduler.

151

Glossary

activity

When using the Frame Scheduler, the basic design unit: a piece of work that can be done
by one process without interruption. You partition the real-time program into activities,
and use the Frame Scheduler to invoke them in sequence within each frame interval.

address space

The set of memory addresses that a process may legally access. The potential address
space in IRIX is either 232 (IRIX 5.3) or 264 (IRIX 6.0); however only addresses that have
been mapped by the kernel are legally accessible.

affinity scheduling

The IRIX kernel attempts to run a process on the same CPU where it most recently ran,
in the hope that some of the process’s data will still remain in the cache of that CPU. The
process is said to have “cache affinity” for that CPU. (“Affinity” means “a natural
relationship or attraction.”)

arena

A segment of memory used as a pool for allocation of objects of a particular type. Usually
the shared memory segment allocated by usinit().

asynchronous I/O

I/O performed in a separate process, so that the process requesting the I/O is not
blocked waiting for the I/O to complete.

average data rate

The rate at which data arrives at a data collection system, averaged over a given period
of time (seconds or minutes, depending on the application). The system must be able to
write data at the average rate, and it must have enough memory to buffer bursts at the
peak data rate.

backing store

The disk location that contains the contents of a memory page. The contents of the page
are retrieved from the backing store when the page is needed in memory. The backing

152

Glossary

store for executable code is the program or library file. The backing store for modifiable
pages is the swap disk. The backing store for a memory-mapped file is the file itself.

barrier

A memory object that represents a point of rendezvous or synchronization between
multiple processes. The processes come to the barrier asynchronously, and block there
until all have arrived. When all have arrived, all resume execution together.

context switch time

The time required for IRIX to set aside the context, or execution state, of one process and
to enter the context of another; for example, the time to leave a process and enter a device
driver, or to leave a device driver and resume execution of an interrupted process.

deadline scheduling

A process scheduling discipline supported by IRIX version 5.3. A process may require
that it receive a specified amount of execution time over a specified interval, for instance
70ms in every 100ms. IRIX adjusts the process’s priority up and down as required to
ensure that it gets the required execution time.

deadlock

A situation in which two (or more) processes are blocked because each is waiting for a
resource held by the other.

device driver

Code that operates a specific hardware device and handles interrupts from that device.
Refer to the IRIX Device Driver Programmer’s Guide, part number 007-0911-060.

device numbers

Each I/O device is represented by a name in the /dev file system hierarchy. When these
“special device files” are created (see the makedev(1) and install(1) reference pages) they
are given major and minor device numbers. The major number is the index of a device
driver in the kernel. The minor number is specific to the device, and encodes such
information as its unit number, density, VME bus address space, or similar
hardware-dependent information.

device service time

The amount of time spent executing the code of a device driver in servicing one interrupt.
One of the three main components of interrupt response time.

153

device special file

The symbolic name of a device that appears as a filename in the /dev directory hierarchy.
The file entry contains the device numbers that associate the name with a device driver.

direct memory access (DMA)

Independent hardware that transfers data between memory and an I/O device without
program involvement. Challenge/Onyx systems have a DMA engine for the VME bus.

file descriptor

A number returned by open() and other system functions to represent the state of an
open file. The number is used with system calls such as read() to access the opened file
or device.

frame rate

The frequency with which a simulator updates its display, in cycles per second (Hz).
Typical frame rates range from 15 to 60 Hz.

frame interval

The inverse of frame rate, that is, the amount of time that a program has to prepare the
next display frame. A frame rate of 60 Hz equals a frame time of 16.67 milliseconds.

frs control process

The process that creates a Frame Scheduler. Its process ID is used to identify the Frame
Scheduler internally, so a process can only be frs control to one scheduler.

gang scheduling

A process scheduling discipline supported by IRIX. The processes of a share group can
request to be scheduled as a gang; that is, IRIX attempts to schedule all of them
concurrently when it schedules any of them—provided there are enough CPUs. When
processes coordinate using locks, gang scheduling helps to ensure that one does not
spend its whole time slice spinning on a lock held by another that is not running.

guaranteed rate

A rate of data transfer, in bytes per second, that definitely is available through a
particular file descriptor.

hard guarantee

A type of guaranteed rate that is met even if data integrity has to be sacrificed to meat it.

154

Glossary

heap

The segment of the address space devoted to static data and dynamically-allocated objects.
Created by calls to the system function brk().

interrupt

A hardware signal from an I/O device that causes the computer to divert execution to a
device driver.

interrupt group

In the Challenge/Onyx hardware, each CPU has a register containing an interrupt group
mask. Each interrupt source can be directed to a specific CPU or to an interrupt group
number. When the interrupt destination is a group, all CPUs that have enabled that
group receive the interrupt. The Frame Scheduler creates an interrupt group in order to
synchronize minor frames among multiple synchronized CPUs.

interrupt latency

The amount of time that elapses between the arrival of an interrupt signal and the entry
to the device driver that handles the interrupt.

interrupt response time

The total time from the arrival of an interrupt until the user process is executing again.
Its three main components are interrupt latency, device service time, and context switch time.

locality of reference

The degree to which a program keeps memory references confined to a small number of
locations over any short span of time. The better the locality of reference, the more likely
a program will execute entirely from fast cache memory. The more scattered are a
program’s memory references, the higher is the chance that it will access main memory
or, worse, load a page from swap.

locks

Memory objects that represent the exclusive right to use a shared resource. A process that
wants to use the resource requests the lock that (by agreement) stands for that resource.
The process releases the lock when it is finished using the resource. See semaphore.

major frame

The basic frame rate of a program running under the Frame Scheduler.

155

minor frame

The scheduling unit of the Frame Scheduler, the period of time in which any scheduled
process must do its work.

overrun

When incoming data arrives faster than a data collection system can accept it, so that data
is lost, an overrun has occurred.

overrun exception

When a process scheduled by the Frame Scheduler should have yielded before the end
of the minor frame and did not, an overrun exception is signalled.

pages

The units of real memory managed by the kernel. Memory is always allocated in page
units on page-boundary addresses. Virtual memory is read and written from the swap
device in page units.

page fault

The hardware event that results when a process attempts to access a page of virtual
memory that is not present in physical memory.

peak data rate

The instantaneous maximum rate of input to a data collection system. The system must
be able to accept data at this rate to avoid overrun. See average data rate.

process

The entity that executes instructions in a UNIX system. A process has access to an address
space containing its instructions and data. The state of a process includes its set of
machine register values, as well as many process attributes.

process attributes

Variable information about the state of a process. Every process has a number of
attributes, including such things as its process ID, user and group IDs, working directory,
open file handles, scheduler class, environment variables, and so on. See the fork(2)
reference page for a list.

process group

See share group.

156

Glossary

processor sets

Groups of one or more CPUs designated using the pset command.

programmed I/O (PIO)

Transfer of data between memory and an I/O device in byte or word units, using
program instructions for each unit. Under IRIX, I/O to memory-mapped VME devices is
done with PIO. See DMA.

race condition

Any situation in which two or more processes update a shared resource in an
uncoordinated way. For example, if one process sets a word of shared memory to 1, and
the other sets it to 2, the final result depends on the “race” between the two to see which
can update memory last. Race conditions are prevented by use of semaphores or locks.

resident set size

The aggregate size of the valid (that is, memory-resident) pages in the address space of a
process. Reported by ps under the heading RSS. See virtual size and the ps(1) reference
page.

scheduling discipine

The rules under which an activity process is dispatched by a Frame Scheduler, including
whether or not the process is allowed to cause overrun or underrun exceptions.

segment

Any contiguous range of memory addresses. Segments as allocated by IRIX always start
on a page boundary and contain an integral number of pages.

semaphore

A memory object that represents the availability of a shared resource. A process that
needs the resource executes a “p” operation on the semaphore to reserve the resource,
blocking if necessary until the resource is free. The resource is released by a “v” operation
on the semaphore. See locks.

share group

A group of two or more processes created with sproc(), including the original parent
process. Processes in a share group share a common address space and can be scheduled
as a gang (see gang scheduling). Also called a process group.

157

signal latency

The time that elapses from the moment when a signal is generated until the
signal-handling function begins to execute. Signal latency is longer, and much less
predictable, than interrupt latency.

soft guarantee

A type of guaranteed rate that XFS may fail to meet in order to retry device errors.

spraying interrupts

In order to equalize workload across all CPUs, the Challenge/Onyx systems direct each
I/O interrupt to a different CPU chosen in rotation. In order to protect a real-time
program from unpredictable interrupts, you can isolate specified CPUs from sprayed
interrupts, or you can assign interrupts to specific CPUs.

striped volume

A logical disk volume comprising multiple disk drives, in which segments of data that
are logically in sequence (“stripes”) are physically located on each drive in turn. As many
processes as there are drives in the volume can read concurrently at the maximum rate.

translation lookaside buffer (TLB)

An on-chip cache of recently-used virtual-memory page addresses, with their
physical-memory translations. The CPU uses the TLB to translate virtual addresses to
physical ones at high speed. When the IRIX kernel alters the in-memory page translation
tables, it broadcasts an interrupt to all CPUs, telling them to purge their TLBs. You can
isolate a CPU from these unpredictable interrupts, under certain conditions.

transport delay

The time it takes for a simulator to reflect a control input in its output display. Too long
a transport delay makes the simulation inaccurate or unpleasant to use.

underrun exception

When a process scheduled by the Frame Scheduler should have started in a given minor
frame but did not (owing to being blocked), an underrun exception is signalled. See
overrun exception.

158

Glossary

VERSA-Model Eurocard (VME) bus

A hardware interface and device protocol for attaching I/O devices to a computer. The
VME bus is an ANSI standard. Many third-party manufacturers make VME-compatible
devices. The Silicon Graphics Challenge/Onyx and Crimson computer lines support the
VME bus.

video on demand (VOD)

In general, producing video data at video frame rates. Specific to guaranteed rate, a disk
organization that places data across the drives of a striped volume so that multiple
processes can achieve the same guaranteed rate while reading sequentially.

virtual size

The aggregate size of all the pages that are defined in the address space of a process. The
virtual size of a process is reported by ps under the heading SZ. The sum of all virtual
sizes cannot exceed the size of the swap space. See resident set size and the ps(1) reference
page.

virtual address space

The set of numbers that a process can validly use as memory addresses.

159

initializing, 86
multiple operations to one file, 94
not compatible with guaranteed rate, 103
notification methods, 90
POSIX 1003.1b-1993, 84
request priority no longer supported, 85
signal use, 90

average data rate, 6

B

barrier()
example code, 129

brk()
modifies address space, 33

C

cache
affinity scheduling, 25
warming up in first frame, 50

cacheflush(), 33
CD-ROM audio library, 110
CPU

assign interrupt to, 29
assign process to, 31
CPU 0 not used by Frame Scheduler, 44
isolating from sprayed interrupts, 29
isolating from TLB interrupts, 32
making nonpreemptive, 34

A

address space
functions that change, 33
of VME bus devices, 113

affinity scheduling, 25
affinity value, 25
aio_cancel(), 88
aio_error(), 89, 90

example code, 130
aio_fsync(), 88
aio_read(), 88

example code, 131
from callback, 91
implies aio_init(), 86

aio_return(), 90
example code, 131

aio_sgi_init(), 86
example code, 128

aio_suspend(), 90
example code, 133

aio_write(), 88
example code, 132
from callback, 91
implies aio_init(), 86

aircraft simulator, 3
asynchronous I/O, 82-95

aiocb structure, 85, 90
difference between 5.3 and 5.2, 84
example code, 121-139
in IRIX 6.0, 84

Index

160

Index

restricting to assigned processes, 9, 30
cycle counter, 19

as Frame Scheduler time base, 55
drift rate of, 19
precision of, 19

D

data collection system, 2, 5
average data rate, 6
peak data rate, 5
requirements on, 5

DAT audio library, 110
/dev/ei, 120
device

opening, 106
device driver

as Frame Scheduler time base, 74-79
entry points to, 106
for VME bus master, 116
generic SCSI, 109
in synchronous input, 82
reference pages, 106
tape, 109

device service time, 36, 39
not guaranteed, 39

direct disk output, 96
disk output

synchronous direct, 96
synchronous unbuffered, 95

dispatch cycle time, 36, 39
dlopen(), 33
DMA engine for VME bus, 117

performance, 117
DMA mapping, 114
DMA to VME bus master devices, 116
dslib, 109

DSO, 33
dynamic shared object. See DSO

E

/etc/autoconfig command, 29
external interrupt, 21, 120

with Frame Scheduler, 56

F

fcntl()
example code, 100

file descriptor
of a device, 106
with asynchronous I/O, 85
with guaranteed-rate I/O, 101

fork()
rate guarantee not inherited, 102

frame interval, 3
frame rate, 3

of plant control simulator, 4
of virtual reality simulator, 4

Frame Scheduler, 10-14, 43-79
advantages, 12
and cycle counter, 55
and external interrupt, 56
and R4000 timer, 55
and vertical sync, 56
background discipline, 58
continuable discipline, 60
CPU 0 not used by, 44
definition of frame, 11
design process, 12
device driver initialization, 76
device driver interface, 74-79
device driver interrupt, 79
device driver termination, 78

161

Index

device driver use, 74
example code, 143-149
exception handling, 66-69
frs_run flag, 50
frs_yield flag, 50
FRS control process, 46, 52
interface to, 46-49
interval timers not used with, 73
major frame, 44
minor frame, 44
multiple synchronized, 52
overrun exception, 58, 66
overrunnable discipline, 59
pausing, 53
process outline for multiple, 63
process outline for single, 62
process structure, 49
realtime discipline, 58
scheduling disciplines, 57-61
scheduling rules of, 50
signals produced by, 71, 72
software interrupt to, 57
starting up, 53
time base selection, 11, 55
underrunable discipline, 59
underrun exception, 58, 66
using consecutive minor frames, 60
warming up cache, 50

frs_create_master(), 62, 64, 75
frs_create_slave(), 65
frs_destroy(), 63, 64, 65
frs_driver_export(), 75
frs_enqueue(), 50, 57, 62, 64, 65
frs_handle_driverintr(), 79
frs_join(), 49, 53, 62, 64, 65
frs_resume(), 53
frs_setattr()

example code, 68
frs_start(), 53, 62, 64, 65

frs_stop(), 53
frs_userinter(), 57
frs_yield, 49
frs_yield()

with overrunable discipline, 60
FRS control process, 46, 52

design of, 62-63
receives signals, 72

fsync(), 83, 96

G

gang scheduling, 8, 26
grio_remove_request(), 102
grio_request(), 101

example code, 142
GRIO. See guaranteed-rate I/O
ground vehicle simulator, 4
guaranteed-rate I/O, 98-104

creating a real-time file, 100
example code, 140-143
hard guarantee, 103
requesting a guarantee, 101
requires XFS, 98
requires XLV volume, 99
soft guarantee, 103
tied to PD and I-node, 102
video on demand guarantee, 104

H

hardware latency, 36, 37
hardware simulator, 5

162

Index

I

input
synchronous, 82

interchassis communication, 19-21
interprocess communication, 14-19
interrupt

assign to CPU, 29
controlling distribution of, 10
external. See external interrupt
group. See interrupt group
isolating CPU from, 29
propogation delay, 37
response time. See interrupt response time
spraying, 29
TLB, 32
vertical sync, 30, 56

interrupt group, 55
Frame Scheduler passes to device driver, 76
not used with cycle counter, 56
to distribute external interrupt, 56
to distribute vertical sync, 56

interrupt response time, 35-41
200 microsecond guarantee, 35
components, 36
device service not guaranteed, 39
device service time, 39
dispatch cycle, 39
hardware latency, 37
kernel service not guaranteed, 38
restrictions on processes, 38
software latency, 38

interrupts
unavoidable from timer, 28

interval timer
not used with Frame Scheduler, 73

ioctl()
and device driver, 106

IPL statement, 29

IRIS InSight, xvii
irix.sm configuration file, 29

K

kernel
affinity scheduling, 25
critical section, 38
gang scheduling, 26
interrupt response time, 38
originates signals, 17
priority assignment, 25
real-time features, 7-10
scheduling, 24
tick, 24
time slice, 24

L

latency
hardware, 36, 37
software, 36, 38

lio_listio(), 88
lock, 15-16

defined, 15
effect of gang scheduling, 26
set by spinning, 15

locking virtual memory, 9
lseek()

with asynchronous I/O, 85
with guaranteed-rate I/O, 104

M

major frame, 44
MAP_AUTOGROW flag, 33
MAP_LOCAL flag, 33

163

Index

memory
shared. See shared memory

memory mapping
for I/O, 81

minor frame, 44, 50
mmap(), 33
mpadmin command

assign clock processor, 28
make CPU nonpreemptive, 35
restrict CPU, 31
unrestrict CPU, 31

mprotect(), 33
multiprocessor architecture

affinity scheduling, 25
and Frame Scheduler, 52

munmap(), 33
mutual exclusion primitive, 16

N

NOINTR statement, 29

O

open()
example code, 100
of a device, 106

operator
affected by transport delay, 3
in virtual reality simulator, 4
of simulator, 2

output
synchronous, 83
to disk is buffered, 95

overrun in data collection system, 5
overrun in Frame Scheduler, 58

P

page fault
causes TLB interrupt, 33
prevent by locking memory, 9

peak data rate, 5
PIO access to VME devices, 115
PIO address mapping, 114
plant control simulator, 4
power plant simulator, 4
priority, 25
process

assign to CPU, 31
FRS control, 46
mapping to CPU, 9
priority of, 25
time slice, 24

process control, 2
process group, 8

and gang scheduling, 26
process id

identifies rate guarantee, 102
propogation delay. See hardware latency
pset command

and restricted CPU, 30

R

R4000 timer, 55
REACT, xvii
REACT/Pro, xvii
read()

and device driver, 106
synchronous, 82
with guaranteed-rate I/O, 101

real-time program
and Frame Scheduler, 10

164

Index

data collection, 2, 5
defined, 1
disk I/O by, 81
frame rate, 2
process control, 2
simulator, 1, 2-5
types of, 1-6

reflective shared memory, 20
response time. See interrupt response time
restricting a CPU, 30
runon command, 31

S

schedctl(), 27, 32
example code, 27
with Frame Scheduler, 48

scheduling, 24-27
affinity type, 25
gang type, 8, 26

scheduling discipline
See also Frame Scheduler scheduling disciplines

SCSI interface, 108-110
generic device driver, 109

semaphore, 15
defined, 15

sginap(), 16
example code, 130

shared memory, 14
reflective, 20

shmctl(), 33
shmget(), 33
sigaction()

example code, 136
with asynchronous I/O, 91

sigevent structure, 85
signal, 17-19

delivery priority, 18
generated in asynchronous I/O, 90
latency, 70
signal numbers, 18
SIGUSR1, 72
SIGUSR2, 72
with Frame Scheduler, 70

signal handler
when setting up Frame Scheduler, 62, 64, 65

SIGRTMIN on dequeue, 72
sigsuspend(), 90
SIGUSR1

on underrun, 72
SIGUSR2

on overrun, 72
sigwait(), 90
simulator, 1, 2-5

aircraft, 3
control inputs to, 2, 4
frame rate of, 2, 4
ground vehicle, 4
hardware, 5
operator of, 2
plant control, 4
state display, 2
virtual reality, 4
world model in, 2

sockets, 20
software latency, 36, 38
spin lock, 15
sproc()

CPU assignment inherited, 32
modifies address space, 33
rate guarantee not inherited, 102

sprocsp(), 33
example code, 129

striped volume, 104
synchronous disk output, 95

165

Index

sysmp(), 32
assign process to CPU, 31
example code, 28, 31, 32, 35
isolate TLB interrupts, 32
make CPU nonpreemptive, 35
number of CPUs, 30
restrict CPU, 31
run process on any CPU, 32

sys/param.h, 24
syssgi

set flush interval, 98

T

tape device, 109
telemetry, 2
test_and_set, 16
tick, 24

disabling, 34
time base for Frame Scheduler, 55
timer interrupts unavoidable, 28
time slice, 24
TLB update interrupt, 32
transport delay, 3

U

udmalib, 117-118
underrun, in Frame Scheduler, 58
uspsema()

example code, 135
usvsema()

example code, 135

V

vertical sync interrupt, 30, 56
video on demand (VOD). See guaranteed-rate I/O,

video on demand
virtual memory

locking, 9
virtual reality simulator, 4
VME bus, 111-118

address space mapping, 113
assign interrupt to CPU, 29
configuration, 112
DMA mapping, 114
DMA to master devices, 116
performance, 115, 116, 117
PIO access, 115
PIO address mapping, 114
udmalib, 117

W

write()
and device driver, 106
direct, 96
synchronous, 83, 96
with guaranteed-rate I/O, 100, 101

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-2499-003.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-965-0964

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

