
Developer MagicTM: Static Analyzer
User’s Guide

Document Number 007–2580–003

Copyright © 1991, 1998 Silicon Graphics, Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any
form unless permitted by contract or by written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure of the technical data contained in this document by the Government is subject to restrictions as set
forth in subdivision (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/or in
similar or successor clauses in the FAR, or in the DOD or NASA FAR Supplement. Unpublished rights reserved under the
Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd., Mountain View,
CA 94043-1389.

IRIX and Silicon Graphics are registered trademarks and Developer Magic, ProDev, and the Silicon Graphics logo are trademarks
of Silicon Graphics, Inc. PostScript is a trademark of Adobe Systems. UNIX is a registered trademark in the United States and
other countries, licensed exclusively through X/Open Company Limited. X/Open is a trademark of X/Open Company Ltd. The
X device is a trademark of the Open Group. X Window System is a trademark of the Open Group.

New Features

Developer MagicTM: Static Analyzer User’s Guide 007–2580–003

This revision of the Developer Magic: Static Analyzer User’s Guide, supports the 2.7 release of the ProDev
Workshop tools.

Record of Revision

Version Description

1.0 1991
Original Printing.

2.7 June 1998
Revised for the ProDev WorkShop 2.7 release.

007–2580–003 i

Contents

Page

About This Guide xiii

Related Publications . xiv

Obtaining Publications . xiv

Conventions . xiv

Reader Comments . xv

Introduction to the WorkShop Static Analyzer [1] 1

How the Static Analyzer Works . 1

Steps in Static Analysis . 3

Tutorials for the Static Analyzer [2] 5

Applying the Static Analyzer to Scanned Files 5

Applying the Static Analyzer to Parsed C++ Files 13

Using the Compiler to Create a Static Analysis Database 18

Other Static Analyzer Features . 19

Static Analyzer: Creating a Fileset and Generating a Database [3] 21

Fileset Specifications . 21

Using Regular Expressions . 22

Specifying Pathnames . 23

Specifying Included Files . 23

Defining Macros in the Fileset . 24

Using the Default Fileset . 24

Using the Fileset Editor . 25

Adding Lines to the Fileset Contents List 25

007–2580–003 iii

Developer MagicTM: Static Analyzer User’s Guide

Page

Removing Lines from the Fileset Lists 26

Browsing for Fileset Contents . 26

Directories List . 26

Browsing Directory . 26

Language Filters . 26

Adding File Names from Lists 27

Transferring Files in the Fileset between Modes 28

Leaving the Fileset Editor Window 28

Creating a Fileset Manually . 28

Using Command-Line Options to Create and Use a Fileset 28

Generating a Static Analyzer Database 29

Scanner Mode . 29

Parser Mode . 30

Preparing the Fileset for Parser Mode 30

Invoking the Parser . 31

Parser Mode Shortcuts . 32

Size Limitations . 32

Rescanning the Fileset . 33

Setting the Search Path for Included Files 34

Changing to a New Fileset and Working Directory 35

Static Analyzer: Queries [4] 37

Defining the Scope of a Query . 37

Target Text as a Regular Expression 38

Case Sensitivity . 38

Making a Query . 38

General Queries . 40

Macro Queries . 41

Variable Queries . 41

iv 007–2580–003

Contents

Page

Function Queries . 43

Files Queries . 44

Class Queries . 45

Method Queries . 45

Common Blocks Queries . 46

Types Queries . 46

Directories Queries . 47

Packages Queries . 47

Tagged Types Queries . 47

Task Types Queries . 48

Viewing Source Code . 49

Changing Text Editors . 49

Repeating Queries . 49

Saving Query Results . 50

Static Analyzer: Views [5] 53

Text View . 53

Viewing Full Pathnames for Files 55

Sorting Elements in Text View 55

Call Tree View . 55

The Static Analyzer Control Panel 56

Setting View Options . 58

Viewing Function Definitions and Calls in Source View 59

Tutorial: Working in Call Tree View 59

Class Tree View . 62

File Dependency View . 63

The Results Filter . 64

Setting Results Filters . 64

Filtering by Name, Function, File, Directory, and Source 66

007–2580–003 v

Developer MagicTM: Static Analyzer User’s Guide

Page

Filtering by Header Files and External Functions 67

Combining Results Filters . 67

Using the Results Filter Buttons 67

Tutorial: Using the Results Filter 68

Static Analyzer: Working on Large Programming Projects [6] 71

Creating a Fileset Using a Shell Script 71

A Fileset Shell Script . 71

Customizing the Fileset for Individual Code Modules 72

Using the Results Filter to Focus Queries 73

Applying Group Analysis Techniques 73

Setting Up a Project Database . 74

Querying a Project Database . 75

Viewing Suggestions . 75

Getting Started with the Browser [7] 77

Starting Browser View . 77

General Characteristics of the Browser 78

Browser View Outline Lists . 79

Outline Icons . 80

Browser View Menus . 80

Other Browser Window Features 81

Using the Browser for C++: A Tutorial [8] 83

Sample C++ Session . 83

Procedure 1: Preparing for the sample session 83

Procedure 2: Understanding the Browser View Window 85

Procedure 3: Expanding and Collapsing Categories 86

Procedure 4: Making Queries 87

vi 007–2580–003

Contents

Page

Procedure 5: Using the Browser Graphical Views 92

Procedure 6: Shortcuts for Entering Subjects 94

Procedure 7: Generating Man Pages 95

Procedure 8: Generating Web Pages 97

Using the Browser for Ada: A Tutorial [9] 99

Sample Ada Session . 99

Procedure 9: Preparing for the sample session 99

Procedure 10: Starting the Browser 101

Procedure 11: Understanding the Browser Window 102

Procedure 12: Making Queries 104

Procedure 13: Accessing Source Code 105

Procedure 14: Using the Browser Graphical Views 106

Procedure 15: Shortcuts for Entering Subjects 107

The Browser Reference [10] 109

Browsing Choices Window . 109

Browsing Choices Window for C++ 110

Browsing Choices Window for Ada 111

Browser View Window . 111

Current Subject Field . 112

Name Completion . 113

Changing Subject Using “?” 113

Show in Static Analyzer Toggle 113

Last Query Button . 113

Browser View Query Identification Area 113

Browser View List Areas . 113

Outline Icons . 114

Annotated Scroll Bars and Highlighted Entries 115

007–2580–003 vii

Developer MagicTM: Static Analyzer User’s Guide

Page

C++ Member List . 115

Display Hierarchy . 115

C++ Access Categories . 116

C++ Scope Categories . 116

C++ Class Member Categories 116

C++ Relation List . 117

C++ Relations List Mouse Shortcuts 117

C++ BASE CLASSES Category Hierarchy 117

C++ DERIVED CLASSES Category Hierarchy 118

Ada Member List . 118

Ada Display Hierarchy . 118

Ada Access Categories . 119

Ada Type and Data Member Categories 119

Displaying an Ada Member’s Source Code 120

Ada Relation List . 120

Browser View Menu Bar . 120

Admin Menu . 121

Views Menu . 124

History Menu . 124

Queries Menu . 125

Preference Menu . 126

Browser View Popup Menus 128

Data Members Popup Menu 129

Methods Popup Menu . 130

Class Popup Menus . 132

Graph Views Window . 134

Mouse Manipulations . 135

Graph Views Admin Menu . 135

Graph Views Window Views Menu 135

viii 007–2580–003

Contents

Page

Call Graph Window . 136

Using the Call Graph Window 138

Call Graph Admin Menu . 138

Appendix A Customizing the Browser 139

Customizing the Browser View Lists 139

Member List Resource . 139

Related Class List Resource . 140

Other Browser View List Resources 141

Customizing Man Page Generation 143

Index 145

Figures
Figure 1. The Static Analyzer Window 6

Figure 2. The Fileset Editor Window 7

Figure 3. Static Analyzer Queries Menu and Query Target Field 9

Figure 4. The Results of a List Functions Query 11

Figure 5. Typical Static Analyzer Call Tree 16

Figure 6. The Fileset Selection Browser Window 36

Figure 7. Static Analyzer Queries Menu with Submenus 39

Figure 8. List All Global Variables Results 42

Figure 9. Who References? Results 42

Figure 10. The Save Query File Browser Window 50

Figure 11. Sample Text View . 54

Figure 12. Call Tree View Displaying Functions and Function Calls 56

Figure 13. The View Control Panel 57

Figure 14. Incremental Mode Example 61

Figure 15. Displaying Node Information at Reduced Scale 62

007–2580–003 ix

Developer MagicTM: Static Analyzer User’s Guide

Page

Figure 16. The Results Filter Window 65

Figure 17. The Results Filter Query Results 70

Figure 18. A Project Cross-Reference Database 74

Figure 19. Browsing Windows . 78

Figure 20. Browser View Features 79

Figure 21. Outline Icon Examples 80

Figure 22. Steps in Specifying a Parser Fileset (C++) 84

Figure 23. Initial Display with Item Selected 85

Figure 24. Browser View Window with C++ Data 86

Figure 25. Performing a Query on Current Class 89

Figure 26. Static Analyzer after a Browser Query 90

Figure 27. Performing a Query on an Element in a List 91

Figure 28. Graph Views Window in Containment Mode 92

Figure 29. Comparison of Data Displayed in a Containment Graph 93

Figure 30. Graph Views Window in Inheritance Mode 94

Figure 31. Man Page Generator Window 95

Figure 32. Man Page Template . 96

Figure 33. Web Page Generator Window 97

Figure 34. Steps in Specifying a Parser Fileset (Ada) 100

Figure 35. File Dependency View Example 101

Figure 36. Initial Browser Display 102

Figure 37. Browser View with Ada Data 103

Figure 38. Performing a Query on Current Class 105

Figure 39. Accessing Source Code from the Browser View 106

Figure 40. Inheritance Graph Example 107

Figure 41. Browsing Choices Window 110

Figure 42. Browser View Window Elements 112

x 007–2580–003

Contents

Page

Figure 43. Outline List Icons and Indicator Marks 115

Figure 44. Browser View Menu Bar with Menus Displayed 120

Figure 45. Man Page Generator and Typical Man Page Template 122

Figure 46. Web Page Generator Window 123

Figure 47. Queries Popup Menus in the Browser View Window 129

Figure 48. Displaying a Selected Method in Call Graph 137

Tables
Table 1. Browser View List Summary 114

Table 2. Sort Resources for Outline Lists 142

007–2580–003 xi

About This Guide

This publication documents the ProDev WorkShop Static Analyzer and Browser
for release 2.7 running on IRIX systems. The Static Analyzer and Browser help
you view and understand the structure of a program and relationships such as
call trees, function lists, class hierarchies, and file dependencies.

This manual contains the following chapters:

• Chapter 1, page 1, describes the Static Analyzer, which is the WorkShop tool
for examining the structure of a program’s source code and the relationships
between its parts, such as files, functions, and variables.

• Chapter 2, page 5, provides a sample session to introduce you to some
major features in the Static Analyzer.

• Chapter 3, page 21, describes the fileset concept. A fileset is a file that
contains files you specify for inclusion in the analysis. You also specify
whether a file is to be analyzed by the faster scanner mode or the slower,
more thorough parser mode.

• Chapter 4, page 37, describes how you perform queries using the Static
Analyzer.

• Chapter 5, page 53, describes the text and graphical views that the Static
Analyzer uses to present its data.

• Chapter 6, page 71, presents techniques for applying the Static Analyzer to
large projects.

• Chapter 7, page 77, tells you how to start the Browser and describes some of
the features common to both the C++ and Ada versions of Browser View.

• Chapter 8, page 83, provides a short tutorial highlighting the C++ features
of Browser View.

• Chapter 9, page 99, provides a short tutorial highlighting the Ada features of
Browser View.

• Chapter 10, page 109, describes all of the Browser windows, menus, and
other features in detail.

007–2580–003 xiii

Developer MagicTM: Static Analyzer User’s Guide

Related Publications

The following documents contain additional information that may be helpful:

• C++ Language System Library

• C++ Language System Overview

• C++ Language System Product Reference Manual

• C++ Programmer’s Guide

• Developer Magic: Debugger User’s Guide

• Developer Magic: Performance Analyzer User’s Guide

• Developer Magic: ProDev WorkShop Overview

• Fortran 77 Language Reference Manual

• MIPSPro 7 Fortran 90 Commands and Directives Reference Manual

Obtaining Publications

Silicon Graphics maintains publications information at the following World
Wide Web site:

http://techpubs.sgi.com/library

The preceding website contains information that allows you to browse
documents online, order documents, and send feedback to Silicon Graphics.

To order a printed Silicon Graphics document, call 1–800–627–9307.

Customers outside of the United States and Canada should contact their local
service organization for ordering and documentation information.

Conventions

The following conventions are used throughout this document:

Convention Meaning

(1) User commands

(1M) Administrator commands

xiv 007–2580–003

About This Guide

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words
or concepts being defined.

user input This bold, fixed-space font denotes literal items
that the user enters in interactive sessions.
Output is shown in nonbold, fixed-space font.

[] Brackets enclose optional portions of a command
or directive line.

... Ellipses indicate that a preceding element can be
repeated.

Reader Comments

If you have comments about the technical accuracy, content, or organization of
this document, please tell us. You can contact us in any of the following ways:

• Send us electronic mail at the following address:

techpubs@sgi.com

• Contact your customer service representative and ask that an SPR or PV be
filed. If filing an SPR, use PUBLICATIONS for the group name, PUBS for the
command, and NO-LICENSE for the release name.

• Call our Software Publications Group in Eagan, Minnesota, through the
Customer Service Call Center, using either of the following numbers:

1–800–950–2729 (toll free from the United States and Canada)

+1–612–683–5600

• Send a facsimile of your comments to the attention of “Software Publications
Group” in Eagan, Minnesota, at fax number +1–612–683–5599.

We value your comments and will respond to them promptly.

007–2580–003 xv

Introduction to the WorkShop Static
Analyzer [1]

This chapter describes the Static Analyzer, which is the WorkShop tool for
examining the structure of a program’s source code and the relationships
between its parts, such as files, functions, and variables.

Many software projects today contain massive amounts of code that may or
may not compile, have few or no comments, and are written by programmers
unfamiliar with the original code. The ProDev WorkShop Static Analyzer helps
solve problems like these. With the Static Analyzer, you can analyze source
code written in C, C++, Fortran 77, Fortran 90, or Ada 95.

The Static Analyzer shows you code structure, including how functions within
programs call each other, where and how variables are defined, how files
depend on each other, where you can find macros, and other structural details
to help you understand the code. It displays answers in text or easily
understood graphic form. Because the Static Analyzer is interactive, you can
quickly locate the portion of code structure that interests you, or you can step
back for an overview. And, because the Static Analyzer recognizes the
connections between elements of the source code, you can readily trace how a
proposed change to one element will affect related elements.

The following topics are covered in this chapter:

• How the Static Analyzer Works, Section 1.1, page 1

• Steps in Static Analysis, Section 1.2, page 3

1.1 How the Static Analyzer Works

The Static Analyzer is basically a database program that reads through one or
more source code files and creates a database that includes functions, macros,
variables, files, and object-oriented elements for C, C++, and Ada 95
programming languages. The database also includes the interconnections
between the elements—which functions call which other functions, which files
include which other files, and so on.

Note: Support for Fortran 90 is limited to the MIPSPro Fortran 90 compiler,
version 7.1.

007–2580–003 1

Developer MagicTM: Static Analyzer User’s Guide

The Static Analyzer provides two modes for extracting static analysis data from
your source files:

• Scanner mode—a fast, general-purpose scanner that looks through code
with minimal sensitivity to the programming language. Scanner mode does
not require that your code compile.

• Parser mode—a language-sensitive scanner that can be run at compile time
by setting a switch.

The trade-off between the modes is speed versus accuracy. A very effective
technique is to perform preliminary analysis in scanner mode when you need
to see the overall structure of a large group of files and then focus on a smaller
subset using parser mode to derive detailed relationship information. If a
program cannot compile, parser mode will not work and you must use scanner
mode.

The Static Analyzer can perform selective searches (called queries) through the
database. The Static Analyzer displays the results of the query in the query
results area (the interior of the main window). If you have used the UNIX
grep(1) command, you will find that the Static Analyzer can perform the same
kinds of simple searches through the text of your source code, finding strings of
text as well as regular expressions. The Static Analyzer also performs more
sophisticated queries that follow connections between the following elements of
source code: function calls, file includes, class parenthood, and other similar
relationships.

When making queries, try not to request too much data. Overly general queries
(for example, a query that asks for all functions defined in millions of lines of
source code) often return extensive results that are difficult to comprehend. The
Static Analyzer can restrict the scope of your queries so you can break down
large projects into pieces of a manageable size. For example, you can see the
connections to and from a single function or take a look at all the classes
defined within a single file.

By default, the Static Analyzer displays the results of your query in text form.
You can scroll through the results, and you can immediately call up the file that
contains any element you see in the results. The file appears in the Source
View window, which shows you the exact source code line where that element
occurs. You can also ask the Static Analyzer to display the results of the query
in a graphic view that shows not only the elements found but also—using tree
form—the relationships between elements. To help you see the structure more
clearly, you can set the scale and orientation of the tree, or you can call for a
full overview that shows all elements in the structure and helps you scroll to
the particular elements you want.

2 007–2580–003

Introduction to the WorkShop Static Analyzer [1]

1.2 Steps in Static Analysis

Typically, in performing static analysis, you create an overview showing basic
relationships and then concentrate on the source code requiring further work or
analysis. There are five general steps in the static analysis process:

1. Decide which files to include in your static analysis.

It is good practice to narrow down the set of files to be analyzed as much
as possible. Large static analysis databases are not only difficult to navigate
through, but are time-consuming to build. You specify the files to be used
in a special file called a fileset.

2. Choose how the files will be analyzed: parser mode, scanner mode, a
combination, or different modes in multiple passes.

Scanner mode is good for determining the general structure of a program.
It is most appropriate when you are working on uncompilable code,
analyzing large filesets, or performing preliminary analysis. Parser mode is
better when you need detailed relationship information. You should apply
parser mode to smaller filesets, because it takes longer to extract data.

In some situations, it is desirable to use a combination of modes. For
example, if you need detail but are having compilation problems, you can
apply the scanner to the problem files and the parser to everything else. A
different example would be applying the parser to a few files where you
need detail and the scanner to the rest of the fileset.

An example of a multiple-pass scenario is to analyze a large fileset in
scanner mode, zero in on a subset of the files, and then run that subset
through parser mode to get a detailed analysis.

3. Build the static analysis database.

Both scanner mode and parser mode can be invoked within the Static
Analyzer. After you have defined your fileset, the database will be built
when you make your first query or when you select either the Rescan or
the Force Scan option from the Admin menu of the Static Analyzer main
window.

Generally, you can invoke parser mode through the compiler. A
particularly convenient method for using the Static Analyzer parser is to
modify an existing makefile so that it analyzes the files as part of the build
process. This can be done with or without producing object code. For more
information on this approach, see Section 2.3, page 18.

007–2580–003 3

Developer MagicTM: Static Analyzer User’s Guide

4. Perform static analysis queries and view the results.

The queries can give you a good idea of the structure and the relationship
of components in your program. You can review the results in text form, as
a list of items and their source lines or graphically as a tree showing
relationships between items.

If you are programming in C++, or Ada you can make object-oriented
queries by bringing up the class browser in the Class View window. This
window lets you view structural and relational information.

5. Once you have isolated an area for analysis, you can edit the source code
from the Static Analyzer. Double-clicking an element brings up the
corresponding source code in the Source View window.

4 007–2580–003

Tutorials for the Static Analyzer [2]

This chapter shows how you might use the Static Analyzer in a typical session.
It does not go into full detail, but it does explain the fundamental concepts you
will need to use the Static Analyzer. It lists related commands and controls after
each tutorial so you can experiment on your own.

This chapter discusses the following topics:

• Applying the Static Analyzer to Scanned Files, Section 2.1

• Applying the Static Analyzer to Parsed C++ Files, Section 2.2, page 13

• Using the Compiler to Create a Static Analysis Database, Section 2.3, page 18

• Other Static Analyzer Features, Section 2.4, page 19

2.1 Applying the Static Analyzer to Scanned Files

In this session, you will create a fileset for the demo program bounce using
scanner mode and perform some basic queries in text mode.

1. Move to the /usr/demos/WorkShop/bounce directory by entering the
following command:

cd /usr/demos/WorkShop/bounce

This directory contains the C++ source code files for the demo program
bounce.

2. Use the ls(1) command to list the directory’s contents to see if the file
cvstatic.fileset already exists (in case someone worked through a
tutorial and forgot to remove the file). If it does exist, remove it along with
any other files the Static Analyzer may have left by entering the following
command:

rm cvstatic.* cvdb* vista.taf

Whenever you run the Static Analyzer, it checks the directory where you
invoked it for the cvstatic.fileset file and uses the content of that file
as its fileset. If it does not find the cvstatic.fileset file, it creates and
saves its own fileset containing the expression *.[c|C|f|F] so that all
possible C files (.c), Fortran 77 files (.f), Fortran 90 (.F), and C++ files
(.C) in the current directory are included. When you quit the Static

007–2580–003 5

Developer MagicTM: Static Analyzer User’s Guide

Analyzer, any fileset you or the Static Analyzer created remains in the
directory for use in your next Static Analyzer session.

If you do not want to use the default fileset, you can create your own or
modify the default fileset using the Edit Fileset selection on the Admin
menu. You can also create your own cvstatic.fileset file by hand;
instructions are found in Section 3.3, page 28.

3. Start the Static Analyzer by entering the following command:

cvstatic &

The Static Analyzer window appears (as shown in Figure 1).

Query Target field

Query results area

a11641

Figure 1. The Static Analyzer Window

4. Choose Edit Fileset from the Admin menu to open the Fileset
Editor window (as shown in Figure 2).

6 007–2580–003

Tutorials for the Static Analyzer [2]

Current
directory

Directory
list

Move
controls

Include
subdirectories

Current
directory
files

Language
filters

Current
fileset

Parser mode
fileset list

Direct entry
field

Scanner
mode fileset
list

Direct entry
field

Literal input
switch

Remove
control

a11593

Figure 2. The Fileset Editor Window

The current working directory appears in the Browsing Directory field
at the top left of the window. Subdirectories (if any) appear in the
Directories field. The files in the current working directory appear in
the Files field. Select the files you want to include in the fileset from these
two lists. For parser mode files, click the associated Parser button. For
scanner mode, click the Scanner button. There are two sets of Parser and
Scanner mode buttons. The upper set moves whole directories and the
lower set moves individual files. The two fileset fields, Parser Fileset
and Scanner Fileset, are at the right of the window.

007–2580–003 7

Developer MagicTM: Static Analyzer User’s Guide

5. Select the expression *.[c|C|f|F] in both the Parser Fileset and
Scanner Fileset list fields (if it appears), and click the Remove button.

This removes any default expressions from the fileset.

6. Click the C++ language filter button.

This filters the Files list to include only those files with the .C extension
(signifying C++ source files) and selects them all.

7. Now add these source code files to the fileset by clicking the Scanner
button from the Move Files set of buttons.

The Scanner Fileset list now displays the files selected from the Files
list. These files will be scanned into the static analysis database when it is
created.

8. Click the OK button at the bottom of the Fileset Editor window.

After you have created the fileset, you can query it for useful information.
Your first query prompts the Static Analyzer to extract static analysis data
from the files in the fileset and create a cross-reference database (using
scanner mode). This occurs before returning the results of your query. The
database includes the relationships between functions, files, classes, and
other elements of the code in the fileset, and is saved in a database file
along with two accompanying index files. The database file is named
cvstatic.xref; the accompanying files are named cvstatic.index
and cvstatic.posting. These files are stored in the same directory as
the fileset with which they are associated and remain there after the Static
Analyzer quits.

Subsequent queries use the same database until you ask the Static Analyzer
to rescan the fileset, which creates an updated database. When you quit the
Static Analyzer and return to it later, it automatically updates the database,
going through any files in the fileset that have changed since the last
session. If you use appropriate wild card expressions in the fileset, the fileset
will automatically accommodate new files added to specified directories.

9. From a shell, list the contents of the cvstatic.fileset file.

All files and their paths to be included in the fileset should display. If you
selected files for parsing, the files will have compiler flags following their
path names.

10. Click the Queries menu to open it.

8 007–2580–003

Tutorials for the Static Analyzer [2]

To query the database, choose a command from the Queries menu. You’ll
find the commands grouped in submenus according to the type of query
(see Figure 3).

Query Target
field

a11594

Figure 3. Static Analyzer Queries Menu and Query Target Field

The Query submenus let you perform the following types of different
searches:

• The General submenu searches for text strings, regular expressions,
and symbols.

007–2580–003 9

Developer MagicTM: Static Analyzer User’s Guide

• The Macros submenu searches for locations of macro definitions and
places where macros are used.

• The Variables submenu searches for global and local variables and
shows where they are defined and who references and sets the variables.

• The Functions submenu searches for functions, shows where they are
defined, and shows who calls them and whom they in turn call.

• The Files submenu searches for files in the fileset (including headers
and libraries) and shows which files are included by which other files.

• The Classes submenu searches C and C++ files for classes and shows
where they are defined. It also shows subclass and superclass
relationships and lists the methods defined within classes.

• The Methods submenu searches C/C++ files for methods and shows
where they are defined and declared.

• The Common Blocks submenu searches Fortran 77 and Fortran 90 files
for common blocks.

• The Types submenu searches C and C++ files for type information.

• The Directories submenu lets you list directories or the files in a
directory.

• The Packages submenu lets you search for Ada packages.

• The Tagged Types submenu lets you search for Ada tagged types.

• The Task Types submenu lets you search for Ada task types.

To start a query, choose the type of query you want from the Queries
menu. The Static Analyzer searches through its database or through the
original source code to find what you asked for.

If you want to look for a specific function, file, string, or other element,
enter the target text in the Query Target field above the query results
area (as shown in Figure 1, page 6).

Queries that require text in the Query Target field (such as Find
String in the General submenu) are grayed in the Queries menu if
there is no text present. More general queries that require no search text
(such as List Global Symbols) are always available.

11. Choose the List All Functions selection from the Functions
submenu of the Queries menu.

10 007–2580–003

Tutorials for the Static Analyzer [2]

The Static Analyzer builds its cross-reference database and notifies you that
it is doing so. When it is finished, the Static Analyzer displays a list of all
functions found in the fileset (as shown in Figure 4), their file, the line
number at which they are first defined or declared, with the actual source
line.

Note: During this process, you may get a warning dialog box about
multiple function occurrences. This is due to the inaccuracy of scanner
mode; it has problems with #ifdef statements. You may also get an
error message about missing files. This can happen if your include paths
are not set correctly. The missing files are not necessary for this tutorial.

Query results area

Function name

Source file

Line number

Source code
a11595

Figure 4. The Results of a List Functions Query

The Static Analyzer returns the results of all queries in the query results
area (below the Query Target field). It presents this information in text
form (and by the previous type of view if applicable for subsequent
queries). You can scroll through a text list to find specific data that interests

007–2580–003 11

Developer MagicTM: Static Analyzer User’s Guide

you. Clicking any part of an element listed (a filename, a function name, a
line number, and so on) pastes it into the Query Target field so you can
use it as the base of your next search. For example, if you want to
determine what functions a particular function calls, click on the function
name to put it into the Query Target field and then choose the Who Is
Called By selection from the Functions submenu of the Queries menu.

Text view allows you to sort the element lines alphanumerically by any one
of the fields in a line. For example, you can sort a list of functions
alphabetically by function name or numerically by line number where they
occur. To sort, click within an element line in the field by which you want
to sort, and then choose Sort from the Admin menu. The Static Analyzer
sorts the results of a query according to the field selected.

12. Click the function name Actor in the query results area.

The Static Analyzer pastes the name into the Query Target field.

13. Choose Who Is Called By from the Functions submenu of the
Queries menu.

The Static Analyzer displays a list of all functions called by Actor.

14. Clear the Query Target field and then type buffer in it.

In the next steps, you are going to search for any occurrences of the text
string buffer that might lead to information in the code concerning
z-buffering or data buffering.

15. Choose Find String from the General submenu of the Queries menu.

The Static Analyzer returns all the lines of code that contain the text string
buffer, even if it only appears in a comment.

16. Click on the History menu to open it.

It displays the queries you have made so far.

17. Choose List All Functions from the History menu to see a list of all
functions once again.

This brings back your previous query results.

18. Double-click the Actor function.

The Source View window appears, displaying the source code for Actor.
You can examine it, check it out (if you have a versioning system), or edit it.

12 007–2580–003

Tutorials for the Static Analyzer [2]

19. Choose Close from the Source View File menu to close it.

20. Choose Exit from the Static Analyzer Admin menu to end this tutorial.

2.2 Applying the Static Analyzer to Parsed C++ Files

In this session, you will create a fileset for the bounce demo program by using
parser mode and perform some detailed static analysis in both text mode and
graphic mode.

1. Move to the /usr/demos/WorkShop/bounce directory by entering the
following command:

cd /usr/demos/WorkShop/bounce

2. Use the ls(1) command to list the directory’s contents to see if the file
cvstatic.fileset already exists (in case someone worked through a
tutorial and forgot to remove the file). If it does exist, remove it along with
any other files the Static Analyzer may have left by entering the following
command:

rm cvstatic.* cvdb* vista.taf

Whenever you run the Static Analyzer, it checks the directory where you
invoked it for the cvstatic.fileset file and uses the content of that file
as its fileset. If it does not find the cvstatic.fileset file, it creates and
saves its own fileset containing the expression *.[c|C|f|F] so that all
possible, C files (.c), Fortran files (.f or .F), and C++ files (.C) in the
current directory are included. When you quit the Static Analyzer, any
fileset you or the Static Analyzer created remains in the directory for use in
your next Static Analyzer session.

If you do not want to use the default fileset, you can create your own or
modify the default fileset using the Edit Fileset selection on the Admin
menu. You can also create your own cvstatic.fileset file by hand;
instructions are found in Section 3.3, page 28.

3. Start the Static Analyzer by entering the following command:

cvstatic -mode PARSER &

The Static Analyzer window appears. The -mode PARSER option
causes the Static Analyzer to use parser files only when queries are
performed.

4. Choose Edit Fileset from the Admin menu.

007–2580–003 13

Developer MagicTM: Static Analyzer User’s Guide

This will allow you to use parser mode through the Fileset Editor
window.

5. Select the expression *.[c|C|f|F] in both the Parser Fileset and
Scanner Fileset list fields (if it appears), and click the Remove button.

6. Select the BouncingBall.C file in the File list at the lower left of the
Fileset Editor window and click the Parser button from the Move
Files set of buttons to transfer the file to the Parser Fileset list.

This enters the BouncingBall.C file into the fileset and sets it for parsing
mode.

7. Click the OK button at the bottom of the Fileset Editor window to save
the new fileset. From a shell window, enter the following command to
display the contents of cvstatic.fileset:

cat cvstatic.fileset

After you have created the fileset, you can query it for useful information.
Your first query prompts the Static Analyzer to extract static analysis data
from the files in the fileset and create a cross-reference database (using
scanner mode). This occurs before returning the results of your query. The
database includes the relationships between functions, files, classes, and
other elements of the code in the fileset, and is saved in a database file
along with two accompanying index files. The database file is named
cvstatic.xref; the accompanying files are named cvstatic.index
and cvstatic.posting. These files are stored in the same directory as
the fileset with which they are associated and remain there after the Static
Analyzer quits.

Subsequent queries use the same database until you ask the Static Analyzer
to rescan the fileset, which creates an updated database. When you quit the
Static Analyzer and return to it later, it automatically updates the database,
going through any files in the fileset that have changed since the last
session. If you use appropriate wild card expressions in the fileset, the fileset
will automatically accommodate new files added to specified directories.

8. Choose List All Functions from the Queries Menu.

The Static Analyzer builds a new database using parser mode. Since
BouncingBall.C has a number of include files, this process may take a
few minutes. During the process, a small window called Build Shell
appears that displays any compiler errors or warnings. At the conclusion of
the process, the functions in BouncingBall.C and its include files are
listed in text form in the query results area.

14 007–2580–003

Tutorials for the Static Analyzer [2]

9. Choose Call Tree View from the Views menu.

The query results area now changes to graphical form. The functions are
depicted as rectangles. In addition to listing functions, the Static Analyzer
now provides you with relationship information, that is, who calls which
functions. The function calls are shown as arrows (or arcs) pointing to the
functions that were called.

Besides Call Tree View, there are two other types of graphical views:
Class Tree View that displays C/C++ classes and their hierarchy and
File Dependency View that displays files in the fileset and their
dependency on each other.

Whenever you use a tree view, the view interprets the results of your query
according to the type of tree displayed. For example, if you perform a
Functions query while you’re in file dependency view, the view changes
to show you which files contain the functions returned by the query. Some
views do not make sense for displaying the results of a query, in which case
the Static Analyzer switches to the view it thinks is most reasonable for the
query.

10. Click the Graph Overview button (the fourth button from the left at the
bottom of the Static Analyzer window).

This displays the Call Tree Overview window, a feature to help users
navigate through a graph. It displays the full call tree in overview, with a
small rectangular outline (called the viewport) in the upper-left corner. The
viewport shows which portion of the tree currently appears in the query
results area of the Static Analyzer window and can be dragged by the
mouse to expose other portions of the graph. See Figure 5.

007–2580–003 15

Developer MagicTM: Static Analyzer User’s Guide

Viewport

Graph Overview button
a11596

Figure 5. Typical Static Analyzer Call Tree

11. Click in the center of the Call Tree Overview window.

The viewport jumps so that its upper-left corner matches the pointer
location. The query results area in the Static Analyzer window shifts to
display the part of the tree outlined by the viewport in the Call Tree
Overview window.

12. Drag the viewport around in the Call Tree Overview window by
holding down the left mouse button and moving the mouse. Finish by
dragging the viewport to the upper-left corner of the call tree.

As the viewport moves over the call tree overview, the call tree shown in
the Static Analyzer query results area scrolls to match.

13. Choose Close from the Admin menu in the Call Tree Overview
window to close it.

16 007–2580–003

Tutorials for the Static Analyzer [2]

14. Type colorSelected in the Query Target field and choose Who
Calls? from the Functions submenu in the Queries menu. This
reduces the graph to three nodes.

15. Hold the right mouse button down over the node labeled colorSelected
to open its popup menu.

This displays the individual node menu, which provides the selections:
Hide Node, Collapse Subgraph, Show Immediate Children, and
Show Parents. The arrow at the right of the colorSelected node
indicates that it has undisplayed child nodes. Therefore, Show Immediate
Children is enabled. Because the parents of colorSelected are already
displayed, the Show Parents selection is disabled.

If you hold the right mouse button down over a portion of the query
results area where there are no nodes, the selected nodes menu displays
providing additional selections.

16. Choose Show Immediate Children from the popup menu.

The Static Analyzer displays the functions called by colorSelected.

For more information on the standard graph controls and node
manipulation, see Appendix A in the Developer Magic: ProDev WorkShop
Overview. Note that the View Options menu is unique to the Static
Analyzer. It offers options that extend the range of the nodes you see in the
tree to include nodes not included in the original query.

17. Open the History menu to review the commands you have selected.

18. Choose Exit from the Admin menu to exit the Static Analyzer.

19. Remove all files generated by the Static Analyzer from the directory by
entering the following command:

rm cvstatic.* cvdb* vista.taf

007–2580–003 17

Developer MagicTM: Static Analyzer User’s Guide

2.3 Using the Compiler to Create a Static Analysis Database

In this session, you will create a static analysis database by using parser mode.

!
Caution: The steps listed in this section will not work in all cases. You
should be aware of the following limitations:

• Using the C compiler with the -sa flag does not work for –o32 programs.

• Using the C++ compiler with the -sa flag for –o32 programs may
produce error messages and possibily a core dump file.

• Templates are not supported when using the C++ compiler with the -sa
flag for –n32 programs.

1. Move to the /usr/demos/WorkShop/bounce directory by entering the
following command:

cd /usr/demos/WorkShop/bounce

We will analyze the bounce demonstration program.

2. Create a new subdirectory, by entering the following command:

mkdir staticdir

This creates the subdirectory in which you will store the static analysis
database. If a directory named staticdir already exists, remove it or use
a different name.

3. Type cd staticdir to change directories and then type initcvdb.sh.

The initcvdb.sh script creates the cvdb*.* files necessary for producing
the database.

4. The most convenient method for applying the Static Analyzer parser to a
large group of files is to modify the existing Makefile so that it analyzes the
files without producing object code by entering the following command:

-sa,staticdir -nocode

The -sa flag tells the compiler to perform static analysis. Following -sa
with ,staticdir tells the compiler to store the results in the staticdir
subdirectory; otherwise, the current directory is used. The -nocode flag
saves time by telling the compiler not to create object code.

18 007–2580–003

Tutorials for the Static Analyzer [2]

!
Caution: The -sa flag should be added only to a Makefile that does a
sequential build. Adding the -sa flag to a Makefile that does a parallel
build causes multiple copies of cc or CC to try to write to the same
database. However, the database accepts only one writer at a time.

5. Enter the following command:

make -k

This runs the compiler as you have specified in the Makefile. The -k option
instructs the make command to abandon work on the current entry if it
fails, but to continue on other branches that do not depend on the failed
entry. This may take a while. Running parser mode performs all major
operations of compiling, short of creating the object code.

6. Go to the staticdir subdirectory and enter the following command:

cvstatic -mode PARSER -readonly

This invokes the Static Analyzer set for parsed files. The other mode
options are SCANNER for scanned files and BOTH if you mix scanned and
parsed files. The -readonly safeguard flag protects against inadvertent
changes. You can now perform any valid Static Analyzer operations, as
shown in the previous tutorials.

2.4 Other Static Analyzer Features

You can find complete information about querying in Chapter 4. To explore on
your own, try these commands in the Admin menu that also affect queries:

Rescan Asks the Static Analyzer to update the
cross-reference database by rescanning any source
code files in the fileset that have changed since
the last database update.

Force Scan Asks the Static Analyzer to update the
cross-reference database by rescanning all source
code files in the fileset regardless of whether they
have changed.

->General Options Offers options that determine how a query treats
the text string entered in the Query Target
field and how filenames are displayed.

007–2580–003 19

Developer MagicTM: Static Analyzer User’s Guide

Set Include Path Allows you to set a search path of directories
where the Static Analyzer looks for include files
that are mentioned in the code contained in the
fileset.

Save Query Saves the text or graphics results of a query to a
file. If the query results are displayed graphically,
this command allows you to select a file to save
the PostScript representation.

!
Caution: As you experiment with queries in tree views, you may be tempted
to look at a coding project that includes millions of lines of code. If so, be
sure to use restricted queries or to use the Results Filter to greatly filter
the results of the query. If you use a very comprehensive query such as List
All Functions, the Static Analyzer may be locked into creating a tree view
that consists of hundreds of thousands of nodes and even more arcs. Not
only will you have to wait hours for your results, but the results will
probably be so complicated that they will be meaningless to you.

20 007–2580–003

Static Analyzer: Creating a Fileset and
Generating a Database [3]

This chapter describes the fileset concept. A fileset is a file that contains the
names of the files you want included in the analysis. You also specify whether
these files are to be analyzed by the faster scanner mode or the slower, more
thorough, parser mode.

Before you can perform any static analysis queries, you need to specify the
source code files to be analyzed and then generate a database containing the
static analysis information. This chapter covers the following topics:

• Fileset Specifications, Section 3.1, page 21

• Using the Fileset Editor, Section 3.2, page 25

• Creating a Fileset Manually, Section 3.3, page 28

• Using Command Line Options to Create and Use a Fileset, Section 3.4, page
28

• Generating a Static Analyzer Database, Section 3.5, page 29

• Rescanning the Fileset, Section 3.6, page 33

• Setting the Search Path for Included Files, Section 3.7, page 34

• Changing to a New Fileset and Working Directory, Section 3.8, page 35

3.1 Fileset Specifications

A Static Analyzer fileset is a single file used to specify the source code files to be
analyzed. There are several methods for creating a fileset:

• Using the Fileset Editor

• Creating a file manually

• Letting cvstatic do it automatically at startup by defaulting to those files
in the current directory that match the expression *.[c|C|f|F]

• Letting cvstatic do it automatically at startup by designating an
executable file

007–2580–003 21

Developer MagicTM: Static Analyzer User’s Guide

• Using the compiler to create a fileset (and database) by adding the
-sa,dbdirectory option to your Makefile

!
Caution: Information in this section will not work in all cases. You
should be aware of the following limitations:

– For C and C++ files, the only set of compiler options that works is:

CC -o32 -sa [-sa_fs | cvstatic.fileset]

where cvstatic.fileset is the name of the fileset if you do not use -sa_fs.
cc -o32 rejects the -sa option.

– CC -n32 -sa and cc -n32 -sa both produce a fileset but do not
produce a database.

– The -sa flag should be added only to a Makefile that does a sequential
build. Adding the -sa flag to a Makefile that does a parallel build
causes multiple copies of cc or CC to try to write to the same
database. However, the database accepts only one writer at a time.

A fileset is a regular ASCII file with a format of one entry per line, each line is
separated from the next by a carriage return. The fileset always begins with the
following line:

-cvstatic

The other entries can be a mixture of the following entities:

• Regular expressions

• File names

• Included directories preceded by the -I dwsignator

Note: In parser mode only, an entry can be followed by the name of the
compile driver, compilation options such as -ansi, and other user-specified
options such as -D for defining macros (see Section 3.5.2, page 30).

3.1.1 Using Regular Expressions

Each line in the files et can use shell expansion characters, a wild card system
in standard use for specifying file names in UNIX shells. If you enter a
standard pathname (either absolute or relative), the Static Analyzer reads the
line literally and looks for the file. If you use metacharacters such as brackets

22 007–2580–003

Static Analyzer: Creating a Fileset and Generating a Database [3]

([]) and asterisks (*), you can specify a number of files with a single line of
text. For example, the default fileset contains the single line:

*.[c|C|f|F]

The asterisk specifies any number of characters (zero or greater) before a
period, and the bracketed set of characters specifies any of following single
characters: c, C, f, or F, after the period. The result is that the line specifies any
file names in the current directory that use one of these extensions.

Note: If you are analyzing Ada files, then the default expression
*.[c|C|f|F] is not appropriate. You may wish to substitute an expression
like *.adb for Ada bodies or *.adb for Ada specifications.

Do not confuse the shell expansion characters used here with the regular
expressions used in the Fileset Selection Browser window; they are
different systems.

3.1.2 Specifying Pathnames

The Static Analyzer resolves absolute pathnames in the fileset from the root; it
resolves relative pathnames from the directory in which you invoke the Static
Analyzer, referred to as the browsing directory. Anytime you change to a fileset
in another directory, however, the Static Analyzer changes the working
directory to match so that any relative filenames in the fileset are resolved from
the fileset’s own directory.

3.1.3 Specifying Included Files

Besides specifying file names, the fileset also can also specify directories to
search for included files. The default search files are the current directory and
/usr/include. Any additional search paths are specified with the prefix -I
followed immediately (without a space) by the pathname. For example:

-I/usr/include/gl

This pathname listed in a fileset requests that the Static Analyzer to search
through /usr/include/gl for include files.

Filesets created by the Static Analyzer are named cvstatic.fileset by
default. If you create your own filesets, you can give them any name you want,
but by convention you should use the .fileset extension.

007–2580–003 23

Developer MagicTM: Static Analyzer User’s Guide

3.1.4 Defining Macros in the Fileset

The Static Analyzer lets you define macros to be included in the database.
When you compile with the -sa flag, the fileset is built with one file per line;
lines may also contain a -I flag for including files, -D for defining macros, or
-U for undefining macros. The Static Analyzer does not normally preprocess
source code files before creating a cross-reference database. Some source code,
however, requires preprocessing to resolve ifdef statements before you can
successfully analyze the code.

The way to perform preprocessing is to specify these symbol names and values
in the file cvstatic.fileset and then run cvstatic from the command
line with the -preprocess flag. Macros are specified at the end of a fileset by
appending a line in the following format for each preprocessor symbol you
want to define:

-D symbolname

or

-D symbolname=value

For example, to set the macros DEBUG and BUFFERSIZE, you would append
two lines like the following to the end of the fileset:

-DDEBUG

-DBUFFERSIZE=8

In a similar manner, -U undefines macros. These symbol definitions are used
for processing all files in the fileset.

Note: Using the -preprocess option increases the scanning time
tremendously (scanner mode only). Use it only when absolutely necessary.

3.1.5 Using the Default Fileset

When you start the Static Analyzer in a directory that does not contain a file
named cvstatic.fileset, the Static Analyzer creates a default fileset and
saves it as cvstatic.fileset. The contents of the fileset are:

*.[c|C|f|F]

This line specifies any C, C++, Fortran 77, or Fortran 90 files in the working
directory.

24 007–2580–003

Static Analyzer: Creating a Fileset and Generating a Database [3]

Note: This line assumes that C++ files have a .C extension, which may not
be the case for all C++ files because there is not yet a pervasive extension
standard. If your C++ files use.c++, .cc, or other extensions and you want
to use the default fileset, you should edit it to include the extensions you
want.

3.2 Using the Fileset Editor

The Fileset Editor lets you edit the contents of a fileset. You invoke it by
choosing Edit Fileset from the Admin menu. The contents of the current
fileset appear in the two file lists on the right side of the window; directories
and files that you can add to the fileset appear in the Directories and Files
lists on the left.

The Current Fileset field at the top right of the window is a read-only
display that shows the full pathname of the current fileset. The directory
displayed here is the Static Analyzer’s current working directory. You cannot
change either the fileset or the working directory here; to do so, use the Change
Fileset selection in the Admin menu.

Below the Current Fileset field, there are two list areas. A fileset can
contain two kinds of files: those that are scanned into and those that are parsed
into the database. (For a complete discussion of scanner and parser mode, see
Section 3.5, page 29.) The top list area shows files in the fileset to be parsed,
and the lower area shows files to be scanned. Both list areas have vertical scroll
bars to scroll through long lists and horizontal scroll bars to move left and right
through long file names.

3.2.1 Adding Lines to the Fileset Contents List

Both fileset list areas have entry fields immediately below them that allow you
to enter lines in the fileset. You put the pointer in the line entry field and type.
When you press Enter, the Fileset Editor enters your line in the fileset.

The line entry field interprets each typed line as soon as you press Enter. If
you enter a literal filename such as jello.c or ../bounce/bounce.C, that
filename appears in the fileset list when you press Enter. If you enter a wild
card entry such as *.*, the Fileset Editor interprets it, resolving from the
working directory, and places those filenames that match (not the wild card
entry itself) in the fileset list.

If you want to enter a wild card entry in the fileset without having it
immediately interpreted and replaced with actual filenames, turn on the

007–2580–003 25

Developer MagicTM: Static Analyzer User’s Guide

Literal Input toggle button just below the line entry area. When this button
is on, the Fileset Editor treats all strings you enter literally; it does not interpret
them as shell expansion characters, which allows you to place wild card lines
directly into the fileset. The Static Analyzer interprets these strings later when
you query the fileset.

3.2.2 Removing Lines from the Fileset Lists

To remove a line from a fileset list, click on it to select it and then click the
Remove button below the lists. The Fileset Editor removes the line from the list.
To remove more than one line at a time, drag the cursor over a range of files or
hold down the Control key while clicking, then click the Remove button.

3.2.3 Browsing for Fileset Contents

You can use the following lists and buttons on the left side of the Fileset
Editor window to browse through available directories for files to add to the
fileset.

3.2.3.1 Directories List

The Directories list shows the subdirectories available in the current
directory. You can double-click on a subdirectory to move to that directory and
see its subdirectories in the Directories list. The .. entry is the parent
directory of the current directory. Double-click it to move up a directory.

3.2.3.2 Browsing Directory

The Browsing Directory field just above the Directories list shows the
current directory in which you are browsing. You can use it to type an absolute
pathname to a new directory. First, put the pointer in the area to type and then
press Enter. The contents of the Directories list changes to show the
subdirectories of the directory you entered.

3.2.3.3 Language Filters

The Files list below the Directories list shows the files contained in the
current directory. You can filter the contents you see there by turning on any or
all of the language filter buttons below the list. If none of these buttons is
turned on, the Files list shows all files in the current directory. Turning on
any single button restricts files listed to Ada, C, C++, or Fortran files:

26 007–2580–003

Static Analyzer: Creating a Fileset and Generating a Database [3]

• The C button restricts files shown to those with .c extensions.

• The C++ button restricts files shown to those with .C, .cc, or .cxx
extensions.

• The Fortran button restricts files shown to those with .f or .F extensions.

• The Ada button restricts files shown to those with .adb and .ads
extensions.

By default when you click on the Ada button, only those Ada files with
.adb extension are displayed. If you want to view files with both .adb and
.ads extensions, set the *suffixSource resource as shown in the
following sample setting:

*suffixSource: C++.c++ C++.C C++.cxx Fortran.f Ada.adb Ada.ads

You cannot override only the Ada part of this resource. You must list all the
languages you might want to browse by using the Static Analyzer.

You can set combinations of these buttons to see different source code file types.

3.2.4 Adding File Names from Lists

If you want to add one or more file names from the Files list to one of the
fileset lists, select the file name and click the Move Files Parser button or
Scanner button to the right of the Files list depending on how you want
information extracted from the file. The Fileset Editor puts the absolute
pathname of each file in the fileset list.

To add all the files in a directory to the Fileset Contents list, select the
directory name (or directory names if you want more than one) in the
Directories list, then click either the Parser button or Scanner button to
the right of the Directories list. The Fileset Editor (in its default state) adds
only the files contained in that directory and not files contained within any of
its subdirectories.

To add files contained within a directory’s subdirectories, turn on the Include
Subdirectories button. When you click on the Add Directories button
with this button turned on, the Fileset Editor adds all files in directories,
subdirectories, and so on, to the fileset lists.

You can specify the kinds of files the Fileset Editor puts in the Parser
Fileset and Scanner Fileset lists when you click the Add Directories
button. To do so, turn on any of the filter buttons below the Files list.

007–2580–003 27

Developer MagicTM: Static Analyzer User’s Guide

3.2.5 Transferring Files in the Fileset between Modes

The Fileset Editor lets you change the method of data extraction (parser or
scanner) for files in the fileset. You do this by transferring them from one fileset
list to the other using the two Transfer Files arrows. This is particularly
useful when you discover that a file cannot be parsed. You can then transfer the
file to scanner mode, which is not sensitive to programming languages.

3.2.6 Leaving the Fileset Editor Window

You can close the Fileset Editor window by clicking the OK button or the
Cancel button. Click OK to put all the fileset changes you made into effect.
Click the Cancel button to close the window and return the fileset to the state
it was in when you first opened the Fileset Editor window; your editing
changes are ignored.

3.3 Creating a Fileset Manually

You can create a fileset by hand, either by using a text editor that saves text in a
text-only format (vi, for example) or by using the output of UNIX commands
that return filenames. You may find the UNIX find(1) command useful for
returning all specified filenames within a directory tree. For example, the
following command creates a fileset of all Fortran 77 files (those with a .f
extension) found within the current directory and all of its subdirectories:

find . -name ‘‘*.f’’ -print > cvstatic.fileset

You can pipe the output of the find(1) command through filtering commands
such as sed(1) to further modify the fileset created. For example, the following
command finds C files within a directory tree and strips out any .c files left by
the C++ compiler:

find . -name "*.c" -print | sed’/\.\.c/d > cvstatic.fileset

3.4 Using Command-Line Options to Create and Use a Fileset

The Static Analyzer provides the following special options when you invoke
cvstatic from the command line:

• The -executable option followed by the file name of an executable file
instructs the Static Analyzer to create a fileset that contains the absolute
pathname of every file used to compile that executable. For example,

28 007–2580–003

Static Analyzer: Creating a Fileset and Generating a Database [3]

entering the following command finds C files within a directory tree and
strips out any .c files left by the C++ compiler:

cvstatic -executable jello

The executable file must not be stripped because stripped files do not
contain the names of their source files. When using the -executable
option, it is a good idea to use the Fileset Editor to exclude files with
incomplete names that can occur with files compiled into lib using
compilers prior to 4.0.1 or nonsupported languages like Assembler or Pascal.
The -executable option requires that the executable file be built on the
same system as that performing the static analysis.

• The -fileset option followed by the file name of a fileset instructs the
Static Analyzer to start using a fileset other than cvstatic.fileset.

• The -mode flag takes the options SCANNER or COMPILER to indicate the
types of files in the fileset to be used in queries. If you do not use the
-mode flag, then scanner mode will be assumed for those files in the fileset
without compiler driver specifications.

3.5 Generating a Static Analyzer Database

The most time-consuming part of the static analysis process is creating the
database, which is a collection of symbols and their relationships. The following
two methods are available for extracting static analysis data from a fileset:

• Scanner mode, which is fast but not sensitive to the characteristics of specific
programming languages

• Parser mode, which is language-specific and thus more thorough

If you need a mix of accuracy and speed, you can combine the two modes by
flagging the files in the fileset according to mode and building the database
with the -mode BOTH flag. You might use this approach if some files cannot be
compiled or if scanner mode is misinterpreting necessary symbols.

3.5.1 Scanner Mode

The quickest way to build a database is to use scanner mode. Since scanner
mode is not sensitive to the characteristics of specific programming languages,
it may miss or incorrectly parse certain symbols (especially in Fortran). If you
are analyzing a large quantity of source code, do not care about minor

007–2580–003 29

Developer MagicTM: Static Analyzer User’s Guide

inaccuracies, and do not need the language-specific relationships (such as C
types) available in parser mode, then use scanner mode.

Scanner mode is the default method for building a static analysis database. It is
run automatically whenever you create a new fileset or perform a rescan, unless
you explicitly specify parser mode.

Scanner mode creates files named cvstatic.fileset, cvstatic.index,
cvstatic.posting, and cvstatic.xref in the directory in which it is
started. These files comprise the Static Analyzer database for the program.

If the Static Analyzer finds cross-reference files to accompany a fileset, it
determines when they were last updated. It then scans the fileset to see which
files have been modified or added since that date. The Static Analyzer updates
the cross-reference files with cross-references found in modified or added files.

Scanner mode is based on a sophisticated pattern matcher. It works by
searching for and identifying common patterns that occur in programs. Both
philosophically, and in terms of the actual implementation, cvstatic is most
closely related to the grep(1) command. If you expect cvstatic to produce
the type of results that can be accomplished only with a full-compilation type of
analysis, you should use the compiler-based parser mode. If you think of
scanner mode as a sort of “super grep” command and use scanner mode as
most programmers use the grep command to explore a new program, you can
get a quick, high-level look at your code.

3.5.2 Parser Mode

Parser mode is language-specific and slower as a result. Use parser mode when
you need to stress accuracy over speed. Parser mode provides relationship data
specific to the programming languages C, C++, and Fortran 77 such as querying
on types, directories, and Fortran common blocks. Parser mode uses the
compiler to identify entities in the source code, so you must be able to compile
a file in order for it to be parsed. If a source file cannot compile, then you need
to flag that file for scanning and run it through scanner mode.

3.5.2.1 Preparing the Fileset for Parser Mode

File entries for parser mode take the following general form:

/fullpath/sourcefile drivername options

30 007–2580–003

Static Analyzer: Creating a Fileset and Generating a Database [3]

where:

drivername Refers to the compiler driver and can be f77 for
Fortran, ncc for the Edison C compiler, NCC for
the standard C++ compiler, or DCC for the Delta
C++ compiler.

options Lets you choose language level (-ansi, -cckr,
-xansi, or -ansiposix) and user-specified
options such as -I for including files, -D for
defining macros, -nostd, and +p.

The Static Analyzer recognizes the type of language by the file extension. Parser
mode assumes that C files are ANSI unless otherwise specified in the Makefile.

Before processing the files, the Static Analyzer must know where to look for
include files. If you are using parser mode, you need to set the include paths
before the Static Analyzer scans the files, so do this before performing any
queries or choosing Force Scan from the Admin menu.

3.5.2.2 Invoking the Parser

There are three methods for creating a fileset with parser mode files:

• Enter the files in the parser mode fileset list in the Fileset Editor
window.

• Edit the cvstatic.fileset file directly, specifying the compiler and other
options after the file entry.

• Use the compiler to generate the fileset by specifying the
-sa[,databasedirectory] and the -nocode flags. Without arguments, the
-sa flag stores the static analysis database in the current directory. If you
enter a comma (,) and a database directory name, the static analysis
database will be stored in the specified directory. If you specify the
-nocode flag, the database will be built without creating new object files.

007–2580–003 31

Developer MagicTM: Static Analyzer User’s Guide

!
Caution: Information in this section will not work in all cases. You
should be aware of the following limitations:

– For C and C++ files, the only set of compiler options that works is:

CC -o32 -sa [-sa_fs | cvstatic.fileset]

where cvstatic.fileset is the name of the fileset if you do not use -sa_fs.
cc -o32 rejects the -sa option.

– CC -n32 -sa and cc -n32 -sa both produce a fileset but do not
produce a database.

– The -sa flag should be added only to a Makefile that does a sequential
build. Adding the -sa flag to a Makefile that does a parallel build
causes multiple copies of cc or CC to try to write to the same
database. However, the database accepts only one writer at a time.

While the database is being built, a window appears displaying any messages
from the parsing process. This helps you find problems if there is code that
cannot compile.

Parser mode creates a cvstatic.fileset file and new files named
cvdb*.dat, cvdb*.key, vista.taf, and cvdb.dbd in the current
directory. In parser mode, Force Scan rebuilds the database. Rescan looks at
the time stamps of files in the database and rebuilds pieces only when they are
out-of-date.

For more information on creating a database in parser mode, see Section 2.3,
page 18.

3.5.2.3 Parser Mode Shortcuts

If you want to use parser mode but want to avoid waiting for the process to
finish, there are two ways to speed up processing:

• You can use the compiler with the -nocode flag to skip creating object files.

• You can build the Static Analyzer database using the compiler and bring up
the graphic user interface later to read this database.

3.5.3 Size Limitations

The following limitations and shortcomings are largely a consequence of the
grep(1)-like model supported by scanner mode. Still, cvstatic does provide

32 007–2580–003

Static Analyzer: Creating a Fileset and Generating a Database [3]

a more powerful way to approach understanding a set of source files than using
the grep(1) command.

When you use the Fileset Editor to add entire directories of files, you cannot
enter more than 10,000 files. This limit exists to prevent someone from
inadvertently starting at the root of a file system and trying to add all files.
Note that there is no limitation on the number of files that can be added to the
fileset when the fileset file is constructed in other ways, such as compiling
source files with the -sa flag, or emitting a fileset from a Makefile rule.

The Static Analyzer displays a maximum of 20,000 lines of unfiltered results
from a query in the Text View window. Larger results can, however, be saved
to a file or reduced to a more manageable size by using the Results Filter.

The Static Analyzer displays no more than 5,000 functions in the Call Tree
View, 10,000 files in the File Dependency View, or 10,000 classes in the
Class Tree View. These are absolute maximum limits, and the actual limits
may be much lower depending on characteristics of the graph being displayed.
In particular, all graph views are displayed in a scrolled X Window System
window, which is sized to accommodate the graph. The X Window System
imposes a maximum size on windows that graphs cannot exceed. To get
around this limitation, you can use one of the following methods:

• Use more specific queries to focus on the part of the program that is of the
most interest.

• Reduce the scale used to view the graph.

• Use the Results Filter to trim query results.

• Use the Incremental Mode setting in the various graph views or the
pop-up menus on nodes of the graph to follow a specific path through a
large tree.

3.6 Rescanning the Fileset

After you have generated a database, you can always go back and rescan the
fileset. The Admin menu provides two selections for this purpose:

Rescan Asks the Static Analyzer to check for new or
modified files since the last scan and to store any
cross-references found in new and modified files
in the database. Use this command anytime you
have modified source code files during a Static
Analyzer session and you want to ensure that the

007–2580–003 33

Developer MagicTM: Static Analyzer User’s Guide

Static Analyzer reflects those changes in the
cross-reference files.

Force Scan Asks the Static Analyzer to completely rebuild
the cross-reference files, creating a cross-reference
database of all files specified in the fileset,
whether or not they’ve been modified since the
last scan. Force Scan also returns the Static
Analyzer to its initial startup state with no query
results in the main window and no past queries
stored in the History menu. Use this command
to restart the Static Analyzer and to verify the
integrity of its cross-reference files.

There are also two command-line options involved with rescanning the fileset:

-batch Asks the Static Analyzer to perform the
equivalent of the Rescan selection; it updates the
cross-reference files to accommodate new and
modified files in the fileset. It does not open the
Static Analyzer’s main window, however, and it
quits the Static Analyzer after the scan is finished.
You can use the -batch option to update
cross-reference files for a large set of source code
files, using the Static Analyzer as a background
process. Note that you must have a fileset in the
directory where you start the Static Analyzer or
that you must specify a fileset when you start the
Static Analyzer, or this option will not work.

-noindex Stops creation of the .index and .posting files.
Therefore, the Static Analyzer does not create an
inverted index for the cross-reference database.
This speeds database creation but slows database
query response.

Note: This works in scanner mode only.

3.7 Setting the Search Path for Included Files

Whenever the Static Analyzer scans a fileset and finds an included file in source
code, it searches by default for the file in the current directory and then in
/usr/include. If it does not find the included file in either of these

34 007–2580–003

Static Analyzer: Creating a Fileset and Generating a Database [3]

directories, it displays a Not Found dialog box that shows the names of those
included files listed but not found in its search path.

To add directories to the search path for included files, choose Set Include
Path and Flags from the Admin menu to open the Scanning Options
dialog box.

The Include Directories list at the top of the box lists all directories that
the Static Analyzer searches in addition to the default search path. To add a
directory to the list, move the pointer to the Directory field below the list,
type in a directory name, then press the Enter key (or click on the Add
Directory button). The path should be relative to the directory in which
cvstatic is running. To delete a directory, click its name in the Include
Directories list (this puts it in the Directories field), then click the
Remove Directory button. You can also add flags such as -I for including
files, -D for defining macros, or -U for undefining macros, as described in
Section 3.1.4, page 24.

To exclude /usr/include from the Static Analyzer’s search path, click the No
Standard Includes button to turn on the option. Turn on this option
whenever you do not want to scan standard libraries and headers into a .xref
file. By eliminating these files from a scan, you can greatly reduce the amount
of data the Static Analyzer handles, increase its speed, and concentrate query
results on your custom code. However, you will not be able to find data in the
header files normally found in /usr/include.

To close the Scanning Options dialog box, click the Close button. Any
directories you added to the search path are stored as part of the fileset. You
will not see the directories listed if you open the Fileset Editor window,
but you will see them if you examine the fileset file directly because each added
search directory appears in a separate line with a -I prefix.

3.8 Changing to a New Fileset and Working Directory

The Static Analyzer uses only one fileset at a time, and resolves each relative
pathname and general line from its current working directory. To change to a
new fileset or a new working directory, use the Fileset Selection
Browser window shown in Figure 6 by choosing Change Fileset from the
Admin menu.

007–2580–003 35

Developer MagicTM: Static Analyzer User’s Guide

a11597

Figure 6. The Fileset Selection Browser Window

To load a new fileset, change to the directory in which the fileset is located by
using the File Selection field (either by dragging a folder icon into it or by
typing directly). Then select the fileset in the Files list. Once you change to a
new fileset, the directory where it is located becomes the new working directory.

You can use the File Selection field of the Fileset Selection
Browser window to create a new fileset from within the Static Analyzer. If you
enter a new filename such as custom.fileset in the File Selection field
(as part of a full pathname) and then click OK to accept your new fileset, the
Static Analyzer creates a file by that name and saves any fileset edits you make
to that file.

36 007–2580–003

Static Analyzer: Queries [4]

This chapter describes how you perform queries, which ask the Static Analyzer
for specific information about the source code files included in the fileset. This
chapter covers the following topics:

• Defining the Scope of a Query, Section 4.1, page 37

• Making a Query, Section 4.2, page 38

• Viewing Source Code, Section 4.3, page 49

• Repeating Queries, Section 4.4, page 49

• Saving Query Results, Section 4.5, page 50

For examples of using queries, refer to Section 2.1, page 5, and Section 2.2, page
13.

4.1 Defining the Scope of a Query

The Static Analyzer has two types of queries: comprehensive queries (such as
List All Functions and List Global Symbols) that do not require a
query target and specific queries (such as Who Is Called By? and List
Methods In Class) that do require a query target. Specific query selections
in the Queries menu are grayed unless you supply target text in the Query
Target field.

To enter text in the Query Target field, put the pointer in the text area and
type. You can also click an element in the query results area and the Static
Analyzer pastes it into the text area. For example, you can click a function
name displayed in the query results area to enter the function name in the
Query Target field.

To make a query based on target text, choose a query from the Queries menu.
The Static Analyzer returns all elements matching the query parameters and the
target text. You can also make a query by pressing the Enter key while the
pointer is in the Query Target field. The Static Analyzer repeats the last type
of query you made, using the contents of the Query Target field as target text.

007–2580–003 37

Developer MagicTM: Static Analyzer User’s Guide

4.1.1 Target Text as a Regular Expression

The Static Analyzer reads target text in the Query Target field as a regular
expression, which is a system of string constructions used by the UNIX ed(1)
command to construct literal strings or wild card strings. Regular expression
syntax is described in the man page for ed(1).

If you enter target text without using any of the following special characters, the
Static Analyzer reads the text as a literal string and searches only for that text:

\ . * () [^ $ +

If you use special characters to create a wild card expression, the Static
Analyzer searches for a variety of target text in a single query, a useful tool for
expanding the scope of a specific query.

Note: Do not confuse regular expressions with the shell expressions you use
to create a fileset. They are different systems.

4.1.2 Case Sensitivity

The Static Analyzer is case-sensitive and recognizes the difference between
uppercase and lowercase characters in target text during queries. However, if
you want to ignore case in target text during a query (useful for case-insensitive
Fortran code), choose General Options from the Admin menu to open the
General Options dialog box. Click the Ignore Case In Searches button
to turn it on, then click the Close button to close the dialog box.

4.2 Making a Query

To make a query, choose a query type from the Queries menu as shown in
Figure 7, page 39.

38 007–2580–003

Static Analyzer: Queries [4]

General submenu

Macros submenu Variables submenu

Functions
submenu

Files
submenu

Classes
submenu

Methods
submenu

Common
Blocks
submenu

Types
submenu

Directories submenuPackages submenuTask Types submenuTagged Types submenu
a11671

Figure 7. Static Analyzer Queries Menu with Submenus

007–2580–003 39

Developer MagicTM: Static Analyzer User’s Guide

The Static Analyzer displays the results in the query results area of the main
window. The following sections describe the queries that you can make from
the submenus of the Queries menu.

4.2.1 General Queries

The General submenu contains a variety of general purpose queries designed
to find strings or nonspecific program elements. Several of these queries find
symbols, which are programmatic tokens sent to the compiler such as macro
names, functions, variables, and other source code elements. The following
general queries are available:

List Global
Symbols

Returns all global symbols found in the files
defined by the fileset and ignores any target text.
Global symbols are standard elements of code
including functions, macros, variables, classes,
and so forth.

List All Constants Returns all constants in the source code including
enums, named constants, and Fortran 77
parameters.

Where Symbol Used Expects a symbol name in the Query Target
field. Returns the source code locations of all
references to the symbol.

Where Defined? Expects a symbol name in the Query Target
field. Finds all symbols that match the target text
and returns the source code locations where those
symbols are defined.

Find String Expects a literal string in the Query Target
field. Returns source code locations of all strings
that match the target text. When you use this
query, you ask the Static Analyzer not to interpret
the target text as a regular expression, which
allows you to use regular expression special
characters as part of a literal text string.

40 007–2580–003

Static Analyzer: Queries [4]

Find Regular
Expression

Expects a general expression in the Query
Target field. Returns source code locations of all
strings that match the target text.

4.2.2 Macro Queries

The Macros submenu contains queries that deal with macros. The following
queries are available:

List All Macros Returns all macros found in files defined by the
fileset. Ignores any target text.

Where Defined? Expects a macro name in the Query Target
field. Finds all macros that match the target text
and returns the source code locations where the
macros are defined.

Where Undefined? Expects a macro name in the Query Target
field. Finds all macros that match the target text
and returns source code locations where the
macros are undefined (by using #undef).

Who Uses? Finds all locations where the macro entered in the
Query Target field is used.

List Unused Macros Lists macros defined but never used.

4.2.3 Variable Queries

The Variables submenu contains queries dealing with variables. In
performing a variable query, you typically list variables first and then select an
individual variable for further information. Figure 8 shows the results of the
List All Global Variables selection with the _lastCmd variable selected.
Notice that the variable list has five columns: Name, Function, File, Line,
and Source. These identify the variable, its function or the notation of
global, the file in which the variable is defined or declared, the line number at
which it is first defined or declared, and the actual source line.

007–2580–003 41

Developer MagicTM: Static Analyzer User’s Guide

a11598

Figure 8. List All Global Variables Results

From the list resulting from List All Global Variables, you can select
individual variables for specific queries. You do this by clicking the variable
name. Figure 9 shows the results of a Who References? query.

Current query

Query results

a11599

Figure 9. Who References? Results

42 007–2580–003

Static Analyzer: Queries [4]

The column headings in the Who References? results are the same as for
List All Global Variables. In this case, however, the Line and Source
fields refer to the line where the reference took place.

The Variables submenu offers the following types of queries:

List All Global
Variables

Returns all global variables found in files defined
by the fileset. Ignores any target text.

Where Defined? Finds the locations where the variable was
defined.

Who References? Expects a variable name in the Query Target
field. Finds all variables that match the target text
and returns all references to those variables.

Who Sets? Expects a variable name in the Query Target
field. Finds all variables that match the target text
and returns all source code locations where the
values of the variables are set.

Where Address
Taken

Finds all locations where the address of the
variable is taken.

List Unused
Variables

Lists all variables that have been defined or
declared but not otherwise used in the source
code.

Where Allocated Lists all locations where memory was allocated
for the selected variable.

Where Deallocated Lists all locations where memory was deallocated
for the selected variable.

4.2.4 Function Queries

The Functions submenu contains queries that deal with functions. It operates
in similar fashion to the variable queries; that is, you create a list of functions
and select individual functions for detailed queries. The following selections are
available:

List All Functions Returns all functions it finds implemented in the
fileset. Ignores any target text.

Where Defined? Returns all source code locations where those
functions are defined.

Where Function
Used

Returns all source code locations where the
function appears.

007–2580–003 43

Developer MagicTM: Static Analyzer User’s Guide

Who Calls? Returns all source code locations where the
function is called.

Who Is Called By? Returns names of all functions called by the
selected (or entered) function, including the line
number and source code where the call is made.

List Undefined Returns all functions called but not implemented
in the fileset (usually library functions).

List Unused
Function

Returns functions that were declared or defined
but not otherwise used in the source code.

List Local
Declarations

Returns all local variables and arguments in the
source code and the line and source code in
which the declaration is made.

4.2.5 Files Queries

The Files submenu contains queries that deal with files. The following
selections are available:

List All Files Returns all files included in the fileset as well as
any included files specified by files within the
fileset (such as header files). Ignores any target
text.

List All Header
Files

Returns all header (filename.h) files in the fileset.

List Matching
Files

Expects either a file name in the Query Target
field or no target text at all. If it finds target text,
it returns all file names that match the regular
expression. If it finds no target text, it returns the
same results as the List All Files query.

Who Includes? Expects a filename in the Query Target field or
a selected filename. Returns the names of all files
that include the files specified by the target text.

44 007–2580–003

Static Analyzer: Queries [4]

Who is Included
By?

Expects a file name in the Query Target field
or a selected file name. Returns the names of all
files that are included by the specified files.

4.2.6 Class Queries

The Classes submenu contains queries that deal with C++ classes. The
following queries are available:

List All Classes Returns all classes it finds in files defined by the
fileset. Ignores any target text.

Where Defined? Expects a class name in the Query Target field.
Finds all classes that match the target text and
returns the source code locations where those
classes are defined.

List Subclasses Expects a class name in the Query Target field.
Returns the immediate subclasses of the classes
matching the target text.

List Superclasses Expects a class name in the Query Target field.
Returns the immediate superclasses of the classes
that match the target text.

List Methods In
Class

Expects a class name in the Query Target field.
Returns those methods defined within the classes
that match the target text.

4.2.7 Method Queries

The Methods submenu contains queries that deal with C++ member functions,
also called methods. The following queries are available:

List All Methods Returns all methods in the fileset. Ignores any
target text.

Where Defined? Expects a method name in the Query Target
field. Finds all methods that match the target text
and returns all source code locations where those
methods are defined.

007–2580–003 45

Developer MagicTM: Static Analyzer User’s Guide

Where Declared? Expects a method in the Query Target field.
Returns source code locations of all class
declarations that include methods that match the
target text.

4.2.8 Common Blocks Queries

The Common Blocks submenu applies to Fortran source code only. The
following queries are available:

List All Common
Blocks

Lists all common blocks in the fileset.

List All Symbols
in Common Block

Lists all symbols used in common blocks in the
fileset.

Where Common Block
Defined

Expects a common block in the Query Target
field. Finds all common blocks that match the
target text and returns the source code locations
where the common blocks are defined.

Where Common Block
Referenced

Returns all source code locations where the
common block appears.

4.2.9 Types Queries

The Types submenu helps you get type information. The following queries are
available:

List All Types Returns all types used in the source code.

Where Type Defined Expects a type in the Query Target field. Finds
all types that match the target text and returns the
source code locations where the types are defined.

List Functions Of
Type

Returns all functions of the given type and the
source code locations where they are declared or
defined.

List Data Of Type Returns all data declarations and definitions
using the given type and the source code
locations where they are declared or defined.

46 007–2580–003

Static Analyzer: Queries [4]

Where Type Used Returns all source code locations where the type
and where functions and data items using the
type appear.

4.2.10 Directories Queries

The Directories submenu helps you determine the organization of the
current fileset. The following queries are available:

List Directories Lists all directories in the fileset.

List Files Lists all files in the fileset.

4.2.11 Packages Queries

The Packages submenu helps you get package information when you are
analyzing programs written in Ada. The following queries are available:

List All Packages Lists all packages in the fileset.

Which Package
Defined

Expects a package name in the Query Target
field. Finds all packages that match the target text
and returns all source code locations where those
packages are defined.

List Functions in
Package

Expects a package name in the Query Target
field and returns all functions declared in the
package spec and the body.

List Data in
Package

Expects a package name in the Query Target
field and returns data declared in the package
spec and body.

List Types in
Package

Expects a package name in the Query Target
field and returns all types declared in the package
spec and body.

Where Package
Withed

Expects a package name in the Query Target
field and returns all packages that with the given
package.

4.2.12 Tagged Types Queries

The Tagged Types submenu helps you get tagged type information when you
are analyzing programs written in Ada. The following queries are available:

007–2580–003 47

Developer MagicTM: Static Analyzer User’s Guide

List All Tagged
Types

Lists all tagged types in the fileset.

Where Tagged Type
Defined

Expects a tagged type name in the Query
Target field and returns all tagged types that
match the target text and returns all source code
locations where those tagged types are defined.

List Parent Tagged
Types

Lists parent types for the tagged type entered in
the Query Target field.

List Derived
Tagged Types

Lists derived types for the tagged type entered in
the Query Target field.

List Primitive
Operations

Lists primitive operations for the tagged type
entered in the Query Target field.

List Components Lists parent types for the tagged type entered in
the Query Target field.

Where Tagged Type
Used

Returns all declarations of functions and data of
this type as well as sites where other types derive
from this one or refer to it.

4.2.13 Task Types Queries

The Task Types submenu helps you get task type information when you are
analyzing programs written in Ada. The following queries are available:

List All Task
Types

Lists all task types in the fileset.

Where Task Type
Defined

Expects a task type name in the Query Target
field and returns all task types that match the
target text and returns all source code locations
where those task types are defined.

List Entries Lists all entries for the given task type.

List Body Data Lists data local to the body for the given task
type.

List Body
Functions

Lists all nonentry functions local to the task body.

List Body Types Lists all declared types that are local to the task
body.

48 007–2580–003

Static Analyzer: Queries [4]

Where Task Type
Used

Lists all tasks of this type, as well as other types
that derive from this type or refer to it.

4.3 Viewing Source Code

When the Static Analyzer returns query results, you can look at each element’s
source code. To do this, double-click an element in the query results area, or
single-click an element and then choose Edit from the Admin menu. Either of
these actions opens up the Source View window.

The Source View window opens the file containing the element and
highlights the source line. Although this window is set by default to be read
only, you can edit text if you wish. If you have a configuration management
tool installed, you can use the Versioning selection from the File menu to
check out the file for editing.

4.3.1 Changing Text Editors

If you prefer to view source code in a text editor window, choose General
Options from the Admin menu to open the General Options dialog box,
which offers the Use Source View selection. Turn this option off to select vi
as your text editor for source code. To set a different alternate text editor, add
the following line to your .Xdefaults file, where editor is the command for
the editor you want to use:

*editorCommand: editor

The next time you use the Static Analyzer with the Source View option
turned off, the editor you specified will appear when you view source code.

4.4 Repeating Queries

The Static Analyzer retains a list of your 15 most recent queries and presents
them in the History menu. You can choose any of the queries listed in this
menu to repeat the query. The Static Analyzer remembers the query type and
the target text it used; it does not remember any view settings, such as the view
type, view options, or Scope Manager settings. If you change view settings and
then choose a query from the History menu to repeat the query, the Static
Analyzer will return the same query results but will display them differently.

007–2580–003 49

Developer MagicTM: Static Analyzer User’s Guide

4.5 Saving Query Results

You can save query results by choosing Save Query from the Admin menu to
open the Save Query File Browser window shown in Figure 10.

File list

Path navigation bar

Drop pocket

Text entry field

a11600

Figure 10. The Save Query File Browser Window

To save query results, move to the directory in which you want to make the
save. To specify a directory, you can use the path navigation bar, enter a path in
the text field, or drag a folder into the drop pocket. Then click the OK button to
save the query results and close the Save Query File Browser window.

The Static Analyzer saves the contents of the query results area to the file you
named in the Browser. If you are in Text View, the Static Analyzer saves the
results in text format. If you are looking at a graphical view, the graph is saved
in PostScript format. The Static Analyzer adds a heading to the text that lists
the query type and the target text that specified the query. It also includes field

50 007–2580–003

Static Analyzer: Queries [4]

headings that match those at the top of the query results area in the main
window.

007–2580–003 51

Static Analyzer: Views [5]

This chapter discusses the different views available to display your query
results. The Static Analyzer Views menu contains the following selections:
Text View, Call Tree View, Class Tree View, File Dependency
View. The Results Filter selection can be accessed from the Static
Analyzer Admin menu. This chapter covers the following topics:

• Text View, Section 5.1, page 53

• Call Tree View, Section 5.2, page 55

• Class Tree View, Section 5.3, page 62

• File Dependency View, Section 5.4, page 63

• Results Filter, Section 5.5, page 64

5.1 Text View

Text View is the Static Analyzer’s default display for query results. Because this
view is limited to text, it displays query results faster than any of the tree views.

Text View provides labels at the top of the query results area (as shown in
Figure 11) that identify the query type, show the extent of Results Filter
reductions (called the Scoping field), and label the columns in the query
results area. Below the labels, the Static Analyzer lists the elements returned by
a query, one element per line.

007–2580–003 53

Developer MagicTM: Static Analyzer User’s Guide

Scoping field

Type of query

Column labels

a11601

Figure 11. Sample Text View

Text View’s arrangement of information within each element line depends on
the query type. The left field always lists the type of element for which you
have searched. Fields to its right show the location of that element and, if
applicable, the content of the source code line where the element is located. For
example, Text View shows the results of a function query with the function
name in the first field, the file name where the function is located in the second
field, the line number of the source code line where the function is defined in
the next field, and the text of the line in the last field. For class queries, Text
View shows any superclasses of returned classes, and for method queries, it
shows the class where each method is defined.

Use the horizontal and vertical scroll bars to scroll left and right to see the full
contents of long lines or up and down to work through long lists of elements
respectively. To see more information at one time, you can enlarge the Static
Analyzer window by dragging a corner.

To see the source code listing where an element occurs, double-click any
element line to open the Source View window. It displays the selected
element in the middle of the window, surrounded by adjacent code.

54 007–2580–003

Static Analyzer: Views [5]

5.1.1 Viewing Full Pathnames for Files

Text View normally shows filenames in the query results area as short base
names. If you want to see the directory as well as the file name (or at least as
full a pathname as the Static Analyzer can find), use the Full Pathnames
option from the General Options selection of the Admin menu.

5.1.2 Sorting Elements in Text View

The Static Analyzer normally presents elements in the order in which they
appear within each file of the fileset. To sort the elements in alphanumerical
order by a single field, click the field you want within any element line, then
choose Sort from the Admin menu. The Static Analyzer sorts the elements in
ascending order by that field.

5.2 Call Tree View

Call Tree View is designed to display functions and the static calls between
them in a graphic tree form. Because it is intended for functions, it shows
results only for function queries, not for other types of queries such as file and
class queries. A line of text above the query results area identifies the last type
of query made and shows the extent of Scope Manager reductions.

To use Call Tree View (shown in Figure 12), choose Call Tree View from the
Views menu. It presents each function in the query results area as a node (a
small movable box labeled with the function name) and each function call as an
arc (an arrow drawn from the calling function to the called function). Because
function relationships are presented in a tree structure, higher-level functions
normally appear on the left side of the window. They call lower-level functions
located farther to the right.

007–2580–003 55

Developer MagicTM: Static Analyzer User’s Guide

Node

Arc

a11602

Figure 12. Call Tree View Displaying Functions and Function Calls

5.2.1 The Static Analyzer Control Panel

The Static Analyzer view control panel (shown in Figure 13) below the
query results area offers a set of controls you can use to change the view. They
help you see query results in the format most useful to you.

56 007–2580–003

Static Analyzer: Views [5]

Zoom menu

Zoom out button

Zoom in button

Overview button

Multiple arcs button

Realign button

Rotate button

View Options menu
a11603

Figure 13. The View Control Panel

To change the scale of the call tree in the query results area to see more or less
of the tree at one time, use the zoom controls: the Zoom menu and the Zoom
In and Zoom Out buttons. If the tree you are viewing does not fit within the
boundaries of the query results area, you can view other parts of the tree by
using the scroll bars or clicking the Overview button and navigating in the
Overview window. By default, Call Tree View shows only a single arc between
two functions, even if the calling function calls more than once. To see multiple
calls between functions in the call tree, click the Multiple Arcs button. After
maneuvering nodes, you can return them to their default positions by clicking
the Realign button.

The Static Analyzer’s default tree orientation is horizontal; the tree grows from
left to right. To see vertical tree orientation, that is, top-down (or to toggle back
to horizontal), click the Rotate button.

The Call Tree View allows you to directly manipulate nodes and arcs in the
query results area. You can hide, reveal, and rearrange nodes, and you can
select a node or an arc to view either a function or a function call in the
Source View window.

For more information on the graph controls and node/arc manipulation, see
Appendix A in the Developer Magic: ProDev WorkShop Overview.

007–2580–003 57

Developer MagicTM: Static Analyzer User’s Guide

5.2.2 Setting View Options

The View Options menu (at the lower right of the window) has four view
selections that change the number of nodes you see in the query results area
and change the way query results are cleared between queries. To open the
menu, move the pointer over it and hold the left mouse button down. Drag up
or down to the selection you want, then release the button. The following
selections are availabe:

Query Only Shows only the target and results of each query
in the query results area. Each time you make a
new query, the results of the old query are
cleared before the new results appear. This is the
default selection.

Incremental Mode Leaves results of the previous query in the query
results area and adds the results of the latest
query to the nodes and arcs already on the
screen, so you can incrementally build a tree as
you follow function calls.

Shows the target and the results of the last query
in target-and-result colors. All other nodes are
shown in a different color so that you can see
which nodes were returned by the query and
which nodes were there before the query.

All Defined Shows at all times a complete tree of all functions
defined (that is, implemented) within the fileset.
When you make a function query, it shows the
query target-and-result nodes in target and result
colors. All other nodes appear in the nonquery
color, so that the query results stand out as a
subtree within the overall function tree.

Complete Tree Shows a complete tree at all times of all functions
known within the fileset, regardless of whether
they are defined. The display includes all the
defined functions shown in All Defined
display mode and adds any functions called but
not defined. Because these include calls to
external libraries, even a small program can
generate a very large tree. The Complete Tree
selection, like the All Defined selection, shows
the results of any queries you make by

58 007–2580–003

Static Analyzer: Views [5]

highlighting in target-and-result colors, leaving
all other nodes in nonquery colors.

!
Caution: The Complete Tree selection can easily create unmanageably
large trees for even small programs, so use it with care.

5.2.3 Viewing Function Definitions and Calls in Source View

To view a function definition in Call Tree View, either select the function’s node
and choose Edit Selected Item from the Admin menu, or double-click the
function’s node. The Source View window opens with the beginning of the
function definition highlighted amid surrounding code.

Call Tree View offers a Source View function not available in Text View. With
Call Tree View you can view a function call by double-clicking an arc that
connects two functions. The Source View window shows the line of code
(listed within the calling function) that calls the called function. You also can
get the same results by selecting an arc and then choosing Edit Selected
Item from the Admin menu.

5.2.4 Tutorial: Working in Call Tree View

This tutorial traces function calls in Call Tree View using the Incremental
Mode and All Defined viewing options. It first goes from higher- to
lower-level functions using queries, and then returns to higher-level functions
by showing parent nodes by using the Node menu.

Note: To compile the jello demo (from WorkShop.sw.demos), the
gl_dev.sw.gldev subsystem must be installed.

1. Move to the demo directory jello by entering the following command:

cd /usr/demos/WorkShop/jello

2. Enter the following command to make sure that no fileset and
cross-reference files exist in the directory, so that the Static Analyzer will
create its own standard default files:

rm cvstatic.*

3. Start the Static Analyzer by entering the following command:

cvstatic &

007–2580–003 59

Developer MagicTM: Static Analyzer User’s Guide

4. Select Edit Fileset from the Admin menu and move the jello.c file
into the Scanner Fileset field by using the Move Files Scanner
button. Click OK.

This creates the fileset for this tutorial.

5. Choose Call Tree View from the Views menu to put the Static Analyzer
in Call Tree View.

6. Choose Incremental Mode from the View Options menu on the
bottom right side of the control panel to turn on the Incremental Mode
view option.

7. Move the pointer into the Query Target field and type main.

8. Choose Who Is Called By from the Functions submenu of the Query
menu to find the functions that main() calls.

The Static Analyzer displays a node named main on the left side of the
query results area, which displays in the target color for this scheme. It is
connected by arcs to a set of lower-order function nodes to the right, all in
the result color.

9. Drag the vertical scroll bar of the query results area down until you see the
draw_everything node, then click on it to select it.

The draw_everything node appears in the Query Target field.

10. Move the pointer into the Query Target field, then press Enter.

The Static Analyzer repeats its last query using the new target and returns
draw_everything nodes to its right. The nodes from the previous query,
main and its other children, still appear in the query results area in a
nonquery color.

11. Select the result node draw_jello by moving the pointer into the Query
Target field and pressing Enter to search for all functions called by
draw_jello().

The Static Analyzer returns draw_jello as a target node with result nodes
to its right as shown in Figure 14. The nodes from the two previous queries
are still in the query results area.

60 007–2580–003

Static Analyzer: Views [5]

Activity history

Current target

a11604

Figure 14. Incremental Mode Example

12. Choose 15% from the Zoom menu to set scaling to 15%.

The call tree reduces in size so that you can see all of the full call tree,
although the function names are too small to be readable.

13. Hold down the right mouse button over any node in the tree.

The corresponding Node menu displays, and the name of the function
appears at the top of the menu. By using this method, you can see a large
part of a tree and orient yourself by displaying the node menus (see Figure
15).

007–2580–003 61

Developer MagicTM: Static Analyzer User’s Guide

Pointer over
selected node

Node menu with
function name

a11605

Figure 15. Displaying Node Information at Reduced Scale

14. Click a node towards the top of the call tree and choose 100% from the
Zoom menu.

This returns you to viewing at 100% and demonstrates one technique for
navigating around a large call tree.

5.3 Class Tree View

Class Tree View, which you set by choosing Class Tree View from the
Views menu, displays a class inheritance tree containing the classes found in
C++ files in the fileset. It is not intended for nonclass elements, and it will not
show the results of function, file, and method queries.

62 007–2580–003

Static Analyzer: Views [5]

Class Tree View looks almost identical to Call Tree View. It includes a line of
text above the query results area that lists the last query and the extent of
Results Filter reductions. It shows elements in the query results area using
nodes and arcs and offers a control panel to change the view in the query
results area. The main difference is that each node in Class Tree View represents
a class instead of a function, and each arc shows inheritance instead of a
function call. Class trees in horizontal orientation move from superclasses on
the left to subclasses on the right.

When you make class queries in Class Tree View, the Static Analyzer uses colors
in the same way that it does in Call Tree View. A target color indicates target
nodes, a results color indicates result nodes, and a nonquery color indicates
nodes not returned by the last query. The view controls also work the same
way, with one minor variation. The Multiple Arcs button has no effect
because no multiple inheritances exist in a class tree.

The selections in the Node and the Selected Node menus work the same
way they do in Call Tree View, working through parents and children of
existing nodes, but they follow class inheritance instead of a chain of function
calls. Using the Source View window in Class Tree View has one minor
difference. You can double-click a node to view source code for a class, but you
cannot double-click an arc to see an inheritance.

5.4 File Dependency View

File Dependency View, which you set by choosing File Dependency View
from the Views menu, displays the include relationships between files in the
fileset. File Dependency View is similar to Class Tree View and offers the same
controls, colors, and menus. The main difference is that each node in this view
represents a file in the fileset instead of a function, and each arc shows the
inclusion of one file by another. An arc leads from the including file to the
included file.

Although File Dependency View displays only files, it can provide useful
information when used in conjunction with other types of queries. For example,
if File Dependency View is displayed and you select Where Used from the
Function submenu, those files containing the specified function will be
highlighted.

File Dependency View is particularly useful when you are analyzing Ada
source files; it shows you the dependency between packages. If you
double-click arcs in this view, you can see from where packages are imported
and also definitions of where packages are brought in.

007–2580–003 63

Developer MagicTM: Static Analyzer User’s Guide

An include tree in horizontal orientation places including files on the left and
included files on the right. If you use selections from the Node and Selected
Node menus to work through parents and children of existing nodes, you
follow include relationships. A child of a node is a file included by that node; a
parent of the node is a file that includes that node.

5.5 The Results Filter

The Results Filter is a tool that works in all of the Static Analyzer’s views.

The Results Filter filters the view to show you a subset of all results returned by
a query. The Results Filter filters only the view of query results, not the results
themselves. For example, if a function query returns 18 functions and the
Results Filter is set to filter out 5 of them, the query results area shows only 13
functions. The Static Analyzer, however, retains all 18 functions returned by the
query; it simply hides the 5 functions filtered by the Results Filter. If you turn
off all filters in the Results Filter, you will see all 18 functions in the query
results area.

When the Results Filter is set to filter, its filters remain turned on to affect the
view of any future queries you make. For example, if the Results Filter is set to
filter out all elements contained in header files, it does so for all queries that
follow. It removes variables found in header files from a List All Global
Variables query, and it removes header files from a List All Files query.
You must turn off the filters if you want to see the full results of a query.

The Scoping line, located just above the right corner of the query results area,
tells the extent of any filtering performed by the Results Filter. It lists two
numbers separated by a colon; the first number is the number of elements
returned after filtering and the second is the full number of elements returned
by the query. For example, the following sample scoping line tells you that 154
elements were returned by the current query, and after filtering, the Results
Filter shows 78 of them in the query results area.

Scoping: 78:154

5.5.1 Setting Results Filters

To open the Results Filter window shown in Figure 16, choose Results
Filter from the Admin menu.

64 007–2580–003

Static Analyzer: Views [5]

a11606

Figure 16. The Results Filter Window

The Results Filter has seven different scope filters. The first five filters provide
fields in which you can enter regular expressions that allow you to specify a
literal string of characters or a wild-card expression that matches a set of
strings. The last two filters require specific files and functions.

Note: Regular expressions accepted by the Results Filter are the same as those
supported by the ed(1) command. Refer to the ed(1) man page for details.

The following filters are available:

Name Filters by the Name field in Text View. The Name
field can list variables for a variable query, target
functions for a function query, or other parts of
elements, depending on the query type.

Function Filters by the Function field in Text View. This
field can list functions called by a target function,

007–2580–003 65

Developer MagicTM: Static Analyzer User’s Guide

functions that define local variables, and other
types of functions, depending on the query type.

File Filters by the File field in Text View. This field
can exclude elements contained in specified files
or show only elements contained in specified files.

Directory Filters by the Directory field in Text View. This
field can exclude elements contained in specified
directories or show only elements contained in
specified directories.

Source Filters by the Source field in Text View. This
field can exclude or constrain elements according
to strings contained in lines of source code.

Headers Filters according to whether elements are
contained in a header file.

External Functions Filters according to whether elements are
contained in externally defined functions.

Although the first five scope filters work using fields in Text View, their results
are the same in tree views such as Call Tree View. They sort by invisible criteria
in these views. For example, you can sort with the Source scope filter in Call
Tree View, even though Call Tree View does not show the Source field for each
function it displays.

5.5.2 Filtering by Name, Function, File, Directory, and Source

To filter using the first five scope filters, enter a regular expression in the
appropriate text area, and then click on either the Constrain or Exclude
button following the text area. Constrain filters elements so that only those
that match the regular expression in the appropriate field are displayed in the
query results area. Exclude filters elements so that elements that match the
regular expression in the appropriate field are not displayed in the query
results. For example, if you enter jello.c in the File scope filter and click
the Constrain button, the Static Analyzer displays only elements found in the
file jello.c.

To turn off filtering by any one of these five filters, delete all text from its text
area.

66 007–2580–003

Static Analyzer: Views [5]

5.5.3 Filtering by Header Files and External Functions

The Headers scope filter allows the following options:

Include Displays elements found in header files in
addition to elements found in other files.

Constrain Displays only elements found in header files.

Exclude Displays only elements not found in header files.

The External Functions scope filter also has three options:

Include Displays elements found in externally defined
functions (functions defined in files outside of the
fileset) in addition to elements found in internally
defined files.

Constrain Displays only elements found in externally
defined functions.

Exclude Displays only elements not found in externally
defined functions.

To turn off filtering by using either of these two filters, click their Include
button.

5.5.4 Combining Results Filters

You can use results filters singly or in combination to limit the elements you see
to a very specific subset of the query results. For example, you can set the File
filter to show only elements found in the file jello.c. You can then further
refine the filtering by setting the Function filter to show only elements found in
the function draw_everything(). The Static Analyzer combines these two
filters to show only elements found in the function draw_everything(),
which is contained in the file jello.c.

5.5.5 Using the Results Filter Buttons

The Results Filter window displays the following buttons along the
bottom of the window:

Apply Applies current scope settings to the query results
area to filter out elements. The Static Analyzer
automatically applies scope settings whenever
you click the Include, Exclude, or Constrain

007–2580–003 67

Developer MagicTM: Static Analyzer User’s Guide

button, so you do not usually need to click the
Apply button.

Clear Clears text from all text fields and returns the
bottom two filters to the Include setting. Click
on Clear whenever you want to turn off filtering
by the Results Filter.

Close Closes the Results Filter window.

Help Opens the Help window, where you can find
information about the Results Filter window.

5.5.6 Tutorial: Using the Results Filter

This tutorial uses the Results Filter to see, in Text View, selected methods in a
fileset of C++ files. It first filters the methods by file and then filters them
further by a string found within each method’s source code line.

1. Move to the demo directory bounce by entering the following command:

cd /usr/demos/WorkShop/bounce

2. Enter the following to make sure that no fileset and cross-reference files
exist in the directory so that the Static Analyzer will create its own standard
default files:

rm cvstatic.*

3. Start the Static Analyzer by entering the following command:

cvstatic &

4. Use the Fileset Editor to create a fileset for bounce. If you need help, refer
to Section 1.2, page 3

5. Choose List All Methods from the Methods submenu of the Queries
menu.

The Static Analyzer displays all methods found in the fileset. It uses Text
View. The Scoping field reads 196:196, which means that all 196
elements returned by the query are displayed in the query results area.
Your version of bounce may be slightly different.

6. Choose Results Filter from the Admin menu to open the Results
Filter window. When it appears, drag it from on top of the Static
Analyzer window so that you can see the query results area.

68 007–2580–003

Static Analyzer: Views [5]

7. Move the pointer to the File field in the Results Filter window, type
Application.h, and click the Apply button.

The Static Analyzer shows only the methods found in the file
Application.h. The Scoping field shows 16:196, which means that
you see only 16 elements of the 196 returned by the current query.

8. Move the pointer to the Source field, type virtual, and click the Apply
button.

The Static Analyzer further filters the view as shown in Figure 17, page 70,
showing only the methods found in the file Application.h that include
the string virtual in their source code line. The Scoping field shows
5:196.

9. Click the Clear button.

The Static Analyzer clears all text fields and turns off all Results Filter
filtering. All elements of the recent query return to the query results area,
and the Scoping field shows 196:196.

10. Click the Close button to close the Results Filter window.

007–2580–003 69

Developer MagicTM: Static Analyzer User’s Guide

a11607

Figure 17. The Results Filter Query Results

70 007–2580–003

Static Analyzer: Working on Large
Programming Projects [6]

The Static Analyzer works on uncompilable code, analyzes filesets containing
files from completely different programs, and presents query results in a
graphic form that is easy to browse. This flexibility can bring unproductive
results, however, if you use the Static Analyzer carelessly on hundreds of
thousands (or millions) of lines of code that are typical of a large programming
project. To be effective, you must narrow your analysis to a meaningful portion
of your project, or you may end up with results so extensive that they have
little meaning.

This chapter recommends techniques to help you get the best results when
using the Static Analyzer for large programming projects. It covers the
following topics:

• Creating a Fileset Using a Shell Script, Section 6.1

• Customizing the Fileset for Individual Code Modules, Section 6.2, page 72

• Using the Results Filter to Focus Queries, Section 6.3, page 73

• Applying Group Analysis Techniques, Section 6.4, page 73

6.1 Creating a Fileset Using a Shell Script

Creating a fileset for a large programming project can be difficult to do by hand
because the source code files may be scattered throughout many different
directories. If so, you can use a shell script to create a fileset for you.

6.1.1 A Fileset Shell Script

The following lines of code show a shell script that searches through a list of
directories for file names with extensions that indicate source code files:

rm -f cvstatic.fileset

DIRS="/usr/local/src /usr/src "
EXTENSIONS="*.c++ *.c *.f"

for DIR in $DIRS

for EXT in $EXTENSIONS

do

007–2580–003 71

Developer MagicTM: Static Analyzer User’s Guide

find ${DIRS} -name "$EXT" -print >> cvstatic.fileset

done
done

The first line removes the old fileset. The DIRS second line sets the search
pattern and assigns a list of directories you want searched. Put the pathname of
any directory you want searched in between the quotes following DIRS, and
put a space between pathnames.

The third line creates a list of the file extensions for which you want to search.
Use shell metacharacters to create list entries. In this example, the script looks
for any filenames that end in .c++, .c, or .f. To create an extension list that
looks for different extensions, use shell metacharacters to spell out the
extensions you want, and put the entries between the two quotes following
EXTENSIONS. Be sure to put a space between each entry.

The six-line nested loop at the end of the script looks through each directory in
the DIRS search path and returns any files that match the list of file extensions
in EXTENSIONS. Be sure to put a space between each entry.. It puts the names
of all returned files into the file cvstatic.fileset in a form that the Static
Analyzer reads as a fileset.

Once you create a fileset with a shell script, you should look at the fileset before
you make any queries. If you find libraries included in the fileset, you may
want to remove them so that you don’t have to analyze the internal workings
of each library function. You may also want to remove all files that do not
apply to your specific area of the project.

6.2 Customizing the Fileset for Individual Code Modules

Most programming projects are organized so that the source code is organized
in modules, with individual programmers taking responsibility for different sets
of modules. The Static Analyzer allows you to analyze each module separately,
even if the module will not compile without other parts of the system. You can
see your own code in detail and see calls into other modules without having to
view the contents of those modules. You also reduce the size of the
cross-reference database with which you work, which speeds up the time the
Static Analyzer takes to refresh the database and to complete queries of the
database.

72 007–2580–003

Static Analyzer: Working on Large Programming Projects [6]

6.3 Using the Results Filter to Focus Queries

Once you create a reduced fileset, you can further improve the efficiency of
your analysis by setting the Static Analyzer’s Results Filter. The Results Filter’s
Headers and External Functions settings are particularly useful for large
programming projects.

If you set Headers to Exclude, you prevent the Static Analyzer from taking
time to display query results that come from header files. And, if you set
External Functions to Exclude, you ensure that the Static Analyzer does
not display query results from libraries and other nonfileset files.

For example, consider the function foo(), which calls bar(), a function in the
fileset. It also calls XtCreateWidget(), a library function that is not in the
fileset. If you set External Functions to Exclude and then make the query
Who Is Called By foo?, the Static Analyzer will display only bar().

Although the Results Filter does not reduce the time the Static Analyzer takes to
make a query, it does reduce the time it takes to display the results, a substantial
gain if you are using a tree view to display the results of comprehensive queries.

6.4 Applying Group Analysis Techniques

Although it is good practice for individual programmers to limit the amount of
source code they analyze with the Static Analyzer to just the modules for which
they are responsible, sometimes it is necessary to analyze all files in a
programming project. For example, library programmers may want to know
every function that calls a specific library function. That way, they know what
software is affected by changes they make to the library function.

For this and similar cases, you should create a comprehensive cross-reference
database on a project workstation as shown in Figure 18. This arrangement
allows users on personal workstations to query the extensive project database
without actually creating the database.

007–2580–003 73

Developer MagicTM: Static Analyzer User’s Guide

Project workstation

Static Analyzer

Project fileset and
cross-reference

database

Personal workstation

Static Analyzer

Personal fileset and
cross-reference

database

Personal workstation

Static Analyzer

Personal fileset and
cross-reference

database

NFS mount

a11608

Figure 18. A Project Cross-Reference Database

6.4.1 Setting Up a Project Database

To create a project cross-reference database, you first need a comprehensive
fileset for the programming project. To maintain consistency, the programmer in
charge of checking in files for builds should make and maintain the fileset. If
the source tree uses a consistent set of directories, the build programmer can
use a shell script like the example earlier in this chapter to update the fileset
automatically.

Once the fileset is up to date, the build programmer creates a cross-reference
database. Because it can take a long time to create a cross-reference database for
a large programming project, you can save time by using the -batch
command-line option when you start the Static Analyzer. This option runs the

74 007–2580–003

Static Analyzer: Working on Large Programming Projects [6]

Static Analyzer in the background, keeps the Static Analyzer window from
opening, and reduces the time necessary to create a cross-reference database.

It may be useful to run the Static Analyzer in batch mode on the server once a
night. This provides a fresh database for programmers who wish to query it
from their own workstations. To protect the shared database from automatic
modification by outside users, be sure that read and write permissions for all
four Static Analyzer files on the server (cvstatic.fileset,
cvstatic.xref, cvstatic.index, and dcvstatic.posting) deny write
access to outside users.

6.4.2 Querying a Project Database

To query a project database from a personal workstation, you must first mount
the project database in a local directory using the Network File System (NFS).
You then start the Static Analyzer using command line options to specify the
project fileset and to set the Static Analyzer to read only so that it will not try to
modify the project database. For example, the following command starts the
Static Analyzer, sets it to read-only, and directs it to the project fileset, which is
NFS-mounted in the directory /project:

cvstatic -readonly -fileset /project/cvstatic.fileset

The -readonly command line option sets the Static Analyzer so that it will
not try to rebuild the project database. The -fileset command line option
sets the fileset to cvstatic.fileset, which is NFS-mounted in the directory
/project.

When you make queries on a large project database, use caution and common
sense. Comprehensive queries such as List All Functions will not yield
useful results as too much code is displayed at one time. Comprehensive
queries like this may also take a good deal of time to complete. It is more
productive to take a task-oriented approach when querying. Ask what you
really need to know in the project, then make the most specific query that
answers your questions. For example, if you get a bug report on a function,
you might use specific queries such as Where Defined, Who Calls, or Who
Is Called By to get the information you need about that function.

6.4.3 Viewing Suggestions

If you need to make comprehensive queries on a large database, consider the
following viewing tips:

007–2580–003 75

Developer MagicTM: Static Analyzer User’s Guide

• Use Text View for your queries. Because Text View does not require the
Static Analyzer to build a tree containing thousands of elements, it is much
faster at displaying the results of a comprehensive query than any of the
tree views.

Although Text View does not show connections between calling and called
functions in the query results area, you can easily follow a chain of
functions. First, click the function name you want. Then press Alt-B to see
which functions it calls or press Alt-C to see which functions call it.

• Because the tree views show relationships between query elements more
clearly than Text View, you may want to use tree views to display the results
of some queries. If so, you can reduce the time the Static Analyzer needs to
display tree view results by observing a few limitations.

Use the Query Only and the Incremental Mode viewing options to
restrict the number of elements displayed for a query.

In Incremental Mode, you can build a tree from scratch by making very
specific queries that identify and follow only the branch of the tree in which
you are interested. For example, you may want to follow a chain of function
calls starting with main(). If so, start with the query Who Is Called By
main?. Find a function among those called that you want to follow, then
query the Static Analyzer for the functions called by that function. As you
continue through the call chain, the Static Analyzer displays only the branch
of the call tree that applies, not the entire tree.

• You should also consider viewing query results in a tree view that offers
coarser resolution than you normally use. For example, File Dependency
View displays file elements, each of which may contain many functions.
This is a much coarser view of the database than that offered by Call Tree
View, which displays functions individually in function elements. If you
make a query such as Who Calls while in File Dependency View, the Static
Analyzer shows you each file that contains called functions. You can then
open the Source View window for one of those files; it highlights each
called function in its display area. The same query in Call Tree View would
show you each called function in tree form, but would probably require
many more elements to show query results and would take much longer to
return results.

76 007–2580–003

Getting Started with the Browser [7]

This chapter is designed to introduce you to the Browser, a facility accessed
from the Static Analyzer that shows specific C++ and Ada relationships. This
chapter describes what you need to run the Browser, shows you how to start it,
and presents a brief overview of its main window and menus. To see examples
of using the Browser, see Chapter 8, page 83, and Chapter 9, page 99.

This chapter contains the following sections:

• Starting Browser View, Section 7.1, page 77

• General Characteristics of the Browser, Section 7.2, page 78

7.1 Starting Browser View

After you have created a fileset and built a static analysis database, you are
ready to make object-oriented queries using the Browser. To access the Browser,
open the Admin menu in the Static Analyzer and select Browser. The Browser
View and the Browsing Choices windows appear as shown in Figure 19.

007–2580–003 77

Developer MagicTM: Static Analyzer User’s Guide

a11609

Figure 19. Browsing Windows

The Browsing Choices window lets you select an item from the fileset to be
displayed in the Browser View window — either a class if you are using C++;
or a package, task, or tagged type, if you are using Ada. The Browser View
window then displays detailed information on the item.

7.2 General Characteristics of the Browser

The Browser View window shows you the internal structure and relations of
the item you have selected in a textual, outline format. You can also select
components of the item and perform queries on them. The results of queries are
highlighted in Browser View and can also be displayed in the Static Analyzer.
Browser View can display the contents of C++ and Ada entities. This section
describes the features of the Browser common to both languages. For the
language-specific characteristics, see Chapter 8, page 83 (for a C++ sample
session), and Chapter 9, page 99 (for an Ada sample session).

78 007–2580–003

Getting Started with the Browser [7]

Browser features that are common to both the C++ and Ada versions are shown
in Figure 20.

Query display area

Toggle for displaying results
in the Static Analyzer

Member list area Relations list area
a11610

Figure 20. Browser View Features

7.2.1 Browser View Outline Lists

The Browser displays its data in outline lists in two side-by-side panes in the
Browser View window. The lists are in a hierarchical, expandable outline
format organized by category. The left pane displays an individual entity and
its internals and the right pane displays other items to which that entity is
related. When you are looking at C++ code, Browser View displays
individual classes and their members in the left pane, and related classes and
members in the right pane. The Ada version displays individual packages and
their components on the left, and related packages and components on the right.

007–2580–003 79

Developer MagicTM: Static Analyzer User’s Guide

7.2.2 Outline Icons

An outline icon is a diamond-shaped, concave icon. It appears to the left of
component categories in the lists displayed in the Browser. An outline icon is
used to expand or collapse a category. The icon contains an arrow pointing
downward if the category is expanded (all items displayed) or to the right if the
category is collapsed (all items hidden). Clicking the arrow switches back and
forth between collapsing and expanding the category. A right-pointing outline
icon that appears filled indicates that one or more of the hidden items satisfy
the current query. Figure 21 illustrates these conditions.

Collapsed list with
no query matches

Expanded list

Collapsed list with
query matches

a11611

Figure 21. Outline Icon Examples

7.2.3 Browser View Menus

The Browser View window provides the following menus:

• Admin menu—for general housekeeping.

• Views menu—for displaying relationships in a graphical format. You can
request four variations of class graphs based on these relationships:

– Inheritance, which describes the relationship of parent classes to derived
classes (C++) and parent tagged types to derived tagged types (Ada)

80 007–2580–003

Getting Started with the Browser [7]

– Containment, which describes the relationship of container classes to the
classes they contain

– Interaction, which describes the relationship of classes using methods of
other classes

– Friends, which describes the relationship of classes declaring other classes
as friends

You can also request a call graph to view the relationships of selected
methods or functions.

• History menu—for going back to a previous Browser activity.

• Queries menu—for performing queries on the current item. (You can also
perform queries on a selected element in either pane by holding down the
right mouse button. These popup queries menus have different selections
depending on the type of element.)

• Preference menu—for changing the appearance of the display and the
behavior enacted by double-clicking with the mouse.

7.2.4 Other Browser Window Features

The Current Subject field displays the name of the item you have selected.
Its label indicates the kind of item being displayed. Note that the Current
Subject field provides a form of file completion; if you enter the partial name
of an item and then press the space bar, the name will be completed up to the
point that a unique string can be found.

The Show in Static Analyzer toggle lets you display the results of any
queries in the Static Analyzer window. The Static Analyzer shows more detail,
including source information, than the Browser View does.

The Last Query button lets you display the result of the previous query to the
Static Analyzer.

The Browser has annotated scroll bars. This means that when you perform a
query, tick marks will appear in the scroll bars (if there are any) to indicate
matching elements.

007–2580–003 81

Using the Browser for C++: A Tutorial [8]

This tutorial demonstrates the main features in the Browser. It outlines common
tasks you can perform with the Browser, using sample C++ source code to
illustrate the use of each function.

8.1 Sample C++ Session

The demonstration directory, /usr/demos/WorkShop/bounce, contains the
complete source code for the C++ sample application bounce. To prepare for
the session, you must create the fileset and static analysis database, then launch
the browser from the Static Analyzer.

Procedure 1: Preparing for the sample session

Prepare for the session by following these steps:

1. Open a shell window and change to the /usr/demos/WorkShop/bounce
directory.

2. Start the Static Analyzer by entering cvstatic &

The Static Analyzer window opens.

3. Select Browser from the Static Analyzer Admin menu.

This starts the Browser if a parser mode static analysis database has already
been built. If none is available, an error message appears, and you must
specify a parser mode fileset as shown in Figure 22. Then you need to
select Browser from the Admin menu again. This causes a new database to
be built using parser mode and takes several minutes to complete.

4. Select Browser from the Static Analyzer Admin menu.

This starts the Browser if a parser mode static analysis database has already
been built. If none is available, an error message appears, and you must
specify a parser mode fileset as shown in Figure 22. Then you need to
select Browser from the Admin menu again. This causes a new database to
be built using parser mode and takes several minutes to complete.

007–2580–003 83

Developer MagicTM: Static Analyzer User’s Guide

1. Click the C++ button to select
all C++ files in the directory.

2. Click the Move Files Parser button
to indicate they are to be parsed.

3. Click OK to complete the
specification.

a11612

Figure 22. Steps in Specifying a Parser Fileset (C++)

The Browsing Choices chooser window opens at the same time as the
Browser View window so that you can select the first class. The
Browsing Choices chooser window contains the complete list of C++
classes included in the current fileset. Locate the Actor class in the chooser
window. See Figure 23.

84 007–2580–003

Using the Browser for C++: A Tutorial [8]

Actor class

a11613

Figure 23. Initial Display with Item Selected

Procedure 2: Understanding the Browser View Window

1. Double-click the Actor class in the chooser window. The Browsing
Choices window closes, and the data for Actor now appears in the
Browser View window. The class name Actor is displayed in the
Current Subject text field. Information about the class appears in the
outline list views in the side-by-side panes (see Figure 24). Actor is now
the current subject (class).

007–2580–003 85

Developer MagicTM: Static Analyzer User’s Guide

Member list

Outline icon indicating
collapsible category

Outline icon indicating
expandable category

Static Analyzer
toggle

Relations list

a11614

Figure 24. Browser View Window with C++ Data

2. Examine the screen contents for the Browser View window.

The member list is on the left. It displays members according to their
accessibility: PUBLIC, INSTANCE, or PRIVATE.

Each kind of member can be STATIC or INSTANCE (nonstatic). Static
objects of a given class contain the same value for a given member.
INSTANCE members can contain different data values in different instances
of that class.

The member pane displays four kinds of class members: TYPES, DATA,
METHODS, and VIRTUAL METHODS.

The relations list, is on the left right side of the Browser View window. It
displays information on related classes and methods, based on the point of
view of the current class: BASE CLASSES, DERIVED CLASSES, USES
(classes that the current class uses), USED BY (classes that the current class
is used by), FRIENDS, FRIEND FUNCTIONS, and FRIEND OF relationships.

The layout of both list displays are customizable.

Procedure 3: Expanding and Collapsing Categories

1. Click the outline icon to the left of the PROTECTED category (see Figure 24,
page 86).

86 007–2580–003

Using the Browser for C++: A Tutorial [8]

This displays the elements in the PROTECTED category and causes the
arrow in the outline icon to point downward.

2. Then click the outline icon to the left of the PROTECTED category again.
This hides the elements and causes the arrow in the outline icon to point to
the right again.

Procedure 4: Making Queries

1. Click the Queries menu and examine the results.

Queries search the static analysis database for specific information about
classes and their members, including class hierarchy, class and member
declarations and definitions, and the interactions among members and
classes (for example, which members call which members, where a
definition overrides another, where an instance is created or destroyed, and
so on).

The Browser provides two types of menus for making queries:

• Queries menu—accessed from the menu bar, its queries apply to the
current class

• Element-specific popup menus—Accessed by holding down the right
mouse button while the pointer is over the selected element you want to
query

The Browser provides answers to queries by highlighting items in the
member and related class lists that match the query. Optionally, you can
display more detailed query results in the Static Analyzer window
from which you launched the Browser.

2. Click the Show in Static Analyzer toggle button shown in Figure 24,
page 86.

This button lets you view the results of queries in the Static Analyzer
window along with the Browser window. The Static Analyzer window
has the advantage of showing source lines for your queries

Select What Uses from the Queries menu and To Contain from its
submenu (see Figure 25, page 89).

The Queries menu in the menu bar lets you request relationship
information for the current class. In addition to highlighting the matching
elements in the list, the Browser displays indicator marks in the scroll bar
showing the relative locations of matching elements. Also, the query is
identified in the field over the outline list area. If you click on an indicator

007–2580–003 87

Developer MagicTM: Static Analyzer User’s Guide

mark, you will scroll directly to the matching element. Because you turned
on the Show in Static Analyzer toggle, the results are shown in the
Browser as well, including the file, line number, and source line for the
classes containing Actor. See Figure 26.

88 007–2580–003

Using the Browser for C++: A Tutorial [8]

Browser before query

Browser after query

Query type
and target

Queries menu
with selection

Scroll bar
indicators

Query
matches

a11615

Figure 25. Performing a Query on Current Class

007–2580–003 89

Developer MagicTM: Static Analyzer User’s Guide

a11616

Figure 26. Static Analyzer after a Browser Query

3. Select the constructor method in the METHODS category by holding down
the right mouse button. Then select Show Source Where Declared. See
Figure 27, page 91.

90 007–2580–003

Using the Browser for C++: A Tutorial [8]

Selected
method

Method-specific
Queries menu

Source view after Browser query
a11617

Figure 27. Performing a Query on an Element in a List

This displays the Queries menu specific to methods. In this case, the
query lets us see the source code where it is declared. The Source View
window now displays with the matching code highlighted.

007–2580–003 91

Developer MagicTM: Static Analyzer User’s Guide

For practice, try a few random queries.

4. Click the Last Query button in the Browser View window.

Clicking this button displays the results of the most recent query in the
Static Analyzer window from which the Browser was launched.

Procedure 5: Using the Browser Graphical Views

1. Look at the graphical views supplied by the Browser and Select Show
Containment Graph from the Views menu in the Browser View
window.

The Graph Views window is displayed, set to Containment as shown in
Figure 28. You can switch to other relationship modes through the Relation
mode menu.

Relation
mode menu

a11618

Figure 28. Graph Views Window in Containment Mode

2. Pull down the Views menu, select Show Butterfly, and resize the
Graph Views Window to be smaller.

92 007–2580–003

Using the Browser for C++: A Tutorial [8]

This eliminates extraneous classes from the graph, displaying only those
classes that Actor contains or is contained by. Now compare the graph
with the query results shown in the Browser.

a11619

Figure 29. Comparison of Data Displayed in a Containment Graph

007–2580–003 93

Developer MagicTM: Static Analyzer User’s Guide

3. Click on the Relation mode menu in the lower right corner of the Graph
Views window and select Inheritance from the displayed options (see
Figure 28, page 92).

This shows the inheritance relationships. In this case, the derived classes
BouncingBall and Engine inherit from Actor, as shown in Figure 30,
page 94.

a11620

Figure 30. Graph Views Window in Inheritance Mode

4. Next, select Interaction from the Relation mode menu options.

This displays the classes that directly interact with Actor. Those that use
Actor appear on the left and those that are used by Actor appear on the
right. Compare the display results with those from the Inheritance
display.

Procedure 6: Shortcuts for Entering Subjects

1. Go back to the Browser View window, clear the Current Subject field,
and type a question mark (?), followed by pressing the Enter key.

This is a shortcut for displaying the Browsing Choices window.
However, instead of selecting through the Browsing Choices window,
we are going to demonstrate how name completion works.

2. Type Main and press the space bar.

94 007–2580–003

Using the Browser for C++: A Tutorial [8]

The Browser fills in the rest of the name, MainWindow in this example, and
its data.

Procedure 7: Generating Man Pages

1. The Browser generates man page templates from your classes so that all
you have to do is fill in the descriptions and provide comments. To create
man pages for classes in the fileset, follow these steps:

2. From the Browser View Admin menu, select Generate Man Pages.

The Man Page Generator window opens, as shown in Figure 31.

Man page
directory area

Control area

Class display
area

a11621

Figure 31. Man Page Generator Window

You can specify the target directory in the area at the top of the window,
either directly in the Man Page Directory field, or by browsing in the
dialog box displayed by clicking the Set Directory button. The control
area lets you receive warnings if a man page already exists, select or
unselect all classes, generate new man pages, and display shells showing
the new man pages.

Click the Select All button in the control area.

007–2580–003 95

Developer MagicTM: Static Analyzer User’s Guide

This selects all the classes in the class list. If you need only a subset of the
list, simply click the desired classes. If you change your mind, you can
remove any current selections by clicking the Unselect All button.

3. Click Generate.

Wait for a few seconds while your files are generated.

4. Click View to view the output files.

A winout window containing the man page text opens, as shown in Figure
32. You can edit this file using a text editor, such as vi.

a11622

Figure 32. Man Page Template

96 007–2580–003

Using the Browser for C++: A Tutorial [8]

5. Close the winout window using the window menu in the upper left corner.

Procedure 8: Generating Web Pages

The Browser also lets you generate web pages, that is, documentation in HTML
format compatible with World Wide Web readers. To generate a web page,
follow these steps:

1. From the Browser View Admin menu, select Generate Web Pages.

The Web Page Generator window opens, as shown in Figure 33.

Web page
directory area

Control area

Class display
area

a11623

Figure 33. Web Page Generator Window

This window operates in the same manner as the Man Page Generator
window. You specify the target directory by typing directly in the Web
Page Directory field or by browsing in the dialog box that comes up
when you click the Set Directory button. The control area lets you
receive warnings if a web page already exists, select or unselect all classes,
generate new web pages, and display a shell showing the new web pages.

007–2580–003 97

Developer MagicTM: Static Analyzer User’s Guide

2. Click the Select All button in the control area.

This selects all the classes in the class list. If you need only a subset of the
list, simply click the desired classes. If you change your mind, you can
remove any current selections by clicking the Unselect All button.

3. Click Generate.

Wait for a few seconds while your files are generated.

4. Click View to view the output files.

You have reached the end of the C++ tutorial. You can exit both the Static
Analyzer and the Browser by pulling down the Static Analyzer Admin
menu and choosing Exit.

98 007–2580–003

Using the Browser for Ada: A Tutorial [9]

This tutorial demonstrates the main features in the Browser. The session
outlines common tasks you can perform with the Browser, using a sample Ada
application source to illustrate the use of each function.

9.1 Sample Ada Session

The demonstration directory,
/usr/demos/Ada/WorkShop/tagged_example, contains the complete
source code for a simple Ada application called tagged_example. To prepare
for the session, you first need to create the fileset and static analysis database.

Procedure 9: Preparing for the sample session

Prepare for the session by following these steps:

1. Open a shell window, and change to the
/usr/demos/Ada/WorkShop/tagged_example directory.

2. Start the Static Analyzer by entering cvstatic.

The Static Analyzer window opens.

3. Pull down the Admin menu and select Edit Fileset.

To create a parser mode fileset for this example, follow the instructions
shown in Figure 34. It takes several minutes to build the database from the
fileset.

007–2580–003 99

Developer MagicTM: Static Analyzer User’s Guide

1. Click the Ada button to select
all Ada files in the directory.

2. Click the Move Files Parser button
to indicate they are to be parsed.

3. Click OK to complete the
specification.

a11624

Figure 34. Steps in Specifying a Parser Fileset (Ada)

4. When the fileset is built, select List All Packages from the Packages
submenu in the Queries menu.

This displays all the packages in the fileset.

5. Select List All Tagged Types from the Types submenu in the
Queries menu.

This displays all the tagged types in the fileset.

6. Select List All Files from the Files submenu in the Queries menu.

This displays all the source code files in the fileset.

7. Pull down the Views menu and select File Dependency View.

100 007–2580–003

Using the Browser for Ada: A Tutorial [9]

The File Dependency View shows you the dependency between packages
(packages are defined one to a file). If you double-click arcs in this view,
you can see where packages are imported using the with clause and also
definitions where packages are brought in.

a11625

Figure 35. File Dependency View Example

Procedure 10: Starting the Browser

1. Pull down the Static Analyzer Admin menu and select Browser.

This displays the Browser View window and the Browsing Choices
chooser window, which is used to select subjects for browsing. The
Browsing Choices chooser window contains the complete list of Ada
entities (packages, tagged types, and task types) included in the current
fileset. See Figure 36.

007–2580–003 101

Developer MagicTM: Static Analyzer User’s Guide

Parent
package

a11626

Figure 36. Initial Browser Display

Procedure 11: Understanding the Browser Window

1. Double-click the parent package in the chooser window.

The Browsing Choices window is lowered, and the data for parent now
appears in the Browser View window (see Figure 37). The subject parent
is now displayed in the Current Subject text field and is identified as
an Ada package. Information about Ada entities appears in the outline list
views in the side-by-side panes.

102 007–2580–003

Using the Browser for Ada: A Tutorial [9]

Member
pane

Static Analyzer
toggle

Relations
pane

a11627

Figure 37. Browser View with Ada Data

2. Observe the Browser View window results.

The member pane in Browser View is on the left. It displays members
according to their accessibility: SPEC PUBLIC, SPEC PRIVATE, or BODY.

The member pane displays these kinds of Ada members: DATA, TYPE,
FUNCTIONS, ENTRIES, and PRIMITIVE OPERATIONS.

The relations pane displays information on related Ada entities, based on
the point of view of the current subject: PARENTS and DERIVED.

You can customize the layout of both list displays.

3. Click the outline icon to the left of the FUNCTIONS category (see Figure 37,
page 103).

This collapses the category, hiding the items. Outline icons with
right-pointing arrows indicate that a category in the list is expandable, that
is, that elements in the category are hidden from view.

4. Click the outline icon again to display the items.

007–2580–003 103

Developer MagicTM: Static Analyzer User’s Guide

Procedure 12: Making Queries

1. Click the Queries menu.

To learn the details about the structure of your Ada code, you make
queries, which are questions about the current subject’s members and
related entities. Queries are a focused view of a large, complicated structure
from the viewpoint of any Ada entity.

Queries search the static analysis database for specific information about
subjects and their members. The Browser provides two types of queries
menus:

• Queries menu — accessed from the menu bar, its queries apply to the
current class

• Element-specific popup menus— Accessed by holding down the right
mouse button while the pointer is over the selected element you want to
query

The Browser answers queries by highlighting items in the member and
related class lists that match the query. Optionally, you can display more
detailed query results in the Static Analyzer window from which you
launched the Browser.

2. Select What Is Declared from the Queries menu.

The Queries menu in the menu bar lets you request relationship
information for the current subject. In addition to highlighting the matching
elements in the list, the Browser displays indicator marks in the scroll bar
showing the relative locations of matching elements. Also, the query is
identified in the field over the outline list area. If you click on an indicator
mark, you will scroll directly to the matching element. See Figure 38.

104 007–2580–003

Using the Browser for Ada: A Tutorial [9]

Browser before query

Browser after query

Queries menu
with selection

Query type
and target

Query
matches

Scroll bar
indicators

a11628

Figure 38. Performing a Query on Current Class

Procedure 13: Accessing Source Code

1. Select the New_to_Parent function, hold down the right mouse button
over it, and choose Show Source Where Declared.

This displays Source View containing the source code where
New_to_Parent is declared. See Figure 39.

007–2580–003 105

Developer MagicTM: Static Analyzer User’s Guide

a11629

Figure 39. Accessing Source Code from the Browser View

Procedure 14: Using the Browser Graphical Views

1. Pull down the Views menu in the Browser View window and select
Show Inheritance Graph.

106 007–2580–003

Using the Browser for Ada: A Tutorial [9]

The Inheritance Graph window is displayed, as shown in Figure 40.
You can switch to other relationship modes through the relation mode
menu.

Graphical
display area

Relation
menu

a11630

Figure 40. Inheritance Graph Example

Procedure 15: Shortcuts for Entering Subjects

1. Go back to the Browser View window, clear the Current Subject field,
type a question mark (?), and press Enter.

This is a shortcut for displaying the Browsing Choices window.
However, instead of selecting the Browsing Choices window, follow this
tutorial to see how name completion works.

2. Type grand and press the space bar.

The Browser fills in the rest of the name (grandparent in this example) and
its data.

This is the end of the Ada tutorial. You can exit both the Static Analyzer and
the Browser by pulling down the Static Analyzer Admin menu and
choosing Exit.

007–2580–003 107

The Browser Reference [10]

This chapter describes all of the windows and features associated with the
Browser.

This chapter contains the following sections:

• Browsing Choices Window, Section 10.1, page 109

• Browser View Window, Section 10.2, page 111

• Graph Views Window, Section 10.3, page 134

• Call Graph Window, Section 10.4, page 136

10.1 Browsing Choices Window

The Browsing Choices window (see Figure 41) lets you select items to be
browsed from a list derived from the fileset in the Browser View window.
Double-clicking an item in the selection list causes the Browsing Choices
window to be raised (moved to the front) with the chosen item as the current
subject for analysis.

007–2580–003 109

Developer MagicTM: Static Analyzer User’s Guide

Column
headings

Selection
list

a11631

Figure 41. Browsing Choices Window

10.1.1 Browsing Choices Window for C++

With C++ code, the Browsing Choices window displays one column to
indicate the kind of item, a column to identify the item, and three columns
indicating properties, as follows:

• Kind—classes, template definitions, and template instances

• Name—the name of the item

• Abstract—abstract property: concrete (blank), abstract by declaration, or
abstract by inheritance

• Delta—delta property: dynamic, internal dynamic, or non-dynamic (blank)

• Template—template property: specific definition, partial instantiation, or
normal (blank)

The Browsing Choices window provides a facility for sorting items by
column. To do this, click in the column you wish to sort on and select Sort
from the Admin menu.

110 007–2580–003

The Browser Reference [10]

10.1.2 Browsing Choices Window for Ada

If you are using Ada, the Browsing Choices window displays packages,
tasks, and tagged types in the Kinds column. The properties columns are not
used in Ada and appear blank. You can sort the items by kind or name by
clicking in the appropriate column and selecting Sort from the Admin menu.

10.2 Browser View Window

Browser View is the primary Browser window (see Figure 42). It opens when
you select Browser from the Admin menu of the Static Analyzer, but does not
display data until you select an item from the list in the Browsing Choices
window. Browser View displays internal and related information for elements
in C++ and Ada programs. The information is presented in hierarchical lists
shown in outline format.

Browser View lets you perform a variety of static analysis database queries,
depending on your current work context. Queries concerning the current
subject are accessed from the Queries menu in the menu bar. You can also
make queries specific to the selected elements in the list area by holding down
the right mouse button to display a popup Queries menu specific to that type
of element. The results of queries are indicated by highlighting matching
elements in the Browser View window. Matching results are also highlighted
in the Source View window (if it is displayed) and in the Static Analyzer (if
the Show in Static Analyzer toggle (see Section 10.2.2, page 113) is turned
on) .

You can also launch graphical views showing hierarchies and call graphs from
the Browser View window. In addition, you can generate man pages and web
pages from Browser View.

007–2580–003 111

Developer MagicTM: Static Analyzer User’s Guide

Current subject
Current subject kind

Query identification
area

Member list area

Outline icon

Sash Annotated scroll bar

Static Analyzer
toggle

Last Query button

Query matches

Relations list area

Selected element

Match indicator

Element matching
query

a11632

Figure 42. Browser View Window Elements

10.2.1 Current Subject Field

The Current Subject field indicates the kind and name of the element to be
analyzed. It is directly below the menu bar (see Figure 42, page 112). The label
on this field is initially set to Current Subject. To analyze an element, you
can type directly into this field (or select from the Browsing Choices
window). The label changes according to the kind of element you select. You
can enter the following kinds of elements:

• C++ class

• C++ template definition

• C++ template instance

• Ada package

• Ada task

• Ada tagged type

112 007–2580–003

The Browser Reference [10]

10.2.1.1 Name Completion

If you type a partial string and then press the space bar, the Browser attempts
to complete the element name by searching the fileset. A beep indicates that
more than one matching name exists. If a match is made, press the Enter key
to make the change effective.

10.2.1.2 Changing Subject Using “?”

If you type a question mark (?) into the Current Subject field, the
Browsing Choices window opens. You can select a new item by
double-clicking a name in the selection list.

10.2.2 Show in Static Analyzer Toggle

The Show in Static Analyzer toggle is directly to the right of the
Current Subject field (see Figure 42, page 112). When the toggle is set (a
check mark and the label Yes appear), the results of all queries are displayed in
the Static Analyzer window from which the Browser was launched,
including the file, line number, and source line for the matching items. If no
results are found and the Static Analyzer window is open, the window
comes to the front with an error message.

10.2.3 Last Query Button

The Last Query button is at the top right of the window, directly beneath the
Help menu (see Figure 42, page 112). Clicking this button displays the results
of the most recent query in the Static Analyzer window from which the
Browser was launched.

10.2.4 Browser View Query Identification Area

The Browser View query identification area is directly above the list area (see
Figure 42, page 112). This area displays the most recent query as a sentence
containing both the query question and the name of the object of the query. The
number of elements matching the query is displayed at the right end of the line.

10.2.5 Browser View List Areas

The lower two-thirds of the Browser View window consists of two lists
displayed in side-by-side panes (see Figure 42, page 112). The lists contain

007–2580–003 113

Developer MagicTM: Static Analyzer User’s Guide

information about the currently selected subject and are organized by category
in an outline format. The lists are:

• member list— a detailed view of the internals of the current subject.

• relation list— items related to the current subject.

You can change the relative widths of the panes that display these lists by
moving the sash that separates the panes.

The categories in the lists are different depending on whether you are using
C++ or Ada code. Table 1, page 114, summarizes the contents of each list by
programming language. For more information on the lists, see Section 10.2.6,
page 115, Section 10.2.7, page 117, Section 10.2.8, page 118, and Section 10.2.9,
page 120.

Table 1. Browser View List Summary

Language Member List Contents Relations List Contents

C++ PUBLIC/INSTANCE/PRIVATE
INSTANCE/STATIC
TYPES/DATA/METHODS/
VIRTUAL METHODS

BASE CLASSES (including the current
class)/DERIVED CLASSES/USES/USED
BY/FRIEND
FUNCTIONS/FRIENDS/FRIEND OF

Ada SPEC PUBLIC/SPEC PRIVATE/BODY
CONTAINS/DATA/TYPE/
FUNCTIONS/ENTRIES/
PRIMITIVE OPERATIONS

PARENTS (including the current
subject)/DERIVED

10.2.5.1 Outline Icons

Each category name appears with an outline icon to its left, that is, a
diamond-shaped icon that can be used to collapse (hide) or expand (make
visible) the items under that category. Inside the icon there is an arrow that
indicates whether the category is in the expanded or collapsed state. If the
arrow points downward, the list is in its expanded state, which means all items
are displayed. If the icon points to the right, the category is in its collapsed
state, which means all items in that category are hidden. Clicking the arrow
toggles the state of the category, displaying or hiding the category’s contents.
Another function of the outline icon is to indicate when a collapsed list contains
items matching the current query. This is shown with a filled outline icon. See
Figure 43.

114 007–2580–003

The Browser Reference [10]

Outline icon in
expanded state

Outline icon in
collapsed state
with query matches

Outline icon in
collapsed state

Query match
indicators on
scroll bar

a11633

Figure 43. Outline List Icons and Indicator Marks

10.2.5.2 Annotated Scroll Bars and Highlighted Entries

Lists also use annotated scroll bars to locate highlighted list entries. When you
make a query on an item in a list, the Browser displays indicator marks in the
scroll bars in both panes corresponding to the relative positions of matching
items. This informs you about all matches even if they are in collapsed
categories or in a portion of the list that is not currently in view. If you click an
indicator with the middle mouse button, you scroll directly to the matching
item in the list. When the thumb of the scroll bar overlaps a given tick mark,
the corresponding entry is visible in the list window. See Figure 43, page 115.

10.2.6 C++ Member List

The Xmember list displays the types, data members, methods, and virtual
methods internal to the current class, template definition, or template instance
when you are analyzing C++ code. It labels constructor methods as
-constructor-> and destructors as -destructor->.

10.2.6.1 Display Hierarchy

The members of the current class are sorted recursively into three nested lists
according to the access specification (PUBLIC, PROTECTED, or PRIVATE) of
each member. Within each of the access categories, the members are sorted by
scope into two categories (INSTANCE and STATIC). Finally, within each
category, members are displayed by member category type in this order: TYPE,
DATA, METHODS (member functions), and VIRTUAL METHODS.

007–2580–003 115

Developer MagicTM: Static Analyzer User’s Guide

Here is a schematic of the outline format for each nested list:

Access (PUBLIC, PROTECTED, or PRIVATE)

Scope (INSTANCE or STATIC)
TYPES

DATA

METHODS

VIRTUAL METHODS

10.2.6.2 C++ Access Categories

The following access categories are available:

• PUBLIC members—accessible by any method or C-style function

• PROTECTED members—accessible only by methods in derived classes, friend
classes, or friend functions

• PRIVATE members—accessible only by methods in the class in which they
are defined, friend classes, or friend functions

10.2.6.3 C++ Scope Categories

The scope categories are as follows:

• STATIC members—all objects of a given class contain the same value for a
given member

• INSTANCE (nonstatic) members—members in different instances of that class
can contain different data values

10.2.6.4 C++ Class Member Categories

Class members fall into the following categories:

• TYPES—definitions of data types declared within a class

• DATA—variables that contain state information for a class

• METHODS (or member functions)—definitions of how a class interacts with
other classes and structures

• VIRTUAL METHODS—methods for an object that ensure that the method
invoked is defined by the class from which the object was instantiated,
regardless of type casting

116 007–2580–003

The Browser Reference [10]

The list organization is customizable. For more information, see Appendix A,
page 139.

10.2.7 C++ Relation List

The C++ relations list displays the current class and its related classes in the
class list. The categories in the list are:

• BASE CLASSES—contains the current class and its ancestors, listed
hierarchically

• DERIVED CLASSES—contains descendants of the current class, listed
hierarchically

• USES—contains classes that the current class uses (that is, instantiates,
destroys, interacts with, or contains)

• USED BY—contains classes that the current class is used by

• FRIEND FUNCTIONS—contains global functions declared as friends by the
current class

• FRIENDS—contains classes that are declared as friends by the current class.

• FRIEND OF—contains classes that declare the current class as a friend.

Within this list, the current class is displayed as follows:

<- This

This notation refers to the class in the Current Class field.

10.2.7.1 C++ Relations List Mouse Shortcuts

Double-clicking any displayed class brings up a Source View window that
highlights the function’s definition.

10.2.7.2 C++ BASE CLASSES Category Hierarchy

The BASE CLASSES category shows the ancestors of the current class, if any.
Each indented class is an ancestor of the class listed above it. The BASE
CLASSES category indicates a multiple inheritance relationship by indenting
parent classes to the same level. If a given class has ancestors, it is accompanied
by an outline icon, which works in a similar manner to the outline icons in the

007–2580–003 117

Developer MagicTM: Static Analyzer User’s Guide

member list. Each ancestor name is followed by its inheritance access type
(PUBLIC, PROTECTED, or PRIVATE) listed in parentheses.

This schematic gives an example of a BASE CLASSES category:

BASE CLASSES
<-This

first_parent_of_This (access type)
parent_of_first_parent_class (access type)

second_parent_of_This (access type)
parent_of_second_parent_class (access type)

10.2.7.3 C++ DERIVED CLASSES Category Hierarchy

The DERIVED CLASSEScategory shows the descendants of the current class, if
any. Each indented class is a descendant of the class listed above it. If a given
class has descendants, it is accompanied by an outline icon, which works in a
similar manner to the outline icons in the base classes category and member list.

This schematic gives an example of a possible DERIVED CLASSES category:

DERIVED CLASSES

first_child_of_This

child_of_first_child_class
second_child_of_This

child_of_second_child_class

10.2.8 Ada Member List

The Ada version of the Browser View member list displays packages, task
types, and tagged types as its current subjects. Packages have functions as their
internal members. The internal members for task types are entries (under
PUBLIC) and functions. Tagged types have primitive operations as their
internal members.

10.2.8.1 Ada Display Hierarchy

The members of the current subject are sorted recursively into three nested lists
according to the access specification (SPEC PUBLIC, SPEC PRIVATE, or BODY)
of each member. Under each of the access categories lies the INSTANCE
subcategory. Finally, the members are displayed by member category type in
this order: TYPES and DATA.

Here is a schematic of the outline format for each nested list:

118 007–2580–003

The Browser Reference [10]

Access (SPEC PUBLIC, SPEC PRIVATE, or BODY)

Scope (INSTANCE)
TYPES

DATA

10.2.8.2 Ada Access Categories

The accessibility categories are different depending on the type of Ada entity.

The following access categories are available for packages:

• SPEC PUBLIC—includes declarations of data, functions, and types made in
the public part of the package spec

• SPEC PRIVATE—includes declarations of data, functions, and types made
in the private part of the package spec

• BODY—includes declarations and definitions of data, functions, and types
made in the implementation of the package. These symbols are usable only
within the package body.

The following access categories are available for tagged types:

• SPEC PUBLIC—includes data lists components of the tagged type.
Functions list primitive operations of the tagged type.

Note: There is no SPEC PRIVATE or BODY section for a tagged type.

The following access categories are available for task types:

• SPEC PUBLIC—includes functions listed here are entries to the task. Types
and data listed here are public (that is, they are usable by a client of the task).

• BODY—includes types, data, and functions used in the implementation of the
task. These symbols are usable only within the task body.

Note: There is no SPEC PRIVATE section for tagged types

10.2.8.3 Ada Type and Data Member Categories

The other categories available are as follows:

• TYPES—definitions of data types declared by a package, task, or tagged type

• DATA—variables that contain state information for a package, task, or tagged
type

007–2580–003 119

Developer MagicTM: Static Analyzer User’s Guide

The list organization is customizable. For more information, see Appendix A,
page 139.

10.2.8.4 Displaying an Ada Member’s Source Code

Double-clicking any member in the member list opens a Source View
window that contains member code with the declaration highlighted. .

10.2.9 Ada Relation List

The Ada relations list shows parent-derived relationships between tagged types .

10.2.10 Browser View Menu Bar

The following sections describe the menus, found in the Browser View
window’s menu bar (see Figure 44).

a11635

Figure 44. Browser View Menu Bar with Menus Displayed

120 007–2580–003

The Browser Reference [10]

10.2.10.1 Admin Menu

The Admin menu contains the following options for selecting new subjects,
manipulating Browser View windows, generating man and web pages, and
exiting the Browser View.

Change Current
Subject

Lets you select a new current subject without
manually typing it into the Current Subject
field. Choosing this option opens the Browsing
Choices window, which contains a scrolling list
of all the classes or packages available from the
current fileset. Double-clicking an item selects it
for display in the Browser View window and
closes the Browsing Choices window.

Another Browser
View

Creates an identical copy of the Browser View
window. All current information displayed
within the initial window appears in the copy,
but connections to the graphical view windows
are not carried over to the new Browser View
window.

Close Browser View Shuts the Browser View window and any
associated windows.

Generate Man Pages Opens the Man Page Generator window,
which lets you create man page templates for
classes (C++), packages (Ada), tasks (Ada), and
tagged types (Ada).

Select individual subjects by clicking them. If you
want a man page for every subject in the list,
click Select All. To remove selections you
have made, click Unselect All. Clicking the
Generate button creates a man page template for
each selected subject. If man pages exist for any
selected subjects, the Browser warns you, unless
you set the Warn Overwrite toggle to No.

Output files go in the directory shown in the Man
Page Directory field, if it exists. To specify a
different output directory, click the Set
Directory button in the Man Page
Generator window and enter your choice.

007–2580–003 121

Developer MagicTM: Static Analyzer User’s Guide

Target directory
selection

Control panel

Subject display

Man page generator window

Generated man page

a11636

Figure 45. Man Page Generator and Typical Man Page Template

Generate Web Pages Opens the Web Page Generator window (see
Figure 46, page 123), which lets you create web
page templates for classes (C++), packages (Ada),
tasks (Ada), and tagged types (Ada). These
templates are in HTML format and can be read
by World Wide Web browsers.

Select individual subjects by clicking them. If you
want a web page for every subject in the list, click
Select All. To remove selections you’ve made,
click Unselect All. Clicking the Generate

122 007–2580–003

The Browser Reference [10]

button creates a web page template for each
selected subject. If web pages exist for any
selected subjects, the browser warns you, unless
you set the Warn Overwrite toggle to No.

Output files go in the directory shown in the Web
Page Directory field, if it exists. To specify a
different output directory, click the Set
Directory button in the Web Page
Generator window and enter your choice.

Target directory
selection

Control panel

Subject display

a11637

Figure 46. Web Page Generator Window

Exit Browser Quits the Browser, closing all windows launched
from it (except Source View). The Static

007–2580–003 123

Developer MagicTM: Static Analyzer User’s Guide

Analyzer window from which the browser was
launched is not affected.

10.2.10.2 Views Menu

The Views menu contains options for opening graphical views. Each of the
first four selections opens a Graph Views window for the current class. The
last selection opens a Call Graph window. The following selections are
available from the Views menu:

Show Inheritance
Graph

Describes the relationship between base classes
and derived classes.

Show Containment
Graph

Describes the relationship of container classes to
the classes they use as components.

Show Interaction
Graph

Describes the relationship of used classes to the
classes that are their users.

Show Friend Graph Describes the relationship of classes declaring
friends to the classes they declare.

Show Call Graph Opens a Call Graph window. To perform
operations in it, select a method from the member
list display, press the right mouse button to
display the Methods popup menu, and select
Add, Remove, or Replace from the Call Graph
submenu.

10.2.10.3 History Menu

The History menu contains options that let you quickly select previously
chosen subjects for display in the Browser View window. If no class was
selected previously, a message appears. The following selections are available
from the History menu:

Show Previous
Subject

Sets the current subject to the previously
displayed class, and the information in the
Browser View window changes to reflect this.

Show History Opens a List of Subjects Shown chooser
window for selecting previously viewed subjects.
The window presents the previous subjects in
reverse chronological order, that is, the most
recent subject appears at the bottom of the list.

124 007–2580–003

The Browser Reference [10]

To select a subject, click it and press Apply or OK.
Double-clicking a subject has the same effect as
selecting OK. It makes the selection and closes
the window. The selected class then becomes the
current subject in the Browser View window.

10.2.10.4 Queries Menu

The Queries menu is accessed from the menu bar and applies to the current
subject. The following selections are available from the Queries menu:

What Is Declared

Displays all methods declared by the current class.

What Is Defined

Displays all members defined by the current class.

What Is Overridden By

Displays all inherited methods that the current class overrides.

What is Pure Virtual

Displays all pure virtual functions in the current subject.

What Instantiates

Displays classes that instantiate the current class by invoking its
constructors by using its new methods.

What Destroys

Displays classes that destroy the current class by invoking its
destructors or by using its delete methods.

What Uses submenu

Displays classes that use the current class in the following
contexts:

To Contain Displays classes that use the
current class as either an
embedded or linked component.

As Friend Displays classes that use the
current class as a friend class.

007–2580–003 125

Developer MagicTM: Static Analyzer User’s Guide

Methods Displays classes that use the
methods defined by the current
class.

Data Members Displays classes that use (by
modifying, reading, or taking the
address) data members defined
by the current class.

What Is Instantiated

Displays classes that the current class instantiates by invoking
its constructors.

What Is Destroyed

Displays classes that the current class destroys by invoking it
destructors.

What Is Used submenu

Displays those classes used by the current class in the following
contexts:

To Contain Highlights classes that the current
class uses as either embedded or
linked components.

As Friend Highlights classes that the current
class uses as friend classes.

By Methods Highlights classes whose methods
are used by the current class.

By Data Access Highlights classes whose data
members are assigned, read, or
have their address taken by the
current class.

Additional queries on subjects, data members, and methods are accessible from
the popup menus described in Section 10.2.6, page 115 and Section 10.2.7, page
117.

10.2.10.5 Preference Menu

The Preference menu allows you to control how the class information is
displayed in the window.

126 007–2580–003

The Browser Reference [10]

The following selections are available:

Relation Display submenu

Allows you to control how the class relations are displayed:

Declaration Order Displays related classes in the
order of their declaration or the
detection of their relation.

End To End Sort Displays a sorted list of related
classes.

Member Display submenu

Allows you to control how the class members are displayed:

Declaration Order Displays the members in order of
their declaration.

End To End Sort Performs an end-to-end sort of
the member display strings and
displays the result.

Name Sort Performs a sort based on the
name of the members and
displays the result.

Member Alignment submenu

Allows you to control how members line up:

Align Names Aligns the member names in the
display. A radio button indicates
if this feature is enabled or
disabled.

Align Arglists Aligns the member function
argument lists in the display. A
radio button indicates if this
feature is enabled or disabled.

Member Double Click submenu

Lets you select which related source code is displayed in the
Source View window when you double-click an item in the
member list:

Show Definition Displays the source code where
the item is defined.

007–2580–003 127

Developer MagicTM: Static Analyzer User’s Guide

Show Declaration Displays the source code where
the item is declared.

Show Decl if no
Defn

Displays the code where the item
is defined; if there is no
definition, then the source code
containing the declaration is
displayed instead.

10.2.11 Browser View Popup Menus

The Browser View popup queries menus provide queries for currently
selected items in the outline list areas. These menu are accessed by selecting an
item and then holding down the right mouse button. Figure 47, page 129,
shows all of the popup menus available in the Browser View window.

This section describes the following menus:

• Data Members Popup Menu, Section 10.2.11.1, page 129

• Methods Popup Menu, Section 10.2.11.2, page 130

• Class Popup Menus, Section 10.2.11.3, page 132

Many of the same queries in the class popup menus appear in more than one
menu. To eliminate this redundancy, each query is described once and
presented in a single list rather than by menu.

128 007–2580–003

The Browser Reference [10]

Methods menu

Data members menu

Friend of menu Friends menu
Friend Functions menu

Used By menu

Uses menu

Derived Classes menu

Base classes menu

a11639

Figure 47. Queries Popup Menus in the Browser View Window

10.2.11.1 Data Members Popup Menu

The data members popup menu performs the following queries on data
members selected in the member display list:

What Modifies

Highlights all methods and classes in which the selected data
member is assigned a value.

007–2580–003 129

Developer MagicTM: Static Analyzer User’s Guide

What Reads

Highlights all methods and classes in which the selected data
member is read.

What Accesses

Highlights all classes where the selected data member is
assigned a value, read, or its address is taken.

What Defines

Highlights the class that defines the selected data member.

Show Source Where Defined

Displays the source code where the data is defined in a Source
View window.

10.2.11.2 Methods Popup Menu

The Methods popup menu lets you perform the following queries on methods:

What Uses Highlights all methods and classes that use the
currently selected method.

What Is Used
submenu

Contains the following menu items:

All (method and
data access)

Highlights all data
members, methods,
and classes that the
currently selected
method uses.

Method Calls Highlights all
methods called by
the currently
selected method.

Data Access Highlights all data
members that have
been assigned,
read, or had their
address taken by
the currently
selected method.

130 007–2580–003

The Browser Reference [10]

Data Modification Highlights all data
members assigned
by the currently
selected method.

Data Read Highlights all data
members read by
the currently
selected method.

Call Graph submenu The Call Graph submenu contains the
following menu options:

Add Adds the currently
selected method
and its calling
structure to the
Call Graph
window, if one is
open. If not, Add
opens a Call
Graph window
before adding the
method.

Replace Replaces all
methods in the
display with the
selected method
and its calling
structure in the
Call Graph
window.

Remove Removes the
currently selected
method and its
calling structure
from the Call
Graph window.

What Declares Highlights the class that declares the currently
selected method.

What Currently
Defines

Highlights the class that provides the current
definition for the method.

007–2580–003 131

Developer MagicTM: Static Analyzer User’s Guide

What Else Defines Highlights all classes that define the currently
selected method.

What Overloads Highlights all methods and classes that overload
the currently selected method.

10.2.11.3 Class Popup Menus

This section describes the popup menus available in the related class list
display. (The queries menu that displays when you select <-This is not shown
here because it is exactly the same as the main Queries menu shown in
Section 10.2.10.4, page 125.)

Many of the items in the class popup menus are common to more than one
menu. To eliminate the redundancy of describing them in each menu, this
section presents all the queries in a single list in alphabetical order. The menus
they belong to are shown in parentheses. The following selections are available
on more than one menu:

New Browser View (all menus except Friend Functions)

Opens a new Browser View window displaying the selected
class.

Show Source (all menus)

Opens a Source View window on a file containing the
declaration of the selected item. The first line of the declaration
is highlighted in the source.

What Destroys (Uses and Used By)

Highlights all members of the current class that destroy the
selected class.

What Instantiates (Uses and Used By)

Highlights all members of the current class that instantiate the
selected class.

What Is Declared (Base Classes)

Highlights all methods declared by the selected base class.

What Is Defined (Base Classes)

Highlights all members defined by the selected base class.

132 007–2580–003

The Browser Reference [10]

What Is Overloaded (Derived Classes)

Highlights all members of the current class that are overloaded
by the selected class.

What Is Overridden (Base Classes)

Highlights all the methods of the selected base class that are
overridden by the current class.

What Is Overridden (Derived Classes)

Highlights all the methods of the current class that are
overridden by the selected derived class.

What Is Used (Friends)

Highlights all members of the current class that the selected
friend class uses.

What Is Used submenu (Derived Classes and Used By)

Contains the following queries:

by Accessing Any
Member

Highlights all members of the
current class that the selected
class uses.

by Calling Methods Highlights all methods of the
current class that the selected
class uses.

by Accessing Data
Members

Highlights all data members of
the current class that the selected
class modifies, reads, or takes the
address of.

by Modifying Data
Members

Highlights all data members of
the current class to which the
selected class assigns a value.

by Reading Data
Members

Highlights all data members of
the current class from which the
selected class reads a value.

What It Uses (Friend Functions)

Highlights all members of the current class that the selected
friend function uses.

007–2580–003 133

Developer MagicTM: Static Analyzer User’s Guide

What Uses (Friend of)

Highlights all members of the current class that use the friend
class.

What Uses submenu (Uses)

Contains the following queries:

by Accessing Any
Member

Highlights all members of the
current class that use the selected
class.

by Calling Methods Highlights all methods of the
current class that use the methods
of the selected class.

by Accessing Data Highlights all data members of
the current class that modify,
read, or take the address of data
members of the selected class.

by Modifying Data Highlights all data members of
the current class that assign a
value to data members of the
selected class.

by Reading Data Highlights all data members of
the current class that read a value
from data members of the
selected class.

10.3 Graph Views Window

The Browser provides a graphical view for showing relationships between
classes in the fileset. It depicts classes as nodes and relationships as arcs. The
Graph Views window shows the following types of class relationships:

• Inheritance

• Containment

• Interaction

• Friends

You can display graphical views by selecting any of the following items from
the Views menu of the Browser View window:

134 007–2580–003

The Browser Reference [10]

• Show Inheritance Graph

• Show Containment Graph

• Show Interaction Graph

• Show Friends Graph

Once the Graph Views window is displayed, you can switch to any of the
other relationships by using the Relationship menu at the bottom right of
the Graph Views window.

10.3.1 Mouse Manipulations

Double-clicking any subject in the Graph Views window causes it to become
the new current subject in both the Browser View and Graph Views
windows.

10.3.2 Graph Views Admin Menu

The Graph Views Admin selections control which classes included in the
current fileset are displayed in the Graph Views window. The Admin menu
has the following selections:

Save Graph Allows you to save the graph to a file. This
selection brings up a file selection dialog. When
you select a file and click OK, you save the graph
as a PostScript file with the name specified in the
Selection field.

Close Closes the Graph Views window.

10.3.3 Graph Views Window Views Menu

The Graph Viewa menu contains options that allow you to various types of
classes.

Show All Displays all classes included in the fileset as
nodes, and their relations as arcs, as chosen from
the relationship option menu.

Show All Related Displays only those classes included in the chain
of relations, which includes the current class.

007–2580–003 135

Developer MagicTM: Static Analyzer User’s Guide

Show Butterfly Displays only those classes that are the immediate
relatives (for example, parents and children for an
inheritance relation of the current class).

10.4 Call Graph Window

The Call Graph window shows all calls made from selected methods in the
member list, including calls made from its target methods. You can invoke it by
any of the following methods:

• Select Call Graph from the Views menu in Browser View.

• Select a method in the member list, displaying the Methods popup menu,
and selecting Call Graph:Add. This displays the Call Graph window
the first time and adds new methods to the graph each time you select Call
Graph:Add.

Figure 48 illustrates the second method for displaying Call Graph. In this
example, the user has selected the initialize method in the Browser window
and then selected CallGraph:Add from the Methods popup menu. The
initialize method now appears in the Call Graph window with the methods
that it calls.

136 007–2580–003

The Browser Reference [10]

Browser View

Query identifier

Selected method

Call Graph window

Selected node
identifier

Target method

Argument list

Methods popup menu
with "Call Graph:Add"

a11640

Figure 48. Displaying a Selected Method in Call Graph

007–2580–003 137

Developer MagicTM: Static Analyzer User’s Guide

10.4.1 Using the Call Graph Window

You can add, replace, or remove methods in the Call Graph window by
choosing from the Call Graph submenu in the Methods popup menu in the
Browser View member list (see Figure 48, page 137), as follows:

Add Adds the currently selected method and its
calling structure to the Call Graph window, if
one is open. If not, Add opens a Call Graph
window and then adds the method.

Replace Replaces all methods in the display with the
selected method and its calling structure in the
Call Graph window.

Remove Removes the currently selected method and its
calling structure from the Call Graph window.

The action you request is displayed in the message area in Browser View
window. In the Call Graph window, there is also a message area that
identifies the method and its arguments.

In the Call Graph window, double-clicking any method node opens a
Source View window that displays the code defining the method. The
definition is highlighted in the source.

For information on manipulating graphs, see Appendix A, “Using Graphical
Views,” in the Developer Magic: ProDev WorkShop Overview.

10.4.2 Call Graph Admin Menu

The Call Graph window’s Admin menu contains the following selections:

Show Arglist toggle Lets you display or hide the argument list for
each method, as shown in Figure 48, page 137.

Clear Removes all methods from the Call Graph
window.

Save Graph Displays a file selection dialog for saving the
graph to a PostScript file.

Close Closes the Call Graph window.

138 007–2580–003

Customizing the Browser [A]

The Browser lets you customize your display and the way you work with man
pages. These formats are implemented as X application resources that you can
redefine in your local .Xdefaults file. After editing it, run the following
command:

xrdb .Xdefaults

Then reopen the Static Analyzer.

This appendix covers the following topics:

• Customizing the Browser View Lists, Section A.1, page 139

• Customizing Man Page Generation, Section A.2, page 143

A.1 Customizing the Browser View Lists

The following sections show you how to customize the formats of Browser
View lists by applying your own keyword headers and rearranging the features
of each list.

A.1.1 Member List Resource

The layout of the Browser View member list is controlled by the
Cvstatic*memberOrder resource.

The general format of this resource is as follows:

Level-1-keyword: HEADING [keyword], HEADING [keyword],..;
Level-2-keyword: HEADING [keyword], HEADING [keyword],...;
Level-3-keyword: HEADING [keyword], HEADING [keyword],...;

The three keywords are Protection, Scope, and Member. The order in which
these keywords are used determines the level of nesting in the outline list used
for protection, scope, and member headings, respectively.

Headings may consist of any string you choose to describe the heading
category. The headings listed with the level-1 keyword become top-level
headings in the outline list, the level-2 headings appear indented under each of
the level-1 headings, and the level-3 headings appear indented beneath each of
the level-2 headings.

007–2580–003 139

Developer MagicTM: Static Analyzer User’s Guide

Each heading in a level has an associated keyword that determines the sort of
items that appear under the heading. The allowable keywords are as follows
for each associated level keyword:

Protection: [public], [protected], [private]

Scope: [instance], [static]

Member: [type], [data], [method], [virtualmethod]

It is also possible to combine the types associated with two or more keywords
under one heading by using the construction for any given heading:

HEADING [keyword1+keyword2+...]

You can also control whether a heading is expanded or collapsed when the
browser starts up. Placing an asterisk (*) at the end of the heading string causes
that heading to be collapsed by default:

HEADING* [keyword]

The default assignment for the outline resource of the member list can be found
in /usr/lib/X11/app-defaults/Cvstatic. The contents of the file appear
below:

Cvstatic*memberOrder: Protection: PUBLIC [public],
PROTECTED* [protected], PRIVATE* [private]; Scope: INSTANCE

[instance], STATIC [static]; Member: TYPE* [type], DATA

[data], METHODS [method], VIRTUAL_METHODS [virtualmethod];

Note: The sample above is a single line.

You can override this definition by placing your own definition in your local
.Xdefaults file.

A.1.2 Related Class List Resource

The layout of the Browser View related class list is controlled by the
Cvstatic*relationOrder resource.

The construction of this resource is similar to the member list, but simpler:

HEADING [keyword], HEADING [keyword],...

The headings and keywords work as described for the member list, but there is
no concept of level keywords in the related class list.

140 007–2580–003

Customizing the Browser [A]

The allowable keywords for the related class list are as follows:

[base], [derived], [uses], [usedby], [friendfunction],[friend],
[friendof]

Note: In the related class list, headings cannot contain multiple keywords, as
they can in the member list.

As in the member list, you can control whether a heading in the related class
list is expanded or collapsed when the browser starts up. Placing an asterisk (*)
at the end of the heading string causes that heading to be collapsed by default:

HEADING* [keyword]

The default assignment for the related class list outline resource can be found in
/usr/lib/X11/app-defaults/Cvstatic, and is listed below for your
convenience:

Cvstatic*relationOrder: BASE CLASSES [base], DERIVED CLASSES

[derived], USES [uses], USED BY [usedby], FRIEND FUNCTIONS
[friendfunction], FRIENDS [friend], FRIEND OF [friendof]

You can override this definition by placing your own definition in your local
.Xdefaults file.

A.1.3 Other Browser View List Resources

X Windows System resources, found in
/usr/lib/X11/app-defaults/Cvstatic, can be modified in your local
.Xdefaults file. The default values are listed with each resource. You can set
any true value to false.

Cvstatic*completeClassName: true

Enables ClassName completion. By typing a space in the
current class field, you complete a class name from the list of
classes in the fileset (if set to true, as it is by default).

Cvstatic*showMessageArea: true

Enables the message area in the Browser View window (if set
to true, as it is by default).

007–2580–003 141

Developer MagicTM: Static Analyzer User’s Guide

Cvstatic*scream: true

Enables warning beeps when there are 0 results for a query, or
when a class name has more than one completion in the current
class field (if set to true, as it is by default).

Cvstatic*indentationWidth: 15

Sets the indentation in the outline lists in pixels. Default setting
is 15.

Cvstatic*nameAlign: true

Aligns names of the members under the same parent so that the
type declarations and member (variable and function) names
form left-justified columns (if set to true, as it is by default).

Cvstatic*arglistAlign: true

Aligns the argument lists of member functions under the same
parent so they form a left-justified column (if set to true, as it
is by default).

Cvstatic*sort: true

Sorts items in the outline lists based on the value of the entire
string denoting an item (if set to true, as it is by default). For
example, given two members, void f and int k, the Browser
lists int k before void f in the list.

Cvstatic*nameSort: true

Sorts items in the outline lists based on the string value of the
name of a member (if set to true, as it is by default). For
example, void f would be listed before int k).

If you use the last two resources in conjunction, output is sorted first by type
and then by name, as shown in Table 2.

Table 2. Sort Resources for Outline Lists

Sort Name Sort Effect

false false Members are in declaration order

false true Members are sorted based on the name and not on
type or return type.

142 007–2580–003

Customizing the Browser [A]

Sort Name Sort Effect

true false Members are sorted based on the their return type or
type. Within the same return type, members appear
in declaration order.

true true Members are sorted both on their type or return type
and their name. This is the default behavior.

A.2 Customizing Man Page Generation

The resources in this section are associated with the Man Pages for
Classes window, available from the Browser View Admin menu item
Generate Man Pages.

Cvstatic*manPageDirPath:manpage directory path

The default directory is the current directory (.). To place
generated man pages in the windTunnel directory that you
have created use the following command:

Cvstatic*manPageDirPath: ./manpage/windTunnel

Cvstatic*manPageSuffix: .suffix

The default suffix is 3, which would make the name of a man
page:

class_name.3

To change the suffix to 4, use the following command:

Cvstatic*manPageSuffix: .4

Cvstatic*manPageViewCommand: commands

Clicking the View button in the Man Pages for Classes
window executes the command specified by this resource. The
argument given is the set of man pages for the classes that are
selected. By default, View displays the most recently generated
man page in a read-only window. The default commands are:

Cvstatic*manPageViewCommand: winterm -H -c man -d

007–2580–003 143

Developer MagicTM: Static Analyzer User’s Guide

Cvstatic*manPageCopyRightMessage: string

Lists standard copyright information. You can customize the
message.

144 007–2580–003

Index

? in current class field, 113

A

access specification, 115, 118
add to call graph, 131, 138
align arglists, 127
align names, 127
All (method and data access) used by

method, 130
all defined view option, 58
annotated scroll bars, 115
another class view selection in class view

admin menu, 121
arcs, 56
argument list, 138
as friend, 126
as friends, 126

B

base classes
sublist, 118

batch command-line option, 34, 74
browser

customizing, 139
browsing directory, 23
by accessing any member of class, 134
by accessing any member used by derived

class, 133
by accessing data members used by derived

class, 133
by accessing data of class, 134
by calling methods of class, 134
by calling methods used by derived class, 133
by data access, 126
by method calls, 126

by modifying data members by derived class, 133
by modifying data of class, 134
by reading data members by derived class, 133

C

call graph submenu, 131
call graph window and, 124

call graph window, 136
call tree view, 55

tutorial, 59
call tree view selection in static analyzer views

menu, 56
change current class selection in class view

admin menu, 121
change fileset command, 25, 36
chooser window

list of classes, 77
class graph window, 134
class queries, 45
class tree view, 15, 62
class tree view selection in static analyzer

views menu, 63
class view, 111

Admin menu, 121
History menu, 124
member list, 115
message area, 113
outline lists, 113
Preference menu, 126
Views menu, 124

clear selection in call graph admin menu, 138
close class view selection in class view admin

menu, 121
close selection of class graph admin menu, 135
common block queries, 46
complete tree view option, 58

007–2580–003 145

Developer MagicTM: Static Analyzer User’s Guide

Constrain button, 66
cross-reference database, 1, 8, 14

creating a project database, 74
index, 34
querying a project database, 75
shared for project, 73

current class
<-This, 117

current class field, 112
customizing

browser resources, 139
cvstatic.fileset, 23, 24, 74
cvstatic.index, 8, 14, 74
cvstatic.posting, 8, 14, 75
cvstatic.xref, 8, 14, 74

D

data access by method, 130
data members, 126

queries, 129
used by current class, 126

data modification by method, 131
data read by method, 131
database

creating for sample session, 83, 99
See "cross-reference database", 1

derived classes
sublist, 118

destroy
class, 132
classes, 126
current class, 125

Directory filter, 66
directory query, 47
double-clicking

call graph node, 138
opening source view, 120
related class list entries, 117

E

edit fileset command, 25
edit fileset selection in static analyzer admin

menu, 83, 101
—sa flag

use in makefiles, 22, 32
Exclude button, 66
exit browser selection in class view admin

menu, 124
external functions filter, 66, 73

F

file dependency view, 15
using to view function calls, 77

file dependency view selection in static
analyzer views menu, 63

File filter, 66
file queries, 44
fileset, , 21, , , , , , ,

changing, 35
creating, 25

by hand, , 28
for sample session, 83, 99
from executable, 29
with a shell script, 71
with command-line option, , 28
with unix find command, 28

custom, 6, 13
customizing for code modules, 72
default, , 5, 13, 24
filename extensions, 25
filenames in, 5, 13
parser mode, 30
pathnames in, 23
personal and project, 74
scanner mode, 30
scanning, , 8, 14, 33
specifications, , 21
specifying with command-line option, 29

146 007–2580–003

Index

updating, 30
using shell expansion characters, 23

fileset command-line option, 75
fileset editor, 25

add files button, 27
browsing directory text area, 26
browsing for contents, , 26
current fileset text area, 25
Directories list, 26
Files list, 26
literal entry, 26
removing entries, , 26
wild card entry, 25

find regular expression selection in the queries\
General submenu, 41

find string selection in the queries\
General submenu, 40

force scan command, 34
force scan selection in queries menu, 19
friend

classes, 126
current class, 126

Function filter, 65
function queries, 43

G

general options
command, 38, 49
dialog box, 38

general options selection in queries menu, 19
general queries, 40
generating man pages for c++ classes, 95
graph overview, 57

H

Headers filter, 66, 73
highlighted

member declaration, 120
method definition, 138

query results, 87, 104
History menu, 50
history menu, class view, 124

I

Include button, 67
included files, searching for, , 23, 34
incremental mode view option, 58

building a tree, 76
inherited methods, 125
instantiate

current class, 125

L

last query button, 113
list all classes selection in the queries\

Classes submenu, 45
list all common blocks selection in the queries\

common blocks submenu, 46
list all constants selection in the queries\

General submenu, 40
list all files selection in the queries\

Files submenu, 44
list all functions selection in the queries\

Function submenu, 43
list all global variables selection in the queries\

Variables submenu, 43
list all header files selection in the queries\

Files submenu, 44
list all macros selection in the queries\

Macro submenu, 41
list all method selection in the queries\

Methods submenu, 45
list all symbols in common block selection in

the queries\
common blocks submenu, 46

list all types selection in the queries\
Types submenu, 46

007–2580–003 147

Developer MagicTM: Static Analyzer User’s Guide

list data of type selection in the queries\
Types submenu, 46

list directories selection in the queries\
Directories submenu, 47

list files selection in the queries\
Directories submenu, 47

list functions of type selection in the queries\
Types submenu, 46

list global symbols selection in the queries\
General submenu, 40

list local declarations selection in the queries\
Function submenu, 44

list matching files selection in the queries\
Files submenu, 44

list methods in class selection in the queries\
Classes submenu, 45

list of classes shown window, 125
list subclasses selection in the queries\

Classes submenu, 45
list superclasses selection in the queries\

Classes submenu, 45
list undefined selection in the queries\

Function submenu, 44
list unused function selection in the queries\

Function submenu, 44
list unused macros selection in the queries\

Macro submenu, 41
list unused variables selection in the queries\

Variables submenu, 43

M

macro queries, 41
man pages

customizing generation, 143
generating for c++ classes, 95

member display submenu, 127
declaration order, 127
end to end sort, 127
name sort, 127

member list, 115
resource, 139

members
types displayed, 86, 103

menu bar
class view, 120

message area
class view, 113

method calls by method, 130
method queries, 45
methods, 126

used by current class, 126
multiple arcs button, 57
multiple inheritance, 118

N

Name filter, 65
new class view, 132
nodes, 56

colors, 58, 63
noindex command-line option, 34

O

outline
customizing display, 139
icons, 114

P

parent classes
multiple inheritance, 118

parser mode, 30
pop-up menus

queries on data members, 129
queries on methods

call graph submenu, 138
what uses submenu, 134

Preference menu, 126
preference menu

148 007–2580–003

Index

align arglists, 127
align names, 127
member display submenu, 127
relation display submenu, 127

private members
access, 116

protected members
access, 116

public members
access, 116

Q

queries, 2, 37
case sensitivity, , 38
commands, 19
defining, , 37
making, , 38
regular expressions, use of, 38
relationship to views, 15
repeating, 49
saving the results of, 50
scope of, 2
search text, 10
starting, 10
target text, 37
types of, 9, 40

query
C++ code and, 104
Queries menu selections, 125
result in static analyzer, 113

query only view option, 58
query results area, 11
query target text area, 10, 37

R

readonly command-line option, 75
Realign button, 57
regular expressions, 23, 38, 65
related class list, 117

resource, 140
relation display submenu, 127

declaration order, 127
end to end sort, 127

remove method in call graph, 131, 138
replace method in call graph, 131, 138
Rescan command, 33
rescan selection in queries menu, 19
resources

customizing browser, 139
results filter, 64

combining filters, , 67
filter types, 65
filtering, 64
seeing scope reduction numbers, 64
setting filters, 66
tutorial, 68
using with large projects, 73

results filter selection in static analyzer admin
menu, 65

Rotate button, 57

S

sample session
ada browser, 99
C++ browser, 83

save graph selection in call graph admin
menu, 138

save graph selection of class graph admin
menu, 135

save query file browser, 50
save query selection in queries menu, 20
save query selection static analyzer admin

menu, 50
scanner mode, 30
scope, 116
Scoping line, 64
scroll bars, annotated, 115
search path, 34
set include path and flags command, 35

007–2580–003 149

Developer MagicTM: Static Analyzer User’s Guide

set include path selection in queries menu, 20
shell expansion characters, 23
show all related selection of class graph views

menu, 136
show all selection of class graph views menu, 135
show arg list toggle in call graph admin

menu, 138
show butterfly” selection of class graph views

menu, 136
show call graph selection in class view views

menu, 124
show containment graph selection in class

view views menu, 124
show friend graph selection in class view

views menu, 124
show in static analyzer button, 113
show inheritance graph selection in class view

views menu, 124
show interaction graph selection in class view

views menu, 124
show previous class selection in class view

history menu, 124
show source, 132
show source where defined data query, 130
sort selection in static analyzer admin menu, 55
Source filter, 66
source view, 3

call graph method mode and, 138
class view member, 120
starting, 49, 55, 59
static analyzer highlights, 49

static analyzer
batch mode, 34
command-line options, 28
executable option, 28
fileset option, 29
group analysis techniques, 73
order of activities, 3
overview, 1
queries, 37
starting command, 28
uses

with large programming projects, 71

using alternate text editors with, 49

T

text view, 53, 76
elements, 54
fields, 54
full and short pathnames, 55
labels, 53
sorting, 13
sorting elements, 55
speed of, 53

to contain
what is used submenu, 126
what uses submenu, 125

tree views, 76
nodes and arcs, 55
options, 58
starting source view, , 59
structure, 55
tutorial, 59

type queries, 46

U

use source view option, 49
using

ada browser, 99
C++ browser, 83

V

variable queries, 41
view controls, 56
viewing source code, , 49
viewport, 15
views, 3, 53

caution in using, 21
relationship to queries, 15

150 007–2580–003

Index

setting scope, 64
suggestions for large projects, 75

views menu, class view, 124

W

what accesses data members, 130
what currently defines method, 132
what declares method, 131
what defines data members, 130
what destroys class, 132
what destroys selection in class view queries

menu, 125
what else defines method, 132
what instantiates class, 132
what instantiates selection in class view queries

menu, 125
what is declared by base class, 132
what is declared selection in class view queries

menu, 125
what is defined by base class, 133
what is defined selection in class view queries

menu, 125
what is destroyed selection in class view

queries menu, 126
what is instantiated selection in class view

queries menu, 126
what is overloaded by derived class, 133
what is overridden by, 125
what is overridden by base class, 133
what is overridden by derived class, 133
what is pure virtual selection in class view

queries menu, 125
what is used by friend class, 133
what is used submenu, 133

in class view queries menu, 126
queries on methods pop-up, 130

what it uses, 134
what modifies data members, 130
what overloads method, 132
what reads data members, 130
what uses friend class, 134

what uses methods, 130
what uses submenu in class view queries

menu, 125
where address taken selection in the queries\

Variables submenu, 43
where allocated selection in the queries\

Variables submenu, 43
where common block defined selection in the

queries\
common blocks submenu, 46

where common block used selection in the
queries\

common blocks submenu, 46
where deallocated selection in the queries\

Variables submenu, 43
where declared? selection in the queries\

Methods submenu, 46
where defined? selection in the queries\

Classes submenu, 45
Function submenu, 43
General submenu, 40
Macro submenu, 41
Methods submenu, 45
Variables submenu, 43

where function used selection in the queries\
Function submenu, 43

where symbol used? selection in the queries\
General submenu, 40

where type defined” selection in the queries\
Types submenu, 46

where type used selection in the queries\
Types submenu, 47

where undefined? selection in the queries\
Macro submenu, 41

who calls? selection in the queries\
Function submenu, 44

who includes? selection in the queries\
Files submenu, 44

who is called by? selection in the queries\
Function submenu, 44

who is included by? selection in the queries\
Files submenu, 45

007–2580–003 151

Developer MagicTM: Static Analyzer User’s Guide

who references? selection in the queries\
Variables submenu, 43

who sets? selection in the queries\
Variables submenu, 43

who uses? selection in the queries\
Macro submenu, 41

working directory, 25
changing, 35

X

Xdefaults file, 49

.xdefaults file , 139

Z

zoom in button, 57
Zoom menu, 57
zoom out button, 57

152 007–2580–003

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-2580-003.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

