
Developer MagicTM: Performance
Analyzer User’s Guide

007–2581–005

St. Peter’s Basilica image courtesy of ENEL SpA and InfoByte SpA. Disk Thrower image courtesy of Xavier Berenguer, Animatica.

Copyright © 1996, 1999 Silicon Graphics, Inc. All Rights Reserved. This manual or parts thereof may not be reproduced in any
form unless permitted by contract or by written permission of Silicon Graphics, Inc.

LIMITED AND RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in the Rights in Data clause at FAR
52.227-14 and/or in similar or successor clauses in the FAR, or in the DOD, DOE or NASA FAR Supplements. Unpublished rights
reserved under the Copyright Laws of the United States. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre
Pkwy., Mountain View, CA 94043-1351.

IRIX and Silicon Graphics are registered trademarks and Developer Magic, ProDev, and the Silicon Graphics logo are trademarks
of Silicon Graphics, Inc. UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company Limited. Vampir is a trademark of Pallas, Inc. X/Open is a trademark of X/Open Company Ltd. The X device
is a trademark of the Open Group.

New Features

Developer MagicTM: Performance Analyzer User’s Guide 007–2581–005

This revision of the Developer Magic: Performance Analyzer User’s Guide is revised to reflect changes for the
ProDev WorkShop 2.8 release, including the ability to trace Message Passing Interface (MPI) routines. Also,
the Tester information has been moved into its own document, the WorkShop Tester User’s Guide,
007–3986–001.

Record of Revision

Version Description

June 1995
Original Printing.

2.7 June 1998
Revised to relect changes for the ProDev WorkShop 2.7 release, including the ability
to present SpeedShop data within WorkShop.

2.8 April 1999
Supports the ProDev WorkShop 2.8 release.

007–2581–005 i

Contents

Page

About This Guide xi

Related Publications . xi

Obtaining Publications . xii

Conventions . xii

Reader Comments . xii

Introduction to the Performance Analyzer [1] 1

Performance Analyzer Overview 1

The Performance Analyzer Tools . 1

Sources of Performance Problems 3

CPU-Bound Processes . 3

I/O-Bound Processes . 4

Memory-Bound Processes . 4

Bugs . 4

Performance Phases in Programs 4

Interpreting Performance Analyzer Results 5

The Time Line Display . 6

Resource Usage Graphs . 7

Usage View (Numerical) . 9

I/O View . 11

MPI Stats View (Graphs) 11

MPI Stats View (Numerical) 13

The Function List Area . 15

Call Graph View . 16

Butterfly View . 17

007–2581–005 iii

Developer MagicTM: Performance Analyzer User’s Guide

Page

Source View with Performance Annotations 18

Disassembled Code with Performance Annotations 19

Leak View, Malloc View, Malloc Error View, and Heap View 20

Memory Leakage . 21

Bad Frees . 21

Call Stack View . 23

Working Set View . 24

Cord Analyzer . 25

Performance Analyzer Tutorial [2] 27

Tutorial Overview . 27

Tutorial Setup . 28

Changing Window Font Size . 29

Analyzing the Performance Data 30

Analyzing Memory Experiments . 38

Finding Memory Leaks . 38

Memory Use Tutorial . 40

Setting Up Performance Analysis Experiments [3] 43

Experiment Setup Overview . 43

Selecting a Performance Task . 44

Setting Sample Traps . 45

Understanding Predefined Tasks . 46

Profiling/PC Sampling . 46

User Time/Callstack Sampling 47

Ideal Time/Pixie . 47

Floating-Point Exception Trace 48

I/O Trace . 49

Memory Leak Trace . 49

R10000 and R12000 Hardware Counters 50

iv 007–2581–005

Contents

Page

Custom . 51

Displaying Data from the Parallel Analyzer 52

Performance Analyzer Reference [4] 53

Selecting Performance Tasks . 53

Specifying a Custom Task . 55

Specifying Data to be Collected 55

Call Stack Profiling . 56

Basic Block Count Sampling 56

PC Profile Counts . 57

Specifying Tracing Data . 58

malloc and free Heap Analysis 58

I/O Operations . 59

Floating-Point Exceptions . 59

MPI Stats Trace . 59

Specifying Polling Data . 60

Pollpoint Sampling . 60

Call Stack Profiling . 60

Specifying the Experiment Configuration 61

Specifying the Experiment Directory 62

Other Options . 62

The Performance Analyzer Main Window 64

Task Field . 65

Function List Display and Controls 65

Usage Chart Area . 67

Time Line Area and Controls . 67

The Time Line Calipers . 68

Current Event Selection . 68

Time Line Scale Menu . 69

007–2581–005 v

Developer MagicTM: Performance Analyzer User’s Guide

Page

Admin Menu . 69

Config Menu . 70

Views Menu . 77

Executable Menu . 79

Thread Menu . 80

Usage View (Graphs) . 80

Charts in the Usage View (Graphs) Window 82

Getting Event Information from the Usage View (Graphs) Window 83

The Process Meter Window . 84

Usage View (Numerical) Window 86

The I/O View Window . 87

The MPI Stats View (Graphs) Window 88

The MPI Stats View (Numerical) Window 90

The Call Graph View Window 91

Special Node Icons . 92

Annotating Nodes and Arcs . 92

Node Annotations . 92

Arc Annotations . 92

Filtering Nodes and Arcs . 92

Call Graph Preferences Filtering Options 93

Node Menu . 93

Selected Nodes Menu . 94

Filtering Nodes through the Display Controls 94

Other Manipulation of the Call Graph 98

Geometric Manipulation through the Control Panel 98

Using the Mouse in the Call Graph View 100

Selecting Nodes from the Function List 100

Butterfly View . 100

Analyzing Memory Problems . 100

vi 007–2581–005

Contents

Page

Using Malloc Error View, Leak View, and Malloc View 101

Analyzing the Memory Map with Heap View 104

Heap View Window . 104

Source View malloc Annotations 107

Saving Heap View Data as Text 107

The Call Stack Window . 108

Analyzing Working Sets . 109

Working Set Analysis Overview 110

Working Set View . 112

DSO List Area . 113

DSO Identification Area . 114

Page Display Area . 115

Admin Menu . 115

Cord Analyzer . 116

Working Set Display Area . 117

Working Set Identification Area 117

Page Display Area . 118

Function List . 118

Admin Menu . 119

File Menu . 119

Glossary [5] 121

Index 125

Figures
Figure 1. Performance Analyzer Main Window 2

Figure 2. Typical Performance Analyzer Time Line 6

Figure 3. Typical Resource Usage Graphs 8

Figure 4. Typical Textual Usage View 10

007–2581–005 vii

Developer MagicTM: Performance Analyzer User’s Guide

Page

Figure 5. I/O View . 11

Figure 6. MPI Statistical Graphs 12

Figure 7. MPI Statistical Text . 14

Figure 8. Typical Performance Analyzer Function List Area 15

Figure 9. Typical Performance Analyzer Call Graph 16

Figure 10. Butterfly View . 17

Figure 11. Detailed Performance Metrics by Source Line 19

Figure 12. Disassembled Code with Stalled Clock Annotations 20

Figure 13. Typical Heap View Display Area 22

Figure 14. Typical Call Stack . 23

Figure 15. Working Set View 24

Figure 16. Cord Analyzer . 25

Figure 17. Performance Analyzer Main Window—arraysum Experiment 31

Figure 18. Usage View (Graphs)—arraysum Experiment 32

Figure 19. Significant Call Stacks in the arraysum Experiment 33

Figure 20. Function List Portion of Performance Analyzer Window 34

Figure 21. Butterfly Version of the Call Graph View 35

Figure 22. Viewing a Program in the Usage View (Numerical) Window 36

Figure 23. Source View with Performance Metrics 37

Figure 24. Performance Analyzer Window Displaying Results of a Memory Experiment . 39

Figure 25. Select Task Submenu 45

Figure 26. Runtime Configuration Dialog Box 62

Figure 27. Typical Function List Area 65

Figure 28. Performance Analyzer Admin Menu 69

Figure 29. Experiment Window 70

Figure 30. Performance Analyzer Data Display Options 72

Figure 31. Performance Analyzer Sort Options 73

viii 007–2581–005

Contents

Page

Figure 32. Performance Analyzer Views Menu 79

Figure 33. Usage View (Graphs) Window 81

Figure 34. The Process Meter Window with Major Menus Displayed 85

Figure 35. The Usage View (Numerical) Window 87

Figure 36. The I/O View Window 88

Figure 37. Call Graph View with Display Controls 91

Figure 38. Node Menus . 93

Figure 39. Chain Dialog Box . 95

Figure 40. Prune Chains Dialog Box 96

Figure 41. Show Important Children Dialog Box 97

Figure 42. Show Important Parents Dialog Box 98

Figure 43. Call Graph View Controls for Geometric Manipulation 99

Figure 44. Malloc Error View Window with an Admin Menu 102

Figure 45. Leak View Window with an Admin Menu 102

Figure 46. Malloc View Window with Admin Menu 103

Figure 47. Source View Window with Memory Analysis Annotations 103

Figure 48. Heap View Window 105

Figure 49. Heap View Save Text Dialog Boxes 108

Figure 50. Performance Analyzer Call Stack Window 109

Figure 51. Working Set Analysis Process 111

Figure 52. Working Set View 113

Figure 53. The Cord Analyzer Window 118

Tables
Table 1. Summary of Performance Analyzer Tasks 54

Table 2. Basic Block Counts and PC Profile Counts Compared 58

Table 3. Call Stack Profiling and PC Profiling Compared 61

Table 4. Task Display in Usage Chart Area 67

007–2581–005 ix

About This Guide

This publication documents the MIPSpro WorkShop Performance Analyzer for
release 2.8, running on IRIX systems.

This release of the WorkShop toolkit requires the following software levels:

• IRIX 6.2 or higher

• MIPSpro compilers version 7.2.1 or higher

• SpeedShop 1.4

Related Publications

The following documents contain additional information that may be helpful:

• SpeedShop User’s Guide

• C Language Reference Manual

• C++ Language System Library

• C++ Language System Overview

• C++ Language System Product Reference Manual

• C++ Programmer’s Guide

• ProDev ProMP User’s Guide

• Developer Magic: Debugger User’s Guide

• Developer Magic: Static Analyzer User’s Guide

• Developer Magic: ProDev WorkShop Overview

• Fortran 77 Language Reference Manual

• MIPSpro 7 Fortran 90 Commands and Directives Reference Manual

• Fortran Language Reference Manual, Volumes 1–3

007–2581–005 xi

Developer MagicTM: Performance Analyzer User’s Guide

Obtaining Publications

Silicon Graphics maintains publications information at the following World
Wide Web site:

http://techpubs.sgi.com/library

The preceding website contains information that allows you to browse
documents online, order documents, and send feedback to Silicon Graphics.

To order a printed Silicon Graphics document, call 1–800–627–9307.

Customers outside of the United States and Canada should contact their local
service organization for ordering and documentation information.

Conventions

The following conventions are used throughout this document:

Convention Meaning

command This fixed-space font denotes literal items such as
commands, files, routines, path names, signals,
messages, and programming language structures.

variable Italic typeface denotes variable entries and words
or concepts being defined.

user input This bold, fixed-space font denotes literal items
that the user enters in interactive sessions.
Output is shown in nonbold, fixed-space font.

[] Brackets enclose optional portions of a command
or directive line.

... Ellipses indicate that a preceding element can be
repeated.

Reader Comments

If you have comments about the technical accuracy, content, or organization of
this document, please tell us. You can contact us in any of the following ways:

• Send us electronic mail at the following address:

techpubs@sgi.com

xii 007–2581–005

About This Guide

• Contact your customer service representative and ask that a PV be filed.

• Call our Software Publications Group in Eagan, Minnesota, through the
Customer Service Call Center, using either of the following numbers:

1–800–950–2729 (toll free from the United States and Canada)

+1–651–683–5600

• Send a facsimile of your comments to the attention of Software Publications
Group in Eagan, Minnesota, at fax number +1–651–683–5599.

We value your comments and will respond to them promptly.

007–2581–005 xiii

Introduction to the Performance Analyzer [1]

The Performance Analyzer helps you understand your program in terms of
performance. If there are areas in which performance can be improved, it helps
you find those areas and make the changes. This chapter provides a brief
introduction to the Performance Analyzer tools and describes how to use them
to solve performance problems. It includes the following sections:

• Performance Analyzer Overview, see Section 1.1, page 1.

• The Performance Analyzer Tools, see Section 1.2, page 1.

• Sources of Performance Problems, see Section 1.3, page 3.

• Interpreting Performance Analyzer Results, see Section 1.4, page 5.

1.1 Performance Analyzer Overview

To conduct performance analysis, you first run an experiment to collect
performance data. Specify the objective of your experiment through a task
menu or with the SpeedShop command ssrun(1). The Performance Analyzer
reads the required data and provides charts, tables, and annotated code to help
you analyze the results.

There are three general techniques for collecting performance data:

• Counting. This involves counting the exact number of times each function
or basic block has been executed. This requires instrumenting the program;
that is, inserting code into the executable to collect counts.

• Profiling. The program’s program counter (PC), call stack, and/or resource
consumption are periodically examined and recorded. For a list of resources,
see Section 1.4.2, page 7.

• Tracing. Events that impact performance, such as reads and writes, system
calls, floating-point exceptions, and memory allocations, reallocations, and
frees, can be traced.

1.2 The Performance Analyzer Tools

This section describes the major windows in the Performance Analyzer toolset.
The main window (see Figure 1, page 2) contains the following major areas:

007–2581–005 1

Developer MagicTM: Performance Analyzer User’s Guide

• The function list area, which shows functions with their performance metrics.

• The system resource usage chart, which shows the mode of the program at
any time.

• The time line, which shows when sample events occur in the experiment
and controls the scope of analysis for the Performance Analyzer views.

Current performance
task

Function list area

Scrollable legend
for usage chart

Usage chart

Time line area

Figure 1. Performance Analyzer Main Window

2 007–2581–005

Introduction to the Performance Analyzer [1]

Supplemental views bring up their own windows. For more information, see
Section 1.4, page 5, and the subsections that follow.

1.3 Sources of Performance Problems

To tune a program’s performance, you must determine its consumption of
machine resources. At any point in a process, there is one limiting resource
controlling the speed of execution. Processes can be slowed down by:

• CPU speed and availability

• I/O processing

• Memory size and availability

• Bugs

• Instruction cache and data cache sizes

• Any of the preceding in different phases

The following sections describe these sources of performance problems in more
detail. Cache issues are mentioned in the CPU speed and availability, I/O
processing, and memory size and availability descriptions.

1.3.1 CPU-Bound Processes

A CPU-bound process spends its time executing in the CPU and is limited by
CPU speed and availability. To improve the performance of CPU-bound
processes, you may need to streamline your code. This can entail modifying
algorithms, reordering code to avoid interlocks, removing nonessential steps,
blocking to keep data in cache and registers, or using alternative algorithms.

007–2581–005 3

Developer MagicTM: Performance Analyzer User’s Guide

1.3.2 I/O-Bound Processes

An I/O-bound process has to wait for input/output (I/O) to complete. I/O may
be limited by disk access speeds or memory caching. To improve the
performance of I/O-bound processes, you can try one of the following
techniques:

• Improve overlap of I/O with computation

• Optimize data usage to minimize disk access

• Use data compression

1.3.3 Memory-Bound Processes

A program that continuously needs to swap out pages of memory is called
memory-bound. Page thrashing is often due to accessing virtual memory on a
haphazard rather than strategic basis; cache misses result. Insufficient memory
bandwidth could also be the problem.

To fix a memory-bound process, you can try to improve the memory reference
patterns or, if possible, decrease the memory used by the program.

1.3.4 Bugs

You may find that a bug is causing the performance problem. For example, you
may find that you are reading in the same file twice in different parts of the
program, that floating-point exceptions are slowing down your program, that
old code has not been completely removed, or that you are leaking memory
(making malloc calls without the corresponding calls to free).

1.3.5 Performance Phases in Programs

Because programs exhibit different behavior during different phases of
operation, you need to identify the limiting resource during each phase. A
program can be I/O-bound while it reads in data, CPU-bound while it
performs computation, and I/O-bound again in its final stage while it writes
out data. Once you’ve identified the limiting resource in a phase, you can
perform an in-depth analysis to find the problem. And after you have solved
that problem, you can check for other problems within the phase. Performance
analysis is an iterative process.

4 007–2581–005

Introduction to the Performance Analyzer [1]

1.4 Interpreting Performance Analyzer Results

Before we discuss the mechanics of using the Performance Analyzer, let’s look
at these features that help you understand the behavior of your processes:

• The time line display shows the experiment as a set of events over time and
provides caliper markers to let you specify an interval of interest. See the
following section, and for more information, see Section 4.4.4, page 67.

• The Usage View (Graphs) displays process resource usage data, such as
what the program is doing at any time, the amount of data read and
written, the memory size of the program, and so on. The data is presented
in the form of graphs. See Section 1.4.2, page 7.

• The Usage View (Numerical) presents a textual display of the process
and system-wide resource usage data. See Section 1.4.3, page 9.

• The I/O View displays a chart of the number of bytes for each I/O transfer.
See Section 1.4.4, page 11.

• The MPI Stats View (Graphs) displays data in a graphical format for
multiprocessor programs using the Message Passing Interface (MPI). See
Section 1.4.5, page 11.

• The MPI Stats View (Numerical) displays MPI data in text format.
See Section 1.4.6, page 13.

• The function list area displays the program’s functions with associated
performance metrics. See Section 1.4.7, page 15.

• The Call Graph View presents the target program as nodes and arcs,
along with associated metrics. See Section 1.4.8, page 16.

• The Butterfly View presents a selected function along with the functions
that called it and the functions that it called. See Section 1.4.9, page 17.

• Source View with performance annotations, see Section 1.4.10, page 18.

• Disassembled Source with performance annotations, see Section 1.4.11,
page 19.

• Malloc Error View, Leak View, Malloc View, and Heap View, see
Section 1.4.12, page 20.

• The Call Stack View shows the path through functions that led to an
event. See Section 1.4.13, page 23.

007–2581–005 5

Developer MagicTM: Performance Analyzer User’s Guide

• The Working Set View displays a list of the DSOs in the program, with
information on the efficiency of use of the text (instruction) pages. See
Section 1.4.14, page 24.

• The cord analyzer lets you explore the working set behavior of an
executable or DOS. See Section 1.4.15, page 25.

The following sections describe these features in more detail.

1.4.1 The Time Line Display

Have you ever considered timing a program with a stopwatch? The
Performance Analyzer time line serves the same function. The time line shows
where each sample event in the experiment occurred. By setting sample traps at
phase boundaries, you can analyze metrics on a phase-by-phase basis. The
simplest metric, time, is easily recognized as the space between events. The
triangular icons are calipers; they let you set the scope of analysis to the
interval between the selected events.

Figure 2 shows the time line portion of the Performance Analyzer window with
typical results. Event number 4 is selected; it is labeled according to the caliper
number, third. You can see from the graph that the phase between the
selected event and event number 5 is taking more of the program’s time than
any of the other phases.

Left caliper

Current event marker

Left caliper controls

Right caliper controls

Selected event controls

Time line scale menu

Figure 2. Typical Performance Analyzer Time Line

6 007–2581–005

Introduction to the Performance Analyzer [1]

1.4.2 Resource Usage Graphs

The Performance Analyzer lets you look at how different resources are
consumed over time. It produces a number of resource usage graphs that are
tied to the time line (see Figure 3, page 8, which shows five of the graphs
available). These resource usage graphs indicate trends and let you pinpoint
problems within phases.

Resource usage data refers to items that consume system resources. They
include:

• The state of the program at any given time. (The states include running in
user mode, running in system mode, waiting in the CPU queue, and so on.)

• Page faults.

• Context switches, or when one job is replaced in the CPU by another job.

• The size of reads and writes.

• Read and write counts.

• Poll and I/O calls. (See the poll(2), ioctl(2), and streamio(7) man pages
for more information on what this chart measures.)

• Total system calls.

• Process signals received.

• Process size in memory.

007–2581–005 7

Developer MagicTM: Performance Analyzer User’s Guide

System usage

Page faults

Context switches

Reads/writes:
data size

Reads/writes:
number calls

Figure 3. Typical Resource Usage Graphs

8 007–2581–005

Introduction to the Performance Analyzer [1]

Resource usage data is recorded periodically: by default, every second. If you
discover inconsistent behavior within a phase, you can change the interval and
break the phase down into smaller phases.

You can analyze resource usage trends in the charts in Usage View (Graphs)
and can view the numerical values in the Usage View (Numerical) window.

1.4.3 Usage View (Numerical)

The usage graphs show the patterns; the textual usage views let you view the
aggregate values for the interval specified by the time line calipers. Figure 4,
page 10, shows a typical Usage View (Numerical) window.

007–2581–005 9

Developer MagicTM: Performance Analyzer User’s Guide

Analysis interval

Process metrics

System-wide
metrics

Figure 4. Typical Textual Usage View

10 007–2581–005

Introduction to the Performance Analyzer [1]

1.4.4 I/O View

I/O View helps you determine the problems in an I/O-bound process. It
produces a graph of all I/O system calls and identifies up to 10 files involved in
I/O. By selecting an event with the left mouse button, you can display the call
stack corresponding to the event in the Call Stack View. See Figure 5.

Event identification field

File field

I/O system call chart

Figure 5. I/O View

1.4.5 MPI Stats View (Graphs)

If you are running a multiprocessor program that uses the Message Passing
Interface (MPI), the MPI Stats View (Graphs) view can help you tune
your program. The graphs display data from the complete program.

Both the graphs view and the numerical view (see the following section) use
data collected by the MPI library and recorded by SpeedShop. Versions of the
MPI library older than MPT 1.3 do not provide the data needed by these views.
The MPI statistical data is recorded as part of the resource usage data, so the
interval between resource usage samples is also the interval between MPI
statistical samples.

The following figure shows the graphs from a large MPI program.

007–2581–005 11

Developer MagicTM: Performance Analyzer User’s Guide

Figure 6. MPI Statistical Graphs

12 007–2581–005

Introduction to the Performance Analyzer [1]

1.4.6 MPI Stats View (Numerical)

The MPI Stats View (Numerical) display gives you MPI data in text
format, rather than graph format. It is a more precise measurement than the
MPI Stats View (Graphs) display. The following figure shows the numeric
version of the MPI statistics.

007–2581–005 13

Developer MagicTM: Performance Analyzer User’s Guide

Figure 7. MPI Statistical Text

14 007–2581–005

Introduction to the Performance Analyzer [1]

1.4.7 The Function List Area

The function list area displays all functions in the source code, annotated by
performance metrics and ranked by the criterion of your choice, such as counts
or one of the time metrics. Figure 8 shows an example of the function list,
ranked by inclusive CPU time.

Function name

Performance metrics

Figure 8. Typical Performance Analyzer Function List Area

You can configure how functions appear in the function list area by selecting
Preferences... in the Config menu. It lets you select which performance
metrics display, whether they display as percentages or absolute values, and the
style of the function name. The Sort... selection in the Config menu lets
you order the functions in the list by the selected metric. Both selections disable
those metric selections that were not collected in the current experiment.

007–2581–005 15

Developer MagicTM: Performance Analyzer User’s Guide

1.4.8 Call Graph View

In contrast to the function list, which provides the performance metrics for
functions, the call graph puts this information into context by showing you the
relationship between functions. The call graph displays functions as nodes and
calls as arcs (displayed as lines between the nodes). The nodes are annotated
with the performance metrics; the arcs come with counts by default and can
include other metrics as well.

In Figure 9, for example, the inclusive time spent by the function main is 8.107
seconds. Its exclusive time was 0 seconds, meaning that the time was actually
spent in called functions. The main function can potentially call three functions.
The Call Graph View indicates that in the experiment, main called three
functions: getArray, which consumed 1.972 seconds; sum1, which consumed
3.287 seconds; and sum2, which consumed 2.848 seconds.

Inclusive time
in getArray

Inclusive time
in main

Inclusive time
in sum2

Figure 9. Typical Performance Analyzer Call Graph

16 007–2581–005

Introduction to the Performance Analyzer [1]

1.4.9 Butterfly View

The Butterfly View shows a selected routine in the context of functions that
called it and functions it called. For an illustration, see Figure 10.

Figure 10. Butterfly View

007–2581–005 17

Developer MagicTM: Performance Analyzer User’s Guide

Select a function to be analyzed by clicking on it in the function list area of the
main Performance Analyzer window. The Butterfly View window displays
the function you click on as the selected function.

The two main parts of the Butterfly View window identify the immediate
parents and the immediate children of the selected function. In this case, the
term immediate means they either call the selected function directly or are called
by it directly.

The columns of data in the illustration show:

• The percentage of the sort key (inclusive time, in the illustration) attributed
to each caller or callee.

• The time the function and any functions it called required to execute.

• The time the function alone (excluding other functions it called) required to
execute.

You can also display the address from which each function was called by
selecting the Show All Arcs Individually from the Config menu.

1.4.10 Source View with Performance Annotations

The Performance Analyzer lets you view performance metrics by source line in
the Source View (see Figure 11, page 19) or by machine instruction in the
Disassembled Source view. Displaying performance metrics is set in the
Preferences dialog box, accessed from the Display menu in the Source
View and Disassembled Source view. The Performance Analyzer sets
thresholds to flag lines that consume more than 90% of a total resource. These
indicators appear in the metrics column and on the scroll bar.

18 007–2581–005

Introduction to the Performance Analyzer [1]

Performance metrics

Source display area

Threshold flags

Figure 11. Detailed Performance Metrics by Source Line

1.4.11 Disassembled Code with Performance Annotations

The Performance Analyzer also lets you view performance metrics by machine
instruction (see Figure 12, page 20). You can view any of the performance
metrics that were measured in your experiment. If you ran an Ideal
Time/Pixie experiment, you can get a special three-part annotation that
provides information about stalled instructions.

The yellow bar spanning the top of three columns in this annotation indicates
the first instruction in each basic block. The first column labeled Clock in the
annotation displays the clock number in which the instruction issues relative to
the start of a basic block. If you see clock numbers replaced by quotation marks
(“), it means that multiple instructions were issued in the same cycle. The
column labeled Stall shows how many clocks elapsed during the stall before
the instruction was issued. The column labeled Why shows the reason for the
stall. There are three possibilities:

• B - Branch delay

007–2581–005 19

Developer MagicTM: Performance Analyzer User’s Guide

• F - Function unit delay

• O - Operand has not arrived yet

Yellow bars
indicating
span of
basic block

Figure 12. Disassembled Code with Stalled Clock Annotations

1.4.12 Leak View, Malloc View, Malloc Error View, and Heap View

The Performance Analyzer lets you look for memory problems. The Leak
View, Malloc View, Malloc Error View, and Heap View windows
address two common types of memory problems that can inhibit performance:

• Memory leakage, see Section 1.4.12.1, page 21

• Bad calls to free, see Section 1.4.12.2, page 21.

The difference between these windows lies in the set of data that they collect.
Malloc Error View displays all malloc errors. When you run a memory
leak experiment and problems are found, a dialog box displays suggesting you
use Malloc Error View to see the problems. Leak View shows memory
leak errors only. Malloc View shows each malloc operation whether faulty
or not. Heap View displays a map of heap memory that indicates where both
problems and normal memory allocations occur and can tie allocations to
memory addresses. The first two views are better for focusing on problems; the
latter two views show the big picture.

20 007–2581–005

Introduction to the Performance Analyzer [1]

1.4.12.1 Memory Leakage

Memory leakage occurs when a program dynamically allocates memory and
fails to deallocate that memory when it is through using the space. This causes
the program size to increase continuously as the process runs. A simple
indicator of this condition is the Total Size strip chart on the Usage View
(Graphs) window. The strip chart only indicates the size; it does not show the
reasons for an increase.

Leak View displays each memory leak in the executable, its size, the number
of times the leak occurred at that location, and the corresponding call stack
(when you select the leak), and is thus the most appropriate view for focusing
on memory leaks.

A region allocated but not freed is not necessarily a leak. If the calipers are not
set to cover the entire experiment, the allocated region may still be in use later
in the experiment. In fact, even when the calipers cover the entire experiment,
it is not necessarily wrong if the program does not explicitly free memory
before exiting, since all memory is freed anyway on program termination.

The best way to look for leaks is to set sample points to bracket a specific
operation that should have no effect on allocated memory. Then any area that is
allocated but not freed is a leak.

1.4.12.2 Bad Frees

A bad free (also referred to as an anti-leak condition) occurs when a program
frees some structure that it had already freed. In many such cases, a subsequent
reference picks up a meaningless pointer, causing a segmentation violation. Bad
calls to free are indicated in both Malloc Error View and in Heap View.
Heap View identifies redundant calls to free in its memory map display. It
helps you find the address of the freed structure, search for the malloc event
that created it, and find the free event that released it. Hopefully, you can
determine why it was prematurely freed or why a pointer to it was referenced
after it had been freed.

Heap View also identifies unmatched calls to free in an information window.
An unmatched free is a free that does not have a corresponding allocation in
the same interval. As with leaks, the caliper settings may cause false
indications. An unmatched free that occurs in any region not starting at the
beginning of the experiment may not be an error. The region may have been
allocated before the current interval and the unmatched free in the current
interval may not be a problem after all. A segment identified as a bad free is
definitely a problem; it has been freed more than once in the same interval.

007–2581–005 21

Developer MagicTM: Performance Analyzer User’s Guide

A search facility is provided in Heap View that allows the user to find the
allocation and deallocation events for all blocks containing a particular virtual
address.

The Heap View window lets you analyze memory allocation and deallocation
between selected sample events in your experiment. Heap View displays a
memory map that indicates calls to malloc and realloc, bad deallocations,
and valid deallocations during the selected period, as shown in Figure 13.
Clicking an area in the memory map displays the address.

Figure 13. Typical Heap View Display Area

22 007–2581–005

Introduction to the Performance Analyzer [1]

1.4.13 Call Stack View

The Performance Analyzer allows you to recall call stacks at sample events,
which helps you reconstruct the calls leading up to an event so that you can
relate the event back to your code. Figure 14 shows a typical call stack. It
corresponds to sample event #3 in an experiment.

Event identification

Call stack at
selected event

Event type

Figure 14. Typical Call Stack

007–2581–005 23

Developer MagicTM: Performance Analyzer User’s Guide

1.4.14 Working Set View

Working Set View measures the coverage of the dynamic shared objects
(DSOs) that make up your executable (see Figure 15). It indicates instructions,
functions, and pages that were not used when the experiment was run. It
shows the coverage results for each DSO in the DSO list area. Clicking a DSO in
the list displays its pages with color coding to indicate the coverage of the page.

DSO list area

DSO identification
area

Page display area
(for selected DSO)

Figure 15. Working Set View

24 007–2581–005

Introduction to the Performance Analyzer [1]

1.4.15 Cord Analyzer

The cord analyzer is not actually part of the Performance Analyzer and is
invoked by typing sscord at the command line. The cord analyzer (see Figure
16) lets you explore the working set behavior of an executable or dynamic
shared library (DSO). With it you can construct a feedback file for input to
cord to generate an executable with improved working-set behavior.

Status area

Working set
display area

Working set
identification area

Page display area
(for selected working set)

Figure 16. Cord Analyzer

007–2581–005 25

Performance Analyzer Tutorial [2]

This chapter presents a tutorial for using the Performance Analyzer and covers
these topics:

• Tutorial Overview, see Section 2.1, page 27

• Tutorial Setup, see Section 2.2, page 28

• Analyzing the Performance Data, see Section 2.3, page 30

• Analyzing Memory through Experiments, see Section 2.4, page 38.

Note: Because of inherent differences between systems and to concurrent
processes that may be running on your system, your experiments will
produce different results from the ones in this tutorial. However, the basic
form of the results should be the same.

2.1 Tutorial Overview

This tutorial is based on a sample program called arraysum. The arraysum
program goes through the following steps:

1. Defines the size of an array (2,000 by 2,000).

2. Creates a 2,000-by-2,000 element array, gets the size of the array, and reads
in the elements.

3. Calculates the array total by adding up elements in each column.

4. Recalculates the array total differently, by adding up elements in each row.

It is more efficient to add the elements in an array row-by-row, as in step 4, than
column-by-column, as in step 3. Because the elements in an array are stored
sequentially by rows, adding the elements by columns potentially causes page
faults and cache misses. The tutorial shows you how you can detect symptoms
of problems like this and then zero in on the problem. The source code is
located in /usr/demos/WorkShop/performance if you want to examine it.

007–2581–005 27

Developer MagicTM: Performance Analyzer User’s Guide

2.2 Tutorial Setup

You need to compile the program first so that you can use it in the tutorial.

1. Change to the /usr/demos/WorkShop/performance directory.

You can run the experiment in this directory or set up your own directory.

2. Compile the arraysum.c file by entering the following:

make arraysum

This will provide you with an executable for the experiment, if one does
not already exist.

3. From the command line, enter the following:

cvd arraysum &

The Debugger Main View window is displayed. You need the Debugger
to specify the data to be collected and to run the experiment. (If you want
to change the font in a WorkShop window, see Section 2.2.1, page 29.)

4. Choose User Time/Callstack Sampling from the Select Task
submenu in the Perf menu.

This is a performance task that will return the time your program is
actually running and the time the operating system spends performing
services such as I/O and executing system calls. It includes the time spent
in each function.

5. If you want to watch the progress of the experiment, choose Execution
View in the Views menu. Then click Run in the Debugger Main View
window.

This starts the experiment. When the status line indicates that the process
has terminated, the experiment has completed. The main Performance
Analyzer window is displayed automatically. The experiment may take 1 to
3 minutes, depending on your system. The output file will appear in a
newly created directory, named test0000.

You can also generate an experiment using the ssrun(1) command with the
-workshop option, naming the output file on the cvperf(1) command. In the
following example, the output file from ssrun is
arraysum.usertime.m2344.

% ssrun -workshop -usertime arraysum

% cvperf arraysum.usertime.m2344

28 007–2581–005

Performance Analyzer Tutorial [2]

If you are analyzing your experiment on the same machine you generated it on,
you do not need the -workshop option. If the
_SPEEDSHOP_OUTPUT_FILENAME environment variable is set to a file name,
such as my_prog, the experiment file from the example above would be
my_prog.m2345. See the ssrun(1) man page or the Speedshop User’s Guide for
more SpeedShop environment variables.

2.2.1 Changing Window Font Size

If you want to change the font size on a WorkShop window, you can do so in
your .Xresources or .Xdefaults file. Follow this procedure:

1. Enter the command editres(1) to get the names of the WorkShop window
widgets.

2. Add lines such as the following to your .Xresources or .Xdefaults file:

cvmain*fontList: 6x13

cvmain*tabPanel*fontList: fixed

cvmain*popup_optionMenu*fontList: fixed

cvmain*canvasPopup*fontList: 6x13

cvmain*tabLabel.fontList: 6x13

cvmain*help*fontList: 6x13

cvmain*UiOverWindowLabel*fontList: 6x13

cvmp*fontList: 6x13

The first changes the main window font, and the others change fonts more
selectively.

3. Enter the command xrdb(1) to update the windows.

007–2581–005 29

Developer MagicTM: Performance Analyzer User’s Guide

2.3 Analyzing the Performance Data

Performance analysis experiments are set up and run in the Debugger window;
the data is analyzed in the main Performance Analyzer window. The
Performance Analyzer can display any data generated by the ssrun(1)
command, by any of the Debugger window performance tasks (which use the
ssrun(1) command), or by pixie(1).

Note: Again, the timings and displays shown in this tutorial could be quite
different from those on your system. For example, setting caliper points in the
time line may not give you the same results as those shown in the tutorial,
because the program will probably run at a different speed on your system.

1. Examine the main Performance Analyzer window, which is invoked
automatically if you created your experiment file from the cvd window.

The Performance Analyzer window now displays the information from the
new experiment (see Figure 17, page 31).

2. Look at the usage chart in the Performance Analyzer window.

The first phase is I/O-intensive. The second phase, during which the
calculations took place, shows high user time.

3. Select Usage View (Graphs) from the Views menu.

The Usage View (Graphs) window displays as in Figure 18, page 32. It
shows high read activity and high system calls in the first phase, confirming
our hypothesis that it is I/O-intensive.

30 007–2581–005

Performance Analyzer Tutorial [2]

Function list
area

Usage chart
area

Time line
area

Event selector
control

Figure 17. Performance Analyzer Main Window—arraysum Experiment

007–2581–005 31

Developer MagicTM: Performance Analyzer User’s Guide

Page faults

Context switches

Size of data
read/written

Counts of data
read/written

Poll and I/O calls

System calls

Process signals

Process size

Figure 18. Usage View (Graphs)—arraysum Experiment

As a side note, scroll down to the last chart, which indicates that the
maximum total size of the process is reached at the end of the first phase
and does not grow thereafter.

32 007–2581–005

Performance Analyzer Tutorial [2]

4. Select Call Stack View from the Views menu.

The call stack displays for the selected event. An event refers to a sample
point on the time line (or any usage chart).

At this point, no events have been selected so the call stack is empty. To
define events, you can add calls to ssrt_caliper_point to record caliper
points in the source file, set a sample trap from the WorkShop Debugger
window, or set pollpoint calipers on the time line. (For more information on
the ssrt_caliber_point function, see the ssapi(3) man page.) See
Figure 19 for an illustration of how the Call Stack View responds when
various caliper points are recorded.

Figure 19. Significant Call Stacks in the arraysum Experiment

007–2581–005 33

Developer MagicTM: Performance Analyzer User’s Guide

5. Return to the Performance Analyzer window and pull down the sash to
expose the complete function list (see Figure 20).

This shows the inclusive time (that is, time spent in the function and its
called functions) and exclusive time (time in the function itself only) for
each function. As you can see, more time is spent in sum1 than in sum2.

Figure 20. Function List Portion of Performance Analyzer Window

6. Select Call Graph from the Views menu and click on the Butterfly
button.

The call graph provides an alternate means of viewing function
performance data. It also shows relationships, that is, which functions call
which functions. After the Butterfly button is clicked, the Call Graph
View window appears, as shown in Figure 21, page 35. The Butterfly
button takes the selected function (or most active function if none is
selected) and displays it with the functions that call it and those that it calls.

34 007–2581–005

Performance Analyzer Tutorial [2]

Figure 21. Butterfly Version of the Call Graph View

7. Select Close from the Admin menu in the Call Graph View window to
close it. Return to the main Performance Analyzer window.

8. Select Usage View (Numerical) from the Views menu.

The Usage View (Numerical) window appears as shown in Figure 22,
page 36.

007–2581–005 35

Developer MagicTM: Performance Analyzer User’s Guide

Figure 22. Viewing a Program in the Usage View (Numerical) Window

9. Return to the main Performance Analyzer window, select sum1 from the
function list, and click Source.

The Source View window displays as shown in Figure 23, page 37,
scrolled to sum1, the selected function. The annotation column to the left of

36 007–2581–005

Performance Analyzer Tutorial [2]

the display area shows the performance metrics by line. Lines consuming
more than 90% of a particular resource appear with highlighted annotations.

Notice that the line where the total is computed in sum1 is seen to be the
culprit, consuming 2,100 milliseconds. As in the other WorkShop tools, you
can make corrections in Source View, recompile, and try out your
changes.

sum1 entry point

Significant time
consumption

Exclusive time
column annotations

Inclusive time
column annotations

Figure 23. Source View with Performance Metrics

At this point, we have uncovered one performance problem: the sum1
algorithm is inefficient. As a side exercise, you may want to take a look at
the performance metrics at the assembly level. To do this, return to the
main Performance Analyzer window, select sum1 from the function list, and
click Disassembled Source. The disassembly view displays the
assembly language version of the program with the performance metrics in
the annotation column.

10. Close any windows that are still open.

This concludes the tutorial.

007–2581–005 37

Developer MagicTM: Performance Analyzer User’s Guide

2.4 Analyzing Memory Experiments

Memory experiments give you information on what kinds of memory errors are
happening in your program and where they are occurring.

The first tutorial finds memory leaks, situations in which memory allocations
are not matched by deallocations.

The second tutorial (see Section 2.4.2, page 40) analyzes memory use.

2.4.1 Finding Memory Leaks

To look for memory leaks (see the glossary) or bad free routines, or to perform
other analysis of memory allocation, run a Performance Analyzer experiment
with Memory Leak Trace specified as the experiment task. You run a
memory corruption experiment like any performance analysis experiment, by
clicking Run in the Debugger Main View. The Performance Analyzer keeps
track of each malloc (memory allocation), realloc (reallocation of memory),
and free (deallocating memory). The general steps in running a memory
experiment are as follows:

1. Display the WorkShop Debugger, including the executable file (generic, in
this case, from the /usr/demos/SpeedShop directory) as an argument.

cvd generic &

2. Specify Memory Leak Trace as the experiment task.

Memory Leak Trace is a selection on the Perf menu.

3. Run the experiment.

You run experiments by clicking the Run button.

4. The Performance Analyzer window is displayed automatically with the
experiment information.

The Performance Analyzer window displays results appropriate to the
task selected. Figure 24, page 39, shows the Performance Analyzer
window after a memory experiment.

38 007–2581–005

Performance Analyzer Tutorial [2]

Experiment identifier

Function list showing
leaks by function

Process size
chart legend

Process size chart

Figure 24. Performance Analyzer Window Displaying Results of a Memory Experiment

The function list displays inclusive and exclusive bytes leaked and allocated
with malloc per function. Clicking Source brings up the Source View,
which displays the function’s source code annotated with bytes leaked and
allocated by malloc. You can set other annotations in Source View and

007–2581–005 39

Developer MagicTM: Performance Analyzer User’s Guide

the function list by choosing Preferences... from the Config menu in
the Performance Analyzer window and selecting the desired items.

5. Analyze the results of the experiment in Leak View when doing leak
detection and Malloc Error View when performing broader memory
allocation analysis. To see all memory operations, whether problems or not,
use Malloc View. To view memory problems within the memory map,
use Heap View.

2.4.2 Memory Use Tutorial

In this tutorial, you will run an experiment to analyze memory use. The
program generates memory problems that you can detect using the
Performance Analyzer and the following instructions:

1. Go to the /usr/demos/WorkShop/mallocbug directory. The executable
mallocbug was compiled as follows:

cc -g -o mallocbug mallocbug.c -lc

2. Invoke the Debugger by typing:

cvd mallocbug

3. Bring up a list of the performance tasks by selecting Select Task from
the Perf menu.

4. Select Memory Leak Trace from the menu and click Run to begin the
experiment. The program runs quickly and terminates.

5. The Performance Analyzer window appears automatically. A dialog
box indicating malloc errors displays also.

6. Select Malloc View from the Performance Analyzer Views menu.

The Malloc View window displays, indicating two malloc locations.

7. Select Malloc Error View from the Performance Analyzer Views menu.

The Malloc Error View window displays, showing one problem, a bad
free, and its associated call stack. This problem occurred 99 times

8. Select Leak View from the Performance Analyzer Views menu.

The Leak View window displays, showing one leak and its associated call
stack. This leak occurred 99 times for a total of 99,000 leaked bytes.

40 007–2581–005

Performance Analyzer Tutorial [2]

9. Double-click the function foo in the call stack area.

The Source View window displays, showing the function’s code,
annotated by the exclusive and inclusive leaks and the exclusive and
inclusive calls to malloc.

10. Select Heap View from the Performance Analyzer Views menu.

The Heap View window displays the heap size and other information at
the top. The heap map area of the window shows the heap map as a
continuous, wrapping horizontal rectangle. The rectangle is broken up into
color-coded segments, according to memory use status. The color key at the
top of the heap map area identifies memory usage as malloc, realloc,
free, or an error, or bad free. Notice also that color-coded indicators
showing malloc, realloc, and bad free routines are displayed in the
scroll bar trough. At the bottom of the heap map area are: the Search
field, for identifying or finding memory locations; the Malloc Errors
button, for finding memory problems; a Zoom In button (upward pointing
arrow) and a Zoom Out button (downward pointing arrow).

The event list area and the call stack area are at the bottom of the window.
Clicking any event in the heap map area displays the appropriate
information in these fields.

11. Click on any memory block in the heap map.

The beginning memory address appears in theSearch field. The event
information displays in the event list area. The call stack information for
the last event appears in the call stack area.

12. Select other memory blocks to try out this feature.

As you select other blocks, the data at the bottom of the Heap View
window changes.

13. Double-click on a frame in the call stack area.

A Source View window comes up with the corresponding source code
displayed.

14. Close the Source View window.

15. Click the Malloc Errors button.

The data in the Heap View information window changes to display
memory problems. Note that a free may be unmatched within the analysis
interval, yet it may have a corresponding free outside of the interval.

007–2581–005 41

Developer MagicTM: Performance Analyzer User’s Guide

16. Click Close to leave the Heap View window.

17. Select Exit from the Admin menu in any open window to end the
experiment.

42 007–2581–005

Setting Up Performance Analysis
Experiments [3]

In performance analysis, you set up the experiment, run the executable, and
analyze the results. To make setup easier, the Performance Analyzer provides
predefined tasks that help you establish an objective and ensure that the
appropriate performance data will be collected. This chapter tells you how to
conduct performance tasks and what to look for.

It covers these topics:

• Experiment Setup Overview, see Section 3.1, page 43.

• Selecting a Performance Task, see Section 3.2, page 44.

• Setting Sample Traps, see Section 3.3, page 45.

• Understanding Predefined Tasks, see Section 3.4, page 46.

• Displaying Data from the Parallel Analyzer, see Section 3.5, page 52.

3.1 Experiment Setup Overview

Performance tuning typically consists of examining machine resource usage,
breaking down the process into phases, identifying the resource bottleneck
within each phase, and correcting the cause. Generally, you run the first
experiment to break your program down into phases and run subsequent
experiments to examine each phase individually. After you have solved a
problem in a phase, you should then reexamine machine resource usage to see
if there is further opportunity for performance improvement.

Each experiment has these steps:

1. Specify the performance task.

The Performance Analyzer provides predefined tasks for conducting
experiments. When you select a task, the Performance Analyzer
automatically enables the appropriate performance data items for collection.

The predefined tasks ensure that only the appropriate data collection is
enabled. Selecting too much data can bog down the experiment and skew
the data for collection. If you need a mix of performance data not available

007–2581–005 43

Developer MagicTM: Performance Analyzer User’s Guide

in the predefined tasks, you can select Custom from the Select Task
submenu. It lets you enable combinations of the data collection options.

2. Specify where to capture the data.

If you want to gather information for the complete program, this step is not
needed. If you want data at specific points in the process, you need to set
sample traps. See Section 3.3, page 45, for a brief description of traps or
Chapter 5, “Setting Traps,” in the Developer Magic: Debugger User’s Guide for
an in-depth discussion.

The Performance Analyzer records samples at the beginning and end of the
process automatically. If you want to analyze data within phases, set
sample traps at the beginning of each phase and at intermediate points.

3. Specify the experiment configuration parameters.

This step is not necessary if you use the defaults; if you want to make
configuration changes, select Configs from the Perf menu. The dialog
box lets you specify a number of configuration options, many of which
depend on the experiment you plan to run. The dialog box in Figure 26,
page 62, shows the runtime configuration choices, and the options are
described in Section 4.3, page 61.

4. Run the program to collect the data.

You run the experiment from the WorkShop Debugger window. If you are
running a small experiment to capture resource usage, you may be able to
watch the experiment in real time in the Process Meter. SpeedShop stores
the results in the designated experiment subdirectory.

5. Analyze the results.

After the experiment completes, you can look at the results in the
Performance Analyzer window and its associated views. Use the calipers to
get information for phases separately.

3.2 Selecting a Performance Task

To set up a Performance Analyzer experiment, choose a task from the Select
Task submenu in the Perf menu in the WorkShop Debugger window (see
Figure 25, page 45).

44 007–2581–005

Setting Up Performance Analysis Experiments [3]

Figure 25. Select Task Submenu

Selecting a task enables data collection. The mode indicator in the upper right
corner of the WorkShop Debugger window changes from Debug Only to
Performance.

3.3 Setting Sample Traps

Sample traps allow you to record data when a specified condition occurs. You
set traps from the WorkShop Debugger window: choose either the Trap
Manager or the Source View from the Views menu. For a thorough
discussion of setting traps, see Chapter 5, “Setting Traps,” in the Developer
Magic: Debugger User’s Guide.

Note: In order for trap-based caliper points to work, you must activate the
Attach Debugger toggle on the Runtime tab window. That window is
available from the Configs... menu item on the Perf menu of the
WorkShop Debugger window.

You can define sample traps:

• At function entry or exit points

• At source lines

• For events

• Conditionally

• Manually during an experiment

007–2581–005 45

Developer MagicTM: Performance Analyzer User’s Guide

Sample traps at function entry and exit points are preferable to source line
traps, because they are more likely to be preserved as your program evolves.
This better enables you to save a set of traps in the Trap Manager in a file for
subsequent reuse.

Manual sample traps are triggered when you click the Sample button in the
WorkShop Debugger. They are particularly useful for applications with
graphical user interfaces. If you have a suspect operation in an experiment, a
good technique is to take a manual sample before and after you perform the
operation. You can then examine the data for that operation.

3.4 Understanding Predefined Tasks

If you are unfamiliar with performance analysis, it is very easy to request more
data collection than you actually need. Doing so can slow down the
Performance Analyzer and skew results. To help you record data appropriate to
your current objective, WorkShop provides predefined combinations of tasks,
which are available in the Select Task submenu in the Perf menu (see
Figure 25, page 45). These tasks are described in the following sections. When
you select a task, the required data collection is automatically enabled.

3.4.1 Profiling/PC Sampling

Use the Profiling/PC Sampling task selection when you are identifying
which parts of your program are using the most CPU time. PC profiling results
in a statistical histogram of the program counter. The exclusive CPU time is
presented as follows:

• By function in the function list

• By source line in Source View

• By instruction in Disassembly View

• By machine resource usage data, captured at 1-second intervals and at
sample points

This task gathers data by sampling the program counter (PC) value every 10
milleseconds (ms).

46 007–2581–005

Setting Up Performance Analysis Experiments [3]

3.4.2 User Time/Callstack Sampling

Use the User Time/Callstack Sampling task selection to tune a
CPU-bound phase or program. It enables you to display the time spent in the
CPU by function, source line, and instruction. This task records the following:

• The call stack every 30 milleseconds (ms)

• Machine resource usage data at 1-second intervals and at sample points

Data is measured by periodically sampling the call stack. The program’s call
stack data is used to do the following:

• Attribute exclusive user time to the function at the bottom of each call stack
(that is, the function being executed at the time of the sample).

• Attribute inclusive user time to all the functions above the one currently
being executed.

The time spent in a procedure is determined by multiplying the number of
times an instruction for that procedure appears in the stack by the average time
interval between call stacks. Call stacks are gathered whether the program was
running or blocked; hence, the time computed represents the total time, both
within and outside the CPU. If the target process was blocked for a long time as
a result of an instruction, that instruction will show up as having a high time.

User time runs should incur a program execution slowdown of no more than
15%. Data from a usertime experiment is statistical in nature and shows some
variance from run to run.

3.4.3 Ideal Time/Pixie

Use the Ideal Time/Pixie task selection to tune a CPU-bound phase. Ideal
time is the best possible performance for your program.

The analysis determines the cost on a per-basic block basis; it does not deal
with data dependencies between basic blocks. (A basic blocks is a set of
instructions with a single entry point, a single exit point, and no branches into
or out of the instructions.) It is useful when used in conjunction with the
Profiling/PC Sampling task. Comparing the two lets you examine actual
versus ideal time. The difference is the time spent as a result of the following:

• Performing load operations, which take a minimum of two cycles if the
data is available in primary cache and much longer if the data has to be
accessed from the swap area, secondary cache, or main memory.

007–2581–005 47

Developer MagicTM: Performance Analyzer User’s Guide

• Performing store operations, which cause the CPU to stall if the write
buffer in the CPU gets filled.

• Waiting for a CPU stalled as a result of data dependencies between basis
blocks.

This task records the following:

• Basic block counts

• Counts of branches taken

• Machine resource usage data at 1-second intervals and at sample points

• Function pointer traces with counts

The following results can be displayed in the function list, the Source View,
and the Disassembly View:

• The ideal time, which is the product of the number of times each machine
instruction executes, the cycle time of the machine, and the estimated
number of cycles per execution.

• Execution counts.

• Resulting machine instructions.

• A count of resulting loads, stores, and floating-point instructions.

• An approximation of the time spent with the CPU stalling because of data
and functional unit interlocks. (Interlocks are situations caused when
resources, such as data, are not available.)

The task requires instrumentation of the target executable. Counter code is
inserted at the beginning of each basic block.

After the instrumented executable runs, the Performance Analyzer multiplies
the number of times a basic block was executed by the number of instructions in
it. This yields the total number of instructions executed as a result of that basic
block (and similarly for other specific kinds of instructions, like loads or stores).

3.4.4 Floating-Point Exception Trace

Use the Floating Point Exception Trace task selection when you
suspect that large, unaccounted for periods of time are being spent in
floating-point exception handlers. The task records the call stack at each

48 007–2581–005

Setting Up Performance Analysis Experiments [3]

floating-point exception. The number of floating-point exceptions is presented
as follows:

• By function in the function list

• By source line in the Source View

• By instruction in Disassembly View

To observe the pattern of floating-point exceptions over time, look in the
floating-point exceptions event chart in the Usage View (Graphical)
window.

3.4.5 I/O Trace

Use the I/O Trace task selection when your program is being slowed down
by I/O calls, and you want to find the responsible code. This task records call
stacks at every read(2), write(2), readv(2), writev(2), open(2), close(2),
pipe(2), dup(2), and creat(2) system call. It also records file descriptor
information and the number of bytes read or written.

The number of bytes read and written is presented as follows:

• By function in the function list

• By source line in the Source View

• By instruction in the Disassembly View

3.4.6 Memory Leak Trace

Use the Memory Leak Trace task selection to determine where memory leaks
and bad calls to free may occur in a process. The task records the call stacks,
address, and number of bytes at every malloc, realloc, and free call. The
bytes currently allocated by malloc (that might represent leaks) and the list of
double calls to free are presented in Malloc Error View and the other
memory analysis views. The number of bytes allocated by malloc is presented:

• By function in the function list

• By source line in the Source View

• By instruction in the Disassembly View

007–2581–005 49

Developer MagicTM: Performance Analyzer User’s Guide

3.4.7 R10000 and R12000 Hardware Counters

If you are running your application on a system using either the R10000 or the
R12000 series CPU, you can use the R10k/R12k Hardware Counters task
selection from the WorkShop Debugger window once you have focused in on
the source of your problem. This task gives low-level, detailed information
about hardware events. It counts the following events:

• Graduated instructions. The graduated instruction counter is incremented
by the number of instructions that were graduated on the previous cycle.

• Machine cycles. The counter is incremented on each clock cycle.

• Primary instruction cache misses. This counter is incremented one cycle
after an instruction fetch request is entered into the miss handling table.

• Secondary instruction cache misses. This counter is incremented after the
last 16-byte block of a 64-byte primary instruction cache line is written into
the instruction cache.

• Primary data cache misses. This counter is incremented on the cycle after a
primary cache data refill is begun.

• Secondary data cache misses. This counter is incremented on the cycle after
the second 16-byte block of a primary data cache line is written into the data
cache.

• TLB (task lookaside buffer) misses. This counter is incremented on the cycle
after the TLB mishandler is invoked.

• Graduated floating-point instructions. This counter is incremented by the
number of floating-point instructions that graduated on the previous cycle.

• Failed store conditionals.

You can also choose hardware counter profiling based on either PC sampling or
call stack sampling.

You can generate other hardware counter experiments by using the ssrun
command. See the ssrun(1) man page or the SpeedShop User’s Guide for more
information.

50 007–2581–005

Setting Up Performance Analysis Experiments [3]

3.4.8 Custom

Use the Custom task selection when you need to collect a combination of
performance data that is not available through the predefined tasks. Selecting
Custom brings up the same tab panel screen displayed by the Configs...
selection (see Figure 26, page 62).

The Custom task lets you select and tune the following:

• Sampling data. This includes profiling intervals, counter size, and whether
rld(1) will be involved in data collection.

• Tracing data. This includes malloc and free trace, I/O system call trace,
and floating-point exception trace.

• Recording intervals. This includes the frequency of data recording for usage
data or usage or call stack data at caliper points. You can also specify this
with marching orders. (For more information on marching orders, see the
ssrun(1) man page.)

• Call stack. This includes sampling intervals and the type of timing.

• Ideal experiments. This specifies whether or not the basic block count data
is collected.

• Hardware counter specification. This specifies the hardware event you want
to count, the counter overflow value, and the profiling style (PC or call
stack). Hardware counter experiments are possible only on R10000 and
R12000 systems.

• Runtime. This specifies the same as those listed for the Configs menu
selection. See Section 4.3, page 61.

Remember the basic warnings in this chapter about collecting data:

• Too much data can slow down the experiment.

• Call stack profiling is not compatible with count operations or PC profiling.

• If you combine count operations with PC profiling, the results will be
skewed due to the amount of instrumented code that will be profiled.

007–2581–005 51

Developer MagicTM: Performance Analyzer User’s Guide

3.5 Displaying Data from the Parallel Analyzer

The Performance Analyzer can also display data that has been parallelized for
execution on a multiprocessor system. It supports Fortran 77, Fortran 90, C, and
C++ with either of the following parallelizing models:

• The automatic parallelization performed by the compilers. This is enabled
by including the -apo option on the compiler command line. For more
information on automatic parallelization, see the MIPSpro Auto-Parallelizing
Option Programmer’s Guide.

• OpenMP, a set of compiler pragmas or directives, library routines, and
environment variables that help you distribute loop iterations and data
among multiple processors.

ProDev ProMP is a companion product to the WorkShop suite of tools. It
specifically analyzes a program that has been parallelized. It is integrated with
WorkShop to let you examine a program’s loops in conjunction with a
performance experiment on either a single processor or multiprocessor run.
(For more information, see the ProDev ProMP User’s Guide.)

The cvpav(1) command reads and displays analysis files generated by the
MIPSpro compilers. When you plan to view one of these files in the
Performance Analyzer, use the -e option to cvpav, and specify the program
executable as the argument, as follows:

% cvpav -e a.out

From the Parallel Analyzer user interface, choose the Admin –> Launch Tool
–> Performance Analyzer menu item. Once the new window comes up,
choose Excl. Percentage from the Sort... window under the Config
menu. Doing so will list the loops in order, with the most expensive at the top,
allowing you to concentrate your attention on the most compute-intensive loops.

52 007–2581–005

Performance Analyzer Reference [4]

This chapter provides detailed descriptions of the Performance Analyzer
toolset, including:

• Selecting performance tasks, see Section 4.1, page 53.

• Specifying a custom task, see Section 4.2, page 55.

• Specifying the experiment configuration, see Section 4.3, page 61.

• The WorkShop Performance Analyzer main window, see Section 4.4,
page 64.

• Usage View (Graphs), see Section 4.5, page 80.

• Process Meter, see Section 4.6, page 84.

• Usage View (Numerical), see Section 4.7, page 86.

• I/O View, see Section 4.8, page 87.

• MPI Stats View (Graphs), see Section 4.9, page 88.

• MPI Stats View (Numerical), see Section 4.10, page 90.

• Call Graph View, see Section 4.11, page 91.

• Butterfly View, see Section 4.12, page 100.

• Analyzing memory problems, see Section 4.13, page 100.

• Call Stack View, see Section 4.14, page 108.

• Analyzing working sets, see Section 4.15, page 109.

4.1 Selecting Performance Tasks

You choose performance tasks from the Select Task submenu of the Perf
menu in WorkShop Debugger window. You should have an objective in mind
before you start an experiment. The tasks ensure that only the appropriate data
collection is enabled. Selecting too much data can slow down the experiment
and skew the data for collection.

The tasks are summarized in Table 1, page 54. The Task column identifies the
task as it appears in the Select Task menu of the WorkShop Debugger’s

007–2581–005 53

Developer MagicTM: Performance Analyzer User’s Guide

Perf menu. The Clues column provides an indication of symptoms and
situations appropriate for the task. The Data Collected column indicates
performance data set by the task. Note that call stacks are collected
automatically at sample points, poll points, and process events. The Description
column describes the technique used.

Table 1. Summary of Performance Analyzer Tasks

Task Clues Data Collected Description

Profiling/PC
Sampling

CPU-bound • PC profile counts
• Fine-grained usage (1

sec.)
• Call stacks

Tracks CPU time spent in functions, source
code lines, and instructions. Useful for
CPU-bound conditions. CPU time metrics
help you separate CPU-bound from
non-CPU-bound instructions.

User
Time/Call-
stack
Sampling

Not
CPU-bound

• Fine-grained usage (1
sec.)

• Call stack profiling
(30 ms)

• Call stacks

Tracks the user time spent by function,
source code line, and instruction.

Ideal
Time/Pixie

CPU-bound • Basic block counts
• Fine-grained usage (1

sec.)
• Call stacks

Calculates the ideal time, that is, the time
spent in each basic block with the
assumption of one instruction per machine
cycle. Useful for CPU-bound conditions.
Ideal time metrics also give counts, total
machine instructions, and
loads/stores/floating point instructions. It
is useful to compare ideal time with the
CPU time in an experiment that identifies
high CPU time.

Floating
Point
Exception
Trace

High system
time in
usage charts;
presence of
floating
point
operations;
NaNs

• FPE exception trace
• Fine-grained usage (1

sec.)
• Call stacks

Useful when you suspect that time is
being wasted in floating-point exception
handlers. Captures the call stack at each
floating-point exception. Lists
floating-point exceptions by function,
source code line, and instruction.

54 007–2581–005

Performance Analyzer Reference [4]

Task Clues Data Collected Description

I/O trace Process
blocking due
to I/O

• I/O system call trace
• Fine-grained usage (1

sec.)
• Call stacks

Captures call stacks at every I/O-oriented
system call. The file description and
number of bytes are available in I/O View.

Memory Leak
Trace

Swelling in
process size

• malloc/free trace
• Fine-grained usage (1

sec.)
• Call stacks

Determines memory leaks by capturing
the call stack, address, and size at all
malloc, realloc, and free routines and
displays them in a memory map. Also
indicates double free routines.

R10k/R12k
Hardware
Counters...

Need more
detailed
information

• Wide range of
hardware-level counts

On R10000 and R12000 systems only,
returns low-level information by counting
hardware events in special registers. An
overflow value is assigned to the relevant
counter. The number of overflows is
returned.

Custom... • Call stacks
• User’s choice

Lets you select the performance data to be
collected. Remember that too much data
can skew results.

4.2 Specifying a Custom Task

When you choose Custom... from the Select Task submenu in the Perf
menu in the Main View, a dialog box appears. This section provides an
explanation of most of the windows involved in setting up a custom task.

The Custom...Runtime and HWC Spec (the hardware counters) windows are
identical to the Configs...Runtime and HWC Spec windows. For an
illustration of Runtime, see Figure 26, page 62. For information on HWC Spec,
see Section 3.4.7, page 50.

4.2.1 Specifying Data to be Collected

Data is collected and recorded at every sample point. The following data
collection methods are available:

• Call stack (the CallStack window). See the following section.

007–2581–005 55

Developer MagicTM: Performance Analyzer User’s Guide

• Basic block counts (the Ideal window). See Section 4.2.1.2, page 56.

• PC profile counts (the PC Sampling window). See Section 4.2.1.3, page 57.

4.2.1.1 Call Stack Profiling

The Performance Analyzer performs call stack data collection automatically.
There is no instrumentation involved. This corresponds to the SpeedShop
usertime experiment.

The CallStack window lets you choose from real time, virtual time, and
profiling time and specify the sampling interval.

Real time is also known as wall-clock time and total time. It is the total time a
program takes to execute, including the time it takes waiting for a CPU.

Virtual time is also called process virtual time. It is the time spent when a
program is actually running, as opposed to when it is swapped out and waiting
for a CPU or when the operating system is in control, such as performing I/O
for the program.

Profiling time is time the process has actually been running on the CPU,
whether in user or system mode. It is the default for the usertime experiment.
It is also called CPU time or user time.

For the sampling interval, you can select one of the following intervals:

• Standard (every 30 milleseconds)

• Fast (every 20 milliseconds)

• Custom (enter your own interval)

Note: The experiment may run slowly in programs with very deep call stacks
and many DSOs. In such cases, increasing the sampling interval will help.

4.2.1.2 Basic Block Count Sampling

Basic block counts are translated to ideal CPU time (as shown in the SpeedShop
ideal experiment) and are displayed at the function, source line, and machine
line levels. The experiment uses the number of cycles for each instruction and
other resources present within the type of processor being used for the
experiment in calculating ideal CPU time. Memory loads and stores are
assumed to take constant time, so if the program has a large number of cache
misses, the actual execution time will be longer than that calculated by the ideal
experiment.

56 007–2581–005

Performance Analyzer Reference [4]

The end result might be better described as ideal user CPU time.

The Ideal window lets you select the counter size, either 16 or 32 bits, and the
option to use rld(1) profiling.

The data is gathered by first instrumenting the target executable. This involves
dividing the executable into basic blocks consisting of sets of machine
instructions that do not contain branches into or out of them. A few
instructions are inserted for every basic block to increment a counter every time
that basic block is executed. The basic block data is actually generated, and
when the instrumented target executable is run, the data is written out to disk
whenever a sample trap fires. Instrumenting an executable increases its size by
a factor of three and greatly modifies its performance behavior.

!
Caution: Running the instrumented executable causes it to run more slowly.
By instrumenting, you might be changing crucial resources; during analysis,
the instrumented executable might appear to be CPU-bound, whereas the
original executable is I/O-bound.

4.2.1.3 PC Profile Counts

Enabling PC profile counts causes the Program Counter (PC) of the target
executable to be sampled every 10 milliseconds when it is in the CPU. PC
profiling is a lightweight, high-speed operation done with kernel support.
Every 10 milliseconds, the kernel stops the process if it is in the CPU,
increments a counter for the current value of the PC, and resumes the process.
It corresponds to the SpeedShop pcsamp experiment.

PC profile counts are translated to the actual CPU time displayed at the
function, source line, and machine line levels. The actual CPU time is calculated
by multiplying the PC hit count by 10 milliseconds.

A major discrepancy between actual CPU time and ideal CPU time indicates
one or more of the following:

• Cache misses in a single process application.

• Secondary cache invalidations in a multiprocess application run on a
multiprocessor.

Note: This comparison is inaccurate over a single run if you collect both
basic block and PC profile counts simultaneously. In this situation, the ideal
CPU time will factor out the interference caused by instrumenting; the actual
CPU time will not.

007–2581–005 57

Developer MagicTM: Performance Analyzer User’s Guide

A comparison between basic block counts and PC profile counts is shown in
Table 2.

Table 2. Basic Block Counts and PC Profile Counts Compared

Basic Block Counts PC Profile Counts

Used to compute ideal CPU time Used to estimate actual CPU time

Data collection by instrumenting Data collection done with the kernel

Slows program down Has minimal impact on program
speed

Generates an exact count Approximates counts

4.2.2 Specifying Tracing Data

Tracing data records the time at which an event of the selected type occurred.
There are five types of tracing data:

• malloc and free Heap Analysis, see Section 4.2.2.1, page 58.

• I/O (read, write) Operations, see Section 4.2.2.2, page 59.

• Floating-Point Exceptions, see Section 4.2.2.3, page 59.

• Message Passing Interface (MPI) Stats Trace, see Section 4.2.2.4, page 59.

Note: These features should be used with care; enabling tracing data adds
substantial overhead to the target execution and consumes a great deal of
disk space.

4.2.2.1 malloc and free Heap Analysis

Tracing malloc and free allows you to study your program’s use of dynamic
storage and to quickly detect memory leaks (malloc routines without
corresponding free routines) and bad free routines (freeing a previously
freed pointer). This data can be analyzed in the Malloc Error View, Leak
View, Malloc View, and Heap View (see Section 4.13, page 100).

58 007–2581–005

Performance Analyzer Reference [4]

4.2.2.2 I/O Operations

I/O tracing records every I/O-related system call that is made during the
experiment. It traces read(2), write(2), readv(2), writev(2), open(2),
close(2), dup(2), pipe(2), and creat(2), along with the call stack at the time,
and the number of bytes read or written. This is useful for I/O-bound processes.

4.2.2.3 Floating-Point Exceptions

Floating-point exception tracing records every instance of a floating-point
exception. This includes problems like underflow and NaN (not a number)
values. If your program has a substantial number of floating-point exceptions,
you may be able to speed it up by correcting the algorithms.

The floating-point exceptions are as follows:

• Overflow

• Underflow

• Divide-by-zero

• Inexact result

• Invalid operand (for example, infinity)

4.2.2.4 MPI Stats Trace

MPI tracing lets you track message-passing activity in any process of a
multiprocessing job. You can view the results in the Performance Analyzer
window with either the MPI Stats View (Graphs) or MPI Stats View
(Numerical) selections from the Views menu. For examples, see Section
1.4.5, page 11 and Section 1.4.6, page 13.

Unlike other performance tasks, this one cannot be initiated from the Debugger
View; use the SpeedShop ssrun(1) command in combination with the
mpirun(1) command. First, set the MPI_RLD_HACK_OFF environment variable
for safety reasons and then compile the application with the MPI library:

setenv MPI_RLD_HACK_OFF 1

f90 -o comm comm.f -lmpi

Next run the ssrun as part of the mpirun command:

mpirun -np 4 ssrun -mpi comm

007–2581–005 59

Developer MagicTM: Performance Analyzer User’s Guide

For this 4–processor application, five experiment files will be generated: one for
each processor (the IDs begins with f) and one for the master process (the ID
begins with m).

comm.mpi.f3221936

comm.mpi.f3224241

comm.mpi.f3225085

comm.mpi.f3227246

comm.mpi.m3226551

You can view any of the files with cvperf:

cvperf comm.mpi.f3225085

4.2.3 Specifying Polling Data

The following categories of polling data are available by using caliper points:

• Pollpoint Sampling, see Section 4.2.3.1, page 60.

• Call Stack Profiling, see Section 4.2.3.2, page 60.

Entering a positive nonzero value in their fields turns them on and sets the time
interval at which they will record data.

4.2.3.1 Pollpoint Sampling

Setting pollpoint sampling on the Runtime tab window sets caliper points that
specify a regular time interval for capturing performance data, including
resource usage and any enabled sampling or tracing functions. Since pollpoint
sampling occurs frequently, it is best used with call stack data only, rather than
other profiling data. Its primary use is to enable you to set boundary points for
phases. In subsequent runs, you can set sample points to collect the profiling
data at the phase boundaries.

4.2.3.2 Call Stack Profiling

Enabling call stack profiling in the CallStack tab window causes the call
stack of the target executable to be sampled at the specified time interval (a
minimum of 10 milliseconds) and saved. The call stack continues to be sampled
when the program is not running: that is, while it is internally or externally
blocked. Call stack profiling is used in the User Time/Callstack
Sampling task to calculate total times.

60 007–2581–005

Performance Analyzer Reference [4]

You can choose the type of time you want to eventually display: real time,
virtual time, or profiling time. See the glossary for definitions.

By setting the sampling interval to a lower number, you can sample more often
and receive better finer grained results.

Call stack profiling is accomplished by the Performance Analyzer views and not
by the kernel. As a result, it is less accurate than PC profiling. Collecting call
stack profiling data is far more intrusive than collecting PC profile data.

!
Caution: Collecting basic block data causes the text of the executable to be
modified. Therefore, if call stack profiling data is collected along with basic
block counts, the cumulative total time displayed in Usage View
(Graphs) is potentially erroneous.

Table 3 compares call stack profiling and PC profiling.

Table 3. Call Stack Profiling and PC Profiling Compared

PC Profiling Call Stack Profiling

Done by kernel Done by Performance Analyzer
process

Accurate, nonintrusive Less accurate, more intrusive

Used to compute CPU time Used to compute total time

4.3 Specifying the Experiment Configuration

To specify the experiment configuration, choose Configs... from the Perf
menu. See Figure 26, page 62, for an illustration of the resulting window. While
you can access other tabs, the only ones that are active are the Runtime and
General tabs.

007–2581–005 61

Developer MagicTM: Performance Analyzer User’s Guide

Figure 26. Runtime Configuration Dialog Box

4.3.1 Specifying the Experiment Directory

The Experiment Directory field lets you specify the directory where you
want the data to be stored. The Performance Analyzer provides a default
directory named test0000 for your first experiment. If you use the default or
any other name that ends in four digits, the four digits are used as a counter
and will be incremented automatically for each subsequent session. Note that
the Performance Analyzer does not remove (or overwrite) experiment
directories. You need to remove directories yourself.

4.3.2 Other Options

The following configuration options are available on the Runtime display:

• The File Basename: specifies the base name of the experiment file (if
blank, it is the name of the executable).

62 007–2581–005

Performance Analyzer Reference [4]

• You can specify whether you want the Performance Analyzer to gather
performance data for any processes launched by one or more of the
following:

– exec()

– fork()

– sproc()

– system()

– Follow fork() to exec() processes

• The center column lets you choose the following options:

– Verbose output yields more explanatory information in the Execution
View.

– Reuse File Descriptors opens and closes the file descriptors for the
output files every time performance data is to be written. If the target
program is using chdir(), the
_SPEEDSHOP_REUSE_FILE_DESCRIPTORS environment variable is set
to the value selected by this configuration option.

– Compress Experiment Data saves disk space.

– Disable Stack Unwind suppresses the stack unwind as is done in the
SpeedShop usertime, totaltime, and other call stack-based
experiments.

– Disable Signal Handlers disables the normal setting of signal
handlers for all fatal and exit signals.

– Attach Debugger lets you debug the running program.

– Generate Callgraph displays which functions called, and were called
by, other functions.

• CaliperPoint Signal sets the value of the signal sent by the sample
button to cause the process to write out a caliper point. The default value is
40.

007–2581–005 63

Developer MagicTM: Performance Analyzer User’s Guide

• PollPoint Caliper Interval (seconds) specifies the interval at
which pollpoint caliper points are taken.

• AutoLaunch Analyzer launches the Performance Analyzer automatically
when the experiment finishes.

4.4 The Performance Analyzer Main Window

The Performance Analyzer main window is used for analysis after the
performance data has been captured. It contains a time line area indicating
when events took place over the span of the experiment, a list of functions with
their performance data, and a resource usage chart. The following sections
cover these topics:

• Task field, see Section 4.4.1, page 65.

• Function list display and controls, see Section 4.4.2, page 65.

• Usage chart area, see Section 4.4.3, page 67.

• Time line area and controls, see Section 4.4.4, page 67.

• Admin menu, see Section 4.4.5, page 69.

• Config menu, see Section 4.4.6, page 70.

• Views menu, see Section 4.4.7, page 77.

• Executable menu, see Section 4.4.8, page 79.

• Thread menu, see Section 4.4.9, page 80.

The Performance Analyzer main window can be invoked from the Launch
Tool submenu in the Debugger Admin menu or from the command line, by
typing one of the following:

cvperf [-exp] directory

cvperf speedshop_exp_files

cvperf [-pixie] pixie.counts_files

The arguments to these commands are as follows:

directory A directory containing data from old WorkShop
performance experiments.

64 007–2581–005

Performance Analyzer Reference [4]

speedshop_exp_files One or more SpeedShop experiment files
generated either by the ssrun(1) command or by
using the Select Task ... submenu of the
Perf menu on the WorkShop Debugger window.

pixie.counts_files An output file from pixie(1) measuring code
execution frequency. The ideal task generates a
pixie.counts_file.

4.4.1 Task Field

The Task field identifies the task for the current experiment and is read-only.
See Section 4.1, page 53, for a summary of the performance tasks. For an
in-depth explanation of each task, refer to Section 3.4, page 46.

4.4.2 Function List Display and Controls

The function list area displays the program’s functions with the associated
performance metrics. It also provides buttons for displaying function
performance data in other views. See Figure 27.

Performance metrics
annotations

Function list
display area

Search field

Hide 0 functions
toggle

Show Node
Source View button
Disassembly View button

Figure 27. Typical Function List Area

007–2581–005 65

Developer MagicTM: Performance Analyzer User’s Guide

The main features of the function list are:

Function list display
area

Shows all functions in the program annotated
with their associated performance data. The
column headings identify the metrics.

You select the performance data to display from
the Preferences... selection in the Config
menu. The order of ranking is set by the Sort...
selection in the Config menu. The default order
of sorting (depending on availability) is:

1. Inclusive time

2. Exclusive time

3. Counts

Search field Lets you look for a function in the list and in any
active views.

Hide 0 Functions
toggle button

Lets you filter functions with 0 time from the list.

Show Node button Displays the specified node in the Call Graph
View.

Source button Displays the Source View window
corresponding to the selected function. The
Source View window displays performance
metrics in the annotation column. Source View
can also be displayed by double-clicking a
function in the function list or a node or arc (lines
between nodes) in the call graph.

Disassembled
Source button

Displays the Disassembly View window
corresponding to the selected function. The
Disassembly View is annotated with the
performance metrics.

66 007–2581–005

Performance Analyzer Reference [4]

4.4.3 Usage Chart Area

The usage chart area in the Performance Analyzer main window displays the
stripchart most relevant to the current task. The upper subwindow displays the
legend for the stripchart, and the lower subwindow displays the stripchart
itself. This gives you some useful information without having to open the
Usage View (Graphs) window. Table 4, shows you the data displayed in the
usage chart area for each task.

Table 4. Task Display in Usage Chart Area

Task Data in Usage Chart Area

User Time/Callstack Sampling User versus system time

Profiling/PC Sampling User versus system time

Ideal Time/Pixie User versus system time

Floating Point Exception Trace Floating-point exception event chart

I/O Trace read(), write() system calls

Memory Leak Trace Process Size stripchart

R10000 or R12000 Hardware Counters Depends on experiment

Custom task User versus system time, unless one
of the tracing tasks from this list has
been selected

You can expand either subwindow to show more information by dragging the
boxes at the right of the subwindow.

4.4.4 Time Line Area and Controls

The time line shows when each sample event in the experiment occurred.
Figure 2, page 6, shows the time line portion of the Performance Analyzer
window with typical results.

007–2581–005 67

Developer MagicTM: Performance Analyzer User’s Guide

4.4.4.1 The Time Line Calipers

The time line calipers let you define an interval for performance analysis. You
can set the calipers in the time line to any two sample event points using the
caliper controls or by dragging them. The calipers appear solid for the current
interval. If you drag them with the mouse (left or middle button), they appear
dashed to give you visual feedback. When you stop dragging a caliper, it
appears in outlined form denoting a tentative and as yet unconfirmed selection.

Specifying an interval is done as follows:

1. Set the left caliper to the sample event at the beginning of the interval.

You can drag the left caliper with the left or middle mouse button or by
using the left caliper control buttons in the control area. Note that calipers
always snap to sample events. (It does not matter whether you start with
the left or right caliper.)

2. Set the right caliper to the sample event at the end of the interval. This is
similar to setting the left caliper.

3. Confirm the change by clicking the OK button in the control area.

After you confirm the new position, the solid calipers move to the current
position of the outlined calipers and change the data in all views to reflect
the new interval.

Clicking Cancel or clicking with the right mouse button before the change
is confirmed restores the outlined calipers to the solid calipers.

4.4.4.2 Current Event Selection

If you want to get more information on an event in the time line or in the
charts in the Usage View (Graphs), you can click an event with the left
button. The Event field displays the following:

• Event number

• Description of the trap that triggered the event

In addition, the Call Stack View window updates to the appropriate times,
stack frames, and event type for the selected event. A black diamond-shaped
icon appears in the time line and charts to indicate the selected event. You can
also select an event using the event controls below the caliper controls; they
work in similar fashion to the caliper controls.

68 007–2581–005

Performance Analyzer Reference [4]

4.4.4.3 Time Line Scale Menu

The time line scale menu lets you change the number of seconds of the
experiment displayed in the time line area. The Full Scale selection displays
the entire experiment on the time line. The other selections are time values; for
example, if you select 1 min, the length of the time line displayed will span 1
minute.

4.4.5 Admin Menu

The Admin menu and its options are shown in Figure 28. The Admin menu has
selections common to the other WorkShop tools. The following selections are
different in the Performance Analyzer:

Experiment... Lets you change the experiment directory and
displays a dialog box (see Figure 29, page 70).

Save As Text... Records a text file with preference information
selected in the view and displays a dialog box.
You can use the default file name or replace it
with another name in the Selection dialog box
that displays. You can specify the number of lines
to be saved. The data can be saved as a new file
or appended to an existing one.

Figure 28. Performance Analyzer Admin Menu

007–2581–005 69

Developer MagicTM: Performance Analyzer User’s Guide

Figure 29. Experiment Window

4.4.6 Config Menu

The main purpose of the Config menu in the Performance Analyzer main
window is to let you select the performance metrics for display and for ranking
the functions in the function list. However, your selections also apply
elsewhere, such as the Call Graph View window.

70 007–2581–005

Performance Analyzer Reference [4]

The selections in the Config menu are as follows:

Preferences... Brings up the Data Display Options window,
which lets you select which metrics display and
whether they appear as absolute times and counts
or percentages. Remember, you can only select
the types of metrics that were collected in the
experiment. You can also specify how C++ file
names (if appropriate) are to display:

• Demangled shows the function and its
argument types.

• As Is uses the translator-generated C-style
name.

• Function shows the function name only.

• Class::Function shows the class and
function.

For an illustration of the Data Display
Options window, see Figure 30, page 72.

Sort... Brings up the Sort Options window, which
lets you establish the order in which the functions
appear; this helps you find questionable
functions. The default order of sorting
(depending on availability) is:

1. Inclusive time or counts

2. Exclusive time or counts

3. Counts

For an illustration, see Figure 31, page 73.

The selections for the Display Data Options window and the Sort
Options window are similar. The difference between the inclusive (Incl.)
and exclusive (Excl.) metrics is that inclusive data includes data from other
functions called by the function, and exclusive data comes only from the
function.

007–2581–005 71

Developer MagicTM: Performance Analyzer User’s Guide

Figure 30. Performance Analyzer Data Display Options

72 007–2581–005

Performance Analyzer Reference [4]

Figure 31. Performance Analyzer Sort Options

The toggle buttons in both the Data Display Options and Sort Options
windows are as follows:

Incl. Percentage, Excl. Percentage

Percentage of the total time spent inside and outside of the
CPU (by a function, source line, or instruction).

007–2581–005 73

Developer MagicTM: Performance Analyzer User’s Guide

Incl. Total Time, Excl. Total Time

Time spent inside and outside of the CPU (by a function, source
line, or instruction). It is calculated by multiplying the number
of times the PC appears in any call stack by the average time
interval between call stacks.

Incl. CPU Time, Excl. CPU Time

Time spent inside the CPU (by a function, source line, or
instruction). It is calculated by multiplying the number of times
a PC value appears in the profile by 10 ms.

Incl. Ideal Time, Excl. Ideal Time

Theoretical time spent by a function, source line, or instruction
under the assumption of one machine cycle per instruction. It is
useful to compare ideal time with actual.

Incl. HWC Data, Excl. HWC Data

Number of events measured.

Incl. Cycles, Excl. Cycles

Number of machine cycles.

Incl. Instr’ns, Excl. Instr’ns

Number of instructions.

Incl. FP operations, Excl. FP operations

Number of floating-point operations.

Incl. Load counts, Excl. Load counts

Number of load operations.

Incl. Store counts, Excl. Store counts

Number of store operations.

Incl. System calls, Excl. System calls

Number of system calls.

Incl. Bytes Read, Excl. Bytes Read

Number of bytes in a read operation.

74 007–2581–005

Performance Analyzer Reference [4]

Incl. Bytes Written, Excl. Bytes Written

Number of bytes in a write operation.

Incl. FP Exceptions, Excl. FP Exceptions

Number of floating-point exceptions.

Incl. Page faults, Excl. Page faults

Number of page faults.

Incl. bytes leaked, Excl. bytes leaked

Number of bytes leaked as a result of calls to malloc that were
not followed by calls to free.

Incl. bytes malloc’d, Excl. bytes malloc’d

Number of bytes allocated in malloc operations.

Incl. bytes MPI/Sent, Excl. bytes MPI/Sent

Number of bytes of data sent by an MPI routine.

Incl. bytes MPI/Recv, Excl. bytes MPI/Recv

Number of bytes of data received by an MPI routine.

Incl. MPI Send-Ops, Excl. MPI Send-Ops

Number of times an MPI send routine was executed.

Incl. MPI Recv-Ops, Excl. MPI Recv-Ops

Number of times an MPI receive routine was executed.

Incl. MPI Barriers, Excl. MPI Barriers

Number of times an MPI_Barrier routine was executed.

Address

Address of the function.

Instr’n Coverage

A percentage of instructions (in the line or function) that were
executed at least once.

007–2581–005 75

Developer MagicTM: Performance Analyzer User’s Guide

Calls

Number of times a function is called.

Pixstats/Cycles-per instr’n

Shows how efficient the code is written to avoid stalls or to take
advantage of super scalar operation. A cycles per-instruction
count of 1.0 means that an instruction is executed every cycle.
A count greater than 1.0 means some instructions took more
than one cycle. A count less that 1.0 means that sometimes
more than one instruction was executed at a given cycle. The
R10000 and R12000 processors can potentially execute up to 4
instructions on every cycle.

In the disassembly view, this metric turns into pixstats,
which displays basic block boundaries and the cycle counts
distribution for each instruction in the basic block.

The following options are available on the Data Display Options window
only:

Display Data As:
Times/Counts
Percentages

Lets you choose whether you want to display
your performance metrics as times and counts
(for instance, the time a function required to
execute) or as percentages (the percentage of the
program’s time a function used). The default is
Times/Counts.

Hide 0 Functions
in Function List
and Hide 0
Functions in Graph

Lets you filter functions with 0 counts from the
list or graph.

Incl. Percentage Show inclusive percentages on the Call Graph
View window.

Incl. Total Time Show inclusive total time on the Call Graph
View window.

76 007–2581–005

Performance Analyzer Reference [4]

Incl. CPU Time Show inclusive CPU time on the Call Graph
View window.

Incl. Ideal Time Show inclusive ideal time on the Call Graph
View window.

Incl. HWC Data Show inclusive hardware counter data on the
Call Graph View window.

Incl. System
calls

Show inclusive system calls on the Call Graph
View window.

Incl. Bytes Read Show inclusive bytes read on the Call Graph
View window.

Incl. Bytes
Written

Show inclusive bytes written on the Call Graph
View window.

Incl. FP
Exceptions

Show inclusive floating–point exceptions on the
Call Graph View window.

Incl. Page faults Show inclusive page faults on the Call Graph
View window.

Incl. bytes
leaked

Show inclusive bytes leaked as a result of malloc
operations not followed by matching free
operations on the Call Graph View window.

Incl. bytes
malloc’d

Show inclusive bytes allocated with a malloc
operation on the Call Graph View window.

Calls Show the number of calls to that function on the
Call Graph View window.

The following option is available on the Sort Options window only:

Alphabetic Sort alphabetically by function name.

4.4.7 Views Menu

The Views menu in the Performance Analyzer (see Figure 32, page 79)
provides the following selections for viewing the performance data from an
experiment. Each view displays the data for the time interval bracketed by the
calipers in the time line.

Usage View
(Graphs)

Displays resource usage charts and event charts.
See Section 4.5, page 80.

Usage View
(Numerical)

Displays the aggregate values of resources used.
See Section 4.7, page 86.

007–2581–005 77

Developer MagicTM: Performance Analyzer User’s Guide

I/O View Displays I/O events. See Section 4.8, page 87.

MPI Stats View
(Graphs)

Displays MPI information in the form of graphs.
See Section 4.9, page 88.

MPI Stats View
(Numerical)

Displays MPI information in the form of text. See
Section 4.10, page 90.

Call Graph View Displays a call graph that shows functions and
calls and their associated performance metrics.
See Section 4.11, page 91.

Butterfly View Displays the callers and callees of the function.
See Section 4.12, page 100.

Leak View Displays individual leaks and their associated call
stacks. See Section 4.13.1, page 101.

Malloc View Displays individual malloc routines and their
associated call stacks. See Section 4.13.1, page 101.

Malloc Error View Displays errors involving memory leaks and bad
calls to free, indicating error locations and the
total number of errors. See Section 4.13.1, page
101.

Heap View Displays a map of heap memory showing
malloc, realloc, free, and bad free
operations. See Section 4.13.2, page 104.

Call Stack View Displays the call stack for the selected event and
the corresponding event type. See Section 4.14,
page 108.

78 007–2581–005

Performance Analyzer Reference [4]

Working Set View Measures the coverage of the DSOs that make up
the executable, noting which were not used. See
Section 1.4.14, page 24.

Figure 32. Performance Analyzer Views Menu

4.4.8 Executable Menu

If you enabled Track Exec’d Processes for the current experiment, the
Executable menu will be enabled and will contain selections for any execed
processes. (The Track Exec’d Processes selection is in the Performance
panel of the Executable menu.) These selections let you see the performance
results for the other executables.

Note: The Executable menu is not enabled by an experiment generated by
the Select Task submenu in the Perf menu of the WorkShop Debugger
window, the ssrun(1) command, or any other method using SpeedShop
functionality. It can only be enabled by experiments generated in older
versions of WorkShop.

007–2581–005 79

Developer MagicTM: Performance Analyzer User’s Guide

4.4.9 Thread Menu

If your process forked any processes, the Thread menu is activated and
contains selections corresponding to the different threads. Selecting a thread
displays its performance results.

Note: The Thread menu is not enabled by an experiment generated by the
Select Task submenu in the Perf menu of the WorkShop Debugger
window, the ssrun(1) command, or any other method using SpeedShop
functionality. It can only be enabled by experiments generated in older
versions of WorkShop.

4.5 Usage View (Graphs)

The Usage View (Graphs) window displays resource usage and event charts
containing the performance data from the experiment. These charts show
resource usage over time and indicate where sample events took place. Sample
events are shown as vertical lines. Figure 33, page 81, shows the Usage View
(Graphs) window.

80 007–2581–005

Performance Analyzer Reference [4]

Figure 33. Usage View (Graphs) Window

007–2581–005 81

Developer MagicTM: Performance Analyzer User’s Guide

4.5.1 Charts in the Usage View (Graphs) Window

The available charts in the Usage View (Graphs) Window are as follows:

User versus system
time

Shows CPU use. Whenever the system clock
ticks, the process occupying the CPU is charged
for the entire ten millisecond interval. The time is
charged either as user or system time, depending
on whether the process is executing in user mode
or system mode. The graph provides these
annotations to show how time is spent during an
experiment’s process: Running (user mode),
Running (system mode), Running
(graphics mode), Waiting (for block
I/O), Waiting (raw I/O, paging),
Waiting (for memory), Waiting (in
select), Waiting in CPU queue, Sleep
(for resource), Sleep (for stream
monitor), and Stopped (job control).

Page Faults Shows the number of page faults that occur
within a process. Major faults are those that
require a physical read operation to satisfy; minor
faults are those where the necessary page is
already in memory but not mapped into the
process address space.

Each major fault in a process takes approximately
10 to 50 milliseconds. A high page-fault rate is an
indication of a memory-bound situation.

Context Switch Shows the number of voluntary and involuntary
context switches in the life of the process.

Voluntary context switches are attributable to an
operation caused by the process itself, such as a
disk access or waiting for user input. These occur
when the process can no longer use the CPU. A
high number of voluntary context switches
indicates that the process is spending a lot of time
waiting for a resource other than the CPU.

Involuntary context switches happen when the
system scheduler gives the CPU to another
process, even if the target process is able to use it.

82 007–2581–005

Performance Analyzer Reference [4]

A high number of involuntary context switches
indicates a CPU contention problem.

KBytes Read and
KBytes Written

Shows the number of bytes transferred between
the process and the operating system buffers,
network connections, or physical devices.
KBytes Read are transferred into the process
address space; KBytes Written are transferred
out of the process address space. A high
byte-transfer rate indicates an I/O-bound process.

read() calls and
write() calls

Shows the number of read and write system
calls made by the process.

poll() calls and
ioctl() calls

Shows the combined number of poll or select
system calls (used in I/O multiplexing) and the
number of I/O control system calls made by the
process.

System Calls Shows the total number of system calls made by
the process. This includes the counts for the calls
shown on the other charts.

Signals Shows the total number of signals received by the
process.

Total Size and
Resident Size

Shows the total size of the process in pages and
the number of pages resident in memory at the
end of the time interval when the data is read. It
is different from the other charts in that it shows
the absolute size measured at the end of the
interval and not an incremental count for that
interval.

If you see the process total size increasing over
time when your program should be in a steady
state, the process most likely has leaks and you
should analyze it using Leak View and Malloc
View.

4.5.2 Getting Event Information from the Usage View (Graphs) Window

The charts only indicate trends. To get detailed data, click the relevant area on
the chart; the data displays at the top of the window. The left mouse button
displays event data; the right mouse button displays interval data.

007–2581–005 83

Developer MagicTM: Performance Analyzer User’s Guide

When you click the left mouse button on a sample event in a chart, the
following actions take place:

• The point becomes selected, as indicated by the diamond marker above it.
The marker appears in the time line, resource usage chart, and Usage View
(Graphs) charts if the window is open.

• The current event line at the top of the window identifies the event and
displays its time.

• The call stack that corresponds to this sample point is displayed in the Call
Stack window (see Section 4.14, page 108).

Clicking a graph with the right mouse button displays the values for the
interval if a collection is specified. If a collection is not specified, clicking a
graph with the right mouse button displays the interval bracketed by the
nearest sample events.

4.6 The Process Meter Window

The process meter lets you observe resource usage for a running process
without conducting an experiment. To call the process meter, select Process
Meter from the Views menu in the WorkShop Debugger window.

A Process Meter window with data and its menus displayed appears in
Figure 34, page 85. The Process Meter window uses the same Admin menu
as the WorkShop Debugger tools.

The Charts menu options display the selected stripcharts in the Process
Meter window.

The Scale menu adjusts the time scale in the stripchart display area such that
the time selected becomes the end value.

You can select which usage charts and event charts display. You can also display
sample point information in the Status field by clicking within the charts.

84 007–2581–005

Performance Analyzer Reference [4]

Stripchart area

Status field

Figure 34. The Process Meter Window with Major Menus Displayed

007–2581–005 85

Developer MagicTM: Performance Analyzer User’s Guide

4.7 Usage View (Numerical) Window

The Usage View (Numerical) window (see Figure 35, page 87) shows
detailed, process-specific resource usage information in a textual format for a
specified interval. The interval is defined by the calipers in the time line area of
the Performance Analyzer main window. To display the Usage View
(Numerical) window, select Usage View (Numerical) from the Views
menu.

The top of the window identifies the beginning and ending events for the
interval. The middle portion of the window shows resource usage for the target
executable. The bottom panel shows resource usage on a system-wide basis.
Data is shown both as total values and as per-second rates.

86 007–2581–005

Performance Analyzer Reference [4]

Analysis
interval

Process
metrics

System-wide
metrics

Figure 35. The Usage View (Numerical) Window

4.8 The I/O View Window

The I/O View window helps you determine the problems in an I/O-bound
process. It produces graphs of all I/O system calls for up to 10 files involved in
I/O. Clicking an I/O event with the left mouse button displays information

007–2581–005 87

Developer MagicTM: Performance Analyzer User’s Guide

about it in the event identification field at the top of the I/O View window.
See Figure 36.

For a list of the system calls traced, see Section 3.4.5, page 49.

Event identification field

File field

I/O Sys Call chart

File field

I/O Sys Call chart

File field

I/O Sys Call chart

File field

I/O Sys Call chart

Figure 36. The I/O View Window

4.9 The MPI Stats View (Graphs) Window

The MPI Stats View (Graphs) window displays information on as many
as 32 aspects of an MPI program in graph format. For an illustration of the
window, see Figure 6, page 12.

If a graph contains nothing but zeros, it is not displayed.

88 007–2581–005

Performance Analyzer Reference [4]

In the following list of information that may be displayed in the graphs, shared
memory refers to memory in a multiprocessor system that can be accessed by
any processor. The High Performance Parallel Interface (HIPPI) is a network
link, often used to connect computers; it is slower than shared memory
transfers but faster than TCP/IP transfers. TCP/IP is a networking protocol that
moves data between two systems on the Internet.

Collective calls are those that move a message from one processor to multiple
processors or from multiple processors to one processor. MPI_Bcast(3) is a
collective call. A point-to-point call, such as MPI_Send(3) or MPI_Ssend(3),
moves a message from one processor to one processor.

Note: The MPI tracing experiment does not track down communicators, and
it does not trace all collective operations. This may also affect the translation
of some events using ssfilter(1).

The following information can be displayed in the MPI Stats View
(Graphs) window.

• Retries in allocating MPI headers per procedure for collective calls

• Retries in allocating MPI headers per host for collective calls.

• Retries in allocating MPI headers per procedure for point–to–point calls

• Retries in allocating MPI headers per host for point–to–point calls

• Retries in allocating MPI buffers per procedure for collective calls

• Retries in allocating MPI buffers per host for collective calls

• Retries in allocating MPI buffers per procedure for point–to–point calls

• Retries in allocating MPI buffers per host for point–to–point calls

• The number of send requests using shared memory for collective calls

• The number of send requests using shared memory for point–to–point calls

• The number of send requests using a HIPPI bypass for collective calls

• The number of send requests using a HIPPI bypass for point–to–point calls

• The number of send requests using TCP/IP for collective calls

• The number of send requests using TCP/IP for point–to–point calls

• The number of data buffers sent using shared memory for point–to-point
calls

007–2581–005 89

Developer MagicTM: Performance Analyzer User’s Guide

• The number of data buffers sent using shared memory for collective calls

• The number of data buffers sent using a HIPPI bypass for point–to-point
calls

• The number of data buffers sent using a HIPPI bypass for collective calls

• The number of data buffers sent using TCP/IP for point–to-point calls

• The number of data buffers sent using TCP/IP for collective calls

• The number of message headers sent using shared memory for
point–to-point calls

• The number of message headers sent using shared memory for collective
calls

• The number of message headers sent using a HIPPI bypass for
point–to-point calls

• The number of message headers sent using a HIPPI bypass for collective calls

• The number of message headers sent using TCP/IP for point–to-point calls

• The number of message headers sent using TCP/IP for collective calls

• The total number of bytes sent using shared memory for point–to-point calls

• The total number of bytes sent using shared memory for collective calls

• The total number of bytes sent using a HIPPI bypass for point–to-point calls

• The total number of bytes sent using a HIPPI bypass for collective calls

• The total number of bytes sent using TCP/IP for point–to-point calls

• The total number of bytes sent using TCP/IP for collective calls

4.10 The MPI Stats View (Numerical) Window

The MPI Stats View (Numerical) window displays the same information
as the MPI Stats View (Graphs) window (see the preceding section), but it
presents it in text form. For an illustration, see Figure 7, page 14.

Unlike the MPI Stats View (Graphs) window, this window includes all of
the data, whether or not it is zero.

90 007–2581–005

Performance Analyzer Reference [4]

4.11 The Call Graph View Window

The Call Graph View window displays the functions as nodes, annotated
with performance metrics, and their calls as connecting arcs (see Figure 37, page
91). Bring up the Call Graph View window by selecting Call Graph View
from the Views menu.

Display area

Call graph
control area

Figure 37. Call Graph View with Display Controls

Since a call graph can get quite complicated, the Performance Analyzer
provides various controls for changing the graph display. The Preferences
selection in the Config menu lets you specify which performance metrics
display and also lets you filter out unused functions and arcs. There are two
node menus in the display area; these let you filter nodes individually or as a
selected group. The top row of display controls is common to all MIPSpro
WorkShop graph displays. It lets you change scale, alignment, and orientation.
See an overview in the Developer Magic: MIPSpro WorkShop Overview. The
bottom row of controls lets you define the form of the graph. You can view the
call graph as a butterfly graph, showing the functions that call and are called by
a single function, or as a chain graph between two functions.

007–2581–005 91

Developer MagicTM: Performance Analyzer User’s Guide

4.11.1 Special Node Icons

Although rare, nodes can be annotated with two types of graphic symbols:

• A right-pointing arrow in a node indicates an indirect call site. It represents
a call through a function pointer. In such a case, the called function cannot
be determined by the current methods.

• A circle in a node indicates a call to a shared library with a data-space jump
table. The node name is the name of the routine called, but the actual target
in the shared library cannot be identified. The table might be switched at
run time, directing calls to different routines.

4.11.2 Annotating Nodes and Arcs

You can specify which performance metrics appear in the call graph, as
described in the following sections.

4.11.2.1 Node Annotations

To specify the performance metrics that display inside a node, use the
Preferences dialog box in the Config menu from the Performance Analyzer
main view. (For an illustration of the Data Display Options window, see
Figure 30, page 72.)

4.11.2.2 Arc Annotations

Arc annotations are specified by selecting Preferences... from the Config
menu in the Call Graph View window. (For an illustration of the Data
Display Options window, see Figure 30, page 72.) You can display the
counts on the arcs (the lines between the functions). You can also display the
percentage of calls to a function broken down by incoming arc. For an
explanation of the performance metric items, see Section 4.4.6, page 70.

4.11.3 Filtering Nodes and Arcs

You can specify which nodes and arcs appear in the call graph as described in
the following sections.

92 007–2581–005

Performance Analyzer Reference [4]

4.11.3.1 Call Graph Preferences Filtering Options

The Preferences selection in the Call Graph View Config menu also lets
you hide functions and arcs that have 0 calls. See Figure 30, page 72.

4.11.3.2 Node Menu

There are two node menus for filtering nodes in the graph: the Node menu and
the Selected Nodes menu. Both menus are shown in Figure 38.

The Node menu lets you filter a single node. It is displayed by holding down
the right mouse button while the cursor is over the node. The name of the
selected node appears at the top of the menu.

Selected Nodes menu

Node menu

Figure 38. Node Menus

The Node menu selections are as follows:

Hide Node Removes the selected node from the call graph
display

Collapse Subgraph Removes the nodes called by the selected node
(and subsequently called nodes) from the call
graph display

Show Immediate
Children

Displays the functions called by the selected node

007–2581–005 93

Developer MagicTM: Performance Analyzer User’s Guide

Show Parents Displays all the functions that call the selected
node

Show All Children Displays all the functions and the descendants
called by the selected node

4.11.3.3 Selected Nodes Menu

The Selected Nodes menu lets you filter multiple nodes. You can select
multiple nodes by dragging a selection rectangle around them. You can also
Shift-click a node, and it will be selected along with all the nodes that it calls.
Holding down the right mouse button anywhere in the graph, except over a
node, displays the Selected Nodes menu. The Selected Nodes menu
selections are as follows:

Hide Removes the selected nodes from the call graph
display

Collapse Removes the nodes called by the selected nodes
(and descendant nodes) from the call graph
display

Expand Displays all the functions (descendants) called by
the selected nodes

4.11.3.4 Filtering Nodes through the Display Controls

The lower row of controls in the Call Graph View panel helps you reduce
the complexity of a busy call graph.

You can perform these display operations:

Butterfly Presents the call graph from the perspective of a
single node (the target node), showing only those
nodes that call it or are called by it. Functions
that call it are displayed to the left and functions
it calls are on the right. Selecting any node and
clicking Butterfly redraws the display with the
selected node in the center. The selected node is
displayed and highlighted in the function list.

94 007–2581–005

Performance Analyzer Reference [4]

Chain Lets you display all paths between a given source
node and target node. The Chain dialog box is
shown in Figure 39, page 95. You designate the
source function by selecting it or entering it in the
Source Node field and clicking the Make
Source button. Similarly, the target function is
selected or entered and then established by
clicking the Make Target button. If you want to
filter out paths that go through nodes and arcs
with zero counts, click the toggle. After these
selections are made, click OK.

Figure 39. Chain Dialog Box

007–2581–005 95

Developer MagicTM: Performance Analyzer User’s Guide

Prune Chains Displays a dialog box that provides two
selections for filtering paths from the call graph
(see Figure 40).

Figure 40. Prune Chains Dialog Box

The Prune Chains button is only activated
when a chain mode operation has been
performed. The dialog box selections are:

• The Hide Paths Through toggle removes
from view all paths that go through the
specified node. You must have a current node
specified. Note that this operation is
irreversible; you will not be able to redisplay
the hidden paths unless you perform the
Chain operation again.

• The Hide Paths Not Through toggle
removes from view all paths except the ones
that go through the specified node. This
operation is irreversible.

96 007–2581–005

Performance Analyzer Reference [4]

Important Children Lets you focus on a function and its descendants
and set thresholds to filter the descendants. You
can filter the descendants either by percentage of
the caller’s time or by percentage of the total
time. The Threshold key field identifies the
type of performance time data used as the
threshold. See Figure 41.

Figure 41. Show Important Children Dialog Box

007–2581–005 97

Developer MagicTM: Performance Analyzer User’s Guide

Important Parents Lets you focus on the parents of a function, that
is, the functions that call it. You can set
thresholds to filter only those parents making a
significant number of calls, by percentage of the
caller’s time, or by percentage of the total time.
The Threshold key field identifies the type of
performance time data used as the threshold. See
Figure 42.

Figure 42. Show Important Parents Dialog Box

Clear Graph Removes all nodes and arcs from the call graph.

4.11.4 Other Manipulation of the Call Graph

The Call Graph View window provides facilities for changing the display of
the call graph without changing the data content.

4.11.4.1 Geometric Manipulation through the Control Panel

The controls for changing the display of the call graph are in the upper row of
the control panel (see Figure 43, page 99).

98 007–2581–005

Performance Analyzer Reference [4]

Zoom menu

Zoom Out button

Zoom In button

Overview button

Realign button

Rotate button

Figure 43. Call Graph View Controls for Geometric Manipulation

These controls are:

Zoom menu button Shows the current scale of the graph. If you click
this button, a pop-up menu appears displaying
other available scales. The scaling range is
between 15% and 200% of the normal (100%) size.

Zoom out button Resets the scale of the graph to the next
(available) smaller size in the range.

Zoom in button Resets the scale of the graph to the next
(available) larger size in the range.

Overview button Invokes an overview pop-up display that shows a
scaled down representation of the graph. The
nodes appear in the analogous places on the
overview pop-up, and a white outline can be
used to position the main graph relative to the
pop-up. Alternatively, the main graph may be
repositioned by using its scroll bars.

Realign button Redraws the graph, restoring the positions of any
nodes that were repositioned.

Rotate button Flips the orientation of the graph between
horizontal (calling nodes at the left) and vertical
(calling nodes at the top).

For more information on the graphical controls, see the Developer Magic:
MIPSpro WorkShop Overview manual.

007–2581–005 99

Developer MagicTM: Performance Analyzer User’s Guide

4.11.4.2 Using the Mouse in the Call Graph View

You can move an individual node by dragging it using the middle mouse
button. This helps reveal obscured arc annotations.

You can select multiple nodes by dragging a selection rectangle around them.
Shift-clicking a node selects the node along with all the nodes that it calls.

4.11.4.3 Selecting Nodes from the Function List

You can select functions from the function list of the Performance Analyzer
window to be highlighted in the call graph. Select a node from the list and then
click the Show Node button in the Function List window. The node will be
highlighted in the graph.

4.12 Butterfly View

The Butterfly View shows a selected function, the functions that called it
(the Immediate Parents), and the functions it calls (the Immediate
Children). For an illustration, see Figure 10, page 17.

You can change the selected function by clicking on a new one in the function
list area of the main Performance Analyzer window.

The Attrib.% column shows the percentage of the sort key (inclusive time, in
the illustration) attributed to each caller or callee. The sort key varies according
to the view; on an I/O View, for instance, it is by default inclusive bytes read.
You can change the criteria for what is displayed in the columns and how the
list is ordered by using the Preferences... and Sort... options, both of
which are accessed through the Config menu on the main Performance
Analyzer menu.

If you want to save the data as text, select Save As PostScript... from the
Admin menu.

4.13 Analyzing Memory Problems

The Performance Analyzer provides four tools for analyzing memory problems:
Malloc Error View, Leak View, Malloc View, and Heap View. Setting
up and running a memory analysis experiment is the same for all four tools.
After you have conducted the experiment, you can apply any of these tools.

100 007–2581–005

Performance Analyzer Reference [4]

A memory leak occurs when memory that is allocated in the program in not
freed later. As a result, the size of the program grows unnecessarily.

4.13.1 Using Malloc Error View, Leak View, and Malloc View

After you have run a memory experiment using the Performance Analyzer, you
can analyze the results using Malloc Error View (see Figure 44, page 102),
Leak View (see Figure 45, page 102), or Malloc View (see Figure 46, page
103). Malloc View is the most general, showing all memory allocation
operations. Malloc Error View shows only those memory operations that
caused problems, identifying the cause of the problem and how many times it
occurred. Leak View displays each memory leak that occurs in your
executable, its size, the number of times the leak occurred at that location during
the experiment, and the corresponding call stack (when you select the leak).

Each of these views has three major areas:

• Identification area—This indicates which operation has been selected from
the list. Malloc View identifies malloc routines, indicating the number of
malloc locations and the size of all malloc operations in bytes. Malloc
Error View identifies leaks and bad free routines, indicating the number
of error locations and how many errors occurred in total. Leak View
identifies leaks, indicating the number of leak locations and the total number
of bytes leaked.

• List area—This is a list of the appropriate types of memory operations
according to the type of view. Clicking an item in the list identifies it at the
top of the window and displays its call stack at the bottom of the list. The
list displays in order of size.

• Call stack area— This displays the contents of the call stack when the
selected memory operation occurred. Figure 47, page 103, shows a typical
Source View window with leak annotations. (You can change the
annotations by using the Preferences... selection in the Performance
Analyzer Config menu). Colored boxes draw attention to high counts.

Note: As an alternative to viewing leaks in Leak View, you can save one or
more memory operations as a text file. Choose Save As Text... from the
Admin menu, select one or more entries, and view them separately in a text
file along with their call stacks. Multiple items are selected by clicking the
first and then either dragging the cursor over the others or shift-clicking the
last in the group to be selected.

007–2581–005 101

Developer MagicTM: Performance Analyzer User’s Guide

Identification area

List area

Call stack area

Figure 44. Malloc Error View Window with an Admin Menu

Identification area

List area

Call stack area

Figure 45. Leak View Window with an Admin Menu

102 007–2581–005

Performance Analyzer Reference [4]

Identification area

List area

Call stack area

Figure 46. Malloc View Window with Admin Menu

Memory operation
annotations

Source line corresponding
to call stack frame

Annotation
identifiers

Figure 47. Source View Window with Memory Analysis Annotations

007–2581–005 103

Developer MagicTM: Performance Analyzer User’s Guide

4.13.2 Analyzing the Memory Map with Heap View

The Heap View window lets you analyze data from experiments based on the
Memory Leak Trace task. The Heap View window provides a memory map
that shows memory problems occurring in the time interval defined by the
calipers in the Performance Analyzer window. The map indicates the
following memory block conditions:

• malloc: reserved memory space

• realloc: reallocated space

• free: open space

• error: bad free space

• unused space

In addition to the Heap View memory map, you can analyze memory leak
data using these other tools:

• If you select a memory problem in the map and bring up the Call Stack
window, it will show you where the selected problem took place and the
state of the call stack at that time.

• The Source View window shows exclusive and inclusive malloc routines
and leaks and the number of bytes used by source line.

4.13.2.1 Heap View Window

A typical Heap View window with its parts labeled appears in Figure 48, page
105.

104 007–2581–005

Performance Analyzer Reference [4]

Heap size data

Map key

Heap map

Search field

Event list area

Call stack area

Memory event
indicators

Zoom Out button
Zoom In button

Malloc Errors

Figure 48. Heap View Window

The major features of a Heap View window are as follows:

Map key Appears at the top of the heap map area to
identify blocks by color. The actual colors depend
on your color scheme.

Heap map Shows heap memory as a continuous, wrapping,
horizontal rectangle. The memory addresses
begin at the upper left corner and progress from
left to right, row by row. The rectangle is broken
up into color-coded segments according to
memory use status. Clicking a highlighted area in
the heap map identifies the type of problem, the
memory address where it occurred, its size in the

007–2581–005 105

Developer MagicTM: Performance Analyzer User’s Guide

event list area, and the associated call stack in the
call stack display area.

Note in Figure 48, page 105, that there are only a
few problems in the memory at the lower
addresses and many more at the higher addresses.

Memory event
indicators

The events appear color-coded in the scroll bar.
Clicking an indicator with the middle button
scrolls the display to the selected problem.

Search field Provides two functions:

• If you enter a memory address in the field, the
corresponding position will be highlighted in
the heap map. If there was a problem at that
location, it will be identified in the event list
area. If there is no problem, the event list area
displays the address at the beginning of the
memory block and its size.

• If you hold down the left mouse button and
position the cursor in the heap map, the
corresponding address will display in the
Search field.

Event list area Displays the events occurring in the selected
block. If only one event was received at the given
address, its address is shown by default. If more
than one event is shown, double-clicking an event
will display its corresponding call stack.

Call stack area Displays the call stack corresponding to the event
highlighted in the event list area.

Malloc Errors
button

Causes malloc errors and their addresses to
display in the event list area. You can then enter
the address of the malloc error in the Search
field and press the Enter key to see the error’s
malloc information and its associated call stack.

Zoom in button An upward-pointing arrow, it redisplays the heap
area at twice the current size of the display. If
you reach the limit, an error message displays.

106 007–2581–005

Performance Analyzer Reference [4]

Zoom out button A downward-pointing arrow, it redisplays the
heap area at half the current size (to a limit of one
pixel per byte). If you reach the limit, an error
message displays.

4.13.2.2 Source View malloc Annotations

Like Malloc View, if you double-click a line in the call stack area of the Heap
View window, the Source View window displays the portion of code
containing the corresponding line. The line is highlighted and indicated by a
caret (^), with the number of bytes used by malloc in the annotation column.
See Figure 47, page 103.

4.13.2.3 Saving Heap View Data as Text

Selecting Save As Text... from the Admin menu in Heap View lets you
save the heap information or the event list in a text file. When you first select
Save As Text..., a dialog box displays asking you to specify heap
information or the event list. After you make your selection, the Save Text
dialog box displays (see Figure 49, page 108). This lets you select the file name
in which to save the Heap View data. The default file name is
experiment-filename.out. When you click OK, the data for the current caliper
setting and the list of unmatched free routines, if any, are appended to the
specified file.

Note: The Save As Text... selection in the File menu for the Source
View saves the current file. No file name default is provided, and the file
that you name will be overwritten.

007–2581–005 107

Developer MagicTM: Performance Analyzer User’s Guide

Figure 49. Heap View Save Text Dialog Boxes

4.14 The Call Stack Window

The Call Stack window, which is accessed from the Performance Analyzer
Views menu, lets you get call stack information for a sample event selected
from one of the Performance Analyzer views. See Figure 50, page 109.

108 007–2581–005

Performance Analyzer Reference [4]

Event identification area

Call stack area

Event type

Figure 50. Performance Analyzer Call Stack Window

There are three main areas in the Call Stack window:

Event identification area

Displays the number of the event, its time stamp, and the time
within the experiment. If you have a multiprocessor
experiment, the thread will be indicated here.

Call stack area

Displays the contents of the call stack when the sample event
took place.

Event type area

Highlights the type of event and shows the thread in which it
was defined. It indicates, in parentheses, whether the sample
was taken in all threads or the indicated thread only.

4.15 Analyzing Working Sets

If you suspect a problem with frequent page faults or instruction cache misses,
conduct a working set analysis to determine if rearranging the order of your
functions will improve performance.

007–2581–005 109

Developer MagicTM: Performance Analyzer User’s Guide

The term working set refers to those executable pages, functions, and
instructions that are actually brought into memory during a phase or operation
of the executable. If more pages are required than can fit in memory at the
same time, page thrashing (that is, swapping in and out of pages) may result,
slowing down your program. Strategic selection of which pages functions
appear on can dramatically improve performance in such cases.

You do this by creating a file containing a list of functions, their sizes, and
addresses called a cord mapping file. The functions should be ordered so as to
optimize page swapping efficiency. This file is then fed into the cord utility,
which rearranges the functions according to the order suggested in the cord
mapping file. See the cord(1) man page for more information.

Working set analysis is appropriate for:

• Programs that run for a long time

• Programs whose operation comes in distinct phases

• Distributed shared objects (DSOs) that are shared among several programs

4.15.1 Working Set Analysis Overview

WorkShop provides two tools to help you conduct working set analysis:

• Working Set View is part of the Performance Analyzer. It displays the
working set of pages for each DSO that you select and indicates the degree
to which the pages are used.

• The cord analyzer, sscord(1), is separate from the Performance Analyzer
and is invoked by typing sscord at the command line. It displays a list of
the working sets that make up a cord mapping file, shows their utilization
efficiency, and, most importantly, computes an optimized ordering to reduce
working sets.

Figure 51, page 111, presents an overview of the process of conducting working
set analysis.

110 007–2581–005

Performance Analyzer Reference [4]

cord mapping file

1. Run one or more "Get Ideal Time" Performance
Analyzer experiment(s) and set sample traps to
delineate phases/operations.

2. Run Working Set View in Performance Analyzer
for each caliper-pair setting in each experiment and
save individual working sets and initial version
of cord mapping file.

3. In a text editor, create a working set list with one
.ws file per line, ordered with the most important sets
last.

testnnnn data

file(s).ws

working set list

4. If desired, run the Cord Analyzer (cvcord) and
load the cord mapping file and working set list.
Generate union and/or intersection sets and write out
a new working set list. If you don't need to construct
unions or intersections, go to Step 6.

5. In a text editor edit working set list to
have proper order.

6. Run the Cord Analyzer again to construct cording
feedback, that is, a new optimized cord mapping file.

7. Run cord using the new feedback file to produce
an optimized executable file.

Optimized executable file

Figure 51. Working Set Analysis Process

First, conduct one or more Performance Analyzer experiments using the Ideal
Time/Pixie task. Set sample traps at the beginning and end of each operation
or phase that represents a distinct task. You can run additional experiments on
the same executable to collect data for other situations in which it can be used.

007–2581–005 111

Developer MagicTM: Performance Analyzer User’s Guide

After you have collected the data for the experiments, run the Performance
Analyzer and select Working Set View. Save the working set for each phase
or operation that you want to improve. Do this by setting the calipers to
bracket each phase and select Save Working Set from the Admin menu.

Select Save Cord Map File to save the cord mapping file (for all runs and
caliper settings). This need only be done once.

The next step is to create the working set list file, which contains all of the
working sets you want to analyze using the cord analyzer. Create the working
set list file in a text editor, specifying one line for each working set and in
reverse order of priority, that is, the most important comes last.

The working set list and the cord mapping file serve as input to the cord
analyzer. The working set list provides the cord analyzer with working sets to
be improved. The cord mapping file provides a list of all the functions in the
executable. The cord analyzer displays the list of working sets and their
utilization efficiency. It lets you do the following:

• Construct gray-code cording feedback (the preferred method).

• Examine the page layout and the efficiency of each working set with respect
to the original ordering of the executable.

• Construct union and intersection sets as desired.

• View the efficiency of a different ordering.

• Construct a new cord mapping file as input to the cord utility.

If you have a new order that you would like to try out, edit your working set
list file in the desired order, submit it to the cord analyzer, and save a new cord
mapping file for input to cord.

4.15.2 Working Set View

The Working Set View measures the coverage of the dynamic shared objects
(DSOs) that make up your executable (see Figure 52, page 113). It indicates
instructions, functions, and pages that were not used when the experiment was
run. It shows the coverage results for each DSO in the DSO list area. Clicking a
DSO in the list displays its pages with color-coding to indicate the coverage of
the page.

112 007–2581–005

Performance Analyzer Reference [4]

DSO list area

DSO identification
area

Page display area
(for selected DSO)

Figure 52. Working Set View

4.15.2.1 DSO List Area

The DSO list area displays coverage information for each DSO used by the
executable. It has the following columns:

Text or DSO Region Name

Identifies the DSO.

Ideal Time

Lists the percentage of ideal time for the caliper setting
attributed to the DSO.

007–2581–005 113

Developer MagicTM: Performance Analyzer User’s Guide

Counts of: Instrs.

Lists the number of instructions contained in the DSO.

Counts of: Funcs.

Lists the number of functions contained in the DSO.

Counts of: Pages

Lists the number of pages occupied by the DSO.

% Coverage of: Instrs.

Lists the percentage obtained by dividing the number of
instructions used by the total number of instructions in the DSO.

% Coverage of: Funcs.

Lists the percentage obtained by dividing the number of
functions used by the total number of functions in the DSO.

% Coverage of: Pages

Lists the coverage obtained by dividing the number of pages
touched by the total pages in the DSO.

Avg. Covg. of Touched: Pages

Lists the coverage obtained by dividing the number of
instructions executed by the total number of instructions on
those pages touched by the DSO.

Avg. Covg. of Touched: Funcs

Lists the average percentage use of instructions within used
functions.

The Search field lets you perform incremental searches to find DSOs in the
DSO list. (An incremental search goes to the immediately matching target as
you enter each character.)

4.15.2.2 DSO Identification Area

The DSO identification area shows the address, size, and page information for
the selected DSO. It also displays the address, number of instructions, and
coverage for the page selected in the page display area.

114 007–2581–005

Performance Analyzer Reference [4]

4.15.2.3 Page Display Area

The page display area at the bottom of the Working Set View window shows
all the pages in the DSO and indicates untouched pages, unused functions,
executed instructions, unused instructions, and table data (related to rld(1)). It
also includes a color legend at the top to indicate how pages are used.

Clicking a page displays its address, number of instructions, and coverage data
in the identification area. Clicking a function in the function list of the main
Performance Analyzer window highlights (using a solid rectangle) the page on
which the function begins. Clicking the left mouse button on a page indicates
the first function on the page by highlighting it in the function list area of the
Performance Analyzer window. Similarly, clicking the middle button on a page
highlights the function at the middle of the page, and clicking the right button
highlights the button at the end of the page. For all three button clicks, the
page containing the beginning of the function becomes highlighted. Note that
left clicks typically highlight the page before the one clicked, since the function
containing the first instruction usually starts on the previous page.

4.15.2.4 Admin Menu

The Admin menu of the Working Set View window provides the following
menu selections:

Save Working Set

Saves the working set for the selected DSO. You can incorporate
this file into a working set list file to be used as input to the
Cord Analyzer.

Save Cord Map File

Saves all of the functions in the DSOs in a cord mapping file for
input to the Cord Analyzer. This file corresponds to the
feedback file discussed on the cord(1) man page.

Save Summary Data as Text

Saves a text file containing the coverage statistics in the DSO
list area.

Save Page Data as Text

Saves a text file containing the coverage statistics for each page
in the DSO.

007–2581–005 115

Developer MagicTM: Performance Analyzer User’s Guide

Save All Data as Text

Saves a text file containing the coverage statistics in the DSO
list area and for each page in the selected DSO.

Close

Closes the Working Set View window.

4.15.3 Cord Analyzer

The cord analyzer is not actually part of the Performance Analyzer; it is
discussed in this part of the manual because it works in conjunction with the
Working Set View. The cord analyzer lets you explore the working set
behavior of an executable or shared library (DSO). With it you can construct a
feedback file for input to the cord(1) utility to generate an executable with
improved working set behavior. Invoke the cord analyzer at the command line
using the following syntax:

sscord -fb fb_file -wsl ws_list_file -ws ws_file -v|-V executable

The sscord command accepts the following arguments:

-fb fb_file Specifies a single text file to use as a feedback file
for the executable. It should have been generated
either from a Performance Analyzer experiment
on the executable or DSO, or from the cord
analyzer. If no -fb argument is given, the
feedback file name will be generated as
executable.fb.

-wsl ws_list_file Specifies a single text file name as input; the
working set list consists of the working set files
whose names appear in the input file. Each file
name should be on a single line.

-ws ws_file Specifies a single working set file name.

-v|-V Verbose output. If specified, mismatches between
working sets and the executable or DSO are
noted.

executable Specifies a single executable file name as input.

The Cord Analyzer window is shown in Figure 53, page 118, with its major
areas and menus labeled.

116 007–2581–005

Performance Analyzer Reference [4]

4.15.3.1 Working Set Display Area

The working set display area of the Cord Analyzer window shows all of the
working sets included in the working set list file. It has the following columns:

Working-set pgs. (util. %)

Lists the number of pages in the working set and the
percentage of page space that is utilized.

cord’d set pgs

Specifies the minimum number of pages for this set, that is, the
number of pages the working set would occupy if the program
or DSO were reordered optimally for that specific working set.

Working-set Name

Identifies the path for the working set.

Note that when the function list is displayed, double-clicking a function
displays a plus sign (+) in the working set display area to the left of any
working sets that contain the function.

4.15.3.2 Working Set Identification Area

The working set identification area shows the name of the selected working set.
It also shows the number of pages in the working set list, in the selected
working set, and in the corded working set, and the number of pages used as
tables. It also provides the address for the selected page, its size, and its
coverage as a percentage.

007–2581–005 117

Developer MagicTM: Performance Analyzer User’s Guide

Working set
display area

Working set
identification area

Page display area
(for selected working set)

Figure 53. The Cord Analyzer Window

4.15.3.3 Page Display Area

The page display area at the bottom of the window shows the starting address
for the DSO and its pages, and their use in terms of untouched pages, unused
functions, executed instructions, unused instructions, and table data related to
rld(1). It includes a color legend at the top to indicate how pages are used.

4.15.3.4 Function List

The Function List window displays all the functions in the selected
working set. It contains the following columns:

Use Count of the working sets containing the function.

Address Starting address for the function.

Insts. Number of instructions in the function.

Function (File) Name of the function and the file in which it
occurs.

When the Function List window is displayed, clicking a working set in the
working set display area displays a plus sign (+) in the function list to the left
of any functions that the working set contains. Similarly, double-clicking a

118 007–2581–005

Performance Analyzer Reference [4]

function displays a plus sign in the working set display area to the left of any
working sets that contain the function.

The Search field lets you do incremental searches for a function in the
Function List window.

4.15.3.5 Admin Menu

The Admin menu contains the standard Admin menu commands in WorkShop
views (see Appendix A, in the Developer Magic: Debugger User’s Guide). It has
the following command specific to the cord analyzer:

Save Working Set List

Saves a new working set list with whatever changes you made
to it in the session.

4.15.3.6 File Menu

The File menu contains the following selections:

Delete All Working Sets

Removes all the working sets from the working set list. It does
not delete any files.

Delete Selected Working Set

Removes the selected working set from the working set list.

Add Working Set

Includes a new working set in the working set list.

Add Working Set List from File

Adds the working sets from the specified list to the current
working set file.

Construct Gray-code Cording Feedback

Generates an ordering to minimize the working sets, placing
the highest priority set first. It compacts each set and orders it
to minimize the transitions between each set and the one that
follows. Gray code is believed to be superior to weighted
ordering, but you might want to experiment with them both.

007–2581–005 119

Developer MagicTM: Performance Analyzer User’s Guide

Construct Weighted Cording Feedback

Finds as many distinct affinity sets as it can and orders them to
minimize the working sets for their operations in a weighted
priority order.

Construct Union of Selected Sets

Displays a new working set built as a union of working sets.
This is the same as an OR of the working sets.

Construct Intersection of Selected Sets

Displays a new working set built from the intersection of the
specified working sets. This is the same as an AND of the
working sets.

Read Feedback File

Loads a new cord mapping file into the Cord Analyzer.

120 007–2581–005

Glossary [5]

basic block A set of instructions with a single entry point, a
single exit point, and no branches into or out of
the set.

bead A record in an experiment file.

blocking Waiting in the kernel for a resource to become
available.

caliper points Markers in the time domain that can be used to
delimit a performance analysis. For instance, you
may want to analyze only the CPU-bound part of
your code.

call stack A software stack of functions and routines used
by the running program. The functions and
routines are listed in the reverse order, from top
to bottom, in which they were called. If function
a is immediately below function b in the stack,
then a was called by b. The function at the
bottom of the stack is the one currently executing.

collective calls Move a message from one processor to multiple
processors or from multiple processors to one
processor.

context switch When the system scheduler stops a job from
executing and replaces it with another job.

cord mapping file A file containing a list of functions, their sizes,
and their addresses.

CPU time Process virtual time (see the glossary entry) plus
time spent when the system is running on behalf
of the process, performing such tasks as executing
a system call. This is the time returned in
pcsamp and usertime experiments.

disassembly Assembly language version of the program.

exclusive time The time spent only in the function itself, not
including any functions it might call.

007–2581–005 121

Developer MagicTM: Performance Analyzer User’s Guide

heartbeat resource data Resource usage data (such as CPU time, wait
time, I/O transfers, and so on) recorded at
regular intervals. The cvperf usage view graphs
are drawn using this data.

HIPPI The High Performance Parallel Interface is a
network link, often used to connect computers. It
is slower than shared memory transfers but faster
than TCP/IP transfers.

inclusive time The total time spent in a function and all the
functions it calls.

instrumenting A method of collecting data by inserting code
into the executable program to count events, such
as the number of times a section of the program
executes.

interlock A feature of the CPU that causes a stall when
resources are not available.

memory leak Making malloc calls without the corresponding
calls to free. The result is, the amount of heap
memory used continues to increase as the process
runs.

memory page The smallest unit of memory handled by the
operating system. It is usually either 4 or 16
Kbytes.

page fault A problem resulting in the possible loss of data.
A high page fault rate is an indication of a
memory-bound situation.

PC Program counter. A register that contains the
address of the instruction that is currently
executing.

phase A part of a program that concentrates on a single
activity. Examples are the input phase, the
computation phase, and the output phase.

point-to-point call Moves a message from one processor to another
single processor.

pollpoint A regular time interval at which performance
data is captured.

122 007–2581–005

Glossary [5]

process virtual time Time spent when a program is actually running.
This does not include either 1) the time spent
when the program is swapped out and waiting
for a CPU or 2) the time when the operating
system is in control, such as executing a system
call for the program.

profiling A method of collecting data by periodically
examining and recording the program’s program
counter (PC), call stack, and hardware counters
that measure resource consumption.

profiling time This is the same as CPU time.

real time The same as wall–clock time.

sample event A point in the program at which the PC or some
resource is sampled.

system time The time during a program’s execution during
which the system has control. It could be
performing I/O or executing a system call.

TCP/IP A networking protocol that moves data between
two systems on the Internet.

thrashing Accessing data from different parts of memory,
causing frequent loads of pages of memory into
cache. Using random access on an array might be
an example.

threshold An upper limit. For example, in the Source View,
any line of code that exceeds a threshold of
resource usage is flagged in the display.

total time The same as wall-clock time.

user time The same as CPU time.

virtual address A location in memory as it appears in a program.
For example, a[10] is the virtual address of
element 10 of the array a. Internally, the virtual
address is translated into the computer’s physical
address.

virtual time The same as process virtual time.

007–2581–005 123

Developer MagicTM: Performance Analyzer User’s Guide

wall-clock time The total time a program takes to execute,
including the time it takes waiting for a CPU.
This is real time, not computer time.

working set Executable pages, functions, and instructions that
are actually brought into memory during a phase
or operation of the executable.

124 007–2581–005

Index

B

bad frees, 21
Butterfly button, 94

C

calipers, 68
call graph, 98
call stack data collection, 56
Call stack window, 108
chain operation, 95
Charts menu, 84
Context switch stripchart, 82
cord analyzer, 25, 116
CPU time, 47
custom task, 51

D

Disassembled source button, 66

E

environment variable
_SPEEDSHOP_OUTPUT_FILENAME, 29

experiments
Performance Analyzer, 43

F

floating point exception trace, 49
function list, 65, 100

H

Heap view, 104
Heap view tutorial, 40
Hide 0 functions toggle, 66

I

I/O trace, 49
ideal time task, 47

L

leak experiments, 38

M

Make source, 95
Make target, 95
malloc/free tracing, 58
memory leak experiments, 38
memory leakage, 21
memory leaks, 49
memory problems, 20

O

Overview button, 99

P

Page faults stripchart, 82
PC Sampling, 46

007–2581–005 125

Developer MagicTM: Performance Analyzer User’s Guide

performance analysis theory, , 3
Performance Analyzer

experiments, 43
tasks, 46
tutorial, 27

Performance panel, 44
poll and I/O calls stripchart, 83
poll system calls, 83
pollpoint sampling, 60
Process Meter, 84
Process size stripchart, 83

R

Read/Write
data size stripchart, 83
system calls stripchart, 83

Realign button, 99
resource usage data, 7
Rotate button, 99

S

sample traps, 45
Scale menu, 84
Search field, 66
select system calls, 83
Show node button, 66

Source button, 66
Source view with leak annotations, , 103

T

target directory, 62
Trace I/O, 49
tracing data, 58

U

unmatched frees, 21
user vs system time stripchart, 82

W

working set analysis, 110
Working Set View, 24, 112

Z

Zoom in, 99
Zoom menu, 99
Zoom out, 99

126 007–2581–005

