
Developer Magic™: RapidApp™
User’s Guide

Document Number 007-2590-001

Developer Magic™: RapidApp™ User’s Guide
Document Number 007-2590-001

CONTRIBUTORS

Production by Laura Cooper
Engineering contributions by Doug Young
Cover design and illustration by Rob Aguilar, Rikk Carey, Dean Hodgkinson,

Erik Lindholm, and Kay Maitz

© 1994, Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013 and/
or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics, the Silicon Graphics logo, IRIS, and OpenGL are registered
trademarks and CASEVision, Developer Magic, Indigo Magic, Inventor, IRIS IM,
IRIS Insight, IRIS Showcase, IRIS ViewKit, Open Inventor, and RapidApp are
trademarks of Silicon Graphics, Inc. Builder Xcessory is a trademark of Integrated
Computer Systems, Inc. Ada is a registered trademark of Ada Joint Program Office,
U.S. Government. Motif and OSF/Motif are registered trademarks of Open Software
Foundation. X Window System is a trademark of Massachusetts Institute of
Technology.

iii

Contents

List of Examples xiii

List of Figures xv

About This Guide xix
What This Guide Contains xix
What You Should Know Before Reading This Guide xx
Suggested Reading xxi
Font Conventions in This Guide xxiv
Upgrading to Builder Xcessory xxiv

1. Getting Started With RapidApp 3
RapidApp Overview 3
Installing and Starting RapidApp 4
The RapidApp Interface 5

The RapidApp Menu Bar 6
The RapidApp Palette Area 7
The RapidApp Instance Header 7
The RapidApp Resource Editor 8
The RapidApp Quick Help Area 8

iv

Contents

Basic Interaction Techniques 8
Creating Interface Elements 9
Adding a Container to a Top-Level Window 11
Creating Interface Elements in an Existing Container 11
Explicit Focus Mode 13
Moving and Resizing Interface Elements 13

Directly Repositioning and Resizing Child Elements 14
Indirectly Positioning Child Elements 16
Reparenting Child Elements 17

Deleting Interface Elements 17
Naming Interface Elements 18
Editing Interface Element Resources 18

Callbacks 20
Constraints 20
Dynamic Resources 21

Additional Interaction Techniques 21
Locking on to an Element 22
Selecting a Parent Element 22
Viewing the Widget Hierarchy 22
Resetting IRIS IM Widgets 22

Example: A Calculator 24
EZ Convenience Functions 31

Examples Using the EZ Functions 33
Support for Widget Resources 34

v

2. Creating Applications With RapidApp 37
RapidApp Development Model 37

Object-Oriented Components 38
Integration With the Indigo Magic Desktop Environment 39
Code Management 40

Code Generation 40
Object-Oriented Design 42
Code Merging 43

Integration With ProDev WorkShop for Building and Debugging 45
Editing Files 46
Compiling 46
Browsing Source 46
Debugging and Interactively Adding Functionality 47

Integration With Software Packager for Creating Installable Images 48
 RapidApp Development Cycle 49

3. Building Interfaces With RapidApp 53
Choosing and Using Windows 53

Simple Windows 54
VkWindows 55
Main Primary and Co-Primary Windows 58
Dialog Windows 60

Using Containers 63
Bulletin Board 65
Rubber Board 66
Spring Box 70
Form 73
Paned Windows 78
RowColumn 79

vi

Contents

Radio Box 80
Frame 81
Scrolled Window 82
Drawing Areas 82
Tabbed Deck 82

Creating and Editing Menus 84
Menu Bars 84

Creating a Menu Bar 84
Adding Panes to a Menu Bar 85
Removing Panes From a Menu Bar 86
Moving Panes In a Menu Bar 86

Menu Panes 86
Displaying and Hiding a Menu’s Contents 86
Adding Items to a Menu 87
Moving Items in a Menu 88
Removing Items From a Menu 88

Option Menus 88
Creating, Editing, and Manipulating Components 89

Creating Components 89
Using Components 92
Editing Components 92
Deleting Components 93
Creating Components from External Classes 93

4. Example Programs 97
A Simple Open Inventor Program 97
Online Examples 104

A. Frequently Asked Questions about RapidApp 107
Frequently Asked Questions 107

vii

B. RapidApp Reference 121
Global Objects 121

File Menu 122
Edit Menu 123
View Menu 124
Classes Menu 124
Project Menu 125
Options Menu 126

C++ File Options Dialog 126
RapidApp Preferences Dialog 127
Application Names Dialog 127

Palette Tabs 129
Keys and Shortcuts 129

Windows Palette 131
VkSimpleWindow 131

VkSimpleWindow Resources 131
VkWindow 132
VkDialogWindow 132

Containers Palette 133
BulletinBoard 133

BulletinBoard Resources 134
SpringBox 134

SpringBox Resources 135
SpringBox Constraint Resources 137

Form 137
Form Resources 138
Form Constraint Resources 138

RowColumn 140
RowColumn Resources 141

RadioBox 142
RadioBox Resources 143

viii

Contents

PanedWindow, HorzPanedWindow 143
PanedWindow, HorzPanedWindow Resources 144
PanedWindow, HorzPanedWindow Constraint Resources 144

Frame 144
Frame Resources 145
Frame Constraint Resources 145

ScrolledWindow 146
ScrolledWindow Resources 147

RubberBoard 147
RubberBoard Resources 148

DrawingArea, VisualDrawingArea 148
DrawingArea, VisualDrawingArea Resources 149
VisualDrawingArea Resources 149

Controls Palette 150
PushButton 151

PushButton Resources 151
Code Examples 152

ToggleButton 154
ToggleButton Resources 154
Code Examples 156

ArrowButton 156
Resources 157

DrawnButton 157
DrawnButton Resources 157

Label 159
Label Resources 159
Code Examples 161

Separator 161
Separator Resources 162

ScrollBar 162
ScrollBar Resources 163
Code Examples 163

ix

Scale 164
Scale Resources 164
Code Examples 166

ScrolledList 166
Scrolled Window Resources 167
List Resources 168

Scrolled Text 169
Scrolled Text Resources 169

TextField 171
TextField Resources 171

Finder 172
Finder Resources 172

Thumbwheel 173
Thumbwheel Resources 173

Dial 174
Dial Resources 175

GLwMDrawingArea 175
Drop Pocket 178

DropPocket Resources 178
Menus Palette 178

Pulldown Menu 179
Pulldown Resources 180

Cascade Menu 180
Cascade Resources 180

Radio Pulldown 181
RadioPulldown Resources 181

OptionMenu 181
OptionMenu Resources 182

x

Contents

Menu Entry 182
MenuEntry Resources 182

Menu Label 183
MenuLabel Resources 183

Menu Toggle 183
MenuToggle Resources 183

Menu Separator 184
ConfirmFirst 184

MenuToggle Resources 184
ViewKit Palette 185

VkOutline 185
VkCompletionField 186
VkGraph 186
VkTabPanel 187
VkTabbedDeck 187
VkVUMeter 187
VkPie 187
VkTickMarks 188

Inventor Palette 188
Examiner Viewer 189

Examiner Viewer Resources 189
Walk Viewer 190

Walk Viewer Resources 190
Plane Viewer 191

Plane Viewer Resources 191
Material Editor 191
Directional Light 192
SoFly Viewer 192

SoFly Viewer Resources 193
Render Area 193

Render Area Resources 194

xi

C. Source Code for the Calculator Application 195
The Calculator main.C File 195
The CalcWindowMainWindow Class 196
The Calculator Class 200
The CalculatorUI Class 205
The Calculator Resource File 205
Makefile 206

D. RapidApp Makefile Conventions 211

E. VkEZ Reference 213
General Operators 213

operator String() 213
operator int() 214
Assignment Operators 214
Append Operators 216
Decrement Operator 217

Attributes 218

Glossary 219

Index 221

xii

Contents

xiii

List of Examples

Example B-1 Retrieving Text from a Subclass of Label Using the
IRIS IM API 153

Example B-2 Retrieving Text from a Subclass of Label Using the
VkEZ API 153

Example B-3 Setting Text on a Subclass of Label using the
VkEZ API 154

Example B-4 Setting the Indicator State on a Toggle Button Without
Invoking Callbacks 156

Example B-5 Setting the Indicator State on a Toggle Button and
Triggering Callbacks 156

Example B-6 Retrieving Text from a Subclass of Label Using the
IRIS IM API 161

Example B-7 Retrieving Text from a Subclass of Label Using the
VkEZ API 161

Example B-8 Setting Text on a Subclass of Label Using the
VkEZ API 161

Example B-9 Getting the Value of a Scroll Bar Using the IRIS IM API 163
Example B-10 Getting the Value of a Scroll Bar Using the VkEZ API 164
Example B-11 Setting the Value of a Scroll Bar Using the IRIS IM API 164
Example B-12 Setting the Value of a Scroll Bar Using the VkEZ API 164
Example B-13 Getting the Value of a Scale Using the IRIS IM API 166
Example B-14 Getting the Value of a Scale Using the VkEZ API 166
Example B-15 Setting the Value of a Scale Using the IRIS IM API 166
Example B-16 Setting the Value of a Scale Using the VkEZ API 166
Example C-1 Calculator main.C File 195
Example C-2 The Calculator CalcWindowMainWindow.h File 196
Example C-3 The Calculator CalcWindowMainWindow.C File 197

xiv

List of Examples

Example C-4 The Calculator Calculator.h File 200
Example C-5 The Calculator Calculator.C File 202
Example C-6 The Calculator Resource File 205
Example C-7 The Calculator Makefile file 206

xv

List of Figures

Figure 1-1 RapidApp Startup Screen 5
Figure 1-2 RapidApp Main Window 6
Figure 1-3 Creating a Widget 10
Figure 1-4 Creating a Pushbutton as a Child of a Bulletin Board 12
Figure 1-5 Repositioning a Widget in a Bulletin Board Container 15
Figure 1-6 Resizing a Widget 16
Figure 1-7 Repositioning a Widget in a RowColumn 17
Figure 1-8 Header Area 18
Figure 1-9 Resource Editor Area 19
Figure 1-10 A Resource Whose Value Is a String 19
Figure 1-11 A Resource Whose Value Is Boolean 19
Figure 1-12 A Resource Whose Value Is Enumerated 20
Figure 1-13 Adding a Callback 20
Figure 1-14 Resource Editor Area, Showing Constraint Resources 21
Figure 1-15 Initial RowColumn Layout 23
Figure 1-16 Incorrect RowColumn Layout 23
Figure 1-17 Corrected RowColumn Layout 24
Figure 1-18 Completed Calculator Program 24
Figure 1-19 Initial Calculator Layout 25
Figure 1-20 Second Text Field and Label 26
Figure 1-21 All Widgets In Place 26
Figure 1-22 RapidApp Information Window 27
Figure 1-23 Application Options Dialog 28
Figure 1-24 Building the Calculator Application 29
Figure 1-25 Working Calculator Program 31
Figure 3-1 The RapidApp Windows Palette 54
Figure 3-2 Default Configuration of VkWindow Component 56

xvi

List of Figures

Figure 3-3 Setting the Window Type 59
Figure 3-4 Default Configuration of Dialog Window 61
Figure 3-5 Example of a Custom Dialog 62
Figure 3-6 RapidApp Containers Palette 64
Figure 3-7 Rubber Board: Initial Layout 67
Figure 3-8 Rubber Board: Preparing for Larger Layout 68
Figure 3-9 Rubber Board: Final Layout 69
Figure 3-10 Effect of Resizing the Final Rubber Board Layout 70
Figure 3-11 Vertical and Horizontal Spring Boxes 71
Figure 3-12 Springs in Children of a Spring Box 71
Figure 3-13 Setting Spring Resources 72
Figure 3-14 Spring Box Behavior With Modified Values 72
Figure 3-15 Push Button in a Form 74
Figure 3-16 Setting the Top Offset to Zero 74
Figure 3-17 Using the Popup to Set an Offset 75
Figure 3-18 Displaying the Attachment Menu 75
Figure 3-19 Push Button With a Right Attachment 76
Figure 3-20 Drawing an Attachment 77
Figure 3-21 HPaned Window Container 78
Figure 3-22 Typical RowColumn Layout 80
Figure 3-23 Radio Box With Toggle Button Children 81
Figure 3-24 Frame Widget 81
Figure 3-25 Tabbed Deck 83
Figure 3-26 RapidApp Menus Palette 84
Figure 3-27 Make Class Dialog 89
Figure 3-28 Creating a Calculator Class 91
Figure 3-29 Class Header 91
Figure 3-30 User Defined Classes Palette 92
Figure 4-1 Adding an Examiner Viewer 98
Figure 4-2 The Completed Open Inventor Component 99
Figure 4-3 The Open Inventor Interface Displaying a Scene 101
Figure B-1 RapidApp Window 122
Figure B-2 File Menu 122

xvii

Figure B-3 Edit Menu 123
Figure B-4 View Menu 124
Figure B-5 Snap To Grid Toggles 124
Figure B-6 Classes Menu 124
Figure B-7 Project Menu 125
Figure B-8 Options Menu 126
Figure B-9 Palette Tabs 129
Figure B-10 Windows Palette 131
Figure B-11 Containers Palette 133
Figure B-12 Controls Palette 150
Figure B-13 Menus Palette 179
Figure B-14 ViewKit Palette 185
Figure B-15 Inventor Palette 188

xviii

List of Figures

xix

About This Guide

This book explains how to use the RapidApp™ application builder, a
component of the Developer Magic™ Application Development
Environment for developing applications to run on Silicon Graphics®

workstations. This integrated development environment provides tools for
rapid application development.

What This Guide Contains

This book contains the following chapters:

• Chapter 1, “Getting Started With RapidApp,” gives an overview of
RapidApp, describes basic interaction techniques, and provides a
simple example of creating an application using RapidApp.

• Chapter 2, “Creating Applications With RapidApp,” describes the
process of developing an application using RapidApp, as well as giving
details about RapidApp features such as code management and
integration with other Developer Magic tools.

• Chapter 3, “Building Interfaces With RapidApp,” provides detailed
information about choosing and using interface elements to build your
application’s interface.

• Chapter 4, “Example Programs,” constructs some examples programs
with RapidApp to demonstrate some of its features.

• Appendix A, “Frequently Asked Questions about RapidApp,” is a list
of frequently asked questions (FAQs) and answers about RapidApp
operation.

• Appendix B, “RapidApp Reference,” is a reference to RapidApp menus
and palettes.

xx

About This Guide

• Appendix C, “Source Code for the Calculator Application,” shows the
source code for a simple example program developed throughout the
book.

• Appendix D, “RapidApp Makefile Conventions,” documents the
format of the Makefile the RapidApp generates.

• Appendix E, “VkEZ Reference,” documents the VkEZ convenience
interface.

What You Should Know Before Reading This Guide

Because RapidApp covers many areas of application development and
integrates with several Developer Magic tools and libraries, there are many
topics with which you should be somewhat familiar to use RapidApp to its
fullest capacity. For more information on these topics, consult the references
provided in “Suggested Reading.”

This guide assumes that you are familiar with C++ and object-oriented
programming. It also assumes that you have some knowledge of the
IRIS IM™ toolkit, the Silicon Graphics port of the industry-standard
OSF/Motif® interface toolkit.

Applications you develop should follow the Silicon Graphics guidelines for
application interface design and should integrate into the Indigo Magic™
Desktop environment. In many places, RapidApp does this for you
automatically. However, this guide assumes that you are familiar with these
guidelines.

RapidApp links into other Developer Magic tools for building, analyzing,
and debugging your application. This guide assumes that you know the
basic purpose of these tools, but does not require in-depth knowledge of
their use. The more you know about these tools, the quicker you can develop
applications with RapidApp.

Some of the components that RapidApp allows you to incorporate in your
application require knowledge of specific Silicon Graphics development
libraries such as OpenGL™ and Open Inventor™. This guide assumes that
you are already familiar with the underlying libraries if you decide to use
these components.

Suggested Reading

xxi

Suggested Reading

RapidApp generates C++ code, and this guide assumes that your are
familiar with C++ and object-oriented programming. The following
manuals provide reference information about the Silicon Graphics
implementation of the C++ language. These books are available online on
the IRIS Insight™ SGI_Developer bookshelf:

• C++ Language System Overview contains an overview of newer language
features of C++. Most of the extensions take the form of removing
restrictions on what can be expressed in C++.

• C++ Language System Product Reference Manual contains a general
description of the C++ language.

• C++ Programming Guide describes how to use the Silicon Graphics C++
compiler environment.

• C++ Language System Library discusses the iostream support in the C++
library and describes a data-type complex that provides the basic
facilities for using complex arithmetic in C++.

The C++ classes generated by RapidApp are based on the IRIS ViewKit™
interface toolkit. This guide describes the features of IRIS ViewKit that you
need to use the generated classes. If you want more information on IRIS
ViewKit, you can consult the following book available online on the IRIS
Insight SGI_Developer bookshelf:

• IRIS ViewKit Programmer’s Guide provides detailed information about
IRIS ViewKit class structure, features provided by the classes, and IRIS
ViewKit programming techniques.

The following book describes the general approach used by the IRIS ViewKit
library:

• Young, Doug. Object-Oriented Programming with C++ and OSF/Motif.
Englewood Cliffs: Prentice Hall, Inc., 1992.

The actual user interfaces generated by RapidApp use the IRIS IM™ toolkit,
the Silicon Graphics port of the industry-standard OSF/Motif interface
toolkit. This guide assumes that you are familiar with the IRIS IM and Xt
toolkits. For more information on IRIS IM, OSF/Motif, and Xt, you can
consult the following books available online on the IRIS Insight
SGI_Developer bookshelf:

xxii

About This Guide

• OSF/Motif Programmer’s Guide, Revision 1.2 is a guide to programming
the various components of the OSF/Motif environment: the toolkit,
window manager, and user interface language. Also available in
printed form from Silicon Graphics and in bookstores: Open Software
Foundation. OSF/Motif Programmer’s Guide, Revision 1.2. Englewood
Cliffs: Prentice-Hall, Inc., 1992.

• OSF/Motif Programmer’s Reference, Revision 1.2 documents the
OSF/Motif commands and functions. Also available in printed form
from Silicon Graphics and in bookstores: Open Software Foundation.
OSF/Motif Programmer’s Reference, Revision 1.2. Englewood Cliffs:
Prentice-Hall, Inc., 1992.

• IRIS IM Programming Notes describes the additional functionality
provided by IRIS IM beyond that provided by OSF/Motif, as well as
advice for Xt and Xlib programmers about programming in the Silicon
Graphics X environment, including how to work with nondefault
visuals.

• The X Window System, Volume 4: X Toolkit Intrinsics Programming Manual
describes how to write X Window System™ programs using the Xt
Intrinsics library. Also available in printed form from Silicon Graphics
and in bookstores: Nye, Adrian and Tim O’Reilly. The X Window System,
Volume 4: X Toolkit Intrinsics Programming Manual, OSF/Motif 1.2 Edition
for X11, Release 5. Sebastopol: O’Reilly & Associates, Inc., 1992.

RapidApp provides significant support for following Silicon Graphics
guidelines for application interface design and for automatically integrating
your application with the Indigo Magic Desktop environment. For more
information on following the Silicon Graphics interface style guidelines and
integrating into the Indigo Magic Desktop environment, consult the
following books available online on the IRIS Insight SGI_Developer
bookshelf:

• Indigo Magic User Interface Guidelines contains recommended guidelines
to help you design products that are consistent with other Silicon
Graphics applications and that integrate seamlessly into the Indigo
Magic Desktop environment.

• Indigo Magic Desktop Integration Guide is a companion to the Indigo
Magic User Interface Guidelines that explains how to integrate
applications into the Indigo Magic Desktop environment.

Suggested Reading

xxiii

• Software Packager User’s Guide describes how use Software Packager, a
graphical tool for packaging software for installation on Silicon
Graphics workstations. Products packaged with Software Packager can
be installed with Software Manager, an Indigo Magic Desktop utility
for installing software.

RapidApp links into other Developer Magic tools for building, analyzing,
and debugging your application. For more information on these tools,
consult the following book, available online on the IRIS Insight
SGI_Developer bookshelf:

• Developer Magic: ProDev WorkShop and MegaDev Overview gives you
broad exposure to the ProDev WorkShop tools as well as pointers to the
documentation for getting detailed information.

The following books, available online on the IRIS Insight SGI_Developer
bookshelf, describe specific Silicon Graphics development libraries
underlying some specific components that you can incorporate in your
application:

• The Inventor Mentor introduces graphics programmers and application
developers to Open Inventor, an object-oriented 3D toolkit. Also
available in printed form from Silicon Graphics and in bookstores:
Wernecke, Josie. The Inventor Mentor: Programming Object-Oriented 3D
Graphics with Open Inventor, Release 2. Addison-Wesley Publishing
Company, 1992.

• OpenGL Programming Guide describes how to use OpenGL, allows you
to create interactive programs that produce color images of moving
three-dimensional objects. Also available in printed form from Silicon
Graphics and in bookstores: Neider, Jackie, Tom Davis, and Mason
Woo. OpenGL Programming Guide. Addison-Wesley Publishing
Company, 1994.

Also there are several books available commercially that you might find
useful in learning IRIS IM (OSF/Motif) and Xt programming techniques,
including:

• Young, Doug. The X Window System, Programming and Applications with
Xt, OSF/Motif Edition, Second Edition. Englewood Cliffs: Prentice Hall,
Inc., 1994.

xxiv

About This Guide

• George, Alistair. Advanced Motif Programming. Englewood Cliffs:
Prentice Hall, Inc., 1994.

Font Conventions in This Guide

These style conventions are used in this guide:

• Boldfaced text indicates that a term is an option flag, a data type, a
keyword, a function, or an X resource.

• Italics indicates that a term is a filename, a button name, a variable, an
IRIX command, a document title, or an image or subsystem name.

• “Quoted text” indicates menu items.

• Screen type is used for code examples and screen displays.

• Bold screen type is used for user input and nonprinting keyboard
keys.

• Regular text is used for menu and window names, and for X properties.

Upgrading to Builder Xcessory

RapidApp is adapted from Integrated Computer Solution’s powerful
graphical user interface builder for OSF/Motif, Builder Xcessory™. Builder
Xcessory offers all of the functionality provided by RapidApp, plus
additional features including:

• Generation of C, UIL and Ada code in addition to C++.

• Full access to the entire set of Motif resources

• Support for adding new or custom widgets

• Several specialized editors including a hierarchical widget tree browser,
a color editor, an integrated pixmap editor, and a fontlist editor.

For more information about the features and functionality of Builder
Xcessory, call Integrated Computer Solutions (ICS) at (617) 621-0060 ext. 164,
send email to info@ics.com, or visit the World Wide Web site
http://www.ics.com.

This chapter provides an overview to
RapidApp and shows you how to
start developing simple applications.

Getting Started with RapidApp

Chapter 1

3

Chapter 1

1. Getting Started With RapidApp

This chapter provides an introduction to developing application with
RapidApp. It contains:

• “RapidApp Overview,” an overview of RapidApp

• “Installing and Starting RapidApp,” instructions for installing and
running RapidApp

• “The RapidApp Interface,” an overview of the RapidApp interface

• “Basic Interaction Techniques,” the basic techniques for building
applications with RapidApp

• “Example: A Calculator,” a simple example

• “EZ Convenience Functions,” a discussion of a set of convenience
functions for accessing widget values

RapidApp Overview

RapidApp is an interactive tool for creating applications. It integrates with
other Developer Magic tools, including cvd, cvstatic, cvbuild, Delta C++,
Smart Build, and others, to provide an environment for developing
object-oriented applications as quickly as possible. RapidApp generates
C++ code, with interface classes based on the IRIS ViewKit toolkit. Its
predefined interface components facilitate your use of other Developer
Magic libraries such as OpenGL and Open Inventor.

You can use RapidApp for constructing typical desktop applications in
which the user interface has a significant effect on the overall application
architecture. The applications produced by RapidApp are automatically
integrated into the Indigo Magic Desktop environment, making RapidApp
the easiest way to take advantage of most of Silicon Graphics’ interface and
desktop technology.

4

Chapter 1: Getting Started With RapidApp

When using RapidApp, you work with a combination of IRIS IM widgets and
components based on IRIS ViewKit classes. This guide refers to widgets and
components collectively as interface elements. You create, select, position, and
manipulate interface elements using techniques similar to those supported
by drawing editors such as IRIS Showcase™. You can move interface
elements after creating them, and you can edit various attributes (known as
resources) to change their appearance or behavior.

RapidApp provides a great deal of support for creating interactive
applications, but it doesn’t completely replace programmer expertise. Think
of RapidApp as a sophisticated editor with domain-specific support for
helping you create graphical user interfaces. Although RapidApp can
greatly facilitate the task, you remain in control and must understand the
tasks being performed.

To use RapidApp effectively, you should have a basic knowledge of IRIS IM,
C++, IRIS ViewKit, and recommended Indigo Magic user interface
guidelines. You don’t have to be an IRIS IM expert, but a basic
understanding of widget hierarchies, the behavior of IRIS IM manager
widgets, resources, and callbacks is very helpful. Because RapidApp
produces IRIS ViewKit programs, you should also understand the basic idea
of user interface components, as well as be familiar with C++ classes and
object-oriented concepts such as inheritance, polymorphism (virtual
functions), and so on. Finally, knowledge of the Indigo Magic user interface
guidelines helps you understand the type of application RapidApp helps
you create. You can find references for all of these topics in “Suggested
Reading” on page xxi.

Installing and Starting RapidApp

The RapidApp Release Notes contains complete instructions for installing
RapidApp. To install and run RapidApp, your system must have the IRIS
Development Option (IDO), which includes the C compiler and the X and
IRIS IM development systems, and the C++ Development Option, which
includes the IRIS ViewKit development system. To use the other ProDev
WorkShop tools, such as cvd, cvstatic, and cvbuild, you must install the
ProDev WorkShop products. To use special interface components that take
advantage of other Developer Magic libraries such as Open Inventor, you
must also install those development options. Consult the RapidApp Release

The RapidApp Interface

5

Notes for a complete list of products you must install on your system to
install and run RapidApp.

To start RapidApp from a shell window, enter:

% rapidapp

Alternatively, you can go to the ToolChest and, in the Find menu, select “An
Icon.” In the Find an Icon dialog, search for “rapidapp.” You can then drag
the RapidApp icon to your desktop and launch the program by
double-clicking on the icon.

The RapidApp Interface

RapidApp displays a startup screen when you invoke it. By default, the
startup screen contains a random “tip,” a suggestion for how to use
RapidApp better. Figure 1-1 shows the startup screen with an example tip.

You can dismiss this screen once the RapidApp main window appears. You
can also set the RapidApp preferences so that RapidApp doesn’t display the
tips or dismisses the startup screen automatically when the main window
appears. To change the behavior of the startup screen, select “RapidApp
Preferences” from the RapidApp Options menu. In the RapidApp
Preferences dialog that appears, set the startup options that you want.

Figure 1-1 RapidApp Startup Screen

6

Chapter 1: Getting Started With RapidApp

Figure 1-2 shows the RapidApp main window. This window contains five
main areas: the menu bar, the palette, the instance header area, the resource
editor, and the quick help area. The following sections describe each of these
areas.

Figure 1-2 RapidApp Main Window

The RapidApp Menu Bar

The RapidApp menu bar provides the following menus:

File Allows you to save and open builder files. You can also quit
RapidApp through the File menu.

Edit Supports cut, copy, and paste operations, as well as some
commands for manipulating a selected interface element.

Palette

Resource editor

HeaderMenu Bar

Tabs for switching palettes

area

Quick help area

The RapidApp Interface

7

View Contains entries for switching between the default “Build
Mode,” in which an interface can be constructed, and “Play
Mode,” in which an interface can be tested.

Classes Allows you to create and edit user-defined components.

Project Contains entries that relate to the complete life cycle of a
project’s development. The commands on this pane allow
you to generate code, browse and edit files, build an
application, run the program under a debugger, and so on.

Options Allows you to set several options primarily related to how
code is generated. The entries on this menu pane allow you
to configure the file naming conventions, directory paths,
and so on.

Help Allows you to access the online help system.

The RapidApp Palette Area

The left side of RapidApp’s main window contains palettes of widgets and
components that you can use to construct an interface. The area contains
multiple palettes you can access via tabs that appear along the lower left side
of the window. Figure 1-2 shows the Windows palette. The items on the
Windows serve as top-level windows for your application. Clicking on the
tab labeled “Controls” shows another palette that contains buttons, sliders,
text entry areas, and other basic control widgets.

The RapidApp Instance Header

The instance header displays the instance name and the class name of the
currently selected interface element. RapidApp automatically generates an
instance name for an element when you create it. You can change the name
of the element by entering a new string in the Instance Name field.
RapidApp uses this name when it generates code for the element.

8

Chapter 1: Getting Started With RapidApp

The class name is the widget class for IRIS IM widgets or the C++ class name
for components. For some IRIS IM widgets, you can change the widget class
and thus change the type of widget. For example, you can change a Label
into a Push Button by changing the class name of the widget from XmLabel
to XmPushButton.

The RapidApp Resource Editor

The resource editor occupies the right side of the RapidApp main window.
The resource editor is initially empty when RapidApp first appears. When
you create or select an interface element, this area displays lists of
customizable parameters, known as resources, for the selected interface
element. The contents of this area change dynamically, depending on the
interface element selected.

The RapidApp Quick Help Area

The quick help area is immediately above the palette tabs. When you point
with the mouse to an item in the RapidApp interface, the quick help area
displays a one-line help message for the item.

Basic Interaction Techniques

The following sections show the basic interaction techniques for creating a
user interface. The techniques you use to interact with RapidApp are similar
to those you would use with a drawing tool such as Showcase. Of course, the
RapidApp objects are more complex than lines and rectangles in simpler
drawing tools and frequently have characteristics that affect how you
interact with them. For example, an object you create in a drawing tool
typically doesn’t change its size or position, unless you explicitly change it,
but many manager widgets that you create with RapidApp can change the
size or position of elements they contain.

Basic Interaction Techniques

9

Creating Interface Elements

To create a new interface element, simply click the appropriate icon in the
palette. A rubber-band box appears, representing the initial default size of
the new widget. Move the cursor over the desktop and press the left mouse
button to position the upper left corner of the widget. Then you can release
the mouse button to accept the default size of the widget, or you can drag
out a new size before releasing the mouse button.

Note: RapidApp enforces a minimum size of 20x20 pixels for all interface
elements. Additionally, the window manager enforces minimum sizes for its
direct children. So if you try to create a 20x20 button using the technique just
described, the actual widget might be larger. In practice this is not a problem,
because real interfaces seldom consist of a single small widget as a direct
child of a shell. Furthermore, this behavior matches the behavior you would
get from a running program.

Figure 1-3 demonstrates how to create a Simple Window:

1. Select the Simple Window icon from the Windows palette.

2. Position the rubber-band rectangle.

3. Press the left mouse button. Or, if you want to resize the Simple
Window, drag rubber-band outline to the desired size before releasing
the mouse button.

4. RapidApp creates the Simple Window when you release the mouse
button.

10

Chapter 1: Getting Started With RapidApp

Figure 1-3 Creating a Widget

1. Click

2. Position

3. Click left mouse button, or...

4. Click and drag to change size

5. Release button

6. Window appears

Basic Interaction Techniques

11

Adding a Container to a Top-Level Window

A top-level window such as a Simple Window can contain only one child
element. Therefore, once you create a window, you must typically create a
container within the window. For example, you could create a Bulletin Board
container within the window as follows:

1. Click the Containers tabs to display the Containers palette.

2. Select the Bulletin Board icon.

3. Position the rubber-band rectangle so that the upper-left corner of the
rectangle is within the Simple Window.

4. Press the left mouse button.

RapidApp creates the Bulletin Board within the Simple Window when
you release the mouse button. The Bulletin Board automatically resizes
to fill the entire window.

Creating Interface Elements in an Existing Container

Once you have one or more containers, you can add other interface elements
to them as child elements. The process is the same as creating an initial
interface element, except that you position the new element to lie within the
bounds of the parent. For example, Figure 1-4 shows how to create a Push
Button widget within a Bulletin Board container:

1. Switch to the Controls palette.

2. Click the Push Button icon.

3. When the rubber-band rectangle appears, move the mouse so that the
rubber-band box is positioned over the Bulletin Board at approximately
the location you want to place the widget.

4. Press the left mouse button, and either release immediately or drag to
change the button’s initial size before releasing.

RapidApp creates the button as a child of the Bulletin Board when you
release the mouse button.

12

Chapter 1: Getting Started With RapidApp

Figure 1-4 Creating a Pushbutton as a Child of a Bulletin Board

You can also add children to a container by dragging an icon from the palette
directly using the middle mouse button:

1. Press the middle mouse button over the item in the palette.

2. Drag the item to the desired parent container and release the mouse
button.

RapidApp creates the interface element as a child of the container when
you release the mouse button.

1. Click

3. Click
2. Position

Basic Interaction Techniques

13

Explicit Focus Mode

By default, RapidApp uses a pointer focus model when creating widgets:
when you create a widget and drop it over a valid parent, the new widget
becomes a child of that parent even if you had another parent widget
selected.

Sometimes you might find it convenient to use explicit focus mode when
adding child elements to a container. In this mode,RapidApp adds all child
elements you create to the currently selected container, no matter where you
drop the children on the screen. To turn on explicit focus mode, toggle on
“Keep Parent” in the View menu.

As a further convenience, when explicit focus mode is on, RapidApp grays
out all icons that you can’t add to the currently selected container. For
example, if you select a menu bar when “Keep Parent” is toggled on,
RapidApp grays out all elements other than the various menu panes that
you can add to the menu bar.

Moving and Resizing Interface Elements

Once you’ve created an interface element, you might need to change its
position or size. In RapidApp you can reposition or resize interface elements
in three ways:

• For some IRIS IM container widgets, such as the Form and Bulletin
Board widgets, the order in which you create the child elements is
unimportant. You can place child elements anywhere within the
container widgets, then reposition or resize them directly.

• For other IRIS IM container widgets, such as the RowColumn, Paned
Window, and Spring Box widgets, the creation order of their children is
significant. Furthermore, these containers control the geometry of their
children more “tightly”; often you can’t resize child widgets
individually. RapidApp provides support for repositioning child
elements of this type of container more easily, but be aware that you’ll
often have to manipulate the container widget itself (for example, by
changing its resources) to affect the size or layout of its children.

14

Chapter 1: Getting Started With RapidApp

• The last case of repositioning in RapidApp is to move a child element to
another parent. RapidApp provides both a clipboard and a
drag-and-drop mechanism for easily reparenting elements in your
interface.

In all cases, the container determines the exact position (and often the size)
of a child element. The builder allows you to manipulate an element
interactively, but the actions the builder allows you to perform ultimately
become requests to the element’s container. This is a core part of the
architecture of Xt and IRIS IM, and the builder cannot change this. If you
have trouble, make sure you understand the layout algorithm supported by
the container widget you are working with.

Directly Repositioning and Resizing Child Elements

For container widgets where widget creation order is not important, you can
reposition a child element simply by dragging it using the left mouse button
(see Figure 1-5). The child element “snaps” to positions along an invisible
grid. You can control the resolution of the snap grid through the “Snap to
Grid” option of the View menu. You can set the resolution to 2, 5, 10, or 20
pixels, or turn off the snap grid.

Basic Interaction Techniques

15

Figure 1-5 Repositioning a Widget in a Bulletin Board Container

Some containers have more complex behaviors. In a simple Bulletin Board
widget, moving a child is equivalent to changing its x,y position, as
determined by its XmNx and XmNy resources. However, in a Form widget,
moving a component is equivalent to changing its XmNleftOffset,
XmNrightOffset, XmNbottomOffset, and/or XmNtopOffset resources.

In addition to using the mouse, you can also use the arrow keys for fine
positioning. Each time you press an arrow key, the child elements moves one
pixel in the corresponding direction. The arrow keys ignore the snap grid
setting; you can use them for fine-grained positioning regardless of the grid
resolution.

To change an element’s size in a container that allows free movement, simply
select one of the handles that surround a selected element and drag a side or
a corner until the element is the desired size. Figure 1-6 illustrates this
process.

1. Press

2. Drag

3. Release

Repositioned widget

16

Chapter 1: Getting Started With RapidApp

Figure 1-6 Resizing a Widget

If the element is too small to resize easily, you can select it, then select “Grow
Widget” from the Edit menu (or use the <Ctrl+g> accelerator), which
increases the width and height of the selected element by 20 pixels.

Indirectly Positioning Child Elements

For containers in which a child’s position depends on the creation order of
the widget’s children, changing an element’s x,y position is meaningless. In
many cases, though not all, it is also meaningless to try to resize a child of
such a container. Although RapidApp could help you try to move the child,
the container ignores the movement. For these containers, you can
reposition each child within the container using the arrow keys or the
“Up/Left” and “Down/Right” options in the Edit menu (or the <Ctrl+u>

and <Ctrl+d> accelerators, respectively). The commands effectively alter
the creation order of the element being moved and its siblings. Figure 1-7
shows an example of repositioning a toggle button in a RowColumn
container.

1. Press

2. Drag
3. Release

Resized Widget

Basic Interaction Techniques

17

Figure 1-7 Repositioning a Widget in a RowColumn

Reparenting Child Elements

In addition to moving an element within the container in which you
originally placed it, you might find it useful to move an element from one
container to another. IRIS IM normally doesn’t support reparenting widgets.
However, in RapidApp, this operation is possible and can be done in two
ways:

• You can cut a widget or widget hierarchy to the clipboard using “Cut”
from the Edit menu (or the <Ctrl+x> accelerator), then paste it using
“Paste” from the Edit menu (or the <Ctrl+v> accelerator). You can also
copy an element or element hierarchy to the clipboard using “Copy”
from the Edit menu (or the <Ctrl+c> accelerator).

• Alternatively, you can drag an element using the middle mouse button.
This uses the IRIS IM drag-and-drop mechanism to effectively cut and
paste between containers. If you hold down the shift key while
dragging with the middle mouse button, RapidApp copies the selected
elements instead of moving them.

Deleting Interface Elements

You can delete an element by selecting it then selecting “Cut” from the Edit
menu (or the <Ctrl+x> accelerator). Alternatively, you can select the
element, then select “Delete” from the Edit menu (or the <Backspace> or
<Delete> accelerators); however, doing so does not save the widget on the
clipboard, so you can’t paste it back afterwards. There is no undo feature.

Select toggleButton1 Up Arrow Up Arrow

18

Chapter 1: Getting Started With RapidApp

Naming Interface Elements

When you initially create an interface element, RapidApp assigns a unique
generated name. All interface element names in an application must be
unique. For example, if you create a Push Button widget, RapidApp names
it “button.” RapidApp names the next Push Button you create “button1,”
and so on. The name determines both the string given to the widget (its
resource name) when it is created, and the variable that represents the
widget in the program.

You can change the name of an interface element at any time simply by
editing the Instance Name field in the header area when the interface
element is selected. Figure 1-8 shows the header area with a user-specified
name displayed in the Instance Name field.

Figure 1-8 Header Area

Editing Interface Element Resources

In addition to changing the position and size of an interface element, you can
control its appearance and behavior by setting resources supported by the
element. For example, one resource of a Label widget determines the string
it displays, and one resource of a RowColumn container widget determines
how many rows or columns it creates.

IRIS IM widgets are highly configurable and typically include a large
number of resources—even a simple label widget supports nearly 50
customizable resources—but typically you need to access only a few when
writing an application. Therefore, RapidApp displays only the most
commonly used resources. You can still access all resources
programmatically by editing the source code generated by RapidApp or by
editing the application’s resource file.

To see the resources available for a particular element, simply click the
element with the left mouse button. The RapidApp resource editor area then
displays the resources for that element. The names of the resources are listed

Basic Interaction Techniques

19

along the left side of the resource editor area with the current value of each
resource to the right. Figure 1-9 shows the resource editor area.

Figure 1-9 Resource Editor Area

Resources can be of several different types: some are strings, some are
Boolean values, and others are enumerated. The way RapidApp displays the
value of a resource depends on its type. Figure 1-10 shows how RapidApp
displays a resource with a string value. To change the value of this resource,
simply edit the contents of the text field. When you modify the value, the text
field changes color slightly. RapidApp accepts the new value when you
press the <Return> key or click the mouse outside of the text field;
RapidApp then changes the text field to its original color to indicate that it
has accepted the value. If you enter an illegal value, RapidApp displays an
error dialog and reverts the text field to its former value.

Figure 1-10 A Resource Whose Value Is a String

Figure 1-11 shows how RapidApp displays a resource with Boolean values.
To change a Boolean resource’s value, simply click the desired toggle.

Figure 1-11 A Resource Whose Value Is Boolean

20

Chapter 1: Getting Started With RapidApp

Figure 1-12 shows an enumerated resource. RapidApp displays the current
value of this resource in the option menu to the right of the resource name.
To change these resources, press and hold the left mouse button over the
option menu to display a list of possible resource values, drag to select the
desired value, and release the mouse button. RapidApp then displays the
new value in the option menu.

Figure 1-12 A Resource Whose Value Is Enumerated

Most resources are easy to use, but a few require an understanding of the
selected element. The following discussion provides more information
about various types of resources.

Callbacks

Callbacks are functions that associate program behavior with user input. For
example, the PushButton widget has an activateCallback function that is
called when the user clicks the button. As shown in Figure 1-13, to specify a
callback function in RapidApp, simply type the name of a function in the
text field beside the name of the callback. (You don’t have to enter the
parentheses; RapidApp automatically provides them when you finish
editing the callback resource.) When RapidApp generates code, it creates
these callback functions as empty virtual member functions in a C++ class.
The implementation of the function body is left up to you. (See “Code
Management” on page 40 for more information on editing generated code to
implement functionality.)

Figure 1-13 Adding a Callback

Constraints

IRIS IM supports the concept of constraints, which are resources that are
added to an element when it is contained by a particular type of container.
For example, when an element is the child of a Frame widget, the Frame
adds the childType resource to the child, which determines the position of
the child within the Frame. Therefore, you might see a constraint resource in

Basic Interaction Techniques

21

one element and not in another of the same type if the elements are
contained within different types of containers. The resource editor area lists
constraint resources separately from other resources, below a label
identifying them as constraint resources. You can modify constraint
resources just as you do other resources. Figure 1-14 shows the constraint
resources added to an XmLabel widget when contained by an XmFrame
widget.

Figure 1-14 Resource Editor Area, Showing Constraint Resources

Dynamic Resources

RapidApp also supports several dynamic resources that act much like
constraints but that are not supported by IRIS IM. These correspond to
extensions and features provided by IRIS ViewKit classes. For example,
when you place a PushButton widget in a menu pane, RapidApp displays
an undoCallback resource for the PushButton. This callback isn’t a resource
supported by IRIS IM, but it provides support for the IRIS ViewKit undo
mechanism.

RapidApp also determines when to display other resources. For example,
the IRIS IM PushButton widget supports an accelerator resource that
describes a key combination that users can type to activate the button when
the button is in a menu. Although the PushButton widget supports the
resource at all times, the resource is meaningless when the button isn’t in a
menu. To ensure the proper use of this resource, RapidApp displays it only
when the PushButton is in a menu pane.

Additional Interaction Techniques

This section describes some additional techniques for working with
interface elements.

22

Chapter 1: Getting Started With RapidApp

Locking on to an Element

Sometimes it’s hard to manipulate elements because they’re too close to or
covered by other elements. For example, some container wrap “tightly”
around their child elements. In these cases, it can be difficult to move or
resize the container without accidentally selecting another element.

To “lock on” to an element and prevent RapidApp from selecting another
element, simply hold down the <Ctrl> while manipulating the widget you
have selected.

Selecting a Parent Element

Some elements can be hard to select because they are completely covered by
one or more children. For example, you can’t click on a shell widget, or a
Simple Window that has a child. To access elements like these, you can select
a child element of the desired container, then select “Select Parent” from the
Edit menu (or use the <Ctrl+p> or <Ctrl+Shift+left mouse button>

accelerators).

Viewing the Widget Hierarchy

For complex layouts, it’s often useful to see the structure of the widget
hierarchy you’re creating. RapidApp doesn’t have a built in widget tree
view, but you can still examine the widget hierarchy using the editres
program. Simply start editres and click on the window for which you want
see the widget hierarchy.

Resetting IRIS IM Widgets

The IRIS IM widget set was developed long before interface builders began
to appear, and the idea that widgets might be interactively created and
manipulated wasn’t considered in the design and implementation of
IRIS IM. Not surprisingly, this makes working with IRIS IM in a builder
somewhat more difficult than it might be if IRIS IM were designed to
support such tools. In particular, IRIS IM has no way to completely reset a
widget’s state, so after a large number of changes, it can be hard to see what
would happen if a widget was created initially in that state.

Basic Interaction Techniques

23

The closest most widgets can come to being reset is to be resized. Resizing a
widget typically recomputes its layout, if it’s a container, or its appearance,
if it’s a primitive widget. If a widget doesn’t appear to be behaving as you
expect, try a slight resize and watch what happens.

For example, consider the RowColumn widget in Figure 1-15.

Figure 1-15 Initial RowColumn Layout

Now change the RowColumn resources so that orientation is
XmHORIZONTAL, packing is XmPACK_COLUMN, and numColumns is
2. This produces the layout in Figure 1-16, which is incorrect because it isn’t
the layout that the RowColumn produces when you run your application.

Figure 1-16 Incorrect RowColumn Layout

24

Chapter 1: Getting Started With RapidApp

Resizing the widget slightly forces the RowColumn to recompute its layout
(see Figure 1-17), producing the same layout you get when you run your
application.

Figure 1-17 Corrected RowColumn Layout

Example: A Calculator

To demonstrate basic RapidApp use, this section describes how to create a
simple calculator program that adds two integers. Figure 1-18 shows how
the program looks when finished.

Figure 1-18 Completed Calculator Program

To create the calculator program:

1. Create an empty directory named Calc and start RapidApp.

2. Create a top-level window.

Example: A Calculator

25

■ Click the Simple Window icon from the Window palette.

■ Position the pointer somewhere on the screen and click the left
mouse button to place the window.

■ In the Instance Name text field of the header area type
“calcWindow” then press <Return> .

■ In the resource named title, type “Calculator” then press <Return> .

3. Add a Bulletin Board container to the window by clicking the Bulletin
Board icon in the Containers palette, positioning the pointer over the
window, and clicking again.

4. Add an Text Field to the Bulletin Board.

■ Click the Text Field icon from the Controls palette.

■ Position the pointer over the Bulletin Board widget and click again.

■ Adjust the size and position of the widget, if necessary, to match the
appearance shown in Figure 1-19.

Figure 1-19 Initial Calculator Layout

5. Add a second Text Field below the first and place a label to the left of
the second Text Field. Figure 1-20 shows the resulting layout.

26

Chapter 1: Getting Started With RapidApp

Figure 1-20 Second Text Field and Label

6. Complete the layout by adding a separator below the second Text Field,
and a PushButton and third Text Field below the separator. Figure 1-21
shows the layout after all widgets have been placed.

Figure 1-21 All Widgets In Place

7. Rename the top text field widget to “value1,” the second to “value2,”
and the third to “result.” To do so, click each text field in turn, go the
Instance Name field in the header area, and enter the new name.

8. Change the label on the Label widget to read “+”.

■ Click the label widget, and find the resource field named
labelString.

■ Replace the text in that field with a “+” character.

■ Reposition the label if necessary.

Example: A Calculator

27

9. Change the label on the button widget to “=”.

■ Click the button widget, find the labelString resource field, and
change the value to “=”.

■ Reposition the button if necessary.

10. Add a callback named “add” to the PushButton widget. With the
button widget still selected, find the resource named activateCallback
and type “add” then press <Return> . Notice that RapidApp
automatically adds “()” after the function name. At this point, the
interface should look like the window in Figure 1-18.

11. Test the interface by selecting the “Play Mode” option of the View
menu. You can now type into the text fields, press the button, and so on.
Notice as you press the button, an information window appears at the
bottom of the screen (see Figure 1-22), reporting that the add() callback
is being called.

Figure 1-22 RapidApp Information Window

12. Set code generation options.

■ Select “Build Mode” from the View Menu to go back to build mode.

■ Select “Application” from the Options menu.

■ In the dialog that appears, change the directory path to the Calc
directory, if necessary.

■ Change the name field to “calculator” and the class name field to
“Calculator, as shown in Figure 1-23. Make sure that the rest of the
options are set as shown in Figure 1-23.

■ Click the Close button.

28

Chapter 1: Getting Started With RapidApp

Figure 1-23 Application Options Dialog

13. Save the interface.

■ Select “Save” from the File menu.

■ RapidApp displays a dialog prompting you for a filename for the
interface you have just created. Save the file as calc.uil. (The “uil”
suffix stands for user interface language, and is a file format used
by IRIS IM, as well as by many user interface tools. You should
name your files with a “.uil” suffix.)

14. Generate code by selecting the “Generate C++” option of the Project
menu. RapidApp displays a status window to report the files that it
creates.

15. Build and run the program by selecting the “Run Application” item on
the Project menu. The Developer Magic Build Manager (see
Figure 1-24) appears and compiles the program. Once compiled, the
program runs automatically.

Example: A Calculator

29

Figure 1-24 Building the Calculator Application

16. Add functionality.

■ Select the “Edit File” item from the Project menu pane.

■ When the file selection dialog appears, choose the file
BulletinBoard.C.

■ When the text editor appears, scroll down until you locate the
following section of code, which is the callback invoked when the
user clicks the “=” pushbutton:

void BulletinBoard::add (Widget w, XtPointer callData)
{

XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct*) callData;

//--- Comment out the following line when BulletinBoard::add is implemented:

::VkUnimplemented (w, "BulletinBoard::add");

//--- Add application code for BulletinBoard::add here:

} // End BulletinBoard::add()

30

Chapter 1: Getting Started With RapidApp

■ Edit this function so that it appears as follows (your additions are
shown in bold):

void BulletinBoard::add (Widget w, XtPointer callData)
{

XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct*) callData;

//--- Comment out the following line when BulletinBoard::add is implemented:

// ::VkUnimplemented (w, "BulletinBoard::add");

//--- Add application code for BulletinBoard::add here:

int a = atoi(XmTextFieldGetString(_value1));
int b = atoi(XmTextFieldGetString(_value2));
XmTextFieldSetString(_result, (char *) VkFormat("%d", a + b));

} // End BulletinBoard::add()

The first two added lines call XmTextFieldGetString() to retrieve
the contents of the top two text field widgets. Because this function
retrieves a string, you must use atoi() to convert the string to an
integer. Then XmTextFieldSetString() sets the resulting value in
the result text field. XmTextFieldSetString() expects a string; this
example uses the IRIS ViewKit convenience function VkFormat(),
which works like printf() but returns a character string suitable for
displaying in a text field widget. Notice that the widgets in this
example are accessible in the BulletinBoard class as data members
whose names are the names given in RapidApp but with a leading
“_” added.

■ Now scroll to the top of the file and add the header file for the
VkFormat() function and <stdlib.h> for the atoi() function:

#include <Vk/VkFormat.h>
#include <stdlib.h>

17. Test the completed program.

■ Save the file and exit the editor.

■ Choose “Run Application” from the Project menu. The Build
Manager appears again and builds the application. If you made any
errors in typing in the changes, you can browse the errors using the
Build Manager. Once compiled, the program runs automatically.

EZ Convenience Functions

31

Figure 1-25 shows the completed application as it appears on the
screen.

Figure 1-25 Working Calculator Program

■ Try typing integer values into the test fields and pressing the “=”
button.

18. You can package the product so that other users can install the
calculator application using the Software Manager software installation
tool (swmgr).

■ Go to the Calc directory and enter:

% make image

This creates a complete installable image in a subdirectory named images.

EZ Convenience Functions

One problem for many developers new to IRIS IM is the amount of
knowledge required to build working applications. Although RapidApp
significantly reduces the knowledge needed to create application interfaces,
you still need significant knowledge of IRIS IM to begin getting values from
widgets, displaying data, or dynamically configuring widgets.

For example, the simple calculator program described in “Example: A
Calculator” on page 24 requires that you know how to extract the contents
of two text fields, convert the strings to integers, and add them back to the
third text field. To do this simple operation, you must either know about the
XtSetValues()/XtGetValues() functions and that the text widgets have an

32

Chapter 1: Getting Started With RapidApp

XmNvalue resource, or you must know about the
XmTextFieldGetString()/XmTextFieldSetString() functions.

Neither of these approaches is hard, but the fact that you have to know the
interface for each type of widget can make seemingly simple tasks difficult.
There are over 700 functions in IRIS IM, Xt, and Xlib, and although
XmTextFieldGetString() and XmTextFieldSetString() are easy to use, you
have to know they exist before you can actually use them.

The VkEZ package is a utility that makes it easier to perform simple
operations in some cases. The package is not a general-purpose “widget
wrapper” library and normally you shouldn’t use it in production code—
especially if you are concerned about the performance of your application.
The VkEZ utility simply provides an easy-to-remember API for common
operations. It is suitable for use in prototypes, demos, and applications in
which performance isn’t a concern. Instead of memorizing dozens or
perhaps hundreds of IRIS IM functions, VkEZ requires that you remember
only a few simple operations that you can apply to all widgets.

At its simplest, the VkEZ package provides a few simple operations you can
apply to nearly any widget. You can use the “=”, “<<“, or “+=” operators to
assign, or append data to a widget. The exact meaning of the operator varies
with the widget but should normally “do the right thing.” You can also
retrieve the “value” of a widget simply by an implicit or explicit cast to the
desired type. Again, the actual data returned depends on the widget.
Retrieving the “String” of a Text widget yields the contents of the text field;
retrieving the “String” of a List widget yields the text of the selected item.
Retrieving an integer from a Scale widget gets the current value of the scale.
Asking for the integer value of a text field returns the results of calling atoi()
on the contents of the field.

To use a VkEZ operation, you must enclose the widget to be used in “EZ()”,
like this:

EZ(widget)

Then you can use the VkEZ operators to set and retrieve data from the
widgets. For example, in the calculator example you can set the value of the
_result text field to be the sum of the _value1 and _value2 widgets, like this:

EZ(_result) = EZ(_value1) + EZ(_value2);

EZ Convenience Functions

33

You can also use the C++ “<<” operator to append data. For example, you
can implement a more verbose form of the above example as follows:

EZ(_result) << "The result of " << EZ(_value1) << " + "
<< EZ(_value2) << " = "
<< EZ(_value1) + EZ(_value2);

If the _value1 widget contains the string “10” and _value2 contains “20,” this
places the following string in the _result text field:

The result of 10 + 20 = 30

Note: The VkEZ package is designed for quick prototypes and ease of
learning. The implementation is inefficient and offers no real advantage over
the IRIS IM API other than simplicity. Use the VkEZ utilities sparingly, and
for production-quality programs, plan to replace all uses with the more
direct mechanisms supported by IRIS IM. When you are ready to replace the
EZ functions with production code, you should be able to find all
occurrences of “EZ” quite easily in your editor.

For more detailed information about the widgets and operations supported,
see Appendix E, “VkEZ Reference.”

Examples Using the EZ Functions

The VkEZ package relies on a simple model that assumes you want to do the
most obvious operation for a given widget. For example, assume you want
to increment a Dial widget, represented by the data member _dial, by 10 each
time a particular function is called. In the function, you can simply write:

EZ(_dial) += 10;

Suppose you want to tie two dials, _dial1 and _dial2, together so that _dial2
always displays 1/2 the value of _dial1. You can do so by including the
following code to the function invoked when _dial1 changes value:

EZ(_dial2) = EZ(_dial1) / 2;

List widgets can be difficult to work with, and EZ provides an easy way to
set, add, or retrieve the contents of a list. For example, you can display a list
of strings in a List widget like this:

EZ(_list) = "red, green, blue";

34

Chapter 1: Getting Started With RapidApp

You can add colors later with:

EZ(_list) += "yellow, orange";

or:

EZ(_list) << "yellow, orange";

Support for Widget Resources

The VkEZ package also provides access to several common IRIS IM
resources. For example, you can set or get the width, height, or position of a
widget. The following code segment displays a string in a text widget named
_text that reports the width of a _button widget:

EZ(_text) = "The width of the button is "
<< EZ(_button).width << " pixels";

You can set the width of a label widget, _label, to be the same as another,
_longlabel, with:

EZ(_label).width = EZ(_longlabel).width;

You can set a color using:

EZ(_label).foreground = "blue";

You can even use colors defined by schemes as shown in this example:

EZ(_label).background =
"Sgi_DYNAMIC AlternateBackgroundColor1";

This chapter tell you how to develop
applications effectively using
RapidApp.

Creating Applications with RapidApp

Chapter 2

37

Chapter 2

2. Creating Applications With RapidApp

This chapter describes the process of developing an application using
RapidApp:

• “RapidApp Development Model” on page 37 discusses the general
development model supported by RapidApp.

• “RapidApp Development Cycle” on page 49 describes the typical
development cycle for creating an application with RapidApp.

RapidApp Development Model

RapidApp can significantly simplify the process of creating an application,
not only in creating the interface for your application but also in managing
the development of your application from prototype to finished product. To
provide this support, RapidApp assumes a certain application development
model. Although you can “go around” RapidApp and force it into a model
that it isn’t intended to support, you won’t derive the full benefits of using
RapidApp.

This chapter describes the general development model best supported by
RapidApp and provides tips for getting the most out of RapidApp. The key
features of RapidApp’s development model, which are described in
following sections, are:

• Creating applications from object-oriented components

• Integrating with the Indigo Magic Desktop environment

• Separating interface code from functional code

• Managing code evolution

• Integrating with the Developer Magic/ProDev WorkShop tools

• Packaging applications for installation

38

Chapter 2: Creating Applications With RapidApp

Object-Oriented Components

RapidApp supports the object-oriented architecture defined by the IRIS
ViewKit class library. The fundamental building blocks in the IRIS ViewKit
library are components, which are C++ classes that encapsulate one or more
widgets and define the behavior of the overall components.

As an example, consider a simple spreadsheet. You can create a spreadsheet
interface using IRIS IM text field widgets for the individual cells and an
IRIS IM container widget to display the text fields in a grid. An IRIS ViewKit
spreadsheet component can be a C++ class containing not only these
widgets, but also the code implementing the spreadsheet functionality. In
your application, you can then instantiate a spreadsheet component and
interact with it by calling various member functions. If the spreadsheet
component is properly designed, you can reuse it in applications needing a
spreadsheet. Furthermore, you can extend the functionality of the basic
spreadsheet component by creating subclasses as needed. For example, you
can implement a general-purpose spreadsheet component, then create
subclasses in other applications adding special financial or scientific
functions.

RapidApp allows you to define a component consisting of any collection of
widgets—or even of a single widget. When you do this, RapidApp places in
a C++ class the widgets in the component along with the callbacks and other
resources for those widgets. You can specify the name of the class as well as
the name of the files in which RapidApp places the code. When you create a
component, RapidApp also adds it to a special “User Defined Components”
palette. You can select the component from this palette and add it to your
interface just like any other interface element.

You can nest components, building more and more complex components
from simpler elements. Ideally, you can even view your entire application as
a component, allowing you to incorporate it later within a larger application
or suite of applications. RapidApp encourages this approach by
automatically encapsulating the entire contents of each top-level window in
your application within separate classes if they aren’t already a components;
each top-level window of your application then simply creates instances of
these classes. You can just as simply instantiate these top-level classes as part
of another application.

RapidApp Development Model

39

Tip: A good technique for developing applications in RapidApp is to create
collections of small components. It’s easiest to get the layouts you want by
working with smaller, simpler pieces that are “frozen” as self-contained
objects. Then you can use these components to construct more complex
objects.

Integration With the Indigo Magic Desktop Environment

RapidApp is designed to produce applications that integrate with the Indigo
Magic Desktop environment. Some features automatically included in
applications developed with RapidApp include:

• A generic Desktop icon for your application along with a generic
File-Type Rule (FTR) file (see Chapter 2, “Icons,” in the Indigo Magic
User Interface Guidelines and Chapter 11, “Creating Desktop Icons: An
Overview,” in the Indigo Magic Desktop Integration Guide for instructions
on customizing the look and behavior of your application’s Desktop
icons)

• The Indigo Magic look for widgets (see Chapter 3, “Windows in the
Indigo Magic Environment,” in the Indigo Magic User Interface Guidelines
and Chapter 2, “Getting the Indigo Magic Look,” in the Indigo Magic
Desktop Integration Guide for information on the Indigo Magic look)

• Support for font and color schemes (see Chapter 3, “Windows in the
Indigo Magic Environment,” in the Indigo Magic User Interface Guidelines
and Chapter 3, “Using Schemes,” in the Indigo Magic Desktop Integration
Guide for information on schemes)

• Proper window decorations and window menu entries for each
window type (see Chapter 3, “Windows in the Indigo Magic
Environment,” in the Indigo Magic User Interface Guidelines and
Chapter 5, “Window, Session, and Desk Management,” in the Indigo
Magic Desktop Integration Guide for information on window decorations
and window menu entries)

• Standard menu bar entries with keyboard accelerators when you use
the VkWindow interface element (see Chapter 8, “Menus,” in the Indigo
Magic User Interface Guidelines for information on standard menu bar
entries)

40

Chapter 2: Creating Applications With RapidApp

To take advantage of these features fully, don’t try to “go around” RapidApp
to implement them yourself. For example, don’t set the color or font of an
interface element directly; instead, let the schemes mechanism assign the
fonts and colors to your application based on the user’s selected scheme. To
prevent you from accidentally doing so, RapidApp doesn’t allow you to set
fonts or colors directly. You can still edit the source code or resource file to
override the default color or font, but if you do so, use the special symbolic
scheme colors and fonts as described in Chapter 3, “Using Schemes,” in the
Indigo Magic Desktop Integration Guide.

Code Management

RapidApp generates all the files needed to build your application. However,
although RapidApp can generate a significant portion of your application’s
code, you must still write some parts using a text editor. This introduces the
challenge of keeping RapidApp and your text editor from interfering with
each other; you don’t want to lose changes made in one when you make
changes using the other. RapidApp addresses this challenge in two ways:
object-oriented design and code merging. This section describes the files that
RapidApp generates, how they work together, and how RapidApp merges
changes that you make into the code that it generates.

Code Generation

To understand how all of the files that RapidApp generates work together,
consider a very simple example—the calculator program described in
“Example: A Calculator” on page 24. To demonstrate more of the RapidApp
code generation features, assume that you’ve encapsulated the calculator
interface into a component called Calculator. “Creating Components” on
page 89 demonstrates how to do this.

To generate the C++ code for your application, select “Generate C++” from
the Project menu. In the case of the calculator program, RapidApp generates
the following files and directory:

main.C
CalcWindowMainWindow.h
CalcWindowMainWindow.C
CalculatorUI.h
CalculatorUI.C
Calculator.h

RapidApp Development Model

41

Calculator.C
Calculator
Makefile
calculator.idb
calculator.spec
desktop.ftr
icon.fti
unimplemented.C
.buildersource/ (directory)

These files fall into four basic categories: the program driver, a top-level
window class, components, and configuration or support files:

Driver All programs have a main.C file that instantiates a VkApp
object and one or more top-level windows. See Chapter 3,
“The ViewKit Application Class,” in the IRIS ViewKit
Programmer’s Guide for more information on the VkApp
class. You don’t have to use the generated main.C, but there
is little reason to have anything different.

Note: If you want to handle ToolTalk™ messages in your
application, you need to select “Application” from the
Options menu and toggle on the use ToolTalk option. This
causes RapidApp to instantiate a VkMsgApp object instead
of a VkApp object. See Appendix A, “ViewKit Interprocess
Message Facility,” in the IRIS ViewKit Programmer’s Guide
for more information on the VkMsgApp class and the IRIS
ViewKit support for ToolTalk.

Top-level window
In this case, RapidApp generates the
CalcWindowMainWindow class in two files:
CalcWindowMainWindow.h and CalcWindowMainWindow.C.
It implements top-level windows as subclasses of either
VkSimpleWindow or VkWindow. See Chapter 4, “ViewKit
Windows,” in the IRIS ViewKit Programmer’s Guide for more
information on these classes. In this example, the
CalcWindowMainWindow class simply instantiates a
Calculator object.

Component files
The only component in this example is the Calculator class.
Components are subclassed from the IRIS ViewKit
VkComponent class. See Chapter 2, “Components,” in the

42

Chapter 2: Creating Applications With RapidApp

IRIS ViewKit Programmer’s Guide for more information on
the VkComponent class. As discussed in “Object-Oriented
Design,” RapidApp splits the Calculator class into
CalculatorUI and Calculator; the user interface designed in
RapidApp is implemented in CalculatorUI, while the
Calculator class is mostly empty. For best results, add
application code to only the Calculator.C and Calculator.h
files.

Support files These include a Makefile, the application resources file
(Calculator), files used for Software Packager (calculator.idb
and calculator.spec), and files for your application’s Desktop
icon (desktop.ftr and icon.fti). A few of these files are of
special interest. For example, the .buildersource directory
supports RapidApp code merge features, as described in
“Code Merging” on page 43. It is also important that you
not move or rename these files. Another file of interest is the
unimplemented.C file, which contains the function
VkUnimplemented() described in “Debugging and
Interactively Adding Functionality” on page 47.

Object-Oriented Design

To minimize conflicts when it generates code for a component, RapidApp
generates two separate C++ classes. One class, which usually has the suffix
“UI” appended to the class name, contains all the code needed to generate
the user interface, including creating components and IRIS IM widgets,
registering callbacks, and so on. The second generated class is a subclass of
the “UI” class and contains the code that implements the actual functionality
of the component.

Separating the user interface code from the functional code allows
RapidApp to “own” the UI class. Generally, you should make changes only
to the derived class. The UI base class declares all widgets and components
as protected data members so that you can access and manipulate them
freely in the derived class. RapidApp implements widget callback functions
in the base UI class. Each callback corresponds to a virtual function declared
initially in the base class but overridden in the derived class. You can use any
text editor to complete the bodies of the derived class’s virtual functions.

RapidApp Development Model

43

With this separation of interface and functional code, when you make
changes to a component’s interface, RapidApp can update the UI class
without affecting the subclass containing the functional code. In fact you can
completely redesign a component’s interface, but as long as you retain the
same callback functions, you might require only minimal changes to the
functional code in the derived class. (You might need to change some widget
access code, for example, if you replace a radio box and toggle buttons with
an option menu.)

Tip: In general, to minimize difficulties in updating code, add and change
code in only the derived classes (that is, those classes without the “UI”
suffix).

Code Merging

When you make changes using RapidApp and then generate new code,
RapidApp attempts to merge each file it manages. Each time you generate
code, RapidApp performs the following steps for each file (these steps use
Makefile as an example):

1. RapidApp writes the newly generated Makefile to a different name,
.Makefile.N.

2. If Makefile doesn’t exist, RapidApp moves .Makefile.N to Makefile.
RapidApp also saves Makefile to a hidden subdirectory in your product
directory, .buildersource. RapidApp then terminates the merge process.

3. If Makefile exists, RapidApp compares .Makefile.N to Makefile. If there are
no differences, RapidApp removes .Makefile.N and terminates the
merge process.

4. If there are differences between the newly generated file and the current
Makefile, RapidApp compares .Makefile.N to version it generated
previously (which it stored in .buildersource). If there are no differences
between those two versions, then you must have added the changes to
the current Makefile by hand, so RapidApp removes .Makefile.N and
terminates the merge process.

5. If there are differences in all three files, RapidApp initiates a three-way
merge (see the merge(1) reference page), which treats the last known file
generated by RapidApp as an ancestor and compares your changes (if
any) to Makefile to those found in Makefile.N and attempts to resolve the
differences. If the differences were resolved successfully, the merged

44

Chapter 2: Creating Applications With RapidApp

changes are made to Makefile. Makefile.N becomes the new ancestor, and
is saved in the .buildersource directory to be used in future merges.
RapidApp also saves the original file in a .backup subdirectory as
Makefile.<#> (where <#> is a generated number) as a guard against any
possible failure of the merge.

6. If the merge process couldn’t resolve all differences, RapidApp offers
you the option to manually merge the files, to discard the current
Makefile, or to keep the current Makefile. In all three cases, RapidApp
copies the original file to Makefile.<#>, where <#> is the highest number
not currently in use.

■ If you choose to merge, RapidApp invokes an interactive merge
tool that visually shows the areas that are in conflict and offers you
a chance to manually resolve the differences.

■ If you choose to discard the current Makefile, RapidApp overwrites
the current file with the newly generated file.

■ If you choose to keep the current Makefile, RapidApp moves the
generated file to Makefile.New and leaves the current file untouched.

In addition to these steps, RapidApp takes some precautions to address
missing builder files. Each time RapidApp generates code, it copies the
builder’s uil file used to generate the code to a checkpoint file, .checkpoint.uil.
If this file exists already, RapidApp first copies the old file to
.checkpoint.prev.uil. Then, if RapidApp can’t locate a file in the .buildersource
subdirectory during the code generation process, it uses the previous uil file
to repopulate the .buildersource subdirectory with the files that are missing
before proceeding with the code generation and merging process.

Note: For the most part, you should not need to be aware of the code
merging process. These details are provided to help you understand the
underlying mechanisms both to promote confidence and to help you recover
from difficulties in case anything should go wrong.

The code merging process is usually successful if you follow a few simple
rules:

• Do not arbitrarily reformat any generated files.

• Try to limit your changes to the areas marked by comments like:

//--- End generated code section

RapidApp Development Model

45

These comments indicate which areas are owned by RapidApp and
which are free for you to modify. They also help the merge program
stay on track. You can make changes anywhere you like, but you have
less chance of making overlapping changes later when using RapidApp
if you limit changes to the designated areas.

• Although you can modify any file (RapidApp merges all files), try to
limit changes to source code to the derived classes whenever possible.
There should be little reason to modify the base UI classes because
anything you need to do can be done in the derived class. You can even
add, remove, or manipulate widgets in the derived class member
functions.

• Use only RapidApp to make changes to the interface

Note: RapidApp doesn’t reflect any changes you make to your
program’s interface by directly editing the code. For example, if you cut
the creation of a widget directly from the code, the widget still appears
the next time you run RapidApp. This is because RapidApp doesn’t read
the source code but instead reads a separate file used to save a
description of the interface. However, because of the merging strategy,
changes that you make directly to the interface source code aren’t lost;
RapidApp simply doesn’t display your changes.

• Use the hooks explicitly provided for extensions. For example, the
Makefile defines a USERFILES variable, which is meant for adding files
that are created outside the builder.

RapidApp can do a lot for you. If you reorder functions, reformat code, or
otherwise modify a file to the point that RapidApp can’t identify the original
structure programmatically, your ability to continue to use RapidApp to
modify the file is severely limited.

Integration With ProDev WorkShop for Building and
Debugging

An important feature of RapidApp is that it integrates with the Developer
Magic ProDev WorkShop tools, providing a rich environment for building
and debugging applications. You access the ProDev WorkShop tools
through the RapidApp Project menu. The following sections give an
overview of the tools available.

46

Chapter 2: Creating Applications With RapidApp

For more information about the ProDev WorkShop tools, see “ProDev
WorkShop and MegaDev Overview” in Developer Magic: ProDev WorkShop
and MegaDev Overview, which provides an introduction to the tools.

Editing Files

You can start the SourceView editor by selecting “Edit Files” from the Project
menu. RapidApp then displays a file selection dialog prompting you for the
file to edit. Once you select the file, RapidApp starts the SourceView editor.

If you want, you can specify a different text editor for RapidApp to invoke.
To do so, set the $WINEDITOR environment variable to the editor you want
to invoke. Then in RapidApp, select “RapidApp Preferences” from the
Options menu and toggle on the “Use $WINEDITOR to edit files” option.

Compiling

You can compile your applications by selecting “Build Application” from
the Project menu. This launches and starts the Developer Magic Build
Manager. If you are currently using the debugger, the executable is
automatically detached from the debugger and reattached when the
compilation is completed.

Browsing Source

You can configure the Makefile created by RapidApp to automatically create
a static analysis fileset and database for all generated files. To do so:

1. Select “Application” from the Options menu to display the Output
Application Names dialog.

2. Toggle on the Create Static Analysis Database checkbox and close the
dialog.

3. Select “Generate C++” from the project menu to update your files,
include the Makefile.

The next time you build your application, RapidApp creates the static
analysis files. The files are kept in a subdirectory named
<DirectoryName>.cvdb, where <DirectoryName> is the name of your project
directory, so they do not clutter the work area. After creating the static

RapidApp Development Model

47

analysis files, you can select “Browse Source” from the Project menu to
launch the Static Analyzer.

Note: If you add new files outside RapidApp, you need to add them to the
fileset file manually.

Debugging and Interactively Adding Functionality

You can launch the Debugger by choosing “Debug Application” from the
Project menu. If the program is not up-to-date, RapidApp automatically
invokes the Build Manager to update the executable.

Besides the obvious uses of the Debugger for finding and fixing bugs, you
can also use the Fix and Continue tool from the Debugger to interactively
add functionality to your program. To do so:

1. Run the program.

2. Click buttons, select menu items, and otherwise exercise your
program’s interface. As you hit each unimplemented function, the
Debugger stops in VkUnimplemented().

3. Because VkUnimplemented() is called by the virtual function you
really want to modify, click the Return button in the Debugger to go up
one level.

4. Choose “Edit” from the Fix+Continue menu in the Debugger. The body
of the code changes color to indicate the editable region.

5. Type in your changes.

6. Select “Parse And Load” from the Fix+Continue menu.

7. Click the Continue button in the Debugger to resume running your
program.

8. Test the behavior of the code you added. When you are satisfied,
comment out the call to VkUnimplemented() from your function so the
debugger no longer stops in this callback.

48

Chapter 2: Creating Applications With RapidApp

9. Repeat the procedures from step 2 to continue to add functionality to
your program.

10. Once you are finished adding functionality, select “Save File+Fixes As”
from the Debugger’s Fix+Continue menu to save your changes.

Integration With Software Packager for Creating
Installable Images

RapidApp automatically generates the files required to create an image that
users can install with the Software Manager installation tool (swmgr). You
can generate a default image by going to the directory that contains your
source and entering:

% make image

This creates a subdirectory named images containing the installable image.
Remember to include all of the files in this directory in your distribution.

The default image created by RapidApp consists of a minimal set of
application files: the executable, the default resources file, the Desktop icon,
and the FTR file. You might want to customize the image to include other
files, divide the product into base and optional subproducts, or include
commands to be executed after installation. For example, if you have
reference pages (man pages) for your product, you should edit your images
to include them.

To edit your product’s images, select “Edit Installation” from the Project
menu. Doing so launches Software Packager, a graphical tool for creating
and editing installable images. For complete instructions for using Software
Packager, consult the Software Packager User’s Guide; Chapter 1, “Packaging
Software for Installation: An Overview,” provides an overview of the tool.

RapidApp Development Cycle

49

 RapidApp Development Cycle

The RapidApp development cycle typically consists of the following steps:

1. Use RapidApp to create a graphical user interface for your application.

2. Run your prototype interface under the Debugger and use the Fix and
Continue tool to create prototype functional code. You can also add
functionality using the SourceView tool or external text editors. To
generate a working prototype quickly, you might want to use the VkEZ
convenience functions. See “ProDev WorkShop and MegaDev
Overview” in Developer Magic: ProDev WorkShop and MegaDev Overview
for more information about the ProDev WorkShop tools.

3. Use RapidApp to refine your user interface based on testing and
feedback.

4. Develop and test any external (that is, non-interface) functionality
required by your application. At this point, you might also decide to
encapsulate portions of your interface as self-contained components.

5. If you used VkEZ convenience functions, replace them with production
code.

6. Perform final testing and make any necessary revisions.

7. Use IconSmith to create a custom Desktop icon for your application and
edit the FTR file to customize the behavior of your application’s icon.
See Chapter 2, “Icons,” in the Indigo Magic User Interface Guidelines for
guidelines and Chapter 11, “Creating Desktop Icons: An Overview,” in
the Indigo Magic Desktop Integration Guide for instructions on
customizing the look and behavior of your application’s Desktop icons.

8. Create a minimized window icon to represent your application when
iconified. See Chapter 3, “Windows in the Indigo Magic Environment,”
in the Indigo Magic User Interface Guidelines for guidelines and
Chapter 6, “Customizing Your Application’s Minimized Windows,” in
the Indigo Magic Desktop Integration Guide for instructions on creating
minimized window icons.

9. Use Software Packager to customize your application’s installable
images. For complete instructions for using Software Packager, consult
the Software Packager User’s Guide; Chapter 1, “Packaging Software for
Installation: An Overview,” provides an overview of the tool.

50

Chapter 2: Creating Applications With RapidApp

This chapter provides tips for
selecting and using interface
elements for your application.

Building Interfaces with RapidApp

Chapter 3

53

Chapter 3

3. Building Interfaces With RapidApp

This chapter describes how to select and use interface elements to create
your application’s interface:

• “Choosing and Using Windows,” gives you tips on how to use
top-level windows.

• “Using Containers,” discusses the advantages and limitations of the
different containers available.

• “Creating and Editing Menus,” gives instructions for creating menu
bars and options menus.

• “Creating, Editing, and Manipulating Components,” tells you how to
create and use self-contained interface components.

This chapter focuses on choosing appropriate interface elements for your
interface rather than discussing the features of each element in detail. For
detailed information about the resources available for each interface
element, see Appendix B, “RapidApp Reference.”

Choosing and Using Windows

Most often, the first step in creating an interface with RapidApp is to select
an appropriate window. This is not the case if you’re using RapidApp to
create only self-contained components. In that case, the window you use to
hold your component as you build it is irrelevant; you’re interested in the
component the window holds.

All of the windows are available on the Windows palette. As shown in
Figure 3-1, RapidApp provides a choice of three top-level windows: a
Simple Window, a VkWindow, and a Dialog Window. This section describes
the features of these windows and when it’s appropriate to use each type.

54

Chapter 3: Building Interfaces With RapidApp

Figure 3-1 The RapidApp Windows Palette

Note: You can also create containers without first creating a top-level
window. If you do so, RapidApp automatically provides a top-level shell for
the container. Then when you generate code, RapidApp automatically
generates the equivalent of a Simple Window for that shell.

For each type of window, RapidApp automatically provides appropriate
Indigo Magic window decorations and window menu entries. See
Chapter 3, “Windows in the Indigo Magic Environment,” in the Indigo Magic
User Interface Guidelines and Chapter 5, “Window, Session, and Desk
Management,” in the Indigo Magic Desktop Integration Guide for information
on window decorations and window menu entries.

Simple Windows

As its name implies, a Simple Window is the simplest top-level window. A
Simple Window has no menu bar and can contain only one child element. If
you want a menu bar for the window, create a VkWindow instead of a
Simple Window. The child element that you place in a Simple Window is

Choosing and Using Windows

55

typically either a container widget or a complex component. You can use
Simple Windows as main windows, but typically they’re more appropriate as
co-primary windows. See “Main Primary and Co-Primary Windows” on
page 58 for more information on main and co-primary windows.

When RapidApp generates code for a Simple Window, it creates it as a
subclass of the IRIS ViewKit VkSimpleWindow class. (See Chapter 4,
“ViewKit Windows,” in the IRIS ViewKit Programmer’s Guide for more
information on the VkSimpleWindow class.) Furthermore, if the child of the
Simple Window isn’t a component (that is, a C++ class), RapidApp
automatically encapsulates that child and its contents within a subclass of
VkComponent. (See Chapter 2, “Components,” in the IRIS ViewKit
Programmer’s Guide for more information on the VkComponent class.) The
Simple Window then simply creates an instance of this class.

VkWindows

A VkWindow supports far more functionality than a Simple Window.
Although it, like the Simple Window, can contain only one child element, a
VkWindow includes a menu bar with many of the standard menu bar entries
complete with keyboard accelerators (see Chapter 8, “Menus,” in the Indigo
Magic User Interface Guidelines for information on standard menu bar
entries). You typically use VkWindows as main windows, but you can use
them as co-primary windows as well. See “Main Primary and Co-Primary
Windows” on page 58 for more information on main and co-primary
windows.

Figure 3-2 shows the default configuration of the VkWindow component.

56

Chapter 3: Building Interfaces With RapidApp

Figure 3-2 Default Configuration of VkWindow Component

When RapidApp generates code for a VkWindow, it creates it as a subclass
of the IRIS ViewKit VkWindow class. (See Chapter 4, “ViewKit Windows,”
in the IRIS ViewKit Programmer’s Guide for more information on the
VkWindow class.) Furthermore, if the child of the VkWindow isn’t a
component (that is, a C++ class), RapidApp automatically encapsulates that
child and its contents within a subclass of VkComponent. (See Chapter 2,
“Components,” in the IRIS ViewKit Programmer’s Guide for more information
on the VkComponent class.) The VkWindow then simply creates an
instance of this class.

For each menu item in the menu bar for which you’ve defined an
activateCallback function, RapidApp adds a member function of the same
name to the VkWindow’s child component or generated class. You can then
add the functional code to the functions to define behavior for the menu
items. RapidApp doesn’t add member functions to the child for those menu
items for which you haven’t defined an activateCallback function.

Furthermore, for the default items on the File and Edit menus, RapidApp
implements some functionality automatically. For example, RapidApp
generates code for the “Open” selection of the File menu to display a file
selection dialog. You need only take the filename returned by the dialog and
perform an open operation appropriate for your application. Table 3-1

Choosing and Using Windows

57

summarizes the actions and the functions added for the default items on the
File and Edit menus.

Table 3-1 Default Actions of Standard VkWindow Menu Items

Menu Selection Function Added to Child
Component or Class

Description

File New newFile() The child creates a new, empty file.

Open openFile(const char *) The VkWindow automatically displays a file selection dialog and, if the user
selects a file, passes that filename to the child as an argument to the openFile()
function. The child opens the given file.

Save save() The child saves its current state to the current file.

Save As saveas(const char *) The VkWindow automatically displays a file selection dialog and, if the user
selects a file, passes that file name to the child as an argument to the saveas()
function. The child saves its current state to the specified file.

Print print(const char *) The child prints its contents. Currently, the argument to print() is unused.

Close The VkWindow deletes itself. To change this behavior, edit the close() function
of the VkWindow subclass.

Exit The VkWindow calls VkApp:quitYourself() to exit the application. (See
Chapter 3, “The ViewKit Application Class,” in the IRIS ViewKit Programmer’s
Guide for more information on the VkApp class.) To change this behavior, edit
the quit() function of the VkWindow subclass.

Edit Undo The VkWindow automatically invokes the undo functionality provided by the
IRIS ViewKit VkMenuUndoManager class. (See Chapter 6, “ViewKit Undo
Management and Command Classes,” in the IRIS ViewKit Programmer’s Guide
for more information on the VkMenuUndoManager class.) You can’t override
this behavior; if you don’t want to support undo in your application, remove
this menu item.

Cut cut() The child cuts its current selection to the clipboard. See Chapter 5, “Data
Exchange on the Indigo Magic Desktop,” in the Indigo Magic User Interface
Guidelines for guidelines and Chapter 7, “Interapplication Data Exchange,” in
the Indigo Magic Desktop Integration Guide for instructions on implementing cut
and paste in your application.

58

Chapter 3: Building Interfaces With RapidApp

You can add, edit, and remove menu panes and menu items if you want. For
more information on manipulating menus in RapidApp, see “Creating and
Editing Menus” on page 84.

Note: Don’t remove or edit the Help menu. The VkWindow class
automatically creates a standard Help menu that interfaces with the Silicon
Graphics help system; RapidApp ignores any changes that you make to the
Help menu. For more information on the standard Help menu, see
Chapter 5, “Creating Menus With ViewKit,” in the IRIS ViewKit
Programmer’s Guide.

Main Primary and Co-Primary Windows

Chapter 3, “Windows in the Indigo Magic Environment,” of the Indigo Magic
User Interface Guidelines describes two types of primary windows
recommend for use in Indigo Magic Desktop applications: main primary
windows and co-primary windows:

• A main primary window serves as the application’s main controlling
window. It’s used to view or manipulate data, get access to other
windows within the application, and kill the process when users quit.
You should have only one main primary window per application.

Copy copy() The child copies its current selection to the clipboard. See Chapter 5, “Data
Exchange on the Indigo Magic Desktop,” in the Indigo Magic User Interface
Guidelines for guidelines and Chapter 7, “Interapplication Data Exchange,” in
the Indigo Magic Desktop Integration Guide for instructions on implementing cut
and paste in your application.

Paste paste() The child retrieves the contents of the clipboard and inserts it as appropriate.
See Chapter 5, “Data Exchange on the Indigo Magic Desktop,” in the Indigo
Magic User Interface Guidelines for guidelines and Chapter 7, “Interapplication
Data Exchange,” in the Indigo Magic Desktop Integration Guide for instructions
on implementing cut and paste in your application.

Table 3-1 (continued) Default Actions of Standard VkWindow Menu Items

Menu Selection Function Added to Child
Component or Class

Description

Choosing and Using Windows

59

• A co-primary window is used for major data manipulation or viewing
of data outside of the main window. Co-primary windows are often
used as “auxiliary” windows and are not displayed automatically on
starting the application.

RapidApp allows you to set the type of a Simple Window or a VkWindow
with the coprimaryWindow resource, as shown in Figure 3-3.

Figure 3-3 Setting the Window Type

Chapter 3 of the Indigo Magic User Interface Guidelines recommends different
entries in the window menu (that is, the menu in the title bar added by the
window manager) based on the type of window. RapidApp automatically
generates the necessary code to configure a window based on the value of
the coprimaryWindow resource that you select.

RapidApp automatically instantiates and displays all main windows in
main.C. However, it doesn’t create instances of or display co-primary
windows in your application. You need to instantiate co-primary windows
explicitly and use the show() member function to display them when
appropriate. For example, if you display a co-primary window based on an
action in another component, you can declare the co-primary window as a
protected data member of the component:

protected:
CoprimaryMainWindow * _coprimary;

Then instantiate the co-primary window in the component’s constructor:

_coprimary = new CoprimaryMainWindow("coPrimary");

When you need to display the co-primary window, call its show() member
function:

_coprimary->show();

See Chapter 4, “ViewKit Windows,” in the IRIS ViewKit Programmer’s Guide
for more information on manipulating windows using the window class
member functions.

60

Chapter 3: Building Interfaces With RapidApp

Dialog Windows

Typically, you don’t need to create basic Dialog Windows using RapidApp.
By comparison to other parts of your interface, there is little to customize for
most dialogs. You simply need a way to specify a message and title, post and
dismiss the dialog, and perhaps retrieve a value. Furthermore, dialogs are
rarely posted as a result of specific user interaction such as clicking a button;
instead, they are often a result of error conditions or other program states.

For most dialogs in your application, use the standard dialog posting
mechanism provided by IRIS ViewKit. IRIS ViewKit implements a complete
dialog management system including:

• caching and reusing dialogs to improve application performance

• single function mechanisms for posting dialogs

• ability to post any dialog in non-blocking, non-modal mode; modal
mode; and two blocking modes

• positioning in multi-window applications

• posting of dialogs even when windows are iconified, if desired

• correct handling of dialog references when widgets are destroyed

The IRIS ViewKit dialog mechanism handles all standard dialog types
including information, warning, error, busy, question, prompt, file selection,
and preference dialogs. For more information on the IRIS ViewKit dialog
mechanism, see Chapter 7, “Using Dialogs in ViewKit,” in the IRIS ViewKit
Programmer’s Guide.

Occasionally, you might need to create a custom dialog not implemented in
IRIS ViewKit. The Dialog Window element on the Windows palette allows
you to create a custom dialog that integrates with the IRIS ViewKit dialog
mechanism.

The Dialog Window is the basis for your custom dialogs. Figure 3-4 shows
the default configuration of a Dialog Window.

Choosing and Using Windows

61

Figure 3-4 Default Configuration of Dialog Window

Besides the standard dialog buttons, a Dialog Window can contain only one
other child element. The child element that you place in a Dialog Window is
typically either a container widget or a complex component.

When RapidApp generates code for a Dialog Window, it creates the dialog
as a subclass of the IRIS ViewKit VkGenericDialog class. (See Chapter 7,
“Using Dialogs in ViewKit,” in the IRIS ViewKit Programmer’s Guide for more
information on the VkGenericDialog class.) Furthermore, if the child of the
Dialog Window isn’t a component (that is, a C++ class), RapidApp
automatically encapsulates that child and its contents within a subclass of
VkComponent. (See Chapter 2, “Components,” in the IRIS ViewKit
Programmer’s Guide for more information on the VkComponent class.) The
Dialog Window then simply creates an instance of this class.

Note: RapidApp generates both a UI and a functional subclass for the child
of your custom dialog. Typically, you should edit only the subclass.

Figure 3-5 shows an example of a custom dialog. In this case, when you
generate code, the container widget containing the scale and label is
encapsulated into a subclass of VkComponent. Alternatively, you could

62

Chapter 3: Building Interfaces With RapidApp

select the container widget and explicitly create a component,
VolumeControl for example, before generating code.

Figure 3-5 Example of a Custom Dialog

When RapidApp generates the code for the dialog’s child class, it adds four
member functions to it: ok(), cancel(), apply(), and help(). These functions
are called when the user clicks the corresponding button. You can add code
to these functions to perform whatever tasks you require. In the case of the
custom dialog shown in Figure 3-5, the VolumeControl::ok() function can
store the current value of the scale widget into a data member; the
VolumeControl::cancel() function can restore the scale to the previously
stored value.

Because a custom dialog is a subclass of VkGenericDialog, you post,
dismiss, and set dialog titles and button labels the same way as for any other
IRIS ViewKit dialog. For example, if the name of the dialog class for the
dialog shown in Figure 3-5 is VolumeDialog, you create an instance of the
dialog in your program with:

VolumeDialog _volumeDialog = new VolumeDialog();

Then you post this dialog with a call such as:

_volumeDialog->post();

See Chapter 7, “Using Dialogs in ViewKit,” in the IRIS ViewKit Programmer’s
Guide for more information on manipulating dialogs in IRIS ViewKit.

If you want to retrieve values set in the dialog or otherwise manipulate the
dialog, create these access functions in both the dialog class and the child
class. The dialog class should simply call the corresponding function in the
child class. For example, assume that you want to be able to retrieve the last

Using Containers

63

value of the scale in the dialog shown in Figure 3-5. Assume also that the
dialog’s child class, VolumeControl, stores the value in a private data
member, _scaleValue. First, add the following function to the VolumeDialog
class:

// _volumeControl contains a pointer to the child
// VolumeControl object.

int VolumeDialog::getValue()
{

return (_volumeControl->getValue());
}

Next, add the following function to the VolumeControl class:

int VolumeControl::getValue()
{

return (_scaleValue);
}

Finally, retrieve the value from the dialog with:

currentValue = _volumeDialog->getValue();

Using Containers

Once you have created a top-level window, you can “populate” it with
interface elements. Because all of the top-level windows accept only one
child element, that child element is almost always either a container or a
complex component. This section describes how to choose appropriate
containers to group and manage other elements. “Creating, Editing, and
Manipulating Components” on page 89 discusses how to use components,
but even in that case, you must understand how to choose an appropriate
container to serve as the top-level element of a component. All of the
containers are available on the Containers palette, shown in Figure 3-6, with
the exception of the Tabbed Deck, which is on the ViewKit palette.

64

Chapter 3: Building Interfaces With RapidApp

Figure 3-6 RapidApp Containers Palette

One of the challenges of working with IRIS IM is choosing an appropriate
container to achieve the layout you would like. Many simpler systems give
you only one type of container which requires you to place each component
at a specific location within it. On these systems, if you want your interface
to exhibit any type of dynamic behavior—allow users to resize windows,
support internationalization (which requires dynamic layouts to handle
different sized labels in different languages), allow users to customize
portions of the user interface, and so on—you have to implement the
support yourself.

IRIS IM does much more to help you with such requirements by providing
a variety of containers that arrange their children in different ways. You can
use IRIS IM containers to control the relationship of elements they contain.
For example, you can left-align a group of elements, or you can create groups
of elements such that the width of the largest element determines the width
of the entire group. However, this flexibility adds more complexity. Instead
of simply positioning widgets manually, you must position them by
choosing and manipulating the right container. Furthermore, the IRIS IM

Using Containers

65

containers were not designed with an interface builder in mind, and don’t
always behave as you might expect in response to interactive manipulation.

Note: Many containers add constraints to the elements they contain—
resources that affect the appearance or behavior of an element within its
container. These constraint resources appear on the children, not on the
container. Different containers add different constraints, so you might see a
constraint resource in one interface element and not in another of the same
type if the elements are contained within different types of containers. The
resource editor area lists constraint resources separately from other
resources, below a label identifying them as constraint resources. You can
modify constraint resources just as you do other resources.

Bulletin Board

The Bulletin Board widget (XmBulletinBoard) is the simplest IRIS IM
container and the easiest to use. You simply “tack” elements to a particular
position in the Bulletin Board and they stay there unless you explicitly move
them. The Bulletin Board doesn’t reposition or resize its children for any
reason. Using a Bulletin Board container is the most like working with a
drawing editor.

The limitation of a Bulletin Board is that all positions and sizes are fixed. For
example, if you change the text or font of a label in a resource file, the label
could grow or shrink, altering its alignment to other elements. Because of
this limitation, the Bulletin Board is a poor choice for programs that you
expect to internationalize or to allow users to customize the interface. Also,
don’t use a Bulletin Board if you want to allow the user to stretch or shrink
the interface size. However, the Bulletin Board is a good choice for quickly
prototyping interface designs because it is easy to use and provides the
greatest flexibility for arranging elements within it.

Note: The Bulletin Board supports marginWidth and marginHeight
resources that enforce minimum offsets from the edges of the container to its
child elements. However, the Bulletin Board wasn’t designed with an
interactive builder in mind, so after initially placing an element you can
move it closer to the edge of the Bulletin Board than allowed by the margin
values. But when you run your application, the Bulletin Board overrides the
children’s positions and places them within the margins, resulting in a

66

Chapter 3: Building Interfaces With RapidApp

layout slightly different from what you specified in RapidApp. Therefore,
either obey the margins when placing and moving elements, or change the
marginWidth and marginHeight resources if you prefer smaller margins.

See the XmBulletinBoard(3Xm) reference page for more information on the
XmBulletinBoard widget.

Rubber Board

The Rubber Board widget (SgRubberBoard) is an IRIS IM extension to
Motif. The Rubber Board is similar to a Bulletin Board and shares both its
ease of use and some of its limitations. However, it has a unique ability to
support resizable layouts simply and easily. This widget is also designed
explicitly for use with an interface builder; it would be awkward to use
programmatically.

To use the Rubber Board:

1. Create an instance of it as small as you reasonably expect your window
to be.

2. Place child elements on the Rubber Board just as you would a Bulletin
Board.

3. Select the Rubber Board and toggle its setInitial resource to True.

4. Stretch the window until it is as large as possible (full screen is best).

5. Reposition and resize all the children so that the layout is as you would
want it to appear if the user resized the window to that size.

6. Select the Rubber Board and toggle the setFinal resource to True. From
this point on, the Rubber Board interpolates the positions and sizes of
all its children as it resizes.

Note: The Rubber Board responds to changes in size initiated only by its
parent (for example, its parent window); it doesn’t respond to changes in the
size of its children. Therefore, the Rubber Board continues to have the same
limitations with respect to changing fonts, labels, or internationalization as
the Bulletin Board.

Using Containers

67

The Rubber Board widget interpolates both size and position. In theory you
can create bizarre dynamic behavior in which widgets move unexpectedly
in response to resizing. For example, a widget on the right side of the Rubber
Board when the container is small can move slowly to the left side as the
Rubber Board grows larger. For obvious reasons, avoid using the Rubber
Board in this manner.

You can nest Rubber Boards within one another. To do so, it’s best to design
the resize behavior of the inner containers first, and then place them in the
larger Rubber Board.

Tip: The Rubber Board doesn’t handle certain errors well, such as making
the final size smaller than the initial size. Therefore, create the initial layout
with the Rubber Board as small as possible, even if the size is unrealistic.
Similarly, create the final size as large as possible.

Figure 3-7 through Figure 3-10 demonstrate the behavior of the Rubber
Board widget. To begin, create an interface in a small container, such as in
Figure 3-7. Once you’ve finished the layout, set the Rubber Board’s setInitial
resource to True.

Figure 3-7 Rubber Board: Initial Layout

68

Chapter 3: Building Interfaces With RapidApp

Next, resize the Rubber Board to a much larger size, as in Figure 3-8. Notice
that all widgets keep their original size and position.

Figure 3-8 Rubber Board: Preparing for Larger Layout

Then resize and reposition the elements to reflect their desired size and
position for the larger container size, as shown in Figure 3-9.

Using Containers

69

Figure 3-9 Rubber Board: Final Layout

After setting the Rubber Board’s setFinal resource, you can resize the
Rubber Board to any shape and the children will maintain their relative
positions and sizes, as demonstrated in Figure 3-10.

70

Chapter 3: Building Interfaces With RapidApp

Figure 3-10 Effect of Resizing the Final Rubber Board Layout

Spring Box

The Spring Box widget (SgSpringBox) is an IRIS IM extension to Motif. At
its simplest, the Spring Box simply enforces row or column behavior on its
child elements. Figure 3-11 shows two simple layouts with buttons placed in
vertical and horizontal Spring Boxes.

Using Containers

71

Figure 3-11 Vertical and Horizontal Spring Boxes

What you can’t see from Figure 3-11 is that each child of the Spring Box has
six springs associated with it, as shown in Figure 3-12. Each spring has an
associated “spring constant” value, which combines with the other springs
to determine the overall behavior of the spring system. You can control each
spring individually.

Figure 3-12 Springs in Children of a Spring Box

By default, the value of the horizontal and vertical spring resources are set
to 100, while the other springs are set to 0. This means the children of the
Spring Box stretch to fill the size of the Spring Box.

You can change the values of the spring resources by selecting a child and
changing its constraint resources, as shown in Figure 3-13.

Spring Box Child

topSpring

bottomSpring

rightSpring

le
ftS

pr
in

g

horizontalSpring

verticalSpring

72

Chapter 3: Building Interfaces With RapidApp

Figure 3-13 Setting Spring Resources

For example, consider the behavior if you set up the following spring values:

Figure 3-14 shows the layout created by these values, both when the Spring
Box is its natural size and when it is stretched.

Figure 3-14 Spring Box Behavior With Modified Values

button1 button2 button3

leftSpring 0 0 0

rightSpring 0 0 0

topSpring 0 0 0

bottomSpring 0 0 0

verticalSpring 100 100 100

horizontalSpring 0 100 0

Using Containers

73

To create complete layouts using the Spring Box, you usually need to nest
Spring Boxes within Spring Boxes, mixing vertical and horizontal
orientations.

The Spring Box container uses the creation order of its children to determine
their positions. You can move a child to a different position by selecting it
and then using the “Up/Left” (or the <Ctrl+u> , <Left arrow> , or
<Up arrow> keyboard shortcut) and “Down/Right” (or the <Ctrl+d> ,
<Right arrow> , or <Down arrow> keyboard shortcut) selections from the
Edit menu.

The Spring Box tends to wrap itself tightly around its children, so that you
can’t select or move it directly. To access the Spring Box, select a child of the
Spring Box widget, then choose “Select Parent” from the Edit menu (or type
the <Ctrl+p> keyboard shortcut) to select the Spring Box widget. You can
then access the Spring Box’s resources. To move or resize the Spring Box,
hold down the <Ctrl> key while using the left mouse button as you
normally would. The <Ctrl> key prevents RapidApp from selecting a new
element so that you can easily manipulate the currently selected element.

Form

The Form widget (XmForm) is the most common choice for resizable
layouts. The Form widget positions its children based on attachments. For
example, you can attach an element to a percentage position in the Form, to
the side of another element, and so on. Forms can respond to resizes initiated
by both its parent (for example, its parent window) and its children.

The traditional problem with Forms is that they are difficult to set up and
use. Programmatically setting all the attachment resources for the Form’s
children is tedious, and it’s difficult to envision the resulting appearance.
RapidApp makes Forms easier to use by allowing you to interactively edit
attachments and see the results.

Tip: Although you can create complex layouts within a Form widget, often
it’s simpler to create simple layouts with only a few widgets, define that
collection as a component, and then group the component with other
components in a parent Form.

74

Chapter 3: Building Interfaces With RapidApp

The easiest way to understand how to manipulate elements within a Form
is by example. Figure 3-15 shows what happens when you add a push
button to a Form.

Note the symbols around the push button and the lines from the button to
the edge of the Form. The symbols are called attachment icons; there is one for
each side of a child in a Form. The lines represent attachments. In this case,
the button is attached to the top and left sides of the Form and is unattached
on the right and bottom. This is the default behavior for an interface element
placed in a Form.

Figure 3-15 Push Button in a Form

The length of the line represents the offset from the point of attachment to
the element. You can vary this offset in several ways. First, you can simply
move the element. For example, moving the push button to the top of the
window as shown in Figure 3-16 sets the top offset to zero.

Figure 3-16 Setting the Top Offset to Zero

You can also set the offset by holding down the <Shift> key and pressing
the left mouse button over an attachment icon. RapidApp displays a menu
showing the value of the offset. You can change this value by moving the

Using Containers

75

mouse while continuing to hold down the <Shift> key and left mouse
button. Figure 3-17 shows an example.

Figure 3-17 Using the Popup to Set an Offset

Alternatively, you can change the value of the offset in the appropriate field
of the resource editor when the child element is selected.

You can change the type of an attachment by pressing the right mouse
button over the attachment icon. RapidApp displays a menu showing the
attachment type choices. For example, Figure 3-18 demonstrates pressing
the right mouse button over the right attachment icon. Figure 3-19 shows the
results of selecting XmATTACH_FORM.

Figure 3-18 Displaying the Attachment Menu

76

Chapter 3: Building Interfaces With RapidApp

Figure 3-19 Push Button With a Right Attachment

Another way to create or edit an attachment is by dragging from an
attachment icon to another interface element. For example, add a second
push button to the Form, near the bottom of the container. Now press the left
mouse button over the new button’s top attachment icon and drag to the
bottom edge of the original button, as shown in Figure 3-20.

Using Containers

77

Figure 3-20 Drawing an Attachment

The XmATTACH_POSITION attachment type allows you to set the position
of the element within a Form relative to the size of the Form. For example,
you can specify the position of an element so that its top is always one
quarter of the way from the top of the Form no matter what size the Form
takes. To do this, you must specify two resource values: a numerator (in the
interface element) and a denominator (in the Form). The denominator is the
fractionBase resource in the Form. You can set the numerator either
interactively, in the same way that you set the offset, or by changing the
appropriate position resource when the child element is selected.

New layout

1. Press
2. Drag3. Release

Original layout

Dragging

attachment

78

Chapter 3: Building Interfaces With RapidApp

Note: If you use position attachments, be sure to set the value of the
fractionBase resource before setting the attachments of any children to
XmATTACH_POSITION. A Form doesn’t recompute the children’s position
attachments if you change the Form’s fraction base.

See the XmForm(3Xm) reference page for more information on the XmForm
widget.

Paned Windows

The IRIS IM Paned Window widget (XmPanedWindow) places all its
children in a column with each widget separated by a control, known as a
sash, and an optional separator. The user can drag the sash to adjust the
height of a section. The Paned Window widget adds constraint resources to
each child that you can use to specify a minimum or maximum size. The
Paned Window is suitable for interfaces that contain panels of information
that the user might want to hide, reveal, or enlarge separately. See the
XmPanedWindow(3Xm) reference page for more information on the
XmPanedWindow widget.

The HPaned Window widget (SgHorzPanedWindow) is an IRIS IM
extension to Motif. This widget is identical in functionality to the
XmPanedWindow widget, but arranges its children in a horizontal row with
separators and sashes between each child. Figure 3-21 shows an example of
the HPaned Window.

Figure 3-21 HPaned Window Container

Using Containers

79

The Paned Window containers use the creation order of their children to
determine their positions. You can move a child to a different position by
selecting it and then using the “Up/Left” (or the <Ctrl+u> , <Left arrow> ,
or <Up arrow> keyboard shortcut) and “Down/Right” (or the <Ctrl+d> ,
<Right arrow> , or <Down arrow> keyboard shortcut) selections from the
Edit menu.

Because these Paned Window containers weren’t designed with an
interactive builder in mind, they might exhibit some odd behaviors in
RapidApp.

• If you add a single child to the Paned Window, you can no longer click
the Paned Window to edit its resources or add another child. To select
the Paned Window, select a child of the Paned Window, then choose
“Select Parent” from the Edit menu (or use the <Ctrl+p> keyboard
shortcut). You can then access the Paned Window’s resources. To move
or resize the Paned Window, hold down the <Ctrl> key while using the
left mouse button as you normally would. The <Ctrl> key prevents
RapidApp from selecting a new element so that you can easily
manipulate the currently selected one.

• The easiest way to add more child elements to the Paned Window is to
select the Paned Window and to toggle on “Keep Parent” in the View
menu. You can then add as many children to the Paned Window as you
want. When you are finished adding children, toggle off “Keep Parent.”

• After you add the first child, all subsequent children that you add have
zero height. Furthermore, if you reorder the Paned Window’s children,
the Paned Window might resize some of the children, possibly even to
a zero height. To get around this either: 1) as soon as you add a child,
edit its minHeight resource to be a larger size; or 2) move the sash(es)
so all children are the desired size.

RowColumn

The primary purpose of the RowColumn widget (XmRowColumn) is to
support menu panes and menu bars. It also has limited use for simple
aligned rows, and can support multiple columns as well. However, the
RowColumn container forces all of its children to have the same height, and
it provides only limited ability to control how children are resized. If you

80

Chapter 3: Building Interfaces With RapidApp

want a layout like that shown in Figure 3-22, then the RowColumn widget is
a good choice. Otherwise, you might want to choose another container.

Figure 3-22 Typical RowColumn Layout

The RowColumn container uses the creation order of its children to
determine their positions. You can move a child to a different position by
selecting it and then using the “Up/Left” (or the <Ctrl+u> , <Left arrow> ,
or <Up arrow> keyboard shortcut) and “Down/Right” (or the <Ctrl+d> ,
<Right arrow> , or <Down arrow> keyboard shortcut) selections from the
Edit menu.

The RowColumn container tends to wrap itself tightly around it children, so
that it cannot be selected or moved. To select the RowColumn container,
select a child of the RowColumn widget, then choose “Select Parent” from
the Edit menu (or use the <Ctrl+p> keyboard shortcut). You can then access
the RowColumn’s resources. To move or resize the widget, hold down the
<Ctrl> key while using the left mouse button as you normally would. The
<Ctrl> key prevents RapidApp from selecting a new element so that you
can easily manipulate the currently selected one.

See the XmRowColumn(3Xm) reference page for more information on the
XmRowColumn widget.

Radio Box

The Radio Box container is really a RowColumn container. It enforces radio
behavior (one-of-many) on all toggle buttons it contains. The Radio Box is
useful for small rows or columns of one-of-many radio buttons, as shown in
Figure 3-23.

Using Containers

81

Figure 3-23 Radio Box With Toggle Button Children

When you create a Radio Box, RapidApp automatically creates two toggle
buttons as children. In all other aspects, the Radio Box behaves the same as
a RowColumn container (see “RowColumn” on page 79 for more
information).

Frame

The Frame widget (XmFrame) is a purely decorative container, drawing a
frame around its contents. A Frame can contain two children. One is the
work area child, the widget surrounded by the Frame. The other is an
optional label widget. The Frame places the label at the top, in-line with the
frame, as shown in Figure 3-24. You can change its position slightly by
editing the label’s constraint resources added by the Frame.

Figure 3-24 Frame Widget

Tip: It’s easiest to add the title label widget first. RapidApp initially places
the label in the middle of the Frame as the work area child. You need to
change the label widget’s childType constraint resource (added by the
Frame) to XmFRAME_TITLE_CHILD. Once the title is in place, you can then
add the work area widget for the Frame—typically, a container or a
component.

82

Chapter 3: Building Interfaces With RapidApp

See the XmFrame(3Xm) reference page for more information on the
XmFrame widget.

Scrolled Window

The Scrolled Window widget (XmScrolledWindow) adds scroll bars to a
child element. The Scrolled Window can contain only one child, typically a
container or a component.

See the XmScrolledWindow(3Xm) reference page for more information on
the XmScrolledWindow widget.

Drawing Areas

RapidApp provides two drawing area widgets: Drawing Area
(XmDrawingArea) and Visual Drawing (SgVisualDrawingArea). These
widgets provide a canvas on which you can draw using Xlib library calls.
The Visual Drawing widget is an IRIS IM extension to Motif; it allows the
widget to use a visual different from the rest of the application.

Although both drawing area widgets can function as simple containers,
similar to the Bulletin Board, use these widgets only for drawing rather than
managing other widgets. Other containers are more appropriate for
managing child widgets.

See the XmDrawingArea(3Xm) reference page for more information on the
XmDrawingArea widget. See the SgVisualDrawingArea(3Xm) reference
page for more information on the SgVisualDrawingArea widget.

Tabbed Deck

The Tabbed Deck component is a special container available on the ViewKit
palette. The Tabbed Deck arranges any number of child elements in a
“deck.” The Tabbed Deck component displays only one child at a time, but
also displays a tab area, with one tab for each child. The user can click a tab
to display the corresponding child. Figure 3-25 shows an example of a
Tabbed Deck.

Using Containers

83

Figure 3-25 Tabbed Deck

You can add any number of child elements to the Tabbed Deck. Each element
automatically fills the entire area of the Tabbed Deck except for the tab area.

Tip: After adding the first child element to a Tabbed Deck, add other
elements by dropping them over the tab area.

The Tabbed Deck creates a tab for each element you add. You can display an
element, even in Build Mode, by selecting its corresponding tab. To change
the text of an element’s tab, select the element and edit the tabLabel
constraint resource added by the Tabbed Deck.

When RapidApp generates code for a Tabbed Deck, it creates it as a subclass
of the IRIS ViewKit VkTabbedDeck class. Furthermore, for each child of the
Tabbed Deck that isn’t a component (that is, a C++ class), RapidApp
automatically encapsulates that child and its contents within a subclass of
VkComponent. (See Chapter 2, “Components,” in the IRIS ViewKit
Programmer’s Guide for more information on the VkComponent class.) The
Tabbed Deck then simply creates an instance of that class.

Note: There is currently no way to reorder the children’s positions within
the Tabbed Deck. Be sure to add the children in the order in which you want
them to appear in the tab area.

84

Chapter 3: Building Interfaces With RapidApp

Creating and Editing Menus

The menus palette, shown in Figure 3-26, allows you to create menus and
menu items. RapidApp allows you to create and manipulate both menu bars
and option menus.

Figure 3-26 RapidApp Menus Palette

Menu Bars

A menu bar consists of a collection of cascade buttons at the top of a window
with pulldown menus (also referred to as menu panes) connected to them.
This section describes how to create and edit menu bars using RapidApp.
See “Menu Panes” on page 86 for information on editing the contents of
individual menu panes.

Creating a Menu Bar

The only way to create a menu bar in RapidApp is to create a VkWindow.
You can’t add a menu bar to a simple window after you create it.

Creating and Editing Menus

85

Tip: If you build an interface in a simple window and later decide that you
want a menu bar for the window, you can create a new VkWindow, cut or
copy the top-level child (and thus everything it contains) of the existing
simple window, and paste the interface into the new VkWindow.

When you create a VkWindow, RapidApp automatically includes a menu
bar with many of the standard menu bar entries implemented complete with
keyboard accelerators. See “VkWindows” on page 55 for more information
on the standard menu bar entries.

Adding Panes to a Menu Bar

Add panes to a menu bar just as you add other elements to a container. First,
select the menu bar. Then click with the left mouse button on the icon on the
menus palette of the type of pane you want to add, then click with the left
mouse button within the menu bar to add the item. Alternatively, you can
click the icon with the middle mouse button, drag the item to the menu bar,
then release the mouse button.

You can add the following two items to a menu bar:

Pulldown menu
A regular menu pane. For your convenience, RapidApp
automatically adds three initial menu entries to the
pulldown menu. You can edit these items as described in
“Menu Panes” on page 86.

Radio pulldown
A menu pane that enforces radio behavior (one-of-many) on
all toggles that it contains. For your convenience, RapidApp
automatically adds three dummy menu toggles to the
pulldown menu. You can edit these items as described in
“Menu Panes” on page 86.

Tip: A convenient way to add multiple panes to a menu bar is to select the
menu bar and then toggle on “Keep Parent” on the RapidApp View menu.
RapidApp grays out all inapplicable items on the Menus palette, leaving
active only those items you can add to a menu bar. You can then left-click an
icon and drop it anywhere on the screen; RapidApp still adds the item to the
selected menu bar.

86

Chapter 3: Building Interfaces With RapidApp

After adding a menu pane, you can use the RapidApp resource editor to
change the menu’s label and mnemonic.

Removing Panes From a Menu Bar

Remove menu panes just as you do any other element in RapidApp. Simply
select the cascade button in the menu bar for that menu pane, then cut it or
delete it.

Moving Panes In a Menu Bar

To move a menu pane in a menu bar, select the cascade button in the menu
bar for that menu pane, then use the “Up/Left” (or the <Ctrl+u> ,
<Left arrow> , or <Up arrow> keyboard shortcut) and “Down/Right” (or
the <Ctrl+d> , <Right arrow> , or <Down arrow> keyboard shortcut)
selections from the Edit menu.

Menu Panes

This section describes how to build individual menus—that is, the contents
of individual menu panes.

Displaying and Hiding a Menu’s Contents

When running an application, menus are transitory: they appear only when
posted and disappear after the user makes a selection. Of course, this isn’t
useful when creating and editing menus, so RapidApp can display a menu
continuously while you are constructing it.

Once you select a menu’s cascade button, clicking on it again with the left
mouse button causes RapidApp to display the menu’s contents. Subsequent
clicks toggle the display of the menu’s contents off and on. Once you display
the menu’s contents, you can select and manipulate individual menu items
as you would any other element in RapidApp. You can display multiple
menus at once, and even drag and drop menu items between menus.

Creating and Editing Menus

87

Adding Items to a Menu

You add items to a menu just as you add elements to a container (in fact, the
menu pane container is simply a RowColumn widget). First, select the menu
or any item in the menu. Then click with the left mouse button on the icon
on the menus palette of the type of item you want to add, then click with the
left mouse button within the menu to add the item. Alternatively, you can
click the icon with the middle mouse button, drag the item to the menu, then
release the mouse button.

You can add the following items to a menu:

Menu entry A selectable action (implemented as a an
XmPushButtonGadget)

Confirm first A selectable entry that posts a confirmation dialog before
executing the action. Confirm First menu items don’t
support an undoCallback resource.

Menu toggle A selectable toggle entry. To enforce radio behavior on a
group of toggles within a menu, put them within a Radio
Pulldown menu.

Label A non-selectable label.

Separator A non-selectable separator.

Pulldown menu
A cascading, or pull-right, menu. For your convenience,
RapidApp automatically adds three initial menu entries to
the pulldown menu.

Radio pulldown
A cascading menu that enforces radio behavior
(one-of-many) on all toggles that it contains. For your
convenience, RapidApp automatically adds three initial
menu toggles to the pulldown menu.

Tip: A convenient way to add multiple items to a menu is to select the menu
(select any item in the menu, then choose “Select Parent” from the RapidApp
Edit menu), then toggle on “Keep Parent” on the RapidApp View menu.
RapidApp grays out all inapplicable items on the Menus palette, leaving

88

Chapter 3: Building Interfaces With RapidApp

active only those items you can add to a menu bar. You can then left-click an
icon and drop it anywhere on the screen; RapidApp still adds the item to the
selected menu.

After adding an item, you can use the RapidApp resource editor to change
the item’s label and mnemonic. For each item that invokes an action—Menu
Entry, Confirm First, and Menu Toggle—you must define an
activateCallback function that your application invokes when the user
selects the item. For Menu Entry and Menu Toggle items, you can also define
an undoCallback function that your application can invoke to undo the
effects of the item’s action.

For each menu item in a menu pane, RapidApp adds a member function of
the same name to the VkWindow’s child component. You can then add the
functional code to the functions to implement the menu items.

Moving Items in a Menu

To move an item in a menu, select the item and use the “Up/Left” (or the
<Ctrl+u> , <Left arrow> , or <Up arrow> keyboard shortcut) and
“Down/Right” (or the <Ctrl+d> , <Right arrow> , or <Down arrow>

keyboard shortcut) selections from the Edit menu.

Removing Items From a Menu

Remove items from a menu just as you do other elements in RapidApp.
Simply select the menu item, then cut it or delete it.

Option Menus

An option menu is an interface element that allows the user to select one of
several options using a menu. An option menu consists of a label and the
equivalent of a cascading menu. When not displaying the cascading menu,
an option menu displays the last item the user selected.

You create an option menu just as you do other interface elements. A newly
created option menu has no label. To work with an option menu more easily,
immediately edit the option menu’s labelString resource to provide a label.

Creating, Editing, and Manipulating Components

89

You can click anywhere on the option menu’s label or cascade button to
display its cascading menu pane. RapidApp automatically adds two
dummy menu entries to the option menu when you create it. You can edit
the option menu pane as described in “Menu Panes” on page 86.

Creating, Editing, and Manipulating Components

An important concept in RapidApp is creating self-contained components
that you can then reuse not only in the application you’re currently building,
but in other applications as well. This section describes how to create and
edit components in RapidApp.

Creating Components

It’s easy to create components in RapidApp. Simply select the container that
you want to be the top-level element in your component, and choose “Make
Class” from the Classes menu. RapidApp displays a dialog prompting you
for the name of your new class, as shown in Figure 3-27. After creating the
new class, RapidApp adds an icon for it on the User Defined Classes palette.
(RapidApp creates the palette if it doesn’t already exist.)

Figure 3-27 Make Class Dialog

90

Chapter 3: Building Interfaces With RapidApp

By default, RapidApp creates your component as a subclass of the IRIS
ViewKit VkComponent class. If you want to handle ToolTalk messages with
your component, use the option menu on the dialog to tell RapidApp to
derive the new class from the IRIS ViewKit VkMsgComponent class.

Note: If you want to handle ToolTalk messages in your application, you also
need to select “Application” from the Options menu and toggle on the “Use
ToolTalk” option. This causes RapidApp instantiate a VkMsgApp object
instead of a VkApp object. See Appendix A, “ViewKit Interprocess Message
Facility,” in the IRIS ViewKit Programmer’s Guide for more information on the
VkMsgApp class and the IRIS ViewKit support for ToolTalk.

As discussed in “Object-Oriented Design” on page 42, RapidApp generates
two separate C++ classes. One class, which usually has the suffix UI
appended to the class name, contains all the code needed to generate the
user interface, including creating components and IRIS IM widgets,
registering callbacks, and so on. The second generated class is a subclass of
the UI class and contains the code that implements the actual functionality
of the component. When you add the functional code to your component,
you should do so in only the derived class.

As an example of creating a component, consider the calculator program
created in “Example: A Calculator” on page 24. You can encapsulate the
calculator interface in a self-contained Calculator component so that you can
reuse it elsewhere. To do so:

1. Open the file calc.uil in RapidApp.

If RapidApp is running, select “Open” from the File menu, then select
calc.uil from the file dialog that appears. If RapidApp isn’t running, you
can drag the calc.uil file onto the RapidApp icon, double click on the
calc.uil icon, or change into the Calc directory and enter:

% rapidapp calc.uil

2. Select the Bulletin Board container by clicking the background area of
the calculator window.

3. Create a Calculator class by selecting “Make Class” from the Classes
menu. Type “Calculator” in the prompt window that appears, as shown
in Figure 3-28.

Creating, Editing, and Manipulating Components

91

Figure 3-28 Creating a Calculator Class

RapidApp updates the resource editor area and header area to display
information about the Calculator class that you created. Notice that the
header area displays two names: Calculator, the name you provided;
and CalculatorUI, as shown in Figure 3-29.

Figure 3-29 Class Header

RapidApp also creates a new palette named “User Defined Classes” (if
it didn’t already exist). If you select that palette, you’ll notice it contains
a new icon named “Calculator,” as shown in Figure 3-30. You can now
create additional instances of the Calculator component just as you
would any other interface element.

92

Chapter 3: Building Interfaces With RapidApp

Figure 3-30 User Defined Classes Palette

4. Generate Code.

If you generate code now, RapidApp creates a CalculatorUI and
Calculator class. It no longer generates a BulletinBoard class as it did
before because the top-level element in the window is already a class—
Calculator. Because Calculator is new class, RapidApp can’t merge the
code changes you had previously made to implement the calculator
functionality; that code is in the BulletinBoard.C file. You need to copy
your changes from BulletinBoard.C to Calculator.C. RapidApp
automatically updates the rest of your application to use the Calculator
class rather than the BulletinBoardClass class.

Using Components

After creating a user-defined component, you can create instances of, select,
move, and otherwise manipulate it just as you would any other interface
element.

Editing Components

After creating a component, you can no longer simply click on one of its
elements to edit it; RapidApp treats the component as a single interface
element. However, you can still use RapidApp to edit the component.

To do so, toggle on “Edit Classes” in the Classes menu. RapidApp hides your
current interface and displays all classes currently on the User Defined
Classes palette. You can now select, edit, and manipulate the individual
elements composing the classes. You can even add elements to and delete

Creating, Editing, and Manipulating Components

93

them from components. When you are finished editing classes, toggle off
“Edit Classes.” RapidApp redisplays your current interface, reflecting the
changes you made to your components.

Deleting Components

Once you create a class, it remains on the User Defined Classes palette even
if there are no instances of the class in your interface. When you save your
interface, RapidApp saves the class along with the rest of the information
about the interface. If you no longer want to keep a class on the palette, you
can delete it in one of two ways:

• The first method is to “unmake” the class. To do so, create an instance
of the class, select it, and then select “Unmake Class” from the Classes
menu. RapidApp displays a dialog asking you if you want to remove
the class from the palette. If you press OK, RapidApp removes the class;
otherwise it “dismantles” the instance you have currently selected but
leaves the class on the palette.

• The second method is to toggle on “Edit Classes” in the Classes menu.
RapidApp hides your current interface and displays all classes
currently on the User Defined Classes palette. Delete any class you no
longer want by deleting the top-level window for that class. RapidApp
then removes the class from the palette. Toggle off “Edit Classes” when
you’re finished deleting classes.

Creating Components from External Classes

Sometimes you might want to use interface classes that you didn’t create
with RapidApp. For example, you might have created components directly
with IRIS ViewKit and would like to incorporate them in your application.

There is a simple method for using external classes in RapidApp. To
illustrate this technique, assume that you wanted to use the VkPie class, but
VkPie wasn’t provided on the ViewKit palette. To include this class:

1. Create a container of any type.

2. Select the container, then select “Make Class” from the Classes menu.

94

Chapter 3: Building Interfaces With RapidApp

3. In the Make Class dialog, enter the name of the external class you want
to use. In this example, enter “VkPie.”

4. Position the component as you would like the external class to appear
in your interface.

5. Toggle on “Edit Classes” in the Classes menu.

6. Select your “fake” component.

7. In the header area, toggle off the Generate Code toggle.

With Generate Code toggled off, RapidApp won’t generate code for the
component. Instead, you can include the header for your external class
and link with the appropriate object file or library.

You can use this technique with any external class as long as the classes
constructor follows the same calling conventions as the components created
by RapidApp. As for all other subclasses of the IRIS ViewKit VkComponent
class, the constructor should take two arguments. The first one is a character
string, which should be used as the component’s name. The second is a
Widget, which should be used as the component’s parent. See Chapter 2,
“Components,” in the IRIS ViewKit Programmer’s Guide for more information
on the VkComponent class.

Note: Components “imported” in this manner can’t be used as direct
children of a top-level window in RapidApp.

This chapter shows you some
example applications created with
RapidApp.

Example Programs

Chapter 4

97

Chapter 4

4. Example Programs

In addition to IRIS IM widgets and IRIS ViewKit components, RapidApp
also supports components from various Silicon Graphics libraries such as
Open Inventor. This chapter shows examples of building applications with
RapidApp using these libraries.

A Simple Open Inventor Program

This section shows how to use an Open Inventor component in an
application. It demonstrates using both a text editor and the Debugger’s Fix
and Continue feature to add functionality to the code. In practice, you can
use whichever method you prefer.

Note: Open Inventor is an optional product. You can’t build this example if
you don’t have the inventor_dev package installed on your system.

The following example creates a simple interface with the Examiner Viewer
to display a scene:

1. Create a Simple Window.

2. Create a Bulletin Board within the Simple Window.

3. Create an Examiner Viewer within the Bulletin Board. Make sure that
the Instance Name of the component is “viewer.”

At this point, your window should look like the one shown in
Figure 4-1.

98

Chapter 4: Example Programs

Figure 4-1 Adding an Examiner Viewer

4. Complete the interface by adding two Toggle Buttons below the viewer.

■ Create a Toggle Button and place it below and at the left side of the
viewer. Change the label of the toggle to read “Headlights On.” Set
the set resource to True so that the toggle is on by default.

■ Create another Toggle Button and place it to the right of the first
toggle. Change the label of the toggle to read “Show Decorations.”
Set the set resource to True so that the toggle is on by default.

5. Select the Bulletin Board and choose “Make Class” from the Classes
menu. Name the class “ConePanel.” Figure 4-2 shows the completed
interface.

A Simple Open Inventor Program

99

Figure 4-2 The Completed Open Inventor Component

6. Select “Application” from the Options menu. In the Application Names
dialog that appears, change the application name to “cone” and the
application class to “Cone.”

7. Go to the Desktop or a shell window and create a directory. Select “Save
As” from the File menu and save the interface to cone.uil in the directory
you created.

Note: If you provide a directory name in the Application Names dialog,
RapidApp creates the directory for you automatically if it doesn’t
already exist.

8. Select “Generate C++” from the Project menu to generate code. Then
selection “Build Application” from the Project menu to build the
application.

9. Edit the ConePanel component to display the cone:

100

Chapter 4: Example Programs

■ Select “Edit File” from the Project menu and in the select the file
ConePanel.C.

■ Scroll down until you see a code segment that looks like this:

//---- ConePanel Constructor

ConePanel::ConePanel(const char *name, Widget parent) :
ConePanelUI(name, parent)

{
// This constructor is called after the component’s interface has been built.

//--- Add application code here:

} // End Constructor

■ Go to the line after the “Add application code here” comment and
type:

_viewer->setSceneGraph(new SoCone);

■ Save the file and exit the editor.

■ Select “Build Application” from the Project menu. When the
compilation has finished, select “Run Application” from the project
menu. The window should look like Figure 4-3.

A Simple Open Inventor Program

101

Figure 4-3 The Open Inventor Interface Displaying a Scene

10. Associate actions with the toggle buttons. Because you didn’t assign
any callbacks to the toggle buttons when you created the interface, you
need to go back and add them. To do so:

■ Toggle on “Edit Classes” from the Classes menu.

■ Select the headlights toggle button and change its
valueChangedCallback resource to “headlight().”

■ Select the decorations toggle and change its
valueChangedCallback resource to “toggleDecorations().”

■ Toggle off “Edit Classes” from the Classes menu.

■ Select “Save” from the File menu to save the interface, and select
“Generate C++” from the Project menu to generate code.

■ Select “Debug Application” from the Project menu to start the
Debugger.

102

Chapter 4: Example Programs

■ Click the Debugger’s Run button to start your program.

■ Click on the Headlights On toggle button. The Debugger stops in the
VkUnimplemented() function.

■ Click the Debugger’s Return button to go up one level to the
callback function that invoked VkUnimplemented(). You’ll see a
function that looks like this:

void ConePanel::headlight (Widget w, XtPointer callData)
{

XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct*) callData;

//--- Comment out the following line when ConePanel::headlight is implemented:

::VkUnimplemented (w, "ConePanel::headlight");

//--- Add application code for ConePanel::headlight here:

}

■ Select “Edit” from the Debugger’s Fix+Continue menu and edit the
function to look like this:

void ConePanel::headlight (Widget w, XtPointer callData)
{

XmToggleButton CallbackStruct *cbs = (Xm ToggleButton CallbackStruct*) callData;

//--- Comment out the following line when ConePanel::headlight is implemented:

// ::VkUnimplemented (w, "ConePanel::headlight");

//--- Add application code for ConePanel::headlight here:

_viewer->setHeadlight(cbs->set);

}

Note: Remember to comment out the VkUnimplemented() call.

■ Select “Parse And Load” from the Debugger’s Fix+Continue menu.

■ Click the Debugger’s Continue button to continue the program. Try
out the changes by clicking the program’s Headlights On button.

A Simple Open Inventor Program

103

■ Click on the Show Decorations toggle button. The Debugger stops in
the VkUnimplemented() function.

■ Click the Debugger’s Return button to go up one level to the
callback function that invoked VkUnimplemented(). You’ll see a
function that looks like this:

void ConePanel::toggleDecorations (Widget w, XtPointer callData)
{

XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct*) callData;

//--- Comment out the following line when ConePanel::toggleDecorations is implemented:

::VkUnimplemented (w, "ConePanel::toggleDecorations");

//--- Add application code for ConePanel::toggleDecorations here:

}

■ Select “Edit” from the Debugger’s Fix+Continue menu and edit the
function to look like this:

void ConePanel::toggleDecorations (Widget w, XtPointer callData)
{

XmToggleButton CallbackStruct *cbs = (Xm ToggleButton CallbackStruct*) callData;

//--- Comment out the following line when ConePanel::toggleDecorations is implemented:

// ::VkUnimplemented (w, "ConePanel::toggleDecorations");

//--- Add application code for ConePanel::toggleDecorations here:

_viewer->setDecoration(cbs->set);

}

■ Click the Debugger’s Continue button to continue the program. Try
out the changes by clicking the program’s Show Decorations button.

■ Save the changes and rebuild the application.

104

Chapter 4: Example Programs

Online Examples

If you install the RapidApp.sw.examples subsystem, the directory
/usr/share/src/RapidApp contains several example programs created using
RapidApp. You can build the programs by entering “make” in the desired
directory. You can also load any example in RapidApp. If you use the Indigo
Magic Desktop, you can open a window in the example directory and
simply double click on the file with the “.uil” suffix (the file with the
RapidApp icon).

To run the programs, either run then from RapidApp, or be sure to set the
XUSERFILESEARCHPATH environment variable to include “%N%S” so
that you pick up the application resource files from the current directory.

To identify which code was created using RapidApp and which was added
by hand, choose “View Changes...” from the Project menu and select a file.
RapidApp displays a windows showing the differences (if any) between the
current file and what RapidApp originally created. In general, the only files
that have changes are subclasses, which you can identify by the existence of
a similar file with a “UI” appended to the name. For example, FooUI.C is a
base class generated by RapidApp, while Foo.C is a subclass that is likely to
be modified from the original.

You might also want to explore the source code using the Developer Magic
Static Analyzer and Class Browser. If so, be sure you have installed the
RapidApp.sw.examples_sadb subsystem. Then start RapidApp, load the
desired example, and toggle on “Create Static Analysis Database” in the
Application Preference dialog. Then select “Browse Source” from the Project
menu to launch the Static Analyzer on the example program.

The examples in /usr/share/src/RapidApp include:

Calculator A very simple calculator that adds two numbers and
reports the result. This example was taken from a Visual
C++ manual. There are two versions of this program, one
that demonstrates the VkEZ interface and another that
shows the equivalent IRIS IM version. You may find it
interesting to view the differences using xdiff, as follows:

% cd Calculator; xdiff EZ/Calculator.C Motif/Calculator.C

Online Examples

105

DialCalc A program that is similar to Calculator, but that uses two
Dial widgets to enter numbers. A third dial shows the sum
of the first two. This example creates each labeled dial
element as a class, and shows how you can nest and connect
components. In this case the program uses the IRIS ViewKit
callback mechanism. Like Calculator, there are two versions
of this program, one that uses the VkEZ interface, while the
other uses the IRIS IM interface.

HelloCone An example of using RapidApp and IRIS ViewKit with
Open Inventor. This example is based on the HelloCone
example in The Inventor Mentor.

Rectangle An example of using an IRIS IM DrawingArea widget. The
program creates a class that handles its own rendering, in
this case simply drawing a large rectangle in the window.

OpenGL Various examples using OpenGL and IRIS ViewKit.

 Simple This program is taken from 4DGifts, where it demonstrates
the OpenGL widget. This version uses IRIS ViewKit, and
was created with RapidApp, but the OpenGL rendering
code is mostly unchanged from the original.

IvViewer Another IRIS ViewKit/Open Inventor example. This
program allows you to open an Open Inventor data file and
view it.

Stopwatch A simple stopwatch program. This example is based on the
stopwatch example in Object-Oriented Programming with
C++ and OSF/Motif, but rewritten for IRIS ViewKit using
RapidApp. The program provides an example of using
multiple components and defining connections between
them.

Convert A program that converts between various number formats.

106

Chapter 4: Example Programs

107

Appendix A

A. Frequently Asked Questions about RapidApp

This appendix provides tips for using RapidApp.

Frequently Asked Questions

The following are frequently asked questions (FAQs) and answers about
RapidApp operation:

• Why don’t any of my labels appear when I run programs created using
RapidApp?

X uses a resource file, commonly called an “app-defaults” file, to store
various “resources” that affect widgets. It is good practice to put labels
and other similar resources in a resource file rather than hard-coding
them in your program, and RapidApp does this for you automatically.
Unfortunately, X applications look for these files in many places, but
not in the current directory. There are three ways to fix this:

1. Run the application from RapidApp’s project menu when you
want to test it. RapidApp makes sure the resources are found.

2. Set the environment variable XUSERFILESEARCHPATH to
“%N%S”, to add the current directory to the application’s search
path. You might want to do this as part of your login setup.

3. Install the app-defaults file in /usr/lib/X11/app-defaults/. If you
do a “make install”, the Makefile generated by RapidApp will do
this for you automatically. If you choose this approach, remember
to reinstall any time you make changes.

Approaches 1 and 2 are recommended.

108

Appendix A: Frequently Asked Questions about RapidApp

• Why can’t I resize an option menu using RapidApp?

You can, you just don’t see what you expect. The IRIS IM Option menu
is really a row column widget with a menu floating inside it. You can
resize the outer row column widget, but the inner, visible option menu
is totally controlled by the row column. It is not accessible to RapidApp
and cannot be resize.

• Why can’t I resize a scale widget using RapidApp?

Like option menus, you can, you just don’t see what you expect. The
IRIS IM Scale widget is really a container with a Scrollbar floating
inside. You can resize the outer portion of the Scale widget, but the
inner, visible Scrollbar is totally controlled by the Scale. It is not
accessible to RapidApp and cannot be resize. The size of the Scrollbar is
controlled by the scaleWidth and scaleHeight resources.

• How do I add my own files to the makefile generated by RapidApp?

The Makefile builds all files listed in C++FILES. This variable is defined
as the contents of two lists, BUILDERFILES and USERFILES. For best
results with the merging feature of the code generation, you should add
externally-created files to the USERFILES list. Just list the source files,
the Makefile will do the rest.

• How do I create icons for bitmaps or pixmaps?

You can use any number of external tools. For example, bitmaps can be
created with the “bitmap” program, which is distributed with x_eoe.
Color icons can be created any drawing editor, and converted if
necessary using the ppm or similar utilities. There is a program called
xpaint available as part of the original IndiZone package, which is very
nice for editing pixmaps. The public domain xv editor is also useful for
reading and processing various file types and writing the Xpm format
recognized by IRIS IM (and RapidApp).

• How do I add a menu bar to my window?

If you want a window to have a menu bar, start with the VkWindow
element found on the windows palette. You can add, remove, or alter
the built-in menus as you wish.

Frequently Asked Questions

109

• How do I add items to a menu?

First, you have to access the menu pane itself. To do this, select the
entry on the menu bar, or the option menu, depending the type of
menu you are working with. Then click again. The menu pane will be
displayed. Now you can drop new elements onto the pane. Note that
the hotspot when dropping items is the mouse pointer. Dismiss the
menu by clicking again on the element that launched the menu.

• Why do container widgets sometimes change size when I add or
remove children?

IRIS IM uses an algorithmic approach to layout. Each container has its
own algorithm for arranging its children, which is triggered each time a
child is added or removed. So even though you may have specified a
size for a container, the container itself may recompute and change this
size when the contents change. This is central to the behavior of IRIS IM
and there is little that can be done to improve this behavior.

• Why can’t I add a button to a VkWindow object?

IRIS IM offers a wide variety of layout styles, which can be selected by
choosing an appropriate container or set of containers. The top-level
window elements in RapidApp do not enforce any one container, so
you can choose your own. Each of the elements on the Windows palette
may contain exactly one child, which must be a container of your
choice.

If you are expecting the very basic behavior of some PC layout
programs, add a Bulletin Board container to the top-level window. For
more advanced needs, you might add a Form, a Paned Window, or
other container. For a graphics oriented program, you might add a
drawing area, GL widget, or Inventor scene viewer. Once you have
selected your basic container, you can add child elements to it.

• How do I create a standard IRIS IM dialog?

Dialogs tend to be dynamic by nature. Although RapidApp could allow
you to associate and information dialog (for example) with a button in
such a way that the dialog is posted when the button is pressed, this is
rarely useful in real programs. Although there are exceptions, dialogs
are generally posted in response to some condition that can only be
determined at run-time. Therefore, RapidApp doesn’t bother to
provide these dialogs.

110

Appendix A: Frequently Asked Questions about RapidApp

However, because RapidApp generates ViewKit programs, it is easy to
add these dialogs programmatically along with the logic associated
with the condition that requires a dialog. For example, to post a
warning dialog, simple write:

theWarningDialog->post("Warning, serious problem detected");

To ask a question that requires an answer, write:

if (theQuestionDialog->postAndWait("Really exit?") == VkDialogManager::OK)
exit(0);

For more information, see the IRIS ViewKit Programmer’s Guide.

• How do I create a custom dialog?

You can create your own dialogs by selecting a VkDialog as the
top-level window for an interface. Add a single container and design
the contents of your dialog. The resulting class will be derived from
VkDialogManager, and support the same API as other ViewKit dialogs.

• How do I add a button to the dialog class?

In RapidApp, you cannot. The VkDialogManager class and all
subclasses allows you to determine what buttons appear by how the
dialog is posted. See the ViewKit Programmer’s Guide for more
information.

• How can I launch my own editor from RapidApp?

If you set the environment variable $WINEDITOR, and select the “Use
$WINEDITOR” option from the Preferences panel, your editor will be
launched from RapidApp’s “Edit Files...” menu.

• What is VkEZ and why would I use it?

VkEZ is a very simple set of wrappers that can be attached to a widget
at run-time to provide an easy-to-remember API for manipulating
widgets. VkEZ offers many of the benefits of “widget wrappers”, in
that they offer a C++-like API for manipulating widgets, without
committing yourself to basing your entire program to yet another layer
above IRIS IM. VkEZ is intended for quick prototyping, and like any
wrapper approach has a cost over and above the normal API.
Therefore, it should be replaced in any code that demands efficiency.

Frequently Asked Questions

111

VkEZ allows you to substitute easy-to-remember code segments for
more complex widget code. For example, assume you want to extract
an integer value from a text field widget, add it to the current value of a
scale widget, and display a running trace of these values in a scrolled
text widget. Using the IRIS IM API, you could write something like:

/* IRIS IM API version */
int value1, value2;
char buf[100];
value1 = atoi(XmTextGetString(_textfield));
XtVaGetValues(_scale, XmNvalue, &value2, NULL);
sprintf(buf, “%d”, value1 + value2);
XmTextInsertString(_scrolledtext,
XmTextGetInsertionPosition(_scrolledtext), buf);

The EZ equivalent would be:

EZ(_scrolledtext) << (int)EZ(_textfield) + EZ(scale);

• If I edit the code produced by RapidApp and then need to change the
interface, will I lose my hand-edited changes?

RapidApp merges all code that is generated with existing code using a
3-way merge tool that should automatically merge reasonable changes
automatically. In addition, RapidApp always makes a backup of your
original file when files are merged. If the merge is unsuccessful,
RapidApp displays xdiff, a tool that allows you to resolve any problem
areas by hand. You can help the merge process proceed smoothly by
not making gratuitous changes (like reformatting for style) to the
generate code, placing large bodies of code in external files, and so on.

• Sometimes I drop a widget on a location, and I get a new window
instead of the widget going where I want it to go. Why?

Some widgets cannot be children of other widgets. If you drop a button
on a button, for example, the dropped button cannot be created as a
child of the drop site. When this happens, RapidApp searches for a
valid container up the widget hierarchy. If none is found, the element is
created as a top-level window.

• How do I move menu elements within a menu pane?

You can use the Up/Left or Down/Right commands in the Edit menu,
or use the arrow keys to reorder elements in a menu, or any row
column widget. You can also drag and drop items between menus
using the middle mouse button.

112

Appendix A: Frequently Asked Questions about RapidApp

• How do I move window elements between menu panes?

You can use Cut and Paste, or you can drag and drop items between
menus using the middle mouse button. Note the middle mouse drag,
while holding down the Control key performs a copy.

• I want to apply a resource to multiple widgets. Is there an easy way to
do that?

There is no way to select multiple widgets and no way to apply a
resource to a group of existing widgets. However, if you plan ahead
you can make a widget, set its attributes, and then Copy and Paste. The
pasted elements retain the attributes of the original. You can also use
middle mouse drag and drop while holding down the Control key to
perform a quick copy.

• Can I select multiple widgets?

No, RapidApp does not currently support this. Builder Xcessory, the
full-featured program on which RapidApp is based, does support
multiple selected widgets.

• How do I align 2 or more widgets?

The best way to align widgets in IRIS IM is to select the appropriate
layout containers. The RowColumn widget is often used for this. You
should also look at the SgSpringBox widget, which provide easy and
powerful control over alignment of its children.

• Why doesn’t RapidApp provide some sort of alignment tool for
arranging widgets?

Alignment tools only make sense when applied to multiple widgets,
and RapidApp cannot select multiple widgets at once.

• How do I create layouts that resize?

It depends on the layout. The most frequent approach is to use a Form
widget and specify attachments to determine how each child resizes.
The behavior of the Form widget is complex and you should consult a
Motif book for more information.

There are other possibilities. The Rubber Board is easy to use, but has
some limitations. The Spring Box offers a resizable layout that is the
entire basis of some toolkits. The Paned Window offers a limited form

Frequently Asked Questions

113

of resizable layout. The RowColumn also offers limited resizability
when its adjustLast resource is set to true.

Generally, programs use a combination of all these widgets.

• Why is it so hard to create resizable layouts? Isn’t this trivial on PCs?

Second question first: No. Most PC packages offer only a Bulletin Board
container. All elements are arranged according to specific positions and
never change. If a programmer wants to support resizing, she handles a
resize event on the Bulletin Board widget and programmatically
recomputes the layout of each and every element in the container and
resets the position.

You can do exactly that, if you wish, by simply choosing a Bulletin
Board and adding an event handle for StructureNotify events. Then
you are on your own, just like in the PC environments.

IRIS IM makes it much simpler to achieve resizable layouts by
providing containers with their own built-in algorithms for rearranging
children when the container is resized. This greatly simplifies the task,
and eliminates the need to write a great deal of error-prone code
yourself. However, it does make it necessary to understand the
algorithm supported by each container, along with the various options
that can be used to alter the algorithm, and to be able to choose the
algorithm you want to apply.

The difference is much like the choice of using a library of reusable
classes vs. writing your own. Writing your own classes for hash tables,
etc., is straight-forward and you can get started right away, but you
have to do all the time-consuming work. If you try to use a class from a
library, you may have a learning curve that keeps you from writing
productive code until you understand what the existing class does. But
once you understand, you can use the class over and over without
having to rewrite the code from scratch each time.

• Why are the entries under the Project menu grayed out?

These entries invoke other Developer Magic tools, and are available if
you have the tools installed. You will not be abel to build, debug, or
run, for example if you do not have cvbuild installed. The Browse
Source entry invokes cvstatic, which must be installed. In addition, for
this entry, you must check “Use Cvstatic” in the Application options

114

Appendix A: Frequently Asked Questions about RapidApp

dialog. When active, the makefile automatically generates a static
analysis database. While useful, this greatly slows down the
compilation, so the option is off by default.

• How can I change a class after I have created it?

You need to switch to class edit mode, using the option under the
Classes menu pane. In this mode, you see a single copy of each class
you have created. Any changes apply to all instances of that class.

• Once I’ve defined a class, how do I get the object into an existing
container?

When you create a class you are originally working on a collection of
widgets, which becomes an instance of the class. Once a class has been
defined, you can delete the instance if you wish. New instances of the
class can be created from the “User Defined Classes” palette at any
time. If you would like to just use the existing instance, but place it in
some other container, simply drag the object into the container using
the middle mouse button.

• How do I hook up a Help System to the programs RapidApp creates?

Your program calls into a specific API for requesting help. There are
several libraries that can supply that API, and you can also write your
own. The vkhelp library distributed with ViewKit provide a simple help
system that posts dialogs based on X resources to provide simple help.
The source to this library is also part of the ViewKit examples, as a
starting point for writing your own help system.

The best option, though, is to use the Insight-based SGI Help System.
See the Indigo Magic Integration Guide for details on how to use this
system.

• Why does it take so long to create some entries in the ViewKit or
Inventor palettes?

Some of the elements on these and other palettes are dynamically
loaded from shared libraries, only when needed. The first time one of
these libraries is loaded, the symbols in that library must be resolved
before proceeding. This operation may cause a slight delay.

Frequently Asked Questions

115

• Can I add my own widgets to RapidApp?

No, RapidApp does not support the addition of custom widgets at this
time. You can add your own widgets to Builder Xcessory, so you may
want to consider an upgrade if you need to add custom widgets.

• Can I add the C++ classes I created back onto the RapidApp palette?

You can save a file of components to be loaded into RapidApp for later
use. To do this, define your classes, delete all instances, and save the
file. Only the class descriptions will be saved. You can then use the
Import command on the File menu to load these classes.

• I want to add C++ classes to RapidApp, but I’d like to add functionality
to the classes and see that functionality reflected in the classes created
with RapidApp, like the ViewKit and Inventor classes. How can I do
this?

This is technically possible, but is not supported in the current release
of RapidApp. A clean mechanism for adding classes in this manner
may be added in a future version.

• RapidApp creates ViewKit programs. How do I get ViewKit?

ViewKit is bundled with the Silicon Graphics C++ product. If you have
C++, you already have ViewKit.

• How can I find out more about ViewKit? Is there any documentation?

The ViewKit Programmer’s Guide is available on-line if you install
ViewKit. You can also order a hard-copy of the manual. Man pages are
also part of the ViewKit distribution.

• How portable is the code generated by RapidApp?

It depends on what elements you use. If you stick to standard IRIS IM
widgets, then the dependencies are X, Xt, IRIS IM, and ViewKit. So,
assuming ViewKit is available on the platform(s) of interest, there
should be no problem. The Makefiles, desktop icons, ftr rules, and so on
are specific to SGI, of course.

If you use Inventor classes, you are limited by the availability of
Inventor on your target platform. The same goes for other C++
components that may be available for RapidApp from SGI now or in
the future.

116

Appendix A: Frequently Asked Questions about RapidApp

Several widgets are unique to SGI, including the OpenGL widget, the
Rubber Board, Spring Box, Thumb Wheel, Dial, Finder, and so on. If
you use these widgets, you may not directly port to other platforms.

• I want to use C (Ada, Fortran, Pascal, Cobol, ASM, TCL,...), can
RapidApp generate these languages instead of C++?

RapidApp is designed to help you write object-oriented programs
using the Silicon Graphics C++ class libraries, and derives a great deal
of its power from the use of object technology and the underlying
libraries. While support for other languages may be theoretically
possible, only C++ is available at this time. This could change in the
future.

C support is also available by upgrading to Builder Xcessory, although
you will not enjoy the degree of automatic support for the Indigo Magic
Desktop environment when generating C code using Builder Xcessory.

• I’d like to add TCL support to my programs. Can RapidApp help?

Not presently, although support for integrating TCL or similar scripting
languages into ViewKit programs may be supported in the future.
There is nothing to prevent you from creating TCL interpreters, or
otherwise integrating TCL into your programs yourself, of course.

• How do I set colors for my widgets?

RapidApp is designed to strongly support SGI-style applications, and
the look and feel of the SGI desktop is highly dependent on “schemes”.
By default, RapidApp creates programs whose colors are determined
solely by schemes. You can always programmatically set colors for
widgets. All widgets are available to derived classes as protected data
members, so it is easy to override colors. You can also set colors in your
app-defaults file. Simple specify the class name of your program as part
of the resource, to override the scheme settings.

If you simply don’t like the scheme being applied, you can change the
scheme your programs use with the scheme browser, available from the
Toolchest. Also see Chapter 3, “Windows in the Indigo Magic
Environment,” in the Indigo Magic User Interface Guidelines and
Chapter 3, “Using Schemes,” in the Indigo Magic Desktop Integration
Guide for information on schemes.

Frequently Asked Questions

117

• How do I change the font used by elements of my program.

Like colors, fonts in the Indigo Magic Desktop environment, are
controlled by schemes. You can always override either
programmatically, or in your app-defaults file, if needed. However, you
are encouraged to use the scheme-specified fonts. There are some cases
where it makes sense to change the font, particularly labels, text and
lists. RapidApp allows you to switch the font on these items to one of
the scheme-supported fonts. For example, you might want to change a
label widget from bold to normal, or a text widget to a fixed width font.

• How can I see the full set of resources supported by IRIS IM?

RapidApp limits the available resources to those most commonly
useful to programmers. You can always set any resource in your
program or in the app-defaults file. You can always determine the full
set of resources by looking at the man pages for the IRIS IM widget of
interest, or consulting a IRIS IM reference guide.

• How can I browse the Tips RapidApp displays at startup?

Currently, you cannot. But all the information, and more, is available in
the RapidApp User’s Guide.

• How can I get rid of the Tips show at startup?

Turn them off from the Preferences panel, found under the options
menu.

• Is there an easy way to add a company standard header to my files?

Yes, set the X resource userHeaderComments to the name of a file to be
inserted. The file should be properly formatted, with C++ comment
characters. For example:

*userHeaderComments: /usr/include/StandardLegalNotice

would cause the file /usr/include/StandardLegalNotice to be inserted into
each file generated by RapidApp before any other comments or code
created by RapidApp.

• RapidApp-generated code uses leading underscores for data member
names. Isn’t that illegal? Why is this?

It is not at all illegal, even Bjarne Stroustrup’s C++ reference
demonstrates this technique. All protected data members are given
leading underscores, partly as an indication that these variables are
protected members (leading underscores have long been used to

118

Appendix A: Frequently Asked Questions about RapidApp

denote “private”) and also to prevent name collisions with member
functions of the same name. For example, you can have a data member
_name and an access function name() that retrieves _name. This is just a
convention used throughout ViewKit, and happens to lend itself well to
code generation as well.

• Sometimes I enter a name in RapidApp and RapidApp adds a number
after it. (like “label” becomes “label1”). Why is this and how can I avoid
it?

The UIL format used as the underlying document model for RapidApp,
as well as many other interface builders, requires unique names for all
symbols. RapidApp enforces this convention wen you enter the names,
rather than causing an error later. You can avoid this behavior by
adopting conventions for your user interface elements. For example, an
“ok” button, might have the label “OK”, the name “okButton” and a
callback function “ok()”.

• How do I provide client data to my callbacks?

Client data is meaningless in the style of code generated by RapidApp.
In C, it is necessary to pass state around to callbacks via clientData. In
C++, the functions called as a result of an action are member functions,
and all the state that can be accessed is available within the current
object. Anything else that you could possibly pass as clientdata would
be within another class, and therefore passing it in some way would be
a violation of encapsulation. The only remaining use of client data
would be to pass some simple value, such as an integer code or string to
provide information about the context of the call. While occasionally
useful, there are other ways to deal with this need (different “callbacks”
that call a second function, for example).

• How do I add dynamic behavior to classes created using RapidApp?

The best way is simplest: just use your favorite editor to add data
members, member functions, etc. Remember that classes are created in
pairs, base class (“UI”) and derived classes. RapidApp always uses the
derived class, so you can add all new code to the derived class and
avoid modifying the base class. The merge feature of RapidApp will
assure that your changes are maintained.

Frequently Asked Questions

119

• How do I connect classes created using RapidApp to each other?

Connecting classes in C++ is always challenging because of C++’s
strong typing. There are two basic ways to do this that work well with
RapidApp-generated (ViewKit-style) classes. The first is to hard code
the connection by implementing an API that each class can use to
connect to the other as needed. The second is to use the ViewKit
support for callbacks.

Say you have two classes, Input and Output. Input has a text field and
you would like Output to be notified when the user enters text in
Input’s text field. You could use either of the following approaches:

– Hard coding the connection, using your favorite editor:

Add a member function newText() to class Output. This member
function will do whatever it is you want to do when new text is
available.

Add a public member function void setOutput(class Output *) to
Input.h

Add a private or protected data member class Output* _output to
Input.h

Add #include “Output.h” in Input.C.

Implement setOutput(* output) { _output = output; } in Input.C

At the point where you know text is entered (an activateCallback)
in Input.C, call _output->newtext();

– Using ViewKit callbacks:

Add a private or protected member function to Output:

void Output::textEntered(VkCallbackObject *, void *, void *);

Somewhere do:

VkAddCallbackMethod(Input::newText, input, output, &Output::textEntered, NULL);

where input is the instance of Input and output is the instance of
Output

Then in Input.h, add a static public member:

const char const * newText;

Then in Input.C, declare the static member:

120

Appendix A: Frequently Asked Questions about RapidApp

const char const *Input::newText = “newText”;

At the point where you know text is entered (an activateCallback)
in Input, call

callCallbacks(newText, NULL);

Output::textEntered() will be invoked.

• How do I access the widgets inside a component?

In general, you should not. A class is (or should be) a class because it
represents an abstraction. The details are encapsulated in the class. A
class is not merely a collection of widgets. You should think of the class
as an entity in its own right and design the API of the class independent
of its implementation.

For example, assume you would like to change a label in a class to
“red” to indicate an error condition has occurred. You *could* write an
access function for the label widget and use XtSetValues(), etc., to
change the color, but this would be a flagrant violation of encapsulation
and object-oriented design. Specifically, the internal details of your
implementation (that you have a specific label widget whose color can
be set directly) have now become part of your public API.

A better approach would be to write a public member function,
perhaps:

void setStatus(Status);

where Status is a type that includes Error, Warning, Normal, and so on.
What exactly happens in that setStatus() method is now up to the class.
You could set the label widget to red, for example. Later you could
decide to change the label to a 3D viewer, and sound an audible alarm
when an error occurs without breaking other classes that depend on the
public API.

121

Appendix B

B. RapidApp Reference

This appendix describes in the function of each window, menu, widget, and
display in the RapidApp’s graphical user interface (GUI). This appendix
contains the following sections:

• “Global Objects”

• “Windows Palette”

• “Containers Palette”

• “Controls Palette”

• “Menus Palette”

• “ViewKit Palette”

• “Inventor Palette”

RapidApp consists of several palettes, each palette containing several
user-interface elements. Each palette and its interface elements are described
in detail in their own sections in this chapter.

Global Objects

This section describes RapidApp’s global objects—the objects that are
common from palette to palette. These objects include the menu bar items
and the palette tabs (see Figure B-1).

122

Appendix B: RapidApp Reference

Figure B-1 RapidApp Window

File Menu

The File menu (see Figure B-2) allows you to save and open RapidApp files.
You can also quit RapidApp through the File menu. The File menu contains
the following selections:

Open... Displays the Open File dialog to allow you to open a file.

Import... Displays the Open File dialog to allow you to import a file.
RapidApp adds the contents of the file to the current
interface.

New Clears the current interface in preparation for creating a
new interface. RapidApp gives you the option of retaining
the current user-defined components.

Save Saves your current session to a file. If you haven’t provided
a filename previously, RapidApp uses the default filename
save.uil.

Menu bar

Interface elements

Palette tabs

Figure B-2 File Menu

Global Objects

123

Save As... Displays the Save File dialog, which allows you to save
your current session to a file with a filename of your choice.

Exit Exits RapidApp.

Edit Menu

The Edit menu (see Figure B-3) supports cut, copy, and paste operations, as
well as some commands for manipulating a selected interface element. The
Edit menu contains the following selections:

Cut Cuts the currently selected element (and, if it’s a container,
all of its children) and place the element on the clipboard.

Copy Copies the currently selected element (and, if it’s a
container, all of its children) to the clipboard.

Paste Pastes the element currently on the clipboard (and, if it’s a
container, all of its children) into your interface.

Delete Deletes the currently selected element (and, if it’s a
container, all of its children). This option doesn’t place the
element on the clipboard.

Up/Left In those containers where the creation order of its child
elements determines their position, moves the currently
selected child one position up or left.

Down/Right In those containers where the creation order of its child
elements determines their position, moves the currently
selected child one position down or right.

Select Parent Selects the parent of the currently selected element.

Grow Widget Increases the horizontal and vertical size of the selected
element by 20 pixels.

Show Menu If the currently selected element is a menu cascade button,
displays or hides its corresponding menu pane.

Figure B-3 Edit Menu

124

Appendix B: RapidApp Reference

View Menu

The View menu (see Figure B-4) controls the build/play mode selection as
well as determining constraints for placing elements. The View menu
contains the following selections:

Build Mode Enables build mode, the mode you must be in when
creating a new application. Toggling on build mode toggles
off the Play Mode toggle.

Play Mode Enables play mode, which allows you to run your
application to check its functionality. Toggling on play
mode toggles off the Build Mode toggle.

Snap To Grid submenu (see Figure B-5)
Allows you to set your snap to grid value to one of five
settings through a list of toggles: Off, 2, 5, 10, and 20.

Keep Parent Toggles explicit selection mode. When on, RapidApp limits
selection of new elements to those accepted by the currently
selected element. Also, new elements that you create are
added to the selected element instead of the container on
which you drop them.

Classes Menu

The Classes menu (see Figure B-6) allows you to create and edit user-defined
components. The Classes menu contains the following selections:

Make Class... Displays the Make Class dialog. This dialog allows you to
convert the currently selected element and all of its children
into a C++ class.

Edit Classes When toggled on, RapidApp hides your current interface
and displays all user-defined components. You can then
select, edit, and manipulate the individual elements
composing the classes.

Figure B-4 View Menu

Figure B-5 Snap To Grid
Toggles

Figure B-6 Classes Menu

Global Objects

125

Project Menu

The Project menu (see Figure B-7) allows you to generate code, browse and
edit files, build an application, run the program under a debugger, and so on.
The Project menu contains the following selections:

Generate C++
Converts the application that you created with RapidApp
into C++ code.

Edit File... Displays the Edit File dialog, which allows you to open and
edit a file.

View Changes...
Displays the Select File to Compare dialog, which allows
you to select a file and compare it to the previously saved
version. You can also use this option to manually merge
changes if you want.

Build Application...
Launches the Developer Magic Build Manager. If you are
currently using the debugger, the executable will
automatically be detached from the debugger and
re-attached when the compilation is completed.

Browse Source...
Launches the Static Analyzer to analyze the structure of
your application. To use this option, you first must create a
static analysis fileset and database for your application.

Debug Application...
Launches the Developer Magic Debugger. If your
application isn’t up-to-date, RapidApp automatically
invokes the Build Manager to update the executable.

Edit Installation
Launches Software Packager, a graphical tool for creating
and editing installable images.

Run Application...
Runs your application. If your application isn’t up-to-date,
RapidApp automatically invokes the Build Manager to
update the executable.

Figure B-7 Project Menu

126

Appendix B: RapidApp Reference

Options Menu

The Options menu (see Figure B-8) allows you to set several options related
to RapidApp operation and code generation. The Options menu contains the
following selections:

C++ File Names...
Displays the C++ File Options dialog (see “C++ File
Options Dialog”), which allows you to specify C++ file
extensions and the name for your makefile.

RapidApp Preferences...
Displays the RapidApp Preferences dialog (see “RapidApp
Preferences Dialog”), which allows you to set preferences
controlling RapidApp operation.

Application...
Displays the Output Application Names dialog (see
“Application Names Dialog”), which allows you to specify
application file and class names and various application
characteristics.

The dialogs are discussed in the following sections.

C++ File Options Dialog

The C++ File Options dialog allows you to customize the source and fil
extensions for your files as well as to control the Makefile generation for
you;r program. The source and header suffixes can be any valid suffix
supported by the C++ compiler and SGI’s makefiles. The accepted file
extensions are the following: .c, .C, .cxx, .c++ and .h for headers.

Because makefiles often need to grow into complex files, RapidApp allows
you to turn off the generation of a Makefile completely. This allows you to
write your own makefile without any need to merge changes made in
RapidApp. Note that if you turn off makefile generation, new files are not
added; you are responsible for the makefile creation and maintenance. You
can also choose to use a different name for the generated makefile so as to
avoid overwriting a custom makefile, while still having the convenience of
the generated makefile when needed.

Figure B-8 Options Menu

Global Objects

127

RapidApp Preferences Dialog

The RapidApp Preferences dialog allows you to customize the behavior of
RapidApp itself. The following toggle options are available:

Automatically Dismiss Startup Screen
The startup screen will disappear as soon as the program is
ready to run without the ned to manually dismiss it.

Show Tips at Startup
If true, show a random tip about how to use RapidApp on
the startup screen. If false, no tip is shown, and the panel
will also be dismissed automatically.

Enable Sound If true, RapidApp uses soundscheme to provide audio
feedback for various operations. You can also disable sound
from the desktop control panel on the ToolChest.

Use $WINEDITOR to edit files
If True, the Edit Files... entry on the Project menu will launch
the edit indicated by the WINEDITOR environment
variable. If false, RapidApp launches the CaseVision source
editor/viewe

Confirm before deleting shells from window manager
If True, RapidApp will post a warning dialog if you attempt
to dismiss a top-level user interface element using the
window manager close control.

Confirm before deleting containers
If true, RapidApp will post a warnignng dialog whenever
you delete a container widget, to avoid accidental deletions
of elements that might be hard to reconstruct.

Application Names Dialog

The Application dialog controls various code generation options that affect
the way an application behaves or is built. Most of these options do not take
effect until the next time code is generated.

128

Appendix B: RapidApp Reference

The following options are available:

Directory Path
This controls the directory in which the application source
will be placed when generated. If the directory does not
exist, RapidApp will prompt the user to determine whether
or not to attempt to create it.

Application Name
The name of the program to be created.

Application Class
The X application class. Following X conventions, this
should be the name of the application with the first letter
capitalized.

Use Tooltalk If true, the application will support basic tooltalk
communication using the ViewKit VkMsg facility.

Use Runonce If true, the program will use the VkRunOnce facility, which
ensures that only one instance of the application is running
at any one time. See the VkRunOnce man page for details.

Strip Sizes from generated code
If true, RapidApp will remove all hard coded sizes from the
generated code. RapdiApp sometimes sets widths and
heights more aggressively than it should, and this option
allows you to remove all such sizes. Note that this could
break your layout, unless you are sure your layout does not
depend on any widths or heights.

Don’t Merge generated code
If true, RapidApp will nto attempt to merge any files when
code is generated. Instead, any files that differ from the
current files will be renamed for you to manually integrate.

License-protect Application
If true, the application will include the code to setup NETLS
license server. See the VkNLS man page for details.

Generate Windows Automatically
If true, any user interface element that is in a toplevel shell
will be treated as a child of a VkSimpleWindow. Setting this
to false allows the creation of stand-alone classes that are
not created as part of any top-level window.

Global Objects

129

Use VkEZ Convenicne Library
If true, code will be generated for the headers and libraries
of the VkEZ facility.

Palette Tabs

You access the different RapidApp palettes through the palette tabs (see
Figure B-9) at the bottom of the RapidApp window. Click a tab to display the
corresponding palette.

Figure B-9 Palette Tabs

Keys and Shortcuts

This section describes the accelarator keys available in RapidApp.

Shift+F1 Prompts for click for help.

Ctrl+O Opens a file.

Ctrl+I Imports a file.

Ctrl+N Starts a new project, deleting all current elements.

Ctrl+S Save a file.

Ctrl+A Save a file as a new name.

Ctrl+P Select the parent of the currently selected element.

Shift-Ctrl-Left mouse
Select the parent of the currently selected element.

Click on selected menu
Displays the menu pane.

Ctrl+G Increases the size of the currently selected element.

Ctrl+X Cuts the currently selected element to the clipboard.

Ctrl+C Copies the currently selected element to the clipboard.

130

Appendix B: RapidApp Reference

Ctrl+V Pastes the contents of the clipboard.

Delete Deletes the curently selected element without placing it on
the clipboard.

Backspace Deletes the curently selected element without placing it on
the clipboard.

Ctrl+U Repositions a widget inside a RowColumn widget, moving
it up, if the parent’s orientation is vertical.

Ctrl+D Repositions a widget inside a RowColumn widget, moving
it down, if the parent’s orientation is vertical.

Ctrl+K Toggle Keep Parent mode.

Arrow keys Moves an element in the corresponding direction.

Left Mouse Button
Selects an element and moves it within the same container.

Middle Mouse Button
Drags an object between containers.

Ctrl-Left Mouse Button
Maintains the currently selected element.

Drag and Drop from Desktop
Bitmaps, Pixmaps, and various other files can be dragged
from the Indigo Magic desktop directly onto various
widgets to set the associated resource.

In a child of a Form, the following accelarators are enabled:

• Right mouse button over an attachment icon pops up a menu of
attachments

• Shift-left mouse over an attachment icon adjusts the offset

• Left mouse button over an offset drags the attachment to another
location

Windows Palette

131

Windows Palette

The Windows palette (see Figure B-10) contains window interface elements.

Figure B-10 Windows Palette

The user interface elements available through this palette are described in
the following sections.

VkSimpleWindow

The VkSimpleWindow class implements a simple top-level window to be
used by IRIS ViewKit applications. Use VkSimpleWindow when you don’t
want a menu bar.

VkSimpleWindow Resources

Following are the VkSimpleWindow resources:

132

Appendix B: RapidApp Reference

coprimaryWindow
If this resource is set to True, this window is treated as a
co-primary (secondary) window as defined by the SGI Style
guide. The window will not be created by default on
startup, and the application is responsible for creating and
displaying it when it is needed.

disableIconify If this resource is set to True, the user’s ability to iconify the
window will be disabled.

disableWindowResize
If this resource is set to True, the user’s ability to resize the
window will be disabled.

VkWindow

The VkWindow class behaves similarly to VkSimpleWindow except that it
provides additional support for a menu bar, based on the VkMenuBar class
and related VkMenuItem classes.

VkDialogWindow

The VkDialogWindow provides a top-level dialog window for
constructingcustom dialogs that conform to the API provided by the
VkDialogManagerclass. To create a dialog, add a single container and then
populate that container with the interface of your choice. The container you
place in the dialog window should represent a class, and is forced to be a
class if you do not explicitly make it so. This class automatically contains the
ok(), cancel(), and apply() member functions, which are called as needed
when the user interacts with the dialog.

The actual buttons displayed by the dialog are determined dynamically as
with all VkDialogManager subclasses.

Dialogs can be posted programmatically by calling post(),postBlocked(),
postModal(), or postAndWait(). See the VkDialogManager reference page
for more information.

Containers Palette

133

Containers Palette

The Containers palette (see Figure B-11) includes container interface
elements such as bulletin boards and radio button boxes.

Figure B-11 Containers Palette

The user interface elements available through this palette are described in
the following sections.

BulletinBoard

The BulletinBoard widget is a container widget that has no layout
algorithm. The location and size of each child is based solely on where and
how the child is placed using RapidApp. Layouts based on the
BulletinBoard widget cannot be resized and do not respond to changes to
individual widgets.

134

Appendix B: RapidApp Reference

BulletinBoard layouts are not appropriate for programs that will be
customized or internationalized. The BulletinBoard widget is most suitable
for beginners and for quick prototypes.

BulletinBoard Resources

Following are the BulletinBoard resources:

XmNmarginHeight
Specifies the minimum spacing in pixels between the top or
bottom edge of BulletinBoard and any child widget. You
must be careful when positioning children using
RapidApp, because the BulletinBoard enforces this margin
only at creation time. The BulletinBoard allows you to use
RapidApp to place children in the margin area interactively.
However, when the children are initially created in the final
program, the BulletinBoard moves the children out of the
margin area when the child is initially created.

XmNmarginWidth
Specifies the minimum spacing in pixels between the left or
right edge of BulletinBoard and any child widget. The
same restrictions apply as in the XmNmarginHeight
resource.

SpringBox

The SgSpringBox widget is a container widget that arranges its children in
a single row or column based on a set of spring resources associated with the
child. The SgSpringBox widget allows layouts similar to those supported by
the XmForm widget, but is sometimes easier to set up and allows you to
create some layouts that cannot be achieved with the XmForm widget. For
example, centering a column of widgets is very easy to do with the
SgSpringBox widget, but nearly impossible using the XmForm.

Each child of an SgSpringBox widget has the following constraints
associated with it:

• Each child has a “springiness” in both the vertical and horizontal
direction that determines how much the child may be resized in each
direction. The XmNverticalSpring and XmNhorizontalSpring

Containers Palette

135

resources control the degree of “springiness” in each child. A value of
zero means the child cannot be resized in that direction. For non-zero
values, the values are compared to the values of other springs in the
overall system to determine the proportional effects of any resizing.
The default value of both resources is zero.

• Each child also has a spring between its left, right, top, and bottom
sides and whatever boundary it is adjacent to. The value of any spring
resource can be altered in RapidApp’s resource editor. Selecting any
child displays its resources in the Resource Editor window.

Several common default layouts can be created using the
XmNdefaultVerticalLayout and XmNdefaultHorizontalLayout resources
supported by the SpringBox. More complex layouts can be achieved by
editing the constraint resources of the individual children.

SpringBox Resources

Following are the SpringBox resources:

XmNmarginHeight
Specifies the minimum spacing in pixels between the top
and bottom edges of the SpringBox and any child widget.

XmNmarginWidth
Specifies the minimum spacing in pixels between the left or
right edge of the SpringBox and any child widget.

XmNminSpacing
Specifies the minimum spacing between the children of the
SpringBox.

XmNorientation
The XmNorientation resource determines whether the
SpringBox is vertical or horizontal. If you change this
resource after children have been added, you may have to
reset individual spring values for the new layout. The
existing resources retain their current values when
orientation changes. No attempt is made to map existing
settings to account for the orientation.

XmNdefaultVerticalLayout, XmNdefaultHorizontalLayout
These resources provide a convenient way to apply a
collection of resource settings to all current children of a

136

Appendix B: RapidApp Reference

SpringBox. Each resource is independent and controls only
the resources that apply vertically or horizontally. The
meaning of these resources does not change with the
XmNorientation resource. That is, vertical is always
vertical. Possible layouts include:

• XmCENTER: Centers all children in the middle of the
SpringBox, with equal spacing on either side of the
entire group of children.

• XmSPAN: Stretches all children equally to fill the
entire space of the SpringBox.

• XmLEFT: Sets all children to their natural size and
moves to the left edge of the SpringBox.Only applies
to XmNdefaultHorizontalLayout.

• XmRIGHT: Sets all children to their natural size and
moves to the right edge of the SpringBox.Only applies
to XmNdefaultHorizontalLayout.

• XmTOP: Sets all children to their natural size and
moves to the top edge of the SpringBox.Only applies
to XmNdefaultVerticalLayout.

• XmBOTTOM: Sets all children to their natural size and
moves to the bottom edge of the SpringBox.Only
applies to XmNdefaultVerticalLayout.

• XmDISTRIBUTE: Sets all children to their natural size
and distributes them evenly across any open space in
the SpringBox.

• XmSTRETCH_FIRST: Allows the first (left-most or
top-most) child to stretch freely to fill any available
space. All others are set to their natural size.

• XmSTRETCH_LAST: Allows the last (right-most or
bottom-most) child to stretch freely to fill any available
space. All others are set to their natural size.

• XmIGNORE: Ignores the default setting and uses the
custom values of each individual widget’s spring
resources

Containers Palette

137

SpringBox Constraint Resources

Following are constraint resources that are added to children of a SpringBox
widget. These resources determine the stretchability of the space adjacent to
the associated side of the widget. The larger the value, the more this space
can be resized relative to other “springs” contained in the SgSpringBox
widget.

XNleftSpring Sets the relative springiness of the space to the left of the
widget.

XmNrightSpring
Sets the relative springiness of the space to the right of the
widget.

XmNtopSpring Sets the relative springiness of the space above the widget.

XmNbottomSpring
Sets the relative springiness of the space below the widget.

XmNverticalSpring
Sets the relative springiness of the widget in the vertical
direction

XmNhorizontalSpring
Sets the relative springiness of the widget in the horizontal
direction

Form

The Form is a container widget that arranges its children based on constraint
resources associated with each child. Resources supported by each child of
the Form define attachments for each of the child’s four sides. These
attachments can be to the Form, another child widget or gadget, a relative
position within the Form, or the initial position of the child. The attachments
determine the layout behavior of the Form when resizing occurs.

Attachments are made in RapidApp directly on each child of a Form. Each
Form child has small attachment handles on each of its four sides. These
attachment handles support several operations:

138

Appendix B: RapidApp Reference

Left mouse button
You can click the left mouse button on an attachment handle
and drag an attachment from the current widget to any
other widget, including its parent (the Form). This indicates
either an XmATTACH_WIDGET (see “Form Resources”)
or XmATTACH_FORM value for the attachment.

Right mouse button
Posts a menu that allows you to choose from the various
attachment types for each side.

Shift left mouse button
Posts a menu that shows the current offset for an
attachment. Moving the mouse while holding down
<Shift> -left-button changes the offset.

Form Resources

The following resource affects the behavior of the Form widget itself.

XmNfractionBase
Specifies the denominator used in calculating the relative
position of a child widget that uses an
XmATTACH_POSITION attachment. The value must not
be 0.

If the value of a child’s attachment resource is
XmATTACH_POSITION, the position of the
corresponding side of the child is relative to the left (or top)
side of the Form and is a fraction of the width (or height) of
the Form. This fraction is the value of the child’s position
resource divided by the value of the Form’s
XmNfractionBase.

Form Constraint Resources

These resources are supported by all children of a Form widget.

XmNbottomAttachment, XmNtopAttachment, XmNleftAttachment,
XmNrightAttachment
These resources specify the attachment of the bottom, top,
left, or right sides of the child. Each resource can have the

Containers Palette

139

following values, which can be selected from a popup menu
posted by pressing the right mouse button over the bottom
attachment icon:

• XmATTACH_NONE: Do not attach this side of the
child.

• XmATTACH_FORM: Attach this side of the child to
the near side of its parent.

• XmATTACH_OPPOSITE_FORM: Attach this side of
the child to the far side of its parent. The corresponding
offset resource also affects the final position of the
child.

• XmATTACH_WIDGET: Attach this side of the child to
the near side of another widget. Normally,
XmATTACH_WIDGET is specified by pressing the left
mouse button over the attachment icon and dragging
out the attachment to the desired widget. Once an
attachment is made, the popup menu can be used to
switch between XmATTACH_WIDGET and
XmATTACH_OPPOSITE_WIDGET. The
corresponding offset resource also affects the final
position of the child.

• XmATTACH_OPPOSITE_WIDGET: Attach this side
of the child to the far side of another widget. The
corresponding offset resource also affects the final
position of the child.

• XmATTACH_POSITION: Attach this side of the child
to a position that is relative to the left (or top) side of
the Form and in proportion to the width (or height) of
the Form. The actual position is determined by the
XmNbottomPosition, XmNtopPosition,
XmNleftPosition, or XmNrightPosition resources in
conjunction with the XmNfractionBase resource. The
corresponding offset resource also affects the final
position of the child.

XmNBottomOffset, XmNtopOffset, XmNleftOffset, XmNrightOffset
Specifies the constant offset between the corresponding side
of the child and the object to which it is attached. The

140

Appendix B: RapidApp Reference

relationship established remains, regardless of any resizing
operations. RapidApp allows you to enter this value in the
resource editor, alter the value by repositioning the child, or
change the value by holding down the Shift key while
pressing the left mouse button over an attachment icon and
dragging the pointer. In the last case, the current offset value
is displayed in a popup menu during the drag. In general,
moving or resizing a child of a form in RapidApp
corresponds to changing the value of one or more offsets,
and only indirectly the position or size.

XmNtopPosition, XmNbottomPosition, XmNleftPosition,
XmNrightPosition
Determines the position of the corresponding side of the
child when the corresponding attachment is set to
XmATTACH_POSITION. In this case the position of the
side of the child is relative to the left (or top) side of the
Form and is a fraction of the height of the Form. This
fraction is the value of the child’s position resource divided
by the value of the Form’s XmNfractionBase. For example,
if the child’s XmNbottomPosition is 35, the Form’s
XmNfractionBase is 100, and the Form’s height is 200, the
position of the bottom side of the child is 70.

RowColumn

The RowColumn widget is a general-purpose RowColumn manager
capable of containing any widget type as a child. The type of layout enforced
by the RowColumn is controlled by how the application has set the various
layout resources. It can be configured to lay out its children in either rows or
columns. In addition, the application can specify that the children be laid out
as follows:

• the children are packed tightly together into either rows or columns

• each child is placed in an identically sized box (producing a
symmetrical look)

• a specific layout (the current X and Y positions of the children control
their location)

Containers Palette

141

RowColumn Resources

Following are the RowColumn resources:

XmNadjustLast
If XmNadjustLast is set to true, the last row of children is
stretched to fill the RowColumn to the bottom edge when
XmNorientation is XmHORIZONTAL. The last column of
children is extended to the right edge of RowColumn when
XmNorientation is XmVERTICAL.

XmNentryAlignment
This resource controls the alignment type for children that
are subclasses of XmLabel or XmLabelGadget when
XmNisAligned is set to true. These are the possible
alignment values:

• XmALIGNMENT_BEGINNING

• XmALIGNMENT_CENTER

• XmALIGNMENT_END

XmNisAligned Specifies text alignment for each XmLabel (or subclass)
child of a RowColumn widget. The XmNentryAlignment
resource controls the type of textual alignment.

XmNnumColumns
Specifies the number of rows or columns supported by the
RowColumn widget. The resource controls the number of
elements in the minor dimension; this resource is
meaningful only when XmNpacking is set to
XmPACK_COLUMN.

XmNorientation
This resource determines whether RowColumn layouts are
row-major or column-major. In a column-major layout, the
children of the RowColumn are laid out in columns top to
bottom within the widget. In a row-major layout the
children of the RowColumn are laid out in rows.

142

Appendix B: RapidApp Reference

XmNpacking The value of this resource determines how the row column
widget lays out its children. When a RowColumn widget
packs the items it contains, it determines its major
dimension using the value of the XmNorientation resource.
These are the possible values:

• XmPACK_TIGHT: indicates that given the current
major dimension (for example, vertical if
XmNorientation is XmVERTICAL), entries are placed
one after the other until the RowColumn widget must
wrap. RowColumn wraps when there is no room left
for a complete child in that dimension. Wrapping
occurs by beginning a new row or column in the next
available space. Wrapping continues, as often as
necessary, until all of the children are laid out.

• XmPACK_COLUMN: indicates that all entries are
placed in identically sized boxes. The box is based on
the largest height and width values of all the children
widgets. The value of the XmNnumColumns resource
determines how many boxes are placed in the major
dimension, before extending in the minor dimension.

• XmPACK_NONE: indicates that no packing is
performed. The X and Y attributes of each entry are left
alone, and the RowColumn widget attempts to
become large enough to enclose all entries.

RadioBox

The RadioBox is really a RowColumn widget configured to force
one-of-many behavior on its children, which must be toggle buttons.
RapidApp creates a RadioBox with two default toggle buttons, which you
can edit to suit your needs. You can also add more toggles. IRIS IM allows
you to add arbitrary items to a RadioBox, but then issues warnings at run
time. Because the “radio” behavior can be achieved only with toggles,
RapidApp supports only toggle children.

Containers Palette

143

RadioBox Resources

All the RadioBox resources are the same as for RowColumn, with the
following addition:

XmNradioAlwaysOne
If this resource is set to True, one child must always be
selected.

PanedWindow, HorzPanedWindow

PanedWindow is a composite widget that tiles its children vertically.
Children are positioned top-to-bottom in the order in which they are created.
The PanedWindow grows to match the width of its widest child, and all
other children are forced to this width. The height of the PanedWindow is
equal to the sum of the heights of all its children, the spacing between them,
and the size of the top and bottom margins.

The HorzPanedWindow is a Silicon Graphics extension to Motif that
supports horizontal panes. This widget is otherwise identical to
PanedWindow.

The user can also adjust the size of the panes using an optional sash
positioned on the bottom of the pane that it controls.

The PanedWindow presents an interaction problem when used in a tool like
RapidApp because it stretches its first child to cover the entire window, and
you cannot drop additional widgets directly on the PanedWindow itself.
There are several solutions to this issue:

Drop on a non-container child or class
If any child of a PanedWindow is a Control or a class
(neither of which are children), you can drop a new child on
one of these widgets. The drop falls through to the
PanedWindow. This suggests a work style for creating
complex panes: create the collection of widgets to be placed
in each pane separately, define as a class, and add the
PanedWindow last.

144

Appendix B: RapidApp Reference

Use Keep Parent Mode
You can select RapidApp’s Keep Parent mode from the
View menu, which maintains the currently selected widget
as a parent regardless of where a new widget might be
dropped. In Keep Parent mode, select the PanedWindow
(using the Select Parent command if necessary) and then
create new widgets without changing the selected parent.

Drop on the Sash
Once a PanedWindow widget has more than one child, you
can drop new widgets onto a Sash, the small control located
between widgets to add new panes.

PanedWindow, HorzPanedWindow Resources

Following are the PanedWindow, HorzPanedWindow resources:

XmNseparatorOn
Determines whether a separator is created between each of
the panes. The default Value is True.

PanedWindow, HorzPanedWindow Constraint Resources

Following are the resources supported by any child of a PanedWindow:

XmNallowResize
If this resource is set to True, the child can be resized.
Otherwise, the size of the child is held constant.

XmNpaneMinimum
The value of this resource specifies the minimum size of the
child.

XmNpaneMaximum
The value of this resource specifies the maximum size of the
child.

Frame

Frame is a very simple manager used to enclose a single child in a border
drawn by the Frame. The Frame widget is most often used to enclose other

Containers Palette

145

containers to create a decorative effect. The Frame widget can also support
a second child, generally a label, which is used as a title.

If you include a a title, it is generally best to add the title first. The title will
be treated as a work area child, to be framed, when initially added. Select the
child and change the XmNchildType resource to
XmFRAME_TITLE_CHILD.

Frame Resources

Following is the Frame resource:

XmNshadowType
This resource controls the drawing style for the Frame
widget, and can have the following values:

• XmSHADOW_IN: draws an inset border.

• XmSHADOW_OUT: draws Frame so that it appears
outset.

• XmSHADOW_ETCHED_IN: draws Frame using a
double line giving the effect of a line etched into the
window.

• XmSHADOW_ETCHED_OUT: draws Frame using a
double line giving the effect of a line coming out of the
window.

Frame Constraint Resources

Following are the Frame constraint resources:

XmNchildType Specifies whether a child is a title or work area. Frame
supports a single title and/or work area child. The possible
values are:

• XmFRAME_TITLE_CHILD

• XmFRAME_WORKAREA_CHILD

• XmFRAME_GENERIC_CHILD

The Frame geometry manager ignores any child of type
XmFRAME_GENERIC_CHILD.

146

Appendix B: RapidApp Reference

XmNchildHorizontalAlignment
Specifies the alignment of the title. This resource has the
following values:

• XmALIGNMENT_BEGINNING

• XmALIGNMENT_CENTER

• XmALIGNMENT_END

XmNchildVerticalAlignment
Specifies the vertical alignment of the title text, or the title
area in relation to the top shadow of the Frame.

• XmALIGNMENT_BASELINE_BOTTOM: the
baseline of the title aligns vertically with the top
shadow of the Frame. In the case of a multiline title, the
baseline of the last line of text aligns vertically with the
top shadow of the Frame.

• XmALIGNMENT_BASELINE_TOP: the baseline of
the first line of the title aligns vertically with the top
shadow of the Frame.

• XmALIGNMENT_WIDGET_TOP: the top edge of the
title area aligns vertically with the top shadow of the
Frame.

• XmALIGNMENT_CENTER: the center of the title area
aligns vertically with the top shadow of the Frame.

• XmALIGNMENT_WIDGET_BOTTOM: the bottom
edge of the title area aligns vertically with the top
shadow of the Frame.

ScrolledWindow

The ScrolledWindow widget combines one or two ScrollBar widgets and a
viewing area to implement a visible window onto aother (usually larger)
data display. The visible part of the window can be scrolled through the
larger display by the use of ScrollBars.

ScrolledWindow can be configured to operate automatically so that it
performs all scrolling and display actions with no need for application

Containers Palette

147

program involvement. It can also be configured to provide a minimal
support framework in which the application is responsible for processing all
user input and making all visual changes to the displayed data in response
to that input.

ScrolledWindow Resources

Following are the resources supported by the ScrolledWindow widget:

XmNscrollBarDisplayPolicy
Controls the automatic placement of the ScrollBars. If this
resource is set to XmAS_NEEDED and if
XmNscrollingPolicy is set to XmAUTOMATIC, ScrollBars
are displayed only if the workspace exceeds the clip area in
one or both dimensions. A resource value of XmSTATIC
causes the ScrolledWindow to display the ScrollBars
whenever they are managed, regardless of the relationship
between the clip window and the work area. This resource
must be XmSTATIC when XmNscrollingPolicy is
XmAPPLICATION_DEFINED.

XmNscrollingPolicy
Performs automatic scrolling of the work area with no
application interaction. If the value of this resource is
XmAUTOMATIC, ScrolledWindow automatically creates
the ScrollBars, attaches callbacks to the ScrollBars, and
automatically moves the work area through the clip
window in response to any user interaction with the
ScrollBars.

When XmNscrollingPolicy is set to
XmAPPLICATION_DEFINED, the application is
responsible for all aspects of scrolling. The ScrollBars must
be created by the application, and it is responsible for
performing any visual changes in the work area in
response to user input.

RubberBoard

The RubberBoard widget employs a novel layout algorithm that relies on
you teaching the widget how its children should be positioned, as well as

148

Appendix B: RapidApp Reference

how they should behave when the RubberBoard is resized. Using the
RubberBoard requires the following simple steps, which must be performed
exactly in sequence:

1. Make the RubberBoard as small as it could ever reasonably be.

2. Position all children as they would be positioned and sized for the
current RubberBoard size.

3. Select the RubberBoard and set the XmNsetInitial resource to True, to
take a “snapshot” of the current layout.

4. Resize the RubberBoard to its largest reasonable size.

5. Lay out the children again and resize them as you would expect them
to appear for the current RubberBoard size.

6. Select the RubberBoard and set the XmNsetFinal resource to True.

From this point, the children will resize and reposition based on an
interpolation of the two layouts you have provided.

RubberBoard Resources

Following are the resources supported by the RubberBoard widget:

XmNsetFinal Switching this resource to True forces the widget to record
the final positions and sizes of all children.

XmNsetInitial Switching this resource to True forces the widget to record
the initial positions and sizes of all children.

DrawingArea, VisualDrawingArea

DrawingArea is an empty widget that invokes callbacks to notify the
application when graphics need to be drawn (exposure events or widget
resize) and when the widget receives input from the keyboard or mouse.

Applications are responsible for defining appearance and behavior as
needed in response to DrawingArea callbacks. The DrawingArea widget is
typically used to display graphics drawn using Xlib functions.

The VisualDrawingArea is a Silicon Graphics extension that differs from the
normal Motif DrawingArea in its support for Visual types.

Containers Palette

149

DrawingArea, VisualDrawingArea Resources

Following are the resources supported by both the DrawingArea and
VisualDrawingArea widgets:

XmNexposeCallback
Specifies the member function to be called when
DrawingArea receives an exposure event. The callback
reason is XmCR_EXPOSE. The callback structure also
includes the exposure event.

The default bit gravity for this widget is
NorthWestGravity, which may cause the
XmNexposeCallback not to be invoked when the
DrawingArea window is made smaller.

XmNinputCallback
Specifies the member function to be called when the
DrawingArea receives a keyboard or mouse event (key or
button, up or down). The callback reason is XmCR_INPUT.
The callback structure also includes the input event.

XmNresizeCallback
Specifies the member function to be called when the
DrawingArea is resized. The callback reason is
XmCR_RESIZE.

VisualDrawingArea Resources

Following are the resources supported by the VisualDrawingArea widget
only:

SgNditherBackground
if this resource is true and if the visual used with this widget
is a TrueColor or StaticColor visual, and the widget is
unable to get an exact match for the requested background
color, the widget attempts to produce a dithered pixmap
that produces a closer background to that requested. If one
is found, it will automatically set the
XmNbackgroundPixmap resource to this pixmap. See the
SgVisualDrawingArea reference page for more details.

150

Appendix B: RapidApp Reference

SgNinstallColormap
If this resource is set to True, this resource specifies that the
widget should set the WM_COLORMAP_WINDOWS
property on th4e shell that contains this widget, so the
window manager will install the colomap when the
application gets focus. See the SgVisualDrawingArea
reference page for more details.

Controls Palette

The Controls palette (see Figure B-12) contains controls interface elements
such as text field, finder, and scroll bar.

Figure B-12 Controls Palette

The user interface elements available through this palette are described in
the following sections.

Controls Palette

151

PushButton

The PushButton widget issues commands within an application. It consists
of a text label or pixmap surrounded by a border shadow. When a
PushButton is selected, the shadow changes to give the appearance that it
has been pressed in. When a PushButton is unselected, the shadow changes
to give the appearance that it is out.

PushButton Resources

Following are the resources supported by the PushButton widget:

XmNactivateCallback
Specifies the list of callbacks that is called when PushButton
is activated. PushButton is activated when the user presses
and releases the active mouse button while the pointer is
inside that widget. Activating the PushButton also disarms
it. For this callback the reason is XmCR_ACTIVATE.

XmNalignment
Specifies the label alignment for text or pixmap.

• XmALIGNMENT_BEGINNING (left alignment): the
left sides of the lines of text are vertically aligned with
the left edge of the widget window. For a pixmap, its
left side is vertically aligned with the left edge of the
widget window.

• XmALIGNMENT_CENTER (center alignment): the
centers of the lines of text are vertically aligned in the
center of the widget window. For a pixmap, its center is
vertically aligned with the center of the widget
window.

• XmALIGNMENT_END (right alignment): the right
sides of the lines of text are vertically aligned with the
right edge of the widget window. For a pixmap, its
right side is vertically aligned with the right edge of
the widget window.

XmNlabelPixmap
Specifies the pixmap when XmNlabelType is XmPIXMAP.
The default value, XmUNSPECIFIED_PIXMAP, displays
an empty label. Setting this resource in RapidApp

152

Appendix B: RapidApp Reference

automatically sets the XmNlabelType to XmPIXMAP. In
RapidApp, pixmaps are specified as a filename. The file
may be a XPM pixmap or an X bitmap. If the pixmap is
loaded successfully, its base name is extracted and used as
the name of the pixmap. The pixmap is always written out
to a file, pixmaps.h in generated code, as an XPM pixmap.

Besides typing in the name of a file, you can also drop a file
into the drop pocket beside the input field, or drop a
pixmap file directly on the widget whose pixmap is to be
set.

XmNlabelString
Specifies the string to be displayed when the XmNlabelType
is XmSTRING. In RapidApp, setting or changing this
resource automatically sets the value of XmNlabelType to
XmSTRING.

XmNlabelType Specifies the label type.

• XmSTRING: displays text using XmNlabelString.

• XmPIXMAP: displays pixmap using
XmNlabelPixmap or XmNlabelInsensitivePixmap.

Changing either the XmNlabelString or XmNlabelPixmap
in RapidApp automatically sets the resource.

XmNrecomputeSize
Specifies a Boolean value that indicates whether the widget
shrinks or expands to accommodate its contents (label
string or pixmap) as a result of an XtSetValues resource
value that would change the size of the widget. If this
resource is set to True, the widget shrinks or expands to
exactly fit the label string or pixmap. If this resource is set to
False, the widget never attempts to change size on its own.

Code Examples

Programs most often use the PushButton widget as an input device and
simply respond to a callback when the button is pushed. This is a typical
member function created by RapidApp for handling a PushButton:

AClass::handlePushButton(Widget w, XtPointer callData)
{

Controls Palette

153

XmAnyCallbakStruct *cbs = (XmAnyCallbackStruct*) callData;

//--- Comment out the following line when
// AClass::handlePushButton is implemented

::VkUnimplemented (w, "AClass::handlePushButton");

// Add application code for AClass::handlePushButton here:

}

The first line makes the callData passed by all IRIS IM callbacks available in
its generic form. For PushButton widgets, you may wish to change the cast
to XmPushButtonCallbackStruct. The ::VkUnimplemented call is useful
when using the Developer Magic debugger and for printing a trace of this
callback. You can comment it out once it is no longer needed.

A PushButton is a subclass of the Label widget, so the appearance of the
PushButton can be manipulated the same as the Label widget. For example,
consider the following code:

Example B-1 Retrieving Text from a Subclass of Label Using the IRIS IM API

XmString xmstr;
char *text;
XtVaGetValues(widget, XmNlabelString, &xmstr, NULL);
text = XmStringGetLtoR(xmstr, XmFONTLIST_DEFAULT_TAB);

Example B-2 Retrieving Text from a Subclass of Label Using the VkEZ API

char *text = EZ(widget);
Setting text on a Subclass of Label using the IRIS IM API
XmString xmstr;
xmstr = XmStringCreateLtoR("text", XmFONTLIST_DEFAULT_TAG);
XtVaSetValues(widget, XmNlabelString, xmstr, NULL);

The following also works:

XtVaSetValues(widget, XtVaTypedArg, XmNlabelString,
 XmRString, "text", strlen("text") + 1, NULL);

154

Appendix B: RapidApp Reference

Example B-3 Setting Text on a Subclass of Label using the VkEZ API

EZ(widget) = "text";

ToggleButton

ToggleButton is used to toggle between two states. Usually this widget
consists of an indicator (square or diamond) with either text or a pixmap on
one side of it. However, it can also consist of just text or a pixmap without
the indicator.

The toggle graphics display a 1-of-many or N-of-many selection state. When
a toggle indicator is displayed, a square indicator shows an N-of-many
selection state and a diamond indicator shows a 1-of-many selection state.

ToggleButton Resources

Following are the ToggleButton resources:

XmNalignment
Specifies the label alignment for text or pixmap.

• XmALIGNMENT_BEGINNING (left alignment): the
left sides of the lines of text are vertically aligned with
the left edge of the widget window. For a pixmap, its
left side is vertically aligned with the left edge of the
widget window.

• XmALIGNMENT_CENTER (center alignment): the
centers of the lines of text are vertically aligned in the
center of the widget window. For a pixmap, its center is
vertically aligned with the center of the widget
window.

• XmALIGNMENT_END (right alignment): the right
sides of the lines of text are vertically aligned with the
right edge of the widget window. For a pixmap, its
right side is vertically aligned with the right edge of
the widget window.

Controls Palette

155

XmNindicatorOn
Specifies that a toggle indicator is drawn to one side of the
toggle text or pixmap when set to True. When set to False,
no space is allocated for the indicator, and it is not
displayed.

XmNlabelPixmap
Specifies the pixmap when XmNlabelType is XmPIXMAP.
The default value, XmUNSPECIFIED_PIXMAP, displays
an empty label. Setting this resource in RapidApp
automatically sets the XmNlabelType to XmPIXMAP. In
RapidApp, pixmaps are specified as a filename. The file
may be an XPM pixmap or an X bitmap. If the pixmap is
loaded successfully, its base name is extracted and used as
the name of the pixmap. The pixmap is always written out
to a file, pixmaps.h in generated code, as an XPM pixmap.

Besides typing in the name of a file, you can also drop a file
into the drop pocket beside the input field, or drop a
pixmap file directly on the widget whose pixmap is to be
set.

XmNlabelString
Specifies the string to be displayed when the
XmNlabelType is XmSTRING. In RapidApp, setting or
changing this resource automatically sets the value of
XmNlabelType to XmSTRING.

XmNlabelType
Specifies the label type.

• XmSTRING: displays text using XmNlabelString.

• XmPIXMAP: displays pixmap using
XmNlabelPixmap or XmNlabelInsensitivePixmap.

Changing either the XmNlabelString or XmNlabelPixmap
in RapidApp automatically sets the resource.

XmNrecomputeSize
Specifies a Boolean value that indicates whether the widget
shrinks or expands to accommodate its contents (label
string or pixmap) as a result of an XtSetValues resource
value that would change the size of the widget. If this

156

Appendix B: RapidApp Reference

resource is set to True, the widget shrinks or expands to
exactly fit the label string or pixmap. If this resource is set to
False, the widget never attempts to change size on its own.

XmNselectPixmap
Specifies the pixmap to be used as the button face if
XmNlabelType is XmPIXMAP and the ToggleButton is
selected. When the ToggleButton is unselected, the pixmap
specified in Label’s XmNlabelPixmap is used. If no value is
specified for XmNlabelPixmap, that resource is set to the
value specified for XmNselectPixmap.

XmNset Represents the state of the ToggleButton. A value of false
indicates that the ToggleButton is not set. A value of true
indicates that the ToggleButton is set. Setting this resource
sets the state of the ToggleButton.

XmNvalueChangedCallback
Specifies the list of callbacks called when the ToggleButton
value is changed. To change the value, press and release the
active mouse button while the pointer is inside the
ToggleButton. This action also causes this widget to be
disarmed. For this callback, the reason is
XmCR_VALUE_CHANGED.

Code Examples

Following are examples of ToggleButton use:

Example B-4 Setting the Indicator State on a Toggle Button Without Invoking
Callbacks

XtVaSetValues(widget, XmNset, newBooleanValue, NULL);

Example B-5 Setting the Indicator State on a Toggle Button and Triggering
Callbacks

XmToggleButtonSetState(widget, newBooleanValue, True);

ArrowButton

The arrow button widget is similar to the PushButton widget, but is
displayed as a directional arrow.

Controls Palette

157

Resources

Following are ArrowButton resources:

XmNarrowDirection
Determines the arrow direction.

XmNactivateCallback
The member function to be called when the arrow button is
pressed.

DrawnButton

The DrawnButton widget consists of an empty widget window surrounded
by a shadow border. It provides the application developer with a graphics
area that can have PushButton input semantics.

Callback types are defined for widget exposure and widget resize to allow
the application to redraw or reposition its graphics.

DrawnButton Resources

Following are the DrawnButton resources:

XmNactivateCallback
Specifies the list of callbacks that is called when the
DrawnButton is activated. DrawnButton is activated when
the user presses and releases the active mouse button while
the pointer is inside that widget. Activating the
DrawnButton also disarms it. For this callback, the reason
is XmCR_ACTIVATE.

XmNalignment
Specifies the label alignment for text or pixmap.

• XmALIGNMENT_BEGINNING (left alignment): the
left sides of the lines of text are vertically aligned with
the left edge of the widget window. For a pixmap, its
left side is vertically aligned with the left edge of the
widget window.

158

Appendix B: RapidApp Reference

• XmALIGNMENT_CENTER (center alignment): the
centers of the lines of text are vertically aligned in the
center of the widget window. For a pixmap, its center is
vertically aligned with the center of the widget
window.

• XmALIGNMENT_END (right alignment): the right
sides of the lines of text are vertically aligned with the
right edge of the widget window. For a pixmap, its
right side is vertically aligned with the right edge of
the widget window.

XmNexposeCallback
Specifies the member function to be called when
DrawnButton needs to be redrawn.

Specifies the list of callbacks that is called when the widget
receives an exposure event. The reason sent by the callback
is XmCR_EXPOSE.

XmNlabelPixmap
Specifies the pixmap when XmNlabelType is XmPIXMAP.
The default value, XmUNSPECIFIED_PIXMAP, displays
an empty label. Setting this resource in RapidApp
automatically sets the XmNlabelType to XmPIXMAP. In
RapidApp, pixmaps are specified as a filename. The file
may be an XPM pixmap or an X bitmap. If the pixmap is
loaded successfully, its base name is extracted and used as
the name of the pixmap. The pixmap is always written out
to a file, pixmaps.h in generated code, as an XPM pixmap.

Besides typing in the name of a file, you can also drop a file
into the drop pocket beside the input field, or drop a
pixmap file directly on the widget whose pixmap is to be
set.

XmNlabelString
Specifies the string to be displayed when the
XmNlabelType is XmSTRING. In RapidApp, setting or
changing this resource automatically sets the value of
XmNlabelType to XmSTRING.

Controls Palette

159

XmNlabelType Specifies the label type.

• XmSTRING: displays text using XmNlabelString.

• XmPIXMAP: displays pixmap using
XmNlabelPixmap or XmNlabelInsensitivePixmap.

Changing either the XmNlabelString or XmNlabelPixmap
in RapidApp automatically sets the resource.

XmNpushButtonEnabled
Enables or disables the three-dimensional shadow drawing
as in PushButton.

XmNrecomputeSize
Specifies a Boolean value that indicates whether the widget
shrinks or expands to accommodate its contents (label
string or pixmap) as a result of an XtSetValues resource
value that would change the size of the widget. If this
resource is set to True, the widget shrinks or expands to
exactly fit the label string or pixmap. If this resource is set to
False, the widget never attempts to change size on its own.

Label

The Label widget can contain non-editable text or a pixmap.

Label Resources

The Label widget supports the following resources:

XmNalignment Specifies the label alignment for text or pixmap.

• XmALIGNMENT_BEGINNING (left alignment): the
left sides of the lines of text are vertically aligned with
the left edge of the widget window. For a pixmap, its
left side is vertically aligned with the left edge of the
widget window.

• XmALIGNMENT_CENTER (center alignment): the
centers of the lines of text are vertically aligned in the
center of the widget window. For a pixmap, its center is
vertically aligned with the center of the widget
window.

160

Appendix B: RapidApp Reference

• XmALIGNMENT_END (right alignment): the right
sides of the lines of text are vertically aligned with the
right edge of the widget window. For a pixmap, its
right side is vertically aligned with the right edge of
the widget window.

XmNlabelPixmap
Specifies the pixmap when XmNlabelType is XmPIXMAP.
The default value, XmUNSPECIFIED_PIXMAP, displays
an empty label. Setting this resource in RapidApp
automatically sets the XmNlabelType to XmPIXMAP. In
RapidApp, pixmaps are specified as a filename. The file
may be a XPM pixmap or an X bitmap. If the pixmap is
loaded successfully, its base name is extracted and used as
the name of the pixmap. The pixmap is always written out
to a file, pixmaps.h in generated code, as an XPM pixmap.

Besides typing in the name of a file, you can also drop a file
into the drop pocket beside the input field, or drop a
pixmap file directly on the widget whose pixmap is to be
set.

XmNlabelString
Specifies the string to be displayed when the
XmNlabelType is XmSTRING. In RapidApp, setting or
changing this resource automatically sets the value of
XmNlabelType to XmSTRING.

XmNlabelType Specifies the label type.

• XmSTRING: displays text using XmNlabelString.

• XmPIXMAP: displays pixmap using
XmNlabelPixmap or XmNlabelInsensitivePixmap.

Changing either the XmNlabelString or XmNlabelPixmap
in RapidApp automatically sets the resource.

XmNrecomputeSize
Specifies a Boolean value that indicates whether the widget
shrinks or expands to accommodate its contents (label
string or pixmap) as a result of an XtSetValues resource
value that would change the size of the widget. If this

Controls Palette

161

resource is set to True, the widget shrinks or expands to
exactly fit the label string or pixmap. If this resource is set to
False, the widget never attempts to change size on its own.

Code Examples

Following are examples of Label use:

Example B-6 Retrieving Text from a Subclass of Label Using the IRIS IM API

XmString xmstr;
char *text;
XtVaGetValues(widget, XmNlabelString, &xmstr, NULL);
text = XmStringGetLtoR(xmstr, XmFONTLIST_DEFAULT_TAB);

Example B-7 Retrieving Text from a Subclass of Label Using the VkEZ API

char *text = EZ(widget);
Setting text on a Subclass of Label using the IRIS IM API
XmString xmstr;
xmstr = XmStringCreateLtoR("text", XmFONTLIST_DEFAULT_TAG);
XtVaSetValues(widget, XmNlabelString, xmstr, NULL);

The following is also valid:

XtVaSetValues(widget, XtVaTypedArg, XmNlabelString,
 XmRString, "text", strlen("text") + 1, NULL);

Example B-8 Setting Text on a Subclass of Label Using the VkEZ API

EZ(widget) = "text";

Separator

Separator is a primitive widget that separates items in a display. Several
different line drawing styles are provided, as well as horizontal or vertical
orientation.

The Separator line drawing is automatically centered within the height of
the widget for a horizontal orientation and centered within the width of the
widget for a vertical orientation.

162

Appendix B: RapidApp Reference

Separator Resources

The Separator widget supports the following resources:

XmNorientation
Displays Separator vertically or horizontally. This resource
can have values of XmVERTICAL and XmHORIZONTAL.

XmNseparatorType
Specifies the type of line drawing to be done in the
Separator widget.

• XmSINGLE_LINE: single line.

• XmDOUBLE_LINE: double line.

• XmSINGLE_DASHED_LINE: single-dashed line.

• XmDOUBLE_DASHED_LINE: double-dashed line.

• XmNO_LINE: no line.

• XmSHADOW_ETCHED_IN: a line whose shadows
give the effect of a line etched into the window.

• XmSHADOW_ETCHED_OUT: a line whose shadows
give the effect of an etched line coming out of the
window.

• XmSHADOW_ETCHED_IN_DASH: identical to
XmSHADOW_ETCHED_IN except a series of lines
creates a dashed line.

• XmSHADOW_ETCHED_OUT_DASH: identical to
XmSHADOW_ETCHED_OUT except a series of lines
creates a dashed line.

ScrollBar

The ScrollBar widget allows the user to view data that is too large to be
displayed all at once. ScrollBars are usually located inside a
ScrolledWindow and adjacent to the widget that contains the data to be
viewed. When the user interacts with the ScrollBar, the data within the other
widget scrolls.

Controls Palette

163

A ScrollBar consists of two arrows placed at each end of a rectangle. The
rectangle is called the scroll region. A smaller rectangle, called the slider, is
placed within the scroll region. The data is scrolled by clicking either arrow,
clicking the scroll region, or dragging the slider. When an arrow is selected,
the slider within the scroll region is moved in the direction of the arrow by
an amount supplied by the application. If the mouse button is held down,
the slider continues to move at a constant rate.

ScrollBar Resources

The following resources are available for the ScrollBar widget from within
RapidApp:

XmNdragCallback
Specifies the list of callbacks that is called on each
incremental change of position when the slider is being
dragged. The reason sent by the callback is XmCR_DRAG.

XmNorientation
Specifies whether the ScrollBar is displayed vertically or
horizontally. This resource can have values of
XmVERTICAL and XmHORIZONTAL.

XmNvalueChangedCallback
Specifies the list of callbacks that is called when the slider is
released after being dragged. The reason passed to the
callback is XmCR_VALUE_CHANGED.

Code Examples

Following are examples of ScrollBar use:

Example B-9 Getting the Value of a Scroll Bar Using the IRIS IM API

int value;
XtVaGetValues(widget, XmNvalue, &value, NULL);

164

Appendix B: RapidApp Reference

Example B-10 Getting the Value of a Scroll Bar Using the VkEZ API

int value = EZ(widget);

Example B-11 Setting the Value of a Scroll Bar Using the IRIS IM API

XtVaSetValues(widget, XmNvalue, 100, NULL);

Example B-12 Setting the Value of a Scroll Bar Using the VkEZ API

EZ(widget) = 100;

Scale

Scale is used by an application to indicate a value from within a range of
values, and it allows the user to input or modify a value from the same
range.

A Scale has an elongated rectangular region similar to a ScrollBar. A slider
inside this region indicates the current value along the Scale. The user can
also modify the Scale’s value by moving the slider within the rectangular
region of the Scale. A Scale can also include a label set located outside the
Scale region. These can indicate the relative value at various positions along
the scale.

A Scale can be either input/output or output only. An input/output Scale’s
value can be set by the application and also modified by the user with the
slider. An output-only Scale is used strictly as an indicator of the current
value of something and cannot be modified interactively by the user.

Scale Resources

The Scale widget supports the following resources:

XmNdecimalPoints
Specifies the number of decimal points to shift the slider
value when displaying it. For example, a slider value of
2,350 and an XmNdecimalPoints value of 2 results in a
display value of 23.50. The value must not be negative.

Controls Palette

165

XmNdragCallback
Specifies the list of callbacks that is called when the slider
position changes as the slider is being dragged. The reason
sent by the callback is XmCR_DRAG.

XmNmaximum Specifies the slider’s maximum value. XmNmaximum must
be greater than XmNminimum.

XmNminimum Specifies the slider’s minimum value. XmNmaximum must
be greater than XmNminimum.

XmNorientation
Displays Scale vertically or horizontally. This resource can
have values of XmVERTICAL and XmHORIZONTAL.

XmNscaleHeight
Specifies the height of the slider area. The value should be
in the specified unit type (the default is pixels). If no value
is specified, a default height is computed.

XmNscaleWidth
Specifies the width of the slider area. The value should be in
the specified unit type (the default is pixels). If no value is
specified, a default width is computed.

XmNshowValue
Specifies whether a label for the current slider value should
be displayed next to the slider. If the value is True, the
current slider value is displayed.

XmNtitleString
Specifies the title text string to appear in the Scale widget
window.

XmNvalue Specifies the slider’s current position along the scale,
between XmNminimum and XmNmaximum. The value
must be within these inclusive bounds. The initial value of
this resource is the larger of 0 and XmNminimum.

XmNvalueChangedCallback
Specifies the list of callbacks that is called when the value of
the slider has changed. The reason sent by the callback is
XmCR_VALUE_CHANGED.

166

Appendix B: RapidApp Reference

Code Examples

Following are examples of Scale use:

Example B-13 Getting the Value of a Scale Using the IRIS IM API

int value;
XtVaGetValues(widget, XmNvalue, &value, NULL);

Example B-14 Getting the Value of a Scale Using the VkEZ API

int value = EZ(widget);

Example B-15 Setting the Value of a Scale Using the IRIS IM API

XtVaSetValues(widget, XmNvalue, 100, NULL);

Example B-16 Setting the Value of a Scale Using the VkEZ API

EZ(widget) = 100;

ScrolledList

ScrolledList allows a user to select one or more items from a group of
choices. Items are selected from the list in a variety of ways, using both the
pointer and the keyboard. ScrolledList operates on an array of compound
strings that are defined by the application. Each compound string becomes
an item in the ScrolledList, with the first compound string becoming the
item in position 1, the second becoming the item in position 2, and so on.

Each list has one of four selection models:

• Single Select

• Browse Select

• Multiple Select

• Extended Select

In Single Select and Browse Select, only one item is selected at a time. In
Single Select, pressing BSelect on an item toggles its selection state and
deselects any other selected item. In Browse Select, pressing BSelect on an
item selects it and deselects any other selected item; dragging BSelect moves

Controls Palette

167

the selection as the pointer is moved. Releasing BSelect on an item moves the
location cursor to that item.

In Multiple Select, any number of items can be selected at a time. Pressing
BSelect on an item toggles its selection state but does not deselect any other
selected items.

In Extended Select, any number of items can be selected at a time, and the
user can easily select ranges of items. Pressing BSelect on an item selects it
and deselects any other selected item. Dragging BSelect or pressing or
dragging BExtend following a BSelect action selects all items between the
item under the pointer and the item on which BSelect was pressed. This
action also deselects any other selected items outside that range.

Scrolled Window Resources

The following resources are supported by the ScrolledWindow that
contains the List widget. You can select the ScrolledWindow by clicking on
the ScrollBar area, or using the “Select Parent” command.

XmNscrollBarDisplayPolicy
Controls the automatic placement of the ScrollBars. If this
resource is set to XmAS_NEEDED and if
XmNscrollingPolicy is set to XmAUTOMATIC, ScrollBars
are displayed only if the workspace exceeds the clip area in
one or both dimensions. A resource value of XmSTATIC
causes the ScrolledWindow to display the ScrollBars
whenever they are managed, regardless of the relationship
between the clip window and the work area. This resource
must be XmSTATIC when XmNscrollingPolicy is
XmAPPLICATION_DEFINED.

XmNscrollingPolicy
Performs automatic scrolling of the work area with no
application interaction. If the value of this resource is
XmAUTOMATIC, ScrolledWindow automatically creates
the ScrollBars, attaches callbacks to the ScrollBars, and
automatically moves the work area through the clip
window in response to any user interaction with the
ScrollBars.

168

Appendix B: RapidApp Reference

When XmNscrollingPolicy is set to
XmAPPLICATION_DEFINED, the application is
responsible for all aspects of scrolling. The ScrollBars must
be created by the application, and it is responsible for
performing any visual changes in the work area in
response to user input.

List Resources

The following resources are supported by the List widget. Click in the list
area to access these resources.

XmNbrowseSelectionCallback
Specifies the member function to be called when an item is
selected in the browse selection mode. The reason is
XmCR_BROWSE_SELECT.

XmNdefaultActionCallback
Specifies the member function to be called when an item is
double-clicked or KActivate is pressed. The reason is
XmCR_DEFAULT_ACTION.

XmNextendedSelectionCallback
Specifies the member function to be called when items are
selected using the extended selection mode.

XmNitems Points to an array of compound strings that are to be
displayed as the list items. In RapidApp, static or initial
items can be entered as a comma-separated list.

XmNlistSizePolicy
Controls the reaction of the List when an item grows
horizontally beyond the current size of the List work area.
If the value is XmCONSTANT, the list viewing area does
not grow, and a horizontal ScrollBar is added for a
ScrolledList. If this resource is set to XmVARIABLE, the
List grows to match the size of the longest item, and no
horizontal ScrollBar appears.

When the value of this resource is
XmRESIZE_IF_POSSIBLE, the List attempts to grow or
shrink to match the width of the widest item. If it cannot

Controls Palette

169

grow to match the widest size, a horizontal ScrollBar is
added for a ScrolledList if the longest item is wider than
the list viewing area.

XmNmultipleSelectionCallback
Specifies the member function to be called when an item is
selected in multiple selection mode.

XmNselectionPolicy
Defines the interpretation of the selection action. This can be
one of the following:

• XmSINGLE_SELECT: allows only single selections

• XmMULTIPLE_SELECT: allows multiple selections

• XmEXTENDED_SELECT: allows extended selections

• XmBROWSE_SELECT: allows “drag and browse”
functionality

XmNsingleSelectionCallback
Specifies the member function to be called when an item is
selected in single selection mode.

XmNvisibleItemCount
Specifies the number of items that can fit in the visible space
of the list work area. The List uses this value to determine
its height. The value must be greater than 0.

Scrolled Text

The Scrolled Text widget provides a simple multi-line scrollable text editor.

Scrolled Text Resources

Following are the resources supported by the ScrolledText widget:

XmNcolumns Determines the width of the widget in terms of the number
of characters that can be displayed horizontally.

XmNeditable Indicates that the user can edit the text string when set to
True. Prohibits the user from editing the text when set to
False. In RapidApp and RapidApp-generated code, the Text

170

Appendix B: RapidApp Reference

widget automatically changes to read-only color when
XmNeditable is set to False, in conformance with the Indigo
Magic User Interface Guidelines.

XmNmodifyVerifyCallback
Specifies the member function to be called before text is
deleted from or inserted into Text. The type of the structure
whose address is passed to this callback is
XmTextVerifyCallbackStruct. The reason sent by the
callback is XmCR_MODIFYING_TEXT_VALUE.

XmNmotionVerifyCallback
Specifies the member function to be called before the insert
cursor is moved to a new position. The type of the structure
whose address is passed to this callback is
XmTextVerifyCallbackStruct. The reason sent by the
callback is XmCR_MOVING_INSERT_CURSOR. It is
possible for more than one XmNmotionVerifyCallback to
be generated from a single action.

XmNrows Specifies the initial height of the text window measured in
character heights. The value must be greater than 0. The
default value depends on the value of the XmNheight
resource. If no height is specified, the default is 1.

XmNscrollHorizontal
Adds a ScrollBar that allows the user to scroll horizontally
through text when the Boolean value is True. This resource
is forced to False when the Text widget is placed in a
ScrolledWindow with XmNscrollingPolicy set to
XmAUTOMATIC.

XmNvalue Specifies the initial contents of the Text widget.

XmNvalueChangedCallback
Specifies the member function to be called after text is
deleted from or inserted into Text. The type of the structure
whose address is passed to this callback is
XmAnyCallbackStruct. The reason sent by the callback is
XmCR_VALUE_CHANGED.

Controls Palette

171

TextField

TextField is a simple, single line text editor. It is similar to the ScrolledText
widget, but can have only a single row of text and is not scrollable.

TextField Resources

Following are the resources supported by the TextField widget:

XmNactivateCallback
Specifies the member function to be called when the user
presses <Enter> . The type of the structure whose address is
passed to this callback is XmAnyCallbackStruct. The
reason sent by the callback is XmCR_ACTIVATE.

XmNcolumns Determines the width of the widget in terms of the number
of characters that can be displayed horizontally.

XmNeditable Indicates that the user can edit the text string when set to
True. Prohibits the user from editing the text when set to
False. In RapidApp and RapidApp-generated code, the Text
widget automatically changes to read-only color when
XmNeditable is set to False, in conformance with the Indigo
Magic User Interface Guidelines.

XmNmodifyVerifyCallback
Specifies the member function to be called before text is
deleted from or inserted into Text. The type of the structure
whose address is passed to this callback is
XmTextVerifyCallbackStruct. The reason sent by the
callback is XmCR_MODIFYING_TEXT_VALUE.

XmNmotionVerifyCallback
Specifies the member function to be called before the insert
cursor is moved to a new position. The type of the structure
whose address is passed to this callback is
XmTextVerifyCallbackStruct. The reason sent by the
callback is XmCR_MOVING_INSERT_CURSOR. It is
possible for more than one XmNmotionVerifyCallbacks to
be generated from a single action.

XmNvalue Specifies the initial contents of the Text widget.

172

Appendix B: RapidApp Reference

XmNvalueChangedCallback
Specifies the member function to be called after text is
deleted from or inserted into Text. The type of the structure
whose address is passed to this callback is
XmAnyCallbackStruct. The reason sent by the callback is
XmCR_VALUE_CHANGED.

Finder

The Finder widget integrates a DropPocket pocket, a TextField, a ZoomBar,
and a history menu into a single widget. The zoomBar is a set of buttons
above the text field that allows sections of the text to be selected. The history
menu allows users to select items previously visited, or to undo operations.
The Finder widget should be used for accelerating text selection of long
objects such as filenames.

Clicking the History button brings up a pulldown menu. Selecting an item
from the menu sets the text field to that item. Whenever the text field is set,
the zoomBar changes to reflect the text sections in the text field.

Pressing a button on the zoomBar sets the text field to the portion of the text
preceding that button. The specific behavior is customizable, but generally
cuts off the portion of the text after the pressed zoomBar button. The history
menu can be used to go back to the original text.

The Finder also includes a DropPocket for displaying icons representing
entries in the Finder’s text field. These icons are Silicon Graphic’s
environment file icons. File icons from FrameMaker, Searchbook, or similar
applications can be dropped on the DropPocket.

Finder Resources

Following are the resources supported by the Finder widget:

XmNactivateCallback
This callback is called when a zoomBar button is pushed or
when the text field generates an activateCallback (in other
words, pressing <Enter> in the text field) or if the text field
is set by SgFinderSetTextString. The type of the structure

Controls Palette

173

whose address is passed to this callback is
XmAnyCallbackStruct. The reason sent by the callback is
XmCR_ACTIVATE.

XmNvalueChangedCallback
The value changed callback specifies the list of callbacks
that is called after text is deleted from or inserted into the
text field. The type of the structure whose address is passed
to this callback is XmAnyCallbackStruct. The reason sent
by the callback is XmCR_VALUE_CHANGED.

Thumbwheel

ThumbWheel is used by an application to allow the user to input or modify
a value either from within a range of values or from an unbounded (infinite)
range.

A ThumbWheel has an elongated rectangular region within which a wheel
graphic is displayed. The user can modify the ThumbWheel’s value by
spinning the wheel. A ThumbWheel can also include a Home button located
outside the wheel region. This button allows the user to set the
ThumbWheel’s value to a known position.

Thumbwheel Resources

Following are the resources supported by the Thumbwheel widget:

SgNhomePosition
Specifies the known value to which the thumb wheel’s
value is set when the Home button is clicked.

XmNmaximum Specifies the thumb wheel’s maximum value.
XmNmaximum must be greater than or equal to
XmNminimum. Setting XmNmaximum equal to
XmNminimum indicates an infinite range.

XmNminimum Specifies the thumb wheel’s minimum value.
XmNmaximum must be greater than or equal to
XmNminimum. Setting XmNmaximum equal to
XmNminimum indicates an infinite range.

174

Appendix B: RapidApp Reference

XmNdragCallback
Specifies a member function to be called continuously as the
value of the thumb wheel changes.

SgNangleRange
Specifies the angular range, in degrees, through which the
thumb wheel is allowed to rotate. This, in conjunction with
XmNmaximum and XmNminimum, controls the fineness
or coarseness of the wheel control when it is not infinite. If
this value is set to zero, the thumb wheel has an infinite
range.

The default of 150 represents roughly the visible amount of
the wheel. Thus clicking at one end of the wheel and
dragging the mouse to the other end gives roughly the
entire range from XmNminimum to XmNmaximum.

XmNorientation
Displays ThumbWheel vertically or horizontally. This
resource can have values of XmVERTICAL and
XmHORIZONTAL.

XmNvalue Specifies the current position of the thumb wheel, between
XmNminimum and XmNmaximum if the thumb wheel is
not infinite.

XmNvalueChangedCallback
Specifies the member function to be called when the value
of the thumb wheel has changed. The reason sent by the
callback is XmCR_VALUE_CHANGED.

Dial

The Dial widget allows a user to modify a value from within a range of
values. A Dial has a rectangular region within which a knob or pointer
graphic is displayed. The user can modify the Dial’s value by spinning this
knob or pointer.

Controls Palette

175

Dial Resources

Following are the resources supported by the Dial widget:

SgNdialMarkers
Specifies the number of divisions around the perimeter of
the dial. A “tick mark” is drawn at each division.

XmNmaximum Specifies the dial’s maximum value. XmNmaximum must
be greater than or equal to XmNminimum.

XmNminimum Specifies the dial’s minimum value. XmNmaximum must
be greater than or equal to XmNminimum.

SgNstartAngle Specifies the whole number angle (0-360) where the dial
starts increasing.

SgNangleRange
Specifies the angular range, in degrees, through which the
dial is allowed to rotate. This, in conjunction with
XmNmaximum and XmNminimum, controls the fineness
or coarseness of the dial control.

SgNdialVisual Specifies the look of the dial, either SgKNOB or
SgPOINTER.

XmNdragCallback
Specifies a member function to be called when the dial
position changes as the dial is being spun. The reason sent
by the callback is XmCR_DRAG.

XmNvalue Specifies the current position of the dial, between
XmNminimum and XmNmaximum.

XmNvalueChangedCallback
Specifies a member function to be called when the value of
the dial has changed. The reason sent by the callback is
XmCR_VALUE_CHANGED.

GLwMDrawingArea

The GLwMDrawingArea widget creates an empty window suitable for
OpenGL drawing. It provides a window with the appropriate visual- and
colormaps needed for OpenGL, based on supplied parameters.

176

Appendix B: RapidApp Reference

GLwMDrawingArea also provide callbacks for redraw, resize, input, and
initialization.

Included in the information provided when creating a GLwMDrawingArea
is information necessary to determine the visual. This may be provided in
three ways, all of them through resources.

• A specific visualInfo structure may be passed in. (This visualInfo must
have been obtained elsewhere; it is the application designer’s
responsibility to make sure that it is compatible with the OpenGL
rendering done by the application).

• An attribute list may be provided. This attribute list is formatted
identically to that used for direct open GL programming.

• Each attribute can be specified as an individual resource. This method
is the simplest, and is the only method that works from resource files.

In addition to allocating the visual, the GLwMDrawingArea also allocates
the colormap unless one is provided by the application. (If a colormap is
provided, the application writeris responsible for guaranteeing
compatibility between the colormap and the visual). If an application creates
multiple GLwMDrawingArea widgets with the same visual, the same
colormap is used.

GLwNexposeCallback
Specifies a member function to be called when the widget
receives an exposure event. The callback reason is
GLwCR_EXPOSE. The callback structure also includes the
exposure event. You generally want the application to
redraw the scene.

GLwNginitCallback
Specifies a member function to be called when the widget is
first realized. Since no OpenGL operations can be done
before the widget is realized, this callback can be used to
perform any appropriate OpenGL initialization such as
creating a context. The callback reason is GLwCR_GINIT.

GLwNinputCallback
Specifies a member function to be called when the widget
receives a keyboard or mouse event. By default, the input
callback is called on each key press and key release, on each
mouse button press and release, and whenever the mouse is

Controls Palette

177

moved while a button is pressed. However, this can be
changed by providing a different translation table. The
callback structure also includes the input event. The
callback reason is GLwCR_INPUT.

The input callback is provided as a programming
convenience, as it provides a convenient way to catch all
input events. However, a more modular program can often
be obtained by providing specific actions and translations
in the application rather than by using a single catchall
callback. Use of explicit translations can also provide for
more customizability.

GLwNresizeCallback
Specifies the member function to be called when the
GLwMDrawingArea is resized. The callback reason is
GLwCR_RESIZE.

The GLwDrawingArea widget requires information about the visual type to
be used. This information can be passed programmatically as a visual Info
structure, or the individual attributes of the visual type may be specified in
RapidApp. These attributes include the following:

alphaSize An integer value that corresponds to the GLX_RED_SIZE
attribute

blueSize An integer value that corresponds to the GLX_BLUE_SIZE
attribute

doubleBuffer A Boolean value that corresponds to the
GLX_DOUBLEBUFFER attribute

greenSize An integer value that corresponds to the
GLX_GREEN_SIZE attribute.

level An integer value that corresponds to the GLX_LEVEL
attribute.

redSize An integer value that corresponds to the GLX_RED_SIZE
attribute.

rgba A Boolean value that corresponds to the GLX_RGBA
attribute.

178

Appendix B: RapidApp Reference

For more information about these atributes and visual types, see the
reference pages for the GLwDrawingArea widget, the reference page for
glxChooseVisual, and the OpenGL specification.

Drop Pocket

The DropPocket widget is designed to recieve desktop icons from the IRIS
Indigo Magic desktop. The DropPocket displays the file icon as a visual
reminder of the file associated with the DropPocket. See the SgDropPocket
reference page for more details.

DropPocket Resources

Following are the resources for DropPocket:

SgNiconUpdateCallback
The member function to be invoked when an icon is
dropped in the DropPocket. See the SgDropPocket
reference page for more details.

SgNname Specifies the name of the current icon. This resource can be
set to specify the initial icon that appears in the DropPocket.

Menus Palette

The Menus palette (see Figure B-13) contains menu interface elements such
as pulldown menu, option menu, and menu separator.

Menus Palette

179

Figure B-13 Menus Palette

The user interface elements available through this palette are described in
the following sections.

Pulldown Menu

The Pulldown menu item adds a pulldown menu to a menu bar. By default
several items are included. These can be edited or removed as needed. A
Pulldown menu is created by calling the ViewKit member function
addSubMenu().

You can display the menu pane by selecting it, and then clicking once again.
Once displayed, you can add additional items (MenuEntry, MenuLabel,
MenuToggle, MenuSeparator, ConfirmFirst, or other pulldowns) by
droping new elements on the displayed menu area. You can dismiss the
option menu by clicking on the pulldown again.

180

Appendix B: RapidApp Reference

Pulldown Resources

Resources in the Pulldown menu correspond to the visible menu entry for
this pulldown. The resources available are the following:

XmNlabelString
The string displayed for this menu pane.

XmNmnemonic
The mnemonic used to post this menu item.

Cascade Menu

The Cascade menu item adds a pull-right menu to an existing menu pane.
By default several items are included. These can be edited or removed as
needed.

You can display the menu pane by selecting it, and then clicking once again.
Once displayed, you can add additional items (MenuEntry, MenuLabel,
MenuToggle, MenuSeparator, ConfirmFirst, or other pulldowns) by
droping new elements on the displayed menu area. You can dismiss the
option menu by clicking on the pulldown again.

Note: For experience Motif developers: This item is identical to the
Pulldown menu item, and is present as an aid to those less familiar with the
Motif menu structure.

Cascade Resources

Resources in the Cascade menu correspond to the visible menu entry for this
menu pane. The resources available are the following:

XmNlabelString
The string displayed for this menu pane.

XmNmnemonic
The mnemonic used to post this menu item.

Menus Palette

181

Radio Pulldown

A RadioPulldown menu item can be aded to an existing menu bar or menu
pane. It is meant to hold sets of toggle items that exhibit radio (one-of-many)
behavior. By default, two initial toggles are created for each new
RadioPulldown. These can be edited or removed as needed.

You can display the menu pane by selecting it, and then clicking once again.
Once displayed, you can add additional items (MenuEntry, MenuLabel,
MenuToggle, MenuSeparator, ConfirmFirst, or other pulldowns) by
droping new elements on the displayed menu area. You can dismiss the
option menu by clicking on the pulldown again.

RadioPulldown Resources

Resources in the RadioPulldown menu correspond to the visible menu
entry for this menu pane. The resources available are the following:

XmNlabelString
The string displayed for this menu pane.

XmNmnemonic
The mnemonic used to post this menu item.

OptionMenu

The OptionMenu item creates a menu that can be sued to select one item
from a set of choices. The OptionMenu is created with two initial options
which can be edited or removed as needed. You can display the option menu
by selecting it, and then clicking once again. Once displayed, you can add
additional items (MenuEntry elements) by droping new elements on the
displayed menu area. You can dismiss the option menu by clicking on the
menu button (not the displayed menu pane).

You can display the menu pane by selecting it, and then clicking once again.
Once displayed, you can add additional items (MenuEntry, MenuLabel,
MenuToggle, MenuSeparator, ConfirmFirst, or other pulldowns) by
droping new elements on the displayed menu area. You can dismiss the
option menu by clicking on the pulldown again.

182

Appendix B: RapidApp Reference

OptionMenu Resources

Following are the OptionMenu resources available through RapidApp:

XmNlabelString
Determines the value of an optional string to be displayed
to the left of the option menu as a title. If left empty,the title
is not visible.

Menu Entry

The MenuEntry corresponds to an XmPushButtonGadget, and is intended
to be added to a menu pane or OptionMenu as a selectable command entry.
The MenuEntry is represented in the program as a ViewKit VkMenuAction
object.

MenuEntry Resources

Following are the MenuEntry resources available through RapidApp:

XmNaccelerator
A description of the accelerator keys that can be used to
invoke this menu item.

XmNacceleratorText
The text to be displayed in the item to remind the user of the
accelerator.

XmNactivateCallback
The member function to be invoked when this menu item is
selected.

XmNlabelString
The label to be displayed in this menu item.

XmNmnemonic
The mnemonic that can be used to select this item.

XmNundoCallback
The optional member function that should be called if this
item is reversed using the ViewKit undo mechanism.

Menus Palette

183

Menu Label

The MenuLabel corresponds to an XmLabelGadget, and is intended to be
added to a menu pane or OptionMenu as a non-selectable entry. The
MenuLabel will be represented in the program as a ViewKit VkMenuLabel
object.

MenuLabel Resources

Following are the MenuLabel resources available through RapidApp:

XmNlabelString
The label to be displayed in this menu item.

Menu Toggle

The MenuToggle corresponds to an XmToggleButtonGadget, and is
intended to be added to a menu pane as a selectable two-state entry. The
MenuToggle is represented in the program as a ViewKit VkMenuToggle
object. When added to a RadioPulldown, this entry has one-of-many
behavior. Otherwise, all toggles can be selected independently.

MenuToggle Resources

Following are the MenuToggle resources available through RapidApp:

XmNaccelerator
A description of the accelerator keys that can be used to
invoke this menu item.

XmNacceleratorText
The text to be displayed in the item to remind the user of the
accelerator.

XmNvalueChangedCallback
The member function to be invoked when this menu item is
selected.

XmNlabelString
The label to be displayed in this menu item.

184

Appendix B: RapidApp Reference

XmNmnemonic
The mnemonic that can be used to select this item.

XmNundoCallback
The optional member function that should be called if this
item is reversed using the ViewKit undo mechanism.

XmNset Determines whether this item is selected by default.

Menu Separator

The MenuSeparator corresponds to an XmSeparatorGadget, and is
intended to be added to a menu pane as a decorative item to separate other
entries.

MenuSeparator will be represented in the program as a ViewKit
VkMenuSeparator object.

ConfirmFirst

The ConfirmFirst corresponds to an XmPushButtonGadget, and is intended
to be added to a menu pane as a selectable command entry that asks the user
for confirmation before executing the command. The MenuEntry will be
represented in the program as a ViewKit VkMenuConfirmFirstAction
object.

MenuToggle Resources

Following are the MenuToggle resources available through RapidApp:

XmNaccelerator
A description of the accelerator keys that can be used to
invoke this menu item.

XmNacceleratorText
The text to be displayed in the item to remind the user of the
accelerator.

XmNactivateCallback
The member function to be invoked when this menu item is
selected.

ViewKit Palette

185

XmNlabelString
The label to be displayed in this menu item.

XmNmnemonic
The mnemonic that can be used to select this item.

ViewKit Palette

The ViewKit palette (see Figure B-14) contains ViewKit interface elements
such as tab panel, tick marks, and graph.

Figure B-14 ViewKit Palette

The user interface elements available through this palette are described in
the following sections.

VkOutline

The VkOutline class allows you to display a tree of strings in an outline
fashion. Each string is displayed in a line with an indentation proportional

186

Appendix B: RapidApp Reference

to its depth in the tree. Each non-leaf string has a control icon displayed to
its left. The control icon denotes whether the subtree under the string is
displayed (open) or not (closed). Control icons can be left-clicked by users to
toggle between open and closed states.

This component cannot be manipulated via RapidApp, but can be added
and positioned using RapidApp and manipulated programmatically. See the
VkOutline reference page for details.

VkCompletionField

The VkCompletionField component is a text input field that supports name
expansion. If the user types a space, the component attempts to complete the
current contents of the text field, based on a known list of possible
expansions. Applications must provide the list of possible expansions.

These can be provided programmatically, or they can be entered using
RapidApp by providing a comma-separated list of strings as the
completionList resource.

Applications that wish to be notified when you press <Enter> in the text
field can register a ViewKit C++-style callback using the
VkCompletionFiled::enterCallback() hook. This can only be done
programmatically.

VkGraph

The VkGraph class is a component that provides a high-level interface to an
underlying SgGraph widget. Graphs are constructed by specifying
parent/child parents of objects, represented by the VkNode class. The
VkGraph class constructs an abstract graph from these objects and allows
applications or users to specify which portions of the graph to display at any
one time. In this way, the VkGraph component supports graphs that can be
larger than it is practical to display at one time.

Nodes must be created programmatically. A number of resources that affect
either VkGraph or the underlying SgGraph widget can be set using
RapidApp.

ViewKit Palette

187

VkTabPanel

VkTabPanel presents a row or column of overlaid tabs. One tab is always
selected and appears on top of all the others. The user can left-click on a tab
to select it. When the tabs do not fit within the provided space,
end-indicators appear as necessary to represent a set of collapsed tabs. When
the user left-clicks or right-clicks in an end-indicator, a popup menu appears
listing all the tabs. The user may choose an item to select the corresponding
tab.

Tabs can be added programmatically, or they can be entered as a
comma-separated set of strings in the “tabs” resource input area.

RapidApp currently supports only horizontal a orientation.

VkTabbedDeck

VkTabbedDeck is a composite component that combines a ViewKit
VkDeck manager and a VkTabPanel. You can add items to the
VkTabbedDeck by simply dropping them on the container. Each new child
becomes a new panel in the deck, and automatically adds a new tab that
allows the user to switch to that panel.

VkVUMeter

VkVUMeter presents a vertical set of segments as a meter display, similar to
that used by hi-fi audio displays. Its value ranges from 0 to 110, with 0
showing the most segments and 110 showing the least.

VkPie

This class is derived from VkMeter and displays data in the same way as
that class. Values are added programmatically, one at a time, and displayed
by calling an update() member function. The range of values displayed can
be specified by calling the reset() member function with a new value.

188

Appendix B: RapidApp Reference

VkTickMarks

VkTickMarks presents a vertical set of tick marks. It is most commonly used
next to a vertical XmScale widget. The tick marks can be right-justified with
the labels to the left (the default), or left justified with the labels to the right.
The former is used when the component is to the left of the scale, and the
latter when the component is to the right.

Inventor Palette

The Inventor palette (see Figure B-15) contains Inventor interface elements
such as material list, light slider set, and render area.

Figure B-15 Inventor Palette

The user interface elements available through this palette are described in
the following sections.

Inventor Palette

189

Examiner Viewer

An Inventor scene viewer. The Examiner viewer component allows you to
rotate the view around a point of interest using a virtual trackball. The
viewer uses the camera focalDistance field to figure out the point of rotation,
which is usually set to be at the center of the scene. In addition to allowing
you to rotate the camera around the point of interest, this viewer also allows
you to translate the camera in the viewer plane, as well as dolly (move
forward and backward) to get closer to or further away from the point of
interest. The viewer also supports seek to quickly move the camera to a
desired object or point. See the reference page or the Inventor Mentor for more
details.

Examiner Viewer Resources

Following are the SoXtExaminerViewer resources available through
RapidApp:

animationEnabled
Enable or disable the spinning animation feature of the
viewe.

antialiasing Set the antialiasing for rendering. If this resource is set to
True, “smoothing” is enabled. Smoothing uses OpenGL’s
line- and point-smoothing features to provide cheap
antialiasing of lines and points.

border Toggles the border around the viewe ron or off

bufferingType Sets the current buffering type.

decoration Toggles the controls surrounding the viewer on or off.

drawStyle Sets the current drawing style in the main view. See the
SoXtViewer reference page for more details.

headlight Turns the headlight on/off.

popupMenuEnabled
Activates or deactivates the right mouse button popup
menu over the viewer.

sceneGraph Specifies a filename of a scene graph to be displayed.

190

Appendix B: RapidApp Reference

feedbackVisibility
Show/Hide the point of rotation feedback, which only
appears while in viewing mode (default in off).

feedbackSize Set the point of rotation feedback size in pixels (default 20
pix).

Walk Viewer

An Inventor scene viewer. The paradigm for this viewer is a walkthrough of
an architectural model. Its primary behavior is forward, backward, and
left/right turning motion while maintaining a constant “eye level”. It is also
possible to stop and look around at the scene. The eye level plane can be
disabled, allowing the viewer to proceed in the “look at” direction, as if on
an escalator. The eye level plane can also be translated up and down ‹em
similar to an elevator. See the reference page or the Inventor Mentor for more
details.

Walk Viewer Resources

Following are the SoXtWalkViewer resources available through RapidApp:

antialiasing Set the antialiasing for rendering. If this resource is set to
True, “smoothing” is enabled. Smoothing uses OpenGL’s
line- and point-smoothing features to provide cheap
antialiasing of lines and points.

border Toggles the border around the viewe ron or off

bufferingType Sets the current buffering type.

decoration Toggles the controls surrounding the viewer on or off.

drawStyle Sets the current drawing style in the main view. See the
SoXtViewer reference page for more details.

headlight Turns the headlight on/off.

popupMenuEnabled
Activates or deactivates the right mouse button popup
menu over the viewer.

sceneGraph Specifies a filename of a scene graph to be displayed.

Inventor Palette

191

Plane Viewer

An Inventor scene viewer. The Plane viewer component allows the user to
translate the camera in the viewing plane, as well as dolly (move
foward/backward) and zoom in and out. The viewer also allows the user to
roll the camera (rotate around the forward direction) and seek to objects
which will specify a new viewing plane. This viewer could be used for
modeling, in drafting, and architectural work. The camera can be aligned to
the X, Y or Z axes. See the reference page or the Inventor Mentor for more
details.

Plane Viewer Resources

Following are the SoXtPlaneViewer resources available through RapidApp:

border Toggles the border around the viewe ron or off

bufferingType Sets the current buffering type.

decoration Toggles the controls surrounding the viewer on or off.

drawStyle Sets the current drawing style in the main view. See the
SoXtViewer reference page for more details.

headlight Turns the headlight on/off.

popupMenuEnabled
Activates or deactivates the right mouse button popup
menu over the viewer.

sceneGraph Specifies a filename of a scene graph to be displayed.

Material Editor

This Inventor class is used to edit the material properties of an SoMaterial.
node. The editor can also directly be used using callbacks instead of
attaching it to a node. The component consists of a render area displaying a
test sphere, some sliders, a set of radio buttons, and a menu. The sphere
displays the current material being edited. There is one slider for each
material coefficient. Those fields are ambient, diffuse, specular, emissive (all
of which are colors); and transparency and shininess (which are scalar
values). A color editor can be opened to edit the color slider base color. A
material list displays palettes of predefined materials from which to choose.

192

Appendix B: RapidApp Reference

The editor can currently be attached to only one material at a time. Attaching
two different materials will automatically detach the first one before
attaching the second. See the reference page or the Inventor Mentor for more
details.

Directional Light

This Inventor class is used to edit an SoDirectionalLight node (color,
intensity, and direction are changed). In addition to directly editing
directional light nodes, the editor can also be used with callbacks which will
be called whenever the light is changed. The component consists of a render
area and a value slider in the main window, with controls to display a color
picker. In the render area there appears a sphere representing the world, and
a directional light manipulator representing the direction of the light.
Picking on the manipulator and moving the mouse provides direct
manipulation of the light direction. The color picker is used to edit the color,
and the value slider edits the intensity. See the reference page or the Inventor
Mentor for more details.

SoFly Viewer

This Inventor scene viewer is intended to simulate flight through space, with
a constant world up direction. The viewer only constrains the camera to
keep the user from flying upside down. No mouse buttons need to be
pressed in order to fly. The mouse position is used only for steering, while
mouse clicks are used to increase or decrease the viewer speed.

The viewer allows you to tilt your head up/down/right/left and move in
the direction you are looking (forward or backward). The viewer also
supports seek to quickly move the camera to a desired object or point. See
the man page or the Inventor Mentor for more details.

Inventor Palette

193

SoFly Viewer Resources

Following are the SoXtFlyViewer resources available through RapidApp:

antialiasing Set the antialiasing for rendering. If this resource is set to
True, “smoothing” is enabled. Smoothing uses OpenGL’s
line- and point-smoothing features to provide cheap
antialiasing of lines and points.

border Toggles the border around the viewe ron or off

bufferingType Sets the current buffering type.

decoration Toggles the controls surrounding the viewer on or off.

drawStyle Sets the current drawing style in the main view. See the
SoXtViewer reference page for more details.

headlight Turns the headlight on/off.

popupMenuEnabled
Activates or deactivates the right mouse button popup
menu over the viewer.

sceneGraph Specifies a filename of a scene graph to be displayed.

viewing Set whether the viewer is turned on or off. When turned on,
events are consumed by the viewer. When viewing is off,
events are processed by the viewer’s render area. This
means events will be sent down to the scene graph for
processing (in other words, picking can occur).

Render Area

This Inventor class provides Inventor rendering and event handling inside a
GLX Motif widget. There is a routine to specify the scene to render. The scene
is automatically rendered whenever anything under it changes (a data
sensor is attached to the root of the scene), unless explicitly told not to do so
(manual redraws). Users can also set Inventor rendering attributes such as
the transparency type, antialiasing on or off, etc. This class employs a
SoSceneManager to manage rendering and event handling. See the
reference page or the Inventor Mentor for more details.

194

Appendix B: RapidApp Reference

Render Area Resources

Following are the SoXtRenderArea resources available through RapidApp:

antialiasing Set the antialiasing for rendering. If this resource is set to
True, “smoothing” is enabled. Smoothing uses OpenGL’s
line- and point-smoothing features to provide cheap
antialiasing of lines and points.

border Toggles the border around the viewe ron or off

bufferingType Sets the current buffering type.

decoration Toggles the controls surrounding the viewer on or off.

drawStyle Sets the current drawing style in the main view. See the
SoXtViewer reference page for more details.

headlight Turns the headlight on/off.

popupMenuEnabled
Activates or deactivates the right mouse button popup
menu over the viewer.

sceneGraph Specifies a filename of a scene graph to be displayed.

viewing Set whether the viewer is turned on or off. When turned on,
events are consumed by the viewer. When viewing is off,
events are processed by the viewer’s render area. This
means events will be sent down to the scene graph for
processing (in other words, picking can occur).

195

Appendix C

C. Source Code for the Calculator Application

This appendix lists and discusses some of the source files for the simple
calculator application built in “Example: A Calculator” on page 24. The
version of the calculator program in this appendix includes the Calculator
component created in “Creating Components” on page 89.

The Calculator main.C File

The body of any program generated by RapidApp is very simple.
Example C-1 lists the main.C file for the calculator application.

Example C-1 Calculator main.C File

//
// This is a driver ViewKit program generated by RapidApp

//
// This program instantiates a ViewKit VkApp object and creates
// any main window objects that are meant to be shown at startup.
// There should rarely be a reason to modify this file.
// Make application-specific changes in the classes created
// by the main window classes
// Some applications may wish to change this code to instantiate
// a different application class, however.
//
#include <Vk/VkApp.h>

// Headers for classes used in this program

#include "CalcWindowMainWindow.h"

void main (int argc, char **argv)
{

extern void InitEZ(void);

196

Appendix C: Source Code for the Calculator Application

InitEZ();

VkApp *app;

app = new VkApp("Calculator", &argc, argv);

VkSimpleWindow *calcWindow = new CalcWindowMainWindow("calcWindow");
calcWindow->show();

app->run ();
}

This file simply instantiates an IRIS ViewKit VkApp class and then creates a
CalcWindowMainWindow object before entering an event loop (the run()
statement).

The CalcWindowMainWindow Class

The CalcWindowMainWindow class is a simple top-level IRIS ViewKit
window class derived from VkSimpleWindow. This class provides the basic
functionality of a shell widget and handles window manager interaction.
You normally shouldn’t edit this class’s files, but it’s worthwhile to see what
the code does. Example C-2 lists the CalcWindowMainWindow header file,
and Example C-3 lists the CalcWindowMainWindow source file.

Example C-2 The Calculator CalcWindowMainWindow.h File

//
//
// Header file for CalcWindowMainWindow
//
// This class is a ViewKit VkSimpleWindow subclass
//
// Normally, very little in this file should need to be changed.
// Create/add/modify menus using the builder.
//
// Try to restrict any changes to adding members below the
// "//---- End generated code section" markers
// Doing so will allow you to make chnages using the builder
// without losing any changes you may have made manually
//
//
#ifndef CALCWINDOWMAINWINDOW_H
#define CALCWINDOWMAINWINDOW_H

197

#include <Vk/VkSimpleWindow.h>

//---- End generated headers

//---- CalcWindowMainWindow class declaration

class CalcWindowMainWindow: public VkSimpleWindow {

public:

CalcWindowMainWindow(const char * name);
~CalcWindowMainWindow();
const char *className();
virtual Boolean okToQuit();

//---- End generated code section

protected:

// Classes created by this class

class Calculator *_calculator;

//---- End generated code section

private:

//---- End generated code section

};
#endif

Example C-3 The Calculator CalcWindowMainWindow.C File

//
//
// Source file for CalcWindowMainWindow
//
// This class is a ViewKit VkSimpleWindow subclass
//
//

198

Appendix C: Source Code for the Calculator Application

// Normally, very little in this file should need to be changed.
// Create/add/modify menus using the builder.
//
// Try to restrict any changes to the bodies of functions
// corresponding to menu items, the constructor and destructor.
//
// Add any new functions below the "//--- End Generated Code"
// markers
//
// Doing so will allow you to make changes using the builder
// without losing any changes you may have made manually
//
// Avoid gratuitous reformatting and other changes that might
// make it difficult to integrate changes made using the builder
//
#include "CalcWindowMainWindow.h"
#include <Vk/VkApp.h>
#include <Vk/VkFileSelectionDialog.h>
#include <Vk/VkSubMenu.h>
#include <Vk/VkRadioSubMenu.h>
#include <Vk/VkMenuItem.h>
#include "Calculator.h"
//---- End Generated Headers

//---- Class declaration

CalcWindowMainWindow::CalcWindowMainWindow(const char *name) : VkSimpleWindow (na
me)
{

// Create the view component contained by this window

_calculator= new Calculator("calculator",mainWindowWidget());

XtVaSetValues (_calculator->baseWidget(),
XmNwidth, 289,
XmNheight, 201,
(XtPointer) NULL);

// Add the component as the main view

addView (_calculator);
_calculator->setParent(this);

199

//---- End Generated Code Section

} // End Constructor

CalcWindowMainWindow::~CalcWindowMainWindow()
{

delete _calculator;
} // End destructor

const char *CalcWindowMainWindow::className()
{

return ("CalcWindowMainWindow");
} // End className()

Boolean CalcWindowMainWindow::okToQuit()
{

// This member function is called when the user quits by calling
// theApplication->terminate() or uses the window manager close protocol
// This function can abort the operation by returning FALSE, or do some.
// cleanup before returning TRUE. The actual decision is normally passed on
// to the view object

// Query the view object, and give it a chance to cleanup

return (_calculator->okToQuit());
} // End okToQuit()

//--- End generated member functions

Note the “End Generated Code Section” markers. If you do need to modify
this class, you should do so below these markers only.

CalcWindowMainWindow declares the pointer to the Calculator
component that it creates as a protected data member. this allows you to
access the Calculator component in any member functions that you add to
this class.

200

Appendix C: Source Code for the Calculator Application

The CalcWindowMainWindow constructor calls the VkSimpleWindow
constructor and then instantiates a Calculator object. After setting the initial
size of the component, the constructor adds the Calculator object as a view
of the window.

The CalcWindowMainWindow destructor deletes the Calculator object
created by the window.

The className() member function is a “boilerplate” function that all IRIS
ViewKit components must implement to support X resource management.

Before exiting, the VkApp class calls the okToQuit() member function for
each top-level window in the program. This gives a program a chance to
clean up (for example, closing databases) or abort the shutdown if necessary.
The CalcWindowMainWindow::okToQuit() member function that
RapidApp generates simply calls the okToQuit() function of the Calculator
component.

The Calculator Class

Calculator is the user-defined class you created in RapidApp. RapidApp
automatically places most of the user interface code the base class,
CalculatorUI, so the Calculator class itself is very simple. The class header,
shown in Example C-4, declares constructors, destructors, and a virtual
function, add(), which is the function called when the user presses the “=”
button on the calculator interface.

Example C-4 The Calculator Calculator.h File

//
//
// Header file for Calculator
//
// This file is generated by RapidApp
//
// This class is derived from CalculatorUI which
// implements the user interface created in
// the interface builder. This class contains virtual
// functions that are called from the user interface.
//
// When you modify this header file, limit your changes to adding
// members below the "//--- End generate code" markers

201

//
// This will allow the builder to integrate changes more easily
//
// This class is a ViewKit user interface "component".
// For more information on how components are used, see the
// "ViewKit Programmers' Manual", and the RapidApp
// User's Guide.
//
#ifndef CALCULATOR_H
#define CALCULATOR_H
#include "CalculatorUI.h"

#include <Vk/VkSimpleWindow.h>
//---- End generated headers

//---- Calculator class declaration

class Calculator : public CalculatorUI
{

public:

Calculator(const char *, Widget);
Calculator(const char *);
~Calculator();
const char * className();
virtual void setParent(VkSimpleWindow *);
//---- End generated code section

protected:

// These functions will be called as a result of callbacks
// registered in CalculatorUI

virtual void add (Widget, XtPointer);

VkSimpleWindow * _parent;
//---- End generated code section

private:

202

Appendix C: Source Code for the Calculator Application

};
#endif

The Calculator.C source file consists primarily of empty functions. Most of
the work is done by the CalculatorUI class. The listing shown in
Example C-5 displays in bold the code you added to implement the class’s
functionality. This consists of changes to the add() function and two
additional header files.

Example C-5 The Calculator Calculator.C File

///
//
// Source file for Calculator
//
// This file is generated by RapidApp
//
// This class is derived from CalculatorUI which
// implements the user interface created in
// the interface builder. This class contains virtual
// functions that are called from the user interface.
//
// When you modify this source, limit your changes to
// modifying the emtpy virtual functions. You can also add
// new functions below the "//--- End generate code" markers
//
// This will allow the builder to integrate changes more easily
//
// This class is a ViewKit user interface "component".
// For more information on how components are used, see the
// "ViewKit Programmers' Manual", and the RapidApp
// User's Guide.
///

#include "Calculator.h"
#include <Vk/VkEZ.h>
#include <Xm/BulletinB.h>
#include <Xm/Label.h>
#include <Xm/PushB.h>
#include <Xm/Separator.h>
#include <Xm/TextF.h>
#include <Vk/VkResource.h>
#include <Vk/VkSimpleWindow.h>

extern void VkUnimplemented(Widget, const char *);

203

//---- End generated headers

#include <Vk/VkFormat.h>
#include <stdlib.h>

///
// The following non-container widgets are created by CalculatorUI and are
// available as protected data members inherited by this class
//
// XmPushButton _button
// XmSeparator _separator
// XmLabel _label
// XmTextField _result
// XmTextField _value2
// XmTextField _value1
//
///

//---- Calculator Constructor

Calculator::Calculator(const char *name, Widget parent) :
CalculatorUI(name, parent)

{
// This constructor calls CalculatorUI(parent, name)
// which calls CalculatorUI::create() to create
// the widgets for this component. Any code added here
// is called after the component's interface has been built

//--- Add application code here:

} // End Constructor

Calculator::Calculator(const char *name) :
CalculatorUI(name)

{
// This constructor calls CalculatorUI(name)
// which does not create any widgets. Usually, this
// constructor is not used

//--- Add application code here:

204

Appendix C: Source Code for the Calculator Application

} // End Constructor

Calculator::~Calculator()
{

// The base class destructors are responsible for
// destroying all widgets and objects used in this component.
// Only additional items created directly in this class
// need to be freed here.

//--- Add application destructor code here:

}

const char * Calculator::className() // classname
{

return ("Calculator");
} // End className()

void Calculator::add (Widget w, XtPointer callData)
{

XmAnyCallbackStruct *cbs = (XmAnyCallbackStruct*) callData;

//--- Comment out the following line when Calculator::add is implemented:

// ::VkUnimplemented (w, "Calculator::add");

//--- Add application code for Calculator::add here:

int a = atoi(XmTextFieldGetString(_value1));
int b = atoi(XmTextFieldGetString(_value2));
XmTextFieldSetString(_result, (char *) VkFormat("%d", a + b));

} // End Calculator::add()

void Calculator::setParent(VkSimpleWindow * parent)
{

205

// Store a pointer to the parent VkWindow. This can
// be useful for accessing the menubar from this class.

_parent = parent;

} // End Calculator::setParent()

The CalculatorUI Class

The CalculatorUI class contains all the code required to create the user
interface. These files are rather long, so aren’t listed in this appendix.
Normally, you shouldn’t change the header or source files for this class.
Almost everything you might want to do can be handled in the derived class
or by using RapidApp.

The Calculator Resource File

The Calculator file contains the default values for various X resources used
by the calculator application. Example C-6 lists the calculator resource file.
You typically shouldn’t need to edit this file.

Example C-6 The Calculator Resource File

!
! Generated by Silicon Graphic's RapidApp.
!
!
! RapidApp 1.0
!
!
!
!Activate schemes and sgi mode by default
!
Calculator*useSchemes: all
Calculator*sgiMode: true
!
!SGI Style guide specifies pointer focus for applications
!
Calculator*keyboardFocusPolicy: pointer

Calculator*calcWindow.title: Calculator
Calculator*label.labelString: +

206

Appendix C: Source Code for the Calculator Application

Calculator*button.labelString: =

!
! The following resources are for the classes
! and instances of classes.
!

!!-- End Generated Defaults

Makefile

The Makefile follows Silicon Graphics conventions. The Makefile also uses a
few simple conventions that make the Makefile easier to maintain from
within RapidApp.

Example C-7 The Calculator Makefile file

#!smake
#
Makefile for calculator
Generated by RapidApp
#
This makefile follows various conventions used by SGI makefiles
See RapidApp User’s Guide for more information about
commondefs, commonrules and other SGI conventions
#
include $(ROOT)/usr/include/make/commondefs
#
Local Definitions
#

Directory in which inst images are placed

IMAGEDIR= images

The GL library being used, if needed

GLLIBS=
COMPONENTLIBS=

#
The ViewKit stub help library (-lvkhelp) provides a simple

207

implementation of the SGI help API. Changing this to -ldesktopUtil
switches to the full IRIS Insight help system
#

HELPLIB= -lvkhelp

Standard ViewKit header and libraries

VIEWKITFLAGS= -I$(ROOT)/usr/include/Vk
TOOLTALKLIBS=
NETLS=

EZLIB = -lvkEZ
VIEWKITLIBS= $(TOOLTALKLIBS) $(EZLIB) -lvk $(HELPLIB) $(NETLS) -lSgm -lXpm

Local C++ options.
woff 3262 shuts off warnings about arguments that are declared
but not referenced.

WOFF= -woff 3262

LCXXOPTS = -nostdinc -I$(ROOT)/usr/include $(SAFLAG) $(WOFF) $(VIEWKITFLAGS)

Add Additional libraries to USERLIBS:

USERLIBS=

LLDLIBS = -L$(ROOT)/usr/lib $(USERLIBS) $(COMPONENTLIBS) $(VIEWKITLIBS) $(GLLIBS
) -lXm -lXt -lX11 -lgen

While developing, leave OPTIMIZER set to -g.
For delivery, change to -O2

OPTIMIZER= -g

SGI makefiles don't recognize all C++ sufixes, so set up
the one being used here.

CXXO3=$(CXXO2:.C=.o)
CXXOALL=$(CXXO3)

#
Source Files generated by the builder. If files are added
manually, add them to USERFILES
#

208

Appendix C: Source Code for the Calculator Application

BUILDERFILES = main.C\
CalcWindowMainWindow.C\
Calculator.C\
CalculatorUI.C\
unimplemented.C\
$(NULL)

#
Add any files added outside the builder here
#

USERFILES =

C++FILES = $(BUILDERFILES) $(USERFILES)

#
The program being built
#

TARGETS=calculator
APPDEFAULTS=Calculator
default all: $(TARGETS)

$(TARGETS): $(OBJECTS)
$(C++) $(OPTIMIZER) $(OBJECTS) $(LDFLAGS) -o $@

unimplemented.o: unimplemented.C
$(C++) -c -O unimplemented.C

#
These flags instruct the compiler to output
analysis information for cvstatic
Uncoment to enable
Be sure to also disable smake if cvstatic is used

#SADIR= Calc.cvdb
#SAFLAG= -sa,$(SADIR)
#$(OBJECTS):$(SADIR)/cvdb.dbd
#$(SADIR)/cvdb.dbd :
[-d $(SADIR)] || mkdir $(SADIR)
cd $(SADIR); initcvdb.sh

#LDIRT=$(SADIR) vista.taf

209

#
To install on the local machine, do 'make install'
#

install: all
$(INSTALL) -F /usr/lib/X11/app-defaults Calculator
$(INSTALL) -F /usr/sbin calculator

#
To create inst images, do 'make image'
An image subdirectory should already exist
#

$(IMAGEDIR):
@mkdir $(IMAGEDIR)

image: $(TARGETS) $(IMAGEDIR)
/usr/sbin/gendist -rbase / -sbase / -idb calculator.idb \

-spec calculator.spec \
-dist /usr/people/kenj/sgdx/Calc/images -all

include $(COMMONRULES)

You shouldn’t modify most of the Makefile, however the following areas are
safe for you to change:

• The variable IMAGEDIR controls the location at which installable
images are generated. The default is a subdirectory of the current
directory called images.

• If you wish to use the Developer Magic Static Analyzer on your
application, need to uncomment the lines that generate the static
analysis database for your application. You can do this manually or,
from within RapidApp, you can:

1. Select “Application” from the Options menu.

2. In the Application Names dialog that appears, toggle on the Create
Static Analysis Database option.

3. Select “Generate C++” from the Project menu to regenerate the
Makefile.

• To add source files to the Makefile that you create outside of RapidApp,
simply list them after the USERFILES variable; they will be compiled
the next time you build your application.

210

Appendix C: Source Code for the Calculator Application

211

Appendix D

D. RapidApp Makefile Conventions

RapidApp uses several macros found in /usr/include/make to generate a
simple, easy-to-use Makefile. In many cases, you can use the Makefile
generated by RapidApp without change. Occasionally, you might need to
add files and libraries to the Makefile.

To add files, simply add them to the USERFILES variable, which RapidApp
generates as an empty list. RapidApp lists the code files that it generates in
the BUILDERFILES variable; you shouldn’t edit this list. The Makefile
concatenates USERFILES and BUILDERFILES and assigns the result to
C++FILES, which the Makefile uses to build the program according to the
built-in rules.

RapidApp automatically lists in the Makefile the libraries it requires to
compile the interface code for your program. However, you might need to
add additional libraries to the link line to support the functionality you
added to your program. To do this, list the libraries in the USERLIBS
variable, which RapidApp generates as an empty list.

Conventions Used In This Makefile

Nearly all paths referenced directly or indirectly in the Makefile are qualified
by the variable ROOT. By default, if this variable isn’t set, the paths are
relative to / (the root directory). However, setting this variable allows you to
point to an alternate set of development libraries, compilers, and other tools.
Typically, you don’t need to change this variable.

The Makefile loads many definitions with the line near the top of the file:

include $(ROOT)/usr/include/make/commondefs

You can browse this file if you are interested in the symbols defined, but the
following are the most useful definitions that you should know about:

212

Appendix D: RapidApp Makefile Conventions

DIRT Includes files like core, *.o, and so on. You can add to this list
by setting listing the files in the LDIRT variable in your
Makefile. All items listed in DIRT are removed when you
execute make clean .

C++FLAGS Determines the flags passed to the C++ compiler. You can
add to these flags by defining an LC++FLAGS variable in
your Makefile.

LOCALDEFS and LOCALRULES
The definition of these variables cause the Makefile to check
for files in your directory named .localdefs or .localrules and,
if they exist, load them after it loads all the standard
definitions and rules. This provides an easy way to extend
the Makefile without modifying it heavily.

Most options you would normally set in a Makefile are available as symbols
defined directly in the Makefile, and should be understandable by reading
the comments in the Makefile. For example, to prepare your program for
production by compiling with the optimizer on, change the line

OPTIMIZER= -g

to

OPTIMZER=-O2

The last line of the Makefile includes a common set of rules. The path
represented by the COMMONRULES variable is defined in the commondefs
file. This path is typically /usr/include/make/commonrules.

Among the rules defined in /usr/include/make/commonrules are:

make clean Removes “dirt”, as defined by the DIRT variable

make clobber Removes targets, dirt, and Makedepend files

make rmtargets
Removes targets only

213

Appendix E

E. VkEZ Reference

This section provides details about the VkEZ utility. There are two main
features of VkEZ:

• General operators that are applied directly to the object. For example:

EZ(widget) = "a label";

• Operators that are applied to an attribute (resource) supported by the
widget. For example:

EZ(widget).foreground = "red";

This appendix describes the VkEZ operators. The description of each
operator lists the widgets which support that operator and defines how the
operator works on each widget.

General Operators

operator String()

This operator returns a character string from the widget. For example:

strcpy(buffer, EZ(text));

This example copies the contents of a text widget into buffer.

The following list describes the behavior of this operator for each widget
that supports it.

XmLabel, XmLabelGadget and subclasses
returns the current value of the XmNlabelString resource as
a character string

214

Appendix E: VkEZ Reference

XmText, XmTextField
returns the contents of the text widget

XmList returns the text associated with the currently selected item

operator int()

This operator returns an integer value from the widget. For example:

int value = EZ(dial);

This example assigns the current value of a dial widget to value.

The following list describes the behavior of this operator for each widget
that supports it.

XmToggleButton and XmToggleButtonGadget
returns 1 if set, 0 if not set

XmScrollbar, XmScale
returns the current position of the slider

SgDial returns the current position of the pointer

XmText, XmTextField
returns the result of calling atoi(3C) on the current contents
of the text widget

XmList returns the currently selected position

Assignment Operators

EZ& operator=(int);
EZ& operator=(float);
EZ& operator=(const char *);

These operators assign integer, floating point, and character values to a
widget. For example:

 EZ(text) = 12345;

This example displays the integer 12345 in a text field.

General Operators

215

The following list describes the behavior of the integer assignment operator
for each widget that supports it.

XmToggle, XmToggleButtonGadget
if the specified value is zero, turns the toggle off; if the
specified value is non-zero value turns the toggle on

XmScrollbar, XmScale
sets the current slider position to the specified value

SgDial sets the current pointer position to the specified value

XmLabel, XmLabelGadget and subclasses (except toggle)
displays the specified value as the XmNlabelString resource

XmText, XmTextField
displays the specified value as the XmNvalue resource

XmList sets the current position index to the specified value

The following list describes the behavior of the floating point assignment
operator for each widget that supports it.

XmScrollbar, XmScale
sets the current slider position to the integer equivalent of
the specified value (the floating point value is truncated)

SgDial sets the current pointer position to the integer equivalent of
the specified value (the floating point value is truncated)

XmLabel, XmLabelGadget and subclasses
displays the specified floating point value as the
XmNlabelString resource

XmText, XmTextField
displays the specified floating point value as the XmNvalue
resource

XmList sets the current position index to the integer equivalent of
the specified value (the floating point value is truncated)

The following list describes the behavior of the character string assignment
operator for each widget that supports it.

XmScale sets the title to the specified string

216

Appendix E: VkEZ Reference

XmLabel, XmLabelGadget and subclasses
displays the specified string as the XmNlabelString
resource

XmText, XmTextField
displays the specified string as the XmNvalue resource

XmList treats the specified string as comma-separated list of items
and sets the list widget to display the new items, removing
any old contents

Append Operators

EZ& operator+=(int);
EZ& operator+=(float);
EZ& operator+=(const char *);
EZ& operator<<(int);
EZ& operator<<(float);
EZ& operator<<(const char *);

These operators append the right side expression to the current value of a
widget. Logically, the += operators make more sense for numerical
operations, while the << operators seem more suitable for strings, but they
are actually equivalent and either can be used.

The following list describes the behavior of the integer and floating point
append operator for each widget that supports them.

XmToggle, XmToggleButtonGadget
increments the current value of XmNset by the specified
value, so

EZ(toggle) += 0;

does nothing, while

EZ(toggle) +=1;

sets toggle if it is not already set

XmScale, XmScrollbar
increases the position of the slider by the specified value

SgDial increases the position of the pointer by the specified value

General Operators

217

 XmLabel, XmLabelGadget and subclasses
appends the specified value to the current XmNlabelString
resource

XmText, XmTextField
appends the specified value to the current XmNvalue
resource

XmList increments the current position index by the specified value

The following list describes the behavior of the character string append
operator for each widget that supports it.

XmLabel, XmLabelGadget and subclasses
appends the given string to the current value of the
XmNlabelString resource

XmScale appends the give string to the current value of the XmNtitle
resource

XmText, XmTextField
appends the value to the XmNvalue resource

XmList treats the string as a comma-separated list of items and adds
the items to the list widget’s current contents

Decrement Operator

EZ& operator-=(int);

This operator decrements the current value associated with a widget. This
operator has more limited use than the += operator.

The following list describes the behavior of the decrement operator for each
widget that supports it.

XmToggle, XmToggleButtonGadget
decrements the current value of XmNset by the specified
value, so

EZ(toggle) -= 0;

does nothing, while

EZ(toggle) -= 1;

218

Appendix E: VkEZ Reference

unsets toggle if it is not already unset

XmScale, XmScrollbar
decreases the position of the slider by the specified value

SgDial decreases the position of the pointer by the specified value

XmList decrements the current position index by the specified
value

Attributes

This section lists attributes which can be modified using VkEZ. Each of these
attributes can be retrieved or set. For example:

int width = EZ(widget).width;
EZ(widget).width = 20;
EZ(widget).foreground = "red";
Pixel index = EZ(widget).background;

The following attributes are supported by all widgets:

border, width, height, x, y

The following attributes are supported by all widgets that have setting
support for Pixel or char *:

background, foreground

The following attributes are supported by XmLabel, XmLabelGadget and
subclasses:

label

The following attributes supported by XmScale, XmScrollBar, SgDial:

value, minimum, maximum

219

Glossary

attachment icons

Symbols displayed on an interface element when contained by a form. The
attachment icons allow you to edit the attachment constraints interactively.
See also interface elements, containers, and constraints.

cascade buttons

Push buttons that, when the user clicks them, display pulldown menus.

child elements

The interface elements contained or grouped by a container widget. See also
interface elements and widgets.

components

Interface elements based on IRIS ViewKit classes. A component is a C++
class and can contain several other components and/or widgets. See also
interface elements and widgets. See also interface elements and widgets.

constraints

Resources added to an interface element by a container that affect the
element’s position within the container. See also interface elements, containers,
and resources.

containers

Widget that can group or contain other interface elements. See also interface
elements and widgets.

co-primary windows

Top-level windows within an application used for major data manipulation
or viewing of data outside of the main window. See also main windows.

220

Glossary

elements

See interface elements.

interface elements

Any objects that you create, select, position, and manipulate in RapidApp.
Interface elements can be either components or widgets.

IRIS IM

The Silicon Graphics port of the industry-standard OSF/Motif interface
toolkit.

main windows

The application’s main controlling window used to view or manipulate
data, get access to other windows within the application, and quit the
application. There should be only one main primary window per
application. See also co-primary windows.

radio behavior

The behavior of a group of toggles where only one toggle at a time can be
active. When the user toggles on a button in the group, any other toggle in
the group that was on turns off.

reparenting

Moving an interface element from one container widget to another. See also
interface elements and widgets.

resources

Attributes of interface elements that change their appearance or behavior.
See also interface elements.

snap grid

An invisible grid to which interface elements “snap” when you move or
resize them. See also interface elements.

widgets

Interface components that are part of the IRIS IM toolkit. See also interface
elements and IRIS IM.

221

code management, 40-45
code merging, 43-45
compiling, 46
components, 38-39, 89-93

See also interface elements
creating, 89-92
defined, 4, 219

constraints, 65
See also resources
defined, 219

containers, 63-83
Bulletin Board, 65-66
child elements

creating, 11-13
reparenting, 17
repositioning, 13-17

constraints, 65
defined, 219
Drawing Area, 82
Form, 73-78
Frame, 81-82
HPaned Window, 78-79
Paned Window, 78-79
Radio Box, 80-81
RowColumn, 79-80
Rubber Board, 66-70
Scrolled Window, 82
Spring Box, 70-73
Tabbed Deck, 82-83
Visual Drawing, 82

”Copy” selection (in Edit menu), 17
copying

A

application options, 46
“Application” selection (in Options menu), 46
attachment icons

defined, 219

B

Boolean values, resources, 19
“Browse Source” selection (in Project menu), 46
“Build Application” selection (in Project menu), 46
Build Manager, 46
.buildersource directory, 43-44
building. See compiling
Bulletin Board, 65-66

C

callback functions, 20
.checkpoint.prev.uil file, 44
.checkpoint.uil file, 44
child elements

defined, 219
Classes menu, 7
co-primary windows, 58-59

See also windows
defined, 219

code generation, 40-43

Index

222

Index

interface elements, 17
creating

child elements in containers, 11-13
components, 89-92
interface elements, 9-13
menu bars, 84-85
menu items, 87-88
menu panes, 85-86

<Ctrl> key, 22
”Cut” selection (in Edit menu), 17
cutting

interface elements, 17

D

“Debug Application” selection (in Project menu), 47
Debugger, 47-48
debugging, 47-48
”Delete” selection (in Edit menu), 17
deleting

interface elements, 17
menu items, 88
menu panes, 86

Desktop icons, 39
development cycle, 49
development model, 37-48
dialogs, 60-63
displaying

menu panes, 86
”Down/Right” selection (in Edit menu), 16
Drawing Area, 82
dynamic resources, 21

E

“Edit Classes” selection (in Classes menu), 92, 93
“Edit Files” selection (in Project menu), 46
Edit menu, 6, 16, 17, 22
editing

files, 46
resources, 18-21

elements. See interface elements.
explicit focus mode, 13
EZ convenience functions, 31-34

F

File menu, 6
files

editing, 46
Fix and Continue, 47-48
Form, 73-78
Frame, 81-82
functional code

adding interactively, 47-48
separate from interface code, 42-43, 90

G

generating code, 40-43
”Grow Widget” selection (in Edit menu), 16, 22

H

Help menu, 7
hierarchy, viewing widget, 22
HPaned Window, 78-79

223

I

Indigo Magic Desktop environment, integration
with, 39-40

Indigo Magic look, 39
installable images, 48
installing

RapidApp, 4
instance header, 7
interface code, separate from functional code, 42-43,

90
interface elements

See also components, widgets
copying, 17
creating, 9-13

child elements in containers, 11-13
cutting, 17
defined, 4, 220
deleting, 17
locking on, 22
minimum size, 9
moving, 13-17
naming, 18
pasting, 17
preventing selection, 22
reparenting, 17
repositioning, 13-17
resizing, 13-17
resources, 18-21
selecting parent, 22

IRIS IM
defined, 220

IRIS ViewKit, 38-39

K

”Keep Parent” selection (in View menu), 13
keyboard accelerators, 39, 55

L

locking on to an element, 22

M

main window, RapidApp, 6-8
main windows, 58-59

See also windows
defined, 220

“Make Class” selection (in Classes menu), 89
managing code, 40-45
menu bar, RapidApp, 6-7
menu bars, 84-86

creating, 84-85
creating menu panes, 85-86
deleting menu panes, 86
moving menu panes, 86
standard application entries, 39, 55

menu itmes
creating, 87-88
deleting, 88
moving, 88

menu panes, 86-88
creating, 85-86
creating items, 87-88
deleting, 86
deleting items, 88
displaying, 86
moving, 86
moving items, 88

menus, 84-89
creating items, 87-88
deleting items, 88
displaying, 86
menu bars, 84-86
menu panes, 86-88
moving items, 88
option menus, 88-89

224

Index

merging code, 43-45
minimum size, interface elements, 9
model, developing applications, 37-48
moving

interface elements, 13-17
menu items, 88
menu panes, 86

multi-valued resources, 20

N

naming
interface elements, 18

O

object-oriented components, 38-39
option menus, 88-89
Options menu, 5, 7
Output Application Names dialog, 46
overview, RapidApp, 3-4

P

palettes, 7
Paned Window, 78-79
”Paste” selection (in Edit menu), 17
pasting

interface elements, 17
pointer focus mode, 13
Project menu, 7, 45-48
psuedo-constraints, 21

R

radio behavior
defined, 220

Radio Box, 80-81
RapidApp

development model, 37-48
overview, 3-4

”RapidApp Preferences” selection (in Options
menu), 5

reparenting
defined, 220
interface elements, 17

repositioning
interface elements, 13-17

resetting widgets, 22-24
resizing

interface elements, 13-17
resolution, snap grid, 14
resource editor, 8
resources, 18-21

callback functions, 20
defined, 220
dynamic, 21
editing, 18-21

RowColumn, 79-80
Rubber Board, 66-70

S

schemes, 39
Scrolled Window, 82
selecting

parent element, 22
SgHorzPanedWindow, 78-79
SgRubberBoard, 66-70
SgSpringBox, 70-73

225

SgVisualDrawingArea, 82
Simple Windows, 54-55
snap grid, 14

defined, 220
”Snap to Grip” selection (in View menu), 14
Software Packager, 48
SourceView editor, 46
Spring Box, 70-73
starting

RapidApp, 5
startup screen, 5
static analysis, 46
Static Analyzer, 46
string values, resources, 19

T

Tabbed Deck, 82-83
tips, during startup, 5

U

“UI” classes, 42-43, 90
”Up/Left” selection (in Edit menu), 16
user-defined components

See components.

V

View menu, 7, 13, 14
viewing widget hierarchy, 22
Visual Drawing, 82
VkComponent class, 90
VkEZ, 31-34
VkMsgComponent class, 90

VkTabbedDeck, 82-83
VkUnimplemented(), 47
VkWindow, 39
VkWindows, 55-58

W

widgets
See also interface elements
defined, 4, 220
resetting, 22-24
viewing hierarchy, 22

window decorations, 39
window menu entries, 39
windows, 53-63

co-primary, 58-59
dialogs, 60-63
main, 58-59
Simple Windows, 54-55
VkWindows, 55-58

$WINEDITOR, 46

X

XmBulletinBoard, 65-66
XmDrawingArea, 82
XmForm, 73-78
XmFrame, 81-82
XmPanedWindow, 78-79
XmRowColumn, 79-80, 80-81
XmScrolledWindow, 82

