
Netscape Commerce and
Communications Servers
Administrator’s Guide

Document Number 007-2909-001

Netscape Commerce and Communications Servers Administrator’s Guide
Document Number 007-2909-001

© Copyright 1995, Silicon Graphics, Inc.— All Rights Reserved
This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

Silicon Graphics, the Silicon Graphics logo, and IRIS are registered trademarks and
WebFORCE, WebMagic, and IRIX are trademarks of Silicon Graphics, Inc.

Netscape Communications and Netscape Navigator are trademarks of Netscape
Communications Corporation. X Window System is a trademark of Massachusetts
Institute of Technology.

Microsoft Windows is a trademark of Microsoft Corporation. Apple Macintosh is a
registered trademark of Apple Computer, Inc.

UNIX is a registered trademark in the United States and other countries, licensed
exclusively through XOpen Company, Ltd.

iii

Contents

List of Examples xi

List of Figures xiii

List of Tables xv

Introduction xvii
About This Guide? xvii
What Is an HTTP Server? xvii

The Netscape Servers xviii
Internet and Web Basics xix

Understanding URLs xix
Understanding Hostnames and IP Addresses xx

Conventions Used in This Guide xxi

1. Installing the Server 1
Before You Install 1

Make Sure DNS Is Up and Running 1
Create a Home Page 2
Create an Alias for the Server 2
Create an IRIX User Account 3
Choose Unique Port Numbers 3
Replacing an Existing Server 4

What the Installation Process Does 5
Restarting the Server Automatically 6
Stopping the Automatic Server Restart 7
Starting the Server Manually 7
Stopping the Server Manually 7

iv

Contents

Using the Server Manager 8
Starting the Administration Server 8
Starting the Server Manager 8
Configuring the Administration Server 9

Restricting Access 10
Change the Authentication User Name 10
Administrative Server Configuration 10

Troubleshooting Installation 11
Understanding Wildcard Patterns 11

Examples of Wildcard Usage 12

2. Security 15
Understanding Security 15
How Security Works: SSL 16

What Is a Certificate? 17
Authentication 18
Encryption 19
Data Integrity 20
The Certification Authority 20

Preparing to Install Server Security 21
Securing the Server Host 21

Secure Private Keys 22
Limit Availability 22
Limit Applications 22
Limit Ports 22
Limit Administration 23
Change Passwords 23
Know the Limits 23

Installing Security 24
Generating a Key Pair File 24
Requesting a Certificate 25
Installing the Certificate 27
Activating Security and Specifying Ciphers 27

Contents

v

Effects of a Secure Server 29
Secure URL Construction 29
Secure Server Document Root and Logging 29
The Secure Log 29
Unprotected Server Document Root 30
Changes to the magnus.conf File 30

Security 30
ServerKey 30
ServerCert 31
Ciphers 31

Additional Reading 31

3. Configuring the Server 33
Using the Server Manager 33
Server Control 34

System Specifics 34
Changing the Server’s Location 34
Changing the Server’s User Account 35
Server Processes 35
Process Lifespan 36
Domain Name Service 36

Stopping and Restarting the Server 36
Rotating Log Files 37

vi

Contents

URL Configuration 37
Global URL Configuration 37

Server Name 38
Server Port Number 38
Server Address 38

Document Configuration 39
Document Root 39
Directory Indexing 39
Server Home Page 40
Default MIME Type 40

URL Mappings 41
Map a URL to a Local Directory 41
Map a URL to Another Server 42
View, Edit, or Remove URL Mappings 42
Customize Users’ Public Information Directories 42

User Databases 44
Creating and Removing a User Database 44
Adding, Editing, and Removing Users in a Database 45
Converting an NCSA or Text File to a User Database 46
Changing a Database Password 46
Removing an Existing Database 46

Access Control 47
Restricting Through User Authorization 47
Restricting by Hostname and IP Address 48

What to Protect 48
What Happens When a Client is Denied? 49

Restricting System Links 49
Dynamic Configuration 50

Writing a Dynamic Configuration File 51
Configuration Templates 53

Creating a Template 53
Applying a Template to Parts of the Server 54

Removing a Template 54

Contents

vii

Error Handling 55
Viewing the Error Log File 55
Customizing Error Responses 55

What Are the Errors? 56
Setting Up the Response 56

Logging Configuration 56

4. Server Configuration Files 59
The magnus.conf File 60

Directives in magnus.conf 61
ServerName 62
Port 63
User 63
MaxProcs 64
MinProcs 65
ProcessLife 65
ErrorLog 65
PidLog 66
LoadObjects 66
RootObject 67
Chroot 68
Init 69

viii

Contents

The obj.conf File 72
The Structure of obj.conf 73

Directive Syntax 73
A Sample Object 74

Required Objects for obj.conf 75
The Default Object 76
CGI Object 76

How the Server Handles Objects 76
Directives in obj.conf 77

AuthTrans 78
NameTrans 79
PathCheck 82
ObjectType 85
Service 87
AddLog 91
Error 92

The mime.types File 94
The admpw File 96

A. Writing HTML Documents 97
What is HTML? 97

Tools for Writing HTML Documents 98
Viewing HTML Source Text 98

HTML Tags 98
Types of Tags 100
Tag Syntax 102

Special Characters 102

Contents

ix

Adding Images to HTML Documents 107
Elements of 107
Linking Images to Other Pages 108
What Are Imagemaps? 108

Specifying Regions 109

Glossary 111

Index 119

xi

List of Examples

Example 4-1 Sample magnus.conf file 60
Example 4-2 Sample obj.conf File 74
Example 4-3 Sample mime.types file 95
Example A-1 The HTML Source For Figure A-1 99
Example A-2 Map File Example 109

xiii

List of Figures

Figure i Sending Information Between Client and Server xviii
Figure 1-1 The Server Manager—First Form 9
Figure 2-1 Routing Between Hosts on the Internet 16
Figure 2-2 How SSL Relates to TCP/IP and Application Protocols 17
Figure 2-3 The Server Authentication Process and Signed Digital

Certificates 18
Figure 2-4 Encryption Scrambles Data to Thwart Intruders 19
Figure 3-1 Option Buttons on Server Configuration Forms 34
Figure 4-1 Internal Icons for MIME Types 95
Figure A-1 A Simple Web Page Using Various HTML Tags 99
Figure A-2 Three Ways to Align Images 107
Figure A-3 Different Areas of an Image Map 108
Figure A-4 Defining Regions in an Image 109

xv

List of Tables

Table 1-1 Wildcard Patterns 12
Table 4-1 Server Error Codes 93
Table A-1 HTML Tags in Hierarchical Order 100
Table A-2 Reserved Characters 102
Table A-3 Special Characters in HTML 103

xvii

Introduction

Welcome to the Netscape Commerce and Communications Servers for
Silicon Graphics, Inc. systems. These servers let people and companies
exchange information and conduct commerce over the Internet and other
global networks.

The Netscape Commerce and Communications Servers Administrator’s Guide is
intended for system and network administrators who install, configure, and
manage the Netscape server(s) at your site. An administrator’s knowledge
of IRIX is assumed. This guide documents both the Commerce and the
Communications servers. The Communications server operates without
security; everything else is the same for both servers.

About This Guide?

This manual explains how to configure the Netscape Commerce and
Communications Servers. Refer to your software release notes for
information on how to use inst(1M) to install the software if it is not already
installed. After you configure your server, you can use this manual to help
you maintain your server.

The Netscape Servers Programmer’s Guide contains information about
programming functions and CGI scripts for use with your server.

What Is an HTTP Server?

A HyperText Transport Protocol (HTTP) server is an application that sends
documents and data from the computer host it’s installed on to
HTTP-compatible client applications such as Netscape Navigator. HTTP
runs on any TCP/IP network, including the Internet. The Netscape
Commerce Server can send the information securely by using the Secure

xviii

Introduction

Sockets Layer (SSL) protocol. The Netscape Communications Server does
not support the SSL protocol.

The following figure shows a client application requesting information from
your HTTP server, which in turn sends the information back to the client.
Note that with an unsecure server, anyone on the Internet could potentially
intercept and view the information.

Figure i Sending Information Between Client and Server

The Netscape Servers

The following features are a partial list of what the Netscape Commerce and
Communications Servers offer:

• Remote server administration. You can start, stop, configure, and
manage the server from any host that has Internet access.

• Reliability. You can configure the server to restart itself after a network
crash, power interruption, or other event that stops the server.
However, this doesn’t work with a secure server because someone must
enter a password when starting or stopping the secure server.

• Flexible access control. You can configure the server to restrict access
based on a hostname, the document requested, or both. You can also
hide URLs from any user based on the user’s hostname.

• Customized access logging. You can track all the users who access your
server, or you can configure access logging on a file, directory, or
template basis. It provides high-level logging of client transactions,

The client computer
requests information from
the server. The request is
sent over the Internet.

Internet

The HTTP server gets
the request,
processes it, then
sends the information
back through the
Internet to the client
computer.

Internet and Web Basics

xix

including client hostnames or IP addresses, access dates and times,
accessed URLs, byte counts of all the transferred data, and success
codes per transaction.

• Performance and extensibility. The server handles very high numbers
of incoming requests with a relatively low impact on the server host.

Internet and Web Basics

If you’re new to the Internet and World Wide Web (the Web or WWW), you
should familiarize yourself with navigating through information. The
Internet is a vast collection of computers working together to share
information. There is no single company or person in charge of running the
Internet. Because of this design, the information available through the
Internet changes constantly and new computers are continually added to the
network, which provides you with a growing source of information.

Like the Internet, the World Wide Web also contains information, but it adds
multimedia access—graphics, sound, movies, and more. Because the Web is
graphical (not text-based), you can access it only with a graphical
application such as the Netscape Navigator.

To get information from the Internet and the Web, you need to know the
address of the information. Addresses are called Uniform Resource Locators
(URLs).

Understanding URLs

Internet and World Wide Web addresses are slightly different. A simple
Internet address is username@domainname where username can be your name,
and domainname is the name of your service provider (for example,
jdoe@sgi.com could be an address for Jane Doe at Silicon Graphics, Inc.).

Domain names can be quite long and usually refer to subgroups or
departments in an organization. Typically, a domain is classified into one of
the following categories:

• com—commercial business (companies)

• edu—education (universities, primary and high schools)

xx

Introduction

• gov—government (nonmilitary)

• mil—US military

• net—network organizations

• org—miscellaneous organizations

Web addresses are hypertext links to documents where each page has a URL
in the format protocol://host/directory/file. Each Web address begins with a
protocol for the link, typically http (hypertext transport protocol) or https
(secure HTTP); but also file, gopher, ftp (file transfer protocol), telnet, and news
(Usenet news).

The second part of the URL (after the //) is the host (computer) address, a
directory path for the host, and a filename (.html or .htm extensions mean the
document is a hypertext markup language document that might contains
jumps to other pages). For example, the Netscape home page is
http://home.netscape.com/home/welcome.html, which means the page is a
hypertext (.html) document in the home directory on the home.netscape.com
host.

Understanding Hostnames and IP Addresses

All hosts on the Internet have a 32-bit Internet Protocol (IP) address that
identifies them. IP addresses have four parts (8 bits each) separated by
periods (called dots). IP addresses range from 0.0.0.0 to 255.255.255.255.

IP address are organized into three classes. The Internet Network
Information Center (NIC) assigns these based on the number of hosts the
organization or company needs (the first 8-bit number tells you the class and
size of the organization):

• Class A (0-127) is used for the largest organizations—usually only
Internet service providers and very large companies. You won’t find
many addresses in this range. This class allows over 16.5 million hosts.

• Class B (128-191) is for large companies and organizations and can have
just over 65,000 hosts.

• Class C (192-223) is for smaller organizations that can have up to 254
hosts.

Conventions Used in This Guide

xxi

Note: There are classes D and E, but they have special uses not relevant to
this discussion.

Because most people have a hard time remembering numbers, the Internet
allows hostnames as a type of alias for the IP address. For example, the IP
address 192.82.208.8 has the hostname www.sgi.com.

As described in the previous section, hostnames consist of a hostname, a
domain name, and a domain identifier. The hostname www.sgi.com is a host
named www for a domain called sgi in the domain group for companies
(.com). The domain name and identifier are usually grouped together and
called simply the domain.

Conventions Used in This Guide

These type conventions and symbols are used in this guide:

Bold—Literal command-line arguments (options/flags).

Italics—Executable names, filenames, URLs, glossary entries (online, these
show up as underlined), IRIX commands, manual/book titles, onscreen
button names, program variables, and variables to be supplied by the user
in examples.

Fixed-width type—Error messages, prompts, and onscreen text.

Bold fixed-width type—User input, including keyboard keys (printing
and nonprinting); literals supplied by the user in examples.

ALL CAPS—Environment variables, defined constants, boolean operators.

““ (Double quotation marks) —Onscreen menu items and references in text
to document section titles.

() (Parentheses)—Following IRIX commands surround reference page (man
page) section number.

[] (Brackets)—Surrounding optional syntax statement arguments.

xxii

Introduction

<>—(Angle brackets) Surrounding nonprinting keyboard keys, for example,
<Esc>, <Ctrl-D>.

#—IRIX shell prompt for the superuser (root).

%—IRIX shell prompt for users other than superuser

Warning:

Warnings mark important information. Make sure you read the information
before continuing with a task.

1

Chapter 1

1. Installing the Server

This chapter tells you how to begin configuring the Netscape Commerce and
Communications Servers for your needs.

Before You Install

Before you install the either the Netscape Commerce Server or the Netscape
Communications Server, make sure you perform the tasks listed below. This
makes the installation process much smoother.

• Make sure the Domain Name Service (DNS) is up and running.

• Create a home page.

• Create an alias for the server.

• Create an IRIX user account.

• Choose unique port numbers.

Make Sure DNS Is Up and Running

When you install the Netscape Commerce and Communications Servers,
some items on the installation forms request either a hostname or an IP
address (or multiple entries of the same) as input strings.

• A hostname is a name for a specific computer in the form
host.subdomain.domain, which is translated into a dotted IP address
by a Domain Name Service (DNS). For example, www.sgi.com is the
host “www” in the subdomain” sgi” and domain “com”.

• Internet Protocol (IP) address is a set of numbers, separated by dots,
that specifies the actual location of a host on the Internet. For example,
the hostname www.sgi.com has the IP address 192.82.208.8.

2

Chapter 1: Installing the Server

As you prepare for installation, make sure your Domain Name Service
(DNS) is up and running properly. Otherwise, the server can’t resolve
hostnames and can’t connect to any remote hosts.

Create a Home Page

A home page is usually the first document users see when they access your
server. The content should introduce your server, company, or organization,
or even yourself. It’s used as an index to the information your server
provides.

If you already have a home page, you can specify it during the installation
process. If you don’t have a home page, you can either create one before
installation, or you can use the one the installation process creates. (You can
edit it after installing the server.) To create a home page, you need a text
editor or an application that generates HTML documents (these are ASCII
text files). Hypertext Markup Language (HTML) documents contain text
and flags that a Web browser uses to display the page. The optional
WebMagic Author™ from Silicon Graphics, Inc. is a WYSIWYG editing tool
that enables you to create HTML files without requiring you to know HTML
syntax.

If you are unfamiliar with HTML, and need to learn more, you can use the
Netscape Navigator to view the HTML source code for a page.Start the
navigator, go to any page on the Web, and then choose “View/Source” from
the menu. You can read Appendix A to start learning HTML. You can also
read other books about HTML, or you can go to
http://home/netscape.com/home/how-to-create-web-services.html to get the
information online.

Create an Alias for the Server

If your server runs on one host among many in a network, you should set up
a DNS CNAME record or an alias (such as www) that points to the actual
server host. Later, should the need arise, you can change the actual hostname
or IP address of the server host without having to change all of your URLs.

Before You Install

3

For example, you might call the server myserver.anycompany.com and then
use an alias like www.anycompany.com. The URLs to documents on your
server would then use the www alias instead of myserver.

Create an IRIX User Account

You should create an IRIX user account for the server. You probably want the
server to have restricted access to your system resources and run under a
nonprivileged system user account.

When the server starts and runs, it runs with this IRIX user account (you’ll
specify this account during installation). Any child processes of the server
are created with this account as the owner. The account requires read
permissions for the configuration files and write permissions for the log file
directory. For security reasons, the user account should not have write
permissions to the configuration files. This means that in the unlikely event
that someone compromises the security of the server, they can’t write to the
configuration files.

You can use the account with the name nobody, but this might not work on
some systems. Some hosts have a UID of -2 for the user nobody. A UID less
than zero generates an error during installation. Check the /etc/passwd file to
see if the UID for nobody exists, and make sure it is greater than zero (the
default UID for user nobody is 60001).

Caution: We strongly recommended that you use a dedicated account for
the server.

The administration manager can also run with a user account that has write
permission on the configuration files for all installed servers. However, it is
much easier to run the administration manager as root because then it can
start and stop servers with port numbers less than 1024. You must make sure
you always shut down the administration manager when you’re done with
it.

Choose Unique Port Numbers

You need two port numbers: one for the administration server and one for
the Commerce or Communications server. The administration server is a

4

Chapter 1: Installing the Server

separate daemon that lets you manage multiple servers from a single
forms-based interface.

Port numbers for all network-accessible services are maintained in the file
/etc/services. The standard HTTP port number is 80, but you can install the
server to any port.

Warning: If you change the default HTTP port number from 80, you
must edit the /etc/init.d/netsite file (/etc/init.d/netsite_commerce for the
Commerce Server) to reflect the change.

You should choose a random number for the administration server to make
it more difficult for anyone to breach your server security. When you access
the administration forms, use the administration server’s port number.

Make sure the port you choose isn’t in use. Look at the file /etc/services on the
server host to make sure you don’t assign a port number that is used by
another service.

Note: If you choose a server port number less than 1024, you’ll need to be
logged in as root to start the server. After the server is bound to the port, the
server changes from root to the user account you specify. If you choose a port
number greater than 1024, you don’t have to be root to start the server.

Replacing an Existing Server

If you’re running a 1.0 server, the install program upgrades your 1.0 server
and puts it and the new 1.1 server in a new server root directory (you specify
this directory, but we recommend you use the default of /usr/ns-home).

Warning: If you change the default server root directory from
/usr/ns-home, you must edit the /etc/init.d/netsite file
(/etc/init.d/netsite_commerce for the Commerce Server) to reflect the
change.

Stop running the 1.0 server while you do the upgrade. After installation,
check that the upgraded server runs correctly, and then delete the old 1.0
directory structure. This lets you bind the upgraded server to the same port
as the 1.0 server.

What the Installation Process Does

5

If you have existing 1.1 servers, install the new server to the same server
root. This lets you use one administration manager to manage all servers.

If you’re upgrading a secure Commerce server, you must manually start the
upgraded server because you have to specify a password when starting it.

Note: If you aren’t upgrading a server, the new server must be installed in
an empty directory. We recommend the /usr/ns-home directory.

Warning: If you change the default server root directory from
/usr/ns-home, you must edit the /etc/init.d/netsite file
(/etc/init.d/netsite_commerce for the Commerce Server) to reflect the
change.

What the Installation Process Does

After you fill out all of the install forms and click the link called “Go For It,”
the actual installation takes place. Before that point, no file outside of the
installation working directory is modified.

Some temporary files are written to /tmp and removed after installation. No
other files or directories are modified in any way.

The installation process places all the files under the server root directory
that you specified in the installation forms. The following directories and
files are created under the server root directory:

• start-admin and stop-admin are scripts that start the server manager. The
server manager lets you configure all servers installed in the server root
directory.

• admserv/ contains the server administration files, the user name and
password for the administration account, and the binary files for
running the server manager.

• bin/ contains the binary files for the server, such as the actual server, the
administration forms, and so on.

• [type]-[port#]/ are the directories for each server you have installed on
the host. The directory name uses the server type (either httpd or https)

6

Chapter 1: Installing the Server

and the server’s port number, for example httpd-80. Each server
directory has the following subdirectories and files:

– config/ contains the servers configuration files: magnus.conf, obj.conf,
and mime.types. It also contains the server key and other encryption
certificates.

– logs/ contains any error and access log files.

– There are shell scripts to start, stop, and restart the server and a
script to rotate log files.

• userdb/ contains all user databases. This central directory lets any
number of servers use the same user databases.

• mc-icons/ contains icons for FTP listings and Gopher menus.

• extras/ contains utilities such as a log file analyzer.

• nsapi/ contains header files and example code for created your own
functions using the Netscape API. See the Netscape Servers Programmer’s
Guide for more information.

Note: You must restart the server for your changes to take place. After you
submit a form, you receive a pointer to a script that restarts your server.

Restarting the Server Automatically

Once installed, the Netscape server and its child processes run constantly,
listening for and accepting requests. If your host crashes or is taken offline,
the server processes die with it. Make sure your server is configured for
automatic restart on reboot with the following procedure

1. Use the chkconfig command to see if it is set to “on”:

chkconfig | grep netsite

2. If you see:

 netsite off

Enter the following command:

chkconfig netsite on

For the Commerce Server, enter:

chkconfig netsite_commerce on

Stopping the Automatic Server Restart

7

3. Repeat step 1 until you see:

 netsite on

(or “netsite_commerce on”).

When the system is rebooted, the server starts automatically.

Note: If the server doesn’t restart after a reboot, make sure the
/etc/init.d/netsite file (or the /etc/init.d/netsite_commerce file for the Commerce
Server) reflects the proper directory location and port for the server.

Stopping the Automatic Server Restart

To keep the server from automatically restarting when the system is
rebooted, enter:

chkconfig netsite off

For the Commerce Server, enter:

chkconfig netsite_commerce off

Starting the Server Manually

If you ever need to start the server from the command line, you must log in
as root or become superuser and type this at the command-line prompt:

/etc/init.d/netsite start

Stopping the Server Manually

If you ever need to stop the server manually, log in as root or become
superuser, and check the full process load using ps -el to see if other users
might be using the server. If not, type this at the command-line prompt:

/etc/init.d/netsite stop

8

Chapter 1: Installing the Server

Using the Server Manager

After you install the server files, the server should run without problems.
However, you might need to change configuration information (for
example, by adding security) or perform general maintenance on the server.
All this is done with the Server Manager.

The Server Manager is a set of forms you use to change options and control
your server. You can view the Server Manager immediately after installation
(there is a link to it). You can use the Server Manager from any remote host—
you don’t need to use the host the server is installed on.

Starting the Administration Server

Note: The administration server uses its own configuration file.

Before you can do any server configuration, you must start the
administration server.

1. Go to the server root directory and enter

start-admin

This starts the administration server using the port number you
specified during installation.

2. When you are done configuring your servers, stop the administration
server by changing to the server root directory and entering

stop-admin

Starting the Server Manager

To view the Server Manager at any time, use a forms-capable browser to
point to the URL:

http://[servername].[yourdomain].[domain]:[port]/

Use the port number for the administration process that you specified
during installation—don’t use the port number for an individual server.

Using the Server Manager

9

1. You’ll be prompted for a user name and password. This is the
administration username and password you specified during the
installation process. The administration manager appears, listing all of
the servers you have installed on the host.

2. Click the link for the server you want to configure. The Server Manager
appears, as shown in Figure 1-1.

The rest of this manual describes the forms and options used to manage and
maintain your server.

Figure 1-1 The Server Manager—First Form

Configuring the Administration Server

You can configure the administration server to restrict access to certain
people based on hostname or IP address. You can also change the port

The open book icon
means you’re viewing all
the text for a page. You
can click this to close the
book and hide a lot of the
explanatory text.

You can hide options you
rarely use by clicking this
icon.

Click the links to view
forms for configuring and
managing various aspects
of the server. The forms
are grouped for easy
reference.

10

Chapter 1: Installing the Server

number that the administration server runs on (this is not the same port as
any of the Commerce or Communications servers). In the Server Manager
for any server (not the main administration page that lists the servers), click
the link called “Configure administration server.” The following sections
describe what you can configure.

Restricting Access

You will probably want to restrict which hosts are allowed to administer
your server. This means only hosts that you specify can access the server
manager and make changes to any of your installed servers.

You can enter a wildcard pattern of hosts to allow. You can restrict access by
hostname or by IP address. Restricting by hostname is more flexible—if a
host's IP address changes, you won't have to update your server. On the
other hand, restricting by IP address is more reliable—if a DNS lookup fails
for a connected client, hostname restriction cannot be used.

If you think you might have problems with DNS, you should use IP address
restriction.

Change the Authentication User Name

You can also change the user name that the administration server uses to
verify that you are the server administrator. The authentication password is
the password you give the server after you enter the authentication user
name.

Note: If you leave this password blank, the administration password
remains unchanged—leaving it blank doesn’t remove the password.

Administrative Server Configuration

You must choose an IRIX user account to run the administration server. By
using a separate server for administration, you can safely allow this
administration server to run as the superuser because you run the
administration server only when you need to configure a server (you don’t
leave the server running constantly, as you do with other servers).

Troubleshooting Installation

11

The port you choose must be specified in the URL you use to configure your
server.

Troubleshooting Installation

This section describes the most common installation problems and how to
solve them.

• I accidentally denied all access to the Server Manager forms.

Log in as root or with the server’s user account. In the admserv
directory, edit the ns-admin.conf file. There’s a line for allowed hosts and
a line for allowed addresses. Modify the lines to include your host and
address, save the file, and then restart the administration manager.

• Clients can’t locate the server.

First, try using the hostname. If that doesn’t work, use the
fully-qualified name (such as www.domain.dom). If that doesn’t work,
use the dotted IP address.

• The port is in use.

Most likely, you didn’t shut down a server before you upgraded it. Shut
down the old server, then manually start the upgraded one.

• The server is slow and transfers take too long.

If you log files to SYSLOG, you might encounter reduced performance.
Switch to using the server’s error log files instead. The server host
might need more RAM, or if there are other applications on the host,
they might be using CPU cycles, which degrades server performance.

Understanding Wildcard Patterns

In many parts of the server configuration, you specify wildcard patterns to
represent one or more items to configure. For example, to restrict access, you
specify a wildcard pattern that matches all of the clients who should get
access. Wildcard patterns use special characters. If you want to use one of
these characters without the special meaning, precede it with a backslash (\)
character.

12

Chapter 1: Installing the Server

Table 1-1 lists wildcard patterns and their meaning.

Examples of Wildcard Usage

*.sgi.com matches any string ending with the characters .sgi.com.

(quark|energy).sgi.com matches either quark.sgi.com or energy.sgi.com.

198.93.9[23].??? matches a numeric string starting with either 198.93.92 or
198.93.93 and ending with any 3 characters.

. matches any string with a period in it.

~sgi- matches any string except those starting with sgi-.

*.sgi.com~quark.sgi.com matches any host from domain sgi.com except for
a single host quark.sgi.com.

Table 1-1 Wildcard Patterns

Pattern Meaning

* Matches zero or more characters.

? Matches exactly one character, and it can be any character.

| An OR expression. It matches either the substring this or
the substring that. The substrings can contain other special
characters such as * or $.

[abc] Matches one occurrence of the characters a, b, or c. Within
these expressions, the only character that needs to be
escaped in this is] (right bracket), all others are not special.

[a-z] Matches one occurrence of a character between a and z.

[^az] Matches any character except a or z.

*~ Followed by another expression removes any pattern
matching the expression from the match list.

$ Matches the end of the string.

Understanding Wildcard Patterns

13

*.sgi.com~(quark|energy|neutrino).netscape.com matches any host from
domain sgi.com except for hosts quark.sgi.com, energy.sgi.com and
neutrino.sgi.com.

.com~.sgi.com matches any host from domain com, except for hosts from
subdomain sgi.com.

15

Chapter 2

2. Security

The Netscape Commerce Server uses a protocol called Secure Sockets Layer
(SSL) to provide advanced security features for secure data communications.
This means the server can send and receive private information across the
public Internet to SSL-enabled browsers without the data being
compromised during transfer.

This chapter describes some of the concepts behind private and
authenticated server communications. It discusses how to secure your
server host and how to install security on the server.

Note: In contrast to the Commerce Server, the Netscape Communications
Server does not support SSL or these advanced security features. If you need
these features, contact Silicon Graphics, Inc. for information on migrating
from the Communications to the Commerce Server.

Understanding Security

The Internet is a public network that interconnects millions of computers
world wide. Few Internet hosts are directly connected to one another. For
data to move from one computer to another, it almost always has to travel
through several other connections. This is called routing. The routing of
sensitive data over the Internet is problematic for two reasons:

• It’s difficult to maintain privacy between two computers that aren’t
directly connected.

• Third parties can illegally pose as a computer in a conversation or
transaction and intrude or eavesdrop on the information.

Figure 2-1 illustrates how data can be intercepted by a third party as the data
travels through the Internet.

16

Chapter 2: Security

Figure 2-1 Routing Between Hosts on the Internet

For the server to communicate with the client, various Internet computers
must route the data. Without security, all data that passes between server
and client can be intercepted by any computer along the data route. These
computers can make copies of all the data, or they can pose as the client
simply by answering messages sent to the client’s network address.

How Security Works: SSL

The Netscape Commerce Server uses the Secure Sockets Layer (SSL)
protocol for transferring data over the Internet. SSL is a cryptosystem that
works at the protocol level. SSL provides the following:

• Authentication lets clients make sure they are communicating with the
correct server. This prevents any computer from impersonating your
server or attempting to appear secure when it isn’t.

• Encryption scrambles the transferred data so that any eavesdroppers
won’t understand the information.

• Data integrity verifies that the data sent between client and server
wasn’t altered during transfer. That is, it can tell if anyone has added or
removed data.

Note: Don’t confuse SSL authentication with the server’s access-control
type of user authorization (see “Restricting Access” on page 10).

The client also
sends and
receives data.

Without SSL and advanced security,
any computer on the Internet can
intercept the information as it routes
from server to client and back.

The server
sends and
receives infor-
mation via the
Internet.

Internet

How Security Works: SSL

17

Figure 2-2 How SSL Relates to TCP/IP and Application Protocols

What Is a Certificate?

You need to acquire what is called a digital certificate for your server before
the server can use SSL. Only companies called Certification Authorities
(CAs) can issue certificates.

The signed digital certificate contains two groups of information. First is the
certificate information itself, including the name of the server, its public key,
the certificate’s validity dates, and the name of the CA. The second piece is
the digital signature. The digital signature cannot be forged. This entire
message is digitally signed by a Certification Authority who is known to
many servers and who can verify the relationship between a server and its
public key.

To obtain a certificate, you generate a public-private keypair, safely store the
private key, and then send the public key to a CA with proof of your identity.
(See “Generating a Key Pair File” on page 24 for a definition of public and
private keys.) The CA generates a digital signature for the server and sends
back a signed digital certificate. The certificate can then be published in a
directory or attached to any message being sent across the network. Any
other user can then verify the authenticity of the certificate using the digital
signature and the public key of the Certification Authority who signed the
certificate. Once the certificate is known to be authentic, the information
inside the certificate can be trusted.

TCP/IP
Layer

Secure Sockets
Layer

HTTP NNTP
and
so on. Application

Layer

Network
Layer

• Data Integrity
• Encryption
• Authentication

FTP

18

Chapter 2: Security

Authentication

Before the server can begin a secure connection with a client, the client needs
to ensure that it is connected to a secure server. To verify the identity of the
server, the client and the Commerce server use authentication. After the
server is authenticated, the client and server can encrypt data to each other
and ensure the integrity of that data.

Warning: The client software must be SSL-enabled to do any secure
transactions.

The authentication process is described as follows:

1. The client sends a request to connect to the secure server.

Note: The server generates a private and public key before sending the
request for a certificate.

2. The server sends a signed digital certificate to the client. The server uses
the certificate it acquired from the CA.,

The signed digital certificate contains two groups of information. First
is the certificate information itself, including the name of the server, its
public key, the certificate’s validity dates, and the name of the CA. The
second piece is the digital signature. The digital signature cannot be
forged. It is encrypted using the CA’s private key. See Figure 2-3 for a
diagram of a signed digital certificate.

Figure 2-3 The Server Authentication Process and Signed Digital Certificates

The Certification Authority
generates this digital signature

The digital signature (bottom
block) is created using the
information above. If that
information is tampered with,
the digital signature becomes
invalid. The client then
terminates the connection.

Server’s identifying information:
name, organization, address, and so on.

Server’s Public Key

Certificate Validity Dates

Certificate Serial Number

How Security Works: SSL

19

3. The client authenticates the server by decrypting the digital signature
and matching it with the certificate information. If the certificate was
tampered with during the transaction, the digital signature won’t
match. In this case, the client terminates the connection to the server. If
the certificate is valid, the server is authenticated.

4. The client generates a session key and encrypts it using the server’s
public key from the certificate (this way, only the server’s private key
can decrypt it). The session key is later used to encrypt data and ensure
data integrity. The client sends the encrypted session key to the server.

5. The server receives the session key, which it uses to encrypt and
decrypt the data it can then securely send and receive from the client.

Encryption

The Netscape Commerce server delivers security by encrypting data sent
between client and server. Encryption is the scrambling of information so
that only someone with a specific key can decrypt the message.

After the client authenticates the server, the client generates a session key
that lets the client and server encrypt and decrypt data, preventing a third
party from deciphering their communications.

Figure 2-4 shows how the encrypted data can be intercepted by a third party,
but the third party can’t read the data because it is encrypted. However, a
third party can taint the data by removing or adding unknown data to the
transaction. SSL uses data integrity to guard against this type of tampering.

Figure 2-4 Encryption Scrambles Data to Thwart Intruders

The client also
sends and
receives
encrypted data.

Computers on the Internet can
intercept the information, but they
can’t decipher it.

internet
The server sends
and receives
encrypted
information.

20

Chapter 2: Security

Data Integrity

SSL uses Message Authentication Codes (MACs) to ensure the data
transferred between client and server hasn’t been tampered. For example,
someone can intercept the data being sent and add or remove bits. They can’t
view the data because it’s encrypted.

If the integrity is compromised, the client or server terminates the
connection.

The Certification Authority

Certification Authorities (CAs) are trusted third-party companies that can
approve requests for signed digital certificates. Certificates are required if
you want to use SSL and advanced security features with your server. The
certificate is used to authenticate the server to client browsers before they
begin a secure transaction.

Note that not everyone who requests a certificate is given one. Also, it can
take anywhere from a day to two months or more to approve a certificate.
You are responsible for promptly providing all the necessary information to
the CA.

When you purchased the Netscape Commerce Server, you received a list of
CAs. You must contact a CA to find out what information they require before
they issue a certificate. Most CAs require that you prove your identity. For
example, they want to verify your company name and who is authorized by
the company to administer the Netscape Commerce Server and whether you
have the legal right to use the information you provide.

When installing security, you provide the following to the CA:

• Common Name is usually the fully-qualified hostname used in DNS
lookups, for example, www.sgi.com. However, some CAs might
require different information, so it’s very important to contact them
about this.

• E-mail Address is your business e-mail address. This is used for
correspondence between you and the CA.

Preparing to Install Server Security

21

• Organization is the official, legal name of your company, educational
institution, partnership, and so on. Most CAs require that you verify
this information with legal documents (such as a copy of a business
license).

• Organizational Unit is an optional field that describes an organization
within your company. This can also be used to note a less formal
company name (without the Inc., Corp., and so on).

• Locality is an optional field that usually describes the city, principality,
or country for the organization.

• State or Province is usually required, but can be optional for some CAs.
Most CAs won’t accept abbreviations, but check with them to be sure.

• Country is a required, 2-character abbreviation of our country name (in
ISO format). The country code for the United States is US.

After you contact a CA and gather the information you need, you can submit
a request for a certificate (see the following section). While waiting for the
CA to approve your request, you might want to work on securing the
physical host your server is installed on (see “Securing the Server Host” on
page 21).

Preparing to Install Server Security

Before you can enable security on your server, you need to choose a
Certification Authority, request a certificate, and then install the certificate
they send you. You’ll also need to physically secure the host and the
operating system that your Commerce server resides on.

Securing the Server Host

To have the most secure server, you need to secure the host that the server is
installed on. This section gives some guidelines that will help you determine
and fix some of the security risks.

22

Chapter 2: Security

Secure Private Keys

Make sure your private key is protected. This is the fundamental security
risk for the server.

Warning: Store the key file in a directory that either only the root user
has access to or that the server’s user account has access to.

Keep the password confidential, and never write it down. Choose a
password that is a mix of letters, numbers, and valid punctuation marks. It’s
also important to know if the file is stored on backup tapes or is otherwise
available for someone to intercept.

Limit Availability

This is probably the simplest security measure and is often forgotten. The
server host should be kept in a locked room that only authorized people
have access to. This prevents anyone from hacking the server host itself.

Limit Applications

You should carefully consider all applications that run on the server host.
Disable all unnecessary system daemons and services. For example, the
sendmail daemon is difficult to configure securely and it can be
programmed to run other possibly detrimental programs on the server host.

Carefully choose the processes started from startup scripts. Don’t run telnet
or rlogin from the server host. You also shouldn’t have rdist on the server host
(this can distribute files but it can also be used to update files on the server
host).

Limit Ports

You should disable any ports not used on the host. Use routers or firewall
configurations to prevent incoming connections to anything other than the
absolute minimum set of ports. The secure server runs on port 443, so
connections to any other port should fail. This means that the only way to
get a shell on the host is to physically use the server’s host, which should be
in a restricted area already.

Preparing to Install Server Security

23

Limit Administration

You should never do remote server administration, especially in an unsecure
network. Anyone could intercept your administration password and
reconfigure the server. The administration server doesn’t use the SSL
security like the Commerce server.

Also, you should restrict access to the server administration forms by
allowing only local hosts. See “Restricting Access” on page 10 for
information on access control for the administration forms.

Change Passwords

Don’t keep passwords for long periods and always use proper passwords.
Your password should be long and include upper and lowercase characters,
numbers, and special characters. You should never use words known in any
language. A good password is one you’ll remember but others won’t guess.
For example, MBi12!mo could be remembered as “My Baby is twelve months
old!” A bad password would be your child’s name or birthdate.

It is also very important to use different passwords for different applications.
Your root password should be different from your server administration
password and your keyfile password.

Know the Limits

The Netscape Commerce Server offers secure connections between the
server and the client. It can’t control the security of information once the
client has it, nor can it control access to the host itself and its directories and
files.

Being aware of these limitations helps you know what situations to avoid.
For example, you might acquire credit card numbers over a secure
connection, but are those numbers stored in a secure file on the server host?
What happens to those numbers after the secure connection is terminated?
You should be responsible for securing any information that clients send to
you through a secure connection.

24

Chapter 2: Security

Installing Security

The procedure for installing security on your Netscape Commerce Server is
straightforward:

1. You use a form to generate a private and public key pair.

2. You request a certificate from a Certification Authority.

3. When the certificate is transmitted back to you from the Certification
Authority, you install it using another form.

4. Finally, you configure and activate security for the server.

Make sure you’ve read the information about Certification Authorities and
have prepared all the information before you begin this process!

The following sections correspond to links on the Server Manager page.

Generating a Key Pair File

Your server needs to generate a key pair file that holds the public and private
keys for your server. These keys are used during secure communications.
The private key is stored in encrypted form using a password you specify.

• A public key is usually used to exchange session keys. It is also used to
verify the authenticity of digital signatures. A public key can also be
used to encrypt data.

• A private key is usually used to decrypt session keys that were
encrypted using the matching public key. You always keep your private
key private. The Commerce server keyfile password protects this key,
but for additional security you shouldn’t keep the key file in a directory
where people have access to it. The private key is also used to create a
digital signature when you first request a certificate.

To generate a key pair file,

Installing Security

25

1. Start the Server Manager and click the Security Configuration link
called “Generate a key.”

2. In the form that appears, type a path (relative or absolute) where you
want to store the key file. This directory should be safe from other
users. For example, use a directory that only you have read and write
access to.

3. Type a password for the key file. Make sure you memorize this
password (and don’t write it down). The security of your server is only
as good as the security of the key file and its password.

Warning: If you must write down the password, make sure you
store the written copy in a safe, safety box, or other physically secure
place.

Any time secure servers are restarted, this password is required to
decrypt the key file and extract the public and private keys.

The password must be eight characters in length. It is required that the
password have at least one non-alphabetical character (a number or
punctuation mark) somewhere in the middle.

You shouldn’t administer security using a remote connection. Anyone
on your network could potentially intercept your password.

4. Click the Make These Changes button. The server generates the key pair
file and places it in the directory you specified.

You can return to the Server Manager or continue installing security by
requesting a certificate.

Note: You should periodically change your key file password. Use the
Security Configuration link called “Change your key file pair password” to
change it. If you forget your password, you will have to regenerate your
keypair file. This means you must also obtain another certificate (there are
usually additional costs to do this).

Requesting a Certificate

Before you can request a certificate, you must choose a Certification
Authority (CA) and contact them regarding the specific format of the

26

Chapter 2: Security

information they require. See “The Certification Authority” on page 20 for
more information.

To request a security certificate,

1. From the Server Manager, click the link called “Request or renew a
certificate.”

2. In the form that appears, type the email address for the CA you have
chosen.

3. Specify if this is a new certificate or a renewal. Certificates are generally
good for 6 months to a year. Some CAs automatically send you a
renewal.

4. Type the location and password for your key file.

5. Type the information for your distinguished name. The format of this
information varies by CA. For a general description of these fields, see
“The Certification Authority” on page 20. This usually isn’t required for
a renewal.

6. Type your phone number. Be sure to include your area code and any
international codes as applicable. The CA uses this to contact you
regarding your request for a certificate.

7. Double-check your work to ensure accuracy. The more accurate the
information, the faster your certificate is likely to be approved. Click
the Make These Changes button when the information is correct.

The server composes an e-mail message to the CA that includes your
information. The e-mail message has a digital signature created with your
private key. The digital signature is used by the CA to verify that the email
wasn’t tampered with during routing from your server host to the CA. In the
rare event that the email is tampered with, the CA will usually contact you
by phone.

You can’t continue installing security until your request for a certificate is
approved and a confirmation is sent to you via email. During this time, you
should read about securing the server host. See “Securing the Server Host”
on page 21 for information.

Installing Security

27

Installing the Certificate

When you get an email from the CA that contains your certificate, you need
to decode the certificate from the email. You can either save the email
somewhere accessible to the server or copy the text of the mail and be ready
to paste the text in the form. The information in the email is encrypted, but
you should take every protection to prevent unauthorized access to the
certificate file.

To install the certificate,

1. From the Server Manager, click the link called “Install a certificate.”

2. Either type the full pathname to the saved email, or paste the email text
in the space provided.

3. Specify a destination directory for the certificate. You can enter the
name as a relative path or as an absolute path. The default name and
location is [ServerRoot]/https-443/ServerCert.der.

Remember where you put this file! It should not appear in your document root
directory or any generally available directory.

4. Click the Make These Changes button. The server extracts the certificate
from the email and saves it to the directory you specified.

You can return to the Server Manager or continue by activating security and
specifying ciphers.

Activating Security and Specifying Ciphers

Most of the time, you want your server to run with security enabled. You
might, at other times, want to disable security. If you temporarily disable
security, make sure you enable security before processing transactions that
require encryption, authentication, or data integrity. You should also make
sure that any private files are removed from public access.

Ciphers define how a document is encrypted. Generally, the more bits used
during encryption, the harder it is to decrypt the data.

To activate security and specify ciphers,

28

Chapter 2: Security

1. From the Server Manager, click the link called “Activate security and
specify ciphers.”

2. Check the radio button to enable security. You can always return to this
form and disable security.

3. Specify a new port number. The standard HTTP port is 80, and the
standard secure HTTP port is 443. You should always use 443 with the
secure server. You can use other port numbers, but it isn’t
recommended. (If you do change the port number, you must edit
/etc/init.d/netsite_commerce to reflect the change.)

4. Type the path to the key file. This is used when the server needs to
encrypt or decrypt messages and digital signatures.

5. Type the path for the certificate file. The server uses the certificate to let
client browsers verify the servers identity (server authentication).

6. Activate any ciphers by checking them. These ciphers are used when
the client and server try to agree on the encryption method they should
use.

You should check all the ciphers and let the browser and server decide
the method. However, you might want to uncheck some ciphers to
exclude some transactions. For example, some ciphers are only used for
data transfer outside of the United States. If you uncheck these, then
you’re basically restricting access to browsers that use the checked
ciphers (for example, US versions of Netscape Navigator).

The ciphers are as follows:

• RC4 cipher with 128-bit encryption

• RC4 cipher with 40-bit encryption

• RC2 cipher with 128-bit encryption

• RC2 cipher with 40-bit encryption

• IDEA cipher with 128-bit encryption

• DES encryption, 64-bits

• DES encryption with EDE 3, 192 bits

7. Click the Make These Changes button. You’ll need to restart the server
before using any secure features.

Effects of a Secure Server

29

Effects of a Secure Server

Once security is enabled, you need to keep a few things in mind for your
Netscape Commerce Server to be secure. This section describes what you
need to know about running a secure server versus an unsecure server.

Secure URL Construction

Secure URLs are constructed using https instead of simply http. URLs that
point to documents on a secure Commerce Server have the format:

https://host.domain.dom/pathname/document

Secure Server Document Root and Logging

Once security is installed and enabled on a Netscape Commerce Server, all
communications between the server and SSL-enabled browsers (such as
Netscape Navigator) are private and authenticated. This means that any
document sent to a user with an SSL-enabled browser is automatically
encrypted. There is no way around this.

Note: Browsers not enabled with SSL won’t work with a secure Commerce
Server because they can’t decrypt the data. (They will work if the Commerce
Server doesn’t enable SSL security.)

The Secure Log

Once security is enabled, a new log, called “secure,” is created in the normal
log directory. Entries in the log look like this:

198.93.92.99: [02/Nov/1994:23:51:46 -0800] using keysize 40

The IP address is first, followed by the date and time of access, and then the
key size. The key size represents a level of security. Generally, the bigger the
key size, the higher the level of security. See “Activating Security and
Specifying Ciphers” on page 27 for a list of supported key sizes.

30

Chapter 2: Security

Unprotected Server Document Root

If you want to send documents from a document root that does not have
security features (such as the Communications Server), it’s highly
recommended that you operate the unsecure server on a different host from
the secure Commerce Server. If your resources are limited and you must run
an unprotected server on the same host as your Netscape Commerce Server,
follow these guidelines.

• Port Number Assignments—make sure that the secure server and the
unprotected server are assigned different port numbers. For example,
use 443 for the secure server and 80 for the unsecure one.

• Use CHROOT on the document root directory—the unprotected server
should have references to its document root redirected using the chroot
command.

Changes to the magnus.conf File

With a secure server installed, you should know about the following
changes to the magnus.conf file (the server’s main configuration file). These
new directives are briefly described below:

Security

The Security directive tells the server whether security is enabled or
disabled.

SYNTAX

Security value

value specifies if security is on or off. Security on enables security;
Security off disables security.

ServerKey

The ServerKey directive tells the server where the key file is located.

SYNTAX

Additional Reading

31

ServerKey keyfile

keyfile is the server’s key file, specified as a relative path from the server root
or as an absolute path.

ServerCert

The ServerCert directive specifies where the certificate file is located.

SYNTAX

ServerCert certfile

certfile is the server’s certificate file, specified as a relative path from the
server root or as an absolute path.

Ciphers

The Ciphers directive specifies the ciphers enabled for your server.

SYNTAX

Ciphers +rc4 +rc4export -rc2 -rc2export +idea +des +desede3

A + means the cipher is active, and a - means the cipher is inactive.

Additional Reading

The following resources can help you begin learning and understanding
issues related to general security:

• http://home.netscape.com/info/security-doc.html

• http://www.rsa.com/

• http://www.cis.ohio-state.edu:80/hypertext/faq/usenet/security-faq/faq.html

• snews://secnews.netscape.com/netscape.security

• http://home.netscape.com/commun/netscape_user_groups.html

• Applied Cryptography: Protocols, Algorithms, and Source Code in C. Bruce
Schneier. John Wiley & Sons, Inc., 1994.

32

Chapter 2: Security

• IRIX Advanced Site and Server Administrator’s Guide

Usenet newsgroups that regularly discuss computer security include
comp.security.misc, comp.security.unix, and alt.security.

33

Chapter 3

3. Configuring the Server

This chapter describes how to configure the Netscape Commerce and
Communications Servers by using the Server Manager configuration forms.

Using the Server Manager

After you install your server, you’ll need to do periodic maintenance. This
includes making infrequent changes to configurations, such as changing the
server’s name and port number, to daily tasks such as adding, changing, and
removing users in user database files.

Use the Administration Manager to jump to the Server Manager for the
server you want to configure. The Administration Manager lists all the
servers installed on your host. It lists them according to type
(Communications or Commerce) and by the port number they are listening
to.

To jump to the Server Manager, click the link in the Administration Manager
for the server you want to configure. You can return to the Administration
Manager by clicking the link at the bottom of the Server Manager page.

Once in the Server Manager, you click links to configure parts of the server.
Most links go to forms that configure the entire server. Some links go to
forms that can configure files or directories the server maintains. These
forms have four buttons at the top that let you specify what resource to
configure, as described in Figure 3-1.

34

Chapter 3: Configuring the Server

Figure 3-1 Option Buttons on Server Configuration Forms

The rest of the chapter is organized by main topics on the Server Manager
page.

Server Control

You can configure the server’s basic functions with the forms under Server
Control in the Server Manager.

System Specifics

You can configure the server’s technical options, including its location, the
user account it uses, and the processes the server spawns.

Changing the Server’s Location

For various reasons, you might need to move the server from one directory
to another. To do this, you change the location that the server references (it
needs to know where the binary files are). Then you shut down the server
and copy the server files and subdirectories to a new location.

Warning: If you change the default server root directory from
/usr/ns-home, you must edit the /etc/init.d/netsite file
(/etc/init.d/netsite_commerce for the Commerce Server) to reflect the
change.

Configures the
entire server

Lets you specify a wildcard pattern
such as *.gif or /user/public/*

Lets you choose files
and directories to
configure

Lets you choose a
template to configure

Server Control

35

Changing the Server’s User Account

The Server User specifies an IRIX user account that the server uses (all the
server’s processes are assigned to this user account).

You don’t need to specify a server user if you chose a port number greater
than 1024 and aren’t running as the root user (in this case, you don’t need to
be logged as root to start the server). If you don’t specify a user account, the
server runs with the user account you start it with, so make sure that when
you start the server, you use the correct user account.

Even if you need to start the server as root, you don't want it to run as root
all the time. You want it to have restricted access to your system resources
and run as a nonprivileged user. The user name you enter as the Server User
should already exist as a normal IRIX user account. After the server starts, it
runs as this user.

If you want to avoid creating a new user account, you can choose the user
nobody or an account used by another HTTP server running on the same
host. However, on some systems the user nobody can own files but not run
programs.

Server Processes

Whenever people use the server, the server uses background processes to
service their requests. You can specify the minimum number of processes
dedicated to the server. These processes are spawned when the server starts
and they remain idle until needed. The maximum number sets a limit on the
number of processes your server can use. The actual number of processes
fluctuates between the minimum and maximum numbers.

Note: The number of processes the server can use is limited by the process
table for the computer the server runs on.

Base your choice on achieving a balance between system load and server
requests:

• On a high-demand system, the server needs many of these processes
(for example, 80 processes) to handle many simultaneous requests.

36

Chapter 3: Configuring the Server

• On a low-demand system (less than a dozen users, only a few
simultaneous connections active at any given time), 10-20 processes
should be sufficient.

Note: Each process uses around 200K of RAM when idle and 300-500K
when active. If you specify more processes than can fit simultaneously in
main memory, the system starts swapping (using virtual memory), which
considerably slows down service. All processes must fit in the main memory
simultaneously to make the server efficient.

Process Lifespan

Process lifespan specifies the number of requests that each of the child
processes serves before the processes exit and are respawned (this is set to 32
by default). When the processes are stopped and restarted, the memory they
use is freed and then reused.

By stopping and restarting a process, the server ensures that memory isn’t
wasted by “lost” processes. For example, on rare occasions, there might be
resource “leaks” in operating system libraries or in the server itself (though
none are currently known). By specifying a lifespan, a process answers a
certain number of requests before exiting and respawning.

Domain Name Service

The server can be configured to never use Domain Name Service (DNS)
lookups during normal operation. Even though DNS lookups are a useful
tool, they can be expensive in terms of performance.

Warning: Be aware of the consequences of turning off DNS on your
server— hostname restrictions won’t work, and hostnames won’t appear
in your log files.

Stopping and Restarting the Server

You can stop, start, or restart the server from the Server Manager.

Restart performs a soft restart. This means the server reloads its
configuration files and service isn’t interrupted. Sometimes you’ll need to do

URL Configuration

37

a hard stop and start, such as if you change the port number, enable security,
and so on. (If you aren’t sure if you need to do a hard start or soft restart, do
a hard stop and restart.)

Stop shuts down the server completely, interrupting service until it is
restarted.

Rotating Log Files

The server uses several log files. It logs accesses to the server and any errors
that occur. There are times when you’ll want to archive the log files and have
the server create new log files.

When you rotate log files, the server renames the existing log files and then
creates new log files with the original names. This lets you back up or
archive (or simply delete) the old logs. The old log file is saved with the
name of the file combined with the date the file was rotated. For example,
access becomes access.24-Apr.

URL Configuration

URL configuration lets you change elements that effect the URLs to
documents on your server. You can change the server name and port
number and the directories to your documents, and you can map URLs for
one directory to another. The general structure for URLs is

http://hostname.domain.dom[:portnum]/directory/filename

You can also map URLs to another server or directory. This is useful when
you move files and directories among filesystems.

Global URL Configuration

This section configures the structure of all the URLs for your server.

38

Chapter 3: Configuring the Server

Server Name

The server name is the full hostname of your server host. When clients access
your server, they use this name. The format for the server name is
hostname.yourdomain.domain. For example, if your full domain name is
sgi.com, you could install a server with the name www.sgi.com.

If your system administrator has set up a DNS alias for your server, then you
should use that alias here. If not, you should use the host's name combined
with your domain to construct the full hostname.

Server Port Number

Server Port Number specifies the TCP port the server listens to. The port
number you choose can affect your users—if you use a nonstandard port,
then anyone accessing your server must specify a server name and port
number in the URL. For example, if you use port 8080:

http://www.sgi.com:8080

If you aren’t sure that the port number you plan to use is available, look at
the contents of /etc/services on the server host.

Port numbers for all network-accessible services are maintained in the file
/etc/services. The standard HTTP port number is 80. The standard secure
HTTPS port is 443.

Technically, the port number can be any port from 1 to 65535. If you aren’t
running as root or superuser when you install or start the server, you’ll have
to use a number above 1024.

Server Address

At times you’ll want the server host to answer to two URLs. For example,
you might want to answer both http://www.a.com/ and http://www.b.com/ from
one host.

Because of limitations in the HTTP protocol, this is difficult to configure.
However, there is a trick to do this that involves making your host answer to
more than one IP address. This works only on certain systems.

URL Configuration

39

If you have already set up your system to listen to multiple IP addresses and
want to use this feature, you must tell the server which IP address it belongs
to.

Document Configuration

This section configures the how the server deals with URLs.

Document Root

For a public server, you probably don’t want to make all the files on your
filesystem available to remote clients. The easiest way make sure this does
not happen is to keep all of your server's documents in a central location,
known as a document root.

Another benefit of the document root is that you can move your documents
to a new directory (perhaps on a different disk) without changing any of
your URLs because the paths specified in the URL are relative to the
document root directory.

For example, if your document root is /usr/htmldocs, a request such as
http://www.acme.com/products/info.html tells the server to look for the file in
/usr/htmldocs/products/info.html. If you change the document root (that is, you
move all the files and subdirectories), you only have to change the document
root directory that the server uses instead of mapping all URLs to the new
directory or somehow telling all your users to look in the new directory.

You can choose not to use a document root, but it isn’t recommended
because the server assumes / as the document root, which means users have
access to all files on your server.

Directory Indexing

In your document root directory, you’ll probably have several
subdirectories. For example, you might create a directory called products,
another called people, and so on. It's often helpful to let clients access an
overview (index) of these directories.

There are two ways the server can do this:

40

Chapter 3: Configuring the Server

• It first searches the directory for an index file called index.html, which
is a file you create and maintain as an overview of the directory's
contents. You can specify any file as an index file for a directory. This
means you can also use CGI programs to configure pages.

• If an index file isn’t found, the server generates an index file for you
that lists all the files in the document root. The generated index has two
formats:

– Fancy directory indexing is fairly detailed. It includes a graphic
that represents the type of file, the date the file was last modified,
the file size, and a description.

– Simple directory indexing is less detailed but takes less time to
generate.

Server Home Page

When users first access your server, they usually use a URL such as
http://www.acme.com/. When the server receives a request for this document,
it returns a special document called a home page. Usually this file has
general information about your server and links to other documents.

You can either specify a file in the document root as the home page, or the
server will create an index file instead.

Default MIME Type

When a document is sent to a client, the server includes a section that
identifies the document's type, so the client knows what to do with the
document. However, sometimes the server can't determine the proper type
for the document. In those cases, a default value is sent.

The default is usually “text/plain,” but it should reflect the most common
type of file stored in your server. Some common types are:

• text/richtext

• text/plain

• text/html

• image/tiff

URL Configuration

41

• image/jpeg

• image/gif

• application/x-tar

• application/postscript

• application/x-gzip

• audio/basic

• audio/x-wav

URL Mappings

URL mappings let you map URLs to another server or directory. You specify
a URL prefix to map and where to map it. When a client accesses the server
with a mapped URL, the server gets the requests from the mapped server or
directory.

Map a URL to a Local Directory

URL mappings are used to point to documents in directories outside of the
document root directory.

Most of the time, you keep all of your documents in the document root.
Sometimes, though, you want to refer to a directory outside of your
document root. You can do this through directory mapping.

First, you choose the URL prefix to map. This is the URL users send to the
server when they want documents in the mapped directory (this is seamless
to the user). For example, a mapped URL could be
http://www.acme.com/products/index.html where products/ is the prefix you
specify.

Next you specify the directory to map those URLs to. For example, the
directory could be called /sales/tools/products. It should be a full system path.

Finally, you might want to use a template to specify how this directory
should be configured. You can choose an existing template or choose cgi to
specify that all files in this directory are CGI programs. For more information
on templates, see “Creating a Template” on page 53.

42

Chapter 3: Configuring the Server

Map a URL to Another Server

Redirection is a method for the server to tell a user that a URL has changed
(for example, if you move files to another directory or server). You can also
use redirection to seamlessly send a person from your server to another.

To map a URL to another server, you must first specify the URL prefix you
want the server to redirect. For example, if the URL you want to map is
http://www.sgi.com/info/movies, you’d type /info/movies as the prefix to
redirect.

Choose which URL you want to redirect them to. You have two choices:

• Specify a single URL. You must specify a complete URL (hostname,
directory, and filename). For example, type
http://w3.acme.com/new-files/info/movies.

• Specify a URL prefix. Use this if the directory on the new server is the
same as in the mapped URL. For example, you type only the new
server name http://w3.acme.com/.

View, Edit, or Remove URL Mappings

You can view all URL mappings on a server, and then use links to edit and
remove any URL mappings.

Each URL mapping is listed with a pair of links next to it for editing and
removing the URL mapping. The “Edit” link takes you to the same page you
used to add the mappings, except you can change the values in the form. The
“Remove” link immediately and permanently removes the mapping from
your server.

Customize Users’ Public Information Directories

You can configure public information directories that let all the users on your
host create home pages and other documents without your intervention.

Note: Another way to do this is to create a URL mapping to a central
directory that all of your users can modify.

URL Configuration

43

With this system, clients can access your server with a certain URL that the
server recognizes as a public information directory. For example, suppose
you choose the prefix ~ and the directory public_html. If a request comes in
for http://www.sgi.com/~bob/aboutbob.html, the server recognizes that ~bob
refers to a users' public information directory. It looks up bob in the system's
user database and find Bob’s home directory. The server then looks for the
request (aboutbob.html) in Bob’s home directory.

To configure your server to use public directories, you need to choose a user
URL prefix. The usual prefix used is ~ because it’s a character that is rarely
used. Next, you need to choose the subdirectory where the server looks for
user home directories. A typical directory is public_html.

The server needs to know where to look for a file that lists users on your
system. The server uses this file to determine valid user names and to find
their home directories. You can use the system password file for this, which
means the server uses standard library calls to look up users. Or, you can
create another user file to use to look up users. You can specify that user file
with an absolute link.

Each line in the file should have this structure (the elements in the /etc/passwd
file that aren’t needed are indicated with *):

username:*:*:groupid:*:homedir:*

You also have the option of loading the entire password file on startup. If
you choose this option, the server loads the password file into memory when
it starts, making user lookups much faster. On the other hand, if you have a
very large password file, this can use too much memory.

Finally, you can choose a configuration template that the server uses so that
you can control what is allowed from public information directories. This
can prevent users from creating symbolic links to information you don’t
want made public, and so on. See “Creating a Template” on page 53 for more
information.

44

Chapter 3: Configuring the Server

User Databases

User databases are lists of users who can access the server. Each user has a
username and password. User databases control who has access to
documents through the server.

The server stores its user files in a high speed format called a DBM. This
format can search an infinitely large database with one filesystem read
(normal files search the database linearly).

The server stores its databases in the directory /userdb in the server root.
When specifying a database, use only the name, not the full path.

Creating and Removing a User Database

To create a user database for your server:

1. Click the Server Manager link to create a user database.

2. Type a name for the database. Don’t type a path, because all databases
are stored in /userdb. The database name can be up to 256 characters,
but must not include any spaces.

3. Check the type of database you want to create. A DBM file stores the
passwords unencrypted, so each line has the format user:password.
An NCSA-style database encrypts the passwords.

4. Type a password for this database. The password can be up to 8
characters. Retype the password to ensure accuracy. When you click the
Make These Changes button, the server creates the database, then lets you
jump to the page where you can add users to the new database.

To remove a user database:

1. Click the Server Manager link to remove a user database.

2. In the form that appears, choose the database you want to remove.

3. Type the password for the database. You can’t remove the file unless
you have the password.

4. Click the Make These Changes button. The user database is permanently
removed from the server.

User Databases

45

Adding, Editing, and Removing Users in a Database

To add a user to a database:

1. Choose the database and type the password for the database.

2. Type a user name. This is the name the user types when authenticating
with the server. It can be up to 254 characters.

3. Type a password for the user. It can be up to 8 characters. Type it twice
to ensure accuracy. The user types this password when authenticating
with the server.

4. Click the Make These Changes button. The user name and password are
added to the database. You can continue adding names to the database,
or you can return to the Server Manager.

If you want to change a user’s name, you need to remove the user, then add
them with the new name. You can change a user’s password. To change user
passwords in a database:

1. Click the link to edit users.

2. Choose the database that contains the user whose password you want
to edit.

3. Type the password for the database file.

4. Type the user name you want to edit.

5. Type the new password.

6. Click the Make These Changes button. You can continue removing users
or return to the Server Manager.

To remove users from a database:

1. Click the link to remove users.

2. Choose the database that contains the user name that you want to
remove.

3. Type the password for the database file.

4. Type the user name you want to delete.

5. Click the Make These Changes button. You can continue removing users
or return to the Server Manager.

46

Chapter 3: Configuring the Server

Converting an NCSA or Text File to a User Database

The server stores its databases in the server root, in the directory /userdb. The
NCSA-style or text file can reside anywhere for the conversion, but the
converted file is stored in /userdb.

The format of the file to convert should look something like this:

user1:password1
user2:password2
user3:password3
user4:password4

If the file is an NCSA file, the passwords will already be encrypted. If the
passwords aren’t encrypted, you can have the converter encrypt the
passwords for you.

You need to choose a name for the converted file. You don’t need to type a
full path name because the user databases are always kept in /userdb.

Sometimes, a user may be entered twice into a database. You can choose how
the convertor behaves under this circumstance: either it can overwrite the
existing user, or it can leave the user unchanged and keep track of those
users.

You also need to specify a password for the user database; type it twice to
ensure accuracy. You need this password to add, remove, or edit users.

Changing a Database Password

You can change the administrative password for a database. Type the name
of the database whose password you want to change. Type its current
password, then type the new password twice (to ensure accuracy). Click the
Make These Changes button. The server stores the new password.

Removing an Existing Database

You can remove a database from the /userdb directory. This deletes the file
from the directory.

Access Control

47

Type the name of the database you want to delete. Type the password for the
database. Click the Make These Changes button. The server deletes the file
from the filesystem.

Access Control

Access Control lets you restrict access to a resource according to the client’s
hostname or IP address. You can either protect your entire server or select a
resource to apply it to.

Restricting Through User Authorization

You can restrict access to your entire server or a particular section of it (files
or directories) by using HTTP user authorization. You need a user database
that provides the server with a list of users. Be sure to choose the section of
the server you want to restrict! See Figure 3-1 for directions on choosing a
resource.

When a user accesses a port of the server that uses user authorization, the
client application asks the user for a name and a password before
continuing. After the user enters this information, the server checks it, and
then either allows or denies the user. If you have the Commerce server
configured to use SSL, the user name and password are send encrypted.

To set up user authorization, choose the database that the server uses to look
up user names and passwords. Next, type a wildcard pattern to tell the
server which users from the database are allowed access. For example, if
your database contained Bob, Fred, Mary, and Joe, but you only wanted Bob
and Mary to have access to this section, you could use a wildcard pattern of
(Bob|Mary). If you leave this entry blank, all users from the database are
allowed access.

Finally, you create a realm that describes the part of the server on which
you’re using access control. This is a text string that helps the user know
what part of the server they are trying to access. For example, if you were
restricting access to a directory of product schedules, you might name the
realm “Confidential product schedules.”

48

Chapter 3: Configuring the Server

Restricting by Hostname and IP Address

You can restrict access to pages on your server by hostname or IP address.
You limit access to only the sites that you want to have access to various
parts of your server.

Address restriction is an easy way to get better control over who is seeing
your documents. When a request comes in for a document, the server knows
the IP address that the request is coming from. Once it has this address, it
uses DNS to look up the hostname that corresponds to that IP address. Then,
it checks its address restriction.

The address restriction is done in two steps: first, the server tries to match
the incoming hostname with the restriction hostname. If the client passes,
the document is served. If the client fails the test, the server then checks its
IP address against the restriction IP addresses. If it passes, the document is
served. If it fails, then the server takes appropriate action.

What to Protect

First, you should choose which files or directories inside this resource you
want to protect. This is simply a way to be more specific about what the
server should apply restriction to.

For example, if you choose the directory /usr/html-docs/info/* as the resource
you want to edit, you could specify:

• No additional specification—protects everything in this resource with
hostname restrictions.

• A wildcard pattern matching only certain files—for example, *.gif.

Note that by using this specification, you can protect many different things
in the same directory with different address restrictions for all of them.

Note: To deny all hosts (for example, to hide your C source files from
everyone), type a hostname restriction of *~*.

Enter a wildcard pattern of hosts to allow. You have the choice of restricting
access by hostname or by IP address. Restricting by hostname is more
flexible—if a host's IP address changes, you won't have to update your

Access Control

49

server. But on the other hand, restricting by IP address is more reliable—if a
DNS lookup fails for a connected client, hostname restriction cannot be used.

Remember that the hostname and IP addresses should be specified with
either a wildcard pattern, or a comma separated list, but not both. Also be
sure your wildcard pattern is not recursive—there should only be one level
of parentheses in the expression.

What Happens When a Client is Denied?

Finally, you should specify what should happen when a client is denied
access. Normally, the server sends Not Found, which is the same thing that
happens when a client requests a document that does not exist. However,
sometimes you want to let the user know what they are missing. In those
cases, you can specify a specific file that the server sends back. The filename
should be an absolute path.

Restricting System Links

You can limit the use of filesystem links in your server. Filesystem links are
references to files stored in other directories or filesystems. The reference
makes the remote file as accessible as if it were in the current directory.

Because filesystem links are an easy way to create pointers to documents
outside of the normal document root and because anyone can create these
links, you might be concerned about what people might create pointers to
(for example, confidential documents or system password files).

Hard links and soft links are simply two different methods of achieving this
goal. You can choose to disable both of these methods, or just one.

You should choose whether or not to allow links in the resource you have
selected, and what level of restriction you want.

Finally, you should choose from which directory the server should start
looking for filesystem links. You can give one of two directory types here:

• A full pathname—In this case, the server treats the path you give as a
prefix, and when it recognizes that prefix in a request, any directories
following the prefix are checked for filesystem links.

50

Chapter 3: Configuring the Server

• A partial pathname—In this case, the server looks for the partial
pathname you give here as a substring of the incoming request; that is,
if you give the directory nolinks for the “from” directory, then the server
looks for a directory named nolinks in the incoming request If it finds
the nolinks directory, it checks all following directories for filesystem
links.

Dynamic Configuration

Web server content is seldom managed entirely by one person. Many times,
different parts of a web server are written by different people. For example,
each employee maintains a home page.

When these users need to configure something, it is unrealistic for you as the
administrator to allow all of them access to the Netscape Server Manager. In
these cases, it is useful to allow them a subset of configuration options so
they can control only what they need to.

Note: If you haven't already, configure an area of your server to use these
configuration files.

Normally, your server gets its configuration from two or three files that are
kept in the server root and modified with the Server Manager.

With this feature, you can give users the ability to control more about their
home pages in their public information directories. You can allow them to
apply access control or customize error messages without allowing them to
use CGI or parsed HTML. The format and capability of these dynamic
configuration files is described in the following section.

When a request is made for a resource in which dynamic configuration is
enabled, the server must search for the configuration files within one or
more directories of that resource. This search can be an expensive operation
in terms of performance, so the server lets you configure how much
flexibility you need, weighing it against the efficiency cost.

You provide a base directory to the server. The server starts its search for
configuration files from this filesystem directory. Alternatively, you may
provide no base directory, in which case the server will attempt to infer the
base directory from the URL. That is, if the requested URL is going to be

Access Control

51

serviced with a file from the document root, then it will start searching from
the document root. The same applies to URL mappings, user public
information directories, and CGI mappings.

You also specify the name of the configuration file to search for within the
base directory.

Normally, you will want to centralize all of your configuration information
for the subdirectories of the base directory into the configuration file in the
base directory. This makes the server more efficient, because it does not have
to waste time searching for configuration files in each of the subdirectories.

However, for convenience you will sometimes want to tell the server to
search the subdirectories. That is, say that you have selected the base
directory inferred from URL translation, and selected .nsconfig for your
configuration filename. When a user requests the filesystem path
/usr/ns-home/docs/icons/logo.gif, instead of just searching for
/usr/ns-home/docs/.nsconfig you want the server to search all subdirectories:

/usr/ns-home/docs/.nsconfig
/usr/ns-home/docs/gfx/.nsconfig
/usr/ns-home/docs/gfx/icons/.nsconfig

Finally, enter a wildcard pattern of file types you want to absolutely disable
in directories where dynamic configuration is enabled. To disable CGI
programs and parsed HTML, use:

*(cgi|parsed-html)

Writing a Dynamic Configuration File

Dynamic configuration files consist of sets of directives that control the
server. These sets are surrounded by Files directives that tell the server
which files in the configuration file's directory the directives apply to. For
example:

<Files PATTERN1>
... directives ...
</Files>
<Files PATTERN2>
... directives ...
</Files>

52

Chapter 3: Configuring the Server

PATTERN1 and PATTERN2 are wildcard patterns that tell the server which
filesystem pathnames to apply the directives they surround to. Any pattern
given is first prefixed with the directory containing the configuration file to
ensure that it is applied only to subdirectories. There can be as many files
sets in the .nsconfig file as you need.

The file can contain blank lines. Lines beginning with # are treated as
comments.

Each directive can take a variable number of parameters. The directives that
can appear inside Files regions are:

• AddType exp=SHEXP type=mime-type enc=http-encoding

AddType assigns the given type or encoding to the paths represented
by the wildcard pattern SHEXP. One or both of “type” and “enc” can
appear, but only one “exp”.

• ErrorFile reason=error-string code=error-code path=html-file

ErrorFile causes the HTML file described by the URL suffix “path” to
be sent in place of the server's default error message when an error,
described by one or both of “reason” and “code”, occurs. “path” is a
valid URL to the local server, but without the http://server prefix. The
error codes are the standard HTTP error codes:

– 401 Unauthorized

– 403 Forbidden

– 404 Not found

– 500 Server error

• RequireAuth dbm=dbmfile userfile=user:passwords realm=string
userpat=PATTERN userlist=user1,user2,...usern

RequireAuth lets you ask the user for a username and a password
when accessing the directory. “realm” is a unique string to tell your
users which password they should use. “dbm” is a user database.
“userfile” is a simple file consisting of lines in the format
user:encryptedpassword. “userpat” and “userlist” determine which users
from the given dbm or userfile are allowed access.

• RestrictAccess method=HTTP-method type=allow|deny
ip=addrpattern dns=hostpattern return-code=403|404

Configuration Templates

53

RestrictAccess applies access control to the directory and restricts
certain users. “method” is an optional parameter specifying a wildcard
pattern of HTTP methods to protect (no method means all of them).
More than one RestrictAccess can appear in the file. “type” determines
whether the IP address wildcard pattern or hostname wildcard pattern
is allowed or denied access. If the only RestrictAccess directives in a
Files set are of type “allow”, then all hosts not specified by the patterns
are denied.

Configuration Templates

Configuration templates are an easy way to apply a set of options to specific
files or directories that your server maintains. For example, you can create a
template that configures access logging. You can then apply that template to
the files and directories you want to log. This saves you having to
individually configure access logging for all the files and directories.

Creating a Template

To create a template:

1. Click the link called “Create a template.”

2. In the form that appears, type the name you want to give the template.

3. Click the Make These Changes button. The template is created as a named
object in obj.conf.

4. When you return to the Server Manager, you configure the attributes
for your template, then click the “Apply a template to part of your
server” link to apply the template to files or documents in your server.
When configuring attributes for a template, the forms list the template
name at the top of the form.

Not all links in the Server Manager apply to templates. The links you can use
for templates are listed here for your reference (a graphic also appears next
to the link in the Server Manager page).

54

Chapter 3: Configuring the Server

Applying a Template to Parts of the Server

You can apply templates to files or directories in your server. You can either
specifically choose files and directories, or you can specify wildcard patterns
(such as *.gif).

To apply a template:

1. Click the “Apply a template to part of your server” link.

2. In the form that appears, click a button to choose the resources you
want to apply the template to. The buttons are described as follows:

• Choose Entire Server applies the template to every document the
server maintains.

• Browse files applies the template to specific files or directories. You
can view files or directories and you can specify whether or not to
view files that are symlinks to files in other directories.

• Choose Wildcard Patterns lets you apply the template to files or
directories that you specify with wildcard patterns. This is an easy
way of specifying lots of files in different directories (such as *.gif)
or many subdirectories (such as /public/*).

• Choose a template is normally used to choose templates when
configuring other aspects of the server. Use the template
drop-down list instead of clicking this button to apply a template.

3. Select the template you want to apply. The None template can be
applied to files or directories to remove any templates previously
applied to the resource.

4. Click the Make These Changes button. The template is applied to the
resources. You’ll need to restart the server for the template to take
effect.

Removing a Template

When you remove a template, the template is deleted from the obj.conf file (it
was stored as a named object). The template isn’t unapplied from any
resources you have applied it to. This means that before you remove a
template, you should apply the None template to any files or directories
first. You can also remove a template and then search and replace all
instances of the template in obj.conf. If you don’t remove these entries, you’ll

Error Handling

55

get a server misconfiguration error when anyone accesses the files or
directories that had the template.

To remove a template:

1. Click the link called “Remove a template.”

2. In the form that appears, select the template you want to remove.

3. Click the Make These Changes button. The template is removed.

Error Handling

The error handling section lets you view the error log file and customize
error messages sent to clients.

Viewing the Error Log File

Click the View error log link to see a list of all errors the server has
encountered since the log file was started (you can rotate log files to save the
current log file and then start adding entries to a new log file).

You can limit the number of errors you see by typing ?nn at the end of the
URL in the Locations box in Netscape Navigator. The question mark
specifies a query, and nn represents the number of errors you want to view.
After you type the query at the end of the URL, press <Enter>. The page
redraws, showing you the most recent errors.

Customizing Error Responses

You can specify a custom error response that sends a detailed message to
users when they encounter errors from your server. You can specify a file to
send or a CGI script to run.

You may want to change the way a directory behaves when it gets an error.
Instead of sending back the default file, you may want to send a custom error
response instead. For example, if a user tried to repeatedly connect to a
section of your server protected by access control, and failed, you could have
the error file returned with information on how to get an account.

56

Chapter 3: Configuring the Server

What Are the Errors?

There are several different kinds of errors that you can customize the server's
response to:

• Unauthorized. This error occurs when a user tries to access a document
in the server that is protected by access control but doesn’t have
permission to access the document. You might send information on
how they can get access.

• Forbidden. This error occurs when the server doesn’t have filesystem
permissions to read something, or if the server is not permitted to
follow symbolic links.

• Not Found. This error occurs when the server can’t find a document, or
when it has been instructed to deny the existence of a document.

• Server Error. This error occurs when the server is misconfigured or
when a catastrophic error occurs, such as the system running out of
memory or a core dump.

Setting Up the Response

Before you can set up the response, you need to either write the HTML file
to send, or create the CGI program to run. After you do this, jump to the
customizing error response form and select the error response you want to
customize.

Type the absolute pathname to the file or script you want to return for that
error code. Check if the file is a CGI program that you want to run. Do this
for each of the errors you want to customize, then click the Make These
Changes button.

To remove a customization, return to the form and delete the filename from
the text box next to the error code.

Logging Configuration

You can customize access logging to any resource by specifying whether or
not to log accesses, who not to record accesses from, and whether the server

Logging Configuration

57

should spend time looking up the domain names of clients when they access
a resource.

You need to decide whether or not you want to use access logging for this
resource in the server. If you decide to log accesses, then the server records
in common logfile format many things about the request, including the
client's address, how long the transfer took, the response the server made,
how many bytes were transferred, and whether or not the user was
authenticated.

You also need to choose a name and location for the access log file. If you
specify a partial pathname here, the server assumes the path is placed in the
server root in the directory logs. The means you create a log file for each
resource you want to log.

You also have the option of recording only the IP addresses of incoming
requests. DNS lookups to turn an IP address into a hostname, but this can be
quite costly in terms of performance.

You can also choose to have the server not log accesses from certain
addresses. That way, you can tell the server not to log accesses from
addresses within your own company. Type a wildcard pattern of hosts the
server should not record accesses from; for example *.sgi.com doesn’t log
access from people with the domain sgi.com. You type wildcard patterns for
either hostnames, IP addresses, or both.

59

Chapter 4

4. Server Configuration Files

This chapter describes the configuration files the server uses. When you use
the Server Manager, the forms act as an interface to the configuration files.
The changes you make in the Server Manager are saved in these
configuration files. You can use these files to configure the server manually.

You might need to configure the server manually for various reasons. If you
accidentally lock your hosts out of the administrative forms or if you forget
your administrative password, you’ll have to change information manually
in the server’s configuration files.

Note: Before you can edit any of the configuration files, you must have
permission to read and write the files. This probably means you need to log
in as root.

The server configuration files are kept in the directory httpd-80/config
(https-443/config for the Commerce Server) in your server root directory.
These files are described in more detail in the rest of this chapter.

• magnus.conf is the server’s main technical configuration file. It controls
aspects of the server operation not related to documents, such as
hostname and port.

• obj.conf is the server’s object configuration file. It controls access to the
server and manages the files and directories that the server can send to
clients.

• mime.types is the file that the server uses to convert filename extensions
such as .GIF into a MIME type like image/gif.

• admpw is the administrative password file. Its format is user:password.
The password is DES-encrypted just like /etc/passwd.

60

Chapter 4: Server Configuration Files

The magnus.conf File

The technical configuration file, called magnus.conf, controls all server
operations not related to handling of documents or directories—the obj.conf
file handles these. All of the items in the magnus.conf configuration file are
global and apply to the entire server, as opposed to affecting only one
document or set of documents.

Every command line in the file has the format:

Directive Value

• Directive identifies an aspect of server operation. This string is case
insensitive.

• Value is a specific value you are giving the directive. Its format
depends on the directive. This string is usually case sensitive.

Comment lines begin with a # character with no leading white space.

Directive lines can contain white space at the beginning of the line and
between the directive and value, but trailing white space after the value
might confuse the server. Long lines (which should occur only with the Init
directive) can be continued with a \ character before the linefeed.

Warning: If you are using the Administration forms, you shouldn’t use
continuation lines in the magnus.conf file. Instead, put each Init
configuration entirely on a single line. If you are absolutely sure you will
never use the Administration form, you can use the backslash character.

Example 4-1 Sample magnus.conf file

Sample magnus.conf file for Netscape server 1.1
The server's home--it’s root directory
#ServerRoot /usr/ns-home/https-443
Which port?
Port 443
This tells the server to get its objects from obj.conf, and use
the "default" object as the default.
LoadObjects obj.conf
RootObject default
The logfile for errors, and the file where it should keep
the pid of the master server process.
ErrorLog /usr/ns-home/https-443/logs/errors

The magnus.conf File

61

PidLog /usr/ns-home/https-443/logs/pid
Which user should the server run as? This is the Unix user
account name.
User http
The server's name
ServerName www.sgi.com
Use DNS? (turn this off for performance reasons)
DNS on
Processes - maximum and minimum to spawn
MinProcs 16
MaxProcs 32
How many requests should a process serve before being respawned?
ProcessLife 512
Security directives: is security on, where is my keyfile,
which ciphers should I support (Ciphers directive is on the
US version only)
Security on
Keyfile ServerKey.der
Certfile ServerCert.der
Ciphers +rc4, +des, +rc4export
Initializations, such as log files and loading NSAPI libraries
Init fn=load-types mime-types=mime.types
Init fn=init-clf global=/usr/ns-home/https-443/logs/access

Directives in magnus.conf

This section defines the directives and describes their characteristics,
including the directive name and description, format for the value string,
default value if the directive is omitted, and how many instances of the
directive should be in the file. The directives are described below.

• ServerName defines the server hostname.

• Port defines the TCP port that the server listens to.

• User specifies the server’s IRIX user account.

• MaxProcs sets the maximum number of active processes.

• MinProcs sets the minimum number of active processes.

• ProcessLife specifies the number of requests each child process serves
during its lifetime.

• ErrorLog specifies the directory where the server logs its errors.

62

Chapter 4: Server Configuration Files

• PidLog specifies a file to record the server’s main process ID (PID).

• LoadObjects specifies a start-up object configuration file.

• RootObject defines the default server object.

• Chroot lets the server be placed into a jail (for security reasons.)

• Init (a special directive) initializes server subsystems.

• DNS specifies if the server does DNS lookups on clients who access the
server.

• Security specifies the type of security the server has. This is available
only for the Commerce server, and some functions are available only in
the US version of the Commerce server.

ServerName

ServerName tells the server what to put in the hostname section of any URLs
it sends to the client. This affects URLs that the server automatically
generates; it doesn’t affect the URLs for directories and files stored in the
server. This name is what all clients use to access the server; they need to
combine this name with the port number if the port number is anything
other than 80.

This name should be the alias name if your server uses an alias. You can’t
have more than one ServerName directive in magnus.conf.

• SYNTAX

ServerName host

host is a fully-qualified domain name such as myhost.sgi.com.

DEFAULT

If ServerName isn’t in magnus.conf, the server attempts to derive a
hostname through system calls. If they don’t return a qualified domain
name (for example, it gets myhost instead of myhost.sgi.com), the
server won’t start, and you’ll get a message telling you to set this value
manually.

• EXAMPLES

ServerName server.sgi.com
ServerName www.server.anycompany.com
ServerName www.agency.gov

The magnus.conf File

63

Port

Port controls which TCP port the server listens to. If you choose a port
number less than 1024, the server must be started as root. There should be
only one Port directive in magnus.conf.

Note: The port you choose can affect how users configure their navigators.
Users must specify the port number when accessing the server if the port
number is anything other than 80 or 443.

• SYNTAX

Port number

number is a whole number between 0 and 65535.

DEFAULT

If no port is specified, the server assumes 80.

• EXAMPLES

Port 80
Port 8080
Port 8000

Warning: If you change the default HTTP port number from 80, you
must edit the /etc/init.d/netsite file (/etc/init.d/netsite_commerce for the
Commerce Server) to reflect the change.

User

User specifies the IRIX user account for the server. If the server is started by
the superuser or root user, the server binds to the Port you specify, and then
switches its user ID to the user account specified with the User directive.
This directive is ignored if the server isn’t started as root.

The user account you specify should have read permission to the server’s
root and subdirectories. The user account should have write access to the
logs directory and execute permissions to any CGI programs. The user
account should not have write access to the configuration files. This ensures
that in the unlikely event someone compromises the server, they won’t be
able to change configuration files and gain broader access to your host.

Although you can use the nobody user, it isn’t recommended.

64

Chapter 4: Server Configuration Files

• SYNTAX

User name

name is the 8-character (or less) login name for the IRIX user account.

DEFAULT

If there is no User directive, the server runs with the user account it was
started with. If the server was started as root or superuser, you’ll see a
warning message after startup.

• EXAMPLES

User http
User server
User nobody

MaxProcs

MaxProcs sets the maximum number of processes the server can have active.
The server keeps the number of active processes between the number
specified in MaxProcs and the number in MinProcs. If there is no MinProcs
directive, then the MaxProcs number specifies the constant number of
processes the server keeps active.

Choose a number that is appropriate for the type of access you expect for the
server. If this number is too small, clients will experience delays. If the
number is too large, you might run out of memory and get an error such as
“could not fork new process.”

• SYNTAX

MaxProcs number

number is a whole number between 1 and the size of your system’s
process table.

DEFAULT

MaxProcs 50

• EXAMPLES

MaxProcs 20
MaxProcs 40
MaxProcs 80

The magnus.conf File

65

MinProcs

MinProcs sets the minimum number of processes the server can have active.
The server regulates the number of processes between MinProcs and
MaxProcs. If MinProcs isn’t specified, a constant number of processes
(specified with MaxProcs) will run.

• SYNTAX

MinProcs number

number is a whole number between 1 and the number specified in
MaxProcs.

DEFAULT

There is no default; if this directive is missing, the server uses the
MaxProcs number to specify a constant number of processes.

• EXAMPLES

MinProcs 10
MinProcs 20

ProcessLife

ProcessLife specifies the number of requests each of the server’s child
processes serves before the processes exit and are respawned (this is set to 64
by default). When the processes are stopped and restarted, the memory they
use is freed and then reused.

By stopping and restarting a process, the server ensures that memory isn’t
wasted by “lost” processes. For example, on rare occasions, there might be
resource “leaks” in operating system libraries or in the server itself (though
none are currently known). By specifying a lifespan, a process answers a
certain number of requests before exiting and respawning.

ErrorLog

ErrorLog specifies the directory where the server logs its errors. You can also
use the syslog facility. If errors are reported to a file (instead of syslog), then
the file and directory in which the log is kept must be writable by whatever
user account the server runs as.

• SYNTAX

66

Chapter 4: Server Configuration Files

ErrorLog logfile

logfile can be either a full path and filename or the keyword SYSLOG
(it must be in all capital letters).

DEFAULT

There is no default error log.

• EXAMPLES

ErrorLog /var/ns-server/logs/errors
ErrorLog SYSLOG

PidLog

PidLog specifies a file in which to record the process ID (PID) of the base
server process. Some of the server support programs assume that the PID log
is in the server root, in logs/pid.

To shut down your server, kill the base server process listed in the PID log
file by using a -TERM signal. To tell your server to reread its configuration
files and reopen its log files, use kill with the -HUP signal.

If the PidLog file isn’t writable by the user account that the server uses, the
server does not log its process ID anywhere.

• SYNTAX

PidLog file

file is the full pathname and filename where the process ID (PID) is
stored.

DEFAULT

There is no default.

• EXAMPLES

PidLog /var/ns-server/logs/pid
PidLog /tmp/ns-server.pid

LoadObjects

LoadObjects specifies one or more object configuration files to use on
startup; these files tell the server where to find documents.

The magnus.conf File

67

Note: Although you can have more than one object configuration file, the
server’s Administration forms work only with one file and assume that it is
in the server root in admin/config/obj.conf. If you use the Administration
forms (or plan to), don’t put the obj.conf file in any other directory and don’t
rename it.

• SYNTAX

LoadObjects filename

filename is either the full pathname or a relative pathname. Relative
pathnames are resolved from the directory specified with the -d
command line flag. If no -d flag was given, the server looks in the
current directory.

DEFAULT

There is no default.

• EXAMPLES

LoadObjects obj.conf
LoadObjects /var/ns-server/admin/config/local-objs.conf

RootObject

RootObject tells the server which object loaded from an object file is the
server default. The default object is expected to have all of the name
translation directives for the server; any server behavior that is configured in
the default object affects the entire server.

If you specify an object that doesn’t exist, the server doesn’t report an error
until a client tries to retrieve a document. The Administration forms assume
the default to be the default named object. Don’t deviate from this
convention if you use (or plan to use) the Administration forms.

• SYNTAX

RootObject name

name is the name of an object defined in one of the object files loaded
with a LoadObjects directive.

DEFAULT

There is no default.

• EXAMPLES

68

Chapter 4: Server Configuration Files

RootObject default
RootObject server1

Chroot

Chroot lets the IRIX system administrator place the server into a jail where
it has access only to files in a given directory. This is useful if the server’s
security is ever compromised. For example, if an intruder somehow obtains
shell access on the server host, the intruder could affect only a very limited
set of files on the server host.

The server must be started as the superuser to use the Chroot directive. CGI
programs must be linked statically, and any binaries (perl or /bin/sh) must be
copied to the Chroot directory.

The user public information directory feature isn’t available unless a copy of
/etc/passwd is kept in the Chroot directory and all of the users home
directories are exactly mirrored within the Chroot directory.

A server using Chroot can’t be restarted with the -HUP signal.

Logs and server configuration files should be kept outside the Chroot
directory.

Note: All paths in magnus.conf must be absolute; paths in obj.conf must be
relative to the Chroot directory.

• SYNTAX

Chroot directory

directory is the full pathname to the directory used as the server’s root
directory.

DEFAULT

There is no default.

• EXAMPLES

Chroot /d/ns-httpd
Chroot /www

The magnus.conf File

69

Init

Init is a special directive that initializes certain server subsystems such as
access logging and user public directories. The functions referenced with the
Init directive load data for specific subsystems once on server startup and
keep that data internally until the server is shut down. You can specify zero
or more Init directives.

• SYNTAX

Init fn=function-name [parm1=value1]…[parmN=valueN]

function-name identifies the server initialization function to call. These
functions shouldn’t be called more than once.

parm=value pairs are values for function-specific parameters. The
number of parameters depends on the function you use. The order of
parameters doesn’t matter.

Init functions are described in detail in the following sections. Brief
descriptions appear below.

• load-types maps file extensions to MIME types.

• init-clf initializes the Common Log subsystem.

• init-uhome loads user home directory information.

• cindex-init sets global characteristics for fancy indexing.

load-types

The function load-types scans a file that tells it how to map filename
extensions to MIME types. MIME types are essential for network
navigation software like Netscape Navigator to tell the difference
between file types. For example, they are used to tell an HTML file from
a GIF file. See “The mime.types File” on page 94 for more detailed
information.

Calling this function is crucial if you use the Administration forms.

• PARAMETERS

mime-types specifies either the full path to the global MIME types file
or a filename relative to the server configuration directory. The server
comes with a default file called mime.types.

70

Chapter 4: Server Configuration Files

local-types is an optional parameter to a file with the same format as
the global MIME types file, but it is used to maintain types that are
applicable only to your server.

• EXAMPLES

Init fn=load-types mime-types=mime.types
Init fn=load-types mime-types=/tp/mime.types \

local-types=local.types

init-clf

The function init-clf initializes the Common Log subsystem. It opens
the log files whose names are given as parameters. The log files stay
open until the server is shut down or until the base server process is
sent the -HUP signal (at which time the logs are closed and re-opened).

Note: Initializing this function is required if you are using the common
log features.

You use this function to specify which log files the server uses to record
transactions. Then, you use the AddLog directive in the obj.conf file to
specify the log file where the server stores the transaction record.

For example, you use init-clf to specify a name that refers to a log file,
(such as http-log=/var/ns-server/loghttp). Then you use the
name with the AddLog function in obj.conf to add a log entry to the file
(such as AddLog fn=server-log name=http-log). If you ever
change the path or filename of the log file, you do it only once—in
magnus.conf—instead of multiple times in obj.conf.

Note: You also can use AddLog to store transactions in more than one
log file. See “AddLog” on page 91 for more information about the
AddLog function.

If you move, remove, or change the log file without shutting down or
restarting the server, client accesses might not be recorded. To save or
back up a log file, you need to rename the file and then send the -HUP
signal to restart the server. The server uses the inode number, but when
you do a soft restart, the server first looks for the filename. If it doesn’t
find the log file, it creates a new one (the renamed original log file is left
for you to use).

• PARAMETERS

The magnus.conf File

71

At least one log file should be given. The parm part of the parm=value
pair should be a unique name for the log file. You will use this name
later on, as a parameter to the server-log function.

• EXAMPLES

Init fn=init-clf global=/var/ns-server/logs/access
Init fn=init-clf global=/tmp/server-access

init-uhome

The function init-uhome loads information about the system’s user
home directories into internal hash tables. This increases the shared
memory size slightly, but saves CPU cycles for servers that have a lot of
traffic to home directories.

• PARAMETERS

“pwfile” (optional) specifies the full filesystem path to a file other than
/etc/passwd. If not listed, the default (NIS or /etc/passwd) is used.

• EXAMPLES

Init fn=init-uhome
Init fn=init-uhome pwfile=/etc/passwd-http

cindex-init

The function cindex-init configures fancy indexing. You must use fancy
indexing for this function to work. See “Directory Indexing” on page 39
for more information on directory indexing.

DEFAULT

Init fn=cindex-init widths=22,1,1,33

• PARAMETERS

“opts” (optional) specifies options to activate for indexing. You specify
a string of letters, one for each option to activate:

– i makes all icons links.

– s makes the server scan HTML files in the directory it’s indexing in
order to place their titles in the description field.

“widths” specifies the width for each column in the indexing printout.
A zero width disables the column. The string should be a
comma-separated list of numbers that specify the column widths
according to name, last modified date, size, and description.

72

Chapter 4: Server Configuration Files

“ignore” specifies a wildcard pattern for filenames the server can ignore
while indexing. Filenames starting with a dot are automatically
ignored.

“icon-uri” specifies the prefix the server uses for icons. By default, this
is /mc-icons/. The server looks in this directory for the GIF files to use in
fancy indexing.

• EXAMPLES

Init fn=cindex-init widths=50,1,1,0
Init fn=cindex-init widths=50,1,1,30 opts=s
Init fn=cindex-init widths=22,0,0,50 opts=is

The obj.conf File

The object configuration file, called obj.conf, uses objects to control how the
server handles documents.

Objects (also referred to as resources) are settings that tell the server how to
treat all documents, CGI programs, directories, imagemap files, and so on.
You can define objects in two ways:

• Use wildcard patterns. Anything that matches a specified wildcard
pattern belongs to the same object. This object grouping can then be
used to control (in fine detail) the behavior of the server.

Using this object grouping scheme, you can specify single resources
with their complete URL, whole “directories” with the path followed
by /*, and various other groups such as *.html. You can then configure
the settings you want to use for that object (for example, caching or
denying access based on the server’s hostname or a string within a
URL).

• Create a template. You create a template with specific settings, and
apply that template to directories or files. You then use name
translation functions to tell the server which directories or files use the
template.

Using templates makes it easy to configure scattered directories. For
example, if user home directories appear in several places, you use one
template instead of configuring each directory separately.

The obj.conf File

73

Also, with cgi-bin directories, all files are treated as programs and are
run rather than sent. If you create a CGI template and assign the
template to CGI programs (using name translation), then you can have
any number of CGI directories and they all use the template
configuration.

The Structure of obj.conf

The obj.conf file must have four specific objects in it (see “Required Objects
for obj.conf” on page 75 for a description of the objects). You can add other
objects to this file. To specify an object, use the following format:

<Object ppath=wildcardpattern>
Directives
…

<Client dns=wildcardpattern>
Directives
…
</Client>

</Object>
<Object name=cgi>
Directives
…
</Object>

You use wildcard patterns (see “Understanding Wildcard Patterns” on
page 11) to control what is grouped in the object, or you use a name to create
a template. You then specify one or more directives to control what the
server does when it encounters anything that uses the template or that
matches the wildcard pattern specified with ppath.

You can also set options for specific client hosts. This is a powerful feature
because, unlike other servers where a host either can or cannot access a
document, you make the server act differently for a client depending on the
document they access. Although you don’t need any <Client> sections in
an object section, you can specify more than one—so the server acts
differently based both on who requests something and what they request.

Directive Syntax

Each directive line (regardless of where it appears) has the format:

74

Chapter 4: Server Configuration Files

Directive fn=function [parameter1=value1]…[parameterN=valueN]

Directive identifies an aspect of server operation. This string is case
insensitive and must appear at the beginning of a line.

function is a function and parameters given to the directive. Its format
depends on the directive.

Comment lines begin with a # character with no leading white space.

Directive lines cannot contain white space at the beginning of the line and
between the directive and value, but trailing white space after the value
might confuse the server. Long lines (which should only occur with the Init
directive) can be continued with a \ character before the linefeed.

A Sample Object

The following sample object applies to a directory called user/public/.

<Object ppath="/user/public/*">
PathCheck fn=deny-existence
Service fn=server-retrieve
</Object>

When the server receives a request for a document in this directory, it doesn’t
send the document. Instead, it denies the existence of any files or
subdirectories and displays the “not found” error message.

The Service directive tells the server to get the documents by default.

Example 4-2 Sample obj.conf File

#
Sample obj.conf file for Netscape server 1.1.
#
This file was automatically generated by the server.
Edit at your own risk.
The default object. This is what the server uses if none of the other
objects fit.
#
This one has a CGI directory specified in /usr/local/bin/cgi,
a directory mapping to a bigger disk in /gig-drive/sales,
and a document root of /usr/http-docs

The obj.conf File

75

#
<Object name="default">
NameTrans fn="pfx2dir" from="/mc-icons" dir="/usr/ns-home/mc-icons"
NameTrans fn="pfx2dir" from="/cgi-bin" dir="/usr/local/bin/cgi" name="cgi"
NameTrans fn="pfx2dir" from="/sales" dir="/gig-drive/sales"
NameTrans fn="document-root" root="/usr/http-docs"
PathCheck fn="unix-uri-clean"
PathCheck fn="find-pathinfo"
PathCheck fn="find-index" index-names="index.html,home.html"
ObjectType fn="type-by-extension"
ObjectType fn="force-type" type="text/plain"
Service fn="imagemap" method="(GET|HEAD)" type="magnus-internal/imagemap"
Service fn="index-common" method="(GET|HEAD)" type="magnus-internal/directory"
Service fn="send-cgi" type="magnus-internal/cgi"
Service fn="send-file" method="(GET|HEAD)" type="*~magnus-internal/*"
AddLog fn="common-log"
</Object>
All CGI directories have these configuration options set
<Object name="cgi">
ObjectType fn="force-type" type="magnus-internal/cgi"
Service fn="send-cgi"
</Object>
This is a directory that requires authentication to enter, and uses server
parsed HTML
<Object ppath="/usr/http-docs/private/*">
AuthTrans fn="basic-ncsa" dbm="/usr/ns-home/userdb/users" auth-type="basic"
<Client dns="*~*.sgi.com>
PathCheck fn="deny-existence"
</Client>
PathCheck realm="Confidential Documents" fn="require-auth" auth-type="basic"
Service fn="parse-html" method="(GET|HEAD)" type="magnus-internal/parsed-html"
</Object>

Required Objects for obj.conf

There are certain objects that must be in the obj.conf file to make the
Administration forms work for your server. These functions control local file
access and CGI execution.

The following sections describe the objects that must be in obj.conf.

76

Chapter 4: Server Configuration Files

The Default Object

<Object name="default">
NameTrans fn="pfx2dir" from="/mc-icons"
dir="/usr/home/mc-icons"
NameTrans fn="document-root" root="/usr/http-docs"
PathCheck fn="unix-uri-clean"
PathCheck fn="find-pathinfo"
ObjectType fn="type-by-extension"
ObjectType fn="force-type" type="text/plain"
Service fn="imagemap" method="(GET|HEAD)"

type="magnus-internal/imagemap"
Service fn="index-common" method="(GET|HEAD)"

type="magnus-internal/directory"
Service fn="send-file" method="(GET|HEAD)"

type="*~magnus-internal/*"
</Object>

CGI Object

This object controls the admin form handler scripts and should read exactly
as follows:

 <Object name="cgi">
ObjectType fn="force-type" type="magnus-internal/cgi"

 Service fn="send-cgi"
 </Object>

How the Server Handles Objects

The Netscape server design breaks down the process of responding to an
information request. Each step in the process is done once for all objects, then
another step is done for all objects, and so on. The process steps are as
follows:

The obj.conf File

77

1. Authorization translation. Translate any authorization information
given by the client into a user and group. If necessary, decode the
message to get the actual request. Also, server authorization is
available.

2. Name translation. Before anything else is done, a URL can be translated
into a filesystem-dependent name (an administration URL), a
redirection URL or a mirror site URL. It might also be kept intact and
retrieved as is (the normal server case).

3. Path checks. Perform various tests on the resulting path, largely used to
make sure that it's safe for the given client to retrieve the document
(only for local access).

4. Object types. Determine the MIME type information for the given
document. MIME types can be registered document types such as
text/html and image/gif, or they can be internal document identification
types. Internal types always begin with magnus-internal/, and are used
to select a server function to use to decode the document. (Only used
for local access; the server system calls these routines automatically
when necessary.)

5. Service. Select an internal server function that should be used to send
the result back to the client. This function can be the normal
server-service routine, or local file blast, or a CGI execution for admin
forms.

6. Log. Select a function to record information about the transaction that
just finished.

These steps map directly to six of the configuration directives allowed for
each object. There is a seventh configuration directive (send-error) that
controls how the server responds to the client when it encounters an error.

Directives in obj.conf

This section defines the directives and describes their characteristics,
including the directive name and description, format for the function string,
default value if the directive is omitted, and how many instances of the
directive can be in the file. The directives are described below.

• AuthTrans protects server resources from specific users.

78

Chapter 4: Server Configuration Files

• NameTrans maps URLs to mirror sites and the local filesystem.

• PathCheck checks URLs after NameTrans.

• ObjectType tags additional information to requests.

• Service sends data and completes the requests.

• AddLog adds log entries to any log files.

• Error sends customized error messages to clients.

AuthTrans

AuthTrans stands for Authorization Translation. Server resources can be
protected so that accessing them requires the client to provide certain
information about the person using the client program. This authorization
information is encoded to prevent clients from authorizing themselves as
different users.

The server analyzes the authorization of client users into two steps. First, it
translates authorization information sent by the client, and then it requires
that such authorization information be present. This is done in the hope that
multiple translation schemes can be easily incorporated, as well as
providing the flexibility to have resources that record authorization
information but do not require it.

If there is more than one AuthTrans directive in an object, all functions are
applied.

• Basic NCSA

DESCRIPTION

basic-ncsa translates authorization information provided through the
basic server authorization scheme. This scheme is similar to the HTTP
authorization scheme, but doesn’t interfere with it, so using server
authorization doesn't prevent authentication with the remote server.

This function is usually used in conjunction with the PathCheck
function require-server-auth.

PARAMETERS

auth-type specifies the type of authorization to be used. This should
always be basic.

The obj.conf File

79

dbm specifies the full path and base filename of the user database in the
server's native format. The native format is a system DBM file, which is
a hashed file format allowing instantaneous access to billions of users.
If you use this parameter, don’t use userfile as well.

userfile specifies the full pathname of the user database in the
NCSA-style httpd user file format. This format consists of
name:password lines where password is encrypted. If you use this
parameter, don’t use the next one.

grpfile (optional) specifies the NCSA-style httpd group file to be used.
Each line of a group file consists of group:user1 user2…userN where each
user is separated by spaces. See “PathCheck” on page 82 for more
information on group files.

EXAMPLES

AuthTrans fn=basic-ncsa auth-type=basic
dbm=/var/ns-server/userdb/rs

AuthTrans fn=basic-ncsa auth-type=basic
userfile=/var/ns-server/.htpasswd
grpfile=/var/ns-server/.grpfile

NameTrans

NameTrans stands for Name Translation. This directive maps URLs to
physical directories on your server. For example, the URL
http://www.test.com/some/file is a virtual path that could map to the real
directory called /docs/http/files/.

NameTrans directives should appear in the root object (the “default” object),
although you can put them elsewhere. If there is more than one NameTrans
directive in an object, the server applies functions until one succeeds.

• Prefix to directory

DESCRIPTION

pfx2dir looks for a directory prefix in the path and replaces the prefix
with a real directory name. Don’t use trailing slashes in either the prefix
or the directory.

PARAMETERS

from is the prefix to map.

80

Chapter 4: Server Configuration Files

dir is the directory that the prefix is mapped to.

name (optional) gives a named object (template) from which to derive
configuration for this mirror site.

EXAMPLES

NameTrans fn=pfx2dir from=/cgi-bin dir=/httpd/cgi-bin
name=cgi
NameTrans fn=pfx2dir from=/icons dir=/httpd/mc-icons

• Public information directories

DESCRIPTION

The unix-home function lets your internal users provide information to
external users. You specify a URL prefix that corresponds to the user
directories. Any request that begins with the prefix is translated to the
user’s home directory.

You specify the list of users with either the /etc/passwd file or a file with
a similar structure. Each line in the file should have this structure (the
elements in the passwd file that aren’t needed are indicated with *):

username:*:*:groupid:*:homedir:*

If you want the server to scan the password file only once at startup,
use the Init function init-uhome.

PARAMETERS

from is the URL prefix to translate.

subdir is the subdirectory of the user’s directory that contains their
documents.

pwfile is the full path and filename of the password file you want to
use, if it’s different from /etc/passwd or the NIS database.

name (optional) specifies a named object that configures this directory.

EXAMPLES

NameTrans fn=unix-home prefix=/~ subdir=public_html
name=userhome
NameTrans fn=unix-home prefix=/u subdir=public_html
name=userhome

• Document root

DESCRIPTION

The obj.conf File

81

The document-root function specifies the directory that contains all of
your documents. This directory is prepended to the virtual path that
the client sends to form the full pathname of the file or directory. For
example, the client sends /home/file.html, which is translated to
<docroot>/home/file.html.

PARAMETERS

root specifies the document directory.

EXAMPLES

NameTrans fn=document-root root=/netscape/docs

• Redirection

DESCRIPTION

The redirect function lets you change URLs and send the updated URL
to the client. When a client accesses your server with an old path, they
are told to use the new URL you provide.

PARAMETERS

from specifies the old path.

url specifies a complete URL to return to the client. If you use this
parameter, don’t use url-prefix (and vice-versa).

url-prefix is the new URL to pass to the client. The “from” prefix is
simply replaced by this URL prefix.

EXAMPLES

NameTrans fn=redirect from=/ url-prefix=http://tmpserver
nameTrans fn=redirect from=/toopopular

url=http://bigger/better/stronger/morepopular/new.html

• Home page

DESCRIPTION

The home-page function specifies the home page for your server.
Whenever a user doesn’t specify a path, they’ll get an index file for the
document root directory. If you use this function, you specify the
HTML file they see instead. This file must be on the server’s local
filesystem.

• PARAMETERS

82

Chapter 4: Server Configuration Files

path is the path and name of the home page .HTML file.

• EXAMPLES

NameTrans fn=home-page path=homepage.html
NameTrans fn=home-page path=/httpd/docs/home.html

PathCheck

PathCheck directives check the full filesystem path that is returned after all
of the NameTrans directives finish running. The paths are checked for things
such as CGI path info and for dangerous elements such as /./and /../ and
//, and then any access restriction is applied.

If there is more than one PathCheck directive in an object, all of the directives
are applied in the order they appear.

• URI cleaning

DESCRIPTION

The unix-uri-clean function denies access to any requested URL that
contains /./, /../ or // (these URLs are potential security problems). If
you use scripts with these elements in paths, use the find-pathinfo
function (described in the next section) before unix-uri-clean.

PARAMETERS

None.

EXAMPLES

PathCheck fn=unix-uri-clean

• Find index files for directories

DESCRIPTION

The find-index function determines if the requested path is a directory.
If it is, the function searches for an index file in the directory, and then
changes the path to point to the index file. If no index file is found, the
server generates a directory listing.

PARAMETERS

index-names is a comma-separated list of index filenames to look for.
Use spaces only if they are part of a filename.

EXAMPLES

The obj.conf File

83

PathCheck fn=find-index index-names=index.html,home.html

• Require authorization

DESCRIPTION

The require-auth function allows access to objects only if the user or
group is authorized. You must use the AuthTrans directive before using
the PathCheck directive with this function.

PARAMETERS

auth-type is the type of HTTP authorization to use. This currently can
be set only to basic.

realm is a string (enclosed in double-quotation marks) sent to the client
application so users can see what object they need authorization for.

auth-user (optional) specifies a list of users who get access. The list
should be enclosed in parentheses with each user name separated by
the | character.

auth-group (optional) specifies a list of groups that get access. Groups
are listed in the password-type file.

EXAMPLES

PathCheck fn=require-auth auth-type=basic
realm="Marketing Plans"

auth-group=mktg auth-users=(jdoe|johnd|janed)

• Deny path’s existence

DESCRIPTION

The deny-existence function sends a not found message when a client
tries to access a specified path. If this function appears in a <client>

region, then it performs access control. Note that not found is sent
instead of forbidden, which means the user can’t tell if the path exists
or not.

PARAMETERS

path (optional) is a wildcard pattern of the path to hide. If no paths are
specified, then all paths are hidden.

bong-msg specifies a file to send instead of the not found message.
The file should be an HTML file specified as an absolute path.

EXAMPLES

84

Chapter 4: Server Configuration Files

PathCheck fn=deny-existence path=*/~
<client>
PathCheck fn=deny-existence bong-msg=/svr/msg/go-away.html
</client>

• Find filesystem links

DESCRIPTION

The find-links function searches the current path for symbolic or hard
links to other directories or filesystems. If any are found, the server
returns an error. Usually you use this function in directories you don’t
trust (such as user home directories). This prevents someone from
pointing to information that you don’t want made public.

PARAMETERS

disable is a character string of links to disable:

• h is hard links

• s is soft links

• o allows symbolic links from user home directories only if the user
owns the target of the link.

dir is the directory to begin checking. If you specify an absolute path,
any request to that path and it’s subdirectories is checked for symlinks.
If you specify a partial path, any request containing that partial path is
checked for symlinks. For example, if you use /user/ and a request
comes in for some/user/directory, then that directory is checked for
symlinks.

EXAMPLES

PathCheck fn=find-links disable=sh dir=/foreign-dir
PathCheck fn=find-links disable=so dir=public_html

• Find path information

DESCRIPTION

The find-pathinfo function uses extra path information if it can’t find a
file in a specified path. Extra path information is included after the path
and file in the URL.

PARAMETERS

None.

The obj.conf File

85

EXAMPLES

PathCheck fn=find-pathinfo

ObjectType

ObjectType directives determine the MIME type of the file sent to the client.
This type is usually sent back to the client to let the client decide what to do.
MIME attributes currently sent are type, encoding, and language.

If there is more than one ObjectType directive in an object, all of the
directives are applied in the order they appear. If a directive sets an attribute
and a later directive tries to set that attribute to something else, the first
setting is used and the subsequent ones ignored.

• File typing by extension

DESCRIPTION

The type-by-extension function uses file extensions to determine
information about files. (Extensions are strings after the last period in a
filenamefilename.) This matches an incoming request to extensions in
the mime.types file. The MIME type is added to the “content-type”
header sent back to the client. The type can be set to internal server
types that have special results when combined with the functions you
write using the NSAPI (see the Netscape Servers Programmer’s Guide for
more information.)

PARAMETERS

None.

EXAMPLES

ObjectType fn=type-by-extension

• File typing by wildcard pattern

DESCRIPTION

The type-by-exp function matches the current path with a wildcard
expression. If the two match, the type parameter information is applied
to the file. This is the same as type by extension, except you use
wildcard patterns for the files or directories specified in the URLs.

PARAMETERS

86

Chapter 4: Server Configuration Files

exp is the wildcard pattern of files or directories that the information is
applied to.

type (optional) is the type to assign to any matching files.

enc (optional) is the encoding given to matching files (the
“content-encoding” header).

lang (optional) is the language assigned to matching paths.

EXAMPLES

ObjectType fn=type-by-exp exp=*.test type=application/html

Forcing file types

DESCRIPTION

The force-type function assigns a type to objects. This is used to specify
a default object type.

PARAMETERS

type is the type to assign to matching files.

enc (optional) is the encoding given to matching files.

lang (optional) is the language assigned to matching paths.

EXAMPLES

ObjectType fn=force-type type=text/plain
ObjectType fn=force-type lang=en_US

• Server-parsed HTML

DESCRIPTION

The shtml-hacktype function provides backward compatibility with
server-side includes.

Server-side includes require a different MIME type than HTML. This
means that your parsed documents must have different file extensions
than nonparsed documents. If this is a problem, this function can be
used as a solution. Another is to have the server parse all HTML, but
this can have detrimental performance effects. You can also check for
the execute bit on the file. If it’s there, the file is parsed; otherwise, it
isn’t. None of these solutions is recommended. See the Netscape Server
Programmer’s Guide for more information on server-parsed HTML.

PARAMETERS

The obj.conf File

87

exec-hack (optional) checks if the execute bit is enables for the file. If
you don’t specify this parameter, all files are marked as parsed.

EXAMPLES

ObjectType fn=shtml-hacktype exec-hack=true

Service

Once the other directives have done all the necessary checks and
translations, the Service class of functions sends the data (first receiving it
from a remote server when necessary) and completes the request.

Service directives support the following optional parameters to help
determine whether the directive is used or not:

type (not with server-retrieve) specifies a wildcard pattern of MIME
types to apply the directive to. The server defines several MIME types
internally that are used only to select a Service function that translates the
internal type into a form presentable to the client.

method specifies a wildcard expression of HTTP methods that the client
must be using to have the directive applied. Valid HTTP methods are GET,
HEAD, and POST. Multiple values are enclosed in parentheses and
separated by the pipe (|) symbol.

query specifies a wildcard pattern of search queries that must be present for
the directive to run.

If an object contains more than one Service function, the first is one is used
and all subsequent ones are ignored.

• Send a plain file

DESCRIPTION

The send-file function sends the contents of a plain text file to the client.
If this function finds any extra path information, it doesn’t send the text
file to the client.

PARAMETERS

None.

EXAMPLES

88

Chapter 4: Server Configuration Files

Service type=*~magnus-internal/* method=(GET|HEAD)
fn=send-file

• Send an error message

DESCRIPTION

The send-error function sends an HTML file to the client regardless of
the path the client requested. This is used mainly for error messages.

PARAMETERS

path specifies the full filesystem path of the HTML file.

EXAMPLES

Service fn=send-error path=/popular/service/we-moved.html
Service fn=send-error path=/http/errors/no-post.html

• Append a trailer to HTML documents

DESCRIPTION

The append-trailer function appends text to the end of every HTML
document from the object. This is mainly used for author information
and copyright text. The date the file was last modified can
automatically be included.

If there is extra path information, the request is flagged as “not found”
and the document isn’t sent to the client.

PARAMETERS

trailer is the text you want to append to all HTML documents. The text
can contain HTML tags and can be approximately 700 characters long.
The string :LASTMOD: is substituted with the date the file was last
modified; you must also specify a time format with timefmt.

timefmt is a time string in the strftime(3C) function format.

EXAMPLES

Service fn=Service type=text/html fn=append-trailer
trailer="<hr> Copyright 1995"

Service fn=Service type=text/html fn=append-trailer
timefmt="%D"

trailer="<hr>File last updated on: :LASTMOD:"

• Run a CGI program

DESCRIPTION

The obj.conf File

89

The send-cgi function runs a file as a CGI program and sends the
results to the client.

PARAMETERS

None.

EXAMPLES

Service fn=send-cgi
Service type=magnus_internal/cgi fn=send-cgi

• Set a default query handler

DESCRIPTION

The query-handler function runs a CGI program instead of referencing
the path requested. This is used mainly to support the obsolete
ISINDEX tag. If possible, use a FORM instead.

PARAMETERS

path is the full path and filename of the CGI program to run.

EXAMPLES

Service query=* fn=query-handler path=/http/cgi/do-grep
Service query=* fn=query-handler path=/http/cgi/proc-info

• Use an imagemap

DESCRIPTION

The imagemap function includes imagemap files.

PARAMETERS

None.

EXAMPLES

Service type=magnus_internal/imagemap method=(GET|HEAD)
fn=imagemap

• Simple directory indexing

DESCRIPTION

The index-simple function scans a directory and produces an HTML
file of a bulleted list of files in the directory. Each file appears as a link.

90

Chapter 4: Server Configuration Files

If this function encounters a subdirectory, the link redirects the user to
the subdirectory. In directories with subdirectories, use fancy indexing
as described in the following section.

PARAMETERS

None.

EXAMPLES

Service type=magnus-internal/directory fn=index-simple

Fancy directory indexing

DESCRIPTION

The index-common function scans a directory and produces an HTML
file of a bulleted list of files in the directory. Each file appears as a link.
This function produces a format common to the CERN and NCSA
HTTP servers. It includes more information than simple indexing and
references icon files.

PARAMETERS

header is a file to prepend to the indexing that introduces the contents
of the directory. If you specify a filename for this parameter, the server
looks for the filename as an .HTML file, and then incorporates the file in
the directory list as HTML; otherwise, the file is included as plain text.

readme is a file (HTML or plain text) to append to the indexing. This
gives more information about the contents of the directory.

EXAMPLES

Service type=magnus_internal/directory method=(GET|HEAD)
fn=index-common header=hdr.html readme=end-text.txt

• Parsed HTML (server-side includes)

DESCRIPTION

The parse-html function parses an HTML document, scanning for
embedded server directives. These server directives provide certain
information only the server has, or they include the contents of other
files. Parsing lots of HTML documents can reduce server performance.

PARAMETERS

opts are parsing options. The no-exec option is the only currently
available option—it disables the exec directive.

The obj.conf File

91

EXAMPLES

Service type=magnus_internal/parsed-html
method=(GET|HEAD) fn=parse-html

AddLog

After the request is finished and the server has stopped talking to the client,
the server logs the transaction. The server records information about every
access clients make, and it records information about the client making the
request.

If there is more than one AddLog directive in an object, all are used.

• Log in the Common Format

DESCRIPTION

server-log is an AddLog function that records request-specific data in
the common log format (used by most HTTP servers). There is a log
analyzer in the /extras directory. There are also a number of free
statistics generators for the common format.

The log format is specified by the init-server function call.

PARAMETERS

name (optional) gives the name of a log file, which must have been
given as a parameter to the init-clf Init function. If no name is given,
global is assumed.

iponly (optional) instructs the server to skip looking up the hostname
of the remote client and records the IP address instead. The value of
iponly has no significance, as long as it exists; the Administration
forms set iponly="1".

EXAMPLES

Log all accesses to the central log file
AddLog fn=server-log
Log non-local accesses to another log file
<Client ip=*~198.93.9[2345].*>
AddLog fn=server-log name=nonlocal
</Client>

• Record the client software name

92

Chapter 4: Server Configuration Files

DESCRIPTION

The record-useragent function records the IP address of each client,
followed by their User-Agent HTTP header. This tells the server what
version of Netscape Navigator (or what other browser) the client used
for this transaction.

PARAMETERS

name (optional) gives the name of the log file where the log is
recorded—it must have been specified with the init-clf function. If no
name is listed, the log is recorded in global.

EXAMPLES

AddLog fn=record-useragent name=browsers-used

Error

At any time during a request, conditions can occur that stop the server from
fulfilling a request and then return an error to the client. When these
conditions occur, the server can send a short HTML page to the client telling
them in very general terms about the error.

In order to make error handling more friendly, the server lets you intercept
certain errors and send a file of your choosing instead of the server’s default
error message.

The obj.conf File

93

Table 4-1 lists the errors returned by the server. Each error shows the 3-digit
HTTP code and the error with a short description.

You can call most Service functions from Error directives.

PARAMETERS

reason gives one of the above strings (the text in bold, such as unauthorized
or forbidden).

code sends the three-digit number, such as 401 or 407.

Table 4-1 Server Error Codes

Error Code Meaning

401 Unauthorized (For Administration forms only). The
server requires HTTP user authorization
to allow access to the Administration
forms, and either the client provided
none or its HTTP authorization was
insufficient.

403 Forbidden The server tried to access a file or
directory, and found that the user it was
running as didn’t have sufficient
permission to access the file.

404 Not Found The client asked for a filesystem path
that doesn’t exist or the server was
configured to tell the client that it doesn’t
exist. If you use access control, changing
the response to this error allows you to
tell people nicely that they don’t have
that access to your server.

500 Server Error Server errors mean that an error has
occurred within the server that prevents
it from finishing the request. Server
errors happen mainly because of
misconfiguration or because host
resources such as swap space are
exhausted.

94

Chapter 4: Server Configuration Files

EXAMPLES

Error fn=send-error code=401
path=/var/ns-server/errors/401.html

The mime.types File

The mime.types file tells the server how to convert files with certain
extensions (such as .GIF) into a Multipurpose Internet Mail Extensions type
(such as image/gif). MIME files are compact files and transfer quickly. Also,
MIME is needed by browsers (like the Netscape Navigator); without MIME
they couldn’t tell the difference between an HTML page and a graphics file.
The mime.types file contains the global file extensions for all servers. The first
line in the file identifies the file format and must read:

#--Netscape Communications Corporation MIME Information

Other non-comment lines have the format

type=type/subtype exts=[file extensions] icon=icon

• type/subtype

• exts are the file extensions associated with this type. When the server
transfers a file with one of these extensions, it uses the MIME type you
specified in type.

• icon is the name of the icon that the browser displays. Netscape
Navigator keeps these images internally. If you use a browser that
doesn’t have these icons, the server delivers them. Figure 4-1 illustrates
the internal icons for MIME types.

The mime.types File

95

Figure 4-1 Internal Icons for MIME Types

Example 4-3 provides a sample mime.types file.

Example 4-3 Sample mime.types file

#--Netscape Communications Corporation MIME Information
Don’t delete the above line. It identifies this file’s type.
#
This is a simple MIME types file for the Netscape server. Most
of the MIME types are already compiled in the server. Types that
are part of the Administration forms (HTML and GIF) must appear
here, or they won’t be known to the part of the server that
manages the Administration interface calls.
#
Icons (internal-gopher-…) are references to Netscape's
internal icons. If a client doesn't support these icons, the
server will provide them.
type=application/oda exts=oda
type=application/pdf exts=pdf
type=application/x-mif exts=mif
type=application/x-dvi exts=dvi
type=application/x-hdf exts=hdf
type=application/x-netcdf exts=nc,cdf
type=application/x-texinfo exts=texinfo,texi icon=internal-gopher-text
type=application/zip exts=zip
type=application/x-tar exts=tar
type=application/x-macbinary exts=bin
type=application/x-stuffit exts=sit
type=image/gif exts=gif icon=internal-gopher-image
type=image/jpeg exts=jpeg,jpg,jpe icon=internal-gopher-image
type=image/x-xwindowdump exts=xwd icon=internal-gopher-image
type=text/html exts=htm,html,shtml icon=internal-gopher-text

96

Chapter 4: Server Configuration Files

type=text/plain exts=txt icon=internal-gopher-text
type=text/richtext exts=rtx icon=internal-gopher-text
type=text/tab-separated-values exts=tsv icon=internal-gopher-text
type=text/x-setext exts=etx icon=internal-gopher-text
type=application/x-tar enc=x-gzip exts=tgz
enc=x-gzip exts=gz
enc=x-compress exts=z

The admpw File

The admpw file contains the Administration password. If you forget your
password, there is no way to find out what it was. You must encrypt a new
one and replace the old version with it. The file has the format user:password.

You can create multiple Administration users by creating an NCSA-type of
user database, and then rename that file to replace admpw.

If you forget your Administration password, you can edit the admpw file and
delete the password section (everything after the semicolon). When you go
to the Server Manager, you don’t need to enter a new password—but you
should immediately go to the Administration Manager and set a new one.

Warning: Because you can do this, it is very important to keep secure
the server’s IRIX account and to ensure that only that server account and
the root account have full (write) access to the server root directory. This
way, only someone running as root or with the server’s user account can
enter the <ServerRoot>/admserv directory and edit the file.

97

Appendix A

A. Writing HTML Documents

This appendix describes the basic elements of HTML documents when they
are stored on your computer as ASCII text. If you use a WYSIWYG Web
authoring tool such as WebMagic™ Author, you do not need to know
HTML. If you do not have such a tool, or want to learn HTML anyway, the
information contained in this appendix can help you understand the actual
ASCII construction of the HTML documents. Choose “Help/How to Create
Web Services” on your Netscape Navigator to jump to a page containing
more information about HTML. In addition, there are many other books and
HTML documents that define the language.

What is HTML?

HyperText Markup Language defines how documents are written for the
HyperText Transport Protocol (HTTP)—the protocol for the World Wide
Web. HTML documents contain plain text and marker tags.

Tags describe the type of text embedded in them. HTML is not a WYSIWYG
language. That is, you don’t specify the format (font, size, position) of the
text. Instead, you use tags to describe the organization and typeface of the
text. For example, you designate what is a title, what is body text, and what
is hypertext (or links to other pages) by using tags.

Because there are many different Web browsers for various platforms,
HTML documents look different depending on the browser you use. For this
reason, HTML provides structure for your text instead of layout.

The structure of HTML documents is hierarchical. You begin with tags for
the entire document, then move to heading tags and paragraph tags.

98

Appendix A: Writing HTML Documents

Tools for Writing HTML Documents

Because HTML documents are plain text, you can use any text editor from
the IRIX vi editor to complex word processors. There are also many good
document conversion tools that let you convert documents to HTML. For
example, you can convert a PostScript file to HTML.

This appendix describes plain HTML and assumes you’re using a simple
text editor.

Viewing HTML Source Text

Netscape Navigator lets you view the HTML source of any page you view
with it. While viewing a page, choose “View/Source” from the menu. The
navigator then displays the HTML tags and text.

While you’re learning to create HTML documents, you might find it helpful
to view the source of another file to see how the author marked the text.

HTML Tags

When you write HTML documents, you use tags to mark the beginning and
ending of text elements. Tags are enclosed in angle brackets. To specify a
header, you type <H1> at the beginning of the header text and </H1> at the
end (note that ending tags always begin with the forward slash). For
example, to mark a heading, you would type

<H1>This is a heading</H1>

Figure A-1 shows a basic HTML page in Netscape Navigator.

HTML Tags

99

Figure A-1 A Simple Web Page Using Various HTML Tags

Below, in Example A-1 is the HTML source for the web page shown in
Figure A-1.

Example A-1 The HTML Source For Figure A-1

<HTML>
<HEAD>
<TITLE> This is my document’s title!</TITLE>
</HEAD>

<BODY>
<H1>Keep headings short and simple</H1>

You can do basic formatting in HTML documents.

<H2>Text formatting</H2>
<P>You can emphasize text. Most browsers show emphasis with italics.

This is a first-level
(H1) heading.

The title appears
here. It is used in the
Go menu and in
bookmarks, so it
should clearly
describe your page.
“Index” and other
single words aren’t
good titles.

This is an H2 heading.

This is an H3 heading.

You can separate areas
by using horizontal lines.

You can create
numbered lists.

You can do
bulleted lists.

100

Appendix A: Writing HTML Documents

<P>You can do strong emphasis, which is bold in Netscape Navigator, but it
can be simply underlined in other browsers.
You can list items two ways: ordered and unordered.

<H3>Ordered lists</H3>
Ordered lists typically use numbers to show a sequence in the items.

You use OL to start an ordered list.
You enclose the list items with the LI tag.
Yes, it’s that easy!

<H3>Unordered lists</H3>
Unordered lists typically use bullets or hyphens to show that the items have no order and
are equal in importance.

Instead of OL you use UL for the tag.
You use the same LI for items in the list.

<HR>
Creating HTML is easy once you know the types of tags you can use and how they usually
appear to the user.
</BODY>
</HTML>

Types of Tags

There are many different types of tags. Some are used for headings, others
for body text. You might want to create an HTML document that uses many
tags—then use the Navigator to see how the tags look. The following table
describes the most common HTML tags.

Table A-1 HTML Tags in Hierarchical Order

Tag name Description

HTML Defines the file as a hypertext markup language document.

HEAD Defines the heading for the document. This usually includes
the TITLE tag.

HTML Tags

101

TITLE Defines the title of the document. This text is used to reference
the page in history lists (such as the Go menu in Netscape
Navigator).

BODY Defines where the body text of the file begins.

H1…H6 Defines six levels of headings.

P Defines a paragraph.

OL Defines an ordered (numbered) list. Use LI to define items in
the list.

UL Defines an unordered (bulleted) list. Use LI to define items in
the list.

LI Defines individual items in a list. Each list item appears
preceded with either a number or a bullet (or hyphen in some
browsers).

EM Emphasizes characters, usually with italic type.

STRONG Strongly emphasizes characters, usually with bold type.

CODE Displays text in a fixed-width font, usually Courier.

B Displays text in bold type.

I Displays text in italic type.

TT Displays text in a typewriter-like font. This is often the same as
CODE.

IMG Inserts an image (graphic) in the document.

HR Separates the page with a horizontal rule line.

BR Inserts a line break.

A Defines attributes with links to other pages (HREF=) or
sections of the current page (NAME=).

Table A-1 (continued) HTML Tags in Hierarchical Order

Tag name Description

102

Appendix A: Writing HTML Documents

Tag Syntax

Tags are case-insensitive. <HEAD> is the same as <head> and <Head>, but
most authors use all capital letters to make tags stand out from the text.

Tags can appear on the same line as the embedded text or they can appear
on separate lines. The line

<H1> HTML is fun to write! </H1>

is the same as

<H1>
HTML is fun to write!
</H1>

Special Characters

There are some special characters in HTML. Because the Web is
multiplatform, only a reduced set of keyboard characters is available. You
can use any standard, lower ASCII character. These usually include all the
characters on your keyboard (unless you have a special, non-English
keyboard).

You can’t use upper ASCII characters directly. For example, in the word
processor you use to write your HTML, you might use a sequence of
commands to type é. However, on another computer platform, this character
might translate to a different character or no character at all. To use these
special characters, you need to type character references or entity references.

• Character references have the format &#nnn; where nnn is a number
that references the character.

• Entity references have the format &nnn; where nnn is a text string that
references the character.

HTML Tags

103

HTML also has reserved characters. For example, what if you want to use an
angle bracket in text? How does a browser know the bracket doesn’t mean
the start or end of a tag? Table A-2 shows a list of reserved characters.

Table A-3 lists character references and entity references.

Table A-2 Reserved Characters

Character Decimal Entity

" " "

& & &

< < <

> > &rt;

Table A-3 Special Characters in HTML

Character Decimal Entity

ª ª

« «

¬ ¬

- ­

® ®

¯ ¯

˚ °

±

²

³

´ ´

µ

¶ ¶

104

Appendix A: Writing HTML Documents

· ·

¸ ¸

¹

º º

» »

¼

½

¾

¿ ¿

À À À

Á Á Á

Â Â Â

Ã Ã Ã

Ä Ä Ä

Å Å Å

Æ Æ Æ

Ç Ç Ç

È È È

É É É

Ê Ê Ê

Ë Ë Ë

Ì Ì Ì

Í Í Í

Î Î Î

Table A-3 (continued) Special Characters in HTML

Character Decimal Entity

HTML Tags

105

Ï Ï Ï

Ð Ð

Ñ Ñ Ñ

Ò Ò Ò

Ó Ó Ó

Ô Ô Ô

Õ Õ Õ

Ö Ö Ö

×

Ø Ø Ø

Ù Ù Ù

Ú Ú Ú

Û Û Û

Ü Ü Ü

Ý Ý

Þ Þ

ß ß ß

à à à

á á á

â â â

ã ã ã

ä ä ä

å å å

æ æ æ

Table A-3 (continued) Special Characters in HTML

Character Decimal Entity

106

Appendix A: Writing HTML Documents

ç ç ç

è è è

é é é

ê ê ê

ë ë ë

ì ì ì

í í í

î î î

ï ï ï

ð ð

ñ ñ ñ

ò ò ò

ó ó ó

ô ô ô

õ õ õ

ö ö ö

÷

ø ø ø

ù ù ù

ú ú ú

û û û

ü ü ü

ý ý

Table A-3 (continued) Special Characters in HTML

Character Decimal Entity

Adding Images to HTML Documents

107

Adding Images to HTML Documents

There are two ways to include images (graphics) in an HTML document:
inline and external. You’ll usually use inline images, which appear directly
in the HTML page. External images are downloaded when a user clicks a
link to the image.

Because not all browsers can view various types of image files, your images
should be .GIF files. There are lots of shareware products that create GIFs or
translate one type of image (for example, BMP) to GIF.

To include an image in your HTML document, use the tag.

The previous line includes the file some.gif in your HTML document. This
assumes that the file is in the same directory as your HTML document. If the
file is in another directory, use either the relative or absolute path.

You can include images on separate lines, or you can include them in text in
headings, body paragraphs, and even lists.

Elements of

The image tag has several attributes that control the graphic. The first is SRC.
This defines the source for the graphic—the GIF image file.

You can control where the image is positioned relative to the text of the line
it appears in by using the ALIGN attribute. You can set ALIGN to top,
middle, or bottom. This positions the top, middle, or bottom of the image
with the baseline of the text. If you don’t specify alignment, it defaults to
bottom.

þ þ

ÿ ÿ ÿ

Table A-3 (continued) Special Characters in HTML

Character Decimal Entity

108

Appendix A: Writing HTML Documents

.

Figure A-2 Three Ways to Align Images

Note: Text does not wrap around an image.

Some browsers can’t display images. You can include a text string that
describes the image by using the ALT attribute.

The following example displays an image whose middle is aligned with the
text baseline. The example includes the descriptive text for browsers that
can’t display images:

Linking Images to Other Pages

You can use graphics as links to other pages by embedding the image tag in
a link. The following example adds a circle graphic and links it to the HTML
document called circles.

You can combine graphics and text in one link. This means that you can click
either the graphic or the text to jump to the corresponding page:

My icon is
cool

What Are Imagemaps?

An image map is a graphic that has clickable regions that link to different
pages. For example, you can have an image with a square and a circle where
a click in the square takes you to one page and a click in the circle takes you
to a different page.

Adding Images to HTML Documents

109

.

Figure A-3 Different Areas of an Image Map

To create an imagemap, you need a graphic file and a map file. The map file
contains coordinates that define the clickable regions in the graphic.

Specifying Regions

You create an ASCII text file with the .map extension that contains the
coordinates for the areas you want to link. Coordinates are specified from
the upper left corner of the image. There are several good imaging
applications that will give you the coordinates for a point in an image.

Each line in the map file specifies a clickable region. Lines have the format

method URL coordinate1 coordinate2 …

method defines the shape the coordinates specify. Methods can be:

• point URL x,y specifies a clickable point in the image. This is useful if
you click an undefined area because the click is then sent to the closest
point to the clicked area.

• circle URL x,y x,y specifies a circle. Circles need two coordinates—the
circle center and any point on the circle’s edge.

• rect URL x,y x,y specifies a rectangle by its upper left and lower right
corners.

• poly URL x,y x,y... specifies a polygon of up to 100 sides. Each x,y
pair is the point where two sides of the polygon meet. The last x,y pair
is connected to the first to enclose the polygon.

• default URL defines the URL to jump to when someone clicks in an
area not specified by any regions. If you use a point in the map file, then
the default is never used.

Click here to go to one page.

Click here and you go to a different page.

110

Appendix A: Writing HTML Documents

Figure A-4 Defining Regions in an Image

Coordinates are measured from the top left corner of the image.

Example A-2 Map File Example

sample map file image
This is the top left circle
circle http://www.sgi.com/funstuff 37,39 32,62
This is the rectangle in the middle
rect http://www.sgi.com/fabulous 75,7 150,39
This is the point
point http://www.sgi.com/homepage 125,62
This is that weird polygon
poly http://w3.sgi.com/ 175,35 190,5 200,10 220,9 219,37 203,62

Circle

Point Polygon

Rectangle

111

Glossary

API

The Netscape Application Programming Interface (NSAPI) is a set of ANSI
C functions and header files that help you create functions to use with the
directives in server configuration files. The Netscape Commerce and
Communications Servers use this API to build the regular functions for the
directives used in both magnus.conf and obj.conf. (These regular functions are
described in Chapter 4.)

cache

A copy of original data stored locally so that it doesn't have to be retrieved
again from a remote server when requested.

CERN

The European Laboratory for Particle Physics (CERN) invented the World
Wide Web to share information among research groups. This is where the
CERN proxy prototype was produced.

CGI

Common Gateway Interface—an interface for external programs to “talk”
to the HTTP server. Programs that are written to use CGI are called CGI
programs or CGI scripts. CGI programs do things such as handle forms or
perform output parsing not normally done by the server.

common logfile format

The common logfile format is the format used by the server for entering
information into the access logs. The format is the same among all of the
major servers, Netscape Commerce and Communications servers, CERN
httpd, and NCSA httpd.

DNS

Domain Name System. The system used by hosts on a network to associate
standard IP addresses (such as 198.93.93.10) with hostnames (such as

112

Glossary

www.netscape.com). Machines normally get this translated information
from a DNS server, or look it up in tables maintained on their systems.

DNS alias

A DNS alias is a hostname that the DNS server knows points to a different
host—specifically a DNS CNAME record. Machines always have one real
name, but they can have one or more aliases. For example,
www.yourdomain.domain might be an alias that points to a real host called
realthing.yourdomain.domain, where the server currently exists.

document root

A directory on the server host that contains the files, images, and data you
want to present to users accessing the server.

EMACS

A text editor that can also be used to read email and news.

expires header

The expiration time of the returned document, specified by the remote
server.

fancy indexing

Fancy indexing provides more information than simple indexing. Fancy
indexing displays a list of contents by name with file size, last modification
date, and an icon reflecting file type. Because of this, fancy indexes might
take longer than simple indexes for the client to load.

file extension

The last section of a filename that typically defines the type of file (for
example, .GIF and .HTML). For example, in the filename index.html, the file
extension is html.

file type

The format of a given file. For example, a graphics file doesn’t have the same
file type as a text file. File types are usually identified by the file extension
(.GIF or .HTML).

GIF

A cross-platform image format originally created by CompuServe. The

113

Glossary

acronym stands for Graphics Interchange Format. GIF files are usually much
smaller in size than other graphic file types (BMP, TIFF). GIF is one of the
most common interchange formats.

hard restart

Terminating the process, and starting it up again.

home page

A document that exists on the server and acts as a catalog or entry point for
the server’s contents. The location of this document is defined within the
server’s configuration files.

hostname

A name for a host of the form host.domain.dom, which is translated into an
IP address. For example, www.netscape.com is the host www in the
subdomain netscape and com domain.

HTML

HyperText Markup Language is a formatting language used for documents
on the World Wide Web. HTML files are plain text files with formatting
codes that tell browsers such as the Netscape Navigator how to display text,
position graphics and form items, and display links to other pages.

HTTP

HyperText Transfer Protocol is the method for exchanging information
between HTTP servers and clients.

HTTPD

An abbreviation for the HTTP daemon, a program that serves information
using the HTTP protocol. The Netscape Communications Server is often
called httpd.

HTTPS

A secure version of HTTP, implemented using the secure sockets layer, SSL.

imagemap

A process that makes areas of an image active, letting users navigate and
obtain information by clicking the different regions of the image with a
mouse. Imagemap can also refer to a CGI program called “imagemap,”

114

Glossary

which is used to handle imagemap functionality in other httpd
implementations.

IP address

Internet Protocol address—a set of numbers, separated by dots, that
specifies the actual location of a host on the Internet.

ISINDEX

Documents can often use a network navigator’s capabilities to accept a
search string and send it to the server to access a searchable index without
using forms. In order to use ISINDEX, you must create a query handler.

ISMAP

An extension to the IMG SRC tag used in an HTML document to tell the
server that the named image is an imagemap.

last-modified header

The last modification time of the document file, returned in the HTTP
response from the server.

MD5

A message digest algorithm by RSA Data Security, Inc., which can be used
to produce a short digest of data of any size, that is unique with high
probability, and it is mathematically extremely hard to produce a piece of
data that will produce the same message digest.

MD5 signature

A message digest produced by the MD5 algorithm.

MIME

Multipurpose Internet Mail Extensions. This is an emerging standard for
multimedia e-mail and messaging.

NIS

Network Information Service. This is a system of programs and data files
that local area networks use to collect, collate, and share specific information
about hosts, users, filesystems, and network parameters throughout a
network of computers.

115

Glossary

NCSA

The National Center for Supercomputing Applications is a research
organization at the University of Illinois at Urbana-Champaign.

password file

A file on IRIX hosts that store IRIX user login names, passwords, and user ID
numbers. It is also known as /etc/passwd, because of where it is kept.

public information directories

Directories not inside the document root that are in an IRIX user’s home
directory, or directories that are under the user’s control.

RAM

Random Access Memory. The physical semiconductor-based memory in a
computer.

realm

A term used in HTTP and proxy access authorization that helps the user
identify what part of the system is asking for an HTTP or proxy user name
and password.

redirection

A system by which clients accessing a particular URL are sent to a different
location, either on the same server or on a different server. This is useful if a
resource has moved and you want the clients to use the new location
transparently. It’s also used to maintain the integrity of relative links when
directories are accessed without a trailing slash.

resource

Any document (URL), directory, or program that the server can access and
send to a client that asks for it.

root

The most privileged user available on IRIX hosts. The root user has complete
access privileges to all files on the host.

ScriptAlias

A method that NCSA httpd used for some of its configuration, including
directory remapping and CGI activation.

116

Glossary

server daemon

The server daemon is a process that, once running, listens for and accepts
requests from clients.

server root

A directory on the server host dedicated to holding the server program,
configuration, maintenance, and information files.

simple index

The opposite of fancy indexing—this type of directory listing displays only
the names of the files without any graphical elements.

SOCKS

Firewall software that establishes a connection from inside a firewall to the
outside when direct connection would otherwise be prevented by the
firewall software or hardware (for example, the router configuration).

soft restart

Causes the server to internally restart (that is, reread its configuration files)
by sending the HUP signal (signal number one) to the process. The process
itself does not die, as it does in hard restart.

SSL

Secure Sockets Layer. A software library establishing a secure connection
between two parties (client and server) used to implement HTTPS, the
secure version of HTTP.

strftime

A function that converts a date and a time to a string. It’s used by the server
when appending trailers. strftime has a special format language for the
date and time that the server can use in a trailer to illustrate a file’s last
modified date.

superuser

The most privileged user available on IRIX hosts (also called root). The
superuser has complete access privileges to all files on the host.

sym-links

Abbreviation for symbolic links, which is a type of redirection used by the

117

Glossary

IRIX operating system. Sym-links let you create a pointer from one part of
your filesystem to an existing file or directory on another part of the
filesystem.

telnet

A protocol where two hosts on the network are connected to each other and
support terminal emulation for remote login.

timeout

A specified time after which the server should give up trying to finish a
service routine that appears hung.

top(1)

A program on IRIX systems that shows the current state of system resource
usage. (See also the gr_top(1), gr_osview(1), and ps(1) reference pages.)

top-level domain authority

The highest category of hostname classification, usually signifying either the
type of organization the domain is (.com is a company, .edu is an educational
institution) or the country of its origin (.us is the United States, .jp is Japan,
.au is Australia, .fi is Finland).

uid

A unique number associated with each IRIX user on a host.

URL

Uniform Resource Locator—the addressing system used by the server and
the client to request documents. It is often called a location. The format of a
URL is protocol://host[:port]/document

A sample URL is http://www.sgi.com/index.html.

URL database

A database in the Netscape cache that contains all the URLs found in the
cache, and links them to the cache files. You can browse this database using
the Cache Manager.

URL database repair

A process that repairs and updates a URL database that has been damaged
by a software failure, a system crash, a disk breakdown, or a full filesystem.

119

Administration password, 96
administration server

configuring, 9
restricting access to, 9
security and, 23

admpw file, 96
A tag (HTML), 101
authentication, 27, 29

defined, 16
authentication user name, 10
AuthTrans directive

obj.conf, 78
auth-type function, 78

B

basic-ncsa function, 78
BODY tag (HTML), 101
BR tag (HTML), 101
B tag (HTML), 101
buttons

figure of, 34
top of forms, 33

C

cache
defined, 111

case-sensitivity, HTML tags and, 102

Symbols

#, magnus.conf comments, 60
&, in HTML, 102
*, in wildcards, 12
", in HTML, 102
$, in wildcards, 12
?, in wildcards, 12
^, in wildcards, 12
~, in wildcards, 12

A

access
logging, 91

access control, 47
choosing what to protect, 48
hostnames and, 48
IP addresses and, 48
resources and, 47
user databases and, 44

AddLog directive
obj.conf, 91

addresses
defined, xix

administration forms
starting, 8

Administration Manager, 33
administration manager

URL for, 8

Index

120

Index

CERN, 111
certificate, 24

defined, 17
Certificate Authorities

defined, 17, 20
certificate authority, 24
certificate request, information needed, 20
CGI

programs, 73
templates and, 73

CGI Object
obj.conf and, 76

changing the server’s location, 34
changing the server’s user account, 35
character references (HTML), 102
CHROOT, 30
Chroot

directive, 68
circle, imagemaps, 109
client applications

HTTP servers and, xviii
clients

accessing the server, 38
servers and

data routing diagram, xviii
CNAME

DNS and, 2
CODE tag (HTML), 101
com domain, defined, xx
comment lines

mangus.conf and, 60
common logfile format, 111
configuration

URL for, 8
configuration files, 59
configuration forms, 33
controlling access to the server, 44, 47

converting NCSA user databases, 46
cryptography, 32

D

data integrity
defined, 16

date routing
diagram of, xviii

default, imagemaps, 109
default object

obj.conf, 76
defaults

file types, 40
digital signature, 17, 18
directive

defined, 60
directives

files, 51
magnus.conf, 61

directive syntax, 73
directories

listing files in, 39
mapping URLs to, 41
moving the server, 34
moving to another server, 42
protecting access to, 48

directory indexing, 39
DNS

defined, 111
DNS alias, 112
document root, 30

configuring, 39
security and, 29

documents
file typing, 85
HTML tags, 97

121

Index

domain name, server, 38
domain names

defined, xix
examples of, xix

Domain Name Service, 36
Domain Name System, using with server, 2
dynamic configuration, 50

files for, 51

E

edu domain, defined, xx
EMACS, 112
EM tag (HTML), 101
encryption, 29

defined, 16
entity references (HTML), 102
Error directive

obj.conf, 92
ErrorLog

magnus.conf directive, 65
errors

sending customized messages, 93
Expires header

defined, 112

F

features, list of, xviii
file extension, defined, 112
files

forcing type of, 86
mapping types of, 94
moving to another server, 42
protecting access to, 48
typing, 85
typing by wildcard pattern, 85

Files directives, 51
file type, defined, 112
file types, 86

setting default, 40

G

GET method, 87
GIF, defined, 112
.GIF files

HTML and, 107
gov domain, defined, xx

H

H1 tag (HTML), 101
hard links, finding, 84
HEAD method, 87
HEAD tag (HTML), 100
Home Page

specifying, 40
home page

creating for server, 2
hostname

defined, 1, 113
hostnames

restricting access by using, 48
HR tag (HTML), 101
HTML

images in, 106
server parsed, 86
source, viewing, 98
source code example, 99
special characters in, 102
tags, 98

list of, 100
tags for, 97

122

Index

tools for creating, 98
HTML (Hypertext Markup Language)

defined, xx
HTML, glossary, 113
HTML and, 102
HTML tag, 100
HTTP

defined, 113
HTTP (Hypertext Transport Protocol)

URLs and, xx
HTTPD

defined, 113
HTTPS

defined, 113
https, 29

security and, 29
HTTP servers

defined, xvii
HUP signal, 66

Chroot and, 68
HyperText Markup Language (HTTP)

defined, 97
HyperText Transport Protocol (HTTP), 97

I

icons
server internal (figure), 95

image maps, 108
images

as links, 108
HTML and, 106

IMG tag (HTML), 101
attributes of, 107

index.html, specifying, 40
information

Internet and, xix

Init
magnus.conf directive, 69

init-clf
magnus.conf directive, 70

inode
server uses, 70

installation, 1
directories created, 5
errors (uid), 3
files created, 5
preparation for, 1
upgrading servers, 4
what it does, 5

Internet
addresses defined, xix
data routing diagram, xviii
described, xix
routing data, 15

figure of, 16
Internet Protocol (IP)

defined, 1
IP address, defined, 114
IP addresses

access control and, 48
iponly function, 91
IRIX

user accounts, 3
IRIX user account

specifying, 63
I tag (HTML), 101

J

jails, servers in, 68

123

Index

K

key size, 29

L

links (HTML)
images as, 108

LI tag (HTML), 101
LoadObjects

magnus.conf directive, 66
load-types

magnus.conf directive, 69
local-types, 70
log analyzer

log files
analyzer for, 91

log files, 91
rotating, 37

logging
security, 29

M

magnus.conf, 30
described, 60
directives in, 61
format of, 60
sample file, 60

mappings
removing, 42

mapping URLs, 41
MaxProcs

magnus.conf directive, 64
MD5, defined, 114
memory

processes and, 36

resetting, 36, 65
methods

server and, 87
mil domain, defined, xx
MIME

defined, 114
MIME type

default, 40
MIME types

typing files, 85
mime-types, 69
mime.types file, 94

sample of, 95
MIME types icons (figure), 95
MinProcs

magnus.conf directive, 65
multimedia

WWW and, xix

N

NameTrans directive
obj.conf, 79

NCSA
defined, 115

NCSA user databases
converting, 46

net domain, defined, xx
Netscape Navigator

viewing HTML source, 98
Netscape Server Manager, starting, 8
NIS

defined, 114
nobody user account, 3, 35
Not Found message, access control and, 49
ns-admin.conf file, 11
.nsconfig files, 51

124

Index

O

obj.conf
directives in, 77
required objects in, 75
structure of, 73

obj.conf file
described, 72

object configuration, 72
objects

default
specifying, 67

servers and, 76
ObjectType directive

obj.conf, 85
OL tag (HTML), 101
org domain, defined, xx
overview of this manual, xvii

P

password file, 115
passwords

Administration, 96
PathCheck directive

obj.conf, 82
pfx2dir, 79
PidLog

magnus.conf directive, 66
point, imagemaps, 109
poly, imagemaps, 109
Port

magnus.conf directive, 63
port numbers

administration server and, 11
recommended, 4
security and, 30

starting the server, 4
ports

80 (HTTP), 38
above 1024, 38
changing, 38
clients and, 38
recommended, 38
server, 38
specifying, 63

POST method, 87
privacy, 29
private key

CA and, 18
defined, 24

processes
maximum number of, 64
memory usage and, 36
minimum number of, 65
recommended number of, 35
respawning, 65
server and, 35

ProcessLife
magnus.conf directive, 65

process load, 7
public directories

configuring, 50
public information directories

customizing, 42
public key, 17, 18, 24

R

RAM
defined, 115
processes and, 36, 65

realm
defined, 115

rect, imagemaps, 109

125

Index

redirection, 115
resource

defined, 115
resources

configuring, 33
controlling access to, 47

restarting the server, 36
restricting access, 47
root

defined, 115
log in as, 7
server and, 35

RootObject
magnus.conf directive, 67

rotating log files, 37
routing

figure of, 16
routing, defined, 15

S

sample object, 74
Secure Sockets Layer (SSL), 15

defined, 16
security

authentication and, 16
data integrity and, 16
defined, 16
document root and, 29
enabling and disabling, 27
encryption and, 16
HTTP servers and, xvii
information needed to install, 20
installing, 21
preparation for, 21

Security directive, 30
security log, 29
server

manually starting, 7
manually stopping, 7

ServerCert directive, 31
Server Control, 34
server daemon

defined, 116
ServerKey directive, 30
server-log function, 91
server manager

URL for, 8
ServerName

magnus.conf directive, 62
server name

aliases, 2
changing, 2, 38
CNAME and, 2

server-parsed HTML, 86
server processes, 35

specifying
processes

specifying, 35
server root

defined, 116
servers

configuration URL, 8
controlling access to, 44
features list, xviii
home page, 2
home pages for, 40
HTTP defined, xvii
HUP signal, 66
initializing, 69
killing process of, 66
location, changing, 34
moving files, 42
objects and, 76
placing in jail, 68
ports above 1024, 38
ports under 1024, 35

126

Index

processes, 35
redirecting URLs to, 42
restricting access to, 47
root user, 35
slow, 36
slow performance, 11
starting, 36

user account for, 35
stopping, 36
TERM signal, 66
upgrading, 4
user account, changing, 35

server user account, 3
Service directive

obj.conf, 87
SOCKS

defined, 116
source

HTML, 99
special characters, 102
SSL

defined, 116
SSL-enabled browsers, 15
starting the server, 36

from the command line, 7
user account needed, 4, 35

stopping the server, 36
from the command line, 7

STRONG tag (HTML), 101
superuser, 7

defined, 116
symbolic links

finding, 84
restricting, 49

syntax of HTML tags, 101
system links

restricting, 49
system specifics

configuring, 34

T

tags
defined, 98
HTML, 97
syntax, 101
types of, 100

telnet, 117
TERM signal, 66
TITLE tag (HTML), 101
tools, HTML, 98
top-level domain authority, 117
troubleshooting installation, 11
TT tag (HTML), 101
type, 86

U

UID
installation errors and, 3

uid
defined, 117

UL tag (HTML), 101
upgrading, 4
URL

defined, 117
URL database

defined, 117
URLs

administration forms and, 8
configuring, 37
defined, xix
format of, xx
mapping, 41

removing, 42

127

Index

mapping to local directories, 41
mapping to other servers, 79
redirecting to servers, 42
secure servers and, 29

User
magnus.conf directive, 63

user account
changing, 35
server and, 3
specifying, 63

user accounts
nobody, 3, 35

user authorization, 47
user databases

adding users
user databases

editing, 45
converting NCSA databases, 46
creating, 44
defined, 44
passwords and, 46
removing, 44, 46
removing users from, 45

user directories
configuring, 50
customizing, 42

user home directories
symlinks and, 84

V

value (in directives), defined, 60

W

wildcard patterns
file typing and, 85

WWW
described, xix

WWW (World Wide Web)
addresses defined, xix
described, xix

