
SGITCL Programmer’s Guide

Document Number 007-3224-001

SGITCL Programmer’s Guide
Document Number 007-3224-001

CONTRIBUTORS

Written by Bill Tuthill
Edited by Christina Cary
Production by Chris Everett
Engineering contributions by John Ousterhout, Jan Newmarch, and John Schimmel

© 1996, Silicon Graphics, Inc.— All Rights Reserved
The contents of this document may not be copied or duplicated in any form, in whole
or in part, without the prior written permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

OpenGL, Silicon Graphics, and the Silicon Graphics logo are registered trademarks
of Silicon Graphics, Inc.

GL, Graphics Library, IRIS InSight, IRIX, IRIXPro, Performance Co-Pilot, and XFS are
trademarks of Silicon Graphics, Inc.

UNIX is a registered trademark in some countries of X/Open Company Ltd.
Motif is a trademark of the Open Software Foundation.
X11 and the X Window System were developed by MIT.
Windows is a trademark of Microsoft Corp.
Macintosh is a registered trademark of Apple Computer, Inc.
ORACLE is a registered trademark of Oracle Corp.
Sybase is a registered trademark of Sybase Inc.
Netscape is a registered trademark of Netscape Communications Corp.
Adobe is a registered trademark in certain jurisdictions of Adobe Systems Inc.
Bitstream is a registered trademark of Bitstream Inc.

iii

Contents

List of Figures ix

List of Tables xi

About This Guide xiii
What This Guide Contains xiii
Intended Audience xiii
Additional Reading xiv
Internet Resources for Tcl xiv
Conventions Used in This Guide xiv

1. What Tcl Offers 1
Overview of Components 1
Tcl Versions Used 2
Installing SGITCL 2

2. Common Tcl Extensions 3
Tcl—Tool Command Language 3

Tcl Syntax and Semantics 4
TclX—General Purpose Extensions 7
Tk—User Interface Toolkit 8
Tm—Tcl Motif 8
Expect—Remote Control 8
Expectk—Remote Control Tk 9
wishx—Windowing Shell 9
moat—Motif and Tcl Shell 9
incrTcl—Object-Oriented Tcl 9
Oratcl and Sybtcl—Database Access 10
GLXaux and glxwin 10

iv

Contents

3. Custom SGITCL Extensions 11
tclObjSrv—for Objectserver 11
rstat—Kernel Statistics 11
sautil—for Network Maps 12
SNMP—Simple Network Management 13
wwwHelp—Web Browser Help 13
sgiHelp—ViewKit Help 13
Support for Silicon Graphics Widgets 14

4. Using Tcl Motif 15
Tcl Toolkits 15

Reading This Chapter 15
Getting Started 16

A Simple Example 16
Enhanced Motif Style 18
Widget Basics 18

Widget Names 19
Creating a Widget 19
Widget Methods 20
Widget Resources 20
Actions and Callbacks 21
Translations 21
Widget Creation Commands 21
The Root Widget 24

Contents

v

Resources 26
Resource Inheritance 26
X Defaults 27
Resource Types 28

Basic Types: Integer, Boolean, and String 28
Dimensions 28
Color Resources 28
Font Resources 29
Font List 29
Pixmap Resources 30
Enumerated Resources 30

Callbacks 30
Callback Substitution 31
Callback Cross References 33

Actions and Translations 34
Adding Actions and Translations 34
Triggering Actions 35

Base Classes 36
The Core Class 36
Core Methods 36

Core Widget Resources 39
The Primitive Class 39
Primitive Resources 40
Primitive Callbacks 41
Primitive Actions 41
Primitive Translations 41
Shell Classes 42

Window Sizing 45

vi

Contents

Basic Widgets 46
xmLabel 46
xmText, xmScrolledText, and xmTextField 49
Text Verify Callbacks 54
Buttons 56

xmPushButton 56
xmArrowButton 57
xmToggleButton 58

Decorative Widgets 61
xmList 63
xmScale 67
xmScrollBar 69

Manager Widgets 71
The xmManager Abstract Class 72
xmBulletinBoard 73
xmRowColumn 74
xmForm 78
xmPanedWindow 79

Drag and Drop 81
Send Primitive 83
More Widgets 83

xmCommand 83
xmDrawingArea and xmDrawnButton 85
xmMainWindow 87

Boxes 88
xmMessageBox 88
xmSelectionBox 91
xmFileSelectionBox 92

Contents

vii

Menus 92
xmMenuBar 93
xmPushButton 93
xmPulldownMenu 93
xmCascadeButton 93
Exotic Menus 94

Dialogs 94
Simple Message Dialogs 94
General Manager Dialogs 96
xmSelectionDialog and xmFileSelectionDialog 96

A. Extending Tcl 97
Installing Header Files 97
C++ Classes and Tcl 97
Finding Existing Extensions 97
Creating a Shared Library 98

Existing Tcl Extension Packages 98
Developing a New Library 99
Other Features of dlopen 99

Glossary 101

Index 103

ix

List of Figures

Figure 4-1 xmPushButton 56
Figure 4-2 xmPushButton as Default 56
Figure 4-3 xmArrowButton 57
Figure 4-4 xmToggleButton 58
Figure 4-5 xmToggleButton with radioBehavior 59
Figure 4-6 xmScale Horizontal Slider 67
Figure 4-7 xmPushButton and pack_tight 75
Figure 4-8 xmPushButton and pack_column 75
Figure 4-9 xmPushButton with Vertical Orientation 76
Figure 4-10 xmLabel with xmForm 78
Figure 4-11 xmPanedWindow With Sashes 80
Figure 4-12 xmDrawingArea 85
Figure 4-13 xmMessageBox With Pixmap 89

xi

List of Tables

Table 2-1 Delimiters: Tcl Versus Shell 3
Table 2-2 Backslash Sequences in Tcl 5
Table 3-1 sautil Library for Network Information 12
Table 4-1 Basic Widgets 21
Table 4-2 Manager Widgets 22
Table 4-3 Composite Widgets 22
Table 4-4 Menu Widgets 23
Table 4-5 Dialog Widgets 23
Table 4-6 Examples of Resource Names 27
Table 4-7 Fields in a Font Name 29
Table 4-8 Callbacks and Classes Where Defined 33
Table 4-9 Core Resources 39
Table 4-10 Primitive Resources 40
Table 4-11 Primitive Callbacks 41
Table 4-12 Shell Resources 42
Table 4-13 WMShell Resources 42
Table 4-14 VendorShell Resources 44
Table 4-15 TopLevelShell Resources 44
Table 4-16 ApplicationShell Resources 45
Table 4-17 TransientShell Resources 45
Table 4-18 xmLabel Resources 47
Table 4-19 xmLabel Inherited Resources 48
Table 4-20 xmText Resources 51
Table 4-21 xmTextInput and xmTextOutput Resources 52
Table 4-22 Text Widget Inherited Resources 53
Table 4-23 Text Verify Callbacks 55
Table 4-24 xmPushButton Resources 57

xii

List of Tables

Table 4-25 xmArrowButton Resources 58
Table 4-26 xmToggleButton Resources 59
Table 4-27 Button Widget Inherited Resources 60
Table 4-28 Button Widget Callbacks 61
Table 4-29 xmFrame Resources 61
Table 4-30 xmSeparator Resources 62
Table 4-31 Decorative Widget Inherited Resources 62
Table 4-32 xmList Resources 65
Table 4-33 List Widget Callbacks 66
Table 4-34 xmScale Resources 67
Table 4-35 xmScale Callbacks 68
Table 4-36 xmScrollBar Resources 70
Table 4-37 xmScrollBar Methods 71
Table 4-38 xmManager Resources 72
Table 4-39 xmManager Methods 73
Table 4-40 xmBulletinBoard Resources 73
Table 4-41 xmRowColumn Resources 76
Table 4-42 xmForm Resources 78
Table 4-43 xmPanedWindow Resources 80
Table 4-44 xmPanedWindow Constraint Resources 81
Table 4-45 xmCommand Resources 84
Table 4-46 xmCommand Callbacks 84
Table 4-47 xmDrawingArea Resources 85
Table 4-48 xmDrawnButton Resources 86
Table 4-49 Drawing Widget Callbacks 86
Table 4-50 xmMainWindow Resources 87
Table 4-51 xmMainWindow Callbacks 88
Table 4-52 xmMessageBox Resources 90
Table 4-53 xmMessageBox Callbacks 90
Table 4-54 xmSelectionBox Callbacks 91
Table 4-55 xmPulldownMenu Callbacks 93
Table 4-56 xmCascadeButton Resource 93
Table 4-57 Informational Dialog Boxes 94

xiii

About This Guide

Tcl is a simple interpretive programming language designed for rapid development of
user interface applications. SGITCL is a bundled product in IRIX™ 6.2 that includes
extended Tcl and various user interface libraries.

This guide describes the installation and use of SGITCL, and discusses particulars of the
SGITCL implementation.

What This Guide Contains

Here is an overview of the material in this book.

• Chapter 1, “What Tcl Offers,” describes the advantages of working with Tcl and
offers an introduction to various programming tools related to Tcl.

• Chapter 2, “Common Tcl Extensions,” enumerates available Tcl extensions and
related components that are included with SGITCL.

• Chapter 3, “Custom SGITCL Extensions,” lists the Tcl extensions that are available
only with SGITCL.

• Chapter 4, “Using Tcl Motif,” offers an extended description of Tcl Motif, which
allows you to produce real Motif™ applications.

• Appendix A, “Extending Tcl,” describes how to extend Tcl yourself, using C or C++
programs bound as Tcl procedures.

Intended Audience

The primary audience for this manual is composed of system administrators who want
to modify configuration and support scripts written in Tcl. The secondary audience is
composed of developers who are programming in Tcl on the Silicon Graphics platform.

xiv

About This Guide

Additional Reading

John Ousterhout, An Introduction to Tcl and Tk, Addison-Wesley, 1993.
This is the standard book on Tcl and Tk written by the author of the language.

Brent Welch, Practical Programming with Tcl and Tk, Prentice-Hall, 1995.
This newer book contains lots of code examples, mostly focused on Tk.

Internet Resources for Tcl

The Web page http://www.sco.com/Technology/tcl/Tcl.html is the best starting point.

The Usenet newsgroup comp.lang.tcl is quite active and often helpful.

Conventions Used in This Guide

These are the typographic conventions used in this guide.

Purpose Example

Names of Tcl keywords and functions,
and Motif class names

Note that the expr function takes only a
single argument.

Names of commands and options that
you enter on the command line

The windowing shell wishx allows you to
run Tcl/Tk interactively.

Titles of manuals Refer to the IRIXpro Administrator’s Guide.

A term defined in the hypertext glossary Tcl is an embeddable language.

Filenames and pathnames The compiler automatically includes libc.so
and libm.so from /usr/lib.

Code or commands you type as input,
with variable elements in italic

cc -g sourcename.c -ltk -ltcl

Exact quotes of computer output Error: invalid command name

1

Chapter 1

1.What Tcl Offers

Tcl is a simple interpretive programming language designed for rapid development of
user interface applications. SGITCL is a product comprised of extended Tcl and various
standard and custom interface libraries.

SGITCL is useful for developers and system administrators alike. Tcl makes it easy to
produce quick user interface prototypes, and even real products with acceptably good
performance and robustness.

Overview of Components

Tcl is implemented as a library of C procedures, so it can be included in many different
applications and used for many different purposes. Tcl (pronounced “tickle”) stands for
tool command language. Unlike UNIX® shell languages, Tcl is system-independent and
embeddable into other applications. Extended Tcl, or TclX, offers many general purpose
extensions and is upward compatible with Tcl.

Tk is an interface toolkit that provides widgets in the Motif™ style, but built on top of Xt.
Since no Motif license is required, Tk runs on freeware systems such as Linux and
FreeBSD, and on non-X11 systems such as Windows™ and the Macintosh® computer.
Extended Tk, or TkX, provides access to functional extensions in TclX.

Tm, or Tcl Motif, is an interface toolkit that provides access to real Motif widgets. The
results you can obtain with Tm are often far superior to those obtainable with Tk.

If you base an application on SGITCL and Tk or Tm, you can modify both the program’s
functionality and its user interface at run time by writing or changing short Tcl scripts.
Many new applications can be created without writing any C code at all, just by writing
short scripts for wishx (windowing shell for TkX) or moat (Motif Tcl shell).

Control of remote systems is possible using the expect program.

2

Chapter 1: What Tcl Offers

SGITCL is a bundled product in IRIX™ 6.2. It includes TclX, TkX, Tm, and many other
frequently requested Tcl extensions. Chapter 2 describes the commonly available Tcl
extensions. Chapter 3 describes extensions that are exclusive to the IRIX system.

Tcl Versions Used

SGITCL is built from the following versions:

• Tcl 7.4 and TclX 7.4

• Tk 4.0 and TkX 4.0

• Tcl Motif 1.4

• Expect 5.17

• Incr Tcl 1.5

All of the extensions are implemented as dynamic libraries that get autoloaded when
referenced. See the DSO(5) reference page for details.

Installing SGITCL

To install SGITCL, run either the inst command or the SoftwareManager and take the
following steps (see inst(1M) or swmgr(1M) for more information):

1. Specify the install location from a local IRIX distribution CDROM or from your
network software server.

2. Select the sgitcl_eoe product image from the install list.

The sgitcl_eoe install option includes a multitude of Tcl reference pages and this
guide as an online IRIS InSight™ document.

3. If you are developing new Tcl routines in C or C++, select the sgitcl_dev product
image from the install list as well.

Several unbundled products depend on SGITCL, including IRIXPro™, XFS™ Manager,
and IRIS Console™.

3

Chapter 2

2.Common Tcl Extensions

Although originally intended as a simple tool command language, Tcl was designed to
be easily extensible by means of procedures that can bind to compiled C routines.

Soon Tcl became kind of a cult, as programmers around the globe implemented and
made available extension libraries for different purposes. Although these libraries are
still called extensions because they are not part of the Tcl language itself, many extension
packages have become so closely associated with Tcl that they are considered almost a
standard Tcl feature.

This chapter provides a brief introduction to the commonly available extension packages
that are included with SGITCL.

Tcl—Tool Command Language

Tcl is an interpreted programming language much like the Bourne shell or the C shell.
Unlike these shells, Tcl uses curly braces instead of single quotes to guard against
variable, command, and backslash substitution. Also, Tcl uses square brackets instead of
backquotes to perform command substitution. Tcl’s expression and control flow syntax
resembles the C shell more closely than the Bourne shell.

Strings are the only data type in Tcl, although numeric calculation is possible with the
expr function. The Tcl language contains a collection of list manipulation facilities
including append, insert, search, replace, join, split, and sort procedures.

Table 2-1 Delimiters: Tcl Versus Shell

Tcl Shell What it Does

 { } ' ' prevents variable, command, or backslash substitution

 [] ` ` performs command substitution

4

Chapter 2: Common Tcl Extensions

New procedures can be written in Tcl using the proc keyword, or bound to compiled C
or C++ procedures for greater efficiency. In fact Tcl is implemented as a library of C
procedures, as are most Tcl extensions.

You can run extended Tcl interactively using either the tclsh or sgitcl command; see the
tclsh(1) or sgitcl(1) reference pages for details. There is no way to run unextended Tcl by
itself using the SGITCL facility, and really no reason to do so.

Tcl Syntax and Semantics

These eleven rules govern Tcl’s syntax and semantics:

1. A Tcl script is a string containing one or more commands. Semicolons and newlines
are command separators unless quoted as described below. Close brackets are
command terminators during command substitution (see below) unless quoted.

2. A command is evaluated in two steps. First, the Tcl interpreter breaks the command
into words and performs substitutions as described below. These substitutions are
performed in the same way for all commands. The first word locates a procedure to
execute the command, then all words of the command are passed to the procedure,
which is free to interpret each of its words in any way it likes (variable name, list,
integer, or Tcl script). Different commands interpret their arguments differently.

3. Words of a command are separated by combinations of blanks and tabs. Newlines
are command separators.

4. If the first character of a word is a double quote ("), then the word is terminated by
the next double quote character. If semicolons, close brackets, or white space
characters (including newlines) appear between the quotes, then they are treated as
ordinary characters and included in the word. Command substitution, variable
substitution, and backslash substitution are performed on the characters between
the quotes. The double quotes are not retained as part of the word.

5. If the first character of a word is an open brace ({), then the word is terminated by
the matching close brace (}). Braces nest within the word—for each open brace there
must be a close brace. (However, if an open brace or close brace within the word is
quoted with a backslash, then it is not counted in locating the matching close brace).
No substitutions are performed on characters between braces except for backslash-
newline substitutions described in Table 2-2, nor do newlines, semicolons, close
brackets, or white space receive any special interpretation. A word consists of the
characters between the outer braces, not including the braces themselves.

Tcl—Tool Command Language

5

6. If a word contains an open bracket ([), then Tcl performs command substitution. To
do this it invokes the Tcl interpreter recursively to process the characters following
the open bracket as a Tcl script. The script may contain any number of commands
and must be terminated by a close bracket (]). The result of the script is the result of
its last command, which is substituted into the word in place of the brackets and all
of the characters between them. There may be any number of command
substitutions in a single word. Command substitution is not performed on words
enclosed in braces.

7. If a word contains a dollar sign ($), then Tcl performs variable substitution. The
dollar sign and following characters are replaced in the word by the value of a
variable. There may be any number of variable substitutions in a word. Variable
substitution is not performed on words enclosed in braces. Variable substitution can
take any of the following forms:

$name The name of a scalar variable; name is terminated by any character
that is not a letter, digit, or underscore.

$name(index) Gives the name of an array variable and the index to an element
within that array; name must contain only letters, digits, and
underscores. Command substitutions, variable substitutions, and
backslash substitutions are performed on the characters of index.

${name} The name of a scalar variable, which may contain any characters
whatsoever except for close braces.

8. If a backslash (\) appears within a word, then backslash substitution occurs. In all
cases but those described below, the backslash is dropped and the character after is
treated as an ordinary character and included in the word. This allows characters
such as double quotes, close brackets, and dollar signs to be included in words
without triggering special processing. Backslash substitution is not performed on
words enclosed in braces except for backslash-newline as described in Table 2-2.
The following table lists backslash sequences that are handled specially, along with
the value that replaces each sequence:

Table 2-2 Backslash Sequences in Tcl

Sequence Meaning

\a audible alert (bell) (0x7)

\b backspace (0x8)

\f form feed (0xc)

\n newline (0xa)

6

Chapter 2: Common Tcl Extensions

9. If a sharp (#) appears at a point where Tcl is expecting the first character of the first
word of a command, then the sharp and the characters that follow it, up through the
next newline, are treated as a comment and ignored. The comment character has
significance only when it appears at the beginning of a command.

10. Each character is processed exactly once by the Tcl interpreter as part of creating the
words of a command. For example, if variable substitution occurs, then no further
substitutions are performed on the value of the variable; the value is inserted into
the word verbatim. If command substitution occurs, then the nested command is
processed entirely by the recursive call to the Tcl interpreter. No substitutions are
performed before making the recursive call and no additional substitutions are
performed on the result of the nested script.

11. Substitutions do not affect the word boundaries of a command. For example, during
variable substitution the entire value of the variable becomes part of a single word,
even if the variable’s value contains spaces.

This example shows Tcl syntax in action:

tclsh> set w {chardonnay riesling sauvignon}
tclsh> set r {cabernet pinot zinfandel}
tclsh> concat $r $w
cabernet pinot zinfandel chardonnay riesling sauvignon
tclsh> set wines [concat $r $w]

\r carriage-return (0xd)

\t tab (0x9)

\v vertical tab (0xb)

\<newline> A single space character replaces the backslash, newline, and all white space
after the newline. This backslash sequence is unique in that it is replaced in a
separate pre-pass before the command is actually parsed. This means that it
will be replaced even when it occurs between braces, and the resulting space
will be treated as a word separator if it isn’t in braces or quotes.

\\ backslash

\OOO the digits OOO (one to three of them) give the octal value of the character.

\xHH the hexadecimal digits HH specify the value of the character. Any number of
digits may be present, and are interpreted up to the first non-hex character;
leading digits are discarded if they overflow the data type.

Table 2-2 (continued) Backslash Sequences in Tcl

Sequence Meaning

TclX—General Purpose Extensions

7

tclsh> lsort $wines
cabernet chardonnay pinot riesling sauvignon zinfandel

TclX—General Purpose Extensions

Extended Tcl, or TclX, is a set of extensions to Tcl. TclX is oriented towards system
programming tasks and large application development. Extended Tcl provides many
interfaces to the operating system that Tcl does not, and is upward compatible with Tcl.
You can run extended Tcl interactively using either the tclsh or sgitcl command. In fact
tclsh is a link to sgitcl. See the tclX(3Tcl) reference page for more information.

TclX offers the following features, which plain Tcl does not:

• a shell (tclsh) for developing and executing Tcl programs

• a code library facility for building large applications

• access to POSIX system calls

• file I/O commands

• time and date facilities

• string and character manipulation

• awk-like pattern scanning

• extended list manipulation commands

• keyed lists (similar to C structures in functionality)

• command for accessing TCP/IP servers

• XPG internationalization commands

• debugging and profiling facilities

• a help system

You can use TclX in conjunction with Tk and Tm, described below.

8

Chapter 2: Common Tcl Extensions

Tk—User Interface Toolkit

Tk is a toolkit for the X Window System™, accessible from Tcl scripts and implemented
as a library of C procedures on top of libX11. Because Tk does not require a Motif license
from the Open Software Foundation, it runs on freeware systems such as Linux and
FreeBSD, and also runs in a limited fashion on Windows™ and Macintosh® systems.

New applications can be created easily by writing short scripts for the windowing shell
wishx, which provides access to TclX and TkX, an extended form of Tk. Note that the
unextended windowing shell wish is not available with SGITCL.

Tk was written by John Ousterhout, and is described in his book, An Introduction to Tcl
and Tk. The Tk widgets are probably the biggest reason for the popularity of Tcl, because
they constitute a high-level GUI programming language.

Tm—Tcl Motif

Tcl Motif, or Tm, is a binding of the Tcl language to the real Motif library. Motif widgets
are in wide use commercially, and constitute a diverse, popular, and highly functional
graphical user interface. Tcl Motif allows programmers to employ Motif widgets instead
of the less sophisticated Tk widgets from high-level scripts. The style of programming in
Tcl Motif is similar to the style of Tk, although the two interfaces are not compatible.

New Tm applications can be created easily by writing short scripts for the Motif toolkit
windowing shell moat, which provides access to TclX and Tcl Motif. The function of moat
is similar to that of wishx except that moat is for Tm while wishx is for Tk.

SGITCL provides access from Tcl Motif to custom IRIX features, such as help menus in
ViewKit style, support for the icon-panel library, SGm widgets, Dt combo boxes, and the
XbaeMatrix widget. See Chapter 3 for more details.

Expect—Remote Control

Expect is a Tcl-based program for automating remote and interactive programs. Useful
for system administration, the expect command allows you to write a script that controls
interaction with other programs. Scripts know what to expect from a program and what
the correct responses should be. An interpreted language provides branching and

Expectk—Remote Control Tk

9

high-level control structures to direct the dialogue. In addition, the user can take control
and interact directly when desired, then return control to the script.

In general, the expect command is useful for running any application that requires
interaction between the program and the user. All it requires is for the programmer to
characterize this interaction systematically See the expect(1) reference page for more
details about this facility.

Expectk—Remote Control Tk

The expectk command is similar to expect, but it also includes support for Tk widgets.
SGITCL includes expectk as a link to wishx.

See the expectk(1) reference page for more details about Expect with Tk support.

wishx—Windowing Shell

The wishx windowing shell allows you to create Tcl/Tk user interfaces by writing short
scripts. See the section “Tk—User Interface Toolkit” on page 8 for details.

See the wishx(1) reference page for more details about this facility.

moat—Motif and Tcl Shell

The Motif toolkit windowing shell moat allows you to create Tcl Motif user interfaces by
writing short scripts. See the section “Tm—Tcl Motif” on page 8 for details.

See the moat(1) reference page for more details about this facility.

incrTcl—Object-Oriented Tcl

Object-oriented Tcl, or incrTcl, is named after the expression [incr Tcl]. This is Tcl syntax
for “increment the Tcl variable by one.” This play on words is similar to the name of the
C++ language, which is C syntax for “increment the C variable by one.”

10

Chapter 2: Common Tcl Extensions

SGITCL includes itcl, a library of object-oriented extentions to Tcl. They are available
from the following interfaces: sgitcl (linked to tclsh and wishx) and moat.

See the incrTcl(3Tcl) reference page for more information about incrTcl.

Oratcl and Sybtcl—Database Access

SGITCL includes the libraries Oratcl and Sybtcl for access to Oracle and Sybase databases
from within Tcl. They are available from the sgitcl interface (linked to moat and tclsh) and
from wishx.

See the Oratcl(3Tcl) reference page for information about Tcl extensions for ORACLE®

database access.

See the Sybtcl(3Tcl) reference page for information about Tcl extensions for Sybase®

database access.

GLXaux and glxwin

SGITCL includes GLXAux, a library of Tk bindings to interface with the GL graphics
library, and glxwin, a Tk procedure to create and manipulate the GLXwin graphical
window widget. These are available from the following interfaces: sgitcl (linked to tclsh
and wishx) and moat.

See the glxwin(3Tk) reference manual page for information about the glxwin procedure.

See the GLXAux(3Tk) reference manual page for information about the GLXAux library.

11

Chapter 3

3.Custom SGITCL Extensions

This chapter provides a brief introduction to the extension packages included with
SGITCL that are not likely to be found on other platforms.

tclObjSrv—for Objectserver

The tclObjSrv library is a Tcl Motif interface to the IRIX Cadmin distributed object system;
see objectserver(1M) for details. To use the tclObjSrv library, first initialize it with dlopen:

moat> dlopen libtclObjSrv.so init ObjSrv_Init
199.99.99.1
moat> .hostObject info

The ObjSrv_Init routine returns the IP address of the current host. You can change to a
different host by setting the _objAddr variable to the IP address of that machine. The
hostObject routine retrieves object information for the current class.

See the tclObjSrv(3Tcl) reference page for more information about the tclObjSrv library.

rstat—Kernel Statistics

The rstat library is a Tcl interface to the rstatd kernel statistics daemon; see rstatd(1M) for
details. This library is self-initializing: the first time you call an rstat procedure, SGITCL
does a dlopen of librstat.so. The rstat library offers two commands that can be used to
gather remote statistics from within Tcl programs:

nfsping Returns 1 if NFS daemons are running on the given hostname, 0 if not

rstat Returns a value pair list of kernel statistics on the remote hostname

For more information about the rstat library, try the Tcl help facility:

sgitcl> help rstat/rstat

12

Chapter 3: Custom SGITCL Extensions

sautil—for Network Maps

The sautil library is a Tcl interface to system administration utilities for dealing with
network information maps, for example YP maps for password, group, hosts, networks,
protocols, and services. To use the sautil library, first initialize it with dlopen:

% ypmatch joeuser passwd
joeuser::508:10:Joseph User,,,,,,,<eng>:/home/joeuser:/usr/bin/tcsh
% sgitcl
sgitcl> dlopen libsautil.so init SAUtil_Init
sgitcl> getpwnam pwent joeuser
pw_name pw_passwd pw_uid pw_gid pw_comment pw_gecos pw_dir pw_shell
sgitcl> set pwent(pw_shell)
/usr/bin/tcsh

In the example above, getpwnam returns the array element identifiers for the password
entry array pwent. The set command shows that these array elements have been filled in
according to the YP password map entry for joeuser.

System administration utilities for dealing with network information maps have the
same names as standard C library routines for dealing with /etc files for password, group,
hosts, networks, protocols, and services. These utilities are self-documenting—they print
the proper usage if issued without arguments. Table 3-1 shows the utilities available:

For more information about each of the sautils utilities above, use the Tcl help facility,
giving the name of a YP map and a utility:

sgitcl> help sautils/YPmap/utility

Table 3-1 sautil Library for Network Information

YP Map Utilities Available

group getgrnam, getgrgid, getgrent, setgrent, endgrent

hosts hostname, hostid, sysid, gethostbyname, gethostbyaddr
gethostent, sethostent, endhostent

networks getnetbyname, getnetbyaddr, getnetent, setnetent, endnetent

passwd pwcrypt, setpwent, getpwent, endpwent, getpwnam, getpwuid

protocols getprotobyname, getprotobynumber, getprotoent, setprotoent, endprotoent

services getservbyname, getservbyport, getservent, setservent, endservent

SNMP—Simple Network Management

13

SNMP—Simple Network Management

The snmp library is a Tcl interface for SNMP (simple network management protocol) as
implemented on IRIX 6.2. The snmp library is self-initializing: the first time you call one
of its library procedures, SGITCL does a dlopen of libsnmp.so.

These are the supported SNMP library procedures:

snmpget retrieve a list of hostnames and SNMP variables

snmpgetnext get the next hostname variable in a list

snmpgettable retrieve a simple value or an SNMP table

snmpresolve return the appropriate IP address of a given hostname

snmpping return round-trip time for ICMP echo request (requires root privilege)

For more information about procedures in the snmp library, use the Tcl help facility:

sgitcl> help snmp/snmpping

wwwHelp—Web Browser Help

The wwwHelp library is a Tcl Motif interface to build a help menu that invokes the
Netscape™ Web browser for displaying help. The wwwHelpMenu routine reads a
ViewKit helpmap file, by default from /usr/share/help, and constructs a help menu.

sgiHelp—ViewKit Help

The sgiHelp library is a Tcl Motif interface to the entire range of ViewKit help facilities.
Before using these routines, you need to open the libsgihelp.so dynamic library:

moat> dlopen libsgihelp.so

These procedures parse a Viewkit helpmap file to create a help menu with either help
pages or contextual help. Here is a list of related help routines:

sgiHelpMenu process entries from a helpmap file to build a help menu

sgiVersionCallback
create a dialog box containing version information

14

Chapter 3: Custom SGITCL Extensions

sgiHelpSubMenu
read a helpmap file to build a help menu and any necessary submenus

sgiOnContextHelp
retrieve contextual help based on question-mark mouse pointer

Support for Silicon Graphics Widgets

The Tcl Motif libraries include support for the following custom SGm widgets:

• help menus in IRIS ViewKit™ style

• the icon-panel library

• SGm widgets (sgiGrid, sgiThumbWheel, sgiDropPocket, sgiPrintBox, sgiFinder,
sgiVisualDrawingArea).

• Dt widgets (dtComboBox, dtDropDownList dtDropDownComboBox)

• Xbae Matrix widget (xbaeMatrix)

See TmSgiGrid(3Tm), TmSgiPanel(3Tm), and TmThumbWheel(3Tm) for more
information about these widgets.

15

Chapter 4

4. Using Tcl Motif

Tcl Motif, or Tm, is a binding of the Tcl language to the Motif library. Tm provides access
to a useful subset of Motif widgets, accessible through the simple Tcl language.

Tcl is an interpreted language originally intended for use as an embedded command
language for other applications. It has been used for that, but has also become useful as
a language in its own right.

Tcl Toolkits

Tcl was extended with a set of widgets called Tk. These are not based on the Xt intrinsics,
but are built above Xlib. Tk provides an easy way to write X11 applications.

The standard set of widgets in the X world is now the Motif set. Motif offers a large
number of widgets, which have seen a lot of development over the last five years. Use of
Motif is sometimes a requirement by business, and other widget sets try to conform to
Motif in appearance and behavior. Furthermore, many toolkits use Xt-based widgets, so
an Xt-compatible interface builder is often useful.

Tm allows the programmer to use Motif widgets instead of Tk widgets from within Tcl
programs. This increases programmer choices, and allows comparison of the features of
the Tcl Motif and the Tk style of widget programming.

Tm is based on Tk for its style of widget programming, because Tk provides a good
model, and to allow Tcl programmers to work with both Tk and Tcl Motif. An alternate
style is the WKSH system, a binding of the Korn Shell to the Motif library.

Reading This Chapter

The first two sections, “Getting Started” on page 16 and “Widget Basics” on page 18,
present basic Motif concepts and are intended for Motif beginners.

16

Chapter 4: Using Tcl Motif

The remaining sections, starting with “Resources” on page 26, constitute a full reference
manual for Tcl Motif, with tables of supported resources with their default values, lists
of callbacks, and example programs.

This chapter was derived from a document on Tcl Motif written by Jan Newmarch (the
author of Tm) and Jean-Dominique Gascuel.

Getting Started

Tcl Motif programs can be run with the moat (Motif and Tcl) interpreter. When called with
no arguments, moat reads commands from standard input. When given a file name, moat
reads commands from Tm-file, executes them, and then enters the main event loop:

moat Tm-file

The moat command is similar in concept to Tk’s wishx windowing shell. See the moat(3)
reference page for information about the Tm shell.

It is possible to run Tcl Motif scripts as standalone programs. Since the moat interpreter
on IRIX is installed in /usr/sgitcl/bin, make this the first line of a Tcl Motif script:

#! /usr/sgitcl/bin/moat

A Simple Example

The following example is in the /usr/share/src/sgitcl directory as progEG.tcl. Typically, a
Motif program has a top-level object called a mainWindow. This holds a menu bar and a
container such as a Form or rowColumn, which in turn holds the rest of the objects. Here
is code to create a mainWindow with a list and some buttons in a form:

#! /usr/sgitcl/bin/moat
xtAppInitialize -class Program
xmMainWindow .main managed
xmForm .main.form managed
xmList .main.form.list managed
xmPushButton .main.form.btn1 managed
xmPushButton .main.form.btn2 managed

The xmForm acts as what is called the “workWindow” of the mainWindow. This
resource would be set as follows:

Getting Started

17

.main setValues -workWindow .main.form

Values would also be set into the list and buttons:

.main.form.list setValues \
 -itemCount 3 -items “one, two, three” \
 -selectionPolicy single_select
.main.form.btn1 setValues -labelString Quit
.main.form.btn2 setValues -labelString “Do nothing”

Callbacks are set up for the Quit button and the selection list:

.main.form.btn1 activateCallback {exit 0}

.main.form.list singleSelectionCallback {puts stdout "Selected %item"}

Geometry would be set for the form, placing all objects in correct relation to each other.
This produces a list on the left, with the two buttons above and below on the right:

.main.form.list setValues \
 -topAttachment attach_form \
 -leftAttachment attach_form \
 -bottomAttachment attach_form
.main.form.btn1 setValues \
 -topAttachment attach_form \
 -leftAttachment attach_widget \
 -leftWidget .main.form.list
.main.form.btn2 setValues \
 -topAttachment attach_widget \
 -topWidget .main.form.btn1 \
 -leftAttachment attach_widget \
 -leftWidget .main.form.list

Since we initially created all the widgets as managed, it is not necessary to explicitly
manage them before entering the main loop.

Finally, windows are created and the main event loop is entered:

. realizeWidget

. mainLoop

Once entered in the main event loop, the application is really running: widgets are
created, displayed, and manipulated as user events that trigger associated callbacks.

18

Chapter 4: Using Tcl Motif

Enhanced Motif Style

To access new and extended IRIS IM™ widgets, and to produce a Motif style with gray
instead of blue backgrounds, run your Tm application with these resources set:

*useSchemes: all
*sgiMode: true

These resources may be set in a user’s .Xdefaults file, or by an application class file in the
/usr/lib/X11/app-defaults directory.

To set these resources for a specific application, include the application name before the
asterisk in the lines above. Remember that you may set a particular application class
name during initialization:

xtAppInitialize -class ApplicationClass

Widget Basics

Motif uses a hierarchy of subwindows to create and organize interface elements such as
menu items, push buttons, or data entry fields. In Motif and Xt jargon, these are called
widgets. Widgets are organized in a hierarchy, with the application itself forming the root
(or top) of the hierarchy.

Programming a graphical user interface consists of the following steps:

1. Create all the widgets you need, in a suitable hierarchy.

2. Configure widget color, size, alignment, and fonts.

In Motif, widgets are configured based on resources, which may be set for all
widgets in a class or on a per-widget basis. For example, one push button could
have a red background, or all push buttons could have a red background. Motif also
provides inheritance between widget classes: push buttons have a background
color resource because they inherit this resource (but not its setting) from Label.

3. Program your interface to react when users supply input. For example, a function
should be called when the PushMe button is clicked. This functions is a callback
associated with the widget. A callback is a fragment of Tcl code executed when
some event occurs. Here is an example callback for the PushMe button:

{puts stdout "Hello World"}

Widget Basics

19

Widget Names

Tcl is a text-based language—the only data type is string— so it works well to describe
widgets organized in a hierarchical structure. The naming of objects within the widget
hierarchy is similar to absolute pathnames of system files, with a dot (.) replacing the
slash (/) for pathnames. The application itself is known as “.” or dot. An xmForm widget
within the application might be known as .form1, while an xmLabel widget within this
form might be known as .form1.okLabel, and so on.

Note that Xt requires that “.” can have only one child (except for dialog boxes, which are
not mapped inside their parents). Tcl Motif follows this naming convention.

Creating a Widget

Widgets belong to classes, such as Label, xmPushButton or List. For each class there is a
creation command that takes the pathname of the object as its first argument:

createWidget widgetName ?managed? ?resourceList?

(This follows Tcl conventions where question mark pairs indicate an option.) Here is a
summary of the command and its arguments:

createWidget Specifies the type of widget you want to create. Basically, all the Motif
XmCreateSomeWidget() calls bind to a corresponding xmSomeWidget
call in Tcl Motif. The extensive list of Tm’s supported createWidget calls
appears starting with Table 4-1 below.

widgetName The full pathname of the new widget, specifying both the parent widget
(which should already exist) and the name of the new child.

managed An option saying whether the new widget should be managed. Before a
widget can be displayed, it must be brought under the geometry control
of its parent. This can be done with the manageChild command, or by
using the managed argument at widget creation time. This argument
must appear first.

A widget might be managed but unmapped, in which case it is
invisible. The main use of the “not yet managed widget” are menus
(when they are not visible), and subwidgets that will resize to unknown
dimensions at the time their parent is created.

resourceList An optional list of resource name and string_value pairs.

20

Chapter 4: Using Tcl Motif

Here are some examples of widget creation commands:

xmForm .form1 managed
xmLabel .form1.okLabel managed
xmPushButton .form1.cancelButton managed -labelString "Get rid of me."

This creates an xmForm called form1 as a child of “.” (dot), then an xmLabel called okLabel
and an xmPushButton called cancelButton, both as children of form1. The push button
widget has additional arguments to set its label string to say “Get rid of me.”

Widget Methods

Creating a widget actually creates a Tcl command known by the widget’s pathname in
the hierarchy. This command should be executed with at least one parameter to change
the behavior of the object or the value of its components, or to get information about the
object. The first parameter acts as a “method” for the object, specifying an action that it
should perform. The general syntax is

targetWidgetName widgetCommand ?options?

Some specific examples appear below:

.root.label manageChild

.root setValues -title "Hello world"

Motif uses the concept of inheritance for both resources and translations (see the section
“Actions and Translations” on page 34). Tm extends this to methods, which call Motif
functions on the target widget.

Widget Resources

In Motif jargon, resources are variables shared between widgets and the application.
Their default values permit a common look and feel across applications. They are also
used to communicate information between the application and the interface.

Tm resource names follow the usual Motif naming with a leading dash replacing the
XmN prefix. For example, -font replaces XmNfont. Tm constants are specified by their
Motif name, without the Xm_ prefix, either in upper or lower case.

The section “Resources” on page 26 describes resource concepts, and default value types.
The section “Base Classes” on page 36 describes resources common to many widgets.

Widget Basics

21

Actions and Callbacks

A user interface must react to user input such as clicks or keystrokes. Because a particular
input can affect both the interface and the application, reactions may be of two kinds.
Actions occur inside Motif to control the interface. Callbacks occur in an application to
register user input. Each widget class may define a set of actions and callbacks.

The section “Actions and Translations” on page 34 deals with actions and translations.
The section “Callbacks” on page 30 discusses callbacks. The section “Base Classes” on
page 36 presents the set of actions and callbacks common to many moat widgets.

Translations

In Motif, reactions to user input are defined from a high-level viewpoint: basic actions
include choosing a menu item or setting input focus to some widget. On the other hand,
basic events include mouse clicks, keystrokes, and key states, modified by the location of
the mouse pointer. Motif uses a translation table for binding basic events to basic actions.

Widget Creation Commands

The set of classes generally mirrors the Motif set. Some classes (Core, Shell and Primitive)
are not accessible from Tm because they are intended for inheritance use only. The
section “Basic Widgets” on page 46 discusses the widgets listed in Table 4-1:

Table 4-1 Basic Widgets

Widget Name Purpose

xmPushButton a simple button

xmLabel a fixed piece of text

xmArrowButton with an arrow face

xmTextField one line text editor

xmToggleButton with an on/off box

xmText a full text editor

xmDrawnButton with user graphics

22

Chapter 4: Using Tcl Motif

Manager widgets are used to lay out several widgets together. Placing widgets inside
widgets enables the creation of hierarchies suitable for complex user interface design.
The section “Manager Widgets” on page 71 discusses the widgets listed in Table 4-2:

Motif provides composite widgets, several object appearing together as one widget. The
section “More Widgets” on page 83 discusses the widgets listed in Table 4-3.

xmList a list selector

xmFrame a 3-D border

xmScale a slider on a scale

xmSeparator a simple line

xmScrollBar horizontal or vertical

Table 4-2 Manager Widgets

Widget Name Purpose

xmBulletinBoard simple x,y layout

xmForm layout widgets with relational constraints

xmRowColumn for regular geometry management

xmPanedWindow multiple panes separated by sashes

Table 4-3 Composite Widgets

Widget Name Purpose

xmScrolledWindow for displaying a clip view over another widget

xmScrolledList a partial view of a list

xmScrolledText a partial view of a text

xmMainWindow contains the main application windows, a menu bar, and so on

xmCommand a command entry area with a history list

xmMessageBox message display area on its own window

Table 4-1 (continued) Basic Widgets

Widget Name Purpose

Widget Basics

23

The section “Menus” on page 92 presents widgets for building menus. Menus may
contain button or separators, and of course any menu widget listed in Table 4-4:

Motif also has convenience functions for creating dialog boxes, which appear in their
own transient window, with push buttons on the bottom line (Accept/Cancel/Help).
The section “Dialogs” on page 94 discusses the widgets listed in Table 4-5:

xmSelectionBox a list to select from

xmFileSelectionBox selection of a file from a list

Table 4-4 Menu Widgets

Widget Name Purpose

xmMenuBar a row-Column used to create an horizontal menu

xmPulldownMenu a row-Column used to create a vertical menu

xmPopupMenu a menu on its own (transient) window

xmCascadeButton a special pushbutton to call a sub-menu

Table 4-5 Dialog Widgets

Widget Name Purpose

xmBulletinBoardDialog a dialog with arbitrary contents

xmFormDialog a dialog based on a form

xmMessageDialog a dialog showing a message

xmInformationDialog a dialog displaying information

xmPromptDialog a dialog with a prompt area

xmQuestionDialog a dialog asking a question

xmWarningDialog a dialog showing a warning

xmWorkingDialog a dialog showing a busy working message

Table 4-3 (continued) Composite Widgets

Widget Name Purpose

24

Chapter 4: Using Tcl Motif

When you have to destroy such widgets, you must destroy the real dialog widget; that
is, the parent of the usually manipulated widget:

xmQuestionDialog .askMe managed
[.askMe parent] destroyWidget

The Root Widget

Motif is built upon Xt. The Xt world must be brought into existence explicitly. This allows
setting of class and fallback resources, and leaves hooks for things like setting the icon
later in the binding. The Xt startup function is XtAppInitialize.

xtAppInitialize This can take parameters of -class and -fallback_resources. If the class
option is omitted, Tm will deduce a class by capitalizing the first letter
of the application name, and also the second letter if it follows an x.

Several root widget methods exist to deal with Motif features related only to the main
application window:

. mainLoop Start the main application loop, waiting for and managing events.

. getAppResources resource_list
Get the application resources. Argument resource_list is a Tcl list of
quadruples {name class default var}, where name is the resource name, and
class the resource class. For each resource, this method searches for a
value in the application default or in the resource database, and sets the
Tcl variable var accordingly. If not found, it sets var to default.

. processEvent Process a single event, blocking if none are present. This is useful only if
you want to design your own main event loop.

. addInput fileId perm tclProc
This adds an input handler to moat. Argument variable fileId may be
either stdin, stdout, stderr, or a valid opened file as returned by open().

xmSelectionBoxDialog a dialog based on xmSelectionBox

xmFileSelectionDialog a dialog based on xmFileSelectionBox

Table 4-5 (continued) Dialog Widgets

Widget Name Purpose

Widget Basics

25

Argument variable perm is a single character permission, which might
be r, w, or x to indicate read, write, or execute permission, respectively.
Argument tclProc is Tcl code that is to be executed when I/O is ready.

For example, the following code adds an interpreter that reads and executes moat
commands that are typed in while the interface is running:

Define the interpret function, that handles errors.
proc interpret {line} {
 set code [catch $line result]
 if {$code == 1} then {
 puts stderr "$result in :\n\t$line"
 } else {
 if { $result != "" } { puts stderr $result }
 }
 puts stderr " " nonewline
}
Bind it as an input handler.
.addInput stdin r {
 interpret [gets stdin]
}
And display the first prompt
puts stderr "%" nonewline

The list below describes additional root widget methods for Motif features related to the
main application window:

. removeInput inputId
Remove the input handler specified by the given identifier. Identifiers
are unique strings returned by the corresponding addInput call.

. addTimer interval tclProc
Add a timer that triggers the execution of the given Tcl procedure after
the specified interval.

. removeTimer timerId
Remove the timer specified by the given identifier timerID, which is a
unique string returned by the corresponding call to addTimer.

26

Chapter 4: Using Tcl Motif

Resources

Resources are inherited through the class hierarchy. They have default values and several
different types. In Motif, several base classes exist, from which the actual widgets are
derived. Those classes define a common set of resources, methods, and behaviors.

Resource Inheritance

Each widget belongs to a class, whose name is the widget creation command name. Each
widget inherits resources from its superclass. For example, xmLabel is a subclass of
Primitive, which in turn is a subclass of superclass Core. From Core, xmLabel inherits
resources such as -background, -height, and -width. From Primitive, it inherits resources
such as -foreground. It is necessary to consult superclasses to get a full resource list for a
particular xmLabel. Furthermore, each class adds resources. For example, xmLabel has
the additional resources -labelType, -labelPixmap, and -labelString, among others.

Some special resource values are inherited through multiple levels of the widget
hierarchy at creation time. For instance, the -buttonFontList of a bulletin board might be
inherited from the -defaultFontList of an ancestor subclassing the abstract classes
vendorShell or menuShell. In this case, the resource value is copied and is not modified
if the original resource is modified.

For instance, in the following example, the button inherits its -fontList default value from
bulletin board -buttonFontList. On the other hand, the button’s background color is taken
from the class defaults, not from the BulletinBoard. Pushing the button will change the
BulletinBoard’s -buttonFontList resource, which does not update the button’s font list.

#! /usr/sgitcl/bin/moat
xtAppInitialize
xmBulletinBoard .top managed \
 -background #A22 -buttonFontList "-*-courier-*-o-*--20-*"
xmPushButton .top.bold managed \
 -y 10 -labelString Bold
xmPushButton .top.quit managed \
 -y 40 -labelString Quit
.top.bold activateCallback {
 .top setValues -buttonFontList "-*-courier-bold-o-*--20-*"
}
.top.quit activateCallback {exit 0}
. realizeWidget
. mainLoop

Resources

27

X Defaults

The usual X defaults mechanism is used to provide defaults to resources. Default values
are located in files designated by the XAPPDEFAULTS environment variable, including
an optional locale directory (designated by the LANG environment). XAPPDEFAULTS
defaults to /usr/lib/X11/app-defaults, and LANG is usually not defined. In this simplest
case, the located file would be /usr/lib/X11/app-defaults/ApplicationName, where
ApplicationName is the class name of your application.

These defaults could be reset by the xrdb command; see the xrdb(1) reference page for
details. Usually, login scripts read a user-customized resource file, often named .Xdefaults
or .Xresources, using the xrdb -merge command. This is the usual way for users to
configure their environment.

Finally, some applications employ special configuration files, which might also reset
additional resources. The Motif window manager mwm is a good example of this
complex area, as it looks in not fewer than eight different resource files; see mwm(1) for
more information.

Resource files contain lines specifying values for widget or widget class resources. The
syntax is shown below:

resourcePath : value

Here, resourcePath is a dot-separated path naming a particular resource in the hierarchy,
while value is a string representation for the resource setting.

Resource paths start with an optional application name. Without this, the settings apply
to all X applications. After that, names in the path may refer to a widget class (when
starting with a capital), to widget names (as defined by moat creation command), or to
application-specific scoping. The star character (*) may be used to match any portion of
the resource path. Table 4-6 shows some examples of resource paths.

Table 4-6 Examples of Resource Names

Resource Path What it Affects

*Background for all widgets, in all sessions

*PushButton.Background for all the push button instances

28

Chapter 4: Using Tcl Motif

Resource Types

Some resources are just string values (such as -labelString), but others have more
complicated types. Since moat is a string language, all values should be manipulated in
string representations; moat uses either Motif internal routines or specific converters to
make the necessary conversions.

This section briefly describes the main types used by Tm and moat.

Basic Types: Integer, Boolean, and String

In Tcl, every variable’s value is a character string. Nevertheless, some strings can be
interpreted as an integer or as a Boolean. In Tm, a string could be any Tcl string or list,
correctly surrounded by braces or double quotes. An integer is a string containing only
decimal digits. A Boolean is one of the words true, false, on, off, yes, or no (in upper,
lower, or mixed case), or an integer 1 or 0 where 0 indicates false.

Dimensions

Dimensions are particular integers measuring distance in screen space. Their actual
value depends on the -units resource. This can involve different horizontal and vertical
units of measurement (when based on current font metrics, for instance). For example,
the following code sets a window size to 80 x 24 characters:

$window setValues \
 -units 100th_font_units \
 -width 8000 -height 2400

Color Resources

In the X Window System, colors may be specified using portable symbolic names (such
as NavyBlue) defined in the /usr/lib/X11/rgb.txt file, or using hexadecimal triplets of the
form #RGB, with R, G, and B being two hex digits, such as #081080 (a dark blue).

xterm*Background for all widgets of the xterm application

jot.fileMenu.quit.Background for the Quit button in the File menu of jot

Table 4-6 (continued) Examples of Resource Names

Resource Path What it Affects

Resources

29

Depending on the visual type, X11 may always produce the exact color you specified, or
give you a close approximation. RGB values are not portable, because they depend on
the screen hardware gamma, the software contrast correction, and the graphic board
linearity. The /usr/lib/X11/rgb.txt file should be tuned for each hardware and software
configuration (by the vendor), but this is rarely done well.

Font Resources

Font names used by X11 can be fully qualified dash-separated strings, or aliased
nicknames. The general form of the full font name is as follows:

-foundry-name-weight-slant-width-style-14-80-100-100-m-60-encoding

The * character can be used as a wildcard to match any specifier available for the field.
Table 4-7 shows what the fields represent.

The xlsfonts command lists all fonts known to the X server; see xlsfonts(1) for details.

Font List

A font list is a comma-separated set of fonts. The first font in the list is the default one,
while other ones are used for alternate codesets. This is quite useful in Japan, Korea, and
China, where one font is not enough to contain all characters in common use. A widget’s

Table 4-7 Fields in a Font Name

Field What it Represents

foundry the font maker, such as Adobe™, Bitstream™, or Silicon Graphics

name font family name as defined by its vendor, for example, Palatino or Helvetica

weight bold, book, demi, light, medium, regular

slant i for italic, o for oblique, r for regular (roman)

width narrow, normal, semicondensed

style sans, serif, elfin, nil

sizes font size (in various units) followed by resolutions

encoding usually iso8859-1

30

Chapter 4: Using Tcl Motif

default font list usually derives from its ancestor. The top-level defaults are set from the
VendorShell abstract class, or from the X defaults mechanism.

Pixmap Resources

Pixmaps are small rectangular arrays of pixels, often used to draw a button or pointer, or
to be tiled to fill a graphic area.

On color displays, pixmaps can be either two color, using the -background and -foreground
resources, or full color. Pixmaps may also be partially transparent, when they are
accompanied by a transparency mask.

Simple two color pixmaps are created from a bitmap, using the current foreground and
background colors at the time they are first loaded. Once created, the colored pixmap is
retained in the server’s memory by a caching mechanism. On most X servers, this
coloring is retained until the X server is restarted. Use the bitmap command to create or
modify bitmaps; see bitmap(1) for details. The following code establishes a bitmap:

#! /usr/sgitcl/bin/moat
xtAppInitialize
xmPushButton .face managed \
 -labelType pixmap -labelPixmap /usr/share/src/sgitcl/face \
 -armPixmap face_no
.face activateCallback {exit 0}
. realizeWidget
. mainLoop

Enumerated Resources

For some resources, the value is given by a symbolic name, which can be chosen only
from a small set of legal values. Tm uses the Motif standard name, without the leading
XmN prefix, in a mixed case combination for setValues. Tm always returns lower-case
strings from getValues.

Callbacks

Widgets must respond to user-initiated actions. For example, when a button is clicked it
changes appearance to look pressed in. Some actions have Tcl code attached to them to
make something else happen when an action occurs. This code is attached to a “callback”
by a widget creation command. For example, a push button triggers an activateCallback

Callbacks

31

when the user presses and releases the left mouse button inside the widget; it triggers an
armCallback when the user presses the mouse button, and a disarmCallback when the
user releases the mouse button inside the widget.

Tcl code is attached to a callback by giving it as the second argument to the appropriate
widget method. For example,

$btn armCallback {puts "Stop squashing me!!"}
$btn disarmCallback {puts "Ah... that's better"}
$btn activateCallback {puts "Sorry Dave"; exit 0}

This section documents Tm callback names and the actions that trigger them. Names of
callbacks available for a particular widget are derived from the resource documentation
for Motif. Each callback name ends with the “Callback” string. Drop the XmN from the
Motif description to derive the widget command. Callbacks are treated differently from
other resources because the Xt treats them differently—the resource is not meant to be
handled directly by any ordinary application.

Callback Substitution

When Motif executes a callback in reaction to some event, it provides some parameters
(such as the current widget) or additional data relevant to a given class. Tm follows Tk
in providing the powerful mechanism of callback substitution. Before execution, the Tcl
command list is scanned to look for the % character. Each time this character is found, the
word that follows is extracted, analyzed, and if recognized, replaced with the
corresponding data.

For example, %item in an xmList callback is replaced by the item selected, whereas
%item_position is replaced by its position in the list. This is an example of callback
substitution in a list:

.list singleSelectionCallback
 { print_info %item %item_position }
proc print_info item position
 { puts stdout "item was $item, at position $position" }

32

Chapter 4: Using Tcl Motif

The following list shows the recognized tags. Their meaning is detailed below in the
context of the corresponding callbacks.

The following list contains the possible callback reasons, as defined in <Xm/Xm.h> (but
with the leading XmCR_ removed):

%click_count %endPos %newinsert %selection_type

%closure %item_length %pattern_Length %set

%currInsert %item_position %pattern_length %startPos

%currinsert %item %Pattern %type

%dir_length %length %pattern %value_length

%dir %mask_length %ptr %value

%doit %mask %reason %w

%dragContext %newInsert %selected_items

activate apply arm

browse_select cancel cascading

clipboard_data_delete clipboard_data_request command_changed

command_entered create decrement

default_action disarm drag

execute expose extended_select

focus gain_primary help

increment input lose_primary

losing_focus map modifying_text_value

moving_insert_cursor multiple_select no_match

none obscured_traversal ok

page_decrement page_increment protocols

resize single_select tear_off_activate

tear_off_deactivate to_bottom to_top

unmap value_changed

Callbacks

33

Callback Cross References

Table 4-8 lists all callbacks supported by Tm, and the class in which they are first defined.
The Motif method names to add callback code are obtained by appending Callback and
prepending XmN; these are listed in <Xm/XmStrDefs.h>.

Table 4-8 Callbacks and Classes Where Defined

Name Defined by Name Defined by

activate Text/Button losePrimary Text

apply SelectionBox losingFocus Text

arm Button map BulletinBoard

browseSelection List modifyVerify Text

cancel SelectionBox motionVerify Text

cascading CascadeButton multipleSelection List

commandChanged Command noMatch SelectionBox

commandEntered Command ok SelectionBox

decrement ScrollBar pageDecrement ScrollBar

defaultAction List pageIncrement ScrollBar

destroy Core popdown Shell

disarm Button popup Shell

drag Scale resize Draw

entry RowColumn simple

expose Draw singleSelection List

extendedSelection List toBottom ScrollBar

focus BulletinBoard toPosition (Text)

gainPrimary Text toTop ScrollBar

help Mgr./Prim. unmap BulletinBoard

34

Chapter 4: Using Tcl Motif

Actions and Translations

Actions and translations are Xt concepts that exist in Tm as well. All possible user inputs
have a symbolic name: these inputs are called events. All reactions of the interface to some
event also have a name: these are called actions.

To describe their behavior, widgets have translation tables that say what action to take
when some event occurs. Motif translation tables enable users to type on the keyboard to
navigate between widgets and make window system selections. This provides keyboard
equivalents for mouse actions.

Translation tables are inherited through the class hierarchy. The list of all supported
events and actions is quite long. For more information on supported events and actions,
consult the Motif documentation.

Adding Actions and Translations

Actions may be added to a widget in a way similar to the C version of Motif. You define
an action for the widget in a translation table. In this binding, the Tcl code is placed as the
arguments to the action in the translation table. Registering the translation using the
action call links a generic action handler, which in turn handles the Tcl code.

This code adds a translation to turn an arrow left or right when the l or r key is typed:

#! /usr/sgitcl/bin/moat
xtAppInitialize
xmArrowButton .arrow managed
.arrow setValues -translations \
 {<Key>r: action(arrow_direction %w arrow_right)
 <Key>l: action(arrow_direction %w arrow_left) }
proc arrow_direction {arrow direction} {
 puts stdout "Changing direction to $direction"
 $arrow setValues -arrowDirection $direction

increment Scrollbar valueChanged Text/Scale/ScrollBar

input DrawingArea

Table 4-8 (continued) Callbacks and Classes Where Defined

Name Defined by Name Defined by

Actions and Translations

35

}
. realizeWidget
. mainLoop

As with callbacks, substitutions are possible. The only one currently supported is %w, to
substitute the current widget path. Other substitutions return an error message.

Triggering Actions

The callActionProc method is available for every widget. Its purpose is to simulate user
actions. This method takes an action as a further parameter, using the usual Xt syntax.
For example, to simulate the return key press occurring within an arrow button, call the
ArmAndActivate() action:

.arrow callActionProc ArmAndActivate()

This sends a ClientMessage event to the widget. Most other widgets would ignore this
event, so this call is sufficient. Some actions require event detail, though. For example,
when a mouse button release occurs, the widget checks to see if the release occurred
inside or outside the widget. If the event occured inside, then callbacks attached to the
Activate() action are invoked; otherwise they are not. To handle this, an event of type
ButtonPress, ButtonRelease, KeyPress, or KeyRelease can be prepared with some fields
set. For example, a ButtonRelease occurring within the arrow can be sent by this call:

.arrow callActionProc Activate() -type ButtonPress -x 0 -y 0

Some of the Text manipulation actions require a KeyPress event, such as self-insert(),
which inserts the character pressed. The character is actually encoded as a keycode,
which is a hardware-dependent code, too low-level for this binding. To prepare such an
event, this toolkit uses keysyms, which are abstractions for each type of key symbol.

The alphanumerics have simple representations as themselves (a, A, 2, and so on). Others
have symbolic names (space, Tab, BackSpace). These are derived from the include file
<X11/keydefs.h> by removing the XK_ prefix.

This example inserts the three characters “A a” into a text widget:

.text callActionProc self-insert() -type KeyPress -keysym A

.text callActionProc self-insert() -type KeyPress -key space

.text callActionProc self-insert() -type KeyPress -key a

The set of actions requiring this level of X event preparation is not documented explicitly.

36

Chapter 4: Using Tcl Motif

Base Classes

All Tm widgets derive from a small set of superclasses, namely Core, Primitive, Manager,
and Shell. You cannot create any widget of those classes, because they are base classes
used to define sets of resources, behaviors, and methods common to all derived widget
classes that have bindings in Tm. This section describes these abstract base classes.

The Core Class

The Core class is the ancestor of all Tm widget classes. Any methods and resources it
defines apply equally to all Tm objects. The Core class does not implement any behavior
(neither action, translation, nor callback), and does not assume display should occur.

Core Methods

The Core class defines the set of methods common to all derived classes, shown below
for widget w:

w realizeWidget
Create windows for the widget and its children. Usually this is used
only on the main widget, as in the “. realizeWidget” call.

w destroyWidget
Destroy the widget w, its subwidgets, and all associated Tcl commands.
Calling “. destroyWidget” gracefully exits the Modif main loop, whereas
calling “exit 0” unceremoniously halts the Tcl interpreter.

w mapWidget Map the given widget onto screen, to make it visible. This is done when
the widget is managed (see below).

w unmapWidget
Unmap the widget from its parent’s screen, making it invisible, but leave
it in geometry management.

w manageChild
Bring a widget (back) under geometry management and make it appear
(again). This is equivalent to the managed parameter at creation time.
Some widgets should not be managed at creation time, for instance
when the parent needs special settings to handle the widget properly, or
for menus and dialogs that need to be displayed only temporarily.

Base Classes

37

w unmanageChild
Unmap the widget from its parent’s screen, making it invisible, and also
remove it from geometry management.

w setSensitive Boolean
An insensitive widget does not respond to user input. When a widget is
disabled with “w setSensitive false” it is usually drawn dimmed (using
a gray pattern). The main use for this is disabling buttons or menu items
that are not allowed in the current state of the application.

w getValues resource variable ...
This is a dual command: given a paired list of Tm resource names and
Tcl variable names, it sets the Tcl variable to the current value of the
corresponding Tm resource. Motif reverse conversions are used for this,
but Tm does not provide all of them. This means you should be able to
set up all resource types, but you might not be able to retrieve them all.

proc flash {widget {fg black} bg red}} {
 $widget getValues
 -background old_bg -foreground old_fg
 $widget setValues \
 -background $bg -foreground $fg
 wait 0.1
 $widget setValues \
 -background $old_bg -foreground $old_fg
}

w setValues rsrc value ...
This command changes resource values for an already existing widget.
The required parameters are a paired list of resource names and string
values. The following changes the text colors of the .frm.text widget:

.frm.text setValues \
 -background lightGray \
 -foreground #111

Each widget class defines which resources may be set, the resource
types, and their accepted values.

w resources Returns a list of all active resources for the given widget. This returns a
quadruple of the following form:

name Class type value

38

Chapter 4: Using Tcl Motif

w anyCallback tclProc
If the widget method name contains the substring Callback, then Tm
asks Motif to register the command list given in the argument. When the
specified event occurs, it is interpreted (in the global context).

w parent This method retrieves the parent widget name. If a regular widget .a.b.c
has been created, then “set x [.a.b.c parent]” assigns the string “.a.b” to
variable x. The exact result is not always obvious, because some widgets
(such as dialogs) have hidden parents.

w processTraversal direction
Change the widget that receives keyboard input focus; direction may be
any of the following:

current
home
up
down
left
right
next
next_tab_group
previous_tab_group

w dragStart resource value ...
See section “Drag and Drop” on page 81 for details about this method.

w dropSiteRegister resource value ...
See section “Drag and Drop” on page 81 for details about this method
and the one above.

w getGC resource value ...
This method retrieves the Xlib graphical context of a widget. There must
be at least one resource defined. The allowed resources are -background
and -foreground. See section “xmDrawingArea and xmDrawnButton” on
page 85 for information about user-defined graphics in Tm widgets.

w callActionProc
Call an action procedure. Usually used to test moat, or your own code.

Base Classes

39

Core Widget Resources

Table 4-9 shows values for the core resources common to all widgets. A Core widget is
an empty rectangle, with an optional border.

For information about usage of these resouces, see the Core(3X) reference page.

The Primitive Class

The Primitive class derives from the Core class. This abstract class is designed to define
resources and behavior common to any widget that could have something drawn on it.
As the user sees something, Primitive is able to define some very general behavior, which
can appear as translations, actions, and callbacks.

Table 4-9 Core Resources

Core Resource Name Default Value Type or Legal Values

-accelerators none String

-background dynamic Color

-backgroundPixmap none Pixmap

-borderColor dynamic Color

-borderWidth 1 Integer

-height dynamic Integer

-mappedWhenManaged True Boolean

-sensitive True Boolean

-translations none String

-width dynamic Integer

-x 0 Integer

-y 0 Integer

40

Chapter 4: Using Tcl Motif

Primitive Resources

Table 4-10 describes the resources relevant for all widgets that derive from Primitive.

The -navigationType resource controls how the keyboard affects widgets navigation.
Keyboard shortcuts are often used to quickly change input fields, as with the <Tab> key.

Simple bicolor drawing is done using the Primitive’s foreground color over the Core’s
background color. Other colors default to mixing these two at widget creation time.
When they are entered (gain the input focus), primitive objects are often highlighted by
drawing a color border around them. They can also be enclosed by a beveled shadow
frame, making them appear to be standing out or recessed (a 3D effect).

Table 4-10 Primitive Resources

Primitive Resource Name Default Value Type or Legal Values

-bottomShadowColor dynamic Color

-bottomShadowPixmap none Pixmap

-foreground dynamic Color

-highlightColor none Color

-highlightOnEnter False Boolean

-highlightThickness 2 Integer

-navigationType none none, tab_group
sticky_tab_group
exclusive_tab_group

-shadowThickness 2 Integer

-topShadowColor dynamic Color

-topShadowPixmap none Pixmap

-traversalOn True Boolean

-unitType pixels pixels
100th_millimeters
1000th_inches
100th_points
100th_font_units

Base Classes

41

The -unitType resource selects screen-dependent, font-related, or device-independent
units. It affects subsequent dimension resources for that widget only.

Primitive Callbacks

Table 4-11 shows the only two callbacks defined for every drawable widget. These
callbacks only support the substitution %w to expand the widget path.

When the Help() action occurs, either through the Help (usually <F1>) key or by a virtual
binding, Motif looks for a callback to execute in the current widget. If it finds none, it
looks in the parent, the parent’s parent, and so on up to the main window. Hence,
helpCallback may be used to implement a general or context-sensitive help facility.

The destroyCallback method can be used to call some automatic cleanup procedure
when a widget is deleted.

Primitive Actions

As for any widget, there is an action to match each callback. Actions trigger callback
execution and standard widget responses, if any. Primitive class actions are as follows:

Help() If there is no callback defined for the widget, this action propagates the
help action to the widget’s parent. If no callback is defined up to the root
widget, the action is simply ignored.

Destroy() This action is called before widget destruction, to allow an application
to perform automatic cleanup before exiting.

Primitive Translations

This is the only translation defined for the Primitive class:

Table 4-11 Primitive Callbacks

Method Name Why

helpCallback The help key is pressed.

destroyCallback The widget is destroyed.

42

Chapter 4: Using Tcl Motif

 <KHelp>: Help()

This says that the symbolic <Help> key, on most keyboards mapped to the <F1> function
key, triggers the Help() action.

Shell Classes

Shell classes are used to define resources and behaviors that are common to all widgets
having their own window, such as top-level windows, popup menus, and dialogs. Motif
describes several different base classes for this purpose, some inherited from Xt, and
some defined inside Motif. All the shell classes are introduced below, followed by tables
showing the resources available for each.

Shell is the ancestor of all the other abstract shell classes. Having only one managed
child, it encapsulates interaction with the window manager. Shell inherits behavior and
resources from the Composite and Core classes.

WMShell handles protocols that communicate between an application and the window
manager. WMShell inherits behavior and resources from Core, Composite, and Shell.

Table 4-12 Shell Resources

Resource Name Default Value Type or Legal Value

-allowShellResize False Boolean

-geometry "" String

-overrideRedirect False Boolean

-saveUnder False Boolean

-visual Inherited String

Table 4-13 WMShell Resources

Resource Name Default Value Type or Legal Value

-baseHeight none Integer

-baseWidth none Integer

-heightInc none Integer

Base Classes

43

-iconMask none Pixmap

-iconPixmap none Pixmap

-iconWindow none Window

-iconX -1 Integer

-iconY -1 Integer

-initialState normalState iconicState
normalState

-input False Boolean

-maxAspectX none Integer

-maxAspectY none Integer

-maxHeight none Integer

-maxWidth none Integer

-minAspectX none Integer

-minAspectY none Integer

-minHeight none Integer

-minWidth none Integer

-title argv[0] String

-titleEncoding xa_string compound_text
xa_string

-transient False Boolean

-waitForWm True Boolean

-widthInc none Integer

-windowGroup Window

-winGravity dynamic Integer

-wmTimeout 5000ms Integer

Table 4-13 (continued) WMShell Resources

Resource Name Default Value Type or Legal Value

44

Chapter 4: Using Tcl Motif

VendorShell controls resources set up in the X server, and contains meaningful defaults
for a particular implementation.VendorShell inherits behavior and resources from the
Core, Composite, Shell, and WMShell classes.

TopLevelShell is used for normal top-level windows such as additional window widgets
that an application needs. This level is responsible for iconization. TopLevelShell inherits
behavior and resources from Core, Composite, Shell, WMShell, and VendorShell.

Table 4-14 VendorShell Resources

Resource Name Default Value Type or Legal Value

-defaultFontList dynamic font list

-deleteResponse destroy do_nothing
unmap
destroy

-keyboardFocusPolicy explicit explicit
pointer

-mwmDecorations –1 Integer

-mwmFunctions –1 Integer

-mwmInputMode –1 Integer

-mwmMenu "" String

-shellUnitType pixels pixels
100th_millimeters
1000th_inches
100th_points
100th_font_units

-useAsyncGeometry False Boolean

Table 4-15 TopLevelShell Resources

Resource Name Default Value Type or Legal Value

-iconic False Boolean

-iconName "" String

-iconNameEncoding xa_string compound_text
xa_string

Base Classes

45

ApplicationShell is used for an application’s main top-level window. There should be
more than one of these only if a program implements multiple logical applications.
ApplicationShell inherits behavior and resources from Core, Composite, Shell, WMShell,
VendorShell, and TopLevelShell.

TransientShell is for temporary windows that do not stay visible on screen and must be
iconized along with the TopLevelShell they are affiliated with. TransientShell inherits
behavior and resources from Core, Composite, Shell, WMShell, and VendorShell.

Window Sizing

Window sizing constraints may be set either according to the dimensions of a window,
or on its aspect ratio (the proportion of width to height). Beside minimum and maximum
dimensions, window size may be constrained to follow a given increment.

For instance, using the following setting, the only width allowed for interactive resizing
is 150 and 250:

-minWidth 100 -baseWidth 50 -widthInc 100 -maxWidth 300

Window aspect ratios are set using a numerator/denominator formula:

minAspectX width maxAspectX
–––––––––– <= ––––– <= ––––––––––
minAspectY height maxAspectY

Hence, the following constrains the width to stay between a third and half the height:

-minAspectX 1 -minAspectY 3 -maxAspectX 1 -maxAspectY 2

Table 4-16 ApplicationShell Resources

Resource Name Default Value Type or Legal Value

-argc Set by XtInitialize() Integer

-argv Set by XtInitialize() String Array

Table 4-17 TransientShell Resources

Resource Name Default Value Type or Legal Value

transientFor none Widget

46

Chapter 4: Using Tcl Motif

Interactive window resizing may also be ignored by setting the -allowShellResize
resource to False.

Window icon resources may be used to define the window icon type, its placement, and
so forth.

Icons may be drawn using a (possibly partially transparent) pixmap, or by using a
specific alternate window (-iconWindow). A window may be set up to appear in iconic
state at creation (-initialState iconicState), and its current state may be retrieved or
changed using the -iconic resource.

Basic Widgets

The subsections below present the basic Motif widgets, from which all the more
sophisticated ones derive.

xmLabel

A label widget simply contains some text. For example, this is the classic “Hello world”
program in Tcl Motif:

#! /usr/sgitcl/bin/moat
xtAppInitialize
xmLabel .lbl managed -labelString "Hello world!"
. realizeWidget
. mainLoop

Note that text is broken into separate lines only if you put newline symbols in it. Text may
contains non-ASCII characters, using the encoding defined in the current font, usually
ISO 8859-1.

This example shows more complex use of label widgets:

#! /usr/sgitcl/bin/moat
xtAppInitialize
xmLabel .lbl managed
.lbl setValues -labelString {
 If your text contains newline symbols,\n
 it will be broken into separate lines.\n
 It may contain non-ASCII characters (àçéñôßü)

Basic Widgets

47

}
.lbl setValues \
 -stringDirection string_direction_r_to_l \
 -alignment alignment_end \
 -fontList -*courier-bold-r-*--18-* \
 -marginLeft 10 -marginWidth 10 \
 -x 200 -y 100
. realizeWidget
. mainLoop

Table 4-18 shows the resources for xmLabel.

Table 4-18 xmLabel Resources

Resource Name Default Value Type or Legal Value

-accelerator "" String

-acceleratorText "" String

-alignment center alignment_center
alignment_beginning
alignment_end

-fontList inherited fontList

-labelInsensitivePixmap none Pixmap

-labelPixmap none Pixmap

-labelString widget name String

-labelType string string//pixmap

-marginBottom 0 Integer

-marginHeight 0 Integer

-marginLeft 0 Integer

-marginRight 0 Integer

-marginTop 0 Integer

-marginWidth 0 Integer

-mnemonic "" String

-mnemonicCharSet dynamic String

48

Chapter 4: Using Tcl Motif

Some resources are used only in derived classes. When displayed text material changes,
the size of the label may or may not be recomputed, depending on -recomputeSize. The
label may display the -labelString or -labelPixmap resource, depending on the -labelType
value. Labels are always centered top and bottom (inside their margins), but may be
centered or left or right justified, depending on -alignment.

When a label is inactive (insensitive), the displayed text is grayed using a 50% pattern.
You can change this pattern by specifying a pixmap with -label-Insensitive-Pixmap.

Table 4-19 lists resources inherited from the Primitive and Core classes.

-recomputeSize True Boolean

-stringDirection l_to_r string_direction_l_to_r
string_direction_r_to_l

Table 4-19 xmLabel Inherited Resources

Resource Inherited From Resource Inherited From

-background (Core) -backgroundPixmap (Core)

-borderColor (Core) -borderWidth (Core)

-bottomShadowColor (Primitive) -bottomShadowPixmap (Primitive)

-foreground (Primitive) -height (Core)

-highlightColor (Primitive) -highlightOnEnter (Primitive)

-highlightPixmap (Primitive) -highlightThickness (Primitive)

-mappedWhenManaged (Core) -navigationType (Primitive)

-sensitive (Core) -shadowThickness (Primitive)

-topShadowColor (Primitive) -topShadowPixmap (Primitive)

-translations (Core) -traversalOn (Primitive)

-unitType (Primitive) -width (Core)

-x (Core) -y (Core)

-accelerators (Core)

Table 4-18 (continued) xmLabel Resources

Resource Name Default Value Type or Legal Value

Basic Widgets

49

Labels do not define specific callbacks, but just inherit them from the Primitive class,
namely helpCallback and destroyCallback.

xmText, xmScrolledText, and xmTextField

Text widgets display a text string, but also allow the user to edit it. An xmTextField
widget displays a single line of editable text, while an xmText widget usually spans
multiple lines.

The xmScrolledText widget automatically displays scroll bars if it is larger than the
allotted space on screen. These xmScrollBars enable the user to change the currently
viewed portion of the text. Text selection is done with keyboard or mouse interactions,
as described in the section “Actions and Translations” on page 34.

A scrolled text widget is a composite widget that has the following children, where tw
represents the text widget name:

tw.HorScrollBar tw.VertScrollBar tw.ClipWindow

An associated Tcl procedure can be used to directly access them, as in this example:

xmScrolledText .txt managed
set rsrc_list [.txt.ClipWindow resources]

In addition to standard Core methods, text widgets (tw) offer these additional methods
to deal with text selection and the clipboard:

tw setString txt Change the current text to txt.

tw getString Return the whole text as a result.

tw getSubString start len var
Get the substring starting at position start for len characters, and assign
it to the Tcl variable var. If len is too large, only the first part of the text is
set to var. This method returns either succeeded, truncated, or failed.

tw insert position string
Insert string in the text, starting at location position. Use zero to insert at
the beginning of the text.

tw replace start stop string
Replace the portion of text between start and stop with the new string.

50

Chapter 4: Using Tcl Motif

tw setSelection start stop
Set the current selection to the substring between start and stop.

tw getSelection Return the primary text selection; if no text is selected, return nothing.

tw getSelectionPosition start stop
If something is selected, set the Tcl variables start and stop accordingly
and return true, otherwise return false.

tw clearSelection
Deselect the current selection.

tw remove Remove the currently selected part of text.

tw copy Copy the current selection onto the clipboard.

tw cut Copy the current selection onto the clipboard and remove from the text.

tw paste Replace the current selection by the clipboard contents.

tw setAddMode bool
Set whether or not the text is in append (insert) mode. When in this
mode, text insertion does not modify the current selection.

tw setHighlight start stop mode
Change the highlight appearance of text between start and stop, but not
the selection; mode can be normal, selected, or secondary_selected.

tw findString start stop string dir pos
Search text for a string between the position start and stop. Direction dir
may be either forward or backward. If the string is found, the position
of its first occurrence is set to pos, and the method returns true, otherwise
it returns false.

tw getInsertPosition
Return the position of the insert cursor, starting from zero.

tw setInsertPosition position
Set the cursor insertion point.

tw getLastPosition
Return the position of the last character in the text buffer, in other words,
the length of the text.

tw scroll num Scroll the text widget by num lines. A positive value means to scroll
forward, while a negative value means to scroll backward.

Basic Widgets

51

tw showPosition position
Scroll the text so that position becomes visible.

tw getTopCharacter
Return the position of the first visible character of text in the widget.

tw setTopCharacter position
Scroll the text so that position is the first visible character in the widget.

tw disableRedisplay
The text is not redisplayed.

tw enableRedisplay
Redisplay the text automatically when it changes.

tw getEditable Return true if the text is editable (the user can edit it), or false if not.

tw setEditable bool
Set the edit permission flag of the text widget.

tw setSource ref top ins
Set the text edited or displayed by this widget to the one that is also
edited or displayed by the text widget variable ref. The text is scrolled so
that the top character is first, with the insertion cursor positioned at ins.

Table 4-20 lists the resources for xmText, while Table 4-21 lists the resources for
xmTextInput and xmTextOutput:

Table 4-20 xmText Resources

Resource Name Default Value Type or Legal Value

-autoShowCursorPosition True Boolean

-cursorPosition 0 Integer

-editable True Boolean

-editMode single_line_edit multiple_line_edi
single_line_edit

-marginHeight 5 Integer

-marginWidth 5 Integer

-maxLength maxint Integer

-source new source Text Source

52

Chapter 4: Using Tcl Motif

The xmText widget inherits resources from two abstract classes, xmTextInput and
xmTextOutput. The xmTextField widget uses the resource subset that corresponds to
single-line text (it does not have an -editMode resource). The text source resource might
be used to open multiple windows for editing a single text, as in the example below.

#! /usr/sgitcl/bin/moat
xtAppInitialize
xmPanedWindow .top managed
xmScrolledText .top.a managed -editMode multi_line_edit \
 -rows 3 -columns 49 -value {

-topCharacter 0 Integer

-value "" String

-verifyBell True Boolean

Table 4-21 xmTextInput and xmTextOutput Resources

Resource Name Default Value Type or Legal Value

-pendingDelete True Boolean

-selectionArray not supported

-selectionArrayCount not supported

-selectThreshold 5 Integer

-blinkRate 500ms Integer

-columns computed from -width Integer

-cursorPositionVisible True Boolean

-fontList Inherited Font list

-resizeHeight False Boolean

-resizeWidth False Boolean

-rows computed from -height Integer

-wordWrap False Boolean

Table 4-20 (continued) xmText Resources

Resource Name Default Value Type or Legal Value

Basic Widgets

53

When ten low words oft in one dull line creep,
The reader’s threatened, not in vain, with sleep.
 --Alexander Pope}
xmScrolledText .top.b managed -editMode multi_line_edit \
 -rows 3 -columns 49
.top.b setSource .top.a 0 0
. realizeWidget
. mainLoop

The xmTextInput and xmTextOutput abstract classes are only used to group resources
dedicated to text editing or displaying. Extensive text should be displayed or edited with
the xmScrolledText widget, which automatically provides scroll bars when needed. Text
widgets inherit any resources defined in the Core, Primitive, and xmLabel classes.

Table 4-22 Text Widget Inherited Resources

Resource Inherited From Resource Inherited From

-accelerators (Core) -alignment (Label)

-backgroundPixmap (Core) -background (Core)

-borderColor (Core) -borderWidth (Core)

-bottomShadowColor (Primitive) -bottomShadowPixmap (Primitive)

-fontList (Label) -foreground (Primitive)

-height (Core) -highlightColor (Primitive)

-highlightOnEnter (Primitive) -highlightPixmap (Primitive)

-highlightThickness (Primitive) -labelPixmap (Label)

-labelString (Label) -labelType (Label)

-mappedWhenManaged (Core) -marginBottom (Label)

-marginLeft (Label) -marginRight (Label)

-marginTop (Label) -navigationType (Primitive)

-recomputeSize (Label) -sensitive (Core)

-shadowThickness (Primitive) -stringDirection (Label)

-topShadowColor (Primitive) -topShadowPixmap (Primitive)

54

Chapter 4: Using Tcl Motif

Text Verify Callbacks

These text widgets allow the application to do special processing of entered data. After
text has been typed or pasted in, initial processing by the text widget determines what
the user has entered. This text is then passed to special callback functions, which can
make copies of the text, alter it, or choose not to display it. Simple uses for this are text
formatting widgets, and password entry widgets that read data but neither display it nor
echo “*” for each character typed.

The callback mechanism for this is basically the same as for other callbacks, and similar
sorts of substitutions are allowed. For example, the term currInsert is replaced by the
current insert position. Other substitutions do not produce a value, but rather give the
name of a Tcl variable, allowing the application to alter its value. For example, this
callback substitution turns off the echoing of characters:

.text modifyVerifyCallback { set %doit false }

An alternate style is to call a separate procedure to handle the work. The Tcl variable is
in the context of the calling routine, so the Tcl upvar function is needed:

.text modifyVerifyCallback {no_echo %doit}
proc no_echo {doit} {
 upvar 1 $doit do_insert
 set do_insert false
}

Actually, the Tcl variable here is the global variable _Tm_Text_Doit. Variables beginning
with _Tm_ are reserved for use by the Tm library.

-translations (Core) -traversalOn (Primitive)

-unitType (Primitive) -width (Core)

-x (Core) -y (Core)

Table 4-22 (continued) Text Widget Inherited Resources

Resource Inherited From Resource Inherited From

Basic Widgets

55

The supported callbacks are listed in Table 4-23:

The following callbacks substitutions are defined for the text-specific callbacks:

%doit In a verify callback, the flag variable to determine whether an action
should be executed or not.

%currInsert, %newInsert
In a motionVerifyCallback, the insertion point before and after a motion.

%startPos, %endPos
Define a substring in the widget’s text string.

%ptr, %length Define the string that is to be modified in a modifyVerify callback. For
instance, the following example changes input to uppercase:

proc allcaps {ptr length} {
 upvar 1 $ptr p
 upvar 1 $length l
 if {$l == 0} return
 set upper [string toupper $p]
 set p $upper
}
.text modifyVerifyCallback {allcaps %ptr %length}

In addition, text widgets inherit callbacks from the Primitive class, namely help and
destroy callbacks.

Table 4-23 Text Verify Callbacks

Method Name Why

helpCallback The help key is pressed.

destroyCallback The widget is destroyed.

activateCallback Some event triggered the Activate action.

gainPrimaryCallback Ownership of the primary selection is gained.

losePrimaryCallback Ownership of the primary selection is lost.

losingFocusCallback Before losing input focus.

modifyVerifyCallback Before deletion or insertion.

motionVerifyCallback Before moving the insertion point.

valueChangedCallback Some text was deleted or inserted.

56

Chapter 4: Using Tcl Motif

Buttons

Motif provides several different types of buttons, some of which are shown below.

xmPushButton

This moat script creates a standard push button:

#! /usr/sgitcl/bin/moat
xtAppInitialize
xmMainWindow .main managed
xmPushButton .main.button managed -labelString "Push me"
. realizeWidget
. mainLoop

Figure 4-1 xmPushButton

This is a regular button, displaying a text or pixmap label, surrounded by a beveled
shadow. Clicking the button changes shadows to give the impression that the button has
been pushed. When the button is released, it reverts to its normal appearance. When
focus is gained, for instance by tabbing, the button appears brighter (if it is sensitive).
The default push buttons of a dialog can be specified by setting -showAsDefault to true, in
which case an additional border is drawn using Motif margin resources:

#! /usr/sgitcl/bin/moat
xtAppInitialize
xmMainWindow .main managed
xmPushButton .main.b managed -labelString "Push me" -showAsDefault true
. realizeWidget
. mainLoop

Figure 4-2 xmPushButton as Default

Basic Widgets

57

Table 4-24 lists the resources for xmPushButton.

xmArrowButton

This button contains an arrow, whose direction is given by the -arrowDirection resource.

#! /usr/sgitcl/bin/moat
xtAppInitialize
xmBulletinBoard .top managed -width 110 -height 110
xmArrowButton .top.up managed -x 40 -y 10 -width 30 -height 30
xmArrowButton .top.left managed -x 10 -y 40 \
 -width 30 -height 30 -arrowDirection arrow_left
xmArrowButton .top.right managed -x 70 -y 40 \
 -width 30 -height 30 -arrowDirection arrow_right
xmArrowButton .top.down managed -x 40 -y 70 \
 -width 30 -height 30 -arrowDirection arrow_down
. realizeWidget
. mainLoop

Figure 4-3 xmArrowButton

Table 4-24 xmPushButton Resources

Resource Name Default Value Type or Legal Values

-armColor computed Color

-armPixmap3 none Pixmap

-defaultButtonShadowThickness 0 Dimension

-fillOnArm True Boolean

-multiClick multiclick_discard, multiclick_keep

-showAsDefault 0 Dimension

58

Chapter 4: Using Tcl Motif

Table 4-25 lists the resources for xmArrowButton.

xmToggleButton

This button displays a state in an on/off indicator. Usually, a toggle button consists of a
square or diamond indicator with an associated label. The square or diamond is filled or
empty to indicate whether the button is selected or unselected.

#! /usr/sgitcl/bin/moat
xtAppInitialize
xmMainWindow .main managed
xmRowColumn .main.col managed -orientation vertical
xmToggleButton .main.col.one managed
xmToggleButton .main.col.two managed
xmToggleButton .main.col.three managed
. realizeWidget
. mainLoop

Figure 4-4 xmToggleButton

A set of buttons can be grouped into a manager with the -radioBehavior resource set to
true, ensuring that only one of them can be selected at a given time. Radio buttons are
represented with diamonds instead of squares.

#! /usr/sgitcl/bin/moat
xtAppInitialize

Table 4-25 xmArrowButton Resources

Resource Name Default Value Type or Legal Values

-arrowDirection arrow_up arrow_up
arrow_down
arrow_left
arrow_right

Basic Widgets

59

xmMainWindow .main managed
xmRowColumn .main.col managed -orientation vertical -radioBehavior true
xmToggleButton .main.col.yes managed -set true
xmToggleButton .main.col.no managed
xmToggleButton .main.col.maybe managed
. realizeWidget
. mainLoop

Figure 4-5 xmToggleButton with radioBehavior

See the section “Manager Widgets” on page 71 for more information about manager
options. Table 4-26 lists the resources for xmToggleButton.

Table 4-26 xmToggleButton Resources

Resource Name Default Value Type or Legal Values

-fillOnSelect True Boolean

-indicatorOn True Boolean

-indicatorSize none Dimension

-indicatorType n_of_many n_of_many
one_of_many

-selectColor computed Color

-selectInsensitivePixmap none Pixmap

-selectPixmap none Pixmap

-set False Boolean

-spacing 4 Dimension

-visibleWhenOff computed Boolean

60

Chapter 4: Using Tcl Motif

Text widgets also inherit resources from the Core, Primitive, and Label classes, as shown
in Table 4-27.

Table 4-27 Button Widget Inherited Resources

Resource Inherited From Resource Inherited From

-accelerators (Core) -alignment (Label)

-backgroundPixmap (Core) -background (Core)

-borderColor (Core) -borderWidth (Core)

-bottomShadowColor (Primitive) -bottomShadowPixmap (Primitive)

-fontList (Label) -foreground (Primitive)

-height (Core) -highlightColor (Primitive)

-highlightOnEnter (Primitive) -highlightPixmap (Primitive)

-highlightThickness (Primitive) -labelPixmap (Label)

-labelString (Label) -labelType (Label)

-mappedWhenManaged (Core) -marginBottom (Label)

-marginHeight (Label) -marginLeft (Label)

-marginRight (Label) -marginRight (Label)

-marginTop (Label) -navigationType (Primitive)

-recomputeSize (Label) -sensitive (Core)

-shadowThickness (Primitive) -stringDirection (Label)

-topShadowColor (Primitive) topShadowPixmap (Primitive)

-translations (Core) -traversalOn (Primitive)

-unitType (Primitive) -width (Core)

-x (Core) -y (Core)

Basic Widgets

61

In addition to the usual helpCallback and destroyCallback, button widgets define
additional methods, as listed in Table 4-28.

The toggle button also defines the %set callback substitution, which is replaced by the
Boolean state of the button.

Decorative Widgets

Simple decorative widgets include xmFrame and xmSeparator. The former is simply a
container widget that displays a frame around its child, using in-and-out shadowing or
etching. The later is a primitive widget that looks like a flat or beveled line, used to
separate items in a display. These two widget classes do not accept user input, so they
have no associated actions, callbacks, or translations.

The decoration resources for xmFrame are listed in Table 4-29.

Table 4-28 Button Widget Callbacks

Method name Why

armCallback Button pressed.

disarmCallback Button released, with the pointer still on it.

activateCallback Some event triggers the Activate function.

Table 4-29 xmFrame Resources

Resource Name Default Value Type or Legal Values

-marginWidth 0 Dimension

-marginHeight 0 Dimension

-shadowType dynamic shadow_in
shadow_out
shadow_etched_in
shadow_etched_out

62

Chapter 4: Using Tcl Motif

The decoration resources for xmSeparator are listed in Table 4-30.

Decorative widgets inherit resources from the Core and Primitive classes, as shown in
Table 4-31.

Table 4-30 xmSeparator Resources

Resource Name Default Value Type or Legal Values

-margin 0 Dimension

-orientation horizontal horizontal
vertical

-separatorType shadow_etched_in shadow_etched_in
shadow_etched_out
no_line
single_line
double_line
single_dashed_line
double_dashed_line

Table 4-31 Decorative Widget Inherited Resources

Resource Inherited From Resource Inherited From

-backgroundPixmap (Core) -background (Core)

-borderColor (Core) -borderWidth (Core)

-bottomShadowColor (Primitive) -bottomShadowPixmap (Primitive)

-foreground (Primitive) -height (Core)

-mappedWhenManaged (Core) -shadowThickness (Primitive)

-topShadowColor (Primitive) -topShadowPixmap (Primitive)

-unitType (Primitive) -width (Core)

-x (Core) -y (Core)

Basic Widgets

63

xmList

A list is used to display an ordered set of strings. Mouse or keyboard interactions permit
users to select one or more items.

An xmScrolledList should be used when the number of items may be too large to display
in the allotted space in the interface: the interface is automatically changed to display an
xmScrollBar (see below) to move the visible part of the list. A scrolled list widget w is a
composite widget that has the following children:

w.HorScrollBar w.VertScrollBar w.ClipWindow

The associated names might be used to access them directly, as in the following example:

xmScrolledList .list managed
.list.VertScrollBar setValues -troughColor red

Different selection modes exist:

single_select Only one item may be selected at a time. A click within the list deselects
any previous selection, and selects the highlighted item. Each time a
selection is made, singleSelectionCallback is called.

multiple_select Shift-clicks may be used to make multiple selections. Each time an item
is selected or unselected, multipleSelectionCallback is called.

extended_select
Any single mouse click deselects anything, and selects the current item.
Any shift-click extends the current selection up to the item underneath
the mouse pointer. Each time an item is selected or deselected,
extendedSelectionCallback is called.

browse_select Mouse dragging may be used to select a range of items. Using shift-click
or shift-drag, more than one range may be selected at a given time. For
each newly selected item, browseSelectionCallback is called, once the
mouse button is released. This is the default mode.

In all modes, the defaultActionCallback is called when the user double-clicks an item.
The following methods are provided to manage the selection list L:

L addItem item position
Add the specified item (any Tcl string value) to the existing list, at the
given position. If position is 1 or greater, the new item is placed in that
position; if position is 0, the new item is placed at the end.

64

Chapter 4: Using Tcl Motif

L addItemUnselected item position
Normally, if one item is selected, the second instance is also selected.
This method prevents a newly inserted item from being selected.

L deletePosition position
Delete the item specified by position. If position is 0, delete the last item.

L deleteItem item
Delete the first occurrence of item in the list. A warning occurs if the item
does not exist.

L deleteAllItems
Delete all items in the list.

L selectPosition position notify
Select the item at a given position in the list. If notify is true, the
corresponding callback is invoked.

L selectItem item notify
Select the first specified item in the list. If notify is true, the corresponding
callback should be invoked.

L deselectItem item
Deselect the first specified item in the list. If the item is at multiple
positions in the list, only the first occurrence is deselected, even if it is
not the selected one.

L deselectPosition position
Deselect the item at the given position in the list.

L itemExists item
Reply true if the item is in the list, false if not.

L itemPosition item
Return the list position of the given item, or 0 if item does not exist.

L positionSelected position
Reply true if the position is currently selected, false if not.

L setItem item Scroll the list so that the first occurrence of item is at the top of the
currently displayed part of the list.

L setPosition position
Scroll the list so that the item at the given position is at the top of the
currently displayed part of the list.

Basic Widgets

65

L setBottomItem item
Scroll the list so that the first occurrence of item is at the bottom of the
currently displayed part of the list.

L setBottomPosition position
Scroll the list so that the item at the given position is at the bottom of the
currently displayed part of the list.

Table 4-32 lists specific resources for xmList.

Table 4-32 xmList Resources

Resource Name Default Value Type or Legal Values

-automaticSelection False Boolean

-doubleClickInterval Inherited Integer

-fontList Inherited Font List

-itemCount computed Integer

-items none String array

-listMarginHeight 0 Integer

-listMarginWidth 0 Integer

-listSizePolicy variable constant
resize_if_possible
variable

-listSpacing 0 Integer

-scrollBarDisplayPolicy as_needed as_needed
static

-selectedItemCount 0 Integer

-selectedItems none String array

-selectionPolicy browse_select browse_select
extended_select
multiple_select
single_select

-stringDirection Inherited string_direction_l_to_r
string_direction_r_to_l

66

Chapter 4: Using Tcl Motif

Other resources are derived from the Core, Primitive, and Label classes.

Supported list-specific callbacks are listed in Table 4-33.

The following substitutions are defined for the above callbacks:

%item The currently selected item string

%item_length The string length of the currently selected item

%item_position The current item position, 1 indicating the first one

%selected_items
Valid only in multiple, browse, or extended callbacks; returns a
comma-separated list of all currently-selected items

Be sure to enclose item and selected_items between braces, to avoid parsing errors when
item strings contain spaces.

Text widgets also inherit the standard callbacks from the Primitive class, namely
helpCallback and destroyCallback.

-topItemPosition 1 Integer

-visibleItemCount 1 Integer

Table 4-33 List Widget Callbacks

Method Name Why

defaultActionCallback An item was double-clicked

singleSelectionCallback A single item was selected

multipleSelectionCallback An item was selected while in multiple selection mode

browseSelectionCallback An item was selected while in browse selection mode

extendedSelectionCallback An item was selected while in extended selection mode

Table 4-32 (continued) xmList Resources

Resource Name Default Value Type or Legal Values

Basic Widgets

67

xmScale

A scale widget produces an adjustable slider for adjusting some value between a
minimum and a maximum. This code creates a horizontal slider:

#! /usr/sgitcl/bin/moat
xtAppInitialize
xmMainWindow .main managed
xmScale .main.slide managed -orientation horizontal \
 -maximum 11 -value 11 -showValue True \
 -titleString "Volume"
. realizeWidget
. mainLoop

Figure 4-6 xmScale Horizontal Slider

The xmScale widget class defines the new resources, as shown in Table 4-34.

Table 4-34 xmScale Resources

Resource Name Default Value Type or Legal Values

-decimalPoints 0 Integer

-fontList Inherited Font List

-highlightOnEnter False Boolean

-highlightThickness 2 Dimension

-maximum 100 Integer

-minimum 0 Integer

-orientation vertical horizontal
vertical

68

Chapter 4: Using Tcl Motif

The slider may be moved between the integer -minimum and -maximum. Fractional
values are obtained using the -decimalPoints resource, to display a decimal point. The
slider size may be set by -scaleHeight and -scaleWidth. The resource -showValue toggles
display of text showing the current value, while -scaleMultiple is used for large slider
moves with a <Ctrl>-Arrow key.

Table 4-35 lists callbacks defined for the xmScale widget.

In addition, xmScale inherits the usual helpCallback from the Primitive abstract class.

In these callbacks, %value substitution may be used to retrieve the current scale position.

-processingDirection computed max_on_bottom
max_on_left
max_on_right
max_on_top

-scaleHeight 0 Dimension

-scaleWidth 0 Dimension

-scaleMultiple $(max-min)/10$ Integer

-showValue False Boolean

-titleString "" String

-value 0 Integer

Table 4-35 xmScale Callbacks

Method Name Why

valueChangedCallback The scale value had changed.

dragCallback The slider is being dragged.

Table 4-34 (continued) xmScale Resources

Resource Name Default Value Type or Legal Values

Basic Widgets

69

xmScrollBar

The xmScrollBar widget is made to allow moving the current view of a widget that is too
large to be displayed all at once. Usually, scroll bars are part of an xmScrolledWidget, an
xmScrolledText, or an xmScrolledList widget.

An xmScrollBar may be horizontal or vertical (depending its -orientation resource). An
xmScrollBar is composed of two arrows, a long rectangle called the scroll region, and a
smaller rectangle called the slider. The data is scrolled by clicking either arrow, clicking
inside the scroll region, or by dragging the slider. When the mouse is held down in the
scroll region or in either arrow, the data continues to move at a constant speed.

The following example uses two scrollbars to move a target button:

#! /usr/sgitcl/bin/moat
xtAppInitialize
xmBulletinBoard .top managed
xmScrollBar .top.h managed \
 -orientation horizontal -width 150 \
 -y 160 -minimum 10 -maximum 140
xmScrollBar .top.v managed \
 -orientation vertical -height 150 \
 -x 160 -minimum 10 -maximum 140
xmPushButton .top.target managed -labelString "X"
proc track_it {} {
 .top.h getValues -value x
 .top.v getValues -value y
 .top.target setValues -x [expr 8+$x] -y [expr 8+$y]
}
.top.h dragCallback track_it
.top.v dragCallback track_it
.top.h valueChangedCallback track_it
.top.v valueChangedCallback track_it
track_it
. realizeWidget
. mainLoop

70

Chapter 4: Using Tcl Motif

The xmScrollBar widget class defines the new resources listed in Table 4-36.

The -value resource specifies the current position of the scrollbar slider, between the
minimum and maximum -sliderSize. The slider moves between -minimum and -maximum
by -increment steps (clipped at the ends). Clicking either scrollbar arrow moves the slider
by -pageIncrement. The -sliderSize reflects the portion of the widget currently in view.

Table 4-36 xmScrollBar Resources

Resource Name Default Value Type or Legal Values

-increment 1 Integer

-initialDelay 250 ms Integer

-maximum 100 Integer

-minimum 0 Integer

-orientation vertical horizontal
vertical

-pageIncrement 10 Integer

-processingDirection computed max_on_bottom
max_on_left
max_on_right
max_on_top

-repeatDelay 50 ms Integer

-showArrows True Boolean

-sliderSize computed Integer

-troughColor computed Color

-value 0 Integer

Manager Widgets

71

The -troughColor specifies the scrollbar slider fill color. Constant speed movement can be
parameterized with -repeatDelay and -initialDelay. If -showArrows is set to False, the scroll
bar will not have arrows at either end.

In the callbacks above, the %value substitution returns the current scroll bar position.

Manager Widgets

Manager widgets are used to lay out several widgets together, enabling the construction
of complex interfaces from simple widgets.

Their purpose is to find a suitable geometry that encloses all managed children.
Geometry can be set at creation time, when the user manually sizes the window, or when
widgets dynamically resize themselves.

Normally manager widgets do not interact with events, they just forward them to the
appropriate child. The notable exception is navigation: use of the keyboard or mouse to
change the currently selected child widget.

Table 4-37 xmScrollBar Methods

Method Name Why

decrementCallback Value was decremented.

dragCallback The slider is being dragged.

incrementCallback Value was incremented.

pageDecrementCallback Value was decremented by pageIncrement.

pageIncrementCallback Value was incremented by pageIncrement.

toTopCallback Value was reset to minimum.

toBottomCallback Value was reset to maximum.

valueChangedCallback The value had changed.

72

Chapter 4: Using Tcl Motif

The xmManager Abstract Class

This class is not a subclass of Primitive, but since it has a graphical representation, it
shares some of the Primitive class resources and behavior. The Manager abstract class
defines the common resource set described in Table 4-38 for xmManager.

Table 4-38 xmManager Resources

Resource Name Default Value Type or Legal Values

-bottomShadowColor inherited Color

-bottomShadowPixmap none Pixmap

-foreground computed Color

-highlightColor computed Color

-highlightPixmap none Pixmap

-navigationType tab_group none
tab_group
sticky_tab_group
exclusive_tab_group

-shadowThickness 0 Dimension

-stringDirection inherited string_direction_l_to_r
string_direction_r_to_l

-topShadowColor computed Color

-topShadowPixmap none Pixmap

-traversalOn True Boolean

-unitType
Inherited
pixels

pixels
100th_millimeters
1000th_inches
100th_points
100th_font_units

Manager Widgets

73

The Manager abstract class also defines callbacks for all manager subclasses. These
callbacks are described in Table 4-39.

There is no special substitution associated with these callbacks.

xmBulletinBoard

The xmBulletinBoard widget is the simplest manager. Its children are positioned using
their -x and -y resources. No special management occurs when this widget is resized.
Table 4-40 lists the resources associated with xmBulletinBoard.

Table 4-39 xmManager Methods

Method Name Why

focusCallback The widget receives input focus

helpCallback The usual Help callback

mapCallback The widget is mapped on screen

unmapCallback The widget is unmapped from screen

Table 4-40 xmBulletinBoard Resources

Resource Name Default Value Type or Legal Values

-allowOverlap True Boolean

-autoUnmanage True Boolean

-buttonFontList Inherited Font List

-cancelbutton none Widget

-defaultbutton none Widget

-defaultPosition True Boolean

-dialogStyle computed dialog_system_modal
dialog_primary_application_modal
dialog_application_modal
dialog_full_application_modal
dialog_modless
dialog_work_area

74

Chapter 4: Using Tcl Motif

When -allowOverlap is set to False, any placement of children that would result in an
overlap is rejected. Setting -noResize to True disables any resize of the widget, while
-resizePolicy may be used to control what kind of resize should be allowed.

xmRowColumn

The xmBulletinBoard manager places its children in one or more columns (or rows).
Different packing styles, directions, and size options permit you to create aligned or
unaligned rows (or columns), as in the following examples.

This example uses horizontal orientation, pack_tight packing, and specifies the width and
resize characteristics of the widget:

#! /usr/sgitcl/bin/moat
xtAppInitialize
xmRowColumn .top managed -orientation horizontal \
 -packing pack_tight -width 120 -resizeWidth false
xmPushButton .top.a managed -labelString A

-dialogTitle none String

-labelFontList Inherited Font List

-marginHeight 10 Dimension

-marginWidth 10 Dimension

-noResize False Boolean

-resizePolicy any resize_any
resize_grow
resize_none

-shadowType shadow_out shadow_in
shadow_out
shadow_etched_in
shadow_etched_out

-textFontList Inherited Font List

-textTranslations "" String

Table 4-40 (continued) xmBulletinBoard Resources

Resource Name Default Value Type or Legal Values

Manager Widgets

75

xmPushButton .top.b managed -labelString BBB
xmPushButton .top.c managed -labelString CCCC
xmPushButton .top.d managed -labelString DD
. realizeWidget
. mainLoop

Figure 4-7 xmPushButton and pack_tight

This example uses horizontal orientation, pack_column packing, and explicitly requests
two columns:

#! /usr/sgitcl/bin/moat
xtAppInitialize
xmRowColumn .top managed -orientation horizontal \
 -packing pack_column -numColumns 2
xmPushButton .top.a managed -labelString A
xmPushButton .top.b managed -labelString BBB
xmPushButton .top.c managed -labelString CCCC
xmPushButton .top.d managed -labelString DD
. realizeWidget
. mainLoop

Figure 4-8 xmPushButton and pack_column

This example requests a vertical orientation:

#! /usr/sgitcl/bin/moat
xtAppInitialize

76

Chapter 4: Using Tcl Motif

xmRowColumn .top managed -orientation vertical
xmPushButton .top.a managed -labelString A
xmPushButton .top.b managed -labelString BBB
xmPushButton .top.c managed -labelString CCCC
xmPushButton .top.d managed -labelString DD
. realizeWidget
. mainLoop

Figure 4-9 xmPushButton with Vertical Orientation

Table 4-41 lists the resources associated with xmRowColumn.

Table 4-41 xmRowColumn Resources

Resource Name Default Value Type or Legal Values

-adjustLast True Boolean

-adjustMargin True Boolean

-entryAlignment alignment_center alignment_center
alignment_beginning
alignment_end

-entryBorder 0 Integer

-entryClass dynamic Widget Class

-isAligned True Boolean

-isHomogeneous True Boolean

-labelString "" String

Manager Widgets

77

-marginHeight Inherited Dimension

-marginWidth Inherited Dimension

-menuAccelerator ? String

-menuHelpWidget none Widget

-menuHistory none Widget

-menuPost "" String

-mnemonic none Key

-mnemonicCharSet dynamic String

-numColumns 1 Integer

-orientation computed horizontal
vertical

-packing computed pack_column
pack_none
pack_tight

-popupEnabled True Boolean

-radioAlwaysOne True Boolean

-radioBehavior False Boolean

-resizeHeight True Boolean

-resizeWidth True Boolean

-rowColumnType work_area menu_bar
menu_option
menu_popup
menu_pulldown
work_area

-spacing 3 or 0 Dimension

-subMenuId none Widget

-whichButton computed Integer

Table 4-41 (continued) xmRowColumn Resources

Resource Name Default Value Type or Legal Values

78

Chapter 4: Using Tcl Motif

xmForm

A form is a manager widget created to lay out widgets using neighborhood relationships,
such as “this widget should be positioned to the left of this one.” This is quite general,
and allows you to define widget combinations that can resize gracefully. Figure 4-10
shows a combination of xmLabel and xmForm widgets that adjust to fit the data.

Figure 4-10 xmLabel with xmForm

These constraints are defined in terms of attachment of each side of child widgets to the
form border, to another widget, to a relative position in the form, or to the initial position
of the child. When resizing occurs, children are adjusted according to these constraints.

Table 4-42 lists the resources associated with xmForm.

Table 4-42 xmForm Resources

Resource Name Default Value Type or Legal Values

-fractionBase 100 Integer

-horizontalSpacing 0 Dimension

-rubberPositioning False Boolean

-verticalSpacing 0 Dimension

Manager Widgets

79

xmPanedWindow

A paned window is a composite widget used to lay out several children, each in its own
pane. Pane separators always contain a sash (see Figure 4-11) to allow users to change the
space alloted for each widget.

#! /usr/sgitcl/bin/moat
xtAppInitialize
xmPanedWindow .top managed
xmScrolledText .top.txt managed \
 -rows 3 -editMode multi_line_edit -value \
“This paned window has three parts:
xmScrolledText, xmScrolledList, and
xmToggleButtons inside xmRowColumn.\n\n\window{paned_window}\n”
xmScrolledList .top.list managed \
 -width 568 \
 -items {Windows, Widgets, Gadgets, Buttons} \
 -itemCount 4
xmFrame .top.f managed
xmRowColumn .top.f.rc managed \
 -orientation horizontal \
 -radioBehavior true
xmToggleButton .top.f.rc.1 managed
xmToggleButton .top.f.rc.2 managed
xmToggleButton .top.f.rc.3 managed
. realizeWidget
. mainLoop

-sideAttachment attach_none attach_form
attach_none
attach_opposite_form
attach_opposite_widget
attach_position
attach_self
attach_widget

-sideOffset 0 Integer

-sidePosition 0 Integer

-sideWidget none Widget

Table 4-42 (continued) xmForm Resources

Resource Name Default Value Type or Legal Values

80

Chapter 4: Using Tcl Motif

.

Figure 4-11 xmPanedWindow With Sashes

Table 4-43 lists the resources associated with xmPanedWindow.

The -refigureMode resource indicates whether or not child widgets should be reset to their
appropriate positions when the paned window is resized.

Table 4-43 xmPanedWindow Resources

Resource Name Default Value Type or Legal Values

-marginHeight 3 Dimension

-marginWidth 3 Dimension

-refigureMode True Boolean

-sashHeight 10 Dimension

-sashIndent -10 Dimension

-sashShadowThickness dynamic Dimension

-sashWidth 10 Dimension

-separatorOn True Boolean

-spacing 8 Dimension

Drag and Drop

81

Table 4-44 lists the resources for xmPanedWindow that specify pane constraint behavior.

The -skipAdjust constraint resource controls whether or not the paned window should
automatically resize this pane.

Drag and Drop

A drag and drop facility was introduced into Motif 1.2. On the drop side, a widget must
first register itself as a drop site, so that it can handle any attempts to drop something on
it. Registration is done by means of the dropSiteRegister widget method. The registration
must include a Tcl procedure to be executed whenever a drop is attempted, specified
using the -dropProc resource.

Since drag and drop involves two different applications attempting to communicate, a
protocol is needed so that applications can share a common language. Consequently,
registration must specify what types of protocol are used, and how many there are. This
is done using X atoms. The major X atoms are COMPOUND_TEXT, TEXT, and STRING.
This example shows drop site registration:

.l dropSiteRegister \
 -dropProc {startDrop %dragContext} \
 -numImportTargets 1 \
 -importTargets COMPOUND_TEXT

This allows widget .l to be used as a drop site, accepting COMPOUND_TEXT only.
Multiple types are allowed, using the Motif list structure of comma-separated elements
as in “COMPOUND_TEXT, TEXT, STRING,” for example.

Table 4-44 xmPanedWindow Constraint Resources

Resource Name Default Value Type or Legal Values

-allowResize True Boolean

-paneMaximum 1000 Dimension

-paneMimimum 1 Dimension

-skipAdjust False Boolean

82

Chapter 4: Using Tcl Motif

When a drop occurs, the procedure startDrop is called, with one substituted parameter:
dragContext, which is a widget created by Motif to handle the drag overhead. You must
include this parameter, or the next stage will fail.

When a drag occurs, Motif creates a dragContext widget. A drag is started by holding
down the left moust button in a drag source. The dragContext widget contains
information about the drag source, which is matched up against the drop destination.

When the drop is triggered by releasing the left mouse button, Tcl code registered as
dropProc is executed. This procedure takes the dragContext widget as a parameter.

The dropProc code may try to determine if the drop should proceed, but usually it just
acts as a channel for the actual information transfer. The dragProc does not actually
transfer the information, it just determines whether it is possible, and if so, what
protocols to employ.

The drop recipient may decide that it wants something encoded as TEXT, followed by
COMPOUND_TEXT. It signals what it wants by specifying a Tcl list of dropTransfer
pairs. The list pairs consist of the protocol (as an X atom name) and the recipient widget.
Why the recipient widget? Because when a drop takes place, the dragContext widget
actually deals with it, and is about to hand the transfer over to a transferWidget. This is
essentially a triple indirection.

This is an example of a dragProc:

proc startDrop dragContext {
 $dragContext dropTransferStart \
 -dropTransfers {{COMPOUND_TEXT .l}} \
 -numDropTransfers 1 \
 -transferProc {doTransfer %closure {%value}}
}

The dragContext widget uses the command dropTransferStart to signal the beginning of
information transfer. (It could also signal termination with no information transfer).

The dragContext widget accepts one chunk of information in COMPOUND_TEXT
format, and passes this on to the .l widget. The information transfer is actually carried on
by a Tcl procedure in the transferProc resource.

The only formats currently accepted (because they are hard-coded into Tcl Motif) are
COMPOUND_TEXT, TEXT, and STRING.

Send Primitive

83

The transferProc resource is a function that is called when the drop recipient actually gets
the information dropped on it. This function takes at least two parameters: %value is
substituted for the actual information dropped on it, and %closure is the second element
in the dropTransfer list that should be the widget where the drop is happening. (Tcl Motif
should be able to determine this, but unfortunately does not.) The dropped-on widget
takes suitable action.

This function resets the label to the text dropped on it:

proc doTransfer {destination value} {
 $destination setValues -labelString $value
}

Here, destination is substituted with %closure and value with %value.

Send Primitive

Tk contains a primitive called send. In Tk, each interpreter has a name, and you can send
Tcl commands from one interpreter to another. When an interpreter receives a sent
command it executes the command, and then returns any result back to the original
interpreter. Tm also contains this mechanism, so that applications can send commands
to other Motif and Tk programs, and receive commands from both Tm and Tk programs.

Once a Tcl Motif application succeeds in registering its name at XtAppInitialize time, it
can send commands to another Motif or Tm application. This example instructs interp2
to display a message:

send interp2 {puts stdout "hello there"}

More Widgets

This section presents some useful composite widgets.

xmCommand

A command widget is composed of a history area (an xmScrolledList), a label to display
the prompt, and a text field to edit the current command. The command widget is a
subclass of xmSelectionBox. You may add an extra child, called the work area.

84

Chapter 4: Using Tcl Motif

The command widget recognizes several new methods:

cw appendValue command
Append to the string already in the text field. The string is truncated
before the first newline encountered.

cw error error_message
Temporarily display the error_message at the bottom of the history area.
It automatically disappears when the user enters another command.

cw setValue command
Replace the string in the text field by command. The old command is not
entered in the history.

Table 4-45 lists the resources associated with xmCommand.

Other resources are inherited xmSelectionBox and its ancestors.

Table 4-46 lists the callbacks associated with xmCommand.

Table 4-45 xmCommand Resources

Resource Name Default Value Type or Legal Values

-command "" String

-historyItems "" String Table

-historyItemCount 0 Integer

-historyMaxItems 100 Integer

-historyVisibleItemCount 8 Integer

-promptString ">" String

Table 4-46 xmCommand Callbacks

Method Name Why

commandChangedCallback The current command changed (the user typed something).

commandEnteredCallback The command was entered before the <Enter> key.

More Widgets

85

Both of these callbacks support the %value and %length substitution, which are replaced
by the string (or string length) that fired the callback.

xmDrawingArea and xmDrawnButton

Tm has limited support for the Xlib drawable area or buttons—you can draw only strings
on them. This is the only currently defined drawing method for manipulating the
xmDrawingArea and xmDrawnButton widgets:

dw drawImageString gc x y string
Use the given graphical context gc to draw the text string starting at
position x,y. The 0,0 coordinate is at the upper left of the widget.

The following example produces a familiar “Hello world” widget. It is necessary to use
an exposeCallback to get the message redisplayed when needed.

#! /usr/sgitcl/bin/moat
xtAppInitialize
xmDrawingArea .top managed -height 30 -width 150
.top exposeCallback {
 set gc [.top getGC -foreground black]
 .top drawImageString $gc 10 20 "Hello world"
}
. realizeWidget
. mainLoop

Figure 4-12 xmDrawingArea

Table 4-47 lists the resources associated with xmDrawingArea.

Table 4-47 xmDrawingArea Resources

Resource Name Default Value Type or Legal Values

-marginHeight 10 Dimension

86

Chapter 4: Using Tcl Motif

Table 4-48 lists the resources associated with xmDrawnButton.

Table 4-49 lists the callbacks associated with xmDrawingArea and xmDrawnButton.

-marginWidth 10 Dimension

-resizePolicy resize_any resize_any
resize_grow
resize_none

Table 4-48 xmDrawnButton Resources

Resource Name Default Value Type or Legal Values

-multiClick Inherited from
display

multiclick_discard
multiclick_keep

-pushButtonEnabled False Boolean

-shadowType shadow_out shadow_in
shadow_out
shadow_etched_in
shadow_etched_out

Table 4-49 Drawing Widget Callbacks

Method Name Why

exposeCallback The area/button should be redrawn.

inputCallback A keyboard or mouse event arrived for the area.

resizeCallback The area/button is resized.

activateCallback The button was activated.

armCallback The button is squashed.

disarmCallback The button is released.

Table 4-47 (continued) xmDrawingArea Resources

Resource Name Default Value Type or Legal Values

More Widgets

87

xmMainWindow

This composite widget is used for the application’s main window. As you add children
to it (xmMenuBar, xmList, xmMessageBox, a work area, and so forth) it manages them,
as you could do manually with xmForm.

The management of the work area is not immediate: the main window must know which
of its children is the work area before you can manage that widget. The following
example produces a prototype interface for a standard application:

#! /usr/sgitcl/bin/moat
xtAppInitialize
xmMainWindow .top -showSeparator True \
 -commandWindowLocation command_below_workspace
xmMenuBar .top.bar managed
xmCascadeButton .top.bar.File managed
xmCascadeButton .top.bar.Help managed
xmDrawingArea .top.work \
 -width 320 -height 240 \
 -background black
.top setValues -workWindow .top.work
.top.work manageChild
xmCommand .top.com managed \
 -historyVisibleItemCount 0 \
 -textFontList -*-courier-medium-r-*--12-*-*-*-*-*-*
.top.com commandEnteredCallback {%value}
.top setValues -width 600 -height 500
.top manageChild
. realizeWidget
. mainLoop

The xmMainWindow widget defines these resources, renaming resources of the parents,
as shown in Table 4-50.

Table 4-50 xmMainWindow Resources

Resource Name Default Value Type or Legal Values

-commandWindow none Widget

-commandWindowLocation above command_above_workspace
command_below_workspace

-mainWindowMarginHeight 0 Dimension

88

Chapter 4: Using Tcl Motif

Table 4-51 lists the callbacks associated with xmMainWindow.

Boxes

Boxes are complex widgets with a work area and a line of buttons. They are designed to
handle common layout of several common widgets. Boxes might be used as is, or as
building blocks for more complex interfaces. They are also often used inside dialogs
(standalone windows); see the section “Dialogs” on page 94 for more information.

xmMessageBox

Message boxes are used to display simple messages. The xmMessageBox widget can also
display a pixmap symbol to indicate warnings or error conditions. This is done by setting
the -dialogType resource, or by specifying a pixmap with -symbolPixmap.

-mainWindowMarginWidth 0 Dimension

-menuBar none Widget

-messageWindow none Widget

-showSeparator False Boolean

Table 4-51 xmMainWindow Callbacks

Method Name Why

commandChangedCallback You typed some new text, recalled a history item, etc.

commandEnteredCallback You typed <Enter>, double-clicked the mouse, etc.

focusCallback The window gained input focus.

mapCallback The window was mapped on screen.

unmapCallback The window was unmapped.

Table 4-50 (continued) xmMainWindow Resources

Resource Name Default Value Type or Legal Values

Boxes

89

This example shows the use of an xmMessageBox with custom pixmap face, which is
taken from an external file:

#! /usr/sgitcl/bin/moat
xtAppInitialize
xmMessageBox .top managed \
 -messageString {Hello world!} \
 -symbolPixmap /usr/share/src/sgitcl/face
. realizeWidget
. mainLoop

Figure 4-13 xmMessageBox With Pixmap

A message box is a composite widget whose component children might be managed or
unmanaged. Child widgets can be included or eliminated using the Tcl Motif commands
manageChild and unmanageChild applied on the automatically-derived child widgets.
With a message box named mw, these are the standard child widgets:

 mw.Cancel mw.Help mw.Message
 mw.OK mw.Separator mw.Symbol

This example is like the xmMessageBox above, but without the Cancel and Help buttons
and the separator line:

#! /usr/sgitcl/bin/moat
xtAppInitialize
xmMessageBox .mb managed -messageString {Hello world!} \
 -symbolPixmap /usr/share/src/sgitcl/face
foreach child {Cancel Help Separator} {
 .mb.$child unmanageChild
}
. realizeWidget
. mainLoop

90

Chapter 4: Using Tcl Motif

Table 4-52 lists the resources associated with xmMessageBox.

Table 4-53 lists the callbacks associated with xmMessageBox.

Table 4-52 xmMessageBox Resources

Resource Name Default Value Type or Legal Values

-cancelLabelString "Cancel" String

-defaultButtonType dialog_ok_button dialog_cancel_button
dialog_help_button
dialog_ok_button

-dialogType dialog_message dialog_error
dialog_information
dialog_message
dialog_question
dialog_warning
dialog_working

-helpLabelString "Help" String

-messageAlignment alignment_beginning alignment_center
alignment_beginning
alignment_end

-messageString "" String

-minimizeButtons False Boolean

-okLabelString "OK" String

-symbolPixmap depends on -dialogType Pixmap

Table 4-53 xmMessageBox Callbacks

Method Name Why

cancelCallback The cancel button was activated.

helpCallback The help button was activated, or a Help action arose.

okCallback The OK button was activated.

focusCallback The window gained input focus.

Boxes

91

Furthermore, xmMessageBox also inherits destroyCallback from the Core class.

xmSelectionBox

A selection box is a composite widget designed to ease creation of interfaces that present
the user with a list of items from which to choose. A selection box has a number of
component children, which the application can manage or unmanage. This is often done
to add or remove elements from a dialog. Managing and unmanaging are the only two
operations you should perform on elements of a composite selection box widget.

With a selection box named sb, these are the automatically-derived child widgets:

 sb.Apply sb.OK sb.Cancel
 sb.Selection sb.Help sb.Separator
 sb.ItemsList sb.Text sb.Items

Table 4-54 lists the callbacks associated with xmSelectionBox.

These callbacks support the %value and %length substitution, which are replaced by the
string (or string length) that fired the callback. The selection box widget also inherits all
the callbacks defined in xmList and xmText.

mapCallback The window was mapped on screen.

unmapCallback The window was unmapped.

Table 4-54 xmSelectionBox Callbacks

Method Name Why

applyCallback The Apply button is released.

cancelCallback The Cancel button is released.

okCallback The OK button is released.

noMatchCallback Nothing matches the selected expression.

Table 4-53 (continued) xmMessageBox Callbacks

Method Name Why

92

Chapter 4: Using Tcl Motif

xmFileSelectionBox

A file selection box is designed to let the user interactively specify a pathname and a file.
A filter may be used to display only certain files, based on a regular expression matching
those filenames. This surprisingly simple code creates a file selection box:

#! /usr/sgitcl/bin/moat
xtAppInitialize
xmFileSelectionBox .top managed
. realizeWidget
. mainLoop

With a file selection box named sb, these are the automatically-derived child widgets:

 sb.Apply sb.FilterLabel sb.Items sb.Text
 sb.Cancel sb.FilterText sb.ItemsList
 sb.DirList sb.Help sb.Selection
 sb.Dir sb.OK sb.Separator

The callback substitutions supported for xmFileSelectionBox are

 %value %value_length %mask %mask_length
 %dir %dir_length %pattern %pattern_length

Menus

In a graphical user interface, menus are the most common method for users to issue
commands in an application. The way you program Motif is to establish separate
widgets for all the pieces of a menu, such as:

menu bar This is used to group several menu buttons together, usually at the top
of the main window, by default horizontally.

menu buttons This is a special type of xmPushButton that automatically brings up a
pulldown menu. When this widget is created as a child of another
popup menu, it forms a cascading submenu, with small arrows added
to the right of the original pulldown menu.

pulldown menu
This a special type of xmRowColumn widget intended to hold several
buttons, and perhaps separators, vertically.

Menus

93

xmMenuBar

A menu bar is a permanently-displayed horizontal pulldown menu that can contain
menu buttons and cascade buttons. It is used to display the buttons that trigger the
pulldown menus of an application, usually at the top of the xmMainWindow.

xmPushButton

See the section “xmPushButton” on page 56 for information about this widget.

xmPulldownMenu

A pulldown menu is a special kind of vertical xmRowColumn. It is managed only when
it should be displayed. Pulldown or cascading menus are managed when the user clicks
on the top-level menu button. Popup menus are managed by a more general event,
typically through a defined translation of the main window.

Menu items are implemented as child widgets, and include xmLabel, xmPushButton,
xmSeparator, and xmCascadeButton. The order of definition controls menu item order.
Table 4-55 lists the callbacks associated with xmPulldownMenu.

xmCascadeButton

The cascade button is a special subclass of the push button that forces management of a
pulldown menu. Table 4-56 lists the resource associated with xmCascadeButton.

Table 4-55 xmPulldownMenu Callbacks

Method Name Why

popupCallback The menu is managed and mapped.

popdownCallback The menu is unmapped.

Table 4-56 xmCascadeButton Resource

Resource Name Default Value Type or Legal Values

-windowId none Widget

94

Chapter 4: Using Tcl Motif

Exotic Menus

Here are some examples of unusual types of menus:

• a left-side vertical menu bar that is permanently managed

• a pulldown menu in a dialog that starts being displayed at the current setting

• a menu that displays pixmap icons for choices

Dialogs

Dialog boxes are child widgets that appear in their own window when managed. They
are usually modeless: interactions continue with other visible widgets while the dialog
is active.

Tcl Motif does support modal style, which forces the user to interact with the dialog.
Select modal style by setting the dialogStyle resource to dialog_full_application_modal.
This style stops when the dialog disappears, typically after the user clicks a button.

Simple Message Dialogs

The simplest dialogs are message boxes. Tm defines five message dialogs with an icon,
one without an icon, plus a simple prompt dialog. Table 4-57 lists the simple dialogs:

Table 4-57 Informational Dialog Boxes

Widget Name Icon or Use

xmErrorDialog Error (circle-backslash) icon

xmInformationDialog Information (i) icon

xmQuestionDialog Question (?) icon

xmWarningDialog Warning (!) icon

xmWorkingDialog Working (hourglass) icon

xmMessageDialog Message box without icon

xmPromptDialog Simple prompt selection box

Dialogs

95

This example creates a menu that allows you to bring up each of the simple message
dialogs listed above:

#! /usr/sgitcl/bin/moat
xtAppInitialize
xmMainWindow .top managed
xmMenuBar .top.bar managed
xmCascadeButton .top.bar.File managed
xmCascadeButton .top.bar.Dialog managed
xmPulldownMenu .FileMenu
xmPulldownMenu .DialogMenu
xmLabel .top.msg managed -labelString {\n
 To see different types of dialog boxes, \n
 choose items from the Dialog menu. \n
}
.top.bar.File setValues -subMenuId .FileMenu
xmPushButton .FileMenu.Quit managed
.FileMenu.Quit activateCallback {exit 0}
.top.bar.Dialog setValues -subMenuId .DialogMenu
foreach b {Error Information Question Warning Working Message Prompt} {
 xmPushButton .DialogMenu.$b managed
 xm${b}Dialog .$b
 .$b.Cancel unmanageChild
 .$b.Help unmanageChild
 .$b.OK activateCallback {.$b unmanageChild}
}
.DialogMenu.Error activateCallback {popup Error}
.DialogMenu.Information activateCallback {popup Information}
.DialogMenu.Question activateCallback {popup Question}
.DialogMenu.Warning activateCallback {popup Warning}
.DialogMenu.Working activateCallback {popup Working}
.DialogMenu.Message activateCallback {popup Message}
.DialogMenu.Prompt activateCallback {popup Prompt}

callback procedure
proc popup {type} {
 .$type setValues -messageString “This is an xm${type}Dialog”
 .$type manageChild
}

. realizeWidget

. mainLoop

96

Chapter 4: Using Tcl Motif

General Manager Dialogs

The more general dialogs use two multipurpose managers inside. Tcl Motif defines the
xmFormDialog and xmBulletinBoardDialog widgets to create them.

xmSelectionDialog and xmFileSelectionDialog

Use the xmSelectionDialog widget to select an item from an arbitrary list. See the section
“xmSelectionBox” on page 91 for more information.

Use the xmFileSelectionDialog widget to select a directory and a filename. See the section
“xmFileSelectionBox” on page 92 for more information.

97

Appendix A

A. Extending Tcl

For information on writing C programs and binding them with Tcl, see the third part of
the book by John Ousterhout, An Introduction to Tcl and Tk. (See “Additional Reading” on
page xiv for bibliographic information.)

Installing Header Files

In order to extend Tcl by writing your own C routines, you must install the sgitcl_dev
option in addition to the sgitcl.eoe product. The sgitcl.dev product image includes C and
C++ header files for program development. The <tcl.h> include file is the most important
of the many C include files.

C++ Classes and Tcl

The <tcl++.h> include file defines a set of C++ classes that can be used to access a Tcl
interpreter.

A C++ class may be instantiated in one of two ways. In one method, an interpreter is
created and owned by the object. When the object is deleted, the interpreter is deleted. In
the other method, the interpreter is passed to the constructor and is referenced by the
object, but not owned by it. When the object is deleted, the interpreter is not deleted.

Finding Existing Extensions

Places on the Internet where you can find archives of Tcl extensions and releases, or
pointers to information about Tcl, are listed below (as Web sites in URL format):

ftp://ftp.aud.alcatel.com/tcl

http://www.sunlabs.com/research/tcl

http://www.sco.com/Technology/tcl/Tcl.html

98

Appendix A: Extending Tcl

Creating a Shared Library

In order to make C program procedures available as Tcl procedures, you need to build
and link them as a dynamic shared object for Tcl to invoke with the dlopen() library call.
See the dlopen(3) and DSO(5) reference pages for details.

Existing Tcl Extension Packages

Here are the steps to follow for porting an existing Tcl extension package:

1. Build the .so file using the -shared option to the compiler or loader. Make sure that
the build line references all libraries needed by the extension library. For example,
Tk requires -lX11 -lc -lm as libraries. It is a good idea to add the -no_unresolved flag
to ensure that there are no unresolvable symbols.

Many Tcl packages come with a Makefile that builds a library archive (.a) from which
ld can produce a shared object. If not, you need to identify what object files need to
be included in the build. For extensions that follow normal conventions, this
usually means everything except the file containing the Tcl_AppInit routine, since
your library will be initialized by a Tcl command.

2. Install the .so file in /usr/sgitcl/lib. Inside sgitcl, call the dlopen procedure:

sgitcl>dlopen libname.so init init-routine

In this example, libname is the library name (for example, libdb.so), and init-routine is
the initialization routine called by Tcl_AppInit (for example, Db_Init).

The dlopen procedure prints out the return value of the initialization routine, which may
be an empty string. At this point the library should be loaded and initialized, and all the
new extensions should be available.

If dlopen returns the “unable to open library” message, make sure you have placed the
.so file in /usr/sgitcl/lib. If so, there are probably unresolvable symbols in your library;
relink the library specifying -no_unresolved to check if there are unresolvable symbols.

If dlopen returns the “no such routine init-routine” message, it indicates that the
initialization routine you specified is not defined in the library. Make sure the routine
was included in the object list. Some packages fold this routine into the same file as
Tcl_AppInit. If this is the case you will need to edit this file to remove Tcl_AppInit
(comment it out or use #ifdef’s). Then add this file to the list of linked files and rebuild
the library.

Creating a Shared Library

99

Developing a New Library

After you write code for new procedures as described in Ousterhout’s Tcl book, you then
need to write an initialization routine that adds the new commands to the interpreter
using Tcl_CreateCommand. By convention this routine is named module-name_Init
where module-name is a short acronym for your extension library, such as Tk, TclX, or Tm.
This routine takes a Tcl_Interp pointer as its only argument.

Build and install your new shared object as described in the section above. To test your
library, run this command:

sgitcl>dlopen libname.so init init-routine

This should print the string returned by your initialization routine. Your new commands
should be added to the interpreter and you can begin testing them.

Other Features of dlopen

As a side effect of dlopen, a new command is automatically added to the interpreter—
the name of the library. For example, the tclMotif library is opened by the command:

sgitcl>dlopen libtclMotif.so

This adds a new command libtclMotif.so, the sole function of which is to permit the
calling of routines defined in the library, as shown in the example below.

sgitcl>libtclMotif.so call procedure args...

There are two types of routines that may be called: init routines and call routines.

The init routine has the following prototype:

int Init_Routine(Tcl_Interp* interp)

The interp argument is set to the interpreter pointer created by Tcl. To reference an init
routine, type:

sgitcl>library-name init Init-routine

The call routine has the following prototype:

int Call_Routine(Tcl_Interp* interp, int argc, char* argv[])

100

Appendix A: Extending Tcl

The interp argument is the Tcl interpreter; argc is a count of arguments and argv is an array
of argument strings with argc elements in the array. To call such a routine, type:

sgitcl>library-name call routine-name args...

Tcl will parse the args in the same way that command arguments are parsed, and pass
them to the routine in argc and argv.

Both routine types should return TCL_OK if successful or TCL_ERROR if something
went wrong. Additionally, your procedure should set interp->result to a descriptive error
string. The return value of an init or call routine will be the value that your procedure
places in interp->result, or the empty string if you fail to set a return value.

Note that dlopen allows an optional init or call to follow the library name:

sgitcl>dlopen libname.so init init-routine

101

Glossary

actions

In Motif terminology, any reaction of the interface to a user input is called an action.

callback

In programming for the X Window System, a callback is a procedure that gets called
when some event, such as button click, takes place. Essentially the use interface is calling
the application back for service.

embeddable

A computer language that can function as an embedded interpreter. For example, the Tcl
language is embedded as the tool control language of applications written in Tk or Tm.
Tcl could also be embedded in applications running on Microsoft Windows™ or other
systems. To be embeddable, a language must be relatively simple (unlike C++) and stand
by itself (unlike the Bourne shell, which requires commands).

embedded interpreter

A relatively small language interpreter embedded in another system. One example is the
Lisp interpreter embedded in emacs.

embedded system

Hardware and software that forms a component of some larger system and is expected
to function without human intervention. Typically an embedded system consists of a
single-board microcomputer with software in ROM, which starts running a dedicated
application as soon as power is turned on and does not stop until power is turned off.

events

In Motif terminology, any user input having a symbolic name is called an event.

GUI

Acronym for graphical user interface: a software system that relies on tactile metaphors
such as the push-button and picture icon to encapsulate commands issued by a person
to the computer.

102

Glossary

keysym

In X Window System terminology, a keysym is an abstract label for a keyboard symbol,
often matching the engraving on the key.

sash

In Motif terminology, a sash is the small handle on a pane separator that allows the user
to change the space alloted for each widget. Enhanced Motif permits sashes to operate in
both directions, but standard Motif works only for horizontal pane separators.

widgets

In Xt and Motif, visual objects on the screen that can be manupulated with the mouse and
keyboard.

103

callback substitution, 31
classes of Motif widgets, 21
command separators, 4
command substitution, 5
command terminators, 4
comments in Tcl, 6
comp.lang.tcl, xiv
content overview, xiii
Core class in Tcl Motif, 36
creating a widget class, 19
C shell and Tcl, 3

D

data types in Tcl, 3
dimensions in Tcl Motif, 28
dlopen call, 98
dollar signs in Tcl, 5
double quotes in Tcl, 4
drag and drop in Tcl Motif, 81
dynamic shared object, 98

E

enhanced Motif style, 18
evaluation of Tcl commands, 4
events and actions in Tcl Motif, 34
expectk, expect with Tk widgets, 9

A

actions and callbacks for widgets, 21
actions and events in Tcl Motif, 34
add a timer to Tcl Motif, 25
add input handler to Tcl Motif, 24
application resources in Tcl Motif, 24
ApplicationShell resources, 45
audience type, xiii
automatic execution of Tcl scripts, 16

B

backslash substitution in Tcl, 5
bibliographic information, xiv
Boolean types in Tcl Motif, 28
Bourne shell and Tcl, 3
braces in Tcl, 4
brackets in Tcl, 5
buffed Motif style, 18

C

C++ classes and Tcl, 97
callActionProc, 35
call and init for dlopen, 99
callbacks for text widgets, 54
callbacks in Tcl Motif, 30

Index

104

Index

expect remote control program, 1, 8
extended Tcl, TclX, 1, 7
extension packages for Tcl, 3
extensions for Tcl, finding, 97

F

font list in Tcl Motif, 29
font resources in Tcl Motif, 29

G

GLXAux library, 10
glxwin procedure, 10
group YP map, 12

H

header files in sgitcl.dev, 97
hosts YP map, 12

I

incrTcl, object-oriented Tcl, 9
init and call for dlopen, 99
installing SGITCL option, 2
integer types in Tcl Motif, 28
intended audience, xiii
Internet resources, xiv
itcl library for incrTcl, 10

M

mainLoop, 17, 24

methods for Motif widgets, 20
moat Tcl Motif shell, 1, 8, 9, 16

N

networks YP map, 12
NIS maps and sautil, 12

O

object-oriented incrTcl, 9
objectserver support, 11
ORACLE database access, oratcl, 10
overview of contents, xiii

P

passwd YP map, 12
pixmap resources in Tcl Motif, 30
Primitive class in Tcl Motif, 39
procedures in Tcl, 4
protocols YP map, 12

R

radio buttons in Tcl Motif, 58
reading more about Tcl, xiv
realizeWidget, 17
recursive substitutions in Tcl, 6
releases of Tcl, finding, 97
resource inheritance in Tcl Motif, 26
resources for Motif widgets, 20
root widget (dot) in Tcl Motif, 24
rstat library interface to rstatd, 11

105

Index

S

sautil library for YP maps, 12
semantic rules of Tcl, 4
send primitive in Tcl Motif, 83
services YP map, 12
sgiHelp library, 13
SGITCL and Tcl, 1
sgitcl command, 4
sgitcl.dev product image, 2, 97
sgitcl.eoe product image, 2
SGm custom widgets, 14
shared library, 98
Shell classes in Tcl Motif, 42
sliders in Tcl Motif, 67
SNMP support in SGITCL, 13
string types in Tcl Motif, 28
Sybase database support, sybtcl, 10
syntax features of Tcl, 3, 4

T

Tcl_AppInit routine, 98
Tcl_CreateCommand routine, 99
Tcl and SGITCL, 1
Tcl Motif toolkit, Tm, 1, 8, 15
tclObjSrv library, 11
tclsh command, 4
TclX, extended Tcl, 1, 7
Tk GUI toolkit, 1, 8
Tm, Tcl Motif toolkit, 1, 8, 15
TopLevelShell resources, 44
TransientShell resources, 45
translations for Motif widgets, 21
typographic conventions, xiv

U

Usenet newsgroup, xiv

V

variable substitution, 5
VendorShell resources, 44
versions of Tcl components, 2
ViewKit help support, 13

W

Web browser help, 13
Web pages about Tcl, xiv, 97
widget hierarchy and naming, 18
widget path names, 19
wishx windowing shell, 1, 8, 9
WMShell resources, 42
word boundaries after substitution, 6
word separators, 4
wwwHelp library, 13

X

X defaults mechanism, 27
xmArrowButton widget, 57
xmBulletinBoard widget, 73
xmCascadeButton widget, 93
xmCommand widget, 83
xmDrawingArea widget, 85
xmDrawnButton widget, 85
xmErrorDialog widget, 94
xmFileSelectionBox widget, 92
xmForm widget, 78

106

Index

xmFrame widget, 61
xmInformationDialog widget, 94
xmLabel widget, 46
xmList widget, 63
xmMainWindow widget, 87
xmManager abstract class, 72
xmMenuBar widget, 93
xmMessageBox widget, 88
xmMessageDialog widget, 94
xmPanedWindow widget, 79
xmPromptDialog widget, 94
xmPulldownMenu widget, 93
xmPushButton widget, 56
xmQuestionDialog widget, 94
xmRowColumn widget, 74
xmScale widget, 67
xmScrollBar widget, 69
xmScrolledList widget, 63
xmScrolledText widget, 49
xmSelectionBox widget, 91
xmSeparator widget, 61
xmTextField widget, 49
xmText widget, 49
xmToggleButton widget, 58
xmWarningDialog widget, 94
xmWorkingDialog widget, 94
xtAppInitialize, 16, 24

Y

YP maps and sautil, 12

Tell Us About This Manual

As a user of Silicon Graphics products, you can help us to better understand your needs
and to improve the quality of our documentation.

Any information that you provide will be useful. Here is a list of suggested topics:

• General impression of the document

• Omission of material that you expected to find

• Technical errors

• Relevance of the material to the job you had to do

• Quality of the printing and binding

Please send the title and part number of the document with your comments. The part
number for this document is 007-3224-001.

Thank you!

Three Ways to Reach Us

• To send your comments by electronic mail, use either of these addresses:

– On the Internet: techpubs@sgi.com

– For UUCP mail (through any backbone site): [your_site]!sgi!techpubs

• To fax your comments (or annotated copies of manual pages), use this
fax number: 650-932-0801

• To send your comments by traditional mail, use this address:

Technical Publications
Silicon Graphics, Inc.
2011 North Shoreline Boulevard, M/S 535
Mountain View, California 94043-1389

